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ABSTRACT

This dissertation is on the topic of sameness of representation of mathematical
entities from a mathematics education perspective. In mathematics, people frequently
work with different representations of the same thing. This is especially evident when
considering the prevalence of the equals sign (=). I am adopting the three-paper
dissertation model. Each paper reports on a study that investigates understandings of the
identity relation.

The first study directly addresses function identity: how students conceptualize,
work with, and assess sameness of representation of function. It uses both qualitative and
quantitative methods to examine how students understand function sameness in calculus
contexts. The second study is on the topic of implicit differentiation and student
understanding of the legitimacy of it as a procedure. This relates to sameness insofar as
differentiating an equation is a valid inference when the equation expresses function
identity. The third study directly addresses usage of the equals sign (“="). In particular, I
focus on the notion of symmetry; equality is a symmetric relation (truth-functionally),
and mathematicians understand it as such. However, results of my study show that usage
is not symmetric. This is small qualitative study and incorporates ideas from the field of
linguistics.

Each study is at a different point in the journey of becoming a self-contained
journal article. Portions of the first study have been published in two separate conference
proceedings (Mirin, 2018, 2020b). The second dissertation study is already published in a
journal (Mirin & Zazkis, 2020). Copyright of the journal paper is held by For the

Learning of Mathematics Publishing Association (https://flm-journal.org/). The third



https://flm-journal.org/

study is earliest in this process; no empirical aspects of it have been published in any
proceedings or journals. However, preliminary results were presented at the Northeastern
RUME (Research in Undergraduate Mathematics Education) conference (Mirin &
Dawkins, 2020), and theoretical contributions are reported in Mirin (2019) and Mirin

(2020a).
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GENERAL INTRODUCTION

The importance of the identity relation in mathematics cannot be overstated. Four
of Euclid’s five Common Notions deal with equality, and the fifth deals with inequality
(Euclid, 300 B.C.E./2013).We see the identity relation regularly with any equation; “a=b”
tells us that a and b are identical. We use the equals sign to express that the object
represented by “a” and the object represented by “b” are in fact the same object. These
identity statements allow us to make inferences about mathematical objects and are
essential to most, if not all, subfields of mathematics. Leibniz’ law of indiscernibles states
that two objects x and y are the same object if and only if they share all properties
(Noonan & Curtis, 2014). This means that when x=y, we can infer that whatever
properties x has, y also has, and vice versa. This law allows us to make powerful
inferences. Consider the following examples from a variety of subfields of mathematics.
Numerical equations such as “2(2)=3+1" tell us that the object represented by “2(2)” is
the same as the object (the number four) represented by “3+1”, and that therefore 3+1 is
even. In other words, because 2(2) has the property of being even and 3+1 is identical to
2(2), we can conclude using Leibniz’ law that 3+1 is even. Similarly, the equation “e'™ =
—1” tells us that e'™ is in fact a real number. These inferences are not limited to
statements about numbers. For example, if p is an element of a Boolean algebra, then p -
p = 0, and therefore p - p is an additive identity (since it is identical to 0). The
permutation equation “(1 3 2) = (1 3) (1 2)” tells us that the cycle (1 3 2) is in fact even.
Similarly, a set theoretic proof that the singleton {x} exists for any set x might establish
that {x,x} exists (by the Pairing Axiom), and since {x,x}={x} by (Extensionality Axiom),

{x} exists (Devlin & Devlin, 1993). An instance of the fundamental theorem of calculus
1



tells us a statement of function identity: that the function defined by y = fzx 3t%dtis

identical to the function defined by y=x-8, and therefore y=x>-8 represents an
accumulation function corresponding to the rate of change function defined by y = 3x2.
Proofs in mathematics sometimes involve long strings of equalities, which consist of
multiple identity statements; for example, in my Master’s Thesis, I include a string of six
equalities to show that a particular unary operation distributes over a particular binary
operation in a relation algebra (Mirin, 2013). As the above examples illustrate, identity
statements (often in the form of equations) are indispensable to many subfields in
mathematics.

The notion of identity is closely linked to the notion of representation. While this
issue is elaborated on in a more philosophically rigorous manner later, it is important to
emphasize that this dissertation is a mathematics education (not philosophy) dissertation.
Thus, it is helpful to continue to keep psychological considerations in mind. To continue
with the examples above, (1 3 2) = (1 3) (1 2) because “(1 3 2)” and “(1 3) (1 2)” are
different representations of the same thing (a particular permutation). However, each
representation is likely to bring different properties to mind. For example, (1 3) (1 2)
emphasizes that the permutation at hand is even. When we make identity claims, such as
equations, what makes them informative is that the representations differ; “2(2)=3+1" is
informative because “2(2)” and “3+1” differ in their representations. The representation
“2(2)” emphasizes that the number at hand is a perfect square and is even, whereas the
representation “3+1” emphasizes that the number at hand is one more than a prime
number. The differences in representation underscore the fact that we are always thinking

of an object in a particular way or with respect to certain properties. How someone
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conceptualizes an object is going to depend on the individual person as well as on the
way the object is represented. We are never talking about objects independently of how
we conceive of them.

Before addressing identity in specific aspects of mathematics, I discuss more
generally its meaning. It might seem strange to discuss something as quotidian in
mathematics as identity, but identity is a surprisingly difficult concept. Characterizing the
identity relation is a longstanding theme in intellectual history; Plato addressed identity in
Parmenides in the fourth century, Leibniz addressed it in Discourse on Metaphysics in the
17" century, Frege addressed it in On Concept and Object (and several other works) in
the 19" century, and Williamson addressed it in Identity and Discrimination recently in
the late 20™ century (Dejnozka, 1981; Frege, 1879/1967; Leibniz, 1846/1992;
Williamson, 1990/2013). The fact that identity has been discussed in such depth by many
intellectuals underscores its significance. My intent in bringing up this issue is not to
solve a long-standing problem in philosophy, nor to provide a comprehensive overview
of identity in intellectual history. Instead, I am stressing the nontriviality of understanding
the identity relation. When we evaluate student understanding of identity, it helps to keep
in mind that students are not missing something trivial and straightforward. The
philosophical and mathematical theory is relevant for sensitizing the reader and the
researcher to think carefully about meaning, equality, and identity to provide a sound
conceptual basis prior to studying student conceptions of these ideas. Looking to
intellectual history to situate mathematics education research is a longstanding theme in
the mathematics education field -- see, for example, Sfard (1992), Thompson and Carlson
(2017), and Harel et al. (2009). Sfard (1992) takes the perspective that an individual’s

3



development of a particular concept might parallel the historical intellectual
development. Additionally, examining our own views might help us reflect more on our
research. It also provides a starting point for thinking about how one might conceptualize
identity — philosophers and mathematicians are people with these ideas, so students could
have similar intuitions or rationales. We have seen this in at least one other case;
Antonini and Mariotti (2008) observe that some students are unconvinced by non-
constructive proofs, an idea shared by intuitionists such as Brouwer (Iemhoff, 2019).

Identity is a tricky concept to put into words. Consider the sentence “A and B are
identical”. The “are” in that previous sentence is a red flag; if A is indeed identical to B,
then there is only one object we are talking about, yet the use of “are” suggests the
presence of more than one. So, I can more precisely say “A is identical to B”. That
sentence has an easy fix, but this is not the case for other sentences. Suppose I want to
ask someone “what does it mean for two functions to be the same?” If the functions really
are the same, then there certainly aren’t two of them, but asking “what does it mean for a
function to be the same as itself?”” does not make too much sense either. I could rephrase
it to “what does it mean for a function f to be identical to a function g,” but then I’ve
introduced unnecessary naming. Perhaps “f” and “g” have already been used in that
conversation to name particular functions. Then, I must find other letters, and I then have
an abundance of letters. In short, there is some deliberate imprecision for the sake of
readability.

As mentioned earlier, the normative meaning of the equals sign is that of identity;
the equals sign expresses identity, so “a=b” is synonymous with “a and b are identical”.
Yet, as alluded to above, discussing identity is tricky. It is so tricky that people appear to

4



avoid making identity statements, and instead they use other words or phrases that appear

to convey the idea of identity. These phrases include:

Can be thought of as

- Is equivalent to (without defining an equivalence relation)

- Can be described as

- Can be represented by/as

- Is essentially

- Can be written as

- Can be expressed by

- Represents
This becomes especially evident when we look at wording of the fundamental theorem of
arithmetic. When Googling “the fundamental theorem of arithmetic,” two out of the first
three results use the phrase “can be written as” or “can be represented as” rather than
simply “is” or “equals”.! I did a search of Velleman’s 2" Edition of How to Prove It, the
standard textbook used for MAT300 (“Mathematical Structures”, a transition-to-proofs
course) here at Arizona State University (ASU) and commonly used in transition-to-
proofs courses at US universities (David & Zazkis, 2019). The phrase “can be written as”
occurs eleven times in this text. Nine of these occurrences appear to convey the idea of

identity, such as “x can be written as a product of two smaller integers” (p. 6).

Another example of this phenomenon is in situations where notation is described

! Googled on 10/23/2019. First three results are:
https://en.wikipedia.org/wiki/Fundamental theorem of arithmetic
https://www.mathsisfun.com/numbers/fundamental-theorem-arithmetic.html
https://brilliant.org/wiki/fundamental-theorem-of-arithmetic/
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or introduced. I encountered the following wording as part of the College Algebra
MAT117 homework series here at Arizona State University: “C(t) represents the number
of cases of Ebola t days after May 1, 2014”. Technically, C(t) actually is the number of
cases of Ebola t days after May 1, 2014, whereas “C(t)” represents it.

Before going further, it is important that I stress what I mean by “identity” and
“equality”. As alluded to above, “a=b” is true if and only if a and b are identical. This
means that “a=b” is true if and only if {a,b} has cardinality 1. I use “a is the same as b”,
“a=b”, “a equals b”, and “a is identical to b” synonymously. Occasionally, [ use “a is b”
as well, which comes with some ambiguities; sometimes [ mean the “is” of predication
(as in “Socrates is mortal”), but other times I mean the “is” of identity (as in “Paris is the
capital of France™). It is important to note that by “identity”, I mean true identity, not
some sort of weaker equivalence relation. I make this point in Mirin (2019), from which I
include an excerpt below:

Equality represents true identity, not merely an equivalence relation: a=b if and only
if a is the same thing as b. It does not suffice for a to be equivalent or isomorphic to
b. Taking an example from algebra, it is not the case that Z/27Z = Z,.
Mathematicians might casually refer to them as “the same group,” but they are
actually different groups (members of Z/2Z are sets of integers, whereas members
of Z, are integers). Z/2Z and Z, are of the same isomorphism class, but they are
not equal to each other. This is not to say that they are unequal simply because we
write members of Z/27Z one way and members of Z, another way; indeed, we can
have two different names for the same thing. For example, we can write the same

group with additive or multiplicative notation; we have the same group, not merely
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isomorphic groups. Similarly, we can call the same function both “f” and “g”. So
long as the set for the group, together with its operation, are identical (despite
different names), the groups are identical.
To elaborate on my point: while we want to be explicit that equivalence (in this case,
isomorphism) is not always equality, we also ought not think that different names always

name different objects. Consider the following group tables:

Gy G, G
01 + |a|b | [0]][1.
d
b

alb [0] | [0]|[1]
b|a [1] [[1] ][O

=0 [0]={0,2,-2,4,-4,...}
1 [1]={0,1,-1,3,-3,...}

Figure 1.1. Groups of Order Two.

How many groups have I defined above in Figure 1.1? All three group tables
certainly look different visually, and a group theorist might say that they are all just Z,.
However, if we look carefully, we can see that there are two distinct groups. G, and G,
are identical. They have the same elements, and their group operation is identical. Notice
that their group operation is identical because the operation agrees on all elements — the
notion of identical function(s) is discussed later. Since a group is a set together with a
particular operation that satisfies certain axioms, by the nature of what defines a group,
G; = G,. This is despite the fact that the elements in the group table for G; are written

7



differently than the elements in the group table for G,; note that we know that G; = G,
because we know (by stipulation) that the element a is identical to 0 and b is identical to
1. If a or b were anything else, this would not be the case. It is clear that G, and G5 are
different groups; elements of G, are integers, and elements of G are infinite sets.” So,
among G4, G,, and G, there is one isomorphism class, two groups, and three names of
groups.

c__9

While I and the modern mathematical community use to express identity, it

bears mentioning that the equals sign has not always been used this way. In the 19"

€C__ 9

century, there was a widespread debate about whether in mathematics represents true
identity. Some thinkers “posited some weaker form of ‘equality’ such that the numbers
4(2) and 11-3 would be said to be equal in number or equal in magnitude without thereby
constituting one and the same thing” (Klement, 2019). People with such viewpoints
might disagree that the fundamental theorem of arithmetic tells us that every non-prime
number is (identical to) a product of primes, while at the same time they might claim that
every non-prime number equals a product of primes.
1.1 Frege and Identity

I now turn to a discussion of philosophy. Since there is so little mathematics
education literature on identity, it makes sense for me to include what literature there

happens to be on identity (and the bulk of that literature is philosophical). Since the topic

of identity is what ties my dissertation papers together, it is worth exploring more

2 T acknowledge that some people might name an equivalence class with just an element. That is, it is not
uncommon to see someone name the set of even integers “0”. However, when people do this, they are
usually explicit that they are adopting this convention. Furthermore, I’m not adopting this convention; I
defined the group G, to have the integers 0 and 1 as members.
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generally the meaning of identity. Another reason I include this discussion is an effort of
intellectual honesty; my own interest in how people understand identity is motived by my
background in philosophy. The existence of philosophical literature on the topic also
underscores the nontriviality of understanding identity.

How the issue of identity manifests in non-mathematical contexts can inform how
we approach them in mathematical contexts. Accordingly, we begin with one of Frege’s
puzzles of identity. This involves a story. The Ancient Greeks observed a dull white
glowing sphere in the sky during sunrise. They called this “The Morning Star
(Phosphorus)”. They also observed a sphere in the sky during sunset and called this
sphere “The Evening Star (Hesperus)”. It wasn’t until around the sixth century BCE,
through empirical observation, that the Greeks discovered that The Morning Star and The
Evening Star are in fact the same celestial body: the planet Venus (Frege, 1879/1967;
Makin, 2010). This is despite the fact that there was an experiential difference viewing
Venus as The Morning Star versus as The Evening Star. With this in mind, consider the
following sentences:

(1) The Morning Star is The Evening Star.

(2) Venus is Venus.

Observe that (1) is informative, whereas (2) is not. Frege puzzled over what the identity
relation is on: names, or objects (the things named by names). Early Frege (1879/1967)
proposed a theory of meaning in which the referent (bedeutung) of a name is the meaning
of a name (specifically, that all noun phrases do is refer to objects). In order to account
for the informativeness of sentences like (1), Frege initially rejected the idea that the

identity relation is between objects (referents). He thus concluded that it must be a
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relation between names. With the identity relation between names, it became a less
trivial-seeming relation that expresses information. “The Morning Star is the Evening
Star” was not just saying that Venus was itself; instead, it was saying that the names ‘The
Morning Star’ and ‘The Evening Star’ refer to the same object, so that “The Morning
Star” = “The Evening Star” rather than The Morning Star = The Evening Star. Under this
ultimately rejected conception, identity is then no longer truly identity, but some sort of

equivalence relation on names.

The morning star is the evening star

Venus Venus

Figure 1.2. Venus and its Representations.

Frege later rejected this view on the grounds that meaning should involve more
than arbitrary linguistic conventions (names) and instead express “objective knowledge”
about the world (Frege, 1879/1967; Makin, 2010). Thus, he ultimately decided that the
identity relation is between objects rather than names. In order to deal with the problem
of informativeness (“Venus=Venus” isn’t an informative statement), he modified his
original theory by creating the construct of sense (which he also calls “cognitive value”)
to complement that of referent. Sense is what leads you to think of the planet Venus when
you hear “The Morning Star” and Joe Biden when you hear “the president of the United

States inaugurated in 2021”. Frege refers to a sense as a “mode of presentation” and is
10



something that we “grasp” (Dejnozka, 1981; Frege, 1892/1948; Makin, 2010). The
sentence “The Morning Star = The Evening Star” tells us that the senses picked out by
“The Morning Star” and “The Evening Star” point to the same referent (Venus, see
Figure 1.2). The expressions “2+3” and “4+1” express different senses but have the same
referent (the number five). Frege never defines “sense” precisely, but in this example the
sense of “2+3” involves thinking of the addition function (arguably, the sentence
“2+3=4+1" is informative in that it says something about addition).

The above story illustrates that in order to really understand identity statements,
we have to think of more than just the referents or objects named in the statements; we
have to think of how they are named. This is one reason that identity is tricky to talk
about; if we think we are only talking about objects, identity statements become
tautological and uninformative. We have to re-orient ourselves and realize that we are not
talking just about objects existing independently of how we conceive of them. In a way,
every identity statement can be thought of as a story — when we see “A=B” we can think
to ourselves “Once upon a time, I thought of A, and I thought of B without knowing
whether or not they are the same. Later, | found out that they are the same”. Perhaps
Hodges (1997) is expressing a similar sentiment when he writes “name the elements of
the structure first, then decide how they should behave” (p.2).

This careful attention to identity statements tells us not only about how to
understand identity statements, but also the importance of representation. I would argue
that there is no such thing as a fully transparent representation; that is, there is no way
that any object can be represented in a way that shows all of its properties. Think of an
object — any object. There is some aspect of it that you’re missing. Perhaps it is an aspect

11



that you haven’t even thought of yet. If you were thinking of Venus, maybe you had the
image in Figure 1.2 in your mind. Were you thinking about the fact that it is the second
planet from the sun? There are many ways to represent a single object, but there’s no
reason to think that there is some ultimate transparent representation. This brings us back
to the point I emphasized earlier: we are always thinking of the object in some way or
with respect to certain properties. Thus, when we talk about an object or ask students
about an object, we cannot assume that we are simply giving them an object — we are
thinking about the object in some way, and they are thinking about the object in some
way. We were never really talking just about a planet (Venus), but how we conceived of
it. [ return to this topic later when discussing mathematics education literature on identity.
All this discussion about objects raises an issue; what thing does a name of a
mathematical entity (e.g., a number) refer to? Clearly, “mathematical entity” is the
answer to my question. But what is that? Is it even an object? There is no physical object
of a number that we can simply point to, and there is a longstanding historical discussion

about what an abstract mathematical object even is, if anything (Horsten, 2016). In the

100

sentence (130) = (97

, the terms on each side of the equals sign refers to the “object”,

the number 161700, perhaps out in the Platonic heavens (Figure 1.3).
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(3)=(s7)

— R

Number of ways to Number of ways to
choose 3 items choose 97 items
from 100 items from 100 items

Figure 1.3. Multiple Representations of the Same Number.

Yet, mathematicians go on to do mathematics and use identity statements without
solving this problem. Identity statements can give us a way of sidestepping some of this
messy ontology and provide great inferential power. Consider the example of Zermelo-
Fraenkel (ZF) set theory. The axiom of extensionality says that for sets, S=T if and only
if S and T have the same elements. Mathematicians work within the system of
axiomatized set theory with “set” being an undefined notion. This is partially because the
notion of sameness of sets captures some of the notion of what a set is: a collection of
objects. I discuss this idea, that sameness captures the essence of what an object is, in
further detail later as it has applicability well beyond set theory.

1.2 Mathematical Identity in Education: A General Literature Review

Having reviewed some of the philosophical literature on identity, I now move to a
discussion of the mathematics education literature on identity. Literature informing the
topic of mathematical identity largely falls into two categories. The first category consists

of literature on student understanding of thele3quals sign in numerical equations. The



second category includes literature that, although is not purported to be about identity,
includes information about how students might view identity. I turn to a review of this
literature more broadly. Literature more specific to each individual study is addressed in
the chapters pertaining to each study.
1.2.1 Equals Sign Literature

This literature largely centers on the relational versus operational dichotomy,
although authors are not always explicit about this dichotomy. While a relational
understanding is a normative or productive understanding, an operational understanding
of the equals sign is any non-normative or unproductive understanding. I first provide
literature reviews on the characterizations of relational and operational views of the
equals sign.

1.2.1.1 “Relational” Equals. Mathematics education authors tend to define the
“relational” (normative) meaning of the equals sign in a way that is problematic. Some
authors give a nominal view of the equals sign as expressing a relation between names or
signs, some define it narrowly and limited to subtopic of study, and some treat it as
expressing intersubstitutability. Often, authors are unclear precisely on what sort of
objects (names versus numbers or mathematical entities) the equals sign expresses a
relation and use the word “equivalence” without specifying an equivalence relation. In
Mirin (2019), I discuss some of these characterizations. I use the philosophy discussed
earlier to frame these characterizations. My main finding is that authors appear to give a
precise definition of a relational understanding of “=", but closer investigation reveals
that the authors are not successful. Most of the characterizations are ambiguous, narrow,
or philosophically problematic. For example, several authors appear to characterize “="
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as expressing sameness of attributes of expressions (rather than sameness of referent),
and several other authors focus on nominal sameness (which, as discussed earlier, Frege
had reasons to reject). Now, these authors are not philosophers writing philosophy
papers, so there is no reason to expect that they even should solve a longstanding
philosophical problem of the meaning of “=". Yet, it appears that the authors purport to
characterize a meaning of “=". My main conclusion in Mirin (2019) is that a crucial
commonality throughout all the characterizations of a relational meaning of “=""is that it
is important that students understand “=" in a way that is tantamount to expressing an
equivalence relation.

At this point, it is worth providing a link between the present discussion on the
meaning of the equals sign and the prior discussion of the relationship between what
defines a class of objects and the identity criteria within that class of objects. This is
difficult in the case of numbers, because it is difficult to imagine asking someone if a and
b are the same number and having them get the question wrong for reasons other than a
computational error (although it is possible, if someone conflates ‘number’ with
‘numeral’, as I discuss in more detail in Mirin (2020a) with the example of “D” in Behr et
al. (1980)). The discussion from Mirin (2020a) about Behr et al. (1980) and
equinumerosity provides some insight. One way to view a (natural) number is as an
equivalence class of equinumerous sets; the number 3 represents all sets of three objects
(a philosophical statement), and someone begins to understand the idea of “3” by
experiencing various sets of three objects (the psychological counterpart). This
philosophical statement is the view of both Frege and Russell (Russell, 1993) and is
endorsed by variation theorists (discussed below) as well as several psychologists (Izard
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et al., 2014). This is the viewpoint that Behr et al. (1980) appear to be taking in the
following quote “the most basic meaning is an abstraction of the notion of sameness. This
is an intuitive notion of equality which arises from experience with equivalent sets of
objects. This is the notion of equality which we would hope children would exhibit”
(p.13). It appears that the authors are endorsing that a number is an equivalence class of
objects, and that therefore numbers are the same if and only if they are the same
equivalence class.’
1.2.1.2 “Operational” Equals. In Mirin (2020a), I provide an operational
counterpart to Mirin (2019). Specifically, I include a literature review and analysis of the
various “operational” characterizations of the equals sign. For a more detailed literature
review of the meaning of the “operational” classification, please consult Mirin (2020a).
Below is an excerpt from Mirin (2020a), pp. 805-806.
Many students struggle with accepting equations of the form (i) “5=2+3", (i1)
“5=5”, and (ii1) “3+2=4+1", preferring equations like (i’) “2+3=5", (ii’) “5+0=5",
and (ii1”) 2+3=5+1=6, respectively (Behr et al., 1980; Byrd et al., 2015; Denmark
et al., 1976; McNeil et al., 2006; Oksuz, 2007; Sdenz-Ludlow & Walgamuth,
1998). The equations (i), (i1), and (iii) can be described as “rule violations” and
characterize operational understandings of the equals sign (Oksuz, 2007). The
idea behind this terminology is that students with operational understandings are
accustomed to seeing the equals sign in contexts like “2+3=5", where “2+3” is an

arithmetic problem to which “5” is the answer. Such a student might have in mind

3 For this interpretation to make sense, there has to be a way of making sense of numerical operations as
operations on classes of objects. This is not far-fetched. We can imagine conceiving of “2+3” as the
cardinality of the set resulting from forming the union of two disjoint sets, one of cardinality two and the
other of cardinality three. 16



certain rules about how equations should look. In particular, the equations in
Table * violate the rule that to the left of the equals sign is an arithmetic problem
on the right of which is a single numeral as an answer. A common explanation
posited for such understandings is that students view the equals sign as a
command to perform an operation. These understandings of the equals sign that
involve arithmetic, problems, answers, and calculations are characterized as
“operational”.

Table 1. Equations that students frequently reject accompanied by preferred

alternatives.
Rule Violation Preferred Equation(s)
(1) 5=2+3 1) 2+3=5
(i1) 2+3=4+1 (11”) 2+3=5+1=6 2+3=5
/
4+1=5
(111) 5=5 (1i1”) 5+0=5

1.2.2 Other Literature Pertaining to Identity
Although there are no papers explicitly about student understanding of identity,
the idea of identity is not completely ignored. Specifically, some work has implications

for how students might understand identity. At this point, it is worth reminding ourselves

4 Table 1 refers to the first table in the reference being cited.
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that our more general topic of investigation is on people’s use and understanding of
identity and the ideas and symbols associated with it. Although the equals sign expresses
identity, the above research shows that many students do not think of it as such. Hence,
when we investigate such student’s understanding of the equals sign, we are not really
investigating their understanding of identity exactly (hence why the topic of investigation
includes “ideas and symbols associated with it”). The point I am trying to emphasize is
that the existence of students with such conceptions indicates that investigating student
understanding of identity is not always the same thing as investigating student
understanding of the equals sign. This discrepancy highlights the need to discuss not only
understanding of the equals sign, but of the concept of identity and sameness of
representation in general. How someone understands identity statements is entangled
with how someone understands the objects (if they even think of objects as being
involved, see Thompson & Sfard, 1994); as alluded to above, how a student understands
“a=b” or “a is identical to b” is inextricably tied to how they understand “a” and “b”.
Accordingly, the discussion herein is a review of the mathematics education literature
that, while not ostensibly on the topic of identity, still relates to identity and how students
might understand identity statements.

I revisit the issue of representation discussed earlier. Recall that identity
statements involve both sameness and difference. A statement such as “The Morning Star
is identical to The Evening Star” is a statement about sameness, and this statement is
informative because it appeals to different representations (rather than simply stating
“Venus is identical to Venus”). Hence, the idea of different representations is closely
related to the idea of identity.
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Various mathematics education researchers have considered that there are
different representations of mathematical objects. Lesh et al. (1987) introduce the idea of
transparent and opaque representations. They describe transparent representations as
those that have no more meaning than the thing that is being represented, and opaque
representations as emphasizing some aspects but not others of the thing that is being
represented. This distinction is problematic. As alluded to earlier in the philosophical
discussion on Frege, it seems problematic to claim that there is such a thing as a truly
transparent representation that embodies an object without any mediation of language.
Zazkis and Gadowsky (2001) accordingly adapt the framework of Lesh et al. (1987) by
characterizing representations of numbers as transparent or opaque with respect to a
particular property. For example,”28%”is a transparent representation of a number with
respect to the property of being a perfect square but opaque with respect to the property
of being divisible by 98. We can reframe the discussion in the introduction of making
inferences about numbers by using identity statements. When we observe that el™ =
—1 and therefore conclude that e'™ is a real number, we are able to make this conclusion
because “-1” is a transparent representation of e'™ with respect to the property of being
real.

There is little research in how students view equations (using the equals sign)
between things other than numbers. One of the first times students encounter equations of
functions is in the context of differential equations; a differential equation is a (particular
kind) of equation between function(s), and a solution to that equation is a function that
satisfies it. Rasmussen (2001) observes that students’ experience with “solving” involves

only numerical solutions, making the notion of a solution as a function novel to some
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students. He found that students often did not view a solution to a differential equation as
a function. This was especially the case with constant functions. While this research is
not purported to be about the equals sign, it seems to suggest that student might not view
differential equations as expressing function identity.

Some mathematics education researchers discuss the idea of multiple registers
(types) of representations of functions (e.g., graphical, verbal, analytic) and the
translation between these registers. Overall, the literature suggests that college students
tend to struggle translating between representation type, yet it does not address the idea
of identity between representations (Chinnappan & Thomas, 2001; Even, 1998; Gagatsis
et al., 2004). I discuss more of this representation literature below in the specific
literature review for the paper on function sameness (chapter 2). Chinnappan and Thomas
(2001) describe a teacher who said she did not view the algebraic representations as
representations of functions and claimed that she associates functions with graphs rather
than “algebra”. While the authors do not address identity between representations, the
fact that the teacher considers an algebraic representation to not be of a function suggests
that she would not view it as being identical to the graphical representation. These
researchers do not consider the possibility that a student could view identity as lost in
translation when moving from one representation type to another. While to us it might
seem obvious that some sort of identity is maintained when we perform certain
transformations or changes in representation, this might not be the case for students.
Consider the case of Mindi, described in Thompson (2013b): when given the equation
“w/3 = 117, she claims “w/3” stands for a number, but in order to know what that

number is, she would need to find what number “w” is first. In a way, Mindi was
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implicitly allowing the possibility that the “ w/3” in the given equation refers to a
different number than “ w/3” after finding the value of w and dividing by 3. Thompson
explains that Mindi was thinking procedurally: “The meaning of an equation, for Mindi,
was that it was a symbolic form that she was expected to act on to end with another form
x=number” (p. 66). We can imagine that college students might perform a similar
syntactic manipulation from one representation to another without attending to meaning
or the link between the prompt (problem) and the result (answer), as well as without
viewing an expression as maintaining its identity throughout the problem.

Recall earlier the discussion of set theory. The axiom of extensionality says that a
set A is identical to a set B if and only if A and B have the same elements. There is a
sense in which this axiom captures the essence of what a set is intuitively (a collection of
objects); collections of objects are identical if and only if they contain the same objects.
Another example from set theory is that of the formalization of ordered pairs. The
ordered pair (a,b) is defined to be the set {{a},{a,b}}. The justification for this
formalization is that under this definition, (a,b)=(c,d) if and only if a=c and b=d (see, for
example, Devlin and Devlin, 1993; Enderton, 1977). Observe that the criteria for equality
of ordered pairs is what is used to justify the definition of the ordered pairs; this
definition of ordered pair works because two (one) ordered pairs are the same if and only
if they have the same elements in the same order.

These examples illustrate the relationship between identity criteria within a class
of things and the defining features of that class. Said informally: what makes an A an A is
closely related to how we determine when two A’s are actually the same A (e.g., what

makes a set a set is closely related to how we determine when two sets are actually the
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same set). There is a clear psychological corollary to this observation: a person’s criteria
for identity within a category closely relates to that person’s conception of the defining
features of that category. For example, if someone views {2,3} as not the same set as

{3,2}, then perhaps they view sets as ordered collections of objects rather than just

What is a function?

[

f == 8

What defines function identity?

Figure 1.4. An Illustration of the Relationship Between a Category and Identity within that

Category.

collections of objects. We can see how this psychological corollary manifests itself in
other areas of mathematics. If a student views the group Z/2Z as identical to Z,, then
perhaps they do not view a group as a set together with a binary operation and instead
view a group as what we think of as an isomorphism class of groups (since Z/2Z and Z,
are indeed isomorphic). If a student views the polar points (1,1/4) and (—1,51/4) as the
same point, then they might view points as locations rather than ordered pairs.

Some mathematics education researchers have leveraged this psychological
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corollary for the concept of function. That is, they have exploited student conception of
sameness of function as a way of getting at students’ understanding of the defining
features of the function category (Mirin, 2017; Novotna et al., 2006; Sfard, 1992). I
discuss this literature in more detail in the literature review specific to my paper on
function identity (chapter 2). My more general point here is emphasizing the relationship
between sameness within a category and the defining features of a category.

1.2.2.1 Variation theory in mathematics education. The importance of
sameness in mathematics education has been expressed by variation theorists. While I do
not use variation theory per se, I include it as an example of mathematics education
literature that addresses issues of sameness. For this reason, it is placed here in the
literature review rather than as a theoretical perspective.

Variation theory focuses on difference rather than sameness. The general idea is
that seeing difference helps one see sameness. Note that the focus on difference is not as
antithetical to my topic of sameness as it first appears; recall the discussion earlier about
different representations of the same thing. Variation theory is about how people learn
through difference/sameness, rather than what people think about sameness itself. For
this reason, it is not central to my work. Nevertheless, because of its peripheral relevance,
I choose to address it. The ideas illustrated in Figure 1.4 (relationship between identity
within a category and defining features of that category) highlight its connection to my
topic of research. I discuss this connection below.

Variation theory is based on the idea that humans learn through discernment of

differences and invariants. It involves the following principles:
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Principle 1: Varying the nonessential features of a concept can help one see
the critical features of a concept (instances of a concept can help one
understand the concept);

Principle 2: Non-instances of a concept can help one understand a concept,’

with emphasis on Principle 2. Suppose someone wants to understand the concept of

/ Things with color\

Blue things

Black things

Red things

- /

All Things Ever (even without color

Figure 1.5. Variation Theory for “Blue”.
blueness. Seeing various blue-colored objects helps someone see what blueness is
(Principle 1). The shape of something does not determine whether or not it is blue, so
exposing someone to blue objects of various shapes can help them discern the essential
aspect (blueness) from the nonessential aspect (shape). The general idea of this principle
is that seeing different instances of a concept can help one distinguish what is essential to
that concept. Seeing something of a color other than blue can help someone see what

blueness is (Principle 2), because being able to discern when things are not blue is closely

5 These Principles are a reframing of the Contrast, Separation, and Generalization principles described in
Marton, Runesson, & Tsui (2004) 24



related to the notion of being able to discern when things are blue. Kullberg et al. (2017)
give the example of the concept of linear function. In order to understand what a linear
function is, someone should be exposed to multiple examples of linear functions
(Principle 1) as well as non-linear functions (Principle 2).

In the context of variation theory, there always seems to be some unstated larger
universe of discourse. This is needed to invoke Principle 2. For example, in the context of
the concept of blue, we assume that we are in the universe of discourse of color or things
that have color. In the case of linear function described above, the authors assume that we
are in the universe of discourse of function. In the case of function, we might assume that
we are in the universe of discourse of binary relations. It is not always easy to discern
what the universe of discourse is, but it appears to involve a larger category, and
members of this larger category might not be immediately obviously in the smaller
category (the “concept”). For example, if someone is still learning the concept of blue,
the larger category (which includes the non-instances) will not include things that have
nothing to do with color (say, mathematical objects, or perhaps sound waves). This idea
is illustrated in Figure 1.5. If someone is learning the concept of function, cars will not be
in the larger category since it is immediately obvious that cars are not functions.

It is important to keep in mind that the larger class of things that we have in mind
may not be the same as that of the student. For example, we might ask “is this a
function?” and think of ¢his as a binary relation, whereas the student might just see it as
symbols. When we ask “does this equal that” and think that ¢his and that refer to

numbers, the student might be thinking of them as problems or as processes.
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There’s a relationship between Figure 1.4 and variation theory. Through the lens
of variation theory, we can view the “concept” to be a category of representations of a
particular function. How someone understands what makes a representation of a function
in that particular category closely relates to how they discern whether a representation of
a function is not in that category. At first glance it might appear that for the category of
functions, I just reiterated variation theory when discussing the relationship between the
defining features of a category and identity within a category. However, function is not
the appropriate category. Instead, the category is (representation of) a particular
function. The thing that is the same is a particular mathematical object (rather than a class
of mathematical objects), and its representation varies. The diagram below (Figure 1.6)
illustrates the idea of instances and non-instances of three categories (“concepts”) related
to that of function: function itself, function identity, and a particular function. The
leftmost diagram is an illustration of variation theory (specifically, Principles 1 and 2)
applied to the concept of function. It illustrates that f, g, m, and k are all functions
(instances of the concept of function), whereas f-inverse and {(x,y): x=y*} are both non-
functions (non-instances of the concept of function). The diagram on the right portion of
Figure 1.6 is an analogue of the “function sameness” concept; rather than a larger
mathematical category being varied (like is typical in variation theory), a representation
of an individual function (the function that squares natural numbers) is being varied, and
we have instances of representations of it. The thing that’s the same is the specific
function. Now turn to the middle diagram, which is an application of variation theory to
the concept of function identity (rather than simply to the concept of function). There are
varying instances of it (inside the cloud) and non-instances of it (outside the cloud, three
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shown). All three diagrams can be viewed as variation theory, but on different “concepts”

(each of which is represented by a cloud).

g:Z—>7 fiR->R k:Z—7 m:N—N
0)=0
g(x)=Ix| Fx)=x" k()= Vr? ()

m(x+1)=m(x)+2x+1

function Function sameness

The function that squares

(kg) natural numbers

m

fIN

{(x,y): x=y*} (m,g)

(k,m) g
(e.f) f

f—l

Figure 1.6. Varying Concepts Related to Function.

1.3 Epistemology and Theoretical Perspective

I have been discussing the notion of “multiple representations” of (identical)
mathematical objects. Yet, I never defined what exactly representation means. When we
define words, we run into a conundrum; we use more words, and must we define those
words too? “Explanations come to an end somewhere” (Wittgenstein, 1953/2009). Yet,
this does not mean that definitions or explanations of words are useless. Ideally, they
should describe the word using other words that are easier to understand, so that the topic
of interest is more transparent to the reader. The definitions of “representation” that I
have found do not appear to bring a clearer picture than simply saying “representation”.

However, the following characterization is accurate: “any concept of

¢ The function sameness cloud assumes that functions are identical if and only if they have the same graph
and thus uses the Ordered Pairs definition of function (Mirin et al., 2020)
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representation must involve two related but functionally separate entities. We call one
entity the representing world and the other the represented world” (p.23, Kaput, 1987,
citing Palmer, 1977). In the topic of interest here, the represented world constitutes
mathematical objects (e.g., numbers, functions), however the thinker conceives of them.
Defining the representing world (the representation itself) is a bit trickier. Is it marks on a
page? If so, then does a verbal description of those same marks on a page constitute the
same representation? Is it the marks themselves that are the representation, or the way in
which the marks refer to an object? Thompson might argue that discussing marks on a
page, or representations in general, is problematic in some contexts (Thompson & Sfard,
1994). If a representation is just marks on a page, then is a task about a representation just
a task about marks on a page? Thompson (1982) would not consider marks on a page, or
soundwaves in the air, to even be a task. It is also difficult to even characterize what
constitutes different representations to us. Consider a verbal description of a function, say
“the cubing function”. Does the visual display that you just read constitute a different
representation than if you were to hear it spoken? I treat “representation” to mean
something like Fregeian senses (discussed earlier). Representations are different when
they bring something different to mind. There are some cases in which we might say that
some representations are different from each other (e.g., a function defined by a single
equation versus a function defined piecewise, as I describe in the first dissertation paper
(chapter 2) and in Mirin, 2018). Various mathematics education researchers have
considered that there are different representations of mathematical objects. “2(3)” and
“4+2” are different representations of the number six, as they bring different things to
mind and are transparent and opaque with respect to different properties (see Zazkis &
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Gadowsky, 2001). I remain agnostic on whether “6”, “six”, and “SIX” are the same
representation. So, while we do not have a complete characterization of what makes
representations different, we have some idea of what different representations might be.
Thompson has a detailed debate with Sfard about the issue of representation of
mathematical objects (Thompson & Sfard, 1994). He offers a general critique of the
multiple representation literature: “My criticism is of people using ‘representation’ too
loosely, without mentioning a person to whom some sign, symbol, or expression has
some meaning” (p.10). When describing representations, we ought to be diligent about
not mis-ascribing an understanding to students. What are two representations of the same
thing to us may be completely unrelated to students. Hence, when we refer to “multiple
representations” in the context of mathematics education research, it is important to ask
ourselves “multiple representations of what and to whom?”. If we are to talk about how
students understand “graphical and verbal representations of a function,” we must be
clear, both in our minds and in our writing, where the notion of representation resides -
often it is in the mind of the researcher, not the student. If we are to say “such-and-such
student does not understand multiple representations of a function,” we need to clarify --
does such-and-such student even view those “multiple representations” as of the same
function? As even being of functions? As anything beyond a representation itself?
Unfortunately, this approach brings us to a dilemma: can we really say that this
research is about “sameness” if students to not view anything as being the same? This
dilemma applies to almost any subject of inquiry - how can we say that we are
investigating students’ understanding of the concept of anything, when a concept is by its

very definition internal to a student? Are we really investigating students’ understanding
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of (for example) the concept of function when we give students tasks that we as
mathematicians view to be about functions but the student views to be about, say,
symbolic manipulation? The straight-forward way is to simply avoid the paradoxical
notion of “investigating students understanding of the concept of  ” and instead
talk about students’ understandings of words. This appears to be the approach in variation
theory — in variation theory, a “concept” appears to just be a word describing a class of
things. We could talk about students’ understanding of the word “function”. This makes
Tall and Vinner's (1981) notion of concept-image and concept-definition especially
appealing - research grounded in this framework is inherently about students’ association
with a word or phrase. The research question is then reduced to a question about word
meaning (e.g., “what do students think the word means, and how do their stated
meanings differ from their hidden meanings?”’). Although this creates a nice way of
framing a topic of investigation, this limits us to talking about only words rather than
mathematical concepts or something deeper.

While I use the construct of concept-image in my work, I do not limit myself to
students’ understanding of the meaning of words. My work is about sameness of
representation, while remaining sensitive to the fact that students (research subjects)
might not interpret their tasks to be about sameness at all. My areas of investigation are
consistent with constructivism, so a constructivist methodology of model creation is
appropriate (Thompson, 1982). A guiding aspect of my research is to not assume that
what is a representation of an abstract mathematical object to us is also viewed as an

abstract mathematical object by a student (Thompson & Sfard, 1994). Similarly, what is
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the same to us might not be the same to students. Thompson (1982) provides an excellent
explanation of the constructivist approach to such questions:

The constructivist asks: "What is the problem that this student is solving, given

that I have attempted to communicate to him the problem I have in mind?" This is

a legitimate research question to a constructivist; to an environmentalist it most

assuredly is not (p. 153).

It is worth noting that data collection, data analysis, and theoretical perspective
cannot be separated; how you collect data has to do with how you analyze it and the data
analysis techniques that are available to you, and the way you want to analyze your data
determines the way you collect it. Similarly, your research question and methodologies
are closely related to your theoretical perspective. The type of data you collect as a
behaviorist might be different from the type of data you collect as a constructivist since
your research question might be more about behaviors and tendencies than about ways of
thinking (Cobb, 2007; Thompson, 1982).

Steffe and Thompson (2000) provide useful terminology. They use the phrase
“students’ mathematics” to refer to the students’ mathematical realities, and
“mathematics of students” to refer to interpretations (models) of students’ mathematics.
This parallel language emphasizes the fact that we apply the same epistemology to
ourselves as researchers as we do to students (model-builders).

I now elaborate on what I mean by “model”. Thoughts and mental actions are not
directly observable in the sense that thoughts are not directly sensible (e.g., viewable,

smellable, touchable). This is not simply a matter of not having the proper brain imaging
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technology or a fundamental flaw in the notion of studying cognition. Consider the
following quote by Leibniz (Jorati, n.d.):

If we imagine that there is a machine whose structure makes it think, sense, and

have perceptions, we could conceive it enlarged, keeping the same proportions, so

that we could enter into it, as one enters into a mill. Assuming that, when

inspecting its interior, we will only find parts that push one another, and we will

never find anything to explain a perception (Monadology, Section 17).
Now imagine that “students’ mathematics” were there in place of “perception”. Even if
we were to see all the parts of the brain, we still could not see the thoughts themselves.
Thus, we model them. Modeling is a form of abduction, distinct from induction or
deduction. It involves creating explanations in order to account for observed events and is
necessary for understanding things to which we do not have direct observation (Jorati,
n.d.). It is also an essential aspect of scientific discovery that is not unique to studying
abstract notions like thought (Clement, 2000; Schickore, 2018). For example, we can see
the use of abduction in medicine (a diagnosis is a model that best explains someone’s
symptoms).

The idea of model-building is grounded in constructivism as an epistemology.
The following quote characterizes ideas underlying radical constructivism: “(1)
Knowledge is not passively received but actively built up by the cognizing subject; (2)
the function of cognition is adaptive and serves the organization of the experiential world,
not the discovery of ontological reality” (Glasersfeld, 1989 p.114, found in Thompson,
2013a). The epistemology that we apply to the student and the researcher is the same;
neither have direct access to ontological reality and therefore must construct models of it.
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The term “first order models™ refers to the models that students have (students’
mathematics), and the term “second order models” refers to the models that researchers
create of the student models (mathematics of students). The data collected through
interacting with students are used to create these second-order models (Steffe and
Thompson, 2000).

Building models of individual students might be viewed as a limitation (like any
qualitative research, a limitation is that it’s not quantitative). The researcher might need
to spend several hours interacting with a student in order to build a robust model of that
one student’s mathematics. Despite all this careful time, some people view qualitative
research as not legitimate due to not being generalizable on the grounds that few subjects
are involved (Kvale, 1994). However, there is a general assumption that a way a student
thinks will be shared by other students. Reframing this in a constructivist way, this means
that the researcher will continue to experience similar things, just as the student
experiences patterns (Steffe, 1991). A model of knowing that might generalize beyond a
particular student is referred to as an “epistemic subject” (Thompson, 2013a). An
epistemic subject can encompass many students who have similar ways of thinking
(Thompson, 2013a). Thus, studying an individual student can have the utility of
generalizing to other students.

This sort of potential generalizability is not unique to mathematics education. We
tend to assume that some categories of things have some sort of regularity. These

categories are often called “natural kinds” (Bird & Tobin, 2018).” This assumption of

7“To say that a kind is natural is to say that it corresponds to a grouping that reflects the
structure of the natural world” (Bird & Tobin, 2018).
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regularity in nature occurs in other fields as well. For example, a biologist might dissect
a pigeon under the assumption that other pigeons will share similar characteristics; they
are learning something about pigeons in general, not just that particular pigeon. Consider
the study of human anatomy. The cadavers that medical students and researchers dissect
only represent a convenience sample. Yet, there is an underlying assumption that the
phenomena observed in those bodies will extend to other bodies as well. This is true even
when an abnormality is found; there might be a general assumption that this abnormality
(perhaps a disease) exists in other cadavers. This is similar to how we handle studying
students’ minds. Although we might have a convenience sample, we assume that minds
tend to resemble each other. If we discover a way of thinking in one student, we tend to
believe that it might exist in some other students as well. This regularity might lead to
generalizations amongst multiple students and instances, in what Clement (2000)

describes as “convergent studies”.
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WHERE WE SEE ONE FUNCTION, THEY SEE TWO

Multiple representations of functions play an important role in mathematics and
mathematics education. There is a body of literature addressing college students’
difficulties linking multiple representations of functions, and some studies suggest that
post-secondary students struggle translating between different representations
(Chinnappan & Thomas, 2001; Even, 1998; Gagatsis et al., 2004). The literature on
multiple representations tends to focus on translation between multiple types of
representations (e.g., graphic, analytic, and verbal), rather than multiple representations
of the same type.

However, working with multiple analytic representations of a function is also a
crucial part of mathematics. This occurs prominently in differential equations; a
differential equation is a particular type of equation that asserts identity of functions (see,
for example, Boyce & DiPrima, 2009). This means that each side of a differential
equation is a representation of the same function. We also see function identity in the
context of implicit differentiation and related rates problems; when we differentiate an
equation, each side of the equation is a representation of the same function (included as
Section 4, published as Mirin & Zazkis, 2020). Specifically, what allows us to
“differentiate both sides” of an equation is to understand that equation as asserting that
two different representations of the same function are indeed the same function and
therefore have the same derivative. Hence, being able to assess when two functions are
actually the same function can enable powerful inferences.

The notion of two different analytic representations of the same function appears
also in the fundamental theorem of calculus. Viewed as a statement of function identity,
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the fundamental theorem of calculus asserts that, given a differentiable function fand a

number a in the domain of f, the function g defined on the domain of f by g(x) =
fax f’(t)dt is the same as the function h defined by h(x)=f(x)-f(a). This is arguably the

manner in which Newton conceived of the fundamental theorem of calculus (Thompson
& Silverman, 2008). The prevalence of the fundamental theorem of calculus, combined
with the prevalence of the procedure of differentiating both sides of equations,
underscores the importance of function sameness to calculus learning. As discussed in
Section 4, differentiating both sides of an equation is legitimate because the equation is
serving to assert function sameness.

This study investigates the following research question: How do calculus students
understand multiple analytic representations of the same function? More specifically, |
address: How do students assess when two analytic representations of the same function
are indeed the same function? Is sameness of graph enough for students to infer sameness
of derivative? Do students view instances of the fundamental theorem of calculus as
about function sameness?

One might wonder: after the discussion (in the introduction to this document)
about identity being equality, why did I not say function “equality” rather than “function
sameness” or “function identity”’? Recall earlier the research on student understanding of
the equals sign, which suggested that many students do not view the equals sign as
expressing identity or sameness. While these studies were done primarily on younger
children (elementary and middle school), it is possible that older students hold similar

conceptions of the equals sign. Hence, to such students, identity and equality might not
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be the same. So, investigating student understanding of function “equality” might be
different from investigating student understanding of function “identity” or “sameness”.
2.1 Theoretical Background

I follow Thompson's (1982) constructivist approach. Thompson makes the point
that, when referring to representations of something, we ought to be clear about to whom
these are representations of whatever “something” is (Thompson & Sfard, 1994). So, we
ought to be sensitive to the fact that a student might agree with the assertion that two
representations of the same function share a derivative, but these students might have
non-standard understandings of what “same function” is. In fact, this is precisely the sort
of reasoning a particular student used to determine that sharing a graph was not sufficient
for sameness of functions; she concluded that two particular representations of functions
share the same graph but do not share a derivative, leading her to conclude that, to be the
same function, having the same ordered pairs on the graph is not sufficient (Mirin, 2017).
Hence, a fundamental assumption of this study is that students might not understand the
tasks to be about sameness of function.

I adopt the constructs described in Tall and Vinner (1981): A student’s concept
image is “the total cognitive structure that is associated with the concept, which includes
all the mental attributes and associated properties and processes” (p.152). One component
of a student’s concept image is their concept definition, which is their stated definition of
a concept. This study involves investigating student concept definitions for function
sameness. A student’s concept definition is just one aspect of their concept image and

does not comprise it entirely. Hence, investigating a student’s concept definition is on its

37



own insufficient. This study therefore includes tasks concerning function sameness that
go beyond students’ stated concept definitions.
2.2 Literature Review

Since this study is about sameness of different representations of functions in a
calculus context, the literature review covers three related topics: multiple representations
of function, multiple representations of derivative, and sameness of representation of
function and graph.
2.2.1 Multiple Representation of Function Literature

There is a significant body of literature explicitly on the concept of multiple
representation of functions (Chang et al., 2015; Delos Santos & Thomas, 2003, 2001;
Even, 1998; Gagatsis et al., 2004; Zandieh, 2000; Zazkis, 2016). Such literature focuses
on multiple types (registers) of representations - e.g., graphical, analytic, verbal, and
physical. These studies tend to focus on how students, in particular preservice teachers,
struggle with linking multiple types of representations of the same function. For example,
students tend to have trouble linking the graph of a function with its equation. Even
(1998) reports a study in which 152 prospective secondary mathematics teachers,
majoring in mathematics, were surveyed via an open-ended questionnaire. Ten of these
students were subsequently interviewed about their answers. It was found that students
struggled to move flexibly between one kind of representation and another, even with
familiar functions, such as quadratics. Gagatsis et al. (2004) describe a study on the
relationship between students’ ability to translate between representations and to solve
problems. One hundred ninety-five students studying education at a university in Cyprus
were enrolled in this study. The students took two assessments, one to measure their
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ability to translate from one representation to another (verbal, graphical, analytic), and
another to measure their problem-solving ability. Problems on the translation test
involved giving students a function in a verbal, analytic (equation of the form
y = ), or graphical form and having them present it in one of the other two forms.
The problem-solving tasks involved having students fill in missing entries in tables,
solving word problems, and sketching graphs. The researchers found a positive
correlation between success on the problem-solving tasks and success on the translation
assessment. This correlation highlights the importance of coordinating multiple
representations of the same function. Chinnappan and Thomas (2001) report on a study in
which four preservice math teachers were the subjects of a free-response interview on the
topic of functions and how to teach them. The authors found that the teachers gravitated
towards graphical representations. At least one student expressed that she considered a
function to be a graph rather than “algebra” and struggled to link graphs with algebraic
representations. In general, the teachers showed weakness in linking a graph of a function
to an analytic (e.g., polynomial equation) form and tended to be fixated on visual
representations independent of equation.
2.2.2 Multiple Representation Derivative Literature

There is also research on multiple representations of derivative. Like the multiple
representation literature on function, this literature also focuses on representation type.
Zandieh (2000) uses Stard’s (1992) process-object distinction as a basis for a theoretical
framework for the multiple representations of derivative. The kinds of representations of
derivative that Zandieh addresses are graphical (derivative as slope of tangent line),

verbal (instantaneous rate of change), physical (velocity), and symbolic (limit of
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difference quotients). These representations share a similar three-layer conceptual
structure: the ratio layer, the limit layer, and the function layer. Zandieh (2000)
summarizes the relationship between these layers as: “A derivative is a function [third
layer] whose value at any point is the limit [second layer] of a ratio [first layer]” (p.106).
A “process-object” pair composes each layer.

The three-layer process-object structure applies to the many representations of
derivative. For example, in the graphical interpretation, the ratio is the “rise over run” of
the secant line, the limit is the slope of the tangent line, and the function is a visual graph.
In the physical interpretation, the ratio is an average velocity, the limit is the
instantaneous velocity, and the function is a pairing of each instantaneous velocity with
corresponding time. For the ratio layer, the process is division, and the reified object is a
ratio. The limiting process involves “passing through” infinitely many of these ratios
while approaching the limit, which is the reified object. The function layer is viewed
operationally as a mapping process, and structurally as a set of ordered pairs. Zandieh
interviewed nine students about their understandings of derivative and found that they
tended to mention the graphical (slope of a tangent line) interpretation most often. Notice
that this bias toward a graphical interpretation is consistent with Chinnappan and Thomas
(2001).

An important aspect of Zandieh’s framework is that an object part of a process-
object pair is not simply the result of a process, but a reification of the process itself.
Zandieh uses the word “pseudo-object” to describe when someone views something as an
object without attending to its underlying process structure. Consider the ratio layer. In
the symbolic representation, a student may view a ratio as a pseudo-object by a numerical
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limit of the difference quotient as a single number or magnitude rather than relating to
division or ratio. For the graphical interpretation, a student may view the slope of a
tangent line simply as slantiness without considering secant lines or the ratio of rise to
run (Byerley & Thompson, 2017). For the physical interpretation, a student may view the
derivative as representing instantaneous velocity without considering instantaneous
velocity to be a multiplicative quantity composed of accumulated time and distance
(Thompson et al., 2013). A student with a pseudo-structural conception of the ratio layer
would be failing to attend to what I called the /ocality of the derivative operator.
Attending to the locality of the derivative operator involves considering the points in a
neighborhood around x when determining the derivative of a function at x. This parallels
the idea in Thompson and Dreyfus (2016) of “all variation is blurry” (p. 357). Zandieh
does not discuss what is most pertinent to my study: how students link the various
representations to each other.

Delos Santos and Thomas (2001) investigated how students understand different
representations of derivative. Thirty-two 16-17-year-old students at a top performing girls
school in New Zealand were given a 10-question task sheet that included problems that
involved interpreting the meaning of “dy/dx” and translating between different
representational forms of the derivative. Exactly one student solved a problem of forming
a graphical interpretation of f'(5) = 1, and exactly three students, given values of a
function in tabular form, symbolically represented an average rate of change.
Additionally, whether students correctly gave a graphical interpretation of the symbol

“dy/dx” depended on the equation in which it appeared. In other words, students lacked
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the representational fluency to flexibly and consistently use and move between different
kinds of representations of function and derivative.
2.2.3 Representational Sameness Literature

Although the multiple representation literature generally does not discuss
sameness of representation, a few authors do address this topic. For example, Moore and
Thompson (2015) stress the importance of seeing different visual displays of the same
graph (e.g., the same graph in different coordinate systems) as representing the same
quantitative relationship. Additionally, as alluded to in the introduction of this document,
there is some mathematics education work that leverages the relationship between student
conception of function identity and student conception of function. In order to assess
student understanding of the concept of binary operation, Novotna et al. (2006) designed
and used tasks that ask whether particular binary operations are the same. Sfard (1988)
explains that, because students acknowledged that the function f defined on the natural
numbers by f(x)=x?, and the function g defined on the natural numbers by g(0)=0,
g(x+1)=g(x)+2x+1 are “equivalent” yet would not describe them as “the same”, these
students had a mathematically non-normative concept of function. In Mirin (2017), I
present a case study to illustrate the relationship between student conception of function
identity and of function. I describe a student, Jane, who thinks of functions as processes
and therefore thinks that for functions to be the same they must be the same process. For
example, Jane claimed that the function defined by |x| and the function defined by Vx? are
different functions because they “describe different mathematical processes”. Mirin
(2017) illustrates how one’s concept of sameness-of-representation-of-function and the
function concept itself are interlinked. If a student views a derivative as operating on a
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function, then their concept of function is inextricably tied to their concept of derivative.
For example, their criteria for determining whether two function representations share a
derivative might be influenced by their criteria for determining whether those
representations refer to the same function. Indeed, this is what happened with Jane. She
initially assessed two functions as being merely equivalent rather than the same on the
grounds that, despite having the same graph, they did not have the same derivative.
Interestingly, this brings us back to Leibniz’ laws of indiscernibles; Jane concluded that
two functions are not identical on the grounds that they do not share the same set of
properties.

It bears mentioning that mathematicians do not agree on the notion that same
graph implies same function. Mirin et al. (2020) explains how in both the mathematics
education and the mathematics communities, there are two conflicting definitions of
function. One definition is a univalent set of ordered pairs, and so two functions are the
same if and only if they have the same graph (set of ordered pairs). The other definition is
the Bourbaki Triple; under this definition, a function is a triple (a Bourbaki Triple) (X, Y,
F) where X is the domain, Y is the codomain, and F is a univalent and total set of ordered
pairs on X. Recall the earlier discussion about the relationship between sameness within a
category and the defining features of a category. Here, this relationship manifests itself in
the sense that the criteria for sameness of function is dependent on which definition of
function is being used — the Bourbaki Triple definition or the Ordered Pair definition.
Consider, for example, the function f: R=>R defined by f(x)=x? and the function g:
R->R" defined by g(x)=x>. Under the Bourbaki Triple definition, f and g are different
functions, since they do not have the same codomain and are hence different Bourbaki
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Triples. Under the Ordered Pairs definition, f and g are the same function, since they have
(are) the same set of ordered pairs.

As discussed, the fundamental theorem of calculus can be viewed as a statement
about function identity. For this reason, a task about the fundamental theorem is used as
part of this study (see Fig 2.3). Unfortunately, there is little literature on how students
understand the fundamental theorem. Thompson (1994) finds that students’ issues
grasping the theorem are grounded in underdeveloped understandings of rate of change
and covariation. Orton (1983) reports the types of mistakes students make in doing
problems with definite integrals. He focuses on how students understand definite
integrals as limits. However, his study does not address integrals in the context of the
fundamental theorem or as functions. Thompson and Silverman (2008) make the point

that an integral as a function is conceptually different from a definite integral as a

number. That is, conceptualizing g(x) = fax f’'(t)dt as a function is different than

conceptualizing g(x) = fab f’(t)dt for a particular number b, in the same way that

conceptualizing the squaring function is different from conceptualizing a particular
number being squared. In this study, I situate the fundamental theorem as a statement
about function identity, and hence also a statement about functions. The literature does
not address whether students conceptualize integrals as functions and generally does not
pose tasks to students where an integral is represented as a function. However, there is
some hint at the idea of an integral as a function in Jones (2013). He explains that many
students have a “function matching” conception of integral, which he describes as
follows: “The function inside of the integration is a derivative. The purpose of the

integral is to match it back to the original function from whence it came” (p. 130). It
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appears that the students in this particular study understood the integral’s “purpose” as
being to find an original function, but it’s unclear if such students understand the integral
as representing such a function (the author does not address this issue, only the “purpose”
of the integral). Hence, we do not know how students understand integrals as functions,
and therefore the extent to which students view the fundamental theorem as even
involving functions is an open question.
2.3 Overview of Methods, Task Design, and Timeline

This study is based on three tasks, all of which concern how calculus students
understand sameness of representation. The first task presents students with a function f
defined by f(x)=x> if x # 2, f(x)=8 if x=2 and asks them to evaluate f’(2). Observe that fis
merely a piecewise-defined version of the cubing function. I refer to this task as “the

cubing function task”. The second task also involves two analytic representations of the
same function: p defined by p(x)= fzx 3t2dt and q(x)=x>-8. Students are presented with p

and q and asked to evaluate whether p and q are the same or different functions. I
hereafter refer to this task as the “fundamental theorem task”. The third task asks students
to give their concept definition for function sameness. I hereafter refer to this task as the
“concept definition task™. The data were collected in three stages (Table 2.1). Stage 1
consists of the students’ written work collected from the open-ended cubing function
task. Stage 2 consists of the interview data from a subset of the students who participated
in Stage 1. Stage 3 consists of the data from an entire written quiz given to a new group
of students. This quiz includes a multiple-choice version of the cubing function task
together with two additional related prompts - the fundamental theorem task, and the

concept definition task.
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The cubing function task is what inspired this study. A very similar task that uses
a piecewise-defined version of the squaring function was given in Mirin (2017); this is
the task that inspired Jane, the participant, to decide that having the same graph was not
sufficient for two functions to be the same function. She assessed the piecewise version
as having a different derivative than the standard version and therefore concluded that
they might be different functions. As discussed in section four (Mirin & Zazkis, 2020),
being able to reason that “two” functions share a derivative on the grounds that they have
the same graph is paramount for robustly understanding implicit differentiation and
related rates problems.

The design of the cubing function task was inspired by an anecdote in Harel and
Kaput (1991): when prompted to differentiate the function g defined piecewise by g(x) =
sin x if x # 0 and g(x) = 1 if x = 0, respondents answered with g’(x) = cos x if x # 0 and
g’(x) =0 if x = 0, appearing to use the constant rule. To these students, the only aspect of
the representation as relevant for determining the value of g'(0) is the second line of the
piecewise function definition. It seems reasonable to believe that, if the definition of g
were modified to instead have g(x) = 0 if x = 0 (resulting in a nonstandard representation
of the sine function), students would answer identically. However, given the anecdotal
nature of Harel and Kaput’s claim, there is no data available to substantiate how common
such errors are or why they occur. My study began by undertaking the task of studying
this phenomenon more systematically (Stages 1 and 2). The other tasks (Stage 3)
complement this task by investigating the same topic of how calculus students understand

function sameness.
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In the cubing function task, students encounter a nonstandard analytic
representation (piecewise definition) of the cubing function, whether they recognize it as
such or not. There are at least two ways a student might reason about multiple
representations to come to the correct answer that £(2)=12. After graphing the piecewise-
defined function, a student might recognize that the resulting graph is the same as that of
the cubing function and conclude that they have the same derivative. This kind of
reasoning does not require that the student have a strong understanding of derivative, but
only an understanding that derivative is a property of the graph of a function. This could
be accomplished with a view of derivative as anything having to do with the tangent line
(e.g., slope of tangent line, slantiness of tangent line, or even the tangent line itself,
(Byerley & Thompson, 2017) . In this situation, the student would be coordinating visual
and analytic representations. Alternatively, a student could, after noticing that f(2) = 8 =
23 , make the same determination without using a visual graph, by linking the piecewise
representation with the standard analytic representation (h(x) = x3).

First, I discuss the data collection process for the open-ended cubing function task
(Stages 1 and 2), and then I move to discuss the multiple-choice cubing function task
along with the fundamental theorem task and the concept definition task (Stage 3).
Initially, the open-ended cubing function task -- exactly as pictured in Figure 2.1 below —
was given to 240 introductory calculus students during the last week of the semester at

Anonymous State University (ASU) (Stage 1).
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Let f be the function defined by

x> ifx=2
f(x)_{s ifx=2

Evaluate f’(2), and provide an explanation of your answer.

Figure 2.1. The Open-Ended Cubing Function Task, Stage 1 (written) and Stage 2

(interview).

Stage 1 was administered in an exam environment by course instructors, where students
were required to work silently and independently. Stage 2 involved interviewing a subset
of 8 Stage 1 students, and a preliminary analysis of such interview data informed the
analysis and classification of students’ answers to Stage 1 as well as the design of Stage
3.

Stage 2 involved eight students from the original Stage 1 cohort. An initial
analysis of the interview data helped form the design of Stage 3. In particular, it informed
the design of the multiple-choice cubing function task that appeared in Stage 3 (Figure
2.2). For example, it was not immediately clear that students were providing two answers
in Stage 1. After interviewing students, it became more evident that they indeed were.
Following analysis of the Stage 3 data, the Phase 2 interview data were re-analyzed to
create a more in-depth picture of student thinking.

Stage 3 consisted of three parts: the revised (multiple-choice version) version of
the cubing function task, the fundamental theorem task, and the concept definition task.
The task sheet, is included as Appendix A. It was given to different introductory calculus

students at the same institution at the same relative time in the semester and was
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administered in the same manner as Stage 1. One-hundred two (102) students participated
in Stage 3. One purpose of Stage 3 was to gain more insight into how students understand
the cubing function task. One hypothesis I had about students’ answers on the open-
ended version (Stage 1) was that many students gave the incorrect answer due to
inattention or carelessness. Perhaps they had not even noticed that y=f(x) and y=x> define
the same graph. In other words, perhaps they would have gotten the answer correct had
they noticed that the graphs were the same, by observing that f and the cubing function
agree at x=2. To remedy this issue, I designed the multiple-choice version of the cubing
function task. Before being asked to evaluate *(2), students were prompted to calculate
23. The purpose of this task was to orient students toward noticing that the function f
agrees with the cubing function at x=2. Students were also provided a graph of y=x° and
prompted to graph y=f(x) next to it. This was to orient students to compare the graph of
y=f(x) with y=x>. In other words, the purpose was to ensure that I was not tricking
students and to provide them an opportunity to recognize that f and the cubing function
are indeed the same. Figure 2.2 below shows a visually condensed version of the

multiple-choice cubing function task.

Suppose f is the function defined by f(x) =x" if x#2, f(x)=8if x=2.
1. Calculate 2°
2. Below to the right is a graph of y = x*. On the blank axes provided, graph y = f(x) for the function f defined above.

3. Evaluate f(2) for f defined above. Please provide a 1-3 sentence explanation of your answer. (a)0, (b)8 (c)12,
(d)undefined, (€)0 if x=2,and 12if x#2, (f)0ifx =2, and undefined if x#2 .

Figure 2.2. The Multiple-Choice Cubing Function Task, Stage 3.
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I now discuss the remainder of Stage 3. While the cubing function task is
interesting in its own right, this investigation is not just about a single task. More
generally, the goal is to learn more about how calculus students understand sameness of
representation of function. One major finding of the results of the cubing function task is
that where we (as mathematicians) see one function, students see two. It is natural to ask
whether this result extends to other contexts such as with the fundamental theorem of

calculus (see Figure 2.3 below).

4. Let p be the function defined on all real numbers by

p(;r}:/ 3t’dt
2

and let g be the function defined on all real numbers by
g(z) =z*-8

(a) How are p and ¢ related? (Select option i. or ii.).

i. p and g are the same function.

ii. p and ¢ are not the same function.

(b) Provide an explanation for your answer for 4(a).

Figure 2.3. The Fundamental Theorem Question, Stage 3.

Additionally, students’ concept definitions of function sameness provide us insight into
how students understand sameness of representation of function (see Figure 2.4 below).
These tasks, together, help provide insight into the guiding research question about

function sameness.
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Suppose ¢ is a function and A is a function. What does it mean for g and A to be the same
function? Explain.

Figure 2.4. The Concept Definition Question, Stage 3.

To summarize, the main task driving this study is the cubing function task.
Extensive data were collected on this task, including qualitative data. This task was
initially given in open-ended form (Stage 1), and eight students were interviewed (Stage
2). An initial analysis of the interview data informed the design of the multiple-choice
expanded version of the cubing function task. This multiple-choice version, along with
other tasks concerning function sameness (the fundamental theorem question and the
concept definition question), were given in the form of a quiz to a new group of students
in order to learn more about students’ responses to this task and, more generally,
students’ understanding of function sameness (Stage 3). Table 2.1 below summarizes

these stages.

Table 2.1. Stages of Data Collection.

Stage 1 Stage 2 Stage 3
Tasks e Open-ended Cubing e Open-ended e Multiple-choice
function task (Fig. 2.1) | cubing function cubing function task
task® (Fig. 2.1) (Fig. 2.2)

8 The interview itself included other tasks (Fig 2.5), but the purpose of the interview was to learn about how
students understand the open-ended cubing function task.
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e Fundamental
theorem question
(Fig. 2.3)

e Concept definition

question (Fig. 2.4)

Data type

Written work

Interview recording

Written work

Population

240 Calc I students

8 Calc I students
(from the 240 in

Stage 1)

102 Calc I students
(different students

from Stages 1 and 2)

2.4 Interview Protocol and Data Analysis Methods

First, I discuss the open-ended cubing function task (Stages 1 and 2), and then I

discuss the data analysis methods for Stage 3 (which includes the multiple-choice cubing

function task, the concept definition question and the fundamental theorem question).

2.4.1 Interview

The interviews (Stage 2) were semi-structured, task-based, and lasted 60-80

minutes each. They were screen and audio recorded using Notability on an iPad. The

interviews were exploratory in nature, and the tasks evolved slightly over the course of

the study. They operated according to clinical interview methodology (in the sense of

Clement, 2000) and served as establishing students’ rationale for their responses to the

open-ended cubing function task. If the student answered differently than they had in

their open-ended written version, they were questioned about their change of answer.

Additionally, students were given similar problems, as well as asked to graph the
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function f, and asked to illustrate, using their graph of f, the rationale behind their answer

to the cubing function task. The other administered tasks, as well as the follow-up

questions, were closely related to the cubing function task. These included questions

about function sameness, derivative, and graph. One of the purposes of these tasks was to

see if students believed that same points on the graph in the neighborhood of a particular

number implied same derivative at that number. A selection of the tasks used are shown

in Figure 2.5 below.

x3 ifx#5
> +100 ifz=5
Evaluate h'(5)

h(z) =

(@) o=l if g £ )
qLr] = :
g 0 fr=10

Evaluate ¢'(0)

f
about the graph of f7

o) =40 ,
0  if otherwise
Evaluate £'(5)

¥ ifxr#£2

S se f(zr) =
uppose f(xr) 8 ifr—9

3 4.99 < 2 <5.01

Suppose we have some function f. What does f(1) = 3 tell us about the graph of f7
Does it tell us anything about f’s derivative? What does f(x) = 3 when o = 1 tell us about

Suppose we have some function f and we know that f/'(1) = 0. What does that tell us

and h(x) = 2 for all . Are h and f the same function?

Figure 2.5. A Selection of Interview Tasks (Stage 2).

As I interviewed the students, questions I had in mind were “What aspect of a

function’s representation does a student view as relevant for determining its derivative at
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a point?” and “What does a student think determines a function’s derivative at a point?”
Although these might seem like different research questions than my stated research
question about function sameness, as alluded to earlier, they are closely related. Consider
the Cubing Function Task, and let f denote the piecewise definition of the cubing
function. Suppose a student correctly believes that only a function’s inputs and outputs
(ordered pairs) determine its derivative at a point. Then such a student would think that f
and the cubing function have the same derivative. Conversely, a student who believes
that f and the cubing function have the same derivative might believe that the points on a
function’s graph determine its derivative. When we vary a function’s representation, we
ascertain what aspect of that representation a student views as relevant to its derivative.
Using a similar idea, I investigated how students understood the locality of the derivative
operator; for example, do students believe that functions that are the same in the
neighborhood of x=a necessarily have the same derivative at x=a? To investigate this
question, I presented various functions with the same graph near x=a (but different graphs
elsewhere).

An illustration of ways of thinking to account for three different answer types is
provided in Section 2.5. These ways of thinking are epistemic students (see Thompson,
2013a) and were developed based on the student interviews (Stage 2) together with
student written work from both the open-ended cubing function task (Stage 1) and the
multiple-choice version (Stage 3). Note that the idea of epistemic students is grounded in
constructivism, which I discuss in further detail in the Epistemology and Theoretical
Perspective section of this document. In analyzing the interviews, my goal was to
provide viable models (in the sense of Clement, 2000) of how individual students were
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thinking. This, together with the rest of the data, provides the basis for me to construct
these more general epistemic students. These epistemic students then informed my
coding of students’ written data from Phase 1 (the written work of 240 students on the
open-ended cubing function task).
2.4.2 Coding

Stage 1 and Stage 3, each consisting of quantitative data, were both coded. I first
discuss the coding in Stage 1, and then [ move to Stage 3. Students’ answers to the open-
ended cubing function task (Stage 1) were coded as if they had taken a multiple-choice
test; that is, when I coded a student as answering “12”, I did so if [ believed that that is
what they would have bubbled in had they been given a multiple-choice question. This
means that the strength or coherence of students’ justifications was not considered, and
many students were coded as answering correctly (the answer “12”) even if their
justification indicated a severe misunderstanding. This allowed me to compare the open-
ended answers in Stage 1 with the multiple-choice answers in Stage 3.

Stage 2 informed the Stage 1 coding. That is, the coding of the open-ended cubing
function task was influenced by the student interviews. Consider students 110, 138, 157,
and 178 from the open-ended cubing function task (Stage 1), whose answers are below in

Figure 2.6.
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Figure 2.6. Students’ Answer to the Open-ended Cubing Function Task, Stage 1.

When I interviewed Student 157, I found that he meant to answer “12”” where he wrote
“3x2”. When I gave him the same problem during Stage 2 (the interview), he did the
exact same thing but substituted “2” for “x” and explained that he meant to do that
initially when posed with the open-ended task. A similar occurrence happened with
Student 138 and Student 178. Thus, whenever a student wrote “3x2”, I coded their

answer as if “12” were written in place of “3x2”

. For example, Student 157 and Student
138 were coded as answering both 0 and 12. As discussed in Section 2.3, the interviews
illuminated when students were giving two answers, which included students such as 110
who answered both “undefined” and “0”.

I now discuss data analysis methods for Stage 3: written results from the multiple-

choice cubing function task (Figure 2.2), the concept definition task (Figure 2.4), and the
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fundamental theorem task (Figure 2.3). Coding the results of the multiple-choice cubing
function task (Figure 2.2, Problem 3) was, of course, straightforward. Coding the
students’ graphs (Figure 2.2, Problem 2) was more involved. A student’s graph was
considered to be “correct” if and only if it appeared to have all the correct points (ordered
pairs) on it. This classification aligns with conventional mathematics. Hence, graphs that
were not visually identical to the provided graph of y=x* were coded as correct. This
included graphs with prominent dots on them, so long as those dots lined up with points
that satisfy y=x>. This also included graphs that had an open “hole” at (2,8) with a dot
inside, but with the hole not completely filled in (see the middle graph in Figure 2.7).
While one might think that the space surrounding the hole indicates that certain points
were meant to be excluded from the graph, the interviews revealed that this was not the
case — the surrounding space was for a different purpose (discussed in Section 2.5).
Students who provided an open circle (with no closed dot inside of it and just a hole) at
(2,8) were not coded as having a “correct” graph.

Normatively, two graphs (of functions) are the same if and only if they consist of
the same ordered pairs. It seems reasonable to believe that some students might not have
this criterion for sameness of graph. Indeed, Moore and Thompson (2015) report on
undergraduate students who view two graphs as different despite having the same ordered
pairs. Such graphs were visually different in terms of the displays of the coordinate
system. In the study reported here, the coordinate system does not vary, but we still have
the notion of students distinguishing between graphs with the same points. The
interviews informed the resulting categorization; interviews suggested that some students
viewed a graph of y=x> with an extra “dot” placed at (2,8) as different from a graph of
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y=x> without one. Some students referred to the point (2,8) as “separate”. Accordingly, a
sub-category (category B) of “correct” was created: mathematically normative graphs
that highlighted (2,8) in the sense that they had a dot (closed circle) on (2,8) that was
more prominent than any other dots. The remaining “correct” graphs were grouped
together as Category A. In other words, Category A graphs indicated nothing special
about the point (2,8), whereas Category B graphs did. Included in Category B were
graphs that have a dot at (2,8). Excluded from Category B (and instead in Category A)
were graphs that have a dot on (2,8) but also have at least one other dot of equal or
greater prominence. | interpreted these dots to be dots that students used to help them
draw the graph, rather than attaching any significance to the point (2,8). See Figure 2.7
below for a sample of Category A and Category B graphs. The remaining graph

categorizations are described in Section 2.5

16} T 5 7
A-graph B-graph /*/ B-graph /

Figure 2.7. Category A versus Category B Graphs from Stage 3 (see Figure 2.2).

The function sameness (Figure 2.4) categorization was performed in a similar
manner to that of graph categorization; students’ function sameness definitions were
“correct” when they were extensional. This includes the characterization of function

identity as same graph, same ordered pairs, or same output for every input. Statements
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such as “g and h are the same when g(x)=h(x)” were not coded as “correct”; this is
because in the absence of quantifiers, students could view “g(x)=h(x)” to mean that g(x)
and h(x) are identical as equations or that g(x) transforms to h(x) under certain rules
(Mirin, 2017; Sfard, 1988). Additionally, students might not view g(x) as representing a
number or value of a dependent variable and instead view it as a name of a function
(Musgrave & Thompson, 2014; Thompson, 1994, 2013b). Not one student brought up the
topic of codomain, so there was no need to distinguish between functions as sets of
ordered pairs and functions as Bourbaki Triples.

Due to the multiple-choice nature of the fundamental theorem question (see Fig
2.2 above as it was presented to students), coding the results of that question was
straightforward; either students selected option i (the same) or option ii (not the same) to
assess whether the functions p and q are the same. Two students did not answer the
question, nor did they provide an explanation or complete the concept definition task. For
this reason, they are excluded from the analysis of both the fundamental theorem task and
the concept definition task, leaving us with a convenient sample size of 100 for these two
tasks.
2.5 Results

Recall that the guiding research question is about students’ understanding of
function sameness. One of the tasks is a concept definition, which asks students their
meaning for function sameness (Tall & Vinner, 1981). I first discuss the results of that
task. Recall that concept definition is just one facet of a student’s concept image (Tall &

Vinner, 1981), so it makes sense to consider concept definition not just in isolation, but
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also in relation to other facets of students’ concept image. Hence, I revisit the results of

the concept definition task when discussing the results of the other tasks.

2.5.1 The Concept Definition Task

As discussed above, students’ concept definitions were coded as “correct” when
they were extensional. Thirty-five students’ answers were placed into the “correct”
category (particulars of the criteria for this category are included in Section 2.4.2)
Examples of this category include “all inputs will yield the same outputs for entire
function”, “for all x values they get the same output y”, and “for every value in their
domain, g and h have the same value”. The “incorrect” answers vary. Included are blank
answers. A common theme with the “incorrect” answers is the inclusion of other
properties of functions. In particular, eleven students mentioned sameness of derivative in
their concept definitions of function sameness. For example, one student wrote “both
have the same derivative, so same function” while another wrote *“ g=h, g’=h’, 3’=3"" ”
(it is unknown why this particular student mentioned 3°’). This inclusion of sameness of
derivative is especially interesting in light of my general investigation. As discussed, one
of the reasons identity is so important is for inferences about sameness using Leibniz’ law
of indiscernibles — that if two objects are the same, then they have the same properties. In
particular, this is what allows us to take the derivative of both sides of an equation, which
I discuss in Section 4. We can also think of this sort of inference relating to the cubing
function task — f and the cubing function are the same, and therefore they share a
derivative. The results of the cubing function task, as well as the third dissertation paper,

show that this is a nontrivial inference for students. Interestingly, the results of the
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concept definition task seem to indicate that for a number of students, the converse is
true. That is, some students seemed to infer that functions are the same due to sharing a
derivative. In the subsequent sections on the cubing function task and the fundamental
theorem task, I address whether there is a relationship between extensional concept
definitions and success on those two tasks.
2.5.2 The Cubing Function Task

I first discuss the quantitative data (Stages 1 and 3) regarding the cubing function
task, and then I turn to the interview data (Stage 2) to provide a more in-depth account of
student thinking. Recall that this task asks students to evaluate f’(2) for the cubing
function, but represented in a nonstandard manner (piecewise). For the open-ended
cubing function task (Stage 1, Figure 2.1), the majority (56.3%) of students claimed that
the answer was 0, while many (41.2%) explicitly cited the constant rule. These results are
consistent with the anecdote of Harel and Kaput (1991), who asked students to
differentiate the function g defined piecewise by g(x) =sinxifx #0 and g(x)=11ifx =
0; students typically answered that g’(x) = cos x if x # 0 and g’(x) =0 if x = 0. Harel and
Kaput posit that students were not considering the neighborhood of the function around
x=0 and were only looking at the function at precisely x=0 (they refer to this approach as
“pointwise”). They explain that students were applying differentiation as an algorithm to
the formula at this point. Although the authors do not explicitly claim that the students
use the constant rule with differentiating, their description of using the “formula”
suggests that this is what they understand students to be doing.

Now that I have established that there is a larger phenomenon, the next natural

question to ask is, “why”? It is possible that some students erred due to inattention or
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carelessness, rather than a major misconception. That is, they might have simply seen the
“8” and applied the constant rule out of habit or simply not realized that 2° is 8 and that
the given function is in fact continuous. This would explain why some students answered
“undefined,” and it is also consistent with some of the graphs that students volunteered
(graphs with removable discontinuities). Further, it might not have occurred to students to
compare the graph of f with that of the cubing function - as discussed earlier, the
piecewise-defined f'is a representation of the cubing function to us, but perhaps not to
students.

Hence, I turn to the multiple-choice version of the cubing function task (Stage 3,
Figure 2.2). Recall that the multiple-choice version of this task has prompts to encourage
students to compare f to the standard cubing function; students are asked to calculate 2°,
and to graph y=f(x) alongside a provided graph of y=x>, all prior to evaluating £(2).
Since the multiple-choice version in some sense primed the students to compare f with
the cubing function, I expected that these students would have a higher rate of correctness
than the original Stage 1 group. However, it was necessary to consider that despite being
primed, students still might not have a normative conception of function sameness; so,
while students might observe that f and the cubing function have the same ordered pairs,
they still might not understand them as being “the same”. Conversely, it makes sense that
students who have a normative (extensional) criterion of function sameness could reason
that, because f and the cubing function are the same function, they share the same
derivative. Note that this is an application of Leibniz’s laws of indiscernibles under the
assumption that having a particular derivative is a property of a function. Even without a
robust understanding of function sameness, students still might be able to use multiple
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representations of function to reason that f and the cubing function share a derivative.
They could use a formal definition of derivative or perhaps conclude that the graphs share
a tangent line at x=2. Hence, I formed four hypotheses regarding the results of the
multiple-choice cubing function task (Stage 3):

(1) Overall, students should perform significantly better on the multiple-choice

version (Stage 3) than on the open-ended version (Stage 1), leaving open the

possibility that inattention or carelessness could account for students’ tendency to
do poorly on the cubing function task in isolation (Stage 1). Students might,
because of the prompting in the multiple-choice version, be more likely to
compare f to that of the cubing function.

(2) Of those students who answered 12, those who did so in response to the

multiple-choice question (as compared to an open-ended question of Stage 1)

would be more likely to provide a justification involving the comparison of f with

the cubing function.

(3) Students who provided a mathematically normative definition of function

sameness would be more likely to answer “12” on the multiple-choice cubing

function task than students who did not (Stage 3)

(4) Students who provided a correct graph of y=f(x) would be more likely to

answer correctly on the multiple-choice cubing function task (Stage 3).

The data (see Table 2.2) reveal no evidence to support that inattention could
account for student responses in Stage 1. Although there was a slight improvement in the
correctness rate from the open-ended version (Stage 1) to the multiple-choice version
(Stage 3), this improvement was not statistically significant (y>=1.21, p>.05), contrary to
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(1). In other words, prompting students to compare the graph of y = f(x) to that of y = x°
did not appear to cause improvement, suggesting that Stage 1 students did not err simply
due to inattention to the function’s graph. Moreover, the Stage 3 students who answered
“12” were no more likely than the Stage 1 students who answered “12” to draw an
explicit comparison between f and the cubing function (4.2% of Stage 1 students who
answered 12 did so, whereas only 2.9% of Stage 3 did so), contrary to (2). Also, the
students who provided a mathematically normative definition of function sameness in
Stage 3 were no more likely to answer “12” than those who did not, contrary to (3).

Table 2.2. Responses to the Cubing Function Task

0 8 12 Undef Multiple Other | Blank | Total
answers
Open- 56.3% | 4.6% | 18.3% 5.8% 8.3%, 20 54% | 1.3% | 100%
Ended 135 11 44 14 13 3 240
(Stage 1) 0&12: 5.8%,14
(%,n)
O0&undef:
2.5%, 6
Multiple 40.2% | 7.8% | 23.5% 9.8% 18.7%, 19 N/A 0% 100%
Choice 41 8 24 10 0 102
(Stage 3) e (0&12):
(%o,n) 12.8%,13
f (0O&undef):
5.9%, 6

These results suggest that contrary to three of my hypotheses, prompting students to
compare f to the cubing function did not appear to encourage them to infer that f and the
cubing function share a derivative at 2. This naturally led to the emergent question: if
inattention to the graph of f does not account for students’ tendency to answer
incorrectly, then why are students answering the way they are answering? To address this

question, we turn to the student graphs (Stage 3) together with the student interviews
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(Stage 2). As expected, the results of Stage 3 confirmed hypothesis (4): students who
provided a correct graph were statistically more likely to get the multiple-choice cubing
function task correct than those who did not provide a correct graph. Indeed, this makes
sense; there might be some students who understand a graph as determining a derivative:
32% of Stage 3 ‘correct graph’ students answered the multiple-choice cubing function
task correctly, whereas only 10.3% of Stage 3 ‘incorrect graph’ students did so ( x* =
6.1824, p < .05).

Recall the earlier discussion about student graphs: The “correct” graphs in Stage 3
were partitioned into two subcategories, Category A and Category B. Category B graphs
were the mathematically normative graphs that highlighted (2,8) in the sense that they
had a dot on (2,8) that was more prominent than any other dots. The other “correct”
graphs — those that were correct but indicated nothing special about (2,8) - were grouped
together as Category A. The remaining graphs were classified as follows: those with a
single dot at (2,8) (2.0%) (C-graphs), those with just a graph of y = 8 (6.9%) (D-graphs),
those with a removable discontinuity at x=2 (6.9%) (E-graphs), those that were blank
(4.9%) (F-graphs), those whose graphs included both y = 8 and y = x> on a nontrivial
interval (2.9%) (G graphs), and other (8.8%) (O-graphs). See Figure 2.8 below for a

sample of these graphs.
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Figure 2.8. Categories for Students’ Graphs of the Cubing Function (Stage 3).

Among the Stage 3 correct graphs (A and B), ‘graph A students’ were more likely than
‘graph B students’ to answer “12” (¥?=3.932, p<.05), suggesting some sort of difference
(in some of the minds of the ‘graph B students’) between f and the cubing function.
Figure 2.9 depicts the relationship between correctness on the multiple cubing function
task and graph type for Stage 3 students. Observe that the green color represents a correct
answer, while the red colors represent various incorrect answers. Notice that the Category
A bar has a larger percentage green than the Category B bar, which reflects the
observation that students who seemed to think that the point (2,8) is special were less
likely to get the cubing function task correct (this is discussed in further detail below).
Notice, also, the relationship between the middle red color (which represents the

“undefined” answer) and E-graphs (removeable discontinuities).
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Figure 2.9. Results of the (Stage 3) Multiple-Choice Cubing Function Task Organized by

Graph Type (see Figures 2.7 and 2.8).

Now we construct models to explain students approaches to the cubing function
task. This analysis is guided by the interviews of the eight students who completed the
open-ended cubing function task (Stage 2). Musgrave and Thompson’s (2014) construct
of “function notation as idiom” was useful in accounting for student responses. A student
views function notation idiomatically when he or she views “f(x)” in its entirety as a
name for a function (Musgrave & Thompson, 2014). Such a student might view “f(x)” as

no more than another name for “y” (Thompson, 2013c¢). It appeared that many students
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thought in this manner when evaluating f’(2), as they seemed to view “8” and “x”” as
names of functions, with “f(x)” referring to each of these functions. Another common
theme, appearing both on the written quizzes and in the interviews, was the viewpoint
that the “if x # 2” served as a restriction on the domain rather than as a condition. I use
this construct to explain how students arrived at select incorrect answers on the cubing
function task. Each answer type is described individually below. These descriptions
should be viewed as illustrations of student thinking that explain their answers. These
descriptions each begin with a direct, written quote from a student, which provides a
concise summary of their way of thinking. I also discuss how, for the students, the point
(2,8) was special and the way students made sense of their graphs. Additionally, I discuss
how students’ ways of thinking are reflected in their responses to the interview prompt to
find h’(5) for the function h defined by h(x)=x? if x #5, h(x)=x*+100 if x=5.

2.5.2.1 Students Who Answered “0”. “When the graph is at the point x=2, the
function is determined by the piecewise part ‘8. So, f(x) itself equals 8. When 8§ is
derived, it becomes 0” [Pete, ‘multiple choice student’, emphasis added]. The rationale
summarized by Pete appears to exemplify a common way of thinking amongst students
who answered “0”. For these students, the “f’(2)” tells them that they are in the situation
“x = 2,” which serves as an instruction to use the function “8”. Here, the “8” serves as a
name of a function rather than a particular output, suggesting an idiomatic conception.
Many of these students provided a category B graph of f (graph of y = x* but a special
dot at (2,8)) and found no issue with the fact that they couldn’t “see” that f’(2) =0 in

their graph; when asked to explain graphically, they would provide a graph of y = 8 and
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explain why its derivative at 2 is 0. This rationale is summarized in Figure 2.10 below.

f2) > x=2 >y=8 - —— - y' =0

Figure 2.10. Student Rationale for Answering “0” on the Cubing Function Task.

Interviewed students extended this way of thinking to evaluating h’(5) for the
function h defined by A(x) = x* if x#5, h(x) = x> + 100 if x=5. It was common for
students to answer “10” by evaluating the derivative of x> + 100 as 2x and substituting
x=5 to result in 10, with the rationale that “Um I used this part, the part that makes the
parabola [y = x*> + 100]. Because we’re interested in the time when x equals 5. And that’s
kind of the rule here, when x equals 5 to use the parabola” [Jennifer, ‘open-ended
student’]. She elaborated: “The derivative of h when x equals 5 is gonna be 2x um.....if x
were to equal some number other than 5, you would use this (underlines x*) function up
here, but because x is 5 we use this one.” Jennifer’s rationale exemplifies the way of
thinking that led students to answer “f’(2) = 0”: viewing the conditions on a piecewise-
defined function as instructions for which function to use, and a piecewise- defined
function as involving two different function.

Many of these students (Pete included) provided a graph of f that was like y = x°
but with a dot at (2,8) (category B graph). It seems that students viewed the dot at (2,8) as
separate or independent from the rest of the graph. For example, one student recreated his
graph during the interview, explaining his reasoning as follows: “At the point (2,8) I draw

a circle to show there is an opening there, there’s a gap. I’'m excluding that point from
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what it is we are talking about in this point in time.” He elaborated: “So the two...they’re
existing on the same coordinate system but existing independent of each other”.

2.5.2.2 Students who answered both “12” and “0”. “If f(x) does not equal 2,
the function is x°. The derivative of x* equals 3x2, then substitute 2 for x, 3(2)*=12.
However, if x is allowed to be 2, then the derivative of 8=0" [Carlos, ‘open-ended
student’]. The case of Carlos illustrates how a student can reason idiomatically to get the
answers 0 and 12. In the interview he reiterated his reasoning: “If x isn’t 2 then the
function is x°. The derivative of x> is 3x2. Then substitute 2 for x here and you get 12.
However, if x is allowed to be 2, then the derivative of 8 is 0”. For Carlos, the “if x=2"
condition told him that he was in the case in which “the function” is the function “f(x) =
8,” and that the “if x#£2” condition told him he was in the case in which “the function” is
x>. Carlos did not even make the connection that the “2” in “f(2)” told him he was in the
case where “x = 2”; for him, the “f(x)” was just a shorthand for “y”. When prompted to
graph f, he provided a graph of (what he thought was) y=8 as well as a graph of y = x°,
indicating that he viewed himself as graphing two separate functions. When asked
howf’(2) can be 12 while he had said prior that it was 0, he explained: “this is an entirely
different function”, indicating that the conditions on the piecewise function were
instructions about which function to use. This rationale is summarized in Figure 2.11

below.
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Twocases: x =2, x # 2

x=2—->y=8-> L —y'

x#2-y=x’> l —y' =12-f'(2) =12ifx # 2

0> f'(2)=0ifx =2

Figure 2.11. Student rationale for answering “0 if x=2, 12 if X # 2” on the cubing function
task.
Carlos’ way of thinking was confirmed when he was asked to calculate h’(5) when h is
defined by &(x) = x> if x#5, h(x) = x* + 100 if x=5. He graphed y = x*> and y = x> + 100
on the same axes. When prompted to find the value of h’(5), he differentiated x* and
plugged in 5 to get 75, and then he differentiated x> + 100 and plugged in 5 to get 10.
When asked which was the value of h’(5), he exclaimed confidently, “both! 75 and 10!”.
2.5.2.3 Students Who Answered Both “0” and “undefined”. “If just looking at
f(x) =8, the derivative of a constant would make f’(2) = 0. If just looking at f(x) = x°,
the derivative would be undefined because f(2) is not on the graph of x>. There is a hole
at x=2" [Eric, ‘multiple-choice student’]. Eric’s reasoning exemplifies how students
could have come to select choice “f” in the multiple-choice quiz. A different student,
Sarah, explained her reasoning in detail in the interview. Sarah initially answered that
“both” are undefined, but during the interview, she revealed that she interprets “0” to
mean the same thing as “undefined” (which was a common trend in student responses).
Like Carlos, she viewed two functions as being involved, which was again confirmed
when she was asked about the piecewise-defined function “h”. She appeared to reason

about two different functions, and calculated f’(2) by treating the first function as “y =
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x>, x # 2", and the second function as “y = 8, x = 2”. She interpreted the “x # 2” as a
restriction on the first function, and the “x = 2” a clarification that such a restriction did
not exist on the second function. Thus, for the first function, f’(2) is undefined, and for
the second function, f’(2) equals 0. Figure 2.12 below provides a summary of this

rationale.

Two cases, two functi_ons
y=x*x#2— -~ — f'(2) undefined if x # 2.

y=8,x=2—y=8andxcanbe2 — ——— —f'(2)=0ifx =2,

Figure 2.12. Student Rationale for Answering “0 if x=2, Undefined if x # 2.

The interpretation of the “first function” conforms with typical secondary mathematics.
Consider the problems that ask students to “find” the domain of a function and then graph
it. A typical problem of this type would be “find the domain of y= (x-2)-x*/(x-2).” A
student would typically solve this problem by setting the denominator equal to 0 and
writing “x # 2”. In light of these exercises, it makes sense that students would see the
“f(x)=x> if x# 2" as a function on its own whose domain does not include 2. In this case,
the graph is an E-graph (Figure 2.8), and f°(2) is undefined.

2.5.2.4. Discussion of the Cubing Function Task. The results of the open-ended
cubing function task (Stage 1) demonstrated that Harel and Kaput’s (1991) anecdote is
indeed indicative of a larger phenomenon: many students appeared to differentiate a
piecewise function formally by differentiating each expression as a separate function. The
results of the multiple-choice version (Stage 3) confirmed that this phenomenon cannot

be attributed merely to inattention or unawareness that the piecewise-defined function
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agrees with the cubing function. This data, together with the interview data (Stage 2),
suggest that several students have a non-normative understanding of piecewise function
notation, stemming from a view of function notation as idiom and the conditions on the
domain as either instructions or as restrictions.

The results of this task show that students do not view the same function,
represented in two different analytic ways, as sharing a derivative at a particular value.
However, this last sentence was ambiguous; when I say “a function”, I am not being clear
if students view these function representations as referring to the same function. Students
might, for example, consider it possible for two distinct functions to share a graph, and
we can ask: do students believe that same graph implies same derivative? The answer to
this appears to be “no,” as many students provided normative graphs of f yet did not
evaluate f’(2) correctly. Yet, there is another ambiguity: what students view as “same
graph” might not be consistent with the normative notion of “same graph,” as suggested
by students’ insistence that the point (2,8) being highlighted and that it is “separate”,
together with the discrepancy between Category A and Category B graphs.

The results of this task highlight how students think about function notation,
independently of how they think about derivative. To illustrate this point, consider the
way of thinking that accounted for many students answering “0.” It arose from a
misconception of function notation: no matter how strong of a meaning the student had of
“derivative”, the student was still keying on the graph of “y = 8”, leading to an answer of
“0”.

As discussed earlier, it seemed reasonable to hypothesize that students who

provided normative definitions of what it means for functions g and h to be the same (the
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concept definition task) would be more likely to correctly evaluate f°(2) ; this is because
it seems these students would be more likely to assess the piecewise-defined f and the
cubing function as “the same,” positioning them to infer that f and the cubing function
share a derivative. In light of the interviews and students’ ways of thinking, the counter-
intuitive result — that this hypothesis did not hold — makes sense. This is because, to
students, f was not a function in the same way that the cubing function is; instead, f was
two functions. Having a strong criteria for sameness of functions did not help many
students evaluate f’(2) because f was not in the category of “functions” to which function
sameness can apply.

Recall that the topic of investigation concerns function sameness. To
mathematicians, f and the cubing function are just one function, since they are the same
function. However, the analysis of the results of the cubing function task suggests that
students do not view these two particular representations as referring to the same
function. Additionally, the results show that some students might not view the piecewise
representation as referring to a function at all, but instead to two functions. Both of these
situations can be thought of as students seeing two functions where we mathematicians
see one function.

2.5.3 The Fundamental Theorem Task

A natural question to ask is whether this phenomenon of students seeing two
functions where we see one applies to other situations. We now move to Phase 3 to
address this issue. In mathematics, students often see functions represented as integrals,
such as in the fundamental theorem of calculus. The fundamental theorem task is
described in Figure 2.3 and was answered by 100 students. Of those, 61 chose option (i)
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(that p and q are the same function), and 39 chose option (ii) (that p and q are not the
same function). One thing to note is that the students were not asked to “evaluate” the
integral, that is, put it in closed form (e.g., as a polynomial, in this case). This means that
there is a possibility that some students might have evaluated the integral incorrectly and
assessed p and q as different for that reason. Of the 100 students, 46 attempted to evaluate
the integral (in writing — it is possible that others evaluated but did not write their work),
and 29 did so correctly. Unsurprisingly, there is a strong correlation between those who
evaluated the integral correctly and those who answered that p and q are the same
function, with 27 out of 29 (93%) who evaluated the integral correctly also claiming that
p and q are the same function, and 8 out of 17 (47%) who evaluated the integral
incorrectly claiming that p and q are not the same function (*=12.4883, p<.05).

The nature of students’ incorrect evaluations was illuminating and not due to
computational errors. In fact, only two students who incorrectly evaluated the integral did
so in such a way that it was a function of x (e.g., writing p(x)=x+12). Instead, 14 out of
17 (82%) included a “+C” in their evaluation of the integral. Of those who included a +C,
four (28.6%) wrote an expression with t rather than x as an integral evaluation. More
generally, students’ inscriptions suggested misunderstanding of function notation.
Eighteen students misused function notation in some way on the fundamental theorem
problem. Of those, 17 (17%) had a variable mismatch (e.g. p(t)=x>-8), while one student
wrote p’=3x2. As discussed in the section on the cubing function task, such variable
mismatch suggested an idiomatic understanding of function notation (Musgrave &

Thompson, 2014).
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Students’ explanations provide insight to student thinking. Their explanations
seem to suggest that some might have viewed the integral as representing a string of
symbols. This is consistent with Musgrave and Thompson's (2014) and Sfard's (1992)
findings suggesting that some students think of a function as a string of symbols. To
many of the students who evaluated the integral as involving a C (e.g., x*+C), it would
make sense that these students would not think of x>+C as being the same as x>-8, as
these are different strings of symbols. For example, one student explains “the -8 in q is
not shown in the equation for p.” Similarly, the students who evaluated the integral
correctly tended to find that the resulting string of symbols (x*-8) was identical to that in
the definition of g, and therefore q and p are identical: “once calculated, the integral in
p(x) becomes the same expression as q(x)”. A summary of these results is included in
Table 2.3.

Table 2.3 A Summary of Results of the Fundamental Theorem Task

Same Not Same
Correct Integral Evaluation 27 2
(29)
Incorrect Integral Evaluation 9 8
(17)
No Integral Evaluation 54

There’s a sense in which 36 out of 46 gave consistent responses; they either (1)

evaluated the integral correctly and wrote that p and q are the same function, or (2)
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evaluated the integral incorrectly and wrote that p and q are different functions. This is
consistent with thinking of a function as a string of symbols; if a student evaluates the
integral correctly, they observe that the resulting string of symbols is the same as x>-8,
and if they evaluate it incorrectly, they observe that the resulting string of symbols is
different from x>-8 (discussed above). The remaining 10 students had mixed responses.
Those students’ written explanations in part b provide some insight into their
understanding of function identity. For example, some students included a +C for the
integral yet assessed p and q as the same on the grounds that they share a derivative.
Relatedly, some students wrote that p and q are the same function while also stating that
they had a different constant. For these students, sameness of derivative was sufficient for
sameness of function. Additionally, 15 students justified their assessment of p and q
being the same by explaining that p and q share a derivative. This justification was
expressed in a few different ways. These ways included explanations such as “they have
the same slope at any given x”, “derivatives are the same”, “p’(x)=3x2, q’(x)=3x>", and
“If you take the derivative of them they both come out to the same function”. This
rationale makes sense in light of the fact that several (15) students listed sameness of
derivative as a criterion for function sameness in the concept definition question.

It bears mentioning that not all the students who understood p(x) as involving a
constant assessed p and q as the same. While, as discussed above, some students
rationalized that the constant indicated that p and q differ by comparing symbols, others
took a different approach. This included students who did not necessarily evaluate the
integral but still referred to the constant in their explanations. In some situations, this took
the form of arguing that p(x)=x>+C shares a derivative with q(x)=x>, as discussed above.
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In other situations, students treated C as an unknown or undetermined (but fixed)
number. Sometimes, this led to students assessing that p and q are the same because they
could be the same (in the sense that C could be -8). See Figure 2.13 below for an example

of such a student.
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Figure 2.13. A Students’ Answer to the Fundamental Theorem Task.

Other times this led to students assessing that p and q are not the same because they could
be different (in the sense that C could be some number other than -8). See Figure 2.14

below for an example of such an explanation.

(a) How are p and g related? (Select option i. or ii.).
i. p and q are the same function.
e ——— et
ii. p and g are not the same function.

(b) Provide an explanation for your answer for 4(a).
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Figure 2.14. A Different Student’s Answer to the Fundamental Theorem Task (cf. Fig.

2.13). 78



There were six students of the former type, while there were five who gave the latter
argument.

I had originally hypothesized that there would be a correlation between students
who give extensional function sameness concept definitions (discussed in Section 2.5.1)
and those who answer that p and q are the same function. This is because I expected
students with other, non-normative understandings of function identity to claim that p and
q are different. This was indeed the case with at least two students, who asserted that p
and q differ because one represents an area under a curve, and the other does not.
However, a chi square analysis revealed no such correlation (x*=0.337, p>.05, see Table
2.4). It seems that because p could be expressed in closed form, students’ assessment of
sameness of p and q was primarily about how they calculated the integral. This allowed
students to assess that p and q are the same on the grounds that they are expressed by the
same equation, rather than requiring a robust understanding of function sameness. This
resulted in the possibility that students who understand functions as strings of symbols
answered that p and q are the same function.

Table 2.4. Results of the Concept Definition Task in Relation to the Fundamental

Theorem Task
Fun. Thm Task Correct Fun. Thm Task Incorrect
Concept Def. Correct 20 15
Concept Def. Incorrect 41 24

That so many students evaluated the integral with a “+C” is especially revealing.

This might suggest that, despite the function notation p(x) being used and the quiz
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explicitly telling them that p is a function, these students might not have viewed p as a
function (perhaps, as one student above put it, “a formula™). This leaves open the
possibility that, when these students were asked if p and q are the same function, they
were not viewing p as a function at all. This is consistent with the results of the cubing
function task, in which students appeared to not think of a particular piecewise function
as a function. It is possible that such students just do not understand integrals as
functions; perhaps they understand an integral as a command to anti-differentiate.

Such an understanding would be consistent with other mathematics education
literature. For example, Hall (2010) reports that, when asked about the meaning of
definite integrals, students tended to discuss only how to evaluate them. While it is
unclear if students understood the meaning as being about calculation (rather than
answering a question that was not being asked), there is other literature to suggest that
students truly do understand some notation as instructions to calculate. For example, as
discussed in the general introduction to this document, young students understand “=" as
a command to calculate rather than expressing a relation. Unpublished data concerning a
Calculus I Concept Inventory suggests that some students understand function notation as
instructions to substitute and calculate. In light of these results, it would be unsurprising
if some students viewed the integral sign similarly.

A close look at the data reveals that this could be the case with students. Although
students are told that p is a function, they might have seen the integral sign as a command
to anti-differentiate, and the only function that’s provided to them in this command is in
the integrand. For example, one student assessed p and q as different and explained that
“the antiderivative of p(x) equals t*+c and q(x) is x*-8. So the derivative of p equals q. p
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does not equals q”. Observe that this student viewed the antiderivative of p as a cubic
expression, suggesting that p is the integrand, and then used this reasoning to conclude
that p and q differ. This interpretation conforms with the fact that 23 students equated p
or p(x) with the integrand. Some students explicitly wrote an equation (e.g., p(x)=3t>,
also a use of idiomatic function notation), while others indicated in other ways that they
were equating the function p with the integrand. For example, several students explained
“q 1s the antiderivative of p”. With some students, an integral as an action accompanied
such explanations, such as “when taking the integral of p(x), the final answer does not
equal q(x)”

Although several students identified p with the integrand, they did not identify p
uniquely with the integrand; that is, there are students who appeared to use the same
notation to represent two different things (a cubic function as well as its derivative, the
integrand in the definition of p). In some sense, all the students who identified p with the
integrand did this, since p(x) is defined to be an integral. However, I consider only the
students who themselves referred to p as the integral function (sometimes expressed by
writing p(x)=x>-8). Eleven students used the same symbol (p(x), p(t), or p) to denote both

the integrand and a cubic function or integral (see Fig. 2.15 below).
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(a) How are p and g related? (Select option i. or ii.).
; T phnd g are the same function.
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Figure 2.15. A Student’s Dual Usage of Notation.

Some of these students additionally wrote that p(x)=x>-8 while also equating p with the
integrand. This is especially interesting, since this shows us that a decent portion of
students understand the same name to refer to two different things. This violates a
fundamental norm in mathematics that within a context, a name can denote only one
object (e.g., functions must be “well-defined”). Students’ wording provides some insight
into how this can happen; five students use the word “becomes” in their explanation, such
as the student who wrote "they are the same function by p(x) being the derivative but by
taking the integral of it it now becomes q(x)" (emphasis added). The use of the word
“becomes” suggests that they might understand “p” as denoting one thing at one point in
time and another thing at another point in time. In some sense, these students are seeing
two functions where we see one; we understand “p” as denoting a single function, while

they understand it as denoting both a quadratic (the integrand) and a cubic function (the

integral).
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2.6 Discussion

The results of this study inform us that many students have a non-normative
understanding of function sameness. As discussed, being able to recognize sameness of
functions is essential to mathematics and allows for powerful inferences. When two
things, say x and y, are the same thing, then we know that {x,y} has cardinality 1.
Conversely, if x and y are different, then {x,y} has cardinality 2. In this study, x and y are
functions. We have learned that there are situations in which mathematicians understand
the functions x and y to be the same (they are seeing {x,y} as having cardinality 1), and
where students understand x and y to be different. The notion that students see two
functions where we see one is tied to the notion of students seeing functions as different
when we see them as the same. However, there is an extra layer of complication here.
Recall that in the cubing function task, the issue was not just that students saw the
piecewise-defined function f as different from the cubing function — they saw it as two
functions rather than a singular function. Where we were seeing an object x, they were
not. This is another sense in which students saw two functions when we saw one — f was
not a “function” but instead “functions” and not a unified entity in its own right. This way
of thinking also occurred in the fundamental theorem task; while we see p as denoting
one function, some students appeared to use it to denote two different functions (a cubic
function and a quadratic function).

Why is it that, when we see two function representations as denoting one and the
same function, students see something different? It is important to answer this question so
that we can see what barriers or potential obstacles students face when developing a
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robust and mathematically normative conception of function sameness, not only because
of the importance of function sameness, but also because of the importance of the
concept of function more generally. As discussed in the general introduction to this
dissertation, there is a close relationship between a person’s conception of sameness
within a category and the defining features of that category. Hence, the importance of
students’ conceptions of function sameness is tied to their conception of function more
generally.

The fact that students did far better on the fundamental theorem task than the
cubing function task is notable (23.5% versus 61%, Stage 3 students). One difference
might be familiarity; translating between representations involved is a procedure that
students have done before in the fundamental theorem task but likely have not done in the
cubing function task. That is, introductory students have evaluated integrals before, but
they have not rewritten piecewise-defined functions as single equations. This discrepancy
is reflected in the types of reasoning students tended to give for the fundamental theorem
task; students performed a translation exercise (evaluation p) which gave them a
representation (p(x)=x>-8) to compare with, symbol by symbol, the representation
q(x)=x>-8. With the cubing function task, there is no translation exercise that the students
perform that results in the ability to compare two representations symbol-by-symbol.
Additionally, students are in some sense being prompted to make a translation that allows
for such a comparison by encountering the integral symbol (as discussed above, it seems
that students viewed the integral symbol as a command to antidifferentiate). In other
words, students were prompted to translate p to a different analytic representation and
then compare to q, which happened to be the same representation as the result of that
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translation. In some sense, the multiple-choice cubing function task can be viewed as a
translate-and-compare task. This is because students were indeed prompted to produce a
graphical representation of the piecewise-defined f alongside a graphical representation
of the standard cubing function. In theory, students could have performed this translation
and then observed that the graphs were identical. However, as discussed, most students
did not do this. Recall that the results suggested that the graphs that students produced
that we would view as identical to the cubing function graph might not have been viewed
as identical from the students’ perspective. Additionally, there is the possibility that
students do not view a graph as uniquely representing a function. This possibility opens
up various questions about how we should understand the translation tasks in multiple
representation literature (discussed in the literature review to this chapter). While this
literature discusses how students translate between multiple translations, it does not
address how or if students understand identity as being maintained throughout these
translations or the uniqueness of such translations.

This study was intended to be about assessing when students saw two functions as
actually being the same function. There was an implicit assumption that we were working
within the category of “function”; students were asked about representations that the
prompts referred to as “functions”. I had only intended to investigate students’ concepts
of function sameness within the category of function. However, the results of this study
suggest that students did not view certain objects labeled as “functions” to actually be
functions (or even objects, for that matter). This occurred in the cubing function task —
the piecewise-defined function f was not viewed as a function, but as two functions with
instructions about when to use each function. This also appears to have occurred in the
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fundamental theorem task — although p was referred to as a “function” in the written task
itself and written with function notation (as p(x)= J. ZX 3t2dt), it seems that several students

did not view it as a function (or at the very least, not a function of x). If one does not
view a particular thing as a function, then they would be hard-pressed to say that this
particular thing is identical to a thing that they do view as a function (following Leibniz’
law of indiscernibles, if x is not a function and y is, then x and y cannot be the same).
Going back to our question about why students do not see function sameness where we
mathematicians do, one reason is that students might not see something as a function
when a mathematician does (despite being told that it is). As a constructivist, this result is
unsurprising. In the cubing function task and the fundamental theorem task, objects that
we as mathematicians understand as functions are not even functions to many students.
This is despite the fact that, from our mathematical perspective, these representations do
refer to functions that students recognize as functions when represented differently (e.g.,
transparently as polynomials).

The results of this study bring up foundational issues about notation and
denotation in a few different ways to suggest that notation is one barrier to students
having a normative understanding of function sameness. First, we have the issue of
viewing function notation idiomatically (Musgrave & Thompson, 2014). Many students
did not view “f(x)=8 if x=2"" as meaning the same thing as “f(2)=8. Similarly, in the
fundamental theorem task, several students evaluated the integral with a “t” and wrote
equations with mismatched variables such as p(x)=t>, suggesting, again, an idiomatic
view of function notation. Second, we have the idea that the thing we call a function

might be something to the student that we would not call a function. This issue is
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described in the preceding paragraph; some students do not view “f”” as denoting a single
function, and students seem not to view an integral as denoting a function. Third, we have
the idea of a symbol being used to refer to two different things in the same context (a
homonym or an instance of polysemy). This occurs in the cubing function task with the
students who gave multiple answers; some students viewed f(2) as being both 0 and 12.
This also occurs with the fundamental theorem task, in which students refer to both the
integrand and the integral as p (or p(x) or p(t)). While mathematics does allow for
different names for the same thing (as discussed, this occurs in statements of identity
such as a=b), the mathematical community does not allow for using the same name to
denote different things within a context. For example, we care that functions are “well-
defined” so that “g(t)” cannot name two different things. In the field of logic, referring to
two things with the same name is considered such a significant fallacy that it has a name:
“equivocation” (Hansen, 2020). In some sense, it appears that students were performing
this fallacy. However, further investigation is needed. As a constructivist, it is important
that what looks like a logical fallacy might be a much more nuanced understanding that is
consistent from the students’ perspective.

With written analytic definitions of functions, function notation appears. One
essential take-away from this study is that students’ understanding of notation has bearing
on their understanding of a written representation of functions, and therefore further
investigation of student understanding of function representations should carefully

investigate how such students understand (de)notation.
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INFERENCES AND KNOWLEDGE TYPES: SITUATING IMPLICIT
DIFFERENTIATION

Chapter four (Mirin & Zazkis, 2020) is an already published paper, and as such, it
cannot be modified. This chapter (Chapter 3) provides an expanded discussion of the
topic discussed in Chapter 4, which is a result of an expanded literature search and
analysis. It also situates Chapter 4 in relation to the general dissertation topic (sameness
of representation). Specifically, it addresses the relationship between implicit
differentiation and sameness as well as how my work on implicit differentiation relates to
the topic of deep procedural knowledge (Star, 2005).

Like chapter two, Mirin and Zazkis (2020) is related to sameness insofar as it
involves function identity. Specifically, it addresses implicit differentiation and, more
generally, differentiating equations. The guiding research questions for Chapter 4 are:

1. What does it mean to understand the legitimacy of differentiating equations

(e.g., in implicit differentiation problems)?

2. What difficulties might a student encounter when constructing such an

understanding?
I answer the first question in terms of function sameness: When it is legitimate to
differentiate each side of an equation (related rates problems, implicit differentiation
problems), that legitimacy is grounded in the fact that the equation being differentiated is
a statement about function identity (sameness). This is another instance of Leibniz’ law
of indiscernibles; when two functions f and g are the same function, they share all
properties. Hence, since being a derivative is a derivative of a function, f and g share a
derivative. In other words, f and g being the same function acts as a warrant (Toulmin,
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1969) for claiming that they share a derivative. It follows that students’ understanding of
function sameness is paramount to understanding differentiating equations (and hence
implicit differentiation) as a legitimate procedure. It is important to note that I am not
assuming that students view differentiating equations in this way. In fact, I do not even
assume that students understand differentiating equations as an inference or as involving
mathematical argumentation. Instead, my paper gives a conceptual analysis (Thompson,
2008) of how students could come to understand differentiating equations in this way and
what difficulties students might encounter in doing so. Chapter two of this dissertation
also provides some insight into answering the second question by explaining the various
obstacles student encounter in assessing function sameness. In particular, the results of
the previous study suggest that inferring that two functions share a derivative on the
grounds that they share a graph is nontrivial for several students.

This topic is not unique to implicit differentiation. For example, suppose we are
working on some sort of word problem, and to solve that word problem, we set up the
equation “x+3=9". We might apply a procedure (e.g., subtracting 3 from each side) to
obtain “x=6". Why is this procedure legitimate in this situation? Well, if a=b, then a-3=b-
3. Reframing in terms of Leibniz’ law of indiscernibles, we can say that if a and b are the
same, then they share the same properties; in particular, since subtracting 3 from a results
in a-3, we can conclude that subtracting 3 from b also results in b-3, and hence a-3=b-3.
That is; we can conceptualize subtracting 3 from each side as an inference. This
illustrates what I mean when I say “understanding the legitimacy of a procedure”. It
involves understanding that there is an inference involved, what exactly this inference is,
and why this is a valid inference. The conceptual analysis in Mirin and Zazkis (2020),
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i.e., Chapter four of this dissertation, explains how a student can reconceptualize the
procedure of implicit differentiation as a valid inference. This is just a more technical
way of saying how a student can come to understand why the procedure of implicit
differentiation works. In answering this question, the conceptual analysis discusses the
conceptualizations entailed in doing so.

In a quest to better characterize my investigation, I turned to the literature on
procedural vs conceptual knowledge. In Mirin and Zazkis (2020), I characterize my
investigation to be about “deep procedural knowledge” in the sense of Star (2005). Due
to space restrictions for that particular journal, I was unable to delve fully into how and if
my topic of investigation is about deep procedural knowledge. For this reason, I delve
into the literature more deeply here. Star (2005) believes that there is a history in
mathematics education of a procedural/conceptual dichotomy being conflated with a
shallow/deep dichotomy. He traces this conflation to Hiebert and Lefevre (1986), in
which the authors define conceptual knowledge as knowledge that is rich in relationships,
and procedural knowledge being knowledge about algorithmic procedures for solving
problems. Star argues that this definition seems to conflate knowledge type (conceptual
versus procedural) with knowledge quality (deep/interconnected versus shallow). Star’s
main point is that knowledge type is in some sense distinct from knowledge quality to
allow for deep (quality) procedural (type) knowledge. “Knowledge type” is what the
knowledge is about. If the knowledge is about concepts, then the knowledge is
conceptual knowledge. If the knowledge is about procedures, then the knowledge is
procedural knowledge. Knowledge quality actually qualifies that knowledge; it is about
how deep or shallow that procedural knowledge is. This leaves room for “deep
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procedural knowledge,” which Star describes as deep knowledge “about procedures”.
With Star’s construct, it is still unclear how to classify the knowledge of why a procedure
is valid. Arguably, we could say that knowledge of why a procedure works is “about
procedures” and classify it under “deep procedural knowledge”. On the other hand, Star
does not give this type of knowledge as an example of deep procedural knowledge.
Additionally, my topic of investigation includes all the background knowledge
(conceptualizations) that a student might need in order to understand this the
differentiating procedure as a valid procedure, which also involves conceptual knowledge
about functions.

Baroody et al. (2007) appear to refute Star (2005). They characterize Star as
claiming (a) that knowledge type and quality are purely independent; and (b) that the idea
of deep procedural knowledge has been ignored. There are a few things wrong with
Baroody et al.’s characterization and rebuttal to Star’s claim of (a). Baroody et al. are not
convinced that knowledge type (procedural — conceptual) and knowledge quality
(shallow — deep) can be disentangled, and they view this as an empirical question. This
particular claim is strange; even if knowledge type and knowledge quality are not
independent in real life, they can still be seen as independent measures that warrant
different labels. Conceptually we can disentangle physical strength and muscle size in the
human body, even though they are interlinked in real life. For this reason, it’s strange that
Baroody et al. view these aspects as potentially dependent as being inconsistent with
treating them as different measures. Furthermore, Star (2005) never actually claims that
they are independent, so it seems that Baroody et al. have mis-characterized his work.
However, Baroody et al. do make some interesting points regarding (a) that might be
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relevant to my work. They claim that “although conceptual knowledge is not necessary
for the former, it is unclear how substantially deep comprehension of a procedure can
exist without understanding its rationale (e.g., the conceptual basis for each of its steps).”
Here, it seems that Baroody et al. are claiming that understanding a procedure’s rationale
(e.g., understanding why implicit differentiation works) is an instance of conceptual
knowledge, at least insofar as they are using the phrase “conceptual basis”. It is unclear if
the authors understand “conceptual basis” to mean “why a procedure works”. To
elaborate on (b), Baroody et al. give examples of mathematics education literature to
refute Star’s (2005) claim that the mathematics education literature has since largely
ignored procedural knowledge. I will address this literature in more detail after I address
Star’s response to Baroody et al.

Star (2007) concedes to Baroody et al. (2007) in acknowledging that the modern
mathematics education research community has not completely ignored procedural
knowledge. However, as Star points out, the work on procedural knowledge has been
purely theoretical and not yet operationalized. He claims that there is a small group of
distinguished mathematics education people who have a nuanced view of procedural
knowledge but emphasizes that this group is very small. As evidence of his claim, he
explains that there are rarely in-depth interviews about students’ understanding of
procedures, and instead only of students’ understanding of concepts. Star (2007) notably
disagrees with what he refers to as Baroody et al.’s (2007) “premise” that procedures
learned without concepts are necessarily rote. He makes the point that there is a
teleological view of procedures. One can perform procedures with a particular goal in
mind and be especially skilled at pursuing this goal. This is how a skilled programmer
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might function. Such a programmer might copy a pre-written section of code and use it in
a larger program. In that instance, they know that the bit of code does a particular thing,
and they use that knowledge skillfully and in a goal-oriented way, without being
concerned with how or why that bit of code works.

I now return to the relationship between this literature and my investigation in
Mirin and Zazkis (2020). Thankfully, Star (2007) does provide additional insight into
what he means by “deep procedural knowledge”. The fact that he argues that procedural
knowledge can be disentangled from conceptual knowledge by discussing the idea of
skilled (teleological and efficient) use of algorithms suggests that he is putting the skilled
use of algorithms in the “purely procedural camp”. The fact that he uses this as an
example, rather than rationale for a procedure, suggests that he might be putting rationale
for a procedure in the “conceptual” camp. Yet, he never clarifies.

I now turn to the literature on “adaptive expertise”, a closely related topic to that
of “deep procedural knowledge”. Hatano (2003) characterizes “adaptive expertise” by
contrasting it with “routine expertise”. While routine expertise involves the successful
execution of routines, adaptive expertise is characterized by being able to use procedures
adaptively in new situations. Essentially, adaptive expertise is whatever skill the student
has that allows for transfer (Baroody, 2003). Hatano suggests that to have adaptive
expertise, students must understand “why a procedure works”. He does not clarify what
he means by “why”. It could mean “why a procedure gets you closer to your goal” — that
is, why subtracting 3 from both sides of -x+3=7 gets you closer to isolating x (not
relevant to Mirin & Zazkis, 2020). Alternatively, it could mean “why a procedure is
valid” (very relevant to Mirin & Zazkis, 2020).
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Baroody (2003) provides a more detailed account of adaptive expertise. He
describes students who had learned why it makes sense to check subtraction problems by
adding. He attributes the students’ ability to come up with the idea to check division
problems by multiplying to the fact that students understand the rationale for doing the
analogous thing with subtraction problems. This sort of reasoning involves not just the
skillful use of procedures toward a goal, but also having some knowledge of why the
procedures work the way they do. In this view, one might classify the investigation in
Mirin and Zazkis (2020) as being about adaptive expertise. Baroody (2003) characterizes
adaptive expertise as involving an integration of procedural and conceptual knowledge.
Interestingly, Baroody (2003) describes Hiebert and Lefevre’s (1986) distinction between
procedural and conceptual knowledge as follows: “Hiebert and Lefevre (1986) defined
procedural knowledge (skills) as knowing how-to and conceptual knowledge
(understanding or concepts) as knowing why” (p. 11). Under this particular definition, it
seems that my topic of investigation in Mirin and Zazkis (2020) is about why — at least,
it’s certainly not “how-to”. Hence, under this characterization, my topic of investigation
is actually not about procedural knowledge.

To summarize, my topic of investigation in Mirin and Zazkis (2020) (Chapter
four) is about how students can come to understand implicit differentiation as a warranted
inference from function identity. The analysis of the literature here reveals no definitive
answers about whether understanding a procedure as a warranted inference counts as
procedural knowledge or conceptual knowledge. Star’s (2005, 2007) characterization of
procedural knowledge as being knowledge about procedures suggests that indeed I am
investigating procedural knowledge — knowledge about the validity of a procedure is
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indeed about a procedure. On the other hand, Star’s (2007) examples of procedural
knowledge only involve discussions of skilled teleological uses of procedures.
Interestingly, Baroody’s (2003) characterization of Hiebert and Lefevre (1986) describes
procedural knowledge as “how-to” and conceptual knowledge as “why”. Under this
classification, it appears that my topic of investigation aligns more with “conceptual
knowledge”. I am not investigating if students know how to implicitly differentiate. On
the other hand, perhaps I am investigating if students know how to justify implicit
differentiation. While the construct of adaptive expertise (Baroody, 2003) keeps
procedural and conceptual knowledge intertwined, this construct appears to be more
about transfer and flexible adaptation of procedures to varying contexts than it is about
understanding the validity or legitimacy of procedures. One aspect of adaptive expertise
is knowing when a particular procedure might be useful — this is arguably related to the
idea of when a particular procedure is valid in the sense that they both concern the
question “when should we use a particular procedure?” We can argue that the answer to
“when should I use implicit differentiation?” is “when you have a statement of function
equality” and is hence closely related to why implicit differentiation is legitimate. Yet, at
the same time, students might have a way of superficially understanding when to use
implicit differentiation without considering functions or function equality at all.
Furthermore, “when you have a statement of function equality” does not answer why it is
okay to take the derivative of both sides of an equation. Additionally, Mirin and Zazkis
(2020) discusses not only the legitimacy of implicit differentiation in isolation, but also
the conceptualizations involved in understanding this legitimacy. Some of these

conceptualizations (e.g., robust understandings of function notation) do not directly
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reference any procedures and are therefore clearly not procedural knowledge. So, while
Mirin and Zazkis (2020) does discuss procedures, its main contribution is a conceptual

analysis, not a procedural analysis.
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FUNCTION SAMENESS: BRINGING COHERENCE TO IMPLICIT
DIFFERENTIATION

John is doing well in his introductory calculus class. He has learned how to
generate a new function, a derivative, from a given function. He has completed several
implicit differentiation problems and can apply differentiation rules fluently. He is
excited to participate in a mathematics education interview. After he successfully
differentiates an equation, the interviewer asks him “Why was it OK to take the
derivative of both sides?”. John thinks for a moment back to his experience in secondary
school algebra and replies “If I have x=1, [ multiply by 2 and get 2x=2, it would be the
same thing.” Next, the interviewer asks John what happens if he differentiates both sides
of x=1. John writes “1=0 on his paper and feels confused. Later in the interview John
differentiates an equation without hesitation. When asked why it was OK for him to
perform this differentiation, he says “because math teacher said so” (with a chuckle).

The vignette centers around (a lack of) what Star (2005) calls deep procedural
knowledge. This involves knowledge of when and why a procedure works. As
mathematics educators, we consider it important that students not only know how to
apply a procedure, but also why a procedure works. Specifically, we

(1) Describe a way that introductory calculus students could understand not only

the ‘how’ but also the ‘why’ of implicit differentiation.
(2) Outline the difficulties that students might have in coming to this

understanding.

97



In doing (1) and (2), we present concerns that could guide calculus teachers. In particular,
(1) can help them with their initial presentation of the subject, and (2) can sensitize them
to the difficulties students might encounter.

Mathematics education literature (e.g., Engelke, 2004; Hare & Phillippy, 2004)
tends to treat differentiating equations as an unproblematic application of previously
learned rules. We could find only two articles, Thurston (1972) and Staden (1989), that
address the legitimacy of differentiating both sides of an equation. While both Thurston
and Staden acknowledge that the justification for differentiating equations requires
explanation, neither author considers the conceptualizations that might be involved for a
student to come to understand when and why differentiating an equation is legitimate.

We therefore provide an approach that entails a justification for implicit
differentiation that coheres with the rest of introductory calculus. We hope that this
discussion of implicit differentiation will sensitize the reader to the mathematics involved
in relation to their own understanding as well as guide them in presenting the topic to
their students.

Our approach to addressing the above begins with a conceptual analysis
(Thompson, 2008) of what it means for an introductory calculus student to understand
(the legitimacy of) implicit differentiation. The conceptual analysis addresses point (1) by
answering the question ‘what does it mean to understand the legitimacy of implicit
differentiation in a way that is consistent with introductory calculus?’. Answering this
question provides a lens for point (2). Specifically, it helps us begin to answer ‘what
struggles might a student encounter in constructing such an understanding?’ We address
this second question by consulting the relevant literature and presenting novel student
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data. Educators can use this conceptual analysis, together with the discussion of potential
student struggles, to assist them in helping students understand the ‘why’ of implicit
differentiation.

4.1 A Conceptual Analysis

To guide our conceptual analysis, we consider a classic implicit differentiation
problem, which we call Ladder Problem I (see, for example, Rogawski, 2011; Stewart,
2006):

A 3-meter ladder is sliding down a vertical wall. Find the rate of change of the
height of the ladder’s top with respect to the distance of the ladder’s bottom from the
wall. A typical written solution to Ladder Problem 1 involves designating y as the height
of the ladder’s top and x the distance of the ladder’s bottom from the wall and performing

the following computation:

x2+y2=9
2x+ 2 (dy)—o
x+2y(7-)=

d
-5(2)

dy —x
dx__y

Computation A
While the solution procedure in Computation A is correct, there is no explanation
for why concluding the second line from the first line is a valid inference; that is, each
side is differentiated, but there is no justification for why this is ok. We therefore solve
Ladder Problem 1 in a way that not only elucidates the ‘why’ of implicit differentiation,
but also does so in a way that is coherent with the rest of introductory calculus. To

clarify, we are not claiming that the line of reasoning described in the conceptual analysis
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below reflects what a student could come up with on their own. Rather, it forms a
trajectory of what we believe might be possible given appropriate instructional support.
4.1.1 Working Through the Ladder Problems
We solve Ladder Problem 1 in a way that reflects a trajectory that an introductory

calculus student such as John could be guided through. As before, we have

(*) x*+y*=9, y>0.
The first crucial insight John might have, is that any x-value between 0 and 3 has a
corresponding y-value that makes (*) true. He might then relate this insight to the notion
of function and observe that any value of x determines a unique value of y. So, it might
make sense to switch to a notation that indicates that type of relationship. Accordingly,
we re-write equation (*) as

(**) x> +(f(x))*=9
where f(x) is that unique value of y determined by x in (*). Next, John might be guided
toward the insight that f is not the only function involved. Namely, x%, 9, and x*+(f(x))?
can all be thought of as dependent on x. Hence, (**) is a statement about function
equality. Accordingly, we consolidate some of the functions involved by calling the
function defined on the left side of equation (**) m and the function on the right side .
So, for 0<x<3, m(x)=x>+(f(x))? and r(x)=9. Equation (**) tells us that m(x) and r(x) are
equal on this interval. The final insight involves inferring that because m(x) and r(x) are
equal on this interval, they therefore share a derivative on this interval. The inference is
central to why differentiating both sides works. Returning to the problem, a student such

as John then might feel like he understands why he can differentiate both sides.
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Differentiating both sides of equation (**) yields f’(x)=-x/f(x). We summarize this line of

reasoning in Computation B.

Mx2+y2=9,y>0
f(x) = the value of y that makes (*) true

m(x) = x? + (f(;'c))2

r(x) =9
m(x) = r(x)
m'(x) =1'(x)
Wt o
R (6)

Computation B

The Conceptual Steps® involved in making the inference of taking the derivative of both
sides are as follows:

1. Defining f by using (*).

2. Viewing both sides of the equation as functions.

3. Recognizing that the functions defined on the left side and the right side

are equal.

4. Inferring that, since the functions are equal, their respective derivatives are

equal.

Note that we are not claiming that first-year calculus students could generate the
above line of reasoning on their own. However, we believe that, like Thompson’s
conceptualization of integration as an accumulation (Thompson & Silverman, 2008), it

can form the basis of instruction aimed at student understanding. In particular, the

% This footnote is not part of the original paper. This conceptual analysis addresses implicit differentiation
only in contexts in which the relation defined by the equation actually is a function and each side of the
equation represents a function. Possible areas of expansion for this conceptual analysis include addressing
situations in which a non-function relation is being defined by the equation (e.g., without the constraint of
y>0) in which implicit differentiation is valid, as well as situations in which implicit differentiation is not
valid (e.g., the equation defining a discrete relation that is not differentiable over an interval).
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Conceptual Steps cohere with introductory calculus insofar as derivatives are of functions
and the equation being differentiated is an equation about functions. Both Thurston
(1972) and Staden (1989) suggested that the legitimacy of differentiating equations is
rooted in function equality. However, as we discussed, much of the current education
research on related rates and implicit differentiation problems overlooks the legitimacy of
the procedure.

We wish to emphasize an aspect of our conceptual analysis. The conceptual
analysis was grounded in the fact that the standard introductory calculus curriculum that
precedes implicit differentiation treats derivatives as being of functions. Therefore, how
an introductory calculus student understands implicit differentiation should involve
derivatives as being of functions (rather than of, say, expressions) and differentiation
rules being applied to functions. This is consistent with how differentiation rules are
introduced in many textbooks; for example, the sum rule states that the derivative of the
function f+g is the derivative of the function f plus the derivative of the function g. Thus,
for example, when students apply the sum rule, power rule, and chain rule to x>+y?, they
must think of these rules as applying to functions. This approach is supported by research
that suggests that some students need to see equations explicitly written with standard
function notation before differentiating (Engelke, 2008). This involves viewing each side
of (*) as representing a function, and therefore viewing (*) as expressing function
identity.

4.1.2 When does the Equation Serve as a Function Definition?

Typically, in calculus textbooks, implicit differentiation and related rates

problems are introduced with little distinction between the two. Accordingly, we illustrate
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these differences by briefly reformulating the problem at hand as a related rates problem.
We keep the previous ladder situation, but this time we specify that the top of the ladder
is sliding down the wall at 0.1 m/s and ask the student to find the speed of the bottom of
the ladder. We call this new problem Ladder Problem 2, a related rates problem.
Procedurally, solving Ladder Problem 2 is very similar to solving Ladder Problem 1; it

involves differentiating the same equation (x>+y*=9) but with respect to t (time) instead

of x.
X% +9% =9
2x () + 29 (37) =
X _t + E ==
2 (dx)+2( 1) =0
X gt y =

X

Zx(E)=2y(.1)
2 (d")—z
X dt =. y
(% _ ¥
dt) 10x

Computation C

We use Computation C to stress the procedural similarity between Ladder
Problem 1 (Computation A) and Ladder Problem 2. This similarity may contribute to the
common conflation of implicit differentiation with any differentiation of equations using
Leibniz notation. Consider, for example, Hare and Phillippy (2004), who explain
“Implicit differentiation must be used whenever the differentiation variable differs from
the variable in the algebraic expression (p.9).” Thus, the authors appear to be conflating
implicit differentiation with use of the chain rule. That is, when we ‘take d/dt’ of

x*+y?=9, we have to use the chain rule with x and y. Similarly, when we ‘take d/dx’ of
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the same equation, we have to use the chain rule with y. So, viewed procedurally (without
attending to the legitimacy of the procedure), these problems are almost identical.

However, as we now illustrate, the conceptual operations entailed in Ladder
Problem 2 are not identical to those in Ladder Problem 1. In fact, Ladder Problem 2 is not
truly an implicit differentiation problem. In order to provide this comparison, we solve
Ladder Problem 2 in a way that an introductory calculus student such as John might
understand.

We begin as before with the equation x>+y*=9. Unlike in Ladder Problem 1,
where we conceptualized y as a function of x, we conceptualize y and x as functions of t:
for all t, (x(t))*+(y(t))*>=9. Similar to our earlier discussion, if we give labels to the
functions on the left and right sides of the equation, say m(t)=(x(t))*+(y(t))* and r(t)=9,
then the equation x>+y?>=9 simply asserts that m(t) and r(t) are equal for all t. As with
Ladder Problem 1, this statement of function equality implies that m’(t)=r’(t). So:
2x(t)x’(t)+2y(t)y’(t)=0, which, since we know y’(t)=-0.1, yields: x’(t)=0.1y(t)/x(t). We

summarize this reasoning in Computation D.

x2+y2=9,y>0
m() = (x(t))* + (y(©®)°
r(t)=9

m(t) = r(t)
m'(t) = r'(t)

Computation D

Unlike with Ladder Problem 1, solving Ladder Problem 2 does not involve Conceptual
Step 1, as there was no function of t implicitly defined by the equation. This difference is

what distinguishes related rates from implicit differentiation problems. Instead, the
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equation x>+y°=9 describes a relationship between yet unspecified functions of t. We
carefully contrasted the two types of problems to emphasize that, while these problems
have similar procedural solutions, they differ in Conceptual Step 1 when attending to the
legitimacy of differentiating the equation.
4.1.3 Summary of the Conceptual Analysis

We are addressing an aspect of deep procedural knowledge, specifically, how
introductory calculus students can understand the legitimacy of differentiating each side
of an equation. In order for such a student to see the legitimacy of this procedure for
differentiating an equation, they must understand the equation as asserting a statement of
function equality (Conceptual Step 3). Doing so requires viewing each side of the
equation as defining a function (Conceptual Step 2). Viewing each side of the equation
this way in Ladder Problem 1 (an implicit differentiation problem) requires a significant
conceptualization (Conceptual Step 1) that Ladder Problem 2 (a related rates problem)
does not. Yet, when viewed as symbol manipulation exercises, Ladder Problems 1 and 2
are nearly indistinguishable, which could explain why some educators appear to conflate
related rates problems with implicit differentiation problems. Importantly, the conceptual
analyses described above present implicit differentiation (and related rates) problems in a
manner that makes the role of functions more transparent and foregrounds the reasons for
the legitimacy of the procedure.
4.2 Potential Student Struggles: Insight from Previous Studies

Viewing an equation as implicitly defining a function (Conceptual Step 1) might
be problematic for students. Notice that defining f takes the form of ‘f(x) is the y such
that the proposition P(x,y) is true.” Conceiving of a function definition that involves
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outputs according to whether or not a proposition is true requires a process conception of
function, which many students have not yet developed (Breidenbach, Dubinsky, Hawks,
& Nichols, 1992).

As discussed above, a key aspect of understanding the legitimacy of
differentiating an equation is conceptualizing that equation as expressing function
equality (Conceptual Steps 2 and 3). Doing so requires not thinking of the equation as
merely expressing numerical equality. For example, thinking of x>+y*=9 as referring to
fixed specific values of x and y is antithetical to thinking of it as a statement of function
equality. Knowing when an equation does or does not express only numerical equality
seems to be difficult for students (White & Mitchelmore, 1996; Engelke, 2004). Engelke
(2004) argues that a major student impediment in solving related rates problems involves
difficulty in viewing equations and problem situations covariationally (in the sense of
Confrey & Smith, 1995). Engelke found that students tended to label their diagrams with
constants when they should have been using variables. These observations suggest that
students struggle with Conceptual Steps 2 and 3 — if students are viewing X and y as
constants, then they are not viewing x*+y?=9 as representing a statement about function
equality. However, while viewing equations covariationally might be necessary for
understanding the legitimacy of differentiating equations, it is not sufficient. As we will
illustrate with John’s clinical interview, a student might think of an equation as
expressing a relationship between varying quantities while not considering the role of
functions. Students cannot think of function equality if they are not even thinking of

functions, impeding Conceptual Step 3.
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Even if a student views functions as being involved (Conceptual Step 2), they still
might struggle with the notion of function equality (Conceptual Step 3). Mirin (2018)
suggests that a strong understanding of function equality may be absent in a number of
calculus students. Specifically, students struggle with inferring that sameness of graph
(pointwise equality) implies sameness of function. Thankfully, students need not have a
fully developed sense of function equality in order to achieve Conceptual Step 4; they
need only reason that because the function on the left side and the function on the right
side agree on all inputs, their respective derivatives agree on all inputs (that m(x)=r(x) for
all x implies m’(x)=r’(x) for all x). However, Mirin (2018) reports that this inference
might be especially problematic for students. When presented with a piecewise-defined
version of the function defined by y=x°, only 32% of the first-semester calculus students
who assessed it as sharing a graph with the function y=x> believed that their derivatives
agreed at a particular point. So, not only do some students struggle to infer function
equality, but some students did not use equal graphs on an interval to infer equal
derivatives at a point on that interval. Hence, even if students were to consider equations
that they differentiate as statements of function equality, it is not clear that they would
infer that the derivatives of those functions are also equal. Consequently, they would not
understand why taking the derivative of both sides of an equation is ever a valid
procedure (Conceptual Step 4).

The literature discussed above provided insights into how students might
understand the Conceptual Steps. Specifically, we used our conceptual analysis as a
framework for investigating the literature to delineate where students might struggle with

the necessary conceptualizations for understanding the legitimacy of implicit
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differentiation. Although the existing literature provides guidance regarding where
students might struggle, it does not directly address student understanding of the
legitimacy of differentiating equations. Our conceptual analysis is itself novel and
provides a lens for incorporating information from previous studies, and as we will see in
the next section, it will also provide a lens for making sense of how students understand
(the legitimacy of) implicit differentiation.
4.3 A Clinical Interview

Equipped with our conceptual analysis, we return to John’s interview from the
opening vignette. At the time of the interview, John was enrolled in second-semester
introductory calculus at Anonymous State University (ASU). He had, the semester prior,
taken first-semester introductory calculus. John was a successful calculus student in that
he earned a ‘B’ in his first-semester calculus course. John had learned about derivatives
as functions and being of functions (we reviewed videos of his lectures). In the first-
semester calculus course, John had learned to take the derivative of both sides of an
equation in solving ‘implicit differentiation problems’ and ‘related rates problems’ in a
similar procedural way as illustrated in Computations A and C, without an explanation
for why this procedure works.
4.3.1 Interview Protocol

The interview was an hour-long semi-structured clinical interview aimed at
discovering and identifying the student’s mental structures (Ginsburg, 1981). Throughout
the interview, John was asked to think about ideas regarding implicit differentiation and
function equality that he had perhaps not reflected on before. John might have never
considered these matters and might therefore have improvised explanations. Four
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prompts guided the interview, as shown in Figure 4.1 below. Only the most pertinent

highlights of the interview are reported here.

Prompt 1. What is your meaning for implicit differentiation? How do you interpret the
word “implicit” in this situation?

Prompt 2. Find % for x> + y? = 1wheny > 0.

Prompt 3. A 10-foot ladder leans against a wall; the ladder's bottom slides away from the
wall at a rate of 1.3 ft/sec after a mischievous monkey kicks it. Suppose h(t) = the height (in
feet) of the top of the ladder at t seconds, and g(t) = the distance (in feet) the bottom of the
ladder is from the wall at t seconds. Then (h(t))2 -100=—(g (t))z. How fast is the ladder
sliding down the wall?

Prompt 4. True or false: Suppose f(x) = g(x) for all values of x. Then f'(x) = g'(x).

Figure 4.1. Four Prompts that Guide the Student Interview.

4.3.1.1 Prompt 1. In response to Prompt 1, John expressed that he did not
remember exactly what the procedure of implicit differentiation was, but that it was
something that must be done when there is no function (due to failure of the vertical line
test). He did not have an idea of what the implicit referred to in implicit differentiation,
suggesting a difficulty with Conceptual Step 1.

4.3.1.2 Prompt 2. John did not have an idea of how to approach Prompt 2, so the
interviewer reminded him that x*+y?=1, y>0 defines the top half of a circle and that a
particular procedure was done in his first-semester calculus class: replacing y with f(x)
before differentiating the equation. The interviewer then asked him to elaborate on what
x*+(f(x))*>=1 means. He explained that 1 is “the radius”, and having f(x) (in place of y)
“makes the computation easier”. He was then asked explicitly what it means for the right-
hand side of x*+(f(x))?>=1 to equal the left hand side, and he responded “It’s a circle. I just
see a circle.” When prompted to explain what the circle has to do with the equation, he

graphed two parabolas on the same axes: a sideways parabola (representing y?) and an
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upright parabola (representing x°) and asked “how is that a circle?”. In this situation, it
seems that John was not thinking of y (or f(x)) as a function of x. Instead, he seemed to
be thinking of y* as denoting the parabola associated with the equation x=y2. This
association indicates that he was engaging in what Moore and Thompson (2015) call
‘shape thinking’ (associating shapes with symbols), rather than understanding the
equation as a statement of function equality (Conceptual Step 2).

After reasoning with a graph was unhelpful to John, he began considering specific
values of x and y, observing that “as they change together, in this equation here, they
have to change together in such a way that it always equals 1.” It seems that here, John
began thinking covariationally, but it was still not clear how John’s approach related to
his understanding of the legitimacy of the differentiation procedure.

As discussed in the opening vignette, John justified the procedure of implicit
differentiation by drawing an analogy to algebra. He subsequently related the procedure
of taking d/dx to inferring equal rates of change: “if you take the rate of change of this
[left side], it is the rate of change of this [right side]. They’re equal to each other, so the
change in one is gonna be the change in the other.” Since John believed the inference of
equal rate of change came from something being equal, to get at what that something
was, the interviewer asked him what happens if he differentiates each side of x=1. As
discussed in the vignette, John noticed that it results in 0=1, which he said did not make
sense. It appears that John was struggling with Conceptual Steps 2, 3, and 4; he was not
viewing the equation as an equation of functions (Conceptual Step 2 and 3) and, despite
being explicitly prompted, did not justify use of the differential operator (Conceptual Step
4).
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4.3.1.3 Prompt 3. Prompt 3 is a related rates problem, like Ladder Problem 2. In
this prompt, function notation is provided explicitly in order to encourage the student to
talk about functions, and an animation of the problem situation is provided in order to
give the student a context to refer to (Engelke (2004) suggests that having a dynamic
image of the problem situation is helpful for helping students reason about related rates
problems). John was reminded that he could take the derivative of both sides of the
equation, and he did so. He explained that the ladder’s distance from the wall, g(t), and
the ladder’s distance from the floor, h(t), “change together”. When pushed, he did not say
why taking the derivative of both sides is a valid procedure. Instead, John continued to
express an understanding of the two distances as changing together with time and did not
mention each side of the equation as representing a function:

“We take the derivative of both sides because [pause] you need to have the two

rates change together, in order for this scenario to work. Because if they don’t

with respect to each other, then uh [pause] it just doesn’t hold true. So we do it on
both sides in order to have the scenario change together and everything stay true
to itself [pause] maybe.”

Even when asked what exactly is being differentiated on the left hand side, John
talked about only h(t) as a function and did not seem to consider the entire left hand side
as representing a function. This suggests that John was struggling with Conceptual Step
2. The only further justification he gave for the legitimacy of differentiating both sides
was covered in the opening vignette: “because math teacher says so”.

4.3.1.4. Prompt 4. Since John was not using the language of functions on his
own, the interviewer decided to move to Prompt 4 in order to see if he would relate taking
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the derivative of each side of an equation to an inference from function equality. John
almost immediately provided what he viewed as a counterexample to the assertion that if
two functions are equal for all inputs, then their derivatives are also equal for all inputs.
By misapplying the quotient rule, he argued that f(x)=x and g(x)=2x/2 are equal for all
values of x but have different derivatives, which is the antithesis of Conceptual Step 4.
John continued his explanation that, if he were to simplify g(x) prior to differentiating it,
he would end up with the same derivative as that of f(x). However, he noted that
simplification before finding derivatives is not permitted in his calculus class. John’s
response highlights that he had a fundamental misunderstanding of how the derivatives of
equal functions relate, a key aspect in understanding the legitimacy of applying the
differentiation operator. This shows us that, for John, Conceptual Step 4 is problematic.
Even if he had viewed equations he was differentiating as statements of function equality,
he still would have the obstacle regarding understanding the differentiation inference. In
other words, John not only struggled to understand why it was acceptable to differentiate
equations of functions, but he also misunderstood that it was acceptable to differentiate
such equations.
4.3.2 Interview Results: Discussion

The fact that John reasoned covariationally, yet still struggled with Conceptual
Steps 1- 4, indicates that understanding the legitimacy of differentiating equations (and
hence implicit differentiation) is a significant challenge for John. Specifically, it provides
an existence proof that there is more to understanding implicit differentiation than correct

mathematization, covariational reasoning, and algorithm implementation. The analysis of
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John’s work also serves to demonstrate the utility of our Conceptual Steps framework for
highlighting which components of John’s knowledge could benefit from reinforcement.
4.4 Discussion

Being aware of the difficulties students might encounter in developing the
conceptualizations described in the conceptual analysis (the Conceptual Steps) can be
useful to calculus instructors when working with their students. We wish to emphasize
that the conceptual analysis was helpful in delineating which conceptualizations impeded
John when formulating his explanations. Importantly, our work reformulates the topic of
implicit differentiation in a way that coheres with typical calculus curriculum.
Developing the topic in this way can serve to enrich the connections students make
between implicit differentiation and the differentiation that precedes it. Two natural
questions emerge from this work. First, how might the conceptual analysis presented here
inform the creation of implicit differentiation and related rates units? Adequately
addressing this question involves both the development of such units and studying their
implementation. Second, what can we discover from analogous work in alternative
instructional paradigms such as infinitesimal calculus? The conceptual analysis used in
this study was predicated on derivatives being of functions, which is the dominant

calculus instructional paradigm.
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IS EQUALITY REALLY SYMMETRIC?

In the general literature review earlier, I discussed at length the body of
mathematics education research that addresses mostly elementary school students’
understanding of ='°. One thing I addressed is the matter of symmetry; although =is a
symmetric relation, it seems that many children do not view it as such. This is most
evident with Rule Violation (i) (Table 1 of Mirin, 2020a), in which students reject
equations of the form 5=2+3 and accept equations of the form 2+3=5. It seems obvious
that most mathematicians would not take exactly this viewpoint. In fact, I would suspect
that any mathematician would not hesitate to say that a=b '! and b=a are truth-
functionally equivalent. However, do mathematicians actually use the equals sign in a
way that is symmetric? Do they feel that a=b and b=a truly mean the same thing? The
fact that experts tend to interpret mathematical texts differently from novices (Veel,
1999) suggests that exploring the meaning of the equals sign amongst experts is a
worthwhile endeavor.

Recall the earlier philosophical discussion about Frege and equality. Frege spent a
long time trying to dissect the meaning (not just criterion of truth) of a=b. One thing
Frege never appeared to address was the issue of symmetry. In both his early and later
writings, Frege did not distinguish between the meanings of a=b and b=a. It seems
reasonable to suspect that meaning is something more than just truth-functional value.

Indeed, it was the meaning of “a=b” that Frege puzzled over, not the criterion for truth.

10 There are several situations in which I am making use-vs-mention errors by omitting quotation marks.
For example, there are several equations (e.g., “2+3=>5") that are being mentioned (I am not asserting that
two plus three equals five) where, for the sake of readability, I often omit quotation marks. This is the same
convention that Ernest (2008) follows and describes.

! This is not an exponent. | am using “a” and “b” as schematic variables in the sense of “a” and “b” to be
stand-ins for any terms/nouns.
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Furthermore, Weber and Alcock (2005) found that mathematicians attend to more than
just truth functions, at least in the case of the material conditional.

Throughout this document, I have been using the word “meaning” without
defining it. This has been somewhat intentional — thoroughly defining what “meaning”
means is a longstanding philosophical issue that I do not intend to solve here (Gasparri &
Marconi, 2019). Thompson (2013b) discusses the very paradoxical and recursive nature
of discussing the meaning of the word “meaning”. Consistent with a constructivist
perspective, this study takes the approach that the meaning of a word or symbol (in this
case, =) is not something that is objectively “out there”. Instead, there are two
considerations when addressing meaning: usage and understanding. The former (usage)
can be thought of as external to an individual’s mind — words have meanings within a
community of practice. The meaning of a word (or phrase) is tied to its usage. People
give words meaning based on how they understand and communicate with words and
what usages of words they accept or contest from others. This is consistent with the
description Wittgenstein gives of word meaning in a community of practice
(Wittgenstein, 1953/2009). Here, the relevant community of practice is the mathematics
community. The latter (understanding) can be thought of as internal to an individual’s
mind. I take the perspective that meaning is closely tied to understanding; how someone
understands a word (or phrase) is essentially their meaning of a word. This approach is
consistent with radical constructivism and is described in more detail in Thompson
(2013b).

Equipped with this operationalized characterization of meaning, I can now
characterize in further detail what this study is about. It starts by addressing the question
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(1) Do mathematicians use and understand the equals sign symmetrically?
This topic is not worth studying in-depth if the answer to (1) is a straightforward “yes”.
In this study, I show that the answer is “no”. Establishing the existence of this asymmetry
paves the way to learn more about mathematicians’ asymmetrical usage of the equals
sign. Accordingly, the main emphasis of this study is on the following question:

(2) In what ways is the equals sign used asymmetrically? What rules and

expectations govern the ordering of terms in equations?
Research question (2) can be rephrased as: “what are the norms that govern the ordering
of terms in equations?!%”. It is worth elaborating why I hypothesized that the answer (1) is
“no”. A quick informal search of textbooks shows that when f is defined as a
homomorphism, the equation written is almost always f(a+b)=f(a)+f(b) rather than
f(a)+f(b)=f(atb). Rules for derivatives are almost always written from left-to-right as
(g+f)’=g’+f*. Similarly, when long computations are presented, it seems that one tends to
work left-to-right from known (or perhaps given) to unknown (or perhaps derived) results.
My study (1) establishes the existence of ordering norms, as well as (2) provides
evidence regarding what these ordering norms are.
5.1 A Discussion of Literature

As alluded to earlier, there is evidence that mathematicians do not attend only to
truth-functional value. There are potentially other interests that govern human utterances.
Van der Henst et al. (2002) argue that the Gricean maxim of truthfulness is not the only

interest governing utterances. Instead, truthfulness and accuracy must be balanced with

12 This particular study concerns the English-speaking mathematics community. It does not address issues
of asymmetry regarding equations embedded in texts in other language, such as those that read right to left.
While the issue of other languages is interesting, it is beyond the scope of this dissertation.
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relevance (to the listener). The authors report on an empirical study that suggests that
relevance motivates people to round when giving the time. It bears mentioning that
Ernest (2008b) also identifies relevance as an important factor when communicating
mathematics. We can see how relevance might influence the order in which an equation
is written. For example, due to the fact that we read left to right, the distributive law
written as x(y+z)=xy+xz might be more relevant to someone who is doing a mathematics
problem that requires distribution than the same law written as xy+xz=x(y+z) would.
This is because such a person might want to substitute the term x(y+z) with the term
xy+xz. Similarly, the same law written as xy+xz=x(y+z) might be more relevant for a
student whose task is to factor. Indeed, the results demonstrate that this was a concern for
the participants. While at first this discussion of relevance could appear to conflict with
Gricean pragmatics, the authors explain that “human communication involves the
attribution of mental states by the interlocutors to one another” (p.465). This attribution is
closely related to the ideas of constructivism discussed in the introductory chapter of this
document; the utterer is essentially working with second-order models; the utterer
considers second order models to anticipate the relevance of the claim to the listener.
What this tells us is that a mathematician might consider the mental state of the listener or
reader, so the mathematician’s beliefs about the reader might influence their decision to
present an equation in a certain order. Indeed, the interview data show that this is the
case.

Attending to issues other than truthfulness helps us begin to answer question (2)
above; if the equals sign is understood asymmetrically then why might someone use one
ordering over another? Clearly the answer is not “one is truer than the other,” so there

117



must be other motivations at play. This is a big “if”, which is why Research Question (1)
is listed separately. Now I move to the topic of linguistics in considering how and why
order might affect the meaning of equations.

When we read a sentence, we are constrained by our language, space, and time.
That is -- some words have to come before other words. Ernest (2008b) explains “in any
form of representation, there is always an ordering present and this structures the access
and role of readers” (p.44). Consider the various ways one could read “a=b”. One could

29 ¢¢

read it as, for example, “a equals b”, “b equals a,” “a and b are equal”, or “b and a are
equal” (note that something like this is the case for any equivalence relation, not just
equality). While these four sentences are equivalent and perfectly acceptable ways of
reading aloud “a=b”, they might have slightly different meanings or connotations. The
first sentence, “a equals b”, seems to emphasize a over b — a is the subject of the
sentence, and b is not. Similarly, “a and b are equal” also seems to emphasize a but
perhaps less so; a and b are both included in the subject, but a comes first.

Halliday’s Systemic Functional Linguistics (SFL) informs my perspective.
(Schleppegrell, 2004, 2007; Veel, 1999). The notions of theme and rheme highlight the
fact that in a sentence, some words come before others, and hence a reader experiences
some words before others. For example, as discussed above, in the sentence “a=b”, the
fact that “a” comes before “b” might give the impression of greater importance to “a”.
The theme is whatever object comes first in a clause: “theme can be identified as the

elements up to and including the first experiential element at the beginning of a clause”

(Schleppegrell, 2004, p.68). The theme of a sentence starts at the first part of a clause and
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ends after the first noun has been mentioned. For example, the theme is underlined in the
following clauses:

Actually, the number three is a factor of six.

At the start of an expression_is often a parenthesis.
Six has a factor of three.

Three is a factor of six.

A is equal to B.

The numbers A and B are equal

A and B are equal.

The quadratic equation was solved by the student.

We now have terminology for illustrating a potential difference of meaning between “a
and b are equal” and “b and a are equal” and the accompanying asymmetry in equation
meaning.

Accompanying the idea of theme is that of rheme. The rheme of a clause is the
portion that is not the theme (Schleppegrell, 2004). Halliday uses the notions of theme
and rheme to discuss how information in text is structured; for example, the rheme of a
clause often becomes the theme of the following clause. The idea that part of the rheme
becomes the theme is part of what makes a text effective and coherent. This theme/rheme
structure supports the hypothesis that mathematicians might use the equals sign
asymmetrically in a text; if “b” is the rheme of a clause and the author is to next claim
that b and a are equal, then “b=a” (or “b and a are equal”) rather than “a=b” fits the
theme/rheme structure just described. This is because “b” starts as the rheme and

becomes the theme. Similarly, we can see the theme/rheme structure in running
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equations such as “a=b=c”. If we interpret this to mean “a=b and b=c”, then we observe
that “a=b=c” is a sentence with two clauses: “a=b” and “b=c”. In the first clause, “b” is
part of the rheme, and in the sentence clause it is the theme.

The shift from theme to rheme often involves grammatical metaphor through
nominalization (Schleppegrell, 2004). More generally, grammatical metaphor involves a
shift in function of a word or idea. Veel (1999) assesses that mathematical text is, in
particular, dense with grammatical metaphors. One function that grammatical metaphor
serves is to turn processes into objects, which is called nominalization (Schleppegrell,
2004). Consider, for example the role of the words “invented” and “invention” in the
following: “The telephone was invented. The invention of telephone created many
opportunities for enhanced communication” (Schleppegrell, 2004, p. 73). Observe that
the term “invent” shifts from being a verb “invented” to a noun “the invention” while
simultaneously shifting from theme to rheme. Like the ideas of theme and rheme,
grammatical metaphor serves to structure information in texts. This process-object
duality is familiar in mathematics education (Sfard, 1992). While normatively it would
appear that on either side of the equals sign is a noun that represents an object, I leave
open the possibility that one side could represent a process. For example, in Mirin,
(2020a), I discuss evidence that in equations like 2+3=5, some students view the 2+3 as a
process rather than as a number.

I use the idea of nominalization to consider potential asymmetry. Consider, for
example, an instance of the sum rule for derivatives: (f+g)’=t"+g’. It is possible that the
instance of the prime symbol (derivative) on the left-hand side serves more as a verb than
a noun. That is, the prime symbol might be understood as referring to the process of
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differentiation - whereas, on the right-hand side, the prime symbol might refer to the
derivative function — an object, rather than a process. Thus, the idea of grammatical
metaphor (specifically, nominalization) could account for the order in which equations
are written. Gray and Tall's (1994) description of procept captures some similar ideas as
the construct of nominalization. A procept is the idea of thinking of something as both a
process (which we associate with verbs) and as an object (which we associate with
nouns). We might understand 2+3 as both a number (an object) as well as the addition
process, and which understanding we are using in any moment might be context
dependent. Thus, thinking of 2+3 as a process and then as an object is a psychological
parallel to the notion of nominalization. For the case of derivatives, the idea of procept
accounts for how one can understand one side of the equation as representing a
differentiation process and the other as representing a derivative function. The literature
(e.g. Behr et al., 1980; Falkner et al., 1999 -- this is discussed at length in the general
literature review) seems to suggest that young students tend to view the left hand side of
equations as representing processes (e.g., problems to be performed) and the right hand
side as representing objects (answers or results of processes). As we see in the results of
this study, this idea extends to some mathematicians as well.

From Halliday’s SFL is the construct of relational clause, namely a clause that
expresses a relationship between two objects (Veel, 1999). Mathematical texts are dense
with such clauses (Veel, 1999). There are two types of relational clauses: attributive and
identifying. An attributive relational clause involves an asymmetric relation, whereas an
identifying clause is a statement about identity and typically involves some conjugation of
“to be”. Our main concern initially appears to be with identifying clauses: “In an
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identifying clause, the process (often the verb to be) is the linguistic equivalent of the
equals sign” (Veel, 1999, p. 196). However, part of what I am investigating is if experts
truly do understand identifying relational clauses as symmetrical. Veel (1999) also
includes a discussion of relational clauses (in the context of mathematical texts) as
functioning to bridge something new to the students/readers with something they already
know. Veel (1999) gives examples that involve the new information or term being
introduced first, such as “The mean, or average, score is the sum of the scores divided by
the number of scores (p.195)”. This example highlights a degree of potential asymmetry
of equations, which are symbolic relational clauses; the verbiage preceding “is” (which
can be thought of as the left side of the sentence) involves an unfamiliar or more
technical term (“the mean, or average score”), whereas the subsequent language (right
side of sentence) involves terms familiar to the readers (“the sum of the scores divided by
the number of scores™). This idea echoes how Frege discusses the informativeness of
statements of identity; the reader is being informed that two different representations, in
this case one familiar and the other unfamiliar, are in fact referring to the same thing. The
results of this study, discussed later, demonstrate that mathematicians understand
equations in this way.

Mathematics tends to be multi-modal (Veel, 1999; Schleppegrell, 2007; Ernest,
2008b). That is, the semiotics of mathematics involves various modes of presentation
such as symbols, verbiage, and pictures. In other words, the written symbol “=", the
written word “equals”, and the spoken word “equals” can all be viewed as different
modalities (Schleppegrell, 2007). In a mathematics class, a teacher frequently plays the
role of mediator between symbolic and verbal forms (Schleppegrell, 2007). Schleppegrell
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(2007) additionally makes the claim that a verbalized equation is more object-oriented
than a written equation with the reasoning that a verbalized equation involves noun-dense
phrases. While it is unclear what her grammatical analysis of written equations is that
leads her to this conclusion, the role of translation from written to verbal is clearly
important. As discussed earlier, there is more than one way that one might verbalize a=b,
and some of these ways might not even use the word “equals”. Schleppegrell (2007)
illustrates her point about verbalizations involving more object-oriented language by
discussing the following equation: a>+(a+2)?=340. She translates it as “the sum of the
squares of two consecutive positive even integers is 340” without justifying this
translation (p.144). It is unclear why she chooses to, for example, refer to “two
consecutive positive even integers” and neglect to mention that one of these integers is
named “a”. Notice that in her translation, there are indeed noun-dense phrases (“the sum
of the squares of two numbers”). It is unclear how one would do such an analysis of an
equation in symbolic form. One way is to translate (excluding the parentheses) the
symbols word by word “a squared plus a plus two squared equals 340”. This translation
does not have such a complicated noun-dense phrase, and one might argue (relatedly) that
it is less object-oriented by claiming that “plus” suggests an action (seeing as it is a verb)
whereas “the sum” does not (seeing as it is a noun). As discussed earlier, the dual nature
of viewing a symbol or idea as both an action and a process (a procept) is not foreign to
mathematics education. Notice, additionally, that these two translations have different
theme-rheme structures — the former has “the sum™ as its theme, and the latter has “a” as

its theme (and relatedly, the former appears to be about sums, whereas the latter is about
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the number a). Indeed, as I discuss later, the results of this study suggest that this is an
asymmetry perceived by mathematicians.

Another idea from SFL has to do with the frequency with which certain linguistic
items occur. Halliday (1985) states: “A speaker of a language has a fairly clear idea of
the probabilities attached to stored items; he ‘knows’ (in other words it is a property of
the system) how likely a particular word or group or phrase is to occur, both in the
language as a whole and in any given register of the language” (p. xxii). To take a
nonmathematical example, consider the norms for ordering of adjectives in the verbal
register of English. The term “nice new house” sounds more natural and likely occurs
more frequently than “new nice house” (Murphy, 2012). An English speaker has a
general idea that “nice new house” occurs more frequently than “new nice house” but
might not know why. As discussed in my introductory section to this study, certain
equations seem to appear to be ordered consistently throughout textbooks. Observe that
Halliday refers to “any given register” — in this case, we are concerned with the symbolic
register. What the quote of Halliday tells us is that others might also perceive such
consistency. Viewing a=b and b=a as different linguistic items in the symbolic register, a
speaker might have a sense of which occurs more frequently and hence have a sense of
what ordering norms or traditions exist. It is reasonable to believe that a participant has
some sense of which orderings are typical and thus has a sense of when ordering norms
are breached.

5.2 Methodology: A Breaching Experiment

I return to the research questions guiding this study. As discussed earlier and in

Mirin (2020a), there is a body of literature establishing that students tend to view equality
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as asymmetrical. Since students might understand equations asymmetrically, this study’s
research questions follow naturally: do experts understand the equals sign
asymmetrically, and, if, so, what are the norms that govern this asymmetry?

One aspect of the studies discussed earlier stands out as especially relevant to this
study; Behr et. al (1980) describe six children who read aloud a sentence of the form
5=2+3 as “two plus three equals five” (differently than how it was written symbolically).
One student asked the interviewer “do you read backwards?” Translating between the
symbolic and the verbal modalities suggests that these children viewed 5=2+3 as a rule
violation and assumed that it must have been an error. By breaking the “rule” that the
“answer” should be to the right of the problem, the researchers gained data to suggest that
this was indeed a rule for these children.

The technique of breaking rules in order to confirm their existence is known as a
breaching experiment (Rafalovich, 2006). A breaching experiment is a technique in
sociology research that involves breaking a purported social rule (without the subjects
knowing that this is the intention of the researcher) and observing the subjects’ reactions.
The idea is that the subjects respond in such a way that reveals that they felt that there
was a rule broken. Some mathematics educators use this research technique to confirm
and explore the social norms governing classroom mathematics activity (see, for
example, Chazan et al., 2012; Weiss et al., 2009). In this study, I use a breaching
experiment as one technique within the context of individual task-based interviews
(discussed further in Subjects and Methods)

As discussed above, breaching experiments are socially situated. Ernest (2008a)
explains how mathematical texts (and hence equations) take place within a social context:
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“mathematical signs or texts always have a human or social context” (p.5). This
perspective is consistent with Halliday’s SFL; one of Halliday’s meta-functions'? of text
is the interpersonal, which encompasses the ways that interpersonal communication is
reflected in the language of a text (Halliday, 1985). When someone is reading a text, a
social interaction is taking place — one between the author and the reader. Additionally, in
an interview, there is a social relationship between the interviewer and the interviewee; if
I have an interviewee read a written equation that is “wrong” somehow, then there are
potentially at least two social rules being breached: that the interviewer presents the
interviewee with mathematics that conforms to the norms of mathematics as a whole, and
that the text itself conforms to such a norm.
5.3 Subjects and Methods

All participants currently teach or have taught mathematics at a university. Nine
participants were enrolled (Jacob, Larry, Kevin, Warren, Ben, Edgar, Patrick, Ming,
Xena), all of whom have graduate degrees in mathematics and experience teaching
mathematics at a university. Five (Jacob, Kevin, Patrick, Edgar, and Ben) are tenured
mathematics professors, two of whom (Patrick and Ben) perform mathematics education
research. Five (Ming, Jacob, Kevin, Patrick, and Edgar) have doctoral degrees in
mathematics, and two (Warren and Ben) have doctoral degrees in mathematics education.
Warren is a recent mathematics education Ph.D. who teaches mathematics at a
community college, and Larry is a current mathematics Ph.D. student who works as a

teaching assistant at a university. Xena is a mathematics instructor at a university. Edgar

13 Halliday identifies three metafunctions of text: ideational, interpersonal, and textual. The constructs of
“theme” and “rheme”, discussed earlier, are part of the textual metafunctions.
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is a recent mathematics Ph.D. who works in the tech industry and has formerly worked as
a teaching assistant at a university and a tutor of graduate-level mathematics courses.
Pseudonyms reflect the participants’ perceived gender; all participants present as
cisgender men, with the exception of Xena, who is a cisgender woman.

Each participant took part in a 60-95-minute-long individual semi-structured task-
based clinical interview (in the sense of Clement, 2000). Following the interviews were
an adaptation of member-checking interviews (Creswell, 2012), which I call “member
checking emails”. I wrote a narrative summary (details provided in the “Data Analysis
Methods” section) of each individual participant. I then contacted them to ask if they
were interested in reading their summary. If they answered “yes”, I then emailed them the
summary and asked if it conformed with their understanding of themselves. Four
interviewees — Kevin, Patrick, Edgar, and Ben — participated in member-checking and
confirmed that my narrative summaries were consistent with their understanding of
themselves.

5.3.1 Tasks and Data Collection

Recall that this study seeks to 1) document the existence of norms for ordering
and 2) learn about the nature of the norms by eliciting explanations for why one ordering
is preferable. I now explain the interviews, associated tasks, and how they relate to the
research questions. I discuss only a subset of tasks here — the remaining tasks are in the
Appendix. The tasks were created based on hypotheses and intuition about the nature of
these norms, the efficacy of each task in breaching a norm was not itself part of the study
design. As such, no single task was essential for answering the research questions. Thus,
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not every task was done with every participant (see Tables 5.1 and 5.2). My goal was
about establishing that there are norms for term ordering in equations and to explain these
norms; my goal was not to count norms or provide a behaviorist experiment. Therefore, |
selected tasks to provide opportunities to reveal and describe such norms. I chose tasks
based on what came naturally in the conversation within the interview, the mathematical
background of the interviewee, and the fruitfulness of the task in prior interviews. For
example, while SetTheory did produce some interesting data (discussed in “Results”
section), administering the task took much longer than expected; this is because it
introduced new notation, including notation (the big-U symbol) that I did not realize
would be unfamiliar to the participants. In some situations, the interview had simply gone
on too long, so not all tasks could be completed. Sometimes (e.g., with Edgar) tasks that
were intended as breaching tasks ended instead being given later in the interview within
the context of explicit discussions regarding ordering. In some cases, like with Edgar in
Induction, the participant did not recognize a breach, but I still wanted to learn more
about how they understood ordering. In this case, I informed them that other participants
found there to be a breach and asked them their thoughts.

It bears mentioning that the interviewees were not told that this study is about
equations or symmetry. The interviewees were instead told that the study is about “how
experts read, write, and interpret mathematics”. Withholding this information is
necessary for performing a breaching experiment.

The interview can be roughly partitioned into three sections. The first involves
open-ended questions; these tasks all have a label starting with “O”. A subset of such
tasks are in Figure 5.1, and all the tasks are in Appendix B. Every open-ended task was
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completed with every participant. These are tasks that prompt the interviewee to write an
equation. The purpose of this exercise was to establish that certain norms or habits about
symmetry with respect to the equals sign do exist amongst the mathematical community.
This means that experts (mathematicians) hold certain expectations about the order of
terms in equations. I hypothesized that, for example, all of the subjects would write the
sum rule for derivatives with the derivative of the sum on the left side of the equals sign
(indeed, this was the case, as I discuss in the Results section). The interviewee was asked
to read the text out loud, carry out the task, and then explain their answer. Follow-up
questions included prompts for elaboration, such as “could you explain your answer?”,
“could you say more about that?”, “how would you explain to someone what this
equation says in other words?”” and “what does this equation mean?”. A selection of
open-ended tasks is below. Working with OFuler was somewhat more involved, since
not all participants were aware of which Euler’s formula I was referring to. In this
situation, I asked the participant to guess. If they requested more guidance, then I

informed them that it was a formula with “sines, cosines, and an exponential”.
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OSumRule OEuler

State the sum rule for derivatives, and write it down. Write down and state Euler’s formula.

OMice

Consider a population of field mice who inhabit a certain rural area. In the absence of predators we assume
that the mouse population increases at a rate proportional to the current population. Using ¢ to denote time,
p(t) to denote the population, and r to represent the growth rate, write a differential equation expressing
this relationship.

Oldentity

Suppose (S, %) is a binary algebraic structure. What does it mean for an element e € S to be a left
identity element?

Figure 5.1. Selection of Open-ended Tasks.

Since textbooks appear to traditionally write the sum rule for derivatives with the
derivative of the sum on the left, Euler’s formula with the exponential term on the left,
the definition of an identity element having the operation on the left, and differential
equations with the derivative on the left, I wanted to see if these norms extend to my
participants.

The second portion of the interview is the portion in which the breaching
experiment takes place. A sample of the tasks involved is shown in Figure 5.2, and Table
5.1 shows which tasks were done with which participants. All tasks are included in
Appedix C. An asterisk indicates that for the particular participant, the task was not done
as a breaching task. Instead, the task was visited later in the interview and served as a

comparison task in which order and asymmetry were explicitly inquired about.
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Table 5.1. Breaching Tasks Completed by Each Participant.

DifferenceQuotient Homomorphism Exponents Induction
Jacob X X X X
Larry X X X X
Warren X X X
Edgar X X X
Patrick X X X
Xena X X X
Kevin X X X
Ben X X X
Ming X X X
SetTheory | Product Idempotent Proof Distributive
Rule
Jacob X X X X X
Larry X X X X
Warren X X* X X
Edgar X X X X X
Patrick X X X X*
Xena X X X X
Kevin X X X
Ben X X X X
Ming X X X X X
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These tasks involve having the interviewee read mathematics text that includes an
equation. That equation is reversed from the way in which it typically appears in
textbooks, with the intention of violating an order norm. I chose equations that seemed
wrong or atypical when presented in the reversed ordering. I then discussed and
confirmed these task designs with another mathematician. While I had not predicted
every ordering norm that these tasks violated, I began with some hypotheses about what
ordering norms might be breached while creating these tasks. Thus, hypotheses about
order norms together with intuition guided me in task design. The hypotheses that guided
the task design are as follows: ordering should abide by tradition, equations should go
left to right from complex to simple, calculations go left-to-right-top-to-bottom, when
proving x=y one should start with x and end with y, some equations are rules for
calculation. As discussed in “Results”, all of these norms with the exception of “when
proving x=y one should start with x and end with y” were evoked within the interviews.
For example, the task Idempotent (Figure 5.2) has p=p*p, whereas pxp=p appears
to be the equation texts typically use. This violates the potential norm that an operation
should be on the left side, or that a simplified expression be on the right. In
Homomorphism, the equation is written with ¢(x*y) on the right, whereas it usually
appears on the left. While tradition was the only norm I was attempting to violate with
this particular task, the results reveal that there were other norms violated. Similarly,
while Distributive was designed only with the idea of violating tradition in mind,
implementing the task revealed norms regarding substitution. The task Exponents was

designed with the simplification heuristic in mind; there’s a sense in which one might
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consider a*"Y to be more simplified than a*a”, but this particular norm was not evoked in
this task.

Other tasks were designed to reveal the norm that calculations go left-to-right-top-
to-bottom: that is, that on the left or beginning of a running equation is something that is
given or presented to the problem-solver and on the right is something derived or
calculated. For example, DifferenceQuotient includes a string of equations that starts with
2x+h and ends with (f(x+h)-f(x))/(x+h)-x. Similarly, Induction includes a string of
equations that starts with (n*-n)+3n(n+1) and ends with (n+1)*-(n+1). This string of
equalities was obtained by taking and reversing the a string of equalities that appears in a
textbook (Stankova et al., 2008). As the results discuss, these particular tasks revealed
several norms and not just those surrounding the idea of calculation. The task SetTheory
was designed to violate two different norms. It was taken from a set theory textbook
(Enderton, 1977) that shows that the set U a* is equal to the set a by starting with U a*
and working to a. My version of the tasks reverses the computation; it still purports to
show the same equality but it does so by starting with a and ending with U a*. This was
intended to violate the norm that when proving x=y, one should start with x and end with
y, as well as the simplification heuristic; there’s a sense in which U a* computes or
simplifies to a. Similarly, the task ProductRule was designed to violate not only the
tradition that the product of the sum typically occurs on the left in its presentation, but to
also evoke the asymmetrical meaning that the equation is a rule for calculation.

One breaching task, Proofs, is somewhat different from the others. For the others,
I simply reversed equations, so that a=b was changed to b=a and a=b=c=d=e was
changed to e=d=c=b=a. With Proofs, I change a=b=c=d=e (the form of the proof
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presented in a textbook, Fraleigh, 2003) to d=b=e=a=c. In other words, the ordering of
terms was not simply reversed; it was jumbled. My goal with this task was to verify the
following related norms; that mathematicians do not read a=b=c=d=e as “a, b, ¢, d and e
are all equal to each other” but instead read it as a conjunction of equations, as well as the
norm that mathematicians are concerned with not only truth but also deducibility and
inference when reading a proof. In other words, my goal was to confirm that
mathematicians read it as “a=b and b=c and c=d and d=e, hence a=e”. My purpose for
introducing such a long string of equations is to explore the idea that the reader
experiences the left side of the equation first — the separation between the left (start) and
right (end) of the string of equalities is larger with several terms. Furthermore, results of
this task help highlight the expected finding that mathematicians care about more than
just truthfulness.

The purpose of these tasks is to see if the interviewee reads the equations from
right to left (like the child did in Behr et al., 1980) or remarks that the equations are
reversed in some way. It also provides an opportunity for the interviewees to discuss their
thoughts about the way the equations are ordered.

Like the first portion, the interviewee is prompted to read the text aloud and is
asked follow-up questions for elaboration. They are additionally sometimes asked their
opinion on the equation, such as “what do you think of this equation?” and “would you
write it differently?”. These latter questions are included for the interviewees who do not
mention breaches on their own. It seems reasonable to believe that some mathematicians
might notice a breach but just not mention it — they might instead only focus on
mathematical correctness. Just because you would have done it differently or find it
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unconventional doesn’t mean you would necessarily remark on that observation. Indeed,
I found evidence of this with at least one participant.

In the cases in which the participant mentioned a breach (in particular, in the tasks
DifferenceQuotient and Induction), I made attempts to repair the breach and then inquired
further. For example, in DifferenceQuotient, some participants explained that they
imagined the context in which students are learning how to compute difference quotients,
and therefore the 2x+h should not be mentioned right away (discussed in more detail in
“Results”). In these cases, | subsequently modified the task to be in the context in which
the student has already worked with derivatives and is proving that the derivative of
f(x)=x? is £(x)=2x. Similarly, in Induction, several participants remarked that the term
3n(n+1) appears to “come out of nowhere”. To repair this breach, I changed the task to
move the sentence “Since either n or n+1 is even, 3n(n+1) is divisible by 6” to appear
before the string of equations; this way, the 3n(n+1) in the string of equations no longer
“came out of nowhere”. In other words, this investigated whether the breach could be
amended without reversing the order of the equations, or whether the breach was
fundamentally tied to the equation order. This provided the opportunity to learn more
about what, exactly, was being breached, which therefore revealed more information

about reasons for asymmetry.
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DifferenceQuotient

The difference quotient of a function g is defined to be

glz+h)—g(z)
(x+h)—z

where h is nonzero.

Let f : R — R be the function defined by f(z) = 2.

The following shows the difference quotient:

flz+h)- f(x)
h

flz+h)=flz)

(x+h)—a

2

Distributive

The distributive law tells us that for all numbers z, y, and z,

ryt+az=uxly+z)

Productrule

The product rule for derivatives says that if f and g are differentiable functions, then

fd +fa=(of)

Idempotent

Suppose (S,*) is a binary algebraic structure. An element p € S is said to be idempotent under * if and
only if

pP=p*p

Figure 5.2. Selection of Breaching Tasks.

The third portion of the interview involves explicit discussions about ordering of

equations. This involves tasks (which I call “Comparison Tasks”’) in which the

interviewee is asked to explicitly compare equations (Figure 5.3). All these tasks revisit

equations that are included as either breaching or open-ended tasks. Table 5.2 shows

which tasks were done with which participants. These tasks are in Appendix D.

Table 5.2 Comparison Tasks Completed by Each Participant.

Cldentity | CProofs CEuler CSumRule CMVT
Jacob X X X X X
Larry X X X X
Warren X X X X X
Edgar X X X
Patrick X X X
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Xena X X X X
Kevin X X

Ben X X X X X
Ming X X X

Some of the tasks are revisited from earlier in the interview, and the interviewee
is prompted to compare different ways of writing the same equation (Figure 5.3). For
example, assuming the interviewee answered with (f+g)’=f" +g’ to OSumRule (Figure
5.1), the interviewee is presented with an equation written the other way (CSumRule) and
asked to compare it to theirs.

Probing interview questions include “I noticed that earlier you wrote the equation
differently”, “I have found that textbooks usually present the equation this way. Do you
think there is a reason for that?”, “Is there a difference in meaning between these
equations?”, “Which way do you prefer?”, “Is there an advantage to writing the equation
one way over the other?”, and “Can you give an example where writing it this way would

be preferable and explain why?”.
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MVTCompare

There are various ways that textbooks state the mean value theorem.

Theorem 1. Suppose f is a continuous function on [a,b] and is differentiable on (a,b). Then there exists
a point ¢ in (a,b) such that

fb) — f(a)

flo =12

Theorem 2. Suppose f is a continuous function on [a,b] and is differentiable on (a,b). Then there exists
a point ¢ in (a,b) such that

Theorem 3. Suppose f is a continuous function on [a,b] and is differentiable on (a,b). Then there erists
a point ¢ in (a,b) such that

Fi(e)(b—a) = f(b) - f(a)

Theorem 4. Suppose [ is a continuous function on [a,b] and is differentiable on (a,b). Then there erists
a point ¢ in (a,b) such that

J(0) = f(a) = f(e)(b—a)

Figure 5.3. A Comparison Task Used in the Third Portion of the Interview.

5.3.2 Data Analysis Methods

There is not one standard method that I can cite to capture the entirety of my data
analysis. For this reason, I discuss some of the details of how I handled my data and the
variety of techniques I used to reach my conclusions.

Some degree of data analysis took place during the interviews themselves. I
adapted to participants’ responses instead of having a fully deterministic interview. This
involved interpreting my participants’ meanings to make in-the-moment decisions. Like
with my other studies in this dissertation, this is consistent with constructivist
epistemology (elaborated upon more in the general introduction); as a researcher, I am
forming second-order models of my participants’ meanings (Steffe & Thompson, 2000).

This, of course, makes sense; I had to interpret the interviewee’s responses and then
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respond accordingly. For example, when a participant explained that DifferenceQuotient
was “backwards”, I had to interpret the participant as pointing out a breach and then take
that opportunity to inquire further.

After each interview, I wrote up brief notes of my overall impression of the
participant. These notes were done based on memory as well as any field notes I had
jotted down. Specifically, I took notes of any situation in which the participants answered
the open-ended tasks in atypical ways, any situation in which they pointed out a breach,
and a list of considerations regarding asymmetry (e.g., “this participant seemed to focus
on the idea that terms shouldn’t come out of nowhere”).

Once all the interviews were completed, I took notes on each individual interview.
This involved re-watching the interview recording and transcribing the portions that
pertained to ordering or asymmetry. I transcribed the situations in which participants
explained a breach, as well as their responses in parts three and four of the interviews
(comparison tasks and explicit questions). In the second portion of the interview, I took
note of situations in which the participant mentioned the right-hand side of the equation
first in their explanation (e.g., explaining Idempotent by saying “p multiplied by itself
results in p”). Notice that mentioning of a breach and reading things from right to left
parallels the anecdote in Behr et al. (1980) in which a child reads 5=2+3 as “two plus
three equals five” and refers to it as “backwards”. Relatedly, I took note of language that
appeared to entail asymmetry, such as “e times x becomes x’ (emphasis added). In order
to have the data necessary for cataloging and describing reasons for asymmetry, I
transcribed any portion of the interview in which the participant explained why they
wanted an equation to be written in a certain order.
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Some portions I did not transcribe. For example, in the open-ended tasks, I only
noted the equation given by each participant -- not their exact description of the meaning
of the equation. I did not transcribe every description or explanation that participants
gave of equations; often, they explained aspects that did not pertain to order (for example,
explaining a derivative rule in terms of rate of change functions).

These notes were organized by task, and each task was organized by participant.
This is the point at which my coding began. I used a hybrid of constant comparison
inquiry (Creswell, 2012) with a narrative approach (Creswell, 2012) from a constructivist
perspective (Clement, 2000). I began with an initial list of codes to account for
asymmetry, that I created from hypothesizing about norms for asymmetry together with
initial observations made when entering the data. I then applied these codes to the
interview data and took note of any reason for asymmetry that was not captured by these
codes. All the reasons that I had expected people to have for ordering did appear at some
point, but reviewing the interview notes led to additional codes. I then expanded these
codes to include the additional reasons for asymmetry that were not in the original list. At
this point, the level of analysis was somewhat low-level. I was only coding the reasons
that people gave me. This happened due to my own naive understanding that coding was
a straightforward process; I expected that there would be little interpretation involved and
that I could simply write down the reasons for orderings given to me (e.g., “the
operations should be on the left side”) and categorize them based on the words used.

This initial approach led to a rather incomplete interpretation of what was
happening; if two different words were used to describe the same idea, then two different
codes were created for the same idea. For example, Jacob used the words “mysterious”
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and “complicated” synonymously to describe a mathematical idea that would be
relatively new to his envisioned reader (for example, he mentioned that in MVTCompare,
f’(c) is more “mysterious” because the amount of mathematics needed to know what it
denotes is greater than the amount of mathematics needed to know what the difference
quotient denotes). Similarly, sometimes the same word was used to describe different
ideas. Unlike with Jacob, Larry used “mysterious” to mean “new to the conversation” or
“whose purpose for being mentioned in this context is unclear”. Careful word
interpretation was also paramount in understanding the use of the words “new” and
“given”. Sometimes, “new’” meant “new to the conversation”. For example, in
DifferenceQuotient, the term 3n(n+1) is “new” in the sense that it has not occurred
elsewhere in the proof or in the statement of the theorem — it is new to the reader.
Contrast this with e in CEuler; it is “new” in the sense that the reader might be less
familiar with an imaginary exponent than with isin(0)+cos(0). Thus, while the claims “the
new thing should be on the left in the equation” and “the new thing should be on the right
in the equation” might appear to be contradictory, they are instead using different notions
of the word “new”. Similarly, in some situations, participants used the phrase “given” to
mean “posed to you” or “given to work with”; in the task Productrule, (fg)’ is “given” in
this sense. On the other hand, some participants used the word “given” to mean “given
information”. In the task Productrule, the given information might be information about
the functions f, g, °, and g’. Notice that these two interpretations of “given” are at odds
with each other.

The above examples illustrate why this was not just a straight-forward task of
coding via categorizing words and why I refined my approach. I delved into the meanings
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of each participant to understand how they were using words and the various contexts
that they were envisioning. In order to interpret a participant’s description for a reason for
ordering a certain way, the context of a task was important — was it a proof? Was it a
theorem? How did the participant frame or understand the context of the mathematical
activity? These issues are where the notion of constructivism and abduction come in
(discussed in more detail in the general introduction to this dissertation). Simon (2019)’s
critique of coding as purely categorization aligns with my need for greater interpretation
than simple sorting of words given by participants: “categorization is generally an
inductive process (sorting the data as observed), not the multilevel process needed to gain
new insights and work toward abduction of new theoretical constructs” (p. 114). I am not
merely categorizing data, but [ am interpreting data in a way that contributes to the
categorization. This is not a purely inductive process.

In order to interpret each participant’s motivations for asymmetry, I looked at
each person’s responses individually. This provided me the opportunity to carefully
consider each participant’s word meanings and focus on how each individual person was
thinking. I analyzed each interview in a way that is consistent with the methods described
in Simon (2019). This involved three layers of analysis. Although presented as separate
levels, as Simon (2019) notes, there is an interaction; I first considered local portions of
the interview transcript and noted reasons given for ordering. This was done on a line-by-
line or sentence-by-sentence basis, so, at this point, the analysis was not unlike the initial
analysis I performed across tasks. This, as Simon (2019) puts it, stays “close to the data”.
The second level involved more interpretation; as I read the data, I made hypotheses
about how the individual participant was thinking about the given task or the asymmetry
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being discussed. The third level involved making an overall assessment about how the
individual understood the meanings of equations. In order to develop a robust
interpretation, I moved back and forth between these levels; while the results of the first
level informed the second and third levels, I still returned to the “lower” levels to check
for consistency after doing the higher-level analysis. The product of the individual
analysis was a narrative summary together with a list of themes capturing the various
reasons for ordering. Below is the narrative I wrote for Larry:
Like Jacob, Larry uses “starting” and “on the left” synonymously. He continues to
talk about “showing what’s going on”, where he appears to be talking about
clarity or transparency to the reader. Like Jacob, he believes that things should not
come out of nowhere. This idea extends to the notion that we should “start with”
the thing we are proving something about — this is what the prover themself does,
so this should be reflected on the page to the reader (“showing what’s going on”).
He uses transformational language throughout, wherein a=b means something like
“we start with a, and we get b”, fitting the general notion of time mentioned in my
first sentence of this paragraph. Like Jacob, he mentions tradition and verification
of truth as important things. Unlike Jacob, he mentions something almost like
theme-rheme structure: that if you end with something about b, it makes sense to
start the next sentence with something about b — he links this to the notion of
something being “given”. Where he diverges significantly from Jacob is his
reasoning on the Identity. Recall that, for Jacob, the more “complicated” or
“sophisticated” thing being on the left was why exs should be on the left. For

Larry, exs should be on the left because the idea of operating and getting a result
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is part of the meaning of left identity. However, he can see some utility for having
it the other way: for example, in a proof where you end up writing ¢(e * s)= ¢(s).
This response suggests that the way something is written as a law should reflect
the order in which it is used in a proof or computation. For the distributive law, he
says “we want to see how to distribute something”’; some action is performed to
get from a to b in a=b in the sense that we work with a to get b. In this sense, an
equation is an instruction for a transformation. So far, throughout the interviews,
we have a general theme that the right-hand side gives you information about the
left-hand side, and you are interested in learning something about the left-hand
side. This can be in the context of a proof (e.g., we are proving something about
the left-hand side, as in how the proof in Induction is conventionally given), or it
can be in the context of a calculation (the right-hand side tells us how to compute

the left-hand side, as in OFEuler).

As these analyses took place, I organized and described the various themes. Thus, when I

moved to analyze a new participant, [ had ideas in mind from previous participants. For

example, when analyzing Jacob’s interview, I began to see that the notion that the left-

hand side of the equation should be “the thing you want to know more about” is linked to

the general maxim that “things shouldn’t come out of nowhere” (I discuss these links in

more detail in my results section).

5.4 Results

I begin by answering research question (1): Do mathematicians use and

understand the equals sign symmetrically? In doing so, I establish that there are indeed

norms surrounding the usage of the equals sign that suggest asymmetry. This is
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accomplished primarily with the first two portions of the interviews: the open-ended tasks
and the breaching tasks. I focus first on establishing that there are norms for ordering
(research question 1) and then later discuss specifically what these norms are (research
question 2).

5.4.1 Evidence of Asymmetry (Research Question 1)

The results of the open-ended tasks suggest that there are norms for writing
equations in certain orders. In all the tasks, participants gave relatively consistent
answers. In OMice, all nine participants wrote the equation the same way, with the
derivative on the left-hand side. In OFuler, eight participants wrote the exponential term
on the left side, with the exception of Xena, who wrote the formula incorrectly as sin(im)
= ¢'™+1. In other words, all eight of the participants who wrote a correct answer put the
exponential term on the left. It is notable that even Xena’s incorrect answer has the more
concise or less expanded term on the left; as I discuss later, evidence supports the claim
that it is a norm to put the shorter or less expanded term on the left. Similarly, all eight of
the participants who wrote the correct equation for OMVT put £°(c) on the left. In
OSumRule, all nine participants wrote their equation with the derivative of the sum on the
left. There were very strong norms evoked by this task and the related task ProductRule,
which I elaborate on later. In Oldentity, every participant wrote the identity element on
the left. To summarize, participants ordered their equations consistently on the open-
ended tasks, the only exceptions being Larry on OMVT and Xena on OFuler.

The results of the breaching tasks also confirmed that there are norms regarding
asymmetry. However, this portion of the interview was not as straightforward as
expected. With some participants, it was revealed later in the interview that in some
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tasks, they perceived a breach but did not say anything. They explained that this is
because they viewed the breach as either unproblematic or relatively unproblematic
compared to a different breach.

In Proof, all eight of the participants mentioned an order breach. This is
unsurprising, given that the equation was not simply reversed but instead had terms in a
jumbled order. In both Induction (eight people interviewed) and DifferenceQuotient (nine
people interviewed), all participants except Edgar mentioned an order breach. However, I
revisited both of these tasks toward the end of the interview with Edgar and explained to
him that other participants found there to be an order breach. He explained that he did not
“like” the presentation DifferenceQuotient but had just not bothered to mention it, and
that he could understand why others would take issue with Induction. In Idempotent, all
eight of the interviewees did not mention an order breach. Warren encountered the task
only as a comparison task (not as a breaching task) in the context of an explicit discussion
of ordering and explained that he did indeed have a preference for writing it the other
way. In Homomorphism, only Kevin and Warren mentioned an order breach. In
Exponents, two out of three (Jacob and Larry) mentioned an order breach. In Distributive,
three (Warren, Larry, and Ben) out of the seven people who encountered it as a breaching
task mentioned an order breach. All three took issue not with the equation itself, but with
calling the law the “distributive” law rather than the “factoring” law; in other words, they
found the name of the law to be incongruent with the way in which the law was written,
suggesting an asymmetry (discussed further in 5.4.1). In ProductRule, six out of nine
participants (everyone except Edgar, Ming, and Xena) mentioned an order breach. With
Xena, I returned to the task at the very end of the interview and explained the design of
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the task. At that point, she had already explained that she realized the true purpose of the
interview. She explained that she “didn’t mention it [the order breach] then, but was so
focused on the lack of variables”. She was focused on the fact that the equation used f* to
name a derivative rather than f(x). While Ming and I did not return to the task, he
appeared to be distracted by the same issue; he explained that many students might have
difficulty with an equality of functions rather than of numbers. Edgar did not mention an
order breach during this task, and we did not return to the task later in the interview.

Table 5.3 below summarizes the above results of the breaching experiment. As |
discuss later, a participant not seeing an order breach does not mean that the participant
did not understand there to be differing meanings of an equation based on ordering. In
some cases, both orderings were acceptable but had different meanings. See, for example,
Kevin’s explanation in “7The Topic Goes on the Left”. This especially occurred with
Idempotent and Distributive; the ordering affected the meaning. I discuss this in more
detail when answering research question (2).

Table 5.3 Results of breaching experiment by task and participant.

DifferenceQuotient Homomorphism Exponents Induction

Jacob Y N Y Y
Larry Y N Y Y
Warren Y Y Y
Edgar NY N NY
Patrick Y N Y

Xena Y N Y
Kevin Y Y NN
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Ben Y N Y
Ming Y N Y
Total Y(8), NY(1) Y(2), N(7) Y(2), NN(1) | Y(7),NY(1)

SetTheory Product Idempotent Proof Distributive
Rule
Jacob N Y N Y N
Larry Y N Y Y
Warren Y *Y Y Y
Edgar N N NN Y N
Patrick Y N Y NN

Xena NY N Y N
Kevin N Y N

Ben Y N Y Y
Ming N NY N Y N
Total N#4) Y(6), *Y(1),N(7), NN(1) Y(8) Y(3), N(4),

N(1), NN(1)
NY(2)

Note. Y means they encountered it as a breach task and mentioned an order breach. N

means they encountered it as a breach task and did not mention an order breach. NN

means they encountered it as a breach task and a comparison task and did not find there

to be an order breach with either. NY means they encountered it as a breach task but

didn’t find there to be an order breach, but encountered it again as a comparison task and
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did find there to be an order breach. *Y means they did not encounter it as a breach task,
did encounter it as comparison task, and found there to be an order breach as a
comparison task (when asked explicitly about ordering).

In breaching tasks, it was common for participants to explain the meaning of the
equation from right to left. Notice that this parallels the story in Behr et al. (1980), in
which young students read 2+3=5 as 5=2+3. For example, in Idempotent, seven of the
eight participants explained the meaning of the equation by mentioning the right-hand
side of the equation first. This is despite the fact that none of them mentioned an order
breach. In Idempotent, participants had explanations that were close to “if you take this
element and you apply it to itself, you obtain the original element” (Larry). In this case,
the language was action-based and actually mirrors the students’ language in Behr et al.
(1980) regarding performing an operation and obtaining a result (a discussion of
operations-produces-results follows in a subsequent section). Mentioning the right side
first occurred also in ProductRule, Homomorphism, and Exponents. In ProductRule, six
of the nine people interviewed mentioned the right-hand side first in their explanation of
the equation. This includes the three people, Xena, Ming, and Edgar, who did not
mention an order breach. Similarly, in Homomorphism, out of nine participants
interviewed, Larry and Peter mentioned the right-hand side first when explaining the
equations but did not mention an order breach. For the first and third equations in
Exponents (the equations that breach the supposed norm), Jacob explained from right to
left but did not mention an order breach. I interpret the existence of these right-to-left
explanations as responses to order breaches in a similar way that Behr et al. (1980) does;

the fact that participants in some sense read “a=b” as “b=a” suggests that “b=a” better

149



reflects their understanding of what such an equation is trying to express and that “a=b”
violates an order expectation. This interpretation is not inconsistent with the fact that
several participants did not mention an order breach. As discussed previously, some
participants later revealed that they noticed an order breach but had not bothered to say
anything. Additionally, people might in some sense correct a breach without even
noticing that there is a breach.

5.4.2 Reasons for Asymmetry (Research Question 2)

Now that I have established that there is asymmetry, I move to answering
Research Question 2 in establishing what makes equations asymmetric. I characterize the
various reasons for asymmetry given by participants. These are the resulting “codes” or
“themes”. These codes are not intended to represent a strict partition of the reasons given;
that is, there are some overlapping codes. This makes sense considering the close
relationships between the various codes, elucidating a possible context-dependence of the
grammatical preferences and influences of norms that induce an asymmetry in the
equations.

5.4.2.1 Texts Should be Coherent. Our first overarching theme is textual
coherence. This code captures the idea that mathematical text, like any text, ought to be
structured in a way that is coherent, cohesive, and organized. This is, perhaps, the most
common reason for asymmetry throughout all the interviews. It occurred in multiple tasks
with every participant. Within this textual coherence umbrella were various other
common ideas or rules for ordering. These rules, although listed separately, are

interrelated.
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5.4.2.1.1 Ordering Should be Consistent and Match Expectation. The notions of
consistency of order appeared in a few situations. Both consistently across contexts and
consistency within a context were suggested as reasons for particular orderings. The
former occurred when participants discussed the frequency with which a particular
ordering occurs in other contexts as a reason for using that ordering. For example, some
participants expressed that the way that an equation is written in a theorem should reflect
the way that it appears most often in proofs or computations, and some participants cited
“tradition” as a reason for certain orderings. Ben explained that he had no strong
preference for ordering in Idempotent because he hasn’t “used it enough times to have a
sense of the frequency with which each [ordering] occurs™.

Consistency within a context was also given as a reason for particular orderings.
For example, in CProofs, some participants explained that because the definition of left
identity has the operations on the left, the proof should mirror this same structure. A
similar norm appeared in Homomorphism; some participants explained that the “from”
and “to” language (a homomorphism is a function “from” something “to” something)
suggested that the equation should be ordered a certain way. Warren explained that the
equation in Homomorphism should be reversed:

For the simple fact that the homomorphism maps S to S’, it’s directional, we start

with S and we want to get S°. And, also, the two algebraic structures are

presented in that order, S then S°. And then when we write the equation we re

actually kind of, reading left to right anyway, we 're actually going backwards

from the way everything is presented.
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Some participants mentioned the idea of mirroring an implication structure; when
proving P implies Q, the proof should start with P and end with Q. I had expected a
similar response in SetTheory. That is, I had expected that the fact that the equation in the
theorem was written one way as a=b, that starting with b and ending with a would be
perceived as a breach. However, no participants mentioned this breach. This might be
because only four participants were interviewed, and three of them expressed
unfamiliarity with the field of set theory and the notation within the task. I hypothesize
that they were too busy making sense of the symbols to perceive an order breach.
Unfortunately, there were no other tasks to test this particular norm

5.4.2.1.2 Theme-Rheme Structure Should Be Respected. The idea of theme and
rheme from Systemic Functional Linguistics (SFL) occurred as an instance of textual
coherence. Participants used this as a reason for ordering in the task CProofs;
specifically, some participants explained that they preferred the fourth proof because it
starts with s’, which is what the previous sentence ended with. In other words, the
components of the rheme of one sentence (“...such that ¢(s)=s’ ”’) become the theme of
the next sentence (“s’= ¢(s)”). The notions of theme and rheme also help account for why
participants tended to dislike the second proof and would rewrite it. The first four
equations in this proof are of the form (stacked) “a=b, e=d, c=b, d=c”, and participants
tended to take objection with this presentation and wanted to rewrite as a string of
equalities with a first, b second, ¢ third, d fourth, and e last. This came in various forms;
some participants preferred it written as “a=b=c=d=e”” horizontally as one string. Others
preferred it vertically stacked, either as “a=b [new line] =c [new line] =d [new line] =e
[new line]” or “a=b [new line] b=c [new line] c=d [new line] d=e”. These preferences
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suggest that viewing each equation as a sentence, participants wanted to impose the
theme-rheme structure so that the theme of one sentence (equation) was in the rheme of
the previous sentence (equation). This occurred with other tasks as well, such as CMVT
and Induction. In CMVT, one reason participants cited for preferring f’(c) on the left is
that the sentence above ended with ¢, and so it therefore made sense to start the next
sentence (equation) with c. Xena explained “If I say there exists a point ¢ such that, I’d
wanna then say something about c.” Participants gave similar theme-rheme explanations
in the task /nduction. For example, Ben remarked that he wanted the string of equations
to end with (n*-n)+3n(n+1) because it’s the first thing mentioned in the subsequent
sentence. Edgar suggested a similar theme-rheme structure when I provided him a
modified version of DifferenceQuotient in which the text “The following shows the
difference quotient™ is replaced with “The following is a proof that the difference
quotient of f is 2x+h”. In this situation, he preferred the subsequent string of equalities to
start with 2x+h, since the previous sentence had ended with 2x+h. Through the lens of
SFL, such a structure enhances textual coherence.

5.4.2.1.3 Things Shouldn’t Come Out of Nowhere. Perhaps the strongest norm is
the rule that things should not come out of nowhere. The tasks Induction and
DifferenceQuotient evoked these responses very strongly. Recall Induction consists of a
proof of the inductive step in showing that k3-k is divisible by six for all k and begins
with a string of equations starting with (n*-n)+3n(n+1) and ending with (n+1)*-(n+1). All
participants except Edgar disliked this presentation on the grounds that 3n(n+1) was
introduced out of nowhere. For example, Warren remarked that he disliked that it was
“summoned out of thin air”, and Jacob referred to it as “pulled out of a hat”. Some
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participants seemed to have an emotional reaction. Larry explained “we have this
mysterious n’-n. I don’t know where this is coming from. Then the 3n, that haunts me as
well”, and Ben said “I’m annoyed”. Similar responses occurred with DifferenceQuotient.
Recall that DiffenceQuotient first states the meaning of “difference quotient” and then
“shows the difference quotient” of f(x)=x in a string of equations starting with 2x+h and
ending with (f(x+h)-f(x))/((x+h)-x). In a sense, the 2x+h comes out of nowhere. All
participants except for Edgar disliked this presentation and pointed out an order breach.
When reading, Larry asked “where does 2x+h come from?”” and Ben remarked “It’s
backwards in exactly the same sense that the /nduction proof was backwards”. It bears
mentioning that this particular norm is related to the notion of theme-rheme. Starting a
sentence with the previous sentence’s rheme ensures that such a sentence begins with
something that has been mentioned prior and is thus not “out of nowhere”.
5.4.2.1.4 The Reader Should Know Why a Term is Being Introduced. The rule
that “things shouldn’t come out of nowhere” overlaps with other aspects of textual
coherence. Generally speaking, participants wanted it to be evident to the reader why a
term is being introduced. In the context of proofs, this means that it needed to be clear
how introducing a term contributed to the proof at hand. This occurred regularly in
Induction and DifferenceQuotient. For example, in DifferenceQuotient, participants
explained that they should know why the term 2x+h is introduced to begin with. It was
unclear to the readers what 2x+h had to do with the topic of difference quotients. Edgar
explains his reaction in the following exchange:
Edgar: I did not like that. Like, I kinda got to when it said “the following shows
the difference quotient” and I'm like, where are you going with this? What
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are you gonna tell me, right? And then you start with 2x plus... and what 1
had to do is I read 2x plus h and I was like, I don’t even care about the steps,
I'm like what’s the last step? I jumped directly from there to the last step to
figure out what in the hell you were talking about. I didn’t make a big deal
out of it, but maybe I should have. I didn’t like it.

Alison: OK, tell me more about how you were feeling. Like, what you didn’t like
about it. What was the issue?

Edgar: Well it’s like, what is your point? Like, what are you trying to tell me?

Alison: Was it clear once you finished?

Edgar: Yes, but then [ was annoyed at having had to like, go around your
presentation. Like, literally I went around it. I jumped from 2x plus h to the
bottom to see what the hell you were talking about.

Notice that Edgar gave more of a reason than simply 2x+h coming out of
nowhere. He actually mentioned that he was bothered that he did not see why the term
was being introduced and what role it plays in the proof (“where are you going with
this?”’). Responses were similar in /nduction. For example, Ben explained that he did not
like the 3n(n+1) in Induction and the 2x+h in DifferenceQuotient: “Who is this? I don’t
know her”. When I attempted to repair the breach in DifferenceQuotient by changing the
prompt to say “the following shows that the difference quotient is equal to 2x+h” (this
way, 2x+h does not come out of nowhere), he remarked “ok, so I do know her, but I still
don’t know why I should”. This response suggests that the issue was not just about
familiarity with the term, but also about wanting to know the role that the term played in
the context of the proof.
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5.4.2.1.5 The Topic Goes on the Left. Another norm surrounding textual
coherence is that the topic should go on the left. This norm was evoked in several tasks
and 1s perhaps the norm that came up most frequently. The general idea is that the
equation a=b, as compared to the equation b=a, is more about a. One reason participants
gave for preferring f(c) to be on the left hand side in CMV'T is that the Mean Value
Theorem is a theorem about derivatives. Jacob explains: “the f’(c) is almost like, the topic
of this theorem”. Participants gave similar reasons for why they preferred the identity
element in Cldentity to be on the left-hand side — the thing being discussed is the identity
element, so it should be on the left. This idea also occurred in DifferenceQuotient. Jacob
explained “They’re trying to learn about the difference quotient. They should start with
the difference quotient”. Notice that this idea is not disjoint from the general rule that
“things shouldn’t come out of nowhere”. If a topic of discussion is established (e.g.,
difference quotients), then a new seemingly unrelated term being introduced without
explanation for why it is being introduced would appear to “come out of nowhere”. In
DifferenceQuotient, 1 attempted to repair the “things coming from nowhere” breach with
Edgar. Unlike Ben, he was satisfied with this repair and explained: “that would be much
more preferable, because now you have changed the topic”. Some participants made
comparisons to the grammatical notion of a subject of a sentence. For example, in the
CProofs task, Edgar explained why he preferred to write ¢(e) ** s’ on the very left of the
string of equalities:

But uh, the thing that you are saying something about, that you feel like you're

talking about should be on the left-hand side. And are we making a statement

about ¢(e) *’ s’ or are we making a statement about s’? And I feel like because
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we re trying to establish that ¢(e) is the identity element, that’s the subject of the

sentence, so it should be on the left.

Similarly, in OMice, Kevin explains that p’=rp translates to “the rate of change
turns out to be a multiple of p”” while rp=p’ translates to “a multiple of p turns out to be
the rate of change”. A key distinction is that the subject of the sentence switches, and the
subject reflects the topic of conversation. Patrick uses several tasks to explain the idea of
the topic being on the left:

There is some subjective sense of what the object of inquiry is. So with the

difference quotient thing you have on this page [DifferenceQuotient], it really

seems that the object of inquiry is what is the average rate of change of f from x to

x plus h. And then we calculate that, and it turns out to be 2x plus h. With the

mean value theorem [CMVT], the average rate of change from a to b, the average

rate of change of f from a to b is a static thing, and I feel like it’s not the reason
for the mean value theorem existing. When we use the mean value theorem in
calculus or analysis, usually we are using it to say that there is some specific
point in the domain where the derivative is equal to the function’s average rate of
change. I feel like that sort of centers the derivative or the existence of a point
where the derivative or certain value as the object or the interesting thing in the
inquiry there. With the differential equation [OMice] one, I feel like what'’s
happening there when I state the rule p’(t) equals r times p(t), so what I'm saying
there is I'm making a statement that I perceive to be principally about the rate of
change of the population. Uh, I mean it certainly has to do with the other side of
the equation. It has to do with the fact that uh the rate of change is proportional
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to the value of the population at a given time...but I feel like in each of those
situations there is a sense of what I’'m most interested in studying, and I'm usually
putting that thing first. Same with e star s for that matter. I think maybe the
reason I put e star s first and why everybody puts e star s first is that whatever
Statement we 're making is really a statement about what it means to be an
identity.
It bears mentioning that, although this particular study is about equations and the equals
sign, the idea of the topic being on the left-hand side or first in a sentence is likely not
limited to equations. Compare the statements 2>x and x<2, which are clearly equivalent.
Arguably, the first statement is principally about 2, whereas the second statement is
principally about x. The notion is that the topic of conversation should be the subject of
the sentence and appear on the left side.
5.4.2.2 The Right Side Explains. Since the left side is the topic of interest, it
makes sense that the right-hand side would be explanatory; it should give information
about the topic. The fact that this norm could easily apply to non-equations (e.g.,
inequalities) highlights this asymmetry. Consider, again, the inequality x<2. While x can
be viewed as the topic of discussion (which happens to be the theme), the right side
(which happens to be the rheme) gives information of the topic of discussion; x<2 tells us
that x (left side) has the property of being less than 2 (right side), whereas 2>x tells us
that 2 has the property of being greater than x. We can interpret equations similarly. The
equation a=b can be interpreted as “a has the property of being b”. This interpretation
lends asymmetry in meaning to relational clauses; in this sense, such a clause can be
understood as attributive. This interpretation is consistent with a lot of the asymmetrical
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language used throughout the interviews. Many participants used phrases such as “ends
up being”, “happens to be”, and “turns out to be”. For example, in CEuler, Warren
explained that “¢'® turns out to be isin(0)+cos(0)”. Under this umbrella of the right side
being explanatory, there are several closely interrelated norms for ordering:
(a) unknown 2 known: an unknown thing is on the left while a known is on the right
(b) sophisticated 2 less sophisticated: the more mathematically sophisticated thing is
on the left.
(¢) question = answer: a question is on a left, whose answer is on the right.
(d) less expanded >more expanded: the left is shorter or less expanded than the
right.
(e) defined 2 definition: the concept being defined goes on the left, and its definition
goes on the right.

Recall the idea that the left side is the topic of discussion or interest, while the
right side explains what is on the left. The categorization listed above fits into this general
frame. Why might something be a topic of discussion? One reason is that there are
aspects of it that are unknown. We might discuss something because we want to learn
about it, or it might be a topic in the textbook because it is being taught to students.
Hence, it makes sense that an unknown thing would be on the left (as the topic of
discussion), and the known thing on the right. In OMice, Kevin explained that if he knew
the value of p’ then he would write the equation as rp=p’, whereas if he knew the value of
p, he would write the equation as p’=rp. To him, this was linked to the topic of
discussion; the topic of discussion is something unknown that we want to find out about
(which is on the left), and we have information that tells us something about it (which is

159



on the right). Notice that this idea also appeared in Induction; (n+1)*-(n+1) is what we
(the problem solver) want to know about (prove something about), so in this sense, it is
unknown. Contrast this with (n*-n)+3n(n+1). Before we’ve proven that (n*-n)+3n(n+1) is
actually equal to (n+1)>-(n+1), we know less information about it.

The notion of the right side being more known than the left side parallels the idea
that the right side is more understandable or mathematically less sophisticated than the
left-hand side. If something is less understood, then it is in some sense less “known”. In
the task CEuler, Larry explained that isin(6)+cos(0) is easier to understand (“you see
what’s going on”): “You want to find real and imaginary parts, so decomposing in that
way makes life simpler. You see what’s going on”. In CMVT, Ming explained his
rationale for having f(c) on the left side: “formulas often have the form something we
don’t understand equals something we understand”

Closely related to the unknown—> known and the more sophisticated > less
sophisticated norms is the question—> answer norm. We ask questions about things that
we do not fully understand and our answers should be easier to understand or more
known than the question. Hence, it makes sense that the notion of question and answer
closely parallels the ideas of unknown and known as well less understandable and more
understandable. It bears mentioning that an analogous question—> answer norm appears
in the literature on young students; as I discuss in Mirin (2019), Denmark et al. (1976)
characterizes young students as understanding the equals sign as “a one-directional
operator separating a problem from its answer” (p.31). With mathematicians, the notion
of problem and answer is less of a strict rule and more generally relates to the norm that
the right side explains the left side. In CEuler, Ming explains the connection between
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unknown = known, more understood = less understood, and question/problem —>
answer:

1t’s like, this thing we don’t understand in terms of this thing we could

understand. The assumption being that E to a complex number being something

most people didn’t understand. And so I think there is just like a cultural, bias
from reading left to right. Like, we begin with the thing that might pique your
interest, then end with the thing that, you know, gives you the answer.
In some cases, the “problem” at hand is to compute or evaluate something. In several
instances, participants explained that derivative rules were instructions for how to
compute the left side.

Jacob frames ordering in terms of “more sophisticated” and “less sophisticated”
and links this framing to the notion of question and answer. He uses the word “simple” to
mean “mathematically less sophisticated” or “easier to understand”. For example, in
CMVT, he explains: “the left-hand side is the more mysterious quantity, and here we’re
giving, it’s like the question, what is this mysterious quantity? And the answer is the
right-hand side. As opposed to the simple quantity equals the more complicated thing,
which is the way that the second one describes it”. While in general, Jacob’s responses
about this question-answer format were representative of the other participants, there is a
notable aspect on which he potentially diverges; for him, one thing that indicates
sophistication is the number of stipulations needed for the object in question to exist. In
CMVT and OMice, he explains that the stipulations needed for the left side (the side with
the derivative) to exist (which are not needed for the right side) indicate that the left side
is more “sophisticated”. This could relate to the notion of theme-rheme structure in the
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sense that he is following the norm that the stipulations just mentioned should be used
right after they were mentioned. This reasoning overlaps with participants’ explanation
that the proof in CProofs should start with s’ because s’ was just mentioned and starting
with s’ uses the stipulation that ¢ is onto.

Some participants explained that the “newer” object should be on the left. Recall
the discussion in 5.3 about the two different notions of “new”. Here, we are concerned
with “cognitively new” rather than “new to the conversation”. This notion closely
overlaps with the idea of the unknown or mathematically more sophisticated thing being
on the left; the reader might be learning about something that is new, and hence
unknown, to them. In CEuler, Kevin uses “new” and “unknown’ synonymously: “[the
left side] is the unknown or new expression I wanna make a statement about it so [ want
to say the ROC is or turns out to be a multiple of p.”

Such an idea might be newer or unknown because it is more mathematically
sophisticated or more difficult to understand. Jacob links the notions of “new” an
“unknown” when explaining why the sum rule is written with the derivative of the sum
on the right: “if you’re starting with these two differentiable functions, and you already
understand > and g’ in some sense, f+g is a new function (...) this is like the new thing,
and now you wonder about its derivative. Like new or in some sense more complicated
and expressing in terms of things you previously know”. In ProductRule, Kevin used the
ideas of “unknown”, “new”, and “problem” being on the left:

Kevin: I would typically start with, um, what you call word problems,
applications, geometric problems. And uh, then the question is um, if we
knew how fast each of the quantities grows or function um, how could we uh,
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get some information about the um, uh, growth rate of or the rate of change
of the product

Alison: So you 're saying this would be in a problem where this (points to (fg)’)
Is --

Kevin: Something that I'm interested in, yes.

Alison: Then what role would the other side (points to fg’+f’g) play?

Kevin: Um, that it’s basically using things that we already know about uh so we,
I mean, the easiest problem’s always in terms of area. Uh but, area of a
rectangle, so but uh 1'd like to have changes um where we may have um,
where we change a quantity how many things we buy and they get smaller or
larger or so on. So I would have a variety of examples of it’s not purely
geometric and the typical question is we know the rates of change of fand g
and not we're interested in the rate of change of the product

Alison: So you 're saying the known part is on the right, and the thing we are
trying to find out about is on the left? So why do you think that is?

Kevin: That’s just how we read things from left to right. It similar to when [
write a computer program and I make an assignment or I make a definition
that usually the new object is written on the left-hand side

Notice that Kevin related the notion of “new” to that of “definition”, specifically

in a programming context. In Homomorphism, Kevin explained that someone defining

the operation x” would need to put ¢(x)*’ ¢(y) on the left. Similarly, in CEuler, he

explained that because Euler’s formula is actually a definition of irrational exponents, the

exponential term must be on the left. Because the idea of an asymmetrical equals sign of
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definition is already discussed explicitly in the mathematical community (and even
symbolized as :=), | had not intended to include it as a topic investigation. However,
participants still mentioned the issue.
Some participants used the notion of defining as a metaphor for this more general
idea. For example, Xena explained that in ProductRule, the equals sign is similar to a
definition because the “quick symbol” is on the left. Closely related to the idea of the
definition being on the left is the norm that the right-hand side is more expanded or
verbose than the left. When an equals sign is used to define something, then the term
being defined is on the left, and a definition tends to be longer than the thing being
defined. This links to our overarching norm of the right side being explanatory of the left
or giving information about the left; like with definitions, an explanation tends to be more
verbose than the thing being explained. In the context of Productrule, Patrick links the
notion of question/answer with the notion of defining by explaining how the right side is
expanded and explanatory:
The convention is going to be let’s put the thing being evaluated first, and then
how to evaluate it or the formula for evaluating it over on the right. I feel like
that’s a consistent convention across a lot of mathematical writing. Like, if you
state a definition. You know sometimes occasionally you'll see a definition as if
this object has this and this property blah-blah-blah-blah-blah then we call it and
then thing in italics, thing being term being defined. But usually you see it the
other way. We say that blah-blah-blah is term in italics if blah-blah-blah has the
following properties. So like the less expanded form first and then more expanded
form later seems to be the unwritten rule of mathematical writing.
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Observe that the idea of a new/unknown thing being introduced on the left with known
information detailed on the right is an ideal that Veel (1999) discusses as part of SFL to
account for how relational clauses in mathematics “bridge” something new with
something known.

Recall the discussion of Leibniz’ law of indiscernibles given in the general
introduction to this dissertation; that objects a and b are identical if and only if they have
the same properties. In this section, I had discussed how identity allows us to make
inferences; if we know that a=b, then whatever properties one of them has, so does the
other one. This links to the notion of transparency of representation with particular
properties; if b (or a) is transparent with respect to some property, then we can claim that
a (or b) also has this property. Although Leibniz’ law of indiscernibles is symmetric,
what the results of my study suggests is that it is applied somewhat asymmetrically; with
a=b, we tend to conclude that a has whatever properties b has, rather than that b has
whatever properties a has. This fits with the general idea that the left side is the topic of
inquiry while the right side gives information or properties about the left side. For
example, if we want to conclude that the cycle (1 3 2) is even, then this interview data
suggests that the equation we use to conclude that is more likely to be (1 3 2)= (1 3)(1 2)
rather than (1 3) (1 2)=(1 3 2). It is therefore perhaps unsurprising that of the examples I
gave, four out of five involve using properties of the right side to make conclusions about
the left side.

5.4.2.2 Transformations and Substitution: a Produces or Becomes b. Our next
category concerns transformation. This is a cluster of norms surrounding the general idea
that a=b means that a transforms to b. This category is in some sense related to the idea
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that the left side is the topic of discussion, while the right side gives information about
the left; the right side of the sentence (the rheme) is giving information about a - that it
has the property of transforming to b. Ernest (2008b) explains that transformations induce
directionality (and hence asymmetry); “The transformation of signs in semiotic systems
is directional” (p.43). Transformations tend to take place in problem-solving contexts
(Ernest, 2008b). In our case, the notion of transformation occurs additionally in
theorem/rule tasks (e.g., ProductRule); however, this occurs because the participants are
envisioning a problem-solving context (discussed below). Generally speaking,
transformative meanings for a=b can be translated as “a turns into b” or “a becomes b”’;
something is done to a (the left side) in order for it to become or produce the right side.
There are several ways this can happen.

The first is that operations produce a result, and therefore the operations go on
the left while the result goes on the right. Since the operations produce a result, they must
precede it and therefore go on the left. Warren, in the context of Idempotent, explains his
reasoning for this norm: “I start with the operation, then a second later, if you will, I have
a result. With our thinking, that’s what happens. So, when you’re reading left to right,
that should mimic as it happens in your brain too”. The tasks Idempotent, (O and C)
Identity, and CProofs evoked this norm. As discussed earlier, participants tended to use
action-based language to suggest the idea that operations produce a result. For example,
in Oldentity, Luke explained: “for any element, if we apply that particular element to that
we obtain the original one that we started with”. For at least some participants, the notion
of operation producing a result was an essential aspect of the meaning of a left identity

element. Their explanation in CProofs, in favor of First Proof (¢(e) ** s’=...=s’) over
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Fourth Proof (s’=...= ¢(e) *’ s”), was that the first proof shows that (¢(e) *’ s’) ends up
resulting in or producing s’ (notably, Edgar actually uses the word “transformation” in his
description). Xena explains: “like if I could do it starting with the star operation with the
identity element and show it doesn’t do anything, then that would be my preference. The
other order, although equivalent, seems less natural”.

A related meaning for an equation as a transformation is that what is given is on
the left, whereas the goal or the result is on the right. This is a givens = goals format.
Observe that this closely mirrors the question = answer format discussed prior.
However, there is a subtle difference; rather than the right-hand side being just an answer
to the left-hand side, the left-hand side actually becomes (transforms to) the right-hand
side via some actions. In this case, “given” does not apply to a fact or a proposition; it is
not information that is “given”. Instead, a particular representation or string of symbols is
given as something that you are to transform toward a particular goal. In
DifferenceQuotient, participants conceptualized (f(x+h)-f(x))/((x+h)-x) as “given” with
2x+h as the “goal”. Luke explained that the proof in the difference quotient should
instead show “the result once you reduce everything possible”, and Patrick explained that
the presentation has “the result of the calculation first”. As mentioned above, this idea of
transformation also occurred in theorem contexts. However, they occurred in theorem
contexts in the sense that participants were envisioning how that theorem could be used
in a transformation context. In the context of ProductRule, Edgar explains that “what you
have is on the left, and what you can have if you want is on the right”, and Ben similarly
explains “the thing I got already is on the left, and the rule is telling me what I should do
with the thing”. In other words, theorems of the form “a=b” suggest that, in problem-
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solving contexts, one might want to transform a to b. Ben illustrated this idea in the
context of Distributive (the distributive law) by explaining “we’re presenting rules for
operating on symbols” and using an arrow in place of the equals sign to indicate
transformation. His point was that xy+xz=x(y+z) suggests a different transformation than

x(y+z)= xy+xz:

The distributive law tells us that for all numbers x, y, and =z,

zy+xzz=2z(y+ 2)|

Figure 5.4. Ben’s Illustration of his Meaning for the Distributive/Factoring Law(s).

The purpose of performing such transformations is to move from what is given to
whatever your goals are. This notion generalizes to the idea of substitution; that in an
equation, the thing on the left is substituted with the thing on the right. Observe that the
transformations discussed are a special case of substitution. Starting with or being
“given” a term a (say x(y+z)), and ending with a term b (say xy+xz) is effectively the
same thing as replacing the term a with the term b. In other words, while sometimes we

transform a to b, other times we transform P(a) to P(b), where P(x) is some string of
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symbols. This occurred in both problem-solving and in theorem contexts. For example,
both Ben and Luke explained that in CProofs, they wanted the equations to be written in
such a way that entails a substitution. Ben explains: “my favorite thing about the equals
sign is that it literally means that the two things on either side of it are the same thing, and
therefore when you see one of them come up later you can replace it with what’s on the
other side of the equals sign...like if I see ¢(s) and I know ¢(s) is s’, then I can write s’
whenever I see ¢(s)”.

In the case of theorems and rules, participants explained that an ordering a=b is
preferable to b=a if there are more situations in which we would want to replace a with b
(or transform a to b). In other words, a=b suggests the transformation of replacing a with
b (in this sense, a becomes b), and this transformation works toward a goal of obtaining a
certain expression. For example, in CEuler, Edgar explains that in a problem-solving
process, if you go from that (points to e'™) to -1 you’ve now greatly simplified things”,
and that this transformation is a reason for presenting Euler’s formula with the
exponential term on the left. This idea of frequency of substitution and transformation
was enough to, in some sense, overwrite the other norm about operations producing a
result. In both Idempotent and Cldentity, several participants explained that the fact that
there are situations in which one would want to replace p with p star p or replace e with e
star x are enough grounds for finding the presentation with the operations on the right
acceptable. In Cldentity, Ben explained that he was only “slightly” annoyed and generally
okay with writing the operation on the right because of such substitutions: “it comes up
often enough in an abstract algebra proof that you’re gonna make an identity appear and
then do some shit to it”.
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We can understand this notion of substitution in terms of Leibniz’ law of
indiscernibles (discussed in the general introduction to this dissertation). Recall that
Leibniz’ law of indiscernibles states that objects x and y are identical (equal) if and only
if they share the same properties. In symbolic logic, this principle is framed as
VF(Fx <Fy) — x=y for all properties F. This rule allows someone to deduce Fy from Fx
under the assumption that x=y; syntactically, this allows the prover to substitute/replace

(Y1)

“x” with “y”. While Leibniz’ law is formed symmetrically (one can also deduce Fx from
Fy), the results of my study here suggest that substitution is not understood fully
symmetrically.

Not all transformations are created equal. Clearly, provided there is some sort of
goal, transformations that move toward a particular goal (givens = goals) are preferable
to those that do not move toward a particular goal. This is not the only sense in which
transformations are unequal. A common theme expressed by participants is that
simplification is preferable to the opposite, and simplification occurs as a transformation
from left to right. Participants use “simplification” in two different senses. One is the
sense in which the simplified thing (the thing on the right) is easier to work with or more
understandable. This idea overlaps with the idea of substitution; if b is “simpler” than a in
the sense of “easier to work with”, then one might want to replace a with b (this is what
Edgar seems to suggest in CEuler, discussed above). It also overlaps with the idea of the
expression on the right being more understandable (simpler) than the one on the left.
Here, we are concerned with simplification as a transformation that someone performs,

not simply a comparison of sides of an equation for which is “simplest”. Ernest (2008b)

refers to an “implicit heuristic of simplification” which “seeks to reduce the complexity
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of terms in an equation en route to a solution” (p. 40). Ernest (2008b) explains how
simplification suggests directionality and, hence, asymmetry:
Note that the simplification heuristic described above plays a central role in
operationalizing directionality in mathematical tasks. That is, a significant part of
the appropriation of directionality is associated with the implicit understanding of
the simplification heuristic as a technique for goal-directed activity. (p.46)
Kevin was the only participant who defined the notion of “simplification”, which he
described as “try(ing) to write this in as few symbols as possible”. A key characteristic of
simplification shared by the other participants seems to be the reduction in total number
of symbols, although they did not state it explicitly. For example, in DifferenceQuotient,
(f(x+h)-f(x))/((x+h)-x) simplifies to 2x+h. Participants explained that simplification is
preferable to the opposite because it is easier to perform. I adopt Xena’s word
“messification” to refer to the opposite or reverse procedure of simplification. Two
reasons were given for simplification being easier than messification: the first is that,
through school mathematics, people are trained to perform simplification procedures; the
other reason is that simplification is more deterministic than messification. In the context
of DifferenceQuotient, Warren uses both of these reasons to explain why simplification is
easier:
Students are mathematically trained to simplify expressions. They 're not trained
to complicate expressions in order to fit a pre-defined structure. And, the steps of
factoring, reducing, simplifying, cancelling, whatever in more simple terms, these
are all directions students are comfortable with. And, the other direction, you
know when you say, why would I want to change 2/3 to 4/6 or change it to 2x/3x?
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There’s multiples of those steps, where you re complicating in the dark not

knowing what steps you need to do so that the chain of applications leads to the

difference quotient. That is not, there’s no series of, there’s no sequence of

instructions available to a student to know how to do that backwards I think,

especially when there’s multiple steps.
In various other instances, participants explained that adding more symbols is more
difficult and less deterministic than simplification. Ming explained that messification is
“inspired”, rather than simplification or cancellation which is more automatic. The
general idea is that, if we were given 2+3, we might immediately in our head think “that’s
5”. However, if we were given 5, there are a number of other representations that could
come to mind; 2+3, 4+1, etc.

5.4.2.3 Proofs Should Reflect the Prover’s Process for Creating the Proof.
The tasks DifferenceQuotient and Induction both evoked the norm that a proof or a
problem’s solution should, when possible, communicate how the prover came up with the
proof. In this sense, a proof should be a record of a problem-solving process. For
example, if the prover performed a process to transform a to b, then the equation a=b
should be in the proof rather than b=a. The participants read both DifferenceQuotient and
Induction as being a record of mental processes and transformations. For example, in
Induction, participants explained that at first they found the equation (n*-n)+(3n*+3n)
=(n*+3n?+3n+1)-(n+1) to be “clever” because it suggested that the prover performed a
transformation of adding 1, subtracting 1, and regrouping (as discussed, simplification
was considered to be an easier transformation than messification). Participants took issue
with this presentation on the grounds that the prover (the person who wrote the proof) did
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not perform this transformation themselves in the sense that the prover did not perform
the action of manipulating (n*-n)+(3n%+3n) to get (n*+3n*+3n+1)-(n+1). This norm was
reflected in two different ways. The first way was that participants initially seemed to
assume that the prover came up with the proof in the order in which it was presented.
This was reflected in remarks about the proofs in /nduction and DifferenceQuotient being
“clever”. Similarly, in Induction, Xena explained: “I would have done this from the other
way. I would have started here (underlines (n+1)*-(n+1)) and expanded it and gotten
something else and then tried to figure out how to prove it”. Her remarks indicate that she
conflated the presentation containing the proof with how the prover came up with the
proof. The second way this norm was expressed was through explicit disbelief that the
proof reflected the way the prover came up with it, together with objection of the order of
the presentation on those grounds. In DifferenceQuotient, Ben remarked “no human
would go this way”.

Generally speaking, in both DifferenceQuotient and Induction, participants
objected on the grounds that the prover had actually come up with the proof in the
opposite order in which it was presented. Consider Jacob’s response to Induction:

1 think it would be better if the sequence of equations was reversed. Because the

very first thing is totally out of the blue. This thing that’s been pulled of a hat. [

mean, why that? Whereas we know we want to know about the very last thing, and
that would already be very motivated to the reader. And really, to write the proof
this way somebody did it in the order I’'m suggesting and then reorganized it.

It’s not that they just studied the n’-n and then realized this is the magic thing to

add.
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The bolded portion indicates that Jacob preferred the proof to be written in the way that
the prover came up with the proof. Observe also that for Jacob, this norm was closely tied
to the idea of textual coherence (“totally out of the blue) and the notion that
simplification is an easier transformation than the opposite (“the magic thing to add”). It
bears mentioning that there is potential overlap between this category and the reader
should know why a term is being introduced”. Making a reasoning process transparent
might often communicate why a term is introduced; if, in /nduction | communicate that I
am going to fiddle with (n+1)>-(n+1) to get a statement with n*-n, that then conveys why
I mentioned (n+1)>-(n+1). This makes sense if we assume that people’s thoughts are
interconnected. However, it is conceivable that the converse holds; I might present a
proof without explaining how I came up with this proof. Recall earlier Ben’s issue with
epsilon-delta proofs in that they do not reflect the order in which the prover came up with
them. It is conceivable, however, that when reading an epsilon-delta proof, the reader
knows why each term is being introduced. When I am reading an epsilon-delta proof, and
I see a particular delta introduced, I might not be following the particular reasoning
process of how the prover came up with that particular delta. However, I do have some
knowledge of why that particular delta is introduced; this value of delta does the job.
Hence, while there is some overlap between ideas of textual coherence and the idea of
making a reasoning process transparent, this overlap is not necessarily absolute.

5.4.2.4 Ordering Should be Pedagogically Optimal. Another rule governing
ordering is that equations should be ordered in such a way that is pedagogically optimal.
This is unsurprising considering that the participants were all currently teaching
mathematics or had in the recent past taught mathematics. Recall the discussion in the
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literature review of this study about a speaker attributing mental states to the listener or
reader; the fact that participants had pedagogical concerns suggests that mathematicians
do consider the mental state of their reader or student. The results of this study
complement the study described in Lai and Weber (2014), which describes
mathematicians’ pedagogical concerns for presenting proofs. Notably, Lai and Weber
(2014) also observe that mathematicians consider the role of their audience when
presenting a proof.

This norm frequently overlapped with the belief that the proof should reflect the
prover’s reasoning process; a proof or solution to a problem communicates to the student
a solution or reasoning process that the student should learn about. This norm appeared
prominently in both Induction and DifferenceQuotient. In Induction, participants objected
on the grounds that students would not be able to produce the proof in the order that it is
presented. Ming explained why there are pedagogical reasons for presenting a proof in
the way that the prover came up with it: “Part of teaching math isn’t teaching theorems
that are true, it’s teaching students how they could have done it themselves”. Part of the
purpose for demonstrating the reasoning process is so that students can apply this
reasoning process to other contexts. For example, Induction is an opportunity to teach
students that in induction proofs, it is useful to fiddle with the expression involving n+1.
In DifferenceQuotient, participants similarly explained that the equation should be
presented with the difference quotient form first because it was communicating to the
student a way of dealing with difference quotients that could be generalized to other

functions; a particular problem-solving process is being demonstrated and hence
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communicated to students. Jacob explains his pedagogical reasons for preferring the
standard ordering in DifferenceQuotient:

There’s like a process going on which then can be generalized about how to deal

with other derivatives. Which If you try to mimic the style here would be

extremely hard, whereas if you just write them in the other order it’s relatively

easy to follow.
It bears mentioning that not all participants thought that this norm of reflecting the
prover’s reasoning process is pedagogically optimal in every situation. Ben mentioned
that there are cases, such as epsilon-delta proofs in analysis, where we do present a proof
in the opposite order in which we created in (we often start with a statement in epsilon
and “work backwards” to find an appropriate delta). However, he explains that we have
“culturally decided not to share this scratchwork” (tradition allows breaching the norm).
This is consistent with Herbst et al.’s (2011) characterization of norms in which they are
not always inviolable rules, but default expectations whose breaches require note and
some justification. The fact that he is quickly aware of sanctioned breaches shows the
role of the norm, even though it is broken systematically in particular contexts. Xena
explained that the preferable order of the equations in DifferenceQuotient depends on the
pedagogical goal. If the goal is to learn about difference quotients, then it should start
with (f(x+h)-f(x))/((x+h)-x). However, she explained that if the goal is to aid students in
developing algebraic solving techniques, then it might help students to learn non-routine
techniques such as adding and subtracting a number.

Some of the norms under the textual coherence umbrella also occurred as
pedagogical concerns. For example, several participants explained that students might be
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confused if something came out of nowhere. Furthermore, if a reasoning process is
transparent in a presentation of a proof, then it is clear why a term is being introduced. In
both Induction and DifferenceQuotient, these norms were intertwined with pedagogical
concerns. Students should know why a term (e.g., 3n(n+1)) is being introduced and what
role it plays in the proof, hence gaining access to the provers reasoning process. If a term
is the topic of discussion (e.g., (n+1)*-(n+1)), then the student understands why that term
is being introduced, and that term does not appear “out of nowhere”.

5.4.2.5 Inferences and Ease of Verification of Truth Are Important. Another
common order norm is that ordering in a proof should be written in such a way as to
make it as easy as possible to verify truth and make inferences. In proofs, the goal is not
just to say true things, but to make statements (which are often inferences) that are
verifiable to the reader. In proof tasks, participants explained that they verified each
equation pairwise. Strings of equations, such as “a=b=c=d=e” were interpreted as “a=b,
b=c, c=d, d=e, and therefore a=e” rather than “a, b, c, d, and e are all the same”. This
norm was especially evident in participants’ responses to Proofs, since this particular task
violated this norm. Ben illustrated how he read the equation string from left to right,

attempting to verify each equation pairwise:

J 3 Cﬁ(%j{:[’w\f: §10) &' o)
)

Figure 5.5 Ben’s Illustration of How he Reads a String of Equations in a Proof.
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In deciding which of the proofs in CProofs was preferable, participants explained that
they had two concerns: the first is that each statement is deducible or verifiable from
previous statements, and the second is that each statement is as easy to verify as possible.
Ming explains: “a string of equalities suggests that each equality is followable or
deducible and you start and end with the things you want to show are equal”. For
example, participants took issue with the Third Proof on the grounds that it was not of the
form “a=b=c=d=e”’; while each individual equation was true, it was not inferable from the
previous equations. This task was somewhat unique in that it is the only task in which
participants described the presentation as mathematically incorrect or wrong, rather than
having a preference or an expectation for a different ordering. Participants felt less
strongly about the second norm: that a proof should be presented in such a way that each
statement is not only inferable from the previous, but as easily inferable as possible. This
is a reason that participants took issue with the Second Proof, which is of the form “e=d,
a=b, c=d, b=c, and therefore e=a”. Verifying the truth of e=a using the other steps,
participants explained, requires too much work on the reader’s part. Reading the proof
aloud, Ben exclaimed “therefore by equations (1) through (4), we sprinkle magic dust on
all of our stuff and get the conclusion that we want”, while Edgar objected “why have
like three completely different independent facts and then have me just sort of need to
have to ram them together at the end? It’s like, yeah it’s true, but you left all the work on
the table!”.
5.5 Discussion and Future Directions

Overall, the results of this study suggest that mathematicians do not use the equals
sign symmetrically. This is evident by the consistent responses to the open-ended tasks.

178



The norms surrounding ordering of terms in equations are so strong that the vast majority
of the participants (eight out of nine) pointed out order breaches. In other words, as
expected, the answer to research question (1) is “no, mathematicians do not use and
understand the equals sign symmetrically”. The third portion of the interview gives us
more insight into research question (2); we learned about what, specifically, the norms
that govern the ordering of terms in equations are, as well as some reasons for having
these norms.

During the breaching experiment, participants confirmed the existence of ordering
norms in two ways; the first is in outright claiming that there was a breach or that
something was “wrong”, while the other way involved reading right to left. By reading
right to left, the participants were repairing the breach. This leaves open the possibility
that what is written is not wrong, but at the same time not consistent with ordering norms.

There are broad, major norms concerning order. The first is that texts should be
coherent. Within this textual coherence umbrella are the following norms: ordering
should be consistent within and across contexts, theme-rheme structure should be
respected, terms shouldn’t come out of nowhere, the reader should know why a term is
being introduced/what role it plays in the proof, and that the left side is the topic of
conversation or inquiry. The second major norm follows naturally from the notion that
the left side is the topic: the right side explains the left side. Within this umbrella are the
interconnected ideas of moving left to right from unknown to known, from sophisticated
to less sophisticated, from question to answer, from less expanded to more expanded, and
from defined to definition. In other words, while the left side is the topic of inquiry, the
right side gives information about the topic of inquiry. Under this interpretation, a=b
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roughly means “a has the property of being b”. The third major norm involves
interpreting “a=b” as “a becomes b”’; it suggests that equations can represent
transformations, and these transformations occur in time from left to right in the sense
that the result of the transformation goes on the right. For example, operations producing
a result represents a transformation as does the idea of simplification (which participants
explained is an easier transformation to perform than its opposite, messification). One
important transformation is substitution; a=b allows someone to transform any statement
or term with “a” in it to the same statement with “b” in place of “a”. Our fourth broad
norm is that proofs should, when possible, represent a record of the prover’s thought
process and mathematical activity. This brings us to our fifth norm — that ordering should
be pedagogically optimal. One reason to show the prover’s reasoning process is to help
students mimic such a process on their own and generalize to other problem-solving
contexts. Our sixth and final norm concerns proofs; ordering in proofs should occur in
such a way so that each statement can be understood as an inference from previously
established facts, and ordering of equations should be done in such a way that these
inferences are as easy to make as possible.

In summary, I described the various contexts that evoke asymmetrical usage of
the equals sign as well as participants’ understandings of these contexts. It bears
mentioning that contexts and norms surrounding ordering are interlinked. Participants
brought context to the problems. For example, in DifferenceQuotient, participants tended
to imagine a Calculus I setting in which students are learning about difference quotients
or the definition of derivative. Additionally, participants envisioned contexts outside the
particular tasks at hand that had bearing on how they understood the ordering of the terms

180



in the equations. This occurred in the various situations in which participants mentioned
other contexts that they viewed as parallel or analogous to their envisioned context. For
example, in DifferenceQuotient, participants explained that they were picturing other
problems or tasks of the same type. In Identity and similar tasks, participants considered
how often various transformations might occur. The relationship between the invoked
ordering norms and the wider context pictured by the participants is worth studying in
future investigations.

As discussed, despite presenting these order norms separately, they were closely
related. Common to all these ordering norms is the underlying fact that mathematicians
care not just about truth-function, but also communication, which takes place in/over time
(both imagined and experiential time). Ernest (2008b) explains:

While there is no universal timepiece ticking away in semiotic space, nevertheless

individual and group engagement in mathematical activity is always over time

(Mason et al., 2007). What this means is that accessing mathematical texts always

has a sequential nature. (p. 43)

For example, the textual coherence norms can be explained by reading the left side of
equations first. Similarly, the transformation norms can be explained by performing a
transformation from start (the left) to finish (the right). Participants were reading left to
right and thus equated “left” with “first”, and several participants even explicitly stated
this fact. For example, Ming explained “I think there is just like a cultural, bias from
reading left to right.” Since not all cultures read left to right, it would be worth comparing

ordering norms in other cultures.
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The results of this study are interesting in light of the equals sign literature
centering on children. As discussed in the general introduction to this dissertation, the
equals sign literature tends to focus on children’s deficits with regard to equals sign
understanding. One common deficit concerns the property of symmetry; children tend to
understand the equals sign asymmetrically. Oksuz (2007), for example, explains that
students find equations of the form “5=2+3" as “rule violations”, and Denmark et al.
(1976) explain that students view an equals sign as expressing an asymmetric relation
between problem and answer. Consider, additionally, the anecdote in Behr et al. (1976)
that inspired my breaching experiment; a child read “5=2+3" aloud as “2+3=5". A major
finding of my study is that it suggests that children might not differ so much from
experts. Of course, the experts (mathematicians) in this study (and experts in general)
know that truth-functionally, the equals sign expresses a symmetric relation. The study
reported herein tells us that regarding concerns beyond truth-function (e.g., meaning),
experts have asymmetric usages and understandings of the equals sign. Interestingly,
there is some overlap between experts’ asymmetrical meanings of the equals sign and
childrens’. Consider, for example, the operations-produces-result transformational norm
(that on the left is an operation, to which on the right is the result). All the “rule
violations” in Oksuz (2007) do not have the operations on the left. McNeil and Alibali
(2005) report that even college students have this norm of operations being on the left
(they call this an “operational pattern™). In other words, we know that young children,
college students, and mathematics experts all have meanings of the equals sign that
suggest that the operations should be on the left. Similarly, consider the operational idea
that the left is a problem and the right is an answer. My study shows that a similar idea
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exists amongst experts with the question—=> answer norm (under the transformation
umbrella). Note that, since experts understand the equals sign as truth-functionally
symmetric, these asymmetrical norms are context-dependent amongst experts and not
necessarily rigid — writing x=e * x is not considered “wrong” by experts, but
connotatively different and in some contexts less preferable than writing e * x=x. This is
somewhat unsurprising when we consider that even Frege believed there to be more to
meaning than truth-function (Frege, 1892/1948). In light of experts’ views, it makes
sense to revisit the equals sign literature about students. While the major take-away from
this work is generally about student misunderstanding of the equals sign, we should
consider that students’ understanding might be more subtle and less rigid than expected.
In my study, experts distinguished between “wrong” and stylistically not preferable. It
seems possible that, like experts, students might understand certain equations as
stylistically not preferable and “reject” such equations by calling them “wrong” or
“false”. Future research should consider exploring how (and if) students distinguish
between finding equations to be a breach of expectation while having the symmetric view
of equality is important for learning algebra (Byrd et al., 2015), that does not take away
from the communicative aspect of equality that imposes some asymmetry. We should not
belittle children noting communicative breaches that may be appropriate insights if our
only goal is to add other ways of reasoning that are useful in other ways. These experts
show how the same person can hold both interpretations in tandem or stylistically
unpleasant versus “wrong” or “false”.

One interesting related avenue to explore in the future concerns the other “rule

violations” described by Oksuz (2007). Perhaps experts also have a dislike for equations

183



of the form “a=a”, despite understanding the equals sign as expressing a reflexive
relation. When we consider mathematical writing as a communicative, social act — as we
have been throughout this study — we must consider what utility mathematicians might
perceive in asserting “a=a’ and how this utility (or lack of utility) aligns with Gricean

pragmatics regarding informativeness.
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CONCLUDING REMARKS

This dissertation investigates people’s understandings and usages of ideas
associated with the identity relation. There is a close link between the notion of identity
and representation; often, in mathematics, we work with multiple representations of the
same object. A fundamental assumption of my work is that what might be the same for
one person, such as a mathematician, might not be the same for others, such as students.
This assumption is grounded in constructivism, the underlying epistemology that guides
my work (Thompson, 1982). One reason that sameness is important is that it allows us to
make powerful mathematical inferences. These inferences can often be framed in terms
of Leibniz’ law of indiscernibles; two objects are identical if and only if they share the
same properties. Hence, when a=b, it follows that a and b share the same set of
properties. Leibniz’ law is relevant for each individual study, which I discuss below.

The first paper directly addresses function identity: how students conceptualize,
work with, and assess sameness of representation of function. Portions of this study are
reported in Mirin (2018) and Mirin (2020b). It discusses the results of three tasks: a
function sameness concept definition task, a task in which students assess sameness of
functions in the fundamental theorem of calculus (the fundamental theorem task), and a
task in which students evaluate the derivative of a piecewise-defined version of the
cubing function (the cubing function task). A total of 360 students participated in this
study, which included both qualitative (interviews) and quantitative (statistical) data. A
key result of this study is that students did not appear to believe that sameness of graph
was sufficient for sameness of derivative. Many students understand graphs with
highlighted points as essentially different than graphs without highlighted points —i.e., a
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function’s graph is not determined by its points. Other key findings suggest more
foundational issues with notation and denotation. Students were presented with functions
that were labeled as “functions” yet did not seem to understand each label as referring to
a singular function. This occurred both in the cubing function task, in which several
students viewed “f” (the piecewise defined version of the cubing function) as denoting
two functions, as well as in the fundamental theorem task, in which several students used
“p” to denote both an integrand and an integral. How a student assesses sameness of
function will impact how they make inferences in accordance with Leibniz’ law of
indiscernibles. For example, f and the cubing function are the same and therefore share
the property of having a derivative of 12 at x=2. However, results of this study suggest
that this is a nontrivial inference for students. There are various possible barriers to
making this inference: assessing f and the cubing function as the same function,
understanding having a particular derivative as a property of functions, as well as
denotation issues regarding whether f even is a function. While inferences regarding the
fundamental theorem were not directly explored in this study, the fact that some students
do not understand the function p defined using an integral to even be a function is a
potential barrier to making inferences about sameness.

The second paper (Mirin & Zazkis, 2020) concerns implicit differentiation, and
more generally, how students can come to understand the legitimacy of differentiating
both sides of an equation. It also provides a case study together with a description of the
obstacles that students might face when constructing such an understanding. The main
contribution of this paper is that understanding implicit differentiation requires having a
robust understanding of function sameness; it is valid to differentiate both sides of an
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equation because each side of the equation is a representation of the same function, and
therefore they share a derivative. The steps outlined in the conceptual analysis discuss the
conceptualizations necessary for making such an inference. In this case, Leibniz’ law of
indiscernibles tells us that when two functions are identical, they must share a derivative.
Notably, the interviewee in this study explicitly claimed that two functions agreeing on
every input does not necessitate that they share a derivative. This tells us that making the
inference of same derivative from same function is nontrivial for at least some students.
Perhaps the interviewee did not understand having a derivative as being a property of a
function. Further investigation is needed to assess how students can come to understand
differentiating each side of an equation as an inference from function equality.

The third paper concerns the equals sign directly. The equals sign expresses when
two objects are indeed the same object. As discussed in the Introduction, philosophical
accounts of equality (identity) address only symmetrical meanings. However, my
investigation here considers asymmetrical meanings of the equals sign. Asymmetrical
understandings of the equals sign are reported in the literature on children. I show that
experts also use the equals sign asymmetrically. Specifically, I use Systemic Function
Linguistics as well as Gricean pragmatics to consider mathematical writing as a
communicative and not purely truth-functional act. One major finding is that it appears
that mathematicians do not generally use Leibniz’ laws symmetrically; given the equation
X=y, it is more common to conclude that y has the same properties as x as opposed to x
having the same properties as y. This observation provides an interesting link between the
philosophy of identity (e.g., the work of Leibniz) as well as linguistic concerns
(Halliday’s Systemic Functional Linguistics). Another major finding is that
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mathematicians do use the equals sign asymmetrically in ways that overlap with the
understandings of children. This suggests that we ought to revisit the literature on
children with a more critical eye.

As a constructivist, I must consider that the mistakes students make concerning
sameness (e.g., using the same symbol to represent two things, having asymmetrical
understandings of the equals sign) might not just be straightforward logical fallacies.
Second-order models of students’ mathematical meanings are necessarily non-
judgmental; they are based on the assumption that students construct their mathematical
meanings in ways that are sensible and coherent to them. A student's conception of a
mathematical idea serves the purpose of organizing the student's experience and is thus

endowed with a personal, non-objective, rationality (Tallman, 2021).
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Suppose 7 isthe function defined by

1. Calculate 22

2. Below to theright is a graph of ¥y = x3. On the blank axes provided, graph y = f(x) for the
function F defined above.

1 f f i ' " ‘ .
| I 1 2 i /-*"” | 1 2 3
y=f@) - y=x°
Recall that (
x* if x62
f(x)= .
8 if x=2

3. Evaluate f42) for the function f defined above Please provide a 1-3 sentence explanation of

your answer.

(a) 0

(b) 8

(c} 12

(d} undefined

(¢ Oif x=2 and12ifx 6 2

(f) 0if x= 2, and undefined if x 6 2
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4. Let p be the function defined on all real numbers by

p(z) = / 3t2dt
2
and let ¢ be the function defined on all real numbers by
q(r) =2 -8

(a) How are p and ¢ related? (Select option i. or ii.).

i. p and ¢ are the same function.

ii. p and ¢ are not the same function.

(b) Provide an explanation for your answer for 4(a).

5. Suppose ¢ is a function and h is a function. What does it mean for ¢ and h to be the same
function? Explain.
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OSumRule

State the sum rule for derivatives, and write it down.

OFuler

Write down and state Euler’s formula.

OMice!

Consider a population of field mice who inhabit a certain rural area. In the absence of predators we assume
that the mouse population increases at a rate proportional to the current population. Using ¢ to denote time,
p(t) to denote the population, and r to represent the growth rate, write a differential equation expressing
this relationship.

Oldentity?

Suppose (S,*) is a binary algebraic structure. What does it mean for an element e € S to be a left
identity element?

OMVT
Finish the following statement of the Mean Value Theorem by writing an equation:

Theorem 1. Suppose [ is a continuous function on [a,b] and is differentiable on (a,b). Then there exists
a point ¢ in (a,b) such that...

! This task was borrowed from Boyce and Deprima (2009)
2The wording for this task (e.g. “binary algebraic structure”) and other related abstract algebra tasks is from
Fraleigh (2003).
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Difference Quotient
The difference quotient of a function g is defined to be

glz +h) - g(x)
(z4+h)—=x

where h is nonzero.
Let f: R — R be the function defined by f(x) = 2%. The following shows the difference quotient:

2
i
h
B 22+ 2zh 4+ h? — 22
B h
(x+h)r—a?
a h
_ fla+h) - f(z)
h
_ Ja+h) - ()
(x+h)—=
Homomorphism

The following is a portion of an introductory Abstract Algebra text.

Let (S, ) and (5, +) be binary algebraic structures. A homomorphism from (S,*) to (S',+) is a
function ¢ : S — S’ such that for all z,y € S,

o(x) + ¢y) = é(w *y)
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Exponents
The following is a portion of a Precalculus text.

Recall the Properties of Exponents:
b = p* L pY

bx

2oy
by =b
Induction

The following is a portion of a proof by induction that for all natural numbers k, k* — k is divisible by
6. At this point in the proof, it has been assumed that n® — n is divisible by 6, and it is being shown that
(n+ 1) — (n+1) is therefore also divisible by 6.

(n® —n)+3n(n+1) = (n* —n) + (3n® + 3n)
= +3n*+3n+1)— (n+1)

=m+1P°-(n+1)

Since either n or n + 1 is even, 3n(n + 1) is divisible by 6. By assumption, n® — n is divisible by 6. Hence,
(n® —n) + 3n(n +1) is divisible by 6, and therefore (n + 1) — (n + 1) is divisible by 6.

Set Theory

The following is a proof in a set theory textbook that if a is a transitive set, then | J(a™) = a. Note that
a transitive set is defined to be a set a such that all members of ¢ are subsets of a, and at is defined to be
aU{a}.

Proof.

a:(Ua)Ua

IThis proof is a reversed version of the proof given in Enderton (1977).
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Productrule

The product rule for derivatives says that if f and ¢ are differentiable functions, then

fa'+1fg=(fg)

Proof
Theorem 1. Suppose (S, *) and (S’,*") are binary algebraic structures, and ¢ is an isomorphism from (S, %)

onto (S’,*'). Further suppose that e is a left identity element in (S,x). Then ¢(e) is a left identity element
in (97, ).

Proof. Let s’ be an element of §”. Since ¢ is onto, there exists some s € S such that ¢(s) = s’. Hence

d(s) = d(e) ¥ d(s) = 5" = d(e) ¥ 5" = p(exs)

Distributive

The following is a portion of a precalculus text.
The distributive law tells us that for all numbers xz, y, and =z,

zy+axz=2x(y+ 2)
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Cldentity
An element e € S is a left identity element for (S,«) if and only if for all z € S

r=€exT

CProofs

Theorem 1. Suppose (S, x) and (S', ') are binary algebraic structures, and ¢ is an isomorphism from (S, *)
onto (S’,«"). Further suppose that e is a left identity element in (S, %). Then ¢(e) is a left identity element
in (S, +').

Proof. First Proof Let s’ be an element of S’. Since ¢ is onto, there exists some s € S such that ¢(s) = s

Hence
dle) ' s" = p(e) ¥ ¢(s) = dlexs) = ¢(s) = '
by the properties of homomorphism and the fact that e is a left identity element in (S, *) O

Proof. Second Proof Suppose s’ € S’. Since ¢ is onto, there exists s € S such that

s' = ¢(s) 1)
By (1) we also know that

dle) +' s = d(e) ¥ ¢(s) 2)

Since e is a left identity clement,
¢lexs) = ¢(s) 3)

and since ¢ is a homomorphism,
e) ¥ ¢(s) = d(exs). 4)

Therefore, by equations (1)-(4),

§=g¢e) s (5)
O

Proof. Third Proof Let s’ be an element of S’. Since ¢ is onto, there exists some s € S such that ¢(s) = s'.
Hence

&(s) = ¢(e) ¥ ¢(s) = s = p(e) ' 5" = Ple x 5)

Proof. Fourth Proof Let s’ be an element of S’. Since ¢ is onto, there exists some s € S such that ¢(s) = .

Hence
5 = §(s) = Blexs) = 3(e) ¥ B(s) = Ble) #' &
by the properties of homomorphism and the fact that e is a left identity element in (S, *) O
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CFEuler

Euler’s formula states that

cosf +isind = %

CSumRule

The sum rule for derivatives says that if f and g are differentiable functions, then

f'+9d=0U+9)

CMVT

There are various ways that textbooks state the mean value theorem.

Theorem 1. Suppose f is a continuous function on [a,b] and is differentiable on (a,b). Then there exists
a point ¢ in (a,b) such that

Theorem 2. Suppose f is a continuous function on [a,b] and is differentiable on (a,b). Then there exists
a point ¢ in (a,b) such that

—a
Theorem 3. Suppose f is a continuous function on [a,b] and is differentiable on (a,b). Then there exists

a point ¢ in (a,b) such that

fi(e)(b—a)=f(b) - f(a)

Theorem 4. Suppose f is a continuous function on [a,b] and is differentiable on (a,b). Then there exists
a point ¢ in (a,b) such that
f(0) = f(a) = f'(c)(b - a)
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