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ABSTRACT 
 

 This dissertation is on the topic of sameness of representation of mathematical 

entities from a mathematics education perspective. In mathematics, people frequently 

work with different representations of the same thing. This is especially evident when 

considering the prevalence of the equals sign (=). I am adopting the three-paper 

dissertation model. Each paper reports on a study that investigates understandings of the 

identity relation.  

The first study directly addresses function identity: how students conceptualize, 

work with, and assess sameness of representation of function. It uses both qualitative and 

quantitative methods to examine how students understand function sameness in calculus 

contexts. The second study is on the topic of implicit differentiation and student 

understanding of the legitimacy of it as a procedure. This relates to sameness insofar as 

differentiating an equation is a valid inference when the equation expresses function 

identity. The third study directly addresses usage of the equals sign (“=”). In particular, I 

focus on the notion of symmetry; equality is a symmetric relation (truth-functionally), 

and mathematicians understand it as such. However, results of my study show that usage 

is not symmetric. This is small qualitative study and incorporates ideas from the field of 

linguistics.  

Each study is at a different point in the journey of becoming a self-contained 

journal article. Portions of the first study have been published in two separate conference 

proceedings (Mirin, 2018, 2020b). The second dissertation study is already published in a 

journal (Mirin & Zazkis, 2020). Copyright of the journal paper is held by For the 

Learning of Mathematics Publishing Association (https://flm-journal.org/). The third 

https://flm-journal.org/


 

ii 
 

study is earliest in this process; no empirical aspects of it have been published in any 

proceedings or journals. However, preliminary results were presented at the Northeastern 

RUME (Research in Undergraduate Mathematics Education) conference (Mirin & 

Dawkins, 2020), and theoretical contributions are reported in Mirin (2019) and Mirin 

(2020a). 
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GENERAL INTRODUCTION 

The importance of the identity relation in mathematics cannot be overstated. Four 

of Euclid’s five Common Notions deal with equality, and the fifth deals with inequality 

(Euclid, 300 B.C.E./2013).We see the identity relation regularly with any equation; “a=b” 

tells us that a and b are identical. We use the equals sign to express that the object 

represented by “a” and the object represented by “b” are in fact the same object. These 

identity statements allow us to make inferences about mathematical objects and are 

essential to most, if not all, subfields of mathematics. Leibniz’ law of indiscernibles states 

that two objects x and y are the same object if and only if they share all properties 

(Noonan & Curtis, 2014). This means that when x=y, we can infer that whatever 

properties x has, y also has, and vice versa. This law allows us to make powerful 

inferences. Consider the following examples from a variety of subfields of mathematics. 

Numerical equations such as “2(2)=3+1” tell us that the object represented by “2(2)” is 

the same as the object (the number four) represented by “3+1”, and that therefore 3+1 is 

even.  In other words, because 2(2) has the property of being even and 3+1 is identical to 

2(2), we can conclude using Leibniz’ law that 3+1 is even. Similarly, the equation “eiπ =

−1” tells us that eiπ is in fact a real number. These inferences are not limited to 

statements about numbers. For example, if p is an element of a Boolean algebra, then p ⋅

p = 0, and therefore p ⋅ p is an additive identity (since it is identical to 0). The 

permutation equation “(1 3 2) = (1 3) (1 2)” tells us that the cycle (1 3 2) is in fact even.  

Similarly, a set theoretic proof that the singleton {x} exists for any set x might establish 

that {x,x} exists (by the Pairing Axiom), and since {x,x}={x} by (Extensionality Axiom), 

{x} exists (Devlin & Devlin, 1993). An instance of the fundamental theorem of calculus 
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tells us a statement of function identity: that the function defined by y = ∫ 3t2dtx
2  is 

identical to the function defined by y=x3-8, and therefore y=x3-8 represents an 

accumulation function corresponding to the rate of change function defined by y = 3x2. 

Proofs in mathematics sometimes involve long strings of equalities, which consist of 

multiple identity statements; for example, in my Master’s Thesis, I include a string of six 

equalities to show that a particular unary operation distributes over a particular binary 

operation in a relation algebra (Mirin, 2013). As the above examples illustrate, identity 

statements (often in the form of equations) are indispensable to many subfields in 

mathematics. 

The notion of identity is closely linked to the notion of representation.  While this 

issue is elaborated on in a more philosophically rigorous manner later, it is important to 

emphasize that this dissertation is a mathematics education (not philosophy) dissertation. 

Thus, it is helpful to continue to keep psychological considerations in mind. To continue 

with the examples above, (1 3 2) = (1 3) (1 2) because “(1 3 2)” and “(1 3) (1 2)” are 

different representations of the same thing (a particular permutation). However, each 

representation is likely to bring different properties to mind. For example, (1 3) (1 2) 

emphasizes that the permutation at hand is even.  When we make identity claims, such as 

equations, what makes them informative is that the representations differ; “2(2)=3+1” is 

informative because “2(2)” and “3+1” differ in their representations. The representation 

“2(2)” emphasizes that the number at hand is a perfect square and is even, whereas the 

representation “3+1” emphasizes that the number at hand is one more than a prime 

number. The differences in representation underscore the fact that we are always thinking 

of an object in a particular way or with respect to certain properties. How someone 
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conceptualizes an object is going to depend on the individual person as well as on the 

way the object is represented. We are never talking about objects independently of how 

we conceive of them.  

 Before addressing identity in specific aspects of mathematics, I discuss more 

generally its meaning. It might seem strange to discuss something as quotidian in 

mathematics as identity, but identity is a surprisingly difficult concept. Characterizing the 

identity relation is a longstanding theme in intellectual history; Plato addressed identity in 

Parmenides in the fourth century, Leibniz addressed it in Discourse on Metaphysics in the 

17th century, Frege addressed it in On Concept and Object (and several other works) in 

the 19th century, and Williamson addressed it in Identity and Discrimination recently in 

the late 20th century (Dejnozka, 1981; Frege, 1879/1967; Leibniz, 1846/1992; 

Williamson, 1990/2013). The fact that identity has been discussed in such depth by many 

intellectuals underscores its significance. My intent in bringing up this issue is not to 

solve a long-standing problem in philosophy, nor to provide a comprehensive overview 

of identity in intellectual history. Instead, I am stressing the nontriviality of understanding 

the identity relation. When we evaluate student understanding of identity, it helps to keep 

in mind that students are not missing something trivial and straightforward. The 

philosophical and mathematical theory is relevant for sensitizing the reader and the 

researcher to think carefully about meaning, equality, and identity to provide a sound 

conceptual basis prior to studying student conceptions of these ideas. Looking to 

intellectual history to situate mathematics education research is a longstanding theme in 

the mathematics education field -- see, for example, Sfard (1992), Thompson and Carlson 

(2017), and Harel et al. (2009). Sfard (1992) takes the perspective that an individual’s 
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development of a particular concept might parallel the historical intellectual 

development. Additionally, examining our own views might help us reflect more on our 

research. It also provides a starting point for thinking about how one might conceptualize 

identity – philosophers and mathematicians are people with these ideas, so students could 

have similar intuitions or rationales. We have seen this in at least one other case; 

Antonini and Mariotti (2008) observe that some students are unconvinced by non-

constructive proofs, an idea shared by intuitionists such as Brouwer (Iemhoff, 2019).  

Identity is a tricky concept to put into words. Consider the sentence “A and B are 

identical”. The “are” in that previous sentence is a red flag; if A is indeed identical to B, 

then there is only one object we are talking about, yet the use of “are” suggests the 

presence of more than one. So, I can more precisely say “A is identical to B”. That 

sentence has an easy fix, but this is not the case for other sentences. Suppose I want to 

ask someone “what does it mean for two functions to be the same?” If the functions really 

are the same, then there certainly aren’t two of them, but asking “what does it mean for a 

function to be the same as itself?” does not make too much sense either. I could rephrase 

it to “what does it mean for a function f to be identical to a function g,” but then I’ve 

introduced unnecessary naming. Perhaps “f” and “g” have already been used in that 

conversation to name particular functions. Then, I must find other letters, and I then have 

an abundance of letters. In short, there is some deliberate imprecision for the sake of 

readability.  

 As mentioned earlier, the normative meaning of the equals sign is that of identity; 

the equals sign expresses identity, so “a=b” is synonymous with “a and b are identical”. 

Yet, as alluded to above, discussing identity is tricky. It is so tricky that people appear to 
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avoid making identity statements, and instead they use other words or phrases that appear 

to convey the idea of identity. These phrases include: 

- Can be thought of as 

- Is equivalent to (without defining an equivalence relation) 

- Can be described as 

- Can be represented by/as 

- Is essentially 

- Can be written as 

- Can be expressed by 

- Represents 

This becomes especially evident when we look at wording of the fundamental theorem of 

arithmetic. When Googling “the fundamental theorem of arithmetic,” two out of the first 

three results use the phrase “can be written as” or “can be represented as” rather than 

simply “is” or “equals”.1 I did a search of Velleman’s 2nd Edition of How to Prove It, the 

standard textbook used for MAT300 (“Mathematical Structures”, a transition-to-proofs 

course) here at Arizona State University (ASU) and commonly used in transition-to-

proofs courses at US universities (David & Zazkis, 2019). The phrase “can be written as” 

occurs eleven times in this text. Nine of these occurrences appear to convey the idea of 

identity, such as “x can be written as a product of two smaller integers” (p. 6).  

 Another example of this phenomenon is in situations where notation is described  

  
 

1 Googled on 10/23/2019. First three results are: 
https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic 
https://www.mathsisfun.com/numbers/fundamental-theorem-arithmetic.html 
https://brilliant.org/wiki/fundamental-theorem-of-arithmetic/ 

https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic
https://www.mathsisfun.com/numbers/fundamental-theorem-arithmetic.html
https://brilliant.org/wiki/fundamental-theorem-of-arithmetic/
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or introduced. I encountered the following wording as part of the College Algebra 

MAT117 homework series here at Arizona State University: “C(t) represents the number 

of cases of Ebola t days after May 1, 2014”. Technically, C(t) actually is the number of 

cases of Ebola t days after May 1, 2014, whereas “C(t)” represents it.  

 Before going further, it is important that I stress what I mean by “identity” and 

“equality”. As alluded to above, “a=b” is true if and only if a and b are identical. This 

means that “a=b” is true if and only if {a,b} has cardinality 1. I use “a is the same as b”, 

“a=b”, “a equals b”, and “a is identical to b” synonymously. Occasionally, I use “a is b” 

as well, which comes with some ambiguities; sometimes I mean the “is” of predication 

(as in “Socrates is mortal”), but other times I mean the “is” of identity (as in “Paris is the 

capital of France”). It is important to note that by “identity”, I mean true identity, not 

some sort of weaker equivalence relation. I make this point in Mirin (2019), from which I 

include an excerpt below:  

Equality represents true identity, not merely an equivalence relation: a=b if and only 

if a is the same thing as b. It does not suffice for a to be equivalent or isomorphic to 

b. Taking an example from algebra, it is not the case that Z/2Z = Z2. 

Mathematicians might casually refer to them as “the same group,” but they are 

actually different groups (members of Z/2Z are sets of integers, whereas members 

of Z2 are integers).  Z/2Z and Z2 are of the same isomorphism class, but they are 

not equal to each other. This is not to say that they are unequal simply because we 

write members of Z/2Z one way and members of Z2 another way; indeed, we can 

have two different names for the same thing. For example, we can write the same 

group with additive or multiplicative notation; we have the same group, not merely 
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isomorphic groups. Similarly, we can call the same function both “f” and “g”. So 

long as the set for the group, together with its operation, are identical (despite 

different names), the groups are identical.  

To elaborate on my point: while we want to be explicit that equivalence (in this case, 

isomorphism) is not always equality, we also ought not think that different names always 

name different objects. Consider the following group tables: 

 

Figure 1.1. Groups of Order Two. 

 How many groups have I defined above in Figure 1.1? All three group tables 

certainly look different visually, and a group theorist might say that they are all just Z2. 

However, if we look carefully, we can see that there are two distinct groups. G1 and G2 

are identical. They have the same elements, and their group operation is identical. Notice 

that their group operation is identical because the operation agrees on all elements – the 

notion of identical function(s) is discussed later. Since a group is a set together with a 

particular operation that satisfies certain axioms, by the nature of what defines a group, 

G1 = G2. This is despite the fact that the elements in the group table for  G1 are written 
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differently than the elements in the group table for G2; note that we know that G1 = G2 

because we know (by stipulation) that the element a is identical to 0 and b is identical to 

1. If a or b were anything else, this would not be the case. It is clear that G2 and G3 are 

different groups; elements of G2 are integers, and elements of G3 are infinite sets.2 So, 

among G1, G2, and G3, there is one isomorphism class, two groups, and three names of 

groups.   

 While I and the modern mathematical community use “=” to express identity, it 

bears mentioning that the equals sign has not always been used this way. In the 19th 

century, there was a widespread debate about whether in mathematics “=” represents true 

identity. Some thinkers “posited some weaker form of ‘equality’ such that the numbers 

4(2) and 11-3 would be said to be equal in number or equal in magnitude without thereby 

constituting one and the same thing” (Klement, 2019). People with such viewpoints 

might disagree that the fundamental theorem of arithmetic tells us that every non-prime 

number is (identical to) a product of primes, while at the same time they might claim that 

every non-prime number equals a product of primes.  

1.1 Frege and Identity 

I now turn to a discussion of philosophy. Since there is so little mathematics 

education literature on identity, it makes sense for me to include what literature there 

happens to be on identity (and the bulk of that literature is philosophical). Since the topic 

of identity is what ties my dissertation papers together, it is worth exploring more 

  
 

2 I acknowledge that some people might name an equivalence class with just an element. That is, it is not 
uncommon to see someone name the set of even integers “0”. However, when people do this, they are 
usually explicit that they are adopting this convention. Furthermore, I’m not adopting this convention; I 
defined the group 𝐺𝐺1 to have the integers 0 and 1 as members.  
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generally the meaning of identity. Another reason I include this discussion is an effort of 

intellectual honesty; my own interest in how people understand identity is motived by my 

background in philosophy. The existence of philosophical literature on the topic also 

underscores the nontriviality of understanding identity. 

How the issue of identity manifests in non-mathematical contexts can inform how 

we approach them in mathematical contexts. Accordingly, we begin with one of Frege’s 

puzzles of identity. This involves a story. The Ancient Greeks observed a dull white 

glowing sphere in the sky during sunrise. They called this “The Morning Star 

(Phosphorus)”. They also observed a sphere in the sky during sunset and called this 

sphere “The Evening Star (Hesperus)”. It wasn’t until around the sixth century BCE, 

through empirical observation, that the Greeks discovered that The Morning Star and The 

Evening Star are in fact the same celestial body: the planet Venus (Frege, 1879/1967; 

Makin, 2010). This is despite the fact that there was an experiential difference viewing 

Venus as The Morning Star versus as The Evening Star. With this in mind, consider the 

following sentences: 

(1) The Morning Star is The Evening Star. 

(2) Venus is Venus. 

Observe that (1) is informative, whereas (2) is not. Frege puzzled over what the identity 

relation is on: names, or objects (the things named by names). Early Frege (1879/1967) 

proposed a theory of meaning in which the referent (bedeutung) of a name is the meaning 

of a name (specifically, that all noun phrases do is refer to objects). In order to account 

for the informativeness of sentences like (1), Frege initially rejected the idea that the 

identity relation is between objects (referents). He thus concluded that it must be a 
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relation between names. With the identity relation between names, it became a less 

trivial-seeming relation that expresses information. “The Morning Star is the Evening 

Star” was not just saying that Venus was itself; instead, it was saying that the names ‘The 

Morning Star’ and ‘The Evening Star’ refer to the same object, so that “The Morning 

Star” = “The Evening Star” rather than The Morning Star = The Evening Star. Under this 

ultimately rejected conception, identity is then no longer truly identity, but some sort of 

equivalence relation on names.  

 

Figure 1.2. Venus and its Representations. 

Frege later rejected this view on the grounds that meaning should involve more 

than arbitrary linguistic conventions (names) and instead express “objective knowledge” 

about the world (Frege, 1879/1967; Makin, 2010). Thus, he ultimately decided that the 

identity relation is between objects rather than names. In order to deal with the problem 

of informativeness (“Venus=Venus” isn’t an informative statement), he modified his 

original theory by creating the construct of sense (which he also calls “cognitive value”) 

to complement that of referent. Sense is what leads you to think of the planet Venus when 

you hear “The Morning Star” and Joe Biden when you hear “the president of the United 

States inaugurated in 2021”. Frege refers to a sense as a “mode of presentation” and is 
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something that we “grasp” (Dejnozka, 1981; Frege, 1892/1948; Makin, 2010). The 

sentence “The Morning Star = The Evening Star” tells us that the senses picked out by 

“The Morning Star” and “The Evening Star” point to the same referent (Venus, see 

Figure 1.2). The expressions “2+3” and “4+1” express different senses but have the same 

referent (the number five). Frege never defines “sense” precisely, but in this example the 

sense of “2+3” involves thinking of the addition function (arguably, the sentence 

“2+3=4+1” is informative in that it says something about addition). 

The above story illustrates that in order to really understand identity statements, 

we have to think of more than just the referents or objects named in the statements; we 

have to think of how they are named. This is one reason that identity is tricky to talk 

about; if we think we are only talking about objects, identity statements become 

tautological and uninformative. We have to re-orient ourselves and realize that we are not 

talking just about objects existing independently of how we conceive of them. In a way, 

every identity statement can be thought of as a story – when we see “A=B” we can think 

to ourselves “Once upon a time, I thought of A, and I thought of B without knowing 

whether or not they are the same. Later, I found out that they are the same”. Perhaps 

Hodges (1997) is expressing a similar sentiment when he writes “name the elements of 

the structure first, then decide how they should behave” (p.2).  

This careful attention to identity statements tells us not only about how to 

understand identity statements, but also the importance of representation. I would argue 

that there is no such thing as a fully transparent representation; that is, there is no way 

that any object can be represented in a way that shows all of its properties.  Think of an 

object – any object. There is some aspect of it that you’re missing. Perhaps it is an aspect 
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that you haven’t even thought of yet. If you were thinking of Venus, maybe you had the 

image in Figure 1.2 in your mind. Were you thinking about the fact that it is the second 

planet from the sun? There are many ways to represent a single object, but there’s no 

reason to think that there is some ultimate transparent representation. This brings us back 

to the point I emphasized earlier: we are always thinking of the object in some way or 

with respect to certain properties. Thus, when we talk about an object or ask students 

about an object, we cannot assume that we are simply giving them an object – we are 

thinking about the object in some way, and they are thinking about the object in some 

way. We were never really talking just about a planet (Venus), but how we conceived of 

it. I return to this topic later when discussing mathematics education literature on identity. 

All this discussion about objects raises an issue; what thing does a name of a 

mathematical entity (e.g., a number) refer to? Clearly, “mathematical entity” is the 

answer to my question. But what is that? Is it even an object? There is no physical object 

of a number that we can simply point to, and there is a longstanding historical discussion 

about what an abstract mathematical object even is, if anything (Horsten, 2016). In the 

sentence �1003 � = �10097 �, the terms on each side of the equals sign refers to the “object”, 

the number 161700, perhaps out in the Platonic heavens (Figure 1.3). 
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Figure 1.3. Multiple Representations of the Same Number. 

Yet, mathematicians go on to do mathematics and use identity statements without 

solving this problem. Identity statements can give us a way of sidestepping some of this 

messy ontology and provide great inferential power. Consider the example of Zermelo-

Fraenkel (ZF) set theory. The axiom of extensionality says that for sets, S=T if and only 

if S and T have the same elements. Mathematicians work within the system of 

axiomatized set theory with “set” being an undefined notion. This is partially because the 

notion of sameness of sets captures some of the notion of what a set is: a collection of 

objects. I discuss this idea, that sameness captures the essence of what an object is, in 

further detail later as it has applicability well beyond set theory.  

1.2 Mathematical Identity in Education: A General Literature Review 

Having reviewed some of the philosophical literature on identity, I now move to a 

discussion of the mathematics education literature on identity. Literature informing the 

topic of mathematical identity largely falls into two categories. The first category consists 

of literature on student understanding of the equals sign in numerical equations. The 
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second category includes literature that, although is not purported to be about identity, 

includes information about how students might view identity. I turn to a review of this 

literature more broadly. Literature more specific to each individual study is addressed in 

the chapters pertaining to each study.  

1.2.1 Equals Sign Literature 

This literature largely centers on the relational versus operational dichotomy, 

although authors are not always explicit about this dichotomy. While a relational 

understanding is a normative or productive understanding, an operational understanding 

of the equals sign is any non-normative or unproductive understanding. I first provide 

literature reviews on the characterizations of relational and operational views of the 

equals sign.  

1.2.1.1 “Relational” Equals. Mathematics education authors tend to define the 

“relational” (normative) meaning of the equals sign in a way that is problematic. Some 

authors give a nominal view of the equals sign as expressing a relation between names or 

signs, some define it narrowly and limited to subtopic of study, and some treat it as 

expressing intersubstitutability. Often, authors are unclear precisely on what sort of 

objects (names versus numbers or mathematical entities) the equals sign expresses a 

relation and use the word “equivalence” without specifying an equivalence relation. In 

Mirin (2019), I discuss some of these characterizations. I use the philosophy discussed 

earlier to frame these characterizations. My main finding is that authors appear to give a 

precise definition of a relational understanding of “=”, but closer investigation reveals 

that the authors are not successful. Most of the characterizations are ambiguous, narrow, 

or philosophically problematic. For example, several authors appear to characterize “=” 
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as expressing sameness of attributes of expressions (rather than sameness of referent), 

and several other authors focus on nominal sameness (which, as discussed earlier, Frege 

had reasons to reject). Now, these authors are not philosophers writing philosophy 

papers, so there is no reason to expect that they even should solve a longstanding 

philosophical problem of the meaning of “=”. Yet, it appears that the authors purport to 

characterize a meaning of “=”. My main conclusion in Mirin (2019) is that a crucial 

commonality throughout all the characterizations of a relational meaning of “=” is that it 

is important that students understand “=” in a way that is tantamount to expressing an 

equivalence relation.  

At this point, it is worth providing a link between the present discussion on the 

meaning of the equals sign and the prior discussion of the relationship between what 

defines a class of objects and the identity criteria within that class of objects. This is 

difficult in the case of numbers, because it is difficult to imagine asking someone if a and 

b are the same number and having them get the question wrong for reasons other than a 

computational error (although it is possible, if someone conflates ‘number’ with 

‘numeral’, as I discuss in more detail in Mirin (2020a) with the example of “D” in Behr et 

al. (1980)). The discussion from Mirin (2020a) about Behr et al. (1980) and 

equinumerosity provides some insight. One way to view a (natural) number is as an 

equivalence class of equinumerous sets; the number 3 represents all sets of three objects 

(a philosophical statement), and someone begins to understand the idea of “3” by 

experiencing various sets of three objects (the psychological counterpart). This 

philosophical statement is the view of both Frege and Russell (Russell, 1993) and is 

endorsed by variation theorists (discussed below) as well as several psychologists (Izard 
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et al., 2014). This is the viewpoint that Behr et al. (1980) appear to be taking in the 

following quote “the most basic meaning is an abstraction of the notion of sameness. This 

is an intuitive notion of equality which arises from experience with equivalent sets of 

objects. This is the notion of equality which we would hope children would exhibit” 

(p.13). It appears that the authors are endorsing that a number is an equivalence class of 

objects, and that therefore numbers are the same if and only if they are the same 

equivalence class.3 

1.2.1.2 “Operational” Equals. In Mirin (2020a), I provide an operational 

counterpart to Mirin (2019). Specifically, I include a literature review and analysis of the 

various “operational” characterizations of the equals sign. For a more detailed literature 

review of the meaning of the “operational” classification, please consult Mirin (2020a). 

Below is an excerpt from Mirin (2020a), pp. 805-806. 

Many students struggle with accepting equations of the form (i) “5=2+3”,  (ii) 

“5=5”, and (iii) “3+2=4+1”, preferring equations like (i’) “2+3=5”, (ii’) “5+0=5”, 

and (iii’) 2+3=5+1=6, respectively (Behr et al., 1980; Byrd et al., 2015; Denmark 

et al., 1976; McNeil et al., 2006; Oksuz, 2007; Sáenz-Ludlow & Walgamuth, 

1998). The equations (i), (ii), and (iii) can be described as “rule violations” and 

characterize operational understandings of the equals sign (Oksuz, 2007). The 

idea behind this terminology is that students with operational understandings are 

accustomed to seeing the equals sign in contexts like “2+3=5”, where “2+3” is an 

arithmetic problem to which “5” is the answer. Such a student might have in mind 

 
3 For this interpretation to make sense, there has to be a way of making sense of numerical operations as 
operations on classes of objects. This is not far-fetched. We can imagine conceiving of “2+3” as the 
cardinality of the set resulting from forming the union of two disjoint sets, one of cardinality two and the 
other of cardinality three.  



 

17 
 

certain rules about how equations should look. In particular, the equations in 

Table 4 violate the rule that to the left of the equals sign is an arithmetic problem 

on the right of which is a single numeral as an answer. A common explanation 

posited for such understandings is that students view the equals sign as a 

command to perform an operation. These understandings of the equals sign that 

involve arithmetic, problems, answers, and calculations are characterized as 

“operational”. 

Table 1. Equations that students frequently reject accompanied by preferred 

alternatives. 

 Rule Violation Preferred Equation(s) 

(i) 5=2+3 (i’)                    2+3=5 

(ii) 2+3=4+1 (ii’)  2+3=5+1=6 2+3=5 

/ 

4+1=5 

(iii) 5=5 (iii’)                   5+0=5 

 
 
1.2.2 Other Literature Pertaining to Identity 

 Although there are no papers explicitly about student understanding of identity, 

the idea of identity is not completely ignored. Specifically, some work has implications 

for how students might understand identity. At this point, it is worth reminding ourselves 

 
4 Table 1 refers to the first table in the reference being cited. 
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that our more general topic of investigation is on people’s use and understanding of 

identity and the ideas and symbols associated with it. Although the equals sign expresses 

identity, the above research shows that many students do not think of it as such. Hence, 

when we investigate such student’s understanding of the equals sign, we are not really 

investigating their understanding of identity exactly (hence why the topic of investigation 

includes “ideas and symbols associated with it”). The point I am trying to emphasize is 

that the existence of students with such conceptions indicates that investigating student 

understanding of identity is not always the same thing as investigating student 

understanding of the equals sign. This discrepancy highlights the need to discuss not only 

understanding of the equals sign, but of the concept of identity and sameness of 

representation in general. How someone understands identity statements is entangled 

with how someone understands the objects (if they even think of objects as being 

involved, see Thompson & Sfard, 1994); as alluded to above, how a student understands 

“a=b” or “a is identical to b” is inextricably tied to how they understand “a” and “b”. 

Accordingly, the discussion herein is a review of the mathematics education literature 

that, while not ostensibly on the topic of identity, still relates to identity and how students 

might understand identity statements.  

 I revisit the issue of representation discussed earlier. Recall that identity 

statements involve both sameness and difference. A statement such as “The Morning Star 

is identical to The Evening Star” is a statement about sameness, and this statement is 

informative because it appeals to different representations (rather than simply stating 

“Venus is identical to Venus”). Hence, the idea of different representations is closely 

related to the idea of identity. 
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 Various mathematics education researchers have considered that there are 

different representations of mathematical objects. Lesh et al. (1987) introduce the idea of 

transparent and opaque representations. They describe transparent representations as 

those that have no more meaning than the thing that is being represented, and opaque 

representations as emphasizing some aspects but not others of the thing that is being 

represented. This distinction is problematic. As alluded to earlier in the philosophical 

discussion on Frege, it seems problematic to claim that there is such a thing as a truly 

transparent representation that embodies an object without any mediation of language. 

Zazkis and Gadowsky (2001) accordingly adapt the framework of Lesh et al. (1987) by 

characterizing representations of numbers as transparent or opaque with respect to a 

particular property. For example,”282”is a transparent representation of a number with 

respect to the property of being a perfect square but opaque with respect to the property 

of being divisible by 98. We can reframe the discussion in the introduction of making 

inferences about numbers by using identity statements. When we observe that eiπ =

−1 and therefore conclude that eiπ is a real number, we are able to make this conclusion 

because “-1” is a transparent representation of eiπ with respect to the property of being 

real.  

There is little research in how students view equations (using the equals sign) 

between things other than numbers. One of the first times students encounter equations of 

functions is in the context of differential equations; a differential equation is a (particular 

kind) of equation between function(s), and a solution to that equation is a function that 

satisfies it. Rasmussen (2001) observes that students’ experience with “solving” involves 

only numerical solutions, making the notion of a solution as a function novel to some 
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students. He found that students often did not view a solution to a differential equation as 

a function. This was especially the case with constant functions. While this research is 

not purported to be about the equals sign, it seems to suggest that student might not view 

differential equations as expressing function identity.  

Some mathematics education researchers discuss the idea of multiple registers 

(types) of representations of functions (e.g., graphical, verbal, analytic) and the 

translation between these registers. Overall, the literature suggests that college students 

tend to struggle translating between representation type, yet it does not address the idea 

of identity between representations (Chinnappan & Thomas, 2001; Even, 1998; Gagatsis 

et al., 2004). I discuss more of this representation literature below in the specific 

literature review for the paper on function sameness (chapter 2). Chinnappan and Thomas 

(2001) describe a teacher who said she did not view the algebraic representations as 

representations of functions and claimed that she associates functions with graphs rather 

than “algebra”. While the authors do not address identity between representations, the 

fact that the teacher considers an algebraic representation to not be of a function suggests 

that she would not view it as being identical to the graphical representation.  These 

researchers do not consider the possibility that a student could view identity as lost in 

translation when moving from one representation type to another. While to us it might 

seem obvious that some sort of identity is maintained when we perform certain 

transformations or changes in representation, this might not be the case for students. 

Consider the case of Mindi, described in Thompson (2013b): when given the equation 

“w/3 = 11”, she claims “w/3” stands for a number, but in order to know what that 

number is, she would need to find what number “w” is first. In a way, Mindi was 
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implicitly allowing the possibility that the “ w/3” in the given equation refers to a 

different number than “ w/3”  after finding the value of  w and dividing by 3. Thompson 

explains that Mindi was thinking procedurally: “The meaning of an equation, for Mindi, 

was that it was a symbolic form that she was expected to act on to end with another form 

x=number” (p. 66). We can imagine that college students might perform a similar 

syntactic manipulation from one representation to another without attending to meaning 

or the link between the prompt (problem) and the result (answer), as well as without 

viewing an expression as maintaining its identity throughout the problem. 

 Recall earlier the discussion of set theory. The axiom of extensionality says that a 

set A is identical to a set B if and only if A and B have the same elements. There is a 

sense in which this axiom captures the essence of what a set is intuitively (a collection of 

objects); collections of objects are identical if and only if they contain the same objects. 

Another example from set theory is that of the formalization of ordered pairs. The 

ordered pair (a,b) is defined to be the set {{a},{a,b}}. The justification for this 

formalization is that under this definition, (a,b)=(c,d) if and only if a=c and b=d (see, for 

example, Devlin and Devlin, 1993; Enderton, 1977). Observe that the criteria for equality 

of ordered pairs is what is used to justify the definition of the ordered pairs; this 

definition of ordered pair works because two (one) ordered pairs are the same if and only 

if they have the same elements in the same order.  

These examples illustrate the relationship between identity criteria within a class 

of things and the defining features of that class. Said informally: what makes an A an A is 

closely related to how we determine when two A’s are actually the same A (e.g., what 

makes a set a set is closely related to how we determine when two sets are actually the 



 

22 
 

same set). There is a clear psychological corollary to this observation: a person’s criteria 

for identity within a category closely relates to that person’s conception of the defining 

features of that category. For example, if someone views {2,3} as not the same set as 

{3,2}, then perhaps they view sets as ordered collections of objects rather than just  

 

 

Figure 1.4. An Illustration of the Relationship Between a Category and Identity within that 

Category. 

 

collections of objects. We can see how this psychological corollary manifests itself in 

other areas of mathematics. If a student views the group Z/2Z as identical to Z2, then 

perhaps they do not view a group as a set together with a binary operation and instead 

view a group as what we think of as an isomorphism class of groups (since Z/2Z  and Z2 

are indeed isomorphic). If a student views the polar points (1,π/4) and (−1,5π/4) as the 

same point, then they might view points as locations rather than ordered pairs. 

 Some mathematics education researchers have leveraged this psychological 
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corollary for the concept of function. That is, they have exploited student conception of 

sameness of function as a way of getting at students’ understanding of the defining 

features of the function category  (Mirin, 2017; Novotná et al., 2006; Sfard, 1992). I 

discuss this literature in more detail in the literature review specific to my paper on 

function identity (chapter 2). My more general point here is emphasizing the relationship 

between sameness within a category and the defining features of a category.  

1.2.2.1 Variation theory in mathematics education. The importance of 

sameness in mathematics education has been expressed by variation theorists. While I do 

not use variation theory per se, I include it as an example of mathematics education 

literature that addresses issues of sameness. For this reason, it is placed here in the 

literature review rather than as a theoretical perspective.  

Variation theory focuses on difference rather than sameness. The general idea is 

that seeing difference helps one see sameness. Note that the focus on difference is not as 

antithetical to my topic of sameness as it first appears; recall the discussion earlier about 

different representations of the same thing. Variation theory is about how people learn 

through difference/sameness, rather than what people think about sameness itself. For 

this reason, it is not central to my work. Nevertheless, because of its peripheral relevance, 

I choose to address it. The ideas illustrated in Figure 1.4 (relationship between identity 

within a category and defining features of that category) highlight its connection to my 

topic of research. I discuss this connection below.  

Variation theory is based on the idea that humans learn through discernment of 

differences and invariants. It involves the following principles: 
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Principle 1: Varying the nonessential features of a concept can help one see 

the critical features of a concept (instances of a concept can help one 

understand the concept); 

Principle 2: Non-instances of a concept can help one understand a concept,5 

with emphasis on Principle 2. Suppose someone wants to understand the concept of  

 

Figure 1.5. Variation Theory for “Blue”. 

blueness. Seeing various blue-colored objects helps someone see what blueness is 

(Principle 1). The shape of something does not determine whether or not it is blue, so 

exposing someone to blue objects of various shapes can help them discern the essential 

aspect (blueness) from the nonessential aspect (shape). The general idea of this principle 

is that seeing different instances of a concept can help one distinguish what is essential to 

that concept. Seeing something of a color other than blue can help someone see what 

blueness is (Principle 2), because being able to discern when things are not blue is closely 

 
5 These Principles are a reframing of the Contrast, Separation, and Generalization principles described in 
Marton, Runesson, & Tsui (2004) 
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related to the notion of being able to discern when things are blue. Kullberg et al. (2017) 

give the example of the concept of linear function. In order to understand what a linear 

function is, someone should be exposed to multiple examples of linear functions 

(Principle 1) as well as non-linear functions (Principle 2).  

In the context of variation theory, there always seems to be some unstated larger 

universe of discourse. This is needed to invoke Principle 2. For example, in the context of 

the concept of blue, we assume that we are in the universe of discourse of color or things 

that have color. In the case of linear function described above, the authors assume that we 

are in the universe of discourse of function. In the case of function, we might assume that 

we are in the universe of discourse of binary relations. It is not always easy to discern 

what the universe of discourse is, but it appears to involve a larger category, and 

members of this larger category might not be immediately obviously in the smaller 

category (the “concept”). For example, if someone is still learning the concept of blue, 

the larger category (which includes the non-instances) will not include things that have 

nothing to do with color (say, mathematical objects, or perhaps sound waves). This idea 

is illustrated in Figure 1.5. If someone is learning the concept of function, cars will not be 

in the larger category since it is immediately obvious that cars are not functions.  

It is important to keep in mind that the larger class of things that we have in mind 

may not be the same as that of the student. For example, we might ask “is this a 

function?” and think of this as a binary relation, whereas the student might just see it as 

symbols. When we ask “does this equal that” and think that this and that refer to 

numbers, the student might be thinking of them as problems or as processes.  
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 There’s a relationship between Figure 1.4 and variation theory. Through the lens 

of variation theory, we can view the “concept” to be a category of representations of a 

particular function. How someone understands what makes a representation of a function 

in that particular category closely relates to how they discern whether a representation of 

a function is not in that category. At first glance it might appear that for the category of 

functions, I just reiterated variation theory when discussing the relationship between the 

defining features of a category and identity within a category. However, function is not 

the appropriate category. Instead, the category is (representation of) a particular 

function. The thing that is the same is a particular mathematical object (rather than a class 

of mathematical objects), and its representation varies. The diagram below (Figure 1.6) 

illustrates the idea of instances and non-instances of three categories (“concepts”) related 

to that of function: function itself, function identity, and a particular function. The 

leftmost diagram is an illustration of variation theory (specifically, Principles 1 and 2) 

applied to the concept of function. It illustrates that f, g, m, and k are all functions 

(instances of the concept of function), whereas f-inverse and {(x,y): x=y4} are both non-

functions (non-instances of the concept of function). The diagram on the right portion of 

Figure 1.6 is an analogue of the “function sameness” concept; rather than a larger 

mathematical category being varied (like is typical in variation theory), a representation 

of an individual function (the function that squares natural numbers) is being varied, and 

we have instances of representations of it. The thing that’s the same is the specific 

function. Now turn to the middle diagram, which is an application of variation theory to 

the concept of function identity (rather than simply to the concept of function). There are 

varying instances of it (inside the cloud) and non-instances of it (outside the cloud, three 
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shown). All three diagrams can be viewed as variation theory, but on different “concepts” 

(each of which is represented by a cloud).6

 

Figure 1.6. Varying Concepts Related to Function. 

1.3 Epistemology and Theoretical Perspective 

I have been discussing the notion of “multiple representations” of (identical) 

mathematical objects. Yet, I never defined what exactly representation means. When we 

define words, we run into a conundrum; we use more words, and must we define those 

words too? “Explanations come to an end somewhere” (Wittgenstein, 1953/2009). Yet, 

this does not mean that definitions or explanations of words are useless. Ideally, they 

should describe the word using other words that are easier to understand, so that the topic 

of interest is more transparent to the reader. The definitions of “representation” that I 

have found do not appear to bring a clearer picture than simply saying “representation”.  

However, the following characterization is accurate: “any concept of 

 
6 The function sameness cloud assumes that functions are identical if and only if they have the same graph 
and thus uses the Ordered Pairs definition of function (Mirin et al., 2020) 
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representation must involve two related but functionally separate entities. We call one 

entity the representing world and the other the represented world” (p.23, Kaput, 1987, 

citing Palmer, 1977). In the topic of interest here, the represented world constitutes 

mathematical objects (e.g., numbers, functions), however the thinker conceives of them. 

Defining the representing world (the representation itself) is a bit trickier. Is it marks on a 

page? If so, then does a verbal description of those same marks on a page constitute the 

same representation? Is it the marks themselves that are the representation, or the way in 

which the marks refer to an object? Thompson might argue that discussing marks on a 

page, or representations in general, is problematic in some contexts (Thompson & Sfard, 

1994). If a representation is just marks on a page, then is a task about a representation just 

a task about marks on a page? Thompson (1982) would not consider marks on a page, or 

soundwaves in the air, to even be a task. It is also difficult to even characterize what 

constitutes different representations to us. Consider a verbal description of a function, say 

“the cubing function”. Does the visual display that you just read constitute a different 

representation than if you were to hear it spoken? I treat “representation” to mean 

something like Fregeian senses (discussed earlier). Representations are different when 

they bring something different to mind. There are some cases in which we might say that 

some representations are different from each other (e.g., a function defined by a single 

equation versus a function defined piecewise, as I describe in the first dissertation paper 

(chapter 2) and in Mirin, 2018). Various mathematics education researchers have 

considered that there are different representations of mathematical objects. “2(3)” and 

“4+2” are different representations of the number six, as they bring different things to 

mind and are transparent and opaque with respect to different properties (see Zazkis & 
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Gadowsky, 2001). I remain agnostic on whether “6”, “six”, and “SIX” are the same 

representation. So, while we do not have a complete characterization of what makes 

representations different, we have some idea of what different representations might be. 

Thompson has a detailed debate with Sfard about the issue of representation of 

mathematical objects (Thompson & Sfard, 1994). He offers a general critique of the 

multiple representation literature: “My criticism is of people using ‘representation’ too 

loosely, without mentioning a person to whom some sign, symbol, or expression has 

some meaning” (p.10). When describing representations, we ought to be diligent about 

not mis-ascribing an understanding to students. What are two representations of the same 

thing to us may be completely unrelated to students. Hence, when we refer to “multiple 

representations” in the context of mathematics education research, it is important to ask 

ourselves “multiple representations of what and to whom?”. If we are to talk about how 

students understand “graphical and verbal representations of a function,” we must be 

clear, both in our minds and in our writing, where the notion of representation resides - 

often it is in the mind of the researcher, not the student. If we are to say “such-and-such 

student does not understand multiple representations of a function,” we need to clarify -- 

does such-and-such student even view those “multiple representations” as of the same 

function? As even being of functions? As anything beyond a representation itself?  

Unfortunately, this approach brings us to a dilemma: can we really say that this 

research is about “sameness” if students to not view anything as being the same? This 

dilemma applies to almost any subject of inquiry - how can we say that we are 

investigating students’ understanding of the concept of anything, when a concept is by its 

very definition internal to a student? Are we really investigating students’ understanding 
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of (for example) the concept of function when we give students tasks that we as 

mathematicians view to be about functions but the student views to be about, say, 

symbolic manipulation? The straight-forward way is to simply avoid the paradoxical 

notion of “investigating students understanding of the concept of ______” and instead 

talk about students’ understandings of words. This appears to be the approach in variation 

theory – in variation theory, a “concept” appears to just be a word describing a class of 

things. We could talk about students’ understanding of the word “function”. This makes 

Tall and Vinner's (1981) notion of concept-image and concept-definition especially 

appealing - research grounded in this framework is inherently about students’ association 

with a word or phrase. The research question is then reduced to a question about word 

meaning (e.g., “what do students think the word _______ means, and how do their stated 

meanings differ from their hidden meanings?”). Although this creates a nice way of 

framing a topic of investigation, this limits us to talking about only words rather than 

mathematical concepts or something deeper.  

While I use the construct of concept-image in my work, I do not limit myself to 

students’ understanding of the meaning of words. My work is about sameness of 

representation, while remaining sensitive to the fact that students (research subjects) 

might not interpret their tasks to be about sameness at all. My areas of investigation are 

consistent with constructivism, so a constructivist methodology of model creation is 

appropriate (Thompson, 1982). A guiding aspect of my research is to not assume that 

what is a representation of an abstract mathematical object to us is also viewed as an 

abstract mathematical object by a student (Thompson & Sfard, 1994). Similarly, what is 



 

31 
 

the same to us might not be the same to students. Thompson (1982) provides an excellent 

explanation of the constructivist approach to such questions: 

The constructivist asks: "What is the problem that this student is solving, given 

that I have attempted to communicate to him the problem I have in mind?" This is 

a legitimate research question to a constructivist; to an environmentalist it most 

assuredly is not (p. 153). 

It is worth noting that data collection, data analysis, and theoretical perspective 

cannot be separated; how you collect data has to do with how you analyze it and the data 

analysis techniques that are available to you, and the way you want to analyze your data 

determines the way you collect it. Similarly, your research question and methodologies 

are closely related to your theoretical perspective. The type of data you collect as a 

behaviorist might be different from the type of data you collect as a constructivist since 

your research question might be more about behaviors and tendencies than about ways of 

thinking (Cobb, 2007; Thompson, 1982). 

Steffe and Thompson (2000) provide useful terminology. They use the phrase 

“students’ mathematics” to refer to the students’ mathematical realities, and 

“mathematics of students” to refer to interpretations (models) of students’ mathematics. 

This parallel language emphasizes the fact that we apply the same epistemology to 

ourselves as researchers as we do to students (model-builders).  

I now elaborate on what I mean by “model”. Thoughts and mental actions are not 

directly observable in the sense that thoughts are not directly sensible (e.g., viewable, 

smellable, touchable). This is not simply a matter of not having the proper brain imaging 
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technology or a fundamental flaw in the notion of studying cognition. Consider the 

following quote by Leibniz (Jorati, n.d.): 

If we imagine that there is a machine whose structure makes it think, sense, and 

have perceptions, we could conceive it enlarged, keeping the same proportions, so 

that we could enter into it, as one enters into a mill.  Assuming that, when 

inspecting its interior, we will only find parts that push one another, and we will 

never find anything to explain a perception (Monadology, Section 17).  

Now imagine that “students’ mathematics” were there in place of “perception”. Even if 

we were to see all the parts of the brain, we still could not see the thoughts themselves. 

Thus, we model them. Modeling is a form of abduction, distinct from induction or 

deduction. It involves creating explanations in order to account for observed events and is 

necessary for understanding things to which we do not have direct observation (Jorati, 

n.d.). It is also an essential aspect of scientific discovery that is not unique to studying 

abstract notions like thought (Clement, 2000; Schickore, 2018). For example, we can see 

the use of abduction in medicine (a diagnosis is a model that best explains someone’s 

symptoms). 

 The idea of model-building is grounded in constructivism as an epistemology. 

The following quote characterizes ideas underlying radical constructivism: “(1) 

Knowledge is not passively received but actively built up by the cognizing subject;  (2) 

the function of cognition is adaptive and serves the organization of the experiential world, 

not the discovery of ontological reality” (Glasersfeld, 1989 p.114, found in Thompson, 

2013a). The epistemology that we apply to the student and the researcher is the same; 

neither have direct access to ontological reality and therefore must construct models of it. 
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The term “first order models” refers to the models that students have (students’ 

mathematics), and the term “second order models” refers to the models that researchers 

create of the student models (mathematics of students). The data collected through 

interacting with students are used to create these second-order models (Steffe and 

Thompson, 2000).  

Building models of individual students might be viewed as a limitation (like any 

qualitative research, a limitation is that it’s not quantitative). The researcher might need 

to spend several hours interacting with a student in order to build a robust model of that 

one student’s mathematics. Despite all this careful time, some people view qualitative 

research as not legitimate due to not being generalizable on the grounds that few subjects 

are involved (Kvale, 1994). However, there is a general assumption that a way a student 

thinks will be shared by other students. Reframing this in a constructivist way, this means 

that the researcher will continue to experience similar things, just as the student 

experiences patterns (Steffe, 1991). A model of knowing that might generalize beyond a 

particular student is referred to as an “epistemic subject” (Thompson, 2013a). An 

epistemic subject can encompass many students who have similar ways of thinking 

(Thompson, 2013a). Thus, studying an individual student can have the utility of 

generalizing to other students.  

This sort of potential generalizability is not unique to mathematics education. We 

tend to assume that some categories of things have some sort of regularity. These 

categories are often called “natural kinds” (Bird & Tobin, 2018).7 This assumption of 

 
7 “To say that a kind is natural is to say that it corresponds to a grouping that reflects the 
structure of the natural world” (Bird & Tobin, 2018). 
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regularity in nature occurs in other fields as well.  For example, a biologist might dissect 

a pigeon under the assumption that other pigeons will share similar characteristics; they 

are learning something about pigeons in general, not just that particular pigeon. Consider 

the study of human anatomy. The cadavers that medical students and researchers dissect 

only represent a convenience sample. Yet, there is an underlying assumption that the 

phenomena observed in those bodies will extend to other bodies as well. This is true even 

when an abnormality is found; there might be a general assumption that this abnormality 

(perhaps a disease) exists in other cadavers. This is similar to how we handle studying 

students’ minds. Although we might have a convenience sample, we assume that minds 

tend to resemble each other. If we discover a way of thinking in one student, we tend to 

believe that it might exist in some other students as well. This regularity might lead to 

generalizations amongst multiple students and instances, in what Clement (2000) 

describes as “convergent studies”.  
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WHERE WE SEE ONE FUNCTION, THEY SEE TWO 

Multiple representations of functions play an important role in mathematics and 

mathematics education. There is a body of literature addressing college students’ 

difficulties linking multiple representations of functions, and some studies suggest that 

post-secondary students struggle translating between different representations 

(Chinnappan & Thomas, 2001; Even, 1998; Gagatsis et al., 2004). The literature on 

multiple representations tends to focus on translation between multiple types of 

representations (e.g., graphic, analytic, and verbal), rather than multiple representations 

of the same type.  

However, working with multiple analytic representations of a function is also a 

crucial part of mathematics. This occurs prominently in differential equations; a 

differential equation is a particular type of equation that asserts identity of functions (see, 

for example, Boyce & DiPrima, 2009). This means that each side of a differential 

equation is a representation of the same function. We also see function identity in the 

context of implicit differentiation and related rates problems; when we differentiate an 

equation, each side of the equation is a representation of the same function (included as 

Section 4, published as Mirin & Zazkis, 2020). Specifically, what allows us to 

“differentiate both sides” of an equation is to understand that equation as asserting that 

two different representations of the same function are indeed the same function and 

therefore have the same derivative. Hence, being able to assess when two functions are 

actually the same function can enable powerful inferences. 

The notion of two different analytic representations of the same function appears 

also in the fundamental theorem of calculus. Viewed as a statement of function identity, 
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the fundamental theorem of calculus asserts that, given a differentiable function f and a 

number a in the domain of f, the function g defined on the domain of f by g(x) =

∫ f ′(t)dtx
a  is the same as the function h defined by h(x)=f(x)-f(a). This is arguably the 

manner in which Newton conceived of the fundamental theorem of calculus (Thompson 

& Silverman, 2008). The prevalence of the fundamental theorem of calculus, combined 

with the prevalence of the procedure of differentiating both sides of equations, 

underscores the importance of function sameness to calculus learning. As discussed in 

Section 4, differentiating both sides of an equation is legitimate because the equation is 

serving to assert function sameness.  

This study investigates the following research question: How do calculus students 

understand multiple analytic representations of the same function? More specifically, I 

address: How do students assess when two analytic representations of the same function 

are indeed the same function? Is sameness of graph enough for students to infer sameness 

of derivative? Do students view instances of the fundamental theorem of calculus as 

about function sameness?  

One might wonder: after the discussion (in the introduction to this document) 

about identity being equality, why did I not say function “equality” rather than “function 

sameness” or “function identity”? Recall earlier the research on student understanding of 

the equals sign, which suggested that many students do not view the equals sign as 

expressing identity or sameness. While these studies were done primarily on younger 

children (elementary and middle school), it is possible that older students hold similar 

conceptions of the equals sign. Hence, to such students, identity and equality might not 
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be the same. So, investigating student understanding of function “equality” might be 

different from investigating student understanding of function “identity” or “sameness”.  

2.1 Theoretical Background 

I follow Thompson's (1982) constructivist approach. Thompson makes the point 

that, when referring to representations of something, we ought to be clear about to whom 

these are representations of whatever “something” is (Thompson & Sfard, 1994). So, we 

ought to be sensitive to the fact that a student might agree with the assertion that two 

representations of the same function share a derivative, but these students might have 

non-standard understandings of what “same function” is. In fact, this is precisely the sort 

of reasoning a particular student used to determine that sharing a graph was not sufficient 

for sameness of functions; she concluded that two particular representations of functions 

share the same graph but do not share a derivative, leading her to conclude that, to be the 

same function, having the same ordered pairs on the graph is not sufficient (Mirin, 2017). 

Hence, a fundamental assumption of this study is that students might not understand the 

tasks to be about sameness of function.  

I adopt the constructs described in Tall and Vinner (1981): A student’s concept 

image is “the total cognitive structure that is associated with the concept, which includes 

all the mental attributes and associated properties and processes” (p.152). One component 

of a student’s concept image is their concept definition, which is their stated definition of 

a concept. This study involves investigating student concept definitions for function 

sameness. A student’s concept definition is just one aspect of their concept image and 

does not comprise it entirely. Hence, investigating a student’s concept definition is on its 
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own insufficient. This study therefore includes tasks concerning function sameness that 

go beyond students’ stated concept definitions.  

2.2 Literature Review 

 Since this study is about sameness of different representations of functions in a 

calculus context, the literature review covers three related topics: multiple representations 

of function, multiple representations of derivative, and sameness of representation of 

function and graph.  

2.2.1 Multiple Representation of Function Literature 

  There is a significant body of literature explicitly on the concept of multiple 

representation of functions (Chang et al., 2015; Delos Santos & Thomas, 2003, 2001; 

Even, 1998; Gagatsis et al., 2004; Zandieh, 2000; Zazkis, 2016). Such literature focuses 

on multiple types (registers) of representations - e.g., graphical, analytic, verbal, and 

physical. These studies tend to focus on how students, in particular preservice teachers, 

struggle with linking multiple types of representations of the same function. For example, 

students tend to have trouble linking the graph of a function with its equation. Even 

(1998) reports a study in which 152 prospective secondary mathematics teachers, 

majoring in mathematics, were surveyed via an open-ended questionnaire. Ten of these 

students were subsequently interviewed about their answers. It was found that students 

struggled to move flexibly between one kind of representation and another, even with 

familiar functions, such as quadratics. Gagatsis et al. (2004) describe a study on the 

relationship between students’ ability to translate between representations and to solve 

problems. One hundred ninety-five students studying education at a university in Cyprus 

were enrolled in this study. The students took two assessments, one to measure their 
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ability to translate from one representation to another (verbal, graphical, analytic), and 

another to measure their problem-solving ability. Problems on the translation test 

involved giving students a function in a verbal, analytic (equation of the form “ 

y =_____”), or graphical form and having them present it in one of the other two forms. 

The problem-solving tasks involved having students fill in missing entries in tables, 

solving word problems, and sketching graphs. The researchers found a positive 

correlation between success on the problem-solving tasks and success on the translation 

assessment. This correlation highlights the importance of coordinating multiple 

representations of the same function. Chinnappan and Thomas (2001) report on a study in 

which four preservice math teachers were the subjects of a free-response interview on the 

topic of functions and how to teach them. The authors found that the teachers gravitated 

towards graphical representations. At least one student expressed that she considered a 

function to be a graph rather than “algebra” and struggled to link graphs with algebraic 

representations. In general, the teachers showed weakness in linking a graph of a function 

to an analytic (e.g., polynomial equation) form and tended to be fixated on visual 

representations independent of equation.  

2.2.2 Multiple Representation Derivative Literature 

 There is also research on multiple representations of derivative. Like the multiple 

representation literature on function, this literature also focuses on representation type.  

Zandieh (2000) uses Sfard’s (1992) process-object distinction as a basis for a theoretical 

framework for the multiple representations of derivative. The kinds of representations of 

derivative that Zandieh addresses are graphical (derivative as slope of tangent line), 

verbal (instantaneous rate of change), physical (velocity), and symbolic (limit of 
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difference quotients). These representations share a similar three-layer conceptual 

structure: the ratio layer, the limit layer, and the function layer. Zandieh (2000) 

summarizes the relationship between these layers as: “A derivative is a function [third 

layer] whose value at any point is the limit [second layer] of a ratio [first layer]” (p.106). 

A “process-object” pair composes each layer.  

The three-layer process-object structure applies to the many representations of 

derivative. For example, in the graphical interpretation, the ratio is the “rise over run” of 

the secant line, the limit is the slope of the tangent line, and the function is a visual graph. 

In the physical interpretation, the ratio is an average velocity, the limit is the 

instantaneous velocity, and the function is a pairing of each instantaneous velocity with 

corresponding time. For the ratio layer, the process is division, and the reified object is a 

ratio. The limiting process involves “passing through” infinitely many of these ratios 

while approaching the limit, which is the reified object. The function layer is viewed 

operationally as a mapping process, and structurally as a set of ordered pairs.  Zandieh 

interviewed nine students about their understandings of derivative and found that they 

tended to mention the graphical (slope of a tangent line) interpretation most often. Notice 

that this bias toward a graphical interpretation is consistent with Chinnappan and Thomas 

(2001). 

An important aspect of Zandieh’s framework is that an object part of a process-

object pair is not simply the result of a process, but a reification of the process itself.  

Zandieh uses the word “pseudo-object” to describe when someone views something as an 

object without attending to its underlying process structure. Consider the ratio layer. In 

the symbolic representation, a student may view a ratio as a pseudo-object by a numerical 
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limit of the difference quotient as a single number or magnitude rather than relating to 

division or ratio. For the graphical interpretation, a student may view the slope of a 

tangent line simply as slantiness without considering secant lines or the ratio of rise to 

run (Byerley & Thompson, 2017). For the physical interpretation, a student may view the 

derivative as representing instantaneous velocity without considering instantaneous 

velocity to be a multiplicative quantity composed of accumulated time and distance 

(Thompson et al., 2013). A student with a pseudo-structural conception of the ratio layer 

would be failing to attend to what I called the locality of the derivative operator. 

Attending to the locality of the derivative operator involves considering the points in a 

neighborhood around x when determining the derivative of a function at x. This parallels 

the idea in Thompson and Dreyfus (2016) of “all variation is blurry” (p. 357). Zandieh 

does not discuss what is most pertinent to my study: how students link the various 

representations to each other.  

 Delos Santos and Thomas (2001) investigated how students understand different 

representations of derivative. Thirty-two 16-17-year-old students at a top performing girls 

school in New Zealand were given a 10-question task sheet that included problems that 

involved interpreting the meaning of “dy/dx” and translating between different 

representational forms of the derivative. Exactly one student solved a problem of forming 

a graphical interpretation of f′(5) = 1, and exactly three students, given values of a 

function in tabular form, symbolically represented an average rate of change. 

Additionally, whether students correctly gave a graphical interpretation of the symbol 

“dy/dx” depended on the equation in which it appeared. In other words, students lacked 
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the representational fluency to flexibly and consistently use and move between different 

kinds of representations of function and derivative.  

2.2.3 Representational Sameness Literature 

 Although the multiple representation literature generally does not discuss 

sameness of representation, a few authors do address this topic. For example, Moore and 

Thompson (2015) stress the importance of seeing different visual displays of the same 

graph (e.g., the same graph in different coordinate systems) as representing the same 

quantitative relationship. Additionally, as alluded to in the introduction of this document, 

there is some mathematics education work that leverages the relationship between student 

conception of function identity and student conception of function. In order to assess 

student understanding of the concept of binary operation, Novotná et al. (2006) designed 

and used tasks that ask whether particular binary operations are the same. Sfard (1988) 

explains that, because students acknowledged that the function f defined on the natural 

numbers by f(x)=x2, and the function g defined on the natural numbers by g(0)=0, 

g(x+1)=g(x)+2x+1 are “equivalent” yet would not describe them as “the same”, these 

students had a mathematically non-normative concept of function. In Mirin (2017), I 

present a case study to illustrate the relationship between student conception of function 

identity and of function. I describe a student, Jane, who thinks of functions as processes 

and therefore thinks that for functions to be the same they must be the same process. For 

example, Jane claimed that the function defined by |x| and the function defined by √x2 are 

different functions because they “describe different mathematical processes”. Mirin 

(2017) illustrates how one’s concept of sameness-of-representation-of-function and the 

function concept itself are interlinked. If a student views a derivative as operating on a 
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function, then their concept of function is inextricably tied to their concept of derivative. 

For example, their criteria for determining whether two function representations share a 

derivative might be influenced by their criteria for determining whether those 

representations refer to the same function. Indeed, this is what happened with Jane. She 

initially assessed two functions as being merely equivalent rather than the same on the 

grounds that, despite having the same graph, they did not have the same derivative. 

Interestingly, this brings us back to Leibniz’ laws of indiscernibles; Jane concluded that 

two functions are not identical on the grounds that they do not share the same set of 

properties.  

 It bears mentioning that mathematicians do not agree on the notion that same 

graph implies same function. Mirin et al. (2020) explains how in both the mathematics 

education and the mathematics communities, there are two conflicting definitions of 

function. One definition is a univalent set of ordered pairs, and so two functions are the 

same if and only if they have the same graph (set of ordered pairs). The other definition is 

the Bourbaki Triple; under this definition, a function is a triple (a Bourbaki Triple) (X, Y, 

F) where X is the domain, Y is the codomain, and F is a univalent and total set of ordered 

pairs on X. Recall the earlier discussion about the relationship between sameness within a 

category and the defining features of a category. Here, this relationship manifests itself in 

the sense that the criteria for sameness of function is dependent on which definition of 

function is being used – the Bourbaki Triple definition or the Ordered Pair definition. 

Consider, for example, the function f: RR defined by f(x)=x2 and the function g: 

RR+ defined by g(x)=x2. Under the Bourbaki Triple definition, f and g are different 

functions, since they do not have the same codomain and are hence different Bourbaki 
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Triples. Under the Ordered Pairs definition, f and g are the same function, since they have 

(are) the same set of ordered pairs.  

As discussed, the fundamental theorem of calculus can be viewed as a statement 

about function identity. For this reason, a task about the fundamental theorem is used as 

part of this study (see Fig 2.3). Unfortunately, there is little literature on how students 

understand the fundamental theorem. Thompson (1994) finds that students’ issues 

grasping the theorem are grounded in underdeveloped understandings of rate of change 

and covariation. Orton (1983) reports the types of mistakes students make in doing 

problems with definite integrals. He focuses on how students understand definite 

integrals as limits. However, his study does not address integrals in the context of the 

fundamental theorem or as functions. Thompson and Silverman (2008) make the point 

that an integral as a function is conceptually different from a definite integral as a 

number. That is, conceptualizing  g(x) = ∫ f ′(t)dtx
a  as a function is different than 

conceptualizing g(x) = ∫ f ′(t)dtb
a  for a particular number b, in the same way that 

conceptualizing the squaring function is different from conceptualizing a particular 

number being squared. In this study, I situate the fundamental theorem as a statement 

about function identity, and hence also a statement about functions. The literature does 

not address whether students conceptualize integrals as functions and generally does not 

pose tasks to students where an integral is represented as a function. However, there is 

some hint at the idea of an integral as a function in Jones (2013). He explains that many 

students have a “function matching” conception of integral, which he describes as 

follows: “The function inside of the integration is a derivative. The purpose of the 

integral is to match it back to the original function from whence it came” (p. 130). It 
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appears that the students in this particular study understood the integral’s “purpose” as 

being to find an original function, but it’s unclear if such students understand the integral 

as representing such a function (the author does not address this issue, only the “purpose” 

of the integral). Hence, we do not know how students understand integrals as functions, 

and therefore the extent to which students view the fundamental theorem as even 

involving functions is an open question.  

2.3 Overview of Methods, Task Design, and Timeline 

 This study is based on three tasks, all of which concern how calculus students 

understand sameness of representation. The first task presents students with a function f 

defined by f(x)=x3 if x ≠ 2, f(x)=8 if x=2 and asks them to evaluate f’(2). Observe that f is 

merely a piecewise-defined version of the cubing function. I refer to this task as “the 

cubing function task”. The second task also involves two analytic representations of the 

same function: p defined by p(x)= ∫ 3t2dtx
2  and q(x)=x3-8. Students are presented with p 

and q and asked to evaluate whether p and q are the same or different functions. I 

hereafter refer to this task as the “fundamental theorem task”. The third task asks students 

to give their concept definition for function sameness. I hereafter refer to this task as the 

“concept definition task”. The data were collected in three stages (Table 2.1). Stage 1 

consists of the students’ written work collected from the open-ended cubing function 

task. Stage 2 consists of the interview data from a subset of the students who participated 

in Stage 1. Stage 3 consists of the data from an entire written quiz given to a new group 

of students. This quiz includes a multiple-choice version of the cubing function task 

together with two additional related prompts - the fundamental theorem task, and the 

concept definition task.  
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 The cubing function task is what inspired this study.  A very similar task that uses 

a piecewise-defined version of the squaring function was given in Mirin (2017); this is 

the task that inspired Jane, the participant, to decide that having the same graph was not 

sufficient for two functions to be the same function. She assessed the piecewise version 

as having a different derivative than the standard version and therefore concluded that 

they might be different functions. As discussed in section four (Mirin & Zazkis, 2020), 

being able to reason that “two” functions share a derivative on the grounds that they have 

the same graph is paramount for robustly understanding implicit differentiation and 

related rates problems.   

The design of the cubing function task was inspired by an anecdote in Harel and 

Kaput (1991): when prompted to differentiate the function g defined piecewise by 𝑔𝑔(𝑥𝑥) = 

sin 𝑥𝑥 if 𝑥𝑥 ≠ 0 and 𝑔𝑔(𝑥𝑥) = 1 if 𝑥𝑥 = 0, respondents answered with 𝑔𝑔’(𝑥𝑥) = cos 𝑥𝑥 if 𝑥𝑥 ≠ 0 and 

𝑔𝑔’(𝑥𝑥) = 0 if 𝑥𝑥 = 0, appearing to use the constant rule. To these students, the only aspect of 

the representation as relevant for determining the value of 𝑔𝑔′(0) is the second line of the 

piecewise function definition. It seems reasonable to believe that, if the definition of g 

were modified to instead have 𝑔𝑔(𝑥𝑥) = 0 if 𝑥𝑥 = 0 (resulting in a nonstandard representation 

of the sine function), students would answer identically. However, given the anecdotal 

nature of Harel and Kaput’s claim, there is no data available to substantiate how common 

such errors are or why they occur. My study began by undertaking the task of studying 

this phenomenon more systematically (Stages 1 and 2). The other tasks (Stage 3) 

complement this task by investigating the same topic of how calculus students understand 

function sameness. 
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In the cubing function task, students encounter a nonstandard analytic 

representation (piecewise definition) of the cubing function, whether they recognize it as 

such or not. There are at least two ways a student might reason about multiple 

representations to come to the correct answer that f’(2)=12. After graphing the piecewise-

defined function, a student might recognize that the resulting graph is the same as that of 

the cubing function and conclude that they have the same derivative. This kind of 

reasoning does not require that the student have a strong understanding of derivative, but 

only an understanding that derivative is a property of the graph of a function. This could 

be accomplished with a view of derivative as anything having to do with the tangent line 

(e.g., slope of tangent line, slantiness of tangent line, or even the tangent line itself, 

(Byerley & Thompson, 2017) . In this situation, the student would be coordinating visual 

and analytic representations. Alternatively, a student could, after noticing that f(2) = 8 =

23 , make the same determination without using a visual graph, by linking the piecewise 

representation with the standard analytic representation (h(x) = x3).    

First, I discuss the data collection process for the open-ended cubing function task 

(Stages 1 and 2), and then I move to discuss the multiple-choice cubing function task 

along with the fundamental theorem task and the concept definition task (Stage 3). 

Initially, the open-ended cubing function task -- exactly as pictured in Figure 2.1 below – 

was given to 240 introductory calculus students during the last week of the semester at 

Anonymous State University (ASU) (Stage 1).  
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Figure 2.1. The Open-Ended Cubing Function Task, Stage 1 (written) and Stage 2 

(interview). 

 

Stage 1 was administered in an exam environment by course instructors, where students 

were required to work silently and independently. Stage 2 involved interviewing a subset 

of 8 Stage 1 students, and a preliminary analysis of such interview data informed the 

analysis and classification of students’ answers to Stage 1 as well as the design of Stage 

3. 

 Stage 2 involved eight students from the original Stage 1 cohort. An initial 

analysis of the interview data helped form the design of Stage 3. In particular, it informed 

the design of the multiple-choice cubing function task that appeared in Stage 3 (Figure 

2.2). For example, it was not immediately clear that students were providing two answers 

in Stage 1. After interviewing students, it became more evident that they indeed were. 

Following analysis of the Stage 3 data, the Phase 2 interview data were re-analyzed to 

create a more in-depth picture of student thinking. 

 Stage 3 consisted of three parts: the revised (multiple-choice version) version of 

the cubing function task, the fundamental theorem task, and the concept definition task. 

The task sheet, is included as Appendix A. It was given to different introductory calculus 

students at the same institution at the same relative time in the semester and was 
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administered in the same manner as Stage 1. One-hundred two (102) students participated 

in Stage 3. One purpose of Stage 3 was to gain more insight into how students understand 

the cubing function task. One hypothesis I had about students’ answers on the open-

ended version (Stage 1) was that many students gave the incorrect answer due to 

inattention or carelessness. Perhaps they had not even noticed that y=f(x) and y=x3 define 

the same graph. In other words, perhaps they would have gotten the answer correct had 

they noticed that the graphs were the same, by observing that f and the cubing function 

agree at x=2. To remedy this issue, I designed the multiple-choice version of the cubing 

function task. Before being asked to evaluate f’(2), students were prompted to calculate 

23. The purpose of this task was to orient students toward noticing that the function f 

agrees with the cubing function at x=2. Students were also provided a graph of y=x3 and 

prompted to graph y=f(x) next to it. This was to orient students to compare the graph of 

y=f(x) with y=x3. In other words, the purpose was to ensure that I was not tricking 

students and to provide them an opportunity to recognize that f and the cubing function 

are indeed the same. Figure 2.2 below shows a visually condensed version of the 

multiple-choice cubing function task.  

 

 

Figure 2.2. The Multiple-Choice Cubing Function Task, Stage 3. 
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 I now discuss the remainder of Stage 3. While the cubing function task is 

interesting in its own right, this investigation is not just about a single task. More 

generally, the goal is to learn more about how calculus students understand sameness of 

representation of function. One major finding of the results of the cubing function task is 

that where we (as mathematicians) see one function, students see two. It is natural to ask 

whether this result extends to other contexts such as with the fundamental theorem of 

calculus (see Figure 2.3 below).  

 

 

Figure 2.3. The Fundamental Theorem Question, Stage 3. 

Additionally, students’ concept definitions of function sameness provide us insight into 

how students understand sameness of representation of function (see Figure 2.4 below). 

These tasks, together, help provide insight into the guiding research question about 

function sameness. 
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Figure 2.4. The Concept Definition Question, Stage 3. 

 To summarize, the main task driving this study is the cubing function task. 

Extensive data were collected on this task, including qualitative data. This task was 

initially given in open-ended form (Stage 1), and eight students were interviewed (Stage 

2). An initial analysis of the interview data informed the design of the multiple-choice 

expanded version of the cubing function task. This multiple-choice version, along with 

other tasks concerning function sameness (the fundamental theorem question and the 

concept definition question), were given in the form of a quiz to a new group of students 

in order to learn more about students’ responses to this task and, more generally, 

students’ understanding of function sameness (Stage 3). Table 2.1 below summarizes 

these stages. 

 

Table 2.1. Stages of Data Collection. 

 Stage 1 Stage 2 Stage 3 

Tasks • Open-ended Cubing 

function task (Fig. 2.1) 

• Open-ended 

cubing function 

task8 (Fig. 2.1) 

• Multiple-choice 

cubing function task 

(Fig. 2.2) 

 
8 The interview itself included other tasks (Fig 2.5), but the purpose of the interview was to learn about how 
students understand the open-ended cubing function task.  
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• Fundamental 

theorem question 

(Fig. 2.3) 

• Concept definition 

question (Fig. 2.4) 

Data type Written work Interview recording Written work 

Population 240 Calc I students 8 Calc I students 

(from the 240 in 

Stage 1) 

102 Calc I students 

(different students 

from Stages 1 and 2) 

 

2.4 Interview Protocol and Data Analysis Methods 

First, I discuss the open-ended cubing function task (Stages 1 and 2), and then I 

discuss the data analysis methods for Stage 3 (which includes the multiple-choice cubing 

function task, the concept definition question and the fundamental theorem question). 

2.4.1 Interview 

The interviews (Stage 2) were semi-structured, task-based, and lasted 60-80 

minutes each.  They were screen and audio recorded using Notability on an iPad. The 

interviews were exploratory in nature, and the tasks evolved slightly over the course of 

the study. They operated according to clinical interview methodology (in the sense of 

Clement, 2000) and served as establishing students’ rationale for their responses to the 

open-ended cubing function task. If the student answered differently than they had in 

their open-ended written version, they were questioned about their change of answer. 

Additionally, students were given similar problems, as well as asked to graph the 
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function f, and asked to illustrate, using their graph of f, the rationale behind their answer 

to the cubing function task. The other administered tasks, as well as the follow-up 

questions, were closely related to the cubing function task. These included questions 

about function sameness, derivative, and graph. One of the purposes of these tasks was to 

see if students believed that same points on the graph in the neighborhood of a particular 

number implied same derivative at that number. A selection of the tasks used are shown 

in Figure 2.5 below.  

 

Figure 2.5. A Selection of Interview Tasks (Stage 2). 

As I interviewed the students, questions I had in mind were “What aspect of a 

function’s representation does a student view as relevant for determining its derivative at 
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a point?” and “What does a student think determines a function’s derivative at a point?” 

Although these might seem like different research questions than my stated research 

question about function sameness, as alluded to earlier, they are closely related. Consider 

the Cubing Function Task, and let f denote the piecewise definition of the cubing 

function. Suppose a student correctly believes that only a function’s inputs and outputs 

(ordered pairs) determine its derivative at a point. Then such a student would think that f 

and the cubing function have the same derivative. Conversely, a student who believes 

that f and the cubing function have the same derivative might believe that the points on a 

function’s graph determine its derivative. When we vary a function’s representation, we 

ascertain what aspect of that representation a student views as relevant to its derivative. 

Using a similar idea, I investigated how students understood the locality of the derivative 

operator; for example, do students believe that functions that are the same in the 

neighborhood of x=a necessarily have the same derivative at x=a? To investigate this 

question, I presented various functions with the same graph near x=a (but different graphs 

elsewhere).  

An illustration of ways of thinking to account for three different answer types is 

provided in Section 2.5. These ways of thinking are epistemic students (see Thompson, 

2013a) and were developed based on the student interviews (Stage 2) together with 

student written work from both the open-ended cubing function task (Stage 1) and the 

multiple-choice version (Stage 3). Note that the idea of epistemic students is grounded in 

constructivism, which I discuss in further detail in the Epistemology and Theoretical 

Perspective section of this document.  In analyzing the interviews, my goal was to 

provide viable models (in the sense of Clement, 2000) of how individual students were 
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thinking. This, together with the rest of the data, provides the basis for me to construct 

these more general epistemic students. These epistemic students then informed my 

coding of students’ written data from Phase 1 (the written work of 240 students on the 

open-ended cubing function task). 

2.4.2 Coding  

 Stage 1 and Stage 3, each consisting of quantitative data, were both coded. I first 

discuss the coding in Stage 1, and then I move to Stage 3. Students’ answers to the open-

ended cubing function task (Stage 1) were coded as if they had taken a multiple-choice 

test; that is, when I coded a student as answering “12”, I did so if I believed that that is 

what they would have bubbled in had they been given a multiple-choice question. This 

means that the strength or coherence of students’ justifications was not considered, and 

many students were coded as answering correctly (the answer “12”) even if their 

justification indicated a severe misunderstanding. This allowed me to compare the open-

ended answers in Stage 1 with the multiple-choice answers in Stage 3.  

 Stage 2 informed the Stage 1 coding. That is, the coding of the open-ended cubing 

function task was influenced by the student interviews. Consider students 110, 138, 157, 

and 178 from the open-ended cubing function task (Stage 1), whose answers are below in 

Figure 2.6. 
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Figure 2.6. Students’ Answer to the Open-ended Cubing Function Task, Stage 1. 

When I interviewed Student 157, I found that he meant to answer “12” where he wrote 

“3x2”. When I gave him the same problem during Stage 2 (the interview), he did the 

exact same thing but substituted “2” for “x” and explained that he meant to do that 

initially when posed with the open-ended task. A similar occurrence happened with 

Student 138 and Student 178. Thus, whenever a student wrote “3x2”, I coded their 

answer as if “12” were written in place of “3x2”.  For example, Student 157 and Student 

138 were coded as answering both 0 and 12. As discussed in Section 2.3, the interviews 

illuminated when students were giving two answers, which included students such as 110 

who answered both “undefined” and “0”.  

 I now discuss data analysis methods for Stage 3: written results from the multiple-

choice cubing function task (Figure 2.2), the concept definition task (Figure 2.4), and the  
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fundamental theorem task (Figure 2.3).  Coding the results of the multiple-choice cubing 

function task (Figure 2.2, Problem 3) was, of course, straightforward. Coding the 

students’ graphs (Figure 2.2, Problem 2) was more involved. A student’s graph was 

considered to be “correct” if and only if it appeared to have all the correct points (ordered 

pairs) on it. This classification aligns with conventional mathematics. Hence, graphs that 

were not visually identical to the provided graph of y=x3 were coded as correct. This 

included graphs with prominent dots on them, so long as those dots lined up with points 

that satisfy y=x3. This also included graphs that had an open “hole” at (2,8) with a dot 

inside, but with the hole not completely filled in (see the middle graph in Figure 2.7). 

While one might think that the space surrounding the hole indicates that certain points 

were meant to be excluded from the graph, the interviews revealed that this was not the 

case – the surrounding space was for a different purpose (discussed in Section 2.5). 

Students who provided an open circle (with no closed dot inside of it and just a hole) at 

(2,8) were not coded as having a “correct” graph.  

Normatively, two graphs (of functions) are the same if and only if they consist of 

the same ordered pairs.  It seems reasonable to believe that some students might not have 

this criterion for sameness of graph. Indeed, Moore and Thompson (2015) report on 

undergraduate students who view two graphs as different despite having the same ordered 

pairs. Such graphs were visually different in terms of the displays of the coordinate 

system. In the study reported here, the coordinate system does not vary, but we still have 

the notion of students distinguishing between graphs with the same points. The 

interviews informed the resulting categorization; interviews suggested that some students 

viewed a graph of y=x3 with an extra “dot” placed at (2,8) as different from a graph of 
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y=x3 without one. Some students referred to the point (2,8) as “separate”. Accordingly, a 

sub-category (category B) of “correct” was created: mathematically normative graphs 

that highlighted (2,8) in the sense that they had a dot (closed circle) on (2,8) that was 

more prominent than any other dots. The remaining “correct” graphs were grouped 

together as Category A. In other words, Category A graphs indicated nothing special 

about the point (2,8), whereas Category B graphs did. Included in Category B were 

graphs that have a dot at (2,8). Excluded from Category B (and instead in Category A) 

were graphs that have a dot on (2,8) but also have at least one other dot of equal or 

greater prominence. I interpreted these dots to be dots that students used to help them 

draw the graph, rather than attaching any significance to the point (2,8). See Figure 2.7 

below for a sample of Category A and Category B graphs. The remaining graph 

categorizations are described in Section 2.5  

 

 

Figure 2.7. Category A versus Category B Graphs from Stage 3 (see Figure 2.2). 

 The function sameness (Figure 2.4) categorization was performed in a similar 

manner to that of graph categorization; students’ function sameness definitions were 

“correct” when they were extensional. This includes the characterization of function 

identity as same graph, same ordered pairs, or same output for every input. Statements 
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such as “g and h are the same when g(x)=h(x)” were not coded as “correct”; this is 

because in the absence of quantifiers, students could view “g(x)=h(x)” to mean that g(x) 

and h(x) are identical as equations or that g(x) transforms to h(x) under certain rules 

(Mirin, 2017; Sfard, 1988). Additionally, students might not view g(x) as representing a 

number or value of a dependent variable and instead view it as a name of a function 

(Musgrave & Thompson, 2014; Thompson, 1994, 2013b). Not one student brought up the 

topic of codomain, so there was no need to distinguish between functions as sets of 

ordered pairs and functions as Bourbaki Triples.  

Due to the multiple-choice nature of the fundamental theorem question (see Fig 

2.2 above as it was presented to students), coding the results of that question was 

straightforward; either students selected option i (the same) or option ii (not the same) to 

assess whether the functions p and q are the same. Two students did not answer the 

question, nor did they provide an explanation or complete the concept definition task. For 

this reason, they are excluded from the analysis of both the fundamental theorem task and 

the concept definition task, leaving us with a convenient sample size of 100 for these two 

tasks.  

2.5 Results 

Recall that the guiding research question is about students’ understanding of 

function sameness. One of the tasks is a concept definition, which asks students their 

meaning for function sameness (Tall & Vinner, 1981). I first discuss the results of that 

task.  Recall that concept definition is just one facet of a student’s concept image (Tall & 

Vinner, 1981), so it makes sense to consider concept definition not just in isolation, but 
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also in relation to other facets of students’ concept image. Hence, I revisit the results of 

the concept definition task when discussing the results of the other tasks. 

 

2.5.1 The Concept Definition Task 

 As discussed above, students’ concept definitions were coded as “correct” when 

they were extensional. Thirty-five students’ answers were placed into the “correct” 

category (particulars of the criteria for this category are included in Section 2.4.2) 

Examples of this category include “all inputs will yield the same outputs for entire 

function”, “for all x values they get the same output y”, and “for every value in their 

domain, g and h have the same value”. The “incorrect” answers vary. Included are blank 

answers. A common theme with the “incorrect” answers is the inclusion of other 

properties of functions. In particular, eleven students mentioned sameness of derivative in 

their concept definitions of function sameness. For example, one student wrote “both 

have the same derivative, so same function” while another wrote “ g=h, g’=h’, 3’’=3’’  ” 

(it is unknown why this particular student mentioned 3’’). This inclusion of sameness of 

derivative is especially interesting in light of my general investigation. As discussed, one 

of the reasons identity is so important is for inferences about sameness using Leibniz’ law 

of indiscernibles – that if two objects are the same, then they have the same properties. In 

particular, this is what allows us to take the derivative of both sides of an equation, which 

I discuss in Section 4. We can also think of this sort of inference relating to the cubing 

function task – f and the cubing function are the same, and therefore they share a 

derivative. The results of the cubing function task, as well as the third dissertation paper, 

show that this is a nontrivial inference for students. Interestingly, the results of the 



 

61 
 

concept definition task seem to indicate that for a number of students, the converse is 

true. That is, some students seemed to infer that functions are the same due to sharing a 

derivative. In the subsequent sections on the cubing function task and the fundamental 

theorem task, I address whether there is a relationship between extensional concept 

definitions and success on those two tasks.  

2.5.2 The Cubing Function Task 

I first discuss the quantitative data (Stages 1 and 3) regarding the cubing function 

task, and then I turn to the interview data (Stage 2) to provide a more in-depth account of 

student thinking. Recall that this task asks students to evaluate f’(2) for the cubing 

function, but represented in a nonstandard manner (piecewise). For the open-ended 

cubing function task (Stage 1, Figure 2.1), the majority (56.3%) of students claimed that 

the answer was 0, while many (41.2%) explicitly cited the constant rule. These results are 

consistent with the anecdote of Harel and Kaput (1991), who asked students to 

differentiate the function g defined piecewise by 𝑔𝑔(𝑥𝑥) = sin 𝑥𝑥 if 𝑥𝑥 ≠ 0 and 𝑔𝑔(𝑥𝑥) = 1 if 𝑥𝑥 = 

0; students typically answered that 𝑔𝑔’(𝑥𝑥) = cos 𝑥𝑥 if 𝑥𝑥 ≠ 0 and 𝑔𝑔’(𝑥𝑥) = 0 if 𝑥𝑥 = 0. Harel and 

Kaput posit that students were not considering the neighborhood of the function around 

x=0 and were only looking at the function at precisely x=0 (they refer to this approach as 

“pointwise”). They explain that students were applying differentiation as an algorithm to 

the formula at this point. Although the authors do not explicitly claim that the students 

use the constant rule with differentiating, their description of using the “formula” 

suggests that this is what they understand students to be doing.  

Now that I have established that there is a larger phenomenon, the next natural 

question to ask is, “why”? It is possible that some students erred due to inattention or 
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carelessness, rather than a major misconception. That is, they might have simply seen the 

“8” and applied the constant rule out of habit or simply not realized that 23 is 8 and that 

the given function is in fact continuous. This would explain why some students answered 

“undefined,” and it is also consistent with some of the graphs that students volunteered 

(graphs with removable discontinuities). Further, it might not have occurred to students to 

compare the graph of f with that of the cubing function - as discussed earlier, the 

piecewise-defined f is a representation of the cubing function to us, but perhaps not to 

students. 

Hence, I turn to the multiple-choice version of the cubing function task (Stage 3, 

Figure 2.2). Recall that the multiple-choice version of this task has prompts to encourage 

students to compare f to the standard cubing function; students are asked to calculate 23, 

and to graph y=f(x) alongside a provided graph of y=x3, all prior to evaluating f’(2). 

Since the multiple-choice version in some sense primed the students to compare f with 

the cubing function, I expected that these students would have a higher rate of correctness 

than the original Stage 1 group. However, it was necessary to consider that despite being 

primed, students still might not have a normative conception of function sameness; so, 

while students might observe that f and the cubing function have the same ordered pairs, 

they still might not understand them as being “the same”. Conversely, it makes sense that 

students who have a normative (extensional) criterion of function sameness could reason 

that, because f and the cubing function are the same function, they share the same 

derivative. Note that this is an application of Leibniz’s laws of indiscernibles under the 

assumption that having a particular derivative is a property of a function. Even without a 

robust understanding of function sameness, students still might be able to use multiple 
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representations of function to reason that f and the cubing function share a derivative. 

They could use a formal definition of derivative or perhaps conclude that the graphs share 

a tangent line at x=2. Hence, I formed four hypotheses regarding the results of the 

multiple-choice cubing function task (Stage 3): 

(1) Overall, students should perform significantly better on the multiple-choice 

version (Stage 3) than on the open-ended version (Stage 1), leaving open the 

possibility that inattention or carelessness could account for students’ tendency to 

do poorly on the cubing function task in isolation (Stage 1). Students might, 

because of the prompting in the multiple-choice version, be more likely to 

compare f to that of the cubing function. 

(2) Of those students who answered 12, those who did so in response to the 

multiple-choice question (as compared to an open-ended question of Stage 1) 

would be more likely to provide a justification involving the comparison of f with 

the cubing function.  

(3) Students who provided a mathematically normative definition of function 

sameness would be more likely to answer “12” on the multiple-choice cubing 

function task than students who did not (Stage 3) 

(4) Students who provided a correct graph of y=f(x) would be more likely to 

answer correctly on the multiple-choice cubing function task (Stage 3). 

The data (see Table 2.2) reveal no evidence to support that inattention could 

account for student responses in Stage 1. Although there was a slight improvement in the 

correctness rate from the open-ended version (Stage 1) to the multiple-choice version 

(Stage 3), this improvement was not statistically significant (𝜒𝜒2=1.21, p>.05), contrary to 
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(1). In other words, prompting students to compare the graph of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) to that of 𝑦𝑦 = 𝑥𝑥3 

did not appear to cause improvement, suggesting that Stage 1 students did not err simply 

due to inattention to the function’s graph. Moreover, the Stage 3 students who answered 

“12” were no more likely than the Stage 1 students who answered “12” to draw an 

explicit comparison between f and the cubing function (4.2% of Stage 1 students who 

answered 12 did so, whereas only 2.9% of Stage 3 did so), contrary to (2). Also, the 

students who provided a mathematically normative definition of function sameness in 

Stage 3 were no more likely to answer “12” than those who did not, contrary to (3). 

Table 2.2. Responses to the Cubing Function Task 

 0 8 12 Undef Multiple 
answers 

Other Blank Total 

Open-
Ended 
(Stage 1) 
(%,n) 

56.3% 
135 

4.6% 
11 

18.3% 
44 

5.8% 
14 

8.3%, 20 5.4% 
13 

1.3% 
3 

100% 
240 

0&12: 5.8%,14 

0&undef: 
2.5%, 6 

Multiple 
Choice 
(Stage 3) 
(%,n) 

40.2% 
41 

7.8% 
8 

23.5% 
24 

9.8% 
10 

18.7%, 19 N/A 0% 
0 

100% 
 102 

e (0&12): 
12.8%,13 
f (0&undef): 
5.9%, 6 

 

These results suggest that contrary to three of my hypotheses, prompting students to 

compare f to the cubing function did not appear to encourage them to infer that f and the 

cubing function share a derivative at 2. This naturally led to the emergent question: if 

inattention to the graph of f does not account for students’ tendency to answer 

incorrectly, then why are students answering the way they are answering? To address this 

question, we turn to the student graphs (Stage 3) together with the student interviews 
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(Stage 2). As expected, the results of Stage 3 confirmed hypothesis (4): students who 

provided a correct graph were statistically more likely to get the multiple-choice cubing 

function task correct than those who did not provide a correct graph. Indeed, this makes 

sense; there might be some students who understand a graph as determining a derivative: 

32% of Stage 3 ‘correct graph’ students answered the multiple-choice cubing function 

task correctly, whereas only 10.3% of Stage 3 ‘incorrect graph’ students did so ( χ2 =

6.1824 ,  p < .05).  

Recall the earlier discussion about student graphs: The “correct” graphs in Stage 3 

were partitioned into two subcategories, Category A and Category B. Category B graphs 

were the mathematically normative graphs that highlighted (2,8) in the sense that they 

had a dot on (2,8) that was more prominent than any other dots. The other “correct” 

graphs – those that were correct but indicated nothing special about (2,8) - were grouped 

together as Category A. The remaining graphs were classified as follows: those with a 

single dot at (2,8) (2.0%) (C-graphs), those with just a graph of 𝑦𝑦 = 8 (6.9%) (D-graphs), 

those with a removable discontinuity at x=2 (6.9%) (E-graphs), those that were blank 

(4.9%) (F-graphs), those whose graphs included both 𝑦𝑦 = 8 and 𝑦𝑦 = 𝑥𝑥3 on a nontrivial 

interval (2.9%) (G graphs), and other (8.8%) (O-graphs). See Figure 2.8 below for a 

sample of these graphs.  
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Figure 2.8. Categories for Students’ Graphs of the Cubing Function (Stage 3). 

Among the Stage 3 correct graphs (A and B), ‘graph A students’ were more likely than 

‘graph B students’ to answer “12” (𝜒𝜒2=3.932, p<.05), suggesting some sort of difference 

(in some of the minds of the ‘graph B students’) between f and the cubing function. 

Figure 2.9 depicts the relationship between correctness on the multiple cubing function 

task and graph type for Stage 3 students. Observe that the green color represents a correct 

answer, while the red colors represent various incorrect answers. Notice that the Category 

A bar has a larger percentage green than the Category B bar, which reflects the 

observation that students who seemed to think that the point (2,8) is special were less 

likely to get the cubing function task correct (this is discussed in further detail below). 

Notice, also, the relationship between the middle red color (which represents the 

“undefined” answer) and E-graphs (removeable discontinuities).  
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Figure 2.9. Results of the (Stage 3) Multiple-Choice Cubing Function Task Organized by 

Graph Type (see Figures 2.7 and 2.8). 

Now we construct models to explain students approaches to the cubing function 

task. This analysis is guided by the interviews of the eight students who completed the 

open-ended cubing function task (Stage 2). Musgrave and Thompson’s (2014) construct 

of “function notation as idiom” was useful in accounting for student responses. A student 

views function notation idiomatically when he or she views “𝑓𝑓(𝑥𝑥)” in its entirety as a 

name for a function (Musgrave & Thompson, 2014). Such a student might view “𝑓𝑓(𝑥𝑥)” as 

no more than another name for “y” (Thompson, 2013c). It appeared that many students  
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thought in this manner when evaluating 𝑓𝑓’(2), as they seemed to view “8” and “𝑥𝑥3” as 

names of functions, with “𝑓𝑓(𝑥𝑥)” referring to each of these functions. Another common 

theme, appearing both on the written quizzes and in the interviews, was the viewpoint 

that the “if 𝑥𝑥 ≠ 2” served as a restriction on the domain rather than as a condition. I use 

this construct to explain how students arrived at select incorrect answers on the cubing 

function task. Each answer type is described individually below. These descriptions 

should be viewed as illustrations of student thinking that explain their answers. These 

descriptions each begin with a direct, written quote from a student, which provides a 

concise summary of their way of thinking. I also discuss how, for the students, the point 

(2,8) was special and the way students made sense of their graphs. Additionally, I discuss 

how students’ ways of thinking are reflected in their responses to the interview prompt to 

find h’(5) for the function h defined by h(x)=x3 if  x ≠5, h(x)=x2+100 if x=5. 

 2.5.2.1 Students Who Answered “0”. “When the graph is at the point x=2, the 

function is determined by the piecewise part ‘8’. So, f(x) itself equals 8. When 8 is 

derived, it becomes 0” [Pete, ‘multiple choice student’, emphasis added]. The rationale 

summarized by Pete appears to exemplify a common way of thinking amongst students 

who answered “0”. For these students, the “𝑓𝑓’(2)” tells them that they are in the situation 

“𝑥𝑥 = 2,” which serves as an instruction to use the function “8”. Here, the “8” serves as a 

name of a function rather than a particular output, suggesting an idiomatic conception. 

Many of these students provided a category B graph of f (graph of 𝑦𝑦 = 𝑥𝑥3 but a special 

dot at (2,8)) and found no issue with the fact that they couldn’t “see” that 𝑓𝑓’(2) = 0 in 

their graph; when asked to explain graphically, they would provide a graph of 𝑦𝑦 = 8 and 
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explain why its derivative at 2 is 0. This rationale is summarized in Figure 2.10 below. 

 

Figure 2.10. Student Rationale for Answering “0” on the Cubing Function Task. 

 Interviewed students extended this way of thinking to evaluating h’(5) for the 

function h defined by ℎ(𝑥𝑥) = 𝑥𝑥3 if x≠5, ℎ(𝑥𝑥) = 𝑥𝑥2 + 100 if x=5. It was common for 

students to answer “10” by evaluating the derivative of 𝑥𝑥2 + 100 as 2x and substituting 

x=5 to result in 10, with the rationale that “Um I used this part, the part that makes the 

parabola [𝑦𝑦 = 𝑥𝑥2 + 100]. Because we’re interested in the time when x equals 5. And that’s 

kind of the rule here, when x equals 5 to use the parabola” [Jennifer, ‘open-ended 

student’]. She elaborated: “The derivative of h when x equals 5 is gonna be 2x um…..if x 

were to equal some number other than 5, you would use this (underlines x3) function up 

here, but because x is 5 we use this one.” Jennifer’s rationale exemplifies the way of 

thinking that led students to answer “𝑓𝑓’(2) = 0”: viewing the conditions on a piecewise-

defined function as instructions for which function to use, and a piecewise- defined 

function as involving two different function.  

Many of these students (Pete included) provided a graph of f that was like 𝑦𝑦 = 𝑥𝑥3 

but with a dot at (2,8) (category B graph). It seems that students viewed the dot at (2,8) as 

separate or independent from the rest of the graph. For example, one student recreated his 

graph during the interview, explaining his reasoning as follows: “At the point (2,8) I draw 

a circle to show there is an opening there, there’s a gap. I’m excluding that point from 
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what it is we are talking about in this point in time.” He elaborated: “So the two...they’re 

existing on the same coordinate system but existing independent of each other”.  

2.5.2.2 Students who answered both “12” and “0”.  “If f(x) does not equal 2, 

the function is 𝑥𝑥3. The derivative of 𝑥𝑥3 equals 3𝑥𝑥2, then substitute 2 for x, 3(2)2=12. 

However, if x is allowed to be 2, then the derivative of 8=0” [Carlos, ‘open-ended 

student’]. The case of Carlos illustrates how a student can reason idiomatically to get the 

answers 0 and 12. In the interview he reiterated his reasoning: “If x isn’t 2 then the 

function is 𝑥𝑥3. The derivative of 𝑥𝑥3 is 3𝑥𝑥2. Then substitute 2 for x here and you get 12. 

However, if x is allowed to be 2, then the derivative of 8 is 0”. For Carlos, the “if x=2” 

condition told him that he was in the case in which “the function” is the function “𝑓𝑓(𝑥𝑥) = 

8,” and that the “if x≠2” condition told him he was in the case in which “the function” is 

x3. Carlos did not even make the connection that the “2” in “𝑓𝑓(2)” told him he was in the 

case where “𝑥𝑥 = 2”; for him, the “𝑓𝑓(𝑥𝑥)” was just a shorthand for “y”. When prompted to 

graph f, he provided a graph of (what he thought was) y=8 as well as a graph of 𝑦𝑦 = 𝑥𝑥3, 

indicating that he viewed himself as graphing two separate functions. When asked 

how𝑓𝑓’(2) can be 12 while he had said prior that it was 0, he explained: “this is an entirely 

different function”, indicating that the conditions on the piecewise function were 

instructions about which function to use. This rationale is summarized in Figure 2.11 

below. 
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Figure 2.11. Student rationale for answering “0 if x=2, 12 if x ≠ 2” on the cubing function 

task.  

Carlos’ way of thinking was confirmed when he was asked to calculate h’(5) when h is 

defined by ℎ(𝑥𝑥) = 𝑥𝑥3 if x≠5, ℎ(𝑥𝑥) = 𝑥𝑥2 + 100 if x=5. He graphed 𝑦𝑦 = 𝑥𝑥3 and 𝑦𝑦 = 𝑥𝑥2 + 100 

on the same axes. When prompted to find the value of h’(5), he differentiated 𝑥𝑥3 and 

plugged in 5 to get 75, and then he differentiated 𝑥𝑥2 + 100 and plugged in 5 to get 10. 

When asked which was the value of h’(5), he exclaimed confidently, “both! 75 and 10!”. 

 2.5.2.3 Students Who Answered Both “0” and “undefined”. “If just looking at 

𝑓𝑓(𝑥𝑥) = 8, the derivative of a constant would make 𝑓𝑓’(2) = 0. If just looking at 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3, 

the derivative would be undefined because 𝑓𝑓(2) is not on the graph of 𝑥𝑥3. There is a hole 

at x=2” [Eric, ‘multiple-choice student’]. Eric’s reasoning exemplifies how students 

could have come to select choice “f” in the multiple-choice quiz. A different student, 

Sarah, explained her reasoning in detail in the interview. Sarah initially answered that 

“both” are undefined, but during the interview, she revealed that she interprets “0” to 

mean the same thing as “undefined” (which was a common trend in student responses). 

Like Carlos, she viewed two functions as being involved, which was again confirmed 

when she was asked about the piecewise-defined function “h”. She appeared to reason 

about two different functions, and calculated 𝑓𝑓’(2) by treating the first function as “𝑦𝑦 =  
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𝑥𝑥3, 𝑥𝑥 ≠ 2", and the second function as “𝑦𝑦 = 8, 𝑥𝑥 = 2”. She interpreted the “𝑥𝑥 ≠ 2” as a 

restriction on the first function, and the “𝑥𝑥 = 2” a clarification that such a restriction did 

not exist on the second function. Thus, for the first function, 𝑓𝑓’(2) is undefined, and for 

the second function, 𝑓𝑓’(2) equals 0. Figure 2.12 below provides a summary of this 

rationale.  

 

Figure 2.12. Student Rationale for Answering “0 if x=2, Undefined if x ≠ 2”. 

The interpretation of the “first function” conforms with typical secondary mathematics. 

Consider the problems that ask students to “find” the domain of a function and then graph 

it. A typical problem of this type would be “find the domain of y= (x-2)·𝑥𝑥3/(x-2).” A 

student would typically solve this problem by setting the denominator equal to 0 and 

writing “𝑥𝑥 ≠ 2”. In light of these exercises, it makes sense that students would see the 

“f(x)=x3 if x≠ 2” as a function on its own whose domain does not include 2. In this case, 

the graph is an E-graph (Figure 2.8), and f’(2) is undefined.  

2.5.2.4. Discussion of the Cubing Function Task. The results of the open-ended 

cubing function task (Stage 1) demonstrated that Harel and Kaput’s (1991) anecdote is 

indeed indicative of a larger phenomenon: many students appeared to differentiate a 

piecewise function formally by differentiating each expression as a separate function. The 

results of the multiple-choice version (Stage 3) confirmed that this phenomenon cannot 

be attributed merely to inattention or unawareness that the piecewise-defined function 
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agrees with the cubing function. This data, together with the interview data (Stage 2), 

suggest that several students have a non-normative understanding of piecewise function 

notation, stemming from a view of function notation as idiom and the conditions on the 

domain as either instructions or as restrictions. 

The results of this task show that students do not view the same function, 

represented in two different analytic ways, as sharing a derivative at a particular value. 

However, this last sentence was ambiguous; when I say “a function”, I am not being clear 

if students view these function representations as referring to the same function. Students 

might, for example, consider it possible for two distinct functions to share a graph, and 

we can ask: do students believe that same graph implies same derivative?  The answer to 

this appears to be “no,” as many students provided normative graphs of f yet did not 

evaluate 𝑓𝑓’(2) correctly.  Yet, there is another ambiguity: what students view as “same 

graph” might not be consistent with the normative notion of “same graph,” as suggested 

by students’ insistence that the point (2,8) being highlighted and that it is “separate”, 

together with the discrepancy between Category A and Category B graphs.   

The results of this task highlight how students think about function notation, 

independently of how they think about derivative.  To illustrate this point, consider the 

way of thinking that accounted for many students answering “0.” It arose from a 

misconception of function notation: no matter how strong of a meaning the student had of 

“derivative”, the student was still keying on the graph of “𝑦𝑦 = 8”, leading to an answer of 

“0”. 

As discussed earlier, it seemed reasonable to hypothesize that students who 

provided normative definitions of what it means for functions g and h to be the same (the 
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concept definition task) would be more likely to correctly evaluate 𝑓𝑓’(2) ; this is because 

it seems these students would be more likely to assess the piecewise-defined f and the 

cubing function as “the same,” positioning them to infer that f and the cubing function 

share a derivative. In light of the interviews and students’ ways of thinking, the counter-

intuitive result – that this hypothesis did not hold – makes sense. This is because, to 

students, f was not a function in the same way that the cubing function is; instead, f was 

two functions. Having a strong criteria for sameness of functions did not help many 

students evaluate f’(2) because f was not in the category of “functions” to which function 

sameness can apply.  

Recall that the topic of investigation concerns function sameness. To 

mathematicians, f and the cubing function are just one function, since they are the same 

function. However, the analysis of the results of the cubing function task suggests that 

students do not view these two particular representations as referring to the same 

function. Additionally, the results show that some students might not view the piecewise 

representation as referring to a function at all, but instead to two functions. Both of these 

situations can be thought of as students seeing two functions where we mathematicians 

see one function.  

2.5.3 The Fundamental Theorem Task 

 A natural question to ask is whether this phenomenon of students seeing two 

functions where we see one applies to other situations. We now move to Phase 3 to 

address this issue. In mathematics, students often see functions represented as integrals, 

such as in the fundamental theorem of calculus. The fundamental theorem task is 

described in Figure 2.3 and was answered by 100 students. Of those, 61 chose option (i) 
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(that p and q are the same function), and 39 chose option (ii) (that p and q are not the 

same function). One thing to note is that the students were not asked to “evaluate” the 

integral, that is, put it in closed form (e.g., as a polynomial, in this case). This means that 

there is a possibility that some students might have evaluated the integral incorrectly and 

assessed p and q as different for that reason. Of the 100 students, 46 attempted to evaluate 

the integral (in writing – it is possible that others evaluated but did not write their work), 

and 29 did so correctly. Unsurprisingly, there is a strong correlation between those who 

evaluated the integral correctly and those who answered that p and q are the same 

function, with 27 out of 29 (93%) who evaluated the integral correctly also claiming that 

p and q are the same function, and 8 out of 17 (47%) who evaluated the integral 

incorrectly claiming that p and q are not the same function (χ2=12.4883, p<.05). 

The nature of students’ incorrect evaluations was illuminating and not due to 

computational errors. In fact, only two students who incorrectly evaluated the integral did 

so in such a way that it was a function of x (e.g., writing p(x)=x3+12). Instead, 14 out of 

17 (82%) included a “+C” in their evaluation of the integral. Of those who included a +C, 

four (28.6%) wrote an expression with t rather than x as an integral evaluation. More 

generally, students’ inscriptions suggested misunderstanding of function notation. 

Eighteen students misused function notation in some way on the fundamental theorem 

problem. Of those, 17 (17%) had a variable mismatch (e.g. p(t)=x3-8), while one student 

wrote p’=3x2. As discussed in the section on the cubing function task, such variable 

mismatch suggested an idiomatic understanding of function notation (Musgrave & 

Thompson, 2014). 
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Students’ explanations provide insight to student thinking. Their explanations 

seem to suggest that some might have viewed the integral as representing a string of 

symbols. This is consistent with Musgrave and Thompson's (2014) and Sfard's (1992) 

findings suggesting that some students think of a function as a string of symbols. To 

many of the students who evaluated the integral as involving a C (e.g., x3+C), it would 

make sense that these students would not think of x3+C as being the same as x3-8, as 

these are different strings of symbols. For example, one student explains “the -8 in q is 

not shown in the equation for p.” Similarly, the students who evaluated the integral 

correctly tended to find that the resulting string of symbols (x3-8) was identical to that in 

the definition of q, and therefore q and p are identical: “once calculated, the integral in 

p(x) becomes the same expression as q(x)”. A summary of these results is included in 

Table 2.3. 

Table 2.3 A Summary of Results of the Fundamental Theorem Task 

 Same Not Same 

Correct Integral Evaluation 

(29) 

 

27 2 

Incorrect Integral Evaluation 

(17) 

9 8 

No Integral Evaluation 54 

 

There’s a sense in which 36 out of 46 gave consistent responses; they either (1) 

evaluated the integral correctly and wrote that p and q are the same function, or (2) 
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evaluated the integral incorrectly and wrote that p and q are different functions. This is 

consistent with thinking of a function as a string of symbols; if a student evaluates the 

integral correctly, they observe that the resulting string of symbols is the same as x3-8, 

and if they evaluate it incorrectly, they observe that the resulting string of symbols is 

different from x3-8 (discussed above). The remaining 10 students had mixed responses. 

Those students’ written explanations in part b provide some insight into their 

understanding of function identity. For example, some students included a +C for the 

integral yet assessed p and q as the same on the grounds that they share a derivative. 

Relatedly, some students wrote that p and q are the same function while also stating that 

they had a different constant. For these students, sameness of derivative was sufficient for 

sameness of function. Additionally, 15 students justified their assessment of p and q 

being the same by explaining that p and q share a derivative. This justification was 

expressed in a few different ways. These ways included explanations such as “they have 

the same slope at any given x”, “derivatives are the same”, “p’(x)=3x2, q’(x)=3x2”, and 

“If you take the derivative of them they both come out to the same function”.  This 

rationale makes sense in light of the fact that several (15) students listed sameness of 

derivative as a criterion for function sameness in the concept definition question.  

 It bears mentioning that not all the students who understood p(x) as involving a 

constant assessed p and q as the same. While, as discussed above, some students 

rationalized that the constant indicated that p and q differ by comparing symbols, others 

took a different approach. This included students who did not necessarily evaluate the 

integral but still referred to the constant in their explanations. In some situations, this took 

the form of arguing that p(x)=x3+C shares a derivative with q(x)=x3, as discussed above. 



 

78 
 

In other situations, students treated C as an unknown or undetermined (but fixed) 

number. Sometimes, this led to students assessing that p and q are the same because they 

could be the same (in the sense that C could be -8). See Figure 2.13 below for an example 

of such a student.   

 

Figure 2.13. A Students’ Answer to the Fundamental Theorem Task. 

Other times this led to students assessing that p and q are not the same because they could 

be different (in the sense that C could be some number other than -8). See Figure 2.14 

below for an example of such an explanation.  

 

Figure 2.14. A Different Student’s Answer to the Fundamental Theorem Task (cf. Fig. 

2.13). 
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There were six students of the former type, while there were five who gave the latter 

argument.  

 I had originally hypothesized that there would be a correlation between students 

who give extensional function sameness concept definitions (discussed in Section 2.5.1) 

and those who answer that p and q are the same function. This is because I expected 

students with other, non-normative understandings of function identity to claim that p and 

q are different. This was indeed the case with at least two students, who asserted that p 

and q differ because one represents an area under a curve, and the other does not. 

However, a chi square analysis revealed no such correlation (𝜒𝜒2=0.337, p>.05, see Table 

2.4). It seems that because p could be expressed in closed form, students’ assessment of 

sameness of p and q was primarily about how they calculated the integral. This allowed 

students to assess that p and q are the same on the grounds that they are expressed by the 

same equation, rather than requiring a robust understanding of function sameness. This 

resulted in the possibility that students who understand functions as strings of symbols 

answered that p and q are the same function.  

Table 2.4. Results of the Concept Definition Task in Relation to the Fundamental 

Theorem Task 

 Fun. Thm Task Correct Fun. Thm Task Incorrect 

Concept Def. Correct 20 15 

Concept Def. Incorrect 41 24 

 

 That so many students evaluated the integral with a “+C” is especially revealing. 

This might suggest that, despite the function notation p(x) being used and the quiz 
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explicitly telling them that p is a function, these students might not have viewed p as a 

function (perhaps, as one student above put it, “a formula”). This leaves open the 

possibility that, when these students were asked if p and q are the same function, they 

were not viewing p as a function at all. This is consistent with the results of the cubing 

function task, in which students appeared to not think of a particular piecewise function 

as a function. It is possible that such students just do not understand integrals as 

functions; perhaps they understand an integral as a command to anti-differentiate. 

 Such an understanding would be consistent with other mathematics education 

literature. For example, Hall (2010) reports that, when asked about the meaning of 

definite integrals, students tended to discuss only how to evaluate them. While it is 

unclear if students understood the meaning as being about calculation (rather than 

answering a question that was not being asked), there is other literature to suggest that 

students truly do understand some notation as instructions to calculate. For example, as 

discussed in the general introduction to this document, young students understand “=” as 

a command to calculate rather than expressing a relation. Unpublished data concerning a 

Calculus I Concept Inventory suggests that some students understand function notation as 

instructions to substitute and calculate. In light of these results, it would be unsurprising 

if some students viewed the integral sign similarly.  

A close look at the data reveals that this could be the case with students. Although 

students are told that p is a function, they might have seen the integral sign as a command 

to anti-differentiate, and the only function that’s provided to them in this command is in 

the integrand. For example, one student assessed p and q as different and explained that 

“the antiderivative of p(x) equals t3+c and q(x) is x3-8. So the derivative of p equals q. p 
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does not equals q”. Observe that this student viewed the antiderivative of p as a cubic 

expression, suggesting that p is the integrand, and then used this reasoning to conclude 

that p and q differ.  This interpretation conforms with the fact that 23 students equated p 

or p(x) with the integrand. Some students explicitly wrote an equation (e.g., p(x)=3t2, 

also a use of idiomatic function notation), while others indicated in other ways that they 

were equating the function p with the integrand. For example, several students explained 

“q is the antiderivative of p”. With some students, an integral as an action accompanied 

such explanations, such as “when taking the integral of p(x), the final answer does not 

equal q(x)”  

 Although several students identified p with the integrand, they did not identify p 

uniquely with the integrand; that is, there are students who appeared to use the same 

notation to represent two different things (a cubic function as well as its derivative, the 

integrand in the definition of p). In some sense, all the students who identified p with the 

integrand did this, since p(x) is defined to be an integral. However, I consider only the 

students who themselves referred to p as the integral function (sometimes expressed by 

writing p(x)=x3-8). Eleven students used the same symbol (p(x), p(t), or p) to denote both 

the integrand and a cubic function or integral (see Fig. 2.15 below). 
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Figure 2.15. A Student’s Dual Usage of Notation. 

Some of these students additionally wrote that p(x)=x3-8 while also equating p with the 

integrand. This is especially interesting, since this shows us that a decent portion of 

students understand the same name to refer to two different things. This violates a 

fundamental norm in mathematics that within a context, a name can denote only one 

object (e.g., functions must be “well-defined”). Students’ wording provides some insight 

into how this can happen; five students use the word “becomes” in their explanation, such 

as the student who wrote "they are the same function by p(x) being the derivative but by 

taking the integral of it it now becomes q(x)" (emphasis added). The use of the word 

“becomes” suggests that they might understand “p” as denoting one thing at one point in 

time and another thing at another point in time. In some sense, these students are seeing 

two functions where we see one; we understand “p” as denoting a single function, while 

they understand it as denoting both a quadratic (the integrand) and a cubic function (the 

integral). 
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2.6 Discussion 

 The results of this study inform us that many students have a non-normative 

understanding of function sameness. As discussed, being able to recognize sameness of 

functions is essential to mathematics and allows for powerful inferences. When two 

things, say x and y, are the same thing, then we know that {x,y} has cardinality 1. 

Conversely, if x and y are different, then {x,y} has cardinality 2. In this study, x and y are 

functions. We have learned that there are situations in which mathematicians understand 

the functions x and y to be the same (they are seeing {x,y} as having cardinality 1), and 

where students understand x and y to be different. The notion that students see two 

functions where we see one is tied to the notion of students seeing functions as different 

when we see them as the same. However, there is an extra layer of complication here. 

Recall that in the cubing function task, the issue was not just that students saw the 

piecewise-defined function f as different from the cubing function – they saw it as two 

functions rather than a singular function. Where we were seeing an object x, they were 

not. This is another sense in which students saw two functions when we saw one – f was 

not a “function” but instead “functions” and not a unified entity in its own right. This way 

of thinking also occurred in the fundamental theorem task; while we see p as denoting 

one function, some students appeared to use it to denote two different functions (a cubic 

function and a quadratic function).  

Why is it that, when we see two function representations as denoting one and the 

same function, students see something different? It is important to answer this question so 

that we can see what barriers or potential obstacles students face when developing a 
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robust and mathematically normative conception of function sameness, not only because 

of the importance of function sameness, but also because of the importance of the 

concept of function more generally. As discussed in the general introduction to this 

dissertation, there is a close relationship between a person’s conception of sameness 

within a category and the defining features of that category. Hence, the importance of 

students’ conceptions of function sameness is tied to their conception of function more 

generally.  

The fact that students did far better on the fundamental theorem task than the 

cubing function task is notable (23.5% versus 61%, Stage 3 students). One difference 

might be familiarity; translating between representations involved is a procedure that 

students have done before in the fundamental theorem task but likely have not done in the 

cubing function task. That is, introductory students have evaluated integrals before, but 

they have not rewritten piecewise-defined functions as single equations. This discrepancy 

is reflected in the types of reasoning students tended to give for the fundamental theorem 

task; students performed a translation exercise (evaluation p) which gave them a 

representation (p(x)=x3-8) to compare with, symbol by symbol, the representation 

q(x)=x3-8. With the cubing function task, there is no translation exercise that the students 

perform that results in the ability to compare two representations symbol-by-symbol. 

Additionally, students are in some sense being prompted to make a translation that allows 

for such a comparison by encountering the integral symbol (as discussed above, it seems 

that students viewed the integral symbol as a command to antidifferentiate). In other 

words, students were prompted to translate p to a different analytic representation and 

then compare to q, which happened to be the same representation as the result of that 
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translation. In some sense, the multiple-choice cubing function task can be viewed as a 

translate-and-compare task. This is because students were indeed prompted to produce a 

graphical representation of the piecewise-defined f alongside a graphical representation 

of the standard cubing function. In theory, students could have performed this translation 

and then observed that the graphs were identical. However, as discussed, most students 

did not do this. Recall that the results suggested that the graphs that students produced 

that we would view as identical to the cubing function graph might not have been viewed 

as identical from the students’ perspective. Additionally, there is the possibility that 

students do not view a graph as uniquely representing a function. This possibility opens 

up various questions about how we should understand the translation tasks in multiple 

representation literature (discussed in the literature review to this chapter). While this 

literature discusses how students translate between multiple translations, it does not 

address how or if students understand identity as being maintained throughout these 

translations or the uniqueness of such translations.  

This study was intended to be about assessing when students saw two functions as 

actually being the same function. There was an implicit assumption that we were working 

within the category of “function”; students were asked about representations that the 

prompts referred to as “functions”. I had only intended to investigate students’ concepts 

of function sameness within the category of function. However, the results of this study 

suggest that students did not view certain objects labeled as “functions” to actually be 

functions (or even objects, for that matter). This occurred in the cubing function task – 

the piecewise-defined function f was not viewed as a function, but as two functions with 

instructions about when to use each function. This also appears to have occurred in the 
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fundamental theorem task – although p was referred to as a “function” in the written task 

itself and written with function notation (as p(x)= ∫ 3t2dtx
2 ), it seems that several students 

did not view it as a function (or at the very least, not a function of x). If one does not 

view a particular thing as a function, then they would be hard-pressed to say that this 

particular thing is identical to a thing that they do view as a function (following Leibniz’ 

law of indiscernibles, if x is not a function and y is, then x and y cannot be the same). 

Going back to our question about why students do not see function sameness where we 

mathematicians do, one reason is that students might not see something as a function 

when a mathematician does (despite being told that it is). As a constructivist, this result is 

unsurprising. In the cubing function task and the fundamental theorem task, objects that 

we as mathematicians understand as functions are not even functions to many students. 

This is despite the fact that, from our mathematical perspective, these representations do 

refer to functions that students recognize as functions when represented differently (e.g., 

transparently as polynomials).  

The results of this study bring up foundational issues about notation and 

denotation in a few different ways to suggest that notation is one barrier to students 

having a normative understanding of function sameness.  First, we have the issue of 

viewing function notation idiomatically (Musgrave & Thompson, 2014). Many students 

did not view “f(x)=8 if x=2” as meaning the same thing as “f(2)=8”. Similarly, in the 

fundamental theorem task, several students evaluated the integral with a “t” and wrote 

equations with mismatched variables such as p(x)=t3, suggesting, again, an idiomatic 

view of function notation.  Second, we have the idea that the thing we call a function 

might be something to the student that we would not call a function. This issue is 
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described in the preceding paragraph; some students do not view “f” as denoting a single 

function, and students seem not to view an integral as denoting a function. Third, we have 

the idea of a symbol being used to refer to two different things in the same context (a 

homonym or an instance of polysemy). This occurs in the cubing function task with the 

students who gave multiple answers; some students viewed f’(2) as being both 0 and 12. 

This also occurs with the fundamental theorem task, in which students refer to both the 

integrand and the integral as p (or p(x) or p(t)). While mathematics does allow for 

different names for the same thing (as discussed, this occurs in statements of identity 

such as a=b), the mathematical community does not allow for using the same name to 

denote different things within a context. For example, we care that functions are “well-

defined” so that “g(t)” cannot name two different things. In the field of logic, referring to 

two things with the same name is considered such a significant fallacy that it has a name: 

“equivocation” (Hansen, 2020). In some sense, it appears that students were performing 

this fallacy. However, further investigation is needed. As a constructivist, it is important 

that what looks like a logical fallacy might be a much more nuanced understanding that is 

consistent from the students’ perspective.  

With written analytic definitions of functions, function notation appears. One 

essential take-away from this study is that students’ understanding of notation has bearing 

on their understanding of a written representation of functions, and therefore further 

investigation of student understanding of function representations should carefully 

investigate how such students understand (de)notation. 
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INFERENCES AND KNOWLEDGE TYPES: SITUATING IMPLICIT 

DIFFERENTIATION 

Chapter four (Mirin & Zazkis, 2020) is an already published paper, and as such, it 

cannot be modified. This chapter (Chapter 3) provides an expanded discussion of the 

topic discussed in Chapter 4, which is a result of an expanded literature search and 

analysis. It also situates Chapter 4 in relation to the general dissertation topic (sameness 

of representation). Specifically, it addresses the relationship between implicit 

differentiation and sameness as well as how my work on implicit differentiation relates to 

the topic of deep procedural knowledge (Star, 2005).   

Like chapter two, Mirin and Zazkis (2020) is related to sameness insofar as it 

involves function identity. Specifically, it addresses implicit differentiation and, more 

generally, differentiating equations. The guiding research questions for Chapter 4 are:  

1. What does it mean to understand the legitimacy of differentiating equations 

(e.g., in implicit differentiation problems)? 

2. What difficulties might a student encounter when constructing such an 

understanding? 

I answer the first question in terms of function sameness: When it is legitimate to 

differentiate each side of an equation (related rates problems, implicit differentiation 

problems), that legitimacy is grounded in the fact that the equation being differentiated is 

a statement about function identity (sameness). This is another instance of Leibniz’ law 

of indiscernibles; when two functions f and g are the same function, they share all 

properties. Hence, since being a derivative is a derivative of a function, f and g share a 

derivative. In other words, f and g being the same function acts as a warrant (Toulmin, 
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1969) for claiming that they share a derivative. It follows that students’ understanding of 

function sameness is paramount to understanding differentiating equations (and hence 

implicit differentiation) as a legitimate procedure. It is important to note that I am not 

assuming that students view differentiating equations in this way. In fact, I do not even 

assume that students understand differentiating equations as an inference or as involving 

mathematical argumentation. Instead, my paper gives a conceptual analysis (Thompson, 

2008) of how students could come to understand differentiating equations in this way and 

what difficulties students might encounter in doing so. Chapter two of this dissertation 

also provides some insight into answering the second question by explaining the various 

obstacles student encounter in assessing function sameness. In particular, the results of 

the previous study suggest that inferring that two functions share a derivative on the 

grounds that they share a graph is nontrivial for several students. 

This topic is not unique to implicit differentiation. For example, suppose we are 

working on some sort of word problem, and to solve that word problem, we set up the 

equation “x+3=9”. We might apply a procedure (e.g., subtracting 3 from each side) to 

obtain “x=6”. Why is this procedure legitimate in this situation? Well, if a=b, then a-3=b-

3. Reframing in terms of Leibniz’ law of indiscernibles, we can say that if a and b are the 

same, then they share the same properties; in particular, since subtracting 3 from a results 

in a-3, we can conclude that subtracting 3 from b also results in b-3, and hence a-3=b-3. 

That is; we can conceptualize subtracting 3 from each side as an inference. This 

illustrates what I mean when I say “understanding the legitimacy of a procedure”. It 

involves understanding that there is an inference involved, what exactly this inference is, 

and why this is a valid inference. The conceptual analysis in Mirin and Zazkis (2020), 
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i.e., Chapter four of this dissertation, explains how a student can reconceptualize the 

procedure of implicit differentiation as a valid inference. This is just a more technical 

way of saying how a student can come to understand why the procedure of implicit 

differentiation works. In answering this question, the conceptual analysis discusses the 

conceptualizations entailed in doing so.  

In a quest to better characterize my investigation, I turned to the literature on 

procedural vs conceptual knowledge. In Mirin and Zazkis (2020), I characterize my 

investigation to be about “deep procedural knowledge” in the sense of Star (2005). Due 

to space restrictions for that particular journal, I was unable to delve fully into how and if 

my topic of investigation is about deep procedural knowledge. For this reason, I delve 

into the literature more deeply here. Star (2005) believes that there is a history in 

mathematics education of a procedural/conceptual dichotomy being conflated with a 

shallow/deep dichotomy. He traces this conflation to Hiebert and Lefevre (1986), in 

which the authors define conceptual knowledge as knowledge that is rich in relationships, 

and procedural knowledge being knowledge about algorithmic procedures for solving 

problems. Star argues that this definition seems to conflate knowledge type (conceptual 

versus procedural) with knowledge quality (deep/interconnected versus shallow).  Star’s 

main point is that knowledge type is in some sense distinct from knowledge quality to 

allow for deep (quality) procedural (type) knowledge. “Knowledge type” is what the 

knowledge is about. If the knowledge is about concepts, then the knowledge is 

conceptual knowledge. If the knowledge is about procedures, then the knowledge is 

procedural knowledge. Knowledge quality actually qualifies that knowledge; it is about 

how deep or shallow that procedural knowledge is. This leaves room for “deep 
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procedural knowledge,” which Star describes as deep knowledge “about procedures”. 

With Star’s construct, it is still unclear how to classify the knowledge of why a procedure 

is valid. Arguably, we could say that knowledge of why a procedure works is “about 

procedures” and classify it under “deep procedural knowledge”. On the other hand, Star 

does not give this type of knowledge as an example of deep procedural knowledge. 

Additionally, my topic of investigation includes all the background knowledge 

(conceptualizations) that a student might need in order to understand this the 

differentiating procedure as a valid procedure, which also involves conceptual knowledge 

about functions. 

 Baroody et al. (2007) appear to refute Star (2005). They characterize Star as 

claiming (a) that knowledge type and quality are purely independent; and (b) that the idea 

of deep procedural knowledge has been ignored. There are a few things wrong with 

Baroody et al.’s characterization and rebuttal to Star’s claim of (a). Baroody et al. are not 

convinced that knowledge type (procedural – conceptual) and knowledge quality 

(shallow – deep) can be disentangled, and they view this as an empirical question. This 

particular claim is strange; even if knowledge type and knowledge quality are not 

independent in real life, they can still be seen as independent measures that warrant 

different labels. Conceptually we can disentangle physical strength and muscle size in the 

human body, even though they are interlinked in real life. For this reason, it’s strange that 

Baroody et al. view these aspects as potentially dependent as being inconsistent with 

treating them as different measures. Furthermore, Star (2005) never actually claims that 

they are independent, so it seems that Baroody et al. have mis-characterized his work. 

However, Baroody et al. do make some interesting points regarding (a) that might be 
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relevant to my work. They claim that “although conceptual knowledge is not necessary 

for the former, it is unclear how substantially deep comprehension of a procedure can 

exist without understanding its rationale (e.g., the conceptual basis for each of its steps).” 

Here, it seems that Baroody et al. are claiming that understanding a procedure’s rationale 

(e.g., understanding why implicit differentiation works) is an instance of conceptual 

knowledge, at least insofar as they are using the phrase “conceptual basis”. It is unclear if 

the authors understand “conceptual basis” to mean “why a procedure works”. To 

elaborate on (b), Baroody et al. give examples of mathematics education literature to 

refute Star’s (2005) claim that the mathematics education literature has since largely 

ignored procedural knowledge. I will address this literature in more detail after I address 

Star’s response to Baroody et al.  

 Star (2007) concedes to Baroody et al. (2007) in acknowledging that the modern 

mathematics education research community has not completely ignored procedural 

knowledge. However, as Star points out, the work on procedural knowledge has been 

purely theoretical and not yet operationalized. He claims that there is a small group of 

distinguished mathematics education people who have a nuanced view of procedural 

knowledge but emphasizes that this group is very small. As evidence of his claim, he 

explains that there are rarely in-depth interviews about students’ understanding of 

procedures, and instead only of students’ understanding of concepts. Star (2007) notably 

disagrees with what he refers to as Baroody et al.’s (2007) “premise” that procedures 

learned without concepts are necessarily rote. He makes the point that there is a 

teleological view of procedures. One can perform procedures with a particular goal in 

mind and be especially skilled at pursuing this goal. This is how a skilled programmer 
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might function. Such a programmer might copy a pre-written section of code and use it in 

a larger program. In that instance, they know that the bit of code does a particular thing, 

and they use that knowledge skillfully and in a goal-oriented way, without being 

concerned with how or why that bit of code works.    

I now return to the relationship between this literature and my investigation in 

Mirin and Zazkis (2020). Thankfully, Star (2007) does provide additional insight into 

what he means by “deep procedural knowledge”. The fact that he argues that procedural 

knowledge can be disentangled from conceptual knowledge by discussing the idea of 

skilled (teleological and efficient) use of algorithms suggests that he is putting the skilled 

use of algorithms in the “purely procedural camp”. The fact that he uses this as an 

example, rather than rationale for a procedure, suggests that he might be putting rationale 

for a procedure in the “conceptual” camp.  Yet, he never clarifies.  

 I now turn to the literature on “adaptive expertise”, a closely related topic to that 

of “deep procedural knowledge”. Hatano (2003) characterizes “adaptive expertise” by 

contrasting it with “routine expertise”. While routine expertise involves the successful 

execution of routines, adaptive expertise is characterized by being able to use procedures 

adaptively in new situations. Essentially, adaptive expertise is whatever skill the student 

has that allows for transfer (Baroody, 2003). Hatano suggests that to have adaptive 

expertise, students must understand “why a procedure works”. He does not clarify what 

he means by “why”. It could mean “why a procedure gets you closer to your goal” – that 

is, why subtracting 3 from both sides of -x+3=7 gets you closer to isolating x (not 

relevant to Mirin & Zazkis, 2020). Alternatively, it could mean “why a procedure is 

valid” (very relevant to Mirin & Zazkis, 2020).  
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Baroody (2003) provides a more detailed account of adaptive expertise. He 

describes students who had learned why it makes sense to check subtraction problems by 

adding. He attributes the students’ ability to come up with the idea to check division 

problems by multiplying to the fact that students understand the rationale for doing the 

analogous thing with subtraction problems. This sort of reasoning involves not just the 

skillful use of procedures toward a goal, but also having some knowledge of why the 

procedures work the way they do. In this view, one might classify the investigation in 

Mirin and Zazkis (2020) as being about adaptive expertise. Baroody (2003) characterizes 

adaptive expertise as involving an integration of procedural and conceptual knowledge. 

Interestingly, Baroody (2003) describes Hiebert and Lefevre’s (1986) distinction between 

procedural and conceptual knowledge as follows: “Hiebert and Lefevre (1986) defined 

procedural knowledge (skills) as knowing how-to and conceptual knowledge 

(understanding or concepts) as knowing why” (p. 11). Under this particular definition, it 

seems that my topic of investigation in Mirin and Zazkis (2020) is about why – at least, 

it’s certainly not “how-to”. Hence, under this characterization, my topic of investigation 

is actually not about procedural knowledge.  

To summarize, my topic of investigation in Mirin and Zazkis (2020) (Chapter 

four) is about how students can come to understand implicit differentiation as a warranted 

inference from function identity. The analysis of the literature here reveals no definitive 

answers about whether understanding a procedure as a warranted inference counts as 

procedural knowledge or conceptual knowledge. Star’s (2005, 2007) characterization of 

procedural knowledge as being knowledge about procedures suggests that indeed I am 

investigating procedural knowledge – knowledge about the validity of a procedure is 
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indeed about a procedure. On the other hand, Star’s (2007) examples of procedural 

knowledge only involve discussions of skilled teleological uses of procedures. 

Interestingly, Baroody’s (2003) characterization of Hiebert and Lefevre (1986) describes 

procedural knowledge as “how-to” and conceptual knowledge as “why”. Under this 

classification, it appears that my topic of investigation aligns more with “conceptual 

knowledge”. I am not investigating if students know how to implicitly differentiate. On 

the other hand, perhaps I am investigating if students know how to justify implicit 

differentiation. While the construct of adaptive expertise (Baroody, 2003) keeps 

procedural and conceptual knowledge intertwined, this construct appears to be more 

about transfer and flexible adaptation of procedures to varying contexts than it is about 

understanding the validity or legitimacy of procedures. One aspect of adaptive expertise 

is knowing when a particular procedure might be useful – this is arguably related to the 

idea of when a particular procedure is valid in the sense that they both concern the 

question “when should we use a particular procedure?” We can argue that the answer to 

“when should I use implicit differentiation?” is “when you have a statement of function 

equality” and is hence closely related to why implicit differentiation is legitimate. Yet, at 

the same time, students might have a way of superficially understanding when to use 

implicit differentiation without considering functions or function equality at all. 

Furthermore, “when you have a statement of function equality” does not answer why it is 

okay to take the derivative of both sides of an equation. Additionally, Mirin and Zazkis 

(2020) discusses not only the legitimacy of implicit differentiation in isolation, but also 

the conceptualizations involved in understanding this legitimacy. Some of these 

conceptualizations (e.g., robust understandings of function notation) do not directly 
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reference any procedures and are therefore clearly not procedural knowledge. So, while 

Mirin and Zazkis (2020) does discuss procedures, its main contribution is a conceptual 

analysis, not a procedural analysis.  
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FUNCTION SAMENESS: BRINGING COHERENCE TO IMPLICIT 

DIFFERENTIATION  

John is doing well in his introductory calculus class. He has learned how to 

generate a new function, a derivative, from a given function. He has completed several 

implicit differentiation problems and can apply differentiation rules fluently. He is 

excited to participate in a mathematics education interview. After he successfully 

differentiates an equation, the interviewer asks him “Why was it OK to take the 

derivative of both sides?”. John thinks for a moment back to his experience in secondary 

school algebra and replies “If I have x=1, I multiply by 2 and get 2x=2, it would be the 

same thing.” Next, the interviewer asks John what happens if he differentiates both sides 

of x=1. John writes “1=0” on his paper and feels confused. Later in the interview John 

differentiates an equation without hesitation. When asked why it was OK for him to 

perform this differentiation, he says “because math teacher said so” (with a chuckle).  

The vignette centers around (a lack of) what Star (2005) calls deep procedural 

knowledge. This involves knowledge of when and why a procedure works. As 

mathematics educators, we consider it important that students not only know how to 

apply a procedure, but also why a procedure works. Specifically, we  

(1) Describe a way that introductory calculus students could understand not only 

the ‘how’ but also the ‘why’ of implicit differentiation. 

(2) Outline the difficulties that students might have in coming to this 

understanding.   
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In doing (1) and (2), we present concerns that could guide calculus teachers. In particular, 

(1) can help them with their initial presentation of the subject, and (2) can sensitize them 

to the difficulties students might encounter.   

Mathematics education literature (e.g., Engelke, 2004; Hare & Phillippy, 2004) 

tends to treat differentiating equations as an unproblematic application of previously 

learned rules. We could find only two articles, Thurston (1972) and Staden (1989), that 

address the legitimacy of differentiating both sides of an equation. While both Thurston 

and Staden acknowledge that the justification for differentiating equations requires 

explanation, neither author considers the conceptualizations that might be involved for a 

student to come to understand when and why differentiating an equation is legitimate.   

We therefore provide an approach that entails a justification for implicit 

differentiation that coheres with the rest of introductory calculus. We hope that this 

discussion of implicit differentiation will sensitize the reader to the mathematics involved 

in relation to their own understanding as well as guide them in presenting the topic to 

their students.  

Our approach to addressing the above begins with a conceptual analysis 

(Thompson, 2008) of what it means for an introductory calculus student to understand 

(the legitimacy of) implicit differentiation. The conceptual analysis addresses point (1) by 

answering the question ‘what does it mean to understand the legitimacy of implicit 

differentiation in a way that is consistent with introductory calculus?’. Answering this 

question provides a lens for point (2). Specifically, it helps us begin to answer ‘what 

struggles might a student encounter in constructing such an understanding?’ We address 

this second question by consulting the relevant literature and presenting novel student 
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data. Educators can use this conceptual analysis, together with the discussion of potential 

student struggles, to assist them in helping students understand the ‘why’ of implicit 

differentiation.  

4.1 A Conceptual Analysis 

 To guide our conceptual analysis, we consider a classic implicit differentiation 

problem, which we call Ladder Problem 1 (see, for example, Rogawski, 2011; Stewart, 

2006):  

A 3-meter ladder is sliding down a vertical wall. Find the rate of change of the 

height of the ladder’s top with respect to the distance of the ladder’s bottom from the 

wall. A typical written solution to Ladder Problem 1 involves designating y as the height 

of the ladder’s top and x the distance of the ladder’s bottom from the wall and performing 

the following computation:   

 

     Computation A 

While the solution procedure in Computation A is correct, there is no explanation 

for why concluding the second line from the first line is a valid inference; that is, each 

side is differentiated, but there is no justification for why this is ok. We therefore solve 

Ladder Problem 1 in a way that not only elucidates the ‘why’ of implicit differentiation, 

but also does so in a way that is coherent with the rest of introductory calculus. To 

clarify, we are not claiming that the line of reasoning described in the conceptual analysis 
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below reflects what a student could come up with on their own. Rather, it forms a 

trajectory of what we believe might be possible given appropriate instructional support.  

4.1.1 Working Through the Ladder Problems  

We solve Ladder Problem 1 in a way that reflects a trajectory that an introductory 

calculus student such as John could be guided through. As before, we have 

(*) x2+y2=9, y>0. 

The first crucial insight John might have, is that any x-value between 0 and 3 has a 

corresponding y-value that makes (*) true. He might then relate this insight to the notion 

of function and observe that any value of x determines a unique value of y.  So, it might 

make sense to switch to a notation that indicates that type of relationship. Accordingly, 

we re-write equation (*) as  

(**) x2+(f(x))2=9 

where f(x) is that unique value of y determined by x in (*). Next, John might be guided 

toward the insight that f is not the only function involved. Namely, x2, 9, and x2+(f(x))2 

can all be thought of as dependent on x. Hence, (**) is a statement about function 

equality. Accordingly, we consolidate some of the functions involved by calling the 

function defined on the left side of equation (**) m and the function on the right side r. 

So, for 0<x<3, m(x)=x2+(f(x))2 and r(x)=9. Equation (**) tells us that m(x) and r(x) are 

equal on this interval. The final insight involves inferring that because m(x) and r(x) are 

equal on this interval, they therefore share a derivative on this interval. The inference is 

central to why differentiating both sides works. Returning to the problem, a student such 

as John then might feel like he understands why he can differentiate both sides. 
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Differentiating both sides of equation (**) yields f’(x)=-x/f(x). We summarize this line of 

reasoning in Computation B.   

 

Computation B  

The Conceptual Steps9 involved in making the inference of taking the derivative of both 

sides are as follows:    

1. Defining f by using (*).   

2. Viewing both sides of the equation as functions. 

3. Recognizing that the functions defined on the left side and the right side 

are equal.  

4. Inferring that, since the functions are equal, their respective derivatives are 

equal.    

Note that we are not claiming that first-year calculus students could generate the 

above line of reasoning on their own. However, we believe that, like Thompson’s 

conceptualization of integration as an accumulation (Thompson & Silverman, 2008), it 

can form the basis of instruction aimed at student understanding. In particular, the 

 
9 This footnote is not part of the original paper. This conceptual analysis addresses implicit differentiation 
only in contexts in which the relation defined by the equation actually is a function and each side of the 
equation represents a function. Possible areas of expansion for this conceptual analysis include addressing 
situations in which a non-function relation is being defined by the equation (e.g., without the constraint of 
y>0) in which implicit differentiation is valid, as well as situations in which implicit differentiation is not 
valid (e.g., the equation defining a discrete relation that is not differentiable over an interval).  
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Conceptual Steps cohere with introductory calculus insofar as derivatives are of functions 

and the equation being differentiated is an equation about functions. Both Thurston 

(1972) and Staden (1989) suggested that the legitimacy of differentiating equations is 

rooted in function equality. However, as we discussed, much of the current education 

research on related rates and implicit differentiation problems overlooks the legitimacy of 

the procedure.   

We wish to emphasize an aspect of our conceptual analysis. The conceptual 

analysis was grounded in the fact that the standard introductory calculus curriculum that 

precedes implicit differentiation treats derivatives as being of functions. Therefore, how 

an introductory calculus student understands implicit differentiation should involve 

derivatives as being of functions (rather than of, say, expressions) and differentiation 

rules being applied to functions. This is consistent with how differentiation rules are 

introduced in many textbooks; for example, the sum rule states that the derivative of the 

function f+g is the derivative of the function f plus the derivative of the function g. Thus, 

for example, when students apply the sum rule, power rule, and chain rule to x2+y2, they 

must think of these rules as applying to functions. This approach is supported by research 

that suggests that some students need to see equations explicitly written with standard 

function notation before differentiating (Engelke, 2008). This involves viewing each side 

of (*) as representing a function, and therefore viewing (*) as expressing function 

identity.    

4.1.2 When does the Equation Serve as a Function Definition?  

Typically, in calculus textbooks, implicit differentiation and related rates 

problems are introduced with little distinction between the two. Accordingly, we illustrate 
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these differences by briefly reformulating the problem at hand as a related rates problem. 

We keep the previous ladder situation, but this time we specify that the top of the ladder 

is sliding down the wall at 0.1 m/s and ask the student to find the speed of the bottom of 

the ladder. We call this new problem Ladder Problem 2, a related rates problem. 

Procedurally, solving Ladder Problem 2 is very similar to solving Ladder Problem 1; it 

involves differentiating the same equation (x2+y2=9) but with respect to t (time) instead 

of x.  

  

Computation C  

We use Computation C to stress the procedural similarity between Ladder 

Problem 1 (Computation A) and Ladder Problem 2. This similarity may contribute to the 

common conflation of implicit differentiation with any differentiation of equations using 

Leibniz notation. Consider, for example, Hare and Phillippy (2004), who explain 

“Implicit differentiation must be used whenever the differentiation variable differs from 

the variable in the algebraic expression (p.9).” Thus, the authors appear to be conflating 

implicit differentiation with use of the chain rule. That is, when we ‘take d/dt’ of 

x2+y2=9, we have to use the chain rule with x and y. Similarly, when we ‘take d/dx’ of 
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the same equation, we have to use the chain rule with y. So, viewed procedurally (without 

attending to the legitimacy of the procedure), these problems are almost identical.   

However, as we now illustrate, the conceptual operations entailed in Ladder 

Problem 2 are not identical to those in Ladder Problem 1. In fact, Ladder Problem 2 is not 

truly an implicit differentiation problem. In order to provide this comparison, we solve 

Ladder Problem 2 in a way that an introductory calculus student such as John might 

understand.   

 We begin as before with the equation x2+y2=9. Unlike in Ladder Problem 1, 

where we conceptualized y as a function of x, we conceptualize y and x as functions of t: 

for all t, (x(t))2+(y(t))2=9. Similar to our earlier discussion, if we give labels to the 

functions on the left and right sides of the equation, say m(t)=(x(t))2+(y(t))2 and r(t)=9, 

then the equation x2+y2=9 simply asserts that m(t) and r(t) are equal for all t. As with 

Ladder Problem 1, this statement of function equality implies that m’(t)=r’(t). So: 

2x(t)x’(t)+2y(t)y’(t)=0, which, since we know y’(t)=-0.1, yields: x’(t)=0.1y(t)/x(t). We 

summarize this reasoning in Computation D.  

  

Computation D  

Unlike with Ladder Problem 1, solving Ladder Problem 2 does not involve Conceptual 

Step 1, as there was no function of t implicitly defined by the equation. This difference is 

what distinguishes related rates from implicit differentiation problems. Instead, the 
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equation x2+y2=9 describes a relationship between yet unspecified functions of t. We 

carefully contrasted the two types of problems to emphasize that, while these problems 

have similar procedural solutions, they differ in Conceptual Step 1 when attending to the 

legitimacy of differentiating the equation.    

4.1.3 Summary of the Conceptual Analysis 

We are addressing an aspect of deep procedural knowledge, specifically, how 

introductory calculus students can understand the legitimacy of differentiating each side 

of an equation. In order for such a student to see the legitimacy of this procedure for 

differentiating an equation, they must understand the equation as asserting a statement of 

function equality (Conceptual Step 3). Doing so requires viewing each side of the 

equation as defining a function (Conceptual Step 2). Viewing each side of the equation 

this way in Ladder Problem 1 (an implicit differentiation problem) requires a significant 

conceptualization (Conceptual Step 1) that Ladder Problem 2 (a related rates problem) 

does not. Yet, when viewed as symbol manipulation exercises, Ladder Problems 1 and 2 

are nearly indistinguishable, which could explain why some educators appear to conflate 

related rates problems with implicit differentiation problems. Importantly, the conceptual 

analyses described above present implicit differentiation (and related rates) problems in a 

manner that makes the role of functions more transparent and foregrounds the reasons for 

the legitimacy of the procedure.  

4.2 Potential Student Struggles: Insight from Previous Studies 

Viewing an equation as implicitly defining a function (Conceptual Step 1) might 

be problematic for students. Notice that defining f takes the form of ‘f(x) is the y such 

that the proposition P(x,y) is true.’ Conceiving of a function definition that involves 
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outputs according to whether or not a proposition is true requires a process conception of 

function, which many students have not yet developed (Breidenbach, Dubinsky, Hawks, 

& Nichols, 1992).  

As discussed above, a key aspect of understanding the legitimacy of 

differentiating an equation is conceptualizing that equation as expressing function 

equality (Conceptual Steps 2 and 3). Doing so requires not thinking of the equation as 

merely expressing numerical equality. For example, thinking of x2+y2=9 as referring to 

fixed specific values of x and y is antithetical to thinking of it as a statement of function 

equality. Knowing when an equation does or does not express only numerical equality 

seems to be difficult for students (White & Mitchelmore, 1996; Engelke, 2004). Engelke 

(2004) argues that a major student impediment in solving related rates problems involves 

difficulty in viewing equations and problem situations covariationally (in the sense of 

Confrey & Smith, 1995). Engelke found that students tended to label their diagrams with 

constants when they should have been using variables. These observations suggest that 

students struggle with Conceptual Steps 2 and 3 – if students are viewing x and y as 

constants, then they are not viewing x2+y2=9 as representing a statement about function 

equality. However, while viewing equations covariationally might be necessary for 

understanding the legitimacy of differentiating equations, it is not sufficient. As we will 

illustrate with John’s clinical interview, a student might think of an equation as 

expressing a relationship between varying quantities while not considering the role of 

functions. Students cannot think of function equality if they are not even thinking of 

functions, impeding Conceptual Step 3.  
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Even if a student views functions as being involved (Conceptual Step 2), they still 

might struggle with the notion of function equality (Conceptual Step 3). Mirin (2018) 

suggests that a strong understanding of function equality may be absent in a number of 

calculus students. Specifically, students struggle with inferring that sameness of graph 

(pointwise equality) implies sameness of function. Thankfully, students need not have a 

fully developed sense of function equality in order to achieve Conceptual Step 4; they 

need only reason that because the function on the left side and the function on the right 

side agree on all inputs, their respective derivatives agree on all inputs (that m(x)=r(x) for 

all x implies m’(x)=r’(x) for all x). However, Mirin (2018) reports that this inference 

might be especially problematic for students. When presented with a piecewise-defined 

version of the function defined by y=x3, only 32% of the first-semester calculus students 

who assessed it as sharing a graph with the function y=x3 believed that their derivatives 

agreed at a particular point. So, not only do some students struggle to infer function 

equality, but some students did not use equal graphs on an interval to infer equal 

derivatives at a point on that interval. Hence, even if students were to consider equations 

that they differentiate as statements of function equality, it is not clear that they would 

infer that the derivatives of those functions are also equal. Consequently, they would not 

understand why taking the derivative of both sides of an equation is ever a valid 

procedure (Conceptual Step 4).   

The literature discussed above provided insights into how students might 

understand the Conceptual Steps. Specifically, we used our conceptual analysis as a 

framework for investigating the literature to delineate where students might struggle with 

the necessary conceptualizations for understanding the legitimacy of implicit 
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differentiation. Although the existing literature provides guidance regarding where 

students might struggle, it does not directly address student understanding of the 

legitimacy of differentiating equations. Our conceptual analysis is itself novel and 

provides a lens for incorporating information from previous studies, and as we will see in 

the next section, it will also provide a lens for making sense of how students understand 

(the legitimacy of) implicit differentiation.   

4.3 A Clinical Interview  

Equipped with our conceptual analysis, we return to John’s interview from the 

opening vignette. At the time of the interview, John was enrolled in second-semester 

introductory calculus at Anonymous State University (ASU). He had, the semester prior, 

taken first-semester introductory calculus. John was a successful calculus student in that 

he earned a ‘B’ in his first-semester calculus course. John had learned about derivatives 

as functions and being of functions (we reviewed videos of his lectures). In the first-

semester calculus course, John had learned to take the derivative of both sides of an 

equation in solving ‘implicit differentiation problems’ and ‘related rates problems’ in a 

similar procedural way as illustrated in Computations A and C, without an explanation 

for why this procedure works.  

4.3.1 Interview Protocol  

The interview was an hour-long semi-structured clinical interview aimed at 

discovering and identifying the student’s mental structures (Ginsburg, 1981). Throughout 

the interview, John was asked to think about ideas regarding implicit differentiation and 

function equality that he had perhaps not reflected on before. John might have never 

considered these matters and might therefore have improvised explanations.  Four 
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prompts guided the interview, as shown in Figure 4.1 below. Only the most pertinent 

highlights of the interview are reported here.   

   

Figure 4.1. Four Prompts that Guide the Student Interview. 

4.3.1.1 Prompt 1. In response to Prompt 1, John expressed that he did not 

remember exactly what the procedure of implicit differentiation was, but that it was 

something that must be done when there is no function (due to failure of the vertical line 

test). He did not have an idea of what the implicit referred to in implicit differentiation, 

suggesting a difficulty with Conceptual Step 1.   

4.3.1.2 Prompt 2. John did not have an idea of how to approach Prompt 2, so the 

interviewer reminded him that x2+y2=1, y>0 defines the top half of a circle and that a 

particular procedure was done in his first-semester calculus class: replacing y with f(x) 

before differentiating the equation. The interviewer then asked him to elaborate on what 

x2+(f(x))2=1 means. He explained that 1 is “the radius”, and having f(x) (in place of y) 

“makes the computation easier”. He was then asked explicitly what it means for the right-

hand side of x2+(f(x))2=1 to equal the left hand side, and he responded “It’s a circle. I just 

see a circle.” When prompted to explain what the circle has to do with the equation, he 

graphed two parabolas on the same axes: a sideways parabola (representing y2) and an 
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upright parabola (representing x2) and asked “how is that a circle?”. In this situation, it 

seems that John was not thinking of y (or f(x)) as a function of x.  Instead, he seemed to 

be thinking of y2 as denoting the parabola associated with the equation x=y2. This 

association indicates that he was engaging in what Moore and Thompson (2015) call 

‘shape thinking’ (associating shapes with symbols), rather than understanding the 

equation as a statement of function equality (Conceptual Step 2).   

After reasoning with a graph was unhelpful to John, he began considering specific 

values of x and y, observing that “as they change together, in this equation here, they 

have to change together in such a way that it always equals 1.” It seems that here, John 

began thinking covariationally, but it was still not clear how John’s approach related to 

his understanding of the legitimacy of the differentiation procedure.  

As discussed in the opening vignette, John justified the procedure of implicit 

differentiation by drawing an analogy to algebra. He subsequently related the procedure 

of taking d/dx to inferring equal rates of change: “if you take the rate of change of this 

[left side], it is the rate of change of this [right side]. They’re equal to each other, so the 

change in one is gonna be the change in the other.” Since John believed the inference of 

equal rate of change came from something being equal, to get at what that something 

was, the interviewer asked him what happens if he differentiates each side of x=1. As 

discussed in the vignette, John noticed that it results in 0=1, which he said did not make 

sense. It appears that John was struggling with Conceptual Steps 2, 3, and 4; he was not 

viewing the equation as an equation of functions (Conceptual Step 2 and 3) and, despite 

being explicitly prompted, did not justify use of the differential operator (Conceptual Step 

4).  
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4.3.1.3 Prompt 3. Prompt 3 is a related rates problem, like Ladder Problem 2. In 

this prompt, function notation is provided explicitly in order to encourage the student to 

talk about functions, and an animation of the problem situation is provided in order to 

give the student a context to refer to (Engelke (2004) suggests that having a dynamic 

image of the problem situation is helpful for helping students reason about related rates 

problems). John was reminded that he could take the derivative of both sides of the 

equation, and he did so. He explained that the ladder’s distance from the wall, g(t), and 

the ladder’s distance from the floor, h(t), “change together”. When pushed, he did not say 

why taking the derivative of both sides is a valid procedure. Instead, John continued to 

express an understanding of the two distances as changing together with time and did not 

mention each side of the equation as representing a function:   

“We take the derivative of both sides because [pause] you need to have the two 

rates change together, in order for this scenario to work. Because if they don’t 

with respect to each other, then uh [pause] it just doesn’t hold true. So we do it on 

both sides in order to have the scenario change together and everything stay true 

to itself [pause] maybe.”   

Even when asked what exactly is being differentiated on the left hand side, John 

talked about only h(t) as a function and did not seem to consider the entire left hand side 

as representing a function. This suggests that John was struggling with Conceptual Step 

2. The only further justification he gave for the legitimacy of differentiating both sides 

was covered in the opening vignette: “because math teacher says so”.   

4.3.1.4. Prompt 4. Since John was not using the language of functions on his 

own, the interviewer decided to move to Prompt 4 in order to see if he would relate taking 
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the derivative of each side of an equation to an inference from function equality. John 

almost immediately provided what he viewed as a counterexample to the assertion that if 

two functions are equal for all inputs, then their derivatives are also equal for all inputs. 

By misapplying the quotient rule, he argued that f(x)=x and g(x)=2x/2 are equal for all 

values of x but have different derivatives, which is the antithesis of Conceptual Step 4. 

John continued his explanation that, if he were to simplify g(x) prior to differentiating it, 

he would end up with the same derivative as that of f(x). However, he noted that 

simplification before finding derivatives is not permitted in his calculus class. John’s 

response highlights that he had a fundamental misunderstanding of how the derivatives of 

equal functions relate, a key aspect in understanding the legitimacy of applying the 

differentiation operator. This shows us that, for John, Conceptual Step 4 is problematic. 

Even if he had viewed equations he was differentiating as statements of function equality, 

he still would have the obstacle regarding understanding the differentiation inference. In 

other words, John not only struggled to understand why it was acceptable to differentiate 

equations of functions, but he also misunderstood that it was acceptable to differentiate 

such equations.   

4.3.2 Interview Results: Discussion  

The fact that John reasoned covariationally, yet still struggled with Conceptual 

Steps 1- 4, indicates that understanding the legitimacy of differentiating equations (and 

hence implicit differentiation) is a significant challenge for John. Specifically, it provides 

an existence proof that there is more to understanding implicit differentiation than correct 

mathematization, covariational reasoning, and algorithm implementation. The analysis of 
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John’s work also serves to demonstrate the utility of our Conceptual Steps framework for 

highlighting which components of John’s knowledge could benefit from reinforcement. 

4.4 Discussion  

Being aware of the difficulties students might encounter in developing the 

conceptualizations described in the conceptual analysis (the Conceptual Steps) can be 

useful to calculus instructors when working with their students. We wish to emphasize 

that the conceptual analysis was helpful in delineating which conceptualizations impeded 

John when formulating his explanations. Importantly, our work reformulates the topic of 

implicit differentiation in a way that coheres with typical calculus curriculum. 

Developing the topic in this way can serve to enrich the connections students make 

between implicit differentiation and the differentiation that precedes it. Two natural 

questions emerge from this work. First, how might the conceptual analysis presented here 

inform the creation of implicit differentiation and related rates units? Adequately 

addressing this question involves both the development of such units and studying their 

implementation. Second, what can we discover from analogous work in alternative 

instructional paradigms such as infinitesimal calculus? The conceptual analysis used in 

this study was predicated on derivatives being of functions, which is the dominant 

calculus instructional paradigm.  
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IS EQUALITY REALLY SYMMETRIC? 

In the general literature review earlier, I discussed at length the body of 

mathematics education research that addresses mostly elementary school students’ 

understanding of =10. One thing I addressed is the matter of symmetry; although = is a 

symmetric relation, it seems that many children do not view it as such. This is most 

evident with Rule Violation (i) (Table 1 of Mirin, 2020a), in which students reject 

equations of the form 5=2+3 and accept equations of the form 2+3=5. It seems obvious 

that most mathematicians would not take exactly this viewpoint. In fact, I would suspect 

that any mathematician would not hesitate to say that a=b 11 and b=a are truth-

functionally equivalent. However, do mathematicians actually use the equals sign in a 

way that is symmetric? Do they feel that a=b and b=a truly mean the same thing? The 

fact that experts tend to interpret mathematical texts differently from novices (Veel, 

1999) suggests that exploring the meaning of the equals sign amongst experts is a 

worthwhile endeavor.  

 Recall the earlier philosophical discussion about Frege and equality. Frege spent a 

long time trying to dissect the meaning (not just criterion of truth) of a=b. One thing 

Frege never appeared to address was the issue of symmetry. In both his early and later 

writings, Frege did not distinguish between the meanings of a=b and b=a. It seems 

reasonable to suspect that meaning is something more than just truth-functional value. 

Indeed, it was the meaning of “a=b” that Frege puzzled over, not the criterion for truth. 

 
10 There are several situations in which I am making use-vs-mention errors by omitting quotation marks. 
For example, there are several equations (e.g., “2+3=5”) that are being mentioned (I am not asserting that 
two plus three equals five) where, for the sake of readability, I often omit quotation marks. This is the same 
convention that Ernest (2008) follows and describes. 
11 This is not an exponent. I am using “a” and “b” as schematic variables in the sense of “a” and “b” to be 
stand-ins for any terms/nouns. 
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Furthermore, Weber and Alcock (2005) found that mathematicians attend to more than 

just truth functions, at least in the case of the material conditional.  

 Throughout this document, I have been using the word “meaning” without 

defining it. This has been somewhat intentional – thoroughly defining what “meaning” 

means is a longstanding philosophical issue that I do not intend to solve here (Gasparri & 

Marconi, 2019). Thompson (2013b) discusses the very paradoxical and recursive nature 

of discussing the meaning of the word “meaning”. Consistent with a constructivist 

perspective, this study takes the approach that the meaning of a word or symbol (in this 

case, =) is not something that is objectively “out there”. Instead, there are two 

considerations when addressing meaning: usage and understanding. The former (usage) 

can be thought of as external to an individual’s mind – words have meanings within a 

community of practice. The meaning of a word (or phrase) is tied to its usage. People 

give words meaning based on how they understand and communicate with words and 

what usages of words they accept or contest from others. This is consistent with the 

description Wittgenstein gives of word meaning in a community of practice 

(Wittgenstein, 1953/2009). Here, the relevant community of practice is the mathematics 

community. The latter (understanding) can be thought of as internal to an individual’s 

mind. I take the perspective that meaning is closely tied to understanding; how someone 

understands a word (or phrase) is essentially their meaning of a word. This approach is 

consistent with radical constructivism and is described in more detail in Thompson 

(2013b).  

Equipped with this operationalized characterization of meaning, I can now 

characterize in further detail what this study is about. It starts by addressing the question 
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(1) Do mathematicians use and understand the equals sign symmetrically?  

This topic is not worth studying in-depth if the answer to (1) is a straightforward “yes”. 

In this study, I show that the answer is “no”. Establishing the existence of this asymmetry 

paves the way to learn more about mathematicians’ asymmetrical usage of the equals 

sign. Accordingly, the main emphasis of this study is on the following question:  

(2) In what ways is the equals sign used asymmetrically? What rules and 

expectations govern the ordering of terms in equations? 

Research question (2) can be rephrased as: “what are the norms that govern the ordering 

of terms in equations?12”. It is worth elaborating why I hypothesized that the answer (1) is 

“no”. A quick informal search of textbooks shows that when f is defined as a 

homomorphism, the equation written is almost always f(a+b)=f(a)+f(b) rather than 

f(a)+f(b)=f(a+b). Rules for derivatives are almost always written from left-to-right as 

(g+f)’=g’+f’. Similarly, when long computations are presented, it seems that one tends to 

work left-to-right from known (or perhaps given) to unknown (or perhaps derived) results. 

My study (1) establishes the existence of ordering norms, as well as (2) provides 

evidence regarding what these ordering norms are. 

5.1 A Discussion of Literature 

As alluded to earlier, there is evidence that mathematicians do not attend only to 

truth-functional value. There are potentially other interests that govern human utterances. 

Van der Henst et al. (2002) argue that the Gricean maxim of truthfulness is not the only 

interest governing utterances. Instead, truthfulness and accuracy must be balanced with 

 
12 This particular study concerns the English-speaking mathematics community. It does not address issues 
of asymmetry regarding equations embedded in texts in other language, such as those that read right to left. 
While the issue of other languages is interesting, it is beyond the scope of this dissertation.  
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relevance (to the listener). The authors report on an empirical study that suggests that 

relevance motivates people to round when giving the time. It bears mentioning that 

Ernest (2008b) also identifies relevance as an important factor when communicating 

mathematics. We can see how relevance might influence the order in which an equation 

is written. For example, due to the fact that we read left to right, the distributive law 

written as x(y+z)=xy+xz might be more relevant to someone who is doing a mathematics 

problem that requires distribution than the same law written as xy+xz=x(y+z) would. 

This is because such a person might want to substitute the term x(y+z) with the term 

xy+xz. Similarly, the same law written as xy+xz=x(y+z) might be more relevant for a 

student whose task is to factor. Indeed, the results demonstrate that this was a concern for 

the participants. While at first this discussion of relevance could appear to conflict with 

Gricean pragmatics, the authors explain that “human communication involves the 

attribution of mental states by the interlocutors to one another” (p.465). This attribution is 

closely related to the ideas of constructivism discussed in the introductory chapter of this 

document; the utterer is essentially working with second-order models; the utterer 

considers second order models to anticipate the relevance of the claim to the listener. 

What this tells us is that a mathematician might consider the mental state of the listener or 

reader, so the mathematician’s beliefs about the reader might influence their decision to 

present an equation in a certain order. Indeed, the interview data show that this is the 

case.  

Attending to issues other than truthfulness helps us begin to answer question (2) 

above; if the equals sign is understood asymmetrically then why might someone use one 

ordering over another? Clearly the answer is not “one is truer than the other,” so there 
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must be other motivations at play. This is a big “if”, which is why Research Question (1) 

is listed separately. Now I move to the topic of linguistics in considering how and why 

order might affect the meaning of equations.  

When we read a sentence, we are constrained by our language, space, and time. 

That is -- some words have to come before other words. Ernest (2008b) explains “in any 

form of representation, there is always an ordering present and this structures the access 

and role of readers” (p.44).  Consider the various ways one could read “a=b”. One could 

read it as, for example, “a equals b”, “b equals a,” “a and b are equal”, or “b and a are 

equal” (note that something like this is the case for any equivalence relation, not just 

equality). While these four sentences are equivalent and perfectly acceptable ways of 

reading aloud “a=b”, they might have slightly different meanings or connotations. The 

first sentence, “a equals b”, seems to emphasize a over b – a is the subject of the 

sentence, and b is not. Similarly, “a and b are equal” also seems to emphasize a but 

perhaps less so; a and b are both included in the subject, but a comes first.  

Halliday’s Systemic Functional Linguistics (SFL) informs my perspective. 

(Schleppegrell, 2004, 2007; Veel, 1999). The notions of theme and rheme highlight the 

fact that in a sentence, some words come before others, and hence a reader experiences 

some words before others. For example, as discussed above, in the sentence “a=b”, the 

fact that “a” comes before “b” might give the impression of greater importance to “a”. 

The theme is whatever object comes first in a clause: “theme can be identified as the 

elements up to and including the first experiential element at the beginning of a clause” 

(Schleppegrell, 2004, p.68). The theme of a sentence starts at the first part of a clause and 
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ends after the first noun has been mentioned. For example, the theme is underlined in the 

following clauses: 

Actually, the number three is a factor of six.  

At the start of an expression is often a parenthesis.  

Six has a factor of three.  

Three is a factor of six. 

A is equal to B.  

The numbers A and B are equal 

A and B are equal.  

The quadratic equation was solved by the student.  

We now have terminology for illustrating a potential difference of meaning between “a 

and b are equal” and “b and a are equal” and the accompanying asymmetry in equation 

meaning.  

 Accompanying the idea of theme is that of rheme. The rheme of a clause is the 

portion that is not the theme (Schleppegrell, 2004). Halliday uses the notions of theme 

and rheme to discuss how information in text is structured; for example, the rheme of a 

clause often becomes the theme of the following clause. The idea that part of the rheme 

becomes the theme is part of what makes a text effective and coherent. This theme/rheme 

structure supports the hypothesis that mathematicians might use the equals sign 

asymmetrically in a text; if “b” is the rheme of a clause and the author is to next claim 

that b and a are equal, then “b=a” (or “b and a are equal”) rather than “a=b” fits the 

theme/rheme structure just described. This is because “b” starts as the rheme and 

becomes the theme.  Similarly, we can see the theme/rheme structure in running 
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equations such as “a=b=c”. If we interpret this to mean “a=b and b=c”, then we observe 

that “a=b=c” is a sentence with two clauses: “a=b” and “b=c”. In the first clause, “b” is 

part of the rheme, and in the sentence clause it is the theme.  

 The shift from theme to rheme often involves grammatical metaphor through 

nominalization (Schleppegrell, 2004). More generally, grammatical metaphor involves a 

shift in function of a word or idea. Veel (1999) assesses that mathematical text is, in 

particular, dense with grammatical metaphors. One function that grammatical metaphor 

serves is to turn processes into objects, which is called nominalization (Schleppegrell, 

2004). Consider, for example the role of the words “invented” and “invention” in the 

following: “The telephone was invented. The invention of telephone created many 

opportunities for enhanced communication” (Schleppegrell, 2004, p. 73). Observe that 

the term “invent” shifts from being a verb “invented” to a noun “the invention” while 

simultaneously shifting from theme to rheme.  Like the ideas of theme and rheme, 

grammatical metaphor serves to structure information in texts.  This process-object 

duality is familiar in mathematics education (Sfard, 1992). While normatively it would 

appear that on either side of the equals sign is a noun that represents an object, I leave 

open the possibility that one side could represent a process. For example, in Mirin, 

(2020a), I discuss evidence that in equations like 2+3=5, some students view the 2+3 as a 

process rather than as a number.  

I use the idea of nominalization to consider potential asymmetry. Consider, for 

example, an instance of the sum rule for derivatives: (f+g)’=f’+g’. It is possible that the 

instance of the prime symbol (derivative) on the left-hand side serves more as a verb than 

a noun. That is, the prime symbol might be understood as referring to the process of 
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differentiation - whereas, on the right-hand side, the prime symbol might refer to the 

derivative function – an object, rather than a process. Thus, the idea of grammatical 

metaphor (specifically, nominalization) could account for the order in which equations 

are written. Gray and Tall's (1994) description of procept captures some similar ideas as 

the construct of nominalization. A procept is the idea of thinking of something as both a 

process (which we associate with verbs) and as an object (which we associate with 

nouns). We might understand 2+3 as both a number (an object) as well as the addition 

process, and which understanding we are using in any moment might be context 

dependent. Thus, thinking of 2+3 as a process and then as an object is a psychological 

parallel to the notion of nominalization. For the case of derivatives, the idea of procept 

accounts for how one can understand one side of the equation as representing a 

differentiation process and the other as representing a derivative function. The literature 

(e.g. Behr et al., 1980; Falkner et al., 1999 -- this is discussed at length in the general 

literature review) seems to suggest that young students tend to view the left hand side of 

equations as representing processes (e.g., problems to be performed) and the right hand 

side as representing objects (answers or results of processes). As we see in the results of 

this study, this idea extends to some mathematicians as well.  

 From Halliday’s SFL is the construct of relational clause, namely a clause that 

expresses a relationship between two objects (Veel, 1999).  Mathematical texts are dense 

with such clauses (Veel, 1999). There are two types of relational clauses: attributive and 

identifying. An attributive relational clause involves an asymmetric relation, whereas an 

identifying clause is a statement about identity and typically involves some conjugation of 

“to be”.  Our main concern initially appears to be with identifying clauses: “In an 
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identifying clause, the process (often the verb to be) is the linguistic equivalent of the 

equals sign” (Veel, 1999, p. 196). However, part of what I am investigating is if experts 

truly do understand identifying relational clauses as symmetrical. Veel (1999) also 

includes a discussion of relational clauses (in the context of mathematical texts) as 

functioning to bridge something new to the students/readers with something they already 

know. Veel (1999) gives examples that involve the new information or term being 

introduced first, such as “The mean, or average, score is the sum of the scores divided by 

the number of scores (p.195)”. This example highlights a degree of potential asymmetry 

of equations, which are symbolic relational clauses; the verbiage preceding “is” (which 

can be thought of as the left side of the sentence) involves an unfamiliar or more 

technical term (“the mean, or average score”), whereas the subsequent language (right 

side of sentence) involves terms familiar to the readers (“the sum of the scores divided by 

the number of scores”). This idea echoes how Frege discusses the informativeness of 

statements of identity; the reader is being informed that two different representations, in 

this case one familiar and the other unfamiliar, are in fact referring to the same thing. The 

results of this study, discussed later, demonstrate that mathematicians understand 

equations in this way.  

 Mathematics tends to be multi-modal (Veel, 1999; Schleppegrell, 2007; Ernest, 

2008b). That is, the semiotics of mathematics involves various modes of presentation 

such as symbols, verbiage, and pictures. In other words, the written symbol “=”, the 

written word “equals”, and the spoken word “equals” can all be viewed as different 

modalities (Schleppegrell, 2007). In a mathematics class, a teacher frequently plays the 

role of mediator between symbolic and verbal forms (Schleppegrell, 2007). Schleppegrell 
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(2007) additionally makes the claim that a verbalized equation is more object-oriented 

than a written equation with the reasoning that a verbalized equation involves noun-dense 

phrases. While it is unclear what her grammatical analysis of written equations is that 

leads her to this conclusion, the role of translation from written to verbal is clearly 

important. As discussed earlier, there is more than one way that one might verbalize a=b, 

and some of these ways might not even use the word “equals”. Schleppegrell (2007) 

illustrates her point about verbalizations involving more object-oriented language by 

discussing the following equation: a2+(a+2)2=340. She translates it as “the sum of the 

squares of two consecutive positive even integers is 340” without justifying this 

translation (p.144). It is unclear why she chooses to, for example, refer to “two 

consecutive positive even integers” and neglect to mention that one of these integers is 

named “a”. Notice that in her translation, there are indeed noun-dense phrases (“the sum 

of the squares of two numbers”). It is unclear how one would do such an analysis of an 

equation in symbolic form. One way is to translate (excluding the parentheses) the 

symbols word by word “a squared plus a plus two squared equals 340”. This translation 

does not have such a complicated noun-dense phrase, and one might argue (relatedly) that 

it is less object-oriented by claiming that “plus” suggests an action (seeing as it is a verb) 

whereas “the sum” does not (seeing as it is a noun). As discussed earlier, the dual nature 

of viewing a symbol or idea as both an action and a process (a procept) is not foreign to 

mathematics education. Notice, additionally, that these two translations have different 

theme-rheme structures – the former has “the sum” as its theme, and the latter has “a” as 

its theme (and relatedly, the former appears to be about sums, whereas the latter is about 
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the number a). Indeed, as I discuss later, the results of this study suggest that this is an 

asymmetry perceived by mathematicians. 

 Another idea from SFL has to do with the frequency with which certain linguistic 

items occur.  Halliday (1985) states: “A speaker of a language has a fairly clear idea of 

the probabilities attached to stored items; he ‘knows’ (in other words it is a property of 

the system) how likely a particular word or group or phrase is to occur, both in the 

language as a whole and in any given register of the language” (p. xxii). To take a 

nonmathematical example, consider the norms for ordering of adjectives in the verbal 

register of English. The term “nice new house” sounds more natural and likely occurs 

more frequently than “new nice house” (Murphy, 2012). An English speaker has a 

general idea that “nice new house” occurs more frequently than “new nice house” but 

might not know why. As discussed in my introductory section to this study, certain 

equations seem to appear to be ordered consistently throughout textbooks. Observe that 

Halliday refers to “any given register” – in this case, we are concerned with the symbolic 

register. What the quote of Halliday tells us is that others might also perceive such 

consistency. Viewing a=b and b=a as different linguistic items in the symbolic register, a 

speaker might have a sense of which occurs more frequently and hence have a sense of 

what ordering norms or traditions exist. It is reasonable to believe that a participant has 

some sense of which orderings are typical and thus has a sense of when ordering norms 

are breached.   

5.2 Methodology: A Breaching Experiment 

I return to the research questions guiding this study. As discussed earlier and in 

Mirin (2020a), there is a body of literature establishing that students tend to view equality 



 

125 
 

as asymmetrical. Since students might understand equations asymmetrically, this study’s 

research questions follow naturally: do experts understand the equals sign 

asymmetrically, and, if, so, what are the norms that govern this asymmetry? 

One aspect of the studies discussed earlier stands out as especially relevant to this 

study; Behr et. al (1980) describe six children who read aloud a sentence of the form 

5=2+3 as “two plus three equals five” (differently than how it was written symbolically). 

One student asked the interviewer “do you read backwards?” Translating between the 

symbolic and the verbal modalities suggests that these children viewed 5=2+3 as a rule 

violation and assumed that it must have been an error. By breaking the “rule” that the 

“answer” should be to the right of the problem, the researchers gained data to suggest that 

this was indeed a rule for these children. 

The technique of breaking rules in order to confirm their existence is known as a 

breaching experiment (Rafalovich, 2006). A breaching experiment is a technique in 

sociology research that involves breaking a purported social rule (without the subjects 

knowing that this is the intention of the researcher) and observing the subjects’ reactions. 

The idea is that the subjects respond in such a way that reveals that they felt that there 

was a rule broken. Some mathematics educators use this research technique to confirm 

and explore the social norms governing classroom mathematics activity (see, for 

example, Chazan et al., 2012; Weiss et al., 2009). In this study, I use a breaching 

experiment as one technique within the context of individual task-based interviews 

(discussed further in Subjects and Methods) 

As discussed above, breaching experiments are socially situated. Ernest (2008a) 

explains how mathematical texts (and hence equations) take place within a social context: 
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“mathematical signs or texts always have a human or social context” (p.5). This 

perspective is consistent with Halliday’s SFL; one of Halliday’s meta-functions13 of text 

is the interpersonal, which encompasses the ways that interpersonal communication is 

reflected in the language of a text (Halliday, 1985). When someone is reading a text, a 

social interaction is taking place – one between the author and the reader. Additionally, in 

an interview, there is a social relationship between the interviewer and the interviewee; if 

I have an interviewee read a written equation that is “wrong” somehow, then there are 

potentially at least two social rules being breached: that the interviewer presents the 

interviewee with mathematics that conforms to the norms of mathematics as a whole, and 

that the text itself conforms to such a norm. 

5.3 Subjects and Methods 

 All participants currently teach or have taught mathematics at a university. Nine 

participants were enrolled (Jacob, Larry, Kevin, Warren, Ben, Edgar, Patrick, Ming, 

Xena), all of whom have graduate degrees in mathematics and experience teaching 

mathematics at a university. Five (Jacob, Kevin, Patrick, Edgar, and Ben) are tenured 

mathematics professors, two of whom (Patrick and Ben) perform mathematics education 

research. Five (Ming, Jacob, Kevin, Patrick, and Edgar) have doctoral degrees in 

mathematics, and two (Warren and Ben) have doctoral degrees in mathematics education. 

Warren is a recent mathematics education Ph.D. who teaches mathematics at a 

community college, and Larry is a current mathematics Ph.D. student who works as a 

teaching assistant at a university. Xena is a mathematics instructor at a university. Edgar  

  
 

13 Halliday identifies three metafunctions of text: ideational, interpersonal, and textual. The constructs of 
“theme” and “rheme”, discussed earlier, are part of the textual metafunctions. 
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is a recent mathematics Ph.D. who works in the tech industry and has formerly worked as  
 
a teaching assistant at a university and a tutor of graduate-level mathematics courses. 

Pseudonyms reflect the participants’ perceived gender; all participants present as 

cisgender men, with the exception of Xena, who is a cisgender woman.  

Each participant took part in a 60-95-minute-long individual semi-structured task-

based clinical interview (in the sense of Clement, 2000). Following the interviews were 

an adaptation of member-checking interviews (Creswell, 2012), which I call “member 

checking emails”.  I wrote a narrative summary (details provided in the “Data Analysis 

Methods” section) of each individual participant. I then contacted them to ask if they 

were interested in reading their summary. If they answered “yes”, I then emailed them the 

summary and asked if it conformed with their understanding of themselves. Four 

interviewees – Kevin, Patrick, Edgar, and Ben – participated in member-checking and 

confirmed that my narrative summaries were consistent with their understanding of 

themselves.   

5.3.1 Tasks and Data Collection 

Recall that this study seeks to 1) document the existence of norms for ordering 

and 2) learn about the nature of the norms by eliciting explanations for why one ordering 

is preferable. I now explain the interviews, associated tasks, and how they relate to the 

research questions. I discuss only a subset of tasks here – the remaining tasks are in the 

Appendix. The tasks were created based on hypotheses and intuition about the nature of 

these norms, the efficacy of each task in breaching a norm was not itself part of the study 

design. As such, no single task was essential for answering the research questions. Thus, 
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not every task was done with every participant (see Tables 5.1 and 5.2). My goal was 

about establishing that there are norms for term ordering in equations and to explain these 

norms; my goal was not to count norms or provide a behaviorist experiment. Therefore, I 

selected tasks to provide opportunities to reveal and describe such norms. I chose tasks 

based on what came naturally in the conversation within the interview, the mathematical 

background of the interviewee, and the fruitfulness of the task in prior interviews. For 

example, while SetTheory did produce some interesting data (discussed in “Results” 

section), administering the task took much longer than expected; this is because it 

introduced new notation, including notation (the big-U symbol) that I did not realize 

would be unfamiliar to the participants. In some situations, the interview had simply gone 

on too long, so not all tasks could be completed. Sometimes (e.g., with Edgar) tasks that 

were intended as breaching tasks ended instead being given later in the interview within 

the context of explicit discussions regarding ordering. In some cases, like with Edgar in 

Induction, the participant did not recognize a breach, but I still wanted to learn more 

about how they understood ordering. In this case, I informed them that other participants 

found there to be a breach and asked them their thoughts.   

It bears mentioning that the interviewees were not told that this study is about 

equations or symmetry. The interviewees were instead told that the study is about “how 

experts read, write, and interpret mathematics”. Withholding this information is 

necessary for performing a breaching experiment.  

 The interview can be roughly partitioned into three sections. The first involves 

open-ended questions; these tasks all have a label starting with “O”. A subset of such 

tasks are in Figure 5.1, and all the tasks are in Appendix B.  Every open-ended task was 
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completed with every participant. These are tasks that prompt the interviewee to write an 

equation. The purpose of this exercise was to establish that certain norms or habits about 

symmetry with respect to the equals sign do exist amongst the mathematical community. 

This means that experts (mathematicians) hold certain expectations about the order of 

terms in equations. I hypothesized that, for example, all of the subjects would write the 

sum rule for derivatives with the derivative of the sum on the left side of the equals sign 

(indeed, this was the case, as I discuss in the Results section). The interviewee was asked 

to read the text out loud, carry out the task, and then explain their answer. Follow-up 

questions included prompts for elaboration, such as “could you explain your answer?”, 

“could you say more about that?”, “how would you explain to someone what this 

equation says in other words?” and “what does this equation mean?”. A selection of 

open-ended tasks is below. Working with OEuler was somewhat more involved, since 

not all participants were aware of which Euler’s formula I was referring to. In this 

situation, I asked the participant to guess. If they requested more guidance, then I 

informed them that it was a formula with “sines, cosines, and an exponential”.  
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Figure 5.1. Selection of Open-ended Tasks. 

Since textbooks appear to traditionally write the sum rule for derivatives with the 

derivative of the sum on the left, Euler’s formula with the exponential term on the left, 

the definition of an identity element having the operation on the left, and differential 

equations with the derivative on the left, I wanted to see if these norms extend to my 

participants.  

The second portion of the interview is the portion in which the breaching 

experiment takes place. A sample of the tasks involved is shown in Figure 5.2, and Table 

5.1 shows which tasks were done with which participants. All tasks are included in 

Appedix C. An asterisk indicates that for the particular participant, the task was not done 

as a breaching task. Instead, the task was visited later in the interview and served as a 

comparison task in which order and asymmetry were explicitly inquired about.  
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Table 5.1. Breaching Tasks Completed by Each Participant. 

 DifferenceQuotient Homomorphism Exponents Induction 

Jacob X X X X 

Larry X X X X 

Warren X X  X 

Edgar X X  X 

Patrick X X  X 

Xena X X  X 

Kevin X X X  

Ben X X  X 

Ming X X  X 

 

 SetTheory Product

Rule 

Idempotent Proof Distributive 

Jacob X X X X X 

Larry  X X X X 

Warren  X X* X X 

Edgar X X X X X 

Patrick  X X X X* 

Xena  X X X X 

Kevin X X X   

Ben  X X X X 

Ming X X X X X 
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These tasks involve having the interviewee read mathematics text that includes an 

equation. That equation is reversed from the way in which it typically appears in 

textbooks, with the intention of violating an order norm. I chose equations that seemed 

wrong or atypical when presented in the reversed ordering. I then discussed and 

confirmed these task designs with another mathematician. While I had not predicted 

every ordering norm that these tasks violated, I began with some hypotheses about what 

ordering norms might be breached while creating these tasks. Thus, hypotheses about 

order norms together with intuition guided me in task design. The hypotheses that guided 

the task design are as follows: ordering should abide by tradition, equations should go 

left to right from complex to simple, calculations go left-to-right-top-to-bottom, when 

proving x=y one should start with x and end with y, some equations are rules for 

calculation. As discussed in “Results”, all of these norms with the exception of “when 

proving x=y one should start with x and end with y” were evoked within the interviews.  

 For example, the task Idempotent (Figure 5.2) has p=p⋆p, whereas p⋆p=p appears 

to be the equation texts typically use. This violates the potential norm that an operation 

should be on the left side, or that a simplified expression be on the right. In 

Homomorphism, the equation is written with ϕ(x⋆y) on the right, whereas it usually 

appears on the left. While tradition was the only norm I was attempting to violate with 

this particular task, the results reveal that there were other norms violated. Similarly, 

while Distributive was designed only with the idea of violating tradition in mind, 

implementing the task revealed norms regarding substitution. The task Exponents was 

designed with the simplification heuristic in mind; there’s a sense in which one might 
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consider ax+y to be more simplified than axay, but this particular norm was not evoked in 

this task.  

Other tasks were designed to reveal the norm that calculations go left-to-right-top-

to-bottom: that is, that on the left or beginning of a running equation is something that is 

given or presented to the problem-solver and on the right is something derived or 

calculated. For example, DifferenceQuotient includes a string of equations that starts with 

2x+h and ends with (f(x+h)-f(x))/(x+h)-x. Similarly, Induction includes a string of 

equations that starts with (n3-n)+3n(n+1) and ends with (n+1)3-(n+1). This string of 

equalities was obtained by taking and reversing the a string of equalities that appears in a 

textbook (Stankova et al., 2008). As the results discuss, these particular tasks revealed 

several norms and not just those surrounding the idea of calculation. The task SetTheory 

was designed to violate two different norms. It was taken from a set theory textbook 

(Enderton, 1977) that shows that the set ⋃ a+  is equal to the set a by starting with ⋃ a+ 

and working to a. My version of the tasks reverses the computation; it still purports to 

show the same equality but it does so by starting with a and ending with ⋃ a+. This was 

intended to violate the norm that when proving x=y, one should start with x and end with 

y, as well as the simplification heuristic; there’s a sense in which ⋃ a+ computes or 

simplifies to a. Similarly, the task ProductRule was designed to violate not only the 

tradition that the product of the sum typically occurs on the left in its presentation, but to 

also evoke the asymmetrical meaning that the equation is a rule for calculation.  

One breaching task, Proofs, is somewhat different from the others. For the others, 

I simply reversed equations, so that a=b was changed to b=a and a=b=c=d=e was 

changed to e=d=c=b=a. With Proofs, I change a=b=c=d=e (the form of the proof 
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presented in a textbook, Fraleigh, 2003) to d=b=e=a=c. In other words, the ordering of 

terms was not simply reversed; it was jumbled. My goal with this task was to verify the 

following related norms; that mathematicians do not read a=b=c=d=e as “a, b, c, d and e 

are all equal to each other” but instead read it as a conjunction of equations, as well as the 

norm that mathematicians are concerned with not only truth but also deducibility and 

inference when reading a proof. In other words, my goal was to confirm that 

mathematicians read it as “a=b and b=c and c=d and d=e, hence a=e”. My purpose for 

introducing such a long string of equations is to explore the idea that the reader 

experiences the left side of the equation first – the separation between the left (start) and 

right (end) of the string of equalities is larger with several terms. Furthermore, results of 

this task help highlight the expected finding that mathematicians care about more than 

just truthfulness. 

  The purpose of these tasks is to see if the interviewee reads the equations from 

right to left (like the child did in Behr et al., 1980) or remarks that the equations are 

reversed in some way. It also provides an opportunity for the interviewees to discuss their 

thoughts about the way the equations are ordered. 

Like the first portion, the interviewee is prompted to read the text aloud and is 

asked follow-up questions for elaboration. They are additionally sometimes asked their 

opinion on the equation, such as “what do you think of this equation?” and “would you 

write it differently?”. These latter questions are included for the interviewees who do not 

mention breaches on their own. It seems reasonable to believe that some mathematicians 

might notice a breach but just not mention it – they might instead only focus on 

mathematical correctness. Just because you would have done it differently or find it 
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unconventional doesn’t mean you would necessarily remark on that observation. Indeed, 

I found evidence of this with at least one participant.   

In the cases in which the participant mentioned a breach (in particular, in the tasks 

DifferenceQuotient and Induction), I made attempts to repair the breach and then inquired 

further. For example, in DifferenceQuotient, some participants explained that they 

imagined the context in which students are learning how to compute difference quotients, 

and therefore the 2x+h should not be mentioned right away (discussed in more detail in 

“Results”). In these cases, I subsequently modified the task to be in the context in which 

the student has already worked with derivatives and is proving that the derivative of 

f(x)=x2 is f’(x)=2x. Similarly, in Induction, several participants remarked that the term 

3n(n+1) appears to “come out of nowhere”. To repair this breach, I changed the task to 

move the sentence “Since either n or n+1 is even, 3n(n+1) is divisible by 6” to appear 

before the string of equations; this way, the 3n(n+1) in the string of equations no longer 

“came out of nowhere”.  In other words, this investigated whether the breach could be 

amended without reversing the order of the equations, or whether the breach was 

fundamentally tied to the equation order. This provided the opportunity to learn more 

about what, exactly, was being breached, which therefore revealed more information 

about reasons for asymmetry.  
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Figure 5.2. Selection of Breaching Tasks. 

 The third portion of the interview involves explicit discussions about ordering of 

equations. This involves tasks (which I call “Comparison Tasks”) in which the 

interviewee is asked to explicitly compare equations (Figure 5.3). All these tasks revisit 

equations that are included as either breaching or open-ended tasks. Table 5.2 shows 

which tasks were done with which participants. These tasks are in Appendix D.  

Table 5.2 Comparison Tasks Completed by Each Participant. 

 CIdentity CProofs CEuler CSumRule CMVT 

Jacob X X X X X 

Larry X X X  X 

Warren X X X X X 

Edgar  X  X X 

Patrick X X  X  
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Xena X X  X X 

Kevin X  X   

Ben X X X X X 

Ming X X   X 

 

Some of the tasks are revisited from earlier in the interview, and the interviewee 

is prompted to compare different ways of writing the same equation (Figure 5.3). For 

example, assuming the interviewee answered with (f+g)’=f’ +g’ to OSumRule (Figure 

5.1), the interviewee is presented with an equation written the other way (CSumRule) and 

asked to compare it to theirs.  

 Probing interview questions include “I noticed that earlier you wrote the equation 

differently”, “I have found that textbooks usually present the equation this way. Do you 

think there is a reason for that?”, “Is there a difference in meaning between these 

equations?”, “Which way do you prefer?”, “Is there an advantage to writing the equation 

one way over the other?”, and “Can you give an example where writing it this way would 

be preferable and explain why?”.   
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Figure 5.3. A Comparison Task Used in the Third Portion of the Interview. 

5.3.2 Data Analysis Methods 

There is not one standard method that I can cite to capture the entirety of my data 

analysis. For this reason, I discuss some of the details of how I handled my data and the 

variety of techniques I used to reach my conclusions. 

Some degree of data analysis took place during the interviews themselves. I 

adapted to participants’ responses instead of having a fully deterministic interview. This 

involved interpreting my participants’ meanings to make in-the-moment decisions. Like 

with my other studies in this dissertation, this is consistent with constructivist 

epistemology (elaborated upon more in the general introduction); as a researcher, I am 

forming second-order models of my participants’ meanings (Steffe & Thompson, 2000). 

This, of course, makes sense; I had to interpret the interviewee’s responses and then  
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respond accordingly. For example, when a participant explained that DifferenceQuotient 

was “backwards”, I had to interpret the participant as pointing out a breach and then take 

that opportunity to inquire further.  

After each interview, I wrote up brief notes of my overall impression of the 

participant. These notes were done based on memory as well as any field notes I had 

jotted down. Specifically, I took notes of any situation in which the participants answered 

the open-ended tasks in atypical ways, any situation in which they pointed out a breach, 

and a list of considerations regarding asymmetry (e.g., “this participant seemed to focus 

on the idea that terms shouldn’t come out of nowhere”).  

Once all the interviews were completed, I took notes on each individual interview. 

This involved re-watching the interview recording and transcribing the portions that 

pertained to ordering or asymmetry. I transcribed the situations in which participants 

explained a breach, as well as their responses in parts three and four of the interviews 

(comparison tasks and explicit questions). In the second portion of the interview, I took 

note of situations in which the participant mentioned the right-hand side of the equation 

first in their explanation (e.g., explaining Idempotent by saying “p multiplied by itself 

results in p”). Notice that mentioning of a breach and reading things from right to left 

parallels the anecdote in Behr et al. (1980) in which a child reads 5=2+3 as “two plus 

three equals five” and refers to it as “backwards”. Relatedly, I took note of language that 

appeared to entail asymmetry, such as “e times x becomes x” (emphasis added). In order 

to have the data necessary for cataloging and describing reasons for asymmetry, I 

transcribed any portion of the interview in which the participant explained why they 

wanted an equation to be written in a certain order.  
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Some portions I did not transcribe. For example, in the open-ended tasks, I only 

noted the equation given by each participant -- not their exact description of the meaning 

of the equation. I did not transcribe every description or explanation that participants 

gave of equations; often, they explained aspects that did not pertain to order (for example, 

explaining a derivative rule in terms of rate of change functions).  

These notes were organized by task, and each task was organized by participant. 

This is the point at which my coding began. I used a hybrid of constant comparison 

inquiry (Creswell, 2012) with a narrative approach (Creswell, 2012) from a constructivist 

perspective (Clement, 2000). I began with an initial list of codes to account for 

asymmetry, that I created from hypothesizing about norms for asymmetry together with 

initial observations made when entering the data. I then applied these codes to the 

interview data and took note of any reason for asymmetry that was not captured by these 

codes. All the reasons that I had expected people to have for ordering did appear at some 

point, but reviewing the interview notes led to additional codes. I then expanded these 

codes to include the additional reasons for asymmetry that were not in the original list. At 

this point, the level of analysis was somewhat low-level. I was only coding the reasons 

that people gave me. This happened due to my own naïve understanding that coding was 

a straightforward process; I expected that there would be little interpretation involved and 

that I could simply write down the reasons for orderings given to me (e.g., “the 

operations should be on the left side”) and categorize them based on the words used. 

 This initial approach led to a rather incomplete interpretation of what was 

happening; if two different words were used to describe the same idea, then two different 

codes were created for the same idea. For example, Jacob used the words “mysterious” 
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and “complicated” synonymously to describe a mathematical idea that would be 

relatively new to his envisioned reader (for example, he mentioned that in MVTCompare, 

f’(c) is more “mysterious” because the amount of mathematics needed to know what it 

denotes is greater than the amount of mathematics needed to know what the difference 

quotient denotes). Similarly, sometimes the same word was used to describe different 

ideas. Unlike with Jacob, Larry used “mysterious” to mean “new to the conversation” or 

“whose purpose for being mentioned in this context is unclear”. Careful word 

interpretation was also paramount in understanding the use of the words “new” and 

“given”. Sometimes, “new” meant “new to the conversation”. For example, in 

DifferenceQuotient, the term 3n(n+1) is “new” in the sense that it has not occurred 

elsewhere in the proof or in the statement of the theorem – it is new to the reader. 

Contrast this with eiθ in CEuler; it is “new” in the sense that the reader might be less 

familiar with an imaginary exponent than with isin(θ)+cos(θ). Thus, while the claims “the 

new thing should be on the left in the equation” and “the new thing should be on the right 

in the equation” might appear to be contradictory, they are instead using different notions 

of the word “new”. Similarly, in some situations, participants used the phrase “given” to 

mean “posed to you” or “given to work with”; in the task Productrule, (fg)’ is “given” in 

this sense. On the other hand, some participants used the word “given” to mean “given 

information”. In the task Productrule, the given information might be information about 

the functions f, g, f’, and g’. Notice that these two interpretations of “given” are at odds 

with each other.  

The above examples illustrate why this was not just a straight-forward task of 

coding via categorizing words and why I refined my approach. I delved into the meanings 
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of each participant to understand how they were using words and the various contexts 

that they were envisioning. In order to interpret a participant’s description for a reason for 

ordering a certain way, the context of a task was important – was it a proof? Was it a 

theorem? How did the participant frame or understand the context of the mathematical 

activity? These issues are where the notion of constructivism and abduction come in 

(discussed in more detail in the general introduction to this dissertation). Simon (2019)’s 

critique of coding as purely categorization aligns with my need for greater interpretation 

than simple sorting of words given by participants: “categorization is generally an 

inductive process (sorting the data as observed), not the multilevel process needed to gain 

new insights and work toward abduction of new theoretical constructs” (p. 114). I am not 

merely categorizing data, but I am interpreting data in a way that contributes to the 

categorization. This is not a purely inductive process.  

 In order to interpret each participant’s motivations for asymmetry, I looked at 

each person’s responses individually. This provided me the opportunity to carefully 

consider each participant’s word meanings and focus on how each individual person was 

thinking. I analyzed each interview in a way that is consistent with the methods described 

in Simon (2019). This involved three layers of analysis. Although presented as separate 

levels, as Simon (2019) notes, there is an interaction; I first considered local portions of 

the interview transcript and noted reasons given for ordering. This was done on a line-by-

line or sentence-by-sentence basis, so, at this point, the analysis was not unlike the initial 

analysis I performed across tasks. This, as Simon (2019) puts it, stays “close to the data”. 

The second level involved more interpretation; as I read the data, I made hypotheses 

about how the individual participant was thinking about the given task or the asymmetry 
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being discussed. The third level involved making an overall assessment about how the 

individual understood the meanings of equations. In order to develop a robust 

interpretation, I moved back and forth between these levels; while the results of the first 

level informed the second and third levels, I still returned to the “lower” levels to check 

for consistency after doing the higher-level analysis. The product of the individual 

analysis was a narrative summary together with a list of themes capturing the various 

reasons for ordering. Below is the narrative I wrote for Larry:  

Like Jacob, Larry uses “starting” and “on the left” synonymously. He continues to 

talk about “showing what’s going on”, where he appears to be talking about 

clarity or transparency to the reader. Like Jacob, he believes that things should not 

come out of nowhere. This idea extends to the notion that we should “start with” 

the thing we are proving something about – this is what the prover themself does, 

so this should be reflected on the page to the reader (“showing what’s going on”).  

He uses transformational language throughout, wherein a=b means something like 

“we start with a, and we get b”, fitting the general notion of time mentioned in my 

first sentence of this paragraph. Like Jacob, he mentions tradition and verification 

of truth as important things. Unlike Jacob, he mentions something almost like 

theme-rheme structure: that if you end with something about b, it makes sense to 

start the next sentence with something about b – he links this to the notion of 

something being “given”. Where he diverges significantly from Jacob is his 

reasoning on the Identity. Recall that, for Jacob, the more “complicated” or 

“sophisticated” thing being on the left was why e⋆s should be on the left. For 

Larry, e⋆s should be on the left because the idea of operating and getting a result 
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is part of the meaning of left identity. However, he can see some utility for having 

it the other way: for example, in a proof where you end up writing ϕ(e ⋆ s)= ϕ(s).  

This response suggests that the way something is written as a law should reflect 

the order in which it is used in a proof or computation. For the distributive law, he 

says “we want to see how to distribute something”; some action is performed to 

get from a to b in a=b in the sense that we work with a to get b. In this sense, an 

equation is an instruction for a transformation. So far, throughout the interviews, 

we have a general theme that the right-hand side gives you information about the 

left-hand side, and you are interested in learning something about the left-hand 

side. This can be in the context of a proof (e.g., we are proving something about 

the left-hand side, as in how the proof in Induction is conventionally given), or it 

can be in the context of a calculation (the right-hand side tells us how to compute 

the left-hand side, as in OEuler). 

As these analyses took place, I organized and described the various themes. Thus, when I 

moved to analyze a new participant, I had ideas in mind from previous participants. For 

example, when analyzing Jacob’s interview, I began to see that the notion that the left-

hand side of the equation should be “the thing you want to know more about” is linked to 

the general maxim that “things shouldn’t come out of nowhere” (I discuss these links in 

more detail in my results section). 

5.4 Results 

I begin by answering research question (1): Do mathematicians use and 

understand the equals sign symmetrically? In doing so, I establish that there are indeed 

norms surrounding the usage of the equals sign that suggest asymmetry. This is 
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accomplished primarily with the first two portions of the interviews: the open-ended tasks 

and the breaching tasks. I focus first on establishing that there are norms for ordering 

(research question 1) and then later discuss specifically what these norms are (research 

question 2). 

5.4.1 Evidence of Asymmetry (Research Question 1) 

The results of the open-ended tasks suggest that there are norms for writing 

equations in certain orders. In all the tasks, participants gave relatively consistent 

answers. In OMice, all nine participants wrote the equation the same way, with the 

derivative on the left-hand side. In OEuler, eight participants wrote the exponential term 

on the left side, with the exception of Xena, who wrote the formula incorrectly as sin(iπ) 

= eiπ +1. In other words, all eight of the participants who wrote a correct answer put the 

exponential term on the left. It is notable that even Xena’s incorrect answer has the more 

concise or less expanded term on the left; as I discuss later, evidence supports the claim 

that it is a norm to put the shorter or less expanded term on the left. Similarly, all eight of 

the participants who wrote the correct equation for OMVT put f’(c) on the left. In 

OSumRule, all nine participants wrote their equation with the derivative of the sum on the 

left. There were very strong norms evoked by this task and the related task ProductRule, 

which I elaborate on later. In OIdentity, every participant wrote the identity element on 

the left. To summarize, participants ordered their equations consistently on the open-

ended tasks, the only exceptions being Larry on OMVT and Xena on OEuler. 

The results of the breaching tasks also confirmed that there are norms regarding 

asymmetry. However, this portion of the interview was not as straightforward as 

expected. With some participants, it was revealed later in the interview that in some 
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tasks, they perceived a breach but did not say anything. They explained that this is 

because they viewed the breach as either unproblematic or relatively unproblematic 

compared to a different breach.  

In Proof, all eight of the participants mentioned an order breach. This is 

unsurprising, given that the equation was not simply reversed but instead had terms in a 

jumbled order. In both Induction (eight people interviewed) and DifferenceQuotient (nine 

people interviewed), all participants except Edgar mentioned an order breach. However, I 

revisited both of these tasks toward the end of the interview with Edgar and explained to 

him that other participants found there to be an order breach. He explained that he did not 

“like” the presentation DifferenceQuotient but had just not bothered to mention it, and 

that he could understand why others would take issue with Induction. In Idempotent, all 

eight of the interviewees did not mention an order breach. Warren encountered the task 

only as a comparison task (not as a breaching task) in the context of an explicit discussion 

of ordering and explained that he did indeed have a preference for writing it the other 

way. In Homomorphism, only Kevin and Warren mentioned an order breach. In 

Exponents, two out of three (Jacob and Larry) mentioned an order breach. In Distributive, 

three (Warren, Larry, and Ben) out of the seven people who encountered it as a breaching 

task mentioned an order breach. All three took issue not with the equation itself, but with 

calling the law the “distributive” law rather than the “factoring” law; in other words, they 

found the name of the law to be incongruent with the way in which the law was written, 

suggesting an asymmetry (discussed further in 5.4.1). In ProductRule, six out of nine 

participants (everyone except Edgar, Ming, and Xena) mentioned an order breach. With 

Xena, I returned to the task at the very end of the interview and explained the design of 
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the task. At that point, she had already explained that she realized the true purpose of the 

interview. She explained that she “didn’t mention it [the order breach] then, but was so 

focused on the lack of variables”. She was focused on the fact that the equation used f’ to 

name a derivative rather than f’(x). While Ming and I did not return to the task, he 

appeared to be distracted by the same issue; he explained that many students might have 

difficulty with an equality of functions rather than of numbers. Edgar did not mention an 

order breach during this task, and we did not return to the task later in the interview.  

Table 5.3 below summarizes the above results of the breaching experiment. As I 

discuss later, a participant not seeing an order breach does not mean that the participant 

did not understand there to be differing meanings of an equation based on ordering. In 

some cases, both orderings were acceptable but had different meanings. See, for example, 

Kevin’s explanation in “The Topic Goes on the Left”. This especially occurred with 

Idempotent and Distributive; the ordering affected the meaning. I discuss this in more 

detail when answering research question (2). 

Table 5.3 Results of breaching experiment by task and participant. 

 DifferenceQuotient Homomorphism Exponents Induction 

Jacob Y N Y Y 

Larry Y N Y Y 

Warren Y Y  Y 

Edgar NY N  NY 

Patrick Y N  Y 

Xena Y N  Y 

Kevin Y Y NN  
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Ben Y N  Y 

Ming Y N  Y 

Total Y(8), NY(1) Y(2), N(7) Y(2), NN(1) Y(7), NY(1) 

 

 SetTheory Product

Rule 

Idempotent Proof Distributive 

Jacob N Y N Y N 

Larry  Y N Y Y 

Warren  Y *Y Y Y 

Edgar N N NN Y N 

Patrick  Y N Y NN 

Xena  NY N Y N 

Kevin N Y N   

Ben  Y N Y Y 

Ming N NY N Y N 

Total N(4) Y(6), 

N(1), 

NY(2) 

*Y(1),N(7), NN(1) Y(8) Y(3), N(4), 

NN(1) 

 

Note. Y means they encountered it as a breach task and mentioned an order breach. N 

means they encountered it as a breach task and did not mention an order breach. NN 

means they encountered it as a breach task and a comparison task and did not find there 

to be an order breach with either. NY means they encountered it as a breach task but 

didn’t find there to be an order breach, but encountered it again as a comparison task and  
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did find there to be an order breach. *Y means they did not encounter it as a breach task, 

did encounter it as comparison task, and found there to be an order breach as a 

comparison task (when asked explicitly about ordering).  

In breaching tasks, it was common for participants to explain the meaning of the 

equation from right to left. Notice that this parallels the story in Behr et al. (1980), in 

which young students read 2+3=5 as 5=2+3. For example, in Idempotent, seven of the 

eight participants explained the meaning of the equation by mentioning the right-hand 

side of the equation first. This is despite the fact that none of them mentioned an order 

breach. In Idempotent, participants had explanations that were close to “if you take this 

element and you apply it to itself, you obtain the original element” (Larry). In this case, 

the language was action-based and actually mirrors the students’ language in Behr et al. 

(1980) regarding performing an operation and obtaining a result (a discussion of 

operations-produces-results follows in a subsequent section). Mentioning the right side 

first occurred also in ProductRule, Homomorphism, and Exponents. In ProductRule, six 

of the nine people interviewed mentioned the right-hand side first in their explanation of 

the equation. This includes the three people, Xena, Ming, and Edgar, who did not 

mention an order breach. Similarly, in Homomorphism, out of nine participants 

interviewed, Larry and Peter mentioned the right-hand side first when explaining the 

equations but did not mention an order breach. For the first and third equations in 

Exponents (the equations that breach the supposed norm), Jacob explained from right to 

left but did not mention an order breach. I interpret the existence of these right-to-left 

explanations as responses to order breaches in a similar way that Behr et al. (1980) does; 

the fact that participants in some sense read “a=b” as “b=a” suggests that “b=a” better 
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reflects their understanding of what such an equation is trying to express and that “a=b” 

violates an order expectation. This interpretation is not inconsistent with the fact that 

several participants did not mention an order breach. As discussed previously, some 

participants later revealed that they noticed an order breach but had not bothered to say 

anything. Additionally, people might in some sense correct a breach without even 

noticing that there is a breach.  

5.4.2 Reasons for Asymmetry (Research Question 2) 

Now that I have established that there is asymmetry, I move to answering 

Research Question 2 in establishing what makes equations asymmetric. I characterize the 

various reasons for asymmetry given by participants. These are the resulting “codes” or 

“themes”. These codes are not intended to represent a strict partition of the reasons given; 

that is, there are some overlapping codes. This makes sense considering the close 

relationships between the various codes, elucidating a possible context-dependence of the 

grammatical preferences and influences of norms that induce an asymmetry in the 

equations.  

5.4.2.1 Texts Should be Coherent. Our first overarching theme is textual 

coherence. This code captures the idea that mathematical text, like any text, ought to be 

structured in a way that is coherent, cohesive, and organized. This is, perhaps, the most 

common reason for asymmetry throughout all the interviews. It occurred in multiple tasks 

with every participant. Within this textual coherence umbrella were various other 

common ideas or rules for ordering. These rules, although listed separately, are 

interrelated.  
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5.4.2.1.1 Ordering Should be Consistent and Match Expectation. The notions of 

consistency of order appeared in a few situations. Both consistently across contexts and 

consistency within a context were suggested as reasons for particular orderings. The 

former occurred when participants discussed the frequency with which a particular 

ordering occurs in other contexts as a reason for using that ordering. For example, some 

participants expressed that the way that an equation is written in a theorem should reflect 

the way that it appears most often in proofs or computations, and some participants cited 

“tradition” as a reason for certain orderings. Ben explained that he had no strong 

preference for ordering in Idempotent because he hasn’t “used it enough times to have a 

sense of the frequency with which each [ordering] occurs”.  

Consistency within a context was also given as a reason for particular orderings. 

For example, in CProofs, some participants explained that because the definition of left 

identity has the operations on the left, the proof should mirror this same structure. A 

similar norm appeared in Homomorphism; some participants explained that the “from” 

and “to” language (a homomorphism is a function “from” something “to” something) 

suggested that the equation should be ordered a certain way. Warren explained that the 

equation in Homomorphism should be reversed: 

For the simple fact that the homomorphism maps S to S’, it’s directional, we start 

with S and we want to get S’. And, also, the two algebraic structures are 

presented in that order, S then S’. And then when we write the equation we’re 

actually kind of, reading left to right anyway, we’re actually going backwards 

from the way everything is presented. 
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Some participants mentioned the idea of mirroring an implication structure; when 

proving P implies Q, the proof should start with P and end with Q. I had expected a 

similar response in SetTheory. That is, I had expected that the fact that the equation in the 

theorem was written one way as a=b, that starting with b and ending with a would be 

perceived as a breach. However, no participants mentioned this breach. This might be 

because only four participants were interviewed, and three of them expressed 

unfamiliarity with the field of set theory and the notation within the task. I hypothesize 

that they were too busy making sense of the symbols to perceive an order breach. 

Unfortunately, there were no other tasks to test this particular norm 

5.4.2.1.2 Theme-Rheme Structure Should Be Respected. The idea of theme and 

rheme from Systemic Functional Linguistics (SFL) occurred as an instance of textual 

coherence. Participants used this as a reason for ordering in the task CProofs; 

specifically, some participants explained that they preferred the fourth proof because it 

starts with s’, which is what the previous sentence ended with. In other words, the 

components of the rheme of one sentence (“…such that ϕ(s)=s’ ”) become the theme of 

the next sentence (“s’= ϕ(s)”). The notions of theme and rheme also help account for why 

participants tended to dislike the second proof and would rewrite it. The first four 

equations in this proof are of the form (stacked) “a=b, e=d, c=b, d=c”, and participants 

tended to take objection with this presentation and wanted to rewrite as a string of 

equalities with a first, b second, c third, d fourth, and e last. This came in various forms; 

some participants preferred it written as “a=b=c=d=e” horizontally as one string. Others 

preferred it vertically stacked, either as “a=b [new line] =c [new line] =d [new line] =e 

[new line]” or “a=b [new line] b=c [new line] c=d [new line] d=e”. These preferences 
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suggest that viewing each equation as a sentence, participants wanted to impose the 

theme-rheme structure so that the theme of one sentence (equation) was in the rheme of 

the previous sentence (equation). This occurred with other tasks as well, such as CMVT 

and Induction. In CMVT, one reason participants cited for preferring f’(c) on the left is 

that the sentence above ended with c, and so it therefore made sense to start the next 

sentence (equation) with c. Xena explained “If I say there exists a point c such that, I’d 

wanna then say something about c.” Participants gave similar theme-rheme explanations 

in the task Induction. For example, Ben remarked that he wanted the string of equations 

to end with (n3-n)+3n(n+1) because it’s the first thing mentioned in the subsequent 

sentence. Edgar suggested a similar theme-rheme structure when I provided him a 

modified version of DifferenceQuotient in which the text “The following shows the 

difference quotient” is replaced with “The following is a proof that the difference 

quotient of f is 2x+h”. In this situation, he preferred the subsequent string of equalities to 

start with 2x+h, since the previous sentence had ended with 2x+h. Through the lens of 

SFL, such a structure enhances textual coherence.  

 5.4.2.1.3 Things Shouldn’t Come Out of Nowhere. Perhaps the strongest norm is 

the rule that things should not come out of nowhere. The tasks Induction and 

DifferenceQuotient evoked these responses very strongly. Recall Induction consists of a 

proof of the inductive step in showing that k3-k is divisible by six for all k and begins 

with a string of equations starting with (n3-n)+3n(n+1) and ending with (n+1)3-(n+1). All 

participants except Edgar disliked this presentation on the grounds that 3n(n+1) was 

introduced out of nowhere. For example, Warren remarked that he disliked that it was 

“summoned out of thin air”, and Jacob referred to it as “pulled out of a hat”. Some 
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participants seemed to have an emotional reaction. Larry explained “we have this 

mysterious n3-n. I don’t know where this is coming from. Then the 3n, that haunts me as 

well”, and Ben said “I’m annoyed”. Similar responses occurred with DifferenceQuotient. 

Recall that DiffenceQuotient first states the meaning of “difference quotient” and then 

“shows the difference quotient” of f(x)=x2 in a string of equations starting with 2x+h and 

ending with (f(x+h)-f(x))/((x+h)-x). In a sense, the 2x+h comes out of nowhere. All 

participants except for Edgar disliked this presentation and pointed out an order breach. 

When reading, Larry asked “where does 2x+h come from?” and Ben remarked “It’s 

backwards in exactly the same sense that the Induction proof was backwards”. It bears 

mentioning that this particular norm is related to the notion of theme-rheme. Starting a 

sentence with the previous sentence’s rheme ensures that such a sentence begins with 

something that has been mentioned prior and is thus not “out of nowhere”.  

 5.4.2.1.4 The Reader Should Know Why a Term is Being Introduced. The rule 

that “things shouldn’t come out of nowhere” overlaps with other aspects of textual 

coherence. Generally speaking, participants wanted it to be evident to the reader why a 

term is being introduced. In the context of proofs, this means that it needed to be clear 

how introducing a term contributed to the proof at hand. This occurred regularly in 

Induction and DifferenceQuotient. For example, in DifferenceQuotient, participants 

explained that they should know why the term 2x+h is introduced to begin with. It was 

unclear to the readers what 2x+h had to do with the topic of difference quotients. Edgar 

explains his reaction in the following exchange: 

Edgar: I did not like that. Like, I kinda got to when it said “the following shows 

the difference quotient” and I’m like, where are you going with this? What 
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are you gonna tell me, right? And then you start with 2x plus… and what I 

had to do is I read 2x plus h and I was like, I don’t even care about the steps, 

I’m like what’s the last step? I jumped directly from there to the last step to 

figure out what in the hell you were talking about. I didn’t make a big deal 

out of it, but maybe I should have. I didn’t like it.   

Alison: OK, tell me more about how you were feeling. Like, what you didn’t like 

about it. What was the issue? 

Edgar: Well it’s like, what is your point? Like, what are you trying to tell me? 

Alison: Was it clear once you finished?  

Edgar: Yes, but then I was annoyed at having had to like, go around your 

presentation. Like, literally I went around it. I jumped from 2x plus h to the 

bottom to see what the hell you were talking about. 

Notice that Edgar gave more of a reason than simply 2x+h coming out of 

nowhere. He actually mentioned that he was bothered that he did not see why the term 

was being introduced and what role it plays in the proof (“where are you going with 

this?”). Responses were similar in Induction. For example, Ben explained that he did not 

like the 3n(n+1) in Induction and the 2x+h in DifferenceQuotient: “Who is this? I don’t 

know her”. When I attempted to repair the breach in DifferenceQuotient by changing the 

prompt to say “the following shows that the difference quotient is equal to 2x+h” (this 

way, 2x+h does not come out of nowhere), he remarked “ok, so I do know her, but I still 

don’t know why I should”. This response suggests that the issue was not just about 

familiarity with the term, but also about wanting to know the role that the term played in 

the context of the proof.  
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5.4.2.1.5 The Topic Goes on the Left. Another norm surrounding textual 

coherence is that the topic should go on the left. This norm was evoked in several tasks 

and is perhaps the norm that came up most frequently. The general idea is that the 

equation a=b, as compared to the equation b=a, is more about a. One reason participants 

gave for preferring f’(c) to be on the left hand side in CMVT is that the Mean Value 

Theorem is a theorem about derivatives. Jacob explains: “the f’(c) is almost like, the topic 

of this theorem”. Participants gave similar reasons for why they preferred the identity 

element in CIdentity to be on the left-hand side – the thing being discussed is the identity 

element, so it should be on the left. This idea also occurred in DifferenceQuotient. Jacob 

explained “They’re trying to learn about the difference quotient. They should start with 

the difference quotient”. Notice that this idea is not disjoint from the general rule that 

“things shouldn’t come out of nowhere”. If a topic of discussion is established (e.g., 

difference quotients), then a new seemingly unrelated term being introduced without 

explanation for why it is being introduced would appear to “come out of nowhere”. In 

DifferenceQuotient, I attempted to repair the “things coming from nowhere” breach with 

Edgar. Unlike Ben, he was satisfied with this repair and explained: “that would be much 

more preferable, because now you have changed the topic”. Some participants made 

comparisons to the grammatical notion of a subject of a sentence. For example, in the 

CProofs task, Edgar explained why he preferred to write ϕ(e) ⋆’ s’ on the very left of the 

string of equalities:  

But uh, the thing that you are saying something about, that you feel like you’re 

talking about should be on the left-hand side. And are we making a statement 

about ϕ(e) ⋆’ s’ or are we making a statement about s’? And I feel like because 
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we’re trying to establish that ϕ(e) is the identity element, that’s the subject of the 

sentence, so it should be on the left. 

Similarly, in OMice, Kevin explains that p’=rp translates to “the rate of change 

turns out to be a multiple of p” while rp=p’ translates to “a multiple of p turns out to be 

the rate of change”. A key distinction is that the subject of the sentence switches, and the 

subject reflects the topic of conversation. Patrick uses several tasks to explain the idea of 

the topic being on the left:   

There is some subjective sense of what the object of inquiry is. So with the 

difference quotient thing you have on this page [DifferenceQuotient], it really 

seems that the object of inquiry is what is the average rate of change of f from x to 

x plus h. And then we calculate that, and it turns out to be 2x plus h. With the 

mean value theorem [CMVT], the average rate of change from a to b, the average 

rate of change of f from a to b is a static thing, and I feel like it’s not the reason 

for the mean value theorem existing. When we use the mean value theorem in 

calculus or analysis, usually we are using it to say that there is some specific 

point in the domain where the derivative is equal to the function’s average rate of 

change. I feel like that sort of centers the derivative or the existence of a point 

where the derivative or certain value as the object or the interesting thing in the 

inquiry there. With the differential equation [OMice] one, I feel like what’s 

happening there when I state the rule p’(t) equals r times p(t), so what I’m saying 

there is I’m making a statement that I perceive to be principally about the rate of 

change of the population. Uh, I mean it certainly has to do with the other side of 

the equation. It has to do with the fact that uh the rate of change is proportional 
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to the value of the population at a given time…but I feel like in each of those 

situations there is a sense of what I’m most interested in studying, and I’m usually 

putting that thing first. Same with e star s for that matter. I think maybe the 

reason I put e star s first and why everybody puts e star s first is that whatever 

statement we’re making is really a statement about what it means to be an 

identity. 

It bears mentioning that, although this particular study is about equations and the equals 

sign, the idea of the topic being on the left-hand side or first in a sentence is likely not 

limited to equations. Compare the statements 2>x and x<2, which are clearly equivalent. 

Arguably, the first statement is principally about 2, whereas the second statement is 

principally about x. The notion is that the topic of conversation should be the subject of 

the sentence and appear on the left side.  

 5.4.2.2 The Right Side Explains. Since the left side is the topic of interest, it 

makes sense that the right-hand side would be explanatory; it should give information 

about the topic. The fact that this norm could easily apply to non-equations (e.g., 

inequalities) highlights this asymmetry. Consider, again, the inequality x<2. While x can 

be viewed as the topic of discussion (which happens to be the theme), the right side 

(which happens to be the rheme) gives information of the topic of discussion; x<2 tells us 

that x (left side) has the property of being less than 2 (right side), whereas 2>x tells us 

that 2 has the property of being greater than x. We can interpret equations similarly. The 

equation a=b can be interpreted as “a has the property of being b”. This interpretation 

lends asymmetry in meaning to relational clauses; in this sense, such a clause can be 

understood as attributive. This interpretation is consistent with a lot of the asymmetrical 
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language used throughout the interviews. Many participants used phrases such as “ends 

up being”, “happens to be”, and “turns out to be”. For example, in CEuler, Warren 

explained that “eiθ turns out to be isin(θ)+cos(θ)”. Under this umbrella of the right side 

being explanatory, there are several closely interrelated norms for ordering: 

(a) unknown known: an unknown thing is on the left while a known is on the right 

(b) sophisticated  less sophisticated: the more mathematically sophisticated thing is 

on the left.  

(c) question  answer:  a question is on a left, whose answer is on the right. 

(d) less expanded more expanded: the left is shorter or less expanded than the 

right. 

(e) defined definition: the concept being defined goes on the left, and its definition 

goes on the right.  

Recall the idea that the left side is the topic of discussion or interest, while the 

right side explains what is on the left. The categorization listed above fits into this general 

frame. Why might something be a topic of discussion? One reason is that there are 

aspects of it that are unknown. We might discuss something because we want to learn 

about it, or it might be a topic in the textbook because it is being taught to students. 

Hence, it makes sense that an unknown thing would be on the left (as the topic of 

discussion), and the known thing on the right. In OMice, Kevin explained that if he knew 

the value of p’ then he would write the equation as rp=p’, whereas if he knew the value of 

rp, he would write the equation as p’=rp. To him, this was linked to the topic of 

discussion; the topic of discussion is something unknown that we want to find out about 

(which is on the left), and we have information that tells us something about it (which is 
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on the right). Notice that this idea also appeared in Induction; (n+1)3-(n+1) is what we 

(the problem solver) want to know about (prove something about), so in this sense, it is 

unknown. Contrast this with (n3-n)+3n(n+1). Before we’ve proven that (n3-n)+3n(n+1) is 

actually equal to (n+1)3-(n+1), we know less information about it.  

The notion of the right side being more known than the left side parallels the idea 

that the right side is more understandable or mathematically less sophisticated than the 

left-hand side. If something is less understood, then it is in some sense less “known”. In 

the task CEuler, Larry explained that isin(θ)+cos(θ) is easier to understand (“you see 

what’s going on”): “You want to find real and imaginary parts, so decomposing in that 

way makes life simpler. You see what’s going on”. In CMVT, Ming explained his 

rationale for having f’(c) on the left side: “formulas often have the form something we 

don’t understand equals something we understand”  

Closely related to the unknown known and the more sophisticated  less 

sophisticated norms is the question answer norm. We ask questions about things that 

we do not fully understand and our answers should be easier to understand or more 

known than the question. Hence, it makes sense that the notion of question and answer 

closely parallels the ideas of unknown and known as well less understandable and more 

understandable. It bears mentioning that an analogous question answer norm appears 

in the literature on young students; as I discuss in Mirin (2019), Denmark et al. (1976) 

characterizes young students as understanding the equals sign as “a one-directional 

operator separating a problem from its answer” (p.31). With mathematicians, the notion 

of problem and answer is less of a strict rule and more generally relates to the norm that 

the right side explains the left side. In CEuler, Ming explains the connection between 



 

161 
 

unknown known, more understood  less understood, and question/problem  

answer:  

It’s like, this thing we don’t understand in terms of this thing we could 

understand. The assumption being that E to a complex number being something 

most people didn’t understand. And so I think there is just like a cultural, bias 

from reading left to right. Like, we begin with the thing that might pique your 

interest, then end with the thing that, you know, gives you the answer. 

In some cases, the “problem” at hand is to compute or evaluate something. In several 

instances, participants explained that derivative rules were instructions for how to 

compute the left side.   

Jacob frames ordering in terms of “more sophisticated” and “less sophisticated” 

and links this framing to the notion of question and answer. He uses the word “simple” to 

mean “mathematically less sophisticated” or “easier to understand”. For example, in 

CMVT, he explains: “the left-hand side is the more mysterious quantity, and here we’re 

giving, it’s like the question, what is this mysterious quantity? And the answer is the 

right-hand side. As opposed to the simple quantity equals the more complicated thing, 

which is the way that the second one describes it”. While in general, Jacob’s responses 

about this question-answer format were representative of the other participants, there is a 

notable aspect on which he potentially diverges; for him, one thing that indicates 

sophistication is the number of stipulations needed for the object in question to exist. In 

CMVT and OMice, he explains that the stipulations needed for the left side (the side with 

the derivative) to exist (which are not needed for the right side) indicate that the left side 

is more “sophisticated”. This could relate to the notion of theme-rheme structure in the 
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sense that he is following the norm that the stipulations just mentioned should be used 

right after they were mentioned. This reasoning overlaps with participants’ explanation 

that the proof in CProofs should start with s’ because s’ was just mentioned and starting 

with s’ uses the stipulation that ϕ is onto.  

 Some participants explained that the “newer” object should be on the left. Recall 

the discussion in 5.3 about the two different notions of “new”. Here, we are concerned 

with “cognitively new” rather than “new to the conversation”. This notion closely 

overlaps with the idea of the unknown or mathematically more sophisticated thing being 

on the left; the reader might be learning about something that is new, and hence 

unknown, to them. In CEuler, Kevin uses “new” and “unknown” synonymously: “[the 

left side] is the unknown or new expression I wanna make a statement about it so I want 

to say the ROC is or turns out to be a multiple of p.”  

Such an idea might be newer or unknown because it is more mathematically 

sophisticated or more difficult to understand. Jacob links the notions of “new” an 

“unknown” when explaining why the sum rule is written with the derivative of the sum 

on the right: “if you’re starting with these two differentiable functions, and you already 

understand f’ and g’ in some sense, f+g is a new function (…) this is like the new thing, 

and now you wonder about its derivative. Like new or in some sense more complicated 

and expressing in terms of things you previously know”. In ProductRule, Kevin used the 

ideas of “unknown”, “new”, and “problem” being on the left: 

Kevin: I would typically start with, um, what you call word problems, 

applications, geometric problems. And uh, then the question is um, if we 

knew how fast each of the quantities grows or function um, how could we uh, 
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get some information about the um, uh, growth rate of or the rate of change 

of the product 

Alison: So you’re saying this would be in a problem where this (points to (fg)’) 

is -- 

Kevin: Something that I’m interested in, yes. 

Alison: Then what role would the other side (points to fg’+f’g) play? 

Kevin: Um, that it’s basically using things that we already know about uh so we, 

I mean, the easiest problem’s always in terms of area. Uh but, area of a 

rectangle, so but uh I’d like to have changes um where we may have um, 

where we change a quantity how many things we buy and they get smaller or 

larger or so on. So I would have a variety of examples of it’s not purely 

geometric and the typical question is we know the rates of change of f and g 

and not we’re interested in the rate of change of the product 

Alison: So you’re saying the known part is on the right, and the thing we are 

trying to find out about is on the left? So why do you think that is? 

Kevin: That’s just how we read things from left to right. It similar to when I 

write a computer program and I make an assignment or I make a definition 

that usually the new object is written on the left-hand side 

 Notice that Kevin related the notion of “new” to that of “definition”, specifically 

in a programming context. In Homomorphism, Kevin explained that someone defining 

the operation ⋆’ would need to put ϕ(x)⋆’ ϕ(y) on the left. Similarly, in CEuler, he 

explained that because Euler’s formula is actually a definition of irrational exponents, the 

exponential term must be on the left. Because the idea of an asymmetrical equals sign of 
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definition is already discussed explicitly in the mathematical community (and even 

symbolized as :=), I had not intended to include it as a topic investigation. However, 

participants still mentioned the issue. 

Some participants used the notion of defining as a metaphor for this more general 

idea. For example, Xena explained that in ProductRule, the equals sign is similar to a 

definition because the “quick symbol” is on the left. Closely related to the idea of the 

definition being on the left is the norm that the right-hand side is more expanded or 

verbose than the left. When an equals sign is used to define something, then the term 

being defined is on the left, and a definition tends to be longer than the thing being 

defined. This links to our overarching norm of the right side being explanatory of the left 

or giving information about the left; like with definitions, an explanation tends to be more 

verbose than the thing being explained. In the context of Productrule, Patrick links the 

notion of question/answer with the notion of defining by explaining how the right side is 

expanded and explanatory:  

The convention is going to be let’s put the thing being evaluated first, and then 

how to evaluate it or the formula for evaluating it over on the right. I feel like 

that’s a consistent convention across a lot of mathematical writing. Like, if you 

state a definition. You know sometimes occasionally you’ll see a definition as if 

this object has this and this property blah-blah-blah-blah-blah then we call it and 

then thing in italics, thing being term being defined. But usually you see it the 

other way. We say that blah-blah-blah is term in italics if blah-blah-blah has the 

following properties. So like the less expanded form first and then more expanded 

form later seems to be the unwritten rule of mathematical writing.  
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Observe that the idea of a new/unknown thing being introduced on the left with known 

information detailed on the right is an ideal that Veel (1999) discusses as part of SFL to 

account for how relational clauses in mathematics “bridge” something new with 

something known.  

 Recall the discussion of Leibniz’ law of indiscernibles given in the general 

introduction to this dissertation; that objects a and b are identical if and only if they have 

the same properties. In this section, I had discussed how identity allows us to make 

inferences; if we know that a=b, then whatever properties one of them has, so does the 

other one. This links to the notion of transparency of representation with particular 

properties; if b (or a) is transparent with respect to some property, then we can claim that 

a (or b) also has this property. Although Leibniz’ law of indiscernibles is symmetric, 

what the results of my study suggests is that it is applied somewhat asymmetrically; with 

a=b, we tend to conclude that a has whatever properties b has, rather than that b has 

whatever properties a has. This fits with the general idea that the left side is the topic of 

inquiry while the right side gives information or properties about the left side. For 

example, if we want to conclude that the cycle (1 3 2) is even, then this interview data 

suggests that the equation we use to conclude that is more likely to be (1 3 2)= (1 3)(1 2) 

rather than (1 3) (1 2)=(1 3 2). It is therefore perhaps unsurprising that of the examples I 

gave, four out of five involve using properties of the right side to make conclusions about 

the left side.  

 5.4.2.2 Transformations and Substitution: a Produces or Becomes b. Our next 

category concerns transformation. This is a cluster of norms surrounding the general idea 

that a=b means that a transforms to b. This category is in some sense related to the idea 
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that the left side is the topic of discussion, while the right side gives information about 

the left; the right side of the sentence (the rheme) is giving information about a - that it 

has the property of transforming to b. Ernest (2008b) explains that transformations induce 

directionality (and hence asymmetry); “The transformation of signs in semiotic systems 

is directional” (p.43). Transformations tend to take place in problem-solving contexts 

(Ernest, 2008b). In our case, the notion of transformation occurs additionally in 

theorem/rule tasks (e.g., ProductRule); however, this occurs because the participants are 

envisioning a problem-solving context (discussed below). Generally speaking, 

transformative meanings for a=b can be translated as “a turns into b” or “a becomes b”; 

something is done to a (the left side) in order for it to become or produce the right side. 

There are several ways this can happen. 

The first is that operations produce a result, and therefore the operations go on 

the left while the result goes on the right. Since the operations produce a result, they must 

precede it and therefore go on the left. Warren, in the context of Idempotent, explains his 

reasoning for this norm: “I start with the operation, then a second later, if you will, I have 

a result. With our thinking, that’s what happens. So, when you’re reading left to right, 

that should mimic as it happens in your brain too”. The tasks Idempotent, (O and C) 

Identity, and CProofs evoked this norm. As discussed earlier, participants tended to use 

action-based language to suggest the idea that operations produce a result. For example, 

in OIdentity, Luke explained: “for any element, if we apply that particular element to that 

we obtain the original one that we started with”. For at least some participants, the notion 

of operation producing a result was an essential aspect of the meaning of a left identity 

element. Their explanation in CProofs, in favor of First Proof (ϕ(e) ⋆’ s’=…=s’) over 
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Fourth Proof (s’=…= ϕ(e) ⋆’ s’), was that the first proof shows that (ϕ(e) ⋆’ s’) ends up 

resulting in or producing s’ (notably, Edgar actually uses the word “transformation” in his 

description). Xena explains: “like if I could do it starting with the star operation with the 

identity element and show it doesn’t do anything, then that would be my preference. The 

other order, although equivalent, seems less natural”.   

A related meaning for an equation as a transformation is that what is given is on 

the left, whereas the goal or the result is on the right. This is a givens  goals format. 

Observe that this closely mirrors the question  answer format discussed prior. 

However, there is a subtle difference; rather than the right-hand side being just an answer 

to the left-hand side, the left-hand side actually becomes (transforms to) the right-hand 

side via some actions. In this case, “given” does not apply to a fact or a proposition; it is 

not information that is “given”. Instead, a particular representation or string of symbols is 

given as something that you are to transform toward a particular goal. In 

DifferenceQuotient, participants conceptualized (f(x+h)-f(x))/((x+h)-x) as “given” with 

2x+h as the “goal”. Luke explained that the proof in the difference quotient should 

instead show “the result once you reduce everything possible”, and Patrick explained that 

the presentation has “the result of the calculation first”. As mentioned above, this idea of 

transformation also occurred in theorem contexts. However, they occurred in theorem 

contexts in the sense that participants were envisioning how that theorem could be used 

in a transformation context. In the context of ProductRule, Edgar explains that “what you 

have is on the left, and what you can have if you want is on the right”, and Ben similarly 

explains “the thing I got already is on the left, and the rule is telling me what I should do 

with the thing”. In other words, theorems of the form “a=b” suggest that, in problem-



 

168 
 

solving contexts, one might want to transform a to b. Ben illustrated this idea in the 

context of Distributive (the distributive law) by explaining “we’re presenting rules for 

operating on symbols” and using an arrow in place of the equals sign to indicate 

transformation. His point was that xy+xz=x(y+z) suggests a different transformation than 

x(y+z)= xy+xz: 

 

Figure 5.4. Ben’s Illustration of his Meaning for the Distributive/Factoring Law(s). 

The purpose of performing such transformations is to move from what is given to 

whatever your goals are. This notion generalizes to the idea of substitution; that in an 

equation, the thing on the left is substituted with the thing on the right. Observe that the 

transformations discussed are a special case of substitution. Starting with or being 

“given” a term a (say x(y+z)), and ending with a term b (say xy+xz) is effectively the 

same thing as replacing the term a with the term b. In other words, while sometimes we 

transform a to b, other times we transform P(a) to P(b), where P(x) is some string of  
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symbols. This occurred in both problem-solving and in theorem contexts. For example, 

both Ben and Luke explained that in CProofs, they wanted the equations to be written in 

such a way that entails a substitution. Ben explains: “my favorite thing about the equals 

sign is that it literally means that the two things on either side of it are the same thing, and 

therefore when you see one of them come up later you can replace it with what’s on the 

other side of the equals sign…like if I see ϕ(s) and I know ϕ(s) is s’, then I can write s’ 

whenever I see ϕ(s)”. 

In the case of theorems and rules, participants explained that an ordering a=b is 

preferable to b=a if there are more situations in which we would want to replace a with b 

(or transform a to b). In other words, a=b suggests the transformation of replacing a with 

b (in this sense, a becomes b), and this transformation works toward a goal of obtaining a 

certain expression. For example, in CEuler, Edgar explains that in a problem-solving 

process, if you go from that (points to eiπ) to -1 you’ve now greatly simplified things”, 

and that this transformation is a reason for presenting Euler’s formula with the 

exponential term on the left. This idea of frequency of substitution and transformation 

was enough to, in some sense, overwrite the other norm about operations producing a 

result. In both Idempotent and CIdentity, several participants explained that the fact that 

there are situations in which one would want to replace p with p star p or replace e with e 

star x are enough grounds for finding the presentation with the operations on the right 

acceptable. In CIdentity, Ben explained that he was only “slightly” annoyed and generally 

okay with writing the operation on the right because of such substitutions: “it comes up 

often enough in an abstract algebra proof that you’re gonna make an identity appear and 

then do some shit to it”.  
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We can understand this notion of substitution in terms of Leibniz’ law of 

indiscernibles (discussed in the general introduction to this dissertation). Recall that 

Leibniz’ law of indiscernibles states that objects x and y are identical (equal) if and only 

if they share the same properties. In symbolic logic, this principle is framed as 

∀F(Fx ↔Fy) → x=y for all properties F. This rule allows someone to deduce Fy from Fx 

under the assumption that x=y; syntactically, this allows the prover to substitute/replace 

“x” with “y”. While Leibniz’ law is formed symmetrically (one can also deduce Fx from 

Fy), the results of my study here suggest that substitution is not understood fully 

symmetrically.  

Not all transformations are created equal. Clearly, provided there is some sort of 

goal, transformations that move toward a particular goal (givens  goals) are preferable 

to those that do not move toward a particular goal. This is not the only sense in which 

transformations are unequal. A common theme expressed by participants is that 

simplification is preferable to the opposite, and simplification occurs as a transformation 

from left to right. Participants use “simplification” in two different senses. One is the 

sense in which the simplified thing (the thing on the right) is easier to work with or more 

understandable. This idea overlaps with the idea of substitution; if b is “simpler” than a in 

the sense of “easier to work with”, then one might want to replace a with b (this is what 

Edgar seems to suggest in CEuler, discussed above). It also overlaps with the idea of the 

expression on the right being more understandable (simpler) than the one on the left. 

Here, we are concerned with simplification as a transformation that someone performs, 

not simply a comparison of sides of an equation for which is “simplest”. Ernest (2008b) 

refers to an “implicit heuristic of simplification” which “seeks to reduce the complexity 
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of terms in an equation en route to a solution” (p. 40). Ernest (2008b) explains how 

simplification suggests directionality and, hence, asymmetry:  

Note that the simplification heuristic described above plays a central role in 

operationalizing directionality in mathematical tasks. That is, a significant part of 

the appropriation of directionality is associated with the implicit understanding of 

the simplification heuristic as a technique for goal-directed activity. (p.46) 

Kevin was the only participant who defined the notion of “simplification”, which he 

described as “try(ing) to write this in as few symbols as possible”. A key characteristic of 

simplification shared by the other participants seems to be the reduction in total number 

of symbols, although they did not state it explicitly. For example, in DifferenceQuotient, 

(f(x+h)-f(x))/((x+h)-x) simplifies to 2x+h. Participants explained that simplification is 

preferable to the opposite because it is easier to perform. I adopt Xena’s word 

“messification” to refer to the opposite or reverse procedure of simplification. Two 

reasons were given for simplification being easier than messification: the first is that, 

through school mathematics, people are trained to perform simplification procedures; the 

other reason is that simplification is more deterministic than messification. In the context 

of DifferenceQuotient, Warren uses both of these reasons to explain why simplification is 

easier:   

Students are mathematically trained to simplify expressions. They’re not trained 

to complicate expressions in order to fit a pre-defined structure. And, the steps of 

factoring, reducing, simplifying, cancelling, whatever in more simple terms, these 

are all directions students are comfortable with. And, the other direction, you 

know when you say, why would I want to change 2/3 to 4/6 or change it to 2x/3x? 
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There’s multiples of those steps, where you’re complicating in the dark not 

knowing what steps you need to do so that the chain of applications leads to the 

difference quotient. That is not, there’s no series of, there’s no sequence of 

instructions available to a student to know how to do that backwards I think, 

especially when there’s multiple steps. 

In various other instances, participants explained that adding more symbols is more 

difficult and less deterministic than simplification. Ming explained that messification is 

“inspired”, rather than simplification or cancellation which is more automatic. The 

general idea is that, if we were given 2+3, we might immediately in our head think “that’s 

5”. However, if we were given 5, there are a number of other representations that could 

come to mind; 2+3, 4+1, etc.  

5.4.2.3 Proofs Should Reflect the Prover’s Process for Creating the Proof.  

The tasks DifferenceQuotient and Induction both evoked the norm that a proof or a 

problem’s solution should, when possible, communicate how the prover came up with the 

proof. In this sense, a proof should be a record of a problem-solving process. For 

example, if the prover performed a process to transform a to b, then the equation a=b 

should be in the proof rather than b=a. The participants read both DifferenceQuotient and 

Induction as being a record of mental processes and transformations. For example, in 

Induction, participants explained that at first they found the equation (n3-n)+(3n2+3n) 

=(n3+3n2+3n+1)-(n+1) to be “clever” because it suggested that the prover performed a 

transformation of adding 1, subtracting 1, and regrouping (as discussed, simplification 

was considered to be an easier transformation than messification). Participants took issue 

with this presentation on the grounds that the prover (the person who wrote the proof) did 
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not perform this transformation themselves in the sense that the prover did not perform 

the action of manipulating (n3-n)+(3n2+3n) to get (n3+3n2+3n+1)-(n+1). This norm was 

reflected in two different ways. The first way was that participants initially seemed to 

assume that the prover came up with the proof in the order in which it was presented. 

This was reflected in remarks about the proofs in Induction and DifferenceQuotient being 

“clever”. Similarly, in Induction, Xena explained: “I would have done this from the other 

way. I would have started here (underlines (n+1)3-(n+1)) and expanded it and gotten 

something else and then tried to figure out how to prove it”. Her remarks indicate that she 

conflated the presentation containing the proof with how the prover came up with the 

proof. The second way this norm was expressed was through explicit disbelief that the 

proof reflected the way the prover came up with it, together with objection of the order of 

the presentation on those grounds. In DifferenceQuotient, Ben remarked “no human 

would go this way”.  

Generally speaking, in both DifferenceQuotient and Induction, participants 

objected on the grounds that the prover had actually come up with the proof in the 

opposite order in which it was presented. Consider Jacob’s response to Induction: 

I think it would be better if the sequence of equations was reversed. Because the 

very first thing is totally out of the blue. This thing that’s been pulled of a hat. I 

mean, why that? Whereas we know we want to know about the very last thing, and 

that would already be very motivated to the reader. And really, to write the proof 

this way somebody did it in the order I’m suggesting and then reorganized it. 

It’s not that they just studied the n3-n and then realized this is the magic thing to 

add. 
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The bolded portion indicates that Jacob preferred the proof to be written in the way that 

the prover came up with the proof. Observe also that for Jacob, this norm was closely tied 

to the idea of textual coherence (“totally out of the blue”) and the notion that 

simplification is an easier transformation than the opposite (“the magic thing to add”). It 

bears mentioning that there is potential overlap between this category and the reader 

should know why a term is being introduced”. Making a reasoning process transparent 

might often communicate why a term is introduced; if, in Induction I communicate that I 

am going to fiddle with (n+1)3-(n+1) to get a statement with n3-n, that then conveys why 

I mentioned (n+1)3-(n+1). This makes sense if we assume that people’s thoughts are 

interconnected. However, it is conceivable that the converse holds; I might present a 

proof without explaining how I came up with this proof. Recall earlier Ben’s issue with 

epsilon-delta proofs in that they do not reflect the order in which the prover came up with 

them. It is conceivable, however, that when reading an epsilon-delta proof, the reader 

knows why each term is being introduced. When I am reading an epsilon-delta proof, and 

I see a particular delta introduced, I might not be following the particular reasoning 

process of how the prover came up with that particular delta. However, I do have some 

knowledge of why that particular delta is introduced; this value of delta does the job. 

Hence, while there is some overlap between ideas of textual coherence and the idea of 

making a reasoning process transparent, this overlap is not necessarily absolute.   

5.4.2.4 Ordering Should be Pedagogically Optimal. Another rule governing 

ordering is that equations should be ordered in such a way that is pedagogically optimal. 

This is unsurprising considering that the participants were all currently teaching 

mathematics or had in the recent past taught mathematics. Recall the discussion in the 
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literature review of this study about a speaker attributing mental states to the listener or 

reader; the fact that participants had pedagogical concerns suggests that mathematicians 

do consider the mental state of their reader or student. The results of this study 

complement the study described in Lai and Weber (2014), which describes 

mathematicians’ pedagogical concerns for presenting proofs. Notably, Lai and Weber 

(2014) also observe that mathematicians consider the role of their audience when 

presenting a proof.  

This norm frequently overlapped with the belief that the proof should reflect the 

prover’s reasoning process; a proof or solution to a problem communicates to the student 

a solution or reasoning process that the student should learn about. This norm appeared 

prominently in both Induction and DifferenceQuotient. In Induction, participants objected 

on the grounds that students would not be able to produce the proof in the order that it is 

presented. Ming explained why there are pedagogical reasons for presenting a proof in 

the way that the prover came up with it: “Part of teaching math isn’t teaching theorems 

that are true, it’s teaching students how they could have done it themselves”. Part of the 

purpose for demonstrating the reasoning process is so that students can apply this 

reasoning process to other contexts. For example, Induction is an opportunity to teach 

students that in induction proofs, it is useful to fiddle with the expression involving n+1. 

In DifferenceQuotient, participants similarly explained that the equation should be 

presented with the difference quotient form first because it was communicating to the 

student a way of dealing with difference quotients that could be generalized to other 

functions; a particular problem-solving process is being demonstrated and hence 
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communicated to students. Jacob explains his pedagogical reasons for preferring the 

standard ordering in DifferenceQuotient:  

There’s like a process going on which then can be generalized about how to deal 

with other derivatives. Which If you try to mimic the style here would be 

extremely hard, whereas if you just write them in the other order it’s relatively 

easy to follow. 

It bears mentioning that not all participants thought that this norm of reflecting the 

prover’s reasoning process is pedagogically optimal in every situation. Ben mentioned 

that there are cases, such as epsilon-delta proofs in analysis, where we do present a proof 

in the opposite order in which we created in (we often start with a statement in epsilon 

and “work backwards” to find an appropriate delta). However, he explains that we have 

“culturally decided not to share this scratchwork” (tradition allows breaching the norm). 

This is consistent with Herbst et al.’s (2011) characterization of norms in which they are 

not always inviolable rules, but default expectations whose breaches require note and 

some justification. The fact that he is quickly aware of sanctioned breaches shows the 

role of the norm, even though it is broken systematically in particular contexts. Xena 

explained that the preferable order of the equations in DifferenceQuotient depends on the 

pedagogical goal. If the goal is to learn about difference quotients, then it should start 

with (f(x+h)-f(x))/((x+h)-x). However, she explained that if the goal is to aid students in 

developing algebraic solving techniques, then it might help students to learn non-routine 

techniques such as adding and subtracting a number. 

 Some of the norms under the textual coherence umbrella also occurred as 

pedagogical concerns. For example, several participants explained that students might be 
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confused if something came out of nowhere. Furthermore, if a reasoning process is 

transparent in a presentation of a proof, then it is clear why a term is being introduced. In 

both Induction and DifferenceQuotient, these norms were intertwined with pedagogical 

concerns. Students should know why a term (e.g., 3n(n+1)) is being introduced and what 

role it plays in the proof, hence gaining access to the provers reasoning process. If a term 

is the topic of discussion (e.g., (n+1)3-(n+1)), then the student understands why that term 

is being introduced, and that term does not appear “out of nowhere”.  

5.4.2.5 Inferences and Ease of Verification of Truth Are Important. Another 

common order norm is that ordering in a proof should be written in such a way as to 

make it as easy as possible to verify truth and make inferences. In proofs, the goal is not 

just to say true things, but to make statements (which are often inferences) that are 

verifiable to the reader. In proof tasks, participants explained that they verified each 

equation pairwise. Strings of equations, such as “a=b=c=d=e” were interpreted as “a=b, 

b=c, c=d, d=e, and therefore a=e” rather than “a, b, c, d, and e are all the same”. This 

norm was especially evident in participants’ responses to Proofs, since this particular task 

violated this norm. Ben illustrated how he read the equation string from left to right, 

attempting to verify each equation pairwise: 

 

Figure 5.5 Ben’s Illustration of How he Reads a String of Equations in a Proof. 
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In deciding which of the proofs in CProofs was preferable, participants explained that 

they had two concerns: the first is that each statement is deducible or verifiable from 

previous statements, and the second is that each statement is as easy to verify as possible. 

Ming explains: “a string of equalities suggests that each equality is followable or 

deducible and you start and end with the things you want to show are equal”. For 

example, participants took issue with the Third Proof on the grounds that it was not of the 

form “a=b=c=d=e”; while each individual equation was true, it was not inferable from the 

previous equations. This task was somewhat unique in that it is the only task in which 

participants described the presentation as mathematically incorrect or wrong, rather than 

having a preference or an expectation for a different ordering. Participants felt less 

strongly about the second norm: that a proof should be presented in such a way that each 

statement is not only inferable from the previous, but as easily inferable as possible. This 

is a reason that participants took issue with the Second Proof, which is of the form “e=d, 

a=b, c=d, b=c, and therefore e=a”. Verifying the truth of e=a using the other steps, 

participants explained, requires too much work on the reader’s part. Reading the proof 

aloud, Ben exclaimed “therefore by equations (1) through (4), we sprinkle magic dust on 

all of our stuff and get the conclusion that we want”, while Edgar objected “why have 

like three completely different independent facts and then have me just sort of need to 

have to ram them together at the end? It’s like, yeah it’s true, but you left all the work on 

the table!”.  

5.5 Discussion and Future Directions 

 Overall, the results of this study suggest that mathematicians do not use the equals 

sign symmetrically. This is evident by the consistent responses to the open-ended tasks. 
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The norms surrounding ordering of terms in equations are so strong that the vast majority 

of the participants (eight out of nine) pointed out order breaches. In other words, as 

expected, the answer to research question (1) is “no, mathematicians do not use and 

understand the equals sign symmetrically”. The third portion of the interview gives us 

more insight into research question (2); we learned about what, specifically, the norms 

that govern the ordering of terms in equations are, as well as some reasons for having 

these norms.  

During the breaching experiment, participants confirmed the existence of ordering 

norms in two ways; the first is in outright claiming that there was a breach or that 

something was “wrong”, while the other way involved reading right to left. By reading 

right to left, the participants were repairing the breach. This leaves open the possibility 

that what is written is not wrong, but at the same time not consistent with ordering norms. 

There are broad, major norms concerning order. The first is that texts should be 

coherent. Within this textual coherence umbrella are the following norms: ordering 

should be consistent within and across contexts, theme-rheme structure should be 

respected, terms shouldn’t come out of nowhere, the reader should know why a term is 

being introduced/what role it plays in the proof, and that the left side is the topic of 

conversation or inquiry. The second major norm follows naturally from the notion that 

the left side is the topic: the right side explains the left side. Within this umbrella are the 

interconnected ideas of moving left to right from unknown to known, from sophisticated 

to less sophisticated, from question to answer, from less expanded to more expanded, and 

from defined to definition. In other words, while the left side is the topic of inquiry, the 

right side gives information about the topic of inquiry. Under this interpretation, a=b 
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roughly means “a has the property of being b”. The third major norm involves 

interpreting “a=b” as “a becomes b”; it suggests that equations can represent 

transformations, and these transformations occur in time from left to right in the sense 

that the result of the transformation goes on the right. For example, operations producing 

a result represents a transformation as does the idea of simplification (which participants 

explained is an easier transformation to perform than its opposite, messification). One 

important transformation is substitution; a=b allows someone to transform any statement 

or term with “a” in it to the same statement with “b” in place of “a”. Our fourth broad 

norm is that proofs should, when possible, represent a record of the prover’s thought 

process and mathematical activity. This brings us to our fifth norm – that ordering should 

be pedagogically optimal. One reason to show the prover’s reasoning process is to help 

students mimic such a process on their own and generalize to other problem-solving 

contexts. Our sixth and final norm concerns proofs; ordering in proofs should occur in 

such a way so that each statement can be understood as an inference from previously 

established facts, and ordering of equations should be done in such a way that these 

inferences are as easy to make as possible.  

 In summary, I described the various contexts that evoke asymmetrical usage of 

the equals sign as well as participants’ understandings of these contexts. It bears 

mentioning that contexts and norms surrounding ordering are interlinked. Participants 

brought context to the problems. For example, in DifferenceQuotient, participants tended 

to imagine a Calculus I setting in which students are learning about difference quotients 

or the definition of derivative. Additionally, participants envisioned contexts outside the 

particular tasks at hand that had bearing on how they understood the ordering of the terms 
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in the equations. This occurred in the various situations in which participants mentioned 

other contexts that they viewed as parallel or analogous to their envisioned context. For 

example, in DifferenceQuotient, participants explained that they were picturing other 

problems or tasks of the same type. In Identity and similar tasks, participants considered 

how often various transformations might occur. The relationship between the invoked 

ordering norms and the wider context pictured by the participants is worth studying in 

future investigations.  

As discussed, despite presenting these order norms separately, they were closely 

related. Common to all these ordering norms is the underlying fact that mathematicians 

care not just about truth-function, but also communication, which takes place in/over time 

(both imagined and experiential time). Ernest (2008b) explains: 

While there is no universal timepiece ticking away in semiotic space, nevertheless 

individual and group engagement in mathematical activity is always over time 

(Mason et al., 2007). What this means is that accessing mathematical texts always 

has a sequential nature. (p. 43) 

For example, the textual coherence norms can be explained by reading the left side of 

equations first. Similarly, the transformation norms can be explained by performing a 

transformation from start (the left) to finish (the right). Participants were reading left to 

right and thus equated “left” with “first”, and several participants even explicitly stated 

this fact. For example, Ming explained “I think there is just like a cultural, bias from 

reading left to right.” Since not all cultures read left to right, it would be worth comparing 

ordering norms in other cultures. 
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 The results of this study are interesting in light of the equals sign literature 

centering on children. As discussed in the general introduction to this dissertation, the 

equals sign literature tends to focus on children’s deficits with regard to equals sign 

understanding. One common deficit concerns the property of symmetry; children tend to 

understand the equals sign asymmetrically. Oksuz (2007), for example, explains that 

students find equations of the form “5=2+3” as “rule violations”, and Denmark et al. 

(1976) explain that students view an equals sign as expressing an asymmetric relation 

between problem and answer. Consider, additionally, the anecdote in Behr et al. (1976) 

that inspired my breaching experiment; a child read “5=2+3” aloud as “2+3=5”. A major 

finding of my study is that it suggests that children might not differ so much from 

experts. Of course, the experts (mathematicians) in this study (and experts in general) 

know that truth-functionally, the equals sign expresses a symmetric relation. The study 

reported herein tells us that regarding concerns beyond truth-function (e.g., meaning), 

experts have asymmetric usages and understandings of the equals sign. Interestingly, 

there is some overlap between experts’ asymmetrical meanings of the equals sign and 

childrens’. Consider, for example, the operations-produces-result transformational norm 

(that on the left is an operation, to which on the right is the result). All the “rule 

violations” in Oksuz (2007) do not have the operations on the left. McNeil and Alibali 

(2005) report that even college students have this norm of operations being on the left 

(they call this an “operational pattern”). In other words, we know that young children, 

college students, and mathematics experts all have meanings of the equals sign that 

suggest that the operations should be on the left. Similarly, consider the operational idea 

that the left is a problem and the right is an answer. My study shows that a similar idea 
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exists amongst experts with the question answer norm (under the transformation 

umbrella). Note that, since experts understand the equals sign as truth-functionally 

symmetric, these asymmetrical norms are context-dependent amongst experts and not 

necessarily rigid – writing x=e ⋆ x is not considered “wrong” by experts, but 

connotatively different and in some contexts less preferable than writing e ⋆ x=x.  This is 

somewhat unsurprising when we consider that even Frege believed there to be more to 

meaning than truth-function (Frege, 1892/1948). In light of experts’ views, it makes 

sense to revisit the equals sign literature about students. While the major take-away from 

this work is generally about student misunderstanding of the equals sign, we should 

consider that students’ understanding might be more subtle and less rigid than expected. 

In my study, experts distinguished between “wrong” and stylistically not preferable. It 

seems possible that, like experts, students might understand certain equations as 

stylistically not preferable and “reject” such equations by calling them “wrong” or 

“false”. Future research should consider exploring how (and if) students distinguish 

between finding equations to be a breach of expectation while having the symmetric view 

of equality is important for learning algebra (Byrd et al., 2015), that does not take away 

from the communicative aspect of equality that imposes some asymmetry. We should not 

belittle children noting communicative breaches that may be appropriate insights if our 

only goal is to add other ways of reasoning that are useful in other ways. These experts 

show how the same person can hold both interpretations in tandem or stylistically 

unpleasant versus “wrong” or “false”.  

One interesting related avenue to explore in the future concerns the other “rule 

violations” described by Oksuz (2007). Perhaps experts also have a dislike for equations 
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of the form “a=a”, despite understanding the equals sign as expressing a reflexive 

relation. When we consider mathematical writing as a communicative, social act – as we 

have been throughout this study – we must consider what utility mathematicians might 

perceive in asserting “a=a” and how this utility (or lack of utility) aligns with Gricean 

pragmatics regarding informativeness. 
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CONCLUDING REMARKS 

This dissertation investigates people’s understandings and usages of ideas 

associated with the identity relation. There is a close link between the notion of identity 

and representation; often, in mathematics, we work with multiple representations of the 

same object. A fundamental assumption of my work is that what might be the same for 

one person, such as a mathematician, might not be the same for others, such as students. 

This assumption is grounded in constructivism, the underlying epistemology that guides 

my work (Thompson, 1982). One reason that sameness is important is that it allows us to 

make powerful mathematical inferences. These inferences can often be framed in terms 

of Leibniz’ law of indiscernibles; two objects are identical if and only if they share the 

same properties. Hence, when a=b, it follows that a and b share the same set of 

properties. Leibniz’ law is relevant for each individual study, which I discuss below.  

 The first paper directly addresses function identity: how students conceptualize, 

work with, and assess sameness of representation of function. Portions of this study are 

reported in Mirin (2018) and Mirin (2020b). It discusses the results of three tasks: a 

function sameness concept definition task, a task in which students assess sameness of 

functions in the fundamental theorem of calculus (the fundamental theorem task), and a 

task in which students evaluate the derivative of a piecewise-defined version of the 

cubing function (the cubing function task). A total of 360 students participated in this 

study, which included both qualitative (interviews) and quantitative (statistical) data. A 

key result of this study is that students did not appear to believe that sameness of graph 

was sufficient for sameness of derivative. Many students understand graphs with 

highlighted points as essentially different than graphs without highlighted points – i.e., a 
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function’s graph is not determined by its points. Other key findings suggest more 

foundational issues with notation and denotation. Students were presented with functions 

that were labeled as “functions” yet did not seem to understand each label as referring to 

a singular function. This occurred both in the cubing function task, in which several 

students viewed “f” (the piecewise defined version of the cubing function) as denoting 

two functions, as well as in the fundamental theorem task, in which several students used 

“p” to denote both an integrand and an integral. How a student assesses sameness of 

function will impact how they make inferences in accordance with Leibniz’ law of 

indiscernibles. For example, f and the cubing function are the same and therefore share 

the property of having a derivative of 12 at x=2. However, results of this study suggest 

that this is a nontrivial inference for students. There are various possible barriers to 

making this inference: assessing f and the cubing function as the same function, 

understanding having a particular derivative as a property of functions, as well as 

denotation issues regarding whether f even is a function. While inferences regarding the 

fundamental theorem were not directly explored in this study, the fact that some students 

do not understand the function p defined using an integral to even be a function is a 

potential barrier to making inferences about sameness.   

 The second paper (Mirin & Zazkis, 2020) concerns implicit differentiation, and 

more generally, how students can come to understand the legitimacy of differentiating 

both sides of an equation. It also provides a case study together with a description of the 

obstacles that students might face when constructing such an understanding. The main 

contribution of this paper is that understanding implicit differentiation requires having a 

robust understanding of function sameness; it is valid to differentiate both sides of an 
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equation because each side of the equation is a representation of the same function, and 

therefore they share a derivative. The steps outlined in the conceptual analysis discuss the 

conceptualizations necessary for making such an inference. In this case, Leibniz’ law of 

indiscernibles tells us that when two functions are identical, they must share a derivative. 

Notably, the interviewee in this study explicitly claimed that two functions agreeing on 

every input does not necessitate that they share a derivative. This tells us that making the 

inference of same derivative from same function is nontrivial for at least some students. 

Perhaps the interviewee did not understand having a derivative as being a property of a 

function. Further investigation is needed to assess how students can come to understand 

differentiating each side of an equation as an inference from function equality.  

 The third paper concerns the equals sign directly. The equals sign expresses when 

two objects are indeed the same object. As discussed in the Introduction, philosophical 

accounts of equality (identity) address only symmetrical meanings. However, my 

investigation here considers asymmetrical meanings of the equals sign. Asymmetrical 

understandings of the equals sign are reported in the literature on children. I show that 

experts also use the equals sign asymmetrically. Specifically, I use Systemic Function 

Linguistics as well as Gricean pragmatics to consider mathematical writing as a 

communicative and not purely truth-functional act. One major finding is that it appears 

that mathematicians do not generally use Leibniz’ laws symmetrically; given the equation 

x=y, it is more common to conclude that y has the same properties as x as opposed to x 

having the same properties as y. This observation provides an interesting link between the 

philosophy of identity (e.g., the work of Leibniz) as well as linguistic concerns 

(Halliday’s Systemic Functional Linguistics). Another major finding is that 
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mathematicians do use the equals sign asymmetrically in ways that overlap with the 

understandings of children. This suggests that we ought to revisit the literature on 

children with a more critical eye.  

As a constructivist, I must consider that the mistakes students make concerning 

sameness (e.g., using the same symbol to represent two things, having asymmetrical 

understandings of the equals sign) might not just be straightforward logical fallacies. 

Second-order models of students’ mathematical meanings are necessarily non-

judgmental; they are based on the assumption that students construct their mathematical 

meanings in ways that are sensible and coherent to them. A student's conception of a 

mathematical idea serves the purpose of organizing the student's experience and is thus 

endowed with a personal, non-objective, rationality (Tallman, 2021).  
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APPENDIX A 
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APPENDIX B 

OPEN-ENDED TASKS ON EXPERTS’ USE OF THE EQUALS SIGN 
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1 This task was borrowed from Boyce and Deprima (2009) 
2The wording for this task (e.g. “binary algebraic structure”) and other related abstract algebra tasks is from 
Fraleigh (2003). 
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APPENDIX C 
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1This proof is a reversed version of the proof given in Enderton (1977). 
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