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ABSTRACT

The first part of this work focuses on the information that neutrinos from core-

collapse supernovae (CCSNe) can provide with in the context of multi-messenger

astronomy. A CCSN serves as nature’s very own laboratory. Neutrinos from the

various phases of a CCSN can be used to gain insights and understanding in a much

broader context. The localization of a star using presupernova neutrinos is studied

and it is shown that their topology can give the direction to the star with an error

of ∼ 60◦. A new phenomenological description of the neutrino gravitational wave

memory effect is built, highlighting its detectability, and physics potential in the

present context. It is shown that this effect will be detectable in the near future,

for a galactic supernova, at deci-Hertz GW interferometers. A novel idea of how

observations of the neutrino GW memory from CCSNe will enable time-triggered

searches of supernova neutrinos at megaton (Mt) scale neutrino detectors is also

presented. This combination of a deci-Hz GW and a Mt-neutrino detector will allow

the latter to detect ∼ 3− 30 supernova neutrino events/Mt/per decade of operation.

The second part of this work focuses on studying quantum fields in time and space-

dependent backgrounds. Generically, such quantum fields get excited (a phenomenon

known as particle production) and the quantum excitations then backreact on the

background. This scenario is important in all areas of physics, specifically in the

context of gravitation and cosmology. This work discusses some simplified models

pertaining to this. In particular, the dynamics of a classical field rolling down a

linear potential while it is bi-quadratically coupled to a quantum field is studied. The

formation of global topological defects in d-dimensions as a result of spontaneous

symmetry breaking during a quantum phase transition is also studied. Furthermore,

a sine-Gordon kink-antikink collision in the presence of interactions with a scalar field

is considered and the regimes of breather and long lived oscillon formation are found.
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PREFACE

Neutrinos and quantum fields in the Universe, is no doubt, one of the broadest titles

that one can ever imagine! As a reader, you might wonder, why is that? Well, the

title is so because during my PhD, my research interests were broadly divided in two

distinct categories - astroparticle physics and theoretical high energy physics. I had

once tried and miserably failed to give my entire work in the two distinct fields one

unifying title. So, I decided not to repeat that attempt and get rid of the grand

unification scheme I had once thought of. The next best possible option was to give

it a broad enough title so as to encompass the two parts of my work, hence the the

present title. As a result of this grand non-(unification) scheme that I chose, the thesis

is divided into two distinct parts. The first part (from chapters 1 to 6), is based on

my work in astroparticle physics. The second part (from chapters 7 to 11), focuses on

my work in theoretical high energy physics. If I were to provide individual titles to

the two parts, they would be called Multi-messengers from core-collapse supernovae:

neutrinos and gravitational waves, and Quantum fields in time- and space-dependent

backgrounds, respectively!

In astroparticle physics my main focus is neutrino physics. I am interested in the

phenomenology of astrophysical neutrinos, multi-messenger astronomy, and gravita-

tional waves. In theoretical high energy physics, the majority of my focus has been to

study dynamical quantum fields on time- and space-dependent classical backgrounds.

I am interested in early universe cosmology, field theory, phase transitions, and topo-

logical defects.

The first part of this thesis is based on my work with neutrinos from core-collapse

supernovae (CCSNe). In particular, what information do these neutrinos provide

us with and how they help in the context of multi-messenger astronomy, which is a

xvii



promising avenue to probe extreme astrophysical phenomena and our understanding

of the Universe. The topics discussed in the first part also contributes to the areas of

combined neutrino and GW observations.

We begin the first part of this work with a very general introduction to neutrino

physics in chapter 1. The contents of this chapter is heavily derived from published

reviews and books on neutrino physics. Some additional information relevant to the

chapter is provided in Appendices. A and B. A short introduction to multi-messenger

astronomy follows in chapter 2, with particular emphasis on the physics of a CCSN

and neutrino emission from its different phases. This chapter is also based on several

reviews and books available in the literature. The main motivation behind the first

two chapters is to provide a mini-review on things that would be important for the

main work and an overview of the field in general. The subsequent chapters form the

core of this thesis and is based on original work performed and published during my

PhD.

In chapter 3, we explore the potential of presupernova neutrinos in providing

directional sensitivity and hence an early alert of a CCSN, facilitating multi-messenger

observations. This is based on the work done in Mukhopadhyay et al. (2020a). Some

additional details relevant to this chapter is provided in Appendices. C and D. In

chapter 4, the phenomenology of the neutrino gravitational wave memory (GWM)

effect – a multi-messenger channel combining neutrino physics with GW physics, is

explored in details. This is based on Mukhopadhyay et al. (2021a). Appendix. E

provides additional details regarding certain calculations in this chapter. Moreover,

we demonstrated that observations of the GWM effect from a CCSN at future Deci-

Hz interferometers will enable us to perform time-triggered searches of supernova

neutrinos at megaton-scale detectors in Mukhopadhyay et al. (2021b). This form the

contents of chapter 5. In Appendix. F we provide additional details that were not

xviii



included in the chapter. We conclude this part of the thesis in chapter 6, where we

summarize our main results, their implications and future possibilities.

The second part of this work deals with quantum fields in time- and space-

dependent classical backgrounds and how the dynamics of these fields affect the

classical background itself. Numerous systems ranging from condensed matter to

cosmology are described by dynamical quantum fields on classical backgrounds. My

research investigated such systems in the context of phase transitions, the formation

of topological defects and inflationary scenarios.

We begin this part with a general introduction to systems involving particle pro-

duction and back-reaction in chapter 7. This chapter is based on various existing

published works and books. The subsequent chapters contain original work that I

contributed to and published during my PhD.

Chapter 8 is based on the work done in Mukhopadhyay and Vachaspati (2019),

where we studied the dynamics of a classical field rolling down a linear potential

while bi-quadratically coupled to a quantum field. In chapter 9, we investigated

the formation and dynamics of global topological defects formed due to a quantum

phase transition. This chapter is based on Mukhopadhyay et al. (2020b,c). Finally,

in chapter 10, we studied kink-antikink scattering in the sine-Gordon model in the

presence of interactions with an additional scalar field in its quantum vacuum. This

is based on the work that was done in Mukhopadhyay et al. (2022). Appendix. G

shows some additional details (mostly plots) related to the chapter. This is followed

by a conclusion to this part of the work in chapter 11, once again summarizing the

main results and insights that they provide along with future directions.

I had some of the most wonderful and memorable times of my life during my PhD

research over the last four years. Putting it all together in this thesis, made it seem

like, it was yesterday that I started working on the various projects. It gave me a lot

xix



of perspective, insights and I had an amazing time writing it. I hope the reader has

a good time reading it as well!
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Chapter 1

NEUTRINOS

Approximately a century has passed since the birth of neutrino physics. The poltergeist

of the past turned out to be a key element in understanding how nature works and

has become one of the prime focuses of a big community of physicists. Today it is

well-known that neutrinos are all around us. They are elusive nevertheless have been

detected and form a cornerstone of our understanding of the universe. Neutrinos in

the celebrated Standard Model need to be massless. However, it has now been estab-

lished that neutrinos oscillate and have mass! This is a major breakthrough for the

entire physics community since it serves as one of the most important evidences of

physics beyond the Standard Model. Time and again neutrinos have provided physi-

cists with complex puzzles, a big portion of which have been solved, but a major

chunk still remains to be addressed. In particular, we are yet to decipher the nature

of neutrinos - are they Dirac or Majorana particles? What are their absolute masses?

Is there a leptonic CP violation? Is there a fourth (sterile) neutrino?. . . Although

these questions originate in neutrino physics, their answers have profound implica-

tions in understanding key aspects of nature. This chapter is mostly an introduction

to neutrino physics with particular emphasis on some of the things that will be im-

portant for later parts of this work.

We begin with a short historical introduction to neutrino physics and how it evolved

since the beginning in Sec. 1.1. This is followed by a discussion of neutrinos in the

Standard Model in Sec. 1.2. We focus on broadly discussing the standard model in

Sec. 1.2.1 and the electroweak Lagrangian in Sec. 1.2.2. The neutrino interactions

are discussed in Sec. 1.3. In particular, we focus on discussing the inverse β−decay in
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Sec. 1.3.1, neutrino-electron elastic scattering in Sec. 1.3.2, and the coherent elastic

neutrino-nucleus scattering in Sec. 1.3.3. Neutrino oscillations is the focus of Sec. 1.4.

The vacuum oscillation case is discussed in Sec. 1.4.1 (the details for the two neutrino

case is given in App. A) and the effects due to matter oscillations is briefly mentioned

in Sec. 1.4.2. Neutrino masses in particular the normal and inverted ordering of neu-

trino masses is discussed in Sec. 1.5. The information that supernova neutrinos can

provide about neutrino masses is mentioned in Sec. 1.5.1. We conclude this chapter

with a discussion of various neutrino detectors in Sec. 1.7. The detectors that are

particularly important for this work - scintillator detectors and water Cherenkov de-

tectors are the focus of Sec. 1.7.1 and Sec. 1.7.2 respectively. Other kinds of detectors

relevant to supernova neutrinos are mentioned in Sec. 1.7.3.

1.1 A Historical Introduction

The story of neutrino physics begins approximately 100 years ago. This section

provides a very brief history of neutrino physics from its origins to the key moments

of its development.

In 1920s, physicists were puzzled by the continuous energy spectrum observed in

β−decay (See Fig. 1.1, blue curve) in contrast to α− or γ− decays. In the β−decay

process, a nucleus transforms itself into another one with the emission of an electron,

A
ZX →A

Z+1 X
′ + e−(+ . . . ) .

The parent nuclei, daughter nuclei and the electron could be seen. Thus, the ex-

pectation based on energy-momentum conservation was the electron would carry away

an energy corresponding to the difference in mass between the parent and daughter

nuclei (see Fig. 1.1, red curve) implying a monochromatic line in the β−decay spec-

trum. Possible solutions to this puzzle was the existence of a new particle or, as Niels
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Expected

Observed
Fraction of e−

Figure 1.1: Energy spectrum of a β− decay. The red spike shows the expected
energy spectrum of the electron. The blue curve shows the observed energy spectrum.

Bohr had suggested, energy conservation was valid in a statistical sense only. In 1930,

Wolfgang Pauli with utmost trust in the energy conservation principle, proposed the

existence of a new particle, thus choosing the former possibility. This new particle

according to Pauli would be a neutral, weakly interacting fermion, with mass of the

order of an electron. He chose to call this particle a ’neutron’ (Pauli, 2000). How-

ever, in 1932 James Chadwick, discovered a new and heavy neutral particle which

he named neutron (Chadwick, 1932). The re-naming of Pauli’s particle was done

by Enrico Fermi (suggested by Edoardo Amaldi) in 1932, who chose it to be as we

know it today, neutrino, a little neutron. In 1933, it was shown by Fermi (Fermi,

1933) and Perrin (Perrin, 1933) that neutrinos could be massless. In 1934, Fermi put

everything together to construct a theory for β−decay (Fermi, 1934a,b) that would

explain the observations. This was done in terms of a 4-fermion interaction with a

coupling strength GF . Another prediction of this model was the neutrinos scattering

off matter - inverse β decay (IBD) (ν̄+ p→ n+ e+), which was a way to detect these

still hypothetical particles. The next obvious thing was done by Hans Bethe and
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Rudolf Peierls who calculated the strength of the coupling and the cross-section of

the process, which unfortunately was extremely miniscule ∼ 10−44 cm2 for a neutrino

energy of ∼ 2 MeV. This was a major setback for physicists and in favor of Pauli’s

original fear, ”I have committed the cardinal sin of a theorist. I made a prediction

which can never be tested, ever, because this particle is so weakly interacting that it

may never be seen.”

Bruno Pontecorvo came to the rescue when he suggested that the large neutrino

fluxes from nuclear energy sources can be used to detect neutrinos. In 1950s, Freder-

ick Raines and Clyde Cowan considered various nuclear sources (including an atomic

bomb!), and settled on placing a detector to detect neutrinos coming from a nuclear

reactor. In 1956, at the Savannah River Plant in South Carolina they managed to

finally detect neutrinos! They sent a telegram to Pauli (Reines et al., 1960; Reines,

1996).

Parity was considered to be a respected symmetry in nature. But in the 1950s, ideas of

parity violation started emerging, starting with the novel work of T.D. Lee and C.N.

Yang (Lee and Yang, 1956). Experimentally, in 1956, Chien-Shiung Wu and collab-

orators showed that parity violation occurs in case of β−decay (Wu et al., 1957). In

1958, Goldhaber, Grodzins and Sunyar (Goldhaber et al., 1958) showed that neutri-

nos are always left-handed, that is, they are polarized in a direction which is opposite

to their direction of motion. The fact that neutrinos can be described by a left-handed

Weyl spinor was proposed by Lev Landau (Landau, 1957), Lee and Yang (Lee and

Yang, 1957), and Abdus Salam (Salam, 1957). This fact was embedded in the V-A

theory of weak interactions (Feynman and Gell-Mann, 1958; Sudarshan and Marshak,

1958; Sakurai, 1958). Finally this was also incorporated in the standard model (SM)

of particle physics by Sheldon Lee Glashow, Steven Weinberg and Salam (Glashow,

1961; Weinberg, 1967; Salam, 1968).
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In 1937, Ettore Majorana suggested that neutrinos and antineutrinos (anti-particle

to neutrinos) could be indistinguishable (Majorana, 1937). This basically boils down

to understanding whether lepton number is a conserved quantity or not. The concept

of lepton number, L was introduced in 1953 by E.J. Konopinski and H.M. Mah-

moud (Konopinski and Mahmoud, 1953) to explain some missing decay modes. The

idea being leptons like e−, µ−, τ−, νe, νµ, ντ are assigned L = 1, whereas their antipar-

ticles are assigned, L = −1. The experiment for finding neutrinos by Reines-Cowan

(discussed earlier) was seen to conserve lepton number. But, Ray Davis’ experiment

to observe ν̄e + 37Cl → 37Ar + e− violated lepton number1. We still haven’t solved

this puzzle of whether neutrinos are their own anti-particles in which case they will be

called Majorana fermions or they have a different anti-particle in which case they are

Dirac fermions. Ongoing efforts of observing neutrinoless double beta decay would

solve this puzzle on the nature of neutrinos.

In 1937, the muon was discovered by J.C. Street and E.C. Stevenson (Street and

Stevenson, 1937) and by S.H. Neddermeyer and C.D. Anderson (Neddermeyer and

Anderson, 1937). The muon was heavier than the electron and had Fermi interactions

accompanied by a neutrino. So, the main question then was: is it the same neutrino

that is present in β−decays?. Once again, Pontecorvo had an idea: he suggested that

if the process, π+ → µ+ + νµ cannot induce e−, it would mean νe and νµ are indeed

different particles Pontecorvo (1959). In 1962, Leon M. Lederman, M. Schwartz, J.

Steinberger et. al. (Danby et al., 1962) took up the idea and created the first accler-

ator neutrino beam, from pion decays from a boosted proton beam hitting a target.

These neutrinos did not induce an electron, thus showing νe and νµ are indeed two

different particles. This was proof that there are at least two different neutrino fami-

1Fun fact: This is what led Ray Davis to the making of Homestake solar neutrino experiment

with ν̄e being replaced by νe from the Sun!
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lies or flavors. The third family, ντ related to the τ lepton was discovered in 2000 by

the DONUT experiment (Kodama et al., 2001).

Now that it was established that there are at least more than one family of neutrinos,

the question that needed answering was - can there be mixing and transitions between

the different families? The concept of neutrino oscillations was first proposed by

Pontecorvo in 1957 (Pontecorvo, 1957b,a). This was motivated by the K0 ↔ K̄0

oscillation phenomenon. In 1962, Z. Maki, M. Nagakawa and S. Sakata considered νe

and νµ are mixed states of two mass eigenstates, thus introducing the concept of mix-

ing between mass and flavor states (Maki et al., 1962). Finally, Pontecorvo gave the

first intuitive link between neutrino mixing and oscillations (Pontecorvo, 1967) and

further solidified it with V.N. Gribov (Gribov and Pontecorvo, 1969). Neutrino oscil-

lations are extremely important since they imply that neutrinos have mass. Neutrinos

are massless in the SM, hence neutrinos with mass is the first hint of new physics

beyond the SM. This makes the SM an effective field theory of an even bigger theory

beyond the SM.

The elaborate phenomena of neutrino oscillations have been and continue to be ex-

plored experimentally. The very first indications of flavor transitions in neutrinos

was observed in the Homestake experiment (Cleveland et al., 1998) by R. Davies,

which we mentioned in passing before. This was due to the fact that Davis’ exper-

iment observed a lower flux of solar neutrinos (neutrino produced in the sun) than

expected from models by John Bahcall and collaborators (Bahcall et al., 1963) and

others (Davis et al., 1968; Turck-Chieze et al., 1988; Bahcall and Pinsonneault, 1992;

Turck-Chieze and Lopes, 1993; Turck-Chieze et al., 1993; Bahcall and Pinsonneault,

1995; Bahcall et al., 1998, 2001; Turck-Chieze et al., 2001; Couvidat et al., 2003; Pena-

Garay and Serenelli, 2008; Serenelli et al., 2009; Asplund et al., 2009; Serenelli et al.,

2011; Vinyoles et al., 2017) (see Haxton et al. (2013) for a review). Other experiments
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like GALLLEX/GNO (Hampel et al., 1999) and Sage (Abdurashitov et al., 2002) con-

firmed the same. Kamiokande (Fukuda et al., 1996) and Super-Kamiokande (Fukuda

et al., 1999) measured the solar neutrino flux with high precision and confirmed the

same. Finally, SNO (Ahmad et al., 2002) resolved the solar neutrino deficit problem

in 2002. The resolution was the confirmation of neutrino oscillations in the sun due

to the Mikheev-Smirnov-Wolfenstein (MSW) resonance conversion effects (Wolfen-

stein, 1978; Mikheyev and Smirnov, 1985; Mikheev and Smirnov, 1986), that is, νe

is roughly 1/3rd of the total solar neutrino flux since νe produced in the sun os-

cillate to νµ or ντ while propagating, which accounts for the reduced νe flux that

was being observed. In 2002, KamLAND (Gando et al., 2013) also confirmed the

oscillation parameters for solar neutrinos. Neutrino oscillations were also seen for

atmospheric neutrinos (neutrinos produced in the atmosphere as a result of cosmic

rays). In 1998, Super-Kamiokande discovered neutrino oscillations for atmospheric

neutrinos (Fukuda et al., 1998).

1.2 Neutrinos In The Standard Model

1.2.1 The Standard Model (SM)

The Standard model (SM) of particle physics Glashow (1961); Weinberg (1967);

Salam (1968) is based on the gauge group SU(3)C × SU(2)L × U(1)Y , where, C de-

notes color, L denotes left-handed chirality, and Y denotes hypercharge. It contains

all elementary particles constituting ordinary matter and describes the strong, the

weak and the electromagnetic interactions of elementary particles. The particle con-

tent of the SM is shown in Fig. 1.2. There are eight massless gluons, corresponding to

the eight generators of SU(3)C , that mediate strong interactions, four gauge bosons

amongst which 3 are massive (W± and Z) and 1 is massless: the photon (γ), cor-
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Figure 1.2: The Standard Model Of Particle Physics.

responding to the 3 generators of the SU(2)L and U(1)Y gauge groups, which are

responsible for electroweak interactions. The fermions come in 3 generations with

identical properties but different masses. They are divided into quarks - which par-

ticipate in all the interactions (strong, electromagnetic, weak and gravitational) and

leptons - which participate in all except the strong interactions. Their masses, electric

charges and spins are shown in Fig. 1.2. The fermions are all spin 1/2 particles. The

antiparticles corresponding to them have the same mass but opposite electric charge

and opposite lepton or baryon number depending on whether they are leptons or

quarks. The fermion sector of the SM depends on 13 parameters - six quark masses,
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three charged lepton masses, three quark mixing angles and one phase2. Since we are

interested in neutrinos, we will be focusing on the SM interactions of the neutrino in

this section.

Neutrinos are singlets of SU(3) but belong to SU(2)L doublets (weak isospin doublets)

along with the charged leptons. They have hypercharge −1/2 and are electrically neu-

tral. In the SM, neutrinos are left-handed Weyl fermions. Since the neutrinos are

massless in the SM their chirality and helicity are the same. The antineutrinos are

right-handed to respect the CPT (charge, parity, time reversal) symmetry of the SM.

1.2.2 Electroweak Lagrangian

We consider only SU(3)L×U(1)Y SM symmetry group, to describe the electroweak

part of the SM Lagrangian which is relevant for neutrino interactions. The three

generation version of the electroweak SM lagrangian is given as:

L = i
∑

α=e,µ,τ

L′αL /DL
′
αL + i

∑
α=e,µ,τ

Q′αL /DQ
′
αL

+ i
∑

α=e,µ,τ

l′αR /Dl
′
αR + i

∑
α=e,µ,τ

q′DαR /Dq
′D
αR + i

∑
α=e,µ,τ

q′UαR /Dq
′U
αR

− 1

4
AµνA

µν − 1

4
BµνB

µν

+ (DρΦ)†(DρΦ)− µ2Φ†Φ− λ(Φ†Φ)2

−
∑

α,β=e,µ,τ

(
Y ′lαβL

′
αLΦl′βR + Y ′l∗αβ l

′
βRΦ†L′αL

)

−
∑

α=1,2,3 β=d,s,b

(
Y ′DαβQ

′
αLΦq′DβR + Y ′D∗αβ q′DβRΦ†Q′αL

)

−
∑

α=1,2,3 β=u,c,t

(
Y ′UαβQ

′
αLΦ̃q′UβR + Y ′U∗αβ q

′U
βRΦ̃†Q′αL

)
.

(1.1)

2Neutrinos need to be massless in the SM.
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We will once again focus on the leptonic part. The Lagrangian for neutrino interac-

tions governed by the leptonic charged-current weak interaction after some simplifi-

cations can be obtained from the first line of Eq. 1.1,

L(CC)
I,L = − g

2
√

2

(
jρW,LWρ + jρW,L

†W †
ρ

)
, (1.2)

where, the leptonic charge current jρW,L is defined as,

jρW,L = 2
∑

α=e,µ,τ

ναLγ
ρlαL =

∑
α=e,µ,τ

ναγ
ρ(1− γ5)lα . (1.3)

The part of the lagrangian associated with neutrinos for the leptonic neutral-current

interactions is given as,

L(NC)
I,ν = − g

2 cosϑW
jρZ,νZρ , (1.4)

where, g is the coupling, the leptonic neutral current jρW,L, is defined as,

jρW,L =
∑

α=e,µ,τ

ναLγ
ρναL =

1

2

∑
α=e,µ,τ

ναγ
ρ(1− γ5)να , (1.5)

where, ϑW is the weak mixing angle or Weinberg angle (Weinberg, 1967). We will

skip more details, which can be found in various textbooks in particular Giunti and

Kim (2007). Equipped with this, we will focus on the neutral and charged current

interactions of neutrinos in the next section.

1.3 Neutrino Interactions

In this section we discuss the neutrino interactions with electrons and nuclei.

Since our primary focus is studying neutrinos from a core-collapse supernova, the

relevant neutrino interactions are with neutrino energy O(10) MeV. The discussion

in this section is a mini-review. More detailed information can be found in Burrows

et al. (2006), textbooks (Giunti and Kim, 2007) and reviews (Freedman et al., 1977;

Scholberg, 2012; Sajjad Athar et al., 2022) (and references therein).
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Figure 1.3: Cross-sections per target for relevant neutrino interactions. Abbrevia-
tions are: IBD: inverse β−decay, NC: Neutral current. Figure taken from Scholberg
(2012).

Fig. 1.3 shows the cross-sections per target for the relevant interactions. Broadly

neutrino interactions are classified as follows:

• Neutrino-electron interactions

– Neutrino-electron elastic scattering:

(–)

να + e− →
(–)

να + e−, where, α = e, µ, τ . (1.6)
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– Neutrino-electron quasielastic scattering:

νµ + e− → νe + µ− . (1.7)

– Neutrino-antineutrino pair production:

e+ + e− → ν + ν̄ . (1.8)

• Hadron decays

– Charged pion decay: This is the most common way to produce muon

neutrinos or antineutrinos.

π± → l± +
(–)

ν, where, l = e, µ . (1.9)

Similarly, Kaon and D-meson decays produce neutrinos.

– Neutron decay or, famously β−decay:

n→ p+ e− + ν̄e . (1.10)

• Neutrino-nucleon and neutrino-nucleus scattering

– Quasielastic charged-current reactions:

νl + n→ p+ l− , (1.11)

ν̄l + p→ n+ l+ , (1.12)

this reaction when l = e, becomes inverse-beta decay (IBD), ν̄e+p→ n+e+.

– Elastic neutral-current reactions or Coherent elastic neutrino-nucleus scat-

tering (CEνNS):

(–)

νl + N →
(–)

νl + N, where, N = p, n . (1.13)
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Figure 1.4: Left: The Feynman diagram for inverse β−decay. Right: A schematic
diagram showing a IBD process.

– Charged-current deep inelastic scattering:

νl +N → l− +X ,

ν̄l +N → l+ +X ,

(1.14)

where, N = p, n and X denotes any set of final hadrons.

– Neutral-current deep inelastic scattering:

(–)

νl + N →
(–)

νl + X , (1.15)

where, N = p, n and X denotes any set of final hadrons.

Details about each of the above processes can be found in Giunti and Kim (2007).

We will discuss a few interactions that will be important for the subsequent chapters.

1.3.1 Inverse Beta Decay (IBD)

The inverse beta decay as described in Eq. 1.12, is given by,

ν̄e + p→ n+ e+ (1.16)

An antineutrino interacts with a proton mediated by aW boson, to produce a positron

and neutron. This process is of utmost importance in detecting neutrinos, especially
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sub-GeV neutrinos (Vogel and Beacom, 1999; Strumia and Vissani, 2003), like the

supernova neutrinos which will be our main interest in the following chapters. There

are multiple reasons why IBD is commonly used for neutrino detection:

• It has a relatively large cross-section, approximately ∼ G2
FE

2
ν , where, GF is the

Ferrmi coupling and Eν is the neutrino energy.

• The cross-section unlike most of other neutrino interactions can be accurately

computed.

• The threshold of IBD is low EνTh = 1.8 MeV, making it suitable for supernova

and very low energy presupernova neutrinos (this will be discussed in chapter 3).

• In the energy regimes for supernova neutrinos, the measurable positron energy

is strongly correlated with the incoming antineutrino energy, Ee+ = Eν − 1.3

MeV.

• Neutrino detectors need to be huge to detect neutrino interactions. Thus, to

make them cost effective a strategy is to use large amounts of cheap material

like water or hydrocarbon based liquid scintillators. These have lots of free

protons making IBD the most significant reaction, for supernova neutrinos.

• In scintillator detectors, both the positron and neutron can be tagged, thus

reducing backgrounds. The positron annihilation with electrons (e+ + e− →

γγ), produces 0.511 MeV gamma rays that can be observed, thus tagging the

positron. The neutron may be captured on the free protons with an approxi-

mately 200 µs thermalization and capture time, producing a deuteron and 2.2

MeV γ ray which can be detected. The neutron can also be captured on another

nucleus which gets excited. The nucleus then de-excites by emitting a cascade
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of γ rays which is visible in the detector due to Compton scattering. Thus, the

neutron is also tagged in the detector.

• The above point also opens up avenues to dope the detector with some ma-

terial that has a high neutron capture cross-section, like Gadolinium (Gd)or

Lithium (Tanaka and Watanabe, 2014). For example, Gd has a neutron capture

cross-section 1.6×105 times that of free protons and reduces the thermalization

and capture time scales by an order of magnitude. In chapter 3 we will consider

one such doped detector for our analysis.

Cross-section

The details about the IBD cross-section can be found in Vogel and Beacom (1999);

Strumia and Vissani (2003). Assigning momentum to the particles involved in IBD,

we have from Eq. 1.12,

ν̄e(pν) + p(pp)→ n(pn) + e+(pe) .

The differential cross-section at tree level, summed over all final state polarizations

is given by,

dσ

dt
=

G2
F cos2 θC

2π(s−m2
p)

2
|M2| , (1.17)

where, the Fermi coupling is given by GF = 1.16637 × 10−5/GeV2 and the cosine of

the Cabibo angle is, cos θC = 0.9746 ± 0.0008. M has a well-known current-current

structure details of which can be found in Strumia and Vissani (2003). The cross-

section in terms of the neutrino and electron energy in the rest frame of the proton

is given by,

dσ

dEe
(Eν , Ee) = 2mp

dσ

dt
, if, Eν ≥ ETh ≡

(mn +me)
2 −m2

p

2mp

. (1.18)
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The IBD process has a very slight energy-dependent anisotropy, so it has a low direc-

tional sensitivity. In chapter 3 we will discuss in great detail the extent to which this

can be used for pointing to supernovae. The zeroth-order cross-section, differential in

the angle θ which is the angle between the incoming antineutrino direction and the

positron is given as (Vogel and Beacom, 1999),

dσ

d cos θ
=
σ0

2

[
(f 2 + 3g2) + (f 2 − g2)νe cos θ

]
Eepe , (1.19)

where, f = 1 and g = 1.26 are the vector and axial-vector couplings respectively. σ0

is the normalizing constant defined as,

σ0 =
G2
F cos2 θC
π

(
1 + ∆R

inner

)
, (1.20)

where, the energy dependent inner radiative correction, ∆R
inner ≈ 0.024 (Wilkinson,

1994). The final standard cross-section at zeroth-order is given by,

σtot = σ0(f 2 + 3g2)Eepe = 9.52× 10−44

(
Eepe

1MeV2

)
cm2 . (1.21)

This cross-section is valid at low energies, but is not very suitable for supernova

neutrino analyses. The cross-section that we mostly use for supernova neutrinos is

taken from Strumia and Vissani (2003) (See Eq. 25 there) and is given by,

σ(Eν) = 10−43cm2

(
pe(Eν)Ee(Eν)E

(
−0.07056+0.02018(log Eν)−0.001953(log Eν)3

)
ν

)
,

pe(Eν) =
√
E2
e −m2

e

Ee(Eν) = Eν −∆ , (1.22)

∆ = mn −mp = 1.293 MeV ,

where, pe(Eν) is the positron energy in MeV, Ee(Eν) is the electron energy in the rest

frame of the proton, mn = 939.565 MeV, is the rest mass of the neutron, mp = 938.272

MeV is the rest mass of the proton and me = 0.511 MeV is the rest mass of the

electron.
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Figure 1.5: Top row: Tree level Feynman diagram for elastic scattering of νe:
charged current (left) and neutral current (right). Middle row: Same for ν̄e: charged
current (left) and neutral current (right). Bottom row: Same for νx for neutral current
(left) and only for νµ (right) for charged current, where, x = µ, τ .

1.3.2 Neutrino-electron Elastic Scattering (ES)

This is one of the most common interactions of the neutrino. The theory of elastic

neutrino-electron scattering has been studied in detail (Tomalak and Hill (2020) and

references therein). Low energy neutrinos interact with electrons through an elastic

scattering process. Since in this case the final and the initial states are the same, the
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only outcome is a redistribution of the total energy and momentum between the two

particles involved. This process can proceed via both charged-current and neutral-

current reactions. The possible Feynman diagrams are shown in Fig. 1.5. The tree

level Feynman diagrams for,

νe + e− → νe + e− , (1.23)

is shown in the top row of Fig. 1.5. For the case where we have,

ν̄e + e− → ν̄e + e− , (1.24)

the t-channel diagram replaced by the s-channel diagram (see Fig. 1.5 middle row).

We can also have the process,

(–)

νµ,τ + e− →
(–)

νµ,τ + e− . (1.25)

This has neutral current contributions only (see Fig. 1.5 bottom row).

Although the cross-section for this process is small as compared to IBD or CEνNS

(see Fig. 1.3), it has excellent directionality. We don’t discuss the directionality of

this process in detail in this work. In short, the electron is scattered in a forward

direction with respect to the direction of the incoming neutrino. Thus the detector

can reconstruct the electron tracks and hence the direction of the incoming neutrino.

Cross-section

In the laboratory frame, the differential cross-section as a function of the kinetic

energy of the recoil electron is given by,

dσ

dTe
(Eν , Te) =

σ0

me

[
g2

1 + g2
2

(
1− Te

Eν

)2

− g1g2
meTe
E2
ν

]
, (1.26)

where,

σ0 =
2G2

Fm
2
e

π
≈ 88.06× 10−46cm2 . (1.27)
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Figure 1.6: Feynman diagram for the CEνNS process.

The value of g1 and g2 are neutrino flavor dependent.

g
(νe)
1 = gν̄e2 ≈ 0.73 ,

g
(νe)
2 = gν̄e1 ≈ 0.23 ,

g
(νµ,τ )
1 = g

ν̄µ,τ
2 ≈ −0.27 ,

g
(νµ,τ )
2 = g

ν̄µ,τ
1 ≈ 0.23 .

(1.28)

In the laboratory frame, the electron is initially at rest. We can neglect the tiny

neutrino mass such that, one of the relativistic Mandelstam invariant is, s = 2meEν .

For,
√
s� me, the ν−e cross-section is ∼ 2.4 times larger than the ν̄e−e− cross-section;

∼ 6.2 times larger than the νµ,τ − e− cross-section; and ∼ 7.1 times the ν̄µ,τ − e−

cross-section.

1.3.3 Coherent Elastic Neutrino-nucleus Scattering (CEvNS)

Another very important class of neutrino interactions is the elastic neutral-current

reactions mediated by the Z boson Fig. 1.6. The CEνNS pocess was first discussed

in Freedman (1974). Neutrinos with energy in MeV range, coherently scatter off

protons or entire nuclei via neutral current weak interactions. The interaction rate

is very high due to the comparatively large cross-section ∼ 10−39 cm2 (see Fig. 1.3).
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However, the slight drawback is the fact that the recoil energies are very low, so the

detectors need to have a very low energy threshold. An important characteristic of

this process is that it is flavor blind.

Cross-section

The SM cross-section for this process is given by (Freedman et al., 1977),

dσI

dEr
(Eν , Er) =

G2
FmI

4π
Q2
W

(
1− mIEr

2E2
ν

)
F 2
I (Er) , (1.29)

where, mI is the target nuclide mass, once again the Fermi coupling constant GF =

1.1664 × 10−5 GeV−2, FI(Er) is the form factor, taken to be the Helm form fac-

tor (Helm, 1956), the weak nuclear charge QW = [(1− 4 sin2 θW )ZI −NI ], NI is the

number of neutrons and ZI is the number of protons and θW is the Weinberg angle.

At low energies, sin2 θW = 0.23867 (Erler and Ramsey-Musolf, 2005). The minimum

neutrino energy required to produce a recoil of energy Er is given by,

Emin
ν =

…
mIEr

2
. (1.30)

The maximum recoil energy produced due to collision with a neutrino of energy Eν

is,

Emax
r =

2E2
ν

mI + 2Eν
. (1.31)

When the target consists of entire nuclei, the recoil energies are extremely low (a

few keV to to a few 10 keV) (Freedman et al., 1977; Drukier and Stodolsky, 1984)

which is out of reach for conventional detectors. But detectors designed for dark

matter may be able to see these recoils. The use of dark matter detectors as neutrino

detectors using the CEνNS process is being thoroughly explored (Reichard et al.,

2017; Khaitan, 2018; Aalbers et al., 2022).
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1.4 Neutrino Oscillations

Neutrino oscillation is a consequence of leptonic mixing and non-degenerate neu-

trino mass. It is a quantum mechanical phenomenon related to the flavor and mass

eigenstates. It is important to note that in the SM neutrinos must be massless and

if that were true there would be no neutrino oscillations unless other exotic physics

is invoked. But we have seen neutrino oscillations in various neutrino experiments

(see Sec. 1.1), implying neutrinos do have a non-zero mass and hinting at the first

evidence of physics beyond the SM. In this section we briefly discuss neutrino oscilla-

tions. Detailed reviews can be found in Bilenky and Pontecorvo (1978); Bilenky et al.

(1999); Strumia and Vissani (2006); Nunokawa et al. (2008); Giunti and Kim (2007);

Roy (2009); Gonzalez-Garcia et al. (2016); Farzan and Tortola (2018).

The basic idea is that the description of neutrino production and detection is in terms

of the flavor states. Now each flavor eigenstate is a coherent superposition of mass

eigenstates with slightly different masses. These massive states propagate over long

distances with different phases. This results in a slight change in its phase. Finally,

when the neutrino is detected, the flavor state is once again projected out and there is

a probability that a different flavor is found as compared to the initial flavor. One key

aspect of neutrino oscillation is coherence. Coherence is needed during production

and propagation.

1.4.1 Neutrino Oscillations In Vacuum

Let us discuss the simple case of neutrino oscillations in vacuum. We will use the

most commonly used plane-wave approximation technique for discussing the oscilla-

tion probability. The main assumption is once again is, the initial state is a coherent

superposition of massive states with momentum, p ≡ |p|. Say, we have a neutrino να
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produced at time t = 0. The initial state is described as,

|ν, t = 0〉 = |να〉 =
∑
i

U∗αi|νi〉, , (1.32)

where, U is the PMNS (Pontecorvo-Maki-Nakagawa-Sakata) matrix (defined later)

and is unitary, α = e, µ, τ and i = 1, 2, 3. The mass states are eigenstates of the free

Hamiltonian Ĥ with energy eigenvalues given by, Ei =
√

p2 +m2
i . Time evolution

of the initial state is given as,

|ν, t〉 = exp (−iĤt)|νa〉 =
∑
i

U∗αi exp (−iEit)|νi〉 . (1.33)

The transition probability from να at time t = 0, to νβ at time t = t is given by,

P (να → νβ, t) = |〈νβ|ν, t〉|2 =

∣∣∣∣∣∑
i

UβiU
∗
αi exp (−iEit)

∣∣∣∣∣
2

. (1.34)

In writing the above expression, we use 〈νj|νi〉 = δij. In most cases, the neutrinos are

highly relativistic and a series of approximations follow, Ei − Ej ≈ (m2
i − m2

j)/2p,

where, Ei is the energy of |νi〉, L = t, where, L is the distance between the source and

detector, and E ' p. We define, ∆m2
ij ≡ m2

i −m2
j . This finally gives us the neutrino

oscillation probability in vacuum as,

P (να → νβ, t) = |〈νβ|ν, t〉|2 =

∣∣∣∣∣∑
i

UβiU
∗
αi exp

(
− i

∆m2
ij

2E
t

)∣∣∣∣∣
2

. (1.35)

There are a few interesting things that can be noted from the above expression

(Eq. 1.35) right away:

• Neutrino oscillations require leptonic mixing, U 6= 1 and the neutrinos need to

have a finite non-zero mass as discussed earlier.

• Neutrino oscillation conserves lepton number, that is, the neutrino does not

oscillate to an antineutrino. But lepton flavor is not conserved.
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• Only the mass-squared difference between the different mass states play a role in

neutrino oscillations, thus making individual absolute value of neutrino masses

irrelevant.

• Since neutrino oscillation is a lepton number conserving process, the Majorana

phases do not come in.

• When, α = β Eq. 1.35 is called the survival probability or disappearance channel.

For α 6= β Eq. 1.35 is called the transition probability or appearance channel.

The neutrino oscillation probability obtained in Eq. 1.35 is simple but misses a lot of

the subtle aspects. A more precise treatment is done using wave packets (Nussinov,

1976; Kayser, 1981; Kiers et al., 1996). However, we will not go into the details of

that. The case of two neutrino oscillation is discussed in Appendix A. The transition

probability for the 2 neutrino case is given by,

P (να → νβ 6=α) = sin2 θ sin2

(
∆m2L

4E

)
, (1.36)

where, θ and ∆m2 = m2
2 −m2

1 are the mixing angle and mass-squared difference in

this case.

Moving a step further, the general neutrino oscillation probability for the three flavors

is given by,

P (να → νβ) =
∑
i,j

UαiU
∗
βiU∗αjUβj exp

(
− i

∆m2
ij

2

L

E

)
(1.37)

Motivated from the atmospheric and solar neutrino oscillation experiments, the uni-

tary PMNS matrix U can be parameterized in terms of 3 mixing angles, θij and 1
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phase parameter δCP ,

U =

à
1 0 0

0 c23 s23

0 −s23 c23

íà
c13 0 s13e

−iδCP

0 1 0

−s13e
iδCP 0 c13

íà
c12 s12 0

−s12 c12 0

0 0 1

í
.

(1.38)

Here, cij = cos θij and sij = sin θij. Some remarks based on the PMNS matrix are:

• θ23 is called the atmospheric mixing angle, since it determines the oscillations

of atmospheric muon neutrinos to the leading order.

• θ12 is referred to as the solar mixing angle. This is because it describes the solar

neutrino oscillations to the leading order.

• θ13 is small, as a result of which atmospheric and solar neutrino oscillations can

be treated independently within a good approximation.

• If neutrinos are Majorana, there are 2 additional phases. These can be added

to the diagonal of the matrix, U . These phases cannot be measured in neutrino

oscillations.

• sin δCP 6= 0, will imply CP violation.

Owing to the mass hierarchy3, in most cases the simpler two flavor neutrino oscillation

(discussed in App. A) is a reasonable approximation.

1.4.2 Matter Effects In Neutrino Oscillation

We discussed neutrino oscillations in vacuum in the previous section (Sec.1.4.1).

However, in most realistic cases neutrinos propagate though matter. This is particu-

larly true in the sun or a core-collapse supernova. Therefore, an interesting question

3This will be discussed in the next section.
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arises: what happens to the phenomenon of neutrino oscillations in the presence of

matter?

Before we discuss the answer to the above question, let us take a small detour. When

neutrinos propagate through matter they scatter off its constituents, for example,

electrons, protons and neutrons. A very crude calculation of the cross-section for

such scattering processes shows, σν ∼ 10−38 cm2EM/GeV2, where E is the neutrino

energy and M is the mass of the target in the medium, like nucleons. The mean free

path is defined as, λ = 1/(σνn), where, n is the density of the medium. This mean

free path for earth densities is ∼ 1014 cm at 1 GeV neutrino energy! What this means

is, the earth is practically transparent to neutrinos, since the mean free path is much

larger than the diameter of the earth. Thus, to trap the neutrinos, it would require

a very high density environment, which can be the case in a core-collapse supernova.

This brings us back to the main question, what happens to neutrino propagation

in the low density environments like in the sun or in the earth. The matter contributes

to changing the effective neutrino mass. This is accounted for by writing an effective

matter potential. The matter effects on neutrino oscillations is discussed in detail

in Barger et al. (1980); Lunardini and Smirnov (2001); Freund (2001); Friedland

et al. (2004a,b); Giunti and Kim (2007); Roy (2009); Hannestad et al. (2006); Mirizzi

et al. (2016). Here we will discuss it very briefly and give the main results.

The oscillation probabilities get modified because of the effective matter potential.

For simplicity consider the two flavor case in Eq. 1.37. The parameters θ and ∆m2 are

modified to θm and ∆m2
m to account for the matter effects. The size of the matter will

of course depend on the density and composition of the medium. For the relatively

simple case of constant matter density, we obtain,

sin2 2θm =
sin2 2θ

(A/∆m2 − cos 2θ)2 + sin2 2θ
, (1.39)
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where, A = 2
√

2GFNeE and the electron number density is given by Ne. The case of

a varying matter density is also possible, but we will not discuss it here. It is discussed

in detail in Wolfenstein (1978); Mikheyev and Smirnov (1985); Mikheev and Smirnov

(1986) and is known as the MSW effect. The generic case of 3 flavor mixing implies

that neutrino oscillations are described by 6 parameters: 3 mixing angles (θ12, θ13 and

θ23), 2 independent mass splittings (∆m2
21 and ∆m2

32, or ∆m2
31) and one CP phase

(δCP ). Terrestrial and astrophysical neutrino sources (see Sec. 1.6) have enabled us

to measure all the mixing angles, ∆m2
21 and the magnitude of ∆m2

32. However, δCP

and the sign of ∆m2
32 is still unknown. Atmospheric neutrinos constrains θ23 and

gives us, |∆m2
31|. The solar and reactor neutrinos helped constrain θ12 and ∆m2

21 and

showed the sign of ∆m2
21 is positive. Reactor neutrinos provide with the most precise

measurement of θ13, the smallest mixing angle. The current status of the oscillation

parameters based on global fits can be found in Sajjad Athar et al. (2022).

1.5 Neutrino Masses

We discussed in the previous section, how neutrinos oscillations which have been

experimentally confirmed, reveals that neutrinos have non-zero masses. Neutrino os-

cillation depends on several parameters, one of which is the neutrino mass-squared

difference ∆m2
ij. The next important question to answer is, what can be said about

the neutrino mass-squared differences in terms of observations?

Solar and atmospheric neutrino oscillations have provided us with two mass squared

differences. Let us label them as ∆m2
SOL and ∆m2

ATM . Past generation neutrino

experiments like KamLAND and K2K have confirmed these measurements indepen-

dently. Recall, from Sec. 1.4, the mass-squared differences in the case of three neutrino
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oscillation is given as,

∆m2
21 ≡ m2

2 −m2
1 ,

∆m2
31 ≡ m2

3 −m2
1 ,

∆m2
32 ≡ m2

3 −m2
2 .

(1.40)

This allows us to show right away, that combining th above gives,

∆m2
32 + ∆m2

21 −∆m2
31 = 0 . (1.41)

From the experiments we observed, ∆m2
SOL � ∆m2

ATM . The neutrino mass states

are generally labeled as, m1,m2,m3. We choose (arbitrarily) the sates such that,

∆m2
SOL = ∆m2

21 and ∆m2
ATM = |∆m2

31|. This implies,

∆m2
21 � ∆m2

31 ' ∆m2
32 ,

∆m2
32 = ∆m2

31 −∆m2
SOL .

(1.42)

From the above discussion, it is clear that the mass-squared differences can be ac-

commodated in two different ways as shown in Fig. 1.74:

• Normal Ordering:

m1 < m2 < m3 =⇒ ∆m2
31 > 0 . (1.43)

The individual neutrino masses can then be expressed in terms of just one

unknown parameter, the lightest neutrino mass, say mMIN ,

m1 = mMIN ,

m2 =
»
m2
MIN + ∆m2

21 =
»
m2
MIN + ∆m2

SOL ,

m3 =
»
m2
MIN + ∆m2

31 =
»
m2
MIN + ∆m2

ATM .

(1.44)

4The content of each massive neutrino state can be determined from the PMNS matrix U corre-

sponding to |Uαi|2.
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Figure 1.7: A schematic diagram to show the normal and inverted ordering of
neutrino masses. The fractional flavor content of each mass eigenstate νi is also
shown based on the best fit values of mixing angles.

• Inverted Ordering:

m3 < m1 < m2 =⇒ ∆m2
31 < 0 . (1.45)

The individual neutrino masses in this case are given by,

m3 = mMIN ,

m1 =
»
m2
MIN −∆m2

31 =
»
m2
MIN + ∆m2

ATM ,

m2 =
»
m2

1 + ∆m2
21 =

»
m2
MIN + ∆m2

ATM + ∆m2
SOL .

(1.46)

There is another possibility if mMIN �
√
|∆m2

31|, it would imply the three mass

eigenstates are almost degenerate, that is, m1 ' m2 ' m3 ' mMIN . Based on cur-

rent data from neutrino experiments, neutrino oscillations imply a lower bound of
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0.06 eV for the normal ordering and 0.10 eV for the inverted ordering, for the sum

of neutrino masses. The upper bound for the same is ≤ 1 eV. The absolute neutrino

masses are being probed experimentally in various way like: neutrinoless double beta

decay experiments (0ν2β) (Elliott and Vogel, 2002; Elliott and Engel, 2004), beta de-

cay experiments (Eitel, 2005) and precision cosmology experiments (Hu et al., 1998;

Bennett et al., 2003; Tegmark et al., 2004; Seljak et al., 2005).

There are different ways of extending the SM to account for the neutrino masses lead-

ing to various scenarios of beyond SM physics. These include adding a right-handed

heavy neutrino to the SM, introducing a Majorana mass term leading to the see-saw

mechanisms (Type-I, II and III) (Minkowski, 1977; Mohapatra and Senjanovic, 1980;

Schechter and Valle, 1980; Foot et al., 1989) and many others. We will not go discuss

or go into the details of those in this work.

1.5.1 Neutrino Masses From Supernova Neutrinos

Since the main focus of our work is supernova neutrinos (see Sec. 2.3), it may

be useful to discuss what information do supernova neutrinos give us about neutrino

masses. This idea was discussed in Zatespin (1968); Cabibbo (1980); Piran (1981).

The group velocity of an extremely relativistic neutrino with mass m� E propagates

with group velocity,

v =
p

E
=

…
1− m2

2E2
' 1− m2

2E2
. (1.47)

If the source in this case say a core-collapse supernova is at a distance D. The time

delay for the massive neutrino to travel the distance D with respect to say a photon

emitted at the same time is,

∆t = D

(
1

v
−1

)
' m2

2E2
D = (5×10−3)

(
m

1 eV

)2(
E

10 MeV

)−2(
D

10 kpc

)
s . (1.48)
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In the above equation, we have used the speed of light, c = 3 × 108 m/s. Neutrinos

produced at the same time with different energies will reach the detector with a delay

∆T , where,

∆T ' m2

2

2∆E

E3
D =

m2

E2
D

∆E

E
, (1.49)

where, we assume the supernova neutrino spectrum has mean energy E and the width

∆E. This expression can be obtained from differentiating Eq. 1.48 with respect to

energy. We can define the intrinsic time scale of neutrino production in the core-

collapse supernova as ∆T0, the observed time interval of the neutrino burst at the

detector as ∆Tobs. To obtain an estimate of the upper bound of the neutrino mass that

does not depend on the specific physical conditions or details of neutrino production,

we need to have, ∆T < ∆T0 ≤ ∆Tobs. Particularly, ∆T ≤ ∆Tobs allows us to set the

upper bound on the neutrino mass mν ,

mν ≤ E

…
E

∆E

∆Tobs
D

' 31.2 eV

(
E

10 MeV

) …
E

∆E

…
∆Tobs
10 s

…
10 kpc

D
. (1.50)

The ideal conditions for obtaining information about the neutrino mass would be to

make the upper bound as low as possible. This can be is achieved by a large distance,

a low neutrino energy, a wide ∆E. However, the neutrino flux falls of as 1/D2 with

distance, the supernova neutrino mean energy is ∼ 10 MeV. Thus, we are limited

to nearby (galactic scale) supernova for obtaining this information. But the rate

of galactic supernovae is extremely low (see Sec. 2.6). This makes it a challenging

and less optimistic process to constrain neutrino masses with supernova neutrino

observations.

From SN1987A (see Sec. 2.7 for details), which was at a distance D = 50 kpc (E ' 15

MeV, ∆E ∼ 15 MeV, and ∆Tobs = 12 s), we could put a bound on the electron flavor

neutrino as Schramm (1987),

mνe ≤ 23 eV ,
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The above is a very rough estimate (see Schramm (1987) for details): we neglect

neutrino mixing and consider only electron antineutrino events. The bounds provided

by other methods are much more competitive and recent.

1.6 Neutrino Sources

In this section, we discuss various neutrino sources. A complete and detailed re-

view can be found in Vitagliano et al. (2020); Sajjad Athar et al. (2022). Neutrinos

are emitted from a variety of sources ranging from cosmological to geological. Neu-

trinos from some sources have been detected and well studied, and there are some

sources from which neutrinos are yet to be detected experimentally. The neutrinos

from various sources have different energies. They contribute to understanding the

properties of the source itself. Fig. 1.8 is a plot of neutrino flux φ as a function of en-

ergy and shows the grand unified neutrino spectrum at earth, integrate and summed

over all flavors (see Fig. caption for more details). Below, we list the various sources

with a very brief description for each one.

• Cosmic neutrino background (CνB):

The cosmic neutrino background is a background of relic neutrinos from the

early universe when it was ∼ 1 second old, similar to the CMB (cosmic mi-

crowave background). It is constituted by ∼ 112 cm−3 neutrinos and antineu-

trinos per flavor. In fact it is the largest neutrino density at earth. The neutrinos

from CνB have never been detected. If detected they would shed light on the

nature of neutrinos, that is, they would provide information about neutrino

masses and their Dirac or Majorana nature (Long et al., 2014).

• Neutrinos from the Big Bang nucleosynthesis:

In the Big Bang nucleosynthesis, the universe produces the observed light ele-
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Figure 1.8: Grand Unified Neutrino Spectrum at Earth, integrated over directions
and summed over flavors. The plots shows neutrino flux φ as a function of energy.
Solid lines are for neutrinos, dashed or dotted lines for antineutrinos, superimposed
dashed and solid lines for sources of both ν and ν̄. The fluxes from BBN, the Earth,
and reactors encompass only antineutrinos, the Sun emits only neutrinos, whereas
all other components include both. The CNB is shown for a minimal mass spectrum
of m1 = 0,m2 = 8.6, and m3 = 50 meV, producing a blackbody spectrum plus
two monochromatic lines of nonrelativistic neutrinos with energies corresponding to
m2 and m3. The supernova neutrino spectrum is not shown because it is a tran-
sient source. In general, supernova neutrinos have energy ∼ 10 MeV. Figure taken
from Vitagliano et al. (2020).

ments during the first few minutes. This is followed by the decay of neutrons

(n → p + e + ν̄e) and tritons (3H → 3He + e + ν̄e). These decays produce a

small electron antineutrino flux with energy ranging from 10− 100 MeV. These

neutrinos have never been detected and the chances of detecting them with the

current neutrino experiments are low. However, if detected, they will enable us

to probe the primordial nucleosynthesis.

• Solar neutrinos:
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Solar neutrinos are the neutrinos that are produced in the sun. They can be

further classified into:

– Neutrinos from nuclear reactions in the sun:

The effective fusion reaction in the sun, 4p + 2e− → 4He + 2 νe + 26.73

MeV, while proceeding through several reaction chains (pp chains) and

cycles (CNO cycle) produce neutrinos. In fact, the sun emits ∼ 2.3% of

its nuclear energy in the form of neutrinos which are called the solar neu-

trinos. These neutrinos have energy in the MeV range. The solar neutrino

events have been one of the most detected and well studied neutrino events.

They were first observed in the Homestake experiment (Davis et al., 1968)

and since then many experiments have studied solar neutrinos, in partic-

ular, the Super-Kamiokande (Abe, 2016), SNO (Aharmim et al., 2010),

Gallex (Hampel et al., 1999), SAGE (Abdurashitov et al., 2009), Borex-

ino (Agostini et al., 2020). Their detection led to the discovery of flavor

conversion and matter effects in neutrino oscillation. They also help in

modeling the sun, provide valuable information about its chemical com-

position and solar interiors. Future neutrino experiments like SNO+ (An-

dringa et al., 2016) and JUNO (An, 2016) will also study solar neutrinos.

– Thermal neutrinos from the sun:

Thermal processes in the sun produce neutrino pairs of all flavors. These

neutrino have energies in the keV range. The main production channels

include plasmon decay, Compton process and electron bremsstrahlung.

These neutrinos are the dominant flux on earth below 4 keV of neutrino

energy. These neutrinos have never been detected and the prospects of

detection in the upcoming detectors are also absent. However, if these
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neutrinos are detected, they will provide us with information about the

sun’s chemical composition.

• Geoneutrinos:

When the long-lived radioactive isotopes in the earth, like 238U, 232Th and 40K

decay, they produce an antineutrino flux in the MeV-range, which are known as

geoneutrinos. The geoneutrino flux exceeds 1025 s−1. They are produced from

various activities like plate tectonics and vulcanism leading to radiogenic heat

production. The geoneutrinos can be used to study the earth’s interior using

a technique called neutrino tomography (Donini et al., 2019). These neutrinos

have been detected by the KamLAND and Borexino experiments.

• Reactor neutrinos:

Nuclear fission reaction in nuclear power plants produce electron antineutrinos

in the MeV energy range. The very first neutrino detection by Cowan and

Reines (see Sec. 1.1), were reactor neutrinos. They provide crucial information

about neutrino mixing parameters and the existence of sterile neutrinos.

• Supernova neutrinos:

Massive stars (≥ 8 M�) mostly die by core-collapse followed by an explosion

called supernova. This phenomenon of core-collapse is accompanied by copious

amounts of neutrino emission. The entire gravitational binding energy of the

star 3 × 1053 ergs is released on the form of neutrinos. These neutrinos are

known supernova neutrinos. They have energies of the order of 10 MeV. We

will discuss the phenomena of core-collapse supernova and supernova neutrino

properties in great detail in the following chapters. Neutrinos from a core-

collapse supernova is the main focus of this work. Experimentally, supernova

neutrinos were detected in 1987 from SN1987A (see Sec. 2.7 for details). Note
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that in Fig. 1.8 this neutrino flux is not shown because it is a transient flux.

• Diffuse supernova neutrino background (DSNB):

The diffuse supernova neutrino background comprises of the neutrinos from all

collapsing stars in the visible universe. The DSNB neutrino energies dominate

in the range of 10 − 25 MeV. There are a lot of on-going efforts to detect the

DSNB,, since it will provide us with crucial information about the supernova

redshift distribution, supernova neutrino mean energies, successful and failed

supernovae. The upcoming detectors like JUNO and the Gd-enriched Super

Kamiokande (Beacom and Vagins, 2004) have good chances of detecting the

DSNB neutrinos (de Gouvêa et al., 2022).

• Atmospheric neutrinos:

When cosmic rays interact with the earth’s or sun’s atmosphere they produce

neutrinos which are called atmospheric neutrinos (Barr et al., 1989; Honda et al.,

1996). These neutrinos were detected by Super-Kamiokande which helped in

understanding flavor oscillations (Fukuda et al., 1998; Abe et al., 2013). At-

mospheric neutrinos are used to probe neutrino masses and mixing parameters

(see Kajita (2014) for a review).

• Cosmic high-energy neutrinos:

These are very high energy neutrinos (energies in the range of a few TeV to a few

PeV). The main sources of these extremely high energy are thought to be dim

or choked astrophysical jets, star-forming galaxies (SFGs), gamma-ray bursts

(GRBs) and active galactic nuclei (AGNs). In fact our own galaxy may account

for ∼ 1% of the observed flux. These neutrinos are detected in the IceCube

neutrino observatory. These are produced by cosmic-ray interactions in the

source,, surroundings or while propagation to earth. The reactions involved are
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proton-proton (pp) or proton-gas (pγ) interactions. The sources of these high

energy neutrinos are still a mystery.

1.7 Neutrino Detectors

Having discussed neutrino interactions in Sec. 1.3 and various neutrino sources in

Sec. 1.6, we now focus on the various past, present and future neutrino detectors. In

general, the neutrino detectors are built with specific science goals, that is, to observe

neutrinos in a particular energy regime. Since, our focus in this work is on supernova

neutrinos we will mainly discuss the neutrino detectors relevant to detecting supernova

neutrinos. Furthermore, we will discuss in detail the neutrino detectors that will

be relevant in the later chapters. A complete review can be found in Nakamura

et al. (2010); Scholberg (2012) and references therein. The main principle on which

neutrino detectors operate is: the neutrinos from the various sources as discussed

in Sec. 1.6 interact in the detector (in the detector medium) based on the processes

mentioned in Sec. 1.3 and produce other particles which are then detected by a

wide variety of detection techniques which include but are not limited to, collecting

photons or charge proportional to ionization energy loss, collecting Cherenkov photons

or detecting neutrons.

The expected event rates of observed particles for a given neutrino interaction process

in a detector can be computed by combining the supernova neutrino flux with the

cross-section and detector response. This is given by (Scholberg, 2012),

dN

dE ′
=

∫ ∞
0

∫ ∞
0

dE dÊ Φ(E) σ(E) k(E − Ê) T (Ê) V (Ê − E ′) , (1.51)

where, E is the neutrino energy, Ê is the energy of the particle produced, E ′ is

the measured energy of the product particle, the total cross-section of the process is

σ(E), k(E−Ê) provides the energy distribution of the produced particle, the detector

threshold is given by T (Ê), and V (Ê−E ′) gives the energy response of the detector.
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Let us begin the discussion by listing, in general what are the characteristics of an

ideal supernova neutrino detector? An ideal supernova neutrino detector needs to:

• Have good timing resolution: this would enable the detector to separate

one event from another.

• Have good energy resolution: this would enable the detector to measure

the incoming neutrino energy with precision.

• Have good directionality: which would enable the detector to have a good

directional sensitivity, that is, the ability to point back to the source, supernova.

• Be sensitive to all neutrino flavors: this will enable to have the maximum

flux since the supernova neutrinos are approximately distributed one-third in

each flavor.

• Tag interactions: this will provide valuable information to separate events

associated with different flavors, like, νe, ν̄e and νx events.

• Have low backgrounds: Any event which is not a part of the signal event is

background. The backgrounds for supernova neutrino detection depend on the

detector and its location. In general, the common background events include,

ambient radioactivity, reactor ν̄e, solar νe, low energy atmospheric neutrinos

and antineutrinos, and cosmic ray related backgrounds. In general, for a nearby

supernova the backgrounds is not a big issue, however as we will see in chapter 5

for supernova at O(1) Mpc, the backgrounds totally dominate the signal events.

In reality, however, we are far from ideal detectors. We have made immense progress

in making better and perhaps bigger neutrino detectors and it is a field of on-going

research. Let us discuss the most common supernova neutrino detectors that are

relevant for this work.
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1.7.1 Scintillation Detectors

These detectors are mainly constituted of mineral oils (CnH2n). The main pro-

cess employed in these detectors for SN neutrinos is IBD, which we discussed in

detail in Sec. 1.3.1. The γ−rays that are produced as a result, are then viewed

by photo-multiplier tubes (PMTs). The detectors hence have the structure of large

homogeneous volume of liquid hydrocarbon surrounded by PMTs. The scintillation

detectors generally have very good energy resolution and low threshold. But the main

drawback is there is very little directional information associated with the observed

events. However, doping the liquid scintillator with a suitable element like Gd or Li

may lead to a good vertex resolution which will then provide some directional infor-

mation (see chapter 3 for details). There detectors also detect some elastic scattering

processes.

Past detectors of this kind include the famous KamLAND detector (Eguchi et al.,

2003), Borexino (Cadonati et al., 2002; Monzani, 2006). Prominent upcoming detec-

tors include JUNO (An et al., 2016; Beacom et al., 2017), which is a spherical detector

with ∼ 20 kt of linear alkylbenzene, and SNO+ (Kraus and Peeters, 2010). A few

surface detectors of this kind that may be sensitive to nearby supernova neutrinos

include MiniBOONE (Sharp et al., 2002; Aguilar-Arevalo et al., 2010), NOνA (Ayres

et al., 2004). Some reactor neutrino detectors (mostly Gd dissolved) of this kind may

also see supernova neutrinos. These include: Double CHOOZ (Ardellier et al., 2006),

Daya Bay (Ochoa-Ricoux, 2011), and RENO (Ahn et al., 2010).

1.7.2 Water Cherenkov Detectors

Water Cherenkov detectors consist of large volumes of ultra-pure water along with

photomultiplier tubes (PMTs). Water is most easily available and has a lot of free
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protons making it a suitable medium for neutrino detectors. The charged particles

are detected via the Cherenkov light emission, which forms a 42◦ cone for relativistic

particles. The number of photons detected is proportional to the energy loss. The

Cherenkov ring produced also allows one to reconstruct the interaction vertices and

direction. The main drawback of these detectors are there relatively high threshold

energy, leading to a poor detection efficiency for supernova neutrinos. However, the

directional information that can be obtained from these detectors is very precise.

There are also scintillations produced by the dominant IBD reactions in water. How-

ever, once again due to the Cherenkov threshold they are difficult to detect. These

detectors may also detect other sub-dominant interactions like interactions with Oxy-

gen.

Well-known past detectors in this category include IMB (Becker-Szendy et al., 1993)

and Kamiokande (Hirata et al., 1991) which observed the supernova neutrinos from

SN1987A (we will discuss this in Sec. 2.7). SNO (Boger et al., 2000) was a heavy-

water detector. At present, Super-Kamiokande (Ikeda et al., 2007) is also an example

of a large water Cherenkov detector. The most promising future water Cherenkov

detector is Hyper-Kamiokande (Abe et al., 2011), which will have a fiducial volume

of ∼ 260 kt.

1.7.3 Miscellaneous

In this section, we briefly mention the detectors that are important and can detect

supernova neutrinos but are not directly relevant for this work. A detailed discussion

on these detectors can be found in Scholberg (2012) and references therein. The

various other detectors are mentioned below:

• Long-string water Cherenkov detectors

These detectors are basically long strings of PMTs suspended in water or ice.
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These are generally designed to study high energy (O(1) TeV or more) astro-

physical neutrinos, But they may also be able to detect supernova neutrinos

(for a galactic scale, ≤ 10 kpc supernova). The main detection channel is once

again IBD, which would produce large number of photons to be picked up by the

PMTs. A prime example of these kinds of detectors is IceCube (Abbasi et al.,

2011), which has 86 strings with 60 PMTs each, suspended 1 - 2 km below the

ice surface in Antarctica. Another example is the ANTARES (Ageron et al.,

2012). A future detector of this kind is KM3NET (Leisos et al., 2013).

• Liquid Argon time-projection chambers (LArTPC)

LArTPC consists of a large liquid argon time projection chamber. In these de-

tectors, the ionization charge is drifted by an electric field following which signals

are collected on wire planes. Once the charges arrive the readout planes, the

three-dimensional tracks can be reconstructed and the identification of particles

can be implemented by the rate of energy loss along these tracks. Scintillations

are also produced in Argon, which can be collected in the PMTs thus provid-

ing timing information. These detectors have a low threshold, good energy

resolution along with good directional information. A prime example of these

kinds of detector is DUNE (Abi et al., 2021), which has a total volume of 70-

kt of liquid argon and is located deep underground, 1.5 km below the surface.

ICARUS (Bueno et al., 2003) is another detector in this class.

• Detectors employing heavy nuclei

The charged-current and neutral-current weak interactions of neutrinos with

heavy nuclei like iron or lead is the main detection channel for these detectors.

Leptons and nucleons that are ejected in the process may be observed. These

detectors will provide us with information on the supernova neutrino spectra.
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A particularly optimistic detector material is lead, since it is stable, and ease of

handling. The current example of this class of detector is HALO (Duba et al.,

2008).

• Low threshold detectors (Dark Matter detectors)

These detectors mainly consist of detectors that can detect neutrinos via the

CEνNS process (see Sec. 1.3.3). This is particularly interesting since the CEνNS

process is flavor blind. But owing to the very low energy threshold of the nuclear

recoils in the CEνNS process only very clean and radioactively quiet detectors

are useful. In general, the detectors developed for dark matter detection are

able to do this. These detectors can use solid-state, noble liquids like Xenon,

Argon or Neon. The detectors in these category include COHERENT (Akimov

et al., 2017), CLEAN (Horowitz et al., 2003), CONUS (Bonet et al., 2021).
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Chapter 2

MULTI-MESSENGER ASTRONOMY

The current era of physics and astrophysics has the gift of a new avenue to explore

the universe - multi-messenger astronomy. In this era of multi-messenger astronomy,

gravitational wave (GW), neutrino, photon, and cosmic ray observations are combined

to extract information about astrophysical sources and phenomena in the universe.

Because of the energy scales involved, these sources can help to test particle and

exotic physics. Multi-messenger science has been a very recent phenomenon. How-

ever, since its birth, multi-messenger astronomy has made rapid progress. Initially

most multi-messenger channels would be limited to cosmic ray and photon observa-

tions, but now all the four messengers provide us with promising information about

the Universe. The most notable multi-messenger observations include: IceCube’s

discovery of the diffuse astrophysical neutrino flux (Aartsen et al., 2013), the first

observation of gravitational waves by LIGO (Abbott et al., 2016b), and the first joint

detections in gravitational waves and photons (Abbott et al., 2017c) and in neutrinos

and photons (Aartsen et al., 2018a). The reason why multi-messenger astronomy is

so effective and provides a lot of information is because each of the messengers has

its own speciality and strength. For example, gravitational waves (GWs) provide us

with information about astrophysical environments where gravity is at its peak help-

ing us understand and test general relativity and beyond. Photons associated with

gamma ray emission, provide crucial information about particle acceleration and high

energy collisions, jets. Cosmic rays are associated with particles at the highest energy

scales ever probed, which for a comparison can be up to ten million times the energies

probed at the LHC. Neutrinos propagate mostly unobstructed and complement areas
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Figure 2.1: Left: Connections between messengers and fundamental physics top-
ics. Right: Connections between messengers and particle astrophysics topics. Figure
taken from Engel et al. (2022).

where photons are difficult to observe from, helping us probe hadronic processes and

nuclear physics.

The potential of these messengers increase even more when they are combined with

one another. In Fig. 2.1 we show the connections between the various messengers and

fundamental physics (left) and particle astrophysics (right). GWs and photons can

together test general relativity, constrain various modified gravity models and per-

form measurements of the expansion of the Universe. The energy scales involved in

most astrophysical process is extremely high as compared to any man-made collider.

The neutrinos, cosmic rays and gamma rays from these sources help understand the

workings of nature at such enormous energy scales. Besides multi-messenger physics

is a good probe of dark matter, early universe cosmology, and physics beyond the

SM.

On October 16, 2017 the first multi-messenger co-detection was announced. On

August 17, 2017 a binary neutron star merger was detected by the LIGO/Virgo col-
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laboration (Abbott et al., 2017a). Around 1.7 seconds later, Fermi-GBM saw a short

gamma-ray burst (GRB) from the same patch in sky (Evans et al., 2017; Kasliwal

et al., 2017). This was the first ever direct evidence that linked short GRBs with bi-

nary neutron star merger. This was theoretically predicted (Paczynski, 1986; Eichler

et al., 1989; Narayan et al., 1992), had subtle indirect evidences from Swift (Fox et al.,

2005; Barthelmy et al., 2005) but no direct evidence was observed prior to this event.

This led to an even more thorough search in the other channels - EM signals (Ab-

bott et al., 2017c) and neutrinos (Albert et al., 2017). This resulted in successfully

localizing the host galaxy where the merger occurred (NGC4993). Besides, it also

provided the very first unambiguous detection of a kilonova, the broadband signature

of r-process nucleosynthesis in the merger ejecta (Li and Paczynski, 1998; Kulkarni,

2005; Metzger et al., 2010).

On July 13, 2018, the first extragalactic gamma-ray, neutrino co-detection was an-

nounced (Aartsen et al., 2018a,b). The IceCube, Fermi-LAT, MAGIC, AGILE,

HAWC, H.E.S.S., INTEGRAL, and KANATA collaborations an September 22, 2017

announced the simultaneous production of neutrinos and gamma-rays from blazar

TXS 0506+056. The detection of neutrinos from a blazar has profound implications

on our understanding of particle energetics near supermassive black holes, as well as

the origin of cosmic rays and astrophysical neutrinos (Aartsen et al., 2013). Recently,

a real time coincidence analysis for multimessenger astrophysics called AMON (As-

trophysical Multi-messenger Observatory Network) (Smith et al., 2013; Ayala Solares

et al., 2020b) has been developed. This consists of the HAWC and IceCube experi-

ments data (Ayala Solares et al., 2020a) and Fermi-LAT and ANTARES data (Ay-

ala Solares et al., 2019). A similar multi-messenger themed network of detectors for

supernova neutrinos, SNEWS (SuperNova Early Warning System) (Antonioli et al.,

2004; Scholberg, 2008; Al Kharusi et al., 2020) has also been developed. Thus, the
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field of multi-messenger astronomy is currently growing at an unprecedented rate.

A detailed review on multi-messenger science can be found in Engel et al. (2022).

For this work however, we will focus on core-collapse supernovae. A core-collapse

supernova (CCSN) is amongst the most fascinating astrophysical sources with a huge

potential for multimessenger studies. In this chapter, we will discuss the dynamics of

core-collapse supernova and most importantly focus on the various multi-messenger

signals from a core-collapse supernova. The main focus will of course be neutrinos,

but we will also briefly discuss GW emissions.

In Sec. 2.1 of this chapter we provide an introduction to core-collapse supernovae. The

various multi-messengers from a CCSN is discussed in Sec. 2.2. Amongst the various

messengers we discuss neutrinos in detail in Sec. 2.3. The dynamics and processes

involved prior to core-collapse is discussed in Sec. 2.3.1. The dynamics of a core-

collapse supernova from the onset of collapse is discussed in Sec. 2.3.2. We discuss

the case of a failed supernova or a black hole forming collapse in Sec. 2.3.3. The

different phases and properties of neutrino emission from a core-collapse supernova

is discussed in sec. 2.4. We focus on the presupernova neutrino emission phase prior

to collapse in Sec. 2.4.1, the neutronization burst phase in Sec. 2.4.2, the accretion

phase is discussed in Sec. 2.4.3, and the cooling phase in Sec. 2.4.4. The neutrino

emission properties from a failed supernova is the focus of Sec. 2.4.5. A discussion

of the supernova neutrino emission spectra is provided in Sec. 2.4.6. A very brief

discussion about another messenger - gravitational waves from CCSNe is provided in

Sec. 2.5. The rate of CCSNe is discussed in Sec. 2.6, and an analytical calculation of

the cummulative CCSN rate is shown in Sec. 2.6.1. We conclude this chapter with a

discussion of SN1987A and its relevance in facilitating multi-messenger astronomy in

Sec. 2.7.
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2.1 Core-collapse Supernova (CCSN)

Stars have a life-cycle of their own. They are born, they live, going through vari-

ous stages of nuclear burning, and finally they die. The extremely powerful explosion

that leads to the death of some stars is known as a supernova. During their lifetime,

stars synthesize various light and heavier elements which are ejected upon their death.

These form an integral part in the formation of galaxies, stars, planets and for the

existence of life itself. In some cases compact objects like a neutron star or a black

hole are formed as a result of supernovae. Supernovae (SNe) have been studied in

great detail since the 1930s . Some galactic supernovae have even been observed with

the naked eye. The energy scales involved (∼ 1051 − 1053 ergs) make them nature’s

own laboratories to study and gain insights in various fields of physics including but

not limited to physics beyond the standard model, plasma physics, nuclear physics,

cosmology.

Supernovae are classified into different types based on their spectroscopic characteris-

tics, light curves, and mechanism leading to the supernova. Fig. 2.2 shows a schematic

representation of the same. The wide categorization is based on the presence or ab-

sence of hydrogen lines. Further (and more relevant) classification is based on the

mechanism generating the supernova: thermonuclear versus core-collapse which dis-

tinguishes type Ia from types Ib, Ic and II. Some good introductions and reviews can

be found in Trimble (1982, 1983).

Types Ib, Ic and II SNe are generated by core-collapse. In particular, Type II SNe

are generated by the core collapse of red or blue supergiants with masses ranging

between 8 − 9 M� and 40 − 60 M�. These will be important to us for following

chapters. As an illustration, we have shown the red and the blue supergiants near

to us (within 1 kpc) in Fig. 2.3. A Mollweide projection for the same is shown in
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Figure 2.2: Classification of supernovae. Figure taken from Giunti and Kim (2007).
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Figure 2.3: Illustration of nearby (D ≤ 1 kpc) core collapse supernova candidates.
Each star’s spectral type, name, mass and distance is shown in labels. See Table D.1
for details and references.

Fig. 2.4. A detailed table corresponding to the figure is given in App. D. Finally, the

distribution of these stars with distance form earth and mass is shown in Fig. 2.5.

Types Ib, Ic and II SNe are particularly interesting to us since they produce a

huge flux of neutrinos of all flavors. Core-collapse supernova is the death of a massive

star (M > 8 M�). The massive stars die violently by the collapse of their core leaving

behind a compact remnant in the form of a neutron star or a black-hole (BH).
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candidates. Symbols and colors correspond to distance intervals. The dotted line
indicates the Galactic Plane. The red square near the center of the map is α Ori,
best known as Betelgeuse.

2.2 Multi-messengers From A Core-collapse Supernova

Core-collapse supernovae (CCSNe) have been a prime focus of research since long.

Most importantly, it is an astrophysical phenomena which can be analyzed in great

detail using the multi-messengers. CCSNe emit neutrinos, GWs and electromagnetic

(EM) signals. We will focus on the details including the mechanism of core-collapse

supernova in the next sections. In this section, we will mainly discuss CCSNe in the

context of multi-messenger astronomy.

Hundreds of CCSNe have been observed through the optical (EM) channel in recent

years (Sako et al., 2008; Leaman et al., 2011). But these are mostly in distant galax-

ies. Owing to the distance from us these extra-galactic CCSNe have provided us with

only one channel of detection. While this is good, it is not enough to understand the

extremely complicated mechanisms that happen in a collapsing star (see Sec. 2.3.2

for details). In a sense, the EM signals are seen once the star explodes, thus failing
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Figure 2.5: Graphical rendering of nearby (∼ 1 kpc) red and blue supergiants as
listed in Table D.1. The distance from earth is shown in kpc on the x-axis and y-axis
shows the mass of the progenitor.

to provide us with any information about the inner dynamics, composition and prop-

erties. Moreover, in certain cases EM signals from CCSNe can even be absent (like

in a failed CCSN, see Sec. 2.3.3).

A CCSN in our own Milky Way or neighbouring galaxies however will completely

change the paradigm. It will enable us to study the phenomena with various messen-

gers like neutrinos (Scholberg, 2012), GWs (Ott, 2009; Kotake, 2013), and nuclear

gamma rays (Gehrels et al., 1987; Horiuchi and Beacom, 2010). Altogether, it will

provide us with an unique opportunity to study the inner dynamics of a CCSN. In

particular, neutrinos and GWs will probe the explosion mechanism. Existing and

planned neutrino detectors like Super-Kamiokande (SK), IceCube, Jiangmen Under-

ground Neutrino Observatory (JUNO), Hyper-Kamiokande (HK), and Deep Under-
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Figure 2.6: Various messengers from a CCSN with time at which they are emitted.
Figure taken from Nakamura et al. (2016).

ground Neutrino Experiment (DUNE), will see the neutrino signals with high statis-

tics from a galactic scale (D ≤ 10 kpc) CCSN. Current and next generation GW

detectors like Advanced LIGO (ALIGO), Advanced VIRGO, KAGRA and the ein-

stein Telescope (ET) have the potential to see the GWs from a nearby CCSN.

Recent numerical simulations have shown that neutrinos are emitted even prior

to the collapse of a massive star during the advanced stages of nuclear burning.

These neutrinos called presupernova neutrinos (see Sec. 2.3.1) have been shown to

be detectable at the upcoming neutrino detectors (Odrzywolek et al., 2004b; Patton

et al., 2017a). This right away helps in using the presupernova neutrino signatures

as an early warning system for a CCSN. An early warning system would give enough

time to make the necessary preparations for observing the other messengers from a

CCSN including the supernova neutrinos. Moreover, the presupernova neutrinos (see
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chapter 3) and supernova neutrinos (Vogel and Beacom, 1999; Tomas et al., 2003)

can be used for pointing to the collapsing star. This is valuable information since

it enables the telescopes to see the shock breakout (SBO) emission photons as a

bright flash of ultraviolet and X-rays. Due to the short duration of SBO, it is quite

challenging to detect it and knowing the approximate location definitely definitely

increases the detection prospects of the emitted photons.

Extensive research has been conducted in studying CCSNe using the various multi-

messenger channels. A detailed investigation of utilizing a joint analysis of GW and

neutrino data, in the context of failed CCSNe can be found in Leonor et al. (2010).

The connection of SBO to multimessenger observations has been discussed in Kistler

et al. (2013). The importance of neutrino warning and pointing for observing the

early CCSN light curve is the focus of Adams et al. (2013). In chapter 4, we discuss

in detail the observation of GWs sourced by supernova neutrino emission, which is

another example of a multi-messenger observation giving us key information about

stellar dynamics during the collapse. In fact, these GWs can then be used as triggers

to detect clean supernova neutrino samples from O(100) Mpc, which can provide

valuable insights into CCSN theory. This is discussed extensively in chapter 5. More

details on multi-messengers from CCSN simulations can be found in Nakamura et al.

(2016).

The various multi-messengers from a CCSN are shown in Fig. 2.6 along with the time

at which they are emitted. The presupernova neutrino emission (Odrzywolek et al.,

2004b), the neutrino burst and gravitational energy release predicted directly from

the numerical simulation, and the analytic bolometric light curve of SBO, plateau,

and tail signals are shown and labeled in the figure. The neutrino burst luminosity

is extrapolated up to 200 seconds based on the gravitational energy release rate from

the shrinking protoneutron star. The GW energy emission rate is estimated using
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a quadrupole formula (Müller et al., 2013). The height of the curves do not reflect

the energy output in each messenger; total energy emitted after bounce in the form

of anti-electron neutrino, photons, and GW is ∼ 6 × 1052 erg, ∼ 4 × 1049 erg, and

∼ 7× 1046 erg, respectively. In this work, we have primarily focused on discussing in

detail one of the multi-messengers from a CCSN - neutrinos (Sec. 2.3). We do discuss

GW emissions from a CCSN very briefly in Sec. 2.5.

2.3 Neutrinos From A Core-collapse Supernova

Neutrino physics has been largely enriched by the study and detection of super-

nova neutrinos - neutrinos emitted as a result of a core-collapse supernova. Copious

amounts of these neutrinos are produced and emitted during the process of a CCSN.

Around 99% of the gravitational binding energy of the star ∼ 3×1053 ergs is emitted

in neutrinos of average energy 10 MeV. The number of neutrinos emitted ∼ 1058, is an

order of magnitude higher than the lepton number of the collapsed core. This makes

neutrinos one of the best messengers from a CCSN, providing crucial information

about the inner dynamics and the various stages of evolution of a CCSN. Let us now

discuss, the various stages of a CCSN including its dynamics.

2.3.1 Precollapse Phase

Massive stars evolve through nuclear burning of elements in the periodic table

starting from hydrogen. In the advanced stages, they have a onion-shell like struc-

ture as shown in Fig. 2.7. When carbon burning begins, the star’s energy loss is

dominated by neutrino emission. The neutrinos have a very fast diffusion timescale

which in turn speeds up the advanced nuclear burning stages, generally occurring

within months or hours before the star collapses and explodes to a supernova or im-

plodes to form a black hole. The neutrinos from the advanced stages have never been
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Figure 2.7: Schematic onion-shell structure of a supernova progenitor star before
core collapse. Only the main elemental constituents of the different composition shells,
which contain the products and ashes of the sequence of nuclear burning stages, are
indicated. Note that the radial thickness of the layers is not drawn to scale.

observed, however the next generation neutrino detectors provide new opportunities

to observe them. If observed these neutrinos would provide us with valuable infor-

mation facilitating understanding of the interiors of the star leading to collapse. This

also has a multi-messenger aspect to it since the progenitor about to collapse has

been observed in the electromagnetic band.

We will mainly focus on the neutrino emission mechanism in the precollapse phase.

The neutrinos emitted in the precollpase phase are known as presupernova neutri-

nos. Studies on presupernova neutrino emission began in the early 2000. The fact

that next generation neutrino experiments can detect a presupernova neutrino flux

from nearby (∼ 1 kpc) massive stars was was shown in Odrzywolek et al. (2004a,b);

Kutschera et al. (2009); Odrzywolek and Heger (2010). The various production mech-

anisms involved in the stellar core, for example, thermal processes were studied in de-

tail in Ratkovic et al. (2003); Dutta et al. (2004); Misiaszek et al. (2006); Odrzywolek

(2007). The state of the art numerical simulations for obtaining the time-independent

presupernova neutrino flux on earth was done by Kato et al. (2015, 2017); Yoshida

et al. (2016); Patton et al. (2017b,a); Patton et al. (2019). Another main production
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Figure 2.8: The time evolution of the presupernova neutrino luminosities for differ-
ent production channels for the cases of 15 M� an 30 M� respectively. τCC is the
time to core-collapse in hours. The arrows indicate approximate times of ignition for
the different fuels. Figure taken from Patton et al. (2017a).

process for presupernova neutrinos is β−processes. For these processes, the devel-

opment has been comparatively slow. Dedicated studies were initially performed

in Odrzywolek (2009); Odrzywolek and Heger (2010). More recent detailed studies

has been done in Patton et al. (2017b), which also included state of the art simulations

of the neutrino emissivity in these processes. Below, we discuss the major processes

in the stellar interiors that lead to the production of presupernova neutrinos. The

following section are based on Patton et al. (2017b,a).

Presupernova neutrino production

Around a 1000 years prior to collapse, the fusion of heavy elements begin in the stellar

core. Carbon is fused leading to a increase in temperature and density, followed by the

subsequent fusion of Ne, O and Si. The hot and dense environment during these last

stages produce abundant amounts of neutrinos through various processes. The main

processes involved are discussed below and the total presupernova neutrino luminosity
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due to these processes1 is shown in Fig. 2.8 for the case of 15 M� and 30 M� stars.

• Thermal processes

– Plasmon decay: γ∗ → να + ν̄α

This is defined as a process in which an excitation in the plasma called

a plasmon, decays into a neutrino-antineutrino pair. These dominate the

emissivity at high densities. Further details of this process can be found

in Itoh and Kohyama (1983); Ratkovic et al. (2003); Odrzywolek (2007);

Asakura and KamLAND Collaboration (2016).

– Photoneutrino production: e± + γ → e± + να + ν̄α

This is basically the photoproduction of neutrino pairs. The charged cur-

rent W - exchange channel produces only νe and ν̄e, whereas the neutral Z

- exchange results in pairs of all three neutrino (e, µ, and τ) flavors. The

photoneutrinos dominate the total emissivity at a few loations in the outer

shells of the star. This process is discussed in detail in Dutta et al. (2004).

– Pair annihilation: e+ + e− → να + ν̄α

The neutrinos from this process are emitted from the centre of the star

where the temperature and density are the highest. This is one of the dom-

inant channels in the late time presupernova neutrino emission. Fig. 2.8

shows the total neutrino luminosity from ν/ν̄e pair annihilation (blue, dot

dashed line) and νx/ν̄x where, x = µ, τ pair annihilation (dark green, dot-

ted line). More details about this process can be found in Misiaszek et al.

(2006).

• Beta processes

1Since the thermal processes except pair annihilation is subdominant at late times, they are not

shown in the plot.
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– β± decay: A(N,Z)→ A(N − 1, Z + 1) + e− + ν̄e

A(N,Z)→ A(N + 1, Z − 1) + e+ + νe

– Positron (e+) capture: A(N,Z) + e+ → A(N − 1, Z + 1) + e− + ν̄e

– Electron (e−) capture: A(N,Z) + e− → A(N + 1, Z − 1) + e− + νe

The late time neutrino emission is completely dominated by the beta processes and

pair annihilation. The contribution of thermal processes discussed above is subdom-

inant. The rates for the beta processes can be found in Fuller et al. (1980, 1982b,a,

1985); Oda et al. (1994); Martinez-Pinedo et al. (2000). A much more recent attempt

at modeling the β−processes was done by Patton et al. (2017b).

We now discuss Fig. 2.8 in detail, especially focusing on the features of the pair

annihilation and beta processes and comparing the two for the 15 M� and 30 M�

models. The important features are listed below:

• A general remark is, the νe luminosity from the β−processes grows faster than

that of the thermal processes. Quantitatively speaking, for the 15 M� case

(Fig. 2.8, left), it is ∼ 30% of the contribution from pair annihilation when oxy-

gen burning occurs, it becomes comparable to pair annihilation at ∼ 6 minutes

prior to collapse, finally at the onset of collapse it is an order of magnitude

more than the pair annihilation contribution. For the 30 M� case (Fig. 2.8,

right panel), the contribution the numbers are ∼ 10%, 7 s prior to collapse and

30% greater at the onset of collapse.

• The ν̄e luminosity from the β− processes traces the phases of the stellar evolu-

tion closely. It suffers a drop after oxygen burning ends in the core. It starts

increasing once again as silicon burning starts.

• At the start of core-collapse β− processes contribute∼ 40% of the pair processes
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for the 15 M� case and ∼ 20% for the 30 M� case.

• Towards the end (the last few hours prior to collapse), the neutrino luminos-

ity from pair annihilation increases at a comparatively slow rate. This can be

understood by the fact that neutrino production in pair annihilation is indepen-

dent of density for a fixed temperature. Thus the slow rate increase is because

of the corresponding slow increase in the temperature.

• For the 15 M� model (Fig. 2.8, left panel), one can notice a short sharp drop in

the neutrino luminosities for all species. This occurs shortly after shell silicon-

burning begins and is followed by a smooth increase. The profiles for the 30 M�

star are smoother. This can be understood by the core carbon burning phases,

which proceeds convectively for the 15 M� model and radiatively for the 30 M�

model.

An important thing to note is, the features of the neutrino luminosity and processes

discussed above is in general agreement with that observed from other works like .

But there are slight differences leading to higher presupernova neutrino luminosity in

some models than others. This leads to certain models being more optimistic than

others.

2.3.2 CCSN Dynamics

Decades of scientific research and hard work has gone into understanding the

dynamics of a CCSN. The process is extremely non-trivial, requires very high compu-

tational power to perform simulations and requires theoretical concepts from general

relativity, fluid hydrodynamics, nuclear physics to name a few. Numerous dedicated

studies and reviews exist on the topic. A selected few include: Woosley and Weaver

(1986); Janka et al. (2002); Woosley et al. (2002); Woosley and Janka (2005); Janka
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et al. (2012); Scholberg (2012); Pejcha and Thompson (2012); Janka et al. (2016);

Janka (2017); Müller (2019); Burrows and Vartanyan (2021) and references therein.

This section provides a mini-review, especially focusing on the elements we would

require for the subsequent chapters. The review is based on Janka (2017) and Giunti

and Kim (2007).

The various stages in the evolution of a CCSN is discussed below. Since we are con-

cerned with the neutrino emission, our main focus would be on the different neutrino

emission phases.

The beginning of core-collapse:

Massive stars go through nuclear burning from hydrogen all the way to iron. Finally,

the core is constituted of iron and is surrounded by concentric shells of lighter elements

as shown in Fig. 2.7. The subsequent burning of shells leads to a further increase in

the mass of the core until gravitational instability finally sets in. The core reaches

the Chandrashekhar mass with a diameter off ∼ 3000 km, a central temperature of

∼ 1 MeV and a central density of ∼ 109 g/cm3. At this point, the thermal γ photons

partially disintegrate the iron-group nuclei to produce α-particles and free nucleons.

This leads to the conversion of thermal energy to overcome the binding energy of

the nucleons in heavy nuclei. This process is endothermic and lowers the effective

adiabatic index below a critical value. In other words, now, the increase in density

leads to a reduction of pressure. As density keeps increasing, electron captures on

nuclei becomes dominant, which leads to loss in lepton number by the production and

escape of electron neutrinos. This causes even more loss of pressure and the collapse

accelerates. See, Fig. 2.9 top left panel.
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Figure 2.9: Schematic representation of the evolutionary stages from stellar core
collapse through the onset of the supernova explosion to the neutrino-driven wind
during the neutrino-cooling phase of the proto-neutron star (PNS). The panels dis-
play the dynamical conditions in their upper half, with arrows representing velocity
vectors. The nuclear composition as well as the nuclear and weak processes are
indicated in the lower half of each panel. The horizontal axis gives mass informa-
tion. MCh means the Chandrasekhar mass and Mhc the mass of the subsonically
collapsing, homologous inner core. The vertical axis shows corresponding radii, with
RFe, Rs, Rv, Rg, and Rns being the iron core radius, shock radius, gain radius, neu-
tron star radius, and neutrinosphere, respectively. The PNS has maximum densities
ρ above the saturation density of nuclear matter (ρ0). Figure taken from Janka et al.
(2007).
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The trapping of neutrinos:

When the density of the collapsing core exceeds ∼ 1011g/cm3, neutrinos begin to

get trapped in it. The neutrino production by electron captures still happening, are

swept inward with the in-falling matter (see Fig. 2.9 top right panel). The outer core

collapse which is supersonic accelerated to nearly free fall. The inner core which is

subsonic implodes with a velocity proportional to its radius.

The bounce of the core and formation of the shock:

If we focus on the inner core, within milliseconds after neutrino trapping, the center

reaches nuclear densities of order 1012g/cm3. Matter at such high densities have

been shown to be incompressible due to the repulsive nuclear forces. This results in

the inner core-collapse coming to an abrupt stop followed by it bouncing back. This

bounce shock begins to move outwards against the outer core - the overlying iron-core

material. See Fig. 2.9 middle left panel.

The propagation of the shock and the neutronization burst at the shock

breakout:

A huge production of νe as a result of electron capture on free protons continues

behind the outer moving shock front. The dense post shock matter however forces

them to stay trapped. When the shock reaches low densities, the νe diffuse faster

than the shock propagates. At this point, the breakout burst - a luminous flash of νe,

is emitted. See Fig. 2.9 middle right panel.

The stagnation of the shock and the revival by neutrino heating:

The initial high mass accretion rate leads to the accumulation of a thick layer of

dense matter behind the shock. The decay of this mass accretion rate, combined
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with the energy loss through neutrinos leads to the radial shock coming to a stop.

This happens around a radius of 100 km - 200 km and has an enclosed mass of 1 M�.

Note that this is still well within the collapsing iron core. Thus, the bounce-shock

mechanism essentially fails to generate supernova explosion.

A lot of research has been dedicated to understand the shock revival mechanism.

Here, we will discuss the one that is most widely accepted - the intense neutrino flux

from the nascent neutron star re-energizes the shock against the pressure of the col-

lapsing surrounding stellar core. This is done by νe and ν̄e captures on free nucleons.

Numerical simulations show non-radial hydrodynamic instabilities like convection,

standing accretion-shock instability (SASI), and non-spherical flows are crucial for

the explosion. This is of utmost importance to us, since these anisotropies in the

progenitor are important reasons for CCSNe to be an excellent source to study the

gravitational wave memory effect. This is discussed in detail in Sec. 2.4.3 and also in

chapter 4. As a last remark, before the re-acceleration of the shock, the shock feeds

a massive accretion flow onto the neutron star. The hot mantle around the neutron

star emits large amounts of νe and ν̄e. The luminosity in this accretion phase adds to

the emission of all species of neutrinos and antineutrinos. See, Fig. 2.9, bottom left

panel.

The cooling of the proto-neutron star (PNS) and the neutrino driven wind:

Accretion time scales vary depending on various properties of the progenitor star.

It can be sustained for ∼ 100 − 1000 ms by the newly formed neutron star. The

end of this phase is marked by the gradual decrease of the speed of shock expansion

and finally the PNS entering the cooling phase. The remaining gravitational binding

energy is lost by the PNS by emission of neutrinos and anti-neutrinos of all flavors.

The PNS cools by neutrino losses. These neutrinos deposit their energies on the outer
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cooler layers which lead to a continuous dilute outflow of mass from the neutron star

surface. This phenomenon is known as neutrino-driven wind (See Fig. 2.9, bottom

right panel).

2.3.3 Failed Supernova

We discussed the probable shock revival mechanism and how it aids in re-energizing

the shock which is crucial for a successful CCSN explosion. Such explosions form a

compact object as a neutron star and are called neutron star forming collapses (NS-

FCs).

In some cases, it is possible that the shock wave produced during the collapse followed

by bounce of the core is not sufficiently energetic to eject its mantle (Burrows, 1986;

O’Connor and Ott, 2011). Failure to revive the stalled shock leads to the supernova

being ”absorbed” and forming a black hole. These unsuccessful CCSNe, that im-

plode into a black hole are known as black hole forming collapses (BHFCs) or failed

supernovae. A failed supernova may be the outcome of -

1. a weak CCSN fallback accretion pushes the nascent neutron star over its Chan-

drashekhar mass limit,

2. nuclear phase transitions during the PNS cooling phase or the cooling phase

leading to a reduced pressure support in a hyper-massive PNS,

3. the CCSN mechanism lacking efficacy and failing to revive the shock, where

continued accretion pushes the PNS over its maximum possible Chandrashekhar

mass.

An important thing to note is the formation of the BH in no circumstance is prompt.

Prior to the BH formation, there is the extended PNS phase which produces large
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amounts of neutrinos before it is engulfed by the BH horizon. There has been exten-

sive theoretical work (O’Connor and Ott, 2011; Ugliano et al., 2012; Sukhbold et al.,

2016) and observational evidence (Gerke et al., 2015; Smartt, 2015; Adams et al.,

2017a,b) for BHFCs.

Observationally, BHFCs emit a faint electromagnetic (EM) signal which originates

from the stripping of the hydrogen core. This weak (dim) signal may be difficult

to detect using the EM channel, thus neutrinos and GWs may be our best bet for

their detections. It is currently unclear what percentage of progenitors lead to NSFCs

and BHFCs. This is a topic of extensive research. It is expected anywhere between

10%− 40% of all CCSNe end up forming a BH.

The neutrino emission properties from a failed CCSN is discussed in Sec. 2.4.5. The

BHFCs will be relevant for this work in the context of gravitational wave memory in

chapters 4 and 5.

2.4 Phases And Properties Of CCSN Neutrino Emission

We discuss the various phases and properties of neutrino emission corresponding

to the various stages of the CCSN dynamics discussed in Sec. 2.3.2. The main phases

of CCSN neutrino emission are: a) presupernova neutrino emission phase, b) the

neutronization burst, c) the accretion phase, and d) the cooling phase. A schematic

diagram illustrating the different phases is shown in Fig. 2.10, which also depicts the

time scales involved.

2.4.1 Presupernova Neutrino Emission

We discuss the presupernova neutrino energy spectra in this section. In Fig. 2.10

this is neutrino emission curve shown before Timepost-bounce = 0. Fig. 2.11 shows the

number luminosities differential in energy for each neutrino species st seven different
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Figure 2.10: Schematic figure showing the neutrino luminosity as a function of time
for the various neutrino emission phases namely: the presupernova neutrinos, the
main burst signal, the late time cooling phase neutrinos. The figure is based on Li
et al. (2020). Credits: Prof. Frank Timmes (SESE, ASU).

instances in the evolution. The top panel shows the number luminosity for νe, middle

panel for n̄ue and the bottom panel for νx. The percentage of νe and ν̄e luminosities

from β− processes is shown in the smaller panels. The main thing to note from the

figure is the pre-supernova neutrinos are low energy neutrinos with energy peaked at

around 1−3 MeV. In particular the νe spectrum is always dominated by β−processes

beyond 4 MeV. The ν̄e production from β−processes is lower. One of the reasons

for this is the lower number density of positrons (relative to electrons) available for
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capture.

Presupernova neutrino flux and detection

One of the most interesting things about presupernova neutrinos is they will be de-

tectable on earth for a nearby (≤ 1 kpc) star. In fact, this is one of the integral

aspects that chapter 3 is based on. Therefore, it is important to discuss the expected

flux of presupernova neutrinos on earth. Just as before, we will restrict our discussion

to the Patton et al. (2017a) model. The flavor of presupernova neutrinos change while

they propagate from the star to earth due to neutrino oscillations (see Sec. 1.4 for

details). Thus, for doing an analysis of presupernova neutrino detection prospects, it

is important to take those into account. Fig. 2.12 shows the presupernova neutrino

flux on earth for a star at D = 1 kpc at different instances in time. The two cases

in consideration are the 15 M� and 30 M� models. Both the normal and inverted

hierarchy is shown (see Sec. 1.5 for details). These fluxes do take into neutrino os-

cillation while they propagate but ignore oscillation effects like collective oscillations

in the stellar system and earth matter effects. It can be shown that these oscillation

effects are safe to be ignored (Patton et al., 2017a). Fig. 2.12 also shows the rele-

vant backgrounds for each case. It is evident that for νe presupernova neutrino flux

the most significant background is the solar neutrino flux (see Sec. 1.6 for details on

different neutrino sources) and that for the ν̄e is the reactor and geoneutrino fluxes.

Other irrelevant backgrounds include the DSNB and atmospheric neutrinos.

A striking feature that can be observed from the figure is, around 2 hours prior to

collapse the νe presupernova neutrino flux dominates over the background flux. This

is what ensures that the prospect of detection of presupernova neutrinos is possible.

The flux increases as the time of collapse nears, implying the chances of detection go

up with time. The inverted hierarchy has a slightly higher νe flux as compared to
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Figure 2.11: The presupernova neutrino spectra at selected times prior to collapse
for 15 M� and 30 M� models. Each set of curves shows times t1 through tc (lower
to upper curves), where tc is the time of collapse. Figure taken from Patton et al.
(2017a).
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Figure 2.12: The flux of νe and ν̄e expected at earth for the 15 M� and 30 M� cases
located at D = 1 kpc from earth. Each set of curves shows times t1 through tc (lower
to upper curves), where tc is the time of collapse. Both the normal and the inverted
hierarchy cases are shown. Neutrino oscillations are taken into account. Figure taken
from Patton et al. (2017a).
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Figure 2.13: Neutrino luminosities (νe: black; ν̄e: blue; νx as one species of νµ,
ν̄µ, ντ , ν̄τ : red) during the main neutrino-emission phases. The left panel shows the
prompt burst of electron neutrinos associated with the moment of shock breakout into
the neutrino-transparent outer core layers only milliseconds after bounce (t = 0). The
middle panel corresponds to the post-bounce accretion phase before shock revival as
computed in a three-dimensional simulation (see Tamborra et al., 2014). The quasi-
periodic luminosity variations are a consequence of modulations of the mass-accretion
rate by the neutron star caused by violent non-radial motions due to hydrodynamic
instabilities (in particular due to the standing accretion-shock instability or SASI) in
the post-shock layer. The right panel displays the decay of the neutrino luminosities
over several seconds in the neutrino-cooling phase of the newly formed neutron star
(the plotted values are scaled up by a factor of 2). Figure taken from Janka (2017).

the normal hierarchy. The prospects of detection considerably go up for the 30 M�

progenitor owing to its higher presupernova neutrino luminosity. Similarly the ν̄e

flux, also dominates over the background as time to collapse reduces.

Finally, let us discuss the main types of neutrino detectors that would see the presu-

pernova neutrino flux. These include: liquid scintillator, water Cherenkov and liquid

argon detectors (See Sec. 1.7 for details on types of neutrino detectors). The dom-

inant channels for water Cherenkov and liquid scintillator detectors is IBD and for

liquid argon detectors it is νe charged current scattering on Argon nuclei (see Sec. 1.3

for details about neutrino interactions). Overall, IBD is the most optimistic detec-

tion channel for presupernova neutrino because of its extremely low energy threshold

(∼ 1.8 MeV). Thus, a next generation liquid scintillator detector like JUNO (An,

2016) is the best candidate for presupernova neutrino detection.
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2.4.2 The Neutronization Burst

Let us now discuss, the neutrino emission happening after the core-collapse,

Timepost-bounce > 0. The sharp peak in neutrino luminosity, signifying a highly lu-

minous flash of neutrinos is known as the neutronization burst (see Fig. 2.13, left

panel). These neutrinos are radiated when the shock transitions from opaque to a

neutrino-transparent layer in the iron core. This occurs at ∼ 2 ms post-bounce. The

peak neutrino luminosity reached is ∼ 4 × 1053 ergs/s resulting in an energy release

of ∼ 2× 1051 ergs within ∼ 20 ms. The νes that are produced in large quantities due

to efficient electron capture on free protons escape. The mean energy of the radiated

νes is ∼ 12 − 13 MeV. From, Fig. 2.13 (left panel) we notice two other important

features: the initial rise in the νe luminosity before the core bounce, and the small

dip just before the burst. The former is caused due to increasingly efficient electron

capture due to increased core density because of compression, and the latter due to

strong compression and Doppler redshifting of the main νe region.

2.4.3 The Accretion Phase

This phase follows the neutronization burst. The νe luminosity decreases with

time post-bounce and forms a plateau (See Fig. 2.13, middle panel). The charged

current processes in the hot mantle of the PNS produce large amounts of νe and ν̄e.

As seen in the figure, the νe and ν̄e luminosities are identical during this phase.2 The

luminosities of νx is low owing to the fact that they are produced in the denser core

region. The neutrino emission luminosities in this phase are highly sensitive to two

important quantities - a) the mass accretion rate and b) the mass of the PNS. It has

been shown that more compact stars (which also implies higher mass) have higher

2There is a slight excess in the νe luminosity due to deleptonization.
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neutrino luminosities and harder neutrino spectra (Qian and Woosley, 1996; Otsuki

et al., 2000; Thompson et al., 2001; Arcones et al., 2007). The mean energy increases

in this phase, for all species and is steeper for νe and ν̄e than for νx. The mean energy

is given by the proportionality, 〈Eν〉 ∝Mns(t), where, Mns is the mass of the PNS.

The luminosities of the muon and tau neutrinos in the accretion phase can be esti-

mated as a Stefan-Boltzmann like formula,

Lνx = 4πφsνR
2
nsT

4
ν , (2.1)

where, φ is a greyness factor obtained from numerical simulations (Müller and Janka,

2014) and ranges from ∼ 0.4− 0.85, sν = 4.50× 1035 erg MeV−4cm−2s−1 for a single

νx species, the effective spectral temperature Tν is related to the average energy as

〈E〉 = 3.15Tν , and Rns is the radius of the PNS. The sum of ν and n̄ue luminosities

is given by,

Lνe + Lν̄e = 2β1Lνx + β2
GMnsṀ

Rns

, (2.2)

where, β1andβ2 are obtained using statistical methods and are around unity, Lνx is

given in Eq. 2.1, Mns is the mass of the PNS, and Ṁ is the mass accretion rate of

the PNS.

The appearance of anisotropies in neutrino luminosity

We discussed the appearance of non-radial instabilities in Sec. 2.3.2. These insta-

bilities develop during the accretion phase since they require finite time to develop

post-bounce. This results in large-scale modulations of the accretion flow onto the

PNS, which leads time and direction dependent, large amplitude, quasi-periodic fluc-

tuations of the neutrino luminosities and mean energies (Lund et al., 2012; Tamborra

et al., 2013, 2014). The final result of this is an anisotropic (direction-dependent)

neutrino emission. These may be caused by:
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• rotationally deformed PNSs (Müller et al., 2004; Kotake et al., 2006; Dessart

et al., 2006)

• convective overturn and SASI (Mueller and Janka, 1997a; Müller et al., 2004;

Ott et al., 2006; Kotake et al., 2007a)

• global asymmetries in the (precollapse) matter distribution (Burrows and Hayes,

1996; Fryer et al., 2004).

2.4.4 The Cooling Phase

The accretion phase is followed by the cooling phase, which is also called the

Kelvin-Helmholtz cooling phase. The transition from accretion phase to cooling phase

is gradual. The PNS continues to emit neutrinos of all flavors for O(10)s. All neutrino

and antineutrino flavors in this phase have similar luminosities, which keeps declining

with time (see Fig. 2.13, right panel). Although, ν̄e has a higher mean energy than

νe to maintain a net lepton number flux out of the PNS. Besides, the mean energies

of νx is slightly lower than that of ν̄e due to recoil energy transfer in the scattering

layers. The cooling of the outer layers of the PNS results in the mean energy of the

radiated neutrinos also going down with time and the differences shrink. The decline

in the neutrino luminosity with time (in seconds) is nearly exponential.

The average luminosities during this phase is roughly given by,

Lνtot ≡
∑
i=e,µ,τ

LνiLν̄i ∼
Eb
tE
∼ a few 1052 ergs/s , (2.3)

where, Eb is the binding energy,

Eb ∼ Eg ≈
3

5

GM2
ns

Rns

≈ 3.6× 1053

(
Mns

1.5 M�

)2(
Rns

10 km

)−1

erg , (2.4)

where, Eg is the gravitational energy, Mns and Rns is the mass and radius of the

neutron star formed, and tE ∼ 10 s is the energy loss time scale. We assume that the
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neutron star formed is approximately spherical.

The cooling phase serves as an even better laboratory for nuclear physics than the

accretion phase. Various physical conditions deep in the PNS leave their imprints

on the neutrino emission in this phase. Furthermore, the neutrino emission in this

phase can be used constrain physics beyond the Standard Model. For example, the

neutrino signal can be used to place bounds on axion emission (Turner, 1988; Mayle

et al., 1988; Raffelt and Seckel, 1988; Janka et al., 1996; Keil et al., 1997), sterile

neutrino emission (Raffelt et al., 1996; Esmaili et al., 2014), non-standard neutrino

interactions (Esteban-Pretel et al., 2007), and so on. Besides, helping probe the

conditions deep within the PNS, the neutrinos in the cooling phase also provide

insights into the explosion dynamics. This includes but are not limited to probes of

MSW flavor conversions, collective oscillations, etc.

2.4.5 Neutrino Emission From A Failed SN

We discussed the case of a failed supernova or BHFC in Sec. 2.3.3. Here we dis-

cuss the neutrino emission properties in case of failed supernovae. Not much is known

about the dynamics of failed supernovae, making it a major research area. However,

neutrino luminosities can provide some insights into this phenomena. Perhaps the

most significant indication of a BHFC is the sharp cut-off in the neutrino luminosities

as a result of the PNS forming a BH. This is generally preceded by a gradual rise in

the neutrino luminosities and mean energies.3 The neutrino luminosity and mean en-

ergy from a BH forming collapse for a 40 M� and 75 M� model is shown in Fig. 2.14.

The neutrino signal terminates at 572 and 250 ms for the 40 M� and 75 M� models

respectively, indicating the formation of a BH.

3Some works also claim a considerable rise in the neutrino luminosities and mean energies (Fischer

et al., 2009).
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Figure 2.14: Top panels: Luminosity of each neutrino flavor (νe, νe and νx in
red, blue, and green, respectively) for the 40 M� (left) and 75 M� (right) models
after integrating over all observer directions. Bottom panels: Mean energies (i.e.,
energy flux divided by number flux) of each neutrino flavor as a function of time.
The neutrino signal terminates at 572 and 250 ms for the 40 M� and 75 M� models
respectively, indicating the formation of a BH. Figure taken from Walk et al. (2020a).

An important thing to note regarding BHFCs is they may have high anisotropies in

the neutrino emission. This is evident from the right panel in Fig. 2.14 where one can

see large amplitude modulations due to strong spiral SASI. This once again develops

in the accretion phase. The SASI motions of the postshock layers modulate the ac-

cretion flow onto the PNS leading to the large amplitude variations seen in Fig. 2.14

(right panel).

Neutrinos from a BHFC will help resolve major questions in nuclear physics and

astrophysics. For example, the neutrino emission and the time of formation of a
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BH depend on the equation of state used, properties of the progenitor. Thus more

information can be obtained about them. The neutrino signal may also signal the

occurrence of a phase transition in the PNS. This is of importance since the phase

transition can create a secondary shock which may then be responsible for the explo-

sion (Sagert et al., 2009; Fischer et al., 2018). The signature of this secondary shock

would be a secondary neutrino burst. Multi-messenger observations can also help in

understanding the phenomenon of BHFCs.

2.4.6 Supernova Neutrino Emission Spectra

The supernova neutrino emission spectra can be well approximated by the Fermi-

Dirac distribution,

f(E) ∝ E2

1 + exp (E/T − η)
, (2.5)

where, T is the temperature of the emission in energy units, and η is an effective

degeneracy parameter (Janka and Hillebrandt, 1989)4. The proportionality constant

is L/(F ((η)T 4), where, L is the total neutrino luminosity. Thus, the emission spectra

can be written as,

dN

dE
=

L

F (η)T 4

E2

1 + exp (E/T − η)
,

F (η) =

∫ ∞
0

dx
x3

exp (x− η) + 1
.

(2.6)

A slightly more convenient representation is to parameterize the neutrino spectrum

as follows (Keil et al., 2003; Giunti and Kim, 2007; Nakamura et al., 2016),

dNνx

dE
=

(1 + βνx)
(1+βνx )

Γ(1 + βνx)

Etot
νx

〈Eνx〉2

(
E

〈Eνx〉

)βνx

exp

(
− (1 + βνx)E

〈Eνx〉

)
, (2.7)

4This can also be thought as a chemical potential.

74



where,

Etot
νx =

∫ t

0

dt Lνx(t) ,

βνx =
(2〈Eνx〉2 − 〈E2

νx〉)
(〈Eνx〉2 − 〈E2

νx〉)
,

〈E〉 =

∫
dEE(dN/dE)∫
dE(dN/dE)

〈E2〉 =

∫
dEE2(dN/dE)∫
dE(dN/dE)

,

(2.8)

where, Etot
νx is the total energy emitted in a single neutrino species, Lνx is the lumi-

nosity of a single neutrino species, 〈E〉 is the mean neutrino luminosity, βνx is the

amount of spectral pinching (spectral shape parameter) for a given neutrino species,

computed using the two lowest moments of the spectrum.

A Maxwell-Boltzmann spectrum has β = 2, a Fermi-Dirac spectrum has β ≈ 2.3

(η = 0), and a pinched Fermi-Dirac spectrum has β & 2.3. Appendix B contains

a table with details of the various luminosity parameters of neutrino emission spec-

tra. Fig. 2.15 shows the time-integrated spectra of the supernova neutrino luminosity

shown in Fig. 2.13. For this case the integrated spectra follows approximately a

Maxwell-Boltzmann distribution. The mean energy as discussed earlier is ∼ 10 MeV.

The total number of particles emitted is the highest for νe (3.2 × 1057) owing to its

highest overall luminosity. This is followed by ν̄e (2.4 × 1057) and then νµ, ν̄mu, ντ ,

and ν̄τ (2.3× 1057 each).

2.5 Gravitational Waves From A Core-collapse Supernova

The GW emission from a CCSN is imprinted with the various processes that

happen inside the progenitor including but not limited to, explosion mechanism, the

complex hydrodynamics involved, the properties of the shock. The GW emission is

highly dependent on stellar properties, mass, etc. It is dominated by the dynamics of
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Figure 2.15: Time-integrated supernova neutrino emission spectra corresponding to
neutrino luminosity in Fig. 2.13.

the proto-neutron star (PNS) (see Sec. 2.3.2 for details). In this section, we provide

a very brief description of the main properties of GW emission from CCSNe. We

encourage the interested reader to look at Kotake et al. (2007a); Ott (2009) for more

details. In Fig. 2.16 we illustrate the GW emission from a CCSN in time domain (top

panel) and the associated GW energy spectrum (bottom panel) (see Murphy et al.

(2009) for details). The main properties associated with GW emission from a CCSN

are as follows (this is based on Gossan (2019)):

• For progenitors with rotational pre-collapse cores, whose rotational periods ex-

ceeds a few 10 seconds:

– The PNS oscillations produce the strongest GW emissions. The PNS oscil-

lations are excited by convective plumes and hydrodynamic waves (Murphy

et al., 2009; Yakunin et al., 2010; Mueller et al., 2013; Yakunin et al., 2015).
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Figure 2.16: In the context of an equatorial observer at 10 kpc , the time domain
strain (top panel) and time-frequency evolution of the spectral GW energy (bottom
panel) for model 153.7 from Murphy et al. (2009). The regions where emission origi-
nates from prompt convection, neutrino-driven convection, non-linear SASI, and GW
memory are highlighted. Figure taken from Gossan (2019).

– The dominant PNS surface g-mode frequency dictates the peak frequency

of the GW emission. The peak frequency increases quasi-linearly with time

from ∼ 100 − 200 Hz to above 1 kHz. This is as a result of the PNS ac-

creting fallback material, contracting and finally deleptonizing. However,

the oscillation spectrum consists of broad and complex excitations (Cerdá-

Durán et al., 2013; Sotani and Takiwaki, 2016; Morozova et al., 2018).

– At frequencies between 100 − 300 Hz, prompt convection leads to GW

emission. The prompt convection develops after the neutronization burst
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in the accretion phase (∼ 10 ms after bounce) and fades by ∼ 100 ms. The

puffy nature of the PNS leads to their development.

– The GW emission between ∼ 300 − 1000 Hz is sourced by the neutrino-

driven convection.

– SASI (see Sec. 2.3.2 for details) further induces quadrupolar oscillations

around 100− 200 Hz at later times during accretion. This begins at ∼ 100

ms post-bounce. The GW emission frequency is related to the characteris-

tic frequency of the advective-acoustic cavity in which it develops (Murphy

et al., 2009; Mueller et al., 2013; Kuroda et al., 2016). The phase of emis-

sion is stochastic, owing to the highly chaotic nature of SASI (Kotake et al.,

2009a).

This is of particular interest for this work since the anisotropies produced

as a result of SASI and other turbulent activity in the accretion phase,

leads to an anisotropic neutrino emission. This anisotropic neutrino emis-

sion sources GWs which is different from the ones due to the motion of

the PNS itself. These GWs from the anisotropic neutrino emission have a

memory associated with them, which can be detected and can provide us

with crucial information about the interior post-collapse. This will be the

focus of chapter 4.

• For progenitors with pre-collapse cores with considerable angular momentum,

the PNS deforms into an oblate spheroid. This is because of the high centrifugal

support around the equatorial regions. A strong quadrupole is sourced when the

PNS decelerates and rebounds, which results in a big spike in the GW signal at

core bounce. This is followed by the ringdown of the PNS as it settles to a new

equilibrium state (Dimmelmeier et al., 2008; Ott, 2009; Fuller et al., 2015). For
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this case, the GW signal depends on the inner core’s mass, angular momentum

distribution and the equation of state of the nuclear matter (Fryer et al., 2002;

Ott et al., 2005, 2007; Scheidegger et al., 2010; Kuroda et al., 2014).

• A significant enhancement in GW emissions after ∼ 50 ms post-bounce may de-

velop in progenitors with pre-collapse cores with extreme rapid rotation and/or

strong differential rotation, non-axisymmetric rotational instabilities driven by

rotational shear (O’Connor and Ott, 2011; Clausen et al., 2015; Ugliano et al.,

2012).

• The GW emissions from a BHFC (failed supernova) are characterized a short

burst and ringdown. The peak ringdown frequency is inversely proportional to

the mass of the nascent BH, with typical ringdown spectra for stellar mass BH

formation peaking ∼ O(1) kHz (Kuroda et al., 2018; Cerdá-Durán et al., 2013;

Pan et al., 2019; Ott et al., 2011).

2.6 CCSN Rates

A key ingredient required for studying CCSN is information about how frequently

they occur, in short, their rates and the variation of rates with distance and other

physical quantities. The CCSN rate in our galaxy and the local volume is of particular

importance. In general the rate of CCSN in the galaxy is believed to be 3.2+7.3
−2.6 per

century (Adams et al., 2013). Fig. 2.17 shows the comoving supernova rate (SNR)

(all types of luminous core collapses including Type II and Type Ibc) as a function

of redshift. The SNR predicted from the cosmic star formation rate (SFR) fit and

its supporting data (Hopkins and Beacom, 2006), as well as that predicted from

the mean of the local SFR measurements, are plotted and labeled. The fit to the

measured cosmic SNR, with a fixed slope of (1 + z)3.4 taken from the cosmic SFR, is
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Figure 2.17: Comoving SNR (all types of luminous core collapses including Type
II and Type Ibc) as a function of redshift. The SNR predicted from the cosmic SFR
fit and its supporting data (Hopkins and Beacom, 2006), as well as that predicted
from the mean of the local SFR measurements, are plotted and labeled. The fit to
the measured cosmic SNR, with a fixed slope of (1 + z)3.4 taken from the cosmic
SFR, is shown with the uncertainty band from the LOSS measurement. Figure taken
from Horiuchi et al. (2011).

shown with the uncertainty band from the LOSS measurement. The predicted and

measured cosmic SNR are consistently discrepant by a factor of 2, which is called the

supernova rate problem. However, rates from SN catalogs in the very local volume

do not show such a large discrepancy. Here, we will not discuss the supernova rate

problem.

For this work, we will require the CCSN rate in the local volume (within 11 Mpc)

and beyond. This will be relevant in chapter 5. In the local volume, the cummulative

CCSN rate has been estimated in Nakamura et al. (2016). But beyond 11 Mpc, the

rate needs to be calculated analytically. In Sec. 2.6.1 below, we show an analytical

calculation of the cummulative CCSN rate beyond 11 Mpc.
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Figure 2.18: Left: a) The cosmic star formation rate for f∗ = 2.3 with redshift (z).
Right: b) The cumulative CCSN rates with distance D.

2.6.1 Cummulative CCSN Rate Beyond 11 Mpc

The CCSN rate calculated analytically needs to be used beyond the local volume

of 11 Mpc. The rate is based on the SFR. The model we use is based on Ando and

Sato (2004) (See Sec. - 2.2 there). We begin by writing the functional form for the

SFR per unit comoving volume (ψ∗(z)),

ψ∗(z) = 0.32 f∗ h70
exp (3.4z)

exp (3.8z) + 45

√
Ωm(1 + z)3 + ΩΛ

(1 + z)3/2
M� yr

−1Mpc−3 , (2.9)

where, f∗ is a factor of order unity. The local SFR varies within a range based on

various models, the common range is ψ∗(0) = (0.5− 2.9)× 10−2h70 M� yr−1Mpc−3.

Hence, f∗ is in a way a correction factor. For example, choosing f∗ = 1 gives ψ∗(0) =

0.7 × 10−2h70 M� yr−1Mpc−3, whereas f∗ = 2.3 implies ψ∗(0) = 1.6 × 10−2 M�

yr−1Mpc−3 which is what was obtained in Strigari et al. (2004). We choose f∗ = 2.3

in our work. Based on standard ΛCDM cosmology, the matter density parameter,

Ωm = 0.3 and the dark energy density parameter, ΩΛ = 0.7. z is the redshift. The

reduced Hubble constant, h70 = H0/70 km s−1 Mpc−1. The present day Hubble

constant H0 = 70 km s−1 Mpc−1. The SN rate (RSN(z)) can be obtained using (2.9)

by assuming the Salpeter IMF (φ(m) ∝ m−2.35) with a lower cut-off around 0.5 M�

81



and that all stars M > 8 M� explode as CCSN,

RSN(z) = λ

∫ 125M�
8M�

dm φ(m)∫ 125M�
0

dm mφ(m)
= 0.0122 M�

−1 ψ∗(z) , (2.10)

where, λ is the parameter to fix conservative and optimistic (observed) rates. We

choose, λ = 1 for conservative rates and λ = 2 for optimistic (observed) rates. The

IMF is assumed to be constant in time which is a good approximation (See Ando and

Sato (2004) for a detailed discussion). The results are also insensitive to the upper

limit of integration. The cumulative rate of CCSN is obtained by performing the

volume integral,

RCCSN(r0) =

∫ r0

0

r2dr

∫ 1

−1

d(cos θ)

∫ 2π

0

dφ λRSN(r) = 4π

∫ r0

0

r2dr RSN(r) yr−1 ,

(2.11)

where, r0 is the distance in Mpc at which the cumulative CCSN rate is required. The

relation between redshift z and distance (D) in Mpc for small distances is, z = DH0/c,

where the speed of light, c = 3× 108 ms−1.

2.7 SN1987A: Multi-messenger Astronomy Using CCSN

Before concluding this chapter, it is imperative to discuss SN1987A - the only

CCSN from which we detected neutrino signals. SN1987A was discovered in the

Large Magellanic Cloud, located at ∼ 50 kpc from our solar system. It was a very

bright type-II SN observed on 24 February, 1987. The progenitor in this case was

blue supergiant Sanduleak (Sonneborn et al., 1987).

The neutrino detectors active during that period were: Kamiokande-II , Baksan ,

IMB and LSD . The events in Kamiokandde-II, Baksan and IMB happened nearly

simultaneously, however the events in LSD were five hours prior to the other ones.

Thus, LSD events are generally not included when talking of observed neutrino events

from SN1987A. The observed events was ∼ 10 MeV and spread over a 10s time inter-
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Figure 2.19: SN1987A neutrino events observed by Kamiokande, IMB and Baksan
showed that the neutrino burst lasted about 13 s. Figure taken from Janka (2017)

val. Fig. 2.19 shows the pbserveed neutrino events in the three detectors. This was

hours before SN1987A was optically discovered.

SN1987A opened up the avenues to perform multi-messenger studies of CCSN, since

not only was it studied using the detected neutrino events, but also on all elec-

tromagnetic bands: radio (Manchester et al., 2005), infrared (Bouchet et al., 2004,

2006), optical (Graves et al., 2005; Sugerman et al., 2005), ultraviolet (Kirshner et al.,

1987; Sonneborn et al., 1987), and x-rays (Hasinger et al., 1996; Burrows et al., 2000;

Shtykovskiy et al., 2005; Park et al., 2005a,b; Zhekov et al., 2005; Park et al., 2006).

Besides, it was also the first SN visible to the naked eye following Kepler SN in 1604.

It is exciting to think that the physics of core-collapse supernovae and neutrinos
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have come such a long way with just one instance of CCSN neutrino observation.

Thanks to the immense research initiatives including but not limited to complicated

numerical simulation codes, nuclear physics and fluid hydrodynamics inputs, etc.

The future prospects of supernova neutrino detections look very promising with the

advent of next generation neutrino detectors: HyperKamiokande (Abe, 2016), DUNE

(Acciarri et al., 2016) and JUNO (An, 2016; Li, 2014; Brugière, 2017), to name a

few. Combined with the massive improvements in neutrino detectors, the new and

improved astronomical telescopes are available to confirm the occurrence of a CCSN.

Finally, the gravitational wave (GW) detectors like LIGO-VIRGO (Abbott et al.,

2016c, 2017b, 2020a,b) and Adv.LIGO (Aasi et al., 2015b) will also detect the GWs

from a CCSN, making it a multi-messenger observation. The next step is to probably

wait for a galactic scale (∼ 10 kpc) CCSN, to open up immense opportunities to

gain insights into the dynamics of a CCSN, neutrino properties, and also test physics

beyond the standard model.
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Chapter 3

POINTING USING PRESUPERNOVA NEUTRINOS

In section 2.3, we discussed in detail the neutrinos from a core-collapse supernova

(CCSN). The focus of this chapter is - pointing using presupernova neutrinos. As

discussed before, presupernova neutrinos are the neutrinos of ∼ 0.1 - 5 MeV energy

that accompany, with increasing luminosity, the last stages of nuclear burning of a

massive star in the days leading to its core collapse and final explosion as a supernova,

or implosion into a black hole (a “failed” supernova). These neutrinos are produced

by thermal processes – mainly pair-production – that depend on the ambient ther-

modynamic conditions (Fowler and Hoyle, 1964; Beaudet et al., 1967; Schinder et al.,

1987; Itoh et al., 1996) – and by weak reactions – mainly electron/positron captures

and nuclear decays – that have a stronger dependence on the isotopic composition

(Fuller et al., 1980, 1982b,a, 1985; Langanke and Mart́ınez-Pinedo, 2000, 2014; Misch

et al., 2018), and thus on the network of nuclear reactions that take place in the

stellar interior.

Building on early calculations (Odrzywolek et al., 2004a,b; Kutschera et al., 2009;

Odrzywolek, 2009), recent numerical simulations with state-of-the-art treatment of

the nuclear processes (Kato et al., 2015; Yoshida et al., 2016; Patton et al., 2017b,a;

Kato et al., 2017; Guo et al., 2019) have shown that the presupernova neutrino flux

increases dramatically, both in luminosity and in average energy, in the hours prior to

the collapse, and it becomes potentially detectable when silicon burning is ignited in

the core of the star. In particular, for stars within ∼ 1 kpc of Earth like Betelgeuse,

presupernova neutrinos will be detected at multi-kiloton neutrino detectors like the

current KamLAND (see Araki et al. (2005) for a dedicated study), Borexino (Borexino
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Collaboration, 2018), SNO+ (Andringa et al., 2016), Daya Bay (Guo et al., 2007)

and SuperKamiokande (Simpson, 2019), and the upcoming HyperKamiokande (Abe,

2016), DUNE (Acciarri et al., 2016) and JUNO (An, 2016; Li, 2014; Brugière, 2017).

Next generation dark matter detectors like XENON (Newstead et al., 2019), DARWIN

(Aalbers, 2016), and ARGO (Aalseth, 2018) will also observe a significant signal (Raj

et al., 2020). Therefore, presupernova neutrinos are a prime target for the SuperNova

Early Warning System network (SNEWS, Antonioli et al., 2004) – which does or

will include the neutrino experiments mentioned above – and its multi-messenger

era successor SNEWS 2.0, whose mission is to provide early alerts to the astronomy

and gravitational wave communities, and to the scientific community at large as

well. The observation of presupernova neutrinos from an impending core-collapse

supernova will: (i) allow numerous tests of stellar and neutrino physics, including

tests of exotic physics that may require pointing to the collapsing star (e.g. axion

searches, see Raffelt et al. (2011)); and (ii) enable a very early alert of the collapse

and supernova, thus extending – perhaps crucially, especially for envelope-free stellar

progenitors that tend to explode shortly after collapse – the time frame available to

coordinate multi-messenger observations.

In this chapter, we explore presupernova neutrinos as early alerts. In particular,

we focus on the question of localization: can a signal of presupernova neutrinos

provide useful positional information? Can it identify the progenitor star? From

a recent exploratory study (Li et al., 2020), we know that the best potential for

localization is offered by inverse beta decay events at large (O(10) kt mass) liquid

scintillator detectors, where, for optimistic presupernova flux predictions and a star

like Betelgeuse (distance of 0.2 kpc), a signal can be discovered days before the

collapse, and the direction to the progenitor can be determined with a ∼ 80◦ error.

This article is the first dedicated study on the localization question for presuper-

86



nova neutrinos. Using a state-of-the-art numerical model for the neutrino emission,

we examine a number of questions that were not previously discussed, having to do

with the diverse stellar population of nearby stars (including red and blue supergiants,

of masses between ∼ 10 and ∼ 30 times the mass of the Sun, and clustered in certain

regions of the sky) and with the rich possibilities of improving the directionality of

the liquid scintillator technology in the future.

In Section 3.1 we discuss presupernova neutrino event rates and nearby candidates.

In Section 3.2 we present our main results for the angular sensitivity. In Section 3.3

we discuss progenitor identification. Sec. 3.4 we discuss the effects on the angular

pointing abilities of a detector in the presence of backgrounds. In Appendix. C we

discuss some additional technical details and in Appendix D we detail the distance

and mass estimates of nearby presupernova candidates.

3.1 Presupernova Neutrino Event Rates And Candidates

A liquid scintillator is ideal for the detection of presupernova neutrinos, through

the inverse beta decay process (henceforth IBD, ν̄e +p→ n+e+) due to its low energy

threshold (1.8 MeV), and its timing, energy resolution, and background discrimination

performance. The expected signal from a presupernova in neutrino detectors has been

presented in recent articles (e.g., Asakura and KamLAND Collaboration, 2016; Kato

et al., 2015; Yoshida et al., 2016; Patton et al., 2017b; Kato et al., 2017; Li et al.,

2020).

We consider an active detector mass of 17 kt, which is expected for JUNO, with

detection efficiency of unity, and we use the IBD event rates in Patton et al. (2017b);

Patton et al. (2019). Figure 3.1 shows the numbers of events and cumulative numbers

of events for progenitor stars of zero age main-sequence (ZAMS) masses of 15M� and

30M� (here M�= 1.99 1033 g is the mass of the Sun) at a distance of D=0.2 kpc (rep-
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Figure 3.1: Top row a) and c): Number of presupernova neutrino events at a 17
kt liquid scintillator detector, in time bins of width ∆t = 0.5 hrs as a function of
time before core-collapse. Bottom row or b) and d): Cumulative numbers of events
in half-hour increments. Shown are the cases of a ZAMS 15 M� (blue histogram) and
a ZAMS 30 M� (red histogram) progenitor, at a distance D=0.2 kpc, for the normal
(left column) and inverted (right column) neutrino mass hierarchy.

resentative of Betelgeuse). Results are shown for the normal and inverted hierarchy

of the neutrino mass spectrum. Times are negative, being relative to the time of

core-collapse.

Figure 3.1 shows that a few hundred events are expected in the hours before core-

collapse. For the 15M� model, the neutrino signal exceeds ' 100 events at t=−4 hr

and has a characteristic peak at t ' −2.5 hours, which marks the beginning of core

silicon burning. For the 30M� model, the neutrino signal exceeds ' 100 events at

t=−2 hr. The number of events then increases steadily and rapidly, leading to a

cumulative number of events that is larger than in the 15M� model.
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For the detector background, we follow the event rates estimated in An (2016)

(see also Yoshida et al. (2016)) for JUNO: ronBkg ' 2.66/hr and roffBkg ' 0.16/hr in

the reactor-on and reactor-off cases respectively. In addition to reactor neutrinos,

other backgrounds are due, in comparable amounts (about 1 event per day each),

to geoneutrinos, cosmogenic 8He/9Li, and accidental coincidences due to various ra-

dioactivity sources, like the natural decay chains, etc. For the latter, it is assumed

that an effective muon veto will be in place, see An (2016) for details1. Roughly,

a signal is detectable if the number of events expected is at least comparable with

the number of background events in the same time interval (N & Nbkg). Using the

reactor-on background rate, the most conservative presupernova event rate in Fig-

ure 3.1, and the fact that the number of signal events scales like D−2, we estimate

that a presupernova can be detected to a distance Dmax ' 1 kpc.

What nearby stars could possibly undergo core collapse in the next few decades?

To answer this question, we compiled a new list of 31 core collapse supernova can-

didates; see Appendix D and Table D.1. Figure 2.3 gives an illustration of their

names, positions, distances, masses, and colors. Figure 2.4 shows the equatorial co-

ordinate system positions of the same stars, colored by distance bins, in a Mollweide

projection. These candidates lie near the Galatic Plane, with clustering in directions

associated with the Orion A molecular cloud (Großschedl et al., 2019) and the OB

associations Cygnus OB2 and Carina OB1 (Lim et al., 2019). We find that for the

stars in Table D.1 the minimum separation (i.e., the separation of a star from its

nearest neighbor in the same list) is, on average, 〈∆θ〉 ' 10.4◦, and that 70% of the

candidate stars have ∆θ . 12.8◦ (see Table D.2). Therefore, a sensitivity of ' 10◦ is

1Although we use detector-specific background rates, we emphasize that our results are given as

a function of the forward-backward asymmetry of the data set at hand, and therefore are broadly

applicable to different detector setups. See Sec. 3.2.
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Figure 3.2: The geometry of Inverse Beta Decay in liquid scintillator. Shown are
the incoming anti-neutrino (brown), proton (black), outgoing positron and its an-
nihilation point (blue), outgoing neutron, its subsequent scattering events and its

capture point (red), and the outgoing photon (orange). The vector X
(i)
pn originates at

the positron annihilation location and points in the direction of the neutron capture

point. θ is the angle between X
(i)
pn and the incoming neutrino momentum.

desirable for complete disambiguation of the progenitor with a neutrino detector.

3.2 Angular Resolution And Sensitivity

Here we discuss the angular sensitivity of a liquid scintillator detector for realistic

numbers of presupernova neutrino events. We consider two cases: a well tested liquid

scintillator technology (henceforth LS) based on Linear AlkylBenzene (LAB), as is

used in SNO+ (Andringa et al., 2016) and envisioned for JUNO; and a hypothetical

setup where a Lithium compound is dissolved in the scintillator for enhanced angular

sensitivity (henceforth LS-Li), as discussed for geoneutrino detection (Tanaka and

Watanabe, 2014). As a notation definition, let us assume that the total number of

events in the detector is N = NS + NBkg, where NS is the number of signal events

and NBkg is the number of background events.

The IBD process in LS is illustrated in Figure 3.2. Overall, the sensitivity of

this process to the direction of the incoming neutrino is moderate, with the emit-

ted positron (neutron) momentum being slightly backward (forward)-distributed, see
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Figure 3.3: Normalized distributions of cos θ for LS and LS-Li, for different values
of the signal-to-background ratio, α = NS/NBkg (numbers in legend). Here, α = ∞
means absence of background, NBkg = 0.

Beacom and Vogel (1999) and Vogel and Beacom (1999) for a detailed overview.

Here, we follow the pointing method proposed and tested by the CHOOZ collabora-

tion (Apollonio, 2000), which we describe briefly below.

Let us first consider a background-free signal, NBkg = 0. For each detected neu-

trino νi (i = 1, 2,. . . , N), we consider the unit vector X̂
(i)
pn that originates at the

positron annihilation location and is directed towards the neutron capture point. Let

θ be the angle that X̂
(i)
pn forms with the neutrino direction (see Figure 3.2). The unit

vectors X̂
(i)
pn carry directional information – albeit with some degradation due to the

neutron having to thermalize by scattering events before it can be captured – and

possess a slightly forward distribution. The angular distributions expected for LS and

LS-Li are given by Tanaka and Watanabe (2014) (in the context of geoneutrinos) in

graphical form; we find that they are well reproduced by the following functions:

fLS(cos θ) ' 0.2718 + 0.2238 exp (0.345 cos θ)

fLS−Li(cos θ) ' 0.1230 + 0.3041 exp (1.16 cos θ) .

(3.1)
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Using these, one can find the forward-backward asymmetry, which is a measurable

parameter:

a0

2
=
NF −NB

NF +NB

. (3.2)

Here NF and NB are the numbers of events in the forward (θ ≤ π/2) and backward

(θ > π/2) direction respectively. We obtain a0 ' 0.16 for LS, which is consistent with

the distributions shown in Apollonio (2000), and a0 ' 0.78 for LS-Li.

Let us now generalize to the case with a non-zero background, and define the

signal-to-background ratio, α = NS/NBkg. For simplicity, the background is modeled

as isotropic and constant in time. Suppose that NS, α, and a0 are known. In this

case, the total angular distribution of the N events will be a linear combination of

two components, one for the directional signal

NB,S =
NS

2

(
1− a0

2

)
NF,S =

NS

2

(
1 +

a0

2

)
, (3.3)

and the other for the isotropic background

NB,Bkg =
NBkg

2
NF,Bkg =

NBkg

2
. (3.4)

The two distributions have a relative weight of α, which yields the forward-backward

asymmetry as

a

2
=

(NF,S +NF,Bkg)− (NB,S +NB,Bkg)

(NF,S +NF,Bkg) + (NB,S +NB,Bkg)
. (3.5)

In the small background limit, NBkg → 0, then α → ∞ and a → a0. In the large

background limit NBkg →∞, then α→ 0 and a→ 0.

Figure 3.3 shows the angular distribution for different signal-to-noise ratios α (see

Table 3.1 for the corresponding values of a). For LS the α =∞ curve (blue solid) is

taken from Equation (3.1), and for LS-Li the α = ∞ curve (red solid) is taken from

Equation (3.1). For LS-Li, an enhancement in the directionality is achieved as a result

of an improved reconstruction of the positron annihilation point and a shortening of
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α Standard LS Enhanced LS

∞ 0.1580 0.7820

10.0 0.1418 0.7165

3.0 0.1170 0.5911

Table 3.1: Values Of a For The Curves In Figure 3.3.

the neutron capture range. Enhancement in the directionality decreases for LS and

LS-Li as the background becomes larger.

From here on, for all cases we adopt an approximate linear distribution2 for the

N events in the detector:

f(cos θ) =
1

2

(
1 + a cos θ

)
. (3.6)

This form is accurate – yielding results that are commensurate with those obtained

from the distributions in Figure 3.3 – and it allows to describe our results as functions

of the varying parameter a in a general and transparent manner.

Rigorously, a depends on the neutrino energy. We investigated the uncertainty

associated with treating a as a (energy-independent) constant, and found it to be

negligible in the present context where larger errors are present from, for example,

uncertainties associated with modeling of the presupernova neutrino event rates. In

addition, the values of a used in the literature for supernova neutrinos, reactor neu-

trinos and geoneutrinos (e.g., Apollonio, 2000; Tanaka and Watanabe, 2014; Fischer

et al., 2015) vary only by ' 10-20% over a wide range of energy. The values of a

in Table 3.1 for the background-free α = ∞ cases are used in Tanaka and Watan-

abe (2014) and Fischer et al. (2015) for geoneutrinos, which have an energy range

2A more general case of an exponential distribution is discussed in App. C. It can be inferred

from the figure there, that the approximate linear distribution is a very good approximation for the

original exponential case, and does not alter our results significantly.
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(E ' 2-5 MeV) and spectrum that is similar to those of presupernova neutrinos.

3.2.1 Pointing To The Progenitor Location

For a signal of N IBD events in the detector from a point source on the sky, and

therefore a set of unit vectors X̂
(i)
pn (i = 1, 2, . . . , N), an estimate of the direction to

the source is given by the average vector ~p (Apollonio, 2000; Fischer et al., 2015):

~p =
1

N

N∑
i=1

X̂(i)
pn . (3.7)

This vector offers an immediate way to estimate the direction to the progenitor star

in the sky. The calculation of the uncertainty in the direction is more involved

(Apollonio, 2000), and requires examining the statistical distribution of ~p, as follows.

Consider a Cartesian frame of reference where the neutrino source is on the neg-

ative side of the z-axis. In the limit of very high statistics (N →∞), the averages of

the x- and y- components of the vectors X̂
(i)
pn vanish. The average of the z- component

can be found from Equation (3.6), and is 〈z〉 = a/3. Thus, the mean of ~p is:

~pm = (0, 0, |~p|) = (0, 0, a/3) . (3.8)

For the linear distribution in Equation (3.6), the standard deviation is,

σ = (
√

3− a2)/3 ' 1/
√

3 ,

where, the approximation introduces a relative error of the form a2/6, which is neg-

ligible in the present context. For N � 1, the Central Limit Theorem applies, and

the distribution of the three components of ~p are Gaussians3 centered at the compo-

nents of ~pm, and with standard deviations σx = σy = σz = σ = 1/
√

3N . Hence, the

3This statement (and therefore Equation (3.9)) is only valid in the assumed frame of reference,

which is centered at the detector, with the neutrino source being on the z-axis. In a generic frame

of reference, the three components of ~p are not statistically independent, and their probability

distribution takes a more complicated form.
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probability distribution of the vector ~p is

P (px, py, pz) =
1(

2πσ2
) 3

2

exp

(
−p2

x − p2
y − (pz − |~p|)2

2σ2

)
. (3.9)

The angular uncertainty on the direction to the supernova progenitor is given

by the angular aperture, β, of the cone around the vector ~pm, containing a chosen

fraction of the total probability (e.g., I = 0.68 or I = 0.90):∫
P (px, py, pz) dpxdpydpz = I , (3.10)

or, in spherical coordinates:∫ ∞
0

p2dp

∫ 1

cosβ

d cos θ

∫ 2π

0

dφ P (px, py, pz) = I . (3.11)

The latter form reduces to4:

1

2

[
1 + Erf(k)− cos β exp

(
− k2 sin2 β

)Å
1 + Erf(k cos β)

ã]
= I , (3.12)

where k =
√

3N/2 |~p| = a
√
N/6, and the error function is,

Erf(z) = 2/
√
π

∫ z

0

exp(−t2) dt .

For a fixed value of I, Equation (3.12) can be solved numerically to find β = β(k, I),

and therefore to reveal the dependence of β on N and a. Figure 3.4 shows the

dependence of β on N , for two confidence levels (C.L.). The figure illustrates the

(expected) poor performance of LS: we have β ' 70◦ at 68% C.L. and N = 100,

improving to β ' 40◦ at N = 500. For the same C.L. and values of N , LS-Li

would allow an improvement in the error by nearly a factor of 4, giving β ' 18◦ and

β ' 10◦ in the two cases respectively. The degree of improvement in performance

with increasing a is shown in Figure 3.5, where N = 200 is kept fixed.

4The steps involved in obtaining Eq. 3.12 from Eq. 3.9 is shown in App. C.
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Figure 3.5: The angular uncertainty, β, as a function of the forward-backward
asymmetry, a, for two different confidence levels (see figure legend) and fixed number
of events, N = 200. The vertical lines indicate the values of a corresponding to
α =∞, 3 for LS (dashed lines) and LS-Li (dot-dashed), see Table 3.1.

LS LS-Li

Time to CC NTotal NSig NBkg α a 68% a 68%

2.0 hr 31 20 11 0.55 0.0553 103.28◦ 0.2797 71.43◦

1.0 hr 36 23 13 0.56 0.0560 102.54◦ 0.2829 68.32◦

2 min 58 25 33 1.32 0.0887 93.56◦ 0.4484 41.57◦

Table 3.4: Parameters and results for σ Canis Majoris, Figure 3.7, left panels.

LS LS-Li

Time to CC NTotal NSig NBkg α a 68% a 68%

2.0 hr 44 20 24 1.20 0.0850 96.53◦ 0.4300 48.26◦

1.0 hr 141 23 118 5.13 0.1305 71.60◦ 0.6596 19.00◦

2 min 420 25 395 15.80 0.1466 46.28◦ 0.7413 9.84◦

Table 3.5: Parameters and results for S Monocerotis A, Figure 3.7, right panels
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Figure 3.6: Angular error cones at 68% C.L. and 90% C.L. for LS (orange and ma-
roon contours), and LS-Li (indigo and black contours) at 4 hours, 1 hour and 2 minutes
prior to the core collapse. The left panels correspond to Betelgeuse (D= 0.222 kpc,
M ' 15 M�); the right panels to Antares (D= 0.169 kpc, M ' 15 M�). The pres-
ence of background is considered in all cases according to An (2016). The number of
events is based on the model by Patton et al. (2017a).
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Figure 3.7: Same as Figure 3.6, but for σ Canis Majoris (left panels, D= 0.513 kpc,
M ' 15 M�) and S Monocerotis A (right panels, D= 0.282 kpc, M ' 30 M�). Only
68% C.L. contours are shown here, for LS (orange) and LS-Li (indigo).
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In the case of isotropic background the mean vector, ~pm, still points in the direction

of the progenitor star. That is no longer true in the general case of anisotropic

background, which would introduce a systematic shift in the direction of ~pm. A naive

estimate for a point-like source of background gives an (average) shift in direction by

an angle δ . NBkg/NS (valid if NBkg � NS and independent of a), corresponding to

δ . 4◦− 10◦ for parameters typical of Betelgeuse (see Table 3.2). A comparison with

the typical values of β indicates that the shift is probably negligible for LS (β � δ,

typically) but might have to be considered for LS-Li. A more accurate estimate of δ

depends on site-specific information and is beyond the scope of the present paper.

Another source of potential uncertainty is in the site-specific number of accidental

coincidences in the detector (e.g., a coincidence between a positron from a cosmic

muon decay and a neutron capture from a different process). Although here we

assume a strong muon veto (An, 2016), the actual performance of the veto in a

realistic setting may be different and contribute to larger background levels that

would negatively affect the presupernova localization. See Cao and Wang (2017)

and references therein for technical information on realistic veto designs and their

expected performance.

3.3 Progenitor Identification

Attempts at progenitor identification will involve a complex interplay of different

information from different channels. Here, we discuss a plausible, although simplified,

scenario where two essential elements are combined: (i) pointing information from a

single liquid scintillator detector, using the method in Section 3.2; and (ii) a rough

estimate of the distance to the star, from the comparison of the signal with models5.

5Circumstances that could further narrow the list of candidate stars include unusual electromag-

netic activity from a candidate in the weeks or days preceding the signal, improving the distance
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Both these indicators will evolve with time over the duration of the presupernova

signal, with the list of plausible candidates becoming shorter as higher statistics are

collected in the detector. We emphasize that the goal here is not necessarily to reduce

to a single star; even reducing the list to a few stars (3 or 4, for example) can be

useful to the gravitational wave and electromagnetic astronomy communities.

Consider the two case studies shown in Figure 3.6 and detailed in Tables 3.2 and

3.3. The left column refers to Betelgeuse and the right column to Antares, both

with a time distribution of IBD events as in Figure 3.1 for 15M�. The three panels

show how the 68% and 90% C.L. angular errors decrease with time, leading to a

progressively more accurate estimate of the position6. An algorithm to plot angular

error cones om Mollweide projections is discussed in App. C.

For the case of LS, at t = −1 hr pre-collapse, as many as ∼ 10 progenitor stars

are within the angular error cone, with only a minimal improvement at later times.

Therefore, the identification of the progenitor can not be achieved using the angular

information alone. It might be possible, however, in the presence of a rough distance

estimation from the event rate in the detector. In both examples, a possible upper

limit of D < 0.25 kpc (red squares in Figure 3.6, also see Figure 2.4) results in a single

pre-supernova being favored. For LS-Li, the angular information alone is sufficient to

favor 3-4 stars as likely progenitors already ∼4 hours pre-collapse. At t = −1 hr, a

single progenitor can be identified in the case of Antares.

A less fortunate scenario is shown in the left panels in Figure 3.7 (details in Table

3.4) for σ Canis Majoris (distance D = 0.513 kpc). The number of events was cal-

culated according to the 15 M� model in Figure 3.1. The lower signal statistics (the

estimate using data from multiple detectors, etc.
6In a realistic situation, the center of the angular error cone would be shifted away from the true

position of the progenitor star by a statistical fluctuation. This effect is not included here.
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Figure 3.8: The angular uncertainty cone for KamLAND at 2 minutes prior to
collapse. Only the 68% C.L. is shown. The progenitor assumed in this case is Antares.

number of events barely reaches 60), and the larger relative importance of the back-

ground result in a decreased angular sensitivity. We find that LS will only eliminate

roughly half of the sky if we use the 68% C.L. error cone. When combined with an

approximate distance estimate, this coarse angular information might lead to identi-

fying ∼ 10 stars as potential candidates. With LS-Li, the list of candidates might be

slightly shorter but a unique identification would be very unlikely, even immediately

before collapse.

A 30M� case is represented by the right panels in Figure 3.7 (and detailed in

Table 3.5) for S Monocerotis A (distance D = 0.282 kpc). An hour prior to the

collapse ' 120 events are expected, allowing LS to shorten the progenitor list to '

12 stars within the error cone at 68% C.L. Whereas, LS-Li narrows the progenitor list

down to ' 3 stars with the same C.L. one hour prior to the collapse. When combined

with a rough distance estimate, the progenitor might be successfully identified.

Having established the directional pointing abilities of JUNO, it is worth asking

how would the previous and current generation neutrino detectors perform in the

context of directional pointing. Since we focused on the IBD channel, liquid scin-
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Figure 3.9: Same as Fig. 3.8 but for SNO+.

tillator detectors would ideal and suited to the analysis. Fig. 3.8 shows a plausible

outcome for the KamLAND detector and Fig. 3.9 for the SNO+ detector. In both

cases because of the small fiducial masses of the two detectors we are limited to very

nearby presupernova candidates like Antares. The figures show the 68% confidence

level 2 minutes prior to collapse for both the detectors. In both cases, the angular un-

certainty cones are O(90◦) which is not very optimistic. KamLAND primarily due to

its slightly bigger fiducial mass has the ability to perform slightly better than SNO+.

In closing of this section, let us elaborate on the potential of estimating the dis-

tance to the star by comparing the observed neutrino event rate with models. The

accuracy of such estimate depends on the uncertainty on model predictions, which

in principle can be estimated from the spread in the presupernova neutrino number

luminosity from different models in the current literature that begin with the same

zero-age main sequence mass. Unfortunately, the presupernova models in the present

literature do not allow a reasonable direct comparison due to key, yet often undis-

closed, modelling choices made during the evolution of a stellar model (although see
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Figure 3.10: Distance cuts based on different models of presupernova neutrino emis-
sion. The total number of events predicted by the different models at 0.2 kpc is
denoted by N0. The horizontal lines show the distance corresponding to a 3σ value
around the number of events. (Note: The models are referenced in the text).

Patton et al. (2017a) for an exception). For example, the neutrino number luminosity

can change by more than an order of magnitude due to the prescription used for mass

loss by stellar winds over the evolution of the model, the treatment of convective

boundaries, the spatial (mass) and temporal resolution of the model over its evolu-

tion, the global conservation of energy by the model over its evolution, the number

of isotopes evolved by the nuclear reaction network, and how nuclear burning is cou-

pled to the hydrodynamics (operator split versus fully coupled vs post-processing)

especially during the advanced stages of massive star evolution. We must conclude,

therefore, that the idea to use models to place distance constraints will become re-

alistic only in the future, after more progress is achieved on presupernova emission

models. However, to have a current understanding of the situation, we show the dis-

tance estimates assuming a fixed number of events (N = 200) versus the mass of the
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progenitor in Fig. 3.10. We know,

N = NTotal

(
DModel

D

)2

(3.13)

Thus,

D = (DModel)

…
NTotal

N
(3.14)

The results are shown in Fig. 3.10, assuming a 3σ value around the number of events

to predict the distance cuts.

3.4 Backgrounds

The presence of background needs to be addressed since it will affect the pointing

abilities negatively. In this section we discuss how the presence of noise affects the

error cone and hence the pointing precision using our method. We start with an

isotropic case of background.7 Since pre-supernova neutrinos are low energy neutrinos,

the main source of backgrounds will be the low energy geoneutrinos and reactor

neutrinos. For a detector like JUNO which we used for our analysis, the main source

of background would be the reactor neutrinos. Figure 3.11 shows the half-hourly and

the cumulative distribution of background events for JUNO in the reactor on and off

phases. The background events are modeled from Apollonio (2000).

The background events should be compared with the number of signal events (see

Fig. 3.1 which depend on the distance of the progenitor from Earth. For nearby

(∼ 0.2 kpc) stars the background can be considered to be fairly low.

The way we put in the background is by introducing a parameter α which is

7We think it can be generalized to a more complicated case of a directional background. The

directional background will affect the error cone in a way that it would not be centered around the

star as it is in the present case which is discussed.
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Figure 3.12: Effects on angular uncertainty due to background: Left Panel: the
variation of asymmetry factor a with α; Right Panel: angular distribution of events
in the presence of background (blue, solid curve) (α = 3) and in the absence of
background (red, dashed curve).
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Figure 3.13: Angular uncertainty in the presence (red) and absence (green) of back-
ground.

defined as:

α =
Signal

Noise
(3.15)

We consider the angular distribution of events, normalize this distribution, and in-

troduce the isotropic time-independent background. This helps in calculating the

parameter α. We then re-normalize all of this combined together. Recall, that the

main aspect of such a distribution is the number of forward (Nf ) and backward (Nb)

events which lets us decide the asymmetry parameter a. Fig. 3.12 (left panel) shows

the variation of asymmetry factor a with α. As expected, for smaller values of a

implying a high background, the asymmetry is very low, i.e., the number of forward

and backward events are nearly equal. This results in the angular uncertainty being

large and reduces the pointing capabilities. As, α increases to large values implying

tiny backgrounds.

3.4.1 Effects On Angular Uncertainty

The angular distribution of events comparing the cases of with and without back-

ground is shown in Fig. 3.12 (right panel). The presence of background makes the
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Subject D Small D Large

D (in kpc) 0.20 0.63

NSig 200 20

NBkg 20 20

With Bkg 220 40

Without Bkg 200 20

α 10 1

a 0.3583 0.1970

β (With Bkg) 29.15◦ 78.52◦

β (Without Bkg) 26.72◦ 66.07◦

Table 3.6: Table Showing The Parameters Used In Figure 3.14

distribution flatter implying less asymmetry, thus resulting in an increased angular

uncertainty (error cone). Having obtained the value of a corresponding to the back-

ground (or α) will change the error cone as shown in Fig. 3.13. As expected, the

error cone in the presence of background (red) is larger than in the case without

background (green).

As discussed before, the impact of the background on the pointing sensitivities is

closely related to the distance to the progenitor. Assuming a fixed background, the

main idea is, the closer the progenitor more is the signal events as compared back-

ground and larger is α. As distance to progenitor increases the signal and background

events become comparable, leading to a small value of α and increased angular un-

certainty. The effect of distance on the uncertainty is shown in Fig. 3.14 and corre-

sponding table Tab. 3.6.
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Figure 3.14: Angular uncertainty in the presence of background for: left panel:
small D (∼ 0.2 kpc), and right panel: large D.
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Chapter 4

THE NEUTRINO GRAVITATIONAL-WAVE MEMORY EFFECT

Neutrino- and gravitational wave-astronomy are emerging players in the new field

of multi-messenger astronomy. They both have the potential to investigate “dark”

phenomena like the core collapse of a massive star and its possible implosion into a

black hole, and the process of inspiral and merger of a binary systems involving at least

one neutron star. After the LIGO-Virgo observation of binary mergers (Abbott et al.,

2016c, 2017b, 2020a,b), such exploration is already a reality for gravitational waves

(GW), and a similar level of steady progress might be achieved in the next decades

with the next generation of low background neutrino observatories reaching up to a

Megaton mass. While neutrino and GW physics are still mostly developing separately,

their potential as complementary probes of the same astrophysical phenomena has

recently been recognized, and dedicated, interdisciplinary research has begun.

Surprisingly, so far only limited attention has been paid to the most direct con-

nection between neutrinos and GW: the gravitational memory caused by (anisotropic)

neutrino emission. The essence of this effect has been known since the 1970’s (Zel’dovich

and Polnarev, 1974; Braginskii and Thorne, 1987): anisotropic neutrino emission, for

example by a core collapse supernova, would cause a non-oscillatory, permanent strain

in the spacetime metric that would in principle be visible at a powerful GW detector

(Epstein, 1978; Turner, 1978). The theory of the memory effect is well established,

having been developed at the formal level for a generic emitter of radiation and mat-

ter (Sago et al., 2004; Suwa and Murase, 2009; Favata, 2010). Early applications

to a core collapse supernova were developed as well, analytically and numerically

(Epstein, 1978; Turner, 1978; Burrows and Hayes, 1996; Mueller and Janka, 1997a).
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Results showed that, in a GW detector, the neutrino-induced memory from a galactic

supernova would appear as a signal with typical frequency of 0.1 − 10 Hz and (di-

mensionless) strain of ∼ 10−22 − 10−20, which is well below the sensitivity of LIGO

and its immediate successors. Long considered unobservable, the memory has thus

largely remained a textbook-case curiosity.

This situation is about to change with the third generation of GW detectors,

especially those designed to explore the Deci-Hz frontier (Seto et al., 2001; Yagi and

Seto, 2011a; Luo et al., 2016; Graham et al., 2016; Shuichi Sato and Masaki Ando,

2017; Pau Amaro-Seoane and Stanislav Babak, 2017; Ruan et al., 2020), namely the

region centered at frequency f ∼ 0.1 Hz. Ambitious projects like the DECi-hertz

Gravitational-wave Observatory (DECIGO) (Seto et al., 2001; Yagi and Seto, 2011a)

and the Big Bang Observer (BBO) (Yagi and Seto, 2011a) will reach a sensitivity of ∼

10−24 in strain, and therefore will be able to observe the supernova neutrino memory.

An experimental test of the memory, with its distinctive hereditary nature, would be

an important confirmation of general relativity. The new observational prospects have

stimulated several modern studies of the supernova neutrino memory, based on state-

of-the art hydrodynamic simulations in two and three dimensions (Burrows and Hayes,

1996; Kotake et al., 2007b, 2009a; Muller et al., 2012; Yakunin et al., 2015; Vartanyan

and Burrows, 2020), where the detailed time structure of the neutrino luminosity and

of the anistropy parameter are modeled. Due to computational cost, simulations have

been conducted for isolated examples of progenitor star, and reproduce only part of

the memory evolution, up to about 1 s after the core bounce.

In the light of the recent advancements on modeling the memory effect numeri-

cally, the time is now mature for the development of phenomenological studies, for

the benefit of the broader community, with the goal of assessing the detectability

and physics potential of the supernova neutrino memory effect. These studies will
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necessarily require a parametric description that captures the essential features of the

memory over the entire ∼ 10 s of duration of the neutrino burst, and can be applied to

wide variety of phenomenological scenarios, corresponding to different stellar progen-

itors, different outcomes of the collapse (successful explosion or implosion into a black

hole), etc. Such description can be useful as a foundation for more advanced phe-

nomenological studies, and as a template to simulate the response of a GW detector

to a memory signal.

This work is a first effort in this direction. We develop a phenomenological model

of the neutrino-induced memory strain both in time and frequency domain. Our

model is sufficiently realistic – because it is based on realistic (although simplified)

assumptions, motivated by numerical results for the memory and at the same time is

sufficiently simple to be used widely. We apply it to a number of plausible core collapse

scenarios, and discuss the physics potential of a joint detection of a neutrino burst

and a memory signal from a galactic supernova. Our study extends and complements

previous analytical description of the memory, which were developed for long gamma-

ray bursts (GRBs) (Sago et al., 2004) where the memory from a single jet and a

unified model of the GRB were considered along with the angular dependence of the

wave-form, supermassive stars (Li et al., 2018) which estimated the memory strain

magnitude from supermassive stars (∼ 5 × 104M�) and discussed the prospects of

their detection and hypernovae (Suwa and Murase, 2009) using spherically symmetric

and oblate-spheroidal accretion discs and constant neutrino anisotropy parameter.

This chapter is structured as follows. In Sec. 4.1 the formalism describing the

memory signal is summarized, and general upper bounds are derived. Our model

is introduced in Sec. 4.2; then in Sec. 4.3 we present applications and discuss the

detectability of the supernova neutrino memory at future Deci-Hz interferometers.
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Some technical details are included in App. E.

4.1 Formalism

In this section we summarize the formalism that describes the memory strain due

the anisotropic emission of radiation (massless particles) by a generic source, and

specialize it to neutrinos from a core collapse supernova.

4.1.1 Memory Wave Form

For completeness, here we review the theoretical framework of the memory, fol-

lowing closely some classic papers on the subject (Weinberg, 1972; Misner et al., 1973;

Epstein, 1978). For brevity, certain derivations are omitted; we refer the reader to

appendix E for those.

The starting point is Einstein’s field equation,

Rµν −
1

2
Rgµν = −8πGTµν , (4.1)

where, Rµν is the Ricci tensor, the Ricci scalar R = 8πGT µµ , gµν is the metric, G is

the Newton’s universal gravitational constant and Tµν is the stress-energy tensor1.

Here it suffices to work in the weak-field approximation, where the metric is nearly

flat, with small perturbations hµν :

gµν = ηµν + hµν . (4.2)

In this approximation, the field equations (4.1) are still invariant under coordinate

transformations that preserve the weak-field condition. We can use this gauge freedom

to choose a convenient gauge: gµνΓλµν = 0 (Γλµν is the Christoffel symbol defined in

Appendix E). By keeping only terms up to first order in hµν , from (4.1) we get the

1The detailed expressions for each are given in Appendix E
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following wave equation in flat space for the field perturbation,

�2hµν = −16πGSµν , (4.3)

where the effective stress-energy tensor (in presence of matter) is Sµν = Tµν− 1
2
ηµνT

λ
λ .

One can solve the wave equation by using the retarded Green’s function corresponding

to the D’Alembert operator in four-space time dimensions, so to obtain the expression:

hµν = 4G

∫
d3~x

′
(Sµν(~x ′ , t− |~x− ~x ′ |)

|~x− ~x ′|

)
. (4.4)

The gauge choice leading us to this solution does not fix completely all the gauge

freedom and an additional constraint should be imposed to leave only the physi-

cal degrees of freedom. This is done by projecting the source tensor Sµν into its

transverse-traceless (TT) components (see for example Misner et al. (1973)). Doing

this and without loss of generality, we will use the following very well known ansatz

for the source term proposed in Epstein (1978),

Sij(t, x) =
(ninj)TT

r2

∫ ∞
−∞

σ(t′)f(Ω′, t′)δ(t− t′ − r)dt′, (4.5)

where, ~n = ~x/r, r = |~x| and the sub index (TT) denotes the transverse-traceless

component. This source term represents the effect of emitted radiation from the

source origin at x = 0 2. Here σ(t) denotes the rate of energy loss, and f(Ω′, t′) is

the angular distribution of emission, where the argument Ω′ is a shorthand notation

indicating the dependence on the angles ϑ′ and ϕ′. dΩ′ is the differential solid angle,

dΩ′ = sin(ϑ′)dϑ′dϕ′ (see Fig. 4.1), so that f(Ω′, t′) ≥ 0 and
∫
f(Ω′, t′)dΩ′ = 1. After

substituting the ansatz (4.5) into the wave form (4.4), and integrating, we obtain the

following expression for the wave form:

hijTT (t, x) = 4G

∫ t−r

−∞

∫
4π

(ninj)TTf(Ω′, t′)σ(t′)

t− t′ − r cos θ
dΩ′dt′ , (4.6)

2Due to the conservation of the stress-energy tensor, we only need to consider the spatial index

of the tensor
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where θ is the angle between the observer position and the radiation source point.

Following Mueller and Janka (1997a), we assume that the observer is situated at a

distance r = |x| → ∞ from the source. The radiation that reaches the observer at a

time t was actually emitted at time, t′ = t− r/c, physically representing a case where

the neutrino pulse itself causes a gravitational wave signal. We can now rewrite (4.6)

in this approximation as,

hijTT (t, x) =
4G

rc4

∫ t−r/c

−∞
dt′
∫

4π

(ninj)TT
1− cos θ

dLν(Ω
′, t′)

dΩ′
dΩ′, (4.7)

where, f(Ω′, t′)σ(t′) = dLν(Ω′,t′)
dΩ′

, which is the direction dependent neutrino luminosity.

Fig. 4.1 shows the orientation of the coordinate axes for the observer and the

source. The different angles involved are also shown. The wave hijTT (t, x) can be either

‘+’ or ‘×’ polarized. We denote the ‘+’ polarization as, hxxTT = −hyyTT = −h+
TT . With

this in mind, we now need to compute the different pieces of (4.7). One obtains (see

Appendix E) (nxnx)TT = 1
2
(1−cos2 θ)(2 cos2 φ−1) = 1

2
(1−cos2 θ) cos 2φ. Substituting

this in Eq. (4.7) gives,

hxxTT =
2G

rc4

∫ t−r/c

−∞
dt′
∫

4π

(1 + cos θ) cos 2φ
dLν(Ω

′, t′)

dΩ′
dΩ′. (4.8)

The ‘×’ polarization, hxyTT = h×TT can be found by simply replacing cos 2φ by

sin 2φ. One can isolate the angular dependence by defining the anisotropy parameter

α(t) as,

α(t) =
1

Lν(t)

∫
4π

dΩ′ Ψ(ϑ′, ϕ′)
dLν(Ω

′, t)

dΩ′
, (4.9)

where Ψ(ϑ′, ϕ′) is an angle-dependent function that depends solely on the location

of the observer with respect to the source, i.e., θ and φ appearing in Eq. (4.8) are

expressed in terms of ϑ′ and ϕ′ based on the observer’s location with respect to the

source (see Mueller and Janka (1997a); Kotake et al. (2009a) for example and details.)
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Figure 4.1: Setup of the coordinate systems - (XY Z) (Purple): Coordinate system
for observer , (X ′Y ′Z ′) (Black): Coordinate system for source (source is treated as an
extended source, centered at the origin; denoted by yellow blob). The blue dot is a
point on the surface of the extended source and the corresponding position vector is
shown as a blue arrow. (ϑ′, ϕ′) (Dark Blue): Radiation direction in the source frame
(X ′Y ′Z ′); (θ, φ) (Red): Radiation direction in the observer’s frame (XY Z), (ϑ, ϕ)
(Dark Green): Orientation of observer’s frame (XY Z) with respect to the source
frame (X ′Y ′Z ′). Observer (Pink) is located along the Z-axis at a distance, r (0, 0, r).

This enables us to write (4.8) in the following convenient form,

hxxTT = h(t) =
2G

rc4

∫ t−r/c

−∞
dt′Lν(t

′)α(t′) . (4.10)

The anisotropy parameter plays a very significant role in determining the am-

plitude of the gravitational wave strain h(t). It is mainly governed by the complex

dynamics of the source. We will discuss its role in more detail in later sections. It

is important to note here that if an ideal gravitational wave detector has two freely

falling masses which have a vectorial separation of lk, the gravitational wave strain
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changes their separation by δlj where,

δlj =
1

2
hTTjk l

k . (4.11)

Of course in Eq. (4.10), we have just considered the strain in the x-directon. It may

also be useful to express the gravitational wave strain h(t) in frequency space,

h̃(f) =

∫ ∞
−∞

h(t) e2πi ft dt , (4.12)

where, h̃(f) is the Fourier transform of h(t). Finally, we define the characteristic

strain hc(f) (Sago et al., 2004; Li et al., 2018) as,

hc(f) = 2f |h̃(f)| . (4.13)

This is a dimensionless quantity (the f appearing above makes it dimensionless),

which helps in computing the signal to noise ratio (SNR) for a given gravitational

wave detector and compare the signal to the sensitivity curve of the detector to predict

the prospects of detection of the signal using the given detector.

4.1.2 General Properties Of The Neutrino Memory Signal

In this section we discuss properties of the memory signal, in the time and fre-

quency domain, that stem directly from its expression as an integral over time, Eq.

(4.10), and therefore have general validity.

Time domain: evolution and upper bound

Considering the finite duration (∆t ∼ 10 s) of the neutrino burst, from (4.10) we

expect the metric perturbation h(t), to transition from an asymptotic value h = 0

at earlier times (t → −∞) to a different asymptotic value h = ∆h at later times

(t → +∞), as sketched in Fig. 4.2. The characteristic rise time must be δt .
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Figure 4.2: Sketch of a typical gravitational wave memory strain profile, h(t).

∆t, depending on the time dependence of α(t). In physical terms, the gravitational

memory accumulates from the arrival of the first neutrinos to Earth until the neutrino

burst has passed completely.

We can place a conservative upper limit on h(t) from the following inequality:

|h(t)| ≤ 2G

rc4

∫ ∞
−∞

Lν(t)|α(t)|dt ≤ 2G

rc4
|α|maxEtot . (4.14)

Here we accounted for the possibility that α(t) may be negative and change sign

(see Sec. 4.2.2), and |α|max is the maximum of its value (in modulus). Etot =∫∞
−∞ Lν(t)dt ' 3 × 1053 ergs is the total energy emitted by neutrinos. Numerically,

Eq. (4.14) gives:

|h(t)| ≤ 6.41 10−20

Å |α|max
0.04

ãÅ
Etot

3 1053 ergs

ãÅ
r

10 kpc

ã−1

. (4.15)

The same bound holds for |∆h|, as one can easily verify.

Frequency domain: limiting cases

Let us now discuss the main features of hc(f) (Eq. 4.13). We expect it to be domi-

nated by frequencies of the order of fc ∼ 1/2πδt & 1/2π∆t ∼ 0.02 Hz.
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In agreement with previous literature (Turner, 1978; Favata, 2011), in the zero

frequency limit (ZFL), f � fc, hc(f) tends to a constant value. This can be proven

by observing that:

lim
f→0

hc(f) = lim
f→0
|2fh̃| = lim

f→0

∣∣∣∣ iπ ˜̇h

∣∣∣∣ , (4.16)

where we used the well known property relating the Fourier Transform of a function

to the Fourier Transform of its derivative (˜̇g(f) = −2πi f g̃(f)) (see appendix E for

the validity of this property in the case at hand). Now, we note that

lim
f→0

˜̇h = lim
f→0

∫ ∞
−∞

ḣ(t)e2πi f tdt =

∫ ∞
−∞

ḣ(t)dt = ∆h , (4.17)

leading immediately to the result

lim
f→0

hc =
|∆h|
π

, (4.18)

which does not depend on f . Therefore, we expect a flat behaviour of hc at low

frequencies, characterized by the strength of the metric change ∆h 3.

When combined with Eq. (4.14), Eq. (4.18) gives an upper limit:

lim
f→0

hc ≤
2G

πrc4
|α|maxEtot ' 2.0 10−20

Å |α|max
0.04

ãÅ
Etot

3 1053 ergs

ãÅ
r

10 kpc

ã−1

. (4.19)

The latter bound can be shown to be valid at all frequencies. Indeed, consider

that, from Eq. (4.8), we can write

ḣ(t) =
2G

rc4
Lν(t)α(t) . (4.20)

Therefore

|˜̇h| = 2G

rc4

∣∣∣∣∫ ∞
−∞

Lν(t)α(t)e2πi f tdt

∣∣∣∣ ≤ 2G

rc4

∫ ∞
−∞

Lν(t) |α(t)|dt . (4.21)

3The ZFL provides a good estimate of the wave strain when the time scale of the burst is much

longer than the neutrino emission process (Turner, 1978). Additionally, at the ZFL the neutrino

quantum production can be computed classically.
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This result can then be combined with Eqs. (4.14), and (4.18), to confirm the bound

in Eq. (4.19).

Let us now study the behavior of the hc(f) in the high frequency regime, f � fc.

A good starting point is the derivative ḣ, Eq. (4.20). On physical grounds we know

that the luminosity Lν(t) is positive and bounded from above. Furthermore, it is

natural to assume that product Lν(t)α(t) is zero outside a finite interval of time.

This because the neutrino burst has a characteristic duration of tens of seconds (with

a sharp decline of Lν(t) at t ∼ 30 − 40 s post-bounce, when the neutrino emission

transitions from surface to volume emission). Furthermore, numerical simulations

(see for example Kotake et al. (2007b, 2009a); Vartanyan and Burrows (2020)) suggest

that the anisotropy parameter α(t) be mainly due to the spiral SASI, which has a

characteristic duration of O(10−1) s.

These arguments justify us to treat ḣ(t) as a function that has compact support

in a given time interval: 
ḣ(t) 6= 0 t1 ≤ t ≤ t2

ḣ(t) = 0 otherwise

. (4.22)

We can then use one of the incarnations of the Paley–Wiener theorem, which

asserts (see for example Stein and Weiss (1971)):

The Paley–Wiener theorem: Let g(t) be a C∞ function vanishing outside an inter-

val [A,B], then g̃(f) is an analytic function of exponential type σ = max{|A|, |B|}4

and is rapidly decreasing, i.e, |g̃(f)| ≤ cN
Ä
1 + f

fc

ä−N
for all N , where f is the fre-

quency in the present context. Which immediately implies that 5,

4An analytic function is said to be of exponential type σ if for every ε > 0 there exists a real

constant A such that |g̃(z)| ≤ Ae(σ+ε)|z| for |z| → ∞
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|˜̇h(f)| ≤ cN

Å
1 +

f

fc

ã−N
(4.23)

Using (4.16), we have

hc(f) =
|˜̇h(f)|
π
≤ cN

π

Å
1 +

f

fc

ã−N
, (4.24)

for all integers N . By staying as conservative as possible, we can take the less con-

straining integer N = 1. In principle, as the theorem states, cN can be any constant

that allows the bound to exist, but we can estimate it in our case, by comparing it

with the zero-frequency limit, in other words, taking f = 0 in the expression above,

we have,

hc(f) ≤ c1

π
, (4.25)

which combined with (4.18) allow us to state that the high-frequency behaviour of

the characteristic strain should satisfy the decaying property,

hc(f) ≤ |∆h|
π

Å
1 +

f

fc

ã−1

. (4.26)

This result provides us with a nice interpolation between the zero frequency limit

– which leads us to the flat bound (frequency-independent) in Eq. (4.19) – and a

increasingly stringent bound at higher frequencies. Such trend will be confirmed in

all our phenomenological models, as will be seen in Sec. 4.3.

4.2 A Phenomenological Model Of Neutrino Memory

In this section we construct a phenomenological model for the memory effect, first

by taking inspiration from the results of numerical simulations, and then generalizing

to a broader range of situations. To keep the model sufficiently simple, in its analytical

5Notice that the constant cN has to be positive and f0 is the typical frequency scale of the

particular model.
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form, we will concentrate on reproducing the features of the neutrino luminosity and

of the anisotropy parameter that develop over time scales of 0.1 s or larger. These

correspond to frequency scales (f . 10 Hz) at or close to the Deci-Hz range, which

is most promising experimentally.

4.2.1 Neutrino Luminosity And Anisotropy Parameter

This subsection contains a brief overview of neutrino emission from a supernova

– with emphasis on the aspects most relevant to the memory – for the benefit of the

broader readership.

The aging process of a massive star (M ≥ 8 M�) involves several phases of

nuclear burning, finally culminating in a pressure loss, which leads to the gravitational

collapse of the star’s core. Due to a sharp rise in the incompressibility of nuclear

matter, the collapse eventually comes to an abrupt stop, and the core bounces back,

producing a forward moving shockwave. The shockwave is initially stalled for a

fraction of a second, and then it either dies out (leading to black hole formation) or

is launched due to energy deposition by neutrinos, thus causing the explosion of the

star.

As a result of the core collapse and bounce, Etot ∼ 3 1053 ergs of gravitational

energy is released, and most of it is emitted in thermal neutrinos and anti-neutrinos of

all flavors, over a time scale of ∼ 1− 10 s. The emission is largely isotropic, however,

transient anisotropies of the order of ∼ 10−3− 10−2 are expected to develop. We can

distinguish three main phases for the neutrino emission:

• The neutronization burst. The initial emission of neutrinos after core collapse

is dominated by electron neutrinos (νe) due to the absorption of electrons on

neutrons and nuclei. The signature of this processes is a sharp peak in Lν(t), of

about ∼ 2 ms width. Numerical simulations (Kotake et al., 2007b, 2009a; Var-
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tanyan and Burrows, 2020) show that, at this stage, the anisotropy parameter

is negligible (α(t) ≤ 0.001); an indication that the shock maintains spherical

symmetry. Here we will assume α = 0 during neutronization.

• The accretion phase. Until t ∼ 0.2 − 1.0 s post-bounce, when the shockwave

is stalled, the neutrino emission is approximately thermal and it is powered by

the influx of matter accreting on the collapsed core. The neutrino luminosity

time profile, after the sharp neutronization peak, becomes nearly flat, reaching

a plateau value of Lν ' few 1052 erg s−1. Numerical simulations confirm that in

the accretion phase the physics near the core is complex, being characterized by

turbulence and hydrodynamical instabilities, like the Standing Accretion Shock

Instability (SASI), which causes fluctuations of the neutrino luminosity around

the plateau value with a characteristic time scale δt ' 10−2 s (Blondin and Shaw,

2007; Kotake et al., 2007b, 2009a; Walk et al., 2020b). The same phenomena

lead to anisotropies in the neutrino emission; in particular, the spiral SASI mode

has been found to be associated to an anisotropy parameter |α| ∼ 10−3 − 10−2

(Mueller and Janka, 1997a; Kotake et al., 2009a). α could change sign over

time, transitioning between positive and negative, as the orientation of plane

of the spiral SASI changes relative to the observer (Kotake et al., 2009a); see

Fig. 4.3b for an example.

• The post-accretion time: cooling phase. If the shock is launched, the neutrino

emission continues beyond the accretion phase (otherwise, in the case of black

hole formation, it drops sharply at t ∼ 0.5− 1 s post-bounce, see e.g., Kuroda

et al. (2017, 2018); Vartanyan et al. (2019); Walk et al. (2020b); Shibagaki et al.

(2021)). The collapsed core – which is now a newly-born proto-neutron star –

and its surrounding regions slowly cool by thermally radiating neutrinos of all
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flavors. The neutrino luminosity and average energy decline smoothly with

time, over a scale of O(10) s. Since the state-of-the-art numerical simulations

stop at or before the end of the accretion phase, there are no quantitative

estimates of the anisotropy parameter in the cooling phase. Intuitively, one

may expect a relaxation of the system into a more symmetric configuration

(smaller anisotropy), however the question remains open.

4.2.2 Phenomenological Description Of The Neutrino Memory

Let us now construct a phenomenological description of the memory strain that

well approximates the results of numerical simulations, and can serve as a template

for generalizations to a wider range of cases (Sec. 4.3).

To fix the ideas, we first consider a scenario where the neutrino emission has

anisotropy only in the accretion phase, and therefore only this phase contributes to

the memory effect. As discussed in Sec. 4.2.1, during the accretion phase Lν(t) has

an irregular behavior over time scales δt ∼ 0.01 s or so, due to turbulence and SASI,

however its global shape over a time interval ∆t & 1 s – which is most relevant to

capture the spectrum at low frequency, as will be shown later – can be approximately

described by the functional form

Lν(t) = λ+ β exp
(
− χ t

)
, (4.27)

(see Fig. 4.3). Here l, β and χ are phenomenological parameters, and it is assumed

that Eq. (4.27) is only valid locally (i.e., for a finite interval of time post-bounce),

since Lν(t) should vanish at t→ ±∞.

Inspired by published numerical results (Kotake et al., 2007b, 2009a; Vartanyan

and Burrows, 2020; Suwa and Murase, 2009), we model the asymmetry function as a
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multi-Gaussian, added to a constant component:

α(t) = κ+
N∑
j=1

ξj exp

(
− (t− γj)2

2σ2
j

)
, (4.28)

for t > 0 6. While largely oversimplified, this form captures the essential physical

features of α(t) (Sec. 4.2.1), as is shown in Fig. 4.3, where Eq. (4.28) is compared to

a numerical result. Furthermore, Eqs. (4.27) and (4.28) lead to reasonably accurate

results for the memory strain, as is discussed below.

By substituting the expressions (4.27) and (4.28) in Eq. (4.10), one obtains a

closed form for the memory strain as a function of time:

h(t) =
N∑
j=1

{[
h1j

(
erf (ρj τ1j) + erf

(
ρj(t− τ1j)

))]

+

[
h2j

(
erf (ρj τ2j) + erf

(
ρj(t− τ2j)

))]}
(4.29)

+

[
h3

(
β

χ

(
1− exp (−tχ)

)
+ λt

)]
,

where,

h1j =
2G

rc4

…
π

2
βξjσj exp

(χ
2

(−2γj + σ2
jχ)
)
,

ρj =
1√
2σj

,

τ1j = γj − σ2
jχ , (4.30)

h2j =
2G

rc4

…
π

2
λξjσj ,

τ2j = γj ,

h3 =
2G

rc4
κ .

6For the sake of obtaining closed analytical formulae for the memory in time and frequency space,

we imposed α(t) = 0 for t ≤ 0; this is immaterial for the conclusions of this work.
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Figure 4.3: Phenomenological curves from our model (dashed lines), in comparison
with numerical results (solid lines) for: (a) the neutrino (νe) luminosity, Lν(t); (b)
anisotropy parameter α(t); and (c) the GW strain, h(t). The numerical results in
(a) are from Vartanyan and Burrows (2020), whereas those in (b) and (c) are from
Kotake et al. (2009a) In (c), the dashed (blue) curve is obtained using the same
parameters as the curves in (a) and (b). An additional line (dot-dashed, black) is
plotted, showing a phenomenological fit to the numerical data using Eq. (4.29).
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Here erf (x) is the error function, erf (x) = 2√
π

∫ x
0

exp (−t2)dt, and a factor of 2G/rc4 =

5.34× 10−65 (10 kpc/r) m has been isolated where possible, to facilitate the compar-

ison with Eq. (4.10).

In the expression (4.29), we can identify the main features of the memory signal.

For a single Gaussian anisotropy bump (N = 1), there are three distinct terms. The

first and second terms are due to the exponential and constant part of Lν , respectively,

in combination with the Gaussian part of α(t). They show the typical rise and plateau

behavior expected from the theory (Sec. 4.1.2, Fig. 4.2), where the timescale of the

rise is, naturally, given by the width of the anisotropy Gaussian, σj. The third term

is proportional to the constant part of the anisotropy parameter, and therefore the

time-scale of its rising and plateauing is the time-scale of the neutrino luminosity,

1/χ. Finally, in Eq. (4.29) one may notice a term of the form κλt, which is due to

the constant terms in Lν and in α(t); this term vanishes in realistic realizations (see

next section), and therefore it is not a cause of concern.

Let us now describe the memory strain in the frequency domain. From Eq. (4.29),

a closed form is obtained for the Fourier transform of h:

h̃(f) =
N∑
j=1

[(
h1j

i

πf
exp

(−π2f 2

ρ2
j

)
exp

(
i2πfτ1j

))

+

(
h2j

i

πf
exp

(−π2f 2

ρ2
j

)
exp

(
i2πfτ2j

))]
(4.31)

+

(
√

2π h3
β

χ

( 1

i2πf
− 1

−χ+ i2πf

))
,

where i is the imaginary unit.

Here we analyze the structure of Eq. (4.31) to infer the properties of hc(f) =

f |h̃(f)|. In Eq. (4.31), the terms proportional to f−1 produce the expected low-

frequency limit, where hc(f) tends to a constant value (see Sec. 4.1.2). We also

observe that fh̃ vanishes in the high frequency limit, thus reproducing the expected
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drop, hc(t)→ 0. The the transition between the two regimes (low and high f limits)

is determined by the inverse width of the Gaussian asymmetry factors, fi ≈ 1/2πσj

(first two terms of Eq. (4.31)) or, in the case of constant asymmetry, by the inverse

time scale of the neutrino luminosity, fν ≈ χ/2π.

Let us now give an illustration of how our model reproduces the expected features

of a memory signal. In Fig. 4.3 we compare the phenomenological forms for Lν , α(t)

and h(t) (Eqs. (4.27), (4.28) and (4.29), respectively) with the results of numerical

simulations for the accretion phase. Due to the sparseness of published numerical

results, we consider information from different sources, and in particular, Lν(t) from

Vartanyan and Burrows (2020) (see Fig. 1 (left) there, 15 M� model) and α(t)

from Kotake et al. (2009a). These are well reproduced, in their global structure,

by the phenomenological curves (with a tri-Gaussian structure for α(t), N = 3), for

appropriately chosen parameters (given in Table 4.10). For the same parameters,

the memory strain, h(t) from Eq. (4.29) is plotted in Fig. 4.3c. For comparison, the

figure also shows the numerically calculated h(t) from Kotake et al. (2009a). The two

curves are in good qualitative agreement in the general time structure of the strain,

although differences by a factor of up to ∼ 4− 5 exist. We stress that a quantitative

agreement is not expected because of our extracting information on Lν and α from

different sources, therefore the qualitative agreement noted above is a satisfactory

validation of our model.

Our master formula, Eq. (4.29), can serve an effective phenomenological descrip-

tion of data (or numerically-generated results) for h(t), if its parameters are treated

as fit parameters. The dot-dashed curve in Fig. 4.3c shows an example of this: the

dot-dashed curve has been obtained from Eq. (4.29) (with N = 3) by setting the

parameters so to best reproduce the numerically calculated h(t) from Kotake et al.

(2009a). The agreement is acceptable, and can be further improved by increasing N .
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As a note in closing, let us mention that our phenomenological forms for h(t) and

h̃(f) are in general agreement with earlier, simpler toy models, like those presented

by M. Favata (Favata, 2011). In those, h(t) has the form of a hyperbolic tangent.

A comparison with our Eq. (4.29) becomes intuitive if one considers the well known

approximation (see, e.g. Vedder (1987)):

erf (x) ' tanh (mx), with m =
√
π log(2) , (4.32)

which we checked to be very precise (less than 1% difference) at the time/frequency

regimes of interest here.

Using Eq. (4.32), our master equation for h(t), Eq. (4.29), can be rewritten as:

h(t) =
N∑
j=1

[{
h1j

(
tanh (mρj τ1j) + tanh

(
mρj(t− τ1j)

))}
+

{
h2j

(
tanh (mρj τ2j)

+ tanh
(
mρj(t− τ2j)

))}]
+

{
h3

(
β

χ

(
1− exp (−tχ)

)
+ λt

)}
, (4.33)

and its Fourier transform takes the form:

h̃(f) =
N∑
j=1

[(
h1j

iπ

mρj
csch

( π2f

mρj

)
exp

(
i2πfτ1j

))

+

(
h2j

iπ

mρj
csch

( π2f

mρj

)
exp

(
i2πfτ2j

))]
(4.34)

+

(
√

2π h3
β

χ

( 1

i2πf
− 1

−χ+ i2πf

))
.

4.3 Generalization: Plausible Phenomenological Scenarios

We now present five models that are a generalization of the framework discussed

in Sec. 4.2.2. These models represent possibilities that have not yet been investigated

numerically, but are nevertheless plausible. In the remainder of this section, for each

model we provide some physics motivation, and justify the choice of the parameters

(given in Table 4.11).
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4.3.1 Case Studies

To fix the ideas, let us examine the following specific situations:

• Accretion-only models. Taking direct inspiration from numerical results (Sec.

4.2), we present three realizations where only the accretion phase contributes

to the neutrino memory. They are illustrated in Fig. 4.4. The first model, the

accretion phase-three gaussians model (Ac3G), has already been introduced in

Sec. 4.2 and Fig. 4.3 as a description of numerical simulations, and therefore

can be considered especially well motivated.

A variation of the previous model is the accretion phase-one Gaussian model

(Ac1G), where the anisotropy parameter α(t) has a simpler time-dependence,

and is described by a single Gaussian profile. This scenario may be realistic

for cases where the spiral SASI activity is weaker and shorter, for example

in supernovae from smaller mass progenitors, see e.g., Tamborra et al. (2013,

2014); Walk et al. (2018, 2019).

As a third realization, we consider the long accretion phase-three Gaussian model

(LAc3G), where optimistic choices of the parameters are made. Here, the neu-

trino luminosity is kept constant at a relatively high value, and the anisotropy

parameter is the sum of three overlapping Gaussian curves, extending to t ∼ 0.7

s (refer to Table 4.11 for details). The net shape of the α(t) function is a curve

that has a fast rising and declining time scales, similarly to the Ac1G model,

but is wider than a single Gaussian. This model could be descriptive of a black-

hole forming collapse (failed supernova), where the high rate of mass accretion

and the long-stalling shockwave favor a highly luminous and sustained neutrino

emission and prolonged spiral SASI, see for example the simulation for a 40 M�

progenitor in Walk et al. (2020b), where a complex SASI dynamics (suggesting
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Figure 4.4: Neutrino luminosity (exponential curve, vertical scale on the right)
and anisotropy parameter (single- or multi-Gaussian curve, vertical scale on the left)
as functions of time post-bounce, for the three accretion-only models, where only the
accretion phase of the neutrino emission contributes to the memory. See Table 4.11
for details.
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Model: wlCA
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Figure 4.5: The same as Fig. 4.4 for the whole-luminosity models, where both the
accretion and cooling phases contribute to the memory. See Table 4.11 for details.

a multi-Gaussian structure of α(t)) is found, and the collapse to a black hole is

obtained a at t = 0.570 s post-bounce.

• Long-term evolution models. We now discuss scenarios where the entire ∼ 10 s

neutrino burst contributes to the memory due to a residual, non-zero long-term

anisotropy, see Fig. 4.5. While the idea of a multi-second long anisotropic emis-
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sion is perhaps speculative, it is motivated by the fact that some numerical sim-

ulations reach t ∼ 1 s post-bounce (where they end due to computational cost)

with a non-zero α(t) (Vartanyan et al., 2019), thus suggesting that anisotropy

could be present beyond t ∼ 1 s post-bounce in certain cases.

The first scenario, the whole luminosity-constant alpha model (wlCA, show in

Fig. 4.5, top pane) is the simplest realization, having a constant anisotropy

parameter. Consistently with the idea of a residual effect, here α is fixed at

a relatively small value (α = 5 10−3) compared to the accretion-only models.

A constant, feature-less anisotropy parameter could be realized if the SASI is

very weak or absent and the anisotropy has a different physical origin, i.e.,

in the structure of the progenitor star. This model might also be useful for

comparison with prior theory works where a constant anisotropy was assumed,

for example Suwa and Murase (2009), where the case of a system composed of

an accretion disk and a jet (producing a Gamma Ray Burst) was examined.

In the second scenario, called the whole luminosity-four Gaussians non-zero

alpha model (wl4GNZ), we attempt a more realistic description by combining

the time structure of α for the accretion phase (α(t) is the same as in model

Ac3G at for t < 1 s), with an additional extended anisotropy, represented by

a wide Gaussian centered at several seconds post-bounce, reaching a maximum

value of α ' 0.002. Physically, this late time feature of α could correspond

to a weak revival of the anisotropy due to late time effects. We note that

here the product Lν(t)α(t) is a smoothly decreasing function of t (for t & 1 s).

Therefore – in the absence of a direct physical interpretation of the parameters –

this model could simply be considered as a purely phenomenological description

of a multi-second long memory effect.
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4.3.2 Results: Memory In The Time- And Frequency-domain

We now present results for the memory strain in the time and frequency domain,

h(t) and hc, for the phenomenological models of Sec. 4.3.1 (Table 4.11). They are

shown in Fig. 4.67.

For the accretion-only model, h(t) reaches a plateau in less than one second,

corresponding to the characteristic duration of the episodes when the anisotropy

parameter is non-zero (see Sec. 4.2.2). Before the plateau, h(t) can change sign due

to the change of sign in α(t), as can be seen for the Ac3G model. Consistently with

the upper bound, Eq. (4.19), the late time, asymptotic value of h(t) is h ∼ 10−22

m for the two more conservative scenarios (the value being the same for the Ac1G

and Ac3G models is accidental, due to the choice of parameters, see Table 4.11); it

is largest – approaching ∼ 10−20 – for the most optimistic choice parameters, in the

LAc3G model.

For the long-term emission models, h(t) evolves over the cooling time scale of

several seconds. In the simplest case of constant anisotropy (wlCA model), it rises

up smoothly to a value close to ∼ 10−20. The rise time reflects the decay time of the

neutrino luminosity, and therefore it is directly comparable to the time profile of the

detected neutrino signal. For the more realistic case of a time-evolving anisotropy

parameter with a multi-second-wide Gaussian (wl4GNZ model), the evolution of h(t)

is the same as for the Ac3G model, with a weak late time rise that brings it to reach

∼ 10−21 at t ∼ 20 s.

In the figures for hc(f), one can check that the zero-frequency limit (ZFL) is indeed

7Note: The results for the models are color coded: The line color represents the luminosity for

a particular phase from Figs. 4.4 and 4.5 and the line styles denote the corresponding anisotropy

parameter from the same figures. In all the results shown above the distance to the source is taken

to be 10 kpc.
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Figure 4.6: Left panel : Plots showing the dimensionless gravitational wave strain
h(t) for various models: (a) Solid blue line - accretion phase-three bumps model
(Ac3G), Dot-dashed blue line - accretion phase-one bump model (Ac1G); (c) Dot-
long dashed orange line - long accretion-three bumps model (LAc3G); (e) Dashed
green line - whole luminosity-constant α model (wlCA), Dotted green line - whole
luminosity-four bumps non-zero α model (wl4GNZ). Right panel : Plots showing the
characteristic gravitational wave strain hc(f) (in Hz) for various models: (b) Solid blue
line - accretion phase-three bumps model (Ac3G), Dot-dashed blue line - accretion
phase-one bump model (Ac1G); (d) Dot-long dashed orange line - long accretion-
three bumps model (LAc3G); (f) Dashed green line - whole luminosity-constant α
model (wlCA), Dotted green line - whole luminosity-four bumps non-zero α model
(wl4GNZ).
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proportional (by factor 1/π) to the difference between the initial and final values of

h(t), Eq. (4.18) (Sec. 4.1.2). For the accretion only models, the ZFL is realized at

f . 0.1 Hz. Above this value, one can start to see structures related to the time

scale of the episode(s) of non-zero anisotropy. We note how, for models where the

anisotropy parameter does not change sign, hc is maximum at the ZFL. In the case of

the Ac3G model, instead, where α(t) changes sign, the fast variability in h(t) at t .0.5

s causes hc to have a maximum at higher frequency, f ∼ 2 Hz. The same feature is

seen, as expected, in the wl4GNZ model. For the two long-term evolution models,

the ZFL is reached only at f . 10−2 Hz, consistently with the longer evolution time

scale. Note that these two models (wlCA and wl4GNZ) give comparable values of

hc at f ∼ 1 Hz, but are drastically different above and below this point, with the

wlCA (wl4GNZ) model having significantly more power at lower (higher) frequency,

as expected from the different time scales of h(t) in the two models.

4.3.3 Detectability

To estimate the potential for a memory signal to be detected at realistic GW

detectors, we compare the characteristic strains hc(f) with a typical characteristic

detector noise amplitude, hn(f), averaged over the source position and polarization

angle. Broadly, if hc(f) & hn(f) for a sufficiently wide frequency interval, the memory

can be considered likely to be detectable, although a detailed estimate of detectability

is waveform specific, and would require a dedicated study.

Following Li et al. (2018), hn(f) can be expressed as

hn(f) =

√
fSn(f)

〈F 2
+(θ, φ, ψ)〉1/2

, (4.35)

where Sn(f) is the detector’s one-sided noise spectral density, in units of s (Hz−1)

and F+(θ, φ, ψ) is defined as the detector’s beam pattern function (see Sathyaprakash
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and Schutz (2009a); Moore et al. (2014); Schmitz (2021) for details). We choose the

DECIGO as representative of the potential of future detectors at the Deci-Hz scale.

DECIGO is planned to start, in prototype form, in the next decade (Kawamura et al.,

2020).
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Figure 4.7: Characteristic strain from the models along with a typical sky-averaged
noise curve from DECIGO Seto et al. (2001); Yagi and Seto (2011a); Shuichi Sato
and Masaki Ando (2017). In all the results shown above (including the bound) the
distance to the source is taken to be 10 kpc. The upper bound, hc = 2.04×10−20, Eq.
(4.19), is shown as a horizontal line (with arrows).

Fig. 4.7 shows the sensitivity curve of DECIGO, compared with the results from

the phenomenological models of Fig. 4.6, for a supernova at distance r = 10 kpc. It

appears that, for all our models, the memory signal is detectable up to frequencies

f ∼ 10 Hz, and the zero frequency limit is observable (although only barely for the

wlCA model). We note that for f > 3 Hz or so, the accretion only-models give

the strongest signal, whereas for f < 0.1 Hz hc is largest for the model with the

strongest long-term memory contribution (the wlCA model). Interestingly, in the

intermediate range, f ∼ 0.1 − 3 Hz, the LAc3G model would give the strongest

signal, indicating that long accretion collapses (e.g., failed supernovae) might be an

especially promising target for Deci-Hz detectors. Considering the 1/r dependence
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of the memory strain, from Fig. 4.7 we estimate that a signal similar to the LAc3G

model might be detectable at DECIGO for distances up to r ∼ 10 Mpc or so.

In Fig. 4.9 we illustrate the potential of different detector concepts to observe

the neutrino memory from a supernova. A signal from an optimistic model, the

LAc3G model, is shown for different distances to the supernova. For comparison,

we also plot the sensitivity curves for different next-generation detectors. We dis-

tinguish between the ground-based, space-based and atom-interferometer detectors.

Ground-based interferometers (Fig. 4.9a) have limited performance at sub-Hz fre-

quencies (due to seismic noise), and furthermore are not perfectly inelastic, a fact

that would lead to the dissipation of memory effect signatures over time (Favata,

2010). Among these, the Einstein Telescope (ET) (Sathyaprakash and Schutz, 2009a;

M Punturo and F Acernese, 2010; Michele Maggiore and Nicola Bartolo, 2020) has

the best potential, being able to observe the memory at f ∼ 1 − 5 Hz up to sev-

eral kpc of distance to see the memory for a nearby (. 1 kpc) supernova. In the

same frequency range, the Advanced Laser Interferometer Gravitational-wave Obser-

vatory (ALIGO) (Sathyaprakash and Schutz, 2009a; Aasi et al., 2015a) and Cosmic

Explorer (CE) (Reitze et al., 2019) could see a signature only for a near-Earth star

like Betelgeuse (r ∼ 0.1 kpc).

The drawbacks suffered by ground based detectors are overcome by space-based

interferometers (Fig. 4.9b), which have peak-performance at f ∼ 0.01− 1 Hz. These

are (in principle) completely inelastic, and therefore capable of preserving memory

signatures indefinitely. The most powerful proposed detectors of this type are the

BBO (Yagi and Seto, 2011a), and DECIGO; for both of them the sensitivity to the

signal extends up to ∼ 10 Mpc. The most optimistic detector scenario, represen-

tative of the distant future potential, is Ultimate DECIGO (Seto et al., 2001; Yagi

and Seto, 2011a; Shuichi Sato and Masaki Ando, 2017), for which the distance of
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sensitivity exceeds 100 Mpc. Although less powerful, the Advanced Laser Interferom-

eter Antenna (ALIA) (Bender et al., 2013) and Laser Interferometer Space Antenna

(LISA) (Sathyaprakash and Schutz, 2009a; Pau Amaro-Seoane and Stanislav Babak,

2017) should both be capable to detect a supernova at a typical galactic distance

(r ∼ 10 kpc). Note that LISA will probe the zero-frequency limit, since it has peak

sensitivity at the milli-Hz scale.

Interestingly, atom interferometry (Fig. 4.9c) has recently emerged as an alter-

native to large scale traditional interferometers. After an initial stage on ground,

most atom interferometer projects are envisioned to be in space, where their ultimate

potential will be realized8. A space-based version of the Mid-band Atomic Gravi-

tational Wave Interferometric Sensor (MAGIS) experiment (Graham et al., 2016),

at the Km-length scale, might be sensitive to a galactic supernova. A prototype of

MAGIS (with baseline of 100 m) is now approved for construction at the Fermi Na-

tional Laboratory (Graham et al., 2016, 2017; Coleman, 2019). A similar performance

as MAGIS is expected for the Atomic Experiment for Dark matter and Gravity Ex-

ploration in space (AEDGE) (El-Neaj et al., 2020), which is being reviewed by the

European Space Agency within its Voyage 2050 programme, the Atom Interferometer

Observatory and Network (AION) (Badurina et al., 2020) in its 1 km configuration,

and the European Laboratory for Gravitation and Atom-interferometric Research

(ELGAR) (Canuel et al., 2020a,b).

Other sensitivity curves shown in Fig. 4.9 are for TianQuin (Luo et al., 2016),

the Gravitational-wave Lunar Observatory for Cosmology (GLOC) (Jani and Loeb,

2020), the Astrodynamical Middle-frequency Interferometric Gravitational wave Ob-

servatory (AMIGO) (Ni, 2018; Ni et al., 2020) and the Zhaoshan long-baseline Atom

8An exception is the Zhaoshan long-baseline Atom Interferometer Gravitation Antenna

(ZAIGA) Zhan et al. (2019), which will be based underground.
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Figure 4.8: The same as Fig. 4.9, for the Ac3G model. For simplicity, only
sensitivity curves that intersect our theoretical predictions are plotted in a single
panel.

Interferometer Gravitation Antenna (ZAIGA) (Zhan et al., 2019).

A more conservative case for the observation of the memory effect is given by the

Ac3G model, as shown in Fig. 4.8. For this model, the distance of sensitivity of each

detector is reduced by about one order of magnitude, with MAGIS and DECIGO

being limited to under 1 kpc and 1 Mpc respectively.
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Figure 4.9: Characteristic strain of the supernova neutrino memory from the
LAc3G model for a supernova at distance r = 0.1, 1, 10, 103 kpc, along with the upper
bound from Eq. (4.19) (shown for r = 0.1 kpc). Detector sensitivity curves are shown,
grouped in different panels as follows: a) Ground-based detectors: ALIGO, ET, CE;
b) Space-based detectors: LISA, DECIGO, Ultimate DECIGO, BBO, TAIJI, Tian-
Quin, ALIA, GLOC, AMIGO ; c) Atom-interferometers: MAGIS, AEDGE, AION (1
km and 100 km), ZAIGA and ELGAR. See text for the full names of these projects
and references.
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Figure 4.10: Figure of a table showing the parameters relevant for luminosity
Lν(t) and anisotropy parameter α(t) along with the respective effective parameters
as defined in (4.30), corresponding to the different curves in Fig. 4.3. Note: The
normalization for the luminosity is different for the two curves, since the analytical
curve is just a curve superimposed on the raw data.
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Figure 4.11: Figure of a table showing the parameters relevant for the luminosity
Lν(t) and anisotropy parameter α(t) for different analytical models constructed along
with the respective effective parameters as defined in (4.30). Here, N is the number
of Gaussians in α(t).
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Chapter 5

MEMORY-TRIGGERED SUPERNOVA NEUTRINO DETECTION

In chapter 2, we discussed how neutrinos are major players in the emerging field of

multi-messenger astronomy. With gravitational waves (GWs) and photons, they have

the potential to probe the most extreme astrophysical phenomena in unprecedented

detail. Since SN1987A (see Sec. 2.7 for details), core collapse supernovae (CCSNe)

have been prime targets of multi-messenger observations, where neutrinos dominate

the energy output and carry direct information on the extremely dense environment

surrounding the collapsed core (see Sec. 2.3 for details). The ∼ 10 s burst of neutrinos

from a supernova will also allow tests of particle physics beyond the Standard Model.

The detection of an individual supernova neutrino burst is exciting as well as
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Figure 5.1: Plot showing the total number of core-collapse supernovae in 30 years
versus the total number of neutrinos obtained per megaton from the supernovae in
30 years. The mean neutrino energy is varied 11 MeV (blue) and 15 MeV (red).
The distance from earth is marked by markers in both cases. We have assumed
neutron-star forming collapses (NSFC) only (see Sec. 2.3.2 for details).
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challenging. A statistically significant observation is possible only for supernovae

within 1-3 Mpc from Earth (Ando et al., 2005; Kistler et al., 2011), where collapses

are rare, resulting in decades of waiting time. Fig. 5.1 illustrates this fact. We have

plotted the total number of core-collapse supernovae in 30 years versus the total

number of neutrinos obtained per megaton from the supernovae in 30 years. This

is done for mean supernova neutrino energy of 11 and 15 MeV. The distance from

earth is marked by markers in both cases. We assume only neutron-star forming

collapses (NSFC) only (see Sec. 2.3.2 for details). The details of the parameters and

the formulae required to obtain the plot will be discussed later in the chapter. But

the evident fact is for nearby distances which would lead to very high statistics, the

rate of core-collapse supernova is extremely low. For large distances, the number of

core-collapse supernova is very large but because the neutrino flux falls off as 1/D2

the statistics is extremely low.

An alternative is to search for the Diffuse Supernova Neutrino Background (DSNB),

from all the supernovae in the universe (Bisnovatyi-Kogan and Seidov, 1982; Krauss

et al., 1984; Beacom, 2010; Lunardini, 2017), which has a substantial cosmological

component. O(10 − 100) DSNB neutrinos could be detected in a decade (see, e.g.,

De Gouvêa et al. (2020)), and preliminary data could be available in just a few years

(Beacom and Vagins, 2004; Zhang et al., 2015; An et al., 2016; Abe et al., 2018a;

Askins et al., 2020; Abi et al., 2020).

Burst and DSNB searches lack sensitivity to the local universe, r ∼ 3− 100 Mpc,

where many supernova-rich galaxies are situated. Ideas to overcome this gap typically

rely on time-triggers that would allow to identify a single neutrino as signal instead

of background. One could use either a neutrino self-trigger — where 2− 3 neutrinos

observed less than 10 s apart can be attributed to a supernova with high confidence

(Ando et al., 2005; Adams et al., 2013) — , or the time coincidence with the O(102)
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Figure 5.2: Schematic diagram to illustrate the idea of memory-triggered supernova
neutrino detection.

Hz supernova GW signal from interferometers like LIGO-Virgo and its successors

(Pagliaroli et al., 2009; Abbott et al., 2016a; Abe et al., 2021). Both methods are

still limited to a few Mpc distance, except for the most optimistic GW models (see,

e.g., Szczepanczyk et al. (2021) and references therein) and futuristic multi-Megaton

neutrino detectors (Kistler et al., 2011)1.

In this chapter, we propose a new time-triggered method to detect supernova

neutrinos, which is potentially sensitive to supernovae up to ∼ 100 Mpc. The time

trigger is the observation of the gravitational memory signal caused by the neutrino

emission itself. Fig. 5.2 shows a schematic representation of the main idea. The core-

collapse supernova leads to an observable GW memory signal in the GW detectors

say at different times, t1, t2, t3, t4, . . . . We know the time duration of a supernova

neutrino burst, ∆t ∼ 10 s (see Sec. 2.3 for details). Now, one can go back to the

neutrino detector data and analyze the events within time-windows, t1 + ∆t, t2 +

1Astronomical observations of supernovae can not serve as time triggers, due to the O(1) hour

uncertainty in the time delay between the neutrino and the electromagnetic signal from the same

star.
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∆t, t3 + ∆t, t4 + ∆t, . . . . Since, the background in each of the time-windows is very

low, owing to the time duration of just ∼ 10 s; the probability of finding a signal event

(in this case a supernova neutrino) is high. This method of reducing the background

events by using a triggered time-window of a short duration allows collecting a clean

sample of signal events over time.

The memory is a non-oscillatory, permanent distortion of the local space time due

to the anisotropic emission of matter or energy by a distant source. The memory

due to neutrino emission by a supernova at distance r has characteristic strain hc ∼

10−23−10−21(10 kpc/r) and frequencies in the Deci-Hz band, f ∼ 0.1−3 Hz (Burrows

and Hayes, 1996; Mueller and Janka, 1997b; Kotake et al., 2009b; Muller et al., 2012;

Li et al., 2018; Vartanyan and Burrows, 2020). The memory develops ∼ 0.1 s from

the start of the neutrino emission, thus being an ideal time-trigger. Next generation

powerful Deci-Hz GW detectors, like the Deci-hertz Interferometer Gravitational wave

Observatory (DECIGO) (Seto et al., 2001; Yagi and Seto, 2011b; Sato et al., 2017;

Kawamura et al., 2021) and the Big Bang Observer (BBO) (Yagi and Seto, 2011b)

will provide robust triggers for supernovae at 10 Mpc and beyond (Mukhopadhyay

et al., 2021a). These would result in a nearly pure sample of ∼ 10 − 100 supernova

neutrino events from the local universe within a few decades; see our summary figure,

Fig. 5.6. Here we illustrate our proposed methodology and its physics potential.

5.1 Formalism

5.1.1 Gravitational Memory Signals

The supernova neutrino memory strain can be expressed as (Epstein, 1978; Turner,

1978; Mueller and Janka, 1997b)

hxxTT = h(r, t) =
2G

rc4

∫ t−r/c

−∞
dt′Lν(t

′)α(t′) . (5.1)
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Figure 5.3: Solid: the characteristic gravitational memory strain hc(f) for the NSFC
and BHFC models (thin and thick lines respectively). The distance to the supernova
is r = 1 Mpc. Dashed: sky-averaged noise curves for representative detectors (see fig.
5.6).

where c is the speed of light, t is the time post bounce and G is the universal gravi-

tational constant. Lν is the all-flavors neutrino luminosity and α ∼ O(10−3 − 10−2)

is the time-varying anisotropy parameter2. Simulations show that α(t) becomes non-

zero within a few ms post-collapse, during the accretion phase, and can change sign

multiple times within the first second, as a result of the dynamics of the matter near

the collapsed core. The behavior of α(t) at t > 1 s, during the cooling phase, is un-

known. Following Mukhopadhyay et al. (2021a), we consider two phenomenological

models for the memory: the first, characterized by a weaker and shorter anisotropic

2We consider the case where the observer is in a coordinate system where the ’×’ component of

the strain vanishes, see Mueller and Janka (1997b); Kotake et al. (2009b).
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phase, is representative of a neutron-star-forming collapse (NSFC) (see Sec. 2.3.2

for details); the second has larger and prolonged anisotropy, and could represent

a black-hole-forming collapse (BHFC) (see Sec. 2.3.3 for details). In both models,

α = 0 for t > 1 s3. Maximum values of rh(r, t) ∼ 26.5 cm and rh(r, t) ∼ 400 cm

are obtained for the two models respectively. In Fig. 5.3, we show the memory

characteristic strain, hc(r, f) = 2f |h̃(r, f)|, where h̃(r, f) is the Fourier Transform

of h(r, t). Also shown are the noise curves of Deci-Hz detectors, which are given by

the quantity hn(f) = Υ
√

5 f Sn(f), where Sn(f) is the power spectral noise density

(Sathyaprakash and Schutz, 2009b). We choose Υ = 1, 10−1, 10−3; the first and last

correspond to DECIGO and its optimal (futuristic) realization, Ultimate DECIGO

(Seto et al., 2001; Yagi and Seto, 2011b; Sato et al., 2017); the middle value represents

an hypothetical intermediate case (DECIGO+ from here on).

The detectability of a memory signal is determined by the signal-to-noise (SNR)

ratio of the detector, which is defined as (Moore et al., 2015)

ρ2(r) =

∫ ∞
−∞

d(logf)

(
hc(r, f)

hn(f)

)2

. (5.2)

We compute the probability of detecting a CCSN memory, PGW
det , for a fixed false

alarm probability PGW
FA = 0.1 (see App. F for details). This requires producing

Receiver Operating Curves (ROCs) (see App. F for details) in the plane PGW
det −PGW

FA ,

which we do following the formalism in Jaranowski and Krolak (2000) for N = 3

degrees of freedom (here N is set equal to the number of Gaussian functions used to

represent α(t), see Mukhopadhyay et al. (2021a)). The result is that PGW
det , at a fixed

PGW
FA , is an increasing function of ρ(r), through which it depends on the distance, r.

We define the GW detector distance of sensitivity, rGWmax such that PGW
det (rGWmax) = 0.5.

PGW
det (r) is shown in fig. 5.4 for our cases of reference. For DECIGO, and for NSFC and

3(See App. F for details on neutrino luminosity and anisotropy parameter in the two models).
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BHFC respectively, we have rGWmax ' 4 Mpc and rGWmax ' 33 Mpc. We find rGWmax ' 40

Mpc and rGWmax ' 335 Mpc for DECIGO+; for Ultimate DECIGO, rGWmax > 350 Mpc

for both population models.

5.1.2 Neutrino Signals

For neutrino detection, we consider a water Cherenkov experiment, where the

main channel of sensitivity is inverse beta decay (IBD), ν̄e +p → n + e+. For the

time-integrated (over ∆t = 10 s) ν̄e flux at Earth, Φ(r, Eν) we use analytical quasi-

thermal spectra of the form given in Keil et al. (2003). The average ν̄e energy is varied

in an interval motivated by numerical simulations (Sukhbold et al., 2016; Ertl et al.,

2016; Kresse et al., 2021), in a way to effectively account for neutrino oscillations.

The spectrum shape parameter, β, and the total energy in ν̄e are fixed. See Table 5.1

for details.

Model Energy

(×1053ergs)

β 〈Eν〉

(in MeV)

Ac.

ph.

ν̄e Lower Upper

NSFC 1.2 0.5 3 11 15

BHFC 2 0.45 2 15 20

Table 5.1: The neutrino flux parameters, from numerical simulations Sukhbold et al.
(2016); Ertl et al. (2016); Kresse et al. (2021). The Ac. ph. and ν̄e columns refer to the
all flavor energy in the accretion phase only (which contributes to the memory signal,
see text) and to the energy in ν̄e emitted over the time-triggered interval of 10 s. β is
related to the second momentum of the spectrum: β = (2〈Eν〉2−〈E2

ν〉)/(〈E2
ν〉−〈Eν〉2).

The predicted number of events in the detector from a CCSN at distance r is:

N(r) =

∫ Emaxν

Ethν

Npησ(Eν)Φ(r, Eν) dEν , (5.3)

151



0.01

0.10

1

10

100

R
C
C
S
N
(<
r)/
yr

0.5 1 5 10 50 100
0.5

0.6

0.7

0.8

0.9

1.0

r/Mpc

P
de
t(r
)

DECIGO

DECIGO+

Ult. DECIGO

 
(1 event/Mt)
⟨Eν⟩ = 11 MeV

NSFC

Ana
lyt

ica
l

 
(1 event/Mt)
⟨Eν⟩ = 15 MeV

 
(2 events/Mt)
⟨Eν⟩ = 11 MeV

 
(2 events/Mt)
⟨Eν⟩ = 15 MeV

Nakamura et.a
l.

PG
W

de
t

(r)
,P

ν (r)

R S
N

(<
r)/

yr
0.01

0.10

1

10

100

R
C
C
S
N
(<
r)/
yr

0.5 1 5 10 50 100
0.5

0.6

0.7

0.8

0.9

1.0

r/Mpc

P
de
t(r
)

DECIGO

DECIGO+

Ult. DECIGO

 
(1 event/Mt)
⟨Eν⟩ = 15 MeV

BHFC

Ana
lyt

ica
l

 
(1 event/Mt)
⟨Eν⟩ = 20 MeV

 
(2 events/Mt)
⟨Eν⟩ = 15 MeV

 
(2 events/Mt)
⟨Eν⟩ = 20 MeV

Nakamura et.a
l.

PG
W

de
t

(r)
,P

ν (r)

R S
N

(<
r)/

yr

Figure 5.4: Detection probabilities for a memory signal, PGW
det (r), at three GW

detectors of reference, and neutrino detection probabilities, P ν(1, r) and P ν(2, r) (see
eq. (5.4)). Shadings describe the variations with the varying neutrino spectrum, see
Table 5.1. The left (right) panel is for NSFC (BHFC). Also shown is the cumulative
rate of core collapses (vertical axis on the right). See labels on the curves for details.
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where Np is the number of target protons, η = 0.9 is the detection efficiency (Hirata

et al., 1988; Abe et al., 2011; Kyutoku and Kashiyama, 2018) and σ(Eν) is the IBD

cross-section (Strumia and Vissani, 2003). We take an energy interval
[
Eth
ν , E

max
ν

]
=

[19.3, 50] MeV to avoid the spallation background at low energy and the atmospheric

neutrino background at high energy (Abe et al., 2011, 2018a; Kunxian, 2015). We

find N(1 Mpc) ' 5− 12 and N(1 Mpc) ' 12− 18 for NSFC and BHFC respectively,

by varying the mean ν̄e energy in the intervals given in Table 5.1.

The Poisson probability of observing N ≥ Nmin neutrino events in a detector is

P ν(Nmin, r) =
∞∑

n=Nmin

Nn(r)

n!
e−N(r) . (5.4)

It is plotted for Nmin = 1, 2 in fig. 5.4 for the two models of reference. As expected,

P ν(Nmin, r) declines rapidly at r & 3 Mpc.

5.2 Memory-triggered Neutrino Observations

5.2.1 Event Rates

To estimate the rate of memory-triggered neutrino events, we model the rate of

core collapses as a function of r. For r . 11 Mpc, we use the rates for individual

galaxies from Nakamura et al. (2016). For r > 11 Mpc we assume a constant volu-

metric rate of RSN = 1.5 10−4 Mpc−3yr−1 (the evolution with redshift is negligible

for the distances of interest here). The cumulative rate (total rate of core collapses

with r < D) is shown in fig. 5.4.

The number of memory-triggered neutrino events from all supernovae within a

distance D, over a detector running time ∆T can be calculated as a sum over all the

galaxies (index j = 1, 2, ...), at distance rj < D:

N trig
ν (D) = ∆T

∑
j,rj<D

RjN(rj)P
GW
det (rj) , (5.5)
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Figure 5.5: Number of background events and of memory-triggered neutrino events
from collapses at distance r < D, as a function of D, for a Mt water Cherenkov
detector and 30 years running time. The upper to lower shaded regions are for
triggers from Ultimate DECIGO, DECIGO+ and DECIGO (the latter is invisible in
the left panel). Shadings describe the effect of varying the neutrino spectrum, see
Table 5.1. Left panel: homogeneous NSFC population. Right: mix of 60% NSFC
and 40% BHFC.
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where Rj indicates the supernova rate in the galaxy j. This discrete expression is

replaced by a continuum one, involving an integral, for D > 11 Mpc, where the

cosmological supernova rate is used.

We now discuss the background of the time-triggered neutrino search. The number

of supernova memory signals observed in the time ∆T is, N trig
SN (D) = ∆T

∑
j,rj<D

RjP
GW
det (rj), and the number of expected background events is,

N trig
bckg(D) = N trig

SN (D)λ∆t ,

where, λ ' 1313 events/year is the background rate4 in the detector (Abe et al.,

2011, 2018a; Kunxian, 2015). Note that the background level is reduced by a factor

εbckg=N
trig
SN (D)∆t/∆T compared to an un-triggered search.

We limit our study to neutrino events (eq. (5.5)) from CCSNe in the cosmic

volume with 4 < D < 350 Mpc, thus accounting for the fact that a nearby supernova

(D < 4 Mpc) is unlikely to occur in three decades time. The upper bound on D is

justified because beyond it the total event rate becomes dominated by background.

Experimentally, a distance cut can be accomplished in different ways. For NSFC,

one can make a selection using estimates of D from astronomy follow ups, which

will benefit from the alerts from the memory detection and should have excellent

sensitivity to supernovae in the local universe (see, e.g., Kochanek et al. (2017);

Hiramatsu et al. (2021a); Valenti et al. (2016); Spiro et al. (2014); Hosseinzadeh et al.

(2018) for dedicated projects). In the absence of an optical counterpart (BHFC), a

similar (although less efficient) data selection can be performed using minimal input

from theoretical models, e.g. to obtain conservative upper limits on the distances

of individual observed BHFCs via GW memory signals. In the mature stage of this

4Some details about background events and a discussion on triggered and untriggered background

rates is provided in App. F.
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search, specifically designed data-analysis algorithms – exploiting the correlation of

multiple observables – could reduce the level of model-dependency to a minimum.

5.2.2 Results

Our main results are in Fig. 5.5 and Fig. 5.6 for ∆T = 30 yrs and for two

scenarios: (i) a supernova population entirely comprised of NSFC; and (ii) a mixed

population with 60% NSFC and 40% BHFC. Fig. 5.5 shows N trig
ν (D) as a function

of D. We observe the (expected) trend N trig
ν (D) ∝ D for D . rGWmax

5, with a

flattening of the curves at larger D due to the loss of sensitivity of the GW detector.

For case (i), time triggers from DECIGO+ will result in N trig
ν ∼ 10 − 30. For Ult.

DECIGO, N trig
ν ∼ 100−300 is expected6. For the mixed population (case (ii)), results

for Ult. DECIGO change only minimally, due to the different neutrino parameters

between NSFC and BHFC. Instead, N trig
ν increases dramatically, surpassing 100, for

DECIGO+, due to the larger distance of sensitivity to BHFC. Indeed, the number

of triggered neutrino events from collapses with 30 < D < 350 Mpc is dominated

by BHFC (see also Fig. 5.4). For this mixed population scenario, even DECIGO

could be effective, providing a few triggers of BHFC up to D ∼ 30 Mpc, resulting

in N trig
ν ∼ 10. As Fig. 5.5 shows, in all cases the signal exceeds the background for

triggers with r . 100 Mpc. For Ultimate DECIGO, even for the largest D the signal

is comparable to the background, and would cause a statistically significant excess.

Our summary figure, Fig. 5.6, shows N trig
ν (350 Mpc), as a function of hn, together

with representative values of rGWmax. Roughly, we find N trig
ν ∝ 1/hn, for hn & 10−26,

with a flattening at lower values of hn, due to upper cutoff on D. It appears that,

5Recall that, in the continuum limit, the number of supernovae scales like D3 and the flux dilution

factor like D−2.
6For comparison, our estimated number of CCSNe within 350 Mpc is N trig

SN ∼ 1.21× 106.
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even for the most conservative parameters, a O(10) noise abatement with respect to

DECIGO (i.e., DECIGO+) is sufficient to obtain a signal at a Mt scale detector in

∼ 20− 30 years.
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Chapter 6

DISCUSSIONS AND CONCLUSION - I

The overall theme of this work has been to investigate what information does neutrino

emission from a core-collapse supernova provide us with, especially at the dawn of

multi-messenger astronomy. In the era of multi-messenger astronomy gravitational,

neutrino and gamma ray observations are combined to extract information about as-

trophysical sources and phenomena in the universe. Some of these are at the largest

energy scales known and hence act as nature’s own laboratories to test particle and

exotic physics. This may help in extending the current Standard Model. Since neu-

trinos are produced in most of these extreme environments (in the Sun, supernovae.

. . ), they have become a centerpiece of modern astronomy.

CCSN is the process by which a massive star (> 10 M�) dies. Its lifetime involves

several stages of nuclear burning which finally lead to pressure loss and ultimately

the gravitational col- lapse of the star’s core and its explosion. The core collapse is

followed by the release of ∼ 3×1053 ergs of gravitational energy, most of which (99%)

is emitted in the form of neutrinos over a time-scale of ∼ 10s. These supernova neu-

trinos are detectable in current (Super-Kamiokande) and future (Hyper-Kamiokande,

DUNE, JUNO) neutrino detectors, making them ideal to probe the phenomena of

CCSN and understand the nature of neutrino in general.

We focused our efforts to study the directional information carried by presuper-

nova neutrinos and how it can be used to localize a CCSN and ultimately an early

warning system (see chapter 3). Our work is the first dedicated study of the localiza-

tion of a star using pre-supernova neutrinos. Since it serves as an early alert it will

allow astronomers, for the first time, to observe a star prior to and during collapse.
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This would help constrain models of stellar evolution. For fast exploding stars pre-

supernova neutrinos would be the only useful alert since they precede the supernova

neutrino burst by hours. An early alert will also help in testing the emission of exotic

particles (e.g., axions) during a CCSN by providing information about where to point

detectors. It will also help in preparing gravitational wave (GW) detectors to observe

GWs from the CCSN, thus facilitating multi-messenger observations.

We have also explored the potentials of the next generation deci-Hz GW detectors

to observe an unique effect produced by supernova neutrinos - the gravitational wave

memory effect (see chapter 4). This in essence is a multimessenger effort which

would combine the neutrino observations with the GW observations from a CCSN, to

provide crucial information about the internal dynamics of the collapse and help in

constraining models. It also complements numerical calculations of the memory which

are computationally intensive. After verifying that our phenomenological models are

robust and match the existing numerical simulations, we predicted the GW strain

for plausible scenarios including the case of a star collapsing into a black hole. We

found that the GW strain for a galactic supernova (D ≤ 10 kpc) is of the order

∼ 10−22 − 10−21, and develops over a time scale related to the anisotropy of the

neutrino emission. We also analyzed the potential of various kinds of GW detectors

(ground, space, atom interferometers) to detect the memory signatures. The ideal

detectors to observe the GWM would be the future space-based ones like DECIGO

and BBO. An ideal version of DECIGO called Ultimate DECIGO would be able to

see the memory effect from a CCSN at 100 Mpc or more which is far beyond the

reach of neutrino detectors.

This led us to the novel idea of using these GW memory observations as triggers

for neutrino detectors, to collect a clean sample of supernova neutrinos from CCSN

upto ∼ 100 Mpc (see chapter 5). This combination of a deci-Hz GW detector and a
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Mt neutrino detector will allow the latter to surpass its current sensitivity limits to

detect a nearly background-free sample of ∼ 3 − 30 supernova neutrino events per

Mt per decade of operation, from large distances (∼ 10 − 100Mpc), which will open

a new avenue to studying supernova neutrinos.

We hope our work, will prove to be a tiny yet significant contribution in these

areas. In this chapter, we discuss the main highlights of our work including some

general comments and relevant future directions.

In chapter 3, we demonstrated that it will be possible to use the neutrino IBD

signal at a large liquid scintillator detector to obtain an early localization of a nearby

pre-supernova (D . 1 kpc). The method we propose is robust, as it has been used suc-

cessfully for reactor neutrinos, and it is sufficiently simple that it can be implemented

during a pre-supernova signal detection. For a detector where the forward-backward

asymmetry is about 10% (realistic for JUNO), and 200 events detected (also realis-

tic at JUNO, for a star like Betelgeuse) the angular resolution is β ' 60◦, which is

moderate, but sufficient to exclude a large number of potential candidate progenitors.

The method has the potential to become even more sensitive if it is used with LS-

Li, and therefore it provides further motivation to develop new experimental concepts

in this direction. For example, 200 signal events with forward-backward asymmetry

of ∼40% would result in a resolution of about 15◦, and the possibility to uniquely

identify the progenitor star.

In a realistic situation, as soon as a presupernova signal is detected with high

confidence (a few tens of candidate events), an alert with a coarse localization infor-

mation can be issued, followed by updates with improved angular resolution in the

minutes or hours leading to the neutrino burst detection.

Using the Patton et al. (2017a) presupernova model, we find that (see Figure 3.6)

when the number of events reaches N = 100 (' 1 hour pre-collapse for Betelgeuse),
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the angular information is already close to optimal, since only a minimal improvement

of the positional estimate can be gained at subsequent times. Note, however, that

our results are conservative. According to other simulations where the presupernova

neutrino luminosity reaches a detectable level over a time scale of days (Kato et al.,

2015; Guo et al., 2019), it might be possible to detect a larger number of events,

resulting in even better angular resolutions in the last 1-2 hours before the core

collapse.

It is possible that, when a nearby star reaches its final day or hours before becom-

ing a supernova, a new array of neutrino detectors will be available. A large liquid

scintillator experiment like the proposed THEIA (Askins et al., 2019), which could

reach 80 kt (fiducial) mass, could observe more than 103 IBD events, with an angular

resolution of at least ∼ 30◦. The resolution of THEIA would be improved by using a

water-based liquid scintillator, where the capability to separate the scintillation and

Cherenkov light would result in enhanced pointing ability (e.g., Askins et al., 2019) for

IBD, and in the possibility to use neutrino-electron elastic scattering for pointing. A

subdominant, but still useful, contribution to the pointing effort – at the level of tens

of events – will come from O(1) kt liquid scintillator projects like SNO+ (Andringa

et al., 2016) and the Jinping Neutrino Experiment (Beacom et al., 2017), for which

the deep underground depth will result in very low background levels. Further activ-

ities on directionality in scintillators are ongoing (e.g., Biller et al., 2020). Data from

elastic scattering events at water Cherenkov detectors like SuperKamiokande (Simp-

son, 2019) and possibly the planned HyperKamiokande (O(100) kt) (Abe, 2016), will

also contribute, despite the loss of statistics (compared to liquid scintillator) due to

the higher energy threshold (∼ 5− 7 MeV). In these detectors, a possible phase with

Gadolinium dissolved in the water, like in the upcoming SuperK-Gd, (Beacom and

Vagins, 2004; Simpson, 2019), will allow better discrimination of the IBD events,
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resulting in an enhanced pointing potential.

In addition to new experimental scenarios, a different theoretical panorama may be

realized as well, and there might be novel avenues to conduct fundamental science tests

(e.g., searches for exotic light and weakly interacting particles) using presupernova

neutrinos.

In chapter 4, we present a dedicated study of the phenomenology and detectability

of the gravitational memory effect due to the neutrino emission from a core collapse

supernova. We place a theoretical upper bound on the strain, h(t) (Eq.(4.15)), and

present phenomenological (analytical) description of the expected signal in time and

frequency domain (Eqs. (4.29) and (4.31)). This description reproduces the results of

numerical simulations well, and its analytical form can be considered a generalization

of earlier toy models of the memory (e.g., Favata (2011)). We find that, depending

on the type of scenario and on the choice of parameters, h(t) and hc(f) vary between

∼ 10−23 and ∼ 10−20. Due to the time-varying anisotropy parameter, α(t), the

memory signal is generally not straightforwardly related to the time profile of the

neutrino luminosity profile. Rather, it could receive its dominant contribution from

the second (or less)-long accretion phase, thus having substantial power at f & 1 Hz.

Naturally, large uncertainties affect our models, mostly due to our incomplete

knowledge of the size and time evolution of the anisotropy parameter. While the

accretion-only models are supported by state-of-the art numerical simulations of su-

pernovae, models with long-term anisotropy are necessarily more speculative, and

have a character of plausibility. They suffer of uncertainties at the order of magni-

tude level. Let us also note that the total, net memory observed at Earth is uncertain

due to the (uncertain) contribution of anisotropic matter ejection, which adds to the

term due to neutrinos. The matter memory should be subdominant at low frequency

(f . 1 Hz), and become progressively more important in the high frequency regime,
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see, e.g., Kotake et al. (2009a); Vartanyan and Burrows (2020).

Our results confirm that, with the advent of Deci-Hz detectors, the observation of

the gravitational memory from a collapsing star will be realistic. Therefore, the study

of memory waveforms will become an important part of the multi-messenger approach

to studying stellar core collapse, together with the observations of the neutrino burst

at neutrino detectors (and, for near-Earth stars, of the pre-supernova neutrino emis-

sion, Patton et al. (2017a); Mukhopadhyay et al. (2020a)), of gravitational waves at

10-100 Hz, and of the electromagnetic emission (if the collapse results in a supernova

explosion). The best prospects for the supernova memory detection are at the most

powerful Deci-Hz detectors like BBO and DECIGO, for which the distance of sensi-

tivity can reach ∼ 10 Mpc for the most optimistic models, and ∼ 1 Mpc for more

conservative scenarios. Interestingly, these distances of sensitivity are comparable, or

even larger than the typical reach of the largest realistic neutrino detector, a 0.3-1 Mt

water Cherenkov detector like the approved HyperKamiokande Abe et al. (2018b).

This implies that a memory detection might be an important early supernova alert

for extragalactic supernovae, that can be used for astronomy and neutrino follow ups.

The most immediate physics potential of the observation of a neutrino memory

signal is the possibility to probe the anisotropy parameter, α(t). From the memory

alone – especially if probed over a wide range of frequencies, through the interplay

of multiple interferometers – it might be possible to distinguish between drastically

different scenarios. In particular, a fast-rising, fast-plateauing memory signal, with

frequency peak at or beyond 1 Hz would be an indication of an accretion-only scenario,

whereas a slower rising (multi-second time scale), lower frequency (peak at f . 1 Hz)

memory strain will indicate the presence of a long-term anisotropy.

For a galactic supernova, the interplay with a high statistics observation of the

neutrino burst will open the possibility of precision measurement, because α(t) can be
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extracted by comparing the memory data with the measured total neutrino luminosity

(for which high sensitivity to the non-electron neutrino flavor is important, a fact

that strengthens the motivations of efforts on this front). The measured anisotropy

parameter could carry imprints of the hydrodynamics happening during the core-

collapse, such as SASI, turbulence and chaotic dynamics, thus providing an important

test of numerical models of core collapse. A detailed comparison of the memory

features with SASI signatures observed in neutrinos and/or in gravitational waves at

∼ 100 Hz may allow to pinpoint important events in the dynamics of the collapsed

star, such as a change in the plane of the spiral SASI. Using the neutrino burst data,

it might also be possible to disentangle the matter contribution to the memory from

the neutrino one, thus offering a new handle on the phenomena that contribute to it.

Outside the field of multimessenger astronomy, the theme of neutrinos as sources

of the gravitational memory is worth further exploration for its significance in general

relativity. In particular, beyond the linear memory studied in this work, it would be

worth to ask if neutrino emissions would play any significant role into the non-linear

memory effect Christodoulou (1991); Blanchet and Damour (1992), which accounts for

the contribution to the memory from the gravitational wave itself. It has been shown

Thorne (1992) that the non-linear memory can be described by a linear memory in

which the sources are the individual radiated gravitons; therefore, one might wonder

if an analogous effect occurs from the emitted neutrinos. Even more recently, it has

been argued Favata (2010) that the non-linear memory has a large contribution in the

gravitational waveform which enter at leading order in a post-Newtonian expansion.

The reason of this large contribution being the hereditary nature of the memory, which

can be build from long times for some long lived asymmetries of the source. Another

exciting aspect of the non-linear memory, is its connection to the group of symmetries

for asymptotically flat space-time metrics Strominger (2014) which is directly related
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to the study of the vacuum in quantum gravity and the infrared structure of gravity.

Along the same lines, it has been shown that the non-linear memory is just equivalent

to Weinberg’s theorem for soft graviton production Strominger and Zhiboedov (2016).

All these new developments motivate a study of the non-linear memory in the novel

context of neutrino emission.

The gravitational memory could be the next major prediction of general relativity

to receive an impressive experimental confirmation, in a not-too-distant future. It

is interesting that such a first observation will be directly linked to another exciting

event, the detection of a neutrino burst from a galactic (or near-galactic) supernova.

Learning about gravity from neutrinos, and vice-versa, will be a new and fascinating

development in multimessenger astronomy.

In chapter 5, we described a new multimessenger approach to core collapse super-

novae, where a time-triggered search of supernova neutrinos is enabled by observing

the gravitational memory caused by the neutrinos themselves. This scenario could

be realized a few decades from now, when powerful Deci-Hz interferometers (noise

hn . 10−25) and Mt-scale neutrino detectors start operating. For optimistic parame-

ters, DECIGO and HyperKamiokande (mass M = 0.260 Mt) might already achieve a

low statistics observation. This approach will also enable joint analyses of neutrino,

GW and light curves of CCSNe in local universe.

Our proposed method will deliver a sample of neutrino events from supernovae

in the local universe, from which the main neutrino properties – i.e, the (population-

averaged) energy spectra and time profiles– will be measured. These can then be

compared to the same quantities from (1) SN 1987A, to measure the deviation be-

tween SN1987A and an average local supernova (the same exercise can be done for a

future nearby supernova burst, if it occurs); (2) the DSNB, to distinguish the contri-

butions to the DSNB by CCSNe in the distant universe and by other transients (e.g.
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binary mergers). The comparison between cosmological and local contributions to

the DSNB will test hypotheses of how the supernova progenitor population evolves

with the distance. Even within the local-neutrino sample, one could test the evolu-

tion with distance, if the latter is estimated for each supernova using multi-messenger

observations (e.g., the amplitude of the memory signal and astronomical imaging).

Correlating memory and neutrino data might reveal two distinct populations, like

those described here (NSFC and BHFC), which could be statistically separated. For

example, events having a relatively large neutrino-memory time separation (bigger

than 1 s, as black hole formation typically occur within 1 s, cutting off the neutrino

luminosity (Woosley et al., 2002; Sumiyoshi et al., 2006; O’Connor and Ott, 2011))

and(or) followed by electromagnetic (EM) signals of a CCSN could be attributed to

NSFC. The possibility to study such sub-population individually is unique of this

local-collapses neutrino sample. Additionally, our method provides a unique chance

to jointly analyze neutrino and follow-up EM signals (LSST Science Collaboration,

2009; Kochanek et al., 2017) from the same NSFC. Although only ≈ 1 event would

be detected from a specific NSFC, it can help to determine the time when the core

of a NSFC collapses and the shock is formed. Such estimation would be relatively

precise, considering that the neutrino burst from a NSFC only lasts for ≈ 10 s. A

supernova EM signal is delayed relative to the neutrinos, by at least the time it takes

the shock to propagate through the envelope, typically hours. Measuring this time

delay will provide a crucial confirmation and can test the variation of the CCSNe

explosion mechanism.

To conclude, we have demonstrated that the interplay between neutrino detectors

and sub-Hz GW observatories will open a new path to studying supernova neutrinos.

Although several decades may pass before the first results become available, the work

of designing the next generation of experiments is well under way, and we hope that
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our work will contribute to its progress.

When the next galactic core-collapse supernova happens, it will be a very impor-

tant event for the entire physics community, especially the neutrino physics commu-

nity. Immense progress will be made in the context of understanding the complex

dynamics of a CCSN and understanding the nature of neutrinos. Perhaps, if one

is optimistic, it will also take us closer to answering a lot of the open questions we

mentioned in the introduction (see chapter 1). We hope this work will be an aid to

that effort. For now, we wait and continue to extend the ideas, so that when the day

comes we are prepared to take the next leap.
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Chapter 7

QUANTUM FIELDS IN TIME- AND SPACE-DEPENDENT BACKGROUNDS

An important avenue of research in theoretical physics is the dynamics of quantum

fields on classical backgrounds. The interplay of classical and quantum degrees of

freedom (Cooper and Mottola, 1989a; Brout et al., 1995; Anderson, 1995; Halliwell,

1998; Hertzberg, 2016) has been of interest and is particularly relevant in the context

of cosmology (Birrell and Davies, 1984; Ford, 2021; Armendariz-Picon, 2020), grav-

itational collapse (Hawking, 1975; Narlikar, 1978; Alberghi et al., 2001; Vachaspati,

2009), condensed matter systems (Kasper et al., 2016), etc. What generically hap-

pens in such systems is, the quantum fields get excited. This phenomenon is known as

particle production. Particle production generally happens whenever the background,

that a quantum field is coupled to, has some associated time-dependence. When the

background is time-dependent, the time-translation symmetry is broken. Then the

energy of the quantum particles need not be conserved, and the quantum field may

absorb energy from the background. Particle production has been well-studied (Zel-

dovich and Starobinsky, 1971; Hu, 1974; Berger, 1975; Hu and Parker, 1977, 1978).

But, one might choose to go a step forward and ask, what happens to the background

itself as a result of particle production? The simple answer is to this is, the quantum

excitations backreact on the classical field and modify its dynamics. A key question

that arises out of this is: how does one account for this in various physical systems?

The answer to this question is what we address in the following chapters.

Interesting phenomenon involving particle production and backreaction include

backreaction of Hawking radiation during gravitational collapse (Hawking, 1975),

particle production during inflation (Kofman et al., 1994) and the backreaction of
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Schwinger pair production on the background electric field (Schwinger, 1951; Cooper

and Mottola, 1989b; Kluger et al., 1991; King et al., 2012), systems of simple harmonic

oscillators with quadratic couplings (Vachaspati, 2017). For example, in inflationary

cosmology the inflaton rolls down some potential while exciting other quantum fields

to reheat the universe. Phase transitions in which an order parameter evolves to

develop a vacuum expectation value while also interacting with other quantum degrees

of freedom, are also examples of phenomenon involving interplay between classical and

quantum degrees of freedom. Such problems have a rich history but the attention has

mostly focused on the quantum effects in fixed classical backgrounds.

Mathematically speaking, assume a quantum field ψ in a time-dependent back-

ground. The field ψ will obey the classical equation of motion as follows,

�ψ + ω2(t) ψ = 0 , (7.1)

where, the D’Alembertian operator may also include a time-dependent metric and ω2

may arise due to interactions with the space-time dependent background field. The

trivial case, ψ(t, x) = 0, is of course obtained if we have trivial initial conditions, ψ(t =

0, x) = 0 and ψ̇(t = 0, x) = 0. This represents a situation when there is no radiation.

But the story is different in case you treat the system quantum mechanically. In that

case, quantum modes of ψ will get excited leading to radiation. This is what leads to

particle production in the systems mentioned above.

The way we tackle these class of problems involving quantum fields coupled to

a classical time-dependent background is by using a technique called the Classical

Quantum Correspondence (CQC). This was developed in Vachaspati and Zahariade

(2018a,b). The CQC enables us to study particle production and the effects on the

dynamics of the classical background due to backreaction. The CQC is similar to

the semiclassical approach in which the classical background dynamics couples to the
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expectation value of the quantum operators in the equation of motion. The catch is

that the expectation value is to be taken in a quantum state of the fields that itself

depends on the dynamics of the classical background. In the CQC it is realized that

the expectation value can be evaluated in a quantum state in an arbitrary background

in terms of certain classical variables that satisfy classical equations of motion with

specific initial conditions. The solution of the full classical problem obtained using

CQC contains all information about the quantum variables and also the backreacted

dynamics of the classical background. This is what makes the CQC a powerful and

a well-suited method for tackling such problems. However, it should be noted that

the CQC method is identical to the “mode function method” used previously in the

literature (Aarts and Smit, 2000; Borsanyi and Hindmarsh, 2008, 2009; Saffin et al.,

2014).

We will review the CQC for a quantum simple harmonic oscillator in Sec. 7.1.

It is generalized for the case of fields in Sec. 7.1.1. We conclude the chapter with a

brief discussion of the various systems where the CQC has been used to investigate in

Sec. 7.2. The other applications of the CQC, relevant to this work has been discussed

in detail in the following chapters 8, 9, and 10.

7.1 The Classical Quantum Correspondence (CQC)

In this section we reproduce the derivation of CQC as done in Vachaspati and

Zahariade (2018a). The most simple case that we can consider to understand the

CQC, is a quantum simple harmonic oscillator (SHO with a time-dependent frequency.

In the CQC, we will show that the quantum dynamics of this one-dimensional SHO

can be mapped to a two-dimensional classical dynamics equation with some particular

initial conditions. We will work in the Heisenberg picture. The Hamiltonian for the
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quantum simple harmonic oscillator with a time-dependent frequency is given by,

Ĥ =
p̂2

2m
+
mω(t)2

2
x̂2 , (7.2)

where, ω(t) is some time-dependent frequency. The creation and the annihilation

operators defined in the usual way are,

â =
p̂− imωx̂√

2mω
, â† =

p̂+ imωx̂√
2mω

. (7.3)

We can show that from above, [â, â†] = 1. The Hamiltonian can then be expressed in

terms of the creation and annihilation operators as,

Ĥ = ω(t)

Å
â†â+

1

2

ã
. (7.4)

Differentiating the creation and annihilation operators with respect to time gives,

∂â

∂t
= − ω̇

2ω
â†,

∂â†

∂t
= − ω̇

2ω
â . (7.5)

Recall, in the Heisenberg picture, an operator Ô evolves in time as,

dÔ

dt
= −i[Ô, Ĥ] +

∂Ô

∂t
(7.6)

Thus for â and â†, in the Heisenberg picture we have,

dâ

dt
= −i[â, Ĥ] +

∂â

∂t
= −iωâ− ω̇

2ω
â† (7.7)

dâ†

dt
= −i[â, Ĥ] +

∂â

∂t
= +iωâ† − ω̇

2ω
â (7.8)

Particle production is generally treated using the Bogoliubov transformations. This

involves writing the creation and annihilation operators at time t as a linear combi-

nation of the creation and annihilation operators at the initial time t0 = t = 0 with

some arbitrary time-dependent coefficients. In this case, to obtain the excitation of

the SHO because of ω(t), we can write the Bogoliubov transformations as,

â(t) = α(t)â0 + β(t)â†0, â†(t) = α∗(t)â†0 + β∗(t)â0 (7.9)
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where â0 and â†0 are the annihilation and creation operators in Eq. (7.3) at the initial

time, t = 0 = t0, α and β are some arbitrary complex coefficcients. From Eqs. (7.7),

(7.8), we can write,

α̇ = −iωα− ω̇

2ω
β∗ (7.10)

β̇ = −iωβ − ω̇

2ω
α∗ (7.11)

The expectation value of the energy of the qunatum SHO in the vacuum state is thus

given by,

Eq(t) ≡ 〈H〉 = ω(t)

Å
|β|2 +

1

2

ã
. (7.12)

We can now define a new complex-variable z, z ≡ ξ + iχ, where, ξ and χ are its real

and imaginary parts. Rewriting, Eqs. (7.10) and (7.11) in terms of z gives us the

following,

α =

…
m

2ω
(ż∗ − iωz∗) , (7.13)

β =

…
m

2ω
(ż − iωz) , (7.14)

One can notice right away that, the expressions for α and β are identical to the

definition of the annihilation operator a in Eq. (7.3) if we think of z and mż as

representing the complexified position and momentum operators for one dynamical

variable and similarly z∗ and mż∗ for a second dynamical variable. Similarly the

complex conjugates α∗ and β∗ then correspond to the expression for the creation

operator a† in Eq. (7.3). The equation of motion for z can be found by inserting

Eqs. (7.13) and (7.14) in Eqs. (7.10) and (7.11). It is given by,

z̈ + ω2(t)z = 0 , (7.15)

which as mentioned earlier, describes the dynamics of a two-dimensional complex

SHO. It is easy to see that ξ and χ satisfy the classical equations of motion

ξ̈ + ω2(t)ξ = 0, χ̈+ ω2(t)χ = 0. (7.16)
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Recall, that this method only works for some particular set of initial conditions. We

can find them by noticing that, a(0) = a0, corresponds to: α(0) = 1, β(0) = 0, which

implies,

z(0) =
−i√
2mω0

, ż(0) =

…
ω0

2m
, (7.17)

In terms of ξ and χ, the above initial condditions can be easily reqritten as,

ξ(0) = 0, ξ̇(0) =

…
ω0

2m
; χ(0) =

−1√
2mω0

, χ̇(0) = 0 (7.18)

where ω0 = ω(t = 0). The quantum dynamical problem has thus been completely

reduced to a classical evolution problem for arbitrary backgrounds, ω(t). All the

information required is contained in the complex variable z, which solves a classical

equation of motion. The backreaction on the classical background due to the quantum

particle production is taken into account using the semi-classical approximation and

is evaluated using z. This will be discussed for specific models in later chapters (see

chapters 8, 9, and 10).

7.1.1 CQC For Fields

In this section we elaborate how the CQC discussed above can be generalized to

quantum fields. This is a rederivation of one of the main results from Vachaspati and

Zahariade (2018b). In essence, we will follow the same sequence of steps as above

but now deal with fields. We can think of the field consisting of N coupled quantum

simple harmonic oscillators. The Hamiltonian for such a system is given by,

H =
1

2
pTµ−2p +

1

2
xTµΩ2µx , (7.19)

where p = (p1, . . . , pN)T are the momentum operators corresponding to the position

operators x = (x1, . . . , xN)T , and T denotes matrix transposition, µ = [µij]1≤i,j≤N ,

and Ω = [Ωij]1≤i,j≤N are assumed to be real and symmetric positive definite which can
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depend on time. The creation operator, a† = (a†1, . . . , a
†
N) and annihilation operator,

a = (a1, . . . , aN)T can be defined in the usual way, as we did earlier.

a =
1√
2

(√
Ω
−1
µ−1p− i

√
Ωµx

)
, (7.20)

a† =
1√
2

(
pTµ−1

√
Ω
−1

+ ixTµ
√

Ω
)
. (7.21)

The Hamiltonian as before can be rewritten in terms of the creation and annihilation

operators as,

H = a†Ωa +
1

2
Tr(Ω) . (7.22)

We work in the Heisenberg picture like before. We can check that the creation and

annihilation operators verify, [ai, a
†
j] = δij, [ai, aj] = 0 = [a†i , a

†
j] , and [a, H] =

Ωa, [a†, H] = −a†Ω . The Heisenberg equations are then given by,

da

dt
= −iΩa +

∂a

∂t
, (7.23)

da†

dt
= +ia†Ω +

∂a†

∂t
, (7.24)

This can be further expanded and written out as,

∂a

∂t
=

1

2

ï
d

dt

(√
Ω
−1
µ−1
)
µ
√

Ω
(
a + a†T

)
− d

dt

Ä√
Ωµ
ä
µ−1
√

Ω
−1 (

a†T − a
) ò

,(7.25)

∂a†

∂t
=

1

2

ï (
aT + a†

)√
Ωµ

d

dt

(
µ−1
√

Ω
−1
)
−
(
aT − a†

)√
Ω
−1
µ−1 d

dt

Ä
µ
√

Ω
ä ò

.(7.26)

We once again want to focus on particle production, for which we define the Bogoli-

ubov coefficient as before,

a = α a0 + β a†0
T , (7.27)

a† = a†0 α
† + aT0 β†, (7.28)
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where, α(t) and β(t) are complex matrices this time and is defined as, α = [αij(t)]1≤i,j≤N

and β = [βij(t)]1≤i,j≤N . From the Heisenberg equations and 7.28 we can write

dα

dt
= −iΩα +

1

2

ï
d

dt

(√
Ω
−1
µ−1
)
µ
√

Ω (α + β∗)− d

dt

Ä√
Ωµ
ä
µ−1
√

Ω
−1

(β∗ − α)

ò
,(7.29)

dβ

dt
= −iΩβ +

1

2

ï
d

dt

(√
Ω
−1
µ−1
)
µ
√

Ω (α∗ + β)− d

dt

Ä√
Ωµ
ä
µ−1
√

Ω
−1

(α∗ − β)

ò
,(7.30)

The initial conditions are α = 1 and β = 0. We can define new variables to simplify

the above equations. We can then write 7.29 and 7.30 as,

α =
1√
2

(√
Ω
−1
µ−1P ∗ − i

√
ΩµZ∗

)
, (7.31)

β =
1√
2

(√
Ω
−1
µ−1P − i

√
ΩµZ

)
, (7.32)

where, the variable redefinitions are,

P =
1√
2
µ
√

Ω(α∗ + β) , (7.33)

iZ =
1√
2
µ−1
√

Ω
−1

(α∗ − β) , (7.34)

In these variables the simplified equations are,

Ṗ = −µΩ2µZ and Ż = µ−2P , (7.35)

The initial conditions can be expressed as,

P0 =
1√
2
µ0

√
Ω0 and Z0 = − i√

2
µ−1

0

√
Ω0

−1
. (7.36)

The classical Hamiltonian in terms of Z, P is given by,

Hc =
1

2
Tr
[
P †µ−2P + Z†µΩ2µZ

]
, (7.37)

The above expression which is like rewriting the original Hamiltonian for x, p in (7.19)

in terms of the new variables Z, P . Once again Z contains all the information about

the field. The backreaction is once again taken into account using the semi-classical
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approximation and evaluating the vacuum expectation values of the quantum field in

terms of Z. This will be discussed in specific contexts in the following chapters (see

chapters 8, 9, and 10).

7.2 Applications Of The CQC

The CQC, since it was outlined in Vachaspati and Zahariade (2018a) and gener-

alized for fields in Vachaspati and Zahariade (2018b), has been applied to investigate

various systems and scenarios. In this section, we briefly discuss the applications of

the CQC to gain insights into coupled quantum and classical systems, in particular

particle production and backreaction. The applications of CQC in the context of

a rolling quantum field relevant for early universe cosmology (Ch. 8), formation of

topological defects due to a quantum phase transition (Ch. 9), and the collision of a

sine-Gordon kink-antikink in the presence of a quantum field (Ch. 10), form the core

of this work and will be discussed in great detail in the subsequent chapters.

Ref. Vachaspati and Zahariade (2019), considers a quantum scalar field in the

gravitational background of a collapsing spherical shell. It was shown that for a toy

model representative of the actual situation, the CQC can yield Hawking radiation

as well as the slow down of the collapse due to radiation backreaction. The quantum

evaporation of a classical sine-Gordon like breather was studied in Olle et al. (2019).

The complete treatment of the backreaction of quantum radiation on the classical

dynamics of oscillons was considered. The breather decay rate was also calculated as

function of coupling strength.

The Schwinger process in a uniform non-Abelian electric field was studied in Car-

dona and Vachaspati (2021). The approach used was dynamical where, initially a

color electric field background and the quantum excitations in their non-interacting

ground state was considered. Then, this system was evolved using the CQC. The
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spectral energy density and number density in the excitations were evaluated as func-

tions of time. It was found that there is an ultraviolet divergence associated with the

total energy density which can be tamed using asymptotic freedom. Furthermore, the

number density of the excitations had an infrared divergence which may be resolved

by confinement.

Until now, the main discussion was always revolving around particle production

and back reaction in the context of quantum fields in time-dependent backgrounds.

But one can also ask the exact opposite question - are there quantum fields in time-

dependent classical backgrounds, that have no net particle production? This question

was addressed in Vachaspati (2022a), where the author chose to call the background

unexciting. A quantum simple harmonic oscillator with a time-dependent frequency

was considered. For this simple setup, it was found that there exists an infinite set

of unexciting backgrounds, that is, any variations of the frequency, including rapid

variations, would lead to no net particle production. Generalizing the problem to

quantum fields, the spatially homogeneous case was considered first. This problem

can be reduced to infinite simple harmonic oscillators each with a time-dependent

frequency. In this case, the conclusion was that a homogeneous background cannot be

unexciting. The reason being, one can choose a suitable background time-dependence

to suppress the excitations of some modes, but there are always some modes that

get excited by the time-dependent background. The problem was then generalized to

the case of inhomogeneous time-dependent backgrounds. In this case, it was possible

to derive idealized (non-physical) backgrounds, that lead no net particle production.

The no net particle production can be physically understood in the sense that particles

are produced and then later absorbed so that the net particle production vanishes.

But then one can wonder, are there quantum fields in time-dependent classical

backgrounds, for which there is no particle production at all times? The answer is yes
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and an easy example is a boosted soliton coupled to a quantum degree of freedom.

A boosted soliton is time-dependent but does not produce radiation. In these special

class of backgrounds there is no quantum dissipation and hence there is no need of

an external driver to prevent the background from decaying. In Vachaspati (2022b),

electric field backgrounds in a non-Abelian theory were investigated. A pure non-

Abelian SU(2) gauge theory with a background (“color”) electric field was considered

with masless and charged ”gluons” as the quantum excitations. Remarkably, it was

found that in this model, one can construct an electric field background that has

no particle production at all times. Thus, the electric field found was stable against

quantum dissipation due to Schwinger pair production.

With this we conclude this section, the other applications of CQC relevant to this

work, is discussed in detail in the following chapters.

179



Chapter 8

ROLLING WITH A QUANTUM FIELD

In this chapter, we will consider rolling in field theory; some earlier works on this

problem using different approaches and approximations can be found in Refs. Bardeen

and Bublik (1987); Boyanovsky and de Vega (1993); Mrowczynski and Muller (1994);

Ramsey and Hu (1997); Bedingham and Jones (2003); Aarts and Tranberg (2008);

Asnin et al. (2009). To be more specific, we will consider a model with two scalar

fields, φ and ψ, where φ is the classical background and ψ is the quantum field

interacting with this background. The Lagrangian (in 1+1 dimensions) is,

L =
1

2
(∂µφ)2 +

1

2
(∂µψ)2 − V (φ)− m2

2
ψ2 − 1

2
λφ2ψ2 (8.1)

where we will mostly focus on the case of a linear potential V (φ) = −κφ on which φ

can roll. One approach to solving for the dynamics is to realize that the Lagrangian is

quadratic in the quantum field ψ. Thus it can be integrated out in the path integral.

This will yield a term in the effective action that has the form ln(DetÔ[φ]) where

Ô[φ] is an operator that depends on the background φ (see Peskin and Schroeder

(1995) for example). Usually, at this stage, one adopts a perturbative approach and

assumes φ is a known background to lowest order in some coupling. Then it may be

possible to diagonalize Ô and to evaluate ln(DetÔ[φ]) perturbatively or in some other

approximation scheme (Bardeen and Bublik, 1987; Boyanovsky and de Vega, 1993;

Mrowczynski and Muller, 1994; Ramsey and Hu, 1997; Bedingham and Jones, 2003;

Aarts and Tranberg, 2008; Asnin et al., 2009).

In contrast, in the CQC, one does not try to eliminate ψ from the action. Instead

the CQC equations simultaneously evolve the background φ as coupled to the expec-
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tation value of ψ2 and the quantum operator ψ in the φ background. This becomes

possible by rewriting the quantum operator ψ in terms of new c-number variables

denoted by a complex matrix Z and the initial quantum operators. The evolution

of ψ is given entirely by the evolution of Z (Vachaspati and Zahariade, 2018b) and

the expectation of ψ2 that enters the φ equation takes the form Z∗Z. In this way,

we obtain a set of differential equations for φ and Z that are solved with specific

initial conditions to obtain the full dynamics. The background is completely general

and need not be homogeneous, and perturbation theory is not employed. The only

assumption is that the background is classical and it couples to the expectation value

of ψ2 evaluated in its dynamical quantum state.

To understand the CQC equations more quantitatively, we write the semiclassical

equation of motion for φ,

�φ+ V ′(φ) + λ〈ψ2〉φ = 0, (8.2)

where the expectation value 〈ψ2〉 is in the (unknown) instantaneous quantum state

for the ψ fields. The evolution of the quantum operator ψ is given by the Heisenberg

equation,

ψ̇ = π, (8.3)

π̇ = ∇2ψ + (m2 + λφ2)ψ (8.4)

where π denotes the conjugate momentum to ψ. This equation for quantum ψ can

be solved in terms of a c-number variable in two spatial dimensions, Z(t, x, y), by

writing,

ψ(t, x) =

∫
dy
î
Z∗(t, x, y)a0(y) + Z(t, x, y)a†0(y)

ó
(8.5)

where a0 and a†0 are annihilation and creation operators at the initial time. a0 is
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defined by

a0(y) =
1√
2

(√
Ω0

−1
π0(y)− i

√
Ω0 ψ0(y)

)
(8.6)

and a†0(y) is the Hermitian conjugate of a0. Also Ω2
0 = ∇2

y +m2 +λφ2
0 and φ0 = φ(t =

0, y) may depend non-trivially on y. Inserting (8.5) in (8.4) we obtain the equation

of motion for Z,

Z̈ −∇2
xZ + (m2 + λφ2)Z = 0 (8.7)

Thus Z satisfies the classical equation of motion (independently of y). The initial

conditions for Z can be obtained from the initial conditions for ψ and π, and we will

write these explicitly in Sec. 8.1.

Next we assume that the initial state is the vacuum and is annihilated by a0. Then

we find

〈ψ2〉 =

∫
dy Z∗Z (8.8)

where recall that we are working in the Heisenberg picture so the quantum state at

all times is given by the initial vacuum state. Inserting the expectation value in (8.2)

gives,

�φ+ V ′(φ) + λ

Å∫
dy Z∗Z

ã
φ = 0 (8.9)

So the CQC equations consist of (8.9) and (8.7). In practice these need to be solved

numerically for which they must be discretized. A convenient discretization is dis-

cussed in Sec. 8.1.

A simplification occurs if attention is restricted to static solutions. Then the

background is fixed and the CQC approach is equivalent to the effective potential.

It is only when we are interested in dynamical questions that the CQC becomes a

powerful tool. For example, if we consider the model in Eq. (8.1), we can find static

solutions for φ by locating the extrema of the effective potential, or equivalently by

finding static solutions to the CQC equations. If on the other hand, we want to
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know the dynamical solution, the effective potential is not useful whereas the CQC

approach leads to the solution. The underlying reason is that the effective potential

assumes the quantum state of the fields, for example the vacuum state or a thermal

state, and expectation values of operators are taken in this state. In a dynamical

process, the quantum state itself will be determined by the dynamics and will in

general be different from the vacuum (or other) state assumed in the calculation of

the effective potential. One situation where the effective potential may suffice is if

there is dissipation in the system (for example, an expanding universe) and then

the quantum fields are consistently driven to their vacuum state. Even in this case,

the CQC can be used to describe the approach to the asymptotic state whereas the

effective potential can only describe the final asymptotic state after the quantum

fields have dissipated into their vacuum state.

In this chapter, we start by describing the discretized CQC formulation in Sec. 8.1.

Then we discuss static solutions in Sec. 8.2. This exercise is completely equivalent to

the effective potential formulation. In Sec. 8.3 we first discuss homogeneous dynam-

ics. This leads to a very different picture from that obtained by simply considering

static solutions of the effective potential. In Sec. 8.3 we also study dynamics with

inhomogeneous initial conditions to see if homogeneous solutions might be unstable

to developing inhomgeneities. We do not find an instability and this means that

translational invariance is not spontaneously broken.

8.1 Lattice CQC

The CQC reformulation of the system in (8.1) follows that in Vachaspati and

Zahariade (2018b); Olle et al. (2019). One difference is that we will employ periodic

boundary conditions whereas Dirichlet boundary conditions were used in Refs. Vachas-

pati and Zahariade (2018b); Olle et al. (2019).
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The first step is to latticize the field theory. The lattice points are given by x = na

where n = 1, . . . , N . The discrete Lagrangian is

L′ = a
N∑
n=1

ï
1

2
φ̇2
n +

1

2a2
φn (φn+1 − 2φn + φn−1)

+
1

2
ψ̇2
n +

1

2a2
ψn (ψn+1 − 2ψn + ψn−1)

−V (φn)− m2

2
ψ2
n −

λ

2
φ2
nψ

2
n

ò
(8.10)

where V (φ) is a potential for φ that we will choose later. We assume periodic bound-

ary conditions and n should be considered to be an integer mod N .

The ψ dependent part can be written as

L′ψ = a

ï
1

2
Ψ̇T Ψ̇− 1

2
ΨTΩ2Ψ

ò
(8.11)

where Ψ denotes a column vector with components ψi and

Ω2
ij =



+2/a2 +m2 + λφ2
i , i = j

−1/a2, i = j ± 1,

−1/a2 i = 1, j = N ; i = N, j = 1

0, otherwise

(8.12)

Using the CQC, the quantum field variables {ψi}map into N×N complex classical

field variables {Zij} that satisfy the equation of motion (Vachaspati and Zahariade,

2018b),

Z̈nj +
N∑
k=1

Ω2
nkZkj = 0. (8.13)

The CQC equation of motion for φ is

φ̈n −
1

a2
(φn+1 − 2φn + φn−1) + V ′(φn) + λ

(
1

a2

N∑
j=1

Z∗njZnj

)
φn = 0. (8.14)
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These equations of motion have to be solved with initial conditions for Z that

correspond to ψ being in its vacuum state,

Z0 = −i
…
a

2

√
Ω0

−1
, Ż0 =

…
a

2

√
Ω0 (8.15)

The initial conditions for φ are fixed by the problem of interest,

φn = φn(0), φ̇n = φ̇n(0). (8.16)

The sum over Z’s in the last term of (8.14) will lead to renormalization of the

mass of φ as we will discuss in Sec. 8.2.2.

8.2 Statics

We look for static solutions of φ but Zij may be time dependent. Then we set φ̈n in

(8.14) to zero. The equation is consistent only if we can show that the Z−dependent

factor in the last term is time independent. This factor is proportional to ZZ† and

hence we define,

F = ZZ† (8.17)

Then

Ḟ = ŻZ† + ZŻ†, (8.18)

F̈ = 2ŻŻ† − (Ω2F + FΩ2), (8.19)

From the initial conditions in (8.15) we get

Z0Z
†
0 =

a

2
Ω−1

0 , Ż0Z
†
0 = i

a

2
= −Z0Ż

†
0 (8.20)

Ż0Ż
†
0 =

a

2
Ω0 = Ω2

0Z0Z
†
0 = Ω2

0F (0) (8.21)

From here it is straightforward to check that Ḟ (0) = 0 = F̈ (0). Also note that Ω2
0

and F0 = aΩ−1
0 /2 commute. Then all higher derivatives of F when evaluated at the
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initial time will also vanish. For example,

...
F 0 = −2(Ω2

0Z0Ż
†
0 + Ż0Z

†
0Ω2

0)− (Ω2
0Ḟ0 + Ḟ0Ω2

0) = 0 (8.22)

Hence it is consistent to set φ̈ = 0 in (8.14) and to obtain the static equation,

− 1

a2
(φn+1 − 2φn + φn−1) + V ′(φn) +

λ

2a
Ω−1

0,nnφn = 0 (8.23)

where there is no sum over the repeated index n.

Note that Ω0,nn depends on {φi}. So (8.23) is a highly non-linear (and implicit)

equation for φn. We now discuss the solution under the assumption that φ is homo-

geneous 1.

8.2.1 Static Homogeneous Solution

Under the assumption that φn is independent of n, we will write φn = φ0. This

will be a self-consistent assumption only if Ω−1
0,nn in (8.23) is independent of n. We

now check this.

With the assumption of homogeneity, Ω2 can be diagonalized explicitly. For N ≥ 3

we can write

Ω2 = O†DO (8.24)

where

Olk =
1√
N
eilk2π/N (8.25)

and

Dlk =

ï
4

a2
sin2

Å
πl

N

ã
+m2 + λφ2

0

ò
δlk (8.26)

Then

Ω−1
0 = O†

√
D
−1
O (8.27)

1Inhomogeneous solutions would also be of interest as they would represent solitons that are

supported by the quantum vacuum (Huang and Tipton, 1981).
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but since |Olk|2 = 1/N for every l, k we find

1

2a
Ω−1

0,nn =
1

2aN

N∑
k=1

(
√
D
−1

)kk =
1

2aN

N∑
k=1

1»
4
a2

sin2
(
πk
N

)
+M2

(8.28)

where

M =
»
m2 + λφ2

0 (8.29)

Note that Ω−1
0,nn/2a (no sum over n) is independent of n when φ0 is homogeneous and

the homogeneity assumption is self-consistent. This completes our check.

To connect with the continuum calculation we take the a→ 0 and L = aN →∞

limit. In the limit a→ 0, only terms with sin2(πk/N)→ 0 will contribute to the sum

in (8.28). So we can approximate sin2(πk/N) ∼ (πk/N)2. Define q = 2πk/(aN) and

also consider the L = aN →∞ limit. Then

1

2a
Ω−1

0,nn →
1

2π

∫ ∞
0

dq√
q2 +M2

(8.30)

The quantity Ω−1
0,nn/2a in (8.23) is completely equivalent to the vacuum expecta-

tion value of ψ2. In the usual quantum field theory treatment, with constant φ = φ0,

ψ is a free field with mass M . The standard treatment then gives

〈ψ2〉 =
1

2π

∫ ∞
0

dp√
p2 +M2

(8.31)

exactly as in (8.30).

8.2.2 Renormalization

Eq. (8.23) depends on Ω−1
0,nn/2a which is given by (8.28). Let us evaluate this term

in the N →∞ limit while keeping the lattice spacing, a, fixed. Then,

1

2a
Ω−1

0,nn =
1

L

N/2∑
k=1

1»
4
a2

sin2
(
πk
N

)
+M2

(8.32)
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For πk/N < π/4, we approximate sin2(πk/N) ∼ (πk/N)2, while for πk/N > π/4

we approximate sin2(πk/N) ∼ 1 and take Ma� 1. Then

1

2a
Ω−1

0,nn ≈
1

L

N/4∑
k=1

1»
4π2k2

L2 +M2
+

1

L

N/2∑
k=N/4

L

2N
=

1

2π

∫ q∞

q0

dq√
q2 +M2

+
1

8
(8.33)

where q ≡ 2πk/L, q0 = 2π/L and q∞ = πN/(2L). The integral can be evaluated to

give

1

2a
Ω−1

0,nn ≈
1

4π
ln

ñ√
p2 +M2 + p√
p2 +M2 − p

ôq∞
q0

+
1

8

≈ 1

4π
ln

ï
2

M2/(2q2
∞)

ò
− 0 +

1

8

≈ 1

2π
ln(q∞a)− 1

2π
ln(Ma) +

1

4π
ln(4) +

1

8

≈ − 1

2π
ln(Ma) + C (8.34)

where we have used ML � 2π, in which case the q0 contribution approximates to

0. We have also denoted the remaining terms by C as these are sensitive to the

approximations we have made.

Next we consider the consequences of changing the lattice spacing. If we rescale a

to ξa for some constant ξ, then Ω−1
0,nn/2a shifts by − ln(ξ)/2π. This shift contributes

to the mass of φ and can be compensated for by introducing a suitable bare mass

contribution in the classical potential V (φ). Then the physical mass of φ will not

depend on rescalings of the lattice spacing. However, we still need a measurement

to tell us the physical mass of φ at a given renormalization scale. This is normally

determined by experiment. For our purposes, we will take the renormalization scale

µ to be 1/a. If we wish to use a different lattice spacing, say a→ ξa, then to compare

results we must also change the potential: V → V + λ ln(ξ)φ2/4π.

The existence of the energy scale µ is also necessitated by our treatment of φ

as a classical background field. Strictly, φ should also be quantized. In those cases
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that φ can effectively be described as a classical background, we expect the classical

treatment to break down if we probe the background on very short length scales, that

is, at very high energies. For example, if the classical background is the spacetime

metric, we expect that a quantum treatment will become essential at energies above

the Planck scale. Similarly for a solitonic background, we might expect that a quan-

tum treatment will become necessary for energy much larger than the mass scale of

the soliton.

Now from (8.23), we see that the CQC formulation for static, homogeneous φ0 is

completely equivalent to the effective potential,

Veff(φ0) = V (φ0) +
λ

2a

∫ φ0

dφΩ−1
0,nn[φ]φ

≈ V (φ0)− M2

4π
ln(Ma) + λ

Å
C +

1

4π

ã
φ2

0

2
+
m2

8π
(8.35)

where M is given by (8.29). Note that − ln(Ma) = + ln(µ/M) > 0 since µ is an

ultra-violet cutoff.

To summarize, we will write (8.23) for the static, homogeneous background case

as

λ

2a
Ω−1

0,nnφ0 = −V ′(φ0). (8.36)

We now consider static solution for two simple choices for V (φ), namely a linear

potential and an inverted quadratic potential.

8.2.3 Conditions For Static Solutions In Simple Cases

Linear potential

First we consider a linear potential

V1(φ) = −Kφ (8.37)
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Then (8.36) becomes

λ

2a
Ω−1

0,nnφ0 = +K (8.38)

In Fig. 8.1a we have plotted the left-hand side of this equation. The right-hand side

will be a horizontal line at K and there is clearly a solution. However, if K is larger

than the cutoff value of the left-hand side, i.e. when it is evaluated at M = µ, then

we cannot be sure that there is a solution since (8.36) is only valid below the cutoff.

Hence the condition for a solution is

0 < K < Kmax (8.39)

where

Kmax =
√
λµ

ï
1

2a
Ω−1

0,nn

ò
M=µ

≈ C
√
λµ (8.40)

where we have used (8.34). Since for large φ0 the potential is quadratic and increasing,

the solution is a minimum. Hence there is a non-trivial minimum of the potential

that is entirely due to quantum vacuum fluctuations of ψ provided the coupling is

strong, as given by

λ &
K2

C2µ2
= 2.4a2K2 (8.41)

where the value of C is determined using (8.32) with M = µ = 1/a and gives

C = 0.643. For weaker couplings, there is no solution for non-trivial φ0 within the

range of values in which our treatment holds.

Inverted quadratic potential

Next we consider an inverted quadratic potential

V2(φ) = −κ
2

2
φ2 (8.42)

Then (8.36) becomes

λ

2a
Ω−1

0,nnφ0 = +κ2φ0 (8.43)
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Figure 8.1: (a) Plot of the left-hand side of (8.36) versus φ0 for λ = 0.5, a = 0.001,
L = 100, m = 0. (b) Plot of the effective potential for the inverted quadratic case for
κ = 1, mψ = 0.1, a = 0.25 = 1/µ, and λ = 1.0. As given below (8.41), C = 0.643.

The left-hand side is plotted in Fig. 8.1a while the right-hand side is a straight line

passing through the origin and with slope κ2. There is a non-trivial intersection point

if the slope κ2 is less than the slope of the left-hand side at φ0 = 0 and greater

than the slope of the line joining the origin to the point where the left-hand side is

evaluated at the cutoff value µ/
√
λ.

Near the origin, we can expand the left-hand side (lhs) of (8.43) for small φ0

lhs(φ0 → 0) = λ

ï
1

2π
ln(µ/m) + C

ò
φ0. (8.44)

and the coefficient of φ0 is the slope at the origin. At the cutoff, the left-hand side

evaluates to

lhs(φ0 = µ/
√
λ) = λ

ï
− m2

4πµ2
+ C

ò
φ0 (8.45)

and the slope of the line joining the origin with the cutoff point is given by the

pre-factor of φ0. Therefore we only have a non-trivial (φ0 6= 0) solution if

λ

ï
1

2π
ln(µ/m) + C

ò
> κ2 > λ

ï
− m2

4πµ2
+ C

ò
(8.46)

which we can also write as

κ2

C −m2/4πµ2
> λ >

κ2

C + ln(µ/m)/2π
(8.47)
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To understand the range of couplings for which there is a solution, note that λ cannot

be too small because then the quantum effects are negligible. On the other hand a

very large value of λ means that the quantum effects are very strong and make the

classical inverted potential upright at all φ0. Then the only solution is the trivial

φ0 = 0. However, evaluating the second derivative of the effective potential at φ0 = 0

shows that it is positive if the conditions in (8.47) are satisfied. This implies that

the effective potential has a minimum at the origin and the non-trivial solution is a

maximum. Thus the quantum corrections for the inverted quadratic potential can

provide a metastable vacuum at φ0 = 0 in the range of parameters in (8.47) as shown

in the example in Fig. 8.1b.

8.3 Dynamics

The effective potential is not suitable for describing the evolution of the back-

ground because the derivation assumes that the quantum field ψ is in its vacuum. In

the dynamical problem, as the field φ rolls, quanta of ψ are excited and the field ψ is

no longer in its vacuum. The production of ψ quanta backreacts on the dynamics of

φ. We shall now solve this dynamical problem, separately considering homogeneous

and inhomogeneous backgrounds.

8.3.1 Dynamics With Homogeneity

The first question we ask is if the initial conditions for φ are homogeneous, can the

dynamics make φ inhomogeneous? As this is a dynamical question, we use the CQC

equations in (8.13) and (8.14) and check that homogeneous evolution is self-consistent.

For homogeneous φ, Eq. (8.12) can be written in a more convenient way as

Ω2
ij = −∇2

ij +M2δij (8.48)
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where M2 = m2 + λφ2 and the Laplacian matrix is given by,

a2∇2
ij = δi+1,j − 2δij + δi−1,j (8.49)

where the indices are integers mod N . The ∇2 has translational symmetry, i.e.

∇2
ij = ∇2

i+s,j+s (8.50)

where s is any integer. Alternately, ∇2
ij only depends on the difference i−j (mod N).

Then Ω2
ij is also translationally invariant and only depends on the difference i− j

Ω2
i+s,j+s = Ω2

i,j (8.51)

In particular, this implies Ω2
nn is independent of n, as already discussed below (8.30).

Using Eqs. (8.24), (8.25) and (8.26) we can check that the initial conditions for

Zij are also translationally invariant,

Z0;i+s,j+s = Z0;i,j, Ż0;i+s,j+s = Ż0;i,j (8.52)

when φ is homogeneous.

Next we consider the equation for Zn+s,j+s in (8.13).

0 = Z̈n+s,j+s +
N∑
k=1

Ω2
n+s,k Zk,j+s

= Z̈n+s,j+s +
N∑
l=1

Ω2
n+s,l+s Zl+s,j+s

= Z̈n+s,j+s +
N∑
l=1

Ω2
n,l Zl+s,j+s (8.53)

In the above derivation we have changed the summation index from k to l+ s in the

second line and used (8.51) in the third line. Now subtracting (8.13) gives

(Z̈n+s,j+s − Z̈n,j) +
N∑
l=1

Ω2
n,l(Zl+s,j+s − Zl,j) = 0 (8.54)
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With the initial conditions in (8.52), the solution is

Zn+s,j+s(t) = Zn,j(t) (8.55)

i.e. Zn,j is invariant under translations while φ is homogeneous.

Making use of the translational symmetry, we can write Znj = aχn−j. Then going

back to the equation for φ in (8.14), we see

1

a2

N∑
j=1

Z∗njZnj =
N∑
j=1

χ∗n−jχn−j =
N∑
k=1

χ∗kχk

which is independent of n. Thus the φn equation is independent of n and the evolution

of φ is homogeneous. Thus homogeneous initial conditions will lead to homogeneous

evolution.

8.3.2 CQC For Fields With Homogeneous Background

The result above, that translational symmetry of the background is preserved

on evolution, suggests that the system of CQC equations simplify when the back-

ground is homogeneous. Indeed we will show here that translational symmetry of the

background implies that our quantum system corresponds to a classical field theory.

Whereas the quantum system has the real scalar fields φ and ψ, the classical system

has the background φ and a complex scalar field χ that is to be evolved with specific

initial conditions.

For homogeneous backgrounds we have already introduced χn−j = Znj/a above

(8.56). Then the φ equation becomes

φ̈+ V ′(φ) + λ

(
N∑
j=1

χ∗jχj

)
φ = 0 (8.56)

where we have written φn as φ since it is homogeneous. Similarly, after some manip-

ulation, (8.13) with (8.48) leads to

χ̈n −
1

a2
(χn+1 − 2χn + χn−1) +M2χn = 0 (8.57)
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which is the discretized version of

�χ+M2χ = 0 (8.58)

where � is the D’Alembertian operator and note that χ is complex. Hence the original

system where we had a classical field φ and a quantum field ψ has been transformed

into a system with φ and a classical complex field χ.

We would now like to solve the system of equations in (8.56) and (8.57) with initial

conditions following from those specified in Sec. 8.1,

χq(t = 0) =
−i√
2aN

N∑
k=1

e−ikq2π/N[
4
a2

sin2
(
πk
N

)
+M2

0

]1/4 (8.59)

χ̇q(t = 0) =
1√

2aN

N∑
k=1

ï
4

a2
sin2

Å
πk

N

ã
+M2

0

ò1/4

×e−ikq2π/N (8.60)

where M2
0 = m2 + λφ(t = 0)2.

We can simplify the equations further by performing a discrete Fourier transform,

χn =
1√
N

∑
k

ck(t)e
−ink2π/N (8.61)

Then the equation for the mode coefficients ck are ordinary differential equations

c̈k +

ï
4

a2
sin2

Å
πk

N

ã
+M2

ò
ck = 0 (8.62)

with the initial conditions

ck(t = 0) =
−i√
2aN

ï
4

a2
sin2

Å
πk

N

ã
+M2

0

ò−1/4

(8.63)

ċk(t = 0) =
1√

2aN

ï
4

a2
sin2

Å
πk

N

ã
+M2

0

ò1/4

(8.64)
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Further reduction in the number of variables can be obtained at the cost of introducing

some non-linearity by letting

ck = ρke
iθk (8.65)

Then angular momentum (ρ2
kθ̇k) conservation together with the initial conditions gives

θ̇k =
1

2Lρ2
k

(8.66)

and the equation for ρk is

ρ̈k +

ï
4

a2
sin2

Å
πk

N

ã
+M2

ò
ρk =

1

4L2ρ3
k

(8.67)

with initial conditions

ρk(0) =
1√
2L

ï
4

a2
sin2

Å
πk

N

ã
+M2

0

ò−1/4

, (8.68)

ρ̇k(0) = 0. (8.69)

Advantage can also be taken of the symmetry k → N − k and then we only need to

solve for N/2 + 1 of the ρk’s.

In terms of the ρk’s, the equation for φ is,

φ̈+ V ′(φ) + λ
N∑
k=1

ρ2
k φ = 0 (8.70)

To summarize our results in this section, a quantum real scalar field in a homoge-

neous time-dependent (“rolling”) background field is equivalent to a classical complex

scalar field in the same background with specific interactions with the background

and specific initial conditions. In the discretized version, the quantum rolling problem

is thus equivalent to 2N + 1 (recall that ck’s are complex) second order ordinary dif-

ferential equations (8.62), (8.70) with the initial conditions (8.63), (8.64) and chosen

initial conditions for homogeneous φ. The problem can be reduced to (N/2 + 1) + 1

second order ordinary differential equations by going to the real ρk variables and using

the k → N − k symmetry.
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Figure 8.2: Plot of φ versus time for λ = 0.3 (black), 0.4 (red), 0.5 (dark purple),
0.6 (light purple), 0.7 (dark green), 0.8 (light green), 0.9 (orange) and 1.0 (blue), and
other parameters as given in the text.

8.3.3 Dynamics In A Linear Potential

For the particular case of a linear potential, we have solved for the evolution of

φ using the CQC equations in Sec. 8.1 with the potential in (8.37) (K = −1) and

the φ initial conditions φn(0) = 0 = φ̇n(0). The solutions for φ(t) for several different

values of λ and with parameters a = 0.25, N = 400, L = 100, m = 0.1, are shown in

Fig. 8.2.

The plots show that φ does not increase monotonically as we might expect based

on rolling on a classical linear potential; instead φ oscillates, as one might expect

based on the effective potential analysis. To compare the CQC dynamics with that of
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Figure 8.3: Plot of φ versus time for λ = 0.3 using the effective potential. This
is to be contrasted with the CQC solution for λ = 0.3, shown as the black curve in
Fig. 8.2.

rolling on the effective potential, we have solved the “effective equation of motion”,

φ̈+ V ′eff(φ) = 0 (8.71)

where Veff(φ) is given in (8.35) and V (φ) = −φ. Fig. 8.3 shows the rolling solution on

the effective potential for λ = 0.3. It is to be compared to the corresponding curve

in Fig. 8.2.

A few features of the dynamics stand out: the field φ oscillates in the full dynamics

(Fig. 8.2) but at a much smaller frequency than in the effective potential treatment

(Fig. 8.3); the amplitude of oscillations in the effective potential stays constant and is

much smaller than in the CQC. This is surprising since the physical argument is that

ψ particles are produced during rolling and this is what causes differences between the

full dynamics and the dynamics on the effective potential. However, increased particle

production might be expected to increase 〈ψ2〉 and this should cause the φ oscillations

in the full dynamics to have smaller amplitude than in the effective potential. The

resolution is that even though there is particle production, 〈ψ2〉 actually decreases as

is evident in Fig. 8.4. This can happen if most of the energy in particle production
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Figure 8.4: Plot of 〈ψ2〉 versus time for λ = 0.3.

goes into the kinetic energy and not in 〈ψ2〉. Then with a smaller 〈ψ2〉 we do expect

the φ oscillations to have larger amplitude in the full dynamics.

In the CQC solution, let us denote the first maximum value of φ by φmax and the

time at which this value is reached by tmax. In Fig. 8.5a we show φmax as a function

of λ on a log-log plot. It is clear that the data is not fit by a power law as the fit

varies from φmax ∼ λ−3.2 for smaller λ to φmax ∼ λ−1.7 at larger λ. Fig. 8.5b shows

tmax versus λ on a log-log plot. Here too the fit varies from tmax ∼ λ−1.9 to ∼ λ−0.9

at larger λ.

Even though we have shown that homogeneous initial conditions lead to homo-

geneous evolution, there remains the possibility that the evolution is unstable to

developing inhomogeneities. We now address this question numerically by including

small perturbations to homogeneous initial conditions.
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Figure 8.5: (a) Log-log plot of the value of φ at the first turning point versus λ.
The fit is not a straight line, ranging from φmax ∼ λ−3.2. (b) Log-log plot of the value
of t at the first turning point versus λ. The fit is not a straight line, ranging from
tmax ∼ λ−1.9 for smaller values of λ and ∼ λ−0.9 for the larger values.

8.3.4 Dynamics With Small Initial Inhomogeneities

To introduce inhomogeneous perturbations, we solve the CQC equations in (8.14),

(8.13) but with the initial conditions

φn(t = 0) = 0, φ̇n(t = 0) = ε sin

Å
2πnν

N

ã
(8.72)

where ε is a small amplitude and the integer ν sets the wavenumber of the perturba-

tion. The Z initial conditions are still given by (8.15). The advantage of introducing

the inhomogeneities in the time derivative φ̇n while keeping φn homogeneous is that

then we can continue to use (8.24) with the formula for O and D given in Sec. 8.2.1.

We now write the field φ as

φ = φ̄+ δφ (8.73)

where the homogeneous part is

φ̄(t) ≡ 1

N

N∑
n=1

φn (8.74)
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Figure 8.6: Energy in inhomogeneity versus time for λ = 1.0 ε = 0.1 and ν = N/10.

The energy in the inhomogeneous part is

Einhom = a
N∑
n=1

ñ
1

2
(δφ̇n)2 +

1

2

Å
δφn+1 − δφn−1

2a

ã2
ô

(8.75)

In Fig. 8.6 we show Einhom versus t for λ = 1.0, ε = 0.1 and ν = N/10. It is clear that

the energy in the inhomogeneities decreases with time, though with some fluctuations,

and there is no instability in the system. We find similar evolution for other values

of ν.
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Chapter 9

QUANTUM FORMATION OF TOPOLOGICAL DEFECTS

9.1 Topological Defects

Topological defects are expected to arise during phase transitions in the early

universe. These can include domain walls (Saikawa, 2020; Hiramatsu et al., 2013;

Vilenkin and Everett, 1982; Sikivie, 1982), cosmic strings (Vilenkin, 1985; Blanco-

Pillado et al., 2018; Dufaux et al., 2010; Damour and Vilenkin, 2000; Vachaspati

and Vilenkin, 1984, 1985; Hindmarsh and Kibble, 1995; Kibble, 1976), monopoles

(’t Hooft, 1974; Nambu, 1974; Gibbons and Manton, 1986; Mavromatos and Mitsou,

2020) and textures (Gueron and Letelier, 1997; Notzold, 1991; Spergel and Turok,

1992; Durrer et al., 1991; Turok, 1989; Brandenberger and Jiao, 2020), depending on

the symmetry breaking pattern. While topological defects have not yet been observed

in a cosmological context (Ade et al., 2014), they are abundant in condensed matter

systems (Zurek, 1985; Pal et al., 2017; del Campo et al., 2010; Chuang et al., 1991;

Bowick et al., 1994; Hendry et al., 1994; Ruutu et al., 1996; Bäuerle et al., 1996;

Monaco et al., 2002; Carmi et al., 2000; Maniv et al., 2003; Beugnon and Navon,

2017), with intriguing analogies between the two areas of research (Kibble, 2002;

Vachaspati, 1998; Zurek, 1996).

Topological defects are also an ideal setting for studying quantum effects in space-

time dependent classical backgrounds. Significant effort has already gone into the

quantization of topological defects (Rajaraman, 1982; Coleman, 1985; Christ and Lee,

1975; Goldstone and Jackiw, 1975; Cahill, 1974; Dashen et al., 1974a,b,c), in which

case the topological defects form space-dependent backgrounds for quantum fields.
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Less effort has been invested in time-dependent problems that involve quantum fields

in the background of dynamical topological defects (Dashen et al., 1975). Going one

step further, the quantum fields will backreact on the dynamics of the topological

defects and lead to non-trivial interplay between the quantum and classical degrees

of freedom.

The formation of topological defects during a quantum phase transition is a novel

process in which the quantum vacuum spontaneously breaks up into classical objects.

In a thermal phase transition, the formation of defects is also a transition from a

collection of particles above the critical temperature to a collection of a complex of

particles (defects) and new excitations at low temperatures. It is no surprise that

there has been so much theoretical and experimental (Kibble, 1976, 1980; Zurek,

1985, 1993, 1996; Zurek et al., 2005; Vachaspati, 2010; Kibble, 2007; Chuang et al.,

1991; del Campo et al., 2010; Dodd et al., 1998; Bowick et al., 1994; Hendry et al.,

1994; Ruutu et al., 1996; Bäuerle et al., 1996; Monaco et al., 2002; Carmi et al., 2000;

Maniv et al., 2003; Ducci et al., 1999; Eltsov et al., 1998; Beugnon and Navon, 2017;

Monaco et al., 2006b,a) interest in understanding details of defect formation.

The number density of defects formed during a phase transition is sensitive to

the rates at which external parameters are changed to pass through the phase transi-

tion. The leading theoretical framework for estimating the number density of defects

is the “Kibble-Zurek” analysis (Kibble, 1976, 1980; Zurek, 1985, 1993, 1996; Zurek

et al., 2005). Numerical simulations have further strengthened the model (Antunes

et al., 1999; Hindmarsh and Rajantie, 2000; Yates and Zurek, 1998; Stephens et al.,

1999; Laguna and Zurek, 1997; Donaire et al., 2007; Koyama et al., 2006). However

predictions of the Kibble-Zurek model have not yet gained universal confirmation,

with most experiments in systems involving 4He, liquid crystals, superconductors,

superfluids in agreement (Chuang et al., 1991; del Campo et al., 2010; Dodd et al.,
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1998; Bowick et al., 1994; Hendry et al., 1994; Ruutu et al., 1996; Bäuerle et al.,

1996; Monaco et al., 2002; Carmi et al., 2000; Maniv et al., 2003; Ducci et al., 1999;

Eltsov et al., 1998; Beugnon and Navon, 2017; Monaco et al., 2006b,a) and others

in disagreement (Dodd et al., 1998; Carmi and Polturak, 1999; Maniv et al., 2003)

with the predictions. In particular, the appearance of vortices in 4He was claimed

in Hendry et al. (1994) but was retracted in Dodd et al. (1998) since it was found

that the vortices in the former case were an externally induced artifact. Overall, the

analysis of the phenomenon of defect formation in various systems is an ongoing field

of research and has broad implications.

In this chapter we solve for the number density of defects (kinks, vortices and

monopoles) formed during a quantum phase transition. The analysis is rigorous and

without recourse to approximation but the quantum field theory models we consider

are “free”, the only interaction being with external parameters that drive the phase

transition. These models provide us with zeroth order solvable problems in different

dimensions that we fully analyze. Even with these minimal interactions, the analysis

is highly non-trivial and in part has to be done numerically. We discuss how other

interactions may be included in the analysis using perturbation theory and under

what conditions we expect the zeroth order approximation to be accurate.

We are generally interested in Poincaré invariant field-theoretic models in d + 1

spacetime dimensions, featuring an internal (global) O(d) symmetry which is sponta-

neously broken during a quantum phase transition. In particular we will be consider-

ing d real scalar fields Φ1, . . . ,Φd assembled in an O(d)-multiplet Φ ≡ (Φ1, . . . ,Φd)
T
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whose dynamics are given by the Lagrangian density1

L(d) =
1

2
∂µΦT∂µΦ− Vβ

(
ΦTΦ

)
. (9.1)

Here the potential Vβ is O(d)-invariant and depends on a (possibly time-dependent)

external parameter β. We assume that Vβ is such that the vacuum manifold is O(d)-

symmetric for β < 0 and O(d − 1)-symmetric for β > 0. In other words, as the

parameter β increases from negative to positive values, the system transitions from

a higher symmetry phase to a lower symmetry one, and the average vacuum field

configuration starts exhibiting topological defects. These defects then annihilate with

one another and eventually disappear. It is precisely this dynamics of formation and

annihilation of topological defects that we are concerned with in this paper. In fact,

our main purpose will be to determine the number density of topological defects as a

function of time and its dependence on the external parameter β, using a combination

of analytical and numerical methods.

For concreteness we will take β to be the (time-dependent) mass squared of the

field, so that

Vβ
(
ΦTΦ

)
=

1

2
m2(t)ΦTΦ +

λ

4

(
ΦTΦ

)2
, (9.2)

where

m2(t) = −m2 tanh

Å
t

τ

ã
, (9.3)

and λ, m, τ are positive parameters. In particular, the quench parameter τ is a time

scale quantifying the rate of change of the potential during the phase transition. It is

clear that for t� −τ , the vacuum manifold reduces to the null field configuration Φ =

0 and is therefore O(d)-symmetric, while for t� τ it includes all field configurations

1In this paper we use a mostly plus signature for the Minkowski metric and natural units, ~ =

c = 1.
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Figure 9.1: Snapshots of the d = 1 potential at a few different times. The plots
have been shifted vertically for clarity.

on the O(d− 1)-symmetric hypersphere given by

λΦTΦ = m2 . (9.4)

In Fig. 9.1 we sketch the potential (9.2) at a few different times.

It is well known that these models have topological defects – kinks (d = 1) in one

spatial dimension, vortices (d = 2) in two spatial dimensions, and monopoles (d = 3)

in three spatial dimensions (Vilenkin and Shellard, 2000). In each of these cases the

vacuum manifold described by (9.4) has non-trivial topology: for d = 1 it is 2 points,

for d = 2 it is a circle, and for d = 3 it is a two-sphere. The defect locations are

described by zeros of Φ even in the symmetry broken phase. The zeros are trapped

due to the non-trivial topology of the vacuum manifold. We realize that the topology

persists even if we set λ = 0 and the problem of defect formation simplifies. Then

the λ = 0 problem can be thought of as the zeroth order problem. We discuss the

λ 6= 0 problem for d = 1 in greater detail in Sec. 9.5 where we find that λ dependent

corrections are small if λτ/m� 1.
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The overall strategy will be to regulate both the IR and UV behaviors of the field

theory by working in a finite box of size Ld (with periodic boundary conditions) and

discretize space on a Nd point lattice (with lattice spacing a = L/N). Then we can

determine an exact expression for the field probability density functional as a function

of a finite number of quantities that can be computed numerically. We then find the

average expectation value of a judiciously constructed quantum operator that counts

the number density of zeros of the field multiplet Φ in the limit of the finite resolution

imposed by the lattice. We finally take both the continuum limit N → ∞, a → 0,

and the infinite volume limit, L → ∞ (in this exact order), to recover the full field

theory result. Up to spurious zeros due to vacuum fluctuations that can consistently

be discarded, this accurately gives the number density of topological defects. The

case of a sudden phase transition (τ = 0) can be treated analytically but the general

case will be treated numerically.

It should be mentioned that the so-called spinodal decomposition – where one phase

evolves into domains of other phases in the absence of phase barriers – during quantum

phase transitions has been the subject of extensive work in the literature (Calzetta,

1989; Liu and Mazenko, 1991, 1992b,a; Halperin, 1980; Boyanovsky, 1993; Boyanovsky

et al., 2000; Rivers, 1995). These studies were in the context of the Ginzburg-Landau

model and in a more general field theoretic context but were limited to instantaneous

quenches (Ibaceta and Calzetta, 1999; Liu and Mazenko, 1991, 1992b,a; Rivers, 1995).

Our purely quantum approach applies to non-instantaneous quenches and is readily

generalizable to the case of d-dimensional global topological defects. The present

work aims to describe it in an elementary and self-contained manner. We find, for

different quench time-scales τ , the behavior of the average defect number density. We

observe that defects start being produced immediately after the phase transition and

their number density reaches a maximum within a short time, after which they start
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annihilating with each other and their number density goes down. The efficiency of

topological defect production is found to depend on the details of the phase transition.

Indeed the defect number density increases faster and to higher maximum values as

τ decreases and the phase transition becomes more sudden. On the contrary, the

late-time mutual annihilation of topological defects exhibits universal characteristics.

After a transient regime, the number density of defects decays as a power law t−d/2

with a coefficient that only depends on the spatial dimension d and not on τ . Hence

the τ = 0 result is an attractor for the dynamics of defect formation and subsequent

decay for a large class of quantum phase transitions. Our comprehensive analysis thus

provides a unifying picture of defect formation and decay during non-instantaneous

quenches and fills a gap in the literature. We are however limited to the regime

where the λ = 0 approximation holds and we discuss this limitation in some detail in

Sec. 9.5.

The chapter is structured as follows. In Sections 9.2 and 9.3 we fully describe

the average dynamics of kink (d = 1) and vortex (d = 2) condensation respectively.

In Section 9.4 we extend these results to 3 and higher dimensions. In Sec. 9.5 we

discuss how the previous results constitute only the zeroth order approximation in a

perturbative expansion in λ and estimate the next-order corrections.

9.2 One Dimension: Kinks

One of the challenges in finding the number density of kinks is to first define a

kink in the quantum field theory given by (9.1) with d = 1, where we denote the

single-component scalar field Φ by φ. This can be done using the Mandelstam “kink

operator” (Mandelstam, 1975), which is a two-component fermionic operator, χ̂. A
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key property of χ̂ is that it satisfies the equal time commutation relations,î
φ̂(t, y), χ̂(t, x)

ó
=


η χ̂(t, x), y < x ,

0, y > x ,

(9.5)

where η is a real number. If |s〉 is an eigenstate of φ̂(t, y) such that φ̂|s〉 = 0 (for all

y), then we find that the state |s′〉 ≡ χ̂(t, x)|s〉 satisfies

φ̂(t, y)|s′〉 =


η |s′〉, y < x

0, y > x

(9.6)

Hence the operator χ̂ has created a step in the value of φ at x by an amount η. If

φ = 0 and φ = η are two possible vacuum expectation values of φ, χ̂ would have

created a kink that interpolates between two vacua. The number density of χ quanta

would then correspond to the number density of kinks.

Unfortunately the relation between χ and φ is quite complicated – χ involves

exponentials of φ and φ̇ and other quantum field theory subtleties – and we do not

have a clear way to utilize the Mandelstam operator. Instead we find it useful to

work entirely with the φ field, simply defining the kink to be a jump in the value

of φ as further discussed in Sec. 9.2.2. Our definition of the kink operator is also

helpful in the case of vortices and monopoles for d = 2, 3 as these objects correspond

to intersections of domain walls i.e. kinks extended to higher dimensions.

9.2.1 Setup And Quantization

We start by treating the d = 1 case in detail. The relevant Lagrangian density for

the real scalar field φ is thus

L(1) =
1

2
(∂µφ)2 − 1

2
m2(t)φ2 − λ

4
φ4 . (9.7)
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Clearly, for t < 0 the model has a unique vacuum φ = 0 while for t > 0 it has two

degenerate vacua at φ = ±m/
√
λ corresponding to the two minima of the double-well

potential. It is well-known that in the t� τ limit (where m2(t) ≈ −m2), there exist

static classical kink and anti-kink solutions given by

φ±(x) = ± m√
λ

tanh

Å
mx√

2

ã
. (9.8)

These solutions are non-perturbative and topologically non-trivial: they interpolate

between the two vacua over a spatial scale ∼ 1/m. Of course, Poincaré invariance

allows the construction of displaced or even “dynamical” kinks from the above solu-

tions but, whatever the frame, they will always be characterized by their topological

charge

q =

∫ ∞
−∞

dx ∂xφ = φ(∞)− φ(−∞) . (9.9)

In fact, a kink always has positive topological charge since the field undergoes a

negative to positive sign change, while an anti-kink has the exact opposite property.

Multi-kink and anti-kink solutions can be constructed as well, but these will not

be static anymore since the kinks and anti-kinks will attract each other and they will

eventually annihilate. If separations are large and the different kinks and anti-kinks

are initially at rest, such configurations will however be approximately static. Even

though the topological charge of such field configurations does not inform us about

the number of kinks or anti-kinks involved (since the topological charge is a binary

valued quantity), one can however in principle recognize the presence of individual

kinks and anti-kinks in a given field configuration by focusing on the points where the

field changes sign: a negative-to-positive sign change will be identified as a kink while

a positive-to-negative one will be identified as an anti-kink. Of course this is only part

of the picture because not every sign change should be counted as a kink or anti-kink

especially if it occurs on time and distance scales shorter than the characteristic width
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of 1/m. We will discuss this subtlety in Sec. 9.2.2.

We are interested in the production of kinks during a quantum phase transition

and in particular in how their average number density scales with time. As we have

discussed in Sec. 9.1, we will first be analyzing the λ = 0 case and the Lagrangian

density we will work with will thus be

L(1) =
1

2
(∂µφ)2 − 1

2
m2(t)φ2 . (9.10)

We now need to quantize this model. We start by assuming that the volume

(or length since d = 1) of space is finite of size L and that the field obeys periodic

boundary conditions. (We can alternatively think of space as a circle of length L.)

We then discretize space on a lattice consisting of N points separated by a distance

a = L/N . At each lattice point xj ≡ ja, we define the discretized field φj ≡ φ(xj)

and the full Lagrangian of the discretized theory reads

L
(1)
disc. =

a

2
φ̇T φ̇− a

2
φTΩ2(t)φ , (9.11)

where we have assembled the discretized fields in a column vector φ ≡ (φ1, . . . , φN)T

and the matrix Ω2 is defined by

[Ω2]jl =


+2/a2 +m2(t) , j = l

−1/a2 , j = l ± 1 (mod N)

0 , otherwise .

(9.12)

Introducing the canonically conjugate momentum fields, πj ≡ aφ̇j, and assembling

them in a column vector π ≡ (π1, . . . , πN)T , we can promote both the φjs and πjs

to operators satisfying canonical commutation relations [φ̂j, π̂l] = iδjl. The quantum

Hamiltonian of the discretized theory (Vachaspati and Zahariade, 2018b) then reads

Ĥ
(1)
disc. =

1

2a
π̂T π̂ +

a

2
φ̂TΩ2(t)φ̂ , (9.13)
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where hats denote operator valued quantities. It is apparent from (9.13) that the dis-

cretized theory describes the quantum dynamics of a set of N quadratically coupled,

simple harmonic oscillators.

We are interested in how the (unique) quantum vacuum before the phase transition

(at a time t0 � −τ when the potential is upright and m2(t0) ≈ m2) is destabilized

by the quench and evolves into a more complicated state featuring dynamical kinks

and anti-kinks. To understand the dynamics of this process we need to solve the

functional Schrödinger equation associated with (9.13),

i
∂Ψ

∂t
= − 1

2a
∆Ψ +

a

2
φTΩ2(t)φ Ψ , (9.14)

where the wave functional Ψ[φ1, . . . , φN ; t] is such that |Ψ|2 gives the probability

density of a given field configuration at time t, and the Laplacian operator is defined

by

∆ ≡ ∂2

∂φ2
1

+ · · ·+ ∂2

∂φ2
N

. (9.15)

One can easily check that the wave functional for the vacuum state at t = t0 is

Ψ(t0) = N exp
[
−a

2
φTΩ2(t0)1/2φ

]
, (9.16)

where

N =
(a
π

)N/4
det (Ω2(t0))1/8 , (9.17)

and fractional powers of the positive-definite matrix Ω2(t0) are unambiguously defined

in the standard way. For instance Ω
1/2
2 = ODiag

Ä
λ

1/2
1 , . . . , λ

1/2
N

ä
OT , where O is the

orthogonal matrix diagonalizing Ω2, and λj are the (positive) eigenvalues of Ω2. Given

this initial condition, the solution for the wave functional at time t will be given by

Ψ(t) = N exp

ï
−1

2

∫ t

t0

dt′TrM(t′) +
ia

2
φTM(t)φ

ò
, (9.18)

where the N ×N complex symmetric matrix M(t) verifies

Ṁ +M2 + Ω2(t) = 0 , (9.19)
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and M(t0) = iΩ2(t0)1/2. Introducing the complex N ×N matrix Z(t) defined by

Z̈ + Ω2(t)Z = 0 , (9.20)

and

Z(t0) = − i√
2a

Ω2(t0)−1/4 , (9.21)

Ż(t0) =
1√
2a

Ω2(t0)1/4 , (9.22)

we can write

M = ŻZ−1 . (9.23)

Indeed, using (9.20), (9.21) and (9.22), it is easy to check that this expression yields

a symmetric matrix since ŻZ−1− (ŻZ−1)T is a conserved quantity which vanishes at

time t0. We can now write the probability density functional as

|Ψ(t)|2 = |N |2 exp

[
− 1

2

∫ t

t0

dt′Tr
(
M(t′) +M(t′)†

)
+
ia

2
φT
(
M(t)−M(t)†

)
φ

]
.

(9.24)

To simplify this expression we first use the fact that∫ t

t0

dt′Tr
(
M(t′) +M(t′)†

)
= Tr (logK)|tt0 , (9.25)

where K ≡ ZZ† is a real positive definite symmetric matrix; indeed, using (9.20),

(9.21) and (9.22), it is easy to check that ZZ† −Z∗ZT is a conserved quantity which

vanishes at time t0. Next, we make use of another conserved quantity

Z†Ż − Ż†Z = i/a , (9.26)

which can also be verified via (9.20), (9.21) and (9.22), to show that

M(t)−M(t)† = iK−1/a . (9.27)
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Finally, plugging (9.25) and (9.27) into (9.24) yields a simplified (and manifestly

normalized) expression for the probability density functional

|Ψ(t)|2 =
1√

det(2πK)
e−φ

TK−1φ/2 . (9.28)

This expression (along with (9.20), (9.21) and (9.22)) contains all the information

that we will need in order to determine the average number density of kinks in the

lattice. Note that K is a time-dependent matrix, whose time-dependence is given by

that of the matrix Z.

Before going any further, we mention a separate interpretation of the matrix Z.

Working in Heisenberg picture with respect to time t0, we can define creation and

annihilation operators at time t0 by

â(t0) ≡ 1√
2a

Ä
Ω
−1/4
2 π̂(t0)− iaΩ

1/4
2 φ̂(t0)

ä
, (9.29)

â†(t0) ≡ 1√
2a

Ä
Ω
−1/4
2 π̂(t0) + iaΩ

1/4
2 φ̂(t0)

ä
. (9.30)

Notice that we have used column vector notation here but that the dagger refers to

the adjoint operation on the Hilbert space only: it does not turn column vectors into

row vectors. Then we can expand the Heisenberg picture discretized field operators

at time t as follows

φ̂(t) = Z(t)∗â(t0) + Z(t)â†(t0) . (9.31)

Eqs. (9.20), (9.21) and (9.22) ensure that the Heisenberg equations as well as the

proper initial conditions at t0 are verified. Now it is easy to see that the matrix K is

simply the covariance matrix of the discretized field since, using (9.31),

〈0|φ̂jφ̂l|0〉 =
N∑
k=1

Z∗jkZlk = Klj . (9.32)

Here the Heisenberg picture vacuum |0〉 is time-independent and defined by the wave

functional (9.16).
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In principle we now have all the ingredients needed to discuss the quantum pro-

duction of kinks during the phase transition. Indeed equation (9.28) along with the

N2 complex linear ordinary differential equations (9.20) fully determine the quantum

dynamics of the field configuration. However, it turns out that not all components of

the matrix Z are relevant and we can reduce the number of differential equations that

need to be solved. It can be shown that the matrix Z is circulant (Mukhopadhyay

and Vachaspati, 2019) i.e., its matrix elements Zjl only depend on j − l (mod N).

We can therefore diagonalize it via the discrete Fourier transform:

Zjl =
1√
N

N∑
n=1

cn(t)e−i(j−l)2πn/N . (9.33)

This allows us to recast (9.20), (9.21) and (9.22) in terms of the complex mode

functions cn(t) thus obtaining

c̈n +

ï
4

a2
sin2

(πn
N

)
+m2(t)

ò
cn = 0 , (9.34)

and

cn(t0) =
−i√
2L

ï
4

a2
sin2

(πn
N

)
+m2(t0)

ò−1/4

, (9.35)

ċn(t0) =
1√
2L

ï
4

a2
sin2

(πn
N

)
+m2(t0)

ò1/4

. (9.36)

Rewriting the dynamical equations in terms of mode coefficients provides an enor-

mous computational gain: we now only have to solve N equations instead of N2.

Additionally, as we will shortly see, mode coefficients are particularly well suited to

discussing problems related to the N → ∞ limit and divergences related to vacuum

fluctuations of the quantum field. We can achieve further simplification by writing

the mode functions in trigonometric form

cn ≡ ρne
iθn , (9.37)
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where ρn and θn are respectively the modulus and argument of the complex number

cn, and making use of the conserved quantity (9.26), which in this representation

takes the form of a conserved angular momentum,

ρ2
nθ̇n = 1/2L . (9.38)

Then (9.34) reduces to a set of N real (but non-linear) ordinary differential equations,

ρ̈n +

ï
4

a2
sin2

(πn
N

)
+m2(t)

ò
ρn =

1

4L2ρ3
n

, (9.39)

with initial conditions

ρn(t0) =
1√
2L

ï
4

a2
sin2

(πn
N

)
+m2(t0)

ò−1/4

, (9.40)

ρ̇n(t0) = 0 . (9.41)

Even though working in terms of modes is computationally advantageous, kinks

are configurations (field zeros) in physical space. Thus we have to straddle the two

descriptions as in the following Sec. 9.2.2.

9.2.2 Average Kink Number Density

We are now in a position to tackle the problem of kink production during the

phase transition. As mentioned earlier, since kinks and anti-kinks occur at zeros

of the field configuration we first introduce a quantum operator n̂Z that gives the

number density of zeros in a given field configuration:

n̂Z = nZ
Ä
φ̂
ä
≡ 1

L

N∑
j=1

1

4

î
sgn
Ä
φ̂j
ä
− sgn

Ä
φ̂j+1

äó2
=
N

2L
− 1

2L

N∑
j=1

sgn
Ä
φ̂jφ̂j+1

ä
.

(9.42)

More precisely, such an operator is sensitive to the number of sign changes that

occur between adjacent points on the lattice. We should stress that this is only

accurate up to the finite resolution given by the lattice spacing a. It may in fact

216



undercount the number of zeros of the actual continuous field configuration (if there

are multiple sign changes within a lattice spacing). We expect however that, as

N becomes large enough, this operator will become more and more accurate. This

assumption is reasonable as long as we can find a way to disregard high frequency

noise-like fluctuations due to the quantum vacuum thus only counting “true” kinks

and anti-kinks.

We now calculate the vacuum expectation value of this operator or, in Heisenberg

picture

〈n̂Z〉 ≡ 〈0|n̂Z(t)|0〉 . (9.43)

Given that we know the probability density functional explicitly for the Schrödinger

picture time-dependent state we can write

〈n̂Z〉 =
1√

det(2πK)

∫
dNφ nZ(φ)e−φ

TK−1φ/2 =
N

2L
− 1

2L

N∑
j=1

¨
sgn
Ä
φ̂jφ̂j+1

ä∂
,

(9.44)

where ¨
sgn
Ä
φ̂jφ̂j+1

ä∂
≡ 1√

det(2πK)
×
∫
dNφ sgn (φjφj+1) e−φ

TK−1φ/2 . (9.45)

Introducing the permutation (shift) matrix

P =



0 1 0 0

0

0 0 1

1 0 0


, (9.46)

and performing the change of variables φ→ P 1−jφ, we can rewrite (9.45) as¨
sgn
Ä
φ̂jφ̂j+1

ä∂
=

1√
det(2πK)

×
∫
dNφ sgn (φ1φ2) e−φ

TP j−1K−1P 1−jφ/2 . (9.47)
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As mentioned earlier, Z is a circulant matrix and, consequently, it has to be poly-

nomial in P . Therefore, the matrix K = ZZ† is also circulant and K−1 is seen to

commute with P . This implies that,¨
sgn
Ä
φ̂jφ̂j+1

ä∂
=
¨
sgn
Ä
φ̂1φ̂2

ä∂
=

1√
det(2πK)

∫
dNφ sgn (φ1φ2) e−φ

TK−1φ/2 ,

(9.48)

and the average number density of zeros simply reduces to

〈n̂Z〉 =
N

2L

î
1−
¨
sgn
Ä
φ̂1φ̂2

ä∂ó
. (9.49)

Let it be mentioned here that the circulant property of the covariance matrix K is

the mathematical counterpart of the fact that the system has translational invariance

(which is maintained at a discretized level by our choice of periodic boundary con-

ditions). In other words, it is a consequence of the fact that two-point correlation

functions 〈φ(x)φ(y)〉 only depend on the relative position |x− y|.

We now need to evaluate (9.48) more explicitly. We start by writing¨
sgn
Ä
φ̂1φ̂2

ä∂
=

1√
det(2πK)

×
IV∑
Q=I

∫
Q

dφ1dφ2 sgn(φ1φ2)

∫
dφ3 . . . dφN e

−φTK−1φ/2 ,

(9.50)

where the sum runs over the four quadrants in the (φ1, φ2) plane (denoted by Roman

numerals). We then decompose K−1 into suitably sized blocks,

K−1 = (ZZ†)−1 =

Ö
A B

BT C

è
, (9.51)

where A and C are real symmetric matrices of respective sizes 2×2 and (N−2)×(N−

2), while B is a 2× (N − 2) real matrix, and introduce the notations χ = (φ1, φ2)T ,

ξ = (φ3, . . . , φN)T . We also assume that C is invertible, which will be true generically.

This allows us to rewrite the bilinear in the exponent in (9.50) as

φTK−1φ = (ξ + C−1BTχ)TC(ξ + C−1BTχ) + χT (A−BC−1BT )χ . (9.52)

218



Using ∫
dN−2ξ e−(ξ+C−1BTχ)TC(ξ+C−1BTχ)/2 =

(2π)(N−2)/2√
det(C)

, (9.53)

we can perform the Gaussian integral over φ3, . . . , φN and obtain¨
sgn
Ä
φ̂1φ̂2

ä∂
=

1

2π
√

det(K)det(C)
× (9.54)

IV∑
Q=I

∫
Q

dφ1dφ2 sgn(φ1φ2) exp

−1

2
(φ1, φ2)A′

Ö
φ1

φ2

è ,
where

A′ ≡ A−BC−1BT (9.55)

is the so-called Schur complement of C. The left-over two-dimensional quadrant

integrals

IQ ≡
∫
Q

dφ1dφ2 sgn(φ1φ2) exp

−1

2
(φ1, φ2)A′

Ö
φ1

φ2

è , (9.56)

can also be carried out. For the first quadrant, for example, sgn(φ1φ2) = +1 and we

can write

II =

∫ ∞
0

∫ ∞
0

dφ1dφ2 × exp

ï
−1

2

(
A′11φ

2
1 + 2A′12φ1φ2 + A′22φ

2
2

)ò
=

∫ ∞
0

ds

∫ ∞
0

φ2 dφ2 × exp

ï
−1

2

(
A′11s

2 + 2A′12s+ A′22

)
φ2

2

ò
=

∫ ∞
0

ds
1

A′11s
2 + 2A′12s+ A′22

=
1√

A′11A
′
22 − A′12

ñ
π

2
− tan−1

Ç
A′12√

A′11A
′
22 − A′12

åô
=

1√
det(A′)

ñ
π

2
− tan−1

Ç
A′12√

det(A′)

åô
,

(9.57)

where in going from the first to the second line we used the change of variables

φ1 → sφ2.

The integrals over the remaining three quadrants are readily obtained from II as

follows. To begin with, the change of variables φ1 → −φ1 and φ2 → −φ2 makes it
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clear that IIII = II , and III = IIV . Furthermore, notice that the change of variables

φ1 → −φ1 (leaving φ2 unchanged) on III has the same effect (up to an overall sign)

as changing A′12 into −A′12 in (9.57). We thus obtain

III = − 1√
det(A′)

ñ
π

2
+ tan−1

Ç
A′12√

det(A′)

åô
, (9.58)

and all the four integrals IQ appearing in (9.54) are accounted for. We can achieve

further simplification by taking advantage of the properties of the matrix A′. In

particular since

K−1 =

Ö
I BC−1

0 I

èÖ
A′ 0

0 C

èÖ
I 0

C−1BT I

è
, (9.59)

we have

det
(
K−1

)
=

1

det (K)
= det (A′) det (C) (9.60)

and (9.54) collapses to¨
sgn
Ä
φ̂1φ̂2

ä∂
= − 2

π
tan−1

Ç
A′12√

det(A′)

å
. (9.61)

But we can go even further. Indeed inverting (9.59),

K =

Ö
I 0

−C−1BT I

èÖ
A′−1 0

0 C−1

èÖ
I −BC−1

0 I

è
, (9.62)

shows that A′−1 coincides with the upper-left 2 × 2 block of the matrix K. More

explicitly we can write,

A′−1 =

Ö
α β

β α

è
(9.63)

where, using (9.33) and the reality of K,

α ≡ K11 =
N∑
n=1

|cn|2, (9.64)

β ≡ K12 =
N∑
n=1

|cn|2 cos(2πn/N) . (9.65)
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Thus

A′ =
1

α2 − β2

Ö
α −β

−β α

è
(9.66)

and (9.61) becomes¨
sgn
Ä
φ̂1φ̂2

ä∂
=

2

π
tan−1

Ç
β√

α2 − β2

å
=

2

π
sin−1

Å
β

α

ã
. (9.67)

Finally we obtain the average number density of zeros

〈n̂Z〉 =
N

2L

ï
1− 2

π
sin−1

Å
β

α

ãò
. (9.68)

Recall however that we are interested in the average number density of kinks

which may differ from the number density of zeros as given in (9.68) because the

latter includes zeros due to vacuum fluctuations of the quantum field. The difference

between the two quantities is most clear long before the phase transition, where

the field is in its unique vacuum and its expectation value vanishes everywhere on

the lattice. However the field fluctuates about zero and there is a non-zero average

number density of zeros. This is to be contrasted with the average number density of

kinks which should be exactly zero before the phase transition. Moreover the average

number density of zeros is expected to be highly sensitive to the number of lattice

points N since the finer the resolution, the more zeros can be identified. This is again

different for the average number density of kinks which are supposed to be extended

objects whose separation is set by the correlation length of the field fluctuations. We

therefore need a systematic procedure to eliminate the spurious zeros from the result

in (9.68). One way is to restrict the sums in (9.64), (9.65) to those modes cn(t) that

are not oscillating (Karra and Rivers, 1997), in other words to indices n verifying

ω
(n)
2 (t) ≡ 4

a2
sin2

(πn
N

)
+m2(t) ≤ 0 . (9.69)

It is indeed the presence of such unstable modes that allows for the production of

the non-perturbative kink and anti-kink solutions. Then the formula for the average
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number density of kinks, nK , is obtained by restricting the modes that enter (9.68),

giving us

nK =
N

2L

ï
1− 2

π
sin−1

Å
β̄

ᾱ

ãò
, (9.70)

where now

ᾱ ≡
∑
ω
(n)
2 ≤0

|cn|2, (9.71)

β̄ ≡
∑
ω
(n)
2 ≤0

|cn|2 cos(2πn/N) . (9.72)

These equations only apply for t ≥ 0 when the modes start to become unstable. For

t < 0, there are only fluctuating modes and we set nK = 0. We will discuss the

difference between 〈n̂Z〉 and nK in Sec. 9.2.4.

After the phase transition and as long as the lattice spacing a is small enough,

a < 2/
√
|m2(t)| for all times t > 0, we can introduce nc(t), the time-dependent

critical value of n that separates unstable modes from modes that oscillate,

nc(t) ≡
ú
N

π
sin−1

Ç
a
√
|m2(t)|
2

åü
. (9.73)

where b c denotes the integer part function. Then nc(t) < N/2 and (9.71), (9.72) can

be rewritten in a more explicit way

ᾱ ≡
∑

|n|≤nc(t)
|cn|2 = |c0|2 + 2

nc(t)∑
n=1

|cn|2, (9.74)

β̄ ≡
∑

|n|≤nc(t)
|cn|2 cos(2πn/N)

= |c0|2 + 2

nc(t)∑
n=1

|cn|2 cos(2πn/N) . (9.75)

Here we have identified c−n with cN−n for concision, and exploited the symmetry

cN−n = cn (valid for 1 ≤ n ≤ N − 1) which can be checked directly via (9.34), (9.35),

(9.36). Since the ratio β̄/ᾱ belongs to the interval [0, 1] one can also rewrite (9.70) as

nK =
N

πL
cos−1

Å
β̄

ᾱ

ã
. (9.76)
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Before diving into analytical and numerical estimates of nK we need to discuss

the continuum and infinite volume limits of our discretized theory. We start with the

continuum limit. Keeping L fixed, and noticing that, for all N , nc(t) ≤ mL/4, we

can safely take the N →∞ limit in expressions involving n/N . In particular

ω
(n)
2 (t) ≈

Å
2πn

L

ã2

+m2(t) , (9.77)

and

nc(t) ≈
ú
L
√
|m2(t)|
2π

ü
. (9.78)

Then the expression for the ratio β̄/ᾱ reads

β̄

ᾱ
≈ 1− 2π2

N2

∑
ω
(n)
2 (t)≤0

n2|cn|2∑
ω
(n)
2 (t)≤0

|cn|2
. (9.79)

Now, it is clear that this expression is of the form 1−2x2 with x ∈ [0, 1] and therefore

we may use the identity

cos−1
(
1− 2x2

)
= 2 sin−1 x , (9.80)

to simplify (9.76) and obtain

nK =
2N

πL
sin−1

Ñ
π

N

Ã∑
ω
(n)
2 (t)≤0

n2|cn|2∑
ω
(n)
2 (t)≤0

|cn|2

é
=

2

L

Ã∑
ω
(n)
2 (t)≤0

n2|cn|2∑
ω
(n)
2 (t)≤0

|cn|2
. (9.81)

This is the expression of the continuum limit (N → ∞) average number density of

kinks. The main property of this expression is that is does not depend on N anymore.

Indeed, although the system’s dynamics is governed by an infinite number of mode

functions, only a finite number appears in the formula; it is only those modes with

n ≤ mL/2π that trigger the instabilities required for the production of kinks. This

means that the result is stable in the UV limit and does not depend on the resolution

of our discretization. Physically, the contribution of the vacuum fluctuations of the

quantum field has been discarded.
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Let us now end this section by discussing the infinite volume (or length since we

are working in one spatial dimension) limit L→∞. This is readily done by noticing

that the finite size of the spatial dimension is responsible for the discreteness of the

wave vectors

kn ≡
2πn

L
, (9.82)

corresponding to different modes. As L increases, however, these wave vectors become

more and more numerous and densely packed until they form a continuum spanning

the entire interval [−m,m]. At this point, it is convenient to switch notations and

index any relevant quantities by kn instead of just n. Then

ω
(kn)
2 (t) = k2

n +m2(t) , (9.83)

and

kc(t) ≡
2πnc(t)

L
=
»
|m2(t)| . (9.84)

The average kink number density can therefore be rewritten

nK =
1

π

√∑
|kn|≤kc(t) k

2
n|ckn|2∑

|kn|≤kc(t) |ckn|2
. (9.85)

In the L→∞ limit the sums over kn become integrals over k, so that

nK ≈
1

π

Ã∫ kc(t)
0

dk k2|ck|2∫ kc(t)
0

dk |ck|2
. (9.86)

Here we have tacitly introduced the infinite volume mode functions ck verifying

c̈k +
(
k2 +m2(t)

)
ck = 0 , (9.87)

and used their k → −k symmetry properties. We now have all the tools required to

perform simple analytical estimates of the average kink number density.
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9.2.3 Analytical Estimate

In the limit of a sudden phase transition (τ = 0), we can solve (9.34) exactly since

m2(t) = −m2Θ(t) (where Θ is the Heaviside function). In fact one may then choose

the initial time to be t0 = 0− and solve the differential equations

c̈n +

ï
4

a2
sin2

(πn
N

)
−m2

ò
cn = 0 , (9.88)

with initial conditions

cn(0) =
−i√
2L

ï
4

a2
sin2

(πn
N

)
+m2

ò−1/4

, (9.89)

ċn(0) =
1√
2L

ï
4

a2
sin2

(πn
N

)
+m2

ò1/4

. (9.90)

Since the time dependence of the frequency has disappeared, the above differential

equations can be solved analytically. This yields the unstable mode functions cn(t)

involved in the formula for the average number density of kinks (9.70) i.e. those

verifying |n| ≤ N sin−1(ma/2)/π. More precisely we have

cn(t) =
−i√
2L

ï
4

a2
sin2

(πn
N

)
+m2

ò−1/4

cosh (κnt)

+
1√
2L

ï
4

a2
sin2

(πn
N

)
+m2

ò1/4 sinh(κnt)

κn
, (9.91)

where κn =
»
m2 − 4

a2
sin2

(
πn
N

)
. Taking first the continuum limit N → ∞ while

keeping L fixed we obtain, for |n| ≤ mL/2π,

ckn(t) ≈ −i√
2L

(
k2
n +m2

)−1/4
cosh

Ä
t
√
m2 − k2

n

ä
+

1√
2L

(
k2
n +m2

)1/4 sinh
Ä
t
√
m2 − k2

n

ä√
m2 − k2

n

, (9.92)

where we labelled the mode functions by kn = 2πn/L as in the previous section. In

the L → ∞ limit, the discrete variable kn becomes continuous and we can write an
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analytical formula for the average kink number density as in (9.86):

nK =
1

π


∫

m

0

dk

ñ
k2
(
m2 cosh

(
2t
√
m2 − k2

)
− k2

)
(m2 − k2)

√
k2 +m2

ô1/2


∫

m

0

dk

ñ
m2 cosh

(
2t
√
m2 − k2

)
− k2

(m2 − k2)
√
k2 +m2

ô−1/2

.

(9.93)

With this expression in hand we can immediately estimate a few important quantities.

First of all, we can predict the late time behavior of the average kink number density.

Indeed for large t the integrals simplify considerably and it is easy to see that they

are dominated by values of k � m. We can then estimate (9.93) to be

nK ≈
1

π

ñ∫ m
0
dk k2 exp (−tk2/m)∫ m

0
dk exp (−tk2/m)

ô1/2

≈ 1

π

…
m

2t
(9.94)

Using Eq. (9.93), one can also estimate the maximum number density of kinks that

are produced after the phase transition. In fact, taking a time derivative of (9.93),

it is easy to convince oneself that this maximum occurs at t = 0+, in other words,

immediately after the phase transition. Moreover its value can be computed exactly

to be

nK(0) =
1

π

Ç∫ m
0
dk k2/

√
k2 +m2∫ m

0
dk/
√
k2 +m2

å1/2

=
m

π

Ñ√
2− sinh−1(1)

2 coth−1
Ä√

2
ä é1/2

≈ 0.175m. (9.95)

Both the power law for the asymptotic behavior of the average kink number density

and the maximum number of kinks value will be numerically confirmed in the following

subsection. Our analytic results agree with previous work on sudden phase transitions

in thermal quenches studied in Boyanovsky (1993); Boyanovsky et al. (2000); Ibaceta

and Calzetta (1999); Calzetta (1989) using different techniques.
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9.2.4 Numerical Results

We now discuss our numerical results for the time evolution of nK for different

values of the quench parameter τ . In principle this involves solving the complex dif-

ferential equations (9.34) with initial conditions (9.35) and (9.36), for the unstable

mode functions cn(t) – those with |n| ≤ nc(t). We can then directly evaluate the av-

erage number density of kinks using (9.70). However, since this formula only involves

|cn(t)| = ρn(t), considerable computational gain can be achieved by instead solving

the real differential equations (9.39) with initial conditions (9.40), (9.41).

It turns out that this system of ordinary differential equations presents a major

computational difficulty caused by the fact that ρn(t) grows exponentially for |n| ≤

nc(t). Therefore the numerical evolution is limited to short time periods after the

phase transition beyond which the numbers involved become extremely large and

results cannot be trusted. One way to get around this problem is to factor out the

exponential growth, i.e. the zero mode ρ0(t) = ρN(t), from the other modes and

evolve it separately. So we write,

ρn(t) = ρ0(t)rn(t) , (9.96)

for n = 1, . . . , N − 1. With this redefinition it can be shown that the differential

equation (9.39) now becomes,

r̈n + 2
ρ̇0

ρ0

ṙn +

Å
ω

(n)
2 − ω

(0)
2 +

1

4L2ρ4
0

Å
1− 1

r4
n

ãã
rn = 0 , (9.97)

and its corresponding initial conditions are given by,

rn(t0) =
1√
2L

ω
(n)
2 (t0)−1/4

ρ0(t0)
, (9.98)

ṙn(t0) = 0 . (9.99)

Recall here that

ω
(n)
2 =

4

a2
sin2

(πn
N

)
+m2(t) , (9.100)

227



and ω
(0)
2 = ω

(N)
2 . Furthermore, one can also efficiently solve for ρ0(t) by introducing

the auxiliary function q(t) = ln ρ0(t), verifying

q̈ + q̇2 + ω
(0)
2 =

e−4q

4L2
, (9.101)

with initial conditions,

q(t0) = ln

ï
1√
2L

(
m2(t0)

)−1/4
ò
,

q̇(t0) = 0 . (9.102)

By going to the q(t) variable we avoid the exponential growth of ρ0(t). Thus, both

the differential equation for rn(t) (9.97) and its corresponding initial conditions can

be rewritten in terms of this auxiliary function:

r̈n + 2q̇ṙn +

Å
ω

(n)
2 − ω

(0)
2 +

e−4q

4L2

Å
1− 1

r4
n

ãã
rn = 0 , (9.103)

with initial conditions,

rn(t0) =

Ç
ω

(0)
2 (t0)

ω
(n)
2 (t0)

å1/4

,

ṙn(t0) = 0 . (9.104)

In summary, the numerically efficient way to study the dynamics of kink formation

in our model, is to solve (9.101) and (9.103) with respective initial conditions (9.102)

and (9.104). The computational problem we had is indeed resolved since we managed

to eliminate the exponential growth of ρn(t) by suitable function redefinitions. The

numerics can now be trusted for much longer periods of time.

In our numerical work we work in units where m = 1 and pick t0 = −200. To get

accurate results we choose large L and N . Most of our results are for L = 6400 and

N = 12800. The evolution of the average number density of kinks nK for different

quench time scales τ is shown in Fig. 9.2a. The different curves exhibit the same
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Figure 9.2: (a) Log-log plot of nK versus time for τ =0.1 (Purple, topmost curve),
0.5 (Red), 1.0 (Green), 5.0 (Orange), 10.0 (Blue). The black dashed line shows the
exhibited power law at late times, i.e. t−1/2. (b) Log-log plot of the differences
between the average kink number density for different values of τ , nK(t, τ1 = 0.1) −
nK(t, τ2) vs. time for τ2 = 0.5 (Blue), 1.0 (Red), 5.0 (Purple), 10.0 (Green). The
black dashed line shows the exhibited power law, i.e. t−3/2.

qualitative behavior: immediately after the phase transition (t = 0) the average

number density of kinks increases from 0 to a maximum value (nK)max within a time

tmax, and this is followed by a gradual decrease that asymptotically converges to a

power law. Physically this corresponds to the production of a random distribution of

kinks and anti-kinks during the phase transition, followed by their mutual annihilation

over time. Noticeably, the asymptotic behavior of the average kink number density is

independent of the quench time scale: at late times the plots for different values of τ

converge to the same function that falls off as t−1/2. (We have also cross-checked this

result by computing the correlation length ξ(t) of field fluctuations and showing that

it scales as 1/nK ∼ t1/2, as expected from existing results in the literature (Liu and

Mazenko, 1991, 1992a; Boyanovsky, 1993; Boyanovsky et al., 2000; Liu and Mazenko,

1992b). This scaling law also agrees with the analytical estimate of Eq. (9.94) and

shows that the τ = 0 solution is a universal attractor. To analyze the rate at which the

kink densities for different values of τ converge, we plot ∆nK(t, τ1, τ2) ≡ nK(t, τ1) −
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Figure 9.3: (a) Log-log plot of nK(t) versus time for τ = 1.0 for various values of L
and N as given in (9.70). (b) Log-log plot of nK and 〈n̂Z〉 versus time for τ = 1.0,
L = 6400 and various values of N .

nK(t, τ2) versus t in Fig. 9.2b. We observe that at late times these differences fall off

as t−3/2. We can therefore conclude that

nK(t) = CK

…
m

t
+O
Å
t−3/2

ã
, (9.105)

where CK ≈ 0.22 is a constant of proportionality which is independent of the quench

time scale τ . This agrees well with the analytical estimate found in Eq. (9.94):

1/(π
√

2) ≈ 0.225.

We can explicitly check, as shown in Fig. 9.3a, that our results are independent of

both L and N as long as they are sufficiently large and a = L/N is sufficiently small.

In Fig. 9.3b we have also plotted 〈n̂Z〉 and nK for different values of N . Although

the curves depend on N (or are UV sensitive) near the phase transition, the late

time behaviors are universal. This is to be expected since unstable modes grow

exponentially and dominate the sums in (9.74) and (9.75). Thus our technique of

restricting the mode sums to differentiate between field zeros and kinks is reasonable

and gets rid of the artifacts arising due to finite N .

The plots of (nK)max versus τ , and tmax versus τ , are shown in Fig. 9.4a and
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Figure 9.4: (a) Log-Log plot of the maximum average kink number density (nK)max

vs. τ . For larger values of τ the maximum average kink number density falls off as
τ−0.33. (b) Log-Log plot of the time at which maximum average kink number density
(nK)max occurs (tmax) vs. τ . For larger values of τ , tmax grows as τ 0.34.

Fig. 9.4b respectively. From these we note that the faster the phase transition (smaller

quench time τ), the more kinks and anti-kinks are produced and the faster their

maximum number density is attained. In Fig. 9.4a we see that the maximum density

of kinks (nK)max flattens, i.e. it becomes a constant as quench time scales approach

zero. The value of (nK)max for which this happens is seen to be approximately 0.175.

This agrees remarkably well with the analytical estimate in Eq. (9.95).

9.3 Two Dimensions: Vortices

The analysis done in Section 9.2 can be generalized to the d = 2 case. We will be

considering a two-dimensional complex scalar field Φ whose dynamics are described

by the Lagrangian density

L(2) =
1

2
∂µΦ∗∂µΦ− 1

2
m2(t)Φ∗Φ− 1

4
λ (Φ∗Φ)2 . (9.106)

This theory is known to possess solitonic solutions called vortices, characterized by

a topological charge known as the winding number. Assuming a vortex field config-

uration Φ(x, y) = r(x, y)eiθ(x,y) = φ(x, y) + iψ(x, y) centered at a point (x0, y0), the
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winding number is given by

Γ =
1

2π

∮
C
dθ =

1

2π

∫
C

1

r2
(φdψ − ψdφ) , (9.107)

where C is any closed loop around (x0, y0). Generically a non-zero winding number

along a closed loop implies the existence of a vortex configuration and the vanishing

of the field somewhere within the bounded region. Therefore, as in the case of kinks,

vortices are to be found among zeros of Φ.

To study the production of vortices during the quantum phase transition we will

thus do a similar analysis to the one we did for kinks. We start by setting λ to zero

and express the Lagrangian density in terms of the two real scalar fields φ and ψ,

respectively defined as the real and imaginary part of the complex field Φ:

L(2) =
1

2
(∂µφ)2 +

1

2
(∂µψ)2 − 1

2
m2(t)(φ2 + ψ2) . (9.108)

This is a model for two non-interacting real scalar fields in two spatial dimensions.

In order to apply the methods outlined in Section 9.2, we need to discretize this

model. We first compactify both spatial dimensions by assuming periodic boundary

conditions, φ(x+L, y) = φ(x, y+L) = φ(x, y) (and similarly for ψ). Space is thus seen

to be a 2-torus of area L2. We then discretize it on a regular square lattice consisting of

N2 points separated by a distance a = L/N along both the x and y directions. Now for

each lattice point (xj, yl) ≡ (ja, la) we can define the discretized fields φjl ≡ φ(xj, yl)

and ψjl ≡ ψ(xj, yl). Writing the discretized Lagrangian and quantizing it can be done

analogously to the one-dimensional case, with the understanding that any vectors and

matrices are now N2 and N2×N2 dimensional respectively. For example, the vector

of discretized field values of φ is given by

φ ≡ (φ11, φ12, ..., φ1N , φ21, ..., φ2N , ..., φNN−1, φNN)T . (9.109)
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More generally, any N2×N2 matrix A will be represented by a two-dimensional array

of matrix elements Aij,kl arranged in the following way:

A =



A11,11 A11,12 A11,1N A11,21 A11,22

A12,11 A12,12 A12,1N A12,21 A12,22

A1N,11 A1N,12 A1N,1N A1N,21 A1N,22

A21,11

A22,11


With these conventions in mind (where matrices are four index objects and vectors

are two index objects), we can directly generalize the computations in Sec. 9.2.1 to

solve the functional Schrödinger equation for the wave-functional is Ψ[φij, ψij; t]. In

fact, we can define a new N2 × N2 matrix Z obeying Eqs. (9.20), (9.21) and (9.22)

as long as the matrix elements of Ω2 are given by

[Ω2]ij,kl =


+2/a2 +m2(t) , i = k, j = l

−1/a2 , i = k ± 1, j = l ± 1 (mod N)

0 , otherwise .

(9.110)

It is then easy to write the probability density functional as in Eq. (9.28),

|Ψ(t)|2 =
1

det(2πK)
e−φ

TK−1φ/2e−ψ
TK−1ψ/2 . (9.111)

where the matrix K is still related to Z via K = ZZ†.

We can be even more explicit by realizing that the matrix Z(t) is once again real

and circulant, i.e., the matrix elements of Z, Zpq,rs depend only on p − r (mod N)

and q − s (mod N). We can therefore again diagonalize Z using the discrete Fourier
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transform:

Zpq,rs =
1

N

N∑
n,n′=1

cn,n′(t)e
−i(p−r)2πn/Ne−i(q−s)2πn

′/N . (9.112)

Using equations (9.20),(9.21) and (9.22), the complex mode functions cn,n′(t) verify

c̈n,n′ +

ï
4

a2

ß
sin2

(πn
N

)
+ sin2

Å
πn′

N

ã™
+m2(t)

ò
cn,n′ = 0 , (9.113)

and

cn,n′(t0) =
−i√
2a

1

N

ï
4

a2

ß
sin2

(πn
N

)
+ sin2

Å
πn′

N

ã™
+m2(t0)

ò−1/4

, (9.114)

ċn,n′(t0) =
1√
2a

1

N

ï
4

a2

ß
sin2

(πn
N

)
+ sin2

Å
πn′

N

ã™
+m2(t0)

ò1/4

. (9.115)

Note that cn,n′ = cn′,n which immediately implies that Zpq,rs = Zqp,sr and again we

assume the initial time t0 to be such that t0 � −τ . This follows from the rotational

symmetry of the system.

9.3.1 Average Vortex Number Density

To find the vortex number density, we first need a quantum operator that counts

the number of zeros nZ of the complex field Φ (as in Sec. 9.2.2), or in other words,

coincident zeroes of both the fields φ and ψ. Since space is discretized, such an

operator necessarily yields a coarse-grained estimate of the actual number of zeros

of a given field configuration. As the number of lattice points N2 increases so does

the operator’s resolution: while certain “zeros” cease to be counted, new ones are

revealed. In the limit where N →∞ we expect divergences, just as in the kink case,

and we will return to this point later on.

We think of the vortex as the intersection of a domain wall of φ – for our purposes,

a domain wall is a curve on which φ = 0 – with a domain wall of ψ. Then, as shown in

Fig. 9.5, there could be a situation where a φ domain wall enters a plaquette through
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Figure 9.5: A plaquette showing how zeros are counted.

one edge and leaves through the opposite edge, while a ψ domain wall passes through

the plaquette in the orthogonal direction. Then the two domain walls must intersect,

leading to coincident zeros that correspond to a vortex within that plaquette. Other

possibilities include the case where the φ wall enters the plaquette from the lower edge

but leaves from the right edge in Fig. 9.5 while the ψ domain wall goes through as

shown or bends to exit from the top edge. It is ambiguous whether a coincident zero

exists in these other cases but the ambiguity is minimized as the lattice resolution is

increased (N →∞). Hence we can count zeros of Φ in the large N limit by counting

the plaquettes in which φ and ψ domain walls enter across orthogonal edges.

Then, motivated by the discussion in Sec. 9.2.2, we can define the number density

of zeros of Φ by, n̂Z = nZ
Ä
φ̂, ψ̂
ä
,

n̂Z ≡
1

L2

N∑
i,j=1

1

16

ï¶
sgn
Ä
φ̂ij
ä
− sgn

Ä
φ̂i+1,j

ä©2 ¶
sgn
Ä
ψ̂ij
ä
− sgn

Ä
ψ̂i,j+1

ä©2
+ (φ↔ ψ)

ò
=

1

4L2

N∑
i,j=1

ï¶
1− sgn

Ä
φ̂i,jφ̂i+1,j

ä©¶
1− sgn

Ä
ψ̂ijψ̂i,j+1

ä©
+
¶

1− sgn
Ä
ψ̂ijψ̂i+1,j

ä©¶
1− sgn

Ä
φ̂ijφ̂i,j+1

ä©ò
.
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We can now write down the vacuum expectation value of the operator n̂Z : 〈n̂Z〉 ≡

〈0|n̂Z(t)|0〉. Using the fact that the fields φ and ψ are independent and that, conse-

quently, the probability density functional factorizes as in Eq. (9.111), we first notice

that¨
sgn
Ä
φ̂ijφ̂i,j+1

ä∂
=

1√
det(2πK)

×
∫
dNφ sgn (φijφi,j+1) e−φ

TK−1φ/2 . (9.116)

Then, using the fact that the matrix K−1 is circulant and, moreover, symmetric under

interchange of its first (or last) two indices – properties that are inherited from Z, we

can establish that¨
sgn
Ä
φ̂ijφ̂i,j+1

ä∂
=
¨
sgn
Ä
φ̂11φ̂12

ä∂
=
¨
sgn
Ä
φ̂11φ̂21

ä∂
=
¨
sgn
Ä
φ̂ijφ̂i+1,j

ä∂
. (9.117)

Physically, this set of equalities is a manifestation of the translational and rotational

invariance of the system. It is also clear that, φ being a dummy variable in the integral

of Eq. (9.116), ¨
sgn
Ä
ψ̂ijψ̂kl

ä∂
=
¨
sgn
Ä
φ̂ijφ̂kl

ä∂
. (9.118)

These properties thus allow us to write the average number of zeros of the field in a

very simple form:

〈n̂Z〉 =
N2

2L2

ï
1−
¨
sgn
Ä
φ̂11φ̂12

ä∂ò2

. (9.119)

From this point on, the computation of the average number of zeros follows along

the same lines as in Sec. 9.2, and we obtain

〈n̂Z〉 =
N2

2L2

ï
1− 2

π
sin−1

Å
β

α

ãò2

, (9.120)

where α and β are now defined as

α ≡ K11,11 =
N∑

n,n′=1

|cn,n′|2, (9.121)

β ≡ K11,12 =
N∑

n,n′=1

|cn,n′|2 cos(2πn′/N) . (9.122)
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Here, once again, we have used the reality of the matrix Z.

Eq. (9.120) gives us the number density of field zeros but we are interested in

counting the number density of vortices. We have already discussed how quantum

fluctuations can induce a non-zero number density of zeros of the field even in the

absence of spontaneous symmetry breaking. We thus need to eliminate such spurious

zeros by restricting the sums in (9.121) and (9.122) to the mode functions cn,n′(t)

that are non-oscillating. In this case we include the modes corresponding to n and

n′ verifying,

ω
(n,n′)
2 (t) ≡ 4

a2

ß
sin2

(πn
N

)
+ sin2

Å
πn′

N

ã™
+m2(t) ≤ 0 . (9.123)

The average number density of vortices formed after the phase transition is finally

given by,

nV =
N2

2L2

ï
1− 2

π
sin−1

Å
β̄

ᾱ

ãò2

, (9.124)

where,

ᾱ ≡
∑

ω
(n,n′)
2 ≤0

|cn,n′|2, (9.125)

β̄ ≡
∑

ω
(n,n′)
2 ≤0

|cn,n′|2 cos(2πn′/N) . (9.126)

Similar to the case of kinks (see discussion in Sec. 9.2.2), this result only makes sense

after the phase transition; it is ill-defined before. As might be intuitively expected,

the average number density of vortices is obtained, up to a combinatorics factor due

to the φ ↔ ψ symmetry, by squaring the average number density of kinks. In the

next subsections we will see that this intuition is supported by both analytical and

numerical estimates of the asymptotic dynamics of the problem.

Analogously to Sec. 9.2.2, Eq. (9.124) can be further simplified by first taking the
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continuum limit N →∞ (at fixed volume L) to obtain

nV ≈
8

L2

∑
ω
(n,n′)
2 ≤0

n′2|cn,n′|2∑
ω
(n,n′)
2 ≤0

|cn,n′ |2
, (9.127)

where the sums run over pairs of integers (n, n′) ∈ Z2 verifying

ω
(n,n′)
2 (t) ≈

Å
2πn

L

ã2

+

Å
2πn′

L

ã2

+m2(t0) ≤ 0 , (9.128)

and it is understood that c−n,n′ ≡ cN−n,n′ , cn,−n′ ≡ cn,N−n′ for 0 ≤ n, n′ ≤ N − 1.

Relabelling the mode functions by the discrete two-dimensional wave vector

~kn,n′ =
Ä
k(n)
x , k(n′)

y

ä
≡
Å

2πn

L
,
2πn′

L

ã
, (9.129)

and taking the large L limit, Eq. (9.127) can be recast as

nV ≈
2

π2

∫
k≤kc(t) d

2k k2
y|c~k|2∫

k≤kc(t) d
2k |c~k|2

. (9.130)

Here we have once again introduced the infinite volume mode functions c~k – labelled

by a continuum of two-dimensional wave vectors ~k ≡ (kx, ky) – verifying

c̈~k +
(
k2 +m2(t)

)
c~k = 0 , (9.131)

and defined k ≡ |~k| and kc(t) =
√
|m2(t)| as in Sec. 9.2.2. Noticing that c~k only

depends2 on k and going to polar coordinates, we can turn the double integrals in

(9.130) into single integrals to finally obtain the continuum, infinite volume limit of

the average vortex number density:

nV ≈
1

π2

∫ kc(t)
0

dk k3|c~k|2∫ kc(t)
0

dk k|c~k|2
. (9.132)

With the possible exception of our particular choice of UV cutoff, this formula is

in agreement with known results in the literature (see e.g. Eq. (5) in Ibaceta and

Calzetta (1999)).

2This can be checked explicitly using Eqs. (9.113), (9.114), (9.115) and is a consequence of the

rotational invariance of the problem.
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9.3.2 Analytical Estimate

Just as we did in the case of kinks in Sec. 9.2.3, we can also compute the average

number density of vortices at late times in the limit of a sudden phase transition

(τ = 0). This can be achieved once again by exactly solving the differential equations

for the mode coefficients cn,n′(t). As we saw in Sec. 9.3 these differential equations

are as follows,

c̈n,n′ +

ï
4

a2

ß
sin2

(πn
N

)
+ sin2

Å
πn′

N

ã™
−m2

ò
cn,n′ = 0 , (9.133)

with initial conditions

cn,n′(0) =
−i√
2a

1

N

ï
4

a2

ß
sin2

(πn
N

)
+ sin2

Å
πn′

N

ã™
+m2

ò−1/4

, (9.134)

ċn,n′(0) =
1√
2a

1

N

ï
4

a2

ß
sin2

(πn
N

)
+ sin2

Å
πn′

N

ã™
+m2

ò1/4

. (9.135)

The solution to these equations can be obtained analytically. In fact they look very

similar to the ones we obtained in the kinks case but now involve two indices instead

of just one. This gives the unstable mode functions cn,n′(t) involved in the formula

for the average number density of vortices:

cn,n′(t) =
−i√
2L

ï
4

a2

ß
sin2

(πn
N

)
+ sin2

Å
πn′

N

ã™
+m2

ò−1/4

cosh (κn,n′t)

+
1√
2L

ï
4

a2

ß
sin2

(πn
N

)
+ sin2

Å
πn′

N

ã™
+m2

ò1/4 sinh(κn,n′t)

κn,n′
,(9.136)

where

κn,n′ =

 
m2 − 4

a2

ß
sin2

(πn
N

)
+ sin2

Å
πn′

N

ã™
. (9.137)

Now, taking first the continuum limit N → ∞ while keeping L fixed we obtain, for

n2 + n′2 ≤ (mL/2π)2 ,

c~kn,n′
(t) ≈ −i√

2L

Ä
k(n)
x

2 + k(n′)
y

2 +m2
ä−1/4

cosh

Å
t
»
m2 − k(n)

x
2 − k(n′)

y
2

ã
+

1√
2L

Ä
k(n)
x

2 + k(n′)
y

2 +m2
ä1/4 sinh

(
t
»
m2 − k(n)

x
2 − k(n′)

y
2
)»

m2 − k(n)
x

2 − k(n′)
y

2

,(9.138)
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where we have relabelled the mode functions by ~kn,n′ = (k
(n)
x , k

(n′)
y ) and recall that

k
(n)
x = 2πn/L, k

(n′)
y = 2πn′/L. In the limit L → ∞, the discrete variables ~kn,n′

become continuous and, as in Eq. (9.132), we can write an analytical formula for the

average number density of vortices:

nV ≈
1

π2


∫

m

0

dk

ñ
k3
(
m2 cosh

(
2t
√
m2 − k2

)
− k2

)
(m2 − k2)

√
k2 +m2

ô
∫

m

0

dk

ñ
k
(
m2 cosh

(
2t
√
m2 − k2

)
− k2

)
(m2 − k2)

√
k2 +m2

ô−1

.

(9.139)

Using this equation, we can once again estimate the late time behavior of the

average number of vortices. In the limit, k, k′ � m, we have

nV ≈
1

π2

∫ m
0
dk k3 exp (−tk2/m)∫ m

0
dk k exp (−tk2/m)

≈ m

π2t
= 2!n2

K . (9.140)

As mentioned below Eq. (9.126), the vortex number density is obtained by squaring

the kink number density and multiplying by the combinatorial factor 2! due to the

exchange symmetry φ↔ ψ.

Furthermore, like in the case of kinks, the maximum number density of vortices

can be estimated using Eq. (9.139). This maximum is reached immediately after the

phase transition, at time t = 0+ and is found to be

(nV )max =
1

π2

∫ m
0
dk k3/

√
k2 +m2∫ m

0
dk k/

√
k2 +m2

=
m2
√

2

3π2
≈ 0.0478m2 . (9.141)

9.3.3 Numerical Results

We use numerical techniques to solve (9.113) and then calculate the average vortex

number density using (9.124). For reasons discussed earlier, the parameters L and N

that we choose for our numerical simulations need to be sufficiently large to accurately
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Figure 9.6: (a) Log-log plot of nV (t) versus time for τ =0.1 (Purple, topmost curve),
0.5 (Red), 1.0 (Green), 5.0 (Orange), 10.0 (Blue). The black dashed line shows the
exhibited power law at late times, i.e. t−1. (b) Log-log plot of the differences between
the average vortex number density for different values of τ , nV (t, τ1 = 0.1)−nV (t, τ2)
vs. time for τ2 = 0.5 (Blue), 1.0 (Red), 5.0 (Purple), 10.0 (Green). The black dashed
line shows the exhibited power law, i.e. t−2.

describe the continuum infinite volume limit. We choose, L = 2000 and N = 4000. As

in the case of kinks, the results are insensitive to the UV and IR cutoffs. In practice,

because of the order N2 computational complexity of the problem and the exponential

growth of the magnitudes of mode functions, we directly solve for ρn,n′ = |cn,n′ | and

factor out the zero mode to improve the numerical accuracy (see Sec. 9.2.4 for details).

In Fig. 9.6a we show the average vortex number density for different quench pa-

rameters τ as a function of time. As in the kink case, the plots of nV vs. t for

different τ converge to the same function and decay as t−1 as we expect from the

analytical estimate in (9.140). The result also agrees with the intuition that a vortex

corresponds to the intersection of two independent domain walls.

Fig. 9.6a also shows that immediately after the phase transition, nV increases from

zero to some maximum value (nV )max in a time tmax. As time goes on nV starts to

decay. At very early times, after the phase transition, randomly distributed vortices

of positive and negative winding number are produced, but then the system starts
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relaxing, the vortices-antivortices start annihilating, and the dynamics reaches its

scaling regime.

We can also plot the differences of vortex number densities for different values of τ

as we did in the case of kinks: ∆nV (t, τ1, τ2) ≡ nV (t, τ1)− nV (t, τ2). This is shown in

Fig. 9.6b which shows that ∆nV (t, τ1, τ2) decays as t−2 at late times. We thus deduce

the asymptotic form,

nV (t) = CV

(m
t

)
+O
Å
t−2

ã
, (9.142)

where, CV is some constant of proportionality which is independent of the quench

time scale τ . Numerically, we find CV ≈ 0.092. This is again in reasonable agreement

with the value we calculated analytically for a sudden phase transition (τ = 0) in

Eq. (9.140), more precisely 1/π2 ≈ 0.101.

The plots of (nV )max versus τ , and tmax versus τ are shown in Fig. 9.7a and

Fig. 9.7b respectively. The intuitive understanding that a faster phase transition

(smaller quench time scale τ) leads to greater and more rapid vortex production is

confirmed by these plots. Moreover, from Fig. 9.7a we see that the maximum number

density of vortices (nV )max flattens as the quench time scale τ approaches zero. This

happens for a value (nV )max ≈ 0.0483 which is once again in good agreement with

our analytical result in Eq. (9.141).

As a final remark, comparing Fig. 9.4a to Fig. 9.7a shows us right away that

for the same quench time-scales τ , the maximum vortex number density (nV )max is

much lower than the maximum kink number density (nK)max. For example, in the

limiting case of τ → 0, (nV )max ≈ 0.050 while (nK)max ≈ 0.175. This is again to

be expected since the formation of a vortex requires the simultaneous vanishing of

two fields, which is less probable than the vanishing of a single field necessary for the

formation of a kink in one dimension.
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Figure 9.7: (a) Log-Log plot of the maximum average vortex number density (nV )max

vs. τ . For larger values of τ the power law manifested is ∼ τ−0.64. (b) Log-Log plot
of the time at which maximum average vortex number density (nV )max occurs (tmax)
vs. τ . For larger values of τ the power law exhibited is ∼ τ 0.34.

9.4 Higher Dimensions: Monopoles

Having worked out the details of the d = 1 and d = 2 cases, it is easy to see

that the methods described in the previous sections directly generalize to higher

dimensions. Without going into the details of a rigorous proof, the average number

density of zero-dimensional topological defects nD formed in the d dimensional field

theory discussed in Sec. 9.1 is given by

nD = d!ndK =
d!

2d/2πd

(m
t

)d/2
+O
Ä
t−(d+2)/2

ä
(9.143)

for late times. The factor of d! arises because of permutation symmetry. To get a

monopole in d dimensions we need coincident zeros of d fields in a cell of the lattice.

As in Sec. 9.3, the point Φ = 0 corresponds to the intersection of d orthogonal domain

walls. The d! permutations of the wall positions preserves the Φ = 0 point which leads

to the d! prefactor in (9.143).

In Fig. 9.8a we show numerical results for d = 3 for the monopole number density

as a function of time, obtaining the first term on the right-hand side of (9.143). In
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Figure 9.8: (a) Log-log plot of nM(t) versus time for τ =0.1 (Purple, topmost curve),
0.5 (Red), 1.0 (Green), 5.0 (Orange), 10.0 (Blue). The black dashed line shows the
exhibited power law at late times, i.e. t−3/2. Here we use L = 800, N = 1600.
(b) Log-log plot of the differences between the average monopole number density for
different values of τ , nM(t, τ1 = 0.1) − nM(t, τ2) vs. time for τ2 = 0.5 (Blue), 1.0
(Red), 5.0 (Purple), 10.0 (Green). The black dashed line shows the exhibited power
law, i.e. t−5/2.

Fig. 9.8b we provide evidence for the second term on the right-hand side of (9.143).

9.5 Effect Of Self-interactions

A key question is to understand the range of parameters for which our results are

a good approximation even when λ 6= 0. We will address this in the context of the

model in one spatial dimension given in (9.7). We check for self-consistency of our

solution and examine the conditions under which it breaks down.

Our solution for the wavefunction is a Gaussian at all times and so 〈φ4〉 = 3〈φ2〉2.

With λ 6= 0, the evolution of the wavefunctional, Ψ[φ, t], will depend on λ. As long

as Ψ can be approximated by a Gaussian centered at φ = 0 we can use the Hartree

approximation (e.g. Baym (2018)) to write λφ4 as 3λ〈φ2〉φ2. Taking into account mass

renormalization at lowest order in λ we obtain an effective mass squared meff
2 (t),

meff
2 (t) = m2(t) +

3

2
λ〈φ2〉in −

3

2
λ〈φ2〉 . (9.144)
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where the “in” subscript refers to evaluation at the initial time (t → −∞). The

mass counterterm 3λ〈φ2〉in/2 is chosen such that the effective mass equals m at the

initial time. Therefore, in the Hartree approximation, the effects of interactions are

negligible if the λ dependent corrections to m2 are small and meff
2 (t) ≈ m2(t), or,

3λ
[
〈φ2〉 − 〈φ2〉in

]
� 2|m2| . (9.145)

The condition in (9.145) will fail in two circumstances. First, around the time of

the phase transition, t ∼ 0, when m2 ∼ −m2t/τ (see (9.3)) is very small; second, at

late times, when 〈φ2〉 grows large. We can make these statements more precise by

noticing that (9.145) is strongly violated whenever the function

fλ,τ (t) ≡ 2|m2| − 3λ
[
〈φ2〉 − 〈φ2〉in

]
(9.146)

becomes negative. It turns out that, generically, fλ,τ has three zeros that we denote

as t1, t2, t3 and it is negative on the intervals [t1, t2] and [t3,∞) (see Fig. 9.9 for a

qualitative sketch of fλ,τ ). The late time violation is not important for us as long as by

that time all the kinks have already been formed. Moreover their mutual interactions

are exponentially suppressed on distances longer than 1/m in d = 1, and they can

be completely neglected given that the average separation of the kinks is larger than

∼ (nK)−1
max ∼ 6/m. On the other hand, the early time violation in the interval [t1, t2]

can be important as it might interfere with kink production and change the maximum

kink number density.

We can thus deduce three necessary conditions for the kink number density in the

λ = 0 model to be a good approximation to that in the λ 6= 0 case:

(i) The duration of early time violation of (9.145) needs to be finite i.e. t2 <∞.

(ii) All the kinks need to have been produced by the time the late time violation of

(9.145) sets in i.e. tmax < t3
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Figure 9.9: Sketch of fλ,τ (t) to show its generic features.

(iii) The duration of the early time violation of (9.145) needs to be much smaller

than the fastest timescales of variation of the wave-functional i.e. ∆t ≡ t2−t1 �

1/m.

We have swept the (λ, τ) parameter space to determine the regions where the

above conditions are verified. This has been done numerically by approximating fλ,τ

via

fλ,τ (t) ≈ 2|m2| − 3λ
N∑
n=1

(
|cn(t)|2 − |cn(t0)|2

)
, (9.147)

and determining the corresponding values of t1, t2, t3 for a wide range of values of

λ and τ . The results are shown in Fig. 9.10 where we used the same numerical

parameters as in Sec. 9.2.4. The regions shaded in red, orange and pink are excluded

by the necessary conditions (i), (ii) and (iii) respectively. Alternatively we expect the

λ = 0 model to be accurate inside the green region. Remarkably, the λτ/m = 1 curve

lies deep inside this region which indicates that λτ/m � 1 is a sufficient condition

for the approximation to be valid.
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Figure 9.10: Plot showing the allowed and disallowed regions of the (λ, τ) parameter
space in units where m = 1.
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Chapter 10

KINK-ANTIKINK SCATTERING IN A QUANTUM VACUUM

The sine-Gordon equation in one spatial dimension holds a special place in the

soliton literature, since it is integrable and allows for the construction of multi-soliton

solutions by the use of the Bäcklund transformation. The solitons (or kinks) of the

sine-Gordon equation are solutions which interpolate between two successive minima

of the potential. The sine-Gordon model has been analyzed in great detail (Rajara-

man, 1982; Coleman, 1985; Vachaspati, 2010) and kink-antikink scattering is known

to be trivial – the kink and antikink pass through each other albeit with a time delay

– a result that holds even when φ is treated in quantum field theory. In this chap-

ter, we study kink-antikink scattering in a model where the sine-Gordon scalar field,

φ, is coupled to a second scalar field, ψ. The kink and antikink propagate in the

quantum vacuum of ψ, deforming the vacuum around them. (Alternately, the kink

and antikink get dressed by the ψ field.) Upon kink-antikink scattering, ψ particles

(wavepackets) are radiated. Depending on the parameters, the quantum radiation of

ψ particles can lead to the production of a kink-antikink bound state that is known as

a “breather” in the sine-Gordon literature (Rajaraman, 1982; Coleman, 1985; Vachas-

pati, 2010). In this case, the breather oscillates and continues to radiate ψ particles.

(This was more specifically studied in Ref. Olle et al. (2019), albeit in a slightly dif-

ferent model.) Surprisingly we find that the breather eventually settles into another

oscillating configuration that radiates very slowly, resembling an “oscillon”. Oscillons

are long-lived localized configurations arising in a variety of scalar field theories and

have been shown to emerge naturally in scenarios ranging from preheating to bubble

collisions (see e.g. Amin et al. (2012); Copeland et al. (1995); Gleiser and Sicilia
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(2009); Farhi et al. (2005); Graham (2007); Zhou et al. (2013); Fodor et al. (2008);

Hiramatsu et al. (2021b); Van Dissel and Sfakianakis (2020); Zhang et al. (2020);

Zhang (2021)).

Our analysis is once again enabled by the “classical-quantum correspondence”

(CQC). Quantum backreaction on the classical background is included in the analy-

sis in the semiclassical approximation in which quantum operators occurring in the

classical equations of motion are replaced by their dynamical expectation values. Spe-

cial attention is given to the renormalization issues that arise, since a divergent part

of the expectation values contributes to the mass parameter of the background field.

In Sec. 10.1 we introduce the field theoretic model, as well as the equations that will

be solved numerically to determine the full dynamics of the kink-antikink collision. We

take care to distinguish the no backreaction case, where the kink-antikink background

is fixed, from the general case with backreaction. In Secs. 10.2 and 10.3 we outline the

results of our numerical analysis: we determine the region of parameter space where a

breather-like bound state is formed after the collision and discuss the different phases

of its decay. We use natural units where ~ = c = 1 throughout.

10.1 Setup

We work in 1+1 dimensions and consider a sine-Gordon field ϕ(t, x) coupled to a

massive scalar field ψ(t, x) according to the Lagrangian density

L =
1

2
ϕ̇2 − 1

2
ϕ′2 − m2

κ2
(1− cos(κϕ)) +

1

2
ψ̇2 − 1

2
ψ′2 − 1

2
µ2ψ2

− λ

2
(1− cos(κϕ))ψ2 .

(10.1)

Here m, µ are the masses of the two fields, κ is a parameter introduced for future

convenience and λ is a coupling constant. We will assume that conditions are such

that the ϕ field can be treated classically, while the ψ field is treated fully quantum

mechanically. In general, the (potentially space and time-dependent) classical “back-
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ground” field ϕ excites the quantum “radiation” field ψ, and the excitations of ψ in

turn backreact on ϕ. In the following it will be useful to make the field redefinition

ϕ→ φ = κϕ and to work with the rescaled field φ(t, x). With this new field variable,

the Lagrangian density becomes

L =
1

κ2

ï
1

2
φ̇2 − 1

2
φ′2 −m2(1− cosφ)

ò
+

1

2
ψ̇2 − 1

2
ψ′2 − 1

2
µ2ψ2 − λ

2
(1− cosφ)ψ2 .(10.2)

We see that the coupling between the two fields φ and ψ is such that the discrete

shift symmetry φ→ φ+ 2πn, n ∈ Z, is maintained.

10.1.1 Neglecting Backreaction

Background dynamics

We start by discussing the limit κ → 0 which corresponds to the case where the

dynamics of the φ field doesn’t feel the presence of the radiation field ψ. If ψ is

entirely neglected, this is also the limit when φ is classical because, in the path

integral, κ → 0 is equivalent to ~ → 0. In this “no backreaction” case, the φ field

equation reduces to the sine-Gordon equation

φ̈− φ′′ +m2 sinφ = 0 . (10.3)

It is worth mentioning that, in this case, one can define the (conserved) energy of the

sine-Gordon field unambiguously by

Eφ =
1

κ2

∫
dx

ï
1

2
φ̇2 +

1

2
φ′2 +m2(1− cosφ)

ò
, (10.4)

and it is easy to see that the κ→ 0 limit is equivalent to the energy of the sine-Gordon

field φ being much larger than the (renormalized) vacuum energy of the field ψ. We

will come back to this point in Sec. 10.3.

Eq. (10.3) has well-known kink and anti-kink solutions,

φ±(t, x) = ±4 arctan
Ä
eγm(x−x0−v(t−t0))

ä
, (10.5)
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which describe a soliton (or antisoliton depending on the sign) whose center is at x0

at time t0 and which moves to the right with velocity v, with γ = 1/
√

1− v2 being

the Lorentz factor. It is worth noting that the energy of this configuration is

E±(v) =
8γm

κ2
. (10.6)

The integrability properties of the sine-Gordon equation allow for the analytical

construction of more complicated solutions involving a kink and an antikink. The

first one is the so-called breather solution which can be understood as a bound state

of a kink and an antikink and which reads

φbreather(t, x) = 4 arctan

Å
η sin(ωt)

cosh(ηωx)

ã
. (10.7)

Here ω is the angular frequency of the breather and η =
√
m2 − ω2/ω. The energy of

the breather is

Ebreather =
16ηω

κ2
=

16m

κ2

…
1− ω2

m2
, (10.8)

and is seen to be less than the sum of the energy of a static kink and a static antikink.

The other important solution, which will be the main focus of our attention in

the remainder of this paper, can be obtained from the breather solution by making

the formal substitution ω = imγv. It reads

φKK̄(t, x) = 4 arctan

Å
sinh(γmvt)

v cosh(γmx)

ã
, (10.9)

and describes the elastic scattering of a kink and an antikink infinitely separated at

t = −∞ and moving towards each other with velocity v. The collision occurs at

t = x = 0 and the kink and antikink pass through each other with a time delay. As

expected, the energy of this field configuration is simply the sum of the energies of a

kink and an antikink moving with velocity v,

EKK̄ =
16γm

κ2
= 2E±(v) . (10.10)
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Having summarized some important features of the sine-Gordon equation, we are

ready to study the quantum field ψ living in the background of the latter solution.

Quantum radiation

Integrability of the sine-Gordon model implies that the scattering of a kink-antikink

pair is trivial i.e. never forms a bound state, and that a breather never decays.

These are classical properties of the sine-Gordon model but they are maintained

when taking the quantum fluctuations of the field into account. However, in our case,

the classical sine-Gordon field is coupled to an external quantum scalar field and the

energy exchange between the classical field configuration and the quantum bath is

expected to invalidate these properties.

We thus turn our attention to the quantum radiation that occurs during kink-

antikink scattering, equivalently particle production in the time-dependent back-

ground φKK̄(t, x) given in Eq. (10.9), using the framework of the classical- quantum

correspondence (CQC) (Vachaspati and Zahariade, 2018a,b; Olle et al., 2019) that

we briefly describe below. Since in the limit κ → 0 the dynamics of the background

field φ is insensitive to the presence of the field ψ, we will work with the truncated

Lagrangian density

Lψ =
1

2
ψ̇2 − 1

2
ψ′2 − 1

2

{
µ2 + λ [1− cosφKK̄(t, x)]

}
ψ2 . (10.11)

It is easy to understand why this model leads to excitations of the quantum field ψ.

Indeed this Lagrangian density describes a free scalar field with a space and time

dependent mass-squared M2(t, x) = µ2 + λ [1− cosφKK̄(t, x)]. The non-adiabatic

variation of M2(t, x) will lead to particle production and is expected to occur mostly

at the time of kink-antikink collision at t = 0.

To study the scattering more quantitatively using numerical methods, we start by
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compactifying the spatial dimension on a circle of length L which we then discretize on

a regular lattice consisting of N evenly spaced points. The lattice spacing is therefore

a = L/N . We can further define the discretized field values ψi = ψ(t,−L/2 + ia) and

φi = φKK̄(t,−L/2 + ia) for i = 1, . . . , N , and use the following differencing scheme

to estimate the second spatial derivative,

ψ′′(t, ia) −→ ψi+1 − 2ψi + ψi−1

a2
. (10.12)

With these conventions, and after a spatial integration by parts, the Lagrangian of

this discretized model can be written as

Lψ,disc. =
a

2
ψ̇T .ψ̇ − a

2
ψT .Ω2.ψ , (10.13)

where we have arranged the discretized values of the field ψ in a column vector

ψ = (ψ1, ψ2, . . . , ψN)T and introduced the N ×N matrix

[Ω2]ij =


+2/a2 + µ2 + λ [1− cosφi] , i = j

−1/a2 , i = j ± 1 (mod N)

0 , otherwise .

(10.14)

In this form, the discretized Lagrangian is immediately seen to describe a collection

of N harmonic oscillators (located at each lattice point) coupled to each other via

quadratic interactions. The total energy and energy density at each lattice point i

for the ψ field in this discretized model are also well-defined and given by1

Hψ,disc. =
a

2
ψ̇T .ψ̇ +

a

2
ψT .Ω2.ψ , (10.15)

Hψ,disc.,i =
1

2
ψ̇2
i +

1

4a2

[
(ψi+1 − ψi)2 + (ψi − ψi−1)2

]
+

1

2

{
µ2 + λ [1− cosφi]

}
ψ2
i .(10.16)

1Here, in order to get a more accurate discretized estimate of the local gradient energy, the

average between its forward differencing and backward differencing approximations is used. This

allows us to integrate Eq. (10.16) into Eq. (10.15). Notice however that simply choosing a forward

or backward differencing scheme for the estimation of this component of the energy density would

also have been consistent.
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The next step is to quantize the theory (in the Heisenberg picture) by promoting

the discretized field values ψi to operators ψ̂i and introducing the time-dependent

matrix Z whose (complex) elements Zij satisfy the relation

ψ̂i = Z∗ij âj(t0) + Zij â
†
j(t0) . (10.17)

Here the reference time t0 is chosen so that the background for t ≤ t0 can be approx-

imated by a slowly-moving kink-antikink pair separated by a large distance (much

larger than their typical size). This is equivalent to specifying a reference vacuum

state |0〉, the state annihilated by all the âi(t0). (The ladder operators âi(t0) and

â†i (t0) refer to the quantum harmonic oscillators located at each lattice point.) Now

the dynamics of the field ψ̂ is simply given by the Heisenberg equations

Z̈ + Ω2.Z = 0 , (10.18)

with initial conditions

Z(t0) = − i√
2a

Ω(t0)−1/2 and Ż(t0) =
1√
2a

Ω(t0)1/2 . (10.19)

Since Ω2 is a symmetric positive definite matrix, Ω±1/2 is computed by first diago-

nalizing Ω2 and then applying the desired power function to its positive eigenvalues.

Notice that these initial conditions only define the vacuum of the theory unambigu-

ously when the background Ω2(t) is approximately constant for t ≤ t0. In other words

if the time evolution of the background before the time t0 is adiabatically slow, a dif-

ferent choice of initial time smaller than t0 will not modify the quantum dynamics.

More precisely the initial conditions (10.19) define the 0-th order adiabatic vacuum

(which corresponds to the lowest order approximation of the mode functions within

the WKB approximation (Birrell and Davies, 1984)). In particular, if the background

is such that no t0 obeying the required properties can be found, then we can expect
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spurious excitations of the field ψ to occur and one should strive to minimize them. In

the case at hand, the kink and antikink are moving towards each other with velocity v

at t = −∞ and we find ourselves exactly in the latter situation. However, we expect

that for small v (in practice less than 0.3) the initial conditions (10.19) will still give

reasonable results (and we will come back to this later in Sec. 4.3).

Observables

The evolution of ψ is given by the system of equations given in matrix form in

Eq. (10.18). Initialized by Eqs. (10.19), they are particularly simple and they can

readily be solved numerically. Moreover, the Zij variables allow for the easy compu-

tation of various observable quantities of interest. For example, the expression for

the vacuum expectation value of the energy in the radiation field can be written as

Eψ ≡ 〈0|Ĥψ,disc.|0〉 =
a

2
Tr
î
Ż†.Ż +Z†.Ω2.Z

ó
. (10.20)

This is equal to the total (classical) energy in the Zij variables. Similarly, the vacuum

expectation value of the energy density at the i-th lattice point is

ρψ,i ≡ 〈0|Ĥψ,disc.,i|0〉

=
N∑
j=1

Å
1

2
|Żij|2 +

1

4a2

[
|Zi+1,j − Zij|2 + |Zij − Zi−1,j|2

]
+

1

2

{
µ2 + λ [1− cosφi]

}
|Zij|2

ã
. (10.21)

Moreover the spatial two-point function of the radiation field can be written as

Cij ≡ 〈0|ψ̂iψ̂j|0〉 =
N∑
k=1

Z∗ikZjk . (10.22)

In order to render these expressions insensitive to the discretization scale a, we first

renormalize the spatial two-point function by subtracting its λ = 0 counterpart,

C
(R)
ij = Cij − Cij|λ=0 , (10.23)
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and then use it to renormalize the λ-dependent part of the energy and energy density.

This procedure is closely related to point-splitting (Birrell and Davies, 1984). The

resulting renormalized quantities are thus

ρ
(R)
ψ,i = ρψ,i −

1

2
λ [1− cosφi] Cii|λ=0 − ρψ,i|λ=0 , (10.24)

E
(R)
ψ = Eψ −

N∑
i=1

a

2
λ [1− cosφi] Cii|λ=0 − Eψ|λ=0 . (10.25)

In both these equations, the last term corresponds to the subtraction of the (constant)

zero-point energy.

We can therefore compute any quantity of interest for the study of ψ particle

production in the φKK̄ background by studying the classical dynamics of the variables

Zij (with well-chosen initial conditions). We thus trade N real quantum variables

(corresponding to the discretized field values ψi) for N×N complex classical variables

(the Zij). This is the essence of the CQC and it is closely related to the mode function

and Bogoliubov coeffcient methods (Vachaspati and Zahariade, 2018b).

Initial conditions and vacuum structure

The renormalized energy density observable ρ
(R)
ψ,i allows us to visualize the vacuum

structure of the quantum field ψ. Fig. 10.1 shows the renormalized energy density

in the ψ field at the initial time superimposed over the background kink-antikink

profile. (The parameter a will always be chosen such that the lattice provides a good

approximation of the continuum limit and therefore we will liberally identify the

discretized quantities ρ
(R)
ψ,i (t) and φi(t) to their continuous counterparts ρ

(R)
ψ (t, x) and

φ(t, x) for x = −L/2 + ia.) We see that the presence of the background induces a dip

in the energy density around the kink and antikink, akin to two clouds of ψ particles.

The width of these clouds is set by the kink and antikink width i.e. 1/m. However,

as shown in Fig. 10.2, the depth of the underdensities depends on the coupling λ and
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the mass of the ψ field µ. In particular, the trough of the ψ energy density around

the kink-antikink position increases for larger λ and smaller µ. Moreover, for some

parameters, the energy density of ψ shows some non-trivial features that reflect the

relevance of the additional length scales µ−1 and λ−1/2.
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Figure 10.1: Example of the renormalized initial energy density in ψ and the initial
kink-antikink profile. The kinks are dressed in ψ particles whose energy within the
kink is lower than that outside the kink, i.e. they form bound states. The kink-
antikink profile is shown as a red dashed line (vertical scale on the right) and the
clouds of ψ particles (represented by the renormalized energy density of ψ) are shown
in dark blue (vertical scale on the left). The parameters are L = 100, N = 500,
m = 1, v = 0.1, µ = 0.1, λ = 0.3, κ→ 0 and the initial time is chosen as t0 = −100.

10.1.2 Including Backreaction

The results above assumed that backreaction can be neglected. This is certainly

a good approximation when κ is small but what happens when backreaction can no

longer be neglected? This constitutes the main part of this work, to which we now

turn.

We thus consider the case κ 6= 0 so that the field equation for the φ field gets a

contribution from the ψ field:

φ̈− φ′′ +
Å
m2 +

λκ2

2
ψ2

ã
sinφ = 0 . (10.26)
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Figure 10.2: (a) Renormalized initial energy density in ψ (ρ
(R)
ψ ) for various values

of λ: 0.3 (solid green), 0.5 (dashed red), 0.7 (dotted dark blue) for µ = 0.1. (b)
Renormalized initial energy density in ψ for various values of µ: 0.1 (solid green), 0.3
(dotted brown), 0.5 (dashed purple), 0.7 (dot-dashed pink) for λ = 0.3. The other
parameters are L = 100, N = 500, m = 1, v = 0.1 , κ → 0 and the initial time is
t0 = −100. Note that the solid green lines correspond to the same set of parameters
(λ = 0.3, µ = 0.1) in both the panels.

Of course this equation is fully classical and one would need to decide how the quan-

tum excitations in the ψ field couple to the classical background φ by modifying the

coupling term proportional to ψ2 sinφ. The most straightforward way is to use the

semiclassical approximation2 which simply entails replacing ψ(t, x)2 by 〈0|ψ̂(t, x)2|0〉.

Therefore the φ field equation becomes

φ̈− φ′′ +
Å
m2 +

λκ2

2
〈0|ψ̂2|0〉

ã
sinφ = 0 . (10.27)

To make contact with the methods described in the previous section, we need the

discretized version of this equation,

φ̈i −
1

a2
(φi+1 − 2φi + φi−1) +

Å
m2 +

λκ2

2
〈0|ψ̂2

i |0〉
ã

sinφi = 0 , (10.28)

2Another procedure for incorporating backreaction is based on the stochastic method, where the

initial conditions for the field ψ are sampled from a distribution similar to Eq. (10.19). Several

simulations, each with different samples for the initial conditions, would be performed and then

averaged. We leave the interesting comparison between the two methods for future work.
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where φi = φ(t,−L/2 + ia) is not given by the non-dynamical kink-antikink solution

φKK̄ anymore, rather it will have to be solved for subject to the initial conditions

φi(t0) = φKK̄(t0,−L/2 + ia) and φ̇i(t0) = φ̇KK̄(t0,−L/2 + ia). Solving Eq. (10.28)

requires being able to compute the dynamics of the quantity 〈0|ψ̂2
i |0〉. This can be

done by using the results of the previous section and in particular Eq. (10.22) to make

the substitution

〈0|ψ̂2
i |0〉 =

N∑
j=1

|Zij|2 (10.29)

with Zij given by Eqs. (10.18) and (10.19), where background field values φi in the def-

inition of Ω2 are replaced by the corresponding dynamical values. Because
∑N

j=1 |Zij|2

is a 1+1 dimensional two-point function in the coincident point limit, in other words

Cii given in Eq. (10.22), it is logarithmically sensitive to the discretization scale a,

and it would produce infinite backreaction in the continuum limit (Vachaspati and

Zahariade, 2018a,b; Olle et al., 2019). This can be remedied by noticing that the

parameter m appearing in the field equations is actually the bare mass of the sine-

Gordon field, and using it to renormalize the divergence. We therefore define the

physical mass mphys of the sine-Gordon field by

m2 = m2
phys−

λκ2

2

N∑
j=1

|Zij|2
∣∣
λ=0

= m2
phys−

λκ2

4a

[
Ω−1

0

]
ii

= m2
phys−

λκ2

4L
Tr Ω−1

0 . (10.30)

Here, in the second equality, we used the fact that, when λ = 0, Ω2(t) ≡ Ω2
0 is a

constant matrix, and therefore Eq. (10.18) has the simple solution

Z(t) = − i√
2a
eiΩ0(t−t0)Ω

−1/2
0 . (10.31)

Moreover in the third equality of Eq. (10.30) we use the fact that all the diagonal

coefficients of the Ω−1
0 matrix are equal to each other (see Eq. (10.14)). Overall this

procedure is equivalent to replacing the two-point function Cii by its renormalized

counterpart C
(R)
ii in Eq. (10.28), and m by mphys in every equation where it appears.

259



Notice that, in the non-backreacting case (κ→ 0), the bare mass m and the physical

mass mphys are one and the same. Henceforth, we will simply choose κ = 1 when

taking backreaction into account.

Summing up, the backreacted dynamics (within the semiclassical approximation)

are given by the system of coupled differential equations

φ̈i−
1

a2
(φi+1−2φi+φi−1)+

[
m2

phys +
λκ2

2

N∑
j=1

(
|Zij|2 − |Zij|2

∣∣
λ=0

)]
sinφi = 0 , (10.32)

and

Z̈ + Ω2Z = 0 , (10.33)

with initial conditions

φi(t0) = φKK̄(t0,−L/2 + ia) , φ̇i(t0) = φ̇KK̄(t0,−L/2 + ia) , (10.34)

Z(t0) = − i√
2a

Ω(t0)−1/2 , Ż(t0) =
1√
2a

Ω(t0)1/2 , (10.35)

where we recall that

φKK̄(t, x) = 4 arctan

Å
sinh(γmphysvt)

v cosh(γmphysx)

ã
(10.36)

and where the matrix Ω2 defined in Eq. (10.14) depends on the fully dynamical

background φi(t). Note that the mass of the φ field used in the initial conditions is

the physical mass mphys, as shown in the above equation.

Before discussing the results of our simulations, let us say a few words about

the observables that we are going to use in our study of particle production and

the associated backreaction during kink-antikink collisions. These need to accurately

account for the energy exchanged between the background and the quantum radiation

bath. Of course, in general, in a fully interacting theory it is impossible to separate

the energy of a particular subsystem. However, as long as the coupling λ is not too

big (smaller than m2
phys in practice) we can assume that Eqs. (10.25) and (10.24) still
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provide a useful measure of the (renormalized) energy, respectively energy density,

in the quantum field ψ. Under these assumptions, the energy in the kink-antikink

background is given by

Eφ ≡
a

κ2

N∑
i=1

ï
1

2
φ̇2
i +

1

4a2

[
(φi+1 − φi)2 + (φi − φi−1)2

]
+m2

phys(1− cosφi)

ò
. (10.37)

Notice that the total (conserved) energy of the coupled system is given by

E = Eφ + E
(R)
ψ , (10.38)

where Eφ and E
(R)
ψ are given by Eq. (10.37) and Eq. (10.25) respectively.

10.2 Results

In this section we present our numerical results. We will always work in units

where mphys = 1. which is equivalent to rescaling space, time, µ and λ by mphys. Our

lattice is a circle of physical size L = 100 and is sampled by N = 500 equally spaced

points (a = 0.2). We use an explicit Crank-Nicholson method with two iterations

to solve the system of coupled ordinary differential equations given in Eqs. (10.32)

and (10.33) with the initial conditions of Eqs. (10.34) and (10.35). The initial time

is taken to be t0 = −100. Because most interesting effects are expected to occur at

or around the time of collision, t = 0, and to make sure that finite lattice size effects

don’t spoil any physical effects, we only evolve the equations for one light-crossing

time after the collision i.e. up to t = L = 100. We have also made sure that the results

do not strongly depend on the UV and IR cutoffs (a = L/N and L) and that our

renormalization scheme is sufficient to eliminate any UV sensitivity (see Fig. G.3). Of

course, decreasing a would improve the resolution of the simulations but, given the N2

complexity of the code, this is not feasible without significantly more computational

cost. Similarly a larger lattice would allow us to track the dynamics of the system for
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a longer time but maintaining spatial resolution would again require a corresponding

increase in N . In the current work, energy non-conservation due to numerical error

over the whole duration of time evolution is of the order of 0.1%.

The range over which we will vary the different parameters λ, v and µ will depend

on numerical accuracy as well as on the intrinsic limitations of our model. To avoid

strong coupling effects we will be allowing λ to vary between 0 and 1. Since our

initial conditions for the Zij variables are strictly only valid when the background is

adiabatically varying, we limit ourselves to velocities v smaller than 0.3.3 Moreover,

we require the kink-antikink pair to be well-separated at the initial time t0 which,

because of the finite size of our periodic lattice, limits the range of v to the interval

(0.05, 0.4). Since the background field φ is assumed to behave classically, its mass

mphys is expected to be larger than the mass of the radiation field ψ. Thus µ is

constrained to be smaller than 1.

We start by presenting the two qualitatively different possible outcomes of the

inelastic kink-antikink scattering studied in this paper: pure scattering, or formation

of a bound state, i.e. a breather-like structure. Then we will discuss what role the

different parameters of the model play in the occurrence of these two outcomes.

10.2.1 Scattering Or Formation Of A Bound State

In Fig. 10.3 we show the renormalized energy density in the ψ field as a function

of x (horizontal axis) and t (vertical axis) with and without backreaction for two

different sets of parameters. The color coding represents the value of the energy

density from its minimum value in dark blue to its maximum value in bright red. Since

3Because of this violation of adiabaticity at t = t0, a small amount of spurious particle production

is observed for the v = 0.3 case but the corresponding dissipated energy is of the order of 0.1% of

Eφ which can safely be neglected.
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Figure 10.3: Time evolution of the renormalized energy density in ψ (ρ
(R)
ψ ). (a)

For, κ → 0, i.e., no backreaction; v = 0.1, λ = 0.3; (b) For, κ = 1, i.e., with
backreaction; v = 0.1, λ = 0.3. (c) For, κ → 0, i.e., no backreaction; v = 0.2,
λ = 0.3; (d) For, κ = 1, i.e., with backreaction; v = 0.2, λ = 0.3. The universal
parameters are L = 100, N = 500, µ = 0.1, mphys = 1, and t0 = −100. The collision
happens at t = 0. The animations corresponding to the different cases can be found
at https://sites.google.com/asu.edu/mainakm.
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the clouds of ψ particles (thick dark blue lines) track the kink and antikink perfectly,

this representation is particularly well suited for visualizing both the dynamics of

the kink-antikink background and any radiation bursts (thin orange lines) occurring

during their collision. It serves as an accurate spacetime diagram of the collision.

The first thing we notice, in Figs. 10.3a and 10.3c, is that when κ → 0 i.e. when

backreaction is neglected, the kink and antikink dynamics are unperturbed by the

collision (as they should be); there are however two bursts of radiation originating

and x = t = 0 i.e. at the collision, and propagating away from the kink-antikink pair

(one to the left the other to the right) at or near the speed of light. When reaching

the end of the lattice they wrap around and come back towards the center by virtue

of the periodic boundary conditions. The origin of the bursts of radiation can be

explained intuitively by the high degree of non-adiabaticity of the background at the

moment of collision.

More interestingly, Figs. 10.3b and 10.3d, including backreaction effects, show two

radically distinct behaviors. In Fig. 10.3d, the parameters are such that the collision

does not lead to the formation of a bound state. Just like in the non-backreacting

case of Fig. 10.3c, the clouds of ψ particles tracking the kink-antikink pair describe an

X-like pattern: they are seen to converge, collide and subsequently diverge from one

another. The collision is again accompanied by the emission of two bursts of radiation.

However, unlike in Fig. 10.3c, the outgoing relative velocity of the kink-antikink pair

in Fig. 10.3d is smaller than the initial velocity as background kinetic energy has

been converted in quantum radiative energy. In Fig. 10.3b, the parameters are such

that the collision leads to the formation of a breather-like kink-antikink bound state.

The cactus (or caterpillar) pattern described by the clouds of ψ particles after the

initial collision at t = 0 represents the multiple subsequent collisions that the kink

and antikink undergo, each accompanied by a burst of radiative energy. The first
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burst of energy depletes enough kinetic energy that the kink and antikink are not

able to break away from their mutual attraction and must form a bound state. We

will study the evolution of the energy in φ, Eφ, in more detail in the next subsection.

10.2.2 Parameter Dependence Of The Outcome Of The Collision

To understand the influence of the parameters of the model on the dynamics of

the collision (with backreaction taken into account), we turn our attention to the

energy in the kink-antikink pair. In Figs. 10.4, 10.5 and 10.6 we plot Eφ as a function

of time for different values of the parameters v, λ and µ. We can make a few general

comments before going into the details of the plots. First we notice that before the

collision Eφ is constant, which is to be expected because the kink and antikink are

effectively decoupled until their relative distance becomes of the order of the kink

width 1/mphys. At the collision, the energy decreases abruptly which corresponds to

the initial burst of radiation seen in the previous subsection. The energy then quickly

stabilizes to a new plateau. If the value of this new energy plateau is larger than

the energy of a static kink-antikink pair i.e. 2E±(0) = 16mphys, then a breather-like

object does not form and the kink-antikink pair remains unbound after the collision

(Eφ remains constant after the collision). On the contrary, if the first burst of energy

is large enough to make the value of the energy plateau fall below this threshold

energy, then a bound state is formed. This is followed by a cascade of subsequent

bursts of energy that lead to the decay of Eφ into lower and lower plateaus of shorter

and shorter duration. This cascade is readily understood. After the first collision, the

kinks separate out more than their widths which leads to the formation of an energy

plateau (because kinks radiate only when they overlap). Eventually though, after

a certain number of subsequent collisions, they don’t manage to separate out and

the plateau shape is lost. The radiation thus transitions through different behaviors
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which we will discuss in more detail in the next section.
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Figure 10.4: The energy in the background φ (Eφ) as a function of time for
various values of v: 0.07 (Orange), 0.1 (Blue), 0.2 (Red) and 0.3 (Green). The other
parameters are L = 100, N = 500, µ = 0.1, mphys = 1, λ = 0.3 , κ = 1 and t0 = −100.
The gray dashed line corresponds to Eφ = 16.

Figure 10.4 shows Eφ for λ = 0.3, µ = 0.1, and varying v. The higher the initial

relative velocity v the bigger the gap to the threshold energy of bound state formation,

∆gap ≡ 16(γ − 1)mphys, as seen from Eq. (10.10). We notice that the energy of the

first radiation burst doesn’t depend strongly on v (see Appendix G) and therefore,

as long as it is larger than ∆gap, a breather-like object is formed. This happens in

particular for v = 0.2 and v = 0.3.

Figure 10.5 shows Eφ for v = 0.2, µ = 0.1, and varying λ. Here, the energy

of the first radiation burst increases with λ (it approximately scales as λ1.6 for the

range of parameters considered here) and exceeds ∆gap for λ = 0.5 and λ = 0.7,

when a breather-like object forms. In the λ = 0.7 and λ = 0.9 cases we notice a

peculiar change of behavior in Eφ around t = 70 when the cascading decay becomes

an oscillatory decay with a smaller average slope. The bound state then appears to

settle to a long-lived, weakly radiating, oscillon-like object. We will come back to this
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Figure 10.5: The energy in the background φ (Eφ) as a function of time for
various values of λ: 0.3 (Orange), 0.5 (Green), 0.7 (Red) and 0.9 (Blue). The other
parameters are L = 100, N = 500, µ = 0.1, mphys = 1, v = 0.2 , κ = 1 and t0 = −100.
The gray dashed line corresponds to Eφ = 16.

intriguing configuration in the next section.

Figure 10.6 represents Eφ for v = 0.1, λ = 0.3, and varying µ. Here we notice that

the lighter the ψ field, the stronger the initial radiation burst after collision (it scales

as exp(−1.8µ)). This is readily understood, as a light field is more easily excited by

the time-dependent background. For µ ≤ 0.5, a breather-like object forms since the

kink-antikink pair releases an energy greater than ∆gap at the collision.

We can even go further and determine the region of (λ, v, µ) parameter space

where a breather-like object forms, i.e. the region where the first burst of energy at

the collision is larger than ∆gap. We expect that the boundary between the region

where a bound state forms and the one where the kink-antikink pair remains unbound

after collision, to approximately look like a two-dimensional surface. However, since

our determination of ∆gap is imperfect, particularly because the first energy plateau

after collision exhibits small oscillations (as can be seen for instance in Figs. 10.4, 10.5

and 10.6), the boundary will necessarily have a thickness. To estimate this thickness
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Figure 10.6: The energy in the background φ (Eφ) as a function time for various
values of µ: 0.01(Purple), 0.1 (Orange), 0.3 (Blue), 0.5 (Red) and 0.7 (Green). The
other parameters are L = 100, N = 500, λ = 0.3, mphys = 1, v = 0.1 , κ = 1 and
t0 = −100. The gray dashed line corresponds Eφ = 16.

we determine the characteristic amplitude of the small oscillations around the first

energy plateau in the worst case scenario (by computing the standard deviation from

the mean value σmax in this case) and we conservatively declare that a first energy

burst equal to ∆gap with a margin of error of ±2σmax doesn’t allow us to definitively

determine whether a bound state forms or not. Here σmax = 0.027. In Fig. 10.7 we

show the results of a parameter scan with resolution of 0.25 in λ, 0.01 in v and 0.2 in

µ.

10.3 Decay Of The Bound State

We have already seen that, when the parameters of the problem are such that a

bound-state forms as a consequence of the kink-antikink collision, the radiation goes

through different phases. In this section we highlight two of those phases: the fast

decay phase where radiation is emitted via successive energy bursts, and the oscillon

phase which is weakly radiating and quasi-stable.
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Figure 10.7: Plots showing a parameter scan of the λ− v plane for different values
of µ: (a) µ = 0.1, (b) µ = 0.3, (c) µ = 0.5, and (d) µ = 0.7. The dark blue
points represent a breather-like object being formed. The blank space denotes the
region of uncertainty where a breather-like object may or may not form. The red
points denote where a breather-like object does not form. The other parameters are
L = 100, N = 500, κ = 1, and mphys = 1. Because of the long computation time
required to generate these plots, we exceptionally choose t0 = −50.

10.3.1 The Energy Plateau Phase: Decay Of The Breather-like Object

In cases where the kink and antikink scatter to form a bound state, we observed

that there is a cascade of bursts of radiation at decreasing time intervals. In this

subsection we focus on the blue curve in Fig. 10.4 corresponding to the choice of

parameters λ = 0.3, µ = 0.1 and v = 0.1. This case features particularly well-defined

energy plateaus and lends itself to further analysis. We plot E
(n)
φ , the energy after
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Figure 10.8: Plot of the energy in φ (Eφ) as a function of time (solid dark blue)
superimposed over a plot of φ(t, 0) (dashed-red color). The parameters correspond
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Figure 10.9: (a) Plot of the energy of the n-th plateau of Eφ in Fig. 10.8 (E
(n)
φ ) as

a function of n (purple); (b) Plot of the duration of said plateau (τn) as a function
n (orange). The parameters are L = 100, N = 500, v = 0.1, µ = 0.1, λ = 0.3,
mphys = 1, κ = 1 and t0 = −100.
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Figure 10.10: Plot of the plateau energy for φ (E
(n)
φ ) as a function of half period τn

from simulation (red), from theory (10.42) (solid blue) and the analytical fit (10.41)
(dashed orange). The parameters for the simulation points correspond to the solid
blue curve in Fig. 10.4. They are L = 100, N = 500, v = 0.1, µ = 0.1, λ = 0.3,
mphys = 1, κ = 1 and t0 = −100.

the nth burst as a function of n in Fig. 10.9a and find the fit

E
(n)
φ ' E

(0)
φ − 0.20 n , (10.39)

where E
(0)
φ ' 16.04 is the initial energy. Using Fig. 10.8 we can also characterize

the time intervals τn between the nth and (n+ 1)th bursts (or between two successive

zeros of φ(t, x = 0)), as shown in Fig. 10.9b, to get the fit

τn ' τ1n
−0.66 , (10.40)

where τ1 = 26.75 is the first burst interval. We can then eliminate n to obtain the

relation between E
(n)
φ and τn,

E
(n)
φ ' E

(0)
φ − 0.20

Å
τ1

τn

ã1.52

. (10.41)

Using the exact solution for the sine-Gordon breathers, the relation between the

energy Eφ and the half-period τ is

Eφ = 16

…
1− π2

τ 2
. (10.42)
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Fig. 10.10 shows an excellent agreement of the numerical data with the analytic sine-

Gordon prediction for the relation between the plateau energy and the half-period,

showing that the φ field decay proceeds discretely through a series of breather states.

This decay of the energy continues for a finite number of bursts and then, at a critical

time, the system rapidly decays into a new, more stable, oscillon-like phase (which

we study in more detail in the next subsection).

10.3.2 Formation Of A Long-lived Oscillon

In this subsection we focus on the particular case v = 0.2, µ = 0.1 and λ = 0.9

(depicted in the blue curve of Fig. 10.5) which prominently features a long-lived oscil-

lon phase and allows us to study its formation and decay. In Figs. 10.11a and 10.11b

we show the time evolution of the energy densities in φ and ψ respectively. In both

cases, we see a qualitative change in the appearance of the breather-like structure

occurring around t = 70: the spatial extension of the object ceases to decrease and

its energy density undergoes small oscillations in amplitude (visible on both plots).

Fig. 10.13 shows that the oscillations in the energy of φ are accompanied with out-

of-phase oscillations in the localized energy of ψ around the origin. As can be seen in

Fig. 10.11b the onset of this new regime is preceded by a large burst of radiation that

almost completely turns off at t ∼ 70. Fig. 10.11c shows the amplitude of the value

of the φ field at the center of the lattice as a function of time. This is in fact a good

measure of the φ field profile amplitude. The same qualitative change of behavior is

observed on this plot: starting with the moment of collision, the φ field profile under-

goes oscillations of decaying amplitude until a new quasi-stable oscillatory regime is

reached around t = 70. Although, the amplitude of oscillation continues to decrease,

it does so at a very slow rate which justifies the long-lived oscillon nomenclature.

Finally, Fig. 10.11d is simply a zoomed in version of the blue curve in Fig. 10.5 allow-
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Figure 10.11: Different observables for λ = 0.9 to highlight the formation of a
long-lived oscillon: (a) Time evolution of the energy density in φ; (b) Time evolution

of the energy density in ψ (ρ
(R)
ψ ); (c) Time evolution of φ(t, x = 0); (d) Log-log

plot of the late-time evolution of the energy in the φ (Eφ). The parameters are
L = 100, N = 500, v = 0.2, µ = 0.1 and mphys = 1, κ = 1 and t0 = −100. The
collision happens at t = 0. The animation corresponding to this case can be found at
https://sites.google.com/asu.edu/mainakm.
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ing us to fit a power law to the envelope of Eφ within the long-lived oscillon regime.

We find a ∼ t−0.6 power law decay. This is to be contrasted to the approximately

linear decay occurring during the immediately preceding phase, where, on average,

the energy decreases approximately linearly in time with a slope of −0.16. Given this

power-law decay, this object may not be a true “oscillon”, since oscillons have been

seen to remain highly stable for hundreds or thousands of oscillation times. In order

to distinguish it from the more strongly radiating breather state that precedes it, we

will adhere to the “oscillon” nomenclature for the remainder of this work.

Fig. 10.12 further showcases the behavior of the field φ in the two regimes. We see

that for early times, when there is significant energy loss every time φ goes through

zero, the maxima of the field φ match almost exactly to the breather profile of the

fully classical Sine-Gordon equation. However, during the second, slowly radiating,

part of the evolution, we can see a non-negligible difference between the numerical

profile for φ and that of a sine-Gordon breather. We can thus conclude that, while

the early time evolution can be thought of a series of breathers, with the system

“jumping” from one to another every time φ crosses zero, the late time evolution

exhibits a deformed breather-like structure (which we denote as an oscillon), which

is much less radiating. The time between successive φ zero-crossings matches rather

well with the half-period of Sine-Gordon breathers, as shown in Fig. 10.12d. We also

see that both the frequency and the amplitude of the oscillon-like structure remain

almost constant.

One potential source of worry is whether the semi-classical approximation remains

valid long enough for the oscillon to form. In other words, can the φ field still be

treated as a classical field, even after a significant amount of its energy has dissipated

via quantum radiation? As mentioned in Sec. 10.1, the approximation is valid as long

as Eφ is larger than E
(R)
ψ minus the energy radiated away, or in other words, as long
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Figure 10.12: (a) The numerically derived profiles of φ at the first 11 extrema
of Fig. 10.11c (blue). The red-dashed curves correspond to the breather profile of
Eq. (10.7) with the frequency parameter ω chosen such that we recover the maximum
amplitude φ(x = 0). We see excellent agreement for almost all curves; (b) The
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Figure 10.13: The energy in φ (Eφ) in solid dark blue, and the renormalized energy

in ψ within a window ranging from x = −5 to x = 5 (E
(R)
ψ,W ) in solid brown, as a

function of time for λ = 0.9. The sum of the two is denoted by the dashed black line.
The parameters are L = 100, N = 500, v = 0.2, µ = 0.1, mphys = 1 and t0 = −100.

Notice that the slight increase in E
(R)
ψ,W for t & 90 is due to the emitted radiation

reentering the window because of the periodic boundary conditions.

as the classical energy in the φ field is larger than the quantum energy in the clouds

of ψ particles “dressing up” the kink-antikink pair. As shown in Fig. 10.13 we have

checked that this is indeed the case for the whole duration of the simulation and in

particular during the onset of the long-lived oscillon regime.

It would be interesting to understand the profound reasons behind the formation of

the long-lived oscillon. However, within the time constraints of our simulation, which

we can only evolve until t ' 100, only a small fraction of the parameter choices allow

us to reach this oscillon-like final state. Improved numerics, able to simulate this late-

time long-lived state, will allow us to compare it decay rate to analytical estimates

(Hertzberg, 2010), thereby further elucidating the truly quantum mechanical nature

of the slow decay. Overall, it is important to understand the formation and eventual

decay of this slowly radiating object and we will return to this point in the future.
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Chapter 11

DISCUSSIONS AND CONCLUSION - II

The main theme for this part of the work has been to investigate the dynamics of

quantum fields on classical time- and space-dependent backgrounds. It is relevant

for numerous systems from condensed matter physics to cosmology including early

universe cosmology. Such systems involving coupled dynamics between classical and

quantum degrees of freedom radiate quantum particles and dissipate. The particles

however backreact on the classical background which alters its dynamics. Under-

standing this class of systems shaped this part of the work.

We focused on the dynamics of a classical field rolling down a linear potential,

while it is bi-quadratically coupled to a quantum field in chapter 8. Our main findings

showed that the dynamics of the classical field slows down because of quantum friction:

as the classical field rolls down, some of its energy is transferred to the quantum field

leading to particle production.

We studied the formation of global topological defects during a quantum phase

transition in chapter. 9. During a quantum phase transition, the vacuum can break

up to form these classical defects. We modeled such a phase transition as a time-

dependent mass-squared in the potential, which changes sign. We studied the for-

mation and dynamics of the defects by computing their number densities in 1,2 and

3-dimensions (kinks, vortices, and monopoles respectively). We found that they scale

as t−d/2 (where d is the number of spatial dimensions) and evolve towards attractor

solutions that are independent of the externally controlled time dependence.

We looked at kink-antikink scattering in the sine-Gordon model in the presence

of interactions with an additional scalar field in its quantum vacuum in chapter 10.
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We found that in contrast to the classical scattering, there is quantum radiation in

this system and the kink-antikink may form bound states that resemble breathers

of the sine-Gordon model. We also quantified the rate of radiation and mapped

the parameters for which bound states are formed. Interestingly, these bound states

radiate and decay, and eventually there is a transition into an object that resembles

a long-lived oscillon.

In this chapter, we discuss the main highlights of our work including some general

comments and relevant future directions.

In chapter 8, we solved for the dynamics of a classical rolling field that is coupled

to a quantum field using the CQC. Static solutions of the CQC equations are simply

the extrema of the effective potential. For the particular model in (8.1) with the linear

potential of (8.37), the effective potential has a minimum in the regime of validity of

our equations only if the interaction strength is stronger than a critical value as in

(8.41). For weaker interactions, there may be a minimum but it would lie beyond our

cutoff.

The CQC equations are then used to study the dynamics of rolling on the linear

potential. With homogeneous initial conditions, we find that the background field

oscillates. This is similar to what we would expect from the effective potential picture

but there are sharp differences in the details. These are most easily seen in Figs. 8.2

and 8.3 and are understood by noting that the CQC solves for the full dynamics,

including particle production and backreaction, whereas the effective potential picture

is limited to static backgrounds. In order to study possible dynamical instabilities, we

have also examined the case when the background field is weakly inhomogeneous. Our

numerical results show that small inhomogeneities in the initial conditions diminish

on evolution and there is no indication of an instability.

Our analysis is directly relevant to phase transitions in which the order parameter
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acquires a vacuum expectation value. The CQC equations can be used to study

the dynamics of phase transitions, in particular the formation of topological defects.

However, it would become necessary to generalize the CQC to the case when the

quantum field has self-interactions. One way to deal with self-interactions, e.g. a ψ4

term in the action, is to use perturbation theory on top of the CQC solution. That

is, the solution to the CQC equations would serve as the zeroth order solution around

which self-interactions could be treated perturbatively. This scheme has not yet been

implemented.

Our result that homogeneous initial conditions evolve homogeneously is equiva-

lent to saying that the quantum dynamics does not spontaneously break translational

invariance. This is in contrast to the claim that cosmological inflation due to a rolling

homogeneous field produces density fluctuations and thus spontaneously breaks trans-

lational symmetry (Mukhanov and Chibisov, 1981). However, further investigation

of this issue is necessary because there are additional ingredients that go into the

inflationary calculation. In particular, quantum fluctuations convert into classical

fluctuations once they exit the cosmological horizon (Kiefer et al., 1998), and cosmo-

logical expansion provides dissipation. It will be interesting to capture these effects

in the CQC formulation.

In chapter. 9, we carried out a thorough analysis of the dynamics of topological

defect formation in a quantum field theory where the only interactions are with exter-

nal parameters that induce a quantum phase transition. We thus worked in the limit

where self-interactions can be neglected. Results for the number density of kinks in

one spatial dimension are summarized in Fig. 9.2a, for vortices in two spatial dimen-

sions in Fig. 9.6a, and for monopoles in three spatial dimensions in Fig. 9.8a. These

results indicate that the number density of topological defects in d spatial dimensions

scales as t−d/2 and does not depend on the quench time scale, in the late time limit.
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Moreover, we showed that the sudden phase transition analytical result is a universal

attractor. These novel results stand in contrast to the Kibble-Zurek prediction for a

thermal phase transition.

We have also discussed the limit within which our results can be expected to

be a good approximation for a more realistic theory where self-interactions are not

explicitly set to zero. In the case of kinks (d = 1) we found the condition λτ/m� 1

where λ is the self-interaction coupling strength, to be a sufficient condition for our

results to hold. This condition can be generalized on dimensional grounds to be

λmd−2τ � 1 in d spatial dimensions.

Finally, in chapter 10, we were able to simulate kink-antikink scattering in a model

where a classical sine-Gordon field φ (the background) is coupled to a quantum field

ψ (the quantum radiation bath) via an interaction term preserving the discrete shift

symmetry. As expected the spacetime dependence of the background kink-antikink

configuration triggers particle production in the ψ field which can in turn backreact

on the field φ. As detailed in Sec. 10.1 we used the Classical-Quantum Correspon-

dence (CQC) (Vachaspati and Zahariade, 2018a,b) to study this system numerically.

When backreaction is taken into account within the semi-classical approximation,

the outcome of the scattering is either an outgoing kink-antikink pair with reduced

kinetic energy or a breather-like bound state, which continues to radiate. In Sec. 4.3

we examine the dynamics of this inelastic process and its dependence of the different

parameters of the model. Interestingly enough, in the case where a bound state forms,

particle production initially occurs in the form of a cascade of strong radiation bursts,

but after some time the system appears to settle in a long-lived, weakly-radiating os-

cillon configuration. Understanding this final state would provide valuable insight

into the late-time evolution of realistic systems, like bubble collisions in the early

universe. Furthermore, it has been shown that in some cases the presence of specta-
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tor fields can enhance the lifetimes of oscillons (Antusch and Orani, 2016). Recent

work has also described the properties of multi-component oscillons (Van Dissel and

Sfakianakis, 2020), which could be relevant for understanding this configuration. A

detailed analytical and numerical investigation of these late-time oscillons falls outside

the scope of our current work and will be undertaken in the future.

A limitation of our numerical implementation arises from the fact that working on

a periodic lattice prevents us from evolving the dynamical system for a time longer

than one light-crossing time after the collision. Beyond that point the emitted ra-

diation comes back to interfere with the kink-antikink pair and our results can no

longer be fully trusted. To remedy this would either require parallelizing the code so

as to increase the size of the lattice while maintaining spatial resolution, or imple-

menting absorbing boundary conditions. This is necessary for capturing phenomena

that develop over long time-scales (like oscillon evaporation) and is currently under

development.

One of the other limitations of our numerical setup lies in the choice of the initial

conditions given in Eq. (10.35) for the Zij variables. As mentioned in Section 10.1,

these are technically only valid when the background is in a quiescent state at time

t0, i.e. when its time variation can be neglected. This is approximately true for non-

relativistic collisions such as the ones studied here. However, when γ becomes large,

we expect the mismatch of initial conditions to violate adiabaticity strongly around

t = t0 thus leading to spurious particle production. Fixing this issue would require

going beyond the choice of 0-th order adiabatic vacuum, for example by pasting

together the known vacuum modefunctions for a boosted kink and for a boosted

antikink (Morse and Feshbach, 1953; Vachaspati, 2010) propagating in the opposite

direction to obtain more accurate initial conditions for Z. Alternatively one could

adiabatically turn on the relative velocity in a well-separated kink-antikink pair but

281



this again requires better control over numerical error. An amusing fact is that

collisions of classical solitons have been analyzed in detail in the opposite regime,

that of ultra-relativistic velocities (Amin et al., 2013). There, semi-analytic formulas

where derived, albeit neglecting any effect of quantum radiation. Extending the CQC

into this regime will allow us to capture the quantum radiation effects on colliding

relativistic domain walls in the early universe.

The methods presented here in the context of the simple model of a sine-Gordon

potential in one spatial dimensions have a wide applicability to a variety of other

scenarios. For example, the analysis carries over directly to kink-antikink collisions

in the λφ4 model (Sugiyama, 1979; Campbell et al., 1983; Anninos et al., 1991; Dorey

and Romańczukiewicz, 2018). Moreover its three-dimensional extension would in

fact describe domain wall collisions in the early universe in the presence of quantum

radiation. This presents an intriguing opportunity to study possible signatures of the

interplay between classical and quantum degrees of freedom in a cosmological context

(note that the kink-antikink configuration discussed here provides an analogy with

the particle production phenomena thought to occur during gravitational collapse,

black hole production and evaporation). Furthermore, the formation of oscillons

after bubble collisions and their eventual decay will have to be revisited, in order to

encompass the backreaction of quantum radiation (Bond et al., 2015).

We hope that our investigations are small but significant steps towards under-

standing the big picture - the interplay of classical and quantum degrees of freedom

in the universe, in broader contexts of gravitation, condensed matter systems and

early universe cosmology.
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Cerdá-Durán, P., N. DeBrye, M. A. Aloy, J. A. Font and M. Obergaulinger, “Grav-
itational wave signatures in black-hole-forming core collapse”, Astrophys. J. Lett.
779, L18 (2013).

Chadwick, J., “Possible Existence of a Neutron”, Nature 129, 312 (1932).

Christ, N. H. and T. D. Lee, “Quantum Expansion of Soliton Solutions”, Phys. Rev.
D 12, 1606 (1975).

Christodoulou, D., “Nonlinear nature of gravitation and gravitational wave experi-
ments”, Phys. Rev. Lett. 67, 1486–1489 (1991).

Chuang, I., B. Yurke, R. Durrer and N. Turok, “Cosmology in the Laboratory: Defect
Dynamics in Liquid Crystals”, Science 251, 1336–1342 (1991).

291

https://doi.org/10.1038/382332a0
https://link.aps.org/doi/10.1103/PhysRevB.60.7595
https://link.aps.org/doi/10.1103/PhysRevLett.84.4966
https://link.aps.org/doi/10.1103/PhysRevLett.84.4966


Clausen, D., A. L. Piro and C. D. Ott, “The Black Hole Formation Probability”,
Astrophys. J. 799, 2, 190 (2015).

Cleveland, B. T., T. Daily, R. Davis, Jr., J. R. Distel, K. Lande, C. K. Lee, P. S.
Wildenhain and J. Ullman, “Measurement of the solar electron neutrino flux with
the Homestake chlorine detector”, Astrophys. J. 496, 505–526 (1998).

Coleman, J., “Matter-wave Atomic Gradiometer InterferometricSensor (MAGIS-100)
at Fermilab”, PoS ICHEP2018, 021 (2019).

Coleman, S., Aspects of Symmetry: Selected Erice Lectures (Cambridge University
Press, Cambridge, U.K., 1985).

Cooper, F. and E. Mottola, “Quantum back reaction in scalar qed as an initial-value
problem”, Phys. Rev. D 40, 456–464, URL https://link.aps.org/doi/10.1103/
PhysRevD.40.456 (1989a).

Cooper, F. and E. Mottola, “Quantum Back Reaction in Scalar QED as an Initial
Value Problem”, Phys. Rev. D 40, 456 (1989b).

Copeland, E. J., M. Gleiser and H. R. Muller, “Oscillons: Resonant configurations
during bubble collapse”, Phys. Rev. D 52, 1920–1933 (1995).

Couvidat, S., S. Turck-Chieze and A. G. Kosovichev, “Solar seismic models and the
neutrino predictions”, Astrophys. J. 599, 1434–1448 (2003).

Damour, T. and A. Vilenkin, “Gravitational wave bursts from cosmic strings”, Phys.
Rev. Lett. 85, 3761–3764 (2000).

Danby, G., J. M. Gaillard, K. A. Goulianos, L. M. Lederman, N. B. Mistry,
M. Schwartz and J. Steinberger, “Observation of High-Energy Neutrino Reactions
and the Existence of Two Kinds of Neutrinos”, Phys. Rev. Lett. 9, 36–44 (1962).

Dashen, R. F., B. Hasslacher and A. Neveu, “Nonperturbative Methods and Extended
Hadron Models in Field Theory 1. Semiclassical Functional Methods”, Phys. Rev.
D 10, 4114 (1974a).

Dashen, R. F., B. Hasslacher and A. Neveu, “Nonperturbative Methods and Ex-
tended Hadron Models in Field Theory 2. Two-Dimensional Models and Extended
Hadrons”, Phys. Rev. D 10, 4130–4138 (1974b).

Dashen, R. F., B. Hasslacher and A. Neveu, “Nonperturbative Methods and Extended
Hadron Models in Field Theory. 3. Four-Dimensional Nonabelian Models”, Phys.
Rev. D 10, 4138 (1974c).

Dashen, R. F., B. Hasslacher and A. Neveu, “The Particle Spectrum in Model Field
Theories from Semiclassical Functional Integral Techniques”, Phys. Rev. D 11,
3424 (1975).

Davis, R., Jr., D. S. Harmer and K. C. Hoffman, “Search for neutrinos from the sun”,
Phys. Rev. Lett. 20, 1205–1209 (1968).

292

https://link.aps.org/doi/10.1103/PhysRevD.40.456
https://link.aps.org/doi/10.1103/PhysRevD.40.456
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In this appendix, we derive and discuss the neutrino oscillation probabilities for
the two flavor osciilation scenario (see Sec. 1.4 for details). The neutrinos come in
three flavour (or interaction) eigenstates and three mass eigenstates. Since they have
non zero mass, hence there is no reason for the above mentioned states to coincide.
Thus, there occurs coherent mixing between them. We will study the mixing between
two neutrinos, which is a fair approximation. In this treatment of two flavours the
interaction eigenstates are related to the mass eigenstates by a 2× 2 unitary rotation
matrix from the mass basis to the interaction basis, as shown below:Å

νe
νµ

ã
=

Å
cos θ sin θ
− sin θ cos θ

ãÅ
ν1

ν2

ã
(A.1)

where νe and νµ are the interaction eigenstates, ν1 and ν2 are the mass eigenstates
with eigenvalues m1 and m2; θ is the mixing angle. If we take m1 to be the lower
mass; then in its rest frame; ν2 has higher energy, m2 which is is its mass and some
kinetic energy of its own. Since this is a quantum mechanical phenonmenon this
coherent mixture (νe = ν1 cos θ + ν2 sin θ ) leads to breaking of energy conservation
for short time intervals, which is taken care by the uncertainity principle. This leads
to the phenomenon of neutrino oscillation.

Consider a nuclear beta decay which produces a νe state ( N(A,Z)→ N ′(A,Z −
1) + e+ + νe ). Its ν1 and ν2 components will travel with different velocities sine
they differ in mass. Because of this their relative wave-packet sizes will change with
distance, which means transformation of νe to νµ. Due to the uncertainity principle,
the neutrinos of definite mass and momentum do not travel as point particles, rather
they travel as plane monochromatic waves, whose wave-function is given by;

Ψ = e−i(Et−pl) (A.2)

Since, the mass of the neutrinos is very small (< eV ) as compared to their energies
which are high (∼ MeV ), they are extreme relativistic particles. Thus, in natural
units,

t ∼= l

and,

E ∼= p+
m2

2p
∼= p+

m2

2E

On substituting the above to Eq. A.2, we get,

Ψ = e−i(E−p)l = e−i(
m2l
2E

) (A.3)

So the neutrino mass eigenstate propagates with a phase of e−i(
m2l
2E

). After travelling
a distance l, the wave function of the produced νe is of the form

νe → ν1 cos θe−i(
m1

2l
2E

) + ν2 sin θe−i(
m2

2l
2E

) (A.4)

Eq. A.4 can be written in terms of the interaction eigenstates using the inverse of
Eq. A.1; Å

ν1

ν2

ã
=

Å
cos θ − sin θ
sin θ cos θ

ãÅ
νe
νµ

ã
(A.5)
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From above, we have
ν1 = νe cos θ − νµ sin θ

and
ν2 = νe sin θ + νµ cos θ

Thus from Eq. A.4,

νe → (νe cos θ − νµ sin θ) cos θe−i(
m2l
2E

) + (νe sin θ + νµ cos θ) sin θe−i(
m2l
2E

)

or

νe → (νe cos2−νµ sin θ cos θ)e−i(
m1

2l
2E

) + (νe sin2 θ + νµ sin θ cos θ)e−i(
m2

2l
2E

)

or

νe → νe(cos2 θe−i(
m1

2l
2E

) + sin2 θe−i(
m2

2l
2E

)) + νµ sin θ cos θ(−e−i(
m1

2l
2E

) + e−i(
m2

2l
2E

))

Therefore, the probability of νe oscillation into νµ is given by the modulus square of
the coefficient of νµ.

Peµ(l) = | sin θ cos θ(−e−i(
m1

2l
2E

) + e−i(
m2

2l
2E

))|
2

(A.6)

= sin2 θ cos2 θ

(
2− 2 cos

∆m2l

2E

)

= (sin2 θ cos2 θ)

(
4 sin2 ∆m2l

4E

)

Peµ = sin2 2θ

(
sin2 ∆m2l

4E

)
(A.7)

where, ∆m2 = m2
2 − m1

2. We convert the above equation from natural to more
convenient units by writing ∆m2 in eV2, l in metres and E in MeV . Using the
relation, 200 MeV fm = ~c, we obtain

∆m2c4l

4~E
=

1.3∆m2l

E

Thus,

Peµ = sin2 2θ

(
sin2 1.3∆m2l

E

)
(A.8)

In the above expression the first factor gives the amplitude, whereas the second factor
gives the phase of neutrino oscillation. For a phase angle θ, we know,

π

θ
=
λ

l
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l << λ ∼ λ/2 >> λ
Peµ 0 sin2 2θ ∼ 1 1

2
sin2 2θ ∼ 1

2
Table A.1: Table Showing The Values Of Peµ For Limiting Cases Of l.

Figure A.1: The two flavour oscillation and survival probability, plotted as function
of l for Eν = 1GeV ,∆m2 = 0.002eV 2 and sin22θ = 1.0

the repetition of phase occurs after π, since the period of sin2 2θ is π. Therefore, the
wavelength of neutrino oscillations is given by,

λ [m] =
π

1.3

E

∆m2
' 2.4E [MeV]

∆m2 [eV2]
(A.9)

For a large mixing angle θ, the amplitude is large (sin2 2θ ∼ 1). We can calculate
Peµ over a distance l, which is shown in Table. A.1. The corresponding survival
probability is given by

Pee ≡ Pνe→νe = 1− Peµ (A.10)

Recent experiments measure the survival probability, not the oscillation probabil-
ity, because neutrinos are detected by the production of their lepton partners, and
producing an electron takes less energy than producing a muon (me = 0.5MeV ,
mν = 100 MeV). It is possible to measure ∆m2 in any experiment subject to the
condition, l ≥ λ

2
.

λ

2
' 1.2E

∆m2

So if we know l and E, we can calculate the lowest order of ∆m2 that can be measured.

∆m2 ' 1.2E

l

For solar and reactor neutrino experiments, the source of νe is nuclear reactions
(see Sec. 1.6) and the energy is in the order of MeV. The distance between the
reactor(source) and the detector l, for a long baseline experiment like KamLAND is
of the order of 105m. Thus,

∆m2 ≥ 1 MeV

105 m
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or,
∆m2 ≥ 10−5 eV2

For solar neutrinos, l is the distance between the earth and the sun, which is of
the order 1011 m.

∆m2 ≥ 1 MeV

1011 m
or,

∆m2 ≥ 10−11 eV2

These orders of magnitude are far beyond the reach of any other methods of mass
measurement. In case of accelerator and atmospheric neutrinos the energy is in the
order of GeV. For a long baseline accelerator neutrino experiment like MINOS the
distance between the source and the detector, l ∼ 103 km.

∆m2 ≥ 1 GeV

103 km

or,
∆m2 ≥ 10−3 eV2

While for atmospheric neutrinos traversing the earth l is given by the diameter of the
earth, l ∼ 104km.

∆m2 ≥ 1 GeV

104 km
or,

∆m2 ≥ 10−4 eV2

.
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Figure B.1: Table showing the various neutrino luminosity spectra parameters.
This is taken from Kresse et al. (2021).

The figure B.1 in this section consists of a table that has been taken from Kresse
et al. (2021). The table provides the various neutrino emission spectral parameters,
the final fate of the collapse and the mass of the compact object formed. The spectral
parameters are discussed in Sec. 2.4.6. Etot

νi
is the total energy radiated in neutrino of

species i, mean neutrino energy is given by 〈Eνi〉 and spectral shape parameter ανx
(this is denoted by βν)x in the text in Sec. 2.4.6).

328



APPENDIX C

SOME NOTES FOR DIRECTIONAL POINTING USING PRESUPERNOVA
NEUTRINOS

329



Obtaining an analytical expression for angular uncertainty

In this section we show the steps involved in going from Eq. 3.9 to Eq. 3.12. From
eq. 3.9 we have,

P (px, py, pz) =
1(

2πσ2
) 3

2

exp

(
−p2

x − p2
y − (pz − |~p|)2

2σ2

)
. (C.1)

P (px, py, pz) =
1√

2πσx2

1√
2πσy2

1√
2πσz2

exp

(
−px2

2σx2

)
exp

(
−py2

2σy2

)

exp

(
−(pz − |~p|)2

2σz2

) (C.2)

The angular uncertainty on the direction to the supernova progenitor is given by the
angular aperture, β, of the cone around the vector ~pm, containing a chosen fraction
of the total probability. The mathematical expression for the above statement is:∫∞

0
p2dp

∫ 1

cosβ
d cos θ

∫ 2π

0
dφP (px, py, pz)∫∞

0
p2dp

∫ 1

−1
d cos θ

∫ 2π

0
dφP (px, py, pz)

= I (C.3)

Transforming to polar coordinates, we have,

px = p sin θ cosφ

py = p sin θ sinφ

pz = p cos θ

(C.4)

For this particular case which is linear,

σx = σy = σz =
1√
3N

= σ . (C.5)

We choose a reference frame where, px = 0 and py = 0, and pz = |~p| as the mean.On
doing the above substitutions, the integral in the numerator looks like,

1√
2π

(3N)
3
2

∫ ∞
0

dp p2

∫ 1

cosβ

d cos θ exp

(
− 3N

2

(
p2 + |~p|2 − 2|~p|p cos θ

))
(C.6)

In the above expression, the phi-integral being trivial has already been done. For the
denominator we just replace the limits of d cos θ from -1 to, 1, which gives us 1 as
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expected. We first solve the d cos θ integral,

1√
2π

(3N)
3
2

∫ ∞
0

dp p2 exp

(
− 3N

2

(
p2 + |~p|2

)) ∫ 1

cosβ

d cos θ exp

(
3N |~p|p cos θ

))

=

…
3N

2π

exp

(
− 3N

2
|~p|2
)

|~p|

∫ ∞
0

dp p exp

(
− 3N

2
p2

)Å
exp

(
3N |~p| p

)
− exp

(
3N |~p| p cos β

)ã
(C.7)

The denominator is obtained by substituting -1 in place of cosβ which gives us 1 as
expected. On doing the above integral we obtain,

1

2

ï
1 + Erf

(…
3N

2
|~p|

)
+

(
cos β exp

(
3N

2
|~p|2(cos2 β − 1)

)
(
− 2 + Erfc

(…
3N

2
|~p| cos β

)))ò
= I

(C.8)

The above expression can be simplified, Let,

k =

…
3N

2
|~p| (C.9)

We also know, Erfc(x) = 1− Erf(x). Then the above equation becomes,

1

2

[
1 + Erf(k)− cos β exp

(
− k2 sin2 β

)Å
1 + Erf(k cos β)

ã]
= I (C.10)

The above expression is what we have in Eq. 3.12.

Plotting error cones in Mollweide projections

This appendix includes the relevant steps to plot an error cone corresponding to
a given angle β, corresponding to the discussions in Sec. 3. The list of red and blue
supergiants is given in Tab. D.1. The Mollweide projections can be made using the
angles of declination (Dec) and right ascension (RA) given in the table. The next
obvious step is to have a visualization of the error cone from the angular uncertainty
(β) calculated in Sec. 3.2.1. The steps to do that are as follows:

1. Create a list of points to form a circle taking the zenith as the centre. These
will be points at a constant Dec, and variable RA (0 to, 2 π). The radius will
be the size of the error cone β (in radians) because, S = rθ, but r = 1; so
s = θ (radians).
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Figure C.1: Coordinate Arrangement.

2. Find the RA and Dec of the star around which you want to plot the error cone,
and rotate each point to that RA and Dec.
RA = φ
Dec = θ
θ̃ = π

2
− θ

φ̃ = π
2
− φ

3. From spherical coordinates convert to Cartesian Coordinates (see Fig. C.1):

x = (cos θ̃)(sin φ̃)

y = sin θ̃ (C.11)

z = (cos θ̃)(cos φ̃)

4. Rotation matrices for rotating to the required RA and Dec

R(z, θ̃) =

cos(−θ̃) − sin(−θ̃) 0

sin(−θ̃) cos(−θ̃) 0
0 0 1

 (C.12)

R(y, φ̃) =

 cos(φ̃) 0 sin(φ̃)
0 1 0

− sin(φ̃) 0 cos(φ̃)

 (C.13)
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Figure C.2: Some examples of error cone of size β plotted on a Mollweide projection
for different pre-supernova candidates.

5. Perform the rotation using matrix multiplication. Here I first rotate to the
required Declination by rotating about z - axis, then rotate about y-axis for the
RA [

x′

y′

z′

]
= R(y, φ)R(z, θ)

[
x
y
z

]
(C.14)

6. Rotate back to the spherical coordinates:

θ = arctan
y√

x2 + z2

φ = arctan
x

z
(C.15)

7. Take care of the tan values of phi, based on what coordinate they are in because
tan−1 has range from (−π/2, π/2).

8. Once you have these points throw it to the Mollweide Projection Algorithm to
plot the error cones.

In Fig. C.2, we show some examples of error cone of size β plotted on a Mollweide
projection for different pre-supernova candidates.

The case of an exponential distribution

We extended our mathematical analysis to a more general case of exponential
distribution and re-calculated all the quantities relevant to our problem and found
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Figure C.3: Angular uncertainty (β) comparison for linear and exponential distri-
butions for different confidence levels.

out that the linearized approximation works extremely well for our case (Reason yet
to be thought of). Fig. C.3 shows the result. The agreement is seen both, for 68%
and 90% confidence levels.
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Table D.1 compiles a list of 31 red and blue core-collapse supernova progeni-
tors within 1 kpc that have both distance and mass estimates. Table D.1 gives
the star number (sorted by distance), Henry Draper (HD) catalog number, common
name, constellation, distance, mass, J2000 right ascension (RA) and J2000 declina-
tion (Dec). For stars with multiple distance measurements, precedence is given to
distances provided by the Gaia Collaboration (2018), van Leeuwen (2007), and in-
dividual determinations, in this order. Earlier compilations (e.g., Nakamura et al.,
2016) considered only red supergiant progenitors and did not require a mass estimate.

Table D.2 lists the angular distance ∆θ of each star to its nearest neighbor. Ta-
ble D.2 gives the star number, HD catalog and common name, the minimum angular
separation between the star and its nearest neighbor, the HD catalog and common
name of the nearest neighbor, and the star number of the nearest neighbor. The RA
and Dec for each star is taken from Table D.1 when calculating angular separations.
The algorithm to produce Table D.2 is discussed below (Sec. D).

Algorithm to calculate angular distance to nearest neighbour

1. From the list of stars extract only the stars lying within the required distance
cuts.

2. From the extracted list read of the Star Name, Star RA and, Star Dec for each
star. The RA is in the form HH:MM:SS (Hours:Minutes:Seconds), whereas the
Dec is in the form + or - DD:MM:SS (Degrees:Arcminutes:Arcseconds). We
need to convert each into decimal degrees.

3. Convert the RA and Dec into degrees using the following:

RA(in degrees) = 15
(
HH +

MM

60
+

SS

3600

)
(D.1)

Dec(in degrees) = ±
(
DD +

MM

60
+

SS

3600

)
(D.2)

4. For each star calculate the angular distance to every other star using the above
calculated RA and Dec in decimal degrees. Lets say the two stars being con-
sidered have RA and Dec as: RA1, Dec1 and RA2, Dec2. Then:

cosA = {sin (Dec 1) sin (Dec 2)}+ {(cos (Dec 1) cos (Dec 2))

(cos (RA 1−RA 2)} (D.3)

=⇒ A = cos−1(cosA) (D.4)

5. Once you have all these distances corresponding to each star from a given star,
find the smallest distance and store the corresponding stars name. You can also
extend it to finding the second smallest distance, giving you the nearest and
the second-nearest neighbours respectively.
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Figure D.1: Figure Of A Table For Candidate Pre-supernova Stars.

337



Figure D.2: Figure Of A Table For Minimum Angular Separation Between Pre-
supernova Candidates.
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Formalism Addendum

In this appendix we would like to collect some details to complement section 4.1

The weak field equations

Consider a metric gµν nearly flat1 as given in Eq. (4.2),

gµν = ηµν + hµν . (E.1)

i.e, hµν is a small perturbation and we will only keep terms up to first order in hµν .
The Ricci tensor is defined as,

Rµν = ∂νΓ
λ
λµ − ∂λΓλνµ, (E.2)

where,

Γλµν =
1

2
ηλρ
(
∂µhρν + ∂νhρµ − ∂ρhµν +O(h2)

)
. (E.3)

Using Eq. E.2 and E.3, we have;

Rµν ≈ R(1)
µν ≡

1

2

(
�2hµν − ∂λ∂µhλν − ∂λ∂νhλµ + ∂µ∂νh

λ
λ

)
. (E.4)

Recall the Einstien’s field equation is defined as,

Rµν −
1

2
Rgµν = −8πGTµν , (E.5)

(Note that, R = 8πGT µµ ).
Using Eq. E.4 in Eq. E.5 after some massaging we obtain the following field equation,

�2hµν − ∂λ∂µhλν − ∂λ∂νhλµ + ∂µ∂νh
λ
λ = −16πGSµν (E.6)

where Sµν is defined in terms of the conventional stress-energy tensor Tµν as,

Sµν = Tµν −
1

2
ηµνT

λ
λ . (E.7)

As we mention in section 4.1, the field equation above is gauge invariant. We choose
a particular gauge

gµνΓλµν = 0. (E.8)

which from (E.3) implies the following condition on the metric perturbation,

∂αh
α
λ =

1

2
∂λh

µ
µ, (E.9)

This finally gives us,
�2hµν = −16πGSµν (E.10)

1We use signature ηµν = diag(−1, 1, 1, 1).
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One can write a solution by using the retarded Green’s function and explicitly take,

hµν = 4G

∫
d3~x

′
(Sµν(~x ′ , t− |~x− ~x ′|)

|~x− ~x ′ |

)
. (E.11)

Following Epstein (1978), we use the following ansatz for the sources,

Sij(t, x) = ninjr−2σ(t− r)f(Ω, t− r), (E.12)

where, ~n = x/r, r = |x|. This stress-tensor represents a point source that releases
matter at x = 0 at the speed of light, with σ(t) the rate of energy loss and f(Ω, t) the
angular distribution of emission and hence it satisfies f(Ω, t) ≥ 0 and

∫
f(Ω, t)dΩ = 1.

A convenient way of writing the source ansatz E.12 is,

Sij(t, x) = ninjr−2

∫ ∞
−∞

f(Ω′, t′)σ(t′)δ(t− t′ − r)dt′. (E.13)

In order to fix the residual gauge freedom (see for example Misner et al. (1973)), we
should project the source stress-tensor into its transverse-traceless component, which
we denote by (ninj)TT and write explicitly in the wave form as 2,

hijTT (t, x) =

4

∫ ∞
−∞

∫
4π

∫ ∞
0

(ninj)TTf(Ω′, t′)σ(t′)

|~x− ~x′|
δ(t− |~x− ~x′| − t′ − r′)dr′dΩ′dt′.(E.14)

We know by the property of Dirac-Delta functions:

δ
(
g(x)

)
=
∑
i

δ
(
x− xi

)
|g′(xi)|xi=x0

. (E.15)

We have from Eq. E.14, δ(t − |~x − ~x′| − t′ − r′). This implies for our case g(r′) =

t− |~x− ~x′| − t′ − r′. The roots are found by solving for r′ in the equation, g(r′) = 0.
We can either solve for r′ or just simply write,

|~x− ~x′|1/2 = t− t′ − r′. (E.16)

Next we evaluate, g′(r′), which gives us,

g′(r′) = − d

dr′
|~x− ~x′| − 1. (E.17)

We know from the law of sines that,

|x− x′|2 = r2 + r′2 − 2rr′ cos θ. (E.18)

2We delay an explicit computation of (ninj)TT to appendix E below.
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Figure E.1: A light cone to understand the integration limits for t′ in Eq. E.22.

So the derivative, d
dr′
|~x− ~x′| = r′−r cos θ

|~x−~x′| . Using this and Eq. E.17 we obtain,

|g′(r′)| =
( |~x− ~x′|+ r′ − r cos θ

|~x− ~x′|

)
. (E.19)

But we need, |g′(r′)|r′=r0 which is;

|g′(r′)|r′=r0 =
t− t′ − r cos θ′

|~x− ~x′|
, (E.20)

where we have used, Eq. E.16 in the numerator and defined the angle θ(r′ = r0) = θ′.
Now we have all the pieces to evaluate the Delta function and integrate over r′ in Eq.
E.14. Using Eq. E.15, E.20 in Eq. E.14 we have;

θijTT (t, x) = 4G

∫ ∞
−∞

∫
4π

(ninj)TTf(Ω′, t′)σ(t′)

t− t′ − r cos θ′
dΩ′dt′. (E.21)

Comparing Eq. E.21 with Eq. E.22 we see that the limits for the t′ integration do
not yet match. So to understand this let us look at Fig E: We see the existing limit
of t′ → (−∞,∞), is unphysical in our case cause then the event of the astrophyscal
phenomenon is causally disconnected for certain cases. Hence, for the limits to be
physically meaningful t′ → (−∞, t− r), which when introduces in Eq. E.21 gives us
Eq. E.22.

hijTT (t, x) = 4G

∫ t−r

−∞

∫
4π

(ninj)TTf(Ω′, t′)σ(t′)

t− t′ − r cos θ
dΩ′dt′. (E.22)
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From gravitation to neutrino physics

For the derivation of the equations in this appendix, we have followed Mueller and
Janka (1997a); Li et al. (2018); Ott (2009); Burrows and Hayes (1996); Kotake et al.
(2012). The observer is situated at a distance r = |x| → ∞ from the source, i.e., very
far away from the event, and sees the radiation from the source at a time t which
was emitted at time t′ = t − r/c. We are interested in the gravitation wave created
by the neutrino pulse. By defining the direction dependent neutrino luminosity as3

dLν(Ω′,t′)
dΩ′

= f(Ω′, t′)σ(t′), we can now rewrite (E.22) in this approximation as,

hijTT (t, x) =
4G

rc4

∫ t−r/c

−∞
dt′
∫

4π

(ninj)TT
1− cos θ

dLν(Ω
′, t′)

dΩ′
dΩ′, (E.23)

The wave hijTT (t, x) can be either ‘+’ or ‘×’ polarized. We denote the + polarization
as, hxxTT = −hyyTT = −h+

TT .

Special Case: I

We will now choose some special cases and see how Eq. 4.8 looks. When we have,
ϕ = 0 and ϑ = 0, the (XY Z) system coincides with the (X ′Y ′Z ′) system. In this
case one can see from Fig. 4.1, θ = ϑ′ and φ = ϕ′. The expression in Eq 4.8 then
becomes,

(hxxTT )p =
2G

rc4

∫ t−r/c

−∞
dt′
∫

4π

(1 + cosϑ′) cos 2ϕ′
dLν(Ω

′, t′)

dΩ′
dΩ′ . (E.24)

In the above equation Eq. E.24, when dLν/dΩ is axially symmetric. In this case,
when the observer is located at the symmetry axis the amplitude vanishes, (hxxTT )p =
0. This is because, for this arrangement dLν/dΩ is independent of φ (since axis-

symmetric), so
∫ 2π

0
cos 2φ dφ = 0 and hence the integral vanishes.

Special Case: II

Now, let us look at a scenario when ϕ = 0. In this situation the Y and Y ′ axes
coincide. The two coordinate systems (XY Z and X ′Y ′Z ′) are related by rotation
about Z- axis by an angle ϑ. Thus we have,

sin θ cosφ = sinϑ′ cosϕ′ cosϑ− cosϑ′ sinϑ

sin θ sinφ = sinϑ′ sinϕ′

cos θ = sinϑ′ cosϕ′ sinϑ− cosϑ′ cosϑ.

Now consider the observer to be perpendicular to the source’s Z ′ axis, i.e., ϑ = π/2
(refer to Fig. 4.1, here Z and X ′ axes coincide). Therefore, we now have,

sin θ cosφ = − cosϑ′

sin θ sinφ = sinϑ′ sinϕ′

cos θ = sinϑ′ cosϕ′
(E.25)

3In other words, the energy radiated at time t per unit of time and per unit of solid angle into
the direction Ω′.
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The expression in Eq. 4.8 now becomes,

(hxxTT )e =
2G

rc4

∫ t−r/c

−∞
dt′
∫

4π

(1+sinϑ′ cosϕ′)
(cos2 ϑ′ − sin2 ϑ′ cos2 ϕ′)

(cos2 ϑ′ + sin2 ϑ′ cos2 ϕ′)

dLν(Ω
′, t′)

dΩ′
dΩ′.

(E.26)

Our main conclusion from illustratiing these special cases is, we can conveniently
rewrite the wave form as,

hxxTT =
2G

rc4

∫ t−r/c

−∞
dt′Lν(t

′)α(t′) , (E.27)

by defining the anisotropy parameter α(t) in the x-direction as given by,

α(t) =
1

Lν(t)

∫
4π

dΩ′
(nxnx)TT
1− cos θ

dLν(Ω
′, t)

dΩ′
, (E.28)

where the total neutrino luminosity is given by,

Lν(t) =

∫
4π

dΩ′
dLν(Ω

′, t)

dΩ′
. (E.29)

Calculation of transverse-traceless amplitude

There is still an important piece (ninj)TT at equations (E.23) and (E.28) that
requires some work since it contains the angular dependence for the integrand of the
wave form. In this section we will compute the transverse traceless component of the
wave form.

From Fig. E.2 one can read the vectors,

n̂ =
~x′

|~x′|

n̂′ =
~x− ~x′

|~x− ~x′|

(E.30)

or in components,
nx = sin θ cosφ

ny = sin θ sinφ

nz = cos θ

(E.31)

n′x = − sinψ cosφ

n′y = − sinψ sinφ

n′z = cosψ

(E.32)

From Eq. E.31, E.32, it is easy to show that,

n̂.n̂′ = cos (θ + ψ). (E.33)
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Figure E.2: Setup to show the different vectors involved. Same as Fig. 4.1 (includ-
ing the colors used) but only the observer’s coordinate system is shown along with
the extended source. The blue dot is a point on the surface of the extended source
and the corresponding position vector is shown as a blue arrow.

Also, from the figure (Fig. E.2) we see that ~x.n̂′ = r cosψ. The operator that projects
into the transverse-traceless component is given in the standard way,

P i
j = δij − n′in′j. (E.34)

More explicitly, the transverse-traceless (TT) part of a given tensor T kl is given by,

T ijTT =
(
P i
kP

j
l −

1

2
P ijPkl

)
T kl. (E.35)

Let us now check that our operator in Eq. E.34 does what it is supposed to, namely
project out the transverse-traceless part of a tensor. First, we check that the com-
ponent E.35 is transverse to the direction of wave propagation. In other words, T ijTT
should be perpendicular (transverse) to n′ and therefore its dot product with n′ should
vanish,

n′iT
ij
TT = (n′k − n′in′in′k)(δjl − n

′jn′l)T
kl − 1

2
(n′j − n′in′in′j)(δkl − n′

k
n′l)T

kl = 0,

345



which is what we required. Next, we want to show that the tensor component T ijTT
is also traceless by showing δijT

ij
TT = 0. Once again substituting the expressions from

Eq. E.34, E.35 and doing the appropriate contractions give us,

δijT
ij
TT = (δjk − n

′jn′k)(δ
j
l − n

′jn′l)T
kl − 1

2
(3− 1)(δkl − n′

k
n′l)T

kl

= (δkl − n′
k
n′l)T

kl − (δkl − n′
k
n′l)T

kl = 0,

which is what we intended to show. Now we want to evaluate the expression (nxnx)TT ,

(nxnx)TT =
(
P x
k P

x
l −

1

2
P xxPkl

)
nknl =

(
P x
k n

knlP x
l −

1

2
P xxPkln

knl
)

(E.36)

Let us first calculate each term separately appearing in the above expression.

P x
k n

k = (δxk − n′
x
n′k)n

k = nx − n′x cos (θ + ψ) = sin θ cosφ+ sinψ cosφ cos (θ + ψ)

P x
k n

k = cosψ cosφ sin (θ + ψ) (E.37)

In the above computations we have used the expressions in Eq. E.31, E.32, E.33,
E.34. Similarly one can find the following projections,

P y
k n

k = cosψ sinφ sin (θ + ψ) (E.38)

P z
kn

k = sinψ sin (θ + ψ) (E.39)

Next we have,
Pkln

knl = (δkl − n′kn′l)nknl = 1− cos2 (θ + ψ),

Pkln
knl = sin2 (θ + ψ), (E.40)

and finally,
P xx = (δxx − n′

x
n′x) = 1− sin2 ψ cos2 φ. (E.41)

So now we have all the terms required for the evaluation of (nxnx)TT . Substituting
Eq. E.37, E.40, E.41 in Eq. E.36 gives,

(nxnx)TT =
1

2
sin2 (ψ + θ)

(
cos2 φ(1 + cosψ)− 1

)
. (E.42)

In Sec. 4.1 we discuss the setup where the observer is at ∞, i.e., r = |~x| → ∞, in
that case the angle ψ = 0. Putting, ψ = 0 in Eq. E.42 results in,

(nxnx)TT =
1

2
(1− cos2 θ)

(
2 cos2 φ− 1

)
. (E.43)
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An alternative proof of property (4.16)

It is worth to clarify that in the usual treatment for the Fourier transform, property
(4.16) is usually proven by applying integration by parts and it follows after assuming
that

lim
t→±∞

g(t)→ 0 . (E.44)

However, in the case for gravitational memory, we can not make this assumption as
by definition of memory,

lim
t→±∞

h(t)→ hfinal . (E.45)

Here we want to provide a proof for the given property that does not rely on the
vanishing of the boundary term, but only assumes the existence (finiteness) of the
Fourier transform for the function under consideration.

We want to compute ˜̇g(f). By using the rigorous definition of the derivative, we
can write,

˜̇g(f) = F
Å

lim
δ→0

g(t+ δ)− g(t)

δ

ã
(E.46)

where for notation’s convenience we have denote the Fourier transform as F . Assum-
ing the existence of the Fourier transform, and henceforth its inverse, we have,

˜̇g(f) = F
Ç

lim
δ→0

∫ ∞
−∞

e−2πiδf ′ − 1

δ
e−2πif ′tg̃(f ′)df ′

å
= F

Å∫ ∞
−∞
−2πif ′e−2πif ′tg̃(f ′)df ′

ã
(E.47)

=

∫ ∞
−∞

e2πift

Å∫ ∞
−∞
−2πif ′e−2πif ′tg̃(f ′)df ′

ã
dt ,

In the last line we have used the definition of Fourier transform. Due again to the
existence of the Fourier transform of g(t) (and it’s inverse), we can commute the
integrations, obtaining,

˜̇g(f) =

∫ ∞
−∞

δ(f − f ′)(−2π)if ′g̃(f ′)df ′ = −2πif g̃(f) . (E.48)

We are unaware of this treatment in the literature.
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Figure F.1: The neutrino luminosity and anisotropy parameter for the NSFC and
BHFC models.

Neutrino luminosity and anisotropy for NSFC and BHFC

The two different models considered in chapter 5 are - neutron star forming col-
lapses (NSFCs) an black hole forming collapses (BHFCs). The characteristic strain
for the two cases is plotted in Fig. 5.3. In this section of the appendix we show the
corresponding neutrino luminosity (Lν(t)) and anisotropy (α(t)) considered for the
two cases. Fig. F.1 shows the relevant information.

The two models are based on the phenomenological models described in Sec. 4.3.1.
In particular, the NSFC is based on the Ac3G model and the BHFC is based on the
LAc3G model. In both cases we only consider a non-zero anisotropy only in the
accretion phase. For the NSFC, we model the neutrino luminosity in the accretion
phase using a decaying exponential. The anisotropy parameter consists of three-
Gaussian bumps. In case of the BHFC, the neutrino luminosity in the accretion
phase is modeled using a constant. The anisotropy parameter is broader that is lasts
for a longer duration and is modeled using three-Gaussians combined together.

Detection probability for GW detectors

The detection of event signals at a detector is a probabilistic phenomenon. Hence,
it is important to quantify the probability that the detector sees or misses a signal
given the background noise. We will talk about the probability of detection for GW
detectors in this section.

We follow the procedure outlined in Jaranowski and Krolak (1999); Jaranowski
et al. (1998); Jaranowski and Krolak (2000); Astone et al. (2002); Jaranowski and
Krolak (2005) to calculate the probability of detection and false alarm probabilities
for the GW detectors. From the maximum likelihood principle, one can derive the
detection statistics for the signal and calculate the probability density function for the
statistics. This requires performing a χ2-analysis on the signal. This way, the signal
and the background noise is both taken into account and the probability that the
detector sees a signal is quantified. A well-known fact about χ2-analysis is that the
number of independent degrees of freedom (DOF1) being considered for the analysis

1In this context, DOF alwyas refers to the independent χ2 DOFs and not the degrees of freedom

349



-10 -5 0 5 10

-1.0

-0.5

0.0

0.5

1.0

x
y

Figure F.2: Example of signal and corresponding prediction from theoretical models
to illustrate the significance of χ2 DOFs.

becomes an important factor. In general, one is allowed to choose as many DOFs as
one wants till the time it is physically motivated and independent. Once the signal
is detected, different DOFs of the model can be estimated based on the predictions
from the physical model.

Let us think of an example to make this aspect clear: say we have a signal in the
detector which is given by the blue line in Fig. F.2. We can choose a model (Model
A) that predicts the signal as y = α1 sin (x). We perform a χ2-distribution and derive
that we have 2 independent DOFs. One can simply estimate the 2 DOFs given the
signal. We show it as the red line in Fig. F.2. The fit is good and hence the physical
model we use is a possible explanation of the signal/phenomena with parameters
estimated from the signal. Now imagine, we have a second model (Model B) which
predicts y = α1 sin (x) +α2 cos (βx) and a χ2-analysis gives 3 DOFs for this case. We
can again estimate the 3 DOFs by using the observed signal. This fit will also be
good and the model will also be a probable explanation of the phenomenon with the
corresponding estimated parameters. The parameters estimated from Model A and
B would be different and so would be the results, but both the models are equally
good.

The probability distribution function when the signal is absent is given by Jara-
nowski and Krolak (2000) (See Eq. 27),

p0(F) =
Fn/2−1

(n/2− 1)!
exp

(
−F

)
. (F.1)

The corresponding normalized probability distribution function when the signal is
present is given by Jaranowski and Krolak (2000) (See Eq. 28),

p1(ρ,F) =
1

N

(2F)(n/2−1)/2

ρ(n/2−1)
In/2−1(ρ

√
2F) exp

(
−F − 1

2
ρ2

)
,

N =

∫ ∞
0

(2F)(n/2−1)/2

ρ(n/2−1)
In/2−1(ρ

√
2F) exp

(
−F − 1

2
ρ2

)
dF = exp(ρ2) ,

(F.2)

(or parameters) in the model itself.
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Figure F.3: The probability distribution functions versus F when the signal is
absent (F.1) (Dashed lines) and when the signal is present (F.2) (Solid lines) for 3
DOFs (Red) and 10 DOFs (Blue) respectively. The corresponding F0 is shown for
each case in the vertical dotted lines, where the significance level α is chosen to be
0.1. The SNR, ρ = 3.

where, N is the normalization factor such that
∫∞

0
p1(ρ,F) dF = 1, n is the number

of DOFs, In/2−1 is the modified Bessel function of the first kind and order n/2−1. ρ
is the non-centrality parameter which for our case is the signal-to-noise ratio (SNR) as
defined in (5.2). F is the reduced log likelihood function. The false alarm probability
is defined as the probablility that F exceeds a certain threshold F0 when there is no
signal.

PF (F0) =

∫ ∞
F0

p0(F)dF . (F.3)

So in principle, the signal detection problem is basically a statistical hypothesis testing
problem. The null hypothesis is that the signal is absent from the data and the
alternative hypothesis is that the signal is present. The test statistics is the functional
F . This leads to the question how does one obtain F0. In order to do that, we need
to fix a significance level α (different from the α defined in (4.28)). F0 is obtained
by solving the equation for a given α, α = PF (F0). The confidence level is defined as
1 − α. The probability of detection is defined as the probability that F exceeds the
threshold F0 when the SNR is ρ,

PD(ρ,F0) =
1

N

∫ ∞
F0

p1(ρ,F) dF . (F.4)

In Fig. F.3 we show the probability distribution functions versus F when the signal
is absent and when the signal is present. The corresponding F0 is calculated using
α = PF (F0) and plotted with dotted lines. The probability of false alarm (shown in
Fig. F.4, Dashed lines) is the area under the dashed curves from F0 to ∞. Similarly,
the probability of detection is the area under the solid curves in Fig. F.3 for F going
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Figure F.4: The probability of false alarm (PF ) (F.3) (Dashed lines) and the nor-
malized probability of detection (F.4) (PD) (Solid lines) versus the SNR (ρ) (5.2) for
3 DOFs (Red) and 10 DOFs (Blue) respectively. The significance level α is chosen to
be 0.1.

from F0 to ∞. We show the probability of detection for the two DOFs as solid lines
in Fig. F.4. An important feature to note in Fig. F.4 is, given a confidence level α
the probability of false alarm is constant when the SNR is varied. At low SNRs, i.e.,
when the signal is comparable to the noise the probability of detection is equal to the
probability of false alarm. Another important feature is, at high SNRs the probability
of detection is equal to 1 and independent of the SNR. We do see that at low SNRs
there is a difference in the value of PD depending on the choice of DOFs. But as
discussed previously, this difference is expected and should not be a cause of concern
since changing the DOFs is equivalent to looking at a different model and hence the
results are subject to change. To further solidify our understanding regarding this,
in Fig. F.5 we show a density plot of probability of detection with SNR and DOFs.
It is evident right away that above a SNR of ∼ 6, PD becomes independent of both
the SNR and DOFs.

In this work, we choose to be conservative and thus we will restrict our probability
of detection to 50% at 90% confidence level. We choose the DOFs n = 3 corresponding
to the 3-Gaussians we use in the NSFC and BHFC models (more details about this
in Sec. F). Then the restricted probability of detection (Pdet) becomes,

Pdet(r) =

®
PD(ρ(r),F0), for PD ≥ 0.5

0, otherwise
. (F.5)

The restricted detection probability also ensures that we are well above the proba-
bility of false alarm. Thus any signal event that is detected is extremely likely to be
a true event. The restricted probability also puts a distance cut - the GW detector
would be sensitive upto a certain distance where Pdet ≥ 0.5 and then would not see
anything beyond that distance. It is important to note here that the improvement we
suggest to DECIGO in the form of DECIGO+, may seem arbitrary but is actually a
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Figure F.5: The density plot of probability of detection (PD) with varying SNR (ρ)
and DOFs. We choose the significance level α = 0.1.

motivated choice. We choose the noise (hn(f)) of DECIGO+ such that for the BHFC
model, DECIGO+ has Pdet ≈ 0.5 at r ∼ 350 Mpc. Hence, the upper limit on dis-
tances considered in this work ∼ 350 Mpc. This helps in two ways - a) the distances
are small enough such that redshift z ∼ 02 and b) the background for large distances
is huge since the RCCSN increases as a power-law with distance. Thus, limiting to
r ∼ 350 Mpc seems a reasonable assumption.

Triggered versus untriggered backgrounds

This section provides some additional information on the various neutrino detector
backgrounds. Fig. F.6 shows the main background event rates in Hyper Kamiokande
(Hyper-K) from various sources (see Sec. 1.6 for details on different neutrino sources)
in the units of per MeV per year per kiloton for the cases when no Gadolinium (Gd) is
present (left) and when Gd is present (right). As expected, the addition of Gd reduces
the background and also reduces the threshold energy. This is evident from Fig. F.7
where we show the total background per MeV per year per kiloton for the cases of
without (solid black line) and with (dashed blue line) Gd. For Hyper-K without Gd
the threshold energy of the detector is ∼ 18 MeV, whereas, when Gd is added the
threshold is ∼ 10 MeV.

The total background rate in a detector like Hyper-K is λ = 1313 events/year.
The number of background events that a megaton-scale detector will accumulate

2z = 0.08 for a distance of 350 Mpc.
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Figure F.6: The main background event rates in Hyper Kamiokande from various
sources per MeV per year per kiloton.Left: When Gadolinium (Gd) is not present.
Right: When Gd is added.

Figure F.7: Total background event rates in Hyper Kamiokande from various sources
per MeV per year per kiloton for the case when no Gd is present (solid black line)
and when Gd is present (blue dashed line).

in 30 years is shown in Fig. F.8 as a green dashed line. This is what we call the
untriggered background, that is, the background in the absence of triggers or time
windows for analyzing the neutrino detector data. But when we perform a triggered
search, the background level is reduced by a factor εbckg=N

trig
SN (D)∆t/∆T compared

to the untriggered search. This is shown in Fig. F.8 as the solid brown line. A
remarkable thing about triggered searches as evident from the plot is, for distances
below ∼ 50 Mpc the triggered search allows to get rid of background events. However,
as we move further in distance, the number of supernovae go up, leading to a rapid
increase in the number of time windows. This leads to an increase in the background.
This is because the longer the total duration of time-windows is, the more background
events are present. We considered distances ∼ 350 Mpc, for which the triggered and
untriggered backgrounds differ by O(2). This gives another good reason to put an
upper bound on the distance sensitivity of the gravitational wave detectors.
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megaton in 30 years.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

PFA

P
de
t

DECIGO+
DECIGO

NSFC Model

Significane 
level = 0.1

D = 30 MpcD = 20 Mpc

D = 10 Mpc

D = 2.5 Mpc

D = 3.5 MpcD 
= 

1.
5 

M
pc

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

PFA

P
de
t

DECIGO+
DECIGO

BHFC Model

Significane 
level = 0.1

D = 300 Mpc
D = 200 Mpc

D = 100 Mpc

D = 18 Mpc

D = 25 Mpc

D
 =

 1
2 

M
pc

Figure F.9: Receiver Operating Characteristic curves for DECIGO (blue) and DE-
CIGO+ (red) for the NSFC (left) and BHFC (right) models. The significance level
is shown by a black dashed line.

Receiver Operating Characteristic curves(ROC)

The parametric plot of the probability of detection versus probability of false
alarm with optimal signal to noise ratio as a parameter is called the receiver operating
characteristic (ROC) (Jaranowski and Krolak, 2000). Fig. F.9 shows the ROC curves
for DECIGO and DECIGO+, for the NSFC (left) and BHFC (right) models. We do
not go into the details of the ROC curves, it can be found in Jaranowski and Krolak
(2000). Information can be read off from the ROC curve in this way that: we first
choose a SNR for a given detector, which depends on the distance. Corresponding
to the SNR (or distance) we draw the ROC curve. We then decide on a false alarm
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probability (or significance level3). This is the vertical dashed black line shown in the
two figures. The point of intersection of this vertical line with one of the ROC curves
gives the probability of detection at that particular distance for the detector.

3Confidence Level = 1- Signifiance Level.

356



APPENDIX G

SOME ADDITIONAL DETAILS FOR KINK-ANTIKINK COLLISIONS IN THE
QUANTUM VACUUM
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Structure of the radiation bursts

We provide a detailed look at the spatial form of the radiation burst that is
generated during the first kink-antikink collision. In order to get a “clean” signal,
we restrict the present analysis to the case where back-reaction of the ψ field on the
φ background is neglected. This is an increasingly good approximation for smaller
values of λ.

Fig. G.1 shows the resulting radiation bursts, where they are sufficiently far away
from the collision region. We choose to present two significantly different values for
each of the three parameters of the problem: the velocity (v = 0.1, 0.3), the ψ field
mass (µ = 0.1, 0.7) and the coupling strength (λ = 0.1, 0.9).

An immediate realization concerns the effect of changing the initial kink-antikink
velocity v. We see that the radiation waveform is almost identical for each pair
of (µ, λ) when we change the velocity. Furthermore, the energy contained in the
radiation burst is almost equal for the two curves in each panel of Fig. G.1. Hence,
our numerical results given in the main text are corroborated by Fig. G.1, showing
that the quantum radiation emitted during the kink-antikink collision essentially loses
the memory of the initial velocity.

A further observation is related to the amplitude and shape of the renormalized

energy density ρ
(R)
ψ in the radiation burst in each of the four panels of Fig. G.1,

corresponding to the four different combinations of λ and µ. Each radiation burst is
seen to form a wave packet with a spectral content that is highly dependent on the
parameters. Most importantly, we see that increasing λ increases the overall energy
in ψ radiation. This is to be expected, since λ is the coupling strength between the
classical background field φ and the quantum radiation field ψ. On the contrary,
increasing µ leads to a decreased energy in the radiation burst. This can also be
qualitatively understood. As shown in Fig. 10.2, the initial ψ configuration deviates
from the trivial vacuum more for smaller values of µ. Simply put, it is easier to
excite a lighter quantum field. Finally, we see that the front of the wavepacket is at a
slightly larger distance from the origin for µ = 0.1 than for µ = 0.7. Since all panels
correspond to snapshots taken at the same time τ = 40, this translates into a larger
velocity of the radiation burst in the case of smaller ψ mass (µ), as one could have
guessed from simple kinematical arguments.

Quality of numerics

In this appendix, we discuss the quality of the numerics in our simulations. In
Fig. G.2, we illustrate the independence of the physical observables on the choice of
the temporal time step used in the simulation, dt. In Fig. G.2a we see that the total
energy is conserved to an accuracy of ∼ 0.1% over the entire time of evolution (for a
time step dt = 0.004). As expected, energy is conserved to an even better accuracy
when dividing the time step by two. However, given the trade-off in computational
time we think dt = 0.004 is sufficient for the task at hand. Our choice is further
justified by Fig. G.2b where we show the energy in φ (Eφ) computed for two values of
dt, 0.004 and 0.002. Indeed the two plots superimpose each other. Moreover, Fig. G.3
clearly shows that, at least for the physical observables that we are interested in (i.e.
Eφ), decreasing the lattice spacing a = L/N or increasing the size of the box L do
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Figure G.1: Snapshots (taken at time τ = 40) of the renormalized energy density of
the radiation bursts for different parameters in the case without backreaction. The
solid lines are for v = 0.1 and the dashed lines are for v = 0.3. ERB

v is the energy
in the radiation burst for v = 0.1 and v = 0.3. The other parameters are L = 100,
N = 500, κ→ 0, mphys = m = 1 and t0 = −100.

not sensibly change our results. In other words, our choices of parameters are good
enough and the results shown in the main text are independent of both the UV and
the IR cutoffs.
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Figure G.2: (a) Time evolution of the total energy (10.38) for dt = a/50 = 0.004 and
dt = a/100 = 0.002. (b) Time evolution of the energy in φ (Eφ) for dt = a/50 = 0.004
(solid blue) and dt = a/100 = 0.002 (dashed red). The parameters are L = 100,
N = 500, v = 0.1, µ = 0.1, λ = 0.3 and mphys = 1, κ = 1 and t0 = −100.
The collision happens at t = 0. Recall that a = L/N . These plots illustrate the
independence of our results on the choice of time step.
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Figure G.3: Time evolution of the energy in φ (Eφ) for different values of L and
N . The parameters are v = 0.1, µ = 0.1, λ = 0.3 and mphys = 1, κ = 1 and t0 = −50.
The collision happens at t = 0. Recall that a = L/N and we have chosen dt = a/50.
This illustrates the independence of our results on the lattice spacing a and on the
size of the box L.
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