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ABSTRACT  

Advancements in high-throughput biotechnologies have generated large-scale 

multi-omics datasets encompassing diverse dimensions such as genomics, epigenomics, 

transcriptomics, proteomics, metabolomics, metagenomics, and phenomics. Traditionally, 

statistical and machine learning-based approaches utilize single-omic data sources to 

uncover molecular signatures, dissect complicated cellular mechanisms, and predict 

clinical results. However, to capture the multifaceted pathological mechanisms, 

integrative multi-omics analysis is needed that can provide a comprehensive picture of 

the disease. Here, I present three novel approaches to multi-omics integrative analysis. I 

introduce a single-cell integrative clustering method, which leverages multi-omics to 

enhance the resolution of cell subpopulations. Applied to a Cellular Indexing of 

Transcriptomes and Epitopes (CITE-Seq) dataset from human Acute Myeloid Lymphoma 

(AML) and control samples, this approach unveiled nuanced cell populations that 

otherwise remain elusive. I then shift the focus to a computational framework to discover 

transcriptional regulatory trios in which a transcription factor binds to a regulatory 

element harboring a genetic variant and subsequently differentially regulates the 

transcription level of a target gene. Applied to whole-exome, whole-genome, and 

transcriptome data of multiple myeloma samples, this approach discovered synergetic 

cis-acting and trans-acting regulatory elements associated with tumorigenesis.   
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The next part of this work introduces a novel methodology that leverages the 

transcriptome and surface protein data at the single-cell level produced by CITE-Seq to 

model the intracellular protein trafficking process. Applied to COVID-19 samples, this 

approach revealed dysregulated protein trafficking associated with the severity of the 

infection.  
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CHAPTER 1 

INTRODUCTION 

In recent years, high-throughput technologies have enabled the generation of 

extensive datasets spanning various omics domains, including genomics, epigenomics, 

transcriptomics, proteomics, metabolomics, metagenomics, and phenomics. This "multi-

omics revolution" has significantly expanded our understanding of biological systems, 

offering comprehensive insights into various molecular layers. Advanced computational 

methods for integrative multi-omics data analysis are instrumental to harnessing the 

power of the multi-omics data that helps uncover hidden connections and elucidate 

complex mechanisms. However, many computational models are developed based on 

black box algorithms, which hinders the efficient translation of computational results to 

biologically meaningful discoveries. Interpretable computational models are promising 

approaches to address this knowledge gap. 

1.1 Overview of Omics Data Layers 

Genomics, epigenomics, transcriptomics, and proteomics are the fundamental 

pillars of multi-omics studies, each offering unique insights into the intricate world of 

genetic and molecular processes (Reel et al., 2021). Genomics, dedicated to deciphering 

the complete DNA sequence of an organism, reveals the genetic blueprint of a cell, 

encompassing genetic codes, structural variations, and mutations that underlie diverse 

biological phenomena (Primer of Human Genetics | Wageningen University and 

Research Library Catalog, n.d.).  

https://www.zotero.org/google-docs/?w6AWzV
https://www.zotero.org/google-docs/?OAggLh
https://www.zotero.org/google-docs/?OAggLh
https://www.zotero.org/google-docs/?OAggLh
https://www.zotero.org/google-docs/?OAggLh
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The rapid advancement of Next-generation sequencing (NGS) techniques has 

brought about a paradigm shift in DNA sequencing. It now permits the concurrent 

analysis of numerous genes and the detection of millions of genetic variants, all 

accomplished with remarkable efficiency (Pervez et al., 2022). This transformative 

technology has broadened the horizons of genomics research, with applications such as 

Whole-Genome Sequencing (WGS) offering a comprehensive view of an individual's 

entire DNA sequence, Whole-Exome Sequencing (WES) targeting protein-coding 

regions, and Targeted Sequencing focusing on specific gene regions. These applications 

find utility across diverse fields, from cancer research to population genetics and the 

discovery of novel genome assemblies (Satam et al., 2023). 

While genomics examines the entirety of the genome, epigenomics delves into the 

alterations made to the chromatic regions through processes like DNA methylation and 

histone modification, all without inducing changes to the underlying DNA sequence 

(Epigenomics | Learn Science at Scitable, n.d.). Advanced epigenome sequencing 

techniques like Chromatin Immunoprecipitation Sequencing (ChIP-seq) and Assay for 

Transposase-Accessible Chromatin with High-Throughput Sequencing (ATAC-seq) have 

empowered researchers to explore chromatin states and associated transcription factors, 

shedding light on their critical roles in numerous diseases (S. Ma & Zhang, 2020).  

In the realm of transcriptomics, the focus shifts to RNA, encompassing aspects of 

transcription, expression levels, functions, cellular locations, trafficking, and degradation 

(Skerrett-Byrne Anthony et al., 2023). Transcriptomics has seen remarkable evolution, 

ushering in various technologies designed to deduce and quantify the transcriptome. 

https://www.zotero.org/google-docs/?RHR3f3
https://www.zotero.org/google-docs/?EBNIdi
https://www.zotero.org/google-docs/?rFUDtB
https://www.zotero.org/google-docs/?rFUDtB
https://www.zotero.org/google-docs/?rFUDtB
https://www.zotero.org/google-docs/?hyy9eq
https://www.zotero.org/google-docs/?CLEZn6
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Prominent among these are transcript profiling techniques using Microarrays and direct 

sequencing via RNA-Seq, which have become powerful methods, providing researchers 

with profound insights into the intricate landscape of RNA and its role in the cell (Zhao et 

al., 2014) (Z. Wang et al., 2009). 

Proteomics, in contrast, represents a comprehensive evaluation of proteins, 

encompassing their structure, functions, interactions, and dynamic cellular activities. 

Given the dynamic nature of protein expression, influenced by time and environmental 

factors, proteomics presents an inherent complexity beyond that of genomics or 

transcriptomics. Proteomics methodologies have advanced from conventional techniques 

like immunohistochemistry (IHC) staining, western blotting, and enzyme-linked 

immunosorbent assay (ELISA) to high-throughput approaches such as tissue microarray 

(TMA), protein pathway arrays, and mass spectrometry (Cui et al., 2022). These evolving 

methods empower researchers to investigate and understand protein-related processes in 

diverse biological contexts, further enriching our comprehension of complex molecular 

mechanisms. 

Although metabolomics, lipidomics, and glycomics are typically not part of the 

central dogma analysis, they provide valuable insights into the intermediate products, 

such as metabolites, lipids, and glycans, synthesized by the proteome via biosynthetic 

pathways, serving as excellent indicators of a cell's activity (Barh et al., 2016). 

While omics studies on bulk cell populations offer a holistic perspective of the 

genetic and transcriptomic landscape across diverse cell types and tissues, they must be 

revised when scrutinizing less understood or rare cell populations. The advent of single-

cell sequencing holds promises in mitigating these challenges. Single-cell RNA 

https://www.zotero.org/google-docs/?KGS1JU
https://www.zotero.org/google-docs/?KGS1JU
https://www.zotero.org/google-docs/?o7r8vg
https://www.zotero.org/google-docs/?qWVJVp
https://www.zotero.org/google-docs/?RhWxUj


 

4 

sequencing (scRNA-seq), an advanced next-generation sequencing technology, sets itself 

apart from conventional bulk RNA sequencing by unveiling the distinct gene expression 

profiles, consequently exposing cellular composition and characteristics variations. This 

transformative approach is particularly adept at revealing rare cell populations, often 

obscured by bulk RNA-seq methods, as seen in cancer tissues (G. Deng et al., 2023). In a 

specific study harnessing the capabilities of single-cell RNA sequencing (scRNA-seq), 

researchers successfully identified five unique subgroups within gastric cancer, each 

distinguished by their exclusive expression profiles (M. Zhang et al., 2021). 

Moreover, single-cell genome sequencing enables the discovery of new germline 

mutations and somatic mutations in healthy and cancerous cells (Sun et al., 2022). 

Additionally, single-cell technologies for studying epigenomics, such as single-cell 

ATAC-Seq (scATAC) and single-cell ChIP-Seq, contribute to an enhanced understanding 

of the epigenetic intricacies at a single-cell level. This multifaceted approach to single-

cell epigenomics has uncovered cell-type-specific changes in chromatin accessibility 

within distinct heterochromatin domains in aging mice, elucidating the ramifications of 

heterochromatin loss in mammalian aging (Y. Zhang et al., 2022). In a distinct study, the 

combination of single-cell mass cytometry (CyTOF) and single-cell proteomics 

facilitated an extensive examination of white adipose tissue (WAT) during both 

homeostasis and dietary interventions, revealing a dynamic array of macrophage 

subpopulations with diverse developmental origins and functional roles. This illuminates 

the intricate interplay between environmental cues and the malleability of resident WAT 

macrophages (Félix et al., 2021). 

https://www.zotero.org/google-docs/?PcsE1i
https://www.zotero.org/google-docs/?mOPccD
https://www.zotero.org/google-docs/?zcBCPq
https://www.zotero.org/google-docs/?uh6KMj
https://www.zotero.org/google-docs/?O9q0q8
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While single-cell single-omic technologies have significantly advanced our 

understanding of cellular processes, multi-omics sequencing techniques open a new era 

of integrative analysis techniques like CITE-Seq (Cellular Indexing of Transcriptomes 

and Epitopes by Sequencing) (Stoeckius et al., 2017) and REAP-Seq (RNA Expression 

and Protein Sequencing) (Peterson et al., 2017) combine RNA-Seq with protein level 

information, offering comprehensive insights into both gene expression and protein 

profiles at the single-cell level. Techniques like Genome and Transcriptome sequencing 

(G&T-seq) (Macaulay et al., 2015) and gDNA–mRNA sequencing (DR-seq) (Dey et al., 

2015) allow the concurrent exploration of both genome and transcriptome, shedding light 

on the transcriptional dynamics of our genetic material. Further expanding the horizon, 

scM&T-seq provides epigenome-transcriptome correlation for unraveling the diverse 

expression patterns originating from identical DNA sequences across distinct cells. These 

variations, driven by factors like DNA methylation, DNA accessibility, and histone 

modifications, are meticulously deciphered by scM&T-seq, shedding light on the intricate 

regulatory mechanisms that govern cellular diversity (Angermueller et al., 2016).  

Finally, the assay for transposase-accessible chromatin sequencing (ATAC-seq) is a 

single-cell multi-omics technology that identifies genomic regions displaying open 

chromatin states closely linked with transcriptional activity. This technology effectively 

couples epigenomic information with transcriptomics (Buenrostro et al., 2013). This 

expanding array of multi-omics sequencing technologies equips researchers with an 

extensive layer of data, enabling them to conduct integrative analyses for exploring 

orchestration of cellular processes in unprecedented depth and detail. 

https://www.zotero.org/google-docs/?o7SAWr
https://www.zotero.org/google-docs/?yuZpFX
https://www.zotero.org/google-docs/?VSbUdR
https://www.zotero.org/google-docs/?vVtqI6
https://www.zotero.org/google-docs/?vVtqI6
https://www.zotero.org/google-docs/?Zt6cmy
https://www.zotero.org/google-docs/?o3CMSN
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1.2 Integrative Analysis of Multi-Omics Data 

The complexity of biological systems demands a comprehensive approach that 

combines different omes rather than just confining to single data types. Multi-omics 

integration has emerged as a crucial paradigm in data analysis in both bulk and single-cell 

data analysis. Single-level omics approaches often need more resolving power to 

establish transparent causal relationships between specific molecular alterations and the 

resulting phenotypic manifestations. Analyzing multi-omics data enhances the 

categorization of samples into biologically relevant groups, deepens our comprehension 

of prognostic and predictive traits, reveals cellular responses to treatments, and aids 

translational research through integrative models. For example, in a study conducted by 

Pradeep et al., the integration of transcriptomic and proteomic data unveiled molecular 

signatures associated with Alzheimer’s disease (Kodam et al., 2023).  

  Figure 1.1: Layers of multi-omics integration 

https://www.zotero.org/google-docs/?v5x8ab
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A deep learning-based model leveraging RNA sequencing, miRNA sequencing, and 

methylation data from The Cancer Genome Atlas (TCGA) effectively identifies robust 

survival subgroups of hepatocellular carcinoma (HCC) for improving HCC prognosis 

prediction (Chaudhary et al., 2018). Recent advances in single-cell multi-omics analysis, 

exemplified by innovative tools like Seurat's multimodal clustering, have demonstrated 

the power of integrating multiple omics layers to improve the resolution and accuracy of 

clustering biological samples, enabling the discovery of subtle yet biologically significant 

subpopulations. 

1.2.1 Challenges in Multi-Omics Integration 

The integration of multi-omics data, despite the expanding availability of omic 

datasets and analytical tools, continues to be challenging. Several factors contribute to 

this complexity. Firstly, the design of multi-omics studies can be intricate, as it requires 

careful consideration of which data types to combine, appropriate analytical 

methodologies, and the harmonization of data from diverse sources. Secondly, noise in 

the data, stemming from technical variability and experimental conditions, poses a 

significant hurdle. The challenge lies in distinguishing accurate biological signals from 

noise to extract meaningful insights. Furthermore, data interoperability is a crucial aspect 

of multi-omics integration. Different data types generated using various platforms and 

technologies may not readily align or be directly comparable. Data preprocessing and 

transformation are often necessary to ensure compatibility, which can be complex and 

time-consuming. Just as the curse of dimensionality presents a central challenge in 

single-omic studies, its impact is notably exacerbated in the realm of multi-omics 

https://www.zotero.org/google-docs/?AA6GDS
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research. In multi-omics, the sheer quantity of measured variables significantly escalates, 

necessitating advanced dimensionality reduction techniques to navigate this complexity 

effectively (Wörheide et al., 2021). Lastly, there is the issue of varying definitions and 

scopes of what constitutes a multi-omics study. The field is evolving rapidly, and 

different researchers may have distinct criteria for what they consider multi-omics, 

further adding to the challenges of harmonizing and comparing studies in this space. 

1.2.2 Approaches to Multi-Omics Integration 

Integration methodologies are crucial in understanding the intricate relationships 

between various omic datasets. In recent years, a diverse array of multi-omics integration 

methods has emerged, employing various mathematical, statistical, and computational 

techniques. These strategies involve merging individual omic datasets, either sequentially 

or simultaneously, to unveil the complex interactions within the biological system (I. 

Subramanian et al., 2020) (Yan et al., 2018). 

Sequential integration strategies adopt a step-wise approach, where omic datasets 

are initially analyzed individually or in specific combinations, followed by the integration 

of their findings in subsequent stages. This sequential integration method allows for 

comprehensive data analysis, even in cases where omic measurements for the same 

samples are unavailable. It is particularly suitable for bulk datasets, as demonstrated by a 

previous study that successfully integrated ATAC-seq and RNA-seq data to identify 

critical genes and regulatory pathways associated with the neuroprotection of S-

adenosylmethionine (SAM) against perioperative neurocognitive disorder (PND) (Xu et 

al., 2023).  

https://www.zotero.org/google-docs/?tBfj4L
https://www.zotero.org/google-docs/?Sg58ol
https://www.zotero.org/google-docs/?Sg58ol
https://www.zotero.org/google-docs/?VaLxTj
https://www.zotero.org/google-docs/?coCJld
https://www.zotero.org/google-docs/?coCJld
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In this study, initial analysis focused on differential gene expression using RNA-seq, and 

later, chromatin accessibility and transcription factor binding information from ATAC-

seq were incorporated to uncover epigenetic regulatory defects contributing to the 

aberrant expression of identified differential genes. 

 

In contrast to sequential integration, simultaneous integration involves the parallel 

integration of multiple omic layers, allowing the analysis of all available omic data at 

once within a single modeling step. While this approach requires that data originate from 

the same biological samples or individuals, it is a potent method for deriving valuable 

insights into cellular functions by capturing the interplay between different omic datasets. 

When appropriately applied, this versatile approach can provide a holistic understanding 

of complex biological processes. These integration methods can be broadly categorized 

Figure 1. 2: Approaches for multi-omics integration (Reel et al., 2021)  
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into concatenation, model-based, and transformation-based approaches (Fig 1.2) (Reel et 

al., 2021).  

Concatenation-based integration methods involve the direct merging of data 

matrices from individual omics domains, such as genomics, proteomics, and 

metabolomics, creating a comprehensive multi-omics dataset without prior data 

preprocessing. This integrated multi-omics data is then harnessed as input for various 

machine-learning techniques for predictive modeling. For example, in a study focusing 

on ovarian cancer patients, multiple genomic data types (mRNA, DNA methylation, 

DNA copy-number alteration, and microRNA) from The Cancer Genome Atlas (TCGA) 

were harmoniously integrated using a multivariate Cox Lasso model. This integration led 

to the discovery of a robust prognostic signature for predicting progression-free survival 

(PFS) in these patients, underscoring the substantial potential of multi-omics integration 

in clinical prognosis for this challenging disease (Mankoo et al., 2011). Concatenation-

based integration can also incorporate unsupervised methods, as demonstrated in a study 

on muscle-invasive bladder cancer (MIBC). Researchers employed iClusterBayes, a fully 

Bayesian latent variable method, as an example of unsupervised concatenation-based 

integration. This approach was pivotal in uncovering intrinsic MIBC subtypes and 

identifying biomarkers with significant prognostic value, ultimately enhancing patient 

stratification for frontline therapeutic strategies (Mo et al., 2020).  

Model-based integration methods involve a multi-stage process where individual 

models are first developed for different omics data types, and then these models are 

https://www.zotero.org/google-docs/?xTE6IT
https://www.zotero.org/google-docs/?xTE6IT
https://www.zotero.org/google-docs/?CXawLH
https://www.zotero.org/google-docs/?8rrQOC
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combined into a joint model, allowing for the integration of heterogeneous data sources 

from different patient groups with the same disease information.  

Model-based integration methods can further be categorized as either supervised or 

unsupervised, depending on the nature of the analysis and the availability of labeled 

phenotypic or clinical information. As an illustrative example, MOSAE (Multi-omics 

Supervised Autoencoder) employs autoencoders designed for each omics data type to 

generate data-specific representations. These individual representations are subsequently 

merged into a consolidated representation, which is harnessed for predictive modeling. 

This method was applied to the TCGA Pan-Cancer dataset, effectively predicting four 

distinct clinical outcome endpoints (Tan et al., 2020). 

Finally, transformation-based integration methods begin by converting individual 

omics datasets into graphs or kernel matrices, which are then combined to create a 

unified representation capturing the relationships between diverse omics data. The 

versatility of these methods is a significant advantage, allowing them to integrate various 

omics types effectively, making them valuable for comprehensive multi-omics analysis. 

Many supervised learning methods in the transformation-based category rely on kernel 

and graph-based algorithms. For instance, the fMKL-DR (fast multiple kernel learning 

for dimensionality reduction) method, as developed by Giang et al., employs kernel 

matrix transformation and a support vector machine (SVM) classifier to stratify samples 

effectively (Giang et al., 2020). The fMKL-DR method demonstrated significant success 

in classifying multiple cancer types, such as lung cancer, GBM, breast cancer, OV 

cancer, liver cancer, and kidney cancer. Additionally, its application to Alzheimer's 

https://www.zotero.org/google-docs/?2g1Mly
https://www.zotero.org/google-docs/?wvNyPu
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disease (AD) patients showed the potential to stratify patients based on different disease 

phases, promising early diagnosis and effective treatment monitoring, especially in the 

later stages of AD. Weighted-nearest neighbor (WNN) method is an example for 

transformation-based unsupervised algorithms that effectively integrate multiple data 

types within single cells. Modality weights based on the relative importance of each ome 

are learned and combined to construct a WNN graph, thus providing a single 

representation of multimodal datasets while preserving the richness of both data types 

(Hao et al., 2021). Applying WNN analysis to a CITE-Seq dataset of cord blood 

mononuclear cells, which involves the joint integration of RNA and protein modalities, 

effectively segregated CD4+ T cells from CD8+ T cells, while separate analyses of each 

modality failed to achieve this level of distinction. 

1.3 Integrating Prior Knowledge 

Knowledge-driven multi-omics integration leverages existing knowledge or prior 

biological insights to enhance the analysis of multi-omics datasets for gaining a deeper 

understanding of complex biological systems. In single-cell clustering analysis, 

dimensionality reduction is essential due to high dimensionality and noise. Traditional 

methods like Principal Component Analysis (PCA) and non-linear techniques like t-SNE 

and UMAP offer different approaches, but each has limitations in terms of complexity 

and interpretability. In single-cell data analysis, dimensionality reduction is essential due 

to high dimensionality and noise. Traditional methods like Principal Component Analysis 

(PCA) and non-linear techniques like t-SNE and UMAP offer different approaches, but 

each has limitations in terms of complexity and interpretability. A supervised neural 

https://www.zotero.org/google-docs/?8hIpb3
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network algorithm incorporating prior biological knowledge from the protein-protein 

interaction (PPI) network for reducing dimensionality in single-cell RNA-seq data is 

being proposed (Gundogdu et al., 2022). 

Correlation-based network construction, which relies on pairwise correlations and 

multiple testing corrections, faces notable challenges when dealing with larger sample 

sizes. As the sample size increases, weaker correlations become statistically significant, 

leading to denser networks. Additionally, the choice of multiple testing methods and 

significance levels can result in substantially different networks, even though they all 

meet statistical criteria, potentially obscuring the identification of biologically relevant 

relationships. A new approach to correlation-based network inference is introduced, 

shifting the focus from statistical cutoffs to the selection of a correlation threshold that 

maximizes agreement with a predefined biological reference (Benedetti et al., 2020). This 

method aims to identify networks with the highest concordance with known biological 

information, eliminating the need for arbitrary p-value cutoffs and incorporating prior 

knowledge as a guiding principle. The approach is shown to be applicable to 

metabolomics and transcriptomics data, even when only partial prior knowledge is 

accessible. While single-omic data analysis has seen notable strides in integrating prior 

biological knowledge to enhance the accuracy and interpretability of results, the 

application of a similar approach in the multi-omics domain remains an area with much 

untapped potential. While the benefits of incorporating prior knowledge are widely 

recognized, it is intriguing that this methodology has not been as extensively explored in 

the context of multi-omics data analysis. 

https://www.zotero.org/google-docs/?L4Z2z2
https://www.zotero.org/google-docs/?MrVM7I
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1.4 Novel Multi-Omics Integration Methods 

While multi-omics integration holds immense promise, it also presents unique 

challenges, including data harmonization, computational complexity, and the need for 

advanced statistical methodologies. To harness the full potential of these vast multi-omics 

datasets, it is imperative to develop innovative tools and methodologies that can 

effectively extract valuable insights, paving the way for new discoveries and 

advancements in the field.  

 In this research endeavor, I introduce three innovative approaches to multi-omics 

integrative analysis, each geared towards unraveling intricate biological processes and 

shedding light on unexplored frontiers of knowledge. First, I present a novel single-cell 

integrative clustering method, INCLOSE which harnesses the power of multi-omics data 

to significantly enhance the resolution of cell subpopulations. The second chapter covers 

in detail principles and methods of the INCLOSE algorithm with its practical application 

and comparison to well established single cell clustering algorithm, Seurat. When applied 

to a CITE-Seq dataset encompassing human Acute Myeloid Lymphoma (AML) and 

control samples, the method unveils previously hidden nuances within cell populations, 

offering a fresh perspective on this challenging disease. The method proves to be a good 

enhancement for use with Seurat clustering for improving the resolution of clustering.  

In the third chapter, the focus shifts to a sophisticated computational framework 

designed to unearth transcriptional regulatory trios. A novel regression model is being 

designed and implemented aimed at exploring how transcription factors, regulatory 

elements, and genetic variants work in harmony to modulate gene expression, providing 
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essential insights into the dynamics of cellular regulation. These trios consist of a 

transcription factor binding to a regulatory element, housing a genetic variant, and 

subsequently exerting differential regulatory control over the transcription level of a 

target gene. Employing whole-exome, whole-genome, and transcriptome data from 

multiple myeloma samples, this innovative approach unveils the potential cis-acting and 

trans-acting regulatory elements associated with tumorigenesis, providing essential 

insights into the molecular mechanisms driving this disease.  

Finally, in the fourth chapter, I introduce an innovative CITE-Traffick algorithm 

leveraging the transcriptome and surface protein data at the single-cell level, obtained 

through cellular indexing of transcriptomes and epitopes via sequencing assays (CITE-

Seq). This approach dissects the intracellular trafficking of proteins, considering both cell 

type and disease context. The application of CITE-Traffick to a CITE-Seq dataset 

focused on COVID-19, reveals dysregulated protein trafficking pathways linked to the 

severity of COVID-19 infection. The markers discovered from this study consisting of 

both previously identified and novel, are being compared to benchmark markers and 

evaluated for performance, which provide better performance. These innovative 

approaches collectively mark a significant step forward in multi-omics research, offering 

new tools and perspectives to advance our understanding of complex biological 

phenomena. 
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CHAPTER 2 

INTEGRATIVE CLUSTERING OF SINGLE CELLS: INCLOSE 

2.1 Background 

Single-cell sequencing, particularly single-cell RNA-sequencing (scRNA-seq), 

has transformed our understanding of cellular diversity by enabling the clustering of cells 

based on their individual gene expression profiles. ScRNA-seq technology provides a 

high-resolution examination of transcriptomes at the single-cell level, allowing the 

detection of transcriptional variations within cell populations. scRNA-seq has been 

instrumental in unraveling cell-type heterogeneity, providing valuable insights into 

functional distinctions within seemingly homogeneous cell populations. As demonstrated 

in (Mahata et al., 2014), scRNA-seq provided a high-resolution transcriptomic analysis of 

T helper 2 (Th2) cells, uncovering extensive heterogeneity and identifying the differential 

upregulation of Cyp11a1, highlighting the cells' capacity for de novo steroid synthesis.  

Similarly, exploring gene co-expression patterns at the single-cell level has 

proven valuable in uncovering co-regulated gene modules and regulatory networks that 

distinguish cell types or samples (Haque et al., 2017). For instance, a study utilized a set 

of six co-expressed genes to categorize glioblastoma patients into distinct groups with 

significantly different survival outcomes, even though these genes were selected without 

prior knowledge of cancer biology, emphasizing the potential of single-cell gene co-

expression analysis in patient stratification and the discovery of biologically relevant 

insights (J. Wang et al., 2016). 

https://www.zotero.org/google-docs/?UwFuom
https://www.zotero.org/google-docs/?XvxeEy
https://www.zotero.org/google-docs/?EbEmLv
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2.1.1 Single-Cell RNA-Seq Clustering Methods 

With the rapid progress in sequencing techniques, diverse computational 

approaches based on data clustering have emerged to interpret and understand single-cell 

RNA-seq data. Two main popular techniques employed for clustering are K-means 

clustering and hierarchical clustering.  

K-means clustering seeks to discover a set number of cluster centers, referred to 

as centroids. Its goal is to minimize the collective sum of squared Euclidean distances 

between data points and their corresponding centroids. This scalability with the number 

of data points makes it an efficient choice for handling large datasets. Multiple clustering 

tools, such as SAIC (L. Yang et al., 2017), and RaceID (Grün et al., 2015), employ K-

means-based approaches to interpret single-cell RNA-seq data, aiming to identify 

distinctive gene subsets or rare cell types within the datasets. RaceID utilizes a K-means 

clustering method, employing a similarity matrix based on Pearson's correlation 

coefficients. It leverages the gap statistic to ascertain the ideal number of clusters, 

ultimately improving the separation and consistency of the clusters. SAIC, or Single-cell 

Analysis via Iterative Clustering, employs an iterative K-means clustering approach to 

systematically optimize a parameter space using the Davies-Bouldin index to select the 

most relevant signature genes for a given number of clusters and significance threshold. 

 

 

https://www.zotero.org/google-docs/?xAXJPV
https://www.zotero.org/google-docs/?CRNEto


 

18 

K-means clustering, while widely used, has notable drawbacks when applied to 

single-cell clustering. This greedy algorithm may fail to find the global optimum and can 

be sensitive to outliers, making it less effective in identifying rare cell types. It also 

heavily depends on the predefined number of clusters, which can influence the clustering 

results significantly. Moreover, as recent advances in scRNA-seq technologies have led 

to increasingly large datasets containing thousands to millions of cells, K-means can 

become computationally intensive and slow due to its requirement to load the entire 

dataset into memory, potentially limiting its applicability for large-scale analyses. To 

mitigate these issues, researchers often use replicates with random starting points to 

improve the chances of finding a global minimum solution. 

Hierarchical clustering employs agglomerative and divisive strategies for 

clustering by merging cells into clusters based on distance measures and recursively 

splitting clusters. This offers flexibility to identify rare cell types without requiring 

predetermined cluster numbers as in K-means. CIDR, introduced by (P. Lin et al., 2017), 

incorporates both dimension reduction and hierarchical clustering into single-cell RNA-

seq analysis, utilizing an implicit imputation process to mitigate dropout effects and 

achieving a stable estimation of pairwise cell distances. pcaReduce is an agglomerative 

clustering method that combines PCA and hierarchical clustering, aiming to link the 

reduced principal component representations to the number of discernible cell types. The 

approach capitalizes on the expectation that broad cell type information is found in low-

dimensional PCs, whereas more detailed cell type structures are represented in higher-

dimensional PCs (žurauskienė & Yau, 2016).  

https://www.zotero.org/google-docs/?Kl2GGb
https://www.zotero.org/google-docs/?j7Exw0
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However, classic hierarchical clustering algorithms are only suitable for small datasets 

due to their high computational complexity. Fast and memory-efficient scRNA-seq K-

means clustering algorithms (Baker et al., 2021) and hierarchical clustering that 

efficiently handles large-scale single-cell data by constructing dendrograms based on 

shared nearest neighbor (SNN) graphs (Zou et al., 2021) are also recently developed. 

Graph-based clustering in data analysis views a dataset’s similarities as a 

weighted graph, treating its data points as nodes and their relationships as edges, their 

weights reflecting similarity (S. Zhang et al., 2023).This method identifies clusters, often 

referred to as communities, by pinpointing groups of highly connected nodes. In the 

intricate domain of single-cell RNA sequencing (scRNA-seq) analysis, several 

approaches like Spectral clustering, Louvain, and Leiden serve as common community 

detection algorithms (Z. Liu & Barahona, 2020). Spectral clustering applies eigenvalues 

to perform dimensionality reduction of the dataset before clustering, while the Secuer 

algorithm (Wei et al., 2022) stands out for its efficiency, leveraging an anchor-based 

graph construction and a refined similarity calculation between cells and anchors. 

Conversely, Louvain and Leiden techniques focus on breaking down graphs into 

connected subgroups. These methods are employed in popular analysis tools like Seurat 

(Satija et al., 2015) and SCANPY (Wolf et al., 2018). 

 

 

https://www.zotero.org/google-docs/?lnOd0C
https://www.zotero.org/google-docs/?8owwOM
https://www.zotero.org/google-docs/?CSksEO
https://www.zotero.org/google-docs/?YH7Mvi
https://www.zotero.org/google-docs/?Ih9wp5
https://www.zotero.org/google-docs/?xfImH1
https://www.zotero.org/google-docs/?NSjfCU
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Density-based techniques such as DBSCAN (Ester et al., n.d.) pinpoint dense 

regions within data space, separated by less dense regions, contributing a different 

perspective to the clustering process. Finally, the advent of deep learning has 

significantly influenced clustering approaches. For instance, scDeepCluster (Tian et al., 

2019) is an example of a single-cell clustering method employing deep learning to learn 

feature representations and cluster cells based on this acquired insight, offering a novel 

approach to identify cellular groupings in scRNA-seq data. 

2.1.2 Integrative Clustering of Single Cells 

  In recent years, various single-cell multi-omics sequencing technologies have 

evolved providing complementary data to explore cellular heterogeneity, identify novel 

cell types, and uncover intricate regulatory networks. This includes single-cell RNA-seq 

(scRNA-seq) provides gene expression profile, Single cell Assay for Transposase-

Accessible Chromatin (scATAC-seq) provides chromatic accessibility data, Cytometry 

by Time-Of-Flight (CyTOF) employs mass spectrometry to measure multiple protein 

markers, and Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-

seq), allows simultaneous profiling of gene expression and surface protein abundance. 

The integration of these diverse omics data has further enriched the landscape of single-

cell clustering methodologies. 

Researchers have shown that manual curation of cell clusters inferred from 

CyTOF and scRNA-seq data enabled the identification of disease-specific immune cell 

subtypes and their functional states (Luo et al., 2022) (Kashima et al., 2021).  

Computational methods are also available that leverage these datasets to identify cell 

https://www.zotero.org/google-docs/?v78Ymz
https://www.zotero.org/google-docs/?dfPh3X
https://www.zotero.org/google-docs/?dfPh3X
https://www.zotero.org/google-docs/?sH9sKf
https://www.zotero.org/google-docs/?RjRC59
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populations. The commonly used Seurat package offers two ways to integrate single-cell 

multi-omics data for cell clustering. The first approach involves clustering the individual 

omics data separately and then integrating the resulting clusters (Stuart et al., 2019). The 

second approach integrates the multi-omics data while measuring cell similarities and 

then derives clusters based on these similarities (Hao et al., 2021). MAESTRO (C. Wang 

et al., 2020) , an open-source tool tailored for the integrative analysis of scRNA-seq and 

scATAC-seq datasets, employs Seurat for scRNA-seq clustering and either scABC 

(Zamanighomi et al., 2018) or latent semantic indexing (Cusanovich et al., 2018) for 

scATAC-seq clustering. It offers a specialized function for calculating gene regulatory 

potential scores to model gene activity, which is subsequently integrated with the scRNA 

gene expression profile for enhanced precision in cell type identification. 

2.1.3 Discovering Context-Specific Cell Populations 

Despite advancements in single-cell clustering and cell identification, identifying 

biologically meaningful subpopulations within complex samples remains challenging. It 

is well known that specific cell populations appear or proliferate in response to external 

stimuli or in specific disease conditions. For instance, in the context of trauma-induced 

heterotopic ossification (HO), research has elucidated how these cells react to stimuli, 

leading to the formation of abnormal bony growths and persistent chronic pain. 

Significantly, the conventional treatment approach, which involves surgical excision, 

often falls short in mitigating the enduring consequences of ectopic bone formation and 

frequently leads to recurrence  (Agarwal et al., 2017). In another study involving 

bortezomib drug, it was found that extended exposure of CD4+ T cells to this drug led to 

https://www.zotero.org/google-docs/?ktw21m
https://www.zotero.org/google-docs/?SeSQOq
https://www.zotero.org/google-docs/?ns5jk7
https://www.zotero.org/google-docs/?ns5jk7
https://www.zotero.org/google-docs/?lpjkIx
https://www.zotero.org/google-docs/?TNvkV1
https://www.zotero.org/google-docs/?O7bTvq
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the emergence of a regulatory T-cell population capable of significantly suppressing the 

proliferation of effector T cells, reducing IFN-γ production, and downregulating CD40L 

expression in activated effector T cells (Blanco et al., 2009). 

Conventional clustering techniques that examine gene markers aggregated over 

all samples may fail to detect these specialized populations as the broad cellular 

landscape may obscure the nuanced subpopulations. In such cases, the underrepresented 

or condition-specific cell populations will be merged with large or partially similar 

clusters. Studies show that condition-specific cell population expansion is distinguished 

by the upregulation of specific protein markers, and the widely accepted method for 

identifying these cell types involves employing a sequential gating strategy to assess 

protein markers. As an illustrative example, in a study focused on Waldenstrom 

macroglobulinemia (WM), the research team identified the expansion of a specific subset 

of myeloid-derived suppressor cells (MDSCs) distinguished by the expression of the 

CD66b marker, denoting them as CD66b+ MDSCs, within WM patients. Through 

advanced transcriptomic analysis, particularly using CITE-seq, the study unveiled an 

inflammatory immunosuppressive gene expression signature associated with this specific 

MDSC subset (Bhardwaj et al., 2022).  

In a separate study, Waldenstrom macroglobulinemia (WM) patients requiring 

treatment displayed increased counts of a unique myeloid-derived suppressor cell 

(MDSC) population characterized by the expression of CD163 and CD138 markers, 

signifying a substantial expansion of this specific MDSC subtype potentially linked to 

WM progression.  

https://www.zotero.org/google-docs/?RvPz15
https://www.zotero.org/google-docs/?oHCO7e
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Interestingly, traditional markers associated with monocyte-like (m-MDSC) and 

granulocyte-like (g-MDSC) MDSCs, like CD14 and CD15, were also prominently 

expressed within this cell population. This observation emphasizes the need for 

comprehensive phenotyping to distinguish MDSC subtypes (Jalali et al., 2019). 

While traditional clustering techniques have made significant strides in cell 

classification, they occasionally struggle to identify condition-specific cell populations 

accurately, especially in the presence of contextual features such as various diseases, 

treatments, and diverse ethnic groups. These factors can trigger the emergence of specific 

cell populations, resulting in the amalgamation of these subtler cell groups within larger 

or partially similar clusters. Recent methodologies often overlook the critical 

consideration of these contextual features, leading to challenges in accurately capturing 

these distinct cell populations.  

 The SEAcells algorithm is a novel approach devised to address the limitations of 

traditional clustering techniques in identifying groups of cells in unique cell states called 

metacells. This method showcases superior performance in discerning metacells from 

diverse data types like RNA and ATAC, across datasets encompassing discrete cell types 

and continuous trajectories thus helping to reveal distinct cell states linked to specific 

diseases. CellSIUS is another recent method used for uncovering rare cell populations 

within scRNA-seq data.  

 

 

https://www.zotero.org/google-docs/?KsF2SR
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This approach involves the use of cluster-specific candidate marker genes showcasing 

bimodal expression patterns within pre-clustered data. By leveraging a graph-based 

clustering algorithm, CellSIUS identifies correlated gene sets and then segregates cells 

into subgroups based on the collective expression of these identified gene sets. 

Current multi-omics integration clustering techniques like SEAcells and 

specialized tools like CellSIUS have notably improved cell subpopulation identification. 

However, there's a distinct absence of clustering techniques that effectively integrate 

contextual information into multi-omics analyses. A crucial gap remains in incorporating 

cell labels that reflect their clinical sample sources in the clustering process to discover 

condition-specific cell subpopulations. This void in integration methodologies raises an 

intriguing hypothesis: By incorporating clinical features into the cell clustering process, 

we anticipate a substantial enhancement in the accuracy of cellular clustering. This 

enhancement could provide a more precise and nuanced identification of condition-

specific cell subpopulations, thus addressing the current limitations in our cell clustering 

methodologies. 

Previously, Maneck et. al introduced a semi-supervised clustering algorithm to 

discover coexpressed gene sets using two transcriptome data sets, one with cell 

perturbation labeled and one without (Maneck et al., 2011). In this algorithm, gene-gene 

similarities computed using the data set without labels are adjusted by differential 

expression patterns extracted from the data set with labels.  

 

https://www.zotero.org/google-docs/?NpZfQp
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This helps segregate coexpressed genes with varying expression levels between different 

pathways. Enlightened by this approach, we have designed a novel single-cell clustering 

method called the Integrative Clustering Of Single Cells (INCLOSE) that integrates 

single-cell multi-omics sequencing data to discover condition-specific cell clusters.  

Through the integration of single-cell transcriptomic data with proteomic or 

chromatin information, in conjunction with critical contextual factors, including exposure 

to perturbations or variations in ethnicity, INCLOSE enables the fine-tuning of cell 

clustering, resulting in the identification of more precise and biologically relevant 

subpopulations. INCLOSE is versatile, capable of integrating single-omic or multi-omics 

data at the single cell level with sample metadata that may contain a single variable, such 

as a disease group, or include additional covariates.  

2.2 INCLOSE Algorithm 

In the INCLOSE clustering method, multiple feature matrices representing 

different omic profiles and clinical data are utilized to compute cell-cell similarities. 

These similarities are determined using a correlation-based approach, with tuning 

parameters balancing information from various feature matrices. Clusters are identified 

by iteratively adding cells with high within-cluster similarity. By combining omics and 

clinical data, INCLOSE unveils condition-specific clusters, identifying new cell 

populations in a comprehensive and integrated manner.  
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In a schematic illustration (Fig. 2.1), we show that cells clustered on the omic 

profiles may not reflect their relationships in the clinical feature space (Fig. 2.1.a). By 

combining the omics and clinical data, INCLOSE reveals a condition-specific cluster 

(Fig. 2.1.b). This is achieved via fusing cell-cell similarity matrices calculated from 

individual omes into an overall similarity matrix, which helps detect the top-most densest 

modules of clusters that potentially represent newly emerged cell populations. 

 

 
 

Figure 2. 1: Illustration of cell clusters using conventional clustering methods and after application of 
INCLOSE method. Cells with similar clinical features are colored same. (a) Clustering of cells based 
on gene expression similarity. Cells A, B, and C are clustered together, forming one group, while cells 
D and E are grouped together as another cluster. (b) Clustering of cells based on clinical features 
similarity. Cells A, B, and D, E clusters together since they have similar clinical feature, while cells D 
and E are placed in a separate cluster. (c) In the INCLOSE method, cells are reorganized based on a 
fused similarity matrix which integrates cell similarity information from both (gene expression as 
shown in (a)) and clinical features (as shown in (b)). As a result of this integration, cells C and B 
move apart, and cells A and D comes together to form a cluster.  

 

(a) 
 

(b) 
 

(c) 
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2.2.1 Definitions and Notations 

Let be a set of feature matrices, each representing a specific omic profile 

of single cells. For example,   is a gene expression matrix obtained from scRNA-seq 

data,   is a surface protein abundance matrix measured by Antibody Derived Tags 

(ADT), and  is a matrix of phenotype features (e.g., disease group, treatment group, 

clinical characteristics, etc.). In these feature matrices, rows correspond to cells and 

columns correspond to features.  

2.2.2 Estimation of Cell-Cell Similarities 

For each feature matrix , we compute a similarity matrix  containing pairwise cell 

similarities as:  

    [2.1] 

where  and  are feature vectors of cells  and  , respectively; is the 

distance calculated as  where  is the correlation coefficient 

(Spearman or Pearson) of two feature vectors;  and are the tuning parameters 

applied to the distance matrix of a given   for balancing the information from different 

feature matrices.  

INCLOSE supports Spearman and Pearson correlation - Spearman correlation is 

appropriate for studying nonlinear associations and Pearson correlation is suitable for 

capturing linear relationships (Hou et al., 2022).  

https://www.zotero.org/google-docs/?U6SPct
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We then fuse the correlation matrices in a cell-cell similarity matrix as:  

    [2.3] 

where  is element-wise multiplication and  is a Gaussian smoothing function, 

   

The smoothing parameter σ is shared across all data modalities to reduce the noise caused 

by minor variations in correlation coefficients.  

The weight  is assigned to each data modality to balance the contribution to the 

combined similarity.  holds high values for pairs of cells that are similar across 

multiple data modalities.  In Fig. 2.2.A, we present a schematic representation illustrating 

the process by which the combined similarity matrix is calculated.  
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INCLOSE can accommodate metadata containing a single feature, such as the sample 

groups each cell belongs to. In this case, the corresponding correlation matrix  is a 

square matrix where values of cells in the same group are set to 1 and values of 

cells in different groups are set to 0. Next, we smooth these values using a logistic 

sigmoid function, 

        [2.4] 

 

 

Figure 2. 2: Schematic illustration of the INCLOSE algorithm. (A) S cells are characterized by 
expression of G genes and P surface proteins and M meta features. Pairwise correlation between cells 
is calculated based on each data modality, which are subsequently combined into a cell-cell similarity 
matrix tuned by weights (ω) and smoothing parameter (σ). (B) The clustering process involves a 
series of seeding and expanding steps. At each iteration, the cell with the highest overall similarity 
serves as the seed. (C) Various combinations of tuning parameter values are tested. The clustering 
results are organized into a hierarchical tree based on J-score that quantifies alignments between two 
clustering results. 
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The overall similarity between a cell and all the other cells is measured as 

    [2.5] 

High H values indicate cells that share similar profiles with many other cells. 

2.2.3 Identification of Clusters 

The clustering process is like the one proposed by Maneck, et al. The clustering process 

starts by identifying the cell  that has the highest overall similarity. Using  as the 

seed, we grow this cluster  by progressively adding a cell  that maximizes the 

within-cluster similarity. 

  [2.6] 

where  is the number of cells in the cluster. The iteration is terminated if the within-

cluster similarity stops increasing. Among the remaining cells, we repeat the steps of 

selecting the seed cell and growing the cluster until the user-specified maximum number 

of clusters is reached. Finally, we combine clusters containing fewer than 10 cells with 

the cells that have not been assigned to any clusters into a “trash cluster”.  Users must 

specify the maximum number of clusters the cells can be partitioned into. INCLOSE will 

produce  non-trash clusters and 1 trash cluster under the constraint the  does not 

exceed the user-specified upper limit.  
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2.2.4 Parameter Tuning and Optimization 

      INCLOSE uses the tuning parameter  to balance the influence of feature matrix   

on the clustering results. As the  increases from 0 to 1, the influence of the feature 

matrix  increases. The sum of  values is normalized to 1. The parameter σ, which 

governs the extent of smoothing, impacts the size of resultant clusters. As the σ value 

increases, the size of the clusters increases, and the number of clusters decreases.   is 

constrained within the range [0,1].  

INCLOSE optimizes the σ and  values by performing a grid search with a series 

of  values in the range of 0 and 1 and  values in the range of 0.03 and 0.3. The goal is 

to find a combination of σ and  values that maximizes the within-cluster similarities and 

between-cluster distances. Because clinical and phenotypic features have already 

contributed to the clustering steps, they are not used again in the parameter tuning step. 

As such, the parameters are tuned to fit the molecular profiles.  

Given a specific combination of σ and  values, INCLOSE groups the cells into a 

set of disjoint clusters excluding the trash cluster. Using an omic profile , the within-

cluster similarity metric  quantifies the average similarity between pairs of cells in the 

same cluster,  

   [2.7] 
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where  and  are two cells in the kth cluster ,  (.,.) is Pearson correlation coefficient, 

and  is the number of cells not in the “trash cluster”.  

The overall within-cluster similarity across multiple omes is a weighted sum given by, 

     [2.8] 

where  is the re-standardized weight computed from  to ensure that  after 

excluding the metadata modality.   

To calculate between-cluster distances, we first find the centroid of each cluster. For 

cluster , the centroid  based on an omic profile  is a vector in which each element 

is the mean value of a feature over all cells in this cluster, 

     [2.9] 

where is the abundance of  feature in cell , i.e., value in row  and column  in 

matrix , and is the number of cells in cluster , i.e., the cluster size. The distance 

between two clusters  and  is 

    [2.10] 

and  is the Pearson correlation coefficient. We then derive the mean between-

cluster distance over all clusters as  

    [2.11] 
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where  is the number of non-trash clusters.  

 

The overall between-cluster distance across multiple omes is a weighted sum given by, 

     [2.12] 

The within-cluster similarity and between-cluster distance are combined to produce a 

segregation score, 

     [2.13] 

We calculate  for clustering results using each unique combination of σ and ω values. A 

high  score indicates a good clustering result, in which cells within the same cluster are 

highly similar and cells in different clusters are highly dissimilar. Users can use the  

score to guide the selection of the final clustering results. Fig. 2.3 illustrates 

schematically how within-cluster similarities and between-cluster distance are calculated 

for a given pair of clusters.  
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2.2.5 Identifying Optimal Clustering 

Using different weights and smoothing parameters leads to different clustering 

results. The optimal combination of these tuning parameters was not known in priori. To 

address this issue, INCLOSE iterates through a series of parameter values and performs 

clustering analysis for each possible combination. The segregation   score is a heuristic 

measure of the quality of clustering results. In practice, the best  score does not 

necessarily indicate the most biologically meaningful clustering result. Furthermore, 

while some parameter combinations produce very different clustering patterns, other 

combinations may cause little changes in the clustering patterns. We, therefore, provide 

functions to visualize and align the large number of clustering results produced by 

INCLOSE.  

Figure 2. 3: Illustration of calculation of within cluster similarity and between cluster similarity for two 
clusters within a clustering set. 
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To measure the similarity between two clustering results, we calculate the J-score  

(Ahmadinejad et al., 2023) that aligns clusters from two clustering based on cells that are 

consistently grouped together (i.e., mutual presence). A J-score of 1 indicates that the two 

clustering results are identical. A low J-score indicates that the two clustering results are 

highly discordant. After computing J-scores for each pair of clustering results, we 

perform hierarchical clustering analysis to group these results into a tree structure. A 

clade in this tree consists of a collection of clustering results that are similar to each 

other.  Users can choose a node and display a UMAP graph to visualize the clustering 

result.  

2.2.6 Relationship to the guided clustering algorithm 

Guided clustering proposed by Maneck. et. al and INCLOSE clustering offer 

unsupervised clustering approaches for single-cell data analysis. Guided clustering 

strategy merges experimental and clinical high-throughput data of potentially distinct 

genomic types. It incorporates prior biological knowledge from experimental studies such 

as cell perturbation experiments to guide the gene clustering process. This helps in 

identifying gene sets that not only stand out in experimental data but also exhibit coherent 

expression patterns in clinical data. Guided clustering can accommodate various genomic 

platforms and provides the flexibility to adjust the balance between guiding and clinical 

data explicitly. INCLOSE is designed for the integration of single-cell multi-omics 

sequencing data and clinical data, enabling the fine-tuning of cell clustering. INCLOSE 

combines feature matrices representing various omics profiles to compute cell-cell 

similarities and subsequently identifies clusters.  

https://www.zotero.org/google-docs/?2XIuoI
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While both methods involve data integration, Guided Clustering is tailored for 

diagnostic signature construction based on a biological focus and can predict pathway 

activation. In contrast, INCLOSE incorporates cell label information or other clinical data 

aiming to identify condition-specific cell clusters in single-cell data. INCLOSE excels in 

its adaptability to incorporate multiple omics layers as feature matrices, making it a 

versatile choice for studies involving diverse high-throughput data sources. Both methods 

share a common procedural framework, initiating the clustering process with selecting a 

seed element, followed by iterative additions of elements or genes to expand the cluster 

while maximizing within-cluster similarity. 

In guided clustering, the user specifies the parameter σ, while ω is chosen 

automatically, and for each σ, clustering runs with various ω values. The best cluster is 

then selected based on the ω value that maximizes the sum of within-cluster strength, 

measured by average pairwise correlation and average gene activation. In contrast, 

INCLOSE allows users to specify both σ and ω values, and for each combination of these 

parameters, clusters are identified. The best clustering is determined based on the average 

pairwise similarities of all feature matrices provided, considering both within-cluster 

strength and between-cluster distance. Furthermore, INCLOSE offers the flexibility to 

choose from a range of clusters, providing more options than guided clustering. 
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2.3 Application of INCLOSE to CITE-Seq 

2.3.1 Acute Myeloid Leukemia CITE-Seq Dataset  

In this section, I discuss the application of the INCLOSE algorithm to a single-

cell dataset. The clustering of samples was performed using Seurat and INCLOSE. 

INCLOSE clustering was compared to well-established clustering, Seurat elucidating the 

differences and unique contributions of INCLOSE clustering. The INCLOSE could 

successfully reveal novel clusters that were merged into larger clusters by Seurat 

enhancing the capability to understand the complexity of cellular subtypes which 

otherwise have been oversimplified by traditional clustering methods.  

For this study, I utilized publicly available CITE-Seq data derived from an Acute 

Myeloid Leukemia (AML) study, accessible through the Gene Expression Omnibus 

(GEO) database, under the accession ID GSE220473. This study employed a CITE-seq 

panel of 131 oligo-tagged antibodies and sequenced eleven bone marrow samples, 

encompassing three age-matched normal donors and eight newly diagnosed acute 

myeloid leukemia (AML) patients. The primary focus of this study was to investigate the 

therapeutic potential of antibody therapies targeting the AML-specific cell surface marker 

U5 snRNP200. There was a total of 20987 cells from the AML group and an equivalent 

count of 20740 cells from the control group. This initial matching of cell numbers 

ensured a balanced starting point for the analysis of both groups.  
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A literature review on Myeloid-Derived Suppressor Cells (MDSCs) illuminated 

the critical role of this cell type in various cancer types including AML. The review 

underscored the complex nature of MDSCs, emphasizing its classification as a highly 

heterogeneous population of immature myeloid cells. Importantly, this heterogeneity is 

highly disease-specific, with distinct subsets of MDSCs identified in different types of 

cancers and diseases (Bhardwaj & Ansell, 2023). Studies have demonstrated the 

expansion of MDSCs in the tumor microenvironment. Their expansion has been strongly 

associated with immune suppression and the progression of diseases such as AML (Lv et 

al., 2019) (Hyun et al., 2020). This fundamental understanding of MDSCs and their 

pivotal role in disease progression, particularly in the context of AML, has established a 

robust foundation for the subsequent direction of this study. The primary objective, 

therefore, is the comprehensive exploration of MDSC heterogeneity to discern and 

delineate AML-specific MDSC subclusters through the application of our novel 

clustering algorithm, INCLOSE. By employing INCLOSE, we can capitalize on its 

unique ability to incorporate cell label information thus refining the clustering process 

tailored to identifying AML-specific or control-specific clusters. 

The initial clustering and exploration of the dataset revealed a notable expansion 

of MDSC cells in the bone marrow of AML samples. Seurat clustering of MDSC cells 

uncovered AML-specific subclusters, shedding light on the heterogeneity of these 

immune suppressive cells. Considering the inherent heterogeneity of MDSC subtypes, it 

is hypothesized that more condition-specific subtypes could exist. To comprehensively 

explore and unveil additional subtypes within these cell groups, we employed the 

https://www.zotero.org/google-docs/?FMdF8E
https://www.zotero.org/google-docs/?Y08Vht
https://www.zotero.org/google-docs/?Y08Vht
https://www.zotero.org/google-docs/?sicGPS
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INCLOSE algorithm. Notably, while there was some overlap with Seurat's clustering 

patterns, INCLOSE introduced distinctive clustering patterns. The subsequent 

comparative marker and enrichment analysis yielded intriguing findings, revealing that 

the clusters identified by INCLOSE featured unique immune-related markers, potentially 

holding considerable significance in AML research. By leveraging the J-score function, 

we could pinpoint subtypes of AML-specific MDSCs that were previously merged or 

dispersed within the Seurat clustering results, thus enhancing our understanding of 

MDSC heterogeneity in the context of AML. 

2.3.1.1 Clustering by Seurat 

The raw CITE-seq count matrices were loaded into R (v4.0.3) and processed 

using the Seurat R package (v4.1.2). Cells with less than 100 detected genes and genes 

detected in fewer than 5 cells were filtered out. Cells with mitochondrial gene expression 

greater than 5% of the total gene expression were also removed. A Seurat object was 

constructed for both the scRNA and protein data, and the two objects were integrated 

using the Seurat integration pipeline. The RNA expression levels were normalized using 

standard normalization to correct for batch effects and the top 2000 highly variable genes 

were identified for downstream analysis. The protein expression levels were normalized 

using centered log ratio normalization and scaling. Dimensional reduction using principal 

component analysis (PCA) was performed on the integrated scRNA and ADT data 

separately to compute 30 principal components (PC).  
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Clustering was performed on the integrated scRNA and ADT assays using the Seurat 

Weighted Nearest Neighbors (WNN) pipeline.  At a resolution of 0.8 Seurat clustering 

identified 10 distinct clusters. Clusters with less than 5 cells were removed.  

To identify marker genes for each cluster, we employed the 

FindAllMarkersMAESTRO function from the MAESTRO package in R. After 

identifying marker genes for each cluster, we annotated the clusters using 

RNAAnnotateCelltype function from the MAESTRO package based on canonical marker 

genes for immune cell types provided by Azimuth. The distinct cell types identified were 

- CD14+Monocyte, HematopoieticStemandProgenitorcell, Erythroidcell, 

CD4CentralMemoryT, CD4NaiveT, NaturalKiller, CD8EffectorMemoryT, NaiveBcell, 

CD16+Monocyte, and Plasmablast (Fig. 2.4).  

 

 

Figure 2.4: Seurat clustering of pooled AML and control dataset  
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After the clustering analysis, we leveraged the identified CD14+ and CD16+ 

monocyte populations to identify Myeloid Cells (MCs). This was achieved by employing 

a specific gating strategy that relied on the expression patterns of surface protein markers 

including CD11b+, CD33+, and HLA-DR low surface protein markers (Hyun et al., 

2020) (Fig. 2.5). The AML samples exhibited a notable increase in the MC cell count, 

with a total of 4,234 MC cells, as compared to the control group, which had 2,543 MC 

cells. Statistical analysis revealed a t-statistic of 2.47 (p-value < 0.05) for the comparison 

of MDSC and non-MDSC proportions in samples between the AML and control groups. 

These results strongly indicate a significant expansion of MDSC populations within the 

AML samples, emphasizing the potential relevance of MDSCs in the context of AML. 

 

 

Figure 2.5: Gating of myeloid cells from monocytes. (A) Density plot of CD11b and CD33. 
(B) UMAP plot highlights the myeloid cells that will be further clustered by INCLOSE to 
discover subpopulations.  

A B 

https://www.zotero.org/google-docs/?Ygv28L
https://www.zotero.org/google-docs/?Ygv28L
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Subsequently, Seurat clustering was applied with a resolution parameter 

set to 0.15, revealing the presence of six distinct subclusters within the MC 

population. One of these subclusters emerged exclusively from the AML samples, 

signifying its unique presence within the context of (AML) (Fig 2.6).   

     

2.3.1.2 Clustering by INCLOSE 

The INCLOSE algorithm was applied to the MC cell population with the goal of 

identifying one or more sub-clusters of AML-specific MC cells. We applied the 

FindVariableFeatures Seurat function to both RNA and ADT assay to discern the top 

2000 highly variable genes and the top 15 highly variable surface proteins within the MC 

cells of both AML and control samples. The resultant gene expression matrix surface 

protein abundance matrix of highly variable features and cell labels representing the 

phenotype of the samples were used as input feature matrices for INCLOSE. The cells 

were labeled 1 if from AML and 0 if from control.  

Figure 2.6: Seurat sub-clustering of MC. Six clusters identified 
by Seurat is displayed on the UMAP plots based on the top 10 
principal components.  
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We explored a series of tuning parameters including σ ranging from 1/3 to 0.1/3, 

weights assigned to the RNA and ADT feature matrix (ωg and ωp, respectively) ranging 

from 0.1 to 0.5, and weights assigned to the cell label matrix (ωl) fixed at 0.03. A total of 

177 unique combinations of these tuning parameters were explored, producing 177 

clustering results. The segregation scores (Z scores) of these clustering results ranged 

from 0.0008 to 0.935 (Fig. 2.7.A). The 45 clustering results with segregation score >0.9 

were distributed across four clades in the dendrogram (Fig. 2.7.B). Within each of these 

four clades, the clustering results exhibited a high degree of similarity (Fig. 2.8 I-XII), 

with the number of clusters ranging from six to eight, and J-scores ranging from 0.779 to 

0.999. Notably, all these clustering results revealed condition-specific clusters.  

 

 

A B 

Figure 2.7: INCLOSE analysis of the MC data. (A) Dendrogram shows relationship between different 
clustering results. Orange color indicates clustering results with segregation score >0.9. (B) Histogram 
shows distribution of segregation scores of 177 clustering results using various combinations of tuning 
parameter values. 
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Figure 2. 8: INCLOSE clustering clades. In each clade, the clustering result with 
the highest segregation score was plotted in UMAP. Values of the tuning 
parameters are displayed, including smoothing parameter (σ) and weights for gene 
expression (ωg), surface protein expression (ωp), and metadata (ωm). Different 
colors represent different cell clusters. 
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We closely examined one of the clustering results with parameters σ = 0.23 and 

wt = 0.11 where eight clusters were formed (Fig. 2.9.A). Some of these clusters consisted 

exclusively of cells from the healthy samples or the AML samples, while others were a 

mixture of both (Fig. 2.9.B). Notably, clusters 2, 4, 5, and 7 were exclusively present in 

the AML population, while clusters 1 and 6 were specific to the control samples.  

 

2.3.1.3 Cluster Marker Analysis 

After applying the INCLOSE clustering method, INCLOSE cluster numbers were 

mapped to cells within the Seurat object. This allowed us to perform subsequent 

differential expression gene enrichment analysis. Wilcoxon rank sum test, as 

implemented in the Seurat R package was used for identifying cluster-specific markers.   

 

Figure 2.9: INCLOSE clustering of MDSC cells with tuning parameters σ=0.23, ωp = 0.11 and 
ωl = 0.3 revealed 9 total subclusters with a total weighted sum of 0.92. Out of the 9 clusters, 4 
were unique in AML and 2 were unique in control. 

A B AML 
  

Control 
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To account for multiple testing, we adjusted the p-values at a threshold of 0.05 using the 

Bonferroni method. Initially, we identified cluster-specific markers by comparing each 

cluster against the aggregate of all other clusters. This approach unveiled a discernible 

pattern of significant markers (RNA and ADT) unique to each cluster (Fig 2.10) 

highlighting the heterogeneity across the clusters.  

 

A 
 

B 
 

Figure 2. 10: INCLOSE Cluster Markers Heatmap. (A) RNA markers (B) ADT markers  
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Distinct clustering patterns between AML and control observed in our analysis 

are indicative of the underlying heterogeneity and differences in cell subtypes between 

the AML and control groups. This is because similar cell subtypes often display 

distinctive molecular profiles across conditions, reflecting the influence of different 

physiological states or pathological conditions. To elucidate the differences between 

similar cell types in AML and control groups, we identified markers specific to each 

condition's clusters, facilitating the identification of distinct MDSC subtypes within each 

sample set. Interestingly, marker analysis within AML and control revealed a distinct 

marker profile both at mRNA and ADT level (Figures 2.11 and 2.12).  

 

 

 

Figure 2. 11: AML Cluster Markers Heatmap. (A) RNA markers (B) ADT 
markers  

B 
 

A 
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Furthermore, for clusters with a mix of cell types, we executed differential 

expression analysis between AML and healthy states, pooling cells from both groups 

within the same cluster. This approach provided insights into condition-specific 

variations across these mixed cell populations. 

2.3.1.4 Identifying Cell Subtypes in AML and Control Samples 

Analysis of RNA and protein markers within AML and control subclusters 

unveiled distinct expression patterns across all clusters for both modalities (Fig 2.13). 

Based on the markers defined by Gabrilovich (Gabrilovich, 2017), Myeloid-Derived 

Suppressor Cells (MDSCs), a subset of immature myeloid cells with immunosuppressive 

functions, can be categorized into two primary groups: Polymorphonuclear Myeloid-

Derived Suppressor Cells (PMN-MDSCs) and Monocytic Myeloid-Derived Suppressor 

Cells (M-MDSCs).  

A 
 

B 
 

Figure 2.12: Control Cluster Markers Heatmap. (A) RNA markers (B) ADT 
markers  

https://www.zotero.org/google-docs/?7WUHdB
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PMN-MDSCs are characterized by markers CD11b+CD14−CD15+ or 

CD11b+CD14−CD66b+, while M-MDSCs exhibit markers CD11b+CD14+HLA-DR–

/loCD15−. A third, minor population of MDSCs has also been identified, the early-stage 

MDSCs (e-MDSCs), which express neither CD15 nor CD14 (Bizymi et al., 2019).  

 

Clusters 6 within the control group exhibit a CD14- CD15+ expression profile, 

aligning with the features of PMN-MDSC. While cluster 1 in the control also exhibited 

CD14- CD15+ profile. On differential gene expression analysis between clusters 1 and 6 

revealed many inflammatory signature markers like CXCL8, CXCL2, and CCL2 in 

cluster 1 indicating the presence of mature granulocytes (Fig 2.14.A). Cluster 8 present in 

both AML and control subset exhibit an expression profile of CD14+ CD15-, a 

characteristic associated with Monocytic Myeloid-Derived Suppressor Cells (M-MDSC) 

subset within the AML and control subset.  

Figure 2.13: Distinct cluster markers in INCLOSE clustering. 

 

https://www.zotero.org/google-docs/?rJy7EW
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Cluster 2 which is an AML only cluster exhibits a similar expression profile as cluster 8. 

DEG analysis (Fig 2.14.B) between clusters 2 and 8 revealed cell proliferation markers 

such as STMN1 (Vicari et al., 2022).  The identification of M-MDSC and PMN-MDSC 

cell types highlights the robustness of INCLOSE clustering in delineating two major 

classifications of MDSCs.  

 

A 
 

B 
 

Figure 2.14: Volcano plots of Differentially Expressed Genes between mixed clusters.  
(A) Cluster 1 vs Cluster 6 (B) Cluster 2 vs Cluster 8 

https://www.zotero.org/google-docs/?9okSEQ
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Cluster 3 which is a mixed cluster is positive for CD16 (FCGR3A) and CD86 

indicating M1-Macrophages (Two Types of Macrophages, n.d.) (Smithy & Luke, 2023).  

Cluster 5 which is an AML only cluster is positive for CD68 and CD163 (J. M. Hu et al., 

2017) (Tremble et al., 2020) (Xie et al., 2022) revealing presence of M2-Macrophages in 

AML. Macrophages, as a heterogeneous group of myeloid cells, can be broadly 

categorized into two main types: M1-like, or classically activated macrophages, and M2-

like, or alternatively activated macrophages.  

While M1 macrophages are pro-inflammatory and thus participate in the positive 

immune response, function as an immune monitor, and act as tumoricidal, while M2-

macrophages are anti-inflammatory and contribute to tumor progression and immune 

suppression (Ostrand-Rosenberg et al., 2012). In the tumor microenvironment, the close 

interaction with MDSCs significantly shapes macrophage phenotype, culminating in the 

emergence of M2-like macrophages, commonly known as "tumor-associated 

macrophages" (TAMs). These TAMs play a pivotal role in immune suppression and 

simultaneously contribute to the promotion of tumor progression, as documented in 

previous research (Veglia et al., 2021) (Mantovani et al., 2009).  

 

 

 

 

https://www.zotero.org/google-docs/?UXLgor
https://www.zotero.org/google-docs/?UXLgor
https://www.zotero.org/google-docs/?UXLgor
https://www.zotero.org/google-docs/?SDQ2eS
https://www.zotero.org/google-docs/?Rznr6P
https://www.zotero.org/google-docs/?Rznr6P
https://www.zotero.org/google-docs/?NSl3h2
https://www.zotero.org/google-docs/?fWrBX1
https://www.zotero.org/google-docs/?tCqAmC
https://www.zotero.org/google-docs/?EWOMu7
https://www.zotero.org/google-docs/?B7yoEb
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Furthermore, within cluster 5, we identified upregulation of MRC1 (CD206) 

signifying CD163+CD206+ M2-like macrophages in AML. A study examining the 

infiltration rate of CD163+CD206+ M2-like macrophages in the BM of AML patients 

and healthy volunteers  demonstrated a significant increase in the frequency of 

CD163+CD206+ M2-like macrophages in the BM of AML patients compared to the 

healthy control group, confirming the expansion of these cells in the AML 

microenvironment (Al-Matary et al., 2016). The successful identification of TAMs within 

our clustering results represents a significant achievement, highlighting its ability to 

discern their presence.  

Cluster 4 which is an AML only cluster is separated well from the rest of the 

cells. Their over-expression of marker IFI6 and surface marker ITGA6 indicates presence 

of  bone marrow mesenchymal stromal cells (BM-MSC) (C. Pan et al., 2023) (Nieto-

Nicolau et al., 2020) (van Megen et al., 2019). These cells also express higher levels of 

IFNGR2, suggesting the activation of IFN-𝛾 receptor. In a prior investigation, researchers 

investigated the implications of interferon-gamma (IFN-γ) in the context of mesenchymal 

stromal cells (MSCs) within AM (Goedhart et al., 2018). This study revealed how IFN-γ 

influences the intrinsic immunosuppressive functions of MSCs, particularly within the 

specific AML microenvironment. The discovery of clusters expressing IFNGR2 in AML 

samples is a compelling indicator of an immune-suppressive microenvironment. This 

finding amplifies the promise of the INCLOSE clustering method in identifying immune-

suppressive MSCs within AML, offering valuable prospects for understanding and 

addressing this aspect of the disease. 

https://www.zotero.org/google-docs/?ilC4Jj
https://www.zotero.org/google-docs/?m4tU1G
https://www.zotero.org/google-docs/?BKfpKq
https://www.zotero.org/google-docs/?BKfpKq
https://www.zotero.org/google-docs/?4FQLcX
https://www.zotero.org/google-docs/?wX2h4p
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Cluster 7, which is also an AML only cluster having an expression profile of 

CD14- CD15low is an unknown population of cells which we could not classify within 

the scope of already known markers of myeloid cells. Even though cluster 7 displays 

characteristics associated with PMN-MDSCs, yet they demonstrate distinct gene 

expression and ADT patterns, suggesting a specialized population of cells that must have 

emerged in AML and it needs to be further validated experimentally. 

2.3.1.5 Differential Expression Analysis 

Cluster 8, identified by the INCLOSE clustering method, comprises a combination of 

AML and control cells classified as M-MDSCs. It displayed distinct gene expression 

patterns between AML and control groups, uncovering 1435 genes with noteworthy 

differences (Fig 2.15.A). This underscores the algorithm's ability not only to segregate 

AML and control clusters but also to reveal a heterogeneous mix that, while of the same 

cell subtype, exhibits significant variations. This analysis brought attention to several 

critical genes that are over expressed in AML. IFITM3, known for its adverse prognostic 

influence on AML patients, was found to significantly impact their event-free and overall 

survival (Y. Liu et al., 2020). The gene MT2A which is also overexpressed in AML, has 

been studied before for its role in influencing AML cell proliferation and functions, 

notably modulating apoptosis, cell reproductive capacity, and impacting the NF-κB 

signaling pathway in HL60 cells (Y.-Q. Pan et al., 2021). 

 

https://www.zotero.org/google-docs/?8V9Usw
https://www.zotero.org/google-docs/?2Ah68P
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Additionally, in cluster 3, another hybrid of AML and control cells, a unique 

differential gene expression emerged (Fig 2.15.B). Within this cluster, a stark gene 

expression contrast was observed, particularly highlighting the gene FGL2. Recognized 

for its role in promoting tumor growth and elevating the population of MDSCs, FGL2's 

impact has been studied, particularly in the context of hepatocellular carcinoma (HCC) 

(B.-Q. Liu et al., 2021). Additionally, the gene ISG20, identified for its overexpression in 

AML, has been extensively studied. Its upregulation, notably triggered by interferons, has 

been linked to a poor prognosis in various malignant tumors, including AML (Peng et al., 

2023), including AML(H. Xiong et al., 2021). The findings from these clusters bear 

immense potential for unraveling nuanced and critical aspects of AML and its distinct 

subtypes or cell populations. 

https://www.zotero.org/google-docs/?IvI6Oc
https://www.zotero.org/google-docs/?lvvK8w
https://www.zotero.org/google-docs/?lvvK8w
https://www.zotero.org/google-docs/?eY5zjS


 

55 

 

 

A 
 

B 
 

Figure 2.15: Volcano plots of Differentially Expressed Genes between AML and 
Control in (A) Cluster 3 and (B) Cluster 8 
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2.3.1.6 Comparing INCLOSE to Seurat Clustering 

The J-score, a clustering accuracy metric, is employed to compare INCLOSE 

clusters to Seurat clusters, enabling the identification of correspondences between the two 

methods (Fig 2.16). This analysis provides insights into differences in cluster formation, 

such as whether larger Seurat clusters have been divided in INCLOSE, potentially 

revealing novel cell populations and highlighting variations in cell distribution between 

the two methods. We observed distinct clustering patterns when comparing Seurat and 

INCLOSE results. Specifically, what was a single, large cluster (Cluster 0 and 1) in 

Seurat has been partitioned into multiple clusters within INCLOSE.  

 

 

Figure 2.16: Bidirectional set matching based on Jaccard Index revealed 
correspondence between INCLOSE clusters and Seurat. 



 

57 

In Seurat, Cluster 2 exhibits a substantial correspondence with Cluster 2 in 

INCLOSE, reflecting a consistent cluster assignment. In contrast, Cluster 3 in Seurat, 

which primarily consisted of control samples, aligns notably with clusters 1 and 6 in 

INCLOSE, both of which are exclusively composed of control cells. In the INCLOSE 

analysis, Clusters 4, 5, and 7 are identified as AML-specific clusters, whereas Seurat 

splits cells from these INCLOSE clusters into various clusters. The most prominent 

cluster in INCLOSE, Cluster 8, corresponds strongly with one of the largest clusters in 

Seurat, Cluster 0. These findings highlight the differences and similarities in cluster 

assignments between the two methods. 

 We further conducted an extensive parameter exploration of the INCLOSE 

clustering method, aiming to identify the parameter combinations that best align with 

Seurat clusters. Our analysis involved systematically varying cell label weight ( ), ADT 

feature weight ( ), and sigma across predefined ranges. The  was varied from 0 to 1 

in increments of 0.03,  ranged from 0.05 to 0.2 in increments of 0.01, and  was 

explored between 1/3 and 0.1/3 in decrements of .05/3. Throughout this exploration, the 

highest J-score achieved was 0.6681886, signaling strong alignment with Seurat clusters. 

In Fig. 2.17.A, we showcase the outcomes featuring J-scores above 0.6, pinpointing those 

parameter combinations that yielded remarkably consistent clustering patterns closely 

mirroring Seurat's outcomes. 
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Each data point within the figure corresponds to a distinct parameter 

configuration. The size of these data points corresponds directly to the J-scores they 

represent, with larger data points indicating higher J-scores. Furthermore, the color-coded 

representation of the data points offers insights into the number of clusters generated 

under each parameter combination. Remarkably, our analysis consistently unveiled that 

the parameter sets leading to high correspondence predominantly formed patterns 

composed of 3 to 7 clusters. Strikingly, these parameter combinations consistently 

assigned significant weight to cell labels (  > 0.5), outweighing the cumulative weights 

of other feature matrices. Delving deeper into the parameter sets with elevated 

correspondence, we discerned an intriguing trend – mixed clusters were a rare occurrence 

(Fig. 2.17 B and C), indicating that these parameter combinations fostered distinct and 

homogenous cell populations. 
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Figure 2. 17: Comparing INCLOSE to Seurat. (A) Scatterplot illustrating clustering patterns with top 
correspondence between INCLOSE and Seurat. Each data point represents a specific parameter set, 
with the size of the points indicating the J-scores (similarity scores) between the two clustering 
methods. Larger points correspond to higher J-scores. The color coding of the data points signifies the 
number of clusters produced under each parameter combination. (B) UMAP plots displaying INCLOSE 
clustering pattern with 4 clusters having high correspondence to Seurat clusters. (C) UMAP plots 
displaying INCLOSE clustering pattern with 4 clusters having high correspondence to Seurat clusters.  
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2.3.1.7 Effect of Phenotype Integration 

To investigate the impact of integrating phenotypic data into the clustering 

process, we conducted a comprehensive analysis by systematically varying the cell label 

weight ( ) over a range from 0 to 1. In this analysis, we maintained a fixed ADT 

features weight at 0.11 and explored different sigma parameter values, specifically 

0.0333, 0.1333, 0.2333, and 0.3333. For each distinct   value, we assessed the number 

of mixed clusters, which are clusters containing cells from both the AML and Control 

conditions. As depicted in the Fig 2.18, the maximum number of mixed clusters attained 

in the AML dataset for all sigma values was consistently 2. Interestingly, as the   value 

increased, the occurrence of mixed clusters decreased, ultimately leading to a lack of 

mixed clusters at higher   values. This observation suggests that an appropriate 

selection of the cell label weight is essential for achieving mixed clusters that capture 

conditions with similar feature expression patterns. 
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Figure 2. 18: Influence of cell label weight on INCLOSE clustering with ωl varied between 0 
and 1, ωp set at 0.11 and σ set at (A) 0.3333, (B) 0.2333, (C) 0.1333, and (D) 0.0333. 
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2.4 Discussion 

Traditional clustering techniques, rooted in the high-dimensional reduction of 

transcriptomic and proteomic profiles, sometimes fall short in capturing the full spectrum 

of MDSC subtypes, which often hinge on distinct surface markers (Cassetta et al., 2019) 

(Mandruzzato et al., 2016). Furthermore, the expansion of MDSC populations in tumor-

infected tissues introduces unique clustering patterns not typically observed in healthy 

conditions. Even with the advent of advanced multimodal clustering tools such as Seurat, 

a significant challenge lies in their capacity to seamlessly integrate specific cell label 

information to pinpoint condition-specific clusters. The INCLOSE algorithm is designed 

to address these issues head-on. By incorporating cell label information directly into the 

clustering process, the INCLOSE method transcends conventional MDSC subcluster 

identification, which primarily relies on surface markers and transcriptomic profiles. This 

approach is meticulously tailored to the specific conditions under investigation, 

facilitating a comprehensive and context-aware exploration of MDSC diversity. 

The INCLOSE method holds the potential to elucidate intricate cell 

subpopulations with application across diverse data types including scRNA-seq, CITE-

seq, and scATAC-seq. With its application to scRNA-seq and CITE-Seq in contexts of 

radiation exposure and disease pathology, we were able to demonstrate its application to 

isolate the cell population that has emerged or expanded in tumors or treatment, which 

otherwise will get mixed with other cells that are similar based on a broader gene or 

protein expression profile.   

 

https://www.zotero.org/google-docs/?tCN5YB
https://www.zotero.org/google-docs/?VAyayI
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INCLOSE is suited for clustering cells when dealing with a relatively smaller 

number of cells. However, as the number of cells increases, the computational 

requirements of the method become more demanding. This is primarily due to the initial 

construction of the similarity matrix, which relies on pairwise correlation analysis of the 

cells. Additionally, the larger number of cells will demand a greater number of clusters to 

capture the underlying complexity of cellular heterogeneity. Parameter tuning that 

governs the clustering process will become more complex since iterative adjustments and 

evaluations of tuning parameters will be required to ensure the best possible clustering 

outcome. So, it is suggested to employ clustering methods like Seurat, leveraging well-

defined marker profiles such as CD4 T cells or CD14+ monocytes for the initial 

clustering of the cells. Subsequently, scGGC to uncover distinctive cell subpopulations 

within these prominent cell types, optimizing the identification of more nuanced cellular 

heterogeneity.   

INCLOSE provides flexibility and adaptability for diverse research scenarios. It 

provides the option to obtain a predetermined number of clusters or to optimize clustering 

quality while keeping the number of clusters fixed. However, the current iterative 

approach utilizing the Z score heuristic for testing multiple parameter combinations in 

INCLOSE faces limitations in accurately identifying biologically relevant clustering 

outcomes. To refine this process, there is a pressing need for an enhanced heuristic that 

can discern the most biologically significant parameters, ensuring more precise and 

meaningful clustering results. 
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CHAPTER 3 

IDENTIFYING CIS-TRANS REGULATORY TRIOS: Cis-Trans Trio 

3.1 Background 

3.1.1 Genetic Variants and Disease Susceptibility 

Genetic variants are pivotal factors influencing an individual's susceptibility to 

diseases, treatment response, and clinical outcomes. These modifications can range from 

minute single nucleotide changes to significant structural alterations within the DNA 

sequence. Commonly encountered single-nucleotide polymorphisms (SNPs) or single-

nucleotide variants (SNVs) represent the predominant type of genetic variants and have 

been extensively implicated in disease susceptibility (Eichler et al., 2007). Notably, they 

have been associated with a wide array of conditions such as diabetes, cardiovascular 

diseases, and various cancers, each demonstrating the genetic basis for predisposition 

(Shoily et al., 2021) (Zhu et al., 2023) (Bare et al., 2007) (N. Deng et al., 2017). 

In breast cancer, studies analyzing SNP-related data within databases like TCGA 

have revealed key mutant genes significantly correlated with altered protein expression 

levels, pinpointing their involvement in cancer development pathways (Gao et al., 2019). 

Moreover, investigations linking specific SNPs to VEGF-A levels have highlighted their 

potential role in cardiovascular disease development and associated risk factors, offering 

vital insights for cardiovascular risk assessments (Meza-Alvarado et al., 2023). 

https://www.zotero.org/google-docs/?27BjwT
https://www.zotero.org/google-docs/?VFDmPJ
https://www.zotero.org/google-docs/?PGnMvp
https://www.zotero.org/google-docs/?cx7Xyx
https://www.zotero.org/google-docs/?CFVm5w
https://www.zotero.org/google-docs/?uCDRBF
https://www.zotero.org/google-docs/?WIz0iY
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One powerful tool for studying these associations is the Genome-wide 

Association Study (GWAS), where thousands of genetic variants across diverse 

individuals are scrutinized for links to various traits or diseases (Uffelmann et al., 2021). 

This comprehensive approach has been pivotal in identifying disease-associated SNPs, 

particularly notable in cancers such as breast cancer, colorectal cancer, and acute myeloid 

leukemia (AML). In AML, recent meta-analyses through GWAS have unearthed 

significant risk loci, such as KMT5B related to histone methylation and HLA associated 

with immune function, shedding substantial light on the disease's etiology (W.-Y. Lin et 

al., 2021). The findings from these studies underscore the fundamental impact of genetic 

variants on disease susceptibility and the essential role of comprehensive genomic 

analyses in unraveling their implications. 

3.1.2 Genetic Variants and Gene Regulation 

Single nucleotide variants (SNVs) encompass a broad spectrum of genetic 

changes occurring within protein-coding, non-coding, or intergenic regions between two 

genes with only less than 10% mapped in protein-coding regions. This emphasizes the 

vital role of investigating genetic variants in non-coding and intergenic domains, 

underscoring their impact on genetic regulation and functionality (Hindorff et al., 2009). 

Notably, the majority of variants discovered through Genome-Wide Association Studies 

(GWAS) reside in non-coding regions, predominantly in regulatory elements like 

promoters, enhancers, DNase hypersensitivity regions, and chromatin marks (Cano-

Gamez & Trynka, 2020) (Trynka et al., 2013) (Maurano et al., 2012). While GWAS can 

identify associations between a single nucleotide polymorphism (SNP) and a phenotype, 

https://www.zotero.org/google-docs/?5qmnfz
https://www.zotero.org/google-docs/?51cmNa
https://www.zotero.org/google-docs/?51cmNa
https://www.zotero.org/google-docs/?JwRQGA
https://www.zotero.org/google-docs/?le4w0j
https://www.zotero.org/google-docs/?le4w0j
https://www.zotero.org/google-docs/?enAlYn
https://www.zotero.org/google-docs/?qaah6D
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it might not directly unveil the causal variants linked to a disease. Expression 

Quantitative Trait Loci (eQTLs) serve as a crucial bridge for understanding the sites in 

the genome likely to influence subsequent changes in gene expression (Varathan et al., 

2022). Cis-eQTLs (Fig. 3.1.A) predominantly act on local genes, while trans-eQTLs 

(Fig. 3.1.B) affect distant genes or genes on different chromosomes (Shan et al., 2019). 

While cis-eQTLs exhibit potent effects on gene regulation, trans-eQTLs are also vital in 

regulating gene expression. The latter, however, demands larger sample sizes and 

innovative tools for the efficient detection of trans-eQTLs, as seen in the development of 

NetLIFT, a method that effectively addresses multiple-testing burdens (Weiser et al., 

2014). 

 

eQTLs help pinpoint genomic locations potentially influencing changes in gene 

expression profiles. For instance, an extensive meta-analysis on brain collections 

uncovered millions of significant eQTLs in cerebral and cerebellar regions, identifying 

potential implications for schizophrenia and reinforcing the value of brain eQTL findings 

(Sieberts et al., 2020).  

Figure 3. 1: Representation of eQTLs. (A) cis-eQTL and (B) trans-eQTL  
(Modified from (Weiser et al., 2014)) 

A B 

https://www.zotero.org/google-docs/?oBbj74
https://www.zotero.org/google-docs/?oBbj74
https://www.zotero.org/google-docs/?23drHf
https://www.zotero.org/google-docs/?LZIRpE
https://www.zotero.org/google-docs/?LZIRpE
https://www.zotero.org/google-docs/?yt6epG
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Furthermore, studies on the impact of eQTLs within single-cell models reveal complex 

effects on cellular states and functions. For instance, a study on the impact of eQTLs on 

gene expression within single-cell models of memory T cells, revealed complex, context-

dependent effects of these loci on cellular states and functions (Nathan et al., 2022). 

3.1.3 Gene Regulation: Transcription Factors and Transcription Factor Binding Sites 

Gene expression hinges on the coordinated interplay of numerous cis-regulatory 

elements, ranging from fundamental core promoters to proximal elements associated with 

promoters. In addition to these, several other modules exist, dispersed at varying 

distances from the transcription start sites (TSSs). These include enhancers, silencers, 

insulators, and tethering elements, each playing distinct roles in genetic regulation (Spitz 

& Furlong, 2012). Among these elements, enhancers are pivotal in initiating gene 

expression and have been a primary focus of extensive study. Enhancers, typically small 

DNA segments only a few hundred base pairs long, act as functional platforms for 

recruiting transcription factors (TF) facilitating the precise and intricate regulation of 

transcription. Enhancers (Fig. 3.2.A) orchestrate gene upregulation by engaging specific 

transcription factor binding sites in the promoter, facilitated by activator proteins. 

Conversely, silencers (Fig. 3.2.B) act as opposing agents, employing repressor proteins to 

bind to the promoter's TFBSs, leading to a reduction in gene expression. Meanwhile, 

insulators (Fig 3.2.C) execute a unique role, interfering with the binding between 

enhancers and promoters, thus restraining gene expression  (Rojano et al., 2019a).  

 

https://www.zotero.org/google-docs/?L4gSSD
https://www.zotero.org/google-docs/?IcmgcT
https://www.zotero.org/google-docs/?IcmgcT
https://www.zotero.org/google-docs/?MPCLDL
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This ensemble of cis-regulatory elements collaboratively orchestrates the gene 

expression, from its inception to the finely tuned execution of genetic instructions. Any 

modifications or dysregulation in these elements could perturb gene expression, 

potentially contributing to various diseases. 

 

Transcription factors (TFs) represent a class of proteins pivotal in orchestrating 

gene expression by regulating the transcription process. These proteins which include 

activators and repressors exert their influence by binding to specific DNA sequences, 

commonly found in gene promoter areas or distal regions known as enhancers. These 

binding sites, termed transcription factor binding sites (TFBS), play a crucial role in gene 

regulation. Notably, the proximity between a TFBS and the transcription start site (TSS) 

of the regulated gene can extend over vast genomic distances, even reaching several 

Figure 3. 2: Cis-regulatory elements, 
such as enhancers, silencers, and 
insulators, wield distinct effects on 
gene expression. Enhancers, depicted 
in (A), are regions that recruit 
activator proteins binding to specific 
transcription factor binding sites 
(TFBSs) in the promoter. This action 
upregulates the target gene. 
Silencers, illustrated in (B), work in 
an opposing manner by binding 
repressor proteins that also target 
TFBSs in the promoter, ultimately 
reducing gene expression. 
Meanwhile, insulators, as shown in 
(C), interact uniquely; they block the 
binding of the enhancer's activator 
protein to the promoter, curbing gene 
expression (Rojano et al., 2019) 
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megabases. The actual distance is intricately shaped by the chromatin structure and 

organization of the region, suggesting that TFs can impact gene expression across these 

considerable genomic spans. This ability to exert regulatory control over genes, both 

nearby and at a distance, highlights the intricate nature of TF-mediated gene expression 

regulation within the genome (Boeva, 2016). Technological advancements in genomics, 

including DNase-seq, FAIRE-seq, and ChIP-seq, have revolutionized the ability to locate 

and understand regulatory regions within the genome(Y. Wang et al., 2016). These high-

throughput techniques allow for a comprehensive analysis of the genomic landscape, 

shedding light on elements that govern gene regulation and expression. 

3.1.4 Regulatory Single Nucleotide Polymorphisms 

Regulatory single nucleotide polymorphisms (rSNPs) are genetic variations 

situated within transcription factor binding sites (TFBSs), holding the potential to 

profoundly influence gene expression levels. These variations initiate intricate 

interactions between TFs and rSNPs, pivotal in shaping tissue-specific gene expression 

patterns (Degtyareva et al., 2021).  Regulatory single nucleotide polymorphisms (rSNPs) 

significantly contribute to the diversity of complex traits, influencing the propensity for 

certain diseases to manifest. A notable instance of an rSNP is the substitution of G to A, 

positioned 376 base pairs from the TNF transcriptional start site. This genetic alteration 

has been shown to impact the interaction between the transcription factor OCT-1 and the 

genomic sequence. Studies have revealed a fourfold increase in the susceptibility to 

cerebral malaria in populations from both West and East Africa due to this specific rSNP 

(Degtyareva et al., 2021).  

https://www.zotero.org/google-docs/?Pninpu
https://www.zotero.org/google-docs/?IVQnFW
https://www.zotero.org/google-docs/?VTVyIE
https://www.zotero.org/google-docs/?sb6jpg
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An earlier study revealed a crucial link between the transition from A to G within the Alu 

element just preceding the MPO gene and the onset of acute myelocytic leukemias. This 

specific alteration was found to create a robust binding site for the SP1 protein, 

subsequently initiating the transcription of the MPO gene and impacting its regulation in 

myeloid leukemias (Piedrafita et al., 1996).  

The fusion of cutting-edge whole genome and exome sequencing, coupled with 

methodologies like GWAS and eQTL, has unveiled a vast array of genetic variants within 

these crucial regulatory domains. The fusion of experimental techniques and 

computational analysis of extensive omics data has offered valuable insights into 

understanding the significance of chromatin states, transcription factor binding regions, 

and the potential impact of genetic variations on these regulatory sites. For instance, 

through the application of self-transcribing active regulatory region sequencing (STARR-

seq) on 10,000 cancer-associated SNPs, a study has revealed distal regulatory variants 

impacting gene expression positively and negatively. Investigating SNPs like rs11055880 

(breast cancer) and rs12142375 (leukemia) revealed their distinct regulatory influences 

on genes ATF7IP and PDE4B, respectively, advancing our comprehension of how distal 

regulatory elements affect cancer risk in GWAS data (S. Liu et al., 2017). 

 

https://www.zotero.org/google-docs/?6KRQh5
https://www.zotero.org/google-docs/?eHmS2u
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3.1.5 Current Methods for Annotating Regulatory SNPs 

The method of annotating regulatory variants involves precisely determining the 

specific regulatory components that are intersected by variants found within the genome. 

To accomplish this, a myriad of tools is employed, drawing information from various 

data sources like transcription factor binding sites (TFBSs), enhancers, promoters, DNA 

methylation sites, as well as introns and splicing sites. Multiple global collaborations and 

cross-disciplinary projects have been instituted to compile and organize these regulatory 

features found within the non-coding regions of the genome. Among the most notable 

initiatives are ENCODE (ENCyclopedia of DNA Elements) (“The ENCODE 

(ENCyclopedia Of DNA Elements) Project,” 2004), FANTOM5 (Functional Annotation 

of the Mammalian Genome) (Abugessaisa et al., 2021), The Roadmap Epigenomics 

Project (Bernstein et al., 2010), and GTEx (Genotype-Tissue Expression) (Lonsdale et 

al., 2013). These endeavors employ a comprehensive spectrum of experimental 

methodologies such as Chromatin Immunoprecipitation Sequencing (ChIP-Seq), 

chromosome conformation capture methods, DNase I hypersensitivity assays, DNase 

Sequencing (DNase-Seq), and RNA Sequencing (RNA-Seq) to extensively chart and 

understand the regulatory elements entrenched within the non-coding domains of the 

human genome (Rojano et al., 2019b).  

A multitude of computational tools leverages the wealth of data produced by these 

initiatives to annotate regulatory variants. Typically, these tools amalgamate genomic 

insights derived from multiple projects to ascertain the regulatory elements in proximity 

to a queried variant. RegulomeDB (Boyle et al., 2012) employs a scoring system that 

https://www.zotero.org/google-docs/?ZBxDI3
https://www.zotero.org/google-docs/?ZBxDI3
https://www.zotero.org/google-docs/?7kloAr
https://www.zotero.org/google-docs/?wqXQ1N
https://www.zotero.org/google-docs/?7oOgDp
https://www.zotero.org/google-docs/?7oOgDp
https://www.zotero.org/google-docs/?VjHnuk
https://www.zotero.org/google-docs/?piXo22
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considers the elements overlapped by a variant, referencing data from ENCODE and the 

Roadmap Epigenomics Project. HaploReg (Ward & Kellis, 2012) specializes in variants 

in linkage disequilibrium (LD) and those situated within or near regulatory elements, 

referencing data from ENCODE, GTEx, and the Roadmap Epigenomics Project. 

Meanwhile, FunciSNP (Coetzee et al., 2012a) prioritizes putative regulatory SNPs, 

drawing information from ENCODE and the Roadmap Epigenomics Project  (Ward & 

Kellis, 2016). 

3.1.6 Current Tools for Integrating Regulatory Elements with Regulatory SNPs 

Several integrative tools have also been developed for linking regulatory variants 

with regulatory elements for dissecting the functional significance of genetic variations. 

FunciSNP is a bioinformatic tool that integrates data from whole-genome sequencing, 

GWAS SNPs, and chromatin maps to identify potentially functional genetic variants 

linked to specific phenotypes (Coetzee et al., 2012b).  Scientists have also utilized eQTL 

and motif affinity analyzes to identify regulatory SNPs that map within canonical 

transcription factor binding motifs, potentially influencing transcription factor genomic 

occupancy (Jin et al., 2016).  

Furthermore, modern research has also harnessed the power of machine learning 

techniques to understand the impact of human genetic variations in regulatory contexts. 

For instance, methods like Combined Annotation–Dependent Depletion (CADD) use 

machine learning, particularly support vector machines, to amalgamate varied 

annotations into a unified C score (Kircher et al., 2014). This empowers the prioritization 

of both functional and pathogenic variants across an array of genetic categories, 

https://www.zotero.org/google-docs/?WkBRct
https://www.zotero.org/google-docs/?vFAX5V
https://www.zotero.org/google-docs/?dImys1
https://www.zotero.org/google-docs/?dImys1
https://www.zotero.org/google-docs/?VM4ydJ
https://www.zotero.org/google-docs/?WkGurn
https://www.zotero.org/google-docs/?veQNhG
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significantly exceeding the capabilities of single-annotation methods. In a parallel 

avenue, DeepSEA, a deep learning-based framework, deciphers regulatory sequences 

from extensive chromatin data. This in-depth analysis aids in precise predictions of how 

even single-nucleotide changes influence chromatin dynamics, improving the sorting of 

functional variants associated with gene expression (eQTLs) and diseases (Zhou & 

Troyanskaya, 2015). Sasquatch, a recent computational innovation, leans on DNase 

footprint data to evaluate the impact of non-coding variants on transcription factor 

binding (Schwessinger et al., 2017). Additionally, SEMpl, a novel pipeline, assesses the 

influence of single-nucleotide polymorphisms (SNPs) within functional transcription 

factor-binding sites (TFBSs) by scrutinizing changes in chromatin immunoprecipitation 

sequencing signal intensity. SEMpl's analysis provides insights into how SNPs might 

affect transcription factor binding, assisting in the recognition of potential disease-related 

regulatory regions within noncoding segments  (Nishizaki et al., 2019).  

While these methodologies meticulously explore the effects of regulatory SNPs or 

variants on transcription factor binding and/ or gene expression changes, none of these 

methodologies encompass the comprehensive interplay among SNPs within regulatory 

elements, the role of transcription factors in binding to these regulatory elements during 

the transcriptional regulatory processes, the influence of SNPs on transcriptional binding, 

and the resultant alterations in gene expression within a unified model. Building upon the 

context of the complex relationship between genetic variations, transcription factors, and 

gene expression, we introduce a novel computational methodology that combines 

information from SNPs within transcription factor binding sites (TFBS), the activity of 

specific transcription factors, and the expression of target genes into a comprehensive 

https://www.zotero.org/google-docs/?ggZQIG
https://www.zotero.org/google-docs/?ggZQIG
https://www.zotero.org/google-docs/?6SXBhf
https://www.zotero.org/google-docs/?WSwrYv
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regression model. This integration allows us to identify and characterize regulatory trios 

governing gene regulation, thus offering a robust framework to explore the regulatory 

mechanisms shaping complex phenotypic traits in diseases.  

Fig.3.3 illustrates the effect of germline SNPs, transcription factors, and their interactions 

in transcription factor binding sites on target gene expression. This study focuses solely 

on germline SNPs, but by pinpointing tissue-specific somatic SNPs within regulatory 

elements, the scope can expand to encompass the impact of somatic SNPs, broadening 

the understanding of their effects. 

 

3.2 Methodology 

This study aimed to investigate the complex regulatory landscape governing gene 

expression changes in disease contexts. Our method incorporates a multi-dimensional 

perspective, combining transcription factor (TF) expression, germline single nucleotide 

polymorphisms (SNPs) in the transcription factor binding sites (TFBS), and covariates 

Figure 3. 3: Illustration of impact of germline SNP, TF, and their 
interaction in TFBS regions and their impact on the target gene 
expression  
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both genetic and clinical, to identify cis and trans-acting regulatory elements impacting 

the target gene (TG) expression.  A SNP is considered cis-acting if it is within 1 Mb from 

the gene transcriptional start site (TSS), and trans-acting if the SNP is beyond that point 

(Jin et al., 2016). For sample s, we model the expression of target gene g as an outcome 

of the expression of a transcription factor t and a germline SNP v, both in the TFBS 

region of the target gene. Separate models m are run for different genotypes of the SNP, 

which are given by dominant (MM), recessive (mm), heterogenous (Mm), and additive 

models with an allele frequency of  (J. Ma et al., 2018) (Gong et al., 2018). Given 

a sample s, we denote  as the expression of a target gene g,  as the expression of 

transcription factor t, and   as the germline SNP genotype variable. 

The regression model equation is as follows: 

 

          [3.1] 

where   is the intercept, , , and are coefficients representing the effect of 

,  ,  and the interaction term between   and . C is a set of clinical 

covariates, each with a  coefficient, and  is Gaussian-distributed errors. G is a set of 

genetic covariates, each with a  coefficient that includes the copy number variance of 

the target gene, the copy number variance of the transcription factor, and the diploidy 

class of the sample. By harnessing copy number variant information from the target gene 

and transcription factors (TFs), we employed a hierarchical clustering approach using the 

Ward D2 distance metric to categorize the samples into three distinct diploid classes: 

https://www.zotero.org/google-docs/?Tjvoby
https://www.zotero.org/google-docs/?mDZWHq
https://www.zotero.org/google-docs/?AOtTAD
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diploid (D), partial hyperdiploid (P_HPD), and hyperdiploid (HPD). This allowed us to 

identify underlying patterns and relationships within the dataset, enabling the accurate 

classification of samples based on their genetic characteristics. 

To correct for multiple comparisons, we adjusted the nominal p values using the 

Benjamini-Hochberg method and calculated the false discovery rate (FDR). Non-zero 

coefficients at FDR<0.05 indicate significant associations. A significant  and  

indicates significant associations of the transcription factor, and germline SNP genotype 

with the target gene expression. Significant  indicates the significant interaction 

between a transcription factor and the germline SNP in the TFBS region. The regression 

models fit on each trio are filtered based on the significance of these three coefficients, 

and we call these trios cis or trans-regulatory trios based on whether the SNP is cis or 

trans-acting.  

Unlike traditional eQTL and ceQTL analyses (R. T. Wang et al., 2011), which 

primarily focus on genetic variations' direct impact on gene expression, and in contrast to 

methods based on binding affinities (Flynn et al., 2022) , our method combines multiple 

layers of regulatory information. The Integration of germline SNPs, transcription factor 

(TF) expression, and the interaction between TF expression and SNPs provides a more 

comprehensive, accurate, and biologically meaningful approach to understanding disease-

associated gene expression changes.  

Once the cis-trans regulatory trios were identified, we tested for transcription 

factors that are enriched in TFBS regions, indicating their potential roles in mediating 

https://www.zotero.org/google-docs/?zyOP0Q
https://www.zotero.org/google-docs/?Zabios
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gene expression changes. To assess the enrichment of transcription factors (TFs) among 

significant and non-significant target genes, we employed the Fisher exact test. This 

statistical test allows us to determine whether the occurrence of TFs significantly differs 

between the two gene groups, shedding light on potential regulatory associations.  For 

each TF, we examine its occurrence within the set of significant target genes identified in 

the regulatory trios. We then perform a Fisher exact test to determine whether the 

presence of the TF is significantly associated with these target genes, as compared to 

non-significant target genes. We hypothesize that these enriched transcription factors, as 

determined by Fisher's exact test, are pivotal nodes within the regulatory network, 

serving as master regulators capable of orchestrating coordinated responses across 

multiple genes and genetic variants. Ultimately, our investigation is extended to gene set 

over-representation analysis of the target genes of enriched TFs to ascertain their 

significance in regulating key biological processes or pathways associated with the 

disease under investigation and their functional implications.  

3.3 Application 

3.3.1 Cis and Trans-Acting Regulatory Trios in Multiple Myeloma 

We leveraged the Multiple Myeloma Research Foundation (MMRF) dataset from 

the GDC portal, which encompasses mRNA expression matrix extracted from tumor 

bone marrow tissues offering insights into the gene expression patterns specific to 

multiple myeloma. Additionally, germline genotype data obtained from normal whole 

blood tissues were integrated into the analysis, providing a baseline genetic profile for 

each sample. Clinical covariates – age, gender, and stage are considered along with the 
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genetic covariates, including copy number variation of TG, TF, and diploidy class of the 

sample. Fig 3.4 shows the diploidy classes identified from the MMRF dataset. 

 

The regression analysis provided us with distinct sets of 43546 regulatory trios. 

Of these significant regulatory trios, there were 432 significant TFs, 4842 TGs, and 7129 

significant germline SNPs at FDR < 0.05 for TF, SNP, and the interaction between TF 

and SNP.  Multiple regression models were employed to examine the relationship 

between transcription factors (TFs) and target genes (TGs) across different genotypes of 

the single nucleotide polymorphism (SNP). This analysis identified a total of 43546 

regulatory trios W6336 significant trios within additive models, 13,176 significant trios 

within homozygous dominant (AA) genotypes, 13,543 significant trios within 

heterozygous (Aa) genotypes, and 10,491 significant trios within homozygous recessive 

Figure 3. 4: Heatmap of MMRF Samples and Copy Number Variations Grouped by 
Chromosome Regions. Clustering pattern of samples along rows, indicates distinct classes 
related to diploidy (diploid), partial hyperdiploidy, and hyperdiploidy. 
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(aa) genotypes. The Fig 3.5 illustrates example scatterplots for each of the genotype 

models tested. Notably, the crossing of these regression lines indicates the presence of a 

significant interaction effect between the transcription factor and the genotype. This 

interaction suggests that the influence of the transcription factor on target gene expression 

varies across different genotypes of the SNP, adding depth to our understanding of the 

regulatory mechanisms at play.  

 

Figure 3. 5: Scatter plots demonstrating the relationship between transcription factors and target 
genes across different genotypes. (A) TF - METTL27 and TG - RXRB across additive genotype (B) 
TF - SMIM6 and TG - PRDM10 across homozygous dominant genotype (C) TF - CYCSP10 and TG 
- PHF8 across heterozygous genotype (D) TF - WDR89 and TG - MLX across homozygous 
recessive genotype  

A B 

C D 



 

80 

To unravel the nuanced relationships between transcription factors and the 

influence of regulatory SNPs on gene expression, a comprehensive scatter plot detailing 

the association between Transcription Factor (TF) and TF:SNP coefficients was devised 

(Fig 3.6). The x-axis represents TF coefficients, while the y-axis demonstrates the 

TF:SNP coefficients. The intricate interplay between these variables offers insightful 

categorizations of their regulatory effects on gene expression. 

Instances where both the TF and the TF:SNP coefficients are positive implies that 

both the TF and the interaction term positively contribute to the target gene expression, 

which might suggest an additive effect in promoting gene expression. Conversely, when 

the TF coefficient is negative and the TF:SNP coefficient is positive, it suggests that the 

TF alone negatively affects expression, but in conjunction with the SNP, a compensatory 

or augmentative impact is observed. When a positive TF coefficient is accompanied by a 

negative TF:SNP coefficient, it hints at a counteractive role of the SNP, impeding the 

TF's regular function and subsequently decreasing gene expression. Furthermore, 

scenarios with both negative TF and negative TF:SNP coefficients represent a 

compounded inhibitory effect, indicating a combined reduction in gene expression. As 

shown in Fig 3.6, only a marginal fraction (0.01%) of TF-SNP pairs exhibit a 

compounded inhibitory effect, whereas a predominant number (55%) reveal that the SNP 

disrupts the positive effect of the TF. Additionally, 42% of TF-SNP pairs denote an 

additive effect, signifying their combined influence on gene expression. Notably, a mere 

2% of the observed TF-SNP pairs demonstrate a compensatory effect by SNP. 
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Our method yielded a total of 43482 cis-acting regulatory trios, highlighting 

interactions occurring within localized genetic regions. Furthermore, we identified 64 

trans-acting regulatory trios, indicative of interactions spanning distant genetic loci. The 

results of the Fisher exact test revealed that out of the 432 TFs analyzed, an impressive 

384 TFs demonstrated significant enrichment within the set of target genes deemed 

significant by the regulatory trios (p < 0.05, Benjamini-Hochberg corrected for multiple 

testing). Each TF is ranked based on its enrichment p-value, highlighting the strongest 

associations with the regulatory trios. In Table 3.1, we present the top 10 TFs that 

demonstrated significant enrichment with the greatest number of target genes and in Fig 

3.7 we showcase the odds ratios associated with the top 100 transcription factors, 

providing a comprehensive view of their respective impacts. 

Figure 3. 6: Scatter plot depicting the interplay between Transcription Factor (TF) and SNP 
in the regulating gene expression depicting the additive, compensatory, or inhibitory effects 
in varying TF-SNP pair combinations. 
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Table 3. 1: Significant TG, TF, and SNPs from regression model 

Figure 3. 7: Top 100 transcription factors along with their corresponding 
fisher exact test odds ratios 
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Over-representation analysis of all target genes of the enriched TFs unveiled 

several hallmark pathways that exhibited statistically significant associations with the 

target genes of the enriched TFs which include HALLMARK_DNA_REPAIR, 

HALLMARK_MYC_TARGETS_V1, HALLMARK_E2F_TARGETS, 

HALLMARK_MYC_TARGETS_V2, and 

HALLMARK_OXIDATIVE_PHOSPHORYLATION (Fig 3.8). 

 

The dysregulation of pathways HALLMARK_MYC_TARGETS_V1 and 

HALLMARK_MYC_TARGETS_V2 indicates the potential role of enriched TFs on 

MYC target genes. MYC is a known oncogene that regulates cell growth, proliferation, 

and apoptosis. Dysregulation of MYC signaling is common in various cancers, including 

multiple myeloma (Holien et al., 2015). The enrichment of these pathways could suggest 

that the enriched TFs influence MYC-regulated genes, potentially impacting cell growth 

and survival pathways relevant to myeloma development (Wahlström & Arsenian 

Figure 3. 8: Gene Enrichment bar plot illustrating immune-related 
pathways that are enriched among the target genes regulated by the 
enriched transcription factors identified in the MMRF regression model. 

https://www.zotero.org/google-docs/?4DVkz6
https://www.zotero.org/google-docs/?mXm8po
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Henriksson, 2015)  (Chng et al., 2011). Upon closer examination of our regression 

results, we observed that only 2 of the MYC target genes demonstrated a significant 

direct association with the MYC transcription factor. However, the remaining target 

genes enriched within this gene set appeared to be linked with other transcription factors. 

In our analysis, we identified a total of 105 transcription factors (TFs) that featured one or 

more MYC targets among their regulatory targets. Notably, among these 105 TFs, 45 TFs 

exhibited a particularly robust association, each having more than two MYC targets 

within their regulatory repertoire. Remarkably, MAX emerged as the transcription factor 

with the highest number of target genes (76) associated with MYC. Table 3.2 gives the 

top 10 TFs arranged in the order of the greatest number of MYC target genes. 

 

 

 

 

Table 3. 2: Top TFs with MYC targets 

https://www.zotero.org/google-docs/?mXm8po
https://www.zotero.org/google-docs/?7xmaQD
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This observation led us to delve further into the MYC-MAX association through a 

comprehensive literature review. Our investigation aimed to deepen our understanding of 

the intricate relationship between MYC and MAX and its implications for gene 

regulation in the context of our study. MYC-MAX interaction is a fundamental 

mechanism that governs gene expression programs crucial for cell growth and 

proliferation (Amati & Land, 1994). Its intricate regulatory network and potential 

implications in diseases, particularly cancer, continue to be an active research area 

(Madden et al., 2021). The enrichment analysis provides insights into potential 

mechanisms, but validation through experimental studies and clinical observations is 

necessary to confirm their significance in multiple myeloma. 

3.4 Discussion 

The analysis of the MMRF dataset in our study enabled a comprehensive 

exploration of the regulatory mechanisms in multiple myeloma. The integration of 

mRNA expression profiles derived from tumor bone marrow tissues with germline 

genotype data allowed for the identification of regulatory trios associated with the 

disease. Our approach produced a considerable number of significant regulatory trios, 

unveiling the influence of various transcription factors (TFs) and target genes (TGs). 

Employing regression models across different genotypes of the single nucleotide 

polymorphism (SNP) resulted in the identification of substantial trios, reflecting the 

interplay between TFs and TGs across distinct genotypes. 

 

https://www.zotero.org/google-docs/?hpY0da
https://www.zotero.org/google-docs/?qOAjiU
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Notably, our approach identified both cis-acting and trans-acting regulatory trios, 

demonstrating the varied interactions occurring within localized and distant genetic 

regions. The enrichment analysis unveiled a significant association of multiple TFs with 

the set of target genes identified by the regulatory trios, particularly highlighting 

pathways associated with MYC targets. 

Further investigation revealed the potential influence of enriched TFs on MYC-

regulated genes, suggesting their involvement in pathways crucial for cell growth and 

survival, particularly relevant in the context of multiple myeloma. Although only a 

limited number of MYC target genes exhibited a direct association with the MYC 

transcription factor in our analysis, a comprehensive examination uncovered several TFs 

that displayed a robust link to MYC target genes, notably MAX emerging as a 

predominant regulator. 

The examination of the MYC-MAX relationship, essential in governing gene 

expression programs crucial for cell growth and proliferation, suggests its relevance in 

the context of multiple myeloma. However, while our study has provided valuable 

insights into potential regulatory mechanisms, further experimental studies and clinical 

observations are warranted to validate and confirm their significance in the disease 

context. 
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CHAPTER 4 

SINGLE CELL PROTEIN TRAFFICKING: CITE-Traffick 

4.1 Background 

4.1.1 Cell Surface Markers 

Cell membranes exhibit a diverse array of proteins such as enzymes, transporters, 

ion channels, and receptors. Through changes in abundance and composition, these cell 

surface proteins actively contribute to a wide range of biological processes and play vital 

roles in shaping cell functions (Alberts et al., 2002). For instance, many cluster of 

differentiation (CD) markers are cell surface proteins that define cell types and cell 

differentiation stages (“CLUSTER OF DIFFERENTIATION (CD) ANTIGENS,” 2004). 

Cell surface proteins serve a multifaceted role as receptors for cytokines, ligands 

associated with antigen presentation, signaling, and cell adhesion. Cytokines, soluble 

proteins secreted by various immune cell types, interact with these receptors, initiating 

intracellular signaling pathways that trigger and perpetuate a cascade of immune 

responses. An illustrative example of this is the crucial involvement of cytokine receptors 

in immune function. These receptors, upon binding specific ligands, induce 

conformational changes that activate JAKs, subsequently leading to tyrosine-based motif 

phosphorylation and the creation of docking sites for essential proteins like STATs. This 

interplay significantly contributes to the regulation of immune responses and immune-

related disorders (Lee & Rhee, 2017). Furthermore, a specific category of cell surface 

proteins known as MHC proteins plays a pivotal role in antigen presentation. MHC 

https://www.zotero.org/google-docs/?Zw5Maq
https://www.zotero.org/google-docs/?YyG16m
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proteins are responsible for presenting antigens on the cell surface, facilitating 

recognition by the appropriate T cells. While all cells produce MHC class I molecules to 

present intracellular pathogens, antigen-presenting cells (APCs) like macrophages and 

dendritic cells produce MHC class II proteins for presenting extracellular pathogens to T 

cells (Neefjes et al., 2011). Tumor-specific antigens are mostly intracellular, and their 

recognition by T cell receptors (TCRs) expressed on the surface of T cells can trigger 

various effects, such as T cell proliferation and differentiation and cytokine or chemokine 

secretion (He et al., 2019). 

Aberrant expression of cell surface proteins has been associated with numerous 

diseases and demonstrated to profoundly impact cellular function. For instance, abnormal 

expression of human leukocyte antigen (HLA), a critical cell surface protein involved in 

immune responses, has been implicated in various health conditions (Dendrou et al., 

2018). Several drugs clinically used to treat cancers target integrins that are 

transmembrane adhesion receptors mediating cell-cell and cell-extracellular matrix 

interactions (Pang et al., 2023). Because of their distinct cellular locations and profound 

involvement in disease processes, cell surface proteins have emerged as promising targets 

for diagnostic biomarkers and therapeutic interventions (Yin & Flynn, 2016). 

4.1.2 Intracellular Protein Trafficking 

The expression of surface proteins is a complex process involving transcription, 

translation, post-translational modification, and intracellular protein transportation (ICT).  

Notably, ICT requires precise coordination of multiple organelles and genes to ensure 

proper protein trafficking and expression on cell membranes (Fig 4.1) (Tokarev et al., 

https://www.zotero.org/google-docs/?STjIC4
https://www.zotero.org/google-docs/?D4yMkf
https://www.zotero.org/google-docs/?99LTaz
https://www.zotero.org/google-docs/?99LTaz
https://www.zotero.org/google-docs/?VFT0rb
https://www.zotero.org/google-docs/?yjgOvr
https://www.zotero.org/google-docs/?5jS4JN
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2013). Protein trafficking unfolds through two primary pathways: endocytosis and 

exocytosis. In the process of endocytosis, proteins journey from the cell's surface to the 

early endosomes. Subsequently, these internalized proteins are directed by the early 

endosome either to the lysosome for degradation or to the trans-Golgi network. 

Conversely, exocytosis entails the transfer of freshly synthesized proteins into the 

endoplasmic reticulum (ER), their passage through the cis-Golgi complex, and ultimate 

transportation via the trans-Golgi network (A. Kumar et al., 2020). 

Proteins are synthesized in ribosomes by translating mRNA into peptides. The 

ribosome, along with the growing polypeptide chain, attaches to the endoplasmic 

membrane (ER) to facilitate the translocation of the nascent protein into the ER lumen.  

From the ER, membranous vesicles shuttle cargo to the Golgi apparatus. ER-derived 

cargo sequentially moves through the cis, medial, and trans cisternae regions of the Golgi 

apparatus, facilitating the processing, modification, and sorting of proteins. The proteins 

are then packed into secretory vesicles for transport to the plasma membrane, where they 

merge with the plasma membrane, releasing the proteins to their intended destinations. 

Golgi cargo is sorted not only to the plasma membrane for secretion but also to 

endosomes, lysosomes, and even back to the endoplasmic reticulum (ER). This process 

ensures that proteins or other cellular components that need to be broken down or 

recycled are properly targeted to these compartments for degradation and subsequent 

recycling of their constituent molecules. Cells can also internalize cell surface proteins by 

endocytosis. Endocytic vesicles generated from the plasma membrane (PM) fuse with 

recycling endosomes, from where they eventually move to lysosomes for degradation.  

https://www.zotero.org/google-docs/?5jS4JN
https://www.zotero.org/google-docs/?UEHVHw
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Proper protein trafficking from the endoplasmic reticulum (ER) to the plasma 

membrane (PM), various target organelles, or the extracellular (EC) space is required for 

cell survival Dysregulated ICT has been shown to alter cell surface protein expression 

and is linked to diseases such as obesity, diabetes, cancers (Sneeggen et al., 2020), and 

abnormal host responses to infections (Welstead et al., 2004) (Hassan et al., 2021),  

However, a comprehensive understanding of genome-wide patterns and interplays 

between ICT and surface protein expression in human diseases remains limited. In this 

study, we present a novel computational approach, CITE-trafficking, to investigate 

regulatory circuits of surface protein expression in the context of ICT processes.  

 

4.1.3 Cellular Indexing of Transcriptomes and Epitopes (CITE-Seq) 

Single-cell transcriptomics provide valuable insights but may not provide a 

holistic understanding of protein trafficking dynamics. In contrast, proteins play 

immediate and crucial roles in maintaining cellular functions compared to transcripts. 

Figure 4. 1: Overview of intracellular protein trafficking 

https://www.zotero.org/google-docs/?zxaA0x
https://www.zotero.org/google-docs/?NzTuAA
https://www.zotero.org/google-docs/?ApDdnv
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Therefore, it is crucial to employ combined single-cell measurement techniques for both 

mRNA and proteins to achieve a more comprehensive understanding of intracellular 

protein trafficking and its impact on cellular states (Reimegård et al., 2021). The recent 

advent of cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq) 

introduces a high-throughput approach to simultaneously interrogate surface protein 

expression and gene transcript expression (Stoeckius et al., 2017). CITE-seq combines 

single-cell RNA sequencing (scRNA-seq) and quantification of antibody-derived tags 

(ADT) to profile the entire transcriptome and a selected panel of cell surface proteins at 

the single cell level. Including cell surface protein data has significantly improved the 

accuracy and resolution of cell type characterization compared to using transcriptomic 

data alone (Darden et al., 2021) (Bronte et al., 2016). However, once cell type clustering 

analysis is completed, these two modalities of data are analyzed independently (Tang et 

al., 2022) (Leblay et al., 2020) (Z.-Z. Yang et al., 2023), missing the opportunity to 

integrate the data and explore the interplays between cell surface protein expression and 

gene transcription. CITE-Traffick method leverages CITE-seq data to obtain information 

on the initial transcripts (i.e., mRNA abundance of cell surface proteins), end products 

(i.e., protein abundance on the cell membrane), and genes participating in the 

transportation (i.e., mRNA abundance of ICT genes). It examines the influence of ICT on 

differential expression of surface protein expression between disease groups in a 

mediation model, allowing multiple exposures and multiple mediators. 

 

 

https://www.zotero.org/google-docs/?mI4p5Z
https://www.zotero.org/google-docs/?J6J6Xb
https://www.zotero.org/google-docs/?8goSFj
https://www.zotero.org/google-docs/?qQcfHA
https://www.zotero.org/google-docs/?KO0E26
https://www.zotero.org/google-docs/?KO0E26
https://www.zotero.org/google-docs/?F1ewtj
https://www.zotero.org/google-docs/?AMcDol
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4.1.4 Regularized Mediation Analysis 

Mediation analysis is used for studying the effect of an independent variable for 

e.g., a study exposure on an outcome through an intermediate variable, called mediator. 

Mediation analysis offers a valuable advantage in research by providing deeper biological 

insights into the potential causal mechanisms that underlie the observed associations 

between exposure and outcome variables. Three regression models can be used to 

describe the direct and indirect effects as shown in following equations: 

 [4.1] 

 [4.2] 

 [4.3] 

In equation 1,  represents the total effect of the exposure  on the outcome .  In 

equation 2,  represents the association between the exposure  and a mediator . In 

equation 3,  represents the effect of surface marker,  on the outcome    and,  

represents the direct effect of the exposure   on the outcome   after adjusting for the 

effect of the mediator, .  

In the case of high dimensional studies where we have multiple exposures and 

multiple mediators, the above equations can be extended by regressing  simultaneously 

on all mediators and exposures and regressing each mediator on multiple exposures.  
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While separate tests can be conducted for each exposure-mediator, this procedure ignores 

the correlations between multiple exposures and multiple mediators. Hence regularized 

mediation analysis is developed to simultaneously estimate and select multiple exposures 

and mediators through use of penalized likelihood function (Schaid et al., 2022). 

Regularized mediation analysis methods offer a statistical framework to examine the 

indirect effects of the ICT genes on disease status with surface marker expression as the 

mediator. 

4.1.5 Structural Equation Modeling 

Mediation analysis is a special case of general structural equation modeling 

(SEM). SEM is a powerful statistical technique that can be used to model and analyze 

complex relationships among observed variables or indicators, latent variables, and 

outcome variables. In SEM, latent variables act as unobserved constructs representing 

underlying concepts or dimensions that cannot be directly measured but are inferred from 

multiple observed variables (Spearman, 1904) (Tarka, 2018). These latent variables serve 

as a bridge connecting the observed variables and mediators to control the outcome or 

dependent variable. They allow us to capture the common variance shared among 

multiple observed variables and provide a way to model complex relationships and 

interactions in a more parsimonious manner.   

 

 

https://www.zotero.org/google-docs/?wwjKNm
https://www.zotero.org/google-docs/?Mo3k7E
https://www.zotero.org/google-docs/?sdLHRY
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SEM offers a comprehensive framework that incorporates both a measurement model and 

a structural model (Fan et al., 2016).  

● The measurement model facilitates the representation of latent variables, 

derived from observed variables, by establishing the connections between 

latent constructs and their corresponding observed indicators.  

● Simultaneously, the structural model enables the establishment of 

relationships between latent variables themselves, providing a 

comprehensive view of how underlying constructs influence the observed 

outcomes.  

Combining these two models offers a valuable advantage by allowing us to group related 

observed variables into latent variables and model their interactions. Instead of dealing 

with many individual observed variables, we can work with a smaller set of latent 

variables to explore their interrelationships. This approach is particularly beneficial when 

analyzing complex multivariate longitudinal data. 

4.2. Unraveling Intracellular Trafficking Gene-Mediated Regulation of Surface Protein 

Expression in Disease 

         In this comprehensive study, we delve into the cellular mechanisms governing the 

expression of cell surface proteins and their relationship with disease phenotypes. It is 

well-established that the synthesis and transportation of surface proteins are finely 

orchestrated processes, guided by a network of genes responsible for intracellular 

trafficking (ICT). 

https://www.zotero.org/google-docs/?QIsyFP
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In the context of disease, the alteration of surface protein expression, whether it be an 

increase or decrease, has been a focal point of investigation. Previous research, 

exemplified by studies in cancer (G. Chen et al., 2002) (Zerdes et al., 2021) (Reimegård 

et al., 2021), has unveiled a striking discordance between the levels of protein expression 

and the transcription of the corresponding coding genes. For instance, a study of lung 

adenocarcinomas found that a mere 17% (28 proteins) of the 165 examined displayed 

associations between protein abundance and mRNA levels, suggesting a post-

translational mechanism primarily underlies the regulation of these proteins in such 

conditions. Our central hypothesis posits that the key to deciphering these complex 

alterations lies within the realm of intracellular trafficking genes. These genes are 

instrumental in the precise transportation of surface proteins, and we postulate that they 

hold the answers to understanding differential protein expression in disease conditions. 

Our research further uncovers a multifaceted landscape in which some intracellular 

trafficking genes not only directly connect to disease through specific signaling pathways 

but also intricately interact with other genes, thereby exerting influence over protein 

expression levels. Even when lacking direct associations with the disease, some ICT 

genes indirectly establish crucial links with the disease phenotype through their roles in 

regulating surface protein transport. Therefore, this study aims to disentangle the 

multifaceted roles of ICT genes, illuminating their potential in explaining the variations 

in surface protein expression during disease. 

 

https://www.zotero.org/google-docs/?hUyKUi
https://www.zotero.org/google-docs/?Zvtb4A
https://www.zotero.org/google-docs/?CqQNK7
https://www.zotero.org/google-docs/?CqQNK7
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4.3 CITE-Traffick Methodology 

The CITE-Traffick algorithm includes three modules that aim to (1) discover ICT 

genes associated with differential expression of surface proteins, (2) establish the 

mediation effect of surface protein expression on disease phenotype, and (3) identify 

dysregulated pathways, respectively (Fig 4.2). In the protein transportation network, an 

individual ICT gene may facilitate the transportation of multiple surface proteins, and the 

transportation of a single surface protein requires numerous ICT genes, which poses a 

challenging barrier for tractable computational modeling. To address this problem, CITE-

Traffick dissects these complex networks into small trios, each comprising a specific 

surface protein expressed on the cell membrane, the transcript of its corresponding 

coding gene, and the transcript of an ICT gene. 
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4.3.1 Identifying Intracellular Trafficking (ICT) Genes  

To identify the Gene Ontology (GO) terms associated with intracellular 

trafficking of proteins in cells, we utilized the Go.db R package (Ashburner et al., 2000). 

This package provides a convenient interface to access and analyze GO annotations and 

terms. For the biological processes (BP), we performed a search using the keywords 

'intracellular protein transport,' 'intracellular transport,' and 'vesicle-mediated transport' 

within the GO database. We curated the parent terms related to these keywords and 

retrieved all their offspring terms. Similarly, for molecular functions (MF), we conducted 

a search using the keywords 'protein carrier activity,' 'folding chaperon,' and 'chaperone 

binding.' We selected the parent terms and obtained all their offspring terms.  

Figure 4. 2: Overview of CITE-Trafficking algorithm and modules. In Module 1, the mRNA and 
protein count matrices from CITE-Seq are used for running mixed effects regression models to 
create PTTs. The genes are pre-filtered based on GO terms annotations for biological processes, 
molecular functions and cellular components related to intracellular protein trafficking. In 
Module 2, the ICT genes and surface proteins from PTTs are tested for mediation effect through 
either () Regularized mediation analysis or (b) Structural equation modeling. In Module 3, the 
protein and ICT modules can be further analyzed for visualization as shown in  (c ) or functional 
annotation and interpretation through enrichment analysis as shown in (d).  

https://www.zotero.org/google-docs/?PZcGQU
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Lastly, for cellular components (CC), we selected GO terms related to organelles 

participating in both endocytic and exocytic pathways of protein trafficking. These terms 

included vacuole, endoplasmic reticulum, lysosome, Golgi apparatus, endosome, vesicle, 

plasma membrane, intermediate compartment, cytoplasmic microtubule, autophagosome, 

and microtubule bundle. All genes from the mRNA count matrix that passed the quality 

control and were used for cell type clustering were included as input for the Gene 

Ontology (GO) analysis. By including all genes in the GO analysis, we aimed to capture 

a broad range of molecular functions, biological processes, and cellular components 

relevant to the intracellular trafficking observed in the dataset. We applied a filtering step 

to refine the selection of GO terms and genes by ensuring that the genes associated with 

biological processes and molecular functions were also linked to the cellular components 

involved in intracellular trafficking. This filtering step allowed us to focus specifically on 

the genes that were functionally relevant to both biological processes and molecular 

functions associated with intracellular trafficking, and that were localized within the 

appropriate cellular components. Table 4.1, 4.2, and 4.3 give a selected list of GO terms 

for MF, BP, and CC  
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Table 4. 1: GO terms for MF related to intracellular transport. 

Table 4. 2: GO terms for BP related to intracellular protein transport. 
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 Table 4. 3: GO terms for CC related to intracellular transport 
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4.3.2 Formation of ICT Trios 

Given a surface marker M, we identified its coding gene R from the HUGO Gene 

Nomenclature Committee (HGNC) database. For surface markers with different 

isoforms, splice variants, or multiple subunits, we retrieved all the corresponding coding 

genes. For example, the CD3 surface protein has 3 subunits coded by the CD3E, CD3D, 

and CD3G genes. For each coding gene, we constructed unique trios that included the 

gene itself, the corresponding protein, and one of the ICT genes meticulously curated 

using the GO database. These trios, named ICT Trios, were designed to address the 

complex nature of cellular trafficking, where multiple ICT genes collaborate in 

transporting diverse proteins. Recognizing that the roles and cellular locations of ICT 

genes can vary significantly based on the specific protein being transported, our approach 

systematically explores potential interactions across a spectrum of ICT genes. By 

subjecting each trio to individual testing, we ensure a comprehensive examination that 

leaves no potential interaction unexplored, enriching our understanding of this complex 

system. 

4.3.3 Module I: Inferring Putative Transportation Trios 

The algorithm starts by establishing the regulatory relationship within each trio. 

Considering the cell-type specificity of surface protein expression, CITE-Traffick 

analyzes different cell populations separately. For cells belonging to the same cell type 

and from the same disease group, we model the expression of a cell surface protein m as 

an outcome of the transcription of its coding gene g and an ICT gene t.  



 

102 

Given a cell  from the sample , we denote  as the protein abundance measured by 

ADT,  and  as the transcript abundance of its coding gene and an ICT gene, 

respectively, measured by scRNA-seq. For cells of the same type from the same 

phenotypic group, we build a mixed-effect linear regression model given by, 

 

 

where is the intercept, and  are coefficients representing the fixed main effect of 

 and , respectively, V is a set of covariates each with a  coefficient, 

1| represents the random effect accounting for multiple cells from the same sample s, 

and  is Gaussian-distributed errors. To correct for multiple comparisons, we adjust the 

nominal p values using the Benjamini-Hochberg method and calculate the false discovery 

rate (FDR). Non-zero coefficients at FDR<0.05 indicate significant associations. Because 

the cell surface expression of a protein is closely connected to the transcription of its 

coding gene, we expect to be significant. Furthermore, significant  indicates the 

transcription level of the ICT gene is associated with the expression level of the surface 

protein. We fit this model to each trio, and those with significant non-zero and 

values are putative transportation trios (PTTs). 
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4.3.4 Module II: ICT-Protein-Disease Mediation Network 

In this module, we aggregate PTTs across different disease groups to build 

regulatory networks. CITE-Traffick offers two different approaches for this purpose - one  

based on regularized mediation analysis and the other based on SEM. 

4.3.4.1 Modeling the network via regularized mediation analysis 

Given a set of surface proteins  and a set of ICT genes  involved in these 

PTTs, we hypothesize that differential transcriptions of  may be directly associated with 

the disease status , or indirectly associated with  by regulating cell surface expressions 

of . We model these relationships as a mediation network, in which transcription levels 

of   are exposures, cell surface expression levels of  are mediators, and  is the 

outcome (Fig. 4.3). The directional arrows show the effects of T on , effects of  on , 

and effects of  on . Specifically,   is the coefficient of an arrow connecting 

exposure i to mediator j,   is the coefficient of an arrow connecting mediator j to the 

outcome, and is the coefficient of an arrow connecting exposure i to the outcome.  
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Not all ICT genes transport all cell surface proteins and not all differential 

expressions cause diseases. Arrows with coefficients αij,  βj, or δi =0 indicate the 

corresponding effects are not detected. We formulate this task as a regularized 

multivariate mediation analysis (Schaid et al., 2022). Regmed package in R implements 

penalized model for mediation analysis with multiple exposures, multiple mediators, and 

multiple outcomes using lasso (L1) type penalty for all coefficients α, β, and δ. 

Specifically, our task is to find a set of edges with non-zero coefficients that maximize 

the log-likelihood  of the model with L1 penalties , 

    [4.5] 

Figure 4. 3: Mediation analysis framework. (A) Single mediator single exposure mediation network 
with disease status, D as outcome and a single ICT, T as exposure and a single surface protein, M as 
mediator, (B) Mediation analysis framework with disease status, D as outcome and multiple ICTs 
T1, T2, Tp as exposures and multiple surface proteins M1 and M2 as mediators. An arrow connecting 
an ICT gene to the disease status indicate direct association. An arrow connecting an ICT gene to a 
cell surface protein that is in turn connected to the disease status indicates indirect association 
mediated by cell surface protein. 𝛼i,j is the coefficient of an arrow connecting exposure i to mediator 
j, 𝛽j is the coefficient of an arrow connecting mediator j to the outcome, and 𝛿i is the coefficient of 
an arrow connecting exposure i to the outcome 

  

A B 

https://www.zotero.org/google-docs/?GRlzKr
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The  is calculated as: 

                     [4.6] 

where  is the determinant of the joint covariance matrix  of exposures, 

mediators, and outcomes, tr() is the trace of a matrix, and  is the sample covariance 

matrix. The L1 penalties  is calculated as: 

  

[4.7] 

where  is the regularization parameter, w(q,r), w(r,1), and w(q,1) are weight functions 

w(d1,d2) = (d1d2)4 to balance the number of exposures q and the number of mediators r. 

The   value controls the sparsity of the solutions - a large   leads to strong penalization 

and subsequently few non-zero coefficients. Instead of choosing one   value, we 

perform stability selection in which a series of values between 0.01 4 and 0.4 is tested 

and the edges received non-zero coefficients in at least 10% of tests are retained.  

Various types of associations are represented in this model. Full mediation is 

characterized by a path where an arrow from Ti to Mj, followed by an arrow from Mj to 

D. In this scenario, the association between the ICT gene and disease status is completely 

explained by the mediating presence of the cell surface protein. On the other hand, in 

partial mediation, the ICT gene exhibits a direct effect on disease status, as indicated by 

the arrow connecting Ti to D, in addition to the mediation path involving Ti to Mj and Mj 

to D.  
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Conversely, in cases of no mediation effect, the ICT gene solely exerts a direct 

impact on the disease status, represented by an arrow from Ti to D, while lacking any 

arrows in the mediation path encompassing Ti to Mj and Mj to D. This absence signifies 

that the association between the ICT gene and disease status does not involve 

dysregulated transportation but rather results from other pathways or mechanisms. 

The mediation network described above includes multiple ICT genes and multiple 

cell surface proteins, allowing to model many-to-many relationships. However, if the 

focus is to examine the effects of a single ICT gene or the transportations of a single 

surface protein, it can be easily reduced to a single-exposure-multiple-mediator model or 

multiple-exposure-single-mediator model, respectively. In these cases, only PTTs 

involving the specific ICT gene, or the specific surface protein will be aggregated. 

Two step residual regression to test for the influence of ICT on protein expression 

To investigate the extent to which the effect on the abundance of surface protein could be 

explained by the expression profile of selected ICT genes, we also conducted a two-step 

regression analysis. In the first step, we regressed the protein expression on coding gene 

expression and all other relevant control variables to estimate the total effect.  
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The regression equation for the first step is given by: 

 

where   is the protein abundance measured by ADT, is the intercept,  is the 

coefficient representing the main effect of coding gene ,  is the coefficient 

representing the effect of disease status ,  is a set of covariates each with a  

coefficient.  

The residuals ( ) in the regression represent the unexplained portion of the dependent 

variable that cannot be accounted for by  and . The regression equation for the 

second step is as follows: 

 

 

The coefficient  and  associated with ICT gene  and the interaction of  

with disease represents the additional effect of   and its interaction with  on the 

protein expression after accounting for the control variables. If all ICT genes tested have 

a significant effect on the residuals (significant  and  with p-value  < 0.05), this will 

mean that the ICT genes could explain a significant portion of the variance in the protein 

expression that was not already accounted for by its coding gene expression and other 

control variables like age, sex etc. 
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4.3.4.2 Modeling the network via SEM 

The transport and expression of cell surface markers is not solely governed by 

isolated gene activities, but rather by the intricate web of interactions among ICT genes 

within the complex framework of exocytic and endocytic pathways. These pathways 

collaboratively shape the expression and dynamics of surface markers present on the 

cell's plasma membrane. It is crucial to note that numerous surface proteins participate in 

complex interplays, yielding a significant influence on both the cellular landscape and the 

ultimate disease outcome. Importantly, these interplays remain unobservable and lie 

beyond the realm of direct measurement. While regularized mediation analysis offers 

valuable insights into the relationships between intracellular trafficking genes and 

proteins, it has a limitation that it does not consider their intricate interconnectedness. 

Moreover, as the number of exposures and mediators increases within the framework of 

regularized mediation analysis, the inference of appropriate regularization parameters 

becomes increasingly computationally intensive.  The Lasso method used in 

regularization forces the coefficients of less important factors to shrink to zero, 

potentially eliminating connections between exposures and mediators. Consequently, 

surface proteins that exhibit a mediation effect within a single mediator model may be 

overlooked in a multiple mediator model, owing to the dominance of other mediators 

within the model. Acknowledging these limitations and recognizing the significance of 

complex interconnections within the cellular landscape, we introduce a novel Structural 

Equation Modeling (SEM) framework for ICT mediation analysis.  
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The CITE-Traffick SEM framework is designed to address the unique challenges 

posed by the interplay of numerous exposures and mediators, offering a comprehensive 

and interpretable solution. The methodological approach undertaken in this research is 

driven by two major goals.  

● Uncovering the latent structure of interactions among the ICT genes and 

surface proteins. CITE-Traffick uses a SEM framework featuring two 

measurement models to achieve this goal. The measurement model 1 reveals 

the latent framework of ICT gene interconnections within the endocytic and 

exocytic pathways, wherein endocytic and exocytic pathways function as 

latent variables.  

 

The measurement model 2 encapsulates a latent variable that signifies the 

collective impact of interplaying surface proteins on disease outcomes, 

encompassing both positive and negative effects on the disease (refer to Fig 

4.4). 

● Modeling a structural relationship between ICT genes and disease, mediated 

through surface protein expression. The structural model of the SEM 

framework is designed for conducting mediation analysis with the latent 

variables representing ICT gene interactions acting as exposures and the 

protein latent variables acting as mediators. This connection allows us to 

infer the role of the latent structure of ICT genes, operating in concert, in 

influencing the dynamics of surface proteins and investigating the regulatory 

circuits underlying disease outcome (refer to Fig 4.4). 
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The SEM model in CITE-Traffick establishes a sophisticated yet interpretable network to 

examine the relationships between ICT genes, cell surface proteins, and disease 

outcomes. 

 

SEM Structural Model  

The construction of latent variables is a pivotal yet challenging component of the 

SEM model in multi-omics studies. The measurement models shall aggregate hundreds to 

thousands of ICT genes and surface proteins into latent variables, all while balancing the 

intricate complexity of the relationships between intracellular trafficking pathways and 

disease outcomes. An intuitive solution is to use all ICT genes and surface proteins as 

inputs to construct all latent variables. However, not all ICT genes participate in the 

transportation of all surface proteins.  

Figure 4. 4: Simplified illustration of the structural equation modeling (SEM) framework for ICT. The 
framework includes the ICT genes (g1, g2, g3, and g4) as indicators in measurement model 1, surface 
markers (m1, m2, m3) as indicators in measurement model 2., ICT LV is the latent variable in the 
measurement model 1, and Cell Signaling LV is the latent variable in measurement model 2. Disease D 
is the outcome predicted from the ICT LV and Cell Signaling LV. The self-pointing arrows on the 
indicators represent variances. 
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We therefore design a strategy to group ICT genes and surface proteins into subsets such 

that molecules within each subset likely participate in a common pathway. This strategy 

aims to strike an equilibrium between comprehensiveness and practicality, ensuring that 

our model remains informative and manageable. 

The PTTs identified in the first module of the CITE-Traffick algorithm provide a 

foundation for selecting ICT genes and surface proteins of interest. While clustering 

genes and proteins based on their pairwise correlation could help us create partitions, the 

large number of cells with gene expression near the average level has a large influence on 

the clustering results. Thus, it falls short in representing the variances across the samples 

in the dataset. To address this issue, we employ the Principal Component Analysis (PCA) 

to unveil ICT genes and surface proteins that contribute to a substantial amount of 

expression variances across cells.  

Specifically, we apply PCA to the expression matrix of significant surface 

proteins indicated in the PTTs. We then extract eigenvectors and eigenvalues of each 

surface protein which quantifies the variances attributed to each component. To 

determine the optimal number of principle components (PCs) to retain, a scree plot of the 

eigenvalues associated with each PC is utilized. The eigen values corresponding to the 

selected PCs are organized into a matrix with surface proteins in rows and eigen values 

from each PC in columns. We then use this matrix as input for hierarchical clustering 

analysis to group surface proteins into a tree structure. Next, the determination of clusters 

is a crucial step in the analysis. The hierarchical clustering dendrogram proves 

instrumental in identifying the optimal number of protein modules for including in the 

SEM model. Visual examination of the dendrogram is conducted to identify the 
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segmentation. A level is chosen to result in clusters containing more than three proteins, 

which aids in ensuring meaningful and statistically robust clusters. In cases where 

clusters consist of fewer than three proteins, they are merged with the nearest neighboring 

cluster. Clustering defines distinct groups of proteins, which we term "protein modules." 

Within each protein module, we identify ICT genes significantly associated with the 

transportation of the proteins, as elucidated by the PTTs. We then apply the same PCA 

analysis and hierarchical clustering analysis to these ICT genes, yielding protein-specific 

gene modules. Fig 4.5 demonstrates the steps involved in the formation of latent 

variables through PCA and hierarchical clustering with respect to ICT genes. Note that 

this analysis yields disjoint protein modules, i.e., no shared surface proteins between 

modules. However, the gene modules allow overlaps, i.e., the same ICT gene can help 

transport multiple surface proteins. 

 

 

 

Figure 4. 5: PCA eigen vector loadings used for hierarchical clustering of 
proteins and ICT genes 
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For each module composed of at least three proteins or ICT genes, we build a 

SEM model to translate them into a latent variable (Fig 4.6). In addition to constructing 

latent variables from individual protein and ICT gene modules, we create higher-order 

latent variables. Higher-order latent variables are formed from other latent variables, and 

they represent a higher level of abstraction in molding complex relationships. With these 

higher-order constructs, we not only gain a more comprehensive understanding of the 

underlying biological processes but also reduce the computational complexity of our 

model.  We represent latent variables created from ICT genes as ICT LV with first order 

latent variables written as CIT LV1 and second order latent variables as ICT LV2, 

similarly for latent variables created from proteins we represent using symbols CS LV1 

(Cell signaling LV) for first order and CS LV2 as 2nd order.   

Using these latent variables (first order and second order) and their contributing 

ICT genes and surface proteins, we construct the structural model for mediation analysis 

in the SEM framework. The latent variables associated with ICT genes, ICT LV function 

as exposure variables, while those representing proteins, CS LV serve as mediators. 

Within the SEM framework, we calculate direct and indirect effects of ICT modules on 

disease outcome. Each path in the SEM model is accompanied by coefficients and p-

values, which offer statistical significance assessments for the relationships examined. 

The significance of direct and indirect paths enables us to infer the nature of mediation, 

distinguishing between partial and full mediation. 
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Fig 4.6. provides an illustrative representation of the final SEM framework tailored for 

CITE-Traffic. Within this framework, ICT genes G1, G2, ..., Gm serve as indicators in 

Measurement Model 1, while surface markers M1, M2, …, Mj act as indicators in 

Measurement Model 2. The latent variables ICT LV11, ICT LV12, … ICT LV1n emerges 

from the ICT gene modules, where some of these latent variables further combine to form 

a higher-order latent variable, for example ICT LV21. Similarly, protein modules are 

derived from the protein latent variables CS LV11, CS LV12, … CS LV1n. The arrows in 

the diagram pointing from the gene latents (ICT LV21 and ICT LV1n) towards the protein 

latents (CS LV11, … CS LV1n), represent the associations between ICT gene latents and 

protein latents. The direct effects of ICT latents on disease outcome, D are indicated by 

arrows with coefficients 𝛅1,..,𝛅n. The effects of the ICT latents on D are represented by 

𝜶1,..,𝜶n and  𝛃1,..., 𝛃n represents the effects of CS LVs on D. The combined pathway 

involving both "𝜶" and "𝛃" coefficients illustrates the indirect effects of the ICT latents 

on disease outcomes. In the SEM structural model, a rigorous testing process is 

undertaken to evaluate the significance of direct and indirect effects. This analytical 

approach provides insights into whether the mediation is partial or full, shedding light on 

the complex interplay between ICT genes, surface markers, and disease outcomes. 

The SEM framework is implemented using the Lavaan package in R (Structural 

Equation Modeling with Lavaan | Wiley, n.d.), a well-regarded approach for Structural 

Equation Modeling (SEM). Lavaan provides a versatile platform for specifying and 

estimating complex relationships among observed and latent variables.  

https://www.zotero.org/google-docs/?Reo1cK
https://www.zotero.org/google-docs/?Reo1cK
https://www.zotero.org/google-docs/?Reo1cK
https://www.zotero.org/google-docs/?Reo1cK
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Because of the increased complexity in modeling all the ICT genes and proteins 

in the same model, each protein-ICT module can be tested in separate models. For 

example, a model can be formed with the ICT latent variable ICT LV21 as exposure and 

protein latent variable CS LV11  as mediator and D as outcome. The structural part of the 

SEM will include the computation of the first order latent variables ICT LV11, ICT LV12 

from their corresponding ICT genes, the computation of the second order ICT latent 

variable ICT LV21  from ICT LV11, ICT  LV12 and the computation of the ADT latent 

variable CS  LV11 from its corresponding ADTs.  

Figure 4. 6: First order and second order latent variable construction in CITE-Traffick SEM 
model. Modules of ICT genes form first order latent variables ICT LV11, ICT LV12, … ICT LV1n. 
Some of these latent variables are combined to form second order latent variables for example, 
ICT LV21. The surface marker modules are derived from the first order protein latent variables 

CS LV11, …, CS LV1n. The arrows pointing from the gene latents ICT LV21 and ICT LV1n towards 

the protein latents CS LV11 and CS LV1n give the association between gene latents and protein 
latents. The direct effects of ICT latents on disease outcome, D are indicated by arrows with 
coefficients 𝛅1,…𝛅n. The effects of the ICT latents on D are represented by 𝜶1,…𝜶n and  𝛃1,..., 
𝛃n represents the effects of CS LVs on D. The combined pathway involving both "𝜶" and "𝛃" 
coefficients illustrates the indirect effects of the ICT latents on disease outcomes. Disease D is 
the outcome predicted from the latents.  
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Evaluation of SEM model fit and restructuring of SEM  

To assess the fit of an SEM model, multiple measures and indices come into play. 

For instance, the chi-square test serves to examine the null hypothesis that the anticipated 

model and the observed data are equivalent. An insignificant result from this test is 

indicative of a well-fitting model. However, it's worth noting that the chi-square test has a 

drawback in that it is highly sensitive to sample size. As the sample size increases, the 

likelihood of obtaining a statistically significant chi-square result also grows. This 

sensitivity becomes especially pronounced in our case, where we are working with 

single-cell data, causing the chi-square test to produce significant outcomes even when 

using higher significance cutoffs, such as .01 or .001. As a result, we turn to a range of 

other widely accepted fit measures, including RMSEA, CFI, SRMR, IFI, NFI, GFI, 

PNFI, and RFI, (Schumacker & Lomax, 2010) (L. Hu & Bentler, 1999) to offer a more 

comprehensive and robust evaluation of model fit and performance. These metrics 

collectively provide a more nuanced and sample-size-independent assessment of the 

model's adequacy.  

In our pursuit of the optimal SEM structure, we employ a systematic forward 

selection process. Initially, all first-order latent variables are individually integrated into 

models, and the resulting model fit is meticulously evaluated. Subsequently, we explore 

various combinations of these latent variables, each time assessing the model fit. If a 

combination of latent variables enhances the model fit, we retain the current SEM 

structure; otherwise, we proceed to test the next combination.  

https://www.zotero.org/google-docs/?QiYBI8
https://www.zotero.org/google-docs/?KDncuO
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This iterative approach allows us to derive models that may consist exclusively of first-

order latent variables or incorporate specific combinations of latent variables to construct 

second-order latent variables, depending on which model yields the most favorable fit 

measures. It's important to note that, in this study, we restrict our focus to first-order and 

second-order latent variables and do not consider higher-order structures. 

4.3.5 Module III: Integration of Differential Gene Expression and Gene Set Enrichment 

Analysis  

Once dysregulated ICT genes are identified, it becomes crucial to understand their 

involvement in other immune-related pathways and how their dysregulation impacts the 

overall disease phenotype. Differential gene expression analysis allows for the 

identification of genes that exhibit significant changes in expression levels between 

disease and control groups. Subsequently, GSEA enhances our understanding of the 

dysregulated genes by assessing their enrichment within pre-defined sets of genes 

representing specific biological pathways, functions, or disease signatures.  

In module three, we conduct DEG and GSEA analyses to identify whether the 

ICT genes are significantly overrepresented or underrepresented immune-related gene 

sets, thus providing insights into the broader immune pathways affected by these genes. 

This knowledge provides insights into the broader molecular mechanisms underlying the 

disease and aids in comprehending the specific roles of these genes in disease 

progression, immune dysregulation, and potential therapeutic interventions.  
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4.3.6 Performance evaluation and comparisons 

In the conclusive phase of our methodology, we conducted an exhaustive 

evaluation of the CITE-Trafficking approach's ability to predict disease outcomes. This 

comprehensive assessment involved a meticulous comparison between ICT genes, ADTs, 

and latent variables extracted from both ICT genes and proteins, as identified by the 

CITE-Traffick algorithm, and established markers. To establish a solid benchmark, we 

identified genes and proteins that exhibited differential expression between comparison 

groups using the Wilcoxon rank sum test. 

Following this, we divided our dataset into training and test sets, adhering to an 

80:20 ratio. Within the training set, we performed rigorous stability testing for feature 

selection, exploring a range of lambda values from 0.3 to 0.0003. This initial feature 

selection was limited to differentially expressed genes and ADTs. For each lambda value, 

we executed a ten-fold cross-validation, further enhancing the feature set using LASSO 

logistic regression. The top 50 features with the highest frequency across iterations 

formed the foundation for our multi-variable Generalized Linear Model (GLM) on the 

untouched test set. 
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In the subsequent phase, our approach extended to encompass various sets of 

features identified through the CITE-Traffick framework: (i) the complete list of 

significant ICT genes and ADTs, as selected by CITE-Traffick Module I, (ii) the 

compilation of ICT genes and ADTs pinpointed by the multiple-mediator-multiple-

exposure regularized mediation model in CITE-Traffick Module II, (iii) the latent 

variables originating from ICT genes and ADTs, as generated within CITE-Traffick SEM 

in Module II, and (iv) an enriched feature set achieved by incorporating latent variables 

produced by SEM in CITE-Traffick Module II, in conjunction with the differentially 

expressed genes and ADTs. This comprehensive approach enabled us to meticulously 

assess CITE-Traffick's feature selection capabilities, using these findings to make 

detailed comparisons with DEG features. 

Consistently, we applied the same meticulous process of stability testing and 

Generalized Linear Model (GLM) modeling to all feature sets. The performance of all 

GLM models was meticulously assessed on the independent test dataset, using a set of 

robust metrics, including accuracy, F1-score, and AUC-ROC values. 

4.4 Advantages of using CITE-Traffick against traditional analysis 

Differential expression analysis is limited in its ability to fully elucidate the 

association between genes, surface proteins, and intracellular trafficking. While it can 

identify surface proteins and genes that are significantly different between comparison 

groups, it does not provide a comprehensive understanding of their involvement in 

protein trafficking. To address this limitation and identify genes that significantly 

participate in the pathway of protein trafficking, we employed regression analysis. 
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Correlation analysis could be used to explore the association between surface 

protein expression and intracellular trafficking genes. However, to gain a more 

comprehensive understanding of this association, it is essential to employ regression 

analysis, which allows to incorporate additional predictors and covariates including 

corresponding mRNA expression, and other covariates such as age, gender, stage of 

disease, or disease subtype. This comprehensive approach allowed us to assess the 

independent contributions of each predictor to the association with intracellular 

trafficking, providing a more nuanced understanding of the molecular mechanisms 

underlying protein trafficking. Correlation analysis assesses the strength and direction of 

the linear relationship between two variables but does not account for potential 

confounding factors. Regression analysis provides a framework to incorporate covariates 

that can influence the relationship between the surface protein expression and 

intracellular trafficking genes.  In studies involving biological data, it is crucial to 

consider and control for confounding variables that may influence the observed 

correlations. 

Moreover, regression analysis allows for the estimation of regression coefficients, 

which can provide insights into the direction and magnitude of the associations between 

predictors and the outcome variable. These coefficients can help identify which 

predictors are significantly associated with surface protein expression and quantify the 

strength of these associations, aiding in the interpretation of the results. 
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4.5 Application to COVID-19 CITE-Seq Data 

We analyzed a CITE-Seq data set (GSE155673) from a previously published 

study of immunity in COVID-19 patients (Arunachalam et al., 2020).  This dataset 

contains single-cell transcriptome profiles and abundances of 36 cell surface proteins in 

peripheral blood leukocytes from twelve age-matched individuals, including five healthy 

controls, three mild COVID-19 cases, and four severe COVID-19 cases. 

4.5.1 CITE-Seq Data Clustering and Annotation 

The raw CITE-seq count matrices were loaded into R (v4.0.3) and processed 

using the Seurat R package (v4.1.2). Cells with less than 100 detected genes and genes 

detected in fewer than 5 cells were filtered out. Cells with mitochondrial gene expression 

greater than 5% of the total gene expression were also removed. A Seurat object was 

constructed for both the scRNA and protein data, and the two objects were integrated 

using the Seurat integration pipeline. The RNA expression levels were normalized using 

standard normalization to correct for batch effects and the top 2000 highly variable genes 

were identified for downstream analysis. The protein expression levels were normalized 

using centered log ratio normalization and scaling. Dimensional reduction using principal 

component analysis (PCA) was performed on the integrated scRNA and ADT data 

separately to compute 30 principal components (PC). Clustering was performed on the 

integrated scRNA and protein assays using Seurat Weighted Nearest Neighbors (WNN) 

pipeline at a resolution of 0.8, which yielded a total of 15 clusters, each composed of 

cells originating from healthy, mild, and severe samples. Clusters with less than 5 cells 

were removed.  

https://www.zotero.org/google-docs/?puZ8lm
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To identify marker genes for each cluster, we employed the 

FindAllMarkersMAESTRO function from the MAESTRO package in R. After 

identifying marker genes for each cluster, we annotated the clusters using 

RNAAnnotateCelltype function from the MAESTRO package based on canonical marker 

genes for immune cell types. Cell type annotation identified 13 cell populations, CD16+ 

Monocyte, CD4 Naïve T cell, CD8 Effector Memory T cell, Naïve B cell, Erythroid cell, 

CD14+ Monocyte, Platelet, Hematopoietic Stem and Progenitor cell, CD4 Proliferating T 

cell, Natural Killer cell, classical Dendritic Cell, plasmacytoid Dendritic Cell, and 

Plasmablast (Fig 4.7).  

 

Figure 4. 7: UMAP visualization of CITE-seq cell clustering using Seurat and Azimuth PBMC 
Reference Annotation with cells from Healthy, Mild, and Severe COVID-19 samples 
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4.5.2 Identifying PTTs  

In the CITE-Traffick first module, we compiled a total of 1,582 genes that are 

related to intracellular protein trafficking using GO analysis. Out of the 36 ADTs within 

the CITE-Seq data, we selected 30 ADTs considering the availability of coding genes in 

the mRNA assay. Recognizing multiple subunits for certain surface proteins, we 

thoughtfully incorporated the coding genes for all relevant subunits.  

This encompassed, CD3D, CD3G, and CD3E for ADT CD3; HLA-DRA, HLA-DRB1, 

and HLA-DRB5 for ADT HLA-DR; and FCGR1A, FCGR2A, FCGR3A, FCGR1B, 

FCGR2B, and FCGR3B for ADT CD16. A total of 39 ADT-coding gene pairs, in 

conjunction with 1582 ICT genes, was subsequently employed to generate a set of 61,698 

unique ICT trios. 

 Independent mixed effects regression models were run for all the ICT trios in all 

the three comparison groups – healthy, mild, and severe. Based on the significant 

coefficients in equation [4.1] that represent the association between cell surface protein 

expression and ICT gene expression, CITE-Trafficking identified 4754, 732, and 2243 

PTTs in healthy controls, mild COVID-19 cases, and severe COVID-19 cases, 

respectively, at FDR<0.05. A total of 1034 unique significant ICTs associated with 25 

unique ADTs in Healthy, a total of  637 unique ICTs associated with 19 unique ADTs in 

Severe and 365 unique ICTs associated with 18 unique ADTs in Mild were identified.  

We performed two-way hierarchical clustering of all the PTTs which exhibited 

clustering patterns showing the association of cell surface protein expression with the 

transcription of multiple ICT genes, and vice versa, confirming the many-to-many 
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relationships (Fig 4.8). The cell surface protein associated with the largest number of ICT 

genes was CD11c (551) and CD16 (489) in healthy controls, CD16 (168) and CD613 

(63) in mild cases, and CD16 (301) and HLA-DR (274) in severe cases. Clusters 

observed in the heatmap indicated ICT genes associated with a common set of proteins. 

For example, GAS6, DAB2, and RAB3B are associated with surface proteins CD16, 

CD123, CD163, CD33, etc. in severe, mild, and healthy samples.  Transcription of most 

ICT genes facilitated transportation, as implied by the positive associations (in red color). 

For a few ICT genes, the transcription level was negatively associated with cell surface 

protein expression (blue color in heatmap). These genes, such as STAB1 and DYSF, 

which are negatively associated with CD16 and CD123 surface markers, have GO 

annotations related to endosome and endocytosis, plausibly participated in the process 

that internalizes, breaks downs, or recycles cell surface proteins (Kzhyshkowska et al., 

2006). There are clusters of ICT genes showing a positive association with certain surface 

proteins and a negative association with some other surface protein. For example, all ICT 

genes MARCO and CLEC10A is positively associated with HLA-DR, CD33, CD38, 

CD163, and CD14, and it has a negative association with CD16, and CD123.  

The two-way clustering results also show that the associations between ICT genes 

and cell surface protein expression varies by disease status. For example, gene ACTB is 

shown to have a negative association with HLA-DR in healthy (-0.13) and a positive 

association in severe (0.11). To systematically investigate these changes, CITE-

Trafficking was used to build mediation networks comparing ICT processes between 

disease groups.  

https://www.zotero.org/google-docs/?9r2ROn
https://www.zotero.org/google-docs/?9r2ROn
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4.5.3 CITE-Traffick Reveals Dysregulated ICTs Associated with HLA-DR Expression in 

CD16+ Monocyte 

The original study reported underexpression of human leukocyte antigen class DR 

(HLA-DR) on the surface of monocytes in COVID-19 patients, with the lowest 

expression level observed in severe cases. HLA-DR is a major histocompatibility 

complex (MHC) class II molecule that is expressed on antigen-presenting cells (APCs), 

including monocytes, dendritic cells, macrophages, and B cells. It presents antigen 

peptides to T cells and activates them. Interestingly, differential expression analysis of 

Figure 4. 8: UMAP visualization of CITE-seq cell clustering using Seurat and Azimuth PBMC 
Reference Annotation with cells from Healthy, Mild, and Severe COVID-19 samples 
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the surface proteins revealed significant under expression of HLA-DR in CD16+ 

Monocytes of severe compared to healthy and mild (Fig 4.9). Therefore, CITE-Traffick 

analysis was centered around CD16+ Monocytes identified through our cell clustering 

analysis. To investigate the dysregulation of intracellular trafficking (ICT) genes in the 

context of low HLA-DR expression in COVID-19 monocytes, we conducted separate 

comparisons between severe COVID-19 samples and both healthy samples and mild 

COVID-19 samples. Through this comparative analysis, we aimed to identify ICT genes 

that exhibited consistent and distinct dysregulation across different severity groups. 

 

 

 

 

Figure 4. 9: Boxplot showing significant under expression of HLA-DR 
surface protein in severe compared to healthy controls and mild patients. 
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4.5.3.1 Severe - Healthy Comparison 

In our initial assessment of PTTs for HLA-DR from the mixed effects regression 

model, we identified 359 ICT genes that exhibited a statistically significant association 

with HLA-DR expression in either healthy controls or severe COVID-19 cases or both 

with thresholds set at adjusted p-value < 0.05 and absolute value of regression coefficient 

> 0.1. Out of the 359, 131(36%) of the genes were uniquely identified in the healthy 

group, 177(49%) were unique to the severe group and 51(14%) were common to both 

severe and healthy. We examined the coefficients from the regression model to estimate 

the effect of ICT genes on surface marker expression.  

Some ICT genes showed a consistently positive association with the HLA-DR 

expression in both severe and healthy. It is interesting to note that some of these ICT 

genes were also widely reported in COVID related studies. For example, CD74 from our 

analysis is shown to be significantly positively correlated with the HLA-DR expression. 

The HLA-DR surface marker has two subunits, the alpha chain encoded by the HLA-DRA 

gene and the beta chain encoded by multiple HLA-DRB genes (Nomenclature for Factors 

of the HLA System, 2010 - Marsh - 2010 - Tissue Antigens - Wiley Online Library, n.d.). 

Two of these genes (HLA-DRA and HLA-DRB1) were expressed in a sufficient number of 

cells (>5) to be tested using the regression model in both severe and healthy.  

 

 

 

https://www.zotero.org/google-docs/?JB9tER
https://www.zotero.org/google-docs/?JB9tER
https://www.zotero.org/google-docs/?JB9tER
https://www.zotero.org/google-docs/?JB9tER
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Trafficking trios identified by the regression model showed that the expression of HLA-

DR on cell surface was consistently positively correlated with the transcription of these 

two coding genes (0.1 - 0.2) as well as the ICT gene CD74 (0.18 - 0.23) in healthy and 

severe (Fig. 4.10 A). These concordant patterns imply that CD74 is a key ICT gene in 

trafficking both subunits of HLA-DR.  The Fig 4.10 B further demonstrates a positive 

correlation between ICT gene CD74 and HLA-DR surface protein in Healthy and Severe.  

Based on GO annotations, CD74 is an integral component of the luminal side of 

ER membrane (GO:0071556) and part of ER to Golgi transport vesicle membrane 

(GO:0012507); CD74 participates in intracellular protein transport (GO:0006886) and is 

a protein folding chaperone (GO:0044183). There are multiple studies indicating the role 

of CD74 as a crucial protein-binding chaperone for HLA-DR, facilitating the proper 

assembly and presentation of antigens by major histocompatibility complex class II 

(MHC-II) molecules (Schröder, 2016). In the study conducted by Kvedaraitea et. al, 

using high-dimensional flow cytometry analysis on mononuclear phagocyte (MNP) 

lineages in SARS-CoV-2-infected patients with moderate and severe COVID-19, 

researchers have found lower expression levels of MHC class II and CD74 in severe 

COVID-19 patients (Kvedaraite et al., 2021).  

https://www.zotero.org/google-docs/?RmtLtL
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Figure 4. 10: HLA-DR and CD74. (A) Boxplots showing the protein expression of HLA-DR 
surface protein at varying levels of its coding gene HLA-DRA and ICT gene CD74 with 
expression level above top 80% and bottom 20% quantiles. (B) Scatter plot showing positive 
correlation between ICT gene CD74 and surface protein HLA-DR in both Severe and Healthy 

  

A 

B 
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Another example, CLU exhibits a negative association with HLA-DR expression 

with coefficients ranging between -0.26 and -0.11 in severe and healthy. Trafficking trios 

identified by the regression model showed that the expression of HLA-DR on cell surface 

was consistently positively correlated with the transcription of its two coding genes HLA-

DRA and HLA-DRB1 (0.1 - 0.2) and negatively correlated with the ICT gene CLU in 

healthy and severe (Fig. 4.11).  

 

Figure 4. 11: HLA-DRA and CLU. A) Boxplots showing the protein expression of HLA-DR 
surface protein at varying levels of its coding gene HLA-DRA and ICT gene CLU with expression 
level above top 80% and bottom 20% quantiles. While there is no significant difference in 
expression level at 20%, the change in expression level at 80% is significant. (B) Scatter plot 
showing negative correlation between ICT gene CLU and surface protein HLA-DR in both Severe 
and Healthy 

A 

B 
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On examining the GO terms for CLU, we saw that it is associated with 

endocytosis and autophagy as it participates in positive regulation of receptor-mediated 

endocytosis (GO:0048260) and protein targeting to lysosome involved in chaperone-

mediated autophagy (GO:0061740). A study has revealed the crucial role of endocytosis 

in the transport of HLA-DR proteins to the cell surface, as it facilitates the delivery of 

newly synthesized major histocompatibility complex (MHC) class II molecules from the 

trans-Golgi network (TGN) to early endosomes, enabling peptide loading and subsequent 

antigen presentation to CD4+ T lymphocytes (Brachet et al., 1999).  

A study on autophagy in the pathology of COVID and its potential therapeutic 

implications, reviews how viruses, including coronavirus, exploit this cellular process for 

their replication and, therefore, medications that have modulatory effects on autophagy 

could be potential treatments against this virus. Several of the ICT genes identified 

through our method are consistent with the aforementioned process, highlighting the 

potential relevance of endocytosis and autophagy in the transport of HLA-DR proteins to 

the cell surface. The regression results for the ICT genes CD74 and CLU and the GO 

terms associated with them are displayed on Tables 4.4 and 4.5. 

https://www.zotero.org/google-docs/?PBfvYS
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 ICT mRNA ICT.coef ICT.Padj mRNA.coef mRNA.Padj 

CD74 HLA-DRB1 0.21 0.00 0.10 0.00 

CD74 HLA-DRA 0.19 0.00 0.13 0.00 

CD74 HLA-DRB1 0.23 0.00 0.15 0.00 

CD74 HLA-DRA 0.18 0.00 0.20 0.00 

CLU HLA-DRB1 -0.11 0.00 0.22 0.00 

CLU HLA-DRA -0.14 0.00 0.24 0.00 

CLU HLA-DRB1 -0.23 0.00 0.28 0.00 

CLU HLA-DRA -0.26 0.00 0.31 0.00 

Table 4. 4: CITE-Traffick regression results for PTTs with ICT genes CD74 and CLU 
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Table 4. 5: GO terms associated with ICT genes CD74 and CLU 

SYMBOL GO ONTOLOGY TERM 

CD74 GO:0000139 CC Golgi membrane 

CD74 GO:0005771 CC multivesicular body 

CD74 GO:0005765 CC lysosomal membrane 

CD74 GO:0005773 CC Vacuole 

CD74 GO:0005886 CC plasma membrane 

CD74 GO:0006886 BP intracellular protein transport 

CD74 GO:0009897 CC external side of plasma membrane 

CD74 GO:0012507 CC ER to Golgi transport vesicle membrane 

CD74 GO:0032588 CC trans-Golgi network membrane 

CD74 GO:0042613 CC MHC class II protein complex 

CD74 GO:0043202 CC lysosomal lumen 

CD74 GO:0044183 MF protein folding chaperone 

CD74 GO:0071556 CC integral component of lumenal side of 
endoplasmic reticulum membrane 

CLU GO:0005794 CC Golgi apparatus 

CLU GO:0048260 BP positive regulation of receptor-mediated 
endocytosis 

CLU GO:0051087 MF chaperone binding 

CLU GO:0061740 BP protein targeting to lysosome involved in 
chaperone-mediated autophagy 

CLU GO:0097440 CC apical dendrite 

CLU GO:0099020 CC perinuclear endoplasmic reticulum lumen 

CLU GO:0140597 MF protein carrier activity 
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Regularized Mediation Analysis 

To test whether the ICT genes identified are associated with severity of COVID 

outcome and to test whether this association is mediated by the expression of HLA-DR 

on cell surface, we ran a single-mediator-multiple-exposure regularized mediation model. 

All the 359 ICT genes identified from the first module were used as exposures; HLA-DR 

protein was designed as mediator and severe COVID disease as outcome (severe vs 

healthy). The results, illustrated in Fig 4.12 revealed negative association of HLA-DR 

with disease severity, with a 𝛃 coefficient of -0.05. Only a total of 124 (35%) ICT genes 

were selected by the model with HLA-DR showing full mediation with 38 (31%) ICT 

genes with 𝜶 coefficients ranging from -0.05 to 0.06; partial mediation effects for 20 

(16%) ICT genes, where 𝜶 coefficients ranged from  -0.12 to 0.28 and 𝛅 coefficients 

ranged from -0.13 to 0.14; and 66 (53%) ICT genes without an indirect effects on disease 

through HLA-DR.  

 

Figure 4. 12: Mediation 
network with HLA-DR as 
mediator (in pink), ICT genes 
as exposures (blue, green, and 
yellow) and D as outcome 
(red). The figure highlights the 
ICT genes with different 
mediation levels - full 
mediation (yellow), partial 
mediation (green) or without 
any mediation connection 
(blue)exposure as green 
circles), the HLA-DR surface 
marker (mediator as blue 
circle), and disease outcome 
(red circle).  
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On comparing the 𝜶 coefficients from the regularized mediation model with the 

mixed effects regression coefficients for the 58 ICT genes, we noticed that while most of 

the genes shows association in the same direction (positive or negative) some of them 

were showing association in opposite direction. The ICT genes CD74 and CLU discussed 

in the previous section consistently exhibit positive and negative association with HLA-

DR. The ICT gene CD74 exhibits partial mediation through HLA-DR, with 𝜶 = 0.28, and 

concurrently displays a direct negative association with the disease with 𝛅 = -0.12. This 

strongly suggests that CD74 plays a critical role in regulating HLA-DR expression, 

implying that reduced CD74 expression could contribute to the lower levels of HLA-DR 

expression observed in the context of the disease. The ICT gene CLU also exhibits partial 

mediation through HLA-DR wth 𝜶 = -0.12 and  𝛅 = 0.192 re confirming negative 

association of CLU gene on HLA-DR expression and also positive association with the 

disease. The Table 4.6 provides a comprehensive overview of ICT genes derived from 

the regularized mediation model with HLA-DR as the mediator.  
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Table 4. 6: Overview of ICT genes derived from regularized mediation model for HLA-DR  

Mediation ICT α Δ 

Full ACTR2 AP2S1 ARL4C B2M BICD1 CCDC88A CYFIP1 DPYSL2 

DST EZR FCER1G FCN1 GRN GZMB HLA-B HNRNPU MSN 

MSR1 NSF OSBP PACSIN2 PRNP RAB10 RAB12 RAB20 

RAB28 RAB34 RALB RHOQ RILPL1 RUFY3 SEL1L SNCA SRC 

SYK SYTL1 VAMP5 ZDHHC1 

-0.05 - 0.06   

Nil ABCG1 ARF5 ARHGAP21 ASGR1 ATP5F1B ATP5PO BLOC1S1 

BLOC1S4 BNIP3L CALM1 CALM3 CANX CCT8 CD14 

CD300LF CD63 CD81 CHMP4B CHP1 CLTA CTTN CXCL16 

DBNL DOC2B EDEM1 FCGRT FPR2 HSBP1 HSP90AA1 

HSPA1A IL1B ITGAM LAPTM5 LCP1 LDLR LRP1 MGRN1 

NCF1 NFKBIA OPTN PARK7 PTGS2 PYCARD RAN RHOG 

SDCBP SGPP1 SH3GLB1 SNAP23 SNX10 SOD1 SQSTM1 

STAB1 STARD4 STX11 TRAK1 UBB VAMP3 VPS29 VTI1B 

WASHC2A WASHC2C YKT6 ZDHHC18 ZDHHC20 ZP3 

  -0.07 - 

0.26 

Partial ACTB ACTG1 AP1S2 CD74 CLEC10A CLU GAS6 JAK2 JUP 

LILRB4 LMAN1 MARCO NPC2 PLCG2 RHOB SFTPD 

TAMALIN TAPBP UNC93B1 VAMP8 

-0.12 - 0.28 -0.13 - 

0.15 

 

The Fig 4.13 visually illustrates the distribution of various ICT genes, 

highlighting both positive and negative associations with HLA-DR transport, across 

diverse cellular components within the realm of intracellular trafficking. It is evident that 

ICT genes participate in both exocytic and endocytic pathways within the cellular 

compartment. For example, ICT genes CLU and MARCO are seen participating in 

endocytosis by forming part of the early endosome and late endosome.   
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The ICT genes like GRN and TAPBP which are part of the ER and Golgi, RAB10 and 

NSF are part of exocytosis. We can also find ICT genes that are helping with movement 

of protein from Golgi to the plasma membrane where they get embedded. Also, ICT 

genes part of lysosome are seen helping with recycling of proteins back to ER.   

 

 To explore the enrichment of ICT genes within biological processes and cellular 

components related to intracellular protein trafficking, we conducted an enrichment 

analysis utilizing GOBP (Gene Ontology Biological Processes) and GOCC (Gene 

Ontology Cellular Component) gene sets obtained from the MsiGDB database.  

 

 

 

Figure 4. 13: Schematic diagram of intracellular trafficking pathways. Dysregulated ICTs that 
are positively associated with the transport of HLA-DR surface protein are shown in red and 
the dysregulated ICT genes with negative association are shown in red and are positioned in 
the place where they are believed to function. 
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As displayed in the Fig 4.14 several of the ICT genes are seen to be enriched in 

GOCC_ENDOSOME geneset with a total count of 39, GOCC_VACUOLE with a count 

of 33, and GOCC_ENDOSOME_MEMBRANE with a count of 21 genes. In the GOBP 

category, the genesets 

GOBP_PROTEIN_LOCALIZATION_TO_PLASMA_MEMBRANE (count = 22) and 

GOBP_REGULATION_OF_INTRACELLULAR_TRANSPORT (count = 22) are the 

top gene sets with most genes enriched.  

 

To comprehensively assess the extent to which significant ICT genes explain the 

variability in HLA-DR protein abundance, we conducted a two-step regression analysis. 

In the initial step, our aim was to establish that the expression of HLA-DR protein could 

be accounted for by the expression of its constituent coding genes, namely HLA-DRA 

and HLA-DRB1, while controlling for relevant covariates like age and sex.  

Figure 4. 14: Gene sets enriched in Gene Ontology Biological Processes (GOBP) for the 
ICT genes from CITE-Traffick 
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Subsequently, in the second step, we regressed the residuals obtained from the 

first regression analysis on the ICT genes to examine whether these genes could clarify 

the remaining variability, even after considering coding gene expression and covariates. 

Notably, in this second step, the analysis revealed that all ICT genes obtained from the 

regularized mediation process exhibited significant associations with the residuals 

(significance indicated by α with p < 0.05). This compelling outcome underscores the 

substantial influence of ICT genes in elucidating a noteworthy portion of the variance in 

HLA-DR protein expression. Importantly, their impact is observed beyond the effects of 

coding gene expression and other control variables. 

Functional enrichment analysis revealed dysregulated inflammation-related pathways 

 To identify differentially expressed genes (DEG) between severe and healthy 

samples, we compared the expression level of each of the genes within the CD16 

monocyte population. There were 1669 significant DEGs at a p-value threshold of < 0.05 

and absolute value of average log2 fold change > 0.1. The DEGs were further filtered for 

ICT genes which resulted in 231 significant ICT DEGs. The Fig 4.15 shows the 

overlapping of ICT genes identified through the CITE-Traffic penalized regression model 

with significant ICT DEGs. Out of the 124 ICT genes identified in the regularized 

mediation model, 72(58%) are DEGs while 52 (42%) were uniquely identified by CITE-

Traffick. Among the 52 ICTs, HLA-DR was showing full-mediation effect for 30 (58%) 

ICTs, partial mediation effect for 8 (15%) ICTs, and no mediation effect in the case of 14 

(27%) ICTs. Among the 72 ICTs that are also DEGs, 8 (11%) have full mediation, 12 

(17%) have partial mediation, and 52 (72%) did not have mediation effect.  
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Out of 231 DEGs, 159 (69%) were not identified by the mediation model as significantly 

associated with HLA-DR protein or disease outcome. When examining the regression 

model results, this number came down to 136, so 23 genes while they exhibited 

significant association with HLA-DR, they did not pass the mediation test. The rest of the 

136 genes even though they are differentially expressed between Severe and Healthy they 

are not significantly associated with the transport of HLA-DR.   

 

To understand the common  biological functions and pathways these DEGs share, 

we conducted a GSEA analysis using the differentially expressed genes between severe 

and healthy cases, employing both Hallmark and Curated gene sets from MSigDB (A. 

Subramanian et al., 2005) (Liberzon et al., 2011). Following this initial analysis, we 

further refined our findings by filtering the results with CITE-Traffick ICT genes.  

 

Figure 4. 15: Overlap of DEG and ICT genes with full, partial or 
nil mediation through HLA-DR 

https://www.zotero.org/google-docs/?o3Qkvc
https://www.zotero.org/google-docs/?o3Qkvc
https://www.zotero.org/google-docs/?LUeffx
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This approach aimed to delve into the enrichment of these genes within immune 

pathways pertinent to the disease phenotype, providing deeper insights into the 

underlying mechanisms. The Fig 4.16 showcases the Hallmark pathways and Reactome 

pathways enriched with ICT genes. 

 

 

Figure 4. 16: Pathway enrichment analysis of ICT genes. (A) Hallmark pathways (B) 
Reactome pathways  

A 

B 
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From the enriched pathways it is noted that CD74, IL1B, and B2M which are 

downregulated in severe compared to healthy are all part of 

HALLMARK_ALLOGRAFT_REJECTION. A study on sepsis gene expression 

signatures in severely afflicted COVID-19 patients underscores the importance of organ 

dysfunction and its potential implications for allograft rejection in severe COVID-19 

patients (Baghela et al., 2023). ICT genes CALM1, CALM2, CLU, ITGAM, and LRP1 

CLU, CALM3, and FCN1, which are upregulated in severe compared to healthy, are part 

of the HALLMARK_COMPLEMENT pathway. Several studies (Mazzoni et al., 2021) 

(Rovito et al., 2022) (Kircheis et al., 2020) provide compelling evidence that the 

inflammatory response is a hallmark of severe COVID-19. Their investigation, which 

involved analyzing immune profiles in patients with mild, moderate, and severe COVID-

19, demonstrated distinct patterns of immune activation and cytokine dysregulation in 

individuals with severe disease. NFKBIA, TAPBP, STAB1, LDLR all of which are 

upregulated in severe compared to healthy are the ICT genes that show part of 

inflammatory related pathways - HALLMARK_INFLAMMATORY_RESPONSE, 

HALLMARK_INTERFERON_GAMMA_RESPONSE, and 

HALLMARK_TNFA_SIGNALING_VIA_NFKB.  The ICT genes STAB1, LDLR, CLU, 

and CXCL16 were found to be significantly enriched in the 

HALLMARK_CHOLESTEROL_HOMEOSTASIS pathway.  

 

 

 

https://www.zotero.org/google-docs/?AxyETh
https://www.zotero.org/google-docs/?gfSdK9
https://www.zotero.org/google-docs/?3miZ4w
https://www.zotero.org/google-docs/?XH7oOh
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Studies (Dai et al., 2022) (Bakillah et al., 2022), have investigated the dysregulation of 

cholesterol balance, which has emerged as a significant factor in COVID-19, with 

implications for both viral replication and the host immune response. ICT genes such as 

STAB1, LDLR, and CLU displayed notable upregulation in severe patients, whereas 

CXCL16 did not attain significance in the DEG list. 

A recent study has indicated increased plasma concentration of CXCL16 in 

COVID-19 hospitalized patients and demonstrated its association with disease severity 

(Smieszek et al., 2022). Previous studies have emphasized the critical role of the WASF 

regulatory complex, a 5-subunit protein complex associated with invasion and metastasis 

phenotypes, with CYF1P1 being one of its coding genes (Y. Xiong et al., 2019). Notably, 

CYF1P1 which is a significant ICT gene in severe-healthy analysis and is implicated as 

part of the REACTOME_INNATE_IMMUNITY_SYSTEM pathway. On the other hand, 

DEG analysis did not identify CYF1P1 as a significant gene. Although not identified as a 

significant DEG in our study, the ICT genes CYF1P1 and CXCL16 in the CITE-Traffick 

analysis underscores their potential as valuable marker discovery tools, illuminating their 

importance beyond traditional differential expression analysis. Similarly, CLU, CALM3, 

and FCN1, which were also upregulated in severe compared to healthy, is part of the 

HALLMARK_COMPLEMENT pathway. Studies conducted by (Jarlhelt et al., 2021) and 

(L. Ma et al., 2021) have extensively investigated the role of complement immune system 

activation as a prominent feature of severe COVID-19.  

 

https://www.zotero.org/google-docs/?9jvoQC
https://www.zotero.org/google-docs/?bs3X8C
https://www.zotero.org/google-docs/?vg61W1
https://www.zotero.org/google-docs/?xkKCnS
https://www.zotero.org/google-docs/?l2VZkY
https://www.zotero.org/google-docs/?uSDhAh
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4.5.3.2 Severe - Mild Comparison 

In the severe to mild (SM) comparison analysis, 365 ICT genes were selected by 

the mixed effects regression model for the Mild group out of which 248 ICTs (68%) were 

common between Severe and Mild. Only 46 (13%) ICTs passed the regularized 

mediation test with HLA-DR having full mediation effect for 21 ICTs (46%), partial 

mediation with 11 ICTs (24%) and no mediation for 14 ICTs (30%). In the severe to mild 

comparison also, HLA-DR protein revealed negative association with covid severity (β 

=0.15). To investigate the dysregulation of intracellular trafficking (ICT) genes in the 

context of low HLA-DR expression in severe and mild COVID-19 samples, we 

compared SM and SH regularized mediation analysis results (Fig 4.17.A). Intriguingly, a 

set of 96 Intracellular Trafficking Genes (ICTs) exhibited specific dysregulation in the 

Healthy (SH) group, while 18 ICTs uniquely displayed dysregulation in the Severe (SM) 

group. The ICT genes that exhibited dysregulation unique to the SH may be genes that 

are specifically associated with the pathological processes and immune response 

observed in severe cases of COVID-19 and dysregulated ICT genes unique to SM may be 

involved in modulating the transition from mild to severe COVID-19.  

Interestingly, it was revealed that 28 ICTs (61%) were found to be dysregulated in 

severe COVID-19 samples compared to both healthy (SH) and mild (SM) COVID-19 

comparisons. While some of the ICTs for example, CLU, CD74, CXCL16 had similar 

mediation effects in both SH and SM analysis, other ICTs were showing different 

mediation effects in SH and SM comparisons (Fig. 4.17 B). For e.g. CLU and CD74 are 

having partial mediation in both SH and SM, EZR and RAB34 are having full mediation 
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in both, and CXCL16 and HSPA1A display no meditation in both. The ICT GAS6 shows 

partial mediation in SH, while it shows full mediation in SM. Another example, RHOQ 

which shows full mediation in SH, but has no mediation effect in SM. Next, we 

compared the delta coefficients associated with these ICT genes against the DEG (Fig. 

4.17.C). Interestingly all the 28 ICTs were found to be DEGs. Except for the genes: NSF, 

RAB34, RALB, RUFY3, UNC93B1, and VAMP8, the direction of differential 

expression for all other ICTs was consistent across both the SM and SH comparisons. 

 

 

Figure 4. 17: Comparative Analysis of ICT Dysregulation in Severe- Healthy (SH) and Severe - 
Mild (SM) Comparisons. (a) Comparison of regularized mediation analysis reveals unique and 
overlapping ICT genes in SM and SH groups. (b) Mediation effects of overlapping ICT genes in 
both SM and SH comparisons show variability in associations, with different genes displaying 
varying mediation effects across the groups. (c) Comparison of Differential Expression (DEG) and 
mediation coefficients of overlapping ICT genes across SH and SM. 

  

A B C 
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4.5.4 CITE-Traffick Identifies Dysregulated ADT-ICT Mediation Network in CD16+ 

Monocyte 

CITE-Traffick has been successful in identifying the dysregulated ICT genes 

associated with the transport of HLA-DR protein in CD16+ Monocyte and also was able 

to identify the direct and indirect effects of these genes on the disease outcome, it is 

worthwhile to see its application on a wide scale of ADTs and ICT genes. Hence with the 

aim to explore a wider network of dysregulated ADT-ICT networks we shifted our focus 

to a multi-mediation network which involves multiple exposures and multiple mediators. 

CITE-Traffick offers two ways to explore the multi-mediation mediation network: (i) 

Regularized mediation and (ii) Structural Equation modeling. In the following sections 

we will apply both these methods to CD16+ Monocyte cell population in Severe COVID 

and Healthy groups from the COVID dataset. 

4.5.4.1 Regularized Mediation Model 

 Regularized mediation analysis using Regmed was run using all the PTTs 

identified in Module I at an adjusted p-value threshold of 0.05 and absolute correlation 

coefficient threshold of 0.05. At this threshold, a total of 2015 PTTs were identified in the 

Severe group and 3778 PTTs were identified in the Healthy group, which included a total 

of 23 ADTs and1123 ICT genes. With ADTs as mediators and ICT genes as exposures, 

regularized mediation analysis. At a lambda of 0.01, a total of 10 ADTs were retained by 

the regularization which includes HLA-DR, CD14, CD16, CD33, CD38, CD163, CD4, 

CD123, CD3, and CD1c out of which CD33 did not form mediation connection with any 

of the ICT genes. Out of 1123 ICT genes only 159 (14%) genes were retained with non-
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zero coefficients in the model. Out of the 159 ICT genes, only 52 (33%) had mediator 

connections, the rest 107 (67%) of the ICT genes had no mediators connected. Table 4.7  

gives all the ADTs and the corresponding exposure ICTs which are divided into partial, 

full or nil based on the type of mediation the ADT forms with the ICT genes. The Fig 

4.18 illustrates the mediation network of ICT genes and proteins. For the HLA-DR 

protein, a total of 517 ICT genes were tested. In the multiple mediator model, It is noticed 

that for the HLA-DR protein, only 103 ICT genes (20%) were retained. Out of these 103 

ICT genes, fewer ICTs with mediation effects were identified in the multiple-mediator 

model (18%) compared to the single-mediator models. Conversely, more ICTs (82%) 

without mediation effects were identified.   

 

 

Figure 4. 18: Multiple-Exposure-Multiple-Mediator regularized 
mediation model in Severe-Healthy 
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Table 4. 7: Results from multiple-mediator-multiple-exposure regularized mediation model in Severe-Healthy 

ADT Mediation ICT α Δ 

CD123 full CD14 CMTM6 MSN RABGAP1L -0.08 - 0.03   

  partial CD36 CD63 CTSC CUX1 FCN1 NCF1 SNX18 -0.01 - 0.03 -0.04 - 0.24 

CD14 full CD14 CD9 STAB1 0.05 - 0.33   

  partial ACTG1 CD163 CD36 CLU CTSC HIF1A 
ITGAM NCF1 NFKBIA SIGLEC1 SOD1 

-0.02 - 0.08 -0.07 - 0.09 

CD16 full ARL4A CD14 CMTM6 FCER1G GRN ITGB1 
MSN PDCL3 PYCARD STAB1 STXBP2 

-0.15 - 0.09   

  partial CD36 CLEC10A CTSC HSBP1 IL1B ITGAM 
NCF1 RAP1B SOD1 TUBA1A 

-0.02 - 0.07 -0.08 - 0.03 

CD163 full CCR1 CD14 DPYSL2 LGALS3 0 - 0.11   

  partial CD163 CD36 CD63 CLEC10A FCN1 GAS6 
LILRB4 VAMP8 

0.01 - 0.06 -0.02 - 0.24 

CD1c full DST 0.01   

CD3 full CD6 RASGRP1 SYNE2 0.04 - 0.06   

CD33 nil ASGR1 CD14 CD36 CD63 FCN1 ITGAM 
NCF1 NFKBIA STAB1 

0.01 - 0.14   

CD38 full ASGR2 B2M CD14 STAB1 SYNE2 -0.02 - 0.13   

  partial ATP2A3 CD36 CD63 CLU CTSC HIF1A 
LDLR NCF1 NFKBIA SOD1 TXNDC5 

-0.05 - 0.07 -0.04 - 0.24 

 CD4                  full  CD14  0.02 - 0.02   

     

HLA-DR full AP2S1 DPYSL2 DST EZR MACF1 MSR1 SRC 
VAMP5 

0.01 - 0.03  

  partial ACTB AP1S2 ARL4C CD74 CLEC10A CLU 
FCN1 LILRB4 MARCO S100A10 VAMP8 

-0.03 - 0.27 -0.09 - 0.09 
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4.5.4.2 Structural Equation Modeling  

The PTTs for the SEM model are filtered for adjusted p-value threshold < 0.05, 

absolute correlation coefficient > 0.1 and the ICT genes were filtered based on total 

number of cells with non-zero expression > 200. Using these criteria a total of 23 ADTs 

and 415 ICT genes were selected. Hierarchical clustering of the ADTs revealed the 

formation of 1 to 4 distinct clusters (see Fig 4.19). As illustrated in the figure, we 

specifically examined the clustering within the first protein module, which intriguingly 

placed the HLA-DR protein alongside the ADTs CD86 and CD11c. This arrangement 

aligns with previous findings from the original paper, which reported a noteworthy 

underexpression of CD86, coupled with HLA-DR, in monocytes of COVID patients, as 

confirmed by CyTOF analysis (Arunachalam et al., 2020). While our analysis of the 

differential ADT expression in the CITE-Seq dataset did not explicitly validate this 

observation, the co-clustering of CD86 and HLA-DR proteins offers a compelling 

perspective on this intriguing relationship. 

https://www.zotero.org/google-docs/?qJEhKL
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The hierarchical clustering of the ICT genes for each protein module resulted in 3 to 4 

ICT clusters. The Fig 4.20 demonstrates the clustering of ICT genes in the first protein 

module.  

 

Figure 4. 19: Hierarchical clustering of proteins in Severe-Healthy based on top 5 PCs 

Figure 4. 20: Hierarchical clustering of ICT genes in Severe-Healthy based on top 5 PCs 
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In the context of our SEM mediation analysis, we constructed distinct mediation 

models, each comprising of two structural components. The first component was 

dedicated to the computation of latent variables derived from ICT genes, while the 

second component was responsible for the computation of latent variables from ADTs. 

The measurement component of our model was designed to facilitate a comprehensive 

mediation analysis.  

Upon thorough evaluation of the model fit measures for various combinations and 

structures, a deliberate decision was made to confine our models to include only first-

order latent variables. As a result, we subsequently developed separate mediation models, 

each corresponding to an ICT module along with its respective protein module (Fig 

4.21). This refined approach was chosen to ensure the most effective and interpretable 

representation of our data. 
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A total of 11 SEM models were tested with only 2 models having non-significant 

paths connecting the disease outcome to either ICT latent variable (D ~ ICT_LV) or ADT 

latent variable (D ~ CS_LV). All the paths in the mediation network connecting ICT and 

ADT latent variables (CS_LV ~ ICT_LV) were significant. Out of 358 ICTs and 23 

ADTs tested in SEM models, 344 (96%) ICTs had significant association with the ICT 

latent variable ICT_LV. Also, all of the 23 ADTs have significant association with the 

ADT latent variable CS_LV.  

 

Figure 4. 21: SEM framework for significant ICT genes and ADTs from Severe to Healthy 
comparison 
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The Table 4.8 shows the performance metrics for each of the models tested for 

Severe -Healthy comparison. The chi-square test of all the models was statistically 

significant. The other fit measures attained the recommended target values for some of 

the models. The Standardized Root Mean Square Residual (SRMR) represents the 

square-root of the difference between the residuals of the sample covariance matrix and 

the hypothesized model. The recommended values for RMSEA and SRMR are < 0.08. 

The RMSEA and SRMR for all four models are below this cut-off.  

The Normed Fit Index (NFI) indicates the proportion by which the model of 

interest improves the fit and it is recommended to be > 0.90. The Incremental Fit Index 

(IFI) adjusts the Normed Fit Index (NFI) for sample size and degrees of freedom and it is 

recommended that > 0.90 is a good fit. In our case IFI for all models is between 0.74 and 

0.96. The Goodness of Fit (GFI) is the proportion of variance accounted for by the 

estimated population covariance and its cut-off is > 0.9. All our models are above this 

cut-off.  Finally, the Parsimony-Adjusted Measures Index (PNFI) is recommended to 

have a value > 0.50. All four models have achieved this threshold. The Relative Fit Index 

(RFI) close to 1 indicates a good fit.  
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Table 4.8. SEM models in Severe-Healthy with their fit measures 

Model p_Chi2 GFI NFI RFI IFI PNFI RMSEA SRMR 

cluster_1_g1 

cluster_1_g2 

0.00 

0.00 

0.89 

0.96 

0.63 

0.76 

0.58 

0.75 

0.64 

0.85 

0.56 

0.74 

.07 

.02 

.07 

.02 

cluster_1_g3 0.00 0.95 0.78 0.77 0.86 0.76 .02 .02 

cluster_1_g4 0.00 0.98 0.93 0.93 0.96 0.89 .02 .02 

cluster_2_g1 0.00 0.92 0.82 0.80 0.83 0.75 .05 .05 

cluster_2_g2 0.00 0.95 0.65 0.65 0.80 0.64 .01 .02 

cluster_2_g3 0.00 0.94 0.88 0.88 0.91 0.86 .03 .03 

cluster_2_g4 0.00 0.95 0.84 0.83 0.86 0.80 .03 .03 

cluster_3 0.00 0.99 0.82 0.79 0.87 0.69 .02 .02 

cluster_4_g1 0.00 0.97 0.92 0.91 0.93 0.77 .05 .03 

cluster_4_g2 0.00 0.97 0.76 0.75 0.83 0.73 .02 .02 

cluster_4_g3 0.00 0.96 0.73 0.72 0.78 0.69 .03 .03 

 

As evident in Table 4.8 the models cluster_1_g4 and cluster_4_g1 consistently 

outperformed other models across all fit measures, establishing them as the optimal fit 

models. Upon examining the ICT genes and proteins within these models, we discovered 

a high and predominantly positive correlation (Fig 4.22.A and B) among all the genes 

and proteins.  
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Conversely, clusters cluster_1_g1 and cluster_2_g2 exhibited the lowest fit scores, and 

their correlation plot revealed a weaker overall correlation, with some instances of 

negative correlation (Fige 4.22.C and D). This observation underscores the significance 

of feature cohesiveness in determining the model's overall fit, with no discernible 

relationship to the size of the feature set. 

 

 

 

Figure 4. 22: Correlation plots for ICT genes and ADTs in the SEM models (A) 
cluster_1_g4, (B) cluster_4_g1, (C) cluster_1_g1, and (D) cluster_2_g2 

B 

D 

A 

C 
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The Fig 4.23 illustrates the schematic of the cluster_1_4 SEM model that has all 

fitness quality scores above the thresholds and the Table A 1 (Appendix A) provides a 

comprehensive overview of the SEM coefficients with the p-values and confidence 

intervals for each component in this model. Within this framework, the regression 

formula D ~ G refers to the direct effect of the ICT latent variable G on the disease 

outcome D. Additionally, the formulas M ~ G and D ~ M define the indirect effect of G 

on D through the mediator M. The cluster_1_4 SEM model includes 42 ICTs and 3 ADTs 

- CD11c, HLA-DR, and CD86. As given in the table all the paths in the given model are 

significant with p-value < 0.001. The path coefficients reveal essential insights into the 

relationships between these variables. Notably, the path from G to D and that from M to 

D exhibit coefficients of -0.09 and -0.15, signifying a negative association between the 

ICT latent variable and the protein latent variable with the disease. Furthermore, the path 

from G to M is characterized by a coefficient of 0.36, indicating a positive association 

between the ICT latent variable and the protein latent variable. It is also important to note 

that the paths from all 42 ICTs to G have positive coefficients ranging 0.17 - 0.73. In 

summary, the presence of significant direct and indirect paths in this model underscores 

the existence of a partial mediation effect, signifying a complex interplay between the 

ICT latent variable, the protein latent variable, and their collective influence on the 

disease outcome. 
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On examining the coefficients of the paths from ICTs to G, the top 10 ICT genes 

are PYCARD (0.73), HLA_B (0.69), CALM1 (0.65), ATP5F1B (0.56), PARK7 (0.55), 

ATP5PO (0.53), BST2 (0.53), SNX3 (0.53), UBB (0.52), and SPCS1 (0.50). The CALM1 

gene, and its significance has been studied before. Specifically, the connection between 

CALM1 and ACE2 is grounded in a study conducted by Lambert et al.  (Calmodulin 

Interacts with Angiotensin‐converting Enzyme‐2 (ACE2) and Inhibits Shedding of Its 

Ectodomain - Lambert - 2008 - FEBS Letters - Wiley Online Library, n.d.) (Wruck & 

Adjaye, 2020), where they provide evidence of CALM1's interaction with the 

coronavirus receptor ACE2.  

Figure 4. 23: Illustration of cluster1_g4 SEM model with G as the ICT latent variable, M as the ADT 
latent variable, and disease D as the outcome. 

https://www.zotero.org/google-docs/?ozbUg1
https://www.zotero.org/google-docs/?ozbUg1
https://www.zotero.org/google-docs/?ozbUg1
https://www.zotero.org/google-docs/?ozbUg1
https://www.zotero.org/google-docs/?ozbUg1
https://www.zotero.org/google-docs/?NdBObk
https://www.zotero.org/google-docs/?NdBObk
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Notably, their research highlights that CALM1 plays a role in inhibiting the shedding of 

ACE2's ectodomain. This process is of particular importance in the context of COVID-

19, as inhibiting ACE2 shedding can have implications for viral entry and pathogenesis. 

To gain deeper insights into the potential roles of these 42 ICT genes in immune-

related functions, we conducted a comprehensive gene enrichment analysis focused on 

the cluster_1_g4 model. The results of this analysis unveiled a multitude of pathways, 

some of which have significant implications in COVID-19 studies (Fig 4.24). For 

instance, we observed pathways such as "REACTOME_SARS_COV_2_INFECTION" 

and "REACTOME_INFECTIOUS_DISEASE," both of which have been extensively 

associated with COVID-19 research. These findings underscore the relevance of these 

genes in the context of viral infections and immune responses. Furthermore, our analysis 

also highlighted the presence of pathways related to metabolic processes, including 

"REACTOME_GLYCOGEN_METABOLISM." This aligns with previous research that 

has pointed to dysregulated glucose metabolism as a noteworthy aspect of COVID-19 

pathogenesis (R. Kumar et al., 2022) (P. Chen et al., 2023). Most importantly, we noted 

the enrichment of multiple pathways related to protein trafficking, such as 

"REACTOME_GOLGI_TO_ER_RETROGRADE_TRANSPORT," 

"REACTOME_VESICLE_MEDIATED_TRANSPORT," and 

"REACTOME_LATE_ENDOSOMAL_MICROAUTOPHAGY." However, it's notable 

that we did not observe significant enrichment of pathways directly linked to 

inflammation. This suggests that these specific ICT genes may not be directly involved in 

the inflammatory responses in the context of COVID-19. 

https://www.zotero.org/google-docs/?IavIXN
https://www.zotero.org/google-docs/?Mrqenu
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4.5.5 CITE-Traffick identifies CLU as a marker for targeting multiple ADTs 

Within the domain of the CITE-Traffick algorithm's modules, an intriguing discovery 

emerged regarding the Clusterin (CLU) gene. Clusterin (CLU), a versatile glycoprotein 

acting as a stress-activated chaperone is involved in the suppression of protein 

aggregation during under stress conditions. CLU exhibits heightened expression in 

Alzheimer's (Foster et al., 2019) and cancers, exerting anti-apoptotic effects and 

contributing to treatment resistance in cancer (Yom et al., 2009). CLU is also involved in 

autophagy. Under stress conditions excessive autophagy can lead to type II programmed 

cell death (Gozuacik & Kimchi, 2007).  

Figure 4. 24: GSEA analysis on ICT genes from cluster_1_g4 model 

https://www.zotero.org/google-docs/?SOkriI
https://www.zotero.org/google-docs/?6XJlHL
https://www.zotero.org/google-docs/?JCAKKb
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Hence regulated expression of CLU is critical for protein homeostasis within the cell. 

CLU inhibitors (Custirsen) as therapeutic targets have demonstrated promising outcomes, 

revealing increased overall survival and a significant reduction in mortality rates when 

combined with docetaxel based on a phase II study (Chi et al., 2010). 

Differential gene expression revealed over-expression of CLU in severe compared 

to healthy and mild, further indicating its potential role in COVID. CLU revealed a 

significant negative association with HLA-DR transport in the regression model for 

severe (α = -0.08) and healthy (α = -0.21). Also, in the single mediator regularized 

mediation model with HLA-DR as partial mediator, CLU revealed negative association 

with HLA-DR (α = -0.12) and positive association with severe COVID outcome (δ = 

0.15). Finally, in the multiple mediator regularized mediation model, CLU revealed 

negative association with HLA-DR once again acting as partial mediator (α = -0.03) and 

revealed a positive association with severe COVID outcome (δ= 0.09). Also CLU was 

identified as a marker associated with multiple other ADT targets (CD38 and CD14) in 

the multiple mediator model (Fig 4.25). This finding shed light on CLU's role as a 

potential marker for multiple ADT targets within the context of intracellular protein 

trafficking. In CITE-Traffick SEM models, CLU had significant associations in two of 

the SEM models (cluster_1_g1 and cluster_1_g2) within which ADTs tested were - 

HLA-DR, CD86, CD14, CD33, CD163, CD95, and CD4. On examining, 20 out of 23 

ICT genes within these two SEM models were DEGs.  

 

https://www.zotero.org/google-docs/?2K3tId
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On conducting enrichment analysis of all the 20 ICT genes including CLU revealed 

multiple immune inflammatory related pathways. This could indicate that these genes 

may collectively form a module orchestrating HLA-DR expression transport, and directly 

correlated with the disease through immune and inflammatory pathways in the context of 

severe COVID conditions. 

 

 

 

 

 

Figure 4. 25: Role of CLU in targeting multiple ADTs and immune functions.  
(A) Representation of CLU's association with multiple ADT targets as observed in the CITE-
Traffick Structural Equation Models (SEMs) for CLU with ADTs. (B) Pathway enrichment 
analysis of CLU and other ICTs in SEM model revealed Immune-inflammatory pathways 

 

A B 
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4.5.6 Integrating Insights from Original Studies and CITE-Traffick Analysis 

The original study reports impaired type I IFN production and enhanced 

expression of interferon-stimulated genes (ISGs) like IFI27, IFITM3, and ISG15 in 

COVID patients. Also, it is reported a significant decrease in the expression of genes 

such as CD74 involved in antigen-presentation pathways in myeloid cells and reduced 

expression of CD86 and HLA-DR on monocytes and mDCs in COVID-19 patients, 

particularly in severe cases. Increased levels of proinflammatory mediators in plasma and 

suppressed immunity response in PBMC monocytes and DCs are also being reported in 

the original study. 

Previous research has studied the crucial role of IFN-gamma in regulating HLA 

class II expression and has found that IFN-gamma is responsible for a temporary increase 

in HLA antigen expression during influenza A virus infection. The reduction in HLA 

class I and II mRNA at late times of infection implicated dynamic regulation of these 

genes over the course of the infection  (Keskinen et al., 1997). These important findings 

connecting IFN-gamma, ISG genes and HLA class II have important implications in 

COVID as well. 

The CITE-Traffick method applied to the COVID-19 CITE-seq dataset revealed a 

comprehensive landscape of intracellular trafficking (ICT) genes enriched in key 

pathways such as HALLMARK_INTERFERON_GAMMA_RESPONSE, 

HALLMARK_INFLAMMATORY_RESPONSE, and HALLMARK_COMPLEMENT. 

Notably, several identified genes, including TAPBP, TAP1, NFKBIA, ARL4A, CD74, 

VAMP5, VAMP8, BST2, and IL10RA, exhibited associations with interferon-stimulated 

https://www.zotero.org/google-docs/?UgGJSF
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genes (ISGs) and inflammatory responses. While some findings aligned with the original 

study, such as the upregulation of known ISGs, the CITE-Traffick method uncovered 

genes like ARL4A that were not detected by traditional differential expression analysis. 

The downregulation of CD74 which is also a reported ISG gene and its positive 

correlation with HLA-DR, exemplifies relationship between IFN-γ, ISGs, and MHC 

expression underscoring the method's ability to capture complex immune dynamics. The 

ICT genes IL10RA, NFKBIA, TAPBP identified by your method are not only linked to 

ICT but are also seen associated with the IFN-gamma response and inflammatory 

pathways. 

It is intriguing to observe that certain genes, such as CTSL, FCN1, GNAI2, 

PRKCD, and SRC, identified as positively correlated with HLA-DR expression and 

enriched in the hallmark complement pathway, were not detected in the differential 

expression analysis (DEG). Notably, HSPA1A, situated within the HLA class III region, 

is recognized for its roles in transporting antigenic peptides from tumor and virus-

infected cells, acting as a protein chaperone (Ucisik-Akkaya et al., 2010). Its 

downregulation in COVID, despite its involvement in immune pathways, is a noteworthy 

discovery. Another significant immune marker is CLU. The consistent upregulation of 

CLU reported in several COVID studies (Singh et al., 2021), its identification in the 

CITE-Traffick analysis, and its negative correlation with HLA-DR highlight its potential 

as a crucial target for further exploration in the context of immune functions.  

 

https://www.zotero.org/google-docs/?YbXEzk
https://www.zotero.org/google-docs/?1XRWub
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The Fig 4.26 illustrates a comprehensive heatmap showcasing Intracellular Trafficking 

(ICT) genes with significant correlations to HLA-DR transport, categorizing them based 

on their involvement in IFN-gamma, inflammatory, and immune pathways, as well as 

their differential expression status. Additionally, it incorporates information on whether 

they are DEGs, the positive or negative correlation reported in the CITE-Traffick 

regression model and indicates their significance in mediation analysis, depicting whether 

mediation with HLA-DR is partial, full, or nil. 

 

Figure 4. 26: The heatmap of Intracellular Trafficking (ICT) genes with significant correlations with 
HLA-DR transport. Genes are categorized based on their participation in IFN-gamma, inflammatory, 
and immune pathways, along with details on their differential expression, correlation status in the 
CITE-Traffick model, and their roles in mediation analysis with HLA-DR. 

A B C 
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4.5.7 Comparison of CITE-Traffick with other methods 

To assess the feature selection capabilities of the CITE-Traffick algorithm in 

predicting the severity of COVID-19, we conducted a comprehensive evaluation. Our 

analysis involved a comparative study of different feature sets, including ICT genes, 

Antibody-Derived Tags (ADTs), and latent variables identified by CITE-Traffick, against 

differentially expressed genes and ADTs derived from the comparison between severe 

and healthy groups. 

The evaluation process encompassed several key steps. Firstly, we employed 

LASSO models that were complemented by stability testing and cross-validation to 

identify the most relevant features within each feature set. Subsequently, a multiple 

Generalized Linear Model (GLM) was applied utilizing these selected top features on an 

independent test dataset. The feature sets considered for evaluation were: (i) 

Differentially expressed genes and ADTs identified between the severe and healthy 

groups. (ii) Significant ICT genes and ADTs identified in either severe or healthy groups, 

using the mixed effects regression model within CITE-Traffick Module I. (iii) ICT genes 

and ADTs specific to the severe-healthy comparison, as pinpointed by the multiple-

mediator-multiple-exposure regularized mediation model in CITE-Traffick Module II. 

(iv) A combined feature set consisting of differentially expressed genes and ADTs (from 

feature set i) complemented by latent variables produced by SEM in CITE-Traffick 

Module II. This meticulous evaluation process allowed us to gain insights into the 

performance of the CITE-Traffick algorithm and its ability to select features that can 

effectively predict the severity of COVID-19. 
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Upon evaluating the Generalized Linear Model (GLM) on the test set, we noticed 

that the combined feature set which included latent variables alongside differentially 

expressed genes and ADTs achieved an impressive accuracy of 0.96, while the feature set 

that solely incorporated differentially expressed genes resulted in an accuracy of 0.94. 

Furthermore, our analysis revealed that among the top 50 selected features in the 

DEG_plus_Latent feature set, the latent variables "cluster_4_g1_G", 

"cluster_1_g1_g2_M", "cluster_4_g3_M", and “cluster_4_g3_G" were included. These 

results strongly indicate that CITE-Traffick's latent variables significantly enhance the 

predictive power of the model when combined with DEGs, reinforcing their role in 

predicting disease outcomes. For a comprehensive overview of our findings, please refer 

to the performance metrics provided in the Table 4.9. Additionally, the accompanying 

Fig 4.27.A, including the ROC curves and the Variable Importance plot (Fig 4.27.B and 

Fig 4.27.C), demonstrate the variables selected for the top two performing models. 

 

Table 4.9. Performance metrics for all feature sets 

 

 

 

 

 

 

Metric DEG DEG_plus_Latents GLMM RegMed 

Accuracy 0.94 0.96 0.92 0.91 

Precision 0.93 0.96 0.92 0.90 

Sensitivity 0.87 0.91 0.79 0.74 

F1_Score 0.90 0.94 0.85 0.82 

AUC_ROC 0.98 0.99 0.97 0.96 
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Figure 4. 27: SEM latent variables for feature selection. (A) ROC curves of all feature set models 
compared. (B) Variable Importance plot showing the top 100 differentially expressed genes and 
ADTs selected by Lasso stability with their relative importance in the GLM model (C) Variable 
importance plot showing the CITE-Traffick SEM latent variables in the top 50 selected features 

B 

A 

C 



 

168 

4.5.8 Impact of Sample Size Variability in ICT Analysis 

In analyzing the PTTs  associated with healthy and varying severities of COVID-

19, a noticeable trend emerged wherein fewer significant PTTs were observed in both 

severe and mild COVID groups compared to the healthy group, with the mild cases 

demonstrating the fewest significant markers .The disparities in sample sizes across these 

groups — 5 healthy, 4 severe, and only 3 mild samples may have notably influenced the 

derived p-values within the mixed-effects regression model. Of the total 5167 CD16+ 

monocyte cells analyzed, 63% belonged to the healthy group, 25% to the severe cases, 

and only 12% to the mild cases. This variation in sample distribution has led to 

considerable variability in the p-values, particularly considering the increased complexity 

of mixed-effects models requiring larger sample sizes to characterize random effects 

effectively (Power Analysis and Effect Size in Mixed Effects Models: A Tutorial - Journal 

of Cognition, n.d.) (Jenkins & Quintana-Ascencio, 2020). An alternative approach could 

involve pooling the samples, disregarding the case-control status, and considering the 

actual sample as the random effect to identify significant PTTs (Fonseka et al., 2018). 

4.6 Discussion 

CITE-Traffick algorithm, which employs a three-module approach, enabled us to 

identify ICT genes associated with the surface protein profiles, establish mediation 

effects on the disease phenotype, and uncover dysregulated pathways. In the application 

of CITE-Traffick to COVID-19, we harnessed the power of CITE-Traffick to scrutinize 

the dysregulation of intracellular trafficking (ICT) genes, in the context of the observed 

low HLA-DR expression in monocytes of severe COVID-19 patients.  

https://www.zotero.org/google-docs/?nXTgzo
https://www.zotero.org/google-docs/?nXTgzo
https://www.zotero.org/google-docs/?nXTgzo
https://www.zotero.org/google-docs/?nXTgzo
https://www.zotero.org/google-docs/?LuoE0O
https://www.zotero.org/google-docs/?9ErMHh
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Notably, our investigation unearthed a subset of ICT genes exhibiting consistent 

dysregulation across both the severe COVID-19 versus healthy and severe COVID-19 

versus mild COVID-19 comparisons. These commonly dysregulated ICT genes offer 

valuable insights into potential factors contributing to disease progression and severity in 

COVID-19. 

In addition to these shared findings, our analysis further unveiled a subset of ICT 

genes with unique dysregulation specific to the severe and healthy COVID-19 

comparisons. These genes may hold intricate associations with the pathological processes 

and immune responses characteristic of severe COVID-19 cases, potentially playing a 

pivotal role in driving disease progression and severity. Similarly, in the comparison 

between severe COVID-19 samples and their mild counterparts, we identified yet another 

distinct set of ICT genes exhibiting significant associations. These genes might play a 

crucial role in modulating the transition from mild to severe COVID-19, thus 

contributing to the observed differences in clinical presentation and disease outcomes. 

Even though the regularized mediation models within the CITE-Traffick 

methodology provided significant insights, it forces less critical factor coefficients to 

zero, potentially resulting in the elimination of certain connections between exposures 

and mediators. However, the connections that are retained demonstrate robust and 

substantial strength, emphasizing their importance within the intricate network of 

intracellular trafficking (ICT) genes. Additionally, with the growing number of exposures 

and mediators, the computational intensity required to infer the regularization parameters 

in regularized mediation analysis increases. 
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Structural Equation Modeling (SEM) offers a robust means of exploring latent 

relationships within ICT genes and proteins, providing a more comprehensive view of the 

intricate network of ICT genes. In essence, the SEM results shed light on the intricate and 

multifaceted nature of ICT genes. It became apparent that while some ICT genes exhibit 

distinctive impacts on protein trafficking and disease individually, while others wield 

substantial influence within the context of a network. This underscores the imperative for 

future research to develop a comprehensive model that accommodates both individual 

gene effects and their interplay within the network, essential for a deeper understanding 

of their roles in cellular processes and diseases. This holistic approach could unveil a 

more comprehensive understanding of ICT functionalities and implications in various 

disease contexts. 

These promising results underscore the potential of CITE-Traffick as a valuable 

tool for unraveling the dynamics of intracellular trafficking and its connection to disease 

phenotypes. Furthermore, the ability of CITE-Traffick to dissect complex protein 

transportation networks into smaller trios and latent structures has proven instrumental in 

capturing essential molecular insights. 
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CHAPTER 5 

CONCLUSIONS & FUTURE DIRECTIONS 

           In this dissertation, three innovative approaches to multi-omics integrative 

analysis were introduced, each shedding light on complex biological processes and 

expanding the horizons of knowledge. INCLOSE, a novel single-cell integrative 

clustering method, excels in enhancing the resolution of cell subpopulations by 

harnessing the power of multi-omics data. The algorithm demonstrated its prowess when 

applied to challenging datasets, offering a fresh perspective on conditions like Acute 

Myeloid Leukemia (AML) by revealing hidden nuances within cell populations. 

        The exploration extended further to uncover transcriptional regulatory trios in the 

third chapter, where a unique regression model was implemented. By dissecting the 

interactions between transcription factors, regulatory elements, and genetic variants, this 

approach provided essential insights into the dynamics of cellular regulation, particularly 

in the context of multiple myeloma. These findings brought to light the potential 

regulatory elements associated with tumorigenesis. 
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 The journey culminated with the introduction of the CITE-Traffick algorithm in the 

fourth chapter, dedicated to unraveling intracellular protein trafficking. With a focus on 

COVID-19, this approach identified dysregulated protein trafficking pathways linked to 

the severity of infection, thus offering a unique perspective on the disease. Notably, this 

analysis highlighted shared and unique dysregulated ICT genes in severe COVID-19 

cases, enhancing our understanding of the factors contributing to disease progression and 

severity. 

             Collectively, these innovative approaches mark a substantial advancement in 

multi-omics research, presenting promising results. However, there is ample room for 

further refinement and development.  In the case of INCLOSE, one crucial avenue 

involves the incorporation of additional variables, such as sex and batch information, into 

the clustering analysis. This expansion aims to empower INCLOSE with a more 

comprehensive understanding of the intricacies within single-cell omic data, enabling it 

to discern nuanced patterns associated with a broader spectrum of experimental 

conditions. Concurrently, an intriguing exploration lies in a comparative analysis with 

CellSIUS, a recent method tailored for the identification of rare cell populations in 

scRNA-seq data. This comparative scrutiny seeks to unravel the performance nuances 

between the two methodologies, focusing particularly on CellSIUS's effectiveness in 

delineating rare cell populations and assessing whether INCLOSE can surpass or 

augment its capabilities. Furthermore, the algorithm's mettle will be rigorously tested 

through its application to well-established datasets like the Seurat reference or simulated 

datasets, providing a stringent assessment of its reliability and generalizability. While 
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INCLOSE excels at identifying condition-specific clusters, addressing mixed clusters 

composed of cells with notable differential gene expression between conditions presents 

another exciting avenue for improvement. On the technical front, future work entails the 

optimization of the correlation algorithm within INCLOSE for speed and efficiency. As 

the number of cells increases, it imposes heavier computational demands and necessitates 

more complex parameter tuning. Future work should focus on streamlining the 

computation of cell-cell affinities and devising more efficient approaches for parameter 

optimization. Consideration will be given to integrating fast correlation methods for rapid 

correlation computation, a pivotal enhancement for accommodating larger cell 

populations and ensuring the scalability of the algorithm.  

        One limitation inherent in the current approach of iteratively testing multiple 

parameter combinations in INCLOSE is the challenge in identifying the most biologically 

meaningful clustering result solely based on the segregation Z score. The Z score serves 

as a heuristic measure, offering insights into clustering quality, but it may not always 

align with the most biologically relevant outcomes. To address this limitation, there is a 

crucial need to develop a more sophisticated heuristic or optimization strategy that can 

better discern biologically significant clustering outcomes from the multitude of potential 

parameter combinations. These forward-looking initiatives collectively aim to fortify 

INCLOSE's adaptability, performance, and reliability, positioning it as a robust tool for 

unraveling intricate biological insights from diverse single-cell omic datasets. 

             In the roadmap for advancing the CITE-Traffick algorithm, an essential future 

step involves the development and application of simulated datasets tailored to represent 
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the nuanced dynamics and intricacies inherent in ICT processes, offering a robust testing 

ground for the algorithm's capabilities. By simulating datasets that mirror the 

multifaceted nature of ICT, the algorithm's performance, adaptability, and capacity to 

decode the complexities within such cellular processes can be rigorously evaluated and 

refined, ensuring its effectiveness in handling real-world complexities. Within the CITE-

Traffick SEM method, we currently employ hierarchical clustering, followed by manual 

cluster selection through visual examination. Future research should concentrate on the 

development of clustering methods capable of autonomously deriving clusters without 

the need for user intervention. Additionally, computationally testing clusters for latent 

variable computation and refining clusters to enhance the SEM model's performance are 

areas ripe for further enhancement. 

    In the trajectory of advancing the CITE-Traffick algorithm within the domain of 

COVID datasets, a pivotal future task involves its application in discerning molecular 

deregulations underlying disease progression and severity. This will encompass 

deploying the method to conduct comparisons between mild vs. healthy and severe vs. 

healthy conditions. A critical component of this future endeavor involves synthesizing the 

findings into a comprehensive working hypothesis illustrated through a diagram that 

servers as a visual narrative that encapsulates the intricacies of deregulation in various 

molecular pathways, contributing to the progression of COVID from a molecular 

standpoint.  
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The goal is to uncover distinct molecular profiles characterizing disease severity and 

progression, thus refining our understanding of the pathophysiological mechanisms at 

play to unveil potential therapeutic targets and deeper comprehension of disease 

dynamics. 

      The observed discrepancy in the number of significant PTTs among the different 

COVID severity groups, notably fewer in the mild group, could be attributed to the 

limited sample sizes across these categories, influencing the statistical power and p-

values. This showcases the importance of robust sample representation, particularly for 

mixed-effects models. Future studies could benefit from addressing these limitations by 

exploring larger and more balanced sample sets by pooling samples from different 

COVID-19 severity groups to enhance the model's sensitivity and reliability in 

identifying potential ICTs for various COVID-19 severities.  

   These future endeavors will serve to fortify the effectiveness and applicability of these 

innovative approaches in multi-omics research. Overall, this dissertation contributes to 

the growing body of knowledge in multi-omics integrative analysis, and the results and 

methods presented herein pave the way for further research and discovery in the realm of 

complex biological processes and diseases. 
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Table A 1: SEM model path coefficients and p-value for cluster_1_g4 model 

Term std.est z p CI.Lo CI.Up 

G =~ UBB 0.52 35.92 < .001*** 0.35 0.39 

G =~ PARK7 0.55 38.46 < .001*** 0.33 0.37 

G =~ PYCARD 0.73 55.90 < .001*** 0.55 0.59 

G =~ ATP5F1B 0.56 39.52 < .001*** 0.35 0.39 

G =~ RAN 0.46 31.19 < .001*** 0.26 0.30 

G =~ SPCS1 0.50 34.36 < .001*** 0.28 0.32 

G =~ ATP5PO 0.53 37.35 < .001*** 0.31 0.35 

G =~ CHMP5 0.32 21.38 < .001*** 0.15 0.18 

G =~ CTSL 0.44 29.61 < .001*** 0.27 0.30 

G =~ TMED9 0.40 26.75 < .001*** 0.18 0.21 

G =~ BST2 0.53 37.28 < .001*** 0.34 0.38 

G =~ SSNA1 0.36 23.91 < .001*** 0.18 0.21 

G =~ CALM1 0.65 47.37 < .001*** 0.49 0.53 

G =~ HLA_B 0.69 51.80 < .001*** 0.52 0.56 

G =~ SEC61G 0.48 33.01 < .001*** 0.27 0.31 

G =~ FIS1 0.39 25.95 < .001*** 0.20 0.24 

G =~ RAB32 0.36 23.70 < .001*** 0.19 0.22 

G =~ SUMO1 0.43 29.39 < .001*** 0.22 0.25 
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G =~ VPS29 0.46 31.26 < .001*** 0.27 0.31 

G =~ EMC7 0.35 23.61 < .001*** 0.15 0.18 

G =~ SNX3 0.53 36.89 < .001*** 0.32 0.36 

G =~ CCT8 0.38 25.52 < .001*** 0.20 0.24 

G =~ CIB1 0.34 22.27 < .001*** 0.20 0.23 

G =~ WASHC3 0.30 19.95 < .001*** 0.12 0.15 

G =~ CLTB 0.37 24.86 < .001*** 0.18 0.21 

G =~ SNX17 0.39 26.28 < .001*** 0.20 0.23 

G =~ COPE 0.47 32.19 < .001*** 0.27 0.31 

G =~ SDF2L1 0.28 18.18 < .001*** 0.10 0.12 

G =~ RAB11A 0.30 20.03 < .001*** 0.14 0.16 

G =~ CHMP2A 0.43 29.38 < .001*** 0.24 0.28 

G =~ BAX 0.47 32.07 < .001*** 0.27 0.30 

G =~ CD81 0.26 17.34 < .001*** 0.13 0.16 

G =~ RAB8A 0.47 31.85 < .001*** 0.26 0.29 

G =~ HSPB1 0.26 16.93 < .001*** 0.11 0.13 

G =~ HAX1 0.25 16.31 < .001*** 0.11 0.14 

G =~ RER1 0.36 24.03 < .001*** 0.18 0.21 

G =~ GET3 0.29 19.20 < .001*** 0.11 0.14 

G =~ SNAPIN 0.23 15.33 < .001*** 0.07 0.09 

G =~ COPZ1 0.33 22.05 < .001*** 0.14 0.16 
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G =~ AP2M1 0.38 25.29 < .001*** 0.20 0.23 

G =~ TMED2 0.27 17.84 < .001*** 0.11 0.14 

G =~ UBE2J2 0.17 10.97 < .001*** 0.05 0.08 

M =~ ADT_CD86 0.42 24.67 < .001*** 0.15 0.18 

M =~ ADT_CD11c 0.85 38.09 < .001*** 0.45 0.50 

M =~ ADT_HLA_DR 0.55 31.49 < .001*** 0.32 0.36 

D ~ G -0.09 -5.17 < .001*** -0.05 -0.02 

M ~ G 0.36 19.00 < .001*** 0.35 0.43 

D ~ M -0.15 -7.91 < .001*** -0.08 -0.05 

 

 

 

 

 

 

 

 

 

 

 

 


