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ABSTRACT  

   
Approximately 71% of the great lakes, lakes, reservoirs, and ponds, together with 

51% of rivers and streams assessed in the US are impaired or threatened by pollution or do 

not meet the minimum water quality requirements. Pathogens, sediments, and nutrients are 

leading causes of impairment, with agriculture being a top source of pollution. Agricultural 

pollution has become a global concern overtaking urban contamination as the major factor of 

inland and coastal waters degradation in many parts of the world. High-yielding crop 

production has been achieved by the intensive use of inorganic fertilizers that are mainly 

composed of Nitrogen (N) and Phosphorus (P). N and P are essential nutrients for ecosystem 

structure, processes, and functions. However, N and P in excess can be problematic to the 

environment. One of the major impacts of the increasing amount of these nutrients in the 

environment is the global expansion of harmful algal blooms (HABs). Major agricultural 

nutrient pollution sources and climate change can exacerbate these risks. This dissertation 

aims to guide future policies to mitigate issues linked to excess nutrient loads in the U.S. by 

evaluating the impact of climate change on nutrient loads and assessing the environmental 

impact as well as the spatial patterns of one of the major agricultural sources of nutrient 

pollution - Concentrated Animal Feeding Operations (CAFOs). Specifically, I first 

investigated the impact of bias correction techniques when modeling mid-century nutrient 

loads in a watershed heavily impacted by CAFOs. Second, I evaluated the role of CAFOs in 

land use change and subsequent environmental degradation of the surrounding environment. 

Finally, I assessed the spatial organization of CAFOs and its links to water quality conditions. 

The findings revealed unique insights for future nutrient management strategies in the U.S.   
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CHAPTER 1 

INTRODUCTION 

 

1.1. Background  

 According to the United States Environmental Protection Agency (USEPA), 

approximately 71% of the lakes, reservoirs and ponds, together with 51% of rivers and 

streams assessed in the US are impaired or threatened by pollution or do not meet the 

minimum water quality requirements (USEPA, 2020). Pathogens, sediments, and nutrients 

are leading causes of impairment, with agriculture being the top source of pollution. 

Agricultural pollution has become a global concern overtaking urban contamination as the 

major factor of inland and coastal waters degradation (FAO, 2017). High-yielding crop 

production has been achieved by the intensive use of inorganic fertilizers that are mainly 

composed by Nitrogen (N) and Phosphorus (P) (Gellings & Parmenter, 2016; Kondraju & 

Rajan, 2019; Stewart et al., 2019). N and P are essential nutrients for ecosystem processes 

and functions. Both N and P are necessary in processes linked to plant and animal survival, 

such as photosynthesis, cell growth, metabolism, and protein synthesis (Chapin et al., 2002; 

Guignard et al., 2017; Razaq et al., 2017). However, these nutrients in excess can be 

problematic to the environment.  

 The atmosphere is composed by 78% of N gas, but N in gaseous form cannot be 

directly used by most organisms (Stein & Klotz, 2016). To become biologically available, 

N fixation occurs through specialized bacteria or industrial processes, by ionizing 

phenomena such as lightning (Delwiche, 1970). Prior to large-scale synthetic fertilizers 



 

   2 

production in the 1950s, the amount of N removed from the atmosphere via natural fixation 

was approximately balanced with the amount of N returning to the atmosphere via natural 

denitrifying processes. With industrial and agricultural advancements, specifically the 

development of the Haber-Bosch process, fixation exceeded denitrification leading to N 

excess and accumulation in the terrestrial and marine environment. N combines with 

molecules of oxygen and hydrogen available in the ecosystem, forming compounds such 

as ammonia and ammonium (NH3 and NH4) as well as nitrite and nitrate (NO2 and NO3) 

(Delwiche, 1970). When in excess, N may deplete the availability of oxygen, principally 

in aquatic ecosystems, resulting in algae blooms and intensified biological activity that kill 

oxygen-dependent organisms (Galloway et al., 2008). This biological productivity is also 

contingent upon the availability of P. Continental bedrocks are the primary natural source 

of P in the environment. P becomes naturally available for plant uptake via weathering 

processes and returns to the soil through decay or litterfall (Ruttenberg, 2003). The mining 

of phosphate rocks increased significantly to produce synthetic agricultural P fertilizer. In 

addition to the increase in the application of synthetic fertilizers, deforestation as well as 

urban and industrial waste disposal have enhanced phosphorus transport from terrestrial to 

aquatic ecosystems (Ruttenberg, 2003). The increasing amount of these nutrients, both N 

and P, in the environment has resulted in the impairment of drinking water sources and in 

the global expansion of harmful algal blooms (HABs), which produce toxins that lead to 

species mortality and threaten human health (Gill et al., 2018; Michalak, 2016; O’Neil et 

al., 2012).   
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 Climate change can exacerbate these risks. Predicted increases in temperature and 

changes in rainfall can favor the emergence of HABs (Chapra et al., 2017; Moore et al., 

2008). Extreme rainfall events can lead to excess runoff of N and P to rivers and streams, 

worsening the aquatic environment conditions. There is still a need, however, to understand 

the impact of climate change when quantifying future nutrient loads and HABs as studies 

show conflicting results as to whether nutrient loads will increase or decrease in a future 

climate (Kalcic et al., 2019).  

 The intensive livestock production industry is a major source of nutrients and other 

kinds of pollutants. This sector contributes to major environmental problems worldwide, 

including loss of biodiversity and water quality depletion (USEPA, 2004). The demand for 

meat products has increased with population growth, which has caused expansion and 

intensification of the livestock industry (Godfray et al., 2018). This industry requires water 

and feed concentrates, directly pressuring the environment through land clearing for feed 

production and water usage for animal needs (Austin et al., 2017; NRDC, 2019). These 

practices impact water resources as the water used returns to the environment in form of 

liquid manure, slurry, and wastewater (FAO, 2017). When the livestock production system 

becomes concentrated, known in the U.S. as concentrated animal feeding operations 

(CAFOs) that are regulated by the federal government since 1970s (USEPA, 2003), manure 

production tends to exceed the holding capacity of the surrounding ecosystem potentially 

degrading the environment and increasing water pollution (Oun et al., 2014). Moreover, 

manure is not only composed of nutrients such as N and P, but also contains bacteria, 

antibiotics, and heavy metals that can significantly impact the ecosystem and human health 
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(Burkholder et al., 2007; Harun & Ogneva-Himmelberger, 2013; Brands, 2014; Ogneva-

Himmelberger et al., 2015; Guidry et al., 2018) . There remains a large gap in our 

understanding and tracking of this source of pollution so that improvements can be made 

to current policies and management practices.  

 CAFOs, primarily their manure lagoons and feedlots, are considered point source 

dischargers under the Clean Water Act (USEPA, 2018); however, these operations usually 

spread manures stored in lagoons or pits onto surrounding agricultural fields, making the 

manures susceptible to runoff as rainfall occurs (NRDC, 2019). Under this scenario, the 

land-applied manure is typically considered a non-point source pollutant exempted from 

most Clean Water Act regulations as agricultural stormwater. To monitor and regulate this 

pollution source to prevent water body contamination, the EPA requires CAFOs to obtain 

a National Pollution Discharge Elimination System (NPDES) permit to legally operate 

(USEPA, 2003; Centner, 2011). However, this regulation may only apply to CAFOs that 

have the potential to discharge manure directly in waterways excluding the manure 

spreading operations, depending on the state’s interpretation of the federal rules (Duke 

Bass Connections, 2016). Due to high hauling prices and the fact these operations tend to 

cluster over space (Freeze & Sommerfeldt, 1985; Copeland, 2010; Yang et al., 2016), 

manure likely concentrates in nutrient-exhausted areas leading to environmental problems 

(Kellogg et al., 2000). There is still a need to observe spatially and temporally how CAFOs 

are impacting their surrounding environment based on the distance manure has been 

transported over the years. Although studies have reported that CAFO activities have the 

potential to deplete their surrounding natural resources and pollute water bodies (Martin et 
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al., 2018), no studies have yet reported the environmental trade-offs and conditions 

surrounding these operations. 

 One of the targets established by the Sustainable Development Goals (SDG Target 

6.3) is a goal to “improve water quality by reducing pollution, eliminating dumping and 

minimizing release of hazardous chemicals and materials, halving the proportion of 

untreated wastewater and substantially increasing recycling and safe reuse globally” 

(United Nations, 2016). CAFOs produce significant amounts of manure that are often 

discharged in waterbodies or land applied without preliminary treatment (De Vries et al., 

2010). Therefore, the spatial aggregation pattern of these operations may be an indication 

of the degree of pollution or degradation in their surroundings (Hribar, 2010; Yang et al., 

2016; Martin et al., 2018; Baek & Smith, 2019). The identification of an optimal spatial 

organization for these operations together with best management practices could guide 

policy makers, improve the sustainability of the food production system, offer new 

opportunities for resource recovery, and ameliorate water quality conditions aligning with 

the SDG goal. Yet, no study has holistically reported if the clustering of these operations 

influences the degradation outcomes as well as if changes in the current policies could lead 

to better environmental conditions.  

  

1.2. Climate, Bias Correction, and Nutrient Load Prediction 

 Water bodies in the U.S. and around the globe have increasingly exhibited symptoms 

of eutrophication, including hypoxia and harmful algal blooms (HABs) (Taranu et al., 

2015; Wurtsbaugh et al., 2019).  Eutrophication is driven by excess nutrients, N and P, 
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which are often attributed to intensified watershed activities such as agriculture and urban 

wastewater discharge (Stow et al., 2020; H. Xu et al., 2018). For example, research shows 

agricultural practices drive the increase of P loads in Lake Erie, Michigan USA (Michalak 

et al., 2013; Scavia et al., 2014) and of N loads in the Gulf of Mexico (Rabalais et al., 

2009). Manure N and P is another factor leading to areas with nutrient surplus in Asia, 

South and North America, and Europe (Keplinger & Hauck, 2004; Li et al., 2007; Menzi 

et al., 2010; Sönmez et al., 2016). Moreover, habitat alteration, such as wetland removal 

and deforestation, has increased N and P loads in Klamath Lake, Oregon USA (Paerl et al., 

2018). Climate change exacerbates these impacts. Warming temperatures have been linked 

to the earlier emergence of HABs in shallow lakes located in distinct regions of South 

America and Europe (Kosten et al., 2012), and precipitation changes are largely controlling 

the Gulf of Mexico load variability (Donner & Scavia, 2007). Changes in rainfall 

variability may also increase bloom emergence in Australia (O’Neil et al., 2012). While 

previous studies have suggested that impacts are likely to become more intense, there 

remains a gap in our understanding of how a changing climate may impact future nutrient 

loads.  

 Watershed models are often used to evaluate the effectiveness of different agricultural 

best management practices (BMPs) as well as to explain factors (i.e., land use practice, 

climate change) that reduce (or drive) excess nutrients (Daloğlu et al., 2012; Kalcic, 

Chaubey, et al., 2015; Kalcic, Frankenberger, et al., 2015; Muenich et al., 2016). The Soil 

and Watershed Assessment Tool (SWAT) is an example of a watershed-scale model that 

has been widely applied to investigate hydrological responses and nutrient load changes 
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based on land management, soil, climate, and topographic characteristics (Gassman et al., 

2007; Douglas-Mankin et al., 2010; Dagnew et al., 2019). A recent study used multiple 

SWAT models to understand the impact of different management strategies that would 

decrease future P loads in Lake Erie, providing insights into how to achieve nutrient load 

reduction goals (Scavia et al., 2017). While management practices have been identified, 

the authors did not consider their performance under a changed climate. Little is known 

about how future climate may influence changes to lake nutrient loads. On the one hand, 

studies have suggested that future nutrient loads may decrease in western Lake Erie, 

associated with increased temperatures and evapotranspiration (Kalcic et al., 2019), as well 

as greater plant uptakes under higher CO2 concentrations (Culbertson et al., 2016). On the 

other hand, studies indicate that nutrient loads might increase under future climate regimes 

as changing annual temperature and precipitation increase flow rates and runoff in the 

Maumee watershed (Verma et al., 2015). Therefore, uncertainties remain surrounding the 

impacts of future land-atmosphere interactions on regional nutrient loads.  

 When considering the implementation of future climate model simulations in 

watershed modeling, a common approach includes bias correction (Hakala et al., 2019; 

Cannon et al., 2020) which is applied to correct systematic errors in climate model outputs, 

primarily due to the difference in scale (Hakala et al., 2019), that serve as inputs to 

watershed models. For example, most climate models are developed at either a global 

(GCMs; 100 – 500 km grid resolution) or regional (RCMs; 10-50 km grid resolution) scale 

(Leung et al., 2003), whereas watershed models operate with a full domain at typically an 

8-digit hydrologic unit code scale (total model area ~ 100 –1500 km2) or smaller (NRCS, 
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2020). Studies have investigated the impacts of bias correcting climate data for input to 

hydrological models in watershed processes, such as changes in flow, evapotranspiration, 

and rainfall (Teutschbein & Seibert, 2012; Cannon et al., 2015; Meyer et al., 2019). For 

instance, comparing two bias correction techniques, Quantile Mapping (QM) and Quantile 

Delta Mapping (QDM), Cannon et al (2015) found that QM can inflate the magnitude of 

rainfall extremes in Canada. Another study compared 6 bias correction approaches (e.g., 

linear scaling (LS), distribution mapping (DM), QM) when correcting RCM precipitation 

and temperature outputs to simulate streamflow in an arid catchment in China. The authors 

found that while all methods improved raw RCM-simulated precipitation, there were 

variations in their corrected statistics, which resulted in differences when simulating flow 

via SWAT. Among all methods, LS overestimated flow by 100% in the simulation period 

and had the greatest bias (Fang et al., 2015).  

 However, there is a lack of understanding on how bias correction influences the 

prediction of nutrient loads. Kalcic et al. (2019) explored the influence of climate change 

on nutrient load predictions in the Maumee River watershed using mid-century climate 

projections from one global and four regional climate models as input to SWAT. While 

their results suggested nutrient load would decrease under a future climate, they did not 

bias correct the climate model outputs. Other studies have applied bias correction to predict 

future nutrient loads but did not investigate how different bias correction techniques would 

impact modelled nutrient outputs (Culbertson et al., 2016; Mehan et al., 2019). For 

Example, Teutschbein et al. (2017) modeled changes in total inorganic N across 19 sites in 

Sweden. The authors combined GCM and RCM outputs and used only one bias correction 
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method (i.e., distribution scaling) to correct for systematic bias. Results indicated 

significant increases in total inorganic N loads in the future (Teutschbein et al., 2017). A 

recent study in Germany on the effects of bias correcting climate model outputs to predict 

future changes in discharge suggested that predicted future flow differs by bias correction 

method (Wörner et al., 2019). This investigation has yet to be done for nutrient load 

models. There remains a need to understand how bias correcting climate model outputs 

(i.e., precipitation and temperature) influence nutrient load model outputs to advance this 

field of study and guide decision-making processes. 

 

1.3. CAFOs and the Environment 

 The animal protein and products sector is growing and intensifying faster than crop 

production in almost all countries (FAO, 2017). It was projected that the global demand 

for meat and milk in 2050 will grow by 73 and 58 percent, respectively (FAO, 2013). 

Consequently, large animal feeding operations have arisen as a cost-effective, efficient 

alternative to provide food for a growing population that demands more animal products 

(McDonald et al., 2020). When these facilities, which vary by animal type (Ribaudo et al., 

2003), confine animals for more than 45 days per year, don’t have an actively growing crop 

on the facility, and meet a threshold number of animals, they are regulated as CAFOs in 

the U.S. Other parts of the world may describe these operations differently, with terms such 

as feedlots or intensive livestock operations. The growth of these operations worldwide is 

likely to exacerbate its linked environmental impacts. Gas, aerosol, and particulate 

emissions from CAFO activities can affect air-quality conditions (Wilson & Serre, 2007; 
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Ogneva-Himmelberger et al., 2015). Other pollutants from CAFOs include nutrients, 

sediments, pathogens, heavy metals, hormones, antibiotics, and ammonia in manures 

(Mole, 2013; Scanes, 2018; Kronberg & Ryschawy, 2019; Randad et al., 2019). While the 

significant amounts of manure CAFOs generate can be a valuable source of nutrients such 

as P, N, and organic carbon for agriculture (Yan et al., 2017), the excess accumulation of 

manure can impact the environment, for example (Burkholder et al., 2007; Garcia et al., 

2019; Muenich et al., 2016; Tullo et al., 2019; Miralha, Muenich, Scavia, et al., 2021; Raff 

& Meyer, 2021a), and lead to long-term, large-scale ecological degradation (Qi et al., 

2017).  

 A previous study of CAFOs in Michigan found that operators were primarily applying 

manure within regulatory limits, yet were often applying amounts above crop nutrient 

needs, indicating that manure is treated as a waste product they need to dispose of, rather 

than as a valuable fertilizer for crops (Long et al., 2018). Most states regulate CAFO 

manure applications based on environmental risk or nutrient limits based on crop needs, 

but these inefficient applications likely occur due to high costs associated with manure 

hauling (Sims et al., 2005; Centner, 2012), lack of markets due to nutrient ratio variability, 

as well as presence of pathogens, metals, antibiotics and other undesirable qualities 

(Ribaudo et al., 2003; Keplinger & Hauck, 2006; Liu et al., 2018; Sonne et al., 2019; Pepper 

et al., 2019). To meet state and federal waste management regulations, CAFO operators 

must either acquire or rent sufficient land nearby for applications, or transfer or sell manure 

to nearby farms. The need for more land for manure applications has the potential to change 

land use patterns and environmental conditions in the vicinity of CAFOs. 
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 To mitigate potential CAFO impacts, it is necessary to better understand how these 

operations affect the environment over time and space. Whether changes in local land use 

patterns and environmental quality are intensified due to presence of CAFOs has not 

previously been explored at large spatial scales. Land conversions due to human influence 

(e.g., loss of forest or wetlands to cropland and shrubland) often result in degraded quality 

relative to the prior reference condition. These physical landscape changes impact 

ecological function, which may in turn influence environmental quality. Satellite remote 

sensing products have been used extensively to quantify spatiotemporal changes in 

environmental conditions (Ishtiaque et al., 2016a; Estoque et al., 2018a). Several products 

offer advantages for environmental change analysis (e.g., evapotranspiration (ET), land 

surface temperature (LST)), including repeated monitoring over large areas, relatively long 

historical records, and free data access (LP DAAC, 2019). A variety of indices derived 

from satellite remote sensing data have been used to measure degradation in previous 

studies (Eckert et al., 2015; Alatorre et al., 2016a; C. Wang & Myint, 2016; Estoque et al., 

2017), but these have not yet been specifically applied to assess the localized impacts of 

CAFOs. 

 

1.4. CAFOs Spatial Organization and Water Quality 

Standard operational activities, accidental discharges such as CAFO lagoon ruptures 

(Mallin & Cahoon, 2003), as well as leaching and runoff of contaminants from manure-

applied fields into nearby water bodies (Sousan et al., 2021) can lead to severe ecological 



 

   12 

degradation. As CAFOs tend to cluster in space for production and logistical purpose, their 

associated environmental impacts may also intensify.  

Clustering has become the cornerstone of efficiency and economic success in 

industrialized production and development (Porter, 1998; Ayres & Ayres, 2002; Deutz & 

Gibbs, 2008). Although it is argued that industrial clusters may provide environmental 

benefits (Lifset & Graedel, 2002), few studies in industrial ecology have investigated the 

relationship between clustering of point sources and the impact in the surrounding 

environment (Kennedy, 1999; Lall & Mengistae, 2005; Anh et al., 2011; Yoon & Nadvi, 

2018). Regardless of the specific industry, spatially concentrated production can 

potentially generate negative environmental outcomes.  Like many other industries, 

CAFOs tend to cluster in space, which may lead to similar drawbacks. The clustering of 

animal agriculture may lead to cumulative adverse environmental effects because 

individual production facilities add animals over time, whether or not they own sufficient 

cropland to handle the additional manure produced (Thurow & Thompson, 1998). 

However, studies have not explored the spatial clustering of CAFOs and its relationship 

with the  conditions of the surrounding environment. Daniels (1997) determined that for 

cluster zoning to be an effective method of land protection, planners must delineate 

reasonable densities for development such that the carrying capacity of the local 

environment is not exceeded, especially in a watershed. Excessive density, inappropriate 

locations, a combination of these two, or unreasonable expectations about what cluster 

development can do, are the major four potential clustering abuses of a given operation 

(Daniels, 1997; Porter, 1998). These abuses may apply to the spread of CAFOs both in the 



 

   13 

U.S. and worldwide, principally when it comes to socio-environmental impacts as well as 

to the argument of economic and production benefits from the clustering of these 

operations. While watersheds with high concentration of CAFOs are potentially at higher 

risk of degradation than others (Martin et al., 2018; C. Brown et al., 2020), studies have 

yet to investigate if the spatial organization of CAFOs is a characteristic of higher negative 

environmental outcomes. Specifically, this spatial clustering pattern has yet to be 

investigated by water quality studies that account for agricultural source of pollution. 

Studies have previously explored the impact of CAFOs on water quality. For instance, 

concentrations of nitrate, ammonium, total nitrogen (TN), and other ions were higher in 

CAFO-impacted streams than in control streams where CAFOs are not present (Harden, 

2015). Additionally, overaccumulation of total phosphorus (TP) by manure application has 

allowed for export into surface and subsurface water bodies impacting the aquatic 

ecosystem (Withers & Jarvie, 2008). For instance, the Neuse River watershed in North 

Carolina received approximately 41,000 metric tons of N and 16,000 metric tons of P from 

CAFO waste in the 2000s (Glasgow & Burkholder, 2000). These additions of large 

amounts of nutrients often introduce eutrophic/hypoxic conditions to surface water bodies 

(Muenich et al., 2016; Tullo et al., 2019; Miralha, Muenich, Scavia, et al., 2021; Raff & 

Meyer, 2021b), an impact that must be prevented and monitored to avoid permanent 

ecological damages. Assessing the spatial organization of CAFOs and its links to water 

quality conditions could improve our understanding on how to better manage and regulate 

these facilities to prevent future permanent environmental damages.  
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1.5. Research Objectives and Dissertation Structure 

  Overall, understanding the factors influencing future N and P concentration both in 

terms of climate change modeling approaches and sources of pollution – such as CAFOs - 

may help optimize future nutrient reduction strategies and policies. This dissertation aims 

to guide future policies to mitigate issues linked to excess nutrient loads in the U.S. by 

evaluating the impact of climate change on nutrient loads and assessing one of the 

major agricultural sources of nutrients -CAFOs (Figure 1). Chapter 1 has described the 

problems addressed in this dissertation in addition to motivations, and provided the 

literature review per each question evaluated in the following chapters. In Chapter 2, the 

goal was to identify the impact of bias correction (BC) methods for climate-modeled data 

in the prediction of nutrient loads using an existing Soil and Water Assessment Tool 

(SWAT) model for the Maumee Watershed in the Western Lake Erie Basin, an agricultural 

watershed with current CAFO activities. Chapter 1 - section1.2. and Chapter 2 were 

published in Science of the Total Environment as Miralha et al 2021. In the third chapter, 

I investigated whether regulated CAFOs drive land use change over time and space as well 

as if their presence degrades local environmental conditions; specifically, I used MODIS 

land products from 2000 to 2018 to examine these questions in Michigan and North 

Carolina. Chapter 1 -section 1.3 and Chapter 3 were published in Science of the Total 

Environment as Miralha et al 2021. In the fourth chapter, I aimed to investigate if CAFO-

clustered watersheds are likely to present higher concentrations of TP and TN than CAFO-

dispersed basins. For CAFOs with animal number data available, I additionally evaluated 

the relationship between the spatial autocorrelation of the number of animals per CAFO 
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and water quality conditions to determine if both spatial clustering and size of CAFOs 

differently impact water quality. Chapter 4 is currently in preparation for a peer-reviewed 

journal submission. Chapter 5 summarizes the takeaways of this work and the future 

research direction focused on developing a national database of AFOs.  

 

Figure 1. Dissertation sketch on how climate and the agriculture source of pollution 

(CAFO) ideas interconnect. This research aims to bring insights for future nutrient 

modeling approaches and nutrient management policies.  
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CHAPTER 2 

BIAS CORRECTION OF CLIMATE MODEL OUTPUTS INFLUENCES 

WATERSHED MODEL NUTRIENT LOAD PREDICTIONS 

 As discussed in chapter one (section 1.2), bias correction is a common technique 

used by modelers. However, with the variety of methods existent in the literature it is still 

unclear how the choice of a bias correction method impacts nutrient load prediction. This 

study evaluates the impacts of bias correcting precipitation and temperature from 4 GCMs 

from the Climate Model Intercomparison Project version 5 (CMIP5) model database 

(Taylor et al., 2012) on SWAT outputs of nutrient loads to the Western Lake Erie Basin 

(WLEB) from the Maumee River, Michigan USA. I modeled observed dissolved reactive 

P (DRP), total P (TP), and total N (TN) loads from 1985 to 1999, which were compared to 

SWAT loads driven by not bias-corrected and bias-corrected GCM outputs. The climate 

model scenario and bias correction method that most closely matched the observations 

were selected and used for the evaluation of hydrological processes and absolute nutrient 

load changes in the mid-century (2051-2065). Results from this study advance knowledge 

on the impacts of bias-corrected climate model outputs driving watershed models. It may 

also serve as a guide for watershed modelers worldwide on how bias correction techniques 

and climate model choices may influence modeled nutrient outputs as well as serve as a 

cautionary tale for the decision-making process of nutrient load management strategies. 
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2.1. METHODS 

2.1.1. Study area 

 The study site is the Maumee River basin located in parts of Michigan, Indiana, and 

Ohio, US (Figure 2). This agriculturally dominated basin has flat topography 

characteristics as well as poorly drained soils, which requires installation of subsurface tile 

drains to ensure viability of agriculture. The basin is predominantly corn, soybean, and 

wheat crops, with a mix of dairy, swine, and poultry livestock operations. The watershed 

receives about 984 mm of rainfall on average, with an annual average temperature of 10°C 

(Williams & King, 2020). Rainfall patterns have changed over the past 30 to 40 years 

influencing tributary discharge and P delivery in Lake Erie. Across the basin, annual 

rainfall increased by 102 mm from 1975 to 2017, with increases in intense rainfall 

occurring primarily during spring and summer seasons (Williams & King, 2020).  
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Figure 2. Maumee River basin: location (top left panel), SWAT sub-basins (bottom-left 

panel), land use characteristics, and main HUC-8 sub-basins (main panel).  

 

2.1.2. SWAT model characteristics 

 SWAT is a semi-distributed hydrologic and water quality model driven by daily 

time-scale inputs including precipitation, temperature, solar radiation, relative humidity 

and wind speed. This is a widely used model in the investigation of water resource issues 

associated with land use management, especially in agricultural lands (Tan et al., 2020). 

The model used in this study was calibrated and validated for the Maumee River watershed 

considering field-scale best management practices (BMPs), and fertilizer applications 

(Apostel et al., 2021). This SWAT model sub-divided the 358 sub-basins into 24,256 

hydrologic response units (HRUs), each with ~70 acres area on average. The model 
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accounted for unique combinations of crop rotations simplified to meet watershed crop 

characteristics; both inorganic and organic (including manure) fertilizer application; tile 

drainage, tillage management, and other management practices such as fertilizer 

incorporation and buffer strips; the increasing prevalence of soil stratification in the region; 

labile P calculation for each HRU; and new snow parameters based on data from NOAA’s 

Global Historical Climatology Network. The main objective of the calibration was 

ensuring the model simulates reasonable streamflow, nutrient, and sediment load values. 

The calibration was performed for 2005-2015 period, with validation for 2000-2004. This 

model was run using the SWAT 2012 revision 635, which includes modification on the 

movement of soluble P through subsurface tile drains. The daily model calibration and 

validation metric results for TP, DRP and, TN are in the supplementary information 

(Appendix A- SI 1.1. Table 1). 

 

2.1.3. Climate variables and Climate Models Selection 

 Four global climate models from the Coupled Model Intercomparison Project Phase 

5 (CMIP5) were used in this study: (1) CCSM4, (2) MPI-ESM-MR (i.e. MPI), (3) CNRM-

CM5 (i.e. CNRM), and (4) IPSL-CM5A-MR (i.e. IPSL). Though the models have distinct 

atmospheric grid resolutions, CCSM4 has the highest number of grid points within the 

study area compared to the other three models (Table 1). In this study, I used daily temporal 

resolution outputs with the Representative Concentration Pathway 8.5 (RCP8.5) as the 

future emissions scenario (Pachauri et al., 2014).  
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Table 1. Description of the climate models used in this study. 

Model 
ID in this 

study 
Description 

Atmospheric 

Grid (lat x lon) 

Grid points 

 (lat x lon) 

CCSM4 CCSM4 

National Center for 

Atmospheric Research 

(NCAR) - Community Earth 

System Model 4 

0.94o x 1.25o 4 x 3 = 12 

MPI-ESM-MR MPI 

Max Planck Institute for 

Meteorology - Earth System 

model running on mixed 

resolution grid 

1.86o x 1.87o 2 x 2 = 4 

CNRM-CM5 CNRM 

Centre National de 

Recherches Météorologiques 

and Centre Européen de 

Recherche et de Formation 

Avancée 

1.40o x 1.40o 2 x 2 = 4 

IPSL-CM5A-

MR 
IPSL 

Institut Pierre-Simon 

Laplace - Earth System 

Model for the 5th IPCC 

report - Mid resolution 

1.27o x 2.5o 2 x 2 = 4 

 

 These models were selected from a set of 18 CMIP5 models, because they 

minimized error in historical seasonal-average temperature and precipitation over the 

WLEB (Appendix A – SI 1.2. Table 2). Overall, the model that provided the closest 

patterns to gridded observations (Appendix A – SI 1.3. Figure 3) across the temperature 

and precipitation metrics (the CCSM4 model) was also the one that had a realistic spatial 

representation of the Great Lakes. From a subset of modeled historical (1980-1999) and 

future (2046 -2065, RCP 8.5 emission scenario) simulations, we used model precipitation 

(PCP), maximum temperature (TMAX), and minimum temperature (TMIN) as input to 

SWAT. I distinguish the SWAT run with climate model outputs from 1980-1999 as the 

“model-historical simulation”, and from 2046-2065 as the “future simulation”. A separate 

simulation using daily observations of PCP, TMAX and TMIN from 71 weather stations 

for 1980-1999 was also simulated for the historical time period, and this is referred to as 
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the “model-observed simulation”. The “model-observed simulation” is treated as the 

baseline in this study. 

 

2.1.4.  Bias Correction Techniques 

 Bias correction (BC) was performed with daily climate model output (i.e., PCP, 

TMAX, TMIN) and equivalent daily observed data for the historical period (1980 to 1999). 

To bias correct, the observed values from the 71 weather stations were averaged to the 

nearest grid point of the climate model to ensure the spatial resolution of both the observed 

climate data and climate model output would be the same. To enable the comparison among 

BC techniques, we selected four well-established univariate BC methods and three recently 

developed multivariate BC methods. The four univariate methods are: (1) Delta; (2) 

Scaling; (3) Empirical Quantile Mapping (EQM); (4) Quantile Delta Mapping (QDM). The 

delta method adds the mean change signal between the simulated climate in the training 

period (p) and the test period (s) to the observations (o) (Equation 2.1), where the training 

period considers the data from 1980-1999 and the test period includes 2046- 2065. The 

delta method is based on a difference for variables such as temperature, while for 

precipitation we apply a quotient approach. 

𝐷𝑒𝑙𝑡𝑎𝑇𝑀𝐴𝑋/𝑇𝑀𝐼𝑁 = 𝑜 + (𝑚𝑒𝑎𝑛 (𝑠) − 𝑚𝑒𝑎𝑛 (𝑝))   

𝐷𝑒𝑙𝑡𝑎𝑃𝐶𝑃 = 𝑜 ∗ (𝑚𝑒𝑎𝑛 (𝑠)/𝑚𝑒𝑎𝑛 (𝑝))                                (2.1) 

 The scaling method scales the simulated variables based on the difference or 

quotient between the observed and simulated means (Equation 2.2). The difference is based 

on an additive equation that is usually applied to unbounded variables such as temperature, 
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while the quotient or multiplicative is applied to variables such as precipitation, so 

frequency can be preserved. 

 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝑇𝑀𝐴𝑋,𝑇𝑀𝐼𝑁; 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 = 𝑠 − 𝑚𝑒𝑎𝑛 (𝑝) + 𝑚𝑒𝑎𝑛 (𝑜) 

𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝑃𝐶𝑃; 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 =
𝑠

𝑚𝑒𝑎𝑛 (𝑝)
  ∗ 𝑚𝑒𝑎𝑛 (𝑜)               (2.2) 

 EQM consists of calibrating the simulated cumulative distribution function (CDF) 

by adding the observed quantiles (i.e., mean delta change and the individual delta changes) 

in the corresponding simulated quantiles. This method adjusts 99 percentiles and linearly 

interpolates inside this range every two consecutive percentiles (Gutiérrez et al., 2019). 

EQM also has the option of extrapolation, which enables keeping the extreme values of the 

distribution; however, this option was not used in this study because of the potential risk 

of bias in the extremes of the distribution. Details of this method can be found in the 

documentation of the R package hyfo-biasCorrect (Y. Xu, 2020). QDM is a quantile 

mapping method developed to avoid trend deterioration as in the traditional quantile 

mapping technique (Meyer et al., 2019). First, QDM extracts the climate change trend from 

the projected future quantiles. Then, the quantile mapping technique is applied to the 

detrended series. The quantile mapping is based on a transfer function that converts the 

CDF of the modeled data m, to match the CDF of the observed series o in a historical period 

h (Equation 2.3).The CDF function is denoted by F, and the bias correction of modeled 

PCP or TMP at time t within some projected period p is denoted by 𝑃𝐶𝑃 𝑜𝑟 𝑇𝑀𝑃̂
𝑚,𝑝  (𝑡). 

This transfer function is only based on historical period information, excluding future 

model projection relationships (Cannon et al., 2015). Thus, QDM was developed as a 

solution to preserve model-projected relative changes in quantiles while correcting 
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systematic biases in the quantiles of modeled series considering the observed values. The 

QDM transfer function is indicated by Equation 2.4, where the additive sign changes to 

multiplicative if the variable to be corrected is precipitation. More details on QDM can be 

found in Cannon et al. (2015). 

 𝑃𝐶𝑃 𝑜𝑟 𝑇𝑀𝑃̂
𝑚,𝑝  (𝑡) =  𝐹𝑜,ℎ 

−1 {𝐹𝑚,ℎ [𝑃𝐶𝑃 𝑜𝑟 𝑇𝑀𝑃𝑚,𝑝 (𝑡)]}        (2.3) 

𝑃𝐶𝑃 𝑜𝑟 𝑇𝑀𝑃̂
𝑚,𝑝  (𝑡) =  𝐹𝑜,ℎ 

−1 {𝐹𝑚,𝑝 
(𝑡)

[𝑃𝐶𝑃 𝑜𝑟 𝑇𝑀𝑃𝑚,𝑝 (𝑡)]} +  𝑃𝐶𝑃 𝑜𝑟 𝑇𝑀𝑃𝑚,𝑝 (𝑡)  −

 𝐹𝑚,ℎ 
−1 {𝐹𝑚,𝑝 

(𝑡)
[𝑃𝐶𝑃 𝑜𝑟 𝑇𝑀𝑃𝑚,𝑝 (𝑡)]}       (2.4) 

 The multivariate bias correction (MBC) methods chosen were: (1) MBCp - 

Multivariate bias correction (Pearson correlation) that matches marginal distributions using 

QDM and the Pearson correlation dependence structure; (2) MBCr - Multivariate bias 

correction (Spearman rank correlation) that matches marginal distributions using QDM and 

the Spearman rank correlation dependence structure; and (3) MBC-N - Multivariate bias 

correction (N-pdft) that matches the multivariate distribution using QDM and the N-

dimensional probability density function transform (Cannon et al., 2015; Cannon, 2018; 

Meyer et al., 2019). This method applies an orthogonal rotation to the data before QDM is 

executed. This rotation exposes QDM to a linear combination of the original variables, so 

QDM eventually corrects the probability distribution of the rotated data. For this method, 

the number of iterations used were the default (i.e., 30 iterations).  

While the univariate methods are based on mean deviations as well as quantile 

calculations, the multivariate techniques are based on the correlation or relationship among 

several variables to correct the variable set as target. MBC analyses require several inputs, 

but here we aimed to correct PCP based only on TMAX and TMIN inputs. The same was 
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done to correct TMAX, using only TMIN and PCP inputs, while TMIN was corrected using 

PCP, and TMAX. I chose this simplified approach as these are typically the variables used 

in future climate studies in watershed modeling, and often the most readily available across 

climate models. Two main packages in R studio were used for these analyses: 1) hyfo- used 

to bias correct daily climate data, and 2) MBC. We did not use delta from the hyfo package, 

because it does not consider the quotient approach for precipitation. Plots of monthly 

precipitation and temperature variables from 1980 to 1999 per scenario (observed, no-bias 

corrected (historical), and bias corrected) can be found in the supplementary information 

(Appendix A – SI 1.4. Figure 2).  

 

2.1.5. SWAT Simulations  

 I ran several SWAT simulations to estimate TN, TP, and DRP loads.  One 

simulation used the observed (i.e., 71 weather stations data) PCP, TMAX, and TMIN from 

1980 to 1999 as inputs. I also ran SWAT simulations using PCP, TMAX, and TMIN from 

the climate models as inputs without bias corrections for both the historical (1980-1999) 

and future (2051-2065) periods, and then with the 7 methods for bias correct on for both 

the historical and future periods.  

 This resulted in 69 SWAT simulations, 28 runs using the 4 climate models and 7 

bias-correction methods for each time period, 1 run with observed climate data, 4 runs with 

observed climate data at each climate model resolution, and 8 model historical and future 

runs without bias correction.  Because the first 5 years from the climate inputs were used 

as a spin-up period in SWAT, the historical and future comparisons were based on the 
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period from 1985 to 1999 and from 2051 to 2065. Each historical run was plotted using 

Quantile-Quantile plots (Q-Q plots) of average monthly values of TN, TP and DRP per 

year from 1985-1999. The future Q-Q plots were based on the best historical scenarios and 

served to evaluate absolute nutrient change in the mid-century period from 2051-2065. 

 

2.1.6. Evaluation of Model Fit, Bias Correction Method, and Future Load Impacts 

 A systematic approach was used to evaluating model fit, bias correction methods, 

and load impacts (Figure 3). Prior to the modeling analysis, I compared the climate model 

outputs (i.e., PCP, TMAX, and TMIN) with the mean of the observed climate variables in 

the basin. This comparison was done prior to bias correction and after bias correcting the 

climate model product. After that, I ran the SWAT model scenarios. I first evaluated which 

climate model outputs without bias correction (i.e., model-historical) resulted in the best 

SWAT-modeled loads when compared to the model-observed loads (SWAT driven by the 

observed climate in 71 stations) from 1985 to 1999.  Second, I evaluated which bias 

correction technique provided the best SWAT-generated loads using Q-Q plots and three 

metrics: (1) Percent Bias (PBIAS), (2) Nash-Sutcliffe Efficiency (NSE), and (3) R2. 𝑃𝐵𝐼𝐴𝑆 is 

defined as the deviation between the simulated and observed values. Negative 𝑃𝐵𝐼𝐴𝑆 

indicates underestimation, and positive value indicates overestimation. NSE ranges from - 

∞ to 1, with 1 reflecting a perfect match to observations. R2 is the square of correlation 

coefficient r, which is a measure of the linear relationship between observed and simulated 

values. Average monthly values of TN, TP, and DRP were the inputs for PBIAS, NSE, and 

R2 calculations. I calculate these metrics based on SWAT simulations with the observed 
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climate matched to each climate model resolution (Appendix A – 1.3. Figure 1) for optimal 

comparison with the climate-BC scenarios. These calculations were based on the Monthly-

averaged loads modeled between 1985 and 1999 (i.e., historical period). To evaluate if 

direction and magnitude of change vary with bias correction, I calculated absolute change 

between the nutrient loads in the historical period (1985-1999) and loads for the mid-

century (2051-2060) based on the SWAT outputs with and without bias correction. The 

replication of this methodological approach in other regions will depend on the availability 

of observed water quality data and a calibrated watershed model. 
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Figure 3. Flow diagram illustrating all the analysis as well as the climate model outputs 

used in this study. 
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2.2. RESULTS 

2.2.1. Assessment of Climate data without Bias-Correction  

 Comparing averages of observed PCP, TMAX, and TMIN values with the climate 

model output (i.e., historical with no BC) revealed that bias differs among climate models 

(Figure 4). PCP bias generally increased with the magnitude of the observed values, where 

MPI and IPSL overestimated observed PCP by 38% and 20%, respectively.  Due to better 

alignment with observed values, bias in CNRM PCP was the lowest among the model 

ensemble (7%, deviation from the observed climate (σ) = 5.03) while its standard deviation 

was higher than CCSM4 (PBIAS =11%; σ = 3.98), which performed better for larger values.  

The MPI model had the highest degree of deviation from the observed values (σ = 6.2), 

followed by IPSL (σ = 5.38). For temperature, on average, the climate models appeared to 

predict the historical TMAX well, with deviation from the observed values occurring most 

in the extremes of the distribution. Overall, TMAX and TMIN were underestimated in all 

models except for CCSM4 TMAX (Figure 4). CCSM4 TMIN also show strong 

underestimation with PBIAS = -61.1%. IPSL ranked first (PBIAS = -1.5%) when predicting 

historical TMAX, followed by MPI (-4%), CNRM (-5%), and CCSM4 (5%).  Prior to bias 

correction, CCSM4 and CNRM historical PCP outputs fit the observed PCP better, while 

MPI and IPSL were best in fitting observed temperature. Underestimation in CNRM was 

the most severe, with the model ranking last in performance (-74% bias for TMIN). MPI 

and IPSL had the lowest bias (both ~ -57%), but this was still high compared to PCP and 

TMAX.   CNRM had the overall lowest bias for PCP, while MPI and IPSL were best for 

TMIN and TMAX, respectively.  
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Figure 4. Comparison of the four climate models to the observed (red 1:1 line) precipitation 

(PCP), maximum and minimum temperature (TMAX and TMIN) values. Climate model 

performance varies by model and by variable in the historical period (1980-1999) for the 

Maumee watershed.  

 

2.2.2. Bias Correction of Climate output 

 The application of BC generally moved the historical no-BC values closer to 

observed values (Figure 5). The Delta method was able to correct most of the bias between 

the historical and the observed PCP. In general, overestimates increased with increasing 

PCP values as well as with extremes for TMAX and TMIN. For TMAX and TMIN, the 

mismatch mostly occurred when using the scaling approaches. Results varied for each BC 

technique by model and climate output. For example, while EQM performed well when 

correcting PCP outputs from CNRM, IPSL, and MPI, the technique’s fit worsened when 

correcting CCSM4 PCP. 
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Figure 5. Quantile-Quantile (Q-Q) plots between observed climate data (y-axis – solid 

black line) and each bias corrected method and climate model output (x-axis). PCP, 

TMAX, and TMIN are the overall average among the stations (for the observed) and the 

climate model grid (for the not bias-corrected and bias-corrected scenarios). The y-axis and 

solid red lines indicate the observed climate data from the 71 weather stations. For 
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comparison, the model-historical (black dots) indicates the non-bias-corrected climate 

data. 

2.2.3. SWAT- Scenarios Without Climate Bias Correction 

 Monthly SWAT TP and DRP loads, driven by historical daily precipitation and 

temperature from the climate models without bias correction, were over-predicted 

compared to observed loads (Figure 6). While the overestimates increased with increasing 

loads in all scenarios, performance also varied based on climate model and nutrient. DRP 

and TP loads based on CCSM4 inputs were closer to observed compared to other models 

(Figure 6). Modeled TN showed better fits despite the excess for other loading variables 

within the ensemble, and IPSL-CM5A-MR inputs resulted in the best overall TN fits 

(Figure 6).  

 

Figure 6. Quantile-Quantile plots (Q-Q plots) of monthly loads from SWAT driven by the 

observed climate data from the 71 stations (solid black line) and the SWAT loads driven 

by climate model outputs without bias correction (i.e., model-historical scenario) from 

1985 to 1999.   

 For seasonal loads averaged over the time period of the analysis, all models 

overestimated DRP and TP loads from November to March (Figure 7). IPSL-CM5A-MR 

underestimated TN loads most of the spring months, although IPSL-CM5A-MR TN results 
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were a closer fit to model-observed values. Interestingly, CCSM4 simulation results 

appeared to follow closely March and April model-observed TN average load values.  

 

Figure 7. Comparison of monthly averaged observed loads for each nutrient among the 

SWAT driven by the non-bias corrected climate model outputs (model-historical scenario) 

and SWAT driven by the 71 climate stations.  

 

2.2.4. SWAT Output with Climate Bias Correction  

 After bias correcting PCP, TMAX, and TMIN and re-running the SWAT model, 

there were clear differences in load estimates among bias correction methods (Figure 8). 

Among the bias correction methods, Delta resulted in loads closest to observations, 

followed by MBCn and QDM, respectively. MBCn and the other multivariate BC 

techniques (i.e. MBCp and MBCr), however, performed similarly to QDM, with MBCn 

outperforming QDM in most cases. In general, while the majority of the BC scenarios 

showed improvements over the simulations without bias correction, EQM resulted in larger 

deviation from observed loads except for TN.  
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Figure 8. Quantile-Quantile (Q-Q) plots showing comparison between the DRP, TP, and 

TN loads from the SWAT driven by the 71 climate stations and the SWAT driven by bias-

corrected precipitation (PCP), minimum temperature (TMIN), and maximum temperature 

(TMAX) climate model outputs. 

Comparing the performance among climate models using the best BC methods (i.e. 

Delta, QDM, and MBCn), results showed that CCSM4 performed best for loads below 100 
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and 500 ton for DRP and TP, respectively (Figure 9). For TP, CCSM4 usually 

underestimated smaller loads and overestimated higher ones. When applying Delta, all 

models seem to perform similarly, with all models performing well when predicting 

smaller loads for DRP and TP while larger loads were best predicted by MPI and IPSL 

scenarios. When applying MBCn and QDM, CCSM4 and CNRM performed best 

principally when simulating smaller loads. CNRM-CM5 appeared to perform best in 

simulating higher DRP loads, but is poor in simulating TP and TN. MPI-ESM-MR 

simulated higher TP loads better than the other climate model scenarios, but it does not 

match as well as CCSM4 for the mid-range of observed loads.  
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Figure 9. Quantile-Quantile (Q-Q) plots showing comparison between DRP, TP, and TN 

load from the SWAT driven by the 71 climate stations and the SWAT loads driven by bias-

corrected climate model outputs using Delta, QDM, and MBCn.  

 

2.2.5. Model Metrics Comparison 

 Based on fit statistics (Tables 2-4), Delta outperformed all the other methods, with 

MBCn ranking second most of the time. The choice of BC method also depends on the 

metric applied. MBCn ranked best after Delta when considering NSE and R2, but based 

on PBIAS, Scaling and QDM rank best after Delta, with QDM ranking best at least once 

among all metrics when compared to Scaling.  
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Table 2. Percent Bias (PBIAS) result for model, bias correction method, and nutrient type. 

Calculations were based on monthly-averaged loads between loads from the SWAT driven 

by the observed climate data at the climate model resolution and the SWAT loads driven 

by the climate outputs used for each bias correction scenario. Best metric other than Delta 

is highlighted in each row. 

      Bias correction  

Model Nutrient 

no 

BC Delta Scaling EQM QDM 

Mbc- 

N 

Mbc-

p 

 

Mbc-

r 

CCSM4 

TP 41.30 0.00 31.10 173.40 12.90 16.80 12.90 12.90 

TN  10.90 0.00 2.90 53.50 5.10 4.70 5.10 5.10 

DRP 34.90 0.00 25.50 110.60 12.40 14.60 12.40 12.40 

CNRM-

CM5 

TP 44.80 0.00 23.90 72.80 16.30 19.20 18.80 15.10 

TN  9.70 0.00 0.20 23.20 5.70 7.20 6.50 4.10 

DRP 30.00 0.00 14.60 45.70 7.20 9.10 7.90 7.10 

MPI-

ESM-

MR 

TP 91.80 0.00 27.10 129.70 42.10 28.50 43.50 40.60 

TN  41.40 0.00 14.30 31.00 10.80 14.40 11.30 11.90 

DRP 66.40 0.00 22.80 88.90 35.10 24.70 35.30 32.70 

IPSL-

CM5A-

MR 

TP 96.50 0.00 80.10 49.00 61.00 34.20 62.20 64.20 

TN  0.30 0.00 -13.20 -15.00 -8.70 -2.50 -8.00 -6.60 

DRP 66.70 0.00 54.00 31.90 43.40 24.40 43.60 45.40 

 

Most of the PBIAS results were positive, indicating consistent overestimation of nutrient 

loads (Table 2). DRP and TP loads were highly and consistently overestimated among all 

models and BC methods. However, DRP overestimates were generally less than TP. PBIAS 

varied significantly among bias correction methods. For example, for CCSM4, EQM had 

PBIAS of 173 for TP, while Delta and QDM values were 0 and 12.9, respectively. TN was 

underestimated only for IPSL-CM5A-MR scenarios. However, it was overestimated by the 

other models (i.e. CCSM4, CNRM, and MPI). Based on NSE and R², MPI performed best 

for DRP and TP among the BC methods (Table 3-4). However, for TN, IPSL had the most 
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optimal NSE values, principally in the MBC-N scenario, while EQM had the best R2 

results. Compared to the cases without bias correction, all BC methods improved PBIAS, 

NSE, and R2 results except for EQM. Delta showed best metric values. These analyses 

revealed that the choice of climate model and bias correction method will not only 

influence the nutrient model outcomes but also indicated that the choice of BC method 

varies by climate model, fit metric, and nutrient type.  

 

Table 3. Nash-Sutcliffe Efficiency (NSE) results for model, bias correction method, and 

nutrient type. Calculations were based on monthly-averaged loads between loads from the 

SWAT driven by the observed climate data at the climate model resolution and the SWAT 

loads driven by the climate outputs used for each bias correction scenario. Best metric other 

than Delta is highlighted in each row. 

      Bias correction  

Model Nutrient no BC Delta Scaling EQM QDM 

Mbc- 

N 

Mbc-

p 

 

Mbc-

r 

CCSM4 

TP -1.75 1.00 -1.93 -7.96 -1.07 -0.99 -1.07 -1.07 

TN  -0.74 1.00 -0.67 -1.13 -0.82 -0.73 -0.82 -0.82 

DRP -1.48 1.00 -1.62 -3.91 -1.07 -1.01 -1.07 -1.07 

CNRM-

CM5 

TP -2.62 1.00 -2.04 -3.53 -2.29 -1.73 -2.27 -2.45 

TN  -0.97 1.00 -0.82 -0.64 -0.63 -0.61 -0.64 -0.61 

DRP -1.32 1.00 -1.08 -1.58 -0.99 -0.72 -1.00 -1.00 

MPI-

ESM-

MR 

TP -1.50 1.00 -0.19 -3.11 -0.45 -0.24 -0.50 -0.49 

TN  -1.17 1.00 -0.72 -0.60 -0.41 -0.44 -0.45 -0.50 

DRP -1.27 1.00 -0.41 -2.39 -0.76 -0.45 -0.76 -0.69 

IPSL-

CM5A-

MR 

TP -4.04 1.00 -3.36 -1.99 -2.43 -1.34 -2.49 -2.54 

TN  -0.47 1.00 -0.31 -0.31 -0.29 -0.25 -0.31 -0.32 

DRP -3.26 1.00 -2.76 -1.84 -2.24 -1.33 -2.26 -2.32 
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Table 4.  R2 results for model, bias correction method, and nutrient type. Calculations were 

based on monthly-averaged loads between loads from the SWAT driven by the observed 

climate data at the climate model resolution and the SWAT loads driven by the climate 

outputs used for each bias correction scenario. The best metric other than Delta is 

highlighted in each row. 

      Bias correction  

Model Nutrient 

no 

BC Delta Scaling EQM QDM 

Mbc- 

N 

Mbc-

p 

 

Mbc-

r 

CCSM4 

TP 0.10 1.00 0.10 0.10 0.10 0.11 0.10 0.10 

TN  0.08 1.00 0.08 0.12 0.08 0.10 0.08 0.08 

DRP 0.08 1.00 0.09 0.09 0.09 0.10 0.09 0.09 

CNRM-

CM5 

TP 0.22 1.00 0.21 0.21 0.19 0.23 0.19 0.19 

TN  0.14 1.00 0.13 0.18 0.15 0.16 0.15 0.15 

DRP 0.22 1.00 0.21 0.22 0.20 0.25 0.21 0.21 

MPI-

ESM-MR 

TP 0.29 1.00 0.34 0.33 0.36 0.30 0.35 0.34 

TN  0.17 1.00 0.16 0.20 0.19 0.19 0.18 0.18 

DRP 0.27 1.00 0.31 0.31 0.31 0.28 0.31 0.32 

IPSL-

CM5A-

MR 

TP 0.12 1.00 0.10 0.14 0.14 0.13 0.14 0.14 

TN  0.12 1.00 0.13 0.12 0.12 0.14 0.12 0.12 

DRP 0.11 1.00 0.12 0.14 0.13 0.12 0.13 0.13 

 

2.2.6. Changes in Future Nutrient Loads and Hydrological Responses 

 Based on the above results, the SWAT loads driven by the bias corrected CCSM4 

model outputs performed generally best among all models, and Delta, QDM, and MBCn 

were the bias correction methods that best matched SWAT loads driven either by the 71 

climate station observations or by the observed climate mapped to climate model 

resolution. Therefore, I explored how these combinations of model and BC method 

influenced mid-century (2051 to 2065) nutrient load projections (Figure 10). Using the 

Delta BC, DRP and TP loads are projected to increase in the future, except in the winter 
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and beginning of spring.  TN loads are projected to decrease only in March and April on 

average. However, the QDM and MBCn correction methods lead to projected changes in 

the opposite direction where loads are projected to decrease, except in most winter seasons 

and June.  

Figure 10. Monthly average absolute load change for the midcentury (2051-2065) period 

based on the change between the historical (1985-1999) and midcentury overall best 

SWAT results driven by no bias-corrected (no BC) as well as best bias corrected CCSM4 

outputs for Dissolved Reactive Phosphorus (DRP), Total Phosphorus (TP), and Total 

Nitrogen (TN). 
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 To understand these changes, I assessed changes in monthly evapotranspiration 

(ET), snowfall, flow, rainfall, TMIN, and TMAX for each BC method (Figure 11).  When 

Delta was used, the simulated ET and flow differ significantly from the other BC methods. 

ET decreases consistently over all months (~ -10 mm/month), while flow mostly increases 

(~ 70 cms/month). For QDM and MBCn, ET mostly increased over the months (~ 5 

mm/month), except in the end of summer and beginning of fall season, and flow overall 

decreased (~ - 50 cms/month), except in the winter, and July. In all BC methods, however, 

snowfall was consistently predicted to decrease in the future. Rainfall is expected to 

increase in the winter and in the first and third months of spring, while in other months are 

projected to decrease, which agrees with the increasing flow and decreasing snowfall 

patterns of QDM and MBCn scenarios. For temperature, I observed that both TMIN and 

TMAX are projected to increase in the future, which explains the increasing ET patterns in 

QDM and MBCn scenarios. These temperature patterns also explain the consistent 

decrease in snowfall for mid-century, because SWAT calculates snowfall by partitioning 

rainfall based on temperature values.  
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Figure 11. Monthly hydrological process changes for each bias correction method: rainfall 

(mm), maximum (TMAX) and minimum (TMIN) temperature (°C), evapotranspiration 

(ET, mm), snowfall (mm), and flow (cms). Change calculation was between the historical 

(1985-1999) and midcentury (2051-2065) overall best SWAT results driven by no bias-

corrected (no BC) as well as best bias corrected CCSM4 outputs 

Combining both assessments (Figures 10 and 11), March, April, and May DRP, TP 

and TN loads are projected to decrease as flow decreases and ET increases with potentially 

higher temperatures in the future. These results not only show how bias correction impacts 
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the nutrient modeling results, but also how it impacts the hydrological processes that can 

drive the nutrient load results.  

 

2.3. DISCUSSION   

I investigated the influence of bias correcting climate model precipitation and 

temperature output to be used as input to a watershed nutrient model.  I compared the ability 

of the watershed model to simulate historical nutrient loads when driven by outputs (i.e. 

PCP, TMAX, and TMIN) from 4 climate models (CCSM4, CNRM-CM5, IPSL-CM5A-

MR, and MPI-ESM-MR) without bias correction. I showed that model performance varied 

by nutrient type and magnitude, but that driving SWAT with CCSM4 led to the best fit to 

observations. Like other recent studies (Maraun et al., 2010; Ehret et al., 2012; Teutschbein 

& Seibert, 2013) I found that bias correcting climate model outputs, to correct for 

systematic and random errors in global and regional climate model outputs, can alter the 

findings of a study. Nutrient load studies that consider future climate should evaluate the 

impact of any bias correction methods applied across temporal scales (annual to monthly) 

and depending on nutrient of interest. 

 Our results reveal several inherent uncertainties persisted within simulations for the 

western Lake Erie basin, confirming behavior found in previous studies for regions outside 

of the Great Lakes. First, using climate model outputs as input to SWAT can increase 

uncertainty within loading predictions (Mehdi et al., 2015). A study addressing SWAT 

climate data input issues in the northeast of Brazil suggested that the choice of climatic 

inputs is critical for better representation of watershed processes, directly influencing 
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nutrient load forecasts (de Almeida Bressiani et al., 2015). In this study, for example, it 

was found that, in general, CCSM4 climate outputs performed best among the other 

models, but that MPI-ESM-MR performed better at higher DRP and TP loads, and IPSL-

CM5A-MR performed best for TN. However, I also found that applying bias correction 

was necessary to improve the fit to model-observed loads. 

 Second, the way N and P processes are represented in the watershed model can 

influence how they respond to climate. For example, SWAT has been shown to routinely 

underestimate soil solution P, which likely leads to the underestimation of dissolved P 

(Vadas & White, 2010; Vadas et al., 2013), and climate change would impact particulate 

and dissolved P differently. While modeling P in SWAT will improve over time, studies 

generally report satisfactory performance in modeling N (Cakir et al., 2020; Logsdon & 

Chaubey, 2013). This explains why in our study the metrics were better for N when 

compared to TP and DRP. Additionally, Kujawa et al. (2020) showed that the main source 

of uncertainty when predicting N loads is related to the climate uncertainty, whereas 

uncertainty in P loads is mostly linked to uncertainty in the hydrologic model (SWAT). 

 Third, the uncertainties linked to nutrient prediction may also be attributed to the 

average based approach implemented by modelers when representing agricultural point 

and non-point sources of pollution in the basin (J. Wang & Baerenklau, 2015). For 

example, the use of rates to represent the chemical fertilizer application in crops and 

manure land application from intensified agricultural systems such as Concentrated Animal 

Feeding Operations (CAFOs) for the overall basin area (Kast et al., 2021). Information on 

how these operations may drive land use change and water quality conditions in their 
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surrounding may be crucial to improve our ability to represent the nutrient load reality in 

agricultural watersheds such as the western Lake Erie. One key concept currently ignored 

in watershed models is the spatial organization of these sources of pollution, specifically if 

their dispersion or clustering behavior can result in different environmental signatures. 

These components should be explored to improve our ability to model nutrient loads in 

these complex systems.   

 While several studies have shown that climate bias correction impacts streamflow, 

precipitation, and snowfall models (Teutschbein & Seibert, 2012; Bhowmik et al., 2017; 

Meyer et al., 2019; Wörner et al., 2019), I showed that BC selection also impacts watershed 

nutrient model performance. I also demonstrated that the impact of BC choice varies by 

type of nutrient modeled, climate model used, and the fit metric of interest. For example, I 

found that CCSM4 outputs led to the best watershed model performance for DRP and TP, 

principally after Delta, QDM, and MBCn bias correction. However, with the exception of 

Delta, based on NSE, MBCn is the most optimal BC method. On the contrary, if PBIAS is 

the metric of interest, QDM is the most proper BC choice, after Delta. Interestingly, for 

TN, the no-BC scenario appears to perform reasonably well in terms of PBIAS and NSE 

for the IPSL-CM5A-MR model. This variation among model metrics and nutrient load per 

climate model was also observed by Yuan et al. (2020), although they did not compare 

among bias correcting methods.  

 Although I found Delta to be the optimal BC method, hydrological modeling 

studies have suggested Delta has both advantages and disadvantages (Cannon et al., 2020). 

One advantage is that it bases future predictions on historical reality, which is already 
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understood, but it can be useful if the study seeks to understand the impact of current 

climate conditions on a future scenario. However, future interactions among climate, flow, 

or nutrient dynamics might differ from the historical period under non-stationary 

conditions (Lenderink et al., 2007). We showed that Delta bias corrections led to opposite 

directions of change when compared to other relevant univariate (QDM) and multivariate 

(MBCn) BC techniques, although QDM and MBCn reflected different magnitude changes.  

Delta has the potential to preserve the mean of the distribution in case of variables such as 

temperature as well as the mean and variance of bounded variables distribution such as 

precipitation. In the case of precipitation, Delta could improve the mean statistic but 

deteriorate the simulated variance principally when considering the extremes of a 

distribution (Cannon et al., 2020). This deterioration may explain the opposite direction of 

change when predicting monthly DRP, TP, and TN using Delta in comparison to QDM 

and MBCn. Therefore, Delta should be used with caution depending on the objective of 

the study, and because it assumes future climate, flow, and nutrient dynamics will function 

similarly to the present. 

 Studies that applied MBC to predict snow precipitation found MBC techniques, 

that account for the interdependencies among variables used as inputs, are superior to the 

univariate techniques such as QDM (Meyer et al., 2019). In this study, MBCn 

outperformed QDM in most of the cases, likely because in addition to correcting quantile 

dependent biases including frequencies and intensities of wet days, MBCn includes 

multivariate dependence structure among variables in the correction. However, this 

performance varied by climate model, metric of interest, and nutrient type. For CNRM-
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CM5, QDM outperformed both MBCn and MBCp but not MBCr when considering 

PBIAS. In the MPI-ESM-MR model scenarios, QDM performed poorly in comparison to 

MBCs. However, the difference among metrics for QDM and MBCs is not high, which 

may be because we only used temperature data to correct precipitation and vice-versa. It 

was interesting that MBCs performed well even though only temperature and precipitation 

were used as inputs. If more variables such as solar radiation, wind speed, and relative 

humidity were used the MBC performance would probably improve. 

 Analyzing the impact of BC choice in future nutrient load changes using the overall 

best model-BC combinations (i.e CCSM4 no BC; CCSM4 Delta; CCSM4 QDM; CCSM4 

MBCn), I found that BC choice impacts the direction of load. Kalcic et al (2019) compared 

their no-BC results with a Delta BC scenario and suggested that bias correcting can 

significantly impact nutrient load predictions. Our results expand and emphasize the 

importance of addressing uncertainty in the choice of climate models and BC methods 

when modeling nutrients. Furthermore, we found that loads, based on no-BC, QDM, and 

MBCn, are likely to decrease in the future spring period due to decreases in flow and 

snowfall, as well as increases in temperature and evapotranspiration. However, these 

hydrological changes were the opposite when considering Delta as the BC method, further 

illustrating the importance of this choice for future simulations. Future studies should 

consider a combination of bias correction methods among precipitation and temperature 

for modeling purposes.  
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2.4. CONCLUSION 

 Bias correction of climate data is a common practice among watershed modelers 

across the globe, yet the impacts of different correction methods are rarely evaluated. We 

acknowledge that applying BC does not create climate variability, and so there is a 

stationarity of bias in simulations. However, BC is usually necessary (depending on the 

climate model choice and the objective of the study) to correct systematic errors of climate 

model outputs principally in the calibrating period (Hakala et al., 2019). Without this 

correction, the error propagation when forecasting could be substantial. The benefits of this 

study go beyond the Great Lake region in the USA, and our approach can be applied to any 

location in the world where watershed models have been developed and calibrated as well 

as where data exists. In places where there is limited water quality data to investigate the 

specific influence of BC on water quality predictions, this work can serve as a guide for 

which methods might be most appropriate. 
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CHAPTER 3 

SPATIOTEMPORAL LAND USE CHANGE AND ENVIRONMENTAL 

DEGRADATION SURROUNDING CAFOS IN MICHIGAN AND NORTH 

CAROLINA 

 

 As discussed in Chapter 1 section 1.3, CAFO activities have the potential to change 

the landscape in their surroundings, which may lead to environmental degradation. In this 

chapter, I hypothesize that CAFO-impacted areas have a higher percentage of change over 

time from natural land cover (i.e., forest, wetland, and savanna) to anthropogenic land 

cover (i.e., cropland and shrublands). I expect that areas within 15 km of CAFOs (i.e., 

CAFO-impacted areas) experienced higher land cover change and environmental 

degradation compared to areas farther from CAFOs (i.e., control areas) (Sims et al., 2005; 

Centner, 2012; Furiness et al., 2019). I test these hypotheses examining patterns from 2000 

to 2018 for two states in the U.S.—Michigan (MI) and North Carolina (NC)—where 

regulated CAFO location information is publicly available.   

 

3.1. METHODS 

3.1.1. Study Areas 

 This study focused on two states - Michigan (MI) and North Carolina (NC)- in the 

U.S. Like much of the U.S. and world (FAO, 2014), these two states have shown a clear 

shift from small to large animal farm operations in recent decades (NASS, 2017), affecting 

environmental quality and rural communities. Both states provide the locations of 
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permitted liquid waste CAFOs to the public; when this study was initiated, MI listed 328 

CAFOs, showing a sparse spatial aggregation in comparison to NC, with approximately 

2,600 CAFOs registered (Figure 12). Liquid waste CAFOs in these areas are primarily 

swine and dairy operations; NC has a growing poultry industry mainly using dry waste 

management, which is mostly unregulated under the National Pollutant Discharge 

Elimination System (NPDES), and the state does not disclose precise dry-waste poultry 

facility locations.  

Figure 12. Study Areas located in the United States. Michigan (MI - a) with 328 CAFO 

(Concentrated Animal Feeding Operation) locations and North Carolina (NC - b) with 

2,594 CAFOs. The gray area illustrates the analyses extent. 
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These states have distinct biophysical characteristics. Michigan (MI) has a humid 

continental climate with distinct summers and winters and a fairly even distribution of 

precipitation throughout the year (Peel et al., 2007). Its topography consists of flatlands, 

gentle and rolling hills, with average elevation of 270 meters. Summer temperatures can 

reach around 30 degrees C, while winters are cold and snowy with freezing temperatures. 

The average annual rainfall in MI is approximately of 800 mm, with 60% of the rainfall 

occurring in the growing season (NOAA, 2021). MI is divided into 5 main ecoregions: 

Northern Lakes and Forests, North Central Hardwood Forests, Eastern Corn Belt Plains, 

Drift Plains, and Huron/Erie Lake Plains (EPA, 1999). The Northern Lakes and Forests is 

dominated by nutrient poor glacial soils, forests, and extensive sandy outwash plains. The 

North Central Hardwood Forests consists of mosaic forests, wetlands and lakes, cropland 

agriculture, pasture, and dairy operations. This area formerly consisted of oak grassland 

areas and beech-sugar maple forest, but due to agriculture and urbanization, few remnants 

of native grassland remain. The Eastern Corn Belt Plains were primarily a rolling plain 

with local end moraines and more natural tree cover. Today, extensive crop and livestock 

production occur in these plains. The Drift Plains are characterized by marshes and dunes, 

while the Huron/Erie Lake Plain was originally covered by beech forests and elm-ash 

swaps but today most of the area has been cleared and artificially drained for agricultural 

practices.  

North Carolina (NC) is a highly variable landscape. The state’s western boundary 

is composed of the Southern Appalachian Mountains, including the tallest peak in the 

Eastern US (2037 m), sweeping across the Piedmont and low-lying Coastal Plain to the 
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Atlantic Ocean. NC is mainly characterized by a humid subtropical climate, with hot 

summer day time temperatures often reaching 32 degrees C, and mild winters with freezing 

temperatures and snow rarely occurring below the mountains (Peel et al., 2007). 

Precipitation is highly variable and occurs year-round (annual mean = 1143mm). 

Historically, native vegetation included extensive marshes, swamp forests, and long-leaf 

pine in the coastal plain, deciduous hardwood and evergreen forests in the piedmont, 

extending to the mountains which have some boreal conifer forests (Griffith et al., 2002). 

NC’s economy is highly reliant on agriculture and forestry (UADA, 2018), which dominate 

the eastern portion of the state, and it also has among the fastest population growth in the 

country; the population has increased by 10% since the 2010 census and the state ranked 

4th in population growth since 2018 (US Census Bureau, 2019).  

Combined, MI and NC offer the opportunity to understand CAFO systems in 

different developmental stages in the U.S. While NC has a long-established CAFO system 

with a moratorium on new liquid waste operations, MI shows recent growth in the number 

of liquid-waste CAFOs (Walljasper, 2018). MI is an inland state, surrounded by 4 Great 

Lakes while NC is a coastal-influenced region, but both states have heavy animal and 

cropland agriculture.    

3.1.2 Data 

3.1.2.1 CAFOs Point Data 

CAFO locations were assembled from the Michigan Department of Environmental 

Quality (EGLE, 2019) and North Carolina Department of Environmental Quality 

(NCDEQ, 2019). These datasets also provide information on the type of CAFOs registered, 
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the type of permits acquired, and the number of animals per farm. My focus was on liquid 

waste CAFOs, which are mainly cattle and swine operations in these two states.   

3.1.2.2. MODIS Products 

The Moderate Resolution Imaging Spectrometer (MODIS) images the same 

location at different times of the day and acquires complete coverage of Earth within 48 

hours (Justice et al., 1998). A variety of MODIS products relevant to land use and 

environmental quality over time were used in this study (Appendix B – 2.1.7. and 2.2. 

Supplementary Table S-1 and Table S-2). Changes in land cover type detected from 

satellite imagery has been used extensively to detect land use changes and environmental 

degradation over time. For instance, conversion of forest to croplands or shrublands 

indicates anthropogenic activities that can impact environmental conditions (Jacquin et al., 

2010; Lunetta et al., 2010; Eckert et al., 2015). Additionally, changes in evapotranspiration 

(ET) and the normalized difference vegetation index (NDVI) have been used to measure 

degradation in previous studies (Eckert et al., 2015; Alatorre et al., 2016a; C. Wang & 

Myint, 2016). Likewise, studies have associated the increase in land surface temperature 

(LST) and decline in both percent tree cover (PTC) and leaf area index (LAI) to shifts in 

land cover (i.e., forest to cropland) and environmental health impacts (Ishtiaque et al., 

2016a; Estoque et al., 2017, 2018a). These land products are distributed by the Land 

Processes Distributed Active Archive Center (LP DAAC) (LP DAAC, 2019) and are 

available at various temporal resolutions: Daily, 8-Day, 16-Day, Monthly, Quarterly, and 

Yearly. The MODIS instrument also acquires data in four spatial resolutions: 250, 500, 

1,000, and 5,600 meters. The temporal and spatial resolution of the products used in this 
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study varied depending on availability (Appendix B – 2.1.7. Supplementary Table S-1). I 

only used data representing the summer season (June 15th to September 15th) to avoid 

cloud and snow effects and to capture the highest intensity of the environmental parameters 

analyzed, particularly for vegetation indices which peak during the summer growing 

season in the study regions. More detail about each product and the indices used are 

provided in the Appendix B sections 2.1 and 2.2.  

3.1.3. Data Analyses 

This study focuses on a comparison of differences in the land use and 

environmental condition trends between ‘CAFO-impacted’ areas within 15 km of at least 

one regulated liquid waste CAFO and ‘control’ areas which were more than 15 km from a 

CAFO (Figure 13). The CAFO-impacted regions in NC and MI have 96,521 km2 and 

53,826 km2 of area, respectively. The control area in MI has a total area of 66,106 km2 and 

NC control area has 42,983 km2. The 15 km distance radius represents the likely range of 

application of liquid manure from swine and dairy CAFOs (Freeze & Sommerfeldt, 1985; 

Kline et al., 2013; Long et al., 2018), which is a proxy for the extent of impacts from these 

operations. This approach allowed me to quantify the extent and nature of impacts likely 

related to permitted liquid waste CAFOs.  Because most liquid manure is likely to be 

applied in closer proximity to CAFOs I also evaluated smaller distances (i.e., 3 km and 9 

km radii around a given CAFO) to examine the sensitivity of the results to the chosen 15 

km radius. To test my hypotheses, I first performed a yearly land use and land cover 

(LULC) change analysis using MODIS data between 2001 and 2017 to detect land use 

change in CAFO-impacted areas compared to control areas. I also compared environmental 
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conditions from 2000 to 2018 using a pixel-based trend assessment based on ET, PTC, 

NDVI, LAI and LST derived from MODIS.  

3.1.3.1. Land Use Change Analysis 

To investigate the first hypothesis that changes from natural to anthropogenic 

landscapes occurred more intensively in CAFO-impacted areas, LULC analysis was 

performed using the Land Change Modeler tool from the TerrSet Geospatial Monitoring 

and Modeling Software developed by Clark Labs (Clark Labs, 2019). LULC analysis is 

based on the net change area calculation in TerrSet, which takes the initial land cover areas 

(i.e., 2001 MODIS land cover product), adds the gains, and then subtracts the losses 

observed in the later land cover image (i.e., 2017 MODIS land cover product) (Clark Labs, 

2019). I also performed a case study analysis mapping the transitions from each land use 

category to another using TerrSet. For each state, I selected units of two main types of 

CAFOs in the dataset, cattle and swine, to illustrate the trade-offs between land use types 

(i.e., savannas, wetlands, or forest losses versus gains in croplands or shrublands) as well 

as if these trade-offs were more likely to be driven by a certain type of CAFO (Figure 13). 

The identification of these trade-offs and the type of CAFO that is most likely to drive 

these changes may be crucial to develop future environmental solutions. 

Although higher spatial resolution LULC products are available, I chose to use 

MODIS because it is likely to be a more reliable record of land cover change for our study 

areas. MODIS land cover does have some uncertainties in class accuracy, such as under-

representation of wetlands and misclassification of grasslands (Sulla-Menashe & Friedl, 

2018). However, while the National Land Cover Database (NLCD) has higher spatial 
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resolution, previous studies have identified inadequacies specifically with regard to 

CAFOs (Song et al., 2014; Martin et al., 2018). For instance,  CAFOs in North Carolina 

were frequently misclassified as natural systems (often wetlands) by the NLCD (Martin et 

al., 2018). Among several global forest products available, a previous study found that the 

MODIS product was superior to the NLCD, with a lower root mean square error and the 

highest R2 of all products evaluated, and that there was little difference in percentage 

among classes between the MODIS product and the NLCD (Song et al., 2014). 

Acknowledging the coarser spatial resolution of the MODIS product, I performed the same 

LULC analysis using the 30-m U.S. Department of Agriculture Cropland Data Layer 

(CDL). Comparable land use changes were identified using both MODIS and the CDL, 

therefore we retained the results of the MODIS-based LULC analysis for consistency with 

the MODIS products used in the environmental degradation analysis.  

Figure 13. Methodology workflow of this study illustrating the Radius Assumption, Land 
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Use Change, and the Environmental Degradation Analyses in North Carolina; same was 

completed for Michigan.  

3.1.3.2. Environmental Degradation Analysis 

To assess the second hypothesis that CAFO-impacted areas experienced greater 

environmental degradation (i.e., declines in ET, PTC, NDVI, and LAI, and increases in 

LST) over time, I applied a temporal trend analysis based on the Mann-Kendall monotonic 

trend and the Theil-Sen median trend slope using the TerrSet Earth Trends Modeler. The 

Mann-Kendall test provides a nonlinear trend indicator that measures the degree to which 

a trend is consistently increasing or decreasing. It ranges from -1 to +1, where +1 indicates 

increasing trend, while -1 indicates a decreasing trend and 0 values indicate the lack of a 

consistent trend. This trend can be computed using a nonparametric technique developed 

by Sen (1968). Theil-Sen slope computes the median of slopes for the values observed at 

all time steps. This technique is robust against outliers and rejects values that are not 

reasonable without affecting slope estimations (Sen, 1968; Lamchin et al., 2018). One of 

the concerns with this technique is the potential false positive identification of trends in the 

presence of serial correlation and seasonality in the data (Yue & Wang, 2002; Bayazit & 

Önöz, 2007). Trend preserving pre-whitening is a pre-processing technique that can be 

apply before Mann-Kendall test to deal with positive and negative autocorrelation in the 

time series (Blain, 2015). However, for time series with a large number of observations as 

in our case, serial autocorrelation is not considered to be a major concern (Yue & Wang, 

2002). In addition, specifically for image analysis, the original Mann-Kendall is 

recommended over modified tests (Militino et al., 2020).  
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I first constructed an image time series for each environmental parameter using all 

available summer season data (Appendix B – 2.1.7. Supplementary Table S-1). For each 

environmental parameter time series, I then generated a single summary image, where each 

pixel represented the slope value of the trend over time. I excluded urban pixels to avoid 

confusion with increasing LST trends due to urbanization (C. Wang & Myint, 2016). I also 

examined the trend preserving pre-whitening modification to the Mann-Kendall test, but 

this did not change the results substantially. Therefore, I retained the statistical results 

based on the standard Mann-Kendall trends I identified. 

To compare CAFO-impacted areas to control areas, additional analyses were 

conducted. I defined the CAFO-impacted area in each state as all locations within 15 km 

of regulated liquid waste CAFOs; the remaining area was considered the control area 

(Figure 13). I calculated the Sen-Slope median within CAFO-impacted areas and control 

areas separately using geoprocessing tools in ArcMap version 10.4 from ESRI; I retained 

only the non-urban pixels with significant Mann-Kendall trends (p ≤ 0.1). To determine if 

CAFOs were significantly related to detected environmental degradation, I applied a 

Kruskal-Wallis test. This test evaluates whether the overall median of the trend slopes from 

each environmental parameter in CAFO-impacted areas were significantly different from 

the trend slopes in control areas. I chose Kruskal-Wallis because it is a robust 

nonparametric test (i.e. it does not rely on a specific data distribution and has higher 

statistical power when applied to normal or short-tailed data distributions), while it also 

accommodates comparison among groups with unequal sample sizes (Siegel, 1957; 

Mahoney & Magel, 1996). I expected that the slope median of ET, LAI, PTC, and NDVI 
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trends in the CAFO-impacted areas would be lower than the slope median in the control 

areas, while the slope median of LST trends would be higher in the CAFO-impacted area 

in comparison to the control area.  

3.2. RESULTS 

3.2.1. Land Use Change  

Major net changes in land use occurred in CAFO-impacted areas (i.e., areas within 

15 km of CAFOs) in both MI and NC between 2001 and 2017 (Figure 14). In MI, the extent 

of cropland increased in CAFO-impacted areas, mainly at the expense of savannas; 

~141,640 ha of savanna were lost, while croplands increased by ~182,100 ha. In MI CAFO-

impacted areas, savanna loss was nearly 40,460 ha greater than compared to control areas. 

Similarly, in control areas, cropland increases were approximately four times smaller than 

in the CAFO-impacted areas. While significant forest losses were not detected in MI near 

CAFOs, an increase in forest was detected in control areas. Although loss of savannas also 

occurred in NC, I observed an increase in forest and shrubland in NC CAFO-impacted 

areas, rather than cropland expansion. The results show that ~81,000 ha of savanna loss 

and ~ 48,600 ha of shrubland expansion occurred in NC CAFO-impacted areas. 

Surprisingly, NC control areas experienced a loss of ~35,600 ha of forest. These results 

indicate potential land degradation in CAFO-impacted areas and reveal different land 

change histories between MI and NC between 2001 and 2017. Note that these changes 

were similar when using 3 km and 9 km radii, with NC showing stronger land use changes, 

principally within 3 km radius (i.e., increase in croplands at the expense of forest), 
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confirming our hypothesis of land degradation near CAFOs (Appendix B – 2.3. 

Supplementary Figure S-1). 

 
Figure 14. Land use change detected in hectares in Michigan and North Carolina using 

2001 and 2017 MODIS data. Black bars illustrate the gains and losses in CAFO-impacted 

areas, while the gray bars indicate gains or losses observed in control areas.  

Considering the type of CAFOs, and ‘overlap’ regions impacted by both swine and 

dairy CAFOs, revealed additional land use change patterns that were not detected when 

considering all CAFOs regardless of animal type (Figure 15). Swine operations were more 

strongly associated with changes in land use than dairy operations. For instance, shrublands 

replaced savannas primarily near swine CAFOs. Additionally, while savanna area was 
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converted to croplands (in MI) and shrublands (in NC), wetlands decreased in favor 

exclusively of croplands in swine CAFO-impacted areas in NC. In MI grassland conversion 

to croplands occurred in swine CAFO-impacted areas, as well as in overlap impact areas. 

In contrast, in NC, this transition was observed primarily in dairy CAFO-impacted areas. 

While forest extent increased mostly in the vicinity of swine CAFOs, forest loss was 

observed in both states exclusively in dairy CAFO-impacted areas; shrublands mainly 

replaced these forests in NC, while in MI they were replaced by croplands. The overlap 

impact area accounted for significant land conversion in both states, including increases in 

cropland extent at the expenses of savannas, grasslands, shrublands, and wetlands. In 

general, while croplands and shrublands most commonly replaced savannas in CAFO-

impacted areas, cropland replacement of wetland and grassland extent was concentrated in 

the overlap region.  
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Figure 15. Percentage of total losses surrounding swine CAFOs and dairy CAFOs in both 

Michigan (MI) and North Carolina (NC). Areas impacted by both dairy and swine CAFOs 

(i.e., overlap) are shown in dark brown.  

 

3.2.2. Environmental Degradation 

 

Changes in environmental quality were investigated through a Mann-Kendall pixel-

based monotonic trend analysis of a variety of indicators in MI and NC (Figures 16 and 

17).  We observed significant increases in both day and nighttime LST in NC, mostly in 

CAFO-impacted areas (Figure 16 and Table 5). Additionally, most indications of 

degradation (i.e., significant decreases in ET, LAI, and NDVI) occurred near CAFOs in 

NC, while improvements in environmental quality were mainly detected in control areas. 
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One environmental quality indicator showed the opposite pattern; surprisingly, PTC 

generally increased over time in NC CAFO-impacted areas, while decreases in PTC were 

observed in control areas. 

 
For indicators ET, LAI, NDVI, and PTC: blue = increasing trends; red= decreasing trends; LST – day and 

LST – night: blue = decreasing trends, red = increasing trends 

 

Figure 16. Changes in environmental quality indicators in North Carolina from 2000 to 

2018 indicated by Mann-Kendall trend analysis across multiple parameters from MODIS. 

Significant (p < 0.1) Thiel-Sen slopes are shown for each parameter.  

Distinct from NC, significant decreasing PTC trends were observed in the Lower 

Peninsula of MI, where regulated CAFOs are located, and in upper MI (Figure 17). Overall, 

across MI, significant increases in ET, LAI, and NDVI were observed. Although no 

significant positive day time LST trend was observed, nighttime LST did significantly 

increase over time across MI, principally in CAFO-impacted areas.  
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For indicators ET, LAI, NDVI, and PTC: blue = increasing trends; red= decreasing trends; LST – 

day and LST – night: blue = decreasing trends, red = increasing trends 

 

Figure 17. Changes in environmental quality in Michigan (MI) from 2000 to 2018 detected 

by Mann-Kendall trend analysis across multiple parameters from MODIS. Significant (p < 

0.1) Thiel-Sen slopes are shown for each parameter.  
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I identified significant differences in environmental quality trends over time 

between CAFO-impacted areas and control regions across multiple indicators (Table 5). In 

Michigan (MI), for each parameter, the overall slope median in the CAFO-impacted areas 

was significantly different from control areas (i.e., Kruskal-Wallis tests p <0.001), yet the 

overall environmental quality trends did not consistently follow our expectations. In North 

Carolina (NC), median ET significantly decreased over time in CAFO-impacted areas, 

while no trend was observed in control areas. Additionally, increasing median day and 

nighttime LST trends in NC CAFO-impacted areas were stronger and significantly 

different than control areas and had greater magnitude. These findings confirmed our 

hypothesis that CAFO-impacted areas experienced environmental degradation in NC. 

 

Table 5. Kruskal-Wallis test results evaluating the differences in environmental quality 

trends over time in CAFO-impacted areas compared to control areas.  

a Environmental quality parameter that met the hypothesis of stronger decreasing trends in areas with 

CAFOs than without CAFOs. 
b Environmental quality parameter that met the hypothesis of stronger increasing trends in areas with CAFOs than 

without CAFOs. 

*Significance level of 0.05 
 

3.3. DISCUSSION 

Cropland and shrubland expansion observed in CAFO-impacted areas in both MI 

and NC suggests that CAFOs may be a driver of land conversion in forest, wetland, 

 Michigan (MI) North Carolina (NC) 

 Sen Slope 

Median 

Kruskal-Wallis 

test 

Sen Slope Median Kruskal-Wallis 

test 

Parameters  CAFOs No CAFOs p CAFOs No CAFOs p 

ET 0.302 0.245 <0.001* -0.268a 0 <0.001* 

LAI 0.018 0.015 <0.001* 0.014 0.013 <0.001* 

LST-day  -0.291 -0.273 <0.001* 0.258b 0.224 <0.001* 

LST-night 0.261 0.273 <0.001* 0.315b 0.24 <0.001* 

NDVI 4.839 2.952 <0.001* 3.269 2.135 <0.001* 

PTC 0.125 -0.30 <0.001* 0.414 -0.286 <0.001* 
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grassland, and savanna systems. While other studies have found similar results, such as an 

increase in shrublands due to livestock presence (J. R. Brown & Carter, 1998; Rundel et 

al., 2014; Schreiner-McGraw et al., 2020), this study is the first to examine this issue 

around CAFOs. This finding has important implications for future policies regarding land 

acquisition and management by these entities. It is possible that other drivers also 

contributed to observed LULC; for example, development of large-scale solar projects 

(SEIA, 2019) especially in NC may have also contributed to observed forest loss. 

Additionally, commercial poultry operations occurring in proximity to swine CAFOs in 

NC may have also contributed to the observed environmental changes (EWG, 2019). Dry-

waste poultry operations are not subject to the same waste distribution constraints, 

regulatory permitting process, or location disclosure requirements as the liquid waste 

CAFOs that we examined in this study (Copeland, 2010). Considering these and additional 

drivers and assessing their individual and cumulative impacts is warranted in future work.  

The CAFO-associated land conversions detected could impact environmental 

health. For instance, the conversion from savannas to croplands and shrublands has been 

linked to losses of organic matter and biodiversity (Kronberg & Ryschawy, 2019). 

Additionally, excess nutrients in water bodies in NC, which can impact water quality 

conditions, has been shown to be influenced by increases in animal agriculture and the 

decline of wetland cover (Rothenberger et al., 2009). A study tracing nutrient pollution 

from CAFOs in NC pointed out that stream of closer proximity to CAFOs presented 

heavier pollution signatures when compared to unimpacted streams (C. N. Brown et al., 

2020). This pattern has also been recently observed in Wisconsin, U.S. (Raff & Meyer, 
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2021a). A recent study reported impacts to the natural ecosystem in MI, where conversion 

of ~37% of grassland to croplands occurred between 2008 and 2013,  which reduced 

biomass availability (Mladenoff et al., 2016). This conversion may be link to the increase 

of CAFO operations in the region. Furthermore, deforestation is responsible for a variety 

of negative impacts globally. On average, the clearing of Amazonian forests to create 

pastures for livestock is responsible for 56% of losses in abundance, biomass, richness, and 

diversity of soil macrofauna and microbial communities in Brazil (Franco et al., 2019).  In 

analyzing environmental degradation, these findings indicate that NC ecosystem condition 

was potentially impacted by its long history of CAFO activities. Previous studies on the 

relationship between cash crop expansion and loss of natural habitats nearby swine CAFOs 

(Warner, 1994; Thu & Durrenberger, 1998), and the increase in swine operations between 

2011 and 2017 in NC (Walljasper, 2018) support the findings of decreasing ET and 

increasing LST trends. Surprisingly, the increase of both day and nighttime LST in the 

vicinity of CAFOs reveal patterns reminiscent of urban heat island effects (Estoque et al., 

2017), which warrants further study. 

Government initiatives may be able to mitigate the impacts that CAFO activities 

can have on the environment. In this study, I observed that PTC generally increased over 

time in NC potentially due to conservation strategies. One example is the program to 

protect riparian buffers and conserve or restore land in selected river basins in NC 

including, the Neuse River, Tar-Pamlico River, and Catawba River (NCDEQ, 2020). Most 

of the increase in forest occurred in the headwater areas of these basins, which can help 

prevent pollutants and nutrients from different sources, including CAFOs, from reaching 
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the streams. Interestingly, this conservation strategy program is not implemented 

statewide. The Cape Fear River basin, where most of the liquid-waste CAFO facilities are 

located, is an example of one of the basins in NC where the riparian protection program 

has not yet come into force. This lack of environmental regulation enforcement is also seen 

in Asia.  A survey in the 2000s found that over 90% of the CAFOs in China were 

established without conducting proper environmental impact assessments (EIA) (Hu et al., 

2017). The assessment of the environment prior to the establishment of these operations 

could help to better site and design these facilities so that impacts of land conversion for 

feeding, improper manure handling and disposal, and potential nearby water body 

contamination from overflow of storage lagoons can be avoided or mitigated. This study 

suggests that CAFO-impacted areas, specifically those within 15 km radius from these 

operations, may be critical zones for conducting environmental impact assessment prior to 

CAFO establishment and for implementing mitigation strategies for impacts linked to 

changes in land use and environmental quality.  

Two key factors may have affected detection of the CAFO-associated impacts 

observed. First, I only considered regulated CAFOs with publicly disclosed location 

information. While recent advances are making it easier to identify all large operations 

(Handan-Nader & Ho, 2019a; Prenafeta-Boldú & Kamilaris, 2019), location information 

for all animal operations is not usually accessible in most states. This is also an issue in 

other countries. The rapid geographic expansion of these operations in the recent decades 

has been largely unnoticed due to the lack of data in Brazil (Vale et al., 2019). Due to lack 

of accountability, unregulated facilities that are often not included in the publicly available 
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data may also have a higher environmental impact than their regulated counterparts and 

should therefore be considered in future studies. Secondly, this study exclusively used 

satellite image datasets representing the months of June through September, the growing 

season for most crops in the U.S. and certainly for these study areas. The literature has 

shown that croplands are positively related to ET, NDVI, and LAI parameters used to 

examine degradation trends in this study (Asner et al., 2003a; Duchemin et al., 2006; 

Tesemma et al., 2014). In fact, a study identified NDVI increases over time (normally 

associated with improved environmental quality) due to the increase in croplands 

principally near CAFOs (Qi et al., 2017). This relationship may have affected the ability to 

effectively track environmental quality changes in MI where the increase in cropland extent 

over time was much greater than that observed in NC during the study period. These 

nuances should be examined further in future research.  

New environmental and agricultural management policies should consider the type 

of CAFO being regulated, in addition to whether a CAFO uses a liquid waste management 

system. For instance, NC has permits for distinct CAFO types, while MI CAFO facilities 

still operate under one general permit. Our study revealed that the type of animal 

production may be an important determinant of the scope of environmental impacts.  We 

found that distinct CAFO types were associated with unique signatures of land use change. 

In NC, losses of savanna, wetland, and grassland were more frequent near swine CAFOs, 

while forest loss was more common near dairy CAFOs. Beef and dairy CAFOs have 

expanded to the Amazon biome in the recent decades as an alternative to reduce 

deforestation from implementation of pasture-based systems (Vale et al., 2019). The 
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argument of reduced in-property deforestation rates of beef and dairy CAFOs has allowed 

faster expansion of these operations while the off-site effects were still not accounted for.  

However, this study reveals that the off-property effects of dairy CAFOs can be substantial 

and lead to additional off-site deforestation within 15 km radius. Additionally, MI results 

suggest that the early stage of CAFO establishment as well as the type of CAFO can explain 

differences in signatures of land use change and environmental quality. While NC had 0% 

increase in the establishment of these operations in the recent decade,  MI is among the 

states with highest increase in dairy operations in the U.S., with approximately 41% 

increase from 2011 to 2017 in the establishment of CAFOs statewide (Walljasper, 2018). 

Changes in land use policy, design and permitting could help mitigate future loss of 

environmental quality in MI and beyond. The intensified beef production and its inefficient 

manure management system  led to the degradation of 15 million ha of grasslands in Brazil 

(FAO, 2013). This study found that grassland losses were 50% greater in MI (in agreement 

with the increase in CAFO operations in the region) compared to NC. Changes in policies 

or new initiatives are necessary to reverse the impact of these losses. These results advance 

our knowledge of the spatial extent and intensity patterns of impacts from liquid-waste 

CAFOs. These methods and findings can support new strategies and policies as well as 

help address the UN sustainable development goals, such as goals 6 (ensure water quality), 

12 (sustainable production patterns) and 15 (protect natural resources) (United Nations, 

2015).  

The spatial distribution of CAFOs should be considered and monitored, as part of 

future policies and regulations when considering new permits. The number of CAFOs 
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operating in both states differed significantly; MI has approximately 13% of the total 

number of permitted CAFOs operating in NC. Furthermore, NC has a longer history of 

CAFO development than MI. This may explain why the land cover change and the 

environmental degradation analysis differed between the two states (i.e., the systems may 

be at different stages of transformation) and could be considered for future management of 

CAFOs. MI CAFO locations are more spatially dispersed compared to NC where CAFOs 

occur at high densities, primarily in the eastern Coastal Plain region (Figure 12). This 

spatial aggregation may lead to increased impact per unit of land area, exacerbating 

individual impacts (Carrel et al., 2016; Miralha & Kim, 2018). We found that certain 

impacts were concentrated within areas where swine and dairy CAFO-impacted areas 

overlapped spatially. This adds support to a growing body of evidence that the density of 

CAFOs may affect the nature and severity of impacts (Son et al., 2021).  

3.4. CONCLUSION 

This study presents previously unquantified spatiotemporal impacts from regulated 

CAFOs and significantly advances our understanding of previously unknown 

consequences of CAFO management and expansion. However, more information is needed 

to properly manage these systems. For example, in the U.S. there is no public database of 

where regulated and unregulated animal operations are, making it difficult to properly 

measure impacts and develop new solutions (Handan-Nader & Ho, 2019a). This study 

highlights the need for improved strategies to manage these complex networks of 

individually operating, yet collectively impactful CAFOs. From this work it is possible to 

infer that the associated land use change and environmental degradation observed is likely 
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a function of the type of CAFO, length of time CAFOs have been present, number and 

density of CAFOs present, and regulatory influences. While this study focused on land use 

change and environmental impacts, more work is needed to expand these methods to 

consider other drivers of change, quantify the specific effects of CAFO clustering on 

impacts, and gather more data regarding manure management (e.g., timing and application 

methods, transfer off site). Finally, given that many of the changes identified here may be 

driven by land use change occurring on lands where manure is applied, more work is 

needed to understand the barriers to economically viable use of manure as a fertilizer. The 

methods used here for both land use change and environmental degradation analyses are 

well-established in research and can be applied to explore degradation from CAFOs in 

other regions, and to explore other potential drivers of changes. Based on the results and 

literature, it is likely that similar trends could be observed in other areas as CAFOs continue 

to expand in the U.S. and globally.  New techniques that help uncover unregulated CAFO 

facilities will enable consideration of these facilities in future analyses (Handan-Nader & 

Ho, 2019a). As information regarding CAFOs continues to expand (NRDC, 2019), this 

work can be leveraged to help to manage these food production systems for environmental 

sustainability.   
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CHAPTER 4 

THE SPATIAL ORGANIZATION OF CAFOS AND ITS RELATIONSHIP TO 

WATER QUALITY IN THE U.S.  

  As discussed in chapter 1 section 1.4., the spatial clustering of pollution sources 

may exacerbate environmental impacts. However, this spatial component has yet to be 

evaluated for the industrialized animal agriculture sector. In this chapter, I hypothesize that 

CAFO-clustered watersheds are likely to present higher concentrations of total phosphorus 

(TP) and total nitrogen (TN) than CAFO-dispersed basins. I test this hypothesis by 

examining the relationship between the spatial pattern (i.e., clustering or dispersion) of 

CAFOs in 15 states across the U.S. and the TP and TN flow-weighted mean concentrations 

per watershed present in these states. To distinguish the impact of clustering from the 

number of CAFO present in a watershed, I also investigated the linear relationship between 

TN and TP concentrations, the number of CAFOs per watershed, and each watershed 

CAFO spatial pattern. I also gathered the states that provided animal number information 

per CAFO and evaluated the relationship between the spatial cluster of the number of 

animals per CAFO and TP and TN concentrations. This study brings a comprehensive 

understanding of the relationship between the spatial organization of CAFOs and water 

quality, provides the basis for further regulation of livestock production, and calls for 

spatially explicit policy strategies to prevent environmental impacts associated with 

intensified animal agriculture in the U.S. 
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4.1. METHODS 

4.1.1. CAFO locations database 

The 2003 CAFO rule stated that CAFOs had the duty to apply for NPDES permits, 

which requires information about the location of the facility as well as requires a nutrient 

management plan. However, the 2008 revision of this rule established that a CAFO 

operator has no longer the duty to apply for the permit if it was determined that the facility 

has no potential to discharge manure, litter, or process wastewater to waters of the U.S. 

(WOTUS) (Rosov et al., 2020). This revision complicates our ability to identify where 

these large animal farms are and where they are potentially land-applying manure. Adding 

to this change in regulation, additional rules protect the farmer’s privacy right to not 

disclose their location (Steinzor & Huang, 2012).  This explains the lack of information 

about the location of these operations for all the states in the U.S. as well as the unknown 

locations of unregulated farms (i.e., operations that do not meet the threshold of animals 

required to apply for a permit or do not discharge in waterways) which tend to operate 

without much regulation. Attempting to ameliorate this gap, I gathered and digitized CAFO 

locations in 15 U.S. states (Table 6). Most of the data were publicly available, expect for 3 

states (Mississippi, Wisconsin, and Oregon) in which the data was provided by the state 

agency responsible via public record request. Each state data required georeferencing, 

processing, or digitizing techniques to meet the general format in this study. Each state data 

required georeferencing, processing, or digitizing techniques to standardize to a useable 

format in this study. This data handling process resulted in an ArcGIS point shapefile 

database with attributes of longitude, latitude, state, and number of animals. The animal 
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numbers were converted to animal units based on the definition established by the Code of 

Federal Regulations (1979) (Appendix C –3.1. Section 1). 

Table 6. Number of CAFOs per state and the source of each data that composed the 

database developed for this study. 

*CAFOs in this study does not align with the federal definition. The definition of these operations per 

states tend to vary due to regulatory differences.  

 Regulations are inconsistent among states (Rosov et al., 2020) and some states 

provide information on more than just regulated operations, which complicates the 

understanding of this compiled database. States like Oregon and Iowa, maintain a database 

State Acronym Source 

Date 

Accessed 

# 

*CAFOs 

# 

Animal 

Animal 

Type 

Alabama AL 

Alabama Department of 
Environmental Management 

(ADEM) Sep 22, 2020 220 Y N 

Arizona AZ 
Arizona Department of 

Environmental Quality (ADEQ) Mar 1, 2020 117 N N 

Florida FL 
Florida Department of 

Environmental Protection (FDEP) Aug 20, 2020 416 N N 

Indiana IN 

Indiana Department of 
Environmental Management 

(IDEM), Office of Land Quality 

(OLQ) Sep 21, 2020 1784 Y Y 

Iowa IA 
Iowa Department of Natural 

Resources (IDNR) Nov 8, 2019 12367 Y Y 

Michigan MI 

Michigan Department of 

Environment, Great Lakes, and 

Energy (EGLE- MiWaters) May 3, 2020 288 N N 

Minnesota MN 
Minnesota Pollution Control 

Agency (MPCA) Sep 23, 2020 824 Y Y 

Mississippi MS 

Mississippi Department of 

Environmental Quality (MDEQ), 
OPC Environmental Permits 

Division Apr 15, 2021 1490 N Y 

Missouri MO 
Missouri Department of Natural 

Resources (MDNR) Sep 21, 2020 655 Y Y 

North Carolina NC 
The North Carolina Department of 

Environmental Quality (DEQ) Sep 4, 2020 2526 Y Y 

Ohio OH 
Ohio Environmental Protection 

Agency (OEPA) Sep 21, 2020 31 N N 

Oregon OR 
Oregon Department of Agriculture 

(ODA) Oct 1, 2020 517 Y Y 

Pennsylvania PA 
Department of Environmental 

Protection (DEP) Oct 8, 2020 413 Y N 

Tennessee TN 
TN Department of Environment & 

Conservation Sep 28, 2020 51 N N 

Texas TX 
Texas Commission on 

Environmental Quality (TCEQ) Apr 29, 2021 428 N N 

Wisconsin WI 
Wisconsin Department of Natural 

Resources (WDNR) Sep 4, 2020 311 Y Y 
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of small AFOs and CAFOs that do not discharge to waters of the U.S. These small AFOs 

when clustered may pose a risk to their surrounding environment. Indiana has chosen to 

regulate large animal farms under their own state-level permit, rather than the NPDES 

system, so its database includes more operations than would be regulated by NPDES (US 

EPA, 2015). Therefore, our CAFO database is composed of both large permitted and some 

unpermitted CAFOs and AFO facility locations when available (Figure 18). Some of the 

states also provided animal number and animal type information seen in Table 6. Note that 

most of the states in this study only provided the location of large operations, because of 

that I use the terminology CAFO to refer to all farms in this database.   

 
Figure 18. Geographical location of Concentrated Animal Feeding Operations (CAFOs) 

used in this study and their respective hydrologic units (HUs – code 8).  
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4.1.2. Water quality data 

The U.S. Geological Survey released the water-quality concentration and streamflow 

data inputs used to develop the Spatially References Regressions on Watershed Attributes 

(SPARROW) models (Saad et al., 2019). They screened approximately 5,200 streamflow 

and 3,300 nutrient sites sampled by 137 agencies and organizations in the U.S from 1999 

to 2014. I evaluated these inputs seasonally and selected stations with streamflow (m3/s), 

TP (mg/l), and TN (mg/l) data available from 2005 to 2014 (Appendix C 3.2. Section 2). I 

selected this temporal range due to the intensification of animal agriculture in the U.S. in 

this period (von Keyserlingk et al., 2013; Key et al., 2017; Walljasper, 2018; McDonald et 

al., 2018). I matched the closest streamflow stations (based on the Euclidian distance 

criteria) to each TP and TN station to calculate the seasonal average flow-weighted mean 

concentration (FWMC) of TN and TP (Meals et al., 2011, 2013; Richards & Baker, 1993). 

I calculated FWMC by dividing the total load over the estimation period by the total 

streamflow of the same period (Equation 4.1):  

𝐹𝑊𝑀𝐶 =
∑ 𝑐𝑖 ∗ 𝑡𝑖 ∗  𝑞𝑖

𝑛
1

∑ 𝑡𝑖 ∗  𝑞𝑖
𝑛
1

 

Where 𝑐𝑖 represents the ith sample concentration in mg/l;  𝑡𝑖represents the time window for 

the ith sample (day is the time window in this study); and 𝑞𝑖 is the flow registered by the 

station closest to the station that registered the ith sample concentration (NCWQR, 2005).  

Streamflow, TP, and TN were matched daily from 2005 to 2014, then averaged by season.   
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4.1.3. Nearest Neighbor Index (NNI) 

The Nearest Neighbor Index (NNI) or the Average Nearest Neighbor analysis package 

in ArcGIS pro 2.8 calculates the division between the observed distance among the point 

features and the expected distance based on the total area within which the point features 

are located. The observed distance is the average distance between each point and its 

nearest neighbor (Ebdon, 1985). I used the arcpy package to perform the NNI calculation 

among CAFOs within each HUC8 in this study (Figure 18). If the observed mean distance 

is less than the expected, NNI will be less than 1 and the CAFOs within the HUC8 area are 

considered clustered (i.e., CAFO-clustering). If the observed mean distance is greater than 

the expected, NNI is greater than 1 and a dispersion pattern is observed among the CAFOs 

(i.e., CAFO-dispersion) in a certain watershed. This pattern is validated based on a z-score 

calculation which is converted to p-value, allowing us to tell if the clustering or dispersion 

pattern observed is significant or not. In this study, I set a significance level of 0.1 (p< 0.1). 

I also scaled the NNI from most negative (dispersion) to most positive or zero (clustering) 

to observe the linear association between water quality and the spatial pattern detected. For 

the analysis, I only selected watersheds with more than 2 animal feeding operations. This 

analysis was used to evaluate if the significant clustering and dispersion of CAFO displays 

different water quality signals within the 15 states selected.    

 

4.1.4. Local Moran’s I index 

 I gathered the states that provided information on type and number of animals per 

CAFO and calculated their corresponding Animal Units (AUs) following the federal code 
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AU definition (Appendix C - 3.1. Section 1; Code of Federal Regulations, 1979) to scale 

animal numbers across animal types. I used the AU of each CAFO to investigate if the 

clustering of AUs influenced TP and TN concentrations.  To identify the local spatial 

patterns associated with animal numbers, we applied a local indicator of spatial association 

(LISA) (Anselin, 1995). CAFOs with a certain number of animals can be clustered (spatial 

clusters) or exist individually (spatial outliers). In this study, a spatial cluster is associated 

with a CAFO with high AUs surrounded by other CAFOs with high AUs (i.e., High-High 

cluster; HH). In contrast, a spatial outlier is detected when a CAFO with high AUs is 

surrounded by CAFOs with normal or low AUs (i.e., High-Low outlier; HL). If a CAFO 

with low AU is in the vicinity of CAFOs with high AUs, this pattern is considered a Low-

High outlier (LH). A spatial cluster can also occur when a CAFO with low AUs is 

surrounded by other CAFOs with low AUs (i.e., a Low-Low cluster; LL). I identified these 

patterns using the Local Moran’s I index calculated in ArcGIS Pro 2.7 (Equation 2; 

Anselin, 1995; Zhang et al., 2008) :  

𝐼𝑖 =  
𝑥𝑖 − �̅�

𝜎2
 ∑  [𝑤𝑖𝑗  (𝑥𝑗

𝑛

𝑗=1,𝑗≠𝑖
− �̅�)] 

where 𝑥𝑖 is the value of the variable 𝑥 at location 𝑖; �̅� is the average value of 𝑥 with the 

sample number of n; 𝑥j is the value of the variable 𝑥 at all the other locations (where 𝑗 ≠

𝑖); 𝜎2  is the variance of variable 𝑥; and 𝑤𝑖𝑗 is a spatial weight matrix which can be defined 

as the inverse of the distance dij among locations i and j. In this study, the weight 𝑤𝑖𝑗  is 

determined using a 15 km fixed distance: samples within 15 km are given the same weight, 

while those outside the distance band are given weight of 0. This fixed distance was 
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established based on studies that investigated manure hauling distances and its impact to 

the environment (Long et al., 2018; Furiness et al., 2019; Miralha, Muenich, Schaffer-

Smith, et al., 2021). A high positive Local Moran’s I value implies that a certain location 

has similarly high or low values as its neighbors (spatial cluster) while a high negative I 

indicates that a certain location has distinct values as its neighbors (spatial outlier). Spatial 

outliers are an indication of individual hotspots, while spatial clusters indicate regional 

hotspots. Note that to perform this analysis, I first projected the data to avoid Chordal 

distance calculations since the area of analysis is larger than 30 degrees. We performed a 

conditional permutation with Local Moran’s I to avoid the assumption of normal 

distribution when calculating the p-value. In this study, all the Local Moran's I indices were 

tested using 999 permutations, and the significance level was set at < 0.05. 

 

4.1.5. Analysis of the spatial organization of CAFOs and water quality relationship 

NNI:  I calculated the seasonal FWMC for TP and TN per HUC8 (Figure 18 and 

19) and compared these concentrations between watersheds that presented overall CAFO-

clustering or CAFO-dispersion patterns. I also compared the number of CAFOs per HUC8, 

their respective TP and TN seasonal FWMC, and their NNI spatial pattern detected to better 

distinguish if the water quality conditions are more likely a function of the number of 

CAFOs or the way CAFOs are spatially organized within a watershed. 

Local Moran’s I: To compare the local spatial association of AUs to water quality, 

I first detected the closest water quality station to each CAFO with AU information 
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available. I used each individual station to calculate the respective TP and TN seasonal 

FWMC for each CAFO and aggregated the concentrations based on the local spatial pattern 

detected (High-High cluster (HH); Low-Low cluster (LL); Low-High outlier (LH); High-

Low outlier (HL)). I performed a simple median difference statistic test (Kruskal-Wallis) 

to evaluate if there was a statistically significant difference among the seasonal median of 

TP and TN concentrations per scenario.  

 

4.2. RESULTS 

4.2.1. NNI and water quality 

From the 443 HUC8 watersheds, 355 presented CAFO-clustering patterns while 

CAFO-dispersion was detected in only 88 watersheds (Figure 19). By excluding 

watersheds without significant patterns (p< 0.1), I had a total of 249 CAFO-clustering 

watersheds and 31 CAFO-dispersion watersheds subsequently available to compare with 

TP and TN concentrations. States such as IA, NC, MO, IN, and FL presented overall 

clustered patterns, while CAFO-dispersion watersheds were detected in states in the west 

(OR AZ,), south (AL), and northern (WI, MN) parts of the U.S. Although the number of 

CAFOs in IA basins was higher than the number of operations in the other 14 states in this 

study and 50% of the watersheds within IA state had non-significant (p > 0.1) clustering 

or dispersion patterns and were excluded from the water quality scenarios.  
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Figure 19. Significant (p<0.1) clustering and dispersion patterns of CAFOs in 15 U.S. 

states. 

I compared both clustering and dispersion distributions to TN and TP 

concentrations and we found that overall TN and TP concentrations are significantly higher 

in watersheds where CAFOs are clustered than in CAFO-dispersion watersheds (Figure 

20; Kruskal-Wallis p-value <0.001). The median TN and TP concentration in CAFO-

clustered watersheds was approximately 0.1 mg/l and 0.6 mg/l higher than in CAFO-

dispersed basins. The highest TP and TN concentrations were overall associated with 

CAFO-clustering hydrologic units. Median FWMC TP concentrations in CAFO-clustered 

sites was above 0.1 mg/L, while CAFO-dispersed FWMC TP concentrations were below 

this value. While there are no federal regulations for stream TP concentrations, states have 
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begun adopting TP criteria (US EPA, 2016), and some like Wisconsin set TP criteria for 

streams to be less than 0.1 mg/L (Wisconsin Legislature: NR 102.06, 2020). Seasonally, these 

concentrations patterns for both TP and TN also held, principally during spring and 

summer seasons when manure is usually land-applied in nearby areas (Appendix C – 3.2.1. 

and 3.2.2. SI – Figure 1 and 2). 

 
Figure 20. Left - Overall Total Phosphorus (TP) and Total Nitrogen (TN) flow-weighted 

mean concentration (FWMC) distribution per watershed’s spatial pattern. Right- Same 

overall pattern FWMC distribution of TP and TN but displaying outliers.  
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 I compared the clustering and dispersion patterns with the number of CAFOs per 

watershed and their respective TP and TN concentrations (Figure 21). The results suggest 

that watersheds tend to exhibit clustering patterns as the number of CAFOs increase, which 

is intuitive. For TP, the linear relationship between the number of CAFOs and the FWMC 

was significant and moderately positive in clustered watersheds (r = 0.3; p <0.001) while 

for the CAFO dispersed basins this relationship was only significant at 0.1 level (r =0.42; 

p =0.059).  

 

Figure 21. Linear relationship between number of CAFOs and flow-weighted mean 

concentration (FWMC - mg/l) per nutrient and significant spatial pattern (Clustering or 

Dispersion).  

 To better understand the relationship between spatial clustering of CAFOs and 

water quality, I selected watersheds with less than 20 CAFOs that were also classified as 

CAFO-clustered and CAFO-dispersed, because CAFO clustering increases with the 

number of CAFOs in a given watershed, restricting available spatial patterns. This analysis 
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restated what we previously found in figure 20. Higher concentrations of TP (i.e., 10 mg/l) 

and TN (i.e., above 15 mg/l) were found in CAFO-clustering watersheds when compared 

to the ones classified as CAFO-dispersed (Appendix C – 3.2.3. SI – Figure 3). However, 

only the median TP concentration difference between the 2 scenarios was statistically 

significant at a level of 0.05 (TP Kruskal-Wallis p <0.001; TN Kruskal-Wallis p =0.11) 

 

4.2.2. Local Moran’s I, animal units per CAFO, and water quality 

 

 From the 15 states analyzed in this study, only 9 had data available on animal 

number and type per CAFO. The number of AUs per farm ranged between 0.06 to 50,000, 

with a median of 528, and a standard deviation of 1.672 AUs. Using the AUs, we performed 

the local spatial autocorrelation analysis (Local Moran’s I).The indices of Local Moran’s I 

ranged from -10.40 to 476.15. CAFOs with statistically significant Local Moran’s I indices 

(p< 0.05) are displayed according to their spatial cluster category while non-significant 

patterns were excluded and displayed in gray (Figure 22). Among the 19,084 CAFOs with 

AU information, 23.5% presented non-significant spatial clustering patterns. 

Approximately 54% of the CAFOs were categorized as LL clusters, which means that these 

CAFOs have low or normal values of AUs and so does their neighboring farms. Most of 

these LL-cluster farms were in IA, MN, and west NC.  This revealed that ~13% of CAFOs 

were part of the HH cluster category (i.e., both centroid and neighboring operations with 

high AUs). HH clusters were mostly detected in states such as WI, IN, east NC, and MO. 

About 9.5 % of the total number of CAFOs were detected as spatial outliers (i.e., HL and 

LH outliers). While I found several LH outliers in OR, PA, east NC, and IN, most of the 
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HL outliers were in IA and MN. Spatial patterns in AL were generally not significant when 

compared to the other 8 states in this analysis.  

 

Figure 22. Local Moran’s I result displayed by spatial cluster and outlier at 0.05 

significance level.  

 Comparing the spatial cluster and outlier types with their closest station’s nutrient 

concentrations, I found that both LL (i.e., light blue) and HL (i.e., red) clusters are 

associated with higher concentrations of TP and TN (Figure 23). First, local Moran’s I was 

also able to detect a regulatory threshold of 1000 animal units (i.e., log (7)) when 

differentiating the low from the high spatial clusters and outliers (Figure 23 – scatter plots). 

Although farms with the largest AUs and with neighbors of similar high AU values (HH 

cluster; light pink) eventually produce large amounts of manure, their surrounding TP and 
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TN concentrations were significantly lower than other CAFOs with different spatial cluster 

and outlier classification. LH outlier CAFOs (i.e., blue) also displayed an overall lower TP 

and TN rates. The average TP concentrations for each cluster (HH, LL) and outlier (HL, 

LH) group were 0.16, 0.34, 0.36, and 0.16 mg/l, respectively. The maximum TP 

concentration for HH and LL clusters was 4.86 mg/l while for spatial outliers this 

concentration reached 3.9 mg/l. For TN, the average concentration per scenario was 2.1 

(HH), 7.2 (LL), 7.4 (HL), and 2.40 (LH) mg/l. I tested if both TP and TN distributions were 

significantly different per scenario, and all scenarios were different at the 0.05 significance 

level (Kruskal-Wallis p <0.0001).  Although the relationship between TN/TP 

concentrations and AUs was not very clear, when classified by cluster and outlier type, I 

was able to observe that lowest TP and TN concentrations were associated with scenarios 

when large CAFOs are clustered (HH) and when a small CAFO is surrounded by large 

operations (LH). These results have the potential to change current CAFO policies in place. 
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Figure 23. Total Phosphorus (TP) and Total Nitrogen (TN) flow-weighted mean 

concentrations (FWMC -mg/l) per spatial cluster (High-High – HH = a large CAFO 

surrounded by Large CAFOs;  Low-Low – LL = a small CAFO surrounded by small 

CAFOs) and outlier (High-Low – HL= a large CAFO surrounded by small CAFOs; Low-

High – LH = a small CAFO surrounded by large CAFOs) scenario as well as animal units 

(AUs). 

I also draw the relationship between positive Local Moran’s I indeces of spatial 

clusters and water quality (Appendix C – 3.3.1. SI- Figure 6). I  fit a linear model and found 

that as I becomes larger (HH cluster CAFOs) TP and TN concentrations tend to be lower, 

TP and TN are relatively higher when I is significant and closer to zero (LL cluster 

CAFOs). The animal type in each CAFO may also play a role in the concentrations 
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observed. Regions where LL clusters dominated presented different animal type 

distribution. IA had predominantly swine operations, while Cattle operations predominated 

in MN and east NC (Appendix C – 3.4.1. SI-Table 1). The way these states regulate these 

operations and how they consider the animal type in these policies may play a role in the 

water quality outcomes observed. 

 

4.3. DISCUSSION 

While studies have mentioned that the spatial aggregation of CAFOs is likely to 

exacerbate environmental impacts (Thurow & Thompson, 1998; Yang et al., 2016; Martin 

et al., 2018; Miralha, Muenich, Schaffer-Smith, et al., 2021), this study is the first to 

investigate this spatial component and reveal that the clustering of these operations by itself 

leads to stronger negative environmental outcomes. Specifically, I found that CAFO-

clustered watersheds were negatively impacted in terms of water quality. This study 

revealed that HUCs with clustered CAFOs presented overall higher concentration of TN 

and TP than CAFO-dispersed HUCs. States in part of the U.S. corn belt such as IA, IN, 

MO, and OH, responsible for major applications of N from manure and chemical fertilizers 

and  major drivers of the largest hypoxic zone in the U.S. (i.e., dead zone in the Gulf of 

Mexico) (Scavia et al., 2003; Turner et al., 2008; Glibert, 2020), were also states where 

CAFOs in general presented clustering patterns (Appendix C – 3.2.4. SI-Figure 4). A 

previous study investigated the water quality conditions in two watersheds also included 

in this study - the South Fork basin in IA and the Little Cobb basin in MN (Kalkhoff et al., 

2016). They found that these two basins, with growing intensified livestock agriculture, 
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presented overall lower N and P concentrations, and in our study, we detected a random 

spatial organization of CAFOs in these basins (i.e., neither clustering nor dispersion of 

CAFOs). Additionally, this same basin in MN presented no significant spatial cluster or 

outlier when AUs and Moran’s I was considered. These facilities may be sparse in space, 

managing their manure properly or beyond the watershed boundary, which warrants further 

study.  

Based on the TN and TP concentration limits established by the U.S. Environmental 

Protection Agency (EPA) per ecoregions for rivers and streams (US EPA, 2013) as well as 

lakes and reservoirs (US EPA, 2020), the highest concentrations of TN and TP found in 

CAFO-clustering watersheds are likely to drive large algae blooms or other impacts from 

excess nutrients. The concentrations found in this study also exceed safe drinking water 

limits for N and limits beginning to be set by states for P (US EPA, 2016). Seasonally this 

finding also holds, principally during spring and summer, when manure is most likely to 

be land-applied (Appendix C – 3.2.1 and 3.2.2. SI – Figures 1 and 2).  

The role of livestock in pollution has been ignored by nutrient reduction strategies in 

12 states of the Mississippi River basin. These states, such as IA, MS, MO, and MN have 

the authority to monitor and implement strategies to reduce nutrient pollution. However, 

they have no resources to implement these strategies, because the subsidies directed to 

nutrient pollution reduction are held in a federal level, which potentially leads to the 

neglection of the role of CAFOs and manure hauling in water pollution (Secchi & 

Mcdonald, 2019).  Regulators could use the concept of clustering or target CAFO-clustered 

watersheds in nutrient reduction strategies. The usefulness of spatial aggregation of point 
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sources of pollution will depend on the purpose of the assessment as well as on the spatial 

resolution of the monitoring program implemented (Schuwirth, 2020). This study 

demonstrated that the spatial arrangement of these operations matter when it comes to 

water pollution. Schuwirth (2020) also suggested that environmental assessments must be 

done at a catchment scale,  because it is usually a manageable scale by many states (Secchi 

& Mcdonald, 2019). This study successfully demonstrated the efficiency of considering 

HUC 8-level basins as the targeted boundary area for the assessment of the spatial 

arrangements of CAFOs and its relationship to water quality. Note that other anthropogenic 

sources of pollution were not considered in this study, which warrants further study as most 

total maximum daily load (TMDL) implementations do not consider the spatial 

arrangement of emitters during their process. 

An aggregation criterion was recently adopted by the Farm System Reform Act of 

2021. It states that a CAFO should not be established within 3 miles from another CAFO, 

and the neighboring facility should not be under common membership or control. 

However, this criterion may be not enough to prevent pollution and further degradation. 

Previous research has established that liquid-waste CAFOs tend to haul manure within ~ 

15 km radius from the operation facilities (Centner, 2012; Long et al., 2018; Furiness et 

al., 2019), but this distance increases when it comes to dry-waste CAFOs such as many 

poultry operations (Ribaudo et al., 2003). Due to manure-hauling distances and the fact 

most CAFOs tend to cluster near land resources to avoid high transportation costs (Ribaudo 

et al., 2003), operators tend to apply manure over crop N:P requirements (Kellogg et al., 

2000; Long et al., 2018) likely leading to environmental degradation (Miralha, Muenich, 
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Schaffer-Smith, et al., 2021). In this study, I established that neighboring farms are usually 

15 km apart because of manure hauling distances, and this criterion allowed us to detect 

several spatial clusters associated with worse water quality conditions (i.e., Local Moran’s 

I and water quality analysis). For the clustering of enterprises to work in favor of the 

environment, there should exist diversity among the type of entities within the cluster 

(Deutz & Gibbs, 2008). Essentially, in a clustered industrial ecosystem, one facility's by-

products or surplus should become another's raw material or energy (Garner & Keoleian, 

1995). Strategies incentivizing exchange between cropland owners and CAFO operators 

should be considered to enhance nutrient recycling from these operations in the U.S. 

Another form of incentive is the concept of manuresheds currently implemented by the 

Arkansas nutrient surplus program (Spiegal et al., 2020). Additional regulatory incentives 

may help such as the dairy farms in MN that are required to have adequate land base for 

manure application prior to the permit acquisition (MPCA, 2016). The clustering of 

animals is corollary to the clustering of humans in cities. In cities we are able to 

economically and efficiently treat human waste products due to economies of scale. This 

same approach could be applied in animal cluster “cities”, especially as advanced 

technologies like anaerobic digesters evolve. Regulatory incentivization and the clustering 

between CAFOs and other industries could be considered to promote environmental quality 

and foster the sustainability of these agricultural systems.  

This study found that not only the spatial organization of these facilities matter, but 

also the number of animals they hold.  Clustering of CAFOs has found to exist between 

enterprises of similar size classification in MO (Matisziw & Hipple, 2001). Specifically, 
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the only operations that underwent clustering were the largest ones (class IA in Missouri). 

Although the clustering of these operations was previously investigated, no previous study 

has ever linked their spatial organization to environmental conditions.  Besides 

demonstrating that clustering is common among CAFOs with high AUs, we found that the 

spatial cluster most threatening to water quality in the U.S. is the cluster of CAFOs with 

low AUs (i.e., LL cluster – Figure 23). This finding has the potential to change CAFO 

regulations in the U.S. Most of the regulatory agencies focus on controlling large 

operations due to the amount of waste they produce, ignoring entities that do not meet the 

threshold of animals to be considered as a large CAFO or do not have the duty to apply for 

a permit because there is no potential of manure discharge to the waters of the U.S. (Ritzel, 

2014). This individual-based regulation approach may fail when multiple entities add up 

to produce the same amount of waste as one large entity. As demonstrated in this study, 

the spatial autocorrelation of small CAFOs (i.e., lower AUs) was associated to higher 

concentrations of TP and TN while the cluster of large operations (i.e., HH) was in general 

within safe drinking water TP and TN concentration limits (Figure 23). This spatial 

autocorrelation phenomenon is also a characteristic of water quality (Miralha & Kim, 

2018), meaning that nearby water quality stations upstream and downstream of the river 

network tend to resemble approximately same TP and TN concentrations. This raises a 

concern on the pollution of tributaries or main rivers closer to areas or waterways impacted 

by these small CAFOs, indicating not only a threat to the aquatic ecosystem but also to the 

health of nearby communities.  
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To account for the nutrient contribution from manure produced by these animal 

operations in watershed models, modelers often rely on average manure application rates 

to represent manure management practices in the whole watershed area in study, neglecting 

the spatial dynamics of animal agriculture and changes in management practices other than 

manure application and crop patterns (J. Wang & Baerenklau, 2015). When solely relying 

on application rates, models have not shown much significant improvement when 

modeling observed  TP and TN loads (Apostel et al., 2021; Kast et al., 2021). More 

information on the location of these animal facilities, their distance to water bodies, and 

the number of animals they hold may improve the representation of these point and non-

point sources of nutrient pollution in models. Most importantly, considering their spatial 

heterogeneity via metrics such as NNI and Local Moran’s I have the potential to reveal the 

spatial component of these sources inherent in water quality that is still neglected in 

models.  

I acknowledge the limitations of this study which warrant further research. First, other 

sources of pollution (e.g., human wastewater, fertilizer applications) were not accounted 

for in this study which may have influenced the water quality patterns identified. However, 

it does not disregard our findings since both NNI and Local Moran’s I analysis illustrated 

similar regional clustering patterns, although these two techniques are based on different 

approaches. Second, I did not fully account for the clustering of animal types. Although I 

have provided the counts of CAFOs per animal type (Appendix C – 3.4.1 SI- Table 1) and 

broadly discussed the dominance of an animal type in states where high clustering was 

identified, the point analysis per animal type was not further investigated but it has the 
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potential to facilitate the elaboration of policies per type of CAFO. I also acknowledge that 

a lack of water quality data in the western U.S. (e.g., AZ, OR), principally for TN 

concentrations, could influence observed patterns. (i.e., AZ, and OR). However, by 

evaluating the patterns, I was still able to associate higher concentrations of TP for the 

CAFO-clustered watersheds in these regions (Appendix C – 3.2.5. SI- Figure 5). The lack 

of information on the location of these operations as well as the type and number of animals 

they hold also may have impaired our results. Although efforts to identify the location of 

these operations have been made (Chugg et al., 2021; Handan-Nader & Ho, 2019a), more 

information is needed to properly manage these systems across larger scales. Federal and 

state agencies along with researchers should come together to create a database of small 

and large animal farms to improve environmental assessment and monitoring of nutrient 

pollution.  

 

4.4. CONCLUSION 

 This study reveals spatial patterns of CAFOs and its relationship to water quality 

previously unaccounted for in the literature. With nearest neighbor index (NNI), it was 

revealed that the spatial organization of CAFOs matters when it comes to the surrounding 

water quality conditions. Most importantly, I found that the spatial autocorrelation of these 

farms with respect to their animal units (Local Moran’s I analysis) relates to water quality 

differently. The results show that although larger CAFOs tend to cluster over space (i.e., 

HH cluster), they may also better handle their excess manure as expected by federal and 

state environmental regulations. It also shows that it is the clustering of CAFOs with low 
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animal units (i.e., LL cluster) that may impact water quality the most. These patterns 

detected are likely to be associated with the individualistic approach to regulation that we 

have in the U.S. These results indicate the importance of gathering more information about 

the location of all animal agriculture entities (principally for better representing these 

entities in nutrient load modeling), as well as for new regulations or incentives considering 

the clustering pattern of CAFOs and other emitters prior to the issuance of permits.  
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CHAPTER 5 

FINAL REMARKS AND FUTURE WORK 

5.1. Takeaways 

 This dissertation explored novel approaches to better investigate uncertainties 

associated with the excess of nutrients in the U.S., bringing insights on nutrient 

management strategies principally when it comes to climate uncertainty and 

underregulated point sources of pollution. Our results suggest that policymakers, 

watershed managers, and environmental agencies should consider: (1) a robust climate 

change scenario analysis when it comes to the prediction of nutrient loads principally in 

watersheds with intensified animal agriculture; (2) implementing environmental impact 

assessments within 15 km from a CAFO facility, prior to the issuing of a permit, as an 

attempt to avoid extreme land use changes and subsequent environmental degradation 

driven by these operations; (3) regulating CAFOs (principally small unregulated 

facilities) based on their spatial organization principally when it comes to manure hauling 

distances, as this study has shown that the clustering of unregulated small CAFOs may be 

more detrimental to the water quality conditions in their surroundings than the clustering 

of larger, regulated CAFOs. Considering both the intensity of land use changes and 

spatial aggregation metrics of these animal operations can also improve watershed model 

nutrient load predictions under climate uncertainty. As these intensified food production 

systems grow with the population, these research findings advance modeling approaches, 

current environmental policies, and guide future decisions towards the reduction of 

nutrient loads and sustainable development in the U.S. and worldwide.  
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5.2. Mapping AFOs in the U.S. 

This dissertation work, especially chapters 3 and 4 could have been greatly 

improved by having access to locations of all animal operations in the U.S. While few 

states provide data on regulated CAFOs, there are still many farms that operate just under 

the threshold to not be obligated to hold permits, which is the case of AFOs. AFOs tend 

to operate with a number of animals close to the regulatory thresholds, tend to cluster 

over space, and are significantly unmonitored by agencies (EWG, 2019). A complete 

database of AFO locations would allow for more accurate evaluation of the social and 

environmental impacts of these animal operations, which have yet to be rigorously 

quantified despite advancements in the detection of these facilities (Handan-Nader & Ho, 

2019b). The advancements in mapping CAFOs have been based on object detection and 

pixel-based algorithms, but no study has considered developing a model that includes 

social, economic, and environmental metrics as predictors. I compared the performance 

of several machine learning algorithms based on socio-economic and environmental 

metrics associated with CAFO regions and results reached 99% of accuracy when 

detecting and distinguishing the type of these operations. The next step in this research is 

to scale this analysis to provide the first and most needed comprehensive database of 

AFO locations in the U.S. Limitations such as training and test sets for the model were 

overcome (Figure 24), but there is still a need to account for the irregular land parcel 

sizes at a national level to decrease the uncertainties associated with the implementation 
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of a grid-based model. 

 

Figure 24. AFO locations and verified “no AFO” locations dataset developed for the 

training and test set for the modeling of these animal production systems over space 

 



 

   99 

REFERENCES 

Alatorre, L. C., Sánchez-Carrillo, S., Miramontes-Beltrán, S., Medina, R. J., Torres-

Olave, M. E., Bravo, L. C., Wiebe, L. C., Granados, A., Adams, D. K., Sánchez, 

E., & Uc, M. (2016a). Temporal changes of NDVI for qualitative environmental 

assessment of mangroves: Shrimp farming impact on the health decline of the arid 

mangroves in the Gulf of California (1990–2010). Journal of Arid Environments, 

125, 98–109. https://doi.org/10.1016/j.jaridenv.2015.10.010 

Alatorre, L. C., Sánchez-Carrillo, S., Miramontes-Beltrán, S., Medina, R. J., Torres-

Olave, M. E., Bravo, L. C., Wiebe, L. C., Granados, A., Adams, D. K., Sánchez, 

E., & Uc, M. (2016b). Temporal changes of NDVI for qualitative environmental 

assessment of mangroves: Shrimp farming impact on the health decline of the arid 

mangroves in the Gulf of California (1990–2010). Journal of Arid Environments, 

125, 98–109. https://doi.org/10.1016/j.jaridenv.2015.10.010 

Anh, P. T., Dieu, T. T. M., Mol, A. P., Kroeze, C., & Bush, S. R. (2011). Towards eco-

agro industrial clusters in aquatic production: The case of shrimp processing 

industry in Vietnam. Journal of Cleaner Production, 19(17–18), 2107–2118. 

Anselin, L. (1995). Local Indicators of Spatial Association—LISA. Geographical 

Analysis, 27(2), 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x 

Apostel, A., Kalcic, M., Dagnew, A., Evenson, G., Kast, J., King, K., Martin, J., 

Muenich, R. L., & Scavia, D. (2021). Simulating internal watershed processes 

using multiple SWAT models. Science of The Total Environment, 759, 143920. 

https://doi.org/10.1016/j.scitotenv.2020.143920 

Asner, G. P., Scurlock, J. M. O., & Hicke, J. A. (2003a). Global synthesis of leaf area 

index observations: Implications for ecological and remote sensing studies. 

Global Ecology and Biogeography, 12(3), 191–205. 

https://doi.org/10.1046/j.1466-822X.2003.00026.x 

Asner, G. P., Scurlock, J. M. O., & Hicke, J. A. (2003b). Global synthesis of leaf area 

index observations: Implications for ecological and remote sensing studies. 

Global Ecology and Biogeography, 12(3), 191–205. 

https://doi.org/10.1046/j.1466-822X.2003.00026.x 

Austin, K. G., González-Roglich, M., Schaffer-Smith, D., Schwantes, A. M., & Swenson, 

J. J. (2017). Trends in size of tropical deforestation events signal increasing 

dominance of industrial-scale drivers. Environmental Research Letters, 12(5), 

054009. https://doi.org/10.1088/1748-9326/aa6a88 

Ayres, R., & Ayres, L. (2002). A Handbook of Industrial Ecology. Edward Elgar 

Publishing. https://doi.org/10.4337/9781843765479 



 

   100 

Baek, S., & Smith, C. D. (2019). Potential contaminant runoff from Californias dairy 

concentrated animal feeding operations (CAFOs): A geospatial analysis. 

International Journal of Water Resources and Environmental Engineering, 11(1), 

1–13. https://doi.org/10.5897/IJWREE2018.0803 

Bayazit, M., & Önöz, B. (2007). To prewhiten or not to prewhiten in trend analysis? 

Hydrological Sciences Journal, 52(4), 611–624. 

https://doi.org/10.1623/hysj.52.4.611 

Bhowmik, R. D., Sankarasubramanian, A., Sinha, T., Patskoski, J., Mahinthakumar, G., 

& Kunkel, K. E. (2017). Multivariate Downscaling Approach Preserving Cross 

Correlations across Climate Variables for Projecting Hydrologic Fluxes. Journal 

of Hydrometeorology, 18(8), 2187–2205. https://doi.org/10.1175/JHM-D-16-

0160.1 

Blain, G. C. (2015). The influence of nonlinear trends on the power of the trend-free pre-

whitening approach. Acta Scientiarum. Agronomy, 37, 21–28. 

https://doi.org/10.4025/actasciagron.v37i1.18199 

Brands, E. (2014). Siting restrictions and proximity of Concentrated Animal Feeding 

Operations to surface water. https://doi.org/10.1016/j.envsci.2014.01.006 

Brown, C., Mallin, M., & Loh, A. N. (2020). Tracing nutrient pollution from 

industrialized animal production in a large coastal watershed. Environmental 

Monitoring and Assessment, 192. https://doi.org/10.1007/s10661-020-08433-9 

Brown, C. N., Mallin, M. A., & Loh, A. N. (2020). Tracing nutrient pollution from 

industrialized animal production in a large coastal watershed. Environmental 

Monitoring and Assessment, 192(8), 515. https://doi.org/10.1007/s10661-020-

08433-9 

Brown, J. R., & Carter, J. (1998). Spatial and temporal patterns of exotic shrub invasion 

in an Australian tropical grassland. 10. 

Burkholder, J., Libra, B., Weyer, P., Heathcote, S., Kolpin, D., Thorne, P. S., & 

Wichman, M. (2007). Impacts of Waste from Concentrated Animal Feeding 

Operations on Water Quality. Environmental Health Perspectives, 115(2), 308–

312. https://doi.org/10.1289/ehp.8839 

Cakir, R., Sauvage, S., Gerino, M., Volk, M., & Sánchez-Pérez, J. M. (2020). Assessment 

of ecological function indicators related to nitrate under multiple human stressors 

in a large watershed. Ecological Indicators, 111, 106016. 

https://doi.org/10.1016/j.ecolind.2019.106016 

Cannon, A. J. (2018). Multivariate quantile mapping bias correction: An N-dimensional 

probability density function transform for climate model simulations of multiple 



 

   101 

variables. Climate Dynamics, 50(1), 31–49. https://doi.org/10.1007/s00382-017-

3580-6 

Cannon, A. J., Piani, C., & Sippel, S. (2020). Bias correction of climate model output for 

impact models. In Climate Extremes and Their Implications for Impact and Risk 

Assessment (pp. 77–104). Elsevier. https://doi.org/10.1016/B978-0-12-814895-

2.00005-7 

Cannon, A. J., Sobie, S. R., & Murdock, T. Q. (2015). Bias Correction of GCM 

Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in 

Quantiles and Extremes? Journal of Climate, 28(17), 6938–6959. 

https://doi.org/10.1175/JCLI-D-14-00754.1 

Carrel, M., Young, S. G., & Tate, E. (2016). Pigs in Space: Determining the 

Environmental Justice Landscape of Swine Concentrated Animal Feeding 

Operations (CAFOs) in Iowa. International Journal of Environmental Research 

and Public Health, 13(9), 849. https://doi.org/10.3390/ijerph13090849 

Centner, T. J. (2011). Addressing water contamination from concentrated animal feeding 

operations. Land Use Policy, 28(4), 706–711. 

https://doi.org/10.1016/J.LANDUSEPOL.2010.12.007 

Centner, T. J. (2012). Regulating the land application of manure from animal production 

facilities in the USA. Water Policy; Oxford, 14(2), 319–335. 

http://dx.doi.org.ezproxy1.lib.asu.edu/10.2166/wp.2011.086 

Chapin, F. S., Matson, P. A., & Mooney, H. A. (2002). Principles of terrestrial ecosystem 

ecology. Springer. 

Chapra, S. C., Boehlert, B., Fant, C., Bierman, V. J., Henderson, J., Mills, D., Mas, D. M. 

L., Rennels, L., Jantarasami, L., Martinich, J., Strzepek, K. M., & Paerl, H. W. 

(2017). Climate Change Impacts on Harmful Algal Blooms in U.S. Freshwaters: 

A Screening-Level Assessment. Environmental Science & Technology, 51(16), 

8933–8943. https://doi.org/10.1021/acs.est.7b01498 

Chugg, B., Anderson, B., Eicher, S., Lee, S., & Ho, D. E. (2021). Enhancing 

Environmental Enforcement with Near Real-Time Monitoring: Likelihood-Based 

Detection of Structural Expansion of Intensive Livestock Farms. ArXiv Preprint 

ArXiv:2105.14159. 

Clark Labs. (2019). TerrSet Geospatial Monitoring and Modeling Software. Clark Labs. 

https://clarklabs.org/terrset/ 

Code of Federal Regulations: 1949-1984. (1979). U.S. General Services Administration, 

National Archives and Records Service, Office of the Federal Register. 



 

   102 

Copeland, C. (2010). Animal Waste and Water Quality: EPA Regulation of Concentrated 

Animal Feeding Operations (CAFOs). 24. 

Culbertson, A. M., Martin, J. F., Aloysius, N., & Ludsin, S. A. (2016). Anticipated 

impacts of climate change on 21st century Maumee River discharge and nutrient 

loads. Journal of Great Lakes Research, 42(6), 1332–1342. 

https://doi.org/10.1016/j.jglr.2016.08.008 

Dagnew, A., Scavia, D., Wang, Y., Muenich, R., Long, C., & Kalcic, M. (2019). 

Modeling Flow, Nutrient, and Sediment Delivery from a Large International 

Watershed Using a Field‐Scale SWAT Model. JAWRA Journal of the American 

Water Resources Association, 55(5), 1288–1305. https://doi.org/10.1111/1752-

1688.12779 

Daloğlu, I., Cho, K. H., & Scavia, D. (2012). Evaluating Causes of Trends in Long-Term 

Dissolved Reactive Phosphorus Loads to Lake Erie. Environmental Science & 

Technology, 46(19), 10660–10666. https://doi.org/10.1021/es302315d 

Daniels, T. L. (1997). Where Does Cluster Zoning Fit in Farmland Protection? Journal of 

the American Planning Association, 63(1), 129–137. 

https://doi.org/10.1080/01944369708975730 

de Almeida Bressiani, D., Srinivasan, R., Jones, C. A., & Mendiondo, E. M. (2015). 

Effects of spatial and temporal weather data resolutions on streamflow modeling 

of a semi-arid basin, Northeast Brazil. International Journal of Agricultural and 

Biological Engineering, 8(3), 125–139. 

De Vries, J. W., Corre, W. J., & Van Dooren, H. J. C. (2010). Environmental assessment 

of untreated manure use, manure digestion and codigestion with silage maize: 

Deliverable for the’EU-AGRO-BIOGAS’project. Wageningen UR Livestock 

Research. 

Delwiche, C. C. (1970). The nitrogen cycle. Scientific American, 223(3), 136–147. 

Deutz, P., & Gibbs, D. (2008). Industrial Ecology and Regional Development: Eco-

Industrial Development as Cluster Policy. Regional Studies, 42(10), 1313–1328. 

https://doi.org/10.1080/00343400802195121 

Donner, S. D., & Scavia, D. (2007). How climate controls the flux of nitrogen by the 

Mississippi River and the development of hypoxia in the Gulf of Mexico. 

Limnology and Oceanography, 52(2), 856–861. 

https://doi.org/10.4319/lo.2007.52.2.0856 

Douglas-Mankin, K. R., Srinivasan, R., & Arnold, J. G. (2010). Soil and Water 

Assessment Tool (SWAT) model: Current developments and applications. 

Transactions of the ASABE, 53(5), 1423–1431. 



 

   103 

Duchemin, B., Hadria, R., Erraki, S., Boulet, G., Maisongrande, P., Chehbouni, A., 

Escadafal, R., Ezzahar, J., Hoedjes, J. C. B., Kharrou, M. H., Khabba, S., 

Mougenot, B., Olioso, A., Rodriguez, J.-C., & Simonneaux, V. (2006). 

Monitoring wheat phenology and irrigation in Central Morocco: On the use of 

relationships between evapotranspiration, crops coefficients, leaf area index and 

remotely-sensed vegetation indices. Agricultural Water Management, 79(1), 1–

27. https://doi.org/10.1016/j.agwat.2005.02.013 

Duke Bass Connections. (2016). Animal Waste Management and Global Health (2016-

2017) | Duke Bass Connections. https://bassconnections.duke.edu/project-

teams/animal-waste-management-and-global-health-2016-2017 

Ebdon, D. (1985). Statistics in geography (Vol. 754). Blackwell Oxford. 

Eckert, S., Hüsler, F., Liniger, H., & Hodel, E. (2015). Trend analysis of MODIS NDVI 

time series for detecting land degradation and regeneration in Mongolia. Journal 

of Arid Environments, 113, 16–28. https://doi.org/10.1016/j.jaridenv.2014.09.001 

EGLE. (2019). Michigan Department of Environment, Great Lakes, and Energy. 

MiWaters – Water Resources Information and Forms. 

https://miwaters.deq.state.mi.us/nsite/map/help 

Ehret, U., Zehe, E., Wulfmeyer, V., Warrach-Sagi, K., & Liebert, J. (2012). HESS 

Opinions" Should we apply bias correction to global and regional climate model 

data?". Hydrology & Earth System Sciences Discussions, 9(4). 

EPA. (1999). Level III Ecoregions of Michigan. 

https://hort.purdue.edu/newcrop/cropmap/michigan/maps/MIeco3.html 

Estoque, R. C., Murayama, Y., & Myint, S. W. (2017). Effects of landscape composition 

and pattern on land surface temperature: An urban heat island study in the 

megacities of Southeast Asia. Science of The Total Environment, 577, 349–359. 

https://doi.org/10.1016/j.scitotenv.2016.10.195 

Estoque, R. C., Myint, S. W., Wang, C., Ishtiaque, A., Aung, T. T., Emerton, L., Ooba, 

M., Hijioka, Y., Mon, M. S., Wang, Z., & Fan, C. (2018a). Assessing 

environmental impacts and change in Myanmar’s mangrove ecosystem service 

value due to deforestation (2000–2014). Global Change Biology, 24(11), 5391–

5410. https://doi.org/10.1111/gcb.14409 

Estoque, R. C., Myint, S. W., Wang, C., Ishtiaque, A., Aung, T. T., Emerton, L., Ooba, 

M., Hijioka, Y., Mon, M. S., Wang, Z., & Fan, C. (2018b). Assessing 

environmental impacts and change in Myanmar’s mangrove ecosystem service 

value due to deforestation (2000–2014). Global Change Biology, 24(11), 5391–

5410. https://doi.org/10.1111/gcb.14409 



 

   104 

EWG. (2019). Under the Radar: New Data Reveals N.C. Regulators Ignored Decade-

Long Exploding Growth of Poultry CAFOs. Environmental Working Group 

(EWG). https://www.ewg.org/research/under-radar 

Fang, G. H., Yang, J., Chen, Y. N., & Zammit, C. (2015). Comparing bias correction 

methods in downscaling meteorological variables for a hydrologic impact study in 

an arid area in China. Hydrology and Earth System Sciences, 19(6), 2547–2559. 

https://doi.org/10.5194/hess-19-2547-2015 

FAO (Ed.). (2013). Tackling climate change through livestock: A global assessment of 

emissions and mitigation opportunities. Food and Agriculture Organization of the 

United Nations. 

FAO. (2017). Food and Agriculture Organization of The United Nations—Water 

pollution from agriculture: A global review—Executive summary. 35. 

FAO, F. A. A. O. O. T. U. N. (2014). World mapping of animal feeding systems in the 

dairy sector. Food & Agriculture Org. 

Farm System Reform Act of 2021. (2021). The Senate of the United States—Farm System 

Reform Act of 2021’—A moratorium on large concentrated animal feeding 

operations. 35. 

Franco, A. L. C., Sobral, B. W., Silva, A. L. C., & Wall, D. H. (2019). Amazonian 

deforestation and soil biodiversity. Conservation Biology, 33(3), 590–600. 

https://doi.org/10.1111/cobi.13234 

Freeze, B. S., & Sommerfeldt, T. G. (1985). Breakeven Hauling Distances for Beef 

Feedlot Manure in Southern Alberta. Canadian Journal of Soil Science, 65(4), 

687–693. https://doi.org/10.4141/cjss85-074 

Furiness, C., Cowling, E., Allen, L., Abt, R., Frederick, D., Zering, K., & Campbell, R. 

(2019). Forests as an Alternative for Swine Manure Application. NC State 

Extension Pubblications. https://content.ces.ncsu.edu/forests-as-an-alternative-for-

swine-manure-application 

Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., 

Martinelli, L. A., Seitzinger, S. P., & Sutton, M. A. (2008). Transformation of the 

Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science, 

320(5878), 889–892. https://doi.org/10.1126/science.1136674 

Garcia, D. J., Lovett, B. M., & You, F. (2019). Considering agricultural wastes and 

ecosystem services in Food-Energy-Water-Waste Nexus system design. Journal 

of Cleaner Production, 228, 941–955. 

https://doi.org/10.1016/j.jclepro.2019.04.314 



 

   105 

Garner, A., & Keoleian, G. A. (1995). Industrial Ecology: An Introduction. 32. 

Gassman, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). The soil and water 

assessment tool: Historical development, applications, and future research 

directions. Transactions of the ASABE, 50(4), 1211–1250. 

Gellings, C. W., & Parmenter, K. E. (2016). Energy Efficiency in Fertilizer Production 

and Use. 15. 

Gill, D., Rowe, M., & Joshi, S. J. (2018). Fishing in greener waters: Understanding the 

impact of harmful algal blooms on Lake Erie anglers and the potential for 

adoption of a forecast model. Journal of Environmental Management, 227, 248–

255. https://doi.org/10.1016/j.jenvman.2018.08.074 

Glasgow, H. B., & Burkholder, J. M. (2000). Water Quality Trends and Management 

Implications from a Five-Year Study of a Eutrophic Estuary. Ecological 

Applications, 10(4), 1024–1046. https://doi.org/10.2307/2641015 

Glibert, P. (2020). From hogs to HABs: Impacts of industrial farming in the US on 

nitrogen and phosphorus and greenhouse gas pollution. Biogeochemistry, 150. 

https://doi.org/10.1007/s10533-020-00691-6 

Godfray, H. C. J., Aveyard, P., Garnett, T., Hall, J. W., Key, T. J., Lorimer, J., 

Pierrehumbert, R. T., Scarborough, P., Springmann, M., & Jebb, S. A. (2018). 

Meat consumption, health, and the environment. Science, 361(6399). 

https://doi.org/10.1126/science.aam5324 

Griffith, G., Omernick, J., Comstock, J., Schfale, M., McNab, W., Lenat, D., Glover, J., 

& Shelburne, V. (2002). Ecoregions of North Carolina and South Carolina. 

Guidry, V. T., Rhodes, S. M., Woods, C. G., Hall, D. J., & Rinsky, J. L. (2018). 

Connecting Environmental Justice and Community Health Effects of Hog 

Production in North Carolina. North Carolina Medical Journal, 79(5), 324–328. 

https://doi.org/10.18043/ncm.79.5.324 

Guignard, M. S., Leitch, A. R., Acquisti, C., Eizaguirre, C., Elser, J. J., Hessen, D. O., 

Jeyasingh, P. D., Neiman, M., Richardson, A. E., Soltis, P. S., Soltis, D. E., 

Stevens, C. J., Trimmer, M., Weider, L. J., Woodward, G., & Leitch, I. J. (2017). 

Impacts of Nitrogen and Phosphorus: From Genomes to Natural Ecosystems and 

Agriculture. Frontiers in Ecology and Evolution, 5. 

https://doi.org/10.3389/fevo.2017.00070 

Gutiérrez, J. M., Maraun, D., Widmann, M., Huth, R., Hertig, E., Benestad, R., Roessler, 

O., Wibig, J., Wilcke, R., Kotlarski, S., San Martín, D., Herrera, S., Bedia, J., 

Casanueva, A., Manzanas, R., Iturbide, M., Vrac, M., Dubrovsky, M., 

Ribalaygua, J., … Pagé, C. (2019). An intercomparison of a large ensemble of 



 

   106 

statistical downscaling methods over Europe: Results from the VALUE perfect 

predictor cross-validation experiment. International Journal of Climatology, 

39(9), 3750–3785. https://doi.org/10.1002/joc.5462 

Hakala, K., Addor, N., Teutschbein, C., Vis, M., Dakhlaoui, H., Seibert, J., & Maurice, P. 

(2019). Hydrological Modeling of Climate Change Impacts. 

Handan-Nader, C., & Ho, D. E. (2019a). Deep learning to map concentrated animal 

feeding operations. Nature Sustainability, 2(4), 298–306. 

https://doi.org/10.1038/s41893-019-0246-x 

Handan-Nader, C., & Ho, D. E. (2019b). Deep learning to map concentrated animal 

feeding operations. Nature Sustainability, 2(4), 298. 

https://doi.org/10.1038/s41893-019-0246-x 

Harden, S. L. (2015). Surface-water quality in agricultural watersheds of the North 

Carolina Coastal Plain associated with concentrated animal feeding operations 

(USGS Numbered Series No. 2015–5080; Scientific Investigations Report, p. 70). 

U.S. Geological Survey. https://doi.org/10.3133/sir20155080 

Harun, S. M., & Ogneva-Himmelberger, Y. (2013). Distribution of industrial farms in the 

United States and socioeconomic, health, and environmental characteristics of 

counties. Geography Journal, 2013. 

Hribar, C. (2010). Understanding concentrated animal feeding operations and their 

impact on communities. https://stacks.cdc.gov/view/cdc/59792 

Hu, Y., Cheng, H., & Tao, S. (2017). Environmental and human health challenges of 

industrial livestock and poultry farming in China and their mitigation. 

Environment International, 107, 111–130. 

https://doi.org/10.1016/j.envint.2017.07.003 

Ishtiaque, A., Myint, S. W., & Wang, C. (2016a). Examining the ecosystem health and 

sustainability of the world’s largest mangrove forest using multi-temporal 

MODIS products. Science of The Total Environment, 569–570, 1241–1254. 

https://doi.org/10.1016/j.scitotenv.2016.06.200 

Ishtiaque, A., Myint, S. W., & Wang, C. (2016b). Examining the ecosystem health and 

sustainability of the world’s largest mangrove forest using multi-temporal 

MODIS products. Science of The Total Environment, 569–570, 1241–1254. 

https://doi.org/10.1016/j.scitotenv.2016.06.200 

Jacquin, A., Sheeren, D., & Lacombe, J.-P. (2010). Vegetation cover degradation 

assessment in Madagascar savanna based on trend analysis of MODIS NDVI time 

series. International Journal of Applied Earth Observation and Geoinformation, 

12, S3–S10. https://doi.org/10.1016/j.jag.2009.11.004 



 

   107 

Justice, C. O., Vermote, E., Townshend, J. R. G., Defries, R., Roy, D. P., Hall, D. K., 

Salomonson, V. V., Privette, J. L., Riggs, G., Strahler, A., Lucht, W., Myneni, R. 

B., Knyazikhin, Y., Running, S. W., Nemani, R. R., Wan, Z., Huete, A. R., van 

Leeuwen, W., Wolfe, R. E., … Barnsley, M. J. (1998). The Moderate Resolution 

Imaging Spectroradiometer (MODIS): Land remote sensing for global change 

research. IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1228–

1249. https://doi.org/10.1109/36.701075 

Kalcic, M. M., Chaubey, I., & Frankenberger, J. (2015). Defining Soil and Water 

Assessment Tool (SWAT) hydrologic response units (HRUs) by field boundaries. 

International Journal of Agricultural and Biological Engineering, 8(3), 69–80. 

Kalcic, M. M., Frankenberger, J., & Chaubey, I. (2015). Spatial Optimization of Six 

Conservation Practices Using Swat in Tile-Drained Agricultural Watersheds. 

JAWRA Journal of the American Water Resources Association, 51(4), 956–972. 

Kalcic, M. M., Muenich, R. L., Basile, S., Steiner, A. L., Kirchhoff, C., & Scavia, D. 

(2019). Climate Change and Nutrient Loading in the Western Lake Erie Basin: 

Warming Can Counteract a Wetter Future. Environmental Science & Technology, 

53(13), 7543–7550. https://doi.org/10.1021/acs.est.9b01274 

Kalkhoff, S. J., Hubbard, L. E., Tomer, M. D., & James, D. E. (2016). Effect of variable 

annual precipitation and nutrient input on nitrogen and phosphorus transport from 

two Midwestern agricultural watersheds. Science of The Total Environment, 559, 

53–62. https://doi.org/10.1016/j.scitotenv.2016.03.127 

Kast, J. B., Apostel, A. M., Kalcic, M. M., Muenich, R. L., Dagnew, A., Long, C. M., 

Evenson, G., & Martin, J. F. (2021). Source contribution to phosphorus loads 

from the Maumee River watershed to Lake Erie. Journal of Environmental 

Management, 279, 111803. https://doi.org/10.1016/j.jenvman.2020.111803 

Kellogg, R. L., States, U., Lander, C. H., Moffitt, D. C., & D, N. G. P. (2000). Manure 

Nutrients Relative to the Capacity of Cropland and Pastureland to Assimilate 

Nutrients: Spatial and Temporal Trends for the United. 

Kennedy, L. (1999). Cooperating for Survival: Tannery Pollution and Joint Action in the 

Palar Valley (India). World Development, 27(9), 1673–1691. 

https://doi.org/10.1016/S0305-750X(99)00080-7 

Keplinger, K. O., & Hauck, L. M. (2006). The Economics of Manure Utilization: Model 

and Application. Journal of Agricultural and Resource Economics, 31(2), 414–

440. JSTOR. 

Key, N., McBride, W. D., Ribaudo, M., & Sneeringer, S. (2017). Trends and 

Developments in Hog Manure Management: 1998-2009 (SSRN Scholarly Paper 



 

   108 

ID 2981722). Social Science Research Network. 

https://papers.ssrn.com/abstract=2981722 

Kline, K. L., Singh, N., & Dale, V. H. (2013). Cultivated hay and fallow/idle cropland 

confound analysis of grassland conversion in the Western Corn Belt. Proceedings 

of the National Academy of Sciences, 110(31), E2863–E2863. 

Kondraju, T. T., & Rajan, K. S. (2019). Excessive Fertilizer Usage Drives Agriculture 

Growth but Depletes Water Quality. ISPRS Annals of Photogrammetry, Remote 

Sensing and Spatial Information Sciences, IV-3/W1, 17–23. 

https://doi.org/10.5194/isprs-annals-IV-3-W1-17-2019 

Kosten, S., Huszar, V. L. M., Bécares, E., Costa, L. S., Donk, E. van, Hansson, L.-A., 

Jeppesen, E., Kruk, C., Lacerot, G., Mazzeo, N., Meester, L. D., Moss, B., 

Lürling, M., Nõges, T., Romo, S., & Scheffer, M. (2012). Warmer climates boost 

cyanobacterial dominance in shallow lakes. Global Change Biology, 18(1), 118–

126. https://doi.org/10.1111/j.1365-2486.2011.02488.x 

Kronberg, S. L., & Ryschawy, J. (2019). Chapter 5—Negative Impacts on the 

Environment and People From Simplification of Crop and Livestock Production∗. 

In G. Lemaire, P. C. D. F. Carvalho, S. Kronberg, & S. Recous (Eds.), 

Agroecosystem Diversity (pp. 75–90). Academic Press. 

https://doi.org/10.1016/B978-0-12-811050-8.00005-4 

Kujawa, H., Kalcic, M., Martin, J., Aloysius, N., Apostel, A., Kast, J., Murumkar, A., 

Evenson, G., Becker, R., Boles, C., Confesor, R., Dagnew, A., Guo, T., Logsdon 

Muenich, R., Redder, T., Scavia, D., & Wang, Y.-C. (2020). The hydrologic 

model as a source of nutrient loading uncertainty in a future climate. Science of 

The Total Environment, 724, 138004. 

https://doi.org/10.1016/j.scitotenv.2020.138004 

Lall, S. V., & Mengistae, T. (2005). Business Environment, Clustering, and Industry 

Location: Evidence from Indian Cities. World Bank Publications. 

Lamchin, M., Lee, W.-K., Jeon, S. W., Wang, S. W., Lim, C. H., Song, C., & Sung, M. 

(2018). Long-term trend and correlation between vegetation greenness and 

climate variables in Asia based on satellite data. Science of The Total 

Environment, 618, 1089–1095. https://doi.org/10.1016/j.scitotenv.2017.09.145 

Lenderink, G., Buishand, A., & van Deursen, W. (2007). Estimates of future discharges 

of the river Rhine using two scenario methodologies: Direct versus delta 

approach. Hydrology and Earth System Sciences, 11(3), 1145–1159. 

https://doi.org/10.5194/hess-11-1145-2007 



 

   109 

Leung, L. R., Mearns, L. O., Giorgi, F., & Wilby, R. L. (2003). Regional climate 

research: Needs and opportunities. Bulletin of the American Meteorological 

Society, 84(1), 89–95. 

Lifset, R., & Graedel, T. E. (2002). Industrial ecology: Goals and definitions. A 

Handbook of Industrial Ecology, 3–15. 

Liu, J., Kleinman, P. J. A., Aronsson, H., Flaten, D., McDowell, R. W., Bechmann, M., 

Beegle, D. B., Robinson, T. P., Bryant, R. B., Liu, H., Sharpley, A. N., & Veith, 

T. L. (2018). A review of regulations and guidelines related to winter manure 

application. Ambio, 47(6), 657–670. https://doi.org/10.1007/s13280-018-1012-4 

Logsdon, R. A., & Chaubey, I. (2013). A quantitative approach to evaluating ecosystem 

services. Ecological Modelling, 257, 57–65. 

https://doi.org/10.1016/j.ecolmodel.2013.02.009 

Long, C. M., Muenich, R. L., Kalcic, M. M., & Scavia, D. (2018). Use of manure 

nutrients from concentrated animal feeding operations. Journal of Great Lakes 

Research, 44(2), 245–252. https://doi.org/10.1016/j.jglr.2018.01.006 

LP DAAC, N. (2019). The Land Processes Distributed Active Archive Center (LP 

DAAC)—Homepage. https://lpdaac.usgs.gov/ 

Lunetta, R. S., Shao, Y., Ediriwickrema, J., & Lyon, J. G. (2010). Monitoring agricultural 

cropping patterns across the Laurentian Great Lakes Basin using MODIS-NDVI 

data. International Journal of Applied Earth Observation and Geoinformation, 

12(2), 81–88. https://doi.org/10.1016/j.jag.2009.11.005 

Mahoney, M., & Magel, R. (1996). Estimation of the Power of the Kruskal-Wallis Test. 

Biometrical Journal, 38(5), 613–630. https://doi.org/10.1002/bimj.4710380510 

Mallin, M. A., & Cahoon, L. B. (2003). Industrialized animal production—A major 

source of nutrient and microbial pollution to aquatic ecosystems. Population and 

Environment, 24(5), 369–385. 

Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., 

Brienen, S., Rust, H. W., Sauter, T., Themeßl, M., Venema, V. K. C., Chun, K. P., 

Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., & Thiele‐Eich, I. (2010). 

Precipitation downscaling under climate change: Recent developments to bridge 

the gap between dynamical models and the end user. Reviews of Geophysics, 

48(3). https://doi.org/10.1029/2009RG000314 

Martin, K. L., Emanuel, R. E., & Vose, J. M. (2018). Terra incognita: The unknown risks 

to environmental quality posed by the spatial distribution and abundance of 

concentrated animal feeding operations. Science of The Total Environment, 642, 

887–893. https://doi.org/10.1016/j.scitotenv.2018.06.072 



 

   110 

Matisziw, T. C., & Hipple, J. D. (2001). Spatial Clustering and State/County Legislation: 

The Case of Hog Production in Missouri. Regional Studies, 35(8), 719–730. 

https://doi.org/10.1080/00343400120084704 

McDonald, J. M., Hoppe, R. A., & Newton, D. (2018). Three decades of consolidation in 

US agriculture. 

McDonald, J. M., Law, J., & Mosheim, R. (2020). Consolidation in US Dairy Farming. 

Meals, D. W., Richards, R. P., & Dressing, S. A. (2013). Pollutant load estimation for 

water quality monitoring projects. Tech Notes, 8, 1–21. 

Meals, D. W., Spooner, J., Dressing, S. A., & Harcum, J. B. (2011). Statistical analysis 

for monotonic trends. Tech Notes, 6, 23. 

Mehan, S., Aggarwal, R., Gitau, M. W., Flanagan, D. C., Wallace, C. W., & 

Frankenberger, J. R. (2019). Assessment of hydrology and nutrient losses in a 

changing climate in a subsurface-drained watershed. Science of The Total 

Environment, 688, 1236–1251. https://doi.org/10.1016/j.scitotenv.2019.06.314 

Mehdi, B., Ludwig, R., & Lehner, B. (2015). Evaluating the impacts of climate change 

and crop land use change on streamflow, nitrates and phosphorus: A modeling 

study in Bavaria. Journal of Hydrology: Regional Studies, 4, 60–90. 

https://doi.org/10.1016/j.ejrh.2015.04.009 

Meyer, J., Kohn, I., Stahl, K., Hakala, K., Seibert, J., & Cannon, A. J. (2019). Effects of 

univariate and multivariate bias correction on hydrological impact projections in 

alpine catchments. Hydrology and Earth System Sciences, 23(3), 1339–1354. 

https://doi.org/10.5194/hess-23-1339-2019 

Michalak, A. M. (2016). Study role of climate change in extreme threats to water quality. 

Nature, 535(7612), 349–350. https://doi.org/10.1038/535349a 

Michalak, A. M., Anderson, E. J., Beletsky, D., Boland, S., Bosch, N. S., Bridgeman, T. 

B., Chaffin, J. D., Cho, K., Confesor, R., Daloğlu, I., DePinto, J. V., Evans, M. 

A., Fahnenstiel, G. L., He, L., Ho, J. C., Jenkins, L., Johengen, T. H., Kuo, K. C., 

LaPorte, E., … Zagorski, M. A. (2013). Record-setting algal bloom in Lake Erie 

caused by agricultural and meteorological trends consistent with expected future 

conditions. Proceedings of the National Academy of Sciences, 110(16), 6448–

6452. https://doi.org/10.1073/pnas.1216006110 

Militino, A. F., Moradi, M., & Ugarte, M. D. (2020). On the Performances of Trend and 

Change-Point Detection Methods for Remote Sensing Data. Remote Sensing, 

12(6), 1008. https://doi.org/10.3390/rs12061008 



 

   111 

Miralha, L., & Kim, D. (2018). Accounting for and Predicting the Influence of Spatial 

Autocorrelation in Water Quality Modeling. ISPRS International Journal of Geo-

Information, 7(2), 64. https://doi.org/10.3390/ijgi7020064 

Miralha, L., Muenich, R. L., Scavia, D., Wells, K., Steiner, A. L., Kalcic, M., Apostel, 

A., Basile, S., & Kirchhoff, C. J. (2021). Bias correction of climate model outputs 

influences watershed model nutrient load predictions. Science of The Total 

Environment, 759, 143039. https://doi.org/10.1016/j.scitotenv.2020.143039 

Miralha, L., Muenich, R. L., Schaffer-Smith, D., & Myint, S. W. (2021). Spatiotemporal 

land use change and environmental degradation surrounding CAFOs in Michigan 

and North Carolina. Science of The Total Environment, 800, 149391. 

https://doi.org/10.1016/j.scitotenv.2021.149391 

Mladenoff, D. J., Sahajpal, R., Johnson, C. P., & Rothstein, D. E. (2016). Recent Land 

Use Change to Agriculture in the U.S. Lake States: Impacts on Cellulosic 

Biomass Potential and Natural Lands. PLoS ONE, 11(2). 

https://doi.org/10.1371/journal.pone.0148566 

Mole, B. (2013). Farming up Trouble. 499, 3. 

Moore, S. K., Trainer, V. L., Mantua, N. J., Parker, M. S., Laws, E. A., Backer, L. C., & 

Fleming, L. E. (2008). Impacts of climate variability and future climate change on 

harmful algal blooms and human health. Environmental Health, 7(2), S4. 

https://doi.org/10.1186/1476-069X-7-S2-S4 

MPCA, M. P. C. A. (2016, October 26). Construction, operation, and technical 

requirements. Minnesota Pollution Control Agency. 

https://www.pca.state.mn.us/water/construction-operation-and-technical-

requirements 

Muenich, R. L., Kalcic, M., & Scavia, D. (2016). Evaluating the Impact of Legacy P and 

Agricultural Conservation Practices on Nutrient Loads from the Maumee River 

Watershed. Environmental Science & Technology, 50(15), 8146–8154. 

https://doi.org/10.1021/acs.est.6b01421 

NASS, U. (2017). USDA - National Agricultural Statistics Service—Census of 

Agriculture. https://www.nass.usda.gov/AgCensus/ 

NCDEQ. (2019). North Carolina—Department of Environmenta Qualtity. 

https://deq.nc.gov/cafo-map 

NCDEQ. (2020). Riparian Buffer Protection Program. 

https://deq.nc.gov/about/divisions/water-resources/water-quality-permitting/401-

buffer-authorization/riparian-buffer 



 

   112 

NCWQR, N. C. for W. Q. R. (2005). Time weighted and flow weighted mean 

concentrations. https://ncwqr.files.wordpress.com/2017/06/d-time-weighted-and-

flow-weighted-mean-concentrations.pdf 

NOAA. (2021). U.S. Climate Atlas | National Centers for Environmental Information 

(NCEI). https://www.ncdc.noaa.gov/climateatlas/ 

NRCS. (2020). Watershed Boundary Dataset (WBD) Overview | NRCS. 

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/water/watersheds/datas

et/?cid=nrcs143_021623 

NRDC. (2019). CAFOs: What We Don’t Know Is Hurting Us. NRDC. 

https://www.nrdc.org/resources/cafos-what-we-dont-know-hurting-us 

Ogneva-Himmelberger, Y., Huang, L., & Xin, H. (2015). CALPUFF and CAFOs: Air 

Pollution Modeling and Environmental Justice Analysis in the North Carolina 

Hog Industry. ISPRS International Journal of Geo-Information, 4(1), 150–171. 

https://doi.org/10.3390/ijgi4010150 

O’Neil, J. M., Davis, T. W., Burford, M. A., & Gobler, C. J. (2012). The rise of harmful 

cyanobacteria blooms: The potential roles of eutrophication and climate change. 

Harmful Algae, 14, 313–334. https://doi.org/10.1016/j.hal.2011.10.027 

Oun, A., Kumar, A., Harrigan, T., Angelakis, A., & Xagoraraki, I. (2014). Effects of 

Biosolids and Manure Application on Microbial Water Quality in Rural Areas in 

the US. Water, 6(12), 3701–3723. https://doi.org/10.3390/w6123701 

Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, 

J. A., Clarke, L., Dahe, Q., & Dasgupta, P. (2014). Climate change 2014: 

Synthesis report. Contribution of Working Groups I, II and III to the fifth 

assessment report of the Intergovernmental Panel on Climate Change. Ipcc. 

Paerl, H. W., Otten, T. G., & Kudela, R. (2018). Mitigating the Expansion of Harmful 

Algal Blooms Across the Freshwater-to-Marine Continuum. Environmental 

Science & Technology, 52(10), 5519–5529. 

https://doi.org/10.1021/acs.est.7b05950 

Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the 

Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 

11(5), 1633–1644. https://doi.org/10.5194/hess-11-1633-2007 

Pepper, I. L., Brooks, J. P., & Gerba, C. P. (2019). Chapter 23 - Land Application of 

Organic Residuals: Municipal Biosolids and Animal Manures. In M. L. Brusseau, 

I. L. Pepper, & C. P. Gerba (Eds.), Environmental and Pollution Science (Third 

Edition) (pp. 419–434). Academic Press. https://doi.org/10.1016/B978-0-12-

814719-1.00023-9 



 

   113 

Porter, M. E. (1998). Clusters and the new economics of competition (Vol. 76). Harvard 

Business Review Boston. 

Prenafeta-Boldú, F. X., & Kamilaris, A. (2019). AI assists in locating hidden farms. 

Nature Sustainability, 2(4), 262. https://doi.org/10.1038/s41893-019-0264-8 

Qi, J., Xin, X., John, R., Groisman, P., & Chen, J. (2017). Understanding livestock 

production and sustainability of grassland ecosystems in the Asian Dryland Belt. 

Ecological Processes, 6(1), 22. https://doi.org/10.1186/s13717-017-0087-3 

Rabalais, N. N., Turner, R. E., Díaz, R. J., & Justić, D. (2009). Global change and 

eutrophication of coastal waters. ICES Journal of Marine Science, 66(7), 1528–

1537. https://doi.org/10.1093/icesjms/fsp047 

Raff, Z., & Meyer, A. (2021a). CAFOs and Surface Water Quality: Evidence from 

Wisconsin. American Journal of Agricultural Economics. 

https://doi.org/10.1111/ajae.12222 

Raff, Z., & Meyer, A. (2021b). CAFOs and Surface Water Quality: Evidence from 

Wisconsin. American Journal of Agricultural Economics. 

https://doi.org/10.1111/ajae.12222 

Randad, P. R., Dillen, C. A., Ortines, R. V., Mohr, D., Aziz, M., Price, L. B., Kaya, H., 

Larsen, J., Carroll, K. C., Smith, T. C., Miller, L. S., & Heaney, C. D. (2019). 

Comparison of livestock-associated and community-associated Staphylococcus 

aureus pathogenicity in a mouse model of skin and soft tissue infection. Scientific 

Reports, 9(1), 6774. https://doi.org/10.1038/s41598-019-42919-y 

Razaq, M., Zhang, P., Shen, H., & Salahuddin. (2017). Influence of nitrogen and 

phosphorous on the growth and root morphology of Acer mono. PLOS ONE, 

12(2), e0171321. https://doi.org/10.1371/journal.pone.0171321 

Ribaudo, M., Kaplan, J. D., Christensen, L. A., Gollehon, N., Johansson, R., Breneman, 

V. E., Aillery, M., Agapoff, J., & Peters, M. (2003). Manure management for 

water quality costs to animal feeding operations of applying manure nutrients to 

land. USDA-ERS Agricultural Economic Report, 824. 

Richards, R. P., & Baker, D. B. (1993). Trends in Nutrient and Suspended Sediment 

Concentrations in Lake Erie Tributaries, 1975–1990. Journal of Great Lakes 

Research, 19(2), 200–211. https://doi.org/10.1016/S0380-1330(93)71211-3 

Ritzel, B. (2014). US EPA’s Efforts to Regulate CAFOs. 

Rosov, K. A., Mallin, M. A., & Cahoon, L. B. (2020). Waste nutrients from U.S. animal 

feeding operations: Regulations are inconsistent across states and inadequately 



 

   114 

assess nutrient export risk. Journal of Environmental Management, 269, 110738. 

https://doi.org/10.1016/j.jenvman.2020.110738 

Rothenberger, M. B., Burkholder, J. M., & Brownie, C. (2009). Long-Term Effects of 

Changing Land Use Practices on Surface Water Quality in a Coastal River and 

Lagoonal Estuary. Environmental Management, 44(3), 505–523. 

https://doi.org/10.1007/s00267-009-9330-8 

Rundel, P. W., Dickie, I. A., & Richardson, D. M. (2014). Tree invasions into treeless 

areas: Mechanisms and ecosystem processes. Biological Invasions, 16(3), 663–

675. https://doi.org/10.1007/s10530-013-0614-9 

Ruttenberg, K. C. (2003). 8.13—The Global Phosphorus Cycle. In H. D. Holland & K. K. 

Turekian (Eds.), Treatise on Geochemistry (pp. 585–643). Pergamon. 

https://doi.org/10.1016/B0-08-043751-6/08153-6 

Saad, D. A., Argue, D. M., Schwarz, G. E., Anning, D. W., Ator, S. W., Hoos, A. B., 

Preston, S. D., Robertson, D. M., & Wise, D. A. (2019). Water-quality and 

streamflow datasets used for estimating long-term mean daily streamflow and 

annual loads to be considered for use in regional streamflow, nutrient and 

sediment SPARROW models, United States, 1999-2014 [Data set]. U.S. 

Geological Survey. https://doi.org/10.5066/F7DN436B 

Scanes, C. G. (2018). Chapter 18—Impact of Agricultural Animals on the Environment. 

In C. G. Scanes & S. R. Toukhsati (Eds.), Animals and Human Society (pp. 427–

449). Academic Press. https://doi.org/10.1016/B978-0-12-805247-1.00025-3 

Scavia, D., David Allan, J., Arend, K. K., Bartell, S., Beletsky, D., Bosch, N. S., Brandt, 

S. B., Briland, R. D., Daloğlu, I., DePinto, J. V., Dolan, D. M., Evans, M. A., 

Farmer, T. M., Goto, D., Han, H., Höök, T. O., Knight, R., Ludsin, S. A., Mason, 

D., … Zhou, Y. (2014). Assessing and addressing the re-eutrophication of Lake 

Erie: Central basin hypoxia. Journal of Great Lakes Research, 40(2), 226–246. 

https://doi.org/10.1016/j.jglr.2014.02.004 

Scavia, D., Kalcic, M., Muenich, R. L., Read, J., Aloysius, N., Bertani, I., Boles, C., 

Confesor, R., DePinto, J., Gildow, M., Martin, J., Redder, T., Robertson, D., 

Sowa, S., Wang, Y.-C., & Yen, H. (2017). Multiple models guide strategies for 

agricultural nutrient reductions. Frontiers in Ecology and the Environment, 15(3), 

126–132. https://doi.org/10.1002/fee.1472 

Scavia, D., Rabalais, N. N., Turner, R. E., Justić, D., & Wiseman Jr, W. J. (2003). 

Predicting the response of Gulf of Mexico hypoxia to variations in Mississippi 

River nitrogen load. Limnology and Oceanography, 48(3), 951–956. 

Schreiner-McGraw, A. P., Vivoni, E. R., Ajami, H., Sala, O. E., Throop, H. L., & Peters, 

D. P. C. (2020). Woody Plant Encroachment has a Larger Impact than Climate 



 

   115 

Change on Dryland Water Budgets. Scientific Reports, 10(1), 8112. 

https://doi.org/10.1038/s41598-020-65094-x 

Schuwirth, N. (2020). Towards an integrated surface water quality assessment: 

Aggregation over multiple pollutants and time. Water Research, 186, 116330. 

https://doi.org/10.1016/j.watres.2020.116330 

Secchi, S., & Mcdonald, M. (2019). The state of water quality strategies in the 

Mississippi River Basin: Is cooperative federalism working? Science of The Total 

Environment, 677, 241–249. https://doi.org/10.1016/j.scitotenv.2019.04.381 

SEIA. (2019). North Carolina SEIA - SOlar Energy Industries Association. SEIA. /state-

solar-policy/north-carolina-solar 

Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. 

Journal of the American Statistical Association, 63(324), 1379–1389. 

https://doi.org/10.1080/01621459.1968.10480934 

Siegel, S. (1957). Nonparametric Statistics. The American Statistician, 11(3), 13–19. 

https://doi.org/10.1080/00031305.1957.10501091 

Sims, J. T., Bergström, L., Bowman, B. T., & Oenema, O. (2005). Nutrient management 

for intensive animal agriculture: Policies and practices for sustainability. Soil Use 

and Management, 21(1), 141–151. https://doi.org/10.1111/j.1475-

2743.2005.tb00118.x 

Son, J.-Y., Muenich, R. L., Schaffer-Smith, D., Miranda, M. L., & Bell, M. L. (2021). 

Distribution of environmental justice metrics for exposure to CAFOs in North 

Carolina, USA. Environmental Research, 195, 110862. 

https://doi.org/10.1016/j.envres.2021.110862 

Song, X.-P., Huang, C., Feng, M., Sexton, J. O., Channan, S., & Townshend, J. R. 

(2014). Integrating global land cover products for improved forest cover 

characterization: An application in North America. International Journal of 

Digital Earth, 7(9), 709–724. https://doi.org/10.1080/17538947.2013.856959 

Sonne, C., Ok, Y. S., Dietz, R., & Alstrup, A. K. O. (2019). Pig slurry needs 

modifications to be a sustainable fertilizer in crop production. Environmental 

Research, 178, 108718. https://doi.org/10.1016/j.envres.2019.108718 

Sousan, S., Iverson, G., Humphrey, C., Lewis, A., Streuber, D., & Richardson, L. (2021). 

High-frequency assessment of air and water quality at a concentration animal 

feeding operation during wastewater application to spray fields. Environmental 

Pollution, 288, 117801. 



 

   116 

Spiegal, S., Kleinman, P. J. A., Endale, D. M., Bryant, R. B., Dell, C., Goslee, S., 

Meinen, R. J., Flynn, K. C., Baker, J. M., Browning, D. M., McCarty, G., 

Bittman, S., Carter, J., Cavigelli, M., Duncan, E., Gowda, P., Li, X., Ponce-

Campos, G. E., Cibin, R., … Yang, Q. (2020). Manuresheds: Advancing nutrient 

recycling in US agriculture. Agricultural Systems, 182, 102813. 

https://doi.org/10.1016/j.agsy.2020.102813 

Stein, L. Y., & Klotz, M. G. (2016). The nitrogen cycle. Current Biology, 26(3), R94–

R98. https://doi.org/10.1016/j.cub.2015.12.021 

Steinzor, R. I., & Huang, L.-Y. (2012). Agricultural Secrecy: Going Dark Down on the 

Farm: How Legalized Secrecy Gives Agribusiness a Federally Funded Free Ride. 

Center for Progressive Reform Briefing Paper, 1213. 

Stewart, J. S., Schwarz, G. E., Brakebill, J. W., & Preston, S. D. (2019). Catchment-level 

estimates of nitrogen and phosphorus agricultural use from commercial fertilizer 

sales for the conterminous United States, 2012. In Catchment-level estimates of 

nitrogen and phosphorus agricultural use from commercial fertilizer sales for the 

conterminous United States, 2012 (USGS Numbered Series No. 2018–5145; 

Scientific Investigations Report, Vols. 2018–5145). U.S. Geological Survey. 

https://doi.org/10.3133/sir20185145 

Stow, C. A., Glassner-Shwayder, K., Lee, D., Wang, L., Arhonditsis, G., DePinto, J. V., 

& Twiss, M. R. (2020). Lake Erie phosphorus targets: An imperative for active 

adaptive management. Journal of Great Lakes Research, S038013302030040X. 

https://doi.org/10.1016/j.jglr.2020.02.005 

Sulla-Menashe, D., & Friedl, M. A. (2018). User Guide to Collection 6 MODIS Land 

Cover (MCD12Q1 and MCD12C1) Product. 18. 

Tan, M. L., Gassman, P., Yang, X., & Haywood, J. (2020). A Review of SWAT 

Applications, Performance and Future Needs for Simulation of Hydro-Climatic 

Extremes. Advances in Water Resources, 103662. 

Taranu, Z. E., Gregory‐Eaves, I., Leavitt, P. R., Bunting, L., Buchaca, T., Catalan, J., 

Domaizon, I., Guilizzoni, P., Lami, A., McGowan, S., Moorhouse, H., Morabito, 

G., Pick, F. R., Stevenson, M. A., Thompson, P. L., & Vinebrooke, R. D. (2015). 

Acceleration of cyanobacterial dominance in north temperate-subarctic lakes 

during the Anthropocene. Ecology Letters, 18(4), 375–384. 

https://doi.org/10.1111/ele.12420 

Tesemma, Z. K., Wei, Y., Western, A. W., & Peel, M. C. (2014). Leaf Area Index 

Variation for Crop, Pasture, and Tree in Response to Climatic Variation in the 

Goulburn–Broken Catchment, Australia. Journal of Hydrometeorology, 15(4), 

1592–1606. https://doi.org/10.1175/JHM-D-13-0108.1 



 

   117 

Teutschbein, C., & Seibert, J. (2012). Bias correction of regional climate model 

simulations for hydrological climate-change impact studies: Review and 

evaluation of different methods. Journal of Hydrology, 456–457, 12–29. 

https://doi.org/10.1016/j.jhydrol.2012.05.052 

Teutschbein, C., & Seibert, J. (2013). Is bias correction of regional climate model (RCM) 

simulations possible for non-stationary conditions? Hydrology and Earth System 

Sciences, 17(12), 5061–5077. https://doi.org/10.5194/hess-17-5061-2013 

Teutschbein, C., Sponseller, R. A., Grabs, T., Blackburn, M., Boyer, E. W., Hytteborn, J. 

K., & Bishop, K. (2017). Future Riverine Inorganic Nitrogen Load to the Baltic 

Sea From Sweden: An Ensemble Approach to Assessing Climate Change Effects. 

Global Biogeochemical Cycles, 31(11), 1674–1701. 

https://doi.org/10.1002/2016GB005598 

Thu, K. M., & Durrenberger, E. P. (1998). Pigs, Profits, and Rural Communities. State 

University of New York Press. 

http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=5535&site=e

host-live 

Thurow, A. P., & Thompson, P. B. (1998). Toward an Augmented Theory of Cooperative 

Behavior: The Case of Clustering in Animal Agriculture. 

Tullo, E., Finzi, A., & Guarino, M. (2019). Review: Environmental impact of livestock 

farming and Precision Livestock Farming as a mitigation strategy. Science of The 

Total Environment, 650, 2751–2760. 

https://doi.org/10.1016/j.scitotenv.2018.10.018 

Turner, R. E., Rabalais, N. N., & Justic, D. (2008). Gulf of Mexico Hypoxia: Alternate 

States and a Legacy. Environmental Science & Technology, 42(7), 2323–2327. 

https://doi.org/10.1021/es071617k 

UADA. (2018). North Carolina | The Economic Contributions and Impacts of U.S. Food, 

Fiber, and Forest Industries—University of Arkansas System—Division of 

Agriculture (Research & Extension). https://economic-impact-of-

ag.uada.edu/north-carolina/ 

United Nations. (2015). Transforming our World: The 2030 Agenda for Sustainable 

Development | Department of Economic and Social Affairs. 

https://sdgs.un.org/publications/transforming-our-world-2030-agenda-sustainable-

development-17981 

United Nations. (2016). Water and Sanitation. United Nations Sustainable Development. 

https://www.un.org/sustainabledevelopment/water-and-sanitation/ 



 

   118 

US Census Bureau. (2019). Population Estimates Continue to Show the Nation’s Growth 

Is Slowing. Census. https://www.census.gov/newsroom/press-

releases/2019/popest-nation.html 

US EPA, O. (2013, March 19). Ecoregional Nutrient Criteria for Rivers and Streams 

[Data and Tools]. https://www.epa.gov/nutrient-policy-data/ecoregional-nutrient-

criteria-rivers-and-streams 

US EPA, O. (2015, August 25). NPDES CAFO Regulations Implementation Status 

Reports [Reports and Assessments]. https://www.epa.gov/npdes/npdes-cafo-

regulations-implementation-status-reports 

US EPA, O. (2016, January 6). State Progress Toward Developing Numeric Nutrient 

Water Quality Criteria for Nitrogen and Phosphorus (States, Territories) [Data 

and Tools]. https://www.epa.gov/nutrient-policy-data/state-progress-toward-

developing-numeric-nutrient-water-quality-criteria 

US EPA, O. (2020, December 9). Ambient Water Quality Criteria to Address Nutrient 

Pollution in Lakes and Reservoirs [Reports and Assessments]. 

https://www.epa.gov/nutrient-policy-data/ambient-water-quality-criteria-address-

nutrient-pollution-lakes-and-reservoirs 

USEPA. (2003). National Pollutant Discharge Elimination System Permit Regulation and 

Effluent Limitation Guidelines and Standards for Concentrated Animal Feeding 

Operations (CAFOs). Federal Register, 68(29), 100. 

USEPA. (2004). Risk Assessment Evaluation for Concentrated Animal Feeding 

Operations. https://nepis.epa.gov 

USEPA. (2020). National Summary of State Information | Water Quality Assessment and 

TMDL Information | US EPA. 

https://ofmpub.epa.gov/waters10/attains_nation_cy.control#status_of_data 

USEPA, O. (2018). Summary of the Clean Water Act 1972—2018 version of the Clean 

Water Act CWA from the U.S. Code [Overviews and Factsheets]. 

https://www.epa.gov/laws-regulations/summary-clean-water-act 

Vadas, P. A., Bolster, C. H., & Good, L. W. (2013). Critical evaluation of models used to 

study agricultural phosphorus and water quality. Soil Use and Management, 

29(s1), 36–44. https://doi.org/10.1111/j.1475-2743.2012.00431.x 

Vadas, P. A., & White, M. J. (2010). Validating soil phosphorus routines in the SWAT 

model. Transactions of the ASABE, 53(5), 1469–1476. 

Vale, P., Gibbs, H., Vale, R., Christie, M., Florence, E., Munger, J., & Sabaini, D. (2019). 

The Expansion of Intensive Beef Farming to the Brazilian Amazon. Global 



 

   119 

Environmental Change, 57, 101922. 

https://doi.org/10.1016/j.gloenvcha.2019.05.006 

Verma, S., Bhattarai, R., Bosch, N. S., Cooke, R. C., Kalita, P. K., & Markus, M. (2015). 

Climate Change Impacts on Flow, Sediment and Nutrient Export in a Great Lakes 

Watershed Using SWAT. CLEAN – Soil, Air, Water, 43(11), 1464–1474. 

https://doi.org/10.1002/clen.201400724 

von Keyserlingk, M. A. G., Martin, N. P., Kebreab, E., Knowlton, K. F., Grant, R. J., 

Stephenson, M., Sniffen, C. J., Harner, J. P., Wright, A. D., & Smith, S. I. (2013). 

Invited review: Sustainability of the US dairy industry. Journal of Dairy Science, 

96(9), 5405–5425. https://doi.org/10.3168/jds.2012-6354 

Walljasper, C. (2018, June 7). Large animal feeding operations on the rise. Investigate 

Midwest. https://investigatemidwest.org/2018/06/07/large-animal-feeding-

operations-on-the-rise/ 

Wang, C., & Myint, S. W. (2016). Environmental Concerns of Deforestation in Myanmar 

2001–2010. Remote Sensing, 8(9), 728. https://doi.org/10.3390/rs8090728 

Wang, J., & Baerenklau, K. A. (2015). How Inefficient Are Nutrient Application Limits? 

A Dynamic Analysis of Groundwater Nitrate Pollution from Concentrated Animal 

Feeding Operations. Applied Economic Perspectives and Policy, 37(1), 130–150. 

Warner, R. E. (1994). Agricultural Land Use and Grassland Habitat in Illinois: Future 

Shock for Midwestern Birds? Conservation Biology, 8(1), 147–156. JSTOR. 

Williams, M. R., & King, K. W. (2020). Changing Rainfall Patterns Over the Western 

Lake Erie Basin (1975–2017): Effects on Tributary Discharge and Phosphorus 

Load. Water Resources Research, 56(3), e2019WR025985. 

https://doi.org/10.1029/2019WR025985 

Wilson, S. M., & Serre, M. L. (2007). Examination of atmospheric ammonia levels near 

hog CAFOs, homes, and schools in Eastern North Carolina. Atmospheric 

Environment, 41(23), 4977–4987. https://doi.org/10.1016/j.atmosenv.2006.12.055 

Wisconsin Legislature: NR 102.06. (2020). 

https://docs.legis.wisconsin.gov/code/admin_code/nr/100/102/i/06 

Withers, P. J. A., & Jarvie, H. P. (2008). Delivery and cycling of phosphorus in rivers: A 

review. Science of The Total Environment, 400(1), 379–395. 

https://doi.org/10.1016/j.scitotenv.2008.08.002 

Wörner, V., Kreye, P., & Meon, G. (2019). Effects of Bias-Correcting Climate Model 

Data on the Projection of Future Changes in High Flows. Hydrology, 6(2), 46. 

https://doi.org/10.3390/hydrology6020046 



 

   120 

Wurtsbaugh, W. A., Paerl, H. W., & Dodds, W. K. (2019). Nutrients, eutrophication and 

harmful algal blooms along the freshwater to marine continuum. WIREs Water, 

6(5), e1373. https://doi.org/10.1002/wat2.1373 

Xu, H., Brown, D. G., & Steiner, A. L. (2018). Sensitivity to climate change of land use 

and management patterns optimized for efficient mitigation of nutrient pollution. 

Climatic Change, 147(3), 647–662. https://doi.org/10.1007/s10584-018-2159-5 

Xu, Y. (2020). Hydrology and Climate Forecasting R package—Hyfo [R]. 

https://github.com/Yuanchao-Xu/hyfo 

Yan, B., Shi, W., Yan, J., & Chun, K. P. (2017). Spatial distribution of livestock and 

poultry farm based on livestock manure nitrogen load on farmland and suitability 

evaluation. Computers and Electronics in Agriculture, 139, 180–186. 

https://doi.org/10.1016/j.compag.2017.05.013 

Yang, Q., Tian, H., Li, X., Ren, W., Zhang, B., Zhang, X., & Wolf, J. (2016). 

Spatiotemporal patterns of livestock manure nutrient production in the 

conterminous United States from 1930 to 2012. Science of The Total 

Environment, 541, 1592–1602. https://doi.org/10.1016/j.scitotenv.2015.10.044 

Yoon, S., & Nadvi, K. (2018). Industrial clusters and industrial ecology: Building ‘eco-

collective efficiency’ in a South Korean cluster. Geoforum, 90, 159–173. 

https://doi.org/10.1016/j.geoforum.2018.01.013 

Yu, B., Shang, S., Zhu, W., Gentine, P., & Cheng, Y. (2019). Mapping daily 

evapotranspiration over a large irrigation district from MODIS data using a novel 

hybrid dual-source coupling model. Agricultural and Forest Meteorology, 276–

277, 107612. https://doi.org/10.1016/j.agrformet.2019.06.011 

Yuan, S., Quiring, S. M., Kalcic, M. M., Apostel, A. M., Evenson, G. R., & Kujawa, H. 

A. (2020). Optimizing climate model selection for hydrological modeling: A case 

study in the Maumee River Basin using the SWAT. Journal of Hydrology, 

125064. 

Yue, S., & Wang, C. Y. (2002). Applicability of prewhitening to eliminate the influence 

of serial correlation on the Mann-Kendall test. Water Resources Research, 38(6), 

4-1-4–7. https://doi.org/10.1029/2001WR000861 

Zhang, C., Luo, L., Xu, W., & Ledwith, V. (2008). Use of local Moran’s I and GIS to 

identify pollution hotspots of Pb in urban soils of Galway, Ireland. Science of The 

Total Environment, 398(1), 212–221. 

https://doi.org/10.1016/j.scitotenv.2008.03.011 

 



 

   121 

APPENDIX A 

SUPPLEMENTARY INFORMATION – BIAS CORRECTION OF CLIMATE MODEL 

OUTPUTS INFLUENCES WATERSHED MODEL NUTRIENT LOAD 

PREDICTIONS 
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1.1. Table 1. Daily and monthly Apostel et al. (in review) SWAT model calibration and 

validation statistics for nutrient loads.  

  Calibration (2005-2015) Validation (2000-2004) 

Statistic Daily Monthly Daily Monthly 

TP R2 0.60 0.61 0.47 0.51 

NSE 0.58 0.52 0.46 0.44 

PBIAS -3.76 -3.23 -18.53 -18.35 

DRP R2 0.63 0.68 0.63 0.74 

NSE 0.62 0.67 0.63 0.73 

PBIAS 2.03 1.51 -9.89 -10.22 

TN R2 0.63 0.78 0.75 0.82 

NSE 0.55 0.69 0.68 0.71 

PBIAS -0.40 -1.24 -6.44 -6.73 
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1.2.Table 2. Seasonal Bias per climate model for temperature in K and Total precipitation 

in millimeters for the Western Lake Erie Basin. Models in bold are the ones used in 

the study.  

 

 
 

 

 

 

 

 

 

 

 

 

 

  Temperature (K) Total Precipitation (mm) 

Models 

SON 

bias 

DJF 

bias 

MAM 

bias 

JJA 

bias 

SON 

bias 

DJF 

bias 

MAM 

bias 

JJA 

bias 

ACCESS1-3 1.12 1.72 1.67 3.18 21.50 33.49 36.44 8.24 

BCC-CSM1-1 0.97 -1.06 0.31 3.03 -4.46 14.76 10.42 

-

30.62 

CanESM2 3.62 6.57 4.88 6.21 -14.27 17.69 28.95 

-

27.12 

CCSM4 0.68 -0.82 1.93 1.45 -2.98 3.44 10.28 15.77 

CESM1-CAM5 -0.60 -1.47 1.39 -0.82 - - - - 

CNRM-CM5 -1.18 -1.41 -1.00 -0.01 -10.09 -1.16 17.46 7.95 

CSIRO-Mk3-6-0 0.71 -0.93 -1.68 3.18 -3.67 6.04 13.37 

-

27.23 

FIO-ESM 0.26 2.98 2.86 0.84 -1.88 19.54 9.68 6.46 

GFDL-ESM2M -1.72 1.26 -1.89 -0.41 -5.62 23.75 25.18 16.52 

GISS-E2-R -1.29 -2.57 -0.59 -1.02 21.99 4.17 14.51 54.45 

HadGEM2-AO 0.49 -2.72 1.64 3.17 1.90 17.07 17.54 

-

13.44 

INMCM4 -1.03 1.56 0.56 -2.00 -3.81 23.35 34.70 8.49 

IPSL-CM5A-

MR 0.78 0.17 0.58 1.70 1.51 44.05 2.85 4.72 

MIROC5 2.27 1.64 0.21 3.17 26.00 14.28 32.21 15.42 

MIROC-ESM 1.62 3.91 3.49 3.58 11.05 2.63 -2.24 24.94 

MPI-ESM-MR 0.76 0.71 0.27 -0.15 -1.94 45.10 39.83 24.46 

MRI-CGCM3 -2.92 -2.05 -1.44 -1.54 21.95 14.18 29.40 2.92 

NorESM1 -1.92 -1.65 1.17 -1.45 -9.36 -1.01 2.65 24.00 
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1.3.Figure 1. Spatial grid of each climate model (top) and the 71 weather stations 

(bottom) of the observed climate data used in this study. 
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1.4.Figure 2. Plots of average monthly-sum precipitation in mm with (a.1) and without 

(a2) outliers; (b) monthly average of maximum temperature (TMAX) in Celsius; and 

(c) monthly average of minimum temperature (TMIN) in Celsius for the historical 

period (1980-1999) per each climate model and scenario (observed, historical 

(climate output not bias corrected), and bias corrected). 
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APPENDIX B 

SUPPLEMENTARY INFORMATION – SPATIOTEMPORAL LAND USE CHANGE 

AND ENVIRONMENTAL DEGRADATION SURROUNDING CAFOS IN 

MICHIGAN AND NORTH CAROLINA  
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2.1. MODIS Product Information 

2.1.1. Land Use and Land Cover (LULC) 

For this study, LULC analysis was used to examine annual changes from 2001 to 2017 

using the MODIS (Moderate Resolution Imaging Spectroradiometer) Land Cover Type 2 

yearly 500-m resolution product (MCD12Q1 v006). We used the University of Maryland 

(UMD) classification with 16 distinct classes, which we further simplified to 9 classes: 

water, forest, shrubland, savannas, grassland, wetland, cropland, urban, and non-vegetated.  

2.1.2. Percent Tree Cover (PTC) 

We would expect a reduction in forested areas over time to indicate a decrease in ecosystem 

health (Estoque et al., 2018b). To analyze tree cover changes over time, we used PTC 

image layers from the Vegetation Continuous Fields yearly 250-m product (MOD44B 

v006). This product is a sub-pixel-level representation of tree cover, and the pixel value 

indicates the percent area covered by tree canopy with pixel values between 0 and 100 

percent. A total of 17 PTC images were used in this study, each representing a single year 

from 2000 to 2016. As the image of 2017 to 2018 was not available at the time the analysis 

was performed, our analysis only examined changes from 2000 through 2016.  

2.1.3. Leaf Area Index (LAI) 

LAI is a key characteristic used in vegetation and ecosystems studies as a basic description 

of vegetation conditions (Asner et al., 2003b). Its measurement is based on the leaf area 

per unit ground area in broadleaf species, while LAI of conifers is determined as one-half 

the total needle surface area per unit ground area. For our study of changes over time, we 

examined the MODIS LAI image layer (MOD15A2H v006), an 8-day composite dataset 

at 500-m resolution, including images from 2000 to 2018. Each image uses the best pixel 

available from all image acquisitions within the 8-day period.  

2.1.4. Normalized Difference Vegetated Index (NDVI) 

NDVI is a well- known index used by numerous scientific studies as a measure of 

ecosystem health. It is mainly correlated with biophysical properties such as forest cover, 
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LAI, and biomass (Eckert et al., 2015; Ishtiaque et al., 2016b; Alatorre et al., 2016b). 

Therefore, NDVI is useful for the investigation of the environmental conditions 

surrounding CAFO facilities. We used the NDVI image layer in the Vegetation Indices 

(VI) MODIS product (MYD13Q1 v006) for this study. Each 250-m pixel in a single image 

contains the NDVI value acquired by the sensor within a 16-day period. The 16-day 

composite is generated from two 8-day composite Surface Reflectance granules in the 16-

day period. Our analysis considered images for the summer period from 2002 to 2018.  

2.1.5. Land Surface Temperature (LST) 

Changes in LST are useful for studying ecosystem responses (Estoque et al., 2018b). 

Increases in LST can be associated with forest degradation, urbanization, and other 

anthropogenic activities driving changes in the environment. Here, we examined the 8-day 

per-pixel average of daily MODIS Land Surface Temperature and Emissivity images at 

1000-m resolution (MOD11A2 v006). We used both daytime (LST-day) and nighttime 

(LST-night) surface temperature bands for the summer season (13 images per year) from 

2000 to 2018.  

2.1.6. Evapotranspiration (ET) 

ET represents the water loss by plant transpiration and surface evaporation, and as fewer 

vegetated features are present in the environment, ET is likely to decrease (Ishtiaque et al., 

2016b; Yu et al., 2019). For instance, a study found that changes in Myanmar’s mangrove 

ecosystem were linked to a decrease in ET over time (Estoque et al., 2018b). Therefore, 

temporal measurements of ET may be useful in evaluating the health of CAFO-impacted 

areas. ET is estimated based on the Penman-Monteith equation that requires land cover, 

LAI/fPAR (fraction of Photosynthetically Active Radiation), and albedo inputs which are 

available in other MODIS products. For this study, we used the 8-day composite ET data 

from the MODIS Evapotranspiration/Latent Heat Flux 500-m product (MOD16A2 v006). 

The pixel values represent kilograms per square meter of ET across 8 days. For our study, 

we analyzed summer season images from 2001 and 2018.  
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2.1.7. Supplementary Table S-1. MODIS product characteristics and number of images 

used per state.  

 

* LC – Land Cover product; PTC – Percent Tree Cover; LAI – Leaf Area Index; NDVI- Normalized 

Difference Vegetated Index; LST – Land Surface Temperature; ET – Evapotranspiration 
Data can be accessed via: NASA EARTHDATA - https://search.earthdata.nasa.gov/search 

  

Variables* MODIS product Years 

Spatial 

Resolution 

(m) 

Temporal 

Resolution 

Number of 

images 

LC MCD12Q1 

2001 and 

2017 500 

Yearly 2 

PTC MOD44B 2000-2017 250 
Yearly 17 

LAI MOD15A2H 2000-2018 500 
8-day 247 

NDVI MYD13Q1 2002-2018 250 
16-day 119 

LST MOD11A2 2000-2018 1000 
8-day 247 

ET MOD16A2 2001-2018 500 
8-day 234 

https://search.earthdata.nasa.gov/search
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2.2. Land Use product reclassification 

2.2.1. Supplementary Table S-2. MODIS Land cover product reclassification description used in 

this study. 
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2.3. Radii distance sensitivity analysis  

To evaluate the sensitivity of land use land cover change analysis to use of a 15km 

distance from CAFOs (i.e., ‘CAFO-impacted’ areas), we compared results using 3 km, 

9km, and 15 km distances. The results remained generally constant in both study areas 

(Supplementary Figure S-2).  Michigan (MI) land use change results were consistent 

among all three radii. Results for North Carolina were consistent in the 15 km and 9 km 

radii, while changes within the 3 km radius changes were even stronger and in agreement 

with our hypothesis and with the changes observed in MI (e.g., forest losses and gain in 

cropland area).  

 
2.3.1. Supplementary Figure S-1. Sensitivity of land use land cover change analysis to 

radius distance used to define CAFO-impacted areas and control areas, illustrating 

changes detected in the vicinity of CAFOs in acres. 
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APPENDIX C 

SUPPLEMENTARY INFORMATION –THE SPATIAL ORGANIZATION OF CAFOS 

AND ITS RELATIONSHIP TO WATER QUALITY IN THE U.S.  
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3.1. Section 1: Animal Units (AUs) calculation based on the Code of Federal 

Regulations, 1949-1984 

 

We based our AU calculation on the following regulation:“003.03 ANIMAL UNIT means 

a unit of measurement for any animal feeding operation calculated by adding the 

following numbers: The number of slaughter and feeder cattle multiplied by 1.0, plus the 

number of cow/calf pairs multiplied by 1.2, plus the number of mature dairy cattle 

multiplied by 1.4, plus the number of swine weighing 55 pounds or more multiplied by 

0.4, plus the number of weaned pigs weighing less than 55 pounds multiplied by 0.04, 

plus the number of sheep multiplied by 0.1, plus the number of horses multiplied by 2.0, 

plus the number of chickens multiplied by 0.01, plus the number of turkeys multiplied by 

0.02, plus the number of ducks multiplied by 0.2. For immature dairy cattle or species not 

listed, the number of animal units shall be calculated as the average weight of the 

animals, divided by 1,000 pounds, multiplied by the number of animals.” If an animal 

type was not included in this description, we assigned the multipliers that closely 

matched the animals not stated by the regulation. For instance, the regulation does not 

mention lamb, but in general lams are closely related to sheep, so we assigned the 

multiplier 0.1 to lamb farms. The same was done to different types of chicken operations, 

we applied 0.2 as the multiplier for all of them across the states.  
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3.2. Section 2: Location of Total Phosphorus (TP), Total Nitrogen (TN), and Streamflow 

stations. 
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3.3. Section 3: Clustering and Dispersion watershed patterns and Total Phosphorus (TP) 

and Nitrogen (TN) concentrations. 

 

This section highlights seasonal TP and TN flow-weighted mean concentrations per 

spatial pattern identified. We observed that in general the highest concentrations of TP 

and TN occurred during the seasons in which manure tends to be land-applied (Figure 1 

and 2). When comparing the watersheds with 20 CAFOs or less, we found that CAFO-

clustered watersheds tend to be associated with the highest levels of TN and TP (Figure 

3). However, TN median difference was not statistically significant at 0.05 level 

(p=0.11). We also compared the spatial patterns per state in the Corn Bel for TN and per 

west states for TP (Figure 4). 
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3.3.1. SI- Figure 1- Seasonal TP concentration with (right) and without outliers (left) per 

spatial pattern observed.  
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3.3.2. SI- Figure 2. Seasonal TN concentration with (right) and without outliers (left) per 

spatial pattern observed.  
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3.2.3. SI- Figure 3. Total Phosphorus and Total Nitrogen flow-weighed mean 

concentration per spatial pattern when hydrologic units (HUC8) had less than or equal to 

20 CAFOs within their boundaries.  
 

 
3.3.4. SI – Figure 4. Total Nitrogen flow-weighted mean concentration (FWMC – mg/l) 

per state in the Corn Belt and North Carolina, and per spatial pattern.   
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3.3.5. SI – Figure 5. Total Phosphorus (TP) flow-weighted mean concentration (FWMC – 

mg/l) per US west state and spatial pattern.  

 

3.4. Section 4: The relationship between Local Moran’s I indices of spatial clusters and 

water quality 

We fit a linear model to detect what is the influence of Moran’s I index in the prediction 

of TP and TN concentrations. We found that a 0.2 decrease in I would result in a unit 

increase in TP or TN. This parameter can be used in future water quality modeling 

studies.  

 

3.4.1. SI-Figure 6. Average of flow-weighed mean concentration (FWMC – mg/l) of 

Total Phosphorus (TP) and Total Nitrogen (TN) per positive Local Moran’s I indeces per 

spatial clusters (HH and LL) 
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3.5. Section 5: Counts of CAFOs per animal type per State 

3.5.1. SI -Table 1. Number of CAFOs per state per animal type. Few CAFOs grow more 

than one type of animal in their facilities.  

Iowa     Indiana     Minnesota   

Animal type # CAFOs   Animal type # CAFOs   Animal Type # CAFOs 

Swine 9118   Finishers_pig 1200   Swine 55-300 lbs 180 

Beef 2821   Nursery_pig 537   Dairy Cattle >1000 lbs 127 

Dairy 407   Sows 308   

Beef Cattle - Cow & calf 

pair 124 

Chicken 206   Beef 118   

Beef Cattle - 

Slaughter/Stock 122 

Turkeys 157   Turkeys 108   

Beef Cattle - 

Feeder/heifer 66 

Sheep 77   Dairy 92   Turkeys >5 lbs 32 

Horses 55   Layers 79   Swine >300 lbs 31 

      Dairy_calve 76   Horses 26 

      Broilers 57   Dairy Cattle - Heifer 22 

Missouri     Dairy_Heif 56   Swine <55 lbs 12 

Animal Type # CAFOs   Horses 54   Beef Cattle - Calf 11 

Swine > 55 379   Pullets 54   Turkeys <5 lbs 8 

Broilers 227   Beef_calve 44   Chickens - Layers <5 lbs 7 

Swine < 55 95   Boars 43   Dairy Cattle - Calf 5 

Dairy 26   Veal_calve 34   Dairy Cattle <1000 lbs 5 

Layers 8   Poultry 13   

Chickens - Broilers <5 

lbs 4 

Beef 8   Sheep 10   

Chickens - Broilers >5 

lbs 4 

Turkeys 5   Ducks 3   Goats 4 

Goat 1         Chickens - liquid manure 3 

Pullets 1         Elk 3 

      Oregon     Sheep, Lambs 3 

      Animal Type # CAFOs   Bison, Buffalo 2 

North 

Carolina     Dairy cattle 248   Chickens - Layers >5 lbs 1 

Animal Type # CAFOs   Cattle Feedlots 137   Foxes 1 

Swine 2248   Beef Cattle  34   Ducks - dry manure 1 

Cattle 250   Broiler chicken 25   Other 1 

Wet Poultry 19   

All other animal 

production 25       

Horses 5   Goat farming 14       

Other 

Animals 2   Chicken egg 12   Wisconsin   

Dry Poultry 1   

Hog and Pig 

Farming 10   Animal Type # CAFOs 

      Sheep and Lambs 7   Dairy  287 

      

Horses and Other 

Equine 5   Swine  12 

            Beef  7 

            Chickens  6 

            Turkeys  2 

            Ducks  1 

 


