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ABSTRACT

A distributed wireless sensor network (WSN) is a network of a large number of low-

cost, multi-functional sensors with power, bandwidth, and memory constraints, op-

erating in remote environments with sensing and communication capabilities. WSNs

are a source for a large amount of data and due to the inherent communication and

resource constraints, developing a distributed algorithms to perform statistical pa-

rameter estimation and data analysis is necessary. In this work, consensus based

distributed algorithms are developed for distributed estimation and processing over

WSNs. Firstly, a distributed spectral clustering algorithm to group the sensors based

on the location attributes is developed. Next, a distributed max consensus algorithm

robust to additive noise in the network is designed. Furthermore, distributed spectral

radius estimation algorithms for analog, as well as, digital communication models

are developed. The proposed algorithms work for any connected graph topologies.

Theoretical bounds are derived and simulation results supporting the theory are also

presented.
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Chapter 1

INTRODUCTION

1.1 Wireless Sensor Networks

Wireless sensor networks (WSNs) consists of a large number of low-cost, multi-

functional sensors with power, bandwidth, and memory constraints, operating in re-

mote environments with sensing and communication capabilities (Zhang et al. (2016d)).

WSNs can be broadly classified into :

1. Centralized network

2. Decentralized network

3. Distributed network

Figure 1.1: An Example of a Centralized Network Where All Nodes (in Blue) Com-
municate with a Central Node or Fusion Center (in Green).

1



Centralized network consists of a single fusion center which controls and monitors

all actions of the network, as shown in Figure 1.1. It is also a data aggregation

unit. Centralized network has several drawbacks because of a single control unit. For

instance, in machine learning applications, fusion center creates a huge bottleneck

while aggregating data. Moreover, centralized networks are vulnerable to cyber-

attacks, since an attack on the fusion center results in a system failure.

Figure 1.2: An Example of a Decentralized Network Where All Nodes (in Blue)
Communicate with a Cluster Head Node (in Green), Which in Turn Talks to Fusion
Center (in Orange).

In real world applications, it is hard to design and implement a centralized net-

work, as each sensor has unique capabilities in terms of transmit power, memory

availability and battery consumption, hence designing a topology where all sensors

can communicate to a single node is impractical. Thus, networks were designed

where the control was shared with multiple nodes. Decentralized networks, similar

to centralized has multiple fusion center or sink nodes. Decentralized networks, as in

Figure 1.2, allows resource and control sharing, yet they are not completely tolerant

to cyber attacks, which could lead to a sub-system failure.
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Figure 1.3: An Illustration of a Distributed Network Where Nodes (in Blue) Com-
municate Only with Their Neighboring Nodes.

Distributed networks not only overcome the disadvantages of centralized and de-

centralized networks but also suits well to real world applications. Distributed WSNs

are widely used for environmental monitoring, habitat monitoring, waste water man-

agement, landslide detection, forest fire detection, industry machinery monitoring

and military applications. Unlike centralized and decentralized networks, distributed

networks has no fusion center, as shown in Figure 1.3. Nodes in this network can

only communicate to those nodes which are in its transmission range, usually the

neighboring nodes. This allows for efficient power and resource management.

Since the data collection and processing is performed locally at each node, it

significantly reduces the memory constraints on the nodes. Also, distributed networks

are fault tolerant, i.e., any attack on the nodes only leads to failure of that node and

thus intrusions can be easily detected.

As communication is restricted to neighboring nodes in distributed WSNs, con-

sensus based algorithms are used to perform the desired tasks. In this work, we will

study three algorithms: a distributed clustering algorithm, a distributed max con-
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sensus algorithm, and distributed spectral radius estimation algorithms, which are

elementary algorithms used to develop higher level complex algorithms.

1.2 Motivation

WSNs are widely used in real world applications due to its benefits and ease

of design and implementation. Typical applications of WSN’s include physiological

and environmental monitoring, precision agriculture, factory instrumentation, and

inventory tracking (Estrin et al. (2001)). In WSN’s, the position of the sensors need

not be predetermined, which allows for random deployment in different configurations.

For instance, sensors deployed on volcanic mountains to obtain seismic data can be

in a concentric circular configuration. In environmental monitoring applications, the

data collected from the sensors and the location of the sensors are highly correlated. In

such applications, it is often necessary to perform distributed location-based clustering

of the deployed sensors.

Moreover, in order to perform tasks such as message routing (Al-Karaki and Kamal

(2004)), data aggregation (Krishnamachari et al. (2002)), information fusion (Naka-

mura and Loureiro (2008)), resource management (Akyildiz et al. (2002)), network

parameter estimation (Zhang et al. (2018a,b, 2016b)) and localization (Patwari et al.

(2005)) in distributed networks, it is necessary to develop consensus based distributed

algorithms which not only use local processing and communications, but also robust

to noise and intrusions.

Furthermore, estimating the statistics of sensor measurements in a distributed

network is necessary in several applications such as, detecting anomalous sensors,

supporting the nodes with insufficient resources, network area estimation (Zhang

et al. (2018a)) and spectrum sensing for cognitive radio applications. Knowledge of

extremes are often used in algorithms for outlier detection (Muniraju et al. (2017a);
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Janakiram et al. (2006)), clustering (Muniraju et al. (2017b); Sasikumar and Khara

(2012)), classification (Predd et al. (2006a)), and localization. For instance, in large

scale industrial monitoring applications it is important to monitor the maximum tem-

perature of working machinery’s to detect under-performance and failures. However,

several factors (Olfati-Saber and Murray (2004)) such as additive noise in wireless

channels, random link failures, packet loss and delay of arrival significantly degrade

the performance of distributed algorithms. Hence it is important to design and ana-

lyze consensus algorithms robust to such adversities.

1.3 Literature Survey

In the following, the existing literature on distributed spectral clustering, max

consensus and spectral radius are discussed.

Literature on distributed spectral clustering : Clustering is a process of

grouping a set of unlabeled observations or records into groups of similar observa-

tions (Shanthamallu et al. (2017)). Clustering has a wide range of applications in

pattern recognition, economic science, marketing, earth science, image processing

and city planning. To handle large data-sets, parallel implementations of K-means

and expectation maximization (EM) algorithms have been proposed in (Chen et al.

(2011); Zhang et al. (2006)). However, these approaches are not feasible in WSN’s due

to power and bandwidth constraints (Predd et al. (2006b)). Recently, several papers

(Yin et al. (2014); Qin et al. (2017); Zhou et al. (2015); Forero et al. (2012)) have been

published on distributed K-means and EM algorithms. In (Yin et al. (2014)), the

EM algorithm for mixture of probabilistic principle component analyzers is extended

to a summing variant and then transformed into the distributed EM algorithm. Ref-

erence (Qin et al. (2017)) presents a so-called distributed K-means++ algorithm for

initializing centroids and then develops distributed K-means and fuzzy c-means algo-
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rithms. A distributed K-means algorithm based on weight-entropy regularization is

proposed in (Zhou et al. (2015)). Authors of (Forero et al. (2012)), propose a deter-

ministic, and a probabilistic approach for distributed clustering by using consensus

based formulations and distributed optimization techniques and extends this to iden-

tify outliers. Reference (Scardapane et al. (2016)) proposes a distributed spectral

clustering algorithm using diffusion strategies to exchange data in the network, and

then apply matrix completion and distributed gradient descent.

Literature on distributed max consensus : Average consensus (Kar and

Moura (2009); Xiao et al. (2007a)) and max consensus (Iutzeler et al. (2012a); Nejad

et al. (2009)) algorithms are fundamental algorithms which enable to develop complex

algorithms to perform desired tasks in a distributed network. Average and max

consensus in noise free networks and average consensus in noisy networks are well

studied in literature, however max consensus in presence of communication noise in

static and dynamic networks is still an open problem.

Although max consensus has been studied in the literature (Iutzeler et al. (2012a);

Nowzari and Rabbat (2018); Shi and Johansson (2012); Giannini et al. (2016); Nejad

et al. (2009, 2010)), the analysis of max consensus algorithms under additive channel

noise and randomly changing network conditions has not received much attention.

We start with a review of the literature on max consensus in the absence of noise. A

distributed max consensus algorithm for both pairwise and broadcast communications

is introduced in (Iutzeler et al. (2012a)) and also provides an upper bound on the mean

convergence time. Recent work in (Nowzari and Rabbat (2018)) consider pairwise

and broadcast communications with asynchronous updates and significantly improve

the tightness of the upper bound on the mean convergence time. The convergence

properties of max consensus protocols are studied in (Shi and Johansson (2012);

Giannini et al. (2016); Nejad et al. (2009, 2010)) for broadcast communications setting
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in distributed networks. The convergence of average and max consensus algorithms

in time dependent and state dependent graphs are analyzed in (Shi and Johansson

(2012)). Asynchronous updates in the presence of bounded delays is considered in

(Giannini et al. (2016)). Max-plus algebra is used to analyze convergence of max-

consensus algorithms for time-invariant communication topologies in (Nejad et al.

(2009)), and for switching topologies in (Nejad et al. (2010)), both in the absence of

noise. Distributed algorithms to reach consensus on general functions in the absence

of noise are studied in (Tahbaz-Salehi and Jadbabaie (2006); Cortés (2008); Bauso

et al. (2006)). A one-parameter family of consensus algorithms over a time-varying

network is proposed in (Tahbaz-Salehi and Jadbabaie (2006)), where consensus on the

minimum of the initial measurements can be reached by tuning a design parameter. A

distributed algorithm to reach consensus on general functions in a network is presented

in (Cortés (2008)), where the weighted power mean algorithm originally proposed by

(Bauso et al. (2006)) is used to calculate the maximum of the initial measurements

by setting the design parameter to infinity.

Literature on distributed spectral radius estimation : Spectral radius of a

graph is the principal eigenvalue of the adjacency matrix and is an important graph

feature that captures the information flow of the graph topology. The knowledge

of spectral radius is needed to study graph coloring methods (Karger et al. (1998)),

properties of Hamiltonian paths (Thomason (1978)) in distributed networks, and to

understand the convergence properties of belief propagation algorithms (Ihler et al.

(2005)). The chromatic number of a graph is the minimum number of colors that can

be used to color a graph so that no two adjacent vertices have the same color. Ref-

erences (Nikiforov (2007); Wocjan and Elphick (2013)) tightly bound the chromatic

number as an increasing function of spectral radius. Authors in (Fiedler and Niki-

forov (2010)) derive tight sufficient conditions for the existence of Hamilton paths and
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cycles in terms of the spectral radius of graphs. Reference (Lu et al. (2012)) provides

sufficient conditions for the existence of Hamilton paths and cycles in bipartite graphs

in terms of the graph spectral radius. Reference (Elphick and Wocjan (2014)) develop

different measures to evaluate the irregularity of the graph using spectral radius and

the degree sequence. Furthermore, graph spectral radius is used to lower bound other

graph quantities such as the walk counts (Stevanović (2015)), clique number (Wilf

(1986)) and epidemic threshold (Chakrabarti et al. (2008)) of a network. Distributed

power iteration (Jelasity et al. (2007); Le Borgne et al. (2008)) can be used to first

compute the principal eigenvector and then estimate the spectral radius of the graph.

This iterative method is computationally expensive, as the norm of the state value

vector needs to computed in each iteration (Jelasity et al. (2007)). Moreover, con-

vergence of distributed power iteration methods in the presence of additive noise,

without making assumptions on noise distributions is still an open problem.

1.4 Contributions of the Dissertation

Here we summarize the main contributions of this dissertation.

• We design and implement a spectral clustering method in a distributed way

without any fusion center in the network, by combining the distributed eigen-

vector computation and distributed K-means clustering methods, to cluster the

input dataset into K groups. The location information of the senors is used only

to establish the network topology and this information is not exchanged in the

network. The power iteration method is implemented distributively, to compute

the Fiedler vector. All nodes converge to a value in the Fiedler vector of the

graph Laplacian. Clustering is carried out on the Fiedler vector using the dis-

tributed K-means algorithm. Simulation results illustrate that the distributed

spectral clustering algorithm performs better than the K-means algorithm as
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the eigenvector of graph Laplacian is a better feature space to cluster than the

input dataset. This work can also be used to data labeling as the measurements

obtained by the senors belonging to the same cluster can be assigned by a com-

mon label. This algorithm is also used in the NSF RAPID project on COVID-19

hotspot detection project to form sub-clusters based on the node density of the

hotspots, after which, distributed algorithms are run to estimate the statistics

of the transmission hotspots (SenSIP center (2021),NSF Grant (2021)).

• We design a practical approach for reliable estimation of maximum of the initial

state values of nodes in a distributed network, in the presence of additive noise.

Firstly, we show that the existence of a constant growth rate due to additive

noise and then derived upper and lower bounds for the growth rate. We show

that the growth rate is constant, and the upper bound is a function of spectral

radius of the graph. By deriving a lower bound, we prove that the growth

rate is always a positive non-zero real value. We also derived upper and lower

bounds on the growth rate for random time-varying graphs. An empirical upper

bound is obtained by scaling the original bound, which is shown to be tighter

and generalizable to different networks and noise settings. Finally, we present a

fast max-based consensus algorithm, which is robust to additive noise and show

that the variance of the growth rate estimator used in this algorithm decreases

as O(t−1max) using concentration inequalities. We also show that the variance of

our estimator scales linearly with the diameter of the network.

• We design a distributed algorithm to compute the spectral radius of the network,

using only local communications, for analog and digital transmission settings.

Our algorithm for analog model uses a distributed max consensus update to

compute the growth rate and then updates the state values based on the growth
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rate estimate to converge on the logarithm of the spectral radius. The proposed

method for digital model involves a simple log-sum-exp updates, which is robust

to packet loss and restricts the state values within the dynamic range. Addi-

tionally, theoretical results on convergence of the algorithm and estimation error

are presented, for both bipartite and non-bipartite graphs. For irregular graphs,

we prove that the convergence error is a function of principal eigenvector of the

graph adjacency matrix and reduces as O(1/t).

1.5 Outline of the Dissertation

In this work, we present three fundamental algorithms: distributed spectral clus-

tering, distributed max consensus and distributed spectral radius estimation algo-

rithms, to solve some of the above discussed long standing problems in WSNs. For

completeness of the thesis, we provide the background reading for graph theory and

distributed consensus algorithms in Chapter 2. In Chapter 3, we discuss the dis-

tributed spectral algorithm, which groups the sensors based on the location informa-

tion into correct clusters only using local communications. In Chapter 4, we study

the behavior of max consensus in the presence of additive noise and then present

a distributed max consensus algorithm that is robust to additive noise and time-

varying graphs. In Chapter 5, we study the distributed spectral radius estimation

algorithms for both analog and digital communication models. We consider the pres-

ence of additive noise over the analog communication links, and packet loss in case of

digital models. We provide theoretical results on our algorithms and verify them via

simulations. Finally, in Chapter 6, we summarize our work and conclude the report.
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Chapter 2

BACKGROUND

For completeness of the thesis, in this chapter, we will discuss the mathematical

background, basics of graph theory and distributed consensus algorithms, which will

be used in the later chapters to understand the distributed algorithms.

2.1 Introduction to graph theory

Any network can be described by a graph G with vertices V representing the nodes

and edges E model the communication channel between the nodes in the network.

For instance, consider a graph (as shown in Figure 2.1) of N nodes an in (Zhang et al.

(2016a)), where the ith node is located at (xi, yi) on a 2-D plane. The communication

among the nodes is modeled as an undirected graph G = (V , E), where V is the set of

Figure 2.1: An Illustration of a Distributed Network with N = 6 Nodes.
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nodes and E is the set of edges connecting the nodes. Two nodes can communicate

with each other if they are within a Euclidean distance of ε. The set of neighbors of

node i is denoted by Ni = {j|{i, j} ∈ E}.

Figure 2.2: Degree matrix of the network in the Figure 2.1.

The degree of the ith node, denoted by di, is the number of neighbors of the ith

node. The degree matrix D, as shown in Figure 2.2, is a diagonal matrix that contains

the degrees of the nodes.

Figure 2.3: Adjacency Matrix of the Network in the Figure 2.1.
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The connectivity structure of the graph is characterized by the adjacency matrix

A = {aij}, as shown in Figure 2.3, defined by, aij = 1 if {i, j} ∈ E and aij = 0,

otherwise. If there are no self loops in the graph then, aii = 0. Adjacency matrix

can also be associated with weights instead of 1’s and 0’s, which model the similarity

among those 2 nodes. The spectral radius ρ of a graph is the eigenvalue of the

adjacency matrix with the largest magnitude.

Figure 2.4: Laplacian Matrix of the Network in the Figure 2.1.

The graph Laplacian L is a N × N positive semi-definite matrix defined by L =

D − A, as shown in Figure 2.4. The smallest eigenvalue of the graph Laplacian is

λ1(L) = 0. For a connected graph λi(L) > 0, i = 2, . . . N . The graph Laplacian L

has eigenvalues λ1, λ2, . . . λN where λ1 = 0. If graph is connected, then λN ≥ λN−1 ≥

. . . λ2 > 0. The eigenvalue λ1(L) = 0, is associated with the eigenvector 1, composed

of ones. Connectivity of the graph is captured by the smallest non-zero eigenvalue

λ2(L) called algebraic connectivity and the corresponding eigenvector is called the

Fiedler vector. λ2(L) > 0, only if the graph is connected and the Fiedler vector

contains the information of the distinct clusters in a graph.
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2.2 Background on distributed consensus algorithms

In a wireless sensor network, since nodes can only communicate with their neigh-

bors, it is crucial for all the nodes in the network to agree upon a decision or converge

to a value. This process of making the distributed nodes to converge or reach agree-

ment to a value of common interest is called consensus. In the WSNs literature,

there are 2 fundamental consensus algorithms, distributed average consensus and dis-

tributed max consensus, which are quintessential to develop higher level consensus

algorithms. In this section, we discuss the average consensus and max consensus

algorithms, which are used in the following chapters.

2.2.1 Average consensus

Distributed average consensus is a well studied method of computing the average

of initial measurements distributively (Dasarathan et al. (2015); Olfati-Saber et al.

(2007); Xiao et al. (2007b)). For instance, in this thesis, distributed average consensus

based formulations are used to compute the eigenvector corresponding to the algebraic

connectivity of the graph Laplacian. Consider x(t) = [x1(t), x2(t), . . . xN(t)]T to be

the state values of the nodes at time t ≥ 0 and the initial state of the ith node is

xi(0). The sample mean of all the state values is calculated in a distributed way as

follows,

xi(t+ 1) = xi(t) + α
∑
j∈Ni

aij(xj(t)− xi(t)), (2.1)

where t ≥ 0 is the time index and α is the step size, satisfying 0 < α < 1
λN (L)

.

Equation (3.1) can be written as x(t+1) = Wx(t), where W = I−αL. Convergence

of average consensus is proved in Xiao et al. (2007b); Olfati-Saber et al. (2007).
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2.2.2 Max consensus

In this section, we describe the conventional max-based consensus algorithm. The

goal of max consensus is to make the nodes reach consensus on the maximum of the

initial node state values.

Consider a distributed network with N nodes with real-valued initial measure-

ments, x(0) = [x1(0), . . . , xN(0)]T , where xi(t) denotes the state value of the ith node

at time t. Max consensus in the absence of noise merely involves updating the state

value of nodes with the largest received measurement thus far in each iteration so

that the nodes reach consensus on the maximum value of the initial measurements.

Let vij(t) be a zero mean, independent and identically distributed (i.i.d) noise sample

from a general noise distribution, which models the additive communication noise

between nodes i and j at time t. To reach consensus on the maximum of the ini-

tial state values, nodes update their state by taking the maximum over the received

measurements from neighbors and their own state, given by,

In the absence of noise in the network, consensus is reached on the maximum

within D iterations, where D is the diameter of the network. Alternatively, D is the

number of iterations required to propagate or flood a value to all the nodes in the

network.
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Chapter 3

DISTRIBUTED SPECTRAL CLUSTERING FOR WSN

3.1 Overview

In this chapter, we propose and discuss a distributed spectral clustering algorithm

(Muniraju et al. (2017b)) to group sensors based on their location in a wireless sen-

sor network (WSN). For machine learning and data mining applications in WSN’s,

gathering data at a fusion center is vulnerable to attacks and creates data congestion.

To avoid this, we propose a robust distributed clustering method without a fusion

center. The algorithm combines distributed eigenvector computation and distributed

K-means clustering. A distributed power iteration method is used to compute the

eigenvector of the graph Laplacian. At steady state, all nodes converge to a value

in the eigenvector of the algebraic connectivity of the graph Laplacian. Clustering

is carried out on the eigenvector using a distributed K-means algorithm. Location

information of the sensor is only used to establish the network topology and this in-

formation is not exchanged in the network. This algorithm works for any connected

graph structure.

3.2 Introduction

A wireless sensor network (WSN) consists of a large number of low-cost, multi-

functional sensors with power, bandwidth, and memory constraints, operating in re-

mote environments with sensing and communication capabilities (Zhang et al. (2016d)).

Typical applications of WSN’s include physiological and environmental monitoring,

precision agriculture, factory instrumentation, and inventory tracking (Estrin et al.
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(2001)). In WSN’s, the position of the sensors need not be predetermined, which

allows for random deployment in different configurations. For instance, sensors de-

ployed on volcanic mountains to obtain seismic data can be in a concentric circular

configuration. In environmental monitoring applications, the data collected from the

sensors and the location of the sensors are highly correlated. In such applications,

it is often necessary to perform distributed location-based clustering of the deployed

sensors.

3.2.1 Literature survey

Clustering is a process of grouping a set of unlabeled observations or records

into groups of similar observations (Shanthamallu et al. (2017)). Clustering has a

wide range of applications in pattern recognition, economic science, marketing, earth

science, image processing and city planning. To handle large data-sets, parallel imple-

mentations of K-means and expectation maximization (EM) algorithms have been

proposed in (Chen et al. (2011); Zhang et al. (2006)). However, these approaches

are not feasible in WSN’s due to power and bandwidth constraints (Predd et al.

(2006b)). Recently, several papers (Yin et al. (2014); Qin et al. (2017); Zhou et al.

(2015); Forero et al. (2012)) have been published on distributed K-means and EM

algorithms. In (Yin et al. (2014)), the EM algorithm for mixture of probabilistic prin-

ciple component analyzers is extended to a summing variant and then transformed

into the distributed EM algorithm. Reference (Qin et al. (2017)) presents a so-called

distributed K-means++ algorithm for initializing centroids and then develops dis-

tributed K-means and fuzzy c-means algorithms. A distributed K-means algorithm

based on weight-entropy regularization is proposed in (Zhou et al. (2015)). Authors

of (Forero et al. (2012)), propose a deterministic, and a probabilistic approach for dis-

tributed clustering by using consensus based formulations and distributed optimiza-
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tion techniques and extends this to identify outliers. Reference (Scardapane et al.

(2016)) proposes a distributed spectral clustering algorithm using diffusion strategies

to exchange data in the network, and then apply matrix completion and distributed

gradient descent.

3.2.2 Motivation

Classical clustering algorithms such as K-means and EM algorithms suffer from

several drawbacks. The log likelihood functions may have several local minima, re-

quiring these algorithms to have multiple restarts to obtain the desired results (Y Ng

et al. (2001)). The K-means algorithm is also sensitive to initialization. However,

clustering algorithms such as spectral clustering (von Luxburg (2007)) and density

based spatial clustering of applications with noise (DBSCAN) (Ester et al. (1996))

address these aforementioned problems. DBSCAN does not require prior knowledge

of the number of clusters, but it is very sensitive to input parameters, radius ε and

minimum number of points inside the ε-sphere. Spectral clustering makes use of

spectral graph theory to cluster data based on the connectivity rather than the com-

pactness in the data. References (von Luxburg (2007); Y Ng et al. (2001)) develop

spectral clustering for a centralized implementation. Although centralized computa-

tion is accurate, distributed computation has benefits in several areas such as power

management, fault tolerance, cost of implementation and memory management. In

our work, we perform spectral clustering in a distributed manner without using any

fusion center or a sink node.

In this work, we have developed a fully distributed spectral clustering algorithm

to cluster the sensors based on their location. Though, centralized computation is

accurate and simple, distributed computation has benefits over power management,

fault tolerance, cost of implementation and memory management. In our work, we
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assume that a sensor can communicate only with its neighbors within reach of the

sensors transmit power range. We have not considered any fusion center or a sink

node for data aggregation.

3.2.3 Statement of contributions

To the best of our knowledge, a fully distributed spectral clustering algorithm

to cluster the sensors based on the sensor’s location has not been addressed before.

The proposed method computes the eigenvector corresponding to the second smallest

eigenvalue of the graph Laplacian using the power iteration method and then clusters

the eigenvector using the K-means algorithm in a distributed way. Unlike (Scarda-

pane et al. (2016)), we assume the graph induced by the communication radius and

the location of sensors as the similarity graph. The location information of sensors is

only used to establish the network topology. Simulation results illustrate that spec-

tral clustering performs better than K-means, for node configurations as in Figure

3.1.

3.2.4 Notation

Vectors are denoted by boldface lower-case, and matrices by boldface upper-case

letters. The symbol || · || denotes l2-norm for real vectors and spectral norm for

symmetric matrices. The symbol | · | denotes absolute value for a real or complex

numbers and cardinality for sets. Vector 1 represents a N × 1 column vector of all

ones, [1, 1 . . . 1]T . λn(A) denotes the nth smallest eigenvalue of a symmetric matrix

A and un(A) denotes the corresponding eigenvector.
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3.3 System Model

We consider a network of N nodes an in (Zhang et al. (2016a)), where the ith

node is located at (xi, yi) on a 2-D plane. The communication among the nodes is

modeled as an undirected graph G = (V , E), where V is the set of nodes and E is the

set of edges connecting the nodes. Two nodes can communicate with each other if

they are within a Euclidean distance of ε. The set of neighbors of node i is denoted

by Ni = {j|{i, j} ∈ E}. The degree of the ith node, denoted by di, is the number of

neighbors of the ith node. The degree matrix D is a diagonal matrix that contains the

degrees of the nodes. The connectivity structure of the graph is characterized by the

adjacency matrix A = {aij} defined by, aij = 1 if {i, j} ∈ E and aij = 0, otherwise.

There are no self loops in the Graph, aii = 0.

The graph Laplacian L is a N × N positive semi-definite matrix defined by L =

D−A. The smallest eigenvalue of the graph Laplacian is λ1(L) = 0. For a connected

graph λi(L) > 0, i = 2, . . . N . The graph Laplacian L has eigenvalues λ1, λ2, . . . λN

where λ1 = 0. If graph is connected, then λN ≥ λN−1 ≥ . . . λ2 > 0. The eigenvalue

λ1(L) = 0, is associated with the eigenvector 1, composed of ones. Connectivity

of the graph is captured by the smallest non-zero eigenvalue λ2(L) called algebraic

connectivity and the corresponding eigenvector is called the Fiedler vector. λ2(L) > 0,

only if the graph is connected and the Fiedler vector contains the information of the

distinct clusters in a graph.

3.4 Problem Statement

As mentioned, we assume that every sensor can communicate with other sensors

within a radius of ε, which induces a graph topology called the similarity graph. Our

goal is to cluster the sensors in a distributed way, based on their position without
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sharing the location information in the network. The reason we consider distributed

spectral clustering over the existing distributed approaches such as K-means, EM or

Gaussian mixture models (Yin et al. (2014); Qin et al. (2017); Zhou et al. (2015);

Forero et al. (2012)) is due to its effectiveness for node configurations as in Figure

3.1.

3.5 Mathematical Background

In this section we briefly review the concepts of Distributed average consensus,

Power iteration and K-means algorithm.

3.5.1 Distributed average consensus

Distributed average consensus is a well studied method of computing the average

of initial measurements distributively (Dasarathan et al. (2015); Olfati-Saber et al.

(2007); Xiao et al. (2007b)). In this chapter, distributed average consensus based

formulations are used to compute the eigenvector corresponding to the algebraic con-

nectivity of the graph Laplacian. Consider xt = [xt1, x
t
2, . . . x

t
N ]T to be the state values

of the nodes at time t ≥ 0 and the initial state of the ith node is x0i . Note that, for

ease of representation, we use superscript t as time index, more specifically, utn(L)

represents the nth eigenvector of matrix L, at time t. The sample mean of all the

state values is calculated in a distributed way as follows,

xt+1
i = xti + α

∑
j∈Ni

aij(x
t
j − xti), (3.1)

where t ≥ 0 is the time index and α is the step size, satisfying 0 < α < 1
λN (L)

.

Equation (3.1) can be written as xt+1 = Wxt, where W = I − αL. Convergence of

average consensus is proved in Xiao et al. (2007b); Olfati-Saber et al. (2007).
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3.5.2 Power iteration method

We use matrix transformations and the power iteration method to compute the

eigenvector corresponding to the second smallest eigenvalue of the graph Laplacian,

u2(L). The centralized power iteration method can be used to compute the largest

eigenvalue and the corresponding eigenvector of a positive semi-definite matrix.

In (Scaglione et al. (2008)), distributed average consensus algorithm and power

iteration method is used to find the eigenvectors in a distributed manner. Since we

have to compute the eigen vectors corresponding to the first K smallest eigen values,

the aforementioned method will be computationally expensive. In the inverse power

iteration method, the inverse of the input matrix is used for power iteration to find

the eigen vector of the smallest eigen value. In distributed computation, finding the

inverse of the Laplacian matrix in a distributed way is still a research problem as the

Laplacian matrix structure is close to a singular matrix.

Let u = (u1, u2, .., un) represent the eigenvector of a matrix Z. The eigenvector

corresponding to the largest eigenvalue of matrix Z, is computed as

ut+1 =
Zut

||Zut||
, t ≥ 0 (3.2)

where u(0) is a initial random vector from a continuous distribution and t ≥ 0 is the

time index. As t→∞, ut converges to the eigenvector of the largest eigenvalue of Z.

We denote the N th eigenvector of matrix Z as uN(Z).

However, the power iteration method on L results in the eigenvector corresponding

to the largest eigenvalue of L, but we are interested in computing u2(L). Hence we

use the idea of computing the Fiedler vector of L from (Di Lorenzo and Barbarossa

(2014)), which involves matrix transformation, deflation and power iteration meth-

ods. A scalar α times the Laplacian matrix is subtracted by an identity matrix. The

resulting matrix is deflated such and the power iteration method is applied to cal-
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culate the eigenvectors. The eigenvector of the smallest non-zero eigenvalue is called

the fielder vector. The upper and lower bounds for algebraic connectivity has been

derived in (Aragues et al. (2014)). Let us first discuss the eigenvector computation

in centralized way and later discuss the distributed implementation in next section.

The Fiedler vector of the graph Laplacian, u2(L) can be calculated as follows: The

graph Laplacian L is transformed into a positive semi-definite matrix W = I − αL,

which satisfies W = WT and W1 = 1 and 0 < α < 1
λN (L)

. Note that the α used

in the previous expression, and in Equation (3.1) can take different values within the

bounds, but in our work we assume them to be the same to avoid an extra input

parameter in the proposed algorithm. The λ’s of W and L are related by

λn(L) =
1− λN+1−n(W)

α
. (3.3)

The matrix W is deflated to remove the largest eigenvalue and its corresponding

eigenvector.

Z = W− 1

N
11T = I− αL− 1

N
11T . (3.4)

The eigenvector associated with the λ2(L), λN−1(W) and λN(Z) are equal, which can

be computed by Equation (3.2).

u2(L) = uN−1(W) = uN(Z). (3.5)

This method relies on the choice of scalar α and the degree of deflation. The dis-

tributed version is discussed in Section 3.6.2.

3.5.3 K-means clustering method

K-means is a well known clustering method to cluster the data set into K groups.

In our work, K-means algorithm is used to cluster the Fiedler vector of L.

In centralized K-means, K centroids µt = [µt1, µ
t
2, ..µ

t
K ] are randomly initialized.

The algorithm performs cluster assignment and centroid update iteratively. In cluster
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assignment step, data points y = [y1, y2, . . . yN ] are assigned to a cluster Ck̂ as,

yi ∈ Ck̂, if k̂ = argmin
k∈{1,...K}

||yi − µtk||2. (3.6)

Each yi is assigned to one of the K clusters. After the points are assigned to a cluster,

the centroid is updated by,

µt+1
k =

1

|Ct
k̂
|
∑
yi∈Ct

k̂

yi. (3.7)

Stopping criteria of the algorithm is based on the successive changes in the cen-

troid’s position.

3.6 Distributed Spectral Clustering

Distributed spectral clustering method involves: (i) defining the similarity graph

for the network, (ii) distributively estimating the Fiedler vector of the graph Laplacian

of the similarity graph (Xiang and Gong (2008)) and (iii) clustering the Fiedler vector

using the distributed K-means algorithm. Algorithm 1, explains the distributed spec-

tral clustering method for K clusters. The input parameters, N and K are assumed to

be known. The Fiedler vector of the graph Laplacian is computed distributively using

the power iteration method, refer Lines (5)-(9) of the algorithm 1. The distributed

K-means algorithm, Line (10), is implemented with the Fiedler vector as the input

to cluster the dataset into K groups. We now further elaborate on the description of

Algorithm 1.

3.6.1 Similarity graph

Similarity graph is a graphical representation of the similarity between pairs of

nodes. In the centralized spectral clustering method, a similarity graph is constructed
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using the input dataset and clustering is performed on the eigenvectors of the graph

Laplacian of the similarity graph (von Luxburg (2007)).

The similarity graph can be constructed using various metrics such as ε-neighborhood,

k-nearest neighbors and kernel methods. We are effectively adopting the ε - neigh-

borhood method because all nodes whose pairwise Euclidean distance is less than ε

are assumed to be connected. Note that in our setting, the similarity graph does not

require an explicit construction and it is induced naturally by the communication

radius ε and the location of the nodes.

3.6.2 Distributed power iteration method

In this section we implement the above discussed centralized method of eigenvec-

tor computation in a distributed way using distributed average consensus method.

To compute the eigenvectors, Equations (3.2) and (3.4) have to be computed in a dis-

tributed way. Every node generates a state value u0i , from a continuous distribution

over (−1, 1). Let gti be an intermediate value at node i, at time t ≥ 0. The iterative

algorithm in Lines (5)-(9), compute the numerator of Equation (3.2), g = Zu in a

distributed way. Consider the equation in Line (7), where utavg is the distributed aver-

age of ut, obtained via consensus in Line (6), calculated locally using Equation (3.1).

The step size α is selected to satisfy 0 < α < 1
λN (L)

. Next step is to normalize the

eigenvector gt = [gt1, . . . g
t
N ] to obtain ut+1

i . The numerator in the Line (8) is already

computed in Line (7). To compute denominator, the distributed average consensus

is used over (gi
t)2, followed by a square root. Lines (7) and (8) are computed itera-

tively until convergence. When t is large, all the nodes in the network converge to a

reasonable estimate of the Fiedler vector of L.
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Algorithm 1 Distributed spectral clustering

1: Distributed Power Iteration

2: Input: location co-ordinates (xi, yi), N,α, A

3: Initialization

4: every node generates u0i = rand(−1, 1),u = [u1, . . . uN ]

5: repeat {i = 1 : N}

6: utavg = avgconsensus(ut)

7: gti = uti − α
∑

j∈Ni(u
t
i − utj)− utavg

8: ut+1
i =

gti
||gt||

9: until convergence.

10: Distributed K-means

11: Input: u = [u1, u2, . . . uN ], K

12: every node generates µ = [µ1, . . . µK ] from rand(−1, 1)

13: repeat{i = 1 : N, k = 1 : K}

14: compute {at every node}

15: ρki = |ui − µk|

16: cluster assignment :

17: assign clusterindex = argmin
k

(ρki)

18: update centroid:

19: Uk = {ui|(i ∈ clusterindex = k}

20: µk = avgconsensus(Uk)

21: centroid information exchange:

22: flood (0, . . . , µk, . . . , 0)

23: update(0, . . . , µk, . . . , 0)← (µ1, . . . , µk, . . . , µK)

24: go to: compute

25: until convergence
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3.6.3 Distributed K-means

Once the nodes have converged to the fiedler vector, distributed K-means algo-

rithm is used to cluster the nodes into K clusters. In this section, we explain the

distributed implementation of the K-means algorithm (Qin et al. (2017)). To achieve

this, Equations (3.6) and (3.7) must be implemented distributively. In our work,

the input data for clustering is a N × 1 eigenvector u2(L), so the task reduces to a

1-D clustering. Every node generates a vector of centroids µ = [µ1, . . . µK ] from a

continuous distribution over (−1, 1), since the range of the Fiedler vector lies within

(−1, 1), Figure 3.4. Each node computes the Euclidean distance ρki, between ui and

the centroids µk, refer to Line (15) of the algorithm. Every node computes the min-

imum of ρki and the label corresponding to the minimum of the distances will be

the cluster to which the node belongs, refer Line (17). The nodes in the same cluster

compute distributed average consensus over the state values, ie., ui’s and update their

centroid, Line (20). The total number of nodes in each cluster can be found by using

distributed node counting methods (Zhang et al. (2017)).

After the first iteration, nodes only have knowledge of their own cluster’s centroid.

To obtain the centroid information of other clusters, a flooding protocol can be used

(Heinzelman et al. (1999)).

In a flooding protocol, a node sends a copy of its information to the neighboring

nodes. The receiving node floods the received information to all its neighboring

nodes except the node from which it just received the data. To exchange the centroid

information, all the nodes flood a K × 1 vector in the network with the kth entry

being the centroid of the cluster to which the node belongs and the rest set to 0, Line

(22). Once the entire network is flooded, every node starts updating the knowledge

of other cluster’s centroids. The K × 1 centroid vector is updated by replacing 0’s
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Figure 3.1: Synthetic Data of 2-D Sensor Locations.

with the µk’s, Line (23).

Now all nodes have the centroid information of all the clusters and the cluster

assignment and centroid update steps are repeated until convergence.

3.7 Simulations and Applications

We assume N = 600 nodes and K = 3 clusters in the input data as in Figure 3.1.

The concentric circles dataset is used in (Y Ng et al. (2001)) to validate the perfor-

mance of the spectral clustering algorithm. This dataset is generated by adding noise

from N (0, 0.01) to the circles of radius 0.3, 0.6 and 0.9 respectively, and normalized

to ensure that the dataset lies in (−1, 1)×(−1, 1). The adjacency matrix is formed by

creating a link between pairs of nodes whose distance is less than ε = 0.3, as in Figure

3.2. In our setting, ε = 0.3 is the smallest radius required to establish connectivity

in the network. For real-time applications in WSN’s, the unit of ε and the input
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Figure 3.2: Similarity Graph, ε = 0.3.

Figure 3.3: Convergence of Nodes to the Fiedler Vector.
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Figure 3.4: Fiedler Vector Computed by Algorithm 1, α = 0.02.
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Figure 3.5: Result of Distributed Spectral Clustering, K = 3.
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Figure 3.6: K-means Clustering on the Dataset in Fig. 1, K = 3.

dataset is identical. As per our assumption, similarity matrix is the same as that of

the adjacency matrix of the network.

We have implemented the distributed eigenvector computation, Section 3.6.2 by

choosing 0 < α < 1
λN (L)

, where λ−1N (L) = 0.024, closer to the upper-bound as α = 0.02

for faster convergence. All nodes generate a value from a continuous distribution over

(−1, 1) as their initial state value and reach consensus to a value in the eigenvector

of the algebraic connectivity of L as in Figure 3.3. Clustering is performed on the

eigenvector by using the distributed K-means algorithm. The cluster centroids for

K = 3 are initialized uniformly over (−1, 1). The cluster assignment and update cen-

troid steps are repeated until convergence. In Figure 3.5, the result of the distributed

spectral clustering algorithm is displayed. Figure 3.6 shows the result of the K-means

algorithm applied on the same dataset as in Figure 3.1. We observe that distributed

spectral clustering provides more acceptable results than distributed K-means, be-
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cause spectral clustering takes into account the connectivity in the dataset, which is

captured in the Fiedler vector of L.

3.7.1 Intelligent monitoring and control of solar PV arrays

At SenSIP, we have a large testbed (Rao et al. (2016)) consisting of solar panels

equipped with sensors whose purpose is to validate algorithms for monitoring and

controlling photo-voltaic systems. This cyber physical system generates analytics

from sensors that are attached on the panels. Each panel has a cluster of sensors,

namely, voltage, current, temperature and irradiance. The work described in this

paper can be applied to data labeling and fault localization in a large-scale system

which has high correlation between the location data and measurements of the sensors

(Banavar et al. (2012)). For instance, the solar panels installed over a large area

form a distributed network that can be clustered into different groups based on their

locations. These groups consist of PV modules affected by shading, temperature,

cloud cover and irradiance. Our assumption of high correlation between location and

measurements is valid for a large solar array. The algorithm we developed will be able

to identify clusters within a very large utility-scale array (Spanias (2017)) that have

similar performance because of similar conditions, namely shading, temperature and

irradiance, which can be used to help localize faults (Rao et al. (2017)) and under

performing modules. The advantage of our algorithm is that the location information

or any data measurements need not be shared in the network.

3.8 Chapter Summary

We have designed and implemented a spectral clustering method in a distributed

way without any fusion center in the network, by combining the distributed eigenvec-

tor computation and distributed K-means clustering methods, to cluster the input
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dataset into K groups. The location information of the senors is used only to estab-

lish the network topology and this information is not exchanged in the network. The

power iteration method is implemented distributively, to compute the Fiedler vector.

All nodes converge to a value in the Fiedler vector of the graph Laplacian. Clus-

tering is carried out on the Fiedler vector using the distributed K-means algorithm.

The location information of the sensor is only used to establish the network topology

and this information is not exchanged in the network. Simulation results illustrate

that the distributed spectral clustering algorithm performs better than the K-means

algorithm as the eigenvector of graph Laplacian is a better feature space to cluster

than the input dataset. This algorithm works for any connected graph structure. Our

algorithm is not sensitive to centroid initialization and can cluster datasets based on

the connectivity unlike traditional k-means and EM algorithm. Our work can also be

used to data labeling as the measurements obtained by the senors belonging to the

same cluster can be assigned by a common label.
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Chapter 4

DISTRIBUTED MAX CONSENSUS FOR WSN

4.1 Overview

The analysis of a distributed consensus algorithm for estimating the maximum

of the node initial state values in a network (Muniraju et al. (2019)) is considered

in the presence of communication noise. Conventionally, the maximum is estimated

by updating the node state value with the largest received measurements in every

iteration at each node. However, due to additive channel noise, the estimate of

the maximum at each node has a positive drift at each iteration and this results

in nodes diverging from the true max value. Max-plus algebra is used to study this

ergodic process, wherein, at each iteration the state values are multiplied by a random

matrix characterized by the noise distribution. The growth rate of the state values

due to noise is studied by analyzing the Lyapunov exponent of the product of noise

matrices in a max-plus semiring. The growth rate of the state values is bounded by a

constant which depends on the spectral radius of the network and the noise variance.

Simulation results supporting the theory are also presented.

4.2 Introduction

A wireless sensor network (WSN) is a distributed network consisting of multi-

functional sensors, which can communicate with neighboring sensors over wireless

channels. Estimating the statistics of sensor measurements in WSNs is necessary in

detecting anomalous sensors, supporting the nodes with insufficient resources, net-

work area estimation (Zhang et al. (2018a)), and spectrum sensing (Li et al. (2010))
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for cognitive radio applications, just to name a few. Knowledge of extremes are often

used in algorithms for outlier detection, clustering (Muniraju et al. (2017b)), clas-

sification (Predd et al. (2006a)), and localization. However, several factors such as

additive noise in wireless channels, random link failures, packet loss and delay of

arrival significantly degrade the performance of distributed algorithms. Hence it is

important to design and analyze consensus algorithms robust to such adversities.

4.2.1 Literature survey

Although max consensus has been studied in the literature (Iutzeler et al. (2012a);

Nowzari and Rabbat (2018); Shi and Johansson (2012); Giannini et al. (2016); Nejad

et al. (2009, 2010)), the analysis of max consensus algorithms under additive channel

noise and randomly changing network conditions has not received much attention.

We start with a review of the literature on max consensus in the absence of noise. A

distributed max consensus algorithm for both pairwise and broadcast communications

is introduced in (Iutzeler et al. (2012a)) and also provides an upper bound on the mean

convergence time. Recent work in (Nowzari and Rabbat (2018)) consider pairwise

and broadcast communications with asynchronous updates and significantly improve

the tightness of the upper bound on the mean convergence time. The convergence

properties of max consensus protocols are studied in (Shi and Johansson (2012);

Giannini et al. (2016); Nejad et al. (2009, 2010)) for broadcast communications setting

in distributed networks. The convergence of average and max consensus algorithms

in time dependent and state dependent graphs are analyzed in (Shi and Johansson

(2012)). Asynchronous updates in the presence of bounded delays is considered in

(Giannini et al. (2016)). Max-plus algebra is used to analyze convergence of max-

consensus algorithms for time-invariant communication topologies in (Nejad et al.

(2009)), and for switching topologies in (Nejad et al. (2010)), both in the absence of
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noise. Distributed algorithms to reach consensus on general functions in the absence

of noise are studied in (Tahbaz-Salehi and Jadbabaie (2006); Cortés (2008); Bauso

et al. (2006)). A one-parameter family of consensus algorithms over a time-varying

network is proposed in (Tahbaz-Salehi and Jadbabaie (2006)), where consensus on the

minimum of the initial measurements can be reached by tuning a design parameter. A

distributed algorithm to reach consensus on general functions in a network is presented

in (Cortés (2008)), where the weighted power mean algorithm originally proposed by

(Bauso et al. (2006)) is used to calculate the maximum of the initial measurements

by setting the design parameter to infinity.

A system model with imperfect transmissions is considered in (Nowzari and Rab-

bat (2018); Nejad et al. (2010)), where a message is received with a probability 1− p.

This model is equivalent to the time-varying graphs, where each edge is deleted in-

dependently with a probability p. However, these works do not consider errors in

transmission, but only consider transmission failures (erasures).

Authors in (Zhang et al. (2016a)) considers the presence of additive noise in the

network and propose an iterative soft-max based average consensus algorithm to

approximate the maximum, which uses non linear bounded transmissions in order

to achieve consensus. This algorithm depends on a design parameter that controls

the trade-off between the max estimation error and convergence speed. However, the

convergence speed of this soft-max based method is limited compared to the more

natural max-based methods considered herein.

4.2.2 Statement of contributions

The contribution of this work is in both analysis of max consensus algorithms in

presence of additive noise and design of fast max-based consensus algorithms. Due

to additive noise, the estimate of the maximum at each node has a positive drift and
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this results in nodes diverging from the true max value. Max-plus algebra is used to

represent this ergodic process of recursive max and addition operations on the state

values. This growth rate is shown to be a constant in (van de Woude et al. (2007)) for

stochastic max-plus systems using the subadditive ergodic theorem, in a mathematics

context that does not consider max-consensus. Even though the existence of growth

rate follows from the sub-additive ergodic theorem, a formula on the rate itself is

not available (Heidergott (2006); van de Woude et al. (2007)). In order to study the

growth rate, we use large deviation theory and derive an upper bound for a general

noise distribution in the network. We show that the upper bound depends linearly

on the standard deviation, and is a function of the spectral radius of the network.

Since the noise variance and spectral radius are not known locally at each node, we

propose a two-run algorithm to locally estimate and compensate for the growth rate,

and analyze its variance.

Our contributions beyond the conference version in (Muniraju et al. (2018)), are

as follows. We include the complete proof of upper bound on the growth rate and

also extend the analysis by deriving a lower bound. An empirical upper bound, which

includes an additional correction factor that depends on number of nodes is shown to

be tighter compared to (Muniraju et al. (2018)). Additionally, we derive the upper

and lower bounds for time-varying random graphs, which model transmission failures,

and additive noise. Furthermore, we present a method to directly calculate the upper

bound, without solving for the large deviation rate function of the noise. Also, using

concentration inequalities we show that the variance of the growth rate estimator

decreases inversely with the number of iterations and use this to bound the variance of

our estimator. Through simulations, we show that our proposed algorithm converges

much faster with lower estimation error, in comparison to existing algorithms.
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4.2.3 Chapter organization

The rest of this chapter is organized as follows. The system model and problem

statement are discussed in Section 4.3. In Section 4.4, we briefly review the math-

ematical background including max plus algebra. Upper and lower bounds on the

growth rate for fixed graphs is derived in Section 4.5, and for random graphs in Sec-

tion 4.6. In Section 4.7, we introduce a correction factor on the upper bound. In

Section 4.8, we propose a two-run, max-based consensus algorithm robust to addi-

tive noise in the network. Simulation results are provided in Section 4.9, followed by

conclusions in Section 4.10.

4.2.4 Notation

Vectors are denoted by boldface lower-case, and matrices by boldface upper-case

letters. For a matrix A, [A]i,j denotes the element in the ith row and jth column. The

symbol | · | denotes absolute value for a real or complex numbers and cardinality for

sets. Vector 1 represents a N × 1 column vector of all ones, [1, 1 . . . 1]T . Throughout

the paper, log(·) indicates natural logarithm. We denote the probability density

function (PDF) by f(·) and cumulative distribution function (CDF) by F (·).

4.3 System Model

We consider a network of N nodes. The communication among nodes is modeled

as an undirected graph G = (V , E), where V = {1, · · · , N} is the set of nodes and E

is the set of edges connecting the nodes. The set of neighbors of node i is denoted by

Ni = {j|{i, j} ∈ E}. The degree of the ith node, denoted by di = |Ni|, is the number

of neighbors of the ith node. The degree matrix D, is a diagonal matrix that contains

the degrees of the nodes along its diagonal. The connectivity structure of the graph
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is characterized by the adjacency matrix A, with entries [A]i,j = 1 if {i, j} ∈ E and

[A]i,j = 0, otherwise. Spectral radius of the network ρ, corresponds to the eigenvalue

with the largest magnitude of the adjacency matrix A.

Consider the following standard assumptions on the system model :

1. Each node has a real number which is its own initial measurement.

2. At each iteration, nodes broadcast their state values to their neighbors in a

synchronized fashion (Nejad et al. (2009, 2010)). Our analysis and the algorithm

can be extended to asynchronous networks, assuming that the communication

time is small such that the collisions are absent between communicating nodes

(Iutzeler et al. (2012a); Nowzari and Rabbat (2018)).

3. Communications between nodes is analog (Iutzeler et al. (2012a); Nejad et al.

(2009); Li and Zhang (2010)) over the wireless channel and is subject to additive

noise.

4. General model of time-varying graphs are considered, wherein, a message cor-

rupted by additive noise is received with a probability 1− p, in order to model

the imperfect communication links.

A system model with imperfect transmissions is considered in (Nowzari and Rabbat

(2018); Nejad et al. (2010)), where a message is received with a probability 1 − p,

unaffected by the communication noise. Note that, ours is a more general model that

not only consider transmission failures (erasures), but also the errors in transmission

due to imperfect communication links or fading channels. The system models used in

different applications such as distributed max plus systems (Farahani et al. (2017);

Fidler et al. (2018)), distributed detection and target tracking (Hu and Feng (2010)),
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distributed sensor fusion (Zhu et al. (2018)) and multi-agent control systems (Li and

Zhang (2010)) literature resembles our model.
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Figure 4.1: Consider an Example of a Network with N = 70 Nodes to Illustrate
the Existence of Linear Growth of State Values in the Presence of Additive Gaussian
Noise. Conventional Max Consensus Algorithm is Run for t = 30 Iterations. Node
State Values Increase Linearly and Drift from the True Maximum.

4.3.1 Problem statement

Our goal is to have each node reach consensus on the maximum of the node initial

measurements in a distributed network, in the presence of additive communication

noise. In existing max consensus algorithms (Iutzeler et al. (2012a); Nowzari and

Rabbat (2018); Shi and Johansson (2012); Giannini et al. (2016); Nejad et al. (2009,

2010)), at each iteration a node updates its state value by the maximum of the

received values from its neighbors. After a number of iterations which is on the order

of the diameter of the network, each node reaches a consensus on the maximum of

the initial measurements. However, this approach fails in the presence of additive
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noise on the communication links, because every time a node updates its state value

by taking the maximum over the received noisy measurements, the state value of the

node drifts.

To address this problem, we use max-plus algebra and large deviation theory to

find the growth rate of the state values. We then propose an algorithm which locally

estimates the growth rate and updates the state values accordingly to reach consensus

on the true maximum value.

4.4 Mathematical Background

For completeness, we briefly review the mathematical background including the

max-based consensus algorithm and max-plus algebra.

4.4.1 Review of max-based consensus algorithm

In this section, we describe the conventional max-based consensus algorithm. Con-

sider a distributed network with N nodes with real-valued initial measurements,

x(0) = [x1(0), . . . , xN(0)]T , where xi(t) denotes the state value of the ith node at

time t. Max consensus in the absence of noise merely involves updating the state

value of nodes with the largest received measurement thus far in each iteration so

that the nodes reach consensus on the maximum value of the initial measurements.

Let vij(t) be a zero mean, independent and identically distributed (i.i.d) noise sample

from a general noise distribution, which models the additive communication noise

between nodes i and j at time t. To reach consensus on the maximum of the ini-

tial state values, nodes update their state by taking the maximum over the received

measurements from neighbors and their own state, given by,

xi(t+ 1) = max
(
xi(t),max

j∈Ni
(xj(t) + vij(t))

)
. (4.1)
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4.4.2 Review of max plus algebra

We briefly introduce max plus algebra which can be used to represent max con-

sensus algorithm as a discrete linear system. A max-plus approach was considered

for max consensus in (Nejad et al. (2009, 2010)), but in the absence of additive noise.

Our approach here in considers the presence of a general noise distribution and study

its effects on equation (5.1) using max-plus algebra and subadditive ergodic theory.

Max plus algebra is based on two binary operations, ⊕ and ⊗, on the set Rmax =

R ∪ {−∞}. The operation are defined on x, y ∈ Rmax as follows,

x⊕ y = max(x, y) and x⊗ y = x+ y.

The neutral element for the ⊕ operator is ε := −∞ and for ⊗ operator is e := 0.

Similarly for matrices X,Y ∈ RN×N
max , operations are defined as, for i = 1, . . . , N. and

j = 1, . . . , N .

[X⊕Y]i,j = [X]i,j ⊕ [Y]i,j,

[X⊗Y]i,j =
N⊕
k=1

([X]i,k ⊗ [Y]k,j) = max
k

([X]i,k + [Y]k,j),

where [X]i,j and [Y]i,j denote (i, j) element of matrices X and Y, respectively. For

integers k > l, we denote Y(k, l) = Y(k)⊗Y(k − 1)⊗ . . .Y(l).

Consider x(t) to be an N × 1 vector with the state values of the nodes at time t.

We can use max plus algebra to represent equation (5.1) as,

x(t+ 1) = W(t)⊗ x(t), t > 0, (4.2)

= W(t)⊗W(t− 1)⊗ . . .W(0)︸ ︷︷ ︸
,W(t,0)

⊗x(0),
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where W(t) is the N ×N noise matrix at time t, with elements

[W(t)]i,j =


e i = j,

ε, if {i, j} /∈ E

vij(t), if {i, j} ∈ E

(4.3)

4.4.3 Existence of linear growth

In a queuing theory and networking context, reference (van de Woude et al.

(2007); Heidergott (2006)) show that for a system represented by the recursive relation

in equation (4.2), xi(t) grows linearly, in the sense there exists a real number λ such

that, for all i = 1, . . . , N ,

λ = lim
t→∞

1

t
xi(t), and λ = lim

t→∞

1

t
E[xi(t)], (4.4)

where the first limit converges almost surely. Note that the constant λ does not

depend on the initial measurement x(0), or the node index i. It is also sometimes

referred to as the max-plus Lyapunov exponent of the recursion in equation (4.2).

In our current WSN context, the growth of xi(t) is clearly dependent on the dis-

tribution of noise and graph topology. However, there exists no analytical expressions

for the growth rate λ, even for the simplest graphs and noise distributions. Indeed

this is related to a long-standing open problem in the first and last passage percola-

tion (Auffinger et al. (2015)) to obtain analytical expressions for λ. One of our main

contributions herein is analytical bounds on λ for arbitrary graphs and general noise

distributions. We introduce theorems to upper and lower bound the growth rate for

arbitrarily connected fixed and random graphs.
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4.5 Bounds on Growth Rate for Fixed Graphs

In this section we derive upper and lower bound for the growth rate in the presence

of additive noise for arbitrarily connected fixed graphs.

4.5.1 Upper bound

To derive our upper bound on the growth rate, we provide the following theorem

for fixed graphs and general noise distributions. Before stating the theorem, we

introduce the following Lemma which will be later invoked in the theorem.

Lemma 1 Let A be the adjacency matrix and ρ be the spectral radius, then [At]i,j ≤

ρt.

Proof: Consider a singular value decomposition (SVD) of A = UΣVT , so that

At = (UΣVT )(UΣVT ) · · · (UΣVT ), t times. Let ei be a unit vector of zeros, except

a 1 at the ith position. Hence, we can write, [At]i,j = eTi (UΣVT )tej and show that

[At]i,j ≤ ρt by showing |eTi ρ−tAtej| ≤ 1. To this end, we write,

ρ−tAt = (UΣ̄VT )t,

where, Σ̄ = ρ−1Σ is a diagonal matrix with diagonal elements (1, ρ2
ρ
, · · · , ρN

ρ
), where

ρn is the nth largest singular value of Σ. Since U and VT are unitary, it is clear that

Σ̄ is a contraction so that

||Ux|| = ||x||, ||VTx|| = ||x||, ||Σ̄x|| ≤ ||x||, (4.5)

because |ρn
ρ
| < 1, for n = 2, · · · , t. Now, successive application of equation (4.5)

yields,

eTi ρ
−tAtej = |eTi ρ−tAtej|

= |eTi (UΣ̄VT · · ·UΣ̄VT )ej| ≤ 1.
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where the first equality is because A has non-negative entries and the inequality uses

equation (4.5) and Cauchy-Schwartz inequality. Hence, [At]i,j ≤ ρt, which concludes

the proof of Lemma 1.

Theorem 2 (Upper Bound) Suppose the moment generating function of the noise

M(γ) := E[eγvij(t)] exists for γ in a neighborhood of the origin. Then, an upper bound

on growth rate λ is given by,

λ ≤ inf

{
x : sup

0≤β≤1

[
H(β) + β log(ρ)− βI

(
x

β

)
< 0

]}
, (4.6)

where, ρ is the spectral radius of the graph, H(β) is the binary entropy function given

by

H(β) = −β log(β)− (1− β) log(1− β),

and I(x) is the large deviation rate function of the noise, given by,

I(x) := sup
γ>0

(xγ − log(M(γ))).

Proof: We begin by describing the approach taken to prove the theorem. We start

with formulating growth rate λ as a function of the maximum path sum of random

variables. Next, to find the maximal path sum, we count the number of paths in t

hops that involves l self-loops. We then put the upper bound in the desired form

using large deviation theory. The different parts of the proof are labeled accordingly,

for readability.

Relate λ and maximal path sum : To prove Theorem 1, we upper bound λ

using the elements of W(t, 0) defined in equation (4.2). The i, j entry [W(t, 0)]i,j can

be written as the maximum of the sum of noise samples over certain paths. To be

precise, let Pt(i, j) be the set of all path sequences {p(k)}tk=0, that start at p(0) = j

and end at p(t) = i, and also satisfies
(
p(k), p(k + 1)

)
∈ E or p(k) = p(k + 1) for k ∈
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{0, 1, · · · , t−1}, which allows self loops. For simplicity we define M
(i,j)
t ,

[
W(t, 0)

]
i,j

.

The path sum M
(i,j)
t corresponds to the path whose sum of i.i.d noise samples along

the edges in t hops between nodes i and j, is maximum among all possible paths, is

given by,

M
(i,j)
t ,

[
W(t, 0)

]
i,j

= max
{p(k)}∈Pt(i,j)

t∑
k=0

[
W(k)

]
p(k),p(k+1)

. (4.7)

For the system defined by the recursive relation in equation (4.2), let us define the

growth rate of this max-plus process to be λ and derive an upper bound on λ. We

can relate λ to M
(i,j)
t by first recalling the definition in equation (4.4),

λ = lim
t→∞

1

t
xi(t) = lim

t→∞

1

t
max
j

(
M

(i,j)
t + xj(0)

)
. (4.8)

≤ max
j

(
lim sup
t→∞

1

t
M

(i,j)
t + lim sup

t→∞

xj(0)

t

)
≤ max

j
lim sup
t→∞

1

t
M

(i,j)
t .

In fact, Kingman’s subadditive ergodic theorem can be invoked (van de Woude et al.

(2007)) to show that the lim sup in the last inequality be replaced by a limit. Further-

more, as shown in same reference, this limit is independent of i, and j. Hence, one

can work with M
(i,j)
t instead of xi(t) to upperbound the graph-dependent constant

λ. This enables us to drop the maximum over j and study the constant that M
(i,j)
t /t

converges to. Toward this goal, consider the smallest value of x for which

lim
t→∞

P

[
1

t
M

(i,j)
t > x

]
= 0. (4.9)

We will upperbound this probability to find bounds on such values of x.

Count the number of paths with l self-loops : Examining equation (4.7) we

observe that, for a self-loop at time k, p(k) = p(k + 1). Since [W]i,i(k) = e ≡ 0,

there is no contribution to the sum in equation (4.7), as self-loops are not affected
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by the noise. So it is useful to express the maximum in equation (4.7) over the paths

that have a fixed number of self-loops l. To study this case, first we need to count

the number of paths that contain l self loops. Consider the expression [(A + zI)t]i,j

where z is an indeterminate variable that will help count the number of paths from

node i to node j in t steps that go through a fixed number of l self-loops. Using the

binomial expansion we can write,

[(A + zI)t]i,j =
t∑
l=0

zl[At−l]i,j

(
t

l

)
(4.10)

where co-efficient of zl is the number of paths from node i to j in t steps, that go

through l self loops denoted as nl =
(
t
l

)
[At−l]i,j.

Upper bound the growth rate λ : Now we can write,

1

t
M

(i,j)
t = max

l∈{0,1,··· ,t−1}
max

(
S
(l)
1

t
, · · · , S

(l)
nl

t

)
(4.11)

where S
(l)
q is any sum in equation (4.7) that involves l self loops, q ∈ {1, · · · , nl} and

nl is the number of paths in Pt(i, j) with l self-loops. Substituting equation (4.11)

into equation (4.9) and using the union bound, we can upper bound equation (4.9)

as,

P

[
max
l

max

(
S
(l)
1

t
, . . . ,

S
(l)
nl

t

)
> x

]
≤

t∑
l=0

nl∑
q=1

P

[
1

t
S(l)
q > x

]
. (4.12)

Since S
(l)
q are sum of (t − l) i.i.d random variables, S

(l)
q is i.i.d in q for a fixed l, but

differently distributed for different l, so we can drop the index q and replace the sum
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over q with nl to get,

P

[
1

t
M

(i,j)
t > x

]
≤

t∑
l=0

nl · P
[

1

t
S(l) > x

]
,

=
t∑
l=0

(
t

l

)
[At−l]i,j P

[
1

t
S(l) > x

]
. (4.13)

From Lemma 1, [At−l]i,j ≤ ρt−l and letting

l∗ = argmax
l

(
t

l

)
ρt−l P

[
S(l)

t
> x

]
in equation (4.13) we have,

P

[
1

t
M

(i,j)
t > x

]
≤ (t+ 1)

(
t

l∗

)
ρt−l

∗
P

[
S(l∗)

t
> x

]
(4.14)

We can rewrite P

[
S(l∗)

t
> x

]
as P

[
S(l∗)

t−l∗ >
t

t−l∗x

]
. In the next step, we bound the

second term on RHS of equation (4.14) by the Chernoff bound as,

P

[
S(l∗)

t− l∗
>

t

t− l∗
x

]
= e−t(1−α)I(

x
1−α )

where I(x) is the large deviation rate function and α = l∗/t. For large t, we have(
t
αt

)
= e(t(H(α)+o(1)), where H(α) = −α log(α) − (1 − α) log(1 − α). For convenience

let β = 1− α, then equation (4.14) reduces to,

P

[
1

t
M

(i,j)
t > x

]
≤ (t+ 1)et

(
H(β)+β log(ρ)−βI(x/β)+o(1)

)
(4.15)

It is well-known that the large-deviation rate function I(·) is monotonically increasing

to infinity for arguments restricted above the mean of the random variable (zero-mean

noise in our case) (Lewis and Russell (1997)), so the exponent in equation (4.15) will

be negative when x is large enough. Hence the smallest x for which equation (4.15)

goes to zero exponentially is given by equation (4.6). This concludes the proof of the

Theorem.
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Simplified upper bound for Gaussian noise

If the noise is Gaussian, i.e vij ∼ N (0, 1), then I(x) = x2

2
in equation (4.6). Using

algebra, equation (4.6) simplifies as,

λ ≤ sup
0≤β≤1

√
2β
(
H(β) + β log(ρ)

)
. (4.16)

Defining g(β) =
√

2β
(
H(β) + β log(ρ)

)
, the supremum will be achieved for β that

satisfies ∂g(β)
∂β

= 0, which simplifies to

ρ =

√
β

1− β
e−

H(β)
2β .

Note that, I(·) is a convex function and as ρ increases β will approach its upper limit

of 1. Therefore, we can conclude that for graphs with large ρ, the optimal value of

β → 1, hence we can write,

H(β) + β log(ρ)− βI(x/β) ≈ log(ρ)− I(x) (4.17)

which is negative when I(x) > log(ρ).

We established this behavior of β for the Gaussian case. However this holds more

generally. Since f(x, β) = H(β) + β log(ρ)− βI(x/β) is concave in β for every x, we

only need to check when x > 0, the β∗ that solves ∂f(x,β∗)
∂β

= 0 approaches 1 as log(ρ)

increases. Setting the derivative to 0, we get,

log

(
1− β
β

)
+ log(ρ)− I(x/β) +

x

β
I
′
(x/β) = 0.

One can check that as ρ increases, log(ρ)→∞ and hence, we need log
(
1−β
β

)
→ −∞

which is reached as β → 1. This shows that as ρ increases, β → 1 for general noise

distributions as well.
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Alternative upper bound

Recall that, while proving Theorem 2, we were interested in the path from node i to

j in t steps, whose sum was the maximum among all possible paths. To achieve this,

first we had to count the number of paths from node i to j in t steps and then, group

these paths in terms of number of paths that involved self-loops. Note that, self-loops

were not affected by noise so their contribution to the sum along the path is 0. The

analysis would be simpler if we considered noise on self loops, thereby eliminating the

need to count and group the paths by number of self loops involved. So considering

noise on self-loops, which is equivalent to setting β = 1 in Theorem 2, would result

in the following recursion,

xi(t+ 1) = max
(
xi(t) + vii(t),max

j∈Ni
(xj(t) + vij(t))

)
(4.18)

instead of equation (5.1). Note that, equation (4.18) is not the proposed max con-

sensus scheme, but an auxiliary recursion used here to upper bound the growth rate.

We can observe that xi(t + 1) is convex in vii(t), and due to Jensen’s inequality the

additional noise in equation (4.18) can only increase the slope λ compared to equa-

tion (5.1). Hence, the growth rate of equation (5.1) is upper bounded by that of

equation (4.18). Repeating the proof of Theorem 2 for this case amounts to replacing

A by A + I and therefore ρ with ρ+ 1, so we have the following :

Theorem 3 The auxiliary recursion in equation (4.18) has a growth rate upper

bounded by the value of x > 0 that solves,

I(x) = log(ρ+ 1), (4.19)

where I(x) is the large deviation rate function. Moreover, this value of x upper bounds

the growth rate λ of the recursion in equation (5.1).
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Note that, for Gaussian noise distribution the alternative upper bound on the

growth rate can be calculated as,

λ ≤
√

2 log(ρ+ 1). (4.20)

While equation (4.20) is a looser bound than equation (5.3), it is much simpler. We

find that as ρ increases, i.e as β → 1, alternative upper bound and exact upper bound

converge.

4.5.2 Lower bound

While it is clear that λ ≥ 0, it is not obvious when λ > 0. In this section, we

derive lower bound, which, in part, shows that there exists a growth rate λ due to

additive noise in the network, which is always positive (λ > 0). Also, the lower bound

relates to the order statistics of the underlying noise distribution as well as the steady

state distribution of the underlying Markov chain.

Lower bound for regular graphs

Recall that the state of the ith sensor at time t+ 1 is given by the ith element of the

vector, x(t+ 1) = W(t, 0)⊗ x(0) which is,

xi(t+ 1) = max
j

([
W(t, 0)

]
i,j

+ xj(0)
)
,

≥ max
j

[
W(t, 0)

]
i,j

+ xmin(0), (4.21)

where xmin(0) = min
i

xi(0). Now, using equation (4.21), we can lower bound the

growth rate λ as,
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λ = lim
t→∞

xi(t)

t
= lim

t→∞

xi(t+ 1)

t

≥ lim
t→∞

1

t
max
j

[
W(t, 0)

]
i,j

+ lim
t→∞

1

t
xmin(0) (4.22)

≥ lim
t→∞

1

t

t−1∑
k=0

[
W(k)

]
p(k),p(k+1)

. (4.23)

where equation (4.22) is due to equation (4.21) and in equation (4.23), {p(k)}tk=0

is any path that satisfies p(0) = j and p(t) = i. In order to get a good lower bound,

we rely on evaluating equation (4.23) for a specific path defined as,

p(k + 1) = argmax
m ∈ N (p(k)) ∪ p(k)

[
W(k)

]
p(k),m

. (4.24)

This amounts to selecting the locally optimum or greedy path. If the graph is

d−regular, then with p(k) chosen as in equation (4.24), the random variables in

equation (4.23) are distributed the same as the maximum of d i.i.d random variables

and zero, whose expectation is denoted as m+(d). Therefore, due to law of large

numbers, equation (4.23) converges to,

λ ≥ m+(d) = E
[
max

(
0,max

m

[
W(k)

]
p(k),m

)]
,

= d

∫ ∞
0

x F d−1(x)f(x) dx. (4.25)

where F (·) and f(·) are the CDF and PDF of the noise respectively. Also, using

((David and Nagaraja, 2004, pp 80)), one can lower bound growth rate with a simpler

expression given by,

λ ≥ F−1
(

d

d+ 1

)
,

provided that median of noise samples are zero.
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Lower bound for irregular graphs

For irregular graphs, the path defined in equation (4.24) is a random walk on the

graph with the corresponding sequence of nodes constituting a Markov chain. When

the graph is irregular, the transition probabilities of this Markov chain depend on the

degree of the current node. Specifically, the transition probability matrix is given by,

P = (1− κ)D−1A + κ I

where the diagonal matrix [D]i,i = di, degree of node i, so that

[P]i,j =


1−κ
di

i 6= j, (i, j) ∈ E

κ i = j,

(4.26)

where κ is the probability that noise samples on neighboring edges of node i are

negative, given by

κ = P

[
[W(k)]i,j < 0, ∀j

]
= di

∫ 0

−∞
F di−1(x) f(x) dx. (4.27)

Let the steady state probabilities of this Markov chain be denoted by πi. Then, using

the law of large numbers the lower bound is given by,

lim
t→∞

1

t

t−1∑
k=0

max
m

(
[W(k)]p(k),m

)
=

N∑
i=1

πi m+(di), (4.28)

since the random variable max
m

(
[W]p(k),m

)
has expectation m+(di), given node i. One

can find a closed form expression for πi as πi = di
2E

((Cover and Thomas, 2012, pp

78)), where E := |E| is the total number of edges in the network. To verify this,

one can check that πTP = πT , where πT = [π1, · · · , πN ], using equation (4.26). In

conclusion, the lower bound on the growth rate for irregular graphs is given by,

λ ≥
N∑
i=1

di
2E

m+(di). (4.29)
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4.6 Bounds on Growth Rate for Random Graphs

In this section we consider the case where each edge is absent by a probability of

p, independently across edges and time, which models random transmission failures.

4.6.1 Upper bound for random graphs

We now show that the upper bound on growth rate for the randomly changing

graphs can be simply obtained by replacing ρ in the fixed graph case by ρ(1 − p)

in equation (4.6), where p is the Bernoulli probability, that any edge will be deleted

independently at each iteration.

Recall that in fixed graph model, W(k) had zero (e) along the diagonal and

[W(k)]l,m = vlm(k) was the underlying i.i.d noise random variables when (l,m) ∈ E .

The random graph can be described as,

[W(k)]l,m =



vlm(k) with prob (1− p) if (l,m) ∈ E

−C with prob p if (l,m) ∈ E

e l = m,

ε if (l,m) /∈ E

(4.30)

where C is a large positive constant which captures randomly absent edge as C →∞.

Note that, since each node is maxing with itself at each iteration in equation (5.1),

the large negative value of −C, will never propagate through the network, which is

equivalent to deleting an edge, for large C.

Following the analysis of the fixed graph case, only the moment generating func-

tion of the noise samples changes to,

M(γ, C) = pe−Cγ + (1− p)M(γ),

where M(γ) is the original moment generating function of the noise samples given by
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M(γ) = E
[
eγvij(k)

]
. The corresponding rate function is given by

I(x,C) = sup
γ>0

(
xγ − log(M(γ, C))

)
.

Following the proof of Theorem 2, to upper bound the growth for this case we

have to find the smallest x that satisfies,

lim
C→∞

sup
0≤β≤1

(
H(β) + β log(ρ)− βI

(
x

β
,C

)
< 0

)
Consider f(x, β, C) = H(β)+β log(ρ)−βI

(
x
β
, C
)
, since f(x, β, C) is convex in C and

concave in β we can write,

inf
C

sup
0≤β≤1

f(x, β, C) = sup
0≤β≤1

inf
C
f(x, β, C). (4.31)

= sup
0≤β≤1

lim
C→∞

f(x, β, C).

= sup
0≤β≤1

(
H(β) + β log(ρ(1− p))− βI

(
x

β

)
< 0

)
,

where the first equality is due to classical minimax theorem, and second due to the

monotonicity of f(x, β, C) in C. Hence, the upper bound can be written as,

λ ≤ inf

{
x : sup

0≤β≤1

[
H(β) + β log(ρ(1− p))− βI

(
x

β

)
< 0

]}
. (4.32)

Interestingly, this is precisely the upper bound for fixed graphs except that we

have ρ(1 − p) instead of ρ. While for a fixed graph ρ ≥ 1 always holds, in random

graphs case it is possible to have ρ(1 − p) < 1. If ρ(1 − p) ≈ 0 then it is easy to

check in equation (4.32) that the optimizing β is near zero. This can be contrasted

with the case where ρ is large and the optimizing β was found to satisfy β ≈ 1 in

Section 4.5.1.

4.6.2 Lower bound for random graphs

Here, we derive the lower bound on the growth rate for randomly changing graphs.

Recall that, for the path defined in equation (4.24), and when W(k) is as defined in
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equation (4.30), yields a lower bound on the growth rate, for graphs with edge deletion

probability of p.

Compared to equation (4.29), the only difference in the derivation is that, the node

i will now have a random degree Zi, which is binomial with parameters (di, 1 − p).

Due to law of large numbers, equations (4.28)-(4.29) have an additional expectation

with respect to this binomial distribution, resulting in following expression,

λ ≥
N∑
i=1

πiE
[
m+(Zi)

]
(4.33)

=
N∑
i=1

di
2E

di∑
k=0

(
di
k

)
pdi−k(1− p)km+(k).

Note that, in equation (4.33), πi = di/2E still holds, since the transition probabilities

of the Markov chain are still of the form as in equation (4.26).

4.6.3 Upper bound on growth rate without calculating I(x)

In this section, we present a technique to directly calculate the upper bound on

growth rate using the moment generating function, without having to compute the

large deviation rate function of the additive noise distribution.

Recall that the upper bound on growth rate is given by equation (4.32) where,

p = 0 for fixed graphs. For convenience, let K , ρ(1 − p) and f̄(β, x) = H(β) +

β log(K)− βI(x/β). Since, I(x) = sup
γ>0

(
xγ − logM(γ)

)
, we can write,

sup
0≤β≤1

f̄(β, x) = inf
γ>0

sup
0≤β≤1

(
H(β) + β log(K) (4.34)

− xγ + β logM(γ)
)
.

where, we used minimax theorem to interchange the infimum and supremum, since

logM(γ) is always convex. The inner supremum can be solved in closed form as,

β∗ =
KM(γ)

1 +KM(γ)
, (4.35)
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which yields,

sup
0≤β≤1

f̄(β, x) = inf
γ>0

(
H(β∗) + β∗ log(KM(γ))− xγ

)
.

So we have,

inf
x

{
x : sup

0≤β≤1
f̄(β, x) < 0

}
= inf

γ>0

(
1

γ
H(β∗) (4.36)

+
β∗

γ
log(KM(γ))

)
Note that β∗ is also a function of γ. This technique is very useful to calculate growth

rate, when I(x) is difficult to evaluate, or unavailable.

4.7 Empirical Upper Bound on Growth Rate

In this Section, we propose an empirical correction factor to the upper bound which

improves the tightness of the bound, for all network settings and noise distributions.

In order to improve the tightness of the upper bound, we introduce a correction

factor φ to our upper bound in equation (4.6). The correction factor φ depends only

on number of nodes N in the network, given by,

φ = 1− 1

2
√
N
, (4.37)

and multiplies the upper bound in equation (4.6).

While we have no proof that this correction will always yield an upper bound, the

choice of φ was empirically validated over different graph topologies and noise distri-

butions, and in all settings, φ improved the tightness of the bound. Our intuition is

that the approximations made in deriving the upper bound leads to a minor deviation

in the tightness for smaller N , which can be fixed by φ. Note that, as N → ∞, the

compensation variable φ → 1, hence φ mainly contributes for graphs with smaller

number of nodes.
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In Section 4.9, we compare the tightness of upper bound in equation (4.6) and the

empirical bound, illustrating the accuracy of the correction factor φ.

Algorithm 2 Robust Max consensus Algorithm

1: First run ::

2: Input: iterations = t, # of nodes = N

3: Initialization

4: Initialize all nodes to zero, xi(0) = 0

5: repeat until : tmax iterations

6: for {i = 1 : N}

7: xi(t) = max
(
xi(t),max

j∈Ni
(xj(t− 1) + vij(t− 1))

)
8: end : for

9: end : repeat

10: growth rate estimate : λ̂i(tmax) = xi(tmax)
tmax

11: Second run ::

12: Input: # of nodes = N , Initial state : xi(0)

13: repeat until : convergence

14: for {i = 1 : N}

15: xi(t) = max
(
xi(t),max

j∈Ni
(xj(t− 1) + vij(t− 1))

)
− λ̂i(tmax)

16: end : for

17: end : repeat

4.8 Robust Max Consensus Algorithm

Max consensus algorithms in existing works (Iutzeler et al. (2012a); Nejad et al.

(2009); Giannini et al. (2016); Shi and Johansson (2012); Nowzari and Rabbat (2018))

fail to converge in the presence of noise, as there is no compensation for the positive

drift induced by the noise. Authors in (Zhang et al. (2016a)) develop a soft-max based
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average consensus (SMA) approach to approximate the maximum and compensate

for the additive noise. However, their algorithm is sensitive to a design parameter,

which controls the trade off between estimation error and convergence speed. So, we

develop a fast max-based consensus algorithm in this section, which is informed by

the fact that there is a constant slope λ, analyzed in the previous sections, which can

be estimated and removed. This makes the algorithm robust to the additive noise in

the network.

If the knowledge of the spectral radius of the network and noise variance is known,

then by using Theorem 2, one can closely estimate the growth rate and subtract this

value at each node after the node update. However, the noise variance and the

spectral radius are not always known locally at each node. Hence, we propose a fast

max consensus algorithm generalized to unknown noise distributions, as described in

Algorithm 2, where slope is being locally estimated at each node. We also analyze

the variance of this estimator in Section 4.8.1.

Our algorithm consists of two runs, where in the first run, we initialize the state

values of all the nodes to zero and run the max consensus algorithm in the additive

noise setting. This can be performed by a simple reset operation, which is available

at every node and then initiate the conventional max consensus algorithm. Note

that, in this case the true maximum is zero, but due to the additive noise, the state

values grow at the rate of λ. The growth rate estimate for node i is denoted by λ̂i, is

computed locally over tmax iterations as,

λ̂i(tmax) =
1

tmax

xi(tmax), (4.38)

the average increment in the state value of node i. Note that, this estimation is

done locally at every node. Also, the algorithm is memory-efficient, since the history

of state values is not used, and only the information of the iteration index and the
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current state value is needed to estimate the growth rate.

In the second run, max consensus algorithm is run on the actual measurements

to find the maximum of the initial readings. The growth rate estimate λ̂i is used

to compensate for the error induced by the additive noise as given in line (15) of

Algorithm 1. Note that, the estimator is independent of the type of additive noise

distribution.

4.8.1 Performance analysis

To address the accuracy of the estimate in equation (4.38) over a finite num-

ber of iterations, we use Efron-Stein’s inequality (Auffinger et al. (2015); Sridharan

(2002)) to show that the variance of the growth rate estimator λ̂i(tmax) decreases as

O(t−1max), where tmax is number of hops. For completeness, the Efron-Stein inequality

is introduced in the following theorem.

Theorem 4 Let X1, X2, · · · , Xn be independent random variables and let X
′
q be an

independent copy of Xq, for q ≥ 1. Let Z = f(X1, X2, · · · , Xq, · · · , Xn) and

Z
′

q = f(X1, X2, · · · , Xq−1, X
′

q, Xq+1, · · · , Xn),

then

Var(Z) ≤
n∑
q=1

E
[(

(Z − Z ′q)+
)2]
,

where (Z − Z ′q)+ = max(0, Z − Z ′q).

Proof: Provided in Theorem 7 of (Sridharan (2002)).

The following theorem bounds the variance of the growth rate estimator.

Theorem 5 The Variance of the growth rate estimator λ̂i(tmax) satisfies,

Var(λ̂i(tmax)) ≤
σ2

tmax

,
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where tmax is number of iterations and σ2 = Var(vij(t)).

Proof: Using equation (4.38), and recalling from Theorem 2 the expression for

xi(tmax) with zero initial conditions xi(0) = 0 we have

λ̂i(tmax) =
1

tmax

(
max

{p(k)}∈∪
j
Ptmax (i,j)

tmax∑
k=0

[
W(k)

]
p(k),p(k+1)

)
. (4.39)

Next, we use Theorem 4 to bound the variance of equation (4.39). For simplicity

of notation, set Z = λ̂i(tmax), which depends on noise samples vij(t) through W(k)

in equation (4.39). So the independent random variables X = {X1, X2, · · · , Xn} in

Theorem 4 correspond to re-indexing of vij(t), with n denoting the total number of

noise samples that influence λ̂i(tmax), which is approximately n ≈ (tmax + 1)E, where

E = |E| is the total number of edges (the exact value of n depends on the graph

topology). We set Zq to be given by equation (4.39) when the noise sample vij(t)

corresponding to Xq is replaced by an independent copy X
′
q. Note that the path that

maximizes equation (4.39) corresponds to a subset M(X ) of {1, · · · , n}, with tmax

elements.

If q /∈M(X ) then the maximal path is un-affected, so Z−Z ′q ≤ 0 and (Z−Z ′q)+ =

0. Hence, we simplify the analysis by considering only q ∈M(X ), so that Theorem 4

can be simplified from involving n terms in the upper bound to only tmax terms:

Var(Z) ≤ EX
[ ∑
q∈M(X )

E
[(

(Z − Z ′q)+
)2∣∣X ]

]
, (4.40)

= EX
[ ∑
q∈M(X )

E
[(

(Z − Z ′q)+
)2|(Xq ≥ X

′

q)|X
]
P [(Xq ≥ X

′

q)|X ]

+
∑

q∈M(X )

E
[(

(Z − Z ′q)+
)2|(Xq < X

′

q)|X
]
P [(Xq < X

′

q)|X ]

]
,

where the equality is due to the total expectation theorem. Note that, for q ∈M(X )

and Xq < X
′
q, the maximal path remains the same and (Z − Z

′
q)+ = 0. Using
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P [(Xq ≥ X
′
q)|X ] = 1/2 in equation (4.40) reduces to,

Var(Z) ≤ 1

2
EX

∑
q∈M(X )

E
[(

(Z − Z ′q)+
)2|(Xq ≥ X

′

q)|X
]

≤ 1

2
EX

∑
q∈M(X )

E
[(

1

tmax

(Xq −X
′

q)+

)2

|(Xq ≥ X
′

q)|X
]

(4.41)

where we used Z − Z
′
q = (Xq − X

′
q)/tmax, if the maximal path does not change

when X
′
q is substituted for Xq; if on the other hand the maximal path changes then,

Z − Z ′q ≤ (Xq −X
′
q)/tmax, which can be verified by considering a substitution of X

′
q

in the original path which is smaller than Z
′
q. It is straightforward to show that the

RHS of equation (4.41) is given by σ2/tmax, which concludes the proof.

In order to bound the variance of our max-consensus algorithm, we use Theorem 5

to write xi(t) in the first run of the algorithm with zero initial measurements as,

xi(t) = λt+ σ
√
tYt, (4.42)

where Yt is an auxiliary random variable with Var(Yt) ≤ 1, which is clearly equivalent

to Theorem 5 after using λ̂i(tmax) = xi(t)/t.

In the second run of the algorithm after D iterations, where D is the diameter of

the network, all nodes converge on the maximum of the initial measurements. Hence

we can write our estimator λ̂i(tmax) as,

xi(D) = (λ− λ̂i(tmax))D + σ
√
DYD + xmax(0), (4.43)

where we know that,

λ̂i(tmax) = λ+
σ√
tmax

Vtmax (4.44)

where Vtmax is an auxiliary random variable with Var(Vtmax) ≤ 1. Since the two runs

involve independent noise samples, substituting equation (4.44) into equation (4.43)
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gives,

Var(xi(D)) ≤ σ2

(
D2

tmax

+D

)
. (4.45)

This shows that the variance of our estimator scales linearly with the diameter of the

network, as long as tmax also scales linearly with D.
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Figure 4.2: Network with N = 75 Nodes.

4.9 Simulation Results

We consider a distributed network with N = 75 nodes, as shown in Figure 4.2.

This irregular graph was randomly generated, which is commonly followed (Nejad

et al. (2009); Zhang et al. (2016a); Nejad et al. (2010); Nowzari and Rabbat (2018)).

The spectral radius of the graph generated was computed to be ρ = 30.56. Two

different graph topologies are considered for the simulations:

1. Fixed graphs : by selecting p = 0 as in Figure 4.2.

2. Time-varying graphs (Random graphs) : by selecting p = 0.5.
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Communication links between any two nodes has a noise component distributed as

N (0, 1). First, all nodes are initialized to 0 and the max consensus algorithm is run

to estimate growth rate λ̂i(tmax) as in line 10 of the algorithm. Note that, following

results are Monte-Carlo averaged over 500 iterations.
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Figure 4.3: Comparison of Upper Bound, Lower Bound and the Max Update from
Equation (1) for All Nodes with N (0, 1) Additive Noise for a Fixed Graph with
N = 75.

4.9.1 Efficiency of the bounds

For fixed graphs, we compare the upper bound given by equation (5.3), empirical

upper bound, lower bound given by equation (4.29), and the Monte-Carlo estimate of

max consensus growth is plotted for every node and labeled as “True max-consensus

growth” in Figure 4.3. We observe in Figure 4.3 that the empirical upper bound in

Section 4.7 is much tighter than the original upper bound.

The same experiment was repeated on a random graph, which was obtained by

randomly deleting each edge of the graph in Figure 4.2 with probability p = 0.5. The
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Figure 4.4: Random Graphs with N = 75 and Edge Deletion Probability of p = 0.5.

comparison of the upper bound, given by equation (4.31), empirical upper bound,

lower bound given by equation (4.33), and the true Monte-Carlo estimate of the max

consensus growth is shown in Figure 4.4. Note that, not only the empirical upper

bound is tight for time-varying graphs, but it is also generalizable for different graph

topologies.

Next, we run simulations for non-Gaussian distributions such as Laplace and Uni-

form distributions to verify the tightness of upper bound. In Figures 4.5-4.6, we

compare the performance of upper bound and empirical upper bound for network in

Figure 4.2 with N = 75, where the noise on the links are sampled from Laplace and

continuous uniform distributions, respectively. The parameters of Laplace distribu-

tion L(µ, b) were chosen as µ = 0 and b = 1/
√

2, and uniform distribution U(a, b)

as U(−
√

3,
√

3), to ensure zero mean and unit variance. Results also show that the

empirical upper bound holds good for general noise distributions. Since Laplace dis-
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Figure 4.5: Comparison of Upper Bound, Empirical Upper Bound and Max Con-
sensus Growth Rate for a Network in Figure 4.2 with N = 75 and p = 0, Where the
Noise on the Links are Sampled from Laplace Distribution with Zero Mean and Unit
Variance.

tribution is heavy-tailed compared to Gaussian and uniform, it has a larger growth

rate.

4.9.2 Performance of the algorithms

We compare the performance of conventional max consensus algorithms and the

proposed algorithm, subjected to additive Gaussian noise N (0, 1). In order to repre-

sent the actual sensor measurements, for both fixed and random graphs, we consider

a synthetic dataset with nodes initialized with values over (100, 200), where the true

maximum of the initial state values is 200. The robust max consensus algorithm

given in Algorithm 1 is run over these initial measurements on both the graphs. The

results are Monte-Carlo averaged over 500 iterations.

For fixed graphs, performance of our robust max consensus algorithm and the ex-
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Figure 4.6: Comparison of Upper Bound, Empirical Upper Bound and Max Con-
sensus Growth Rate for a Network in Figure 4.2 with N = 75 and p = 0, Where the
Noise on the Links are Sampled from Uniform Distribution with Zero Mean and Unit
Variance.

isting max based consensus algorithm is shown in Figure 4.7. It can be observed that

the conventional max consensus algorithm diverges as t increases, whereas our algo-

rithm does not suffer from increasing linear bias. Even in case of random graphs, our

algorithm converges to the true maximum, whereas the conventional max consensus

algorithm diverges as t increases, as shown in Figure 4.8.

By comparing the dynamic range of growth rate of conventional max consensus

algorithms in Figure 4.7 and Figure 4.8, we observe that a) at t = 30, state values over

fixed graphs has mean and standard deviation of 270.39 and 0.6966 respectively, and

b) at t = 30, state values over random graphs with p = 0.5 has mean and standard

deviation of 261.09 and 0.9233, respectively. Thus, node state values grow slower for

random graphs with 0 < p < 1, compared to fixed graphs (p = 0) due to the reduced

connectivity of the graph.
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Figure 4.7: Performance of the Proposed Algorithm in the Presence of Additive
Noise from N (0, 1) for Fixed Graphs.

0 5 10 15 20 25 30

Iterations (t)

100

120

140

160

180

200

220

240

260

280

N
o

d
e

 S
ta

te
 V

a
lu

e
s
 

Robust Max Consensus Alg

Conventional Max Consensus Alg

True Max Value

Figure 4.8: Performance of the Proposed Algorithm in the Presence of Additive
Noise from N (0, 1) for Random Graphs with Probability of Edge Deletion p = 0.5.
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Figure 4.9: Comparison of the Proposed Algorithm and Soft-Max Based Average
Consensus Algorithm (SMA), for a Graph with N = 75, β for SMA as {6, 10} in the
Presence of Additive Noise N (0, 1), Distributed Over the Edges.

4.9.3 Comparison with existing works

The performance of our proposed algorithm was compared with the conventional

max consensus algorithm (Iutzeler et al. (2012a); Nejad et al. (2009); Giannini et al.

(2016)) in Figures 4.7-4.8 and clearly, conventional max consensus algorithm diverges

in the presence of additive noise.

Additionally, we compared the performance against the soft-max based average

consensus algorithm (SMA), proposed in (Zhang et al. (2016c)), as shown in Fig-

ure 4.9. The soft maximum of a vector x = [x1, · · · , xN ] is denoted as:

smax(x) =
1

β
log

N∑
i=1

eβxi ,

where β > 0 is a design parameter. We consider the same network with N = 75 as

in Figure 4.2. Nodes were initialized linearly over (0, 1). We considered the design
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parameter β of the SMA algorithm to be β = {6, 10}. The proposed algorithm and

the SMA algorithm were applied in the presence of additive noise N (0, 1), distributed

over the edges.

The SMA algorithm with β = 6 converges faster than with β = 10, however,

β = 6 has greater estimation error than β = 10. In comparison with SMA, our

proposed algorithm performs better in terms of bias and variance of the estimate of

true maximum value, and the number of iterations required for convergence.

4.10 Chapter Summary

A practical approach for reliable estimation of maximum of the initial state values

of nodes in a distributed network, in the presence of additive noise is proposed.

Firstly, we showed the existence of a constant growth rate due to additive noise and

then derived upper and lower bounds for the growth rate. It is argued that the growth

rate is constant, and the upper bound is a function of spectral radius of the graph. By

deriving a lower bound, we proved that the growth rate is always a positive non-zero

real value. We also derived upper and lower bounds on the growth rate for random

time-varying graphs. An empirical upper bound is obtained by scaling the original

bound, which is shown to be tighter and generalizable to different networks and noise

settings. Finally, we presented a fast max-based consensus algorithm, which is robust

to additive noise and showed that the variance of the growth rate estimator used in

this algorithm decreases as O(t−1max) using concentration inequalities. We also showed

that the variance of our estimator scales linearly with the diameter of the network.

Simulation results corroborating the theory were also provided.
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Chapter 5

DISTRIBUTED SPECTRAL RADIUS ESTIMATION IN WSN

5.1 Overview

Distributed algorithms (Muniraju et al. (2020)) to compute the spectral radius

of the graph in the presence of additive channel noise, and packet loss, respectively,

are presented in this chapter. The spectral radius of the graph is the eigenvalue with

the largest magnitude of the adjacency matrix, and is a useful characterization of

the network graph. Conventionally, centralized methods are used to compute the

spectral radius, which involves eigenvalue decomposition of the adjacency matrix of

the underlying graph. We devise an algorithm to reach consensus on the spectral

radius of the graph using only local neighbor communications, both in the presence

and absence of additive channel noise in analog models, and in the presence of packet

loss with digital models. For the analog model, the algorithm uses a distributed

max update to compute the growth rate in the node state values and then performs

a specific update to converge on the logarithm of the spectral radius. In case of a

digital model, the algorithm uses a simple log-sum-exp update rule to reach consensus

on the spectral radius, using only local communications These algorithms works for

any connected graph structure. Simulation results supporting the theory are also

presented.

5.2 Introduction

Spectral radius of a graph is the principal eigenvalue of the adjacency matrix and is

an important graph feature that captures the information flow of the graph topology.
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The knowledge of spectral radius is needed to study graph coloring methods (Karger

et al. (1998)), properties of Hamiltonian paths (Thomason (1978)) in distributed net-

works, and to understand the convergence properties of belief propagation algorithms

(Ihler et al. (2005)). The chromatic number of a graph is the minimum number of

colors that can be used to color a graph so that no two adjacent vertices have the same

color. References (Nikiforov (2007); Wocjan and Elphick (2013)) tightly bound the

chromatic number as an increasing function of spectral radius. Authors in (Fiedler

and Nikiforov (2010)) derive tight sufficient conditions for the existence of Hamil-

ton paths and cycles in terms of the spectral radius of graphs. Reference (Lu et al.

(2012)) provides sufficient conditions for the existence of Hamilton paths and cycles in

bipartite graphs in terms of the graph spectral radius. Reference (Elphick and Woc-

jan (2014)) develop different measures to evaluate the irregularity of the graph using

spectral radius and the degree sequence. Furthermore, graph spectral radius is used

to lower bound other graph quantities such as the walk counts (Stevanović (2015)),

clique number (Wilf (1986)) and epidemic threshold (Chakrabarti et al. (2008)) of a

network. Distributed power iteration (Jelasity et al. (2007); Le Borgne et al. (2008))

can be used to first compute the principal eigenvector and then estimate the spec-

tral radius of the graph. This iterative method is computationally expensive, as the

norm of the state value vector needs to computed in each iteration (Jelasity et al.

(2007)). Moreover, convergence of distributed power iteration methods in the pres-

ence of additive noise, without making assumptions on noise distributions is still an

open problem.

In centralized networks, where every node can communicate to a fusion center

(Zhang et al. (2019)), the spectral radius can be computed by an eigenvalue decom-

position of the adjacency matrix of the graph and then select the eigenvalue with

the largest magnitude. In large-scale distributed networks with N nodes, performing
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an eigenvalue decomposition is expensive, especially under memory and power con-

straints, and has a complexity of O(N3). Hence, there is a need to devise algorithms

that can compute the spectral radius only using local neighbor communications, which

is computationally simple and robust to additive channel noise.

5.2.1 Literature survey

Eigenvalues and eigenvectors of adjacency and Laplacian matrices play an impor-

tant role in estimating the connectivity of the network (Ghosh and Boyd (2006)),

clustering (Hagen and Kahng (1992)), detection and parameter estimation and graph

partitioning. Even though estimation of algebraic connectivity of Laplacian matrix of

the graph is well studied in the literature, spectral radius estimation of the adjacency

matrix has not received much attention. Distributed estimation of the eigenvalues of

the Laplacian matrix has been considered in several previous works (Di Lorenzo and

Barbarossa (2014); Li and Qu (2013)). However, these algorithms are complex with

multiple update equations and are not robust to noise. Instead, we propose a simple

algorithm that relies on max consensus updates in the presence of noise.

5.2.2 Statement of contributions

To the best of our knowledge, there are no prior works that use consensus or

diffusion algorithms to compute the spectral radius in a distributed way. In our

previous work (Muniraju et al. (2019)), we showed that the growth rate of the max

consensus algorithm in the presence of additive noise depends on spectral radius of

the graph. However, spectral radius estimation of the graph was not studied. In this

chapter, we first propose a novel distributed algorithm that efficiently converges to the

logarithm of the spectral radius, using only local neighbor communications, even in

the presence of additive channel noise. Secondly, we provide insights on convergence
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by proving that the convergence error is a function of principal eigenvector of the

adjacency matrix, whereas, (Muniraju et al. (2019)) shows that the convergence error

depends on variance of additive noise distribution in an analog communication system.

5.3 System Model and Problem Statement

We consider a network of N nodes, where the communication among the nodes

is modeled as an undirected graph G = (V , E), where V is the set of nodes and E is

the set of edges connecting the nodes (Muniraju et al. (2018)). The set of neighbors

of node i is denoted by Ni = {j|{i, j} ∈ E}. The degree of the ith node, denoted by

di, is the number of neighbors of the ith node. The degree matrix D is a diagonal

matrix that contains the degrees of the nodes. The connectivity structure of the

graph is characterized by the adjacency matrix A with elements defined by, aij = 1

if {i, j} ∈ E and aij = 0, otherwise. Spectral radius of the network ρ corresponds to

the eigenvalue with the largest magnitude of the adjacency matrix A.

We consider a wireless sensor network (WSN), where each node maintains a real

valued state. At each iteration, nodes broadcast their state values to their neighbors

in a synchronized fashion. For a wireless sensor network with additive noise on com-

munication links, our goal is to reach consensus at each node on the logarithm of the

spectral radius of the graph, using only local neighbor communications. Based on

the theoretical evidence shown in (Muniraju et al. (2018, 2019)) on the relationship

between spectral radius and growth rate of nodes under max-consensus, we devise

an algorithm to converge on the logarithm of spectral radius of the network. We

also consider packet loss (Nowzari and Rabbat (2019); Iutzeler et al. (2012b)), i.e,

transmitted message can be lost (failure) with a probability of p, independently for

each edge. Our goal is to reach consensus at each node on an invertible function of

the spectral radius of the graph, using only neighbor to neighbor communications.
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5.4 Mathematical Background

For completeness, we review distributed max consensus algorithms, including in-

sights on spectral radius and max consensus growth rate.

Consider a distributed network with N nodes with real-valued initial measure-

ments, x(0) = [x1(0), . . . , xN(0)]T , where xi(t) denotes the state value of the ith

node at time t. Let vij(t) be a zero mean, independent and identically distributed

(i.i.d) noise sample from a Gaussian distribution N (0, σ2), which models the addi-

tive communication noise between nodes i and j at time t. Max consensus involves

updating the state value of nodes with the largest received measurement thus far in

each iteration so that the nodes reach consensus on the maximum value of the initial

measurements (Muniraju et al. (2018)). To reach consensus on the maximum of the

initial state values, nodes update their state by taking the maximum over the received

noisy measurements from neighbors and their own state, given by,

xi(t) = max
(
xi(t− 1),max

j∈Ni
(xj(t− 1) + vij(t− 1))

)
. (5.1)

In the presence of additive channel noise, the state values of the nodes performing

max update has a constant growth rate (Muniraju et al. (2019)), given by

λ := lim
t→∞

xi(t)

t
, (5.2)

which can be shown to be the same for all the nodes i ∈ {1, · · · , N}, and also inde-

pendent of the initial state vector x(0). This growth rate is due to the positive shift

in the state values, because of the max update on the noise affected measurements. In

our previous work (Muniraju et al. (2019)), we study this growth rate and prove that

the upper bound on the growth rate is a function of spectral radius of the network,

which is described in the following theorem.
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Theorem 6 An upper bound on growth rate λ, for a max-consensus process in the

presence of the additive noise on the links, modeled from a Gaussian distribution

N (0, σ2) is given by,

λ ≤ sup
0≤β≤1

√
2σ2β

(
H(β) + β log(ρ)

)
. (5.3)

where ρ is the spectral radius of the network, and H(β) = −β log(β)−(1−β) log(1−β),

is the binary entropy function.

Proof: Provided in (Muniraju et al. (2019)).

Let g(β) =
√

2β
(
H(β) + β log(ρ)

)
, then the supremum will be achieved for β that

satisfies ∂g(β)
∂β

= 0, which simplifies to

ρ =

√
β

1− β
e−

H(β)
2β .

Note that, as ρ increases β will approach its upper limit of 1. Hence, for graphs with

large ρ, the optimal value of β → 1.

The upper bound in the above Theorem is made tighter by multiplying a empirical

correction factor φ, given by

φ = 1− 1

2
√
N
.

The factor φ was empirically validated over different graph topologies and noise dis-

tributions, and in all the cases, φ improved the tightness of the bound.

Let β∗ be the value that satisfies the supremum in equation (5.3), then we have,

log(ρ) ≥ λ2

2φ2σ2(β∗)2
− H(β∗)

β∗
. (5.4)

Note that, as β → 1, estimate of log(ρ) reduces to λ2/2σ2φ2.

76



5.5 Distributed Spectral Radius Estimation (Analog)

In this section, we devise a distributed algorithm to converge on the logarithm of

the spectral radius of the network, by utilizing the relationship between max consensus

growth rate and the graph spectral radius, as given in Algorithm 3. We first discuss

the algorithm in the presence of additive noise, and then modify the algorithm for

noiseless setting. We assume that we have the knowledge of the variance σ2 of the

additive channel noise distribution.

5.5.1 In the presence of additive Noise

We assume that the additive noise on the communication links are i.i.d, and

modeled from N (0, σ2). We begin our algorithm by initializing all the node state

values to zero. Every node updates their state values in the sequence described in

the following, to converge on the logarithm of the spectral radius.

• At time instant t, the ith node receives the noisy state values of its neighbors

xj(t−1)+vij(t−1), ∀j ∈ Ni. In the presence of noise, the received measurements

are affected by the communication noise on the links, vij(t) ∼ N (0, σ2). Then,

every node performs a max consensus update as in equation (5.1).

• Every node then computes the growth rate of max consensus process as λi(t) =

xi(t)/t.

• Finally, every node locally computes a simple update,

γ̂i(t) =
λ2i (t)

2σ2 β2 φ2
− H

β
, (5.5)

where, β is a hyper-parameter that needs to be selected appropriately, and

H = −β log(β)− (1− β) log(1− β).
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Note that, γ̂(t) = [γ̂1(t), · · · , γ̂N(t)] is an approximation to log(ρ), followed by equa-

tion (5.4). Also, estimation error can be controlled by tuning β.

Algorithm 3 : Distributed estimation of spectral radius

1: Input: β

2: Given: Communication noise vij(t) ∼ N (0, σ2)

3: Initialization: x(0) = [0, · · · , 0]T

4: for t = 1, 2, · · · , T

5: xi(t) = max
(
xi(t− 1),max

j∈Ni
(xj(t− 1) + vij(t− 1))

)
6: λi(t) = 1

t
xi(t)

7: γ̂i(t) =
λ2i (t)

2σ2 β2 φ2
− H

β

8: end

Algorithm 4 : Alternate method

1: Given: Communication noise vij(t) ∼ N (0, σ2)

2: Initialization: x(0) = [0, · · · , 0]T

3: for t = 1, 2, · · · , T

4: xi(t) = max
(
xi(t− 1) + vii(t− 1),max

j∈Ni
(xj(t− 1) + vij(t− 1))

)
5: λi(t) =

1
txi(t)

6: γi(t) = log

(
exp

(
λ2i (t)

2σ2φ2

)
− 1

)
7: end

5.5.2 In the absence of noise

The growth rate defined in equation (5.2) is non-zero only in the presence of noise

(σ2 > 0). In the absence of additive noise, we modify Algorithm 3 by injecting

artificial noise at each iteration. At each node, received measurements are perturbed

by adding noise from a known distribution, in order to model the channel noise
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affected measurements in the previous case. More specifically, node i perturbs the

received measurements xj(t),∀ j ∈ Ni by adding a Gaussian random variable vij(t) ∼

N (0, σ2), where the variance σ2 is a known input parameter.

5.5.3 Alternate method

For Algorithm 1, hyper-parameter β has to be judiciously selected. Therefore, we

propose a new method (as Algorithm 2) by modifying the updates in Algorithm 1, to

estimate log(ρ) without having to select such a parameter. However, the estimation

error of alternate method in slightly more than the original method, especially for

smaller ρ, since the estimation error in the original method can be controlled by

tuning β.

Consider the alternate update equation of the max consensus update given by,

xi(t) = max
(
xi(t− 1) + vii(t− 1),max

j∈Ni
(xj(t− 1) + vij(t− 1))

)
, (5.6)

where the measurement of node i, as well as the measurements received by its neigh-

bors are perturbed by additive noise. It is shown in (Muniraju et al. (2019)) that, for

the alternate update in equation (5.6), upper bound on the growth rate is given by,

λ ≤
√
2σ2 log(ρ+ 1), (5.7)

which is independent of β. The empirical correction factor φ holds good even for

upper bound on growth rate of the alternate update in equation (5.6). Hence, log(ρ)

can be closely approximated by updating γi(t) as,

γi(t) = log

(
exp

(
λ2i (t)

2σ2φ2

)
− 1

)
(5.8)
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5.6 Distributed Spectral Radius Estimation (Digital)

In this section, we discuss a distributed consensus algorithm, to converge on an

invertible function of the spectral radius for a digital communication model, which

works even for packet loss and imperfect transmissions.

Consider a distributed network with N nodes represented by an adjacency matrix

A, with elements aij and eigenvalues ρ , ρ1 ≥ ρ2 ≥ · · · ρN . Let the state values

be denoted by x(t) = [x1(t), · · · , xN(t)]T , where xi(t) is the state value of node i at

iteration t. First, we set all the nodes to zero, i.e x(0) = 0. At each iteration, the

nodes update their state values as,

xi(t) = log

( N∑
j=1

aij exp(xj(t− 1))

)
, for i = 1, · · · , N. (5.9)

Note that, each node transmits the logarithm of the sum of exponentials of the received

values in the previous iteration, hence the dynamic range of the transmission is in

the desired range. After sufficiently many iterations, each node locally computes an

estimate of the log(ρ) as,

yi(t) =
1

t
xi(t). (5.10)

The distributed algorithm to reach consensus on log(ρ) is provided in Algorithm 5.

The algorithm is started by resetting nodes to 0, followed by iterative equations (5.9)

and (5.10) for tmax iterations. For every node i, yi(tmax) approximates log(ρ).

In order to analyze the Algorithm 5, we express equations (5.9), (5.10) in matrix

form as,

x(t) = log
[
A exp[x(t− 1)]

]
, (5.11)

y(t) =
1

t
x(t), (5.12)

respectively, where we recall log[·] and exp[·] are element-wise operations. The fol-

lowing theorem shows that for a large t, value of yi(t) converges to log(ρ).
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Algorithm 5 : Distributed estimation of spectral radius
Input: N , A, tmax

Initialization: x(0) = [0, · · · , 0]T

for t = 1, 2, · · · , tmax

xi(t) = log
(∑N

j=1 aij exp(xj(t− 1))
)

yi(t) = 1
t
xi(t)

end

Output: yi(tmax)

Theorem 7 In a connected non-bipartite graph G, with all nodes initialized to x(0) =

0, we have for large t,

y(t) = log(ρ)1 +
1

t
log
[
q1||q1||1

]
+O

(
1

t

(
ρ2/ρ

)t)
where, q1 is the principal eigenvector of A. In bipartite graphs,

y(t) = log(ρ)1 +
1

t

(
log

[
q1

N∑
j=1

q1j + (−1)tqN

N∑
j=1

qNj

])

+O
(

1

t

(
max(|ρ2|, |ρN−1|)

ρ

)t )
where, qN is the eigenvector corresponding to eigenvalue −ρ of A.

Proof : We begin our proof by re-writing and simplifying equation 5.11 as,

x(t) = log
[
A exp[x(t− 1)]

]
,

= log
[
A exp[log

[
A exp[x(t− 2)]

]]]
= log

[
A exp[log

[
A exp[log

[
A · · ·A exp[x(0)]

]]]
= log

[
At exp[x(0)]

]
.

Since, x(0) = 0 we have exp[x(0)] = 1. Hence,

x(t) = log
[
At1

]
. (5.13)
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Next, we perform eigenvalue decomposition (EVD) of A as A = Q∆Q−1, where

Q = [q1,q2, · · · ,qN ] is a matrix with eigenvectors qi = [qi1, qi2, · · · , qiN ]T as columns,

and ∆ is a diagonal matrix of real eigenvalues ρi. Since A is real and symmetric,

Q−1 = QT , thus QTQ = I where I is the identity matrix. So,

At = (Q∆QT )(Q∆QT ) · · · (Q∆QT ) = Q∆tQT . (5.14)

From equations (5.14) and (5.13) we can write equation (5.12) as,

y(t) =
1

t
log[Q∆tQT1]. (5.15)

Next, add and subtract t log(ρ) from RHS of equation (5.15):

y(t) =
1

t

(
log[Q∆tρ−tQT1] + t log(ρ)1

)
,

= log(ρ)1 +
1

t

(
log[QStQT1]

)
(5.16)

where, S = ∆ρ−1 is a diagonal matrix with entries (1, ρ2
ρ
, · · · , ρN

ρ
).

We can express QStQT1 in summation form as,

QStQT1 =
N∑
i=1

qis
t
i

N∑
j=1

qij = q1

N∑
j=1

q1j +
N∑
i=2

qis
t
i

N∑
j=1

qij. (5.17)

where, the second term in equation (5.17) is in O
(
(ρ2/ρ)t

)
.

Hence, using equations (5.16) and (5.17), we can write yi(t) as,

y(t) = log(ρ)1 +
1

t
log
[
q1||q1||1

]
+O

(
1

t

(
ρ2/ρ

)t)
(5.18)

This completes the proof for non-bipartite graphs.

Next, let us consider a graph G with the largest eigenvalue of ρ. Since G is bipartite,

−ρ is the smallest eigenvalue of its adjacency matrix. Therefore, for bipartite graphs,
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equation (5.16) reduces to,

y(t) = log(ρ)1 +
1

t

(
log

[
q1

N∑
j=1

q1j + (−1)tqN

N∑
j=1

qNj

])

+
N−1∑
i=2

qis
t
i

N∑
j=1

qij. (5.19)

where, the second term is in O(1/t) and the third term with O
(
1
t

(max(|ρ2|,|ρN−1|)
ρ

)t )
.

Hence, as t→∞, y(t) converges to log(ρ) with a damped oscillatory behavior.

Remark 1: For d-regular graphs, Algorithm 5 produces yi(t) = d = ρ for every

t, and therefore has zero error. This agrees with equation (5.18) since for d-regular

graphs, q1 = N−1/21, making the term 1
t

log
[
q1||q1||1

]
= 0.

Remark 2: It is clear from the proof that log(·) and exp(·) can be replaced by any

pair of inverse functions and appropriate modifications in Algorithm 5. The advantage

of the log(·) and exp(·) pair is that the elements of x(t) grow linearly with t, which

ensures that y(t) = t−1x(t) converges as shown in Algorithm 5.

5.6.1 Time-varying graphs

In this section, we discuss the distributed spectral radius estimation algorithm for

time-varying graphs. Real world WSNs often experience transmission failures, i.e,

transmitted message being dropped due to unreliable links. We model the unreliable

links or packet loss as a time-varying graph that has independently removed edges

with probability p. Note that, Algorithm 5 in the presence of packet loss cannot

guarantee convergence with probability one, because there is a non-zero probability

that all node transmissions is dropped in some iteration. To remedy this, in the

time-varying graphs, we consider self updates (corresponding to the self-loops in the
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Figure 5.1: (a) A Ring Graph with N = 10 Nodes, (b) Convergence of γ̂(t) in the
Presence of Noise with β = 0.98 Using Algorithm 1, (c) Convergence of γ̂(t) in the
Presence of Noise with Alternate Method Using Algorithm 2.

graph) to ensure that the state values of the nodes are not dropped, as explained

now.

Consider the update equation (5.9), (line 4 in Algorithm 5) which can be modified

by performing a self update as,

xi(t+ 1) = log

(
exp(xi(t)) +

∑
j∈Ni

exp(xj(t))

)
. (5.20)

This extra self-update term is needed in the packet loss case in equation (5.20), which

comes with a performance degradation for the fixed graph case. Indeed, Theorem 7

can be re-proved by A replaced with A + I, which adds one to every eigenvalue,
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Figure 5.2: (a) A Regular Graph with N = 20 Nodes, (b) Convergence of γ̂(t) in
the Presence of Noise with β = 0.98 Using Algorithm 1, (c) Convergence of γ̂(t) in
the Presence of Noise with Alternate Method Using Algorithm 2.

showing that the convergence error is slower with a rate of O
(
1
t

(
(ρ2 + 1)/(ρ + 1)

)t)
for the non-bipartite case, and a similar degradation for the bipartite case. Hence,

algorithm with self-update is not preferred for fixed graphs. However, since edges

are dropped randomly in time-varying graphs, in order to preserve the node state

information, algorithm with self-updates is needed.

We now consider equation (5.20) in the presence of packet loss. Since the packet

loss is probabilistic, the convergence error is no longer deterministic. Let bij(t) ∼

Ber(1− p), and P (bij(t) = 0) = p, i 6= j, be independent Bernoulli random variables

capturing packet loss on edges. At each iteration, all the nodes update their state
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Figure 5.3: (a) An Irregular Graph with N = 75 Nodes, (b) Convergence of γ̂(t) in
the Presence of Noise with β = 0.97 Using Algorithm 1, (c) Convergence of γ̂(t) in
the Presence of Noise with Alternate Method Using Algorithm 2.

values as,

xi(t+ 1) = log

(
exp(xj(t) +

N∑
j=1

aijbij(t) exp(xj(t))

)
. (5.21)

Equation (5.21) can be written in vector form as,

x(t) = log[(I + At−1) exp[x(t− 1)]] (5.22)

= log[(I + At−1)(I + At−2) · · · (I + A0)1]

= log

[( t∏
k=1

(I + Ak)

)
1

]
,

where Ak has elements aijbij(k). The convergence of 1
t
x(t) can be established using
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Figure 5.4: (a) Non-Bipartite Graph with N = 75 Nodes. (b) Convergence of
Algorithm 1 for the Non-Bipartite Graph. (c) Bipartite Graph with N = 20 Nodes.
(d) Convergence of Algorithm 1 for the Bipartite Graph.

the subadditive ergodic theorem (Cohen (1988)). However, there is no closed form

expression for the limiting value. We approximate this value for a d-regular graph to

gain insight into the general case. After packet loss, the degree of each node i at time

k is a binomial B
(i)
k ∼ Bin(d, 1 − p) random variable, which are the elements of the

vector Ak1. Approximating B
(i)
k ≈ Bk for every i, we can write using equation (5.22),

yi(t) =
1

t
log

( t∏
k=1

(
1 +Bk

))
(5.23)

=
1

t

t∑
k=1

log
(
1 +Bk

)
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Figure 5.5: Estimated log(1 + d(1 − p)) for a Regular Time-Varying Graphs with
N = 100.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Figure 5.6: Estimated log(1 + ρ(1 − p)) for Irregular Time-Varying Graphs with
N = 100.
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By law of large numbers, equation (5.23) converges to E[log(1 + Bk)], which can be

approximated using Jensen’s inequality as log(1+d(1−p))1 by moving the expectation

inside the concave function log(1 + x). For irregular graphs, this formula empirically

is seen to work by substituting ρ for d, for large t as

y(t) ' log(1 + ρ(1− p))1. (5.24)

Therefore, with the prior knowledge of p, ρ can be estimated as

ρ ' exp[y(t)]− 1

1− p
.

If the knowledge of p is not available, the preceding analysis quantifies how much

packet loss will affect the bias.

5.7 Simulations

5.7.1 Analog communication model

In this section, we validate our methods over both regular and irregular graphs.

We consider a ring graphs with N = 10 nodes each with d = 2 edges as shown in

Figure 5.1(a), a regular graphs with N = 20 nodes each with d = 8 edges as shown in

Figure 5.2(a) and an irregular graph with N = 75 nodes as shown in Figure 5.3(a).

The irregular graph was randomly generated, which is commonly followed (Muniraju

et al. (2018)), for average and max-consensus simulations. The spectral radius of the

ring graph is ρ = 2 and log(ρ) = 0.6931, regular graph has ρ = 8 and log(ρ) = 2.0794,

and the irregular graph has ρ = 31.3625, thus log(ρ) = 3.4456. For all these graphs,

communication links between any two nodes has a noise component distributed as

N (0, 1). Algorithms 3 and 4 were run on the considered graphs, for t = 200 iterations.

For simulations with Algorithm 1, β = 0.98 was found to be optimal choice for

considered ring and regular graph, and β = 0.97 for the irregular graph.
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For ring graph in Figure 5.1(a), the log(ρ) estimate γ̂(t) converged to 0.6912 ±

0.0058 using Algorithm 1 and to 0.6551 ± 0.0107 with Algorithm 2, as shown in

Figures 5.1(b)-5.1(c), respectively. The mean absolute error (MAE) between log(ρ)

and γ̂(t) is 0.0019 and 0.038 with Algorithms 1 and 2, respectively.

Similarly, for regular graph in Figure 5.2(a), γ̂(t) converged to 2.0594 ± 0.0081

and 2.054 ± 0.0069 as shown in Figures 5.2(b)-5.2(c), with MAE estimation errors

0.02 and 0.0254, with Algorithms 1 and 2, respectively.

In case of irregular graph in Figure 5.3(a), γ̂(t) converged to 3.4633± 0.0062 and

3.408± 0.0061 as shown in Figures 5.3(b)-5.3(c), with MAE estimation errors 0.0177

and 0.0376, with Algorithms 1 and 2, respectively.

We observe that, for all the cases, Algorithms 1 performs better than Algorithms 2

in terms of estimation error. Note that, the estimation error can be reduced in in

Algorithm 1 by tuning β.

5.7.2 Digital communication model

In this section, we validate our methods over both bipartite and non-bipartite

graphs. We consider an irregular non-bipartite graph with N = 75 nodes and a

bipartite graph with N = 20 nodes. The irregular non-bipartite graph was randomly

generated, which is commonly followed (Muniraju et al. (2018); Zhang et al. (2016c)),

for average and max-consensus simulations. The spectral radius of the irregular graph

in Figure 5.4(a) is ρ = 37.1142 and log(ρ) = 3.614, bipartite graph in Figure 5.4(c)

has ρ = 4.3739 and log(ρ) = 1.4756.

Algorithm 5 was run on bipartite and non-bipartite graphs for 50 iterations. The

convergence of the Algorithm 5 for bipartite and non-bipartite graphs are shown in

Figures 5.4(b) and 5.4(d), respectively. For non-bipartite graphs, Algorithm 5 con-

verges to log(ρ), with an error of 0.083%. In the case of bipartite graphs, Algorithm 5
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converges to log(ρ), with an error of 0.46%. Additionally, we observe damped oscil-

latory behavior during the initial iterations caused due to the symmetric eigenvalues,

reflecting the effect of the second term in equation (5.19).

Time-Varying Graphs

We consider a regular and irregular graph with N = 100. For regular graph we

vary the degree as d = {10, 20, · · · , 60} and randomly generate irregular graphs as

in (Nowzari and Rabbat (2019)). We vary probability of dropping edges as p =

{0, 0.1, · · · , 0.8}.

For time-varying graphs, we modified Algorithm 5 by replacing Line 4 by equa-

tion (5.20), i.e with the self-update rule. This modified version was ran on the time-

varying graphs for t = 100 iterations. Figure 5.5 shows the estimated value and the

actual log(1 + d(1 − p)) for different values of p for d-regular graphs. We observe

that the estimated value is very close to the true value in all the cases. Figure 5.6

shows the estimated value and the actual log(1 +ρ(1−p)) for different values of p for

irregular graphs. We observe that the estimated value is very close to the true value

for graphs with large ρ and p ∈ (0, 0.6). However, we observe a small estimation error

for large p, as the graph connectivity is significantly reduced.

5.8 Chapter Summary

Distributed algorithm to compute the spectral radius of the network, using only

local communications, for analog and digital transmission setting ware presented.

Our algorithm for analog model uses a distributed max consensus update to compute

the growth rate and then updates the state values based on the growth rate estimate

to converge on the logarithm of the spectral radius. The proposed method for digital

model involves a simple log-sum-exp updates, which is robust to packet loss and re-
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stricts the state values within the dynamic range. Additionally, theoretical results on

convergence of the algorithm and estimation error were presented, for both bipartite

and non-bipartite graphs. For irregular graphs, we proved that the convergence error

is a function of principal eigenvector of the graph adjacency matrix and reduces as

O(1/t). Our algorithm was modified to work for the time-varying graphs and the

theoretical results were presented for this setting. Simulation results supporting the

theory were also presented.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

In this work, we develop three fundamental algorithms: to cluster sensors in a

distributed way using the location attributes; and a distributed robust algorithm

to estimate the maximum of initial node state values in the presence of additive

noise; and distributed spectral radius estimation algorithms to estimate the logarithm

of spectral radius for WSNs with analog and digital communication models. For

completeness of the thesis, we provided the background reading for the report in

Chapter 2, wherein, we discussed the introduction to graph theory and distributed

consensus algorithms for WSNs.

In Chapter 3, we have designed and implemented a spectral clustering method

in a distributed way without any fusion center in the network, by combining the

distributed eigenvector computation and distributed K-means clustering methods, to

cluster the input dataset into K groups. The location information of the senors is

used only to establish the network topology and this information is not exchanged in

the network. The power iteration method is implemented distributively, to compute

the Fiedler vector. All nodes converge to a value in the Fiedler vector of the graph

Laplacian. Clustering is carried out on the Fiedler vector using the distributed K-

means algorithm. The location information of the sensor is only used to establish the

network topology and this information is not exchanged in the network. Simulation

results illustrate that the distributed spectral clustering algorithm performs better

than the K-means algorithm as the eigenvector of graph Laplacian is a better feature
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space to cluster than the input dataset. This algorithm works for any connected graph

structure. Our algorithm is not sensitive to centroid initialization and can cluster

datasets based on the connectivity unlike traditional k-means and EM algorithm.

Our work can also be used to data labeling as the measurements obtained by the

senors belonging to the same cluster can be assigned by a common label.

In Chapter 4, a practical approach for reliable estimation of maximum of the

initial state values of nodes in a distributed network, in the presence of additive noise

is proposed. Firstly, we showed the existence of a constant growth rate due to additive

noise and then derived upper and lower bounds for the growth rate. It is argued that

the growth rate is constant, and the upper bound is a function of spectral radius of the

graph. By deriving a lower bound, we proved that the growth rate is always a positive

non-zero real value. We also derived upper and lower bounds on the growth rate for

random time-varying graphs. An empirical upper bound is obtained by scaling the

original bound, which is shown to be tighter and generalizable to different networks

and noise settings. Finally, we presented a fast max-based consensus algorithm, which

is robust to additive noise and showed that the variance of the growth rate estimator

used in this algorithm decreases as O(t−1max) using concentration inequalities. We also

showed that the variance of our estimator scales linearly with the diameter of the

network.

In Chapter 5, distributed algorithms to compute the spectral radius of the network,

using only local communications, for analog and digital transmission setting ware

presented. Our algorithm for analog model uses a distributed max consensus update

to compute the growth rate and then updates the state values based on the growth rate

estimate to converge on the logarithm of the spectral radius. The proposed method

for digital model involves a simple log-sum-exp updates, which is robust to packet

loss and restricts the state values within the dynamic range. Additionally, theoretical
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results on convergence of the algorithm and estimation error were presented, for

both bipartite and non-bipartite graphs. For irregular graphs, we proved that the

convergence error is a function of principal eigenvector of the graph adjacency matrix

and reduces as O(1/t). Our algorithm was modified to work for the time-varying

graphs and the theoretical results were presented for this setting.

6.2 Future work

In this section, I have discussed a few future research prospects that can potentially

be an extension of my thesis work.

1. In the lines of work on distributed spectral radius estimation in digital commu-

nication setting, investigating the algorithms performance for directed graphs,

with proof of convergence would be an interesting study. Additionally, the same

algorithm can be studied in the analog setting (fading channels) by considering

the additive noise and modeling with a weighted adjacency matrix.

2. Another interesting direction is to solve the problem of distributed edge count-

ing problem in WSNs. Conventionally, a communication link (edge) between

two nodes is formed if they have sufficient transmission power to exchange infor-

mation. In a power constrained network, it is crucial to know the total number

of active communication links so that additional links can be created or removed

depending on the power budget. It is possible to develop a fully distributed al-

gorithm to estimate number of edges, by combining distributed node counting

and average consensus algorithms. The performance study can be extended for

both static and time-varying graphs.

3. Generally, in WSNs, a certain number of sensor nodes are randomly deployed

within a confined area, which constitutes a notion of density. The node density
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of a network plays a key role in resource allocation, message propagation and

overall performance of the network. For instance, in cellar networks, uniform

density is desired in order to avoid overlap between the service provided from the

base stations. In monitoring applications, sensors need to be deployed such that

maximal coverage of the sensing region is achieved. Node density estimation

has also found interesting used cases in security and military applications. In

intrusion detection systems, node density is continuously monitored and any

change in node density is an indication of an intrusion. Given the importance

of node density, developing distributed algorithms to compute the local and

global node densities of the WSNs would be of high interest to the research

community.
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