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ABSTRACT  

   

This thesis introduces a requirement-based regression test selection approach in an agile 

development context. Regression testing is critical in ensuring software quality but 

demands substantial time and resources. The rise of agile methodologies emphasizes the 

need for swift, iterative software delivery, requiring efficient regression testing. Although 

executing all existing test cases is the most thorough approach, it becomes impractical and 

resource-intensive for large real-world projects. Regression test selection emerges as a 

solution to this challenge, focusing on identifying a subset of test cases that efficiently 

uncover potential faults due to changes in the existing code. Existing literature on 

regression test selection in agile settings presents strategies that may only partially embrace 

agile characteristics. This research proposes a regression test selection method by utilizing 

data from user stories—agile's equivalent of requirements—and the associated business 

value spanning successive releases to pinpoint regression test cases. Given that value is a 

chief metric in agile, and testing—particularly regression testing—is often viewed more as 

value preservation than creation, the approach in this thesis demonstrates that integrating 

user stories and business value can lead to notable advancements in agile regression testing 

efficiency. 
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CHAPTER 1 

INTRODUCTION 

This thesis proposes an approach to select a subset of test cases for regression 

testing using requirement prioritization in agile environments. Software applications 

persistently evolve throughout their lifetime, adapting to various needs, such as rectifying 

issues or incorporating new functionalities, often driven by market and organizational 

requirements. Upon implementing these changes, it becomes necessary to ascertain the 

correct performance of the modified segments alongside ensuring the correctness of the 

already verified and delivered functionalities [1]. This verification exercise, termed 

regression testing, is instrumental in guaranteeing the system's overall quality [2]. The 

importance of software testing has grown with the great adoption of agile development 

methodologies. Agile is a methodology for product delivery, where changes occur rapidly 

which has brought testing in general, and regression testing in particular, much more into 

the center of software development [3].  

Given the frequent changes of user requirements in an agile environment, executing 

all existing test cases—a straightforward strategy in regression testing can be time-

consuming and can have detrimental effect on product delivery timelines. To address this 

problem, existing studies on regression testing consider various techniques in order to 

increase the efficacy of regression testing. One of such techniques is called regression test 

selection (RTS) [4–7] where a subset of test cases is selected from the original test suite. 

Test suite minimization (TSM) is another strategy that removes redundant test cases 

permanently from the available test suite [8, 9]. Whereas RTS and TSM both work on 

reducing the size of the original test suite, test case prioritization (TCP) technique assigns 
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execution priority to the existing test suite [2, 3, 10–15]. This thesis focuses on RTS, used 

to reduce the size of the test suite for regression testing by including the test cases alone 

that test the existing functionalities affected by the newly introduced changes [10]. This 

helps us to build a smaller regression test suite while ensuring the regression testing quality. 

Regression test selection procedure improves the overall efficiency of regression testing 

by reducing the cost, effort, and time of execution. Various factors have been considered 

throughout the literature that can impact the efficiency and effectiveness of RTS, such as 

fault detection history of test cases [8, 13, 14], code coverage [8], and user requirements 

[16-19]. Some studies have considered time constraints agile methods, and the emphasis 

on delivering business value as factors for their prioritization and selection approaches. For 

example, authors in [13, 14, 20] considered the variation in execution time, [8, 21] used 

the cost of each test case as a factor in their RTS approaches, and [3] used business value, 

a crucial agile attribute associated with the user stories, in their prioritization and selection 

approach. Previous works presented in [16-19, 22, 23] have proved that utilizing 

requirement information can improve the regression testing efficiency. For instance, a 

study by Chittimalli and Harold [18] depicts a significant reduction (86%) of test cases 

using requirement based RTS while ensuring high-quality testing. 

A user requirement, demonstrating the intended behavior of a system, not only can 

be an essential factor in improving regression testing, but it is also an integral part of a 

software system’s development as it serves as the basis for building the system. Thus, 

including the importance of requirements during the testing phase has been well-

understood by the requirements engineering community [24]. However, some of these 

requirements are of greater significance—either due to higher user engagement or being 
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more susceptible to errors—than others [19]. Commonly, interconnected requirements are 

implemented within the same set of classes belonging to the same subsystem to maintain a 

software product's cohesion. Consequently, test cases tied to a set of similar or 

interconnected requirements tend to engage a similar set of classes [19]. In Agile context 

the requirements are typically expressed as user stories. For each new feature introduced, 

there is an associated user story. All user stories are specific to releases, where the feature 

described in the user story gets introduced. Regression testing ensures that introduction of 

these new developments or changes don't disrupt existing features, thus focusing on user 

stories from prior releases where these features originated. This signifies that for regression 

testing only the prior release user stories are looked at and test cases pertaining to these 

user stories are considered. 

However, user stories also have an essential attribute called business value, 

representing their significance to the stakeholders, customers, or the organization. 

According to [9], the primary output metric in agile is the value delivered to the customer, 

measured by the business values associated with the user stories delivered. User stories add 

value through every new feature added and delivered with the required functionalities. 

Regression testing ensures all the existing functionalities remain intact for every new 

modification introduced, preserving the value already delivered. Business value of a user 

story is considered to be preserved if the selected regression test cases entirely test the 

functionalities of the delivered user story. This thesis utilizes this preserved value to 

compute the effectiveness of the proposed RTS approaches. The computation of the 

preserved value is performed based on the test cases selected and business values of their 

associated user stories. If all the test cases pertaining to a particular user story are selected 
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through the proposed RTS approach, the business value associated with this user story is 

considered to be preserved. 

The studies [16, 18, 22, 23] showcase ordering requirements to enhance the 

effectiveness of RTS and RTP. Additionally, findings from [19] depict the application of 

textual similarity to order the requirements. However, all the proposed approaches try to 

measure the effectiveness based on the fault detection ability of the regression suite.  

Motivated by the importance of value delivery nature of agile in conjunction to the 

success of requirement prioritization using textual similarity in regression testing, this 

thesis proposes an RTS approach that utilizes requirement prioritization. The requirement 

prioritization in this thesis is attained using two factors:  

1. Textual similarity value between current and prior release user stories—ensures the 

most relevant prior release user stories get prioritized. 

2. Business value of user stories—user stories most valuable to the business get 

prioritized. 

Initially, textual similarity analysis is employed to identify the already delivered user 

stories affected by the new user stories. Subsequently, a requirement prioritization of the 

user stories from prior release(s) is devised based on their similarity to the new user stories 

and the associated business value. By creating a subset of test cases from this prioritization, 

the regression testing process becomes more focused on areas of the software where the 

potential for disruption is higher, ensuring adequate preservation of valuable existing 

functionalities. Additionally, in agile methodologies, the lack of substantial consideration 

for business value when assessing the effectiveness of regression testing prompted us to 
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explore an approach that uses value preservation as a metric for evaluating the effectiveness 

of RTS. 

 The primary contribution of this work is to select test cases for regression testing, 

associated with the existing user stories which deliver high value to the customers. This 

thesis also advocates the use of a crucial agile attribute to measure the effectiveness of the 

selected test cases. In this work we utilized augmented real-world user story data and 

experimented with the impact of context variables to evaluate the effectiveness of multiple 

variations of the value preserving approach on RTS in agile software environments. 

The rest of the thesis is divided into 6 chapters. Chapter 2 focuses on literature 

review related to this research. This section has been divided into two subsections where 

the first subsection talks about the studies related to regression test selection and the second 

subsection gives an overview of the studies which incorporated regression test selection 

into agile software development. Research questions and research methodology used in 

this study are described in two different subsections of Chapter 3 delving into the overview 

of the processes involved. Chapter 4 focuses on the detailing of the implementation steps 

that have been followed in this thesis. This chapter comprises of two subsections talking 

about the factors that have been varied to generate the data and how the experimental setup 

has been done to run the simulations. Chapter 5 summarizes the observations of results 

obtained from the simulation runs. This chapter also focuses on queries that emerge from 

the findings of our study's visualizations. A further drill down study has been conducted 

on these queries and around the research questions in Chapter 6. The characteristics of this 

study are summarized in the last chapter, along with the future scope of this research.  
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CHAPTER 2 

RELATED WORKS 

Regression testing constitutes a requisite, yet resource-intensive maintenance 

endeavor conducted on modified software. Its primary purpose is to instill confidence when 

new code is added over the existing verified code [15]. While the default regression testing 

approach involves rerunning all such tests, this comprehensive retest-all strategy may incur 

excessive time and resources. In contrast, identifying test cases judiciously and running 

them in an efficient pattern for regression testing to test the specific requirements affected 

by the new changes may decrease this demand for time and resources to a greater extent. 

Throughout the literature, strategies have been discussed trying to optimize 

regression testing. The studies [13, 25-30] considered for the literature review in this thesis 

discuss three major strategies in the context of regression testing to optimize the testing 

process in terms of time, resources, and cost namely Test Suite Minimization (TSM), 

Regression Test Selection (RTS), and Regression Test Prioritization (RTP) [31]. TSM is 

used to reduce the size of a test suite by removing redundant test cases without affecting 

the fault detection capability of the test suite. RTS on the other hand is the process of 

selecting a subset from the existing test suite by identifying the tests that are relevant only 

to test the changed parts of the software. Thus, both TSM and RTS focus on reducing the 

size of the test suite for regression testing. However, RTP orders the test cases based on 

some specific criteria such as the likelihood of finding defects, the importance of the 

functionality being tested, etc. This ensures that the most important or relevant tests are run 

first as the idea of RTP is to detect potential regressions as early as possible in the testing 

process which can be especially useful when there is insufficient time to run the entire test 
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suite [3]. RTP is considered important as “high priority defects” may be fixed early, before 

having to change delivery schedules. However, RTP is performed on a specific set of 

selected test cases which limits the total amount of delivered value that can be preserved 

by regression testing even when there is enough execution time. This thesis focuses on 

maximizing the possibility of preserving the already delivered value with the increase in 

the regression execution window. Thus, the thesis focuses on RTS, selecting test cases that 

focuses on existing user stories delivering high value to the customers. 

In this thesis, we focus on the specificity of RTS, assuming that the set of all 

regression test cases is already minimized using an appropriate test suite minimization 

technique. As a result, the subsequent analysis focuses on this minimized set, ensuring that 

redundant tests are excluded.  

The following subsections highlight the works on various approaches to improve 

regression testing in non-agile and agile software development setups.  

2.1. Regression Test Selection (RTS): 

Regression test selection is an established field of research and seminal papers such 

as [1] have presented approaches to tackle this problem. Below we present the works of 

relevant studies for this thesis that served as motivation. 

2.1.1. Code Based RTS: Various studies on regression testing techniques have relied on 

code coverage information and many empirical studies have shown that these 

techniques can improve the effectiveness of regression testing [32-37]. A seminal 

paper by Rothermel and Harrold in 1997 introduced an RTS technique centered on 

program dependency analysis and test suite reduction [15]. The RTS techniques 
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proposed in this study first identifies program entities that are affected by the newly 

introduced modifications and construct a dependence graph. A heuristic algorithm 

selects a subset of test cases to cover the modified entities and their dependencies, 

aiming to maximize entity coverage while reducing the test case count. The 

technique proposed is primarily focused on detecting changes made to source code. 

Two major RTS algorithms have been proposed in the paper: Intraprocedural and 

Interprocedural. The intraprocedural test selection algorithm operates on individual 

procedures, whereas the interprocedural test selection algorithm operates on entire 

programs or subsections. The study evaluates the proposed RTS on six real-world 

software systems and compares their approaches. The results show that the saving 

in terms of time obtained from intraprocedural is not significant; on the other hand, 

interprocedural shows more significant time savings when applied to larger 

programs. The results in this study highlight that performing RTS for larger projects 

with a large volume of test cases is more beneficial than when applied to smaller 

projects with a small volume of test cases, as the analyzing time required to perform 

the test selection process involves extra cost in terms of time and resource. 

2.1.2. History-based RTS: Throughout the literature, we came across other factors such 

as execution history of test cases [7, 8, 13, 38] which is being considered for RTS.  

A history-based RTS technique, ReTEST [13], to reduce regression testing 

time and cost employs a history-centric approach, factoring in software changes 

since the last test run. This approach utilizes information retrieval techniques that 

extract relevant textual information from source code and other software artifacts 

(e.g., code commits, requirement documents, etc.). The authors used program 
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changes, test suite source files, and fault history information to identify a list of 

important test cases that are highly likely to detect regression defects. The proposed 

technique in this paper uses 3 major inputs: 1) term or textual similarity to the 

modified portion of the program, 2) test failure history, and 3) test diversity. To 

evaluate their approach an empirical study was performed on four open-source 

applications written in two different programming languages and compared its 

performance with three existing techniques, namely Safe Technique [4], Code 

Coverage Technique (tests selected using a greedy algorithm), and Test 

Dissimilarity (measured using the Jaccard Index). The results showed that ReTEST 

outperformed the existing techniques in terms of cost and time while maintaining a 

high level of fault detection. The Safe technique was found to be the most expensive 

approach of all the others as it tends to execute all the test cases available. 

Compared to the other two approaches ReTEST showcased a good amount of cost 

reductions.  

2.1.3. Requirement Based RTS: A significant number of studies [16, 17 ,18, 19] address 

requirements-based regression testing. One of the studies that motivated this thesis 

is the technique proposed by Chittimalli and Harold [18]. The study provides a way 

to use system requirements and their associations with test cases to perform RTS. 

In addition, the proposed technique uses this criticality to order the selected test 

cases. The main benefit of this approach is that it provides a way to select a subset 

of test cases for use on the changed software that can instill confidence in the 

changes made. Another aspect of this technique is the use of only the association 

(coverage) of requirements by the test cases instead of requiring model or code 
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coverage, which is often not practical to gather. The experiments in the study used 

two real-world systems and was compared with the safe technique which selects all 

test cases for the regression suite. The results show that there is a significant 

percentage (86%) reduction of the test cases to be rerun to test the modified 

requirements. The results also show that the approach selects a few unnecessary 

test cases and compares well with the code-based approach that requires code 

coverage. Also, this experiment produced no false negatives, which means that, for 

the subject, requirements, test cases, and changes, the technique omitted no test 

cases that could show a difference from the original to the modified version of the 

software, and thus, omitting them was safe. 

Another study by Srivastva et al. [16] proposed a requirements-based RTP 

technique which explores two factors: 1) the priority of requirements given by 

customers, developers, and managers, and 2) the severity and probability of risk 

factors that occur in requirements. The study calculates the risk exposure for each 

requirement, based on the assigned value of the severity impact by the developers. 

Based on the value of the risk exposure a weighted priority factor is created which 

is used to prioritize the requirements. A Priority Decision Table is created that 

assists testers in determining the sequence in which test cases should be executed. 

One of the major similarities our thesis holds with this study is calculating the 

importance of the requirements instead of the test cases.  

Khalid and Qamar [23], collect a dataset of black box test cases and assign 

them user priority weights (according to the priority assigned during the 

requirement elicitation Phase) [39, 40] as in the simple ranking method [41]. The 
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data set has been sorted based on weights, and the K-means algorithm is applied to 

divide it into the “K” number of clusters. The approach calculates a priority 

percentage against each function point of test cases according to the requirements. 

K-Medoids [14] is applied based on calculated cost and time priority percentage on 

each split priority cluster, further dividing the data set into three more refined 

clusters. The results show 79.174% of the test cases according to business 

requirements are correctly prioritized as compared to the original prioritized data. 

2.1.4. Use of Textual Similarity in RTS: To delve into finding similarities between 

requirements we explored papers capturing textual similarity and their usage in 

requirement-based regression testing.  

For this thesis, the studies on requirement clustering and measuring textual 

similarity between requirements are the closest to this work and thus served a major 

motivation. Our research bears a close resemblance to the study presented in [19] 

by Arafeen and Do, which addresses requirements clustering for test case 

prioritization. To perform clustering the authors first use textual similarity to find 

resemblance amongst requirements and then use k-means to cluster the similar 

requirements together. These requirement clusters are then prioritized constructing 

a scale of weights based on two factors: 1) Code commits performed by developers, 

and 2) the amount of code modification. Requirement-test cases traceability matrix 

is then used to pick test cases from the prioritized set of requirements. Average 

Percentage of Fault Detection (APFD) [22] has been used to validate the results 

which show improvement rates ranging from 55.52% to 65.37%. This technique 

used code modification as a factor along with requirement similarity that demands 
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access to the source code which sometimes can be a complex task for large 

applications. 

After thoroughly examining the above papers, the potential of the text similarity 

approach in advancing our research seems promising. This methodology aligns well with 

the objectives outlined in our thesis. Drawing from the findings of these papers, the text 

similarity strategy stands out as a critical mechanism to achieve our intended outcomes. 

Recognizing these pivotal studies is crucial as we delve deeper into the subsequent sections 

of this thesis. 

2.2. Agile Regression Testing: 

With the increasing adoption of agile development methodologies, the significance 

of quick software testing in an iterative manner has been magnified. Agile emphasizes swift 

product delivery with frequent modifications to gather faster feedback. Consequently, there 

is a swift transition from traditional testing methods like the waterfall model [42–44]. This 

shift is influenced mainly by evolving end-user expectations and the fluidity of 

development in response to product alterations. Regression testing, which ensures that new 

changes do not disrupt existing software functions, constitutes a notable portion of software 

development costs. Agile methodologies prioritize continuous integration thereby 

necessitating frequent regression testing in a time-boxed environment [45]. 

Kandil et al. [3] proposes an approach to prioritize and select test cases for 

regression testing in agile software development. The authors argue that traditional test 

case prioritization techniques are not well suited for agile development because they are 

time-consuming and require much information about the system. Instead, they propose a 
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clustering approach that groups similar test cases and selects a representative subset from 

each cluster for testing. The results show that the technique was more effective than random 

selection in terms of fault detection rate and testing efficiency. The authors also discuss the 

limitations of their approach, including the need for appropriate clustering algorithms and 

the potential for bias in the selection of representative test cases. 

Ali et al. [46] introduced an augmented regression testing method suitable for agile 

software development and continuous integration paradigms. Their methodology leverages 

code coverage analysis and change impact analysis to select and prioritize test cases. 

Similarly, [47] evaluated various test selection strategies based on code coverage and 

dependencies. They emphasized that these strategies can markedly reduce the time needed 

for feedback without compromising the robustness of the test process.  

Multiple studies [5, 48] present approaches of RTS within agile methodologies, 

emphasizing the CI/CD process. Elbaum et al. [49] discusses challenges and solutions for 

optimizing regression testing in continuous integration (CI) settings. The authors 

underscore that while CI promotes software quality and speed, it presents unique hurdles 

for regression testing. After evaluation on a large-scale project, the results effectively 

reduced regression testing time and effort which led to cost-effectiveness improvements in 

the continuous integration process. 

Shi et al. [50] explores module and class level RTS methodologies within a CI 

context. Although module level RTS offers minimal overhead for analyzing module 

impacts, it can result in the selection of more test cases than class-level RTS. On the other 

hand, while class-level RTS can be more selective, it presents challenges, including 

potential omissions of affected tests and extended analysis durations. Utilizing Travis CI, 
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a leading cloud-based CI service, the authors assessed the performance of these techniques 

on a diverse range of open-source Java projects. The study collects three metrics relative 

to running all test cases for regression testing: the percentage of tests selected, the 

percentage of time to run the selected tests, and the percentage of time overall to build the 

jobs. The results indicate that the code-based RTS techniques do save testing time 

compared to running all tests (RetestAll), but the percentage of time for a full build using 

RTS (76.0%) is not low, due to the extra overhead in a cloud-based CI environment. 

Another study by Yu and Wang [51] states that integrating many RTS techniques 

into CI is challenging. The authors suggest a comprehensive exploration of open-source 

projects to measure the necessity of RTS in CI environments. The rate of changes in open-

source projects can determine the RTS strategy. Infrequent changes allow for traditional or 

broad dependency analysis techniques due to the luxury of time. At the same time, frequent 

alterations demand efficient RTS methods to reduce tests and analytical time. In this 

research, the authors assess 7,018,512 commits across 918 open-source projects employing 

CI. The goal is to determine the extent to which RTS is indispensable. The study 

investigates commit frequencies to discern how rapid alterations might influence RTS 

efficiency. The paper also evaluates the proportion of modified source files in commits to 

pinpoint which files merit attention. The results show that for 60% of commits, the time 

between them exceeds 10 minutes, indicating that if testing completes within 10 minutes, 

RTS might be redundant for these commits. Most changes in rapid commits (those within 

10-minute intervals) focus on a mere 8.6% of source files, suggesting RTS can target these 

essential files when changes are swift. In 62.2% of Java projects, average testing durations 

are less than a quarter of average commit intervals, hinting at reduced RTS necessity. For 
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the majority (97.3%) of Java projects, method-level RTS is less efficient than testing all 

cases. However, class-level RTS proves more time-efficient than exhaustive testing for 

56.8% of Java projects. 

The domain of regression testing, both within and outside agile methodologies, has 

seen significant strides in methodological development and optimization. From techniques 

embedded in program dependency and test suite reduction to history-based approaches and 

clustering methods, there is a significant effort to maximize efficiency and fault detection. 

Central to these advancements are methodologies that emphasize code coverage, change 

impact analysis, and even the integration of Machine Learning. As software development 

methods evolve, especially with the rise of continuous integration, the summarized 

research highlights the criticality of an ongoing exploration in improving regression testing 

techniques. 

The above studies have shown remarkable ways in which the efficiency of 

regression testing can be improved. Many of these studies have incorporated their 

approaches in an agile environment. Some of the crucial agile attributes were also seen to 

have been used in many of the studies. Despite incorporating agile attributes as factors in 

the selection or prioritization approach, the effectiveness of the techniques was measured 

by their capacity to find either more severe faults or faults faster. Though these metrics are 

helpful, this thesis suggests the involvement of a true agile attribute, the business value 

associated with the user stories, in measuring the effectiveness of the selection process. 

Also, taking into account the time framed nature of agile, this thesis considers the effect of 

varying execution window, i.e., time available for executing the regression suite. The 

following section talks about the research question and the methods followed in this thesis. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

The focus of this thesis is to ensure that the existing user stories delivering high 

value to the customers are tested in regression testing when a new change is introduced. 

This aim demands the selection of all the test cases associated with the existing user stories 

delivering high value with an objective to understand the effect of prioritizing requirements 

based on their value delivering ability and the available time for executing the regression 

suite on RTS approaches. To achieve this goal this chapter focuses on some specific 

research questions mentioned in the following subsection. 

3.1. Research Questions 

RQ1. How does the inclusion of user story business values influence the selection of 

regression tests in the context of agile software development? 

RQ1.1 How does the use of business value from current release user stories affect 

test case selection in terms of value preservation? 

RQ1.2 How does the use of business value from prior release user stories affect test 

case selection in terms of value preservation? 

RQ1.3 How does the combination of business values from prior and current release 

user stories affect test case selection in terms of value preservation? 

RQ2. How does the duration of test case execution influence the selection of test cases 

during regression test selection? 

RQ2.1 How does the selection process in regression test selection change when all 

test cases exhibit equal execution times? 
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RQ2.2 How does the value preservation in regression test selection change when 

regression execution window is varied? 

To answer these research questions, this thesis employs a large-scale simulation by 

augmenting a real-world established dataset, implements a custom requirements-based 

regression test selection process, and evaluates performance of that process by measuring 

the value preserved. The following subsection gives an overview of the steps involved in 

this method. 

3.2. Methodology 

This thesis follows the method of prioritizing the existing user stories that have 

been impacted by the new changes based on the value they are currently delivering. This 

prioritized list of user stories is then used to select the test cases associated with them to 

ensure the complete testing of the high value delivering user stories and preserve the 

maximum possible delivered value. Figure 1 summarizes our approach’s main activities 

and how these activities are related to each other. 

 

Figure 1: Summary of the Activities Followed in This Thesis. 
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The following subsections describe the activities mentioned in Figure 1 in detail. 

3.2.1. Data Preparation  

To run the simulations for this thesis the data needed to have a few specific 

characteristics: 1) User stories written in natural language, 2) User stories had to be 

categorized into current and prior releases, 3) User stories had to have business values 

assigned to them, and 4) Test cases had to be assigned to the user stories. Multiple studies 

[38, 52-55] were investigated to identify the availability of relevant data for this research. 

Though these studies had a good collection of usable data the focus of this thesis was to 

obtain user specifications or user stories written in natural language. The user stories were 

found in the required format in a well-maintained condition in a specific dataset: the 

TAWOS dataset [53], which have been used as the starting point for the purpose of this 

thesis. As mentioned above the need for the remaining three parameters for the data was 

also crucial. TAWOS dataset provided the user stories in the required format, but the 

remaining three parameters were present with limited availability. For running the 

simulations there was also a need to vary the above parameters to replicate multiple real-

world projects.  Due to this limited availability the user stories written in natural language 

were extracted from the TAWOS dataset and the remaining parameters were synthesized 

for the purpose of its usage in this thesis. The synthetization of the remaining specifications 

also ensured that the variability of the data could be maintained to simulate multiple real-

world agile projects. For this step of the process, the extracted user stories were categorized 

into two releases: New (Current) and Existing (Prior), and the user story–test case 

traceability matrix was created. A user story-test case traceability matrix is a mapping to 
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identify the test cases associated with each user story. Figure 2 is the pictorial 

representation of the processes. 

 

Figure 2: Processes Involved in Data Preparation. 

3.2.2. Simulation Setup 

 Once the data was prepared the datasets were created to ensure the variability of 

entities across all datasets. These datasets were used to run the simulations. The factors that 

were varied for each dataset are: 1) Execution time available in regression testing, 2) 

Business values of each user story in any given dataset, and 3) Count of user stories in 

either release. Fibonacci series numbers were used as business value for the user stories. 

Varying all these factors, separate datasets were created against which the proposed 

approach was run. Figure 3 shows the processes involved in this step. 
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Figure 3: Processes Involved in the Simulation Setup. 

3.2.3. Simulation Execution 

 After the datasets were prepared and the data for the simulation run was ready the 

simulation was run against all the datasets created. The textual information of the user 

stories from both releases was picked and compared against each other to identify the 

impact of the new release user stories on the existing release user stories through a textual 

similarity comparator. The textual similarity value was combined with the business value 

of the user stories to calculate an importance-value. This importance value is a keyword 

used specific to this thesis to prioritize the user stories. The computed importance-values 

were associated with the existing release user stories. Once the importance value was 

associated with each user story, they were ordered in decreasing order of their magnitude 

which resulted in the prioritized list of the user stories. This prioritized list of user stories 

and the user story-test case traceability matrix was then used to start the test case selection 

process. The selection of test cases starts from the user story having the highest importance-

value. This provides the required list of selected test cases. Figure 4 shows the processes 

involved in this simulation execution step. 
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Figure 4: Processes Involved in Simulation Execution, Results, and Analysis. 

3.2.4. Results 

After the simulations had been run for all the datasets the results were collected. 

The results were stored in the database and in an Excel file parallelly. The database was 

used to store the results for future use. The results after exporting to Excel were used to 

visualize the data using various plots and bar charts and compare them against the baseline 

approaches. The visualization of the data was used to better analyze the results. 

3.2.5. Analysis 

On generating the results, descriptive statistics were computed for each set of data 

for all datasets to analyze them. The results were looked at individually as well as in groups 
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to analyze them in depth. The visualizations were used to understand and analyze the 

results better and find any kind of similarity in their characteristics. The analysis was done 

to find the effectiveness of the proposed RTS approach in comparison to the baseline 

approaches and answer the research questions mentioned at the start of chapter 3. 

The above processes are an overview of the methods followed to examine the 

approach proposed in this thesis. Requirement prioritization has been widely used 

showcasing improvements in the effectiveness of RTS. With the improvement in language 

models the use of textual similarity has shown promising results in finding similarities and 

connections between texts. Also, incorporating a true agile attribute, the business values of 

user stories would portray the effect of inclusion of this approach in an agile environment. 

These factors due to their effectiveness and strong reliability worked as strong motivation 

in incorporating them for the approach in this thesis.  

The following implementation chapter provides the details of all the steps 

mentioned in this methodology section. It also provides a step by step procedure for 

performing the required simulation to be able to answer the designated research questions. 
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CHAPTER 4 

IMPLEMENTATION 

The proposed test selection process is a multi-factor selection process that explores 

two factors while selecting a subset of test cases: (1) textual similarities between the current 

release and prior release user stories; (2) the business value associated with the user stories. 

This section describes the implementation of the proposed RTS technique taking the above-

mentioned factors into consideration. The following subsection highlights the input factors 

and their variability. Section 4.1 focuses on these factors which have been varied to 

generate the datasets for this thesis. 

4.1. Factors Influencing Data Variation in Dataset Generation 

This thesis focuses on multiple key factors to simulate real-world agile projects for 

developing regression test selection algorithms. These factors are crucial in reflecting agile 

software development's dynamic and complex nature. Following are each of the factors 

and the reason to simulate a real-world agile project. 

4.1.1. Real-World Agile Projects: 

1. Business value: In agile development, delivering business value is paramount [9]. 

Agile methodologies prioritize features and tasks based on their potential impact 

on the business or end-users. In the context of regression testing, understanding the 

business value of user stories ensure that testing efforts align with the most critical 

aspects of a project. This alignment is essential for simulating real-world agile 

projects, as it mirrors how decisions are made in actual development environments. 
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This thesis uses Fibonacci series numbers from 1 through 89 as business values to 

associate with the user stories as Fibonacci series numbers have been seen as a 

common proxy for business value numbers [66]. For all the datasets generated, user 

stories in half of the datasets have a uniform distribution of business values and for 

the other half, the distribution is right skewed, i.e., a greater number of user stories 

have lower business values. This gave an overall average of right-skewed 

distribution for all the datasets. 

2. Count of user stories at release level: Agile projects are characterized by iterative 

development, each bringing new user stories. The count of user stories in various 

releases is an actual measure of this iterative process and the evolving nature of the 

software. This thesis captured agile environments' dynamic workload and scope by 

varying this count. This variability is crucial for regression test selection 

algorithms, reflecting the real-world challenge of adjusting test suites to 

continuously changing software features and requirements. To simplify the release 

level understanding this thesis categorized the user stories into two releases. One 

release is the new or current composed of user stories considered to have introduced 

new changes into the software system which brings in the need for regression 

testing. Another release is the existing or prior release which contains user stories 

that have been already delivered. Test cases associated with the prior release user 

stories are the candidates for the regression suite. This factor has been varied for 

every dataset with a uniform distribution. 

3. Regression testing execution time/window: The time allocated for regression 

testing can vary significantly in real-world agile projects. Agile teams constantly 
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change software to meet customer needs, requiring efficient regression testing to 

prevent faults. The variation in regression testing time captures the real-world 

challenge of fitting comprehensive testing into tight agile schedules. This 

consideration is essential for developing regression test algorithms that are not only 

effective but also time efficient. Figure 5 shows the possible requirement of 

regression testing (RT) at various levels in an agile environment.  

  

Figure 5. Regression Testing Execution Windows in Agile Environment 

The variation of time at different levels for performing regression testing fluctuates 

immensely. This thesis considers this variation and assigns a different execution 

window for each dataset. The distribution of this factor over all the generated 

dataset is also uniform. 

The varied execution time of test cases reflects the complexity and dependencies in 

real-world software projects. It provides a time-based weightage for every test case which 

can be an important factor in addition to other factors when selecting test cases for 

regression testing. Acknowledging this diversity is vital for creating realistic test 

environments and optimizing test suites for both coverage and efficiency which has been 

recognized by [8, 20, 21]. In the scope of this thesis execution time of each test case has 

been considered as constant and no time-based weightage has been given to the test cases 

while performing the selection process. Another factor, test case history is critical to 
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regression testing in agile environments. It provides insights on previous failures, 

successes, and modifications of test cases. The test case history reports provide the ability 

to understand how effective a test case is depending on the number of sever defects it has 

found when previously executed. Though these test case level factors and many others can 

prove to be effective in making an informed decision while selecting the test cases, our 

thesis in the due interest of time does not consider these factors within its scope. This thesis 

focuses on incorporating some major factors, like the regression execution window, 

business value and count of user stories in releases to address the real-world agile aspects. 

4.1.2. Factors Derived from the Variations in Input  

Certain factors were derived from the varying inputs mentioned in 4.1.1 for each dataset 

to examine the results. These factors facilitated an exploration of how the results varied in 

conjunction with the fluctuations in various attributes across the dataset. The following 

sections presents a detailing on these derived factors: 

1. Number of Selected Test Cases (#𝑻𝑪𝒔𝒆𝒍𝒆𝒄𝒕𝒆𝒅):  

#𝑇𝐶𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 =
𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑤𝑖𝑛𝑑𝑜𝑤

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒
     (9) 

This factor provides the aggregated quantity of test cases feasible within the designated 

timeframe allocated for regression testing. The duration required for the execution of 

each test case remains constant across all instances in this research study. 

2. Percentage (%) of Test Cases Selected (𝑷𝒕𝒄): This metric represents the proportion 

of chosen test cases relative to the overall count of available test cases. The following 

formula is used to compute the metric: 

𝑃𝑡𝑐 =  (
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑅𝑇𝑆

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠
)  ×  100      (5) 
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This factor is used to analyze the change in the business value preserved when the 

percentage of test cases selected is varied.  

3. Average Business Value of Prior Release User Stories (𝑨𝑩𝑽𝑼𝑺𝑪𝑹): This factor is 

used to study the average value of business value pertaining to each user story in a 

particular dataset, calculated by (6). 

𝐴𝐵𝑉𝑈𝑆𝐶𝑅  =
𝑇𝑜𝑡𝑎𝑙 𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑠𝑡𝑜𝑟𝑖𝑒𝑠 𝑖𝑛 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑟𝑒𝑙𝑒𝑎𝑠𝑒
    (6) 

This factor is normalized to bring all the data to a standard range of 0 to 1. The datasets 

in this thesis comprise variables that originate from diverse scales and units of 

measurement. Without normalization, direct comparisons across these variables would 

be inherently flawed due to discrepancies in scale and magnitude. The below formula 

has been used to normalize all the values obtained from this factor. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑥) =  
(𝑥−𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒)

(𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒)
   (7) 

      where: 

Minimum value = Minimum value in the range of values to be normalized; 

Maximum value = Maximum value in the range of values to be normalized. 

4. Ratio of Current Release to Previous Release User Story Counts (𝑼𝑺𝑪𝑹𝑷𝑹): This is 

computed using (8): 

𝑈𝑆𝐶𝑅𝑃𝑅 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑠𝑡𝑜𝑟𝑖𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑒𝑙𝑒𝑎𝑠𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑠𝑡𝑜𝑟𝑖𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑟𝑒𝑙𝑒𝑎𝑠𝑒
      (8) 

This metric serves as a tool for evaluating the structural intricacies of a project. Its 

primary purpose is to emulate a real-world project. When a notable increase in the 

overall count of releases and the cumulative number of user stories across preceding 

releases significantly surpasses that of an individual release, i.e., the ongoing release, 
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the metric tends to exhibit a lower value. Usually, this scenario is observed in the case 

of large projects and demands regression test selection due to large volume of test cases, 

where running all test cases is arduous, time-consuming, and costly.  

Figure 6 is a scatter plot of the variation of the factors across all 200 datasets. 

Figure 6: Scatter Plot of all Four Factors Across All 200 Datasets 

Table 1 gives the descriptive statistics of the four factors across the 200 datasets. 

  𝑷𝒕𝒄 𝑨𝑩𝑽𝑼𝑺𝑪𝑹  𝑼𝑺𝑪𝑹𝑷𝑹 #𝑻𝑪𝒔𝒆𝒍𝒆𝒄𝒕𝒆𝒅 

Mean 0.506254994 0.377853022 0.172704033 0.403334496 

Median 0.507506973 0.33462491 0.165 0.399860433 

Mode 0.826446281 0.16218593 0.1 0.302163294 

Std Deviation 0.221609753 0.267395549 0.099415989 0.237087523 

Variance 0.049110883 0.07150038 0.009883539 0.056210494 

Skewness 0.036929363 0.183303084 0.176156019 0.316316442 

Range 0.895082994 1 0.37 1 

Minimum 0.080645161 0 0.01 0 

Maximum 0.975728155 1 0.38 1 

Table 1: Descriptive Statistics of the Four Factors Across All 200 Datasets 
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The provided data encompasses four distinct factors, each shedding light on various 

aspects of the dataset. 𝑷𝒕𝒄 indicates that, on average, approximately 50.63% of test cases 

are chosen for execution, with a modest standard deviation of 22.16%, suggesting moderate 

variability in test case selection. 𝑨𝑩𝑽𝑼𝑺𝑪𝑹 reflects the normalized business value associated 

with each user story, averaging around 37.79% and displaying a slightly positively skewed 

distribution (0.1833), signifying variations in the business value attributed to the individual 

prior release user stories. 

𝑼𝑺𝑪𝑹𝑷𝑹, quantifies the ratio of user stories between the current release and prior 

releases. On average, this ratio stands at approximately 17.27%, indicating the structure of 

large projects where the current release has very few user stories compared to all prior 

releases. Lastly, #𝑻𝑪𝒔𝒆𝒍𝒆𝒄𝒕𝒆𝒅 examines the normalized value of test cases selected, 

averaging about 40.33% and exhibiting a positively skewed distribution (0.3163). This 

suggests that most datasets selected a relatively low number of test cases. These statistical 

factors collectively provide valuable insights into the dataset's central tendencies, 

variabilities, and distributions, enabling a comprehensive understanding of the dataset's 

characteristics and aiding in informed data-driven decisions. 

These variations in the input factors are made to incorporate the different structural 

variations noticed in real-world projects. Our data is synthesized based on the initial 

extraction of the user stories from the TAWOS dataset. Due to the lack of all required 

relations with the data a way was devised to simulate the links we need within the data. As 

a large part of our data was generated it was important to try and capture all possible 

variations in the input factors to replicate the possible real-world projects. This was made 



  30 

possible by varying the factors in this subsection. The following subsection speaks about 

the process and the setups performed in this thesis for running the simulations. 

4.2. Experimental Setup 

The variation in the factors mentioned in 4.1 was used to generate 200 datasets. 200 

datasets were sufficient to cover a wide range of differences in the four factors. This wide 

variety is clearly shown in the scatter plot in Figure 5, highlighting the thoroughness of the 

data and its ability to capture different factor combinations. To simplify the process, the 

implementation of the RTS strategy is categorized into six primary activities: (4.2.1) 

calculating similarities between user stories; (4.2.2) mapping user stories to test cases; 

(4.2.3) computation of an importance-value for the prior release user stories; (4.2.4) 

process execution for this thesis; (4.2.5) selecting test cases based on the importance-value 

of the user stories; and (4.2.6) computing the efficacy of the selected test cases. The 

following subsections describe each activity in detail.  

4.2.1.  Calculating Similarities Between User Stories 

Inspired from the works on requirement prioritization [16, 18, 22, 23] and use of 

textual similarity [3] for clustering similar requirements, this thesis uses textual similarity 

comparison between two user stories to measure their resemblance. Textual similarity 

between two user stories suggests how much one user story relies on or is connected to the 

other. This is a measure of the impact the new user stories have on the existing ones. Thus, 

textual similarity is used to create the mapping between the user stories of the current 

release and the user stories of prior release(s) based on their interdependency. The 

categorization of the extracted user stories was done as mentioned in the “Data 
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Preparation” section of Chapter 3, described in the above subsection (𝑈𝑆𝐶𝑅𝑃𝑅) across all 

200 datasets. Following this categorization, we implement the textual similarity between 

each of these user stories across the releases, specific to each dataset.  

To find the textual similarity, Python library spaCy is utilized to identify the above-

mentioned textual similarities. spaCy [56] is an NLP tool that helps us to find the textual 

likeness between texts. Existing research [57] has portrayed the use of various Python 

libraries to compare the similarities between texts. However, when it comes to comparing 

domain-specific texts, the choices are narrowed down. Our task was to choose an efficient 

tool that could provide us with satisfactory results when comparing texts specific to the 

software engineering domain. Out of the most widely used tools according to [58-60] 

NLTK, Stanford CoreNLP, Sentistrength were found to be less efficient in understanding 

software engineering texts. A direct comparative analysis of these tools with spaCy, as 

presented in [61], has demonstrated spaCy's superior performance. Notably, spaCy has 

exhibited enhanced capabilities in sentiment analysis within the domain of software 

engineering. Additionally, the study conducted in [62] has showcased spaCy's efficacy in 

extracting features from software requirement specification documents. The studies [63, 

64] use spaCy to create conceptual models from user stories that state its implementation 

and efficiency. Also, it shows that the standard models of spaCy with little or no tuning 

can perform efficiently in context to their usage in the software engineering domain. 

spaCy provides us with a cosine distance measure of similarity between -1 and 1, 

where -1 means most dissimilar, 0 means no similarity and 1 means complete similarity. 

In the context of this research, any value below 0 has been treated as 0 owing to the minimal 

influence of the similarity value. To find the similarity, each user story of the current 
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release is compared to each of the user stories of the previous release(s). The similarity 

value is then used in combination with the user story business values in step D to compute 

the importance-value for the prior release user stories.  

4.2.2. Mapping of User Stories to Test Cases 

In executing any RTS process, establishing test cases is essential, as a subset of 

these cases represents the ultimate output of the RTS process. Every test case is mapped to 

a user story as they test the functionalities these user stories aim to deliver. A requirement-

test case traceability matrix is a mapping between the user stories and their relevant test 

cases, used to track their relationships. Starting with the user stories obtained from TAWOS 

[53] we synthesize test cases and set it onto the database. Since this thesis does not have 

any use with the test case descriptions, test case ids have been created with the test case 

execution time. A total of 700 test cases have been created for the purpose of running the 

simulations. The number of test cases per dataset has been varied as per the variable 

“𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠” in 𝑃𝑡𝑐 mentioned in subsection 4.1. Once the input 

has been fed for the number of test cases and the number of user stories (as mentioned in 

A) to be used for any dataset the requirement-test case traceability matrix is created. We 

are considering requirement-based test case creation which brings us to a one-to-many user 

story – test case mapping. It was ensured that each test case is mapped to a single user 

story, but one user story can have multiple test cases mapped to it. This mapping has been 

done by creating an adjacency matrix using the Python programming language which has 

been created using the random function of the python library. Once the adjacency matrix 

is created the mappings of the test case and user stories are stored in a database table. 
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Following the creation of test case user story mapping, the importance-value is computed 

as below. 

4.2.3. Computation of the Importance-Value 

Importance-value specifically used in the context of this thesis is used to prioritize 

the user stories for the RTS approach. Since regression testing focuses on the prior release 

user stories, we aim to associate the computed importance-value to each of the prior release 

user story. This is a value that is computed taking the similarity value, and business value 

associated with the user stories into account. The importance-value is calculated to make 

an informed decision while selecting the subset of test cases. The consideration of the 

factors in calculating the importance-value plays an essential role in deciding the overall 

impact of a user story in creating the regression suite. The importance-value computed and 

associated with any prior release user story are mapped to the test cases associated with the 

particular user story.  To address the research question RQ1 we are considering the business 

value of the user stories along with the similarity value to calculate the importance-value. 

The business values have been normalized to bring them to a common range which would 

help us to calculate the importance-value irrespective of their units. To normalize the 

values, the below approach (9) has been used. 

   (9) 

• Let values = [value1, value2, value3] be a list of values. 

• Normalizer = 1/(value1+value2+value3) 

• N(value1) = [value1×Normalizer] 

Where, N(value1) is the function to compute the normalized value for value1. 
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This normalization process ensures that the values maintain the proportionality of 

the original values while making them collectively add up to 1. Using any other form of 

normalization would fetch similar results which has been tested by our approach. The 

following subsection presents the ways of computing the importance-value in the context 

of this thesis. 

4.2.4. Process Execution 

In regression testing the existing functionalities are tested, functionalities that have 

been built prior to the current release. This indicates the need for prioritizing the user stories 

of the prior release(s) and not the current, thus the importance-value is calculated and 

associated to all the prior release user stories. Following this, ordering of the user stories is 

carried out based on the computed importance-value which is the combination of these two 

factors: 1) textual similarity value, calculated between two user stories (𝑇𝑆𝑉(𝑈𝑆𝑖

𝐶𝑅, 𝑈𝑆𝑚

𝑃𝑅)), 

one from the prior release (𝑈𝑆𝑚
𝑃𝑅) and one from the current (𝑈𝑆𝑖

𝐶𝑅), and 2) the business 

values associated with different user stories (𝑈𝑆. 𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠𝑣𝑎𝑙𝑢𝑒). This thesis advocates 

three different configurations for computing the importance-value based on different 

possible combinations of the business value from the current and prior release user stories. 

These configurations have been created to highlight the impact of the business value while 

prioritizing the user stories in the creation of the regression suite and analyzing their 

effectiveness. This thesis uses two more configurations as the baseline purpose: Random 

Selection Process and SimOnly. The Random selection process is an industrial standard 

process whereas SimOnly is a configuration that has been created specific to this thesis. 

SimOnly uses a single factor: textual similarity value, to compute the importance-value for 
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the existing user stories to analyze the effect of business value on the other RTS 

approaches. 

Below are the details of the various configurations used in this thesis: 

 Random Selection Process (RSP): In the realm of software testing, practitioners 

frequently opt for the random selection of test cases or draw upon their existing knowledge 

and experience when there are no test selection tools available [65]. The random selection 

process is an example of such a technique that involves the random sampling of a specified 

percentage of test cases from the pool of all test cases.  RSP is used as one of the baselines 

to compare and analyze the effectiveness of the configurations advocated by this thesis. 

SimOnly: This configuration involves only one factor and does not consider any 

of the user story business values for the computation of the importance-value as shown in 

(10). It computes the importance-value solely based on the textual similarity value found 

between the user stories. The significance of SimOnly is to compare and understand the 

importance of considering the business values in the proposed RTS process. SimOnly is 

used as the second baseline for analyzing the results. 

𝐼𝑉(𝑈𝑆𝑚

𝑃𝑅)  =  ∑  𝑛
𝑖=0  𝑇𝑆𝑉(𝑈𝑆𝑖

𝐶𝑅, 𝑈𝑆𝑚

𝑃𝑅)    (10) 

where, 

𝑈𝑆𝑖
𝐶𝑅 = 𝑖𝑡ℎ  user story of the current release; 

𝑈𝑆𝑚
𝑃𝑅  =  𝑚𝑡ℎ user story of previous release(s); 

𝐼𝑉(𝑈𝑆𝑚
𝑃𝑅) = Importance-value for 𝑈𝑆𝑚

𝑃𝑅; 

𝑇𝑆𝑉(𝑈𝑆𝑖
𝐶𝑅 , 𝑈𝑆𝑚

𝑃𝑅) = Similarity value when textual comparison is performed 

between 𝑈𝑆𝑖
𝐶𝑅 and 𝑈𝑆𝑚

𝑃𝑅. 
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On describing the two baseline approaches the following section gives a detailed 

description of the three advocated configurations. Table 2 gives an overview of the factors 

involved in the three configurations.  

Configurations 
Factors involved 

Factor1 Factor2 

 SimBiz_New 

Textual Similarity 

Value Business value of current release user stories 

SimBiz_Existing 

Textual Similarity 

Value Business value of prior release user stories 

SimBiz_Combined 

Textual Similarity 

Value 

Business value of both prior and current release user 

stories 

Table 2: Factors Involved in SimBiz_New, SimBiz_Existing, SimBiz_Combined 

SimBiz_New: In SimBiz_New, alongside the textual similarity the business values 

of current release user stories are also considered to compute the importance-value, based 

on (11). The business value associated with the current release user story 

(𝑈𝑆𝑖
𝐶𝑅 . 𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠𝑣𝑎𝑙𝑢𝑒) has been given the equal weightage along with the textual 

similarity value 𝑇𝑆𝑉(𝑈𝑆𝑖

𝐶𝑅, 𝑈𝑆𝑚

𝑃𝑅) for calculating the importance value using this 

configuration. 

𝐼𝑉(𝑈𝑆𝑚

𝑃𝑅)  =  ∑  𝑛
𝑖=0  (𝑇𝑆𝑉(𝑈𝑆𝑖

𝐶𝑅, 𝑈𝑆𝑚

𝑃𝑅) ×  𝑈𝑆𝑖
𝐶𝑅 . 𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠𝑣𝑎𝑙𝑢𝑒)   (11) 

where, 

𝑈𝑆𝑖
𝐶𝑅 . 𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠𝑣𝑎𝑙𝑢𝑒 = Normalized Business value of 𝑈𝑆𝑖

𝐶𝑅. 

SimBiz_Existing: On contrary to  SimBiz_New, in SimBiz_Existing, the business 

value of the previous release user story is considered for the computation of the 

importance-value. Both the textual similarity value and the business value of the prior 

release user story are given equal weightage for computing the importance value as shown 

in (12). 

𝐼𝑉(𝑈𝑆𝑚

𝑃𝑅)  =  ∑  𝑛
𝑖=0  (𝑇𝑆𝑉(𝑈𝑆𝑖

𝐶𝑅, 𝑈𝑆𝑚

𝑃𝑅) ×  𝑈𝑆𝑚
𝑃𝑅 . 𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠𝑣𝑎𝑙𝑢𝑒)   (12) 
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where, 

𝑈𝑆𝑚
𝑃𝑅 . 𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠𝑣𝑎𝑙𝑢𝑒 = Normalized Business value of 𝑈𝑆𝑚

𝑃𝑅. 

SimBiz_Combined: Lastly, in SimBiz_Combined, the business value of the user 

story from both the current and prior release(s) along with the textual similarity value are 

considered for the computation of the importance-value. All the three factors hold equal 

weightage when calculating the importance-value using SimBiz_Combined and gets 

associated with the prior release user story (𝑈𝑆𝑚
𝑃𝑅) as shown in (13). 

𝐼𝑉(𝑈𝑆𝑚
𝑃𝑅)  =  ∑  𝑛

𝑖=0  (𝑇𝑆𝑉(𝑈𝑆𝑖
𝐶𝑅 , 𝑈𝑆𝑚

𝑃𝑅) ×  𝑈𝑆𝑖
𝐶𝑅. 𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠𝑣𝑎𝑙𝑢𝑒 ×  𝑈𝑆𝑚

𝑃𝑅 . 𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠𝑣𝑎𝑙𝑢𝑒) (13) 

 

The above-mentioned configurations were used to compute the importance value 

for every user story of the prior release. The computed importance-value is then used to 

prioritize the user stories with the highest importance-value having the highest priority. On 

having a prioritized list of user stories, the test case selection process starts as detailed 

below. 

4.2.5. Selecting Test Cases Based on the Importance-Value of the User Stories:  

After determining the importance-values for all the prior release user stories, the 

user stories are ordered in decreasing order of the associated importance-value. The 

selection process begins with selecting test cases associated with the highest prioritized 

user story. We consider the timeframe allocated for executing the regression suite, which 

is the total permissible time for regression execution, factor “𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑤𝑖𝑛𝑑𝑜𝑤” 

from #𝑇𝐶𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑. This timeframe is set against the individual execution times of each test 
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case “𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒” and the possible number of test cases that 

can be executed within the given timeframe is selected to build the final regression suite. 

4.2.6. Computing the Efficacy of the Selected Test Cases:  

The regression suite obtained from the RTS approach is evaluated to check if all 

the test cases associated with a particular user story are selected to measure the 

effectiveness of the approaches. To preserve the business value of a user story this work 

considers that all test cases associated to that user story must be selected through RTS. If 

all the test cases associated with a user story is present in the selected set of test cases 

through the RTS process, the business value of the user story is preserved as shown in 

Figure 7, any exception to this, the business value of the user story is not accounted as 

preserved. The figure depicts that all the test cases pertaining to USi are a subset of the 

selected test cases and in such a case the business value of USi is considered to be 

preserved. 

 

Figure 7: Computation of Value Preserved. 

All the results are exported to an excel as well as the database. The results are stored 

to the database for future reference. The results exported to excel are used to compute the 

descriptive analysis on the data. Plots are drawn using the data to better visualize and 

compare to the baselines mentioned in “Computation of the importance-value” section of 

this chapter. The maximum possible value preservation is computed for every dataset 

which is the value of the business value that can be preserved if all prior release user stories 
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and their associated test cases are considered without taking into account the impact of 

current release user stories. The ratio of the value preserved is computed with respect to 

the maximum possible value preservation for every configuration separately for all the 

datasets which is crucial to understand the effectiveness of each configuration across all 

the datasets. 

Following the steps mentioned in this section the simulations were run for 200 

datasets and the results were fetched. The results were fetched into an Excel for all the 

datasets separately and were analyzed to answer the research questions. The following 

chapter depicts the results obtained from the simulation runs. 
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CHAPTER 5 

RESULTS 

In this section, we present the results for all the configurations discussed in the 

implementation section. To comprehend the results an analysis has been performed on the 

data obtained. Table 3 displays the descriptive statistics of the results of all the 

configurations for all 200 datasets. 

Descriptive Statistics of Results 

  

                                                 Configurations 

Maximum 

preservable 

value 

RSP  SimOnly SimBiz_New SimBiz_Existing SimBiz_Combined 

Mean 1264.39 428.65 739.54 738.41 1218.36 1218.42 

Median 897.5 278.5 571.5 581.5 863.5 861.5 

Mode 686 86 1096 395 2513 2513 

Standard 

Deviation 
794.89 443.42 591.87 592.96 777.76 778.73 

Range 3552 2154 2725 2731 3449 3447 

Minimum 118 0 7 11 114 114 

Maximum 3670 2154 2732 2742 3563 3561 

Count 200 200 200 200 200 200 

Table 3: Descriptive Statistics of All the Configurations Across 200 Datasets. 

All the configurations have been run across 200 datasets. In the interest of space, 

the results for 50 datasets are shown below. Remaining results are provided in Appendix 

B. The following subsections exhibit the results of the business value preserved by each 

configuration with respect to the maximum preservable business value.  

5.1. Result for Each Configuration: 

 

In this section the result for each configuration has been shown in comparison to 

the maximum preservable value. 
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5.1.1. Random Selection Process (RSP): 

Random Selection Process as described in the implementation section selects a 

random set of test cases for the regression suite with performing any prior prioritization. 

Table 3 shows an average value preservation by RSP is 428.65 which is lowest of all the 

other configurations. Figure 8 shows the results for 50 datasets. From the figure it can be 

observed that for dataset 18 and 44 the value preservation is relatively high compared to 

other datasets. This can be reasoned by the high percentage of test cases selected for the 

two datasets, 93.452% and 97.57% respectively. 

5.1.2. SimOnly: 

 Figure 9 depicts the results for 50 datasets in comparison to the maximum 

preservable business value. SimOnly considers only the textual similarity value for the 

computation of the importance-value. The business values of user stories from either 

 
Figure 8. Maximum Preservable Value Vs. RSP 
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release are not considered in this case. As shown in Table 3 the average value preservation 

by SimOnly is 739.54 which is very similar to SimBiz_New. 

5.1.3. SimBiz_New: 

SimBiz_New involves textual similarity value and the business value of the current 

release user stories for the computation of the importance-value. From the data in Table 3 

it can be observed that the average value preserved by SimBiz_New is 738.41 which is just 

above half the average of total business value measured for all 200 datasets. Figure 10 

shows the bar chart of the business value preserved by SimBiz_New in comparison to the 

maximum preservable business value for 50 datasets.  

5.1.4. SimBiz_Existing: 

SimBiz_Existing considers the textual similarity value and the business value of 

the previous release user stories for the computation of the importance-value. Table 3 

shows that the average value preserved by SimBiz_Existing is 1218.36 which is very 

 
 

Figure 9.  Maximum Preservable Value Vs. SimOnly 
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close to the average of total business value across the 200 datasets. SimBiz_Existing 

shows good value preservation when compared to other configurations. On average it 

preserves 96.35% of the maximum preservable business value. Figure 11 depicts the 

results of SimBiz_Existing for 50 datasets.  

5.1.5.  SimBiz_Combined: 

SimBiz_Combined considers the textual similarity value, the business value of the 

previous release user stories, and the current release user stories to compute the 

importance-value. The statistics in Table 3 demonstrates the high performance of 

SimBiz_Combined where the average value preserved is 1218.42, much close to the 

average of maximum preservable value of 1264.39. It is also seen to have performed very 

similar to SimBiz_Existing. Figure 12 shows the value preserved by SimBiz_Combined 

for 50 datasets in comparison to the maximum preservable business value.  

 

 

    
Figure 10. Maximum Preservable Value Vs. SimBiz_New 
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Figure 12.  Maximum Preservable Value Vs. SimBiz_Combined 
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Figure 11.  Maximum Preservable Value Vs. SimBiz_Existing 
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From the boxplot in Figure 13 it can be observed that the configurations in which 

the business value of the user stories associated with the previous release(s) are considered 

for the computation of the importance-value perform better. From this observation, it can 

be concluded that considering the business value of the user stories pertaining to the 

previous release, in addition to the textual similarity, aids in preserving more value. 

Figure 14 showcases a bar chart of the values preserved by the RSP, SimOnly, 

SimBiz_New, SimBiz_Existing, and SimBiz_Combined in comparison to the total 

business value and maximum preservable business value for 25 datasets out of the 200 

datasets. The results for the rest of the datasets are given in Appendix B. Across all 200 

datasets, SimBiz_New and SimOnly preserve almost equal amounts of business value. 

While examining the data, we observed that in a sample of 200 datasets, the average 

difference in value preservation was 36.64 compared to an average of the maximum 

preservable business value of 1264.39. Likewise, SimBiz_Existing and SimBiz_Combined 

consistently depict closely correlated values in terms of value preservation across the 

entirety of the dataset, with an average difference of 4.86.  

Based on the foregoing analysis of the results, it is evident that SimBiz_Existing 

and SimBiz_Combined exhibit superior performance relative to other configurations in 

terms of value preservation as seen in Figure 14. A plausible justification for this observed 

distinction is the incorporation of business values from user stories of the prior release into 

the prioritization procedure, as this is the only shared factor unique to these two 

configurations.   

Figure 15 shows a comparison of performance by all the configuration in terms of 

percentage of value preserved (VP). The percentage of value preserved is computed with 



  46 

respect to the maximum preservable value. From this figure it can again be observed that 

the configurations (SimBiz_Existing and SimBiz_Combined) considering business value 

of prior release user stories for prioritization preserved more value than the other 

configurations (RSP, SimOnly, and SimBiz_New). Figure 15 depicts the result for 25 

datasets and the results for the remaining 175 datasets have been shown in Appendix B.  

 

 
Figure 13. Box Plot Showing the Performance of All the Configurations. 
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While the current results have shown valuable effectiveness it is crucial to 

acknowledge certain limitations inherent in the study. 

 

ss

 
Figure 14.  All Configurations with Respect to Total Business Value and Maximum 

Preservable Value. 
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Figure 15.  Percentage of Value Preserved by All Configurations. 
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5.2. Limitations: 

In interpreting the results of this study, it is essential to acknowledge some inherent 

limitations. Firstly, the data synthesized for this research was prepared based on the 

researcher's perspective of the real world, possibly introducing subjective biases and 

potentially limiting the universality of our findings. Secondly, our text similarity analysis 

relied solely on the Spacy library. While efficient, other text similarity libraries might have 

rendered different results, leading to a more comprehensive and comparative analysis. 

Moreover, spaCy, a general-purpose text comparator may have inadvertently overlooked 

or misinterpreted specific domain-specific details, introducing potential errors. Such 

nuances emphasize the importance of training the language models with domain-specific 

data in future endeavors to ensure a more precise and accurate analysis within software 

engineering.  

Based on the results observed in this chapter the following chapter dives deep to 

analyze these results. These analyses are then further used to answer the research questions 

presented in chapter 3. 
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CHAPTER 6 

ANALYSIS AND DISCUSSION 

In this chapter, we analyze and discuss the results presented in Chapter 5. This 

involves thoroughly examining the data to uncover patterns and correlations relevant to our 

research questions. We aim to provide insightful interpretations and contextualize the 

findings. This chapter explores the significance of the results and their implications for our 

research objectives. 

6.1. Analysis: 

Following are the two major analyses before getting into the discussion section 

where the research questions have been answered. 

6.1.1. Analyzing the Effect of Business Values from Current Release User Stories:  

From the discussions in the results section, Figure 14 and Figure 15 it can be 

observed that the inclusion of current release user stories for the computation of the 

importance-value did not create any impact in the value preservation. The configurations 

considering the business value of the current release user stories, i.e., SimBiz_New may 

have preserved more value than RSP for all 200 datasets but when compared to SimOnly, 

which did not have the factor of the business value it ended up preserving almost similar 

amount of value with a difference in the average value preservation of 1.13 as shown in 

Table 3. When the results of SimBiz_Combined were examined, it preserved a higher value 

than rest of the configurations (SimBiz_New, SimOnly, RSP) but showed very less 

variation in comparison to SimBiz_Existing. The only difference between 

SimBiz_Existing and SimBiz_Combined is again the inclusion of the business values of 

the current release user stories for the later. From both the above cases i.e., the comparison 
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between SimOnly and SimBiz_New and comparison between SimBiz_Existing and 

SimBiz_Combined it can be observed that the inclusion of business values from the current 

release user stories for prioritizing them before performing the selection process do not 

create any impact to preserve additional value through the test selection approach. To 

analyze further, the data was segregated into two sections based on the distribution of their 

business values. As mentioned in section 4.1.2, the first 100 datasets have uniform 

distribution, whereas the second 100 datasets have a right-skewed business value 

distribution. The average total business value for the second 100 datasets was much lower 

(703.71) compared to the first 100 datasets (2169.28). The results were analyzed for both 

cases to check for any variation compared to the complete set of 200 datasets. For the first 

100 datasets, the percentage of average value preserved to the maximum preservable value 

by SimOnly and SimBiz_New are 59.18% and 59.3%, respectively, whereas by 

SimBiz_Existing and SimBiz_Combined are 96.39% and 96.4% respectively. For the 

second 100 datasets, where the total average business value was lower than the first 100 

datasets, the percentage of average value preserved to the maximum preservable value by 

SimOnly and SimBiz_New are 56.34% and 55.6%, respectively, whereas by 

SimBiz_Existing and SimBiz_Combined are 96.24% and 96.22% respectively. This shows 

that even with the change in the business value distribution among the user stories, 

considering business value from current release user stories for prioritization does not 

impact value preservation.  

6.1.2. Analyzing the Effect of Regression Testing Execution Time:  

Further we investigate the correlation between the percentage of selected test cases 

and the difference in the value preserved by the SimBiz_Existing and SimOnly. These two 
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configurations were considered as from analysis 1 it was seen that considering the business 

value of current release user story does not have much of an impact in value preservation. 

Thus, considering the configurations which do not consider business value of current 

release user stories was sufficient to understand the correlation between percentage of test 

cases selected and the value preserved by all the configurations. It was observed that with 

the increase in the percentage of selected test cases, the difference in value preserved 

between the various configurations decrease. To identify this trend, the correlation was 

computed between 2 sets of data. The correlation coefficient was found using the in-built 

Excel formula =CORREL(Series1, Series2) [48]. It calculates the correlation coefficient 

using the Pearson correlation coefficient. The correlation coefficient ranges from -1 to 1, 

where 1- indicates a perfect negative linear relationship, 0 indicates no linear relationship 

and 1 indicates a perfect positive linear relationship. The Pearson correlation coefficient is 

calculated using the below equation: 

𝐶𝑜𝑟𝑟𝑒𝑙(𝑋, 𝑌) =
∑(𝑥−�̅�)(𝑦−�̅�)

√∑(𝑥−�̅�)2(𝑦−�̅�)2
    (10) 

Where, 

𝐶𝑜𝑟𝑟𝑒𝑙(𝑋, 𝑌) = correlation coefficient computed between series X and series Y; 

𝑥 = Values of the series X; 

�̅� = Mean of the values of series X; 

y = Values of the series Y; 

�̅� = Mean of the values of series Y. 

The difference between the value preserved by SimBiz_Existing and SimOnly 

correlated to the percentage of selected test cases: The correlation coefficient for these 

two series of data across all 200 test cases came out to be -0.6579. A value of -0.6579 as 



  52 

the correlation coefficient indicates a moderate negative linear relationship between the 

two data series, which means that the other tends to decrease as one variable increases. 

The difference between the value preserved by SimBiz_Existing and Random 

selection correlated to the percentage of selected test cases: The calculated correlation 

coefficient for the two data series, considering all 200 datasets, is -0.37702. This 

correlation coefficient of -0.37702 denotes a perceptible negative linear relationship of 

weaker strength between the two data series, yet an increase in one variable is associated 

with a tendency for the other variable to decrease. 

This observation is because, with the increase in the % of test cases selected, all 

configurations tend to preserve more values as more test cases associated with more user 

stories get tested. Thus, the difference in value preserved between the different 

configurations decrease, and all the configurations tend to be closer to the maximum 

preservable value. This throws light onto a scenario where almost all the test cases get 

selected, depicting a close resemblance to the case of retest-all i.e., running all the existing 

test cases for regression testing. Figure 16 shows the two ends of the percentage of test 

cases selected showcasing the values. Figure 17 is the bar chart showing the business value 

preservation by all the configurations in comparison to the total value preservation and 

maximum preservable value. This bar chart shows the effect on business value preservation 

by the change in percentage of test cases selected. 
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Figure 16. Plot Showing Higher and Lower Percentage of Test Case Selected. 

 

 

Figure 17: Value Preservation Based on Percentage of Test Cases Selected. 

 

Based on the above analysis the following subsection addresses the research 

questions presented in chapter 3. 
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6.2. Discussion: 

To address RQ1.1 we investigate the results in section 5.1.3 and Figure 10. 

SimBiz_New in our experiment considers similarity value in conjunction with the current 

release business value. For SimBiz_New the results show an average value preservation of 

738.41 in comparison to 1264.39, the average maximum preservable business value across 

all 200 datasets, which is 58.40% of the maximum preservable value. When compared to 

SimOnly which refrains from using any business value an average value preservation of 

739.54 (58.48% of the maximum preservable value) is noticed which is very similar to 

SimBiz_New. Though this configuration was seen to have performed better than Random 

selection process (average value preservation: 428.65 which is 33.90% of the maximum 

preservable value), the incorporation of the business of the current release user stories value 

in addition to text similarity value (when compared to SimBiz_New) does not show much 

of an impact. We believe, since the value preservation of the regression suite is computed 

on business values of the prior release user stories the inclusion of current release user 

stories into the approach of RTS does not create much of an impact.  

This brings our discussion to answer the next research question, RQ1.2. 

SimBiz_Existing was built to analyze this research question. SimBiz_Existing uses the 

business values of prior release user stories along with the textual similarity value to 

prioritize the user stories before performing the test selection process. From the results in 

section 5.1.4 and Figure 11 we observe that SimBiz_Existing has preserved a substantial 

amount of average business value 1218.36 in comparison to the average maximum 

preservable business value of 1264.39 across all 200 datasets, which is 96.35% of the 

maximum preservable value. SimBiz_Existing was seen to have performed better than 
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Random selection process as well as the configurations which did not consider the business 

value of the prior release user stories. This can be reasoned due to the fact that inclusion of 

prior release user stories allows SimBiz_Existing to take an informed decision of 

prioritizing higher business value user stories from prior release, higher in the order. Thus, 

while selecting the test cases for regression suite the higher business user stories are 

selected first as RTS focuses on selecting test cases from prior release user stories solely. 

From this discussion it can be inferred that inclusion of business value from prior release 

user stories for prioritizing user stories can be a highly productive choice in terms of value 

preservation for an RTS approach. 

Following the discussion of RQ1.2, RQ1.3 is attended which adds another factor, 

the business value of current release user stories to the factors of SimBiz_Existing, namely 

the textual similarity value and the business value of prior release user stories. 

SimBiz_Combined was implemented to address this research question. Results in 5.1.5 and 

Figure 12 show that the average value preservation by SimBiz_Combined is 1218.42 

compared to the average of total available business value, 1264.39, which is 96.36% of the 

maximum preservable value. This is a substantially better value preservation when 

compared to the other configurations which did not include the business value of current 

release user stories. When compared to SimBiz_Existing (average value preservation: 

1218.36 or 96.35%) which included the business value from prior release user story but 

did not include business value from current release user story, the value preservation data 

does not show much of a difference. From this result it can be inferred that the business 

value associated with the prior release user stories plays an important role in value 

preservation, whereas business value associated with current release user stories does not 
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have any impact on value preservation. This can also be observed in our discussion of 

RQ1.1 where SimBiz_New was compared to SimOnly. 

To summarize RQ1, we derived that the inclusion of business value of prior release 

user stories can be very productive in preserving delivered value when implemented to 

prioritize user stories for an RTS approach but business value pertaining to current release 

user stories does not play much of a role in value preservation. 

To answer RQ2.1 we consider the effect of equal execution time for each test case. 

The equal execution time for each test case does not create any impact on the different 

configurations used in this thesis. This is because there is no time-based weightage on the 

test cases while selecting the test cases. All the test cases are considered equal from the 

perspective of their execution time which does not add in as any additional factor while 

performing the selection process. The increase or decrease of this time can only affect the 

number of test cases getting selected for the regression suite when the total execution 

window for regression testing is constant. With the decrease in the execution time for all 

test cases, a higher number of test cases get selected for the regression suite which increases 

the value preserved by all the configurations and get closer to the total business value given 

the total execution window for the regression testing is constant. This is due to the increase 

in the percentage of selected test cases as discussed in Analysis 2 in this chapter. 

For answering RQ2.2 the variation of the total available execution time for 

regression testing is considered given the execution time for each test case is constant. This 

variation impacts the total test cases that can be selected through the RTS approach. With 

the increase in the execution window all the configurations tend to preserve higher values 

as the percentage of selected test cases increases as shown in Figure 16 and 17. This is 
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because when a higher percentage of test cases are selected higher number of existing user 

stories get tested through regression testing and thus preserving higher value. 

To summarize RQ2, time can create an impact on the value preserved by the RTS 

approach as it impacts the number of test cases getting selected for the regression suite.   
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK  

In this chapter, we draw conclusions from our analysis in Chapter 6 and outline 

avenues for future work. This chapter encapsulates the key insights derived from the study, 

summarizing the findings and their implications. Additionally, we discuss potential 

directions for future research, identifying areas that merit further exploration to advance 

the understanding and application of the study's outcomes. 

7.1. Conclusion:  

Regression testing is a critical part of software development to maintain the quality 

of the already implemented functionalities in the application while adding new 

improvements. Regression test selection has always been impactful in reducing time and 

effort for regression testing while ensuring the high quality of software. In this study, the 

technique selected a smaller set of test cases for regression and focused on testing existing 

user stories delivering high business value to the customers. Business value, as seen in the 

previous discussions, is a measure of the significance of each user story on the overall 

business objectives and goals.  

User stories were investigated, and textual similarity was measured between the 

user stories to identify the impact of current-release user stories on prior-release user 

stories. Along with the measurement of textual similarity, the business values of user 

stories were considered to select the test cases using the RTS approach. The proposed RTS 

technique was validated by comparing it to the Random Test Selection Process and with 

SimOnly which did not implement the factor of user story business value. Through the 
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experiments performed, it was observed and analyzed that the business value of current-

release user stories does not impact value preservation as compared to the business value 

of prior-release user stories. Even with fewer test cases getting selected, a high level of 

value preservation was maintained when the business values of prior release user stories 

were considered in the configurations. This study also provides insights into the variation 

of the different factors involved in the computation of the RTS approach. The graphs and 

plots help us visualize the results and their effects compared to other configurations 

considering different factors in RTS process.  

7.2. Future Work:  

 In exploring avenues for future work, there lies an exciting opportunity to enhance 

the efficiency and effectiveness of RTS. Varying execution time for individual test cases 

as mentioned in chapter 4 is an important factor to be considered when selecting test cases 

for regression suite. Execution time of test cases serves as a times-based weight that can 

be applied with other factors while performing RTS. Like the execution time of each test 

case, another test case level factor which can be crucial to make a well-informed decision 

for performing RTS is test case history. Regression suite is composed of test cases which 

have already been run once or more which provides us with a report of their history runs. 

This report provides information on how effective the test case has been in the past in 

identifying defects and how severe these defects were. This information can be used in 

addition to other factors to select more important test cases which can have the potential to 

find more critical defects.  
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This thesis focuses on identifying the impact of new changes based on the 

requirements and their textual similarities. One such factor which can be used to measure 

the impact of new changes on the existing functionalities is code modification. The use of 

code modification in addition to the similarity in requirements can be used to make more 

informed decisions in prioritizing user stories before selecting test cases for regression 

suite. 

For textual similarity computation this thesis uses spaCy, a Natural Language 

Processing (NLP) tool. Though, en_core_web_lg, a specific model of spaCy used for the 

purpose of this work which have been seen to have performed well as discussed in section 

4.2, training the model with domain-specific keywords could increase its efficiency. 

In addition to these considerations, the prospect of incorporating machine learning 

techniques into the future development of RTS holds immense promise. Machine learning 

offers the potential for dynamic adaptability, predictive insights, and enhanced precision 

in the selection of regression test cases. Leveraging machine learning algorithms can 

empower the RTS process to autonomously adapt to evolving software landscapes, 

providing a more robust and efficient approach to test selection process. 
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Github Link: AMondal. (n.d.). GitHub - amondal8/masters-thesis. GitHub. 

https://github.com/amondal8/masters-thesis 

This thesis focuses on prioritizing existing user stories based on the textual similarity with 

new user stories and the business values before selecting the associated test cases for 

regression test selection (RTS) process. Follow the folder "Definitional data" to access all 

the python files. 

The results (.xlsx) of this thesis and the .sql containing the created database can be found 

in : Thesis/Files/Definitional data/Additional Files 

Understanding the Database: The user stories have been extracted from the TAWOS 

dataset (https://github.com/SOLAR-group/TAWOS) and the remaining data have been 

synthesized. We have used two schemas while creating the data and storing the results. 

Below are the specifications of the schemas: 

1. Definitionaldata: This schema is used to store the initial data before creating any 

specific datasets. The below table shows the data tables, their purpose and the fields 

used. 

2. Dataset_schema: This schema is used to store datasets created from the data in 

definitionaldata schema. These are used to run simulations. The below table shows 

the data tables, their purpose and the fields used. 

Understanding the Codebase: 

1. Creating the tables: All the tables for both the schemas have been created using our 

python codes. This action can also be done without the use of any programming 

code using MySQL Workbench (https://www.mysql.com/products/workbench/) or 

any similar tool.  

 

2. Filling the tables with data: 

a. Filling the tables of definitionaldata schema: The extracted user stories from the 

TAWOS dataset are imported into our "userstory" table. The data are manually 

extracted from the TAWOS database into an excel and then the code is run to 

import the data to our table. The test case ids are also imported into the 

"testcase" table from excel. Methods filling data into additional tables can be 

ignored for the purpose of this thesis and have been placed for future use. 

 

b. Filling the tables of dataset_schema: This involves three major parts: 

(i) Creating dataset id: Creating a record in the dataset table with a unique id 

to fill data into table specific to each dataset id. 

(ii) Filling up the userstory_datasettable and tc_datasettable: Data from the 

userstory and testcase tables are fetched and filled into the 

userstory_datasettable and tc_datasettable respectively specific to every 

dataset id based on the user provided input (count of user stories in each 

https://github.com/amondal8/masters-thesis
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release and count of test cases, for a given dataset). The user inputs can 

be provided using the configuration file or the data.py file based on the 

requirement. 

(iii) Mapping user stories to test cases: An adjacency matrix is created based 

on the total number of user stories and test cases available for a given 

dataset id to create a mapping. This mapping is then stored to us_tc_map 

table specific to every dataset id. 

 

3. Running the Simulations: Once the data has been created and pushed to the tables 

in accordance to specific datasets (ds_id) the final simulation is run. Running the 

final file produces the results specific to every dataset and the results are stored into 

the dataset table of dataset_schema. Along with storing the results to the database 

they are also exported to the desired excel into specific columns. The results in the 

excel are used to visualize the results and dive deeper into analyzing them. 

Steps to be followed to run the simulations: 

The above processes have been mentioned in a chronological order which has to be 

followed to run the simulations and replicate the results of this thesis. Following are the 

steps revisited for better understanding. 

Step1: Extract the textual content (user story description) from the TAWOS dataset and 

place it on an .xlsx file which will be used to import these to our database. 

Note: Prerequisite for Step2 and Step3: The schemas need to be created manually in the 

database and updated in the "createTables.py" and "createInstanceTables.py" files. 

Step2: Run the createTables.py to create the tables in "definitionaldata" schema (if not 

already created). 

Step3: Run the createInstanceTables.py to create the tables in "dataset_schema" schema (if 

not already created). 

Step4: Run the fill_primarytable.py to fill in data to the tables "userstory" and "testcases" 

of the "definitionaldata" schema. These data are extracted from the .xlsx file mentioned in 

Step1 and imported to our database. 

Step5: Run the config_initialsetup.py to create a new dataset id corresponding to which the 

following data will be created. This creates a new id every time it is run. 

Step6: Run the fill_datasettable.py to categorize the user stories into releases and fills in 

the "userstory_datasettable" table. The count of user stories in each release is user defined 

and can be changed for each release. This also imports the user defined count of test cases 

into the "tc_datasettable" table. All the data are imported from "userstory" and "testcases" 

tables of the "definitionaldata" schema. 
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Step7: Run the fill_mappingtable to map the user stories to test cases and store them in the 

"us_tc_map" table. 

Step8: Once all the tables are filled run the final_implementation1.py to fetch the results 

onto the dataset table and the desired .xlsx file. 

Following the steps should provide the results we obtained for this thesis. 
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APPENDIX B 

EXPERIMENTAL RESULTS 
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Figures 18 to 21 show results of 200 datasets for Random Selection Process (RSP):  

 

 

Figure 18: Maximum Preservable Business Value Vs. RSP-Plot1 

(dataset range: 1 - 50). 

 

Figure 19: Maximum Preservable Business Value Vs. RSP-Plot2 

(dataset range: 51 - 100). 
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Figure 20: Maximum Preservable Business Value Vs. RSP-Plot3 

(dataset range: 101 - 150). 

 

 

Figure 21: Maximum Preservable Business Value Vs. RSP-Plot4 

(dataset range: 151 - 200). 
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Figure 22 to 25 show results of 200 datasets for SimOnly:  

 

Figure 22: Maximum Preservable Business Value Vs. SimOnly-Plot1 

(dataset range: 1 - 50). 

 

Figure 23: Maximum Preservable Business Value Vs. SimOnly-Plot2 

(dataset range: 51 - 100). 
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Figure 24: Maximum Preservable Business Value Vs. SimOnly-Plot3 

(dataset range: 101 - 150). 

 

 

Figure 25: Maximum Preservable Business Value Vs. SimOnly-Plot4 

(dataset range: 151 - 200). 
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Figure 26 to 29 show results of 200 datasets for SimBiz_New:  

 

Figure 26: Maximum Preservable Business Value Vs. SimBiz_New-Plot1 

(dataset range: 1 - 50). 

 

Figure 27: Maximum Preservable Business Value Vs. SimBiz_New-Plot2 

(dataset range: 51 - 100). 
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Figure 28: Maximum Preservable Business Value Vs. SimBiz_New-Plot3 

(dataset range: 101 - 150). 

 

Figure 29: Maximum Preservable Business Value Vs. SimBiz_New-Plot4 

(dataset range: 151 - 200). 
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Figure 30 to 33 show results of 200 datasets for SimBiz_Existing:  

 

Figure 30: Maximum Preservable Business Value Vs. SimBiz_Existing-Plot1 

(dataset range: 1 - 50). 

 

Figure 31: Maximum Preservable Business Value Vs. SimBiz_Existing-Plot2 

(dataset range: 51 - 100). 
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Figure 32: Maximum Preservable Business Value Vs. SimBiz_Existing-Plot3 

(dataset range: 101 - 150). 

 

Figure 33: Maximum Preservable Business Value Vs. SimBiz_Existing-Plot4 

(dataset range: 151 - 200). 
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Figure 34 to 37 show results of 200 datasets for SimBiz_Combined:  

 

Figure 34: Maximum Preservable Business Value Vs. SimBiz_Combined-Plot1 

(dataset range: 1 - 50). 

 

Figure 35: Maximum Preservable Business Value Vs. SimBiz_Combined-Plot2 

(dataset range: 51 - 100). 
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Figure 36: Maximum Preservable Business Value Vs. SimBiz_Combined-Plot3 

(dataset range: 101 - 150). 

 

Figure 37: Maximum Preservable Business Value Vs. SimBiz_Combined-Plot4 

(dataset range: 151 - 200). 
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Figure 38 to 45 show results of 200 datasets for all configurations: 

 

 

Figure 38.  All Configurations with Respect to Total Business Value and Maximum 

Preservable Value-Plot1 (dataset range: 1 - 25). 

 

 

Figure 39.  All Configurations with Respect to Total Business Value and Maximum 

Preservable Value-Plot2 (dataset range: 26 - 50). 

 

0

500

1000

1500

2000

2500

3000

B
u

si
n

es
s 

V
al

u
e

Datasets

Total business value Maximum Value Preservation Possible RSP SimOnly SimBiz_New SimBiz_Existing SimBiz_Combined



  84 

 

Figure 40.  All Configurations with Respect to Total Business Value and Maximum 

Preservable Value –Plot3 (dataset range: 51 - 75). 

 

 

Figure 41.  All Configurations with Respect to Total Business Value and Maximum 

Preservable Value –Plot4 (dataset range: 76 - 100). 
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Figure 42.  All Configurations with Respect to Total Business Value and Maximum 

Preservable Value –Plot5 (dataset range: 101 - 125). 

 

 
Figure 43.  All Configurations with Respect to Total Business Value and Maximum 

Preservable Value –Plot6 (dataset range: 126 - 150). 
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Figure 44.  All Configurations with Respect to Total Business Value and Maximum 

Preservable Value –Plot7 (dataset range: 151 - 175). 

 

 
Figure 45.  All Configurations with Respect to Total Business Value and Maximum 

Preservable Value –Plot8 (dataset range: 176 - 200). 

 

 

 

 



  87 

Figure 46 to 53 show results of 200 datasets for all configurations in terms of Percentage 

of Value Preserved to the Maximum Preservable Value: 

 

 

Figure 46.  Percentage of Value Preserved by All Configurations-Plot1 

(dataset range: 1 - 25). 

 

 

Figure 47.  Percentage of Value Preserved by All Configurations-Plot2 

(dataset range: 26 - 50). 
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Figure 48.  Percentage of Value Preserved by All Configurations-Plot3 

(dataset range: 51 - 75). 

 

 
Figure 49.  Percentage of Value Preserved by All Configurations-Plot4 

(dataset range: 76 - 100). 
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Figure 50.  Percentage of Value Preserved by All Configurations-Plot5 

(dataset range: 101 - 125). 

 

 
Figure 51.  Percentage of Value Preserved by All Configurations-Plot6 

(dataset range: 126 - 150). 
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Figure 52.  Percentage of Value Preserved by All Configurations-Plot7 

(dataset range: 151 - 175). 

 

 
Figure 53.  Percentage of Value Preserved by All Configurations-Plot8 

(dataset range: 176 - 200). 

 

 


