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ABSTRACT  
   

Pathogenic contamination is a significant factor contributing to the degradation of surface 

water both globally and within the United States. This leads to negative economic impacts, 

sickness, and, in severe cases, fatalities. As the world's population grows, pollution increases, 

placing more stress on water resources, particularly in arid regions. The situation is made worse 

by climate change. The forecasted expansion of arid and semi-arid land areas and alterations in 

precipitation patterns could have a significant impact on those living in poverty and dry regions. 

This dissertation aims to investigate previously undocumented threats to water quality through 

understanding pathogen drivers in arid and semi-arid environments and documenting wastewater 

infrastructure on Tribal lands. Specifically, I first investigated how ephemeral streams (common in 

arid and semiarid areas) impact the presence of pathogens in surface waters by identifying the 

main drivers of E. coli concentration from a series of proposed predictors. Second, I identified 

unknown potential sources of water quality impairments on Tribal lands, which are mainly rural and 

in arid or semiarid areas, focusing on wastewater infrastructure in these systems. I specifically 

quantified populations served by wastewater treatment plants and then used a remote sensing 

approach to identify possible unpermitted wastewater lagoons that often serve as the only 

wastewater infrastructure in some areas. The findings revealed unique insights that could help aid 

water management in arid and semiarid regions as well as in rural areas.   
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CHAPTER 1 

INTRODUCTION 

 

1.1. Background  

Water is a fundamental resource for human subsistence and essential for economic and 

social well-being. Freshwater demands are continuously growing; however, environmental 

degradation is being reflected in the limited water resources of the planet, which has been one of 

the most affected environmental factors, putting the availability of quality water supply and 

development at risk. (Khan et al., 2022; WWAP (United Nations World Water Assessment 

Programme), 2017). In the United States (US), 24% of assessed lakes were hypereutrophic, with 

phosphorus and nitrogen being the most common stressors in 2017 (United States Environmental 

Protection Agency, 2022c). In 2014 44% of perennial river and stream miles were rated as poor 

quality based on benthic macroinvertebrates (United States Environmental Protection Agency, 

2020), 32% of the wetland area was in poor biological condition in 2011 (United States 

Environmental Protection Agency, 2016b), and 15% of estuarine waters were impacted by 

eutrophication in 2015 (United States Environmental Protection Agency, 2021b). These 

assessments demonstrate a sustained need to protect water resources from pollution threats.  

As development and population increase, so does the number of activities that can 

contaminate the water, increasing the load and number of pollutants, the number of contaminant 

sources, and, of course, the quantity of wastewater. Water pollution can occur from those direct 

and identifiable sources called point sources such as sewage treatment plants and oil refineries, or 

from non-point sources, those that are both diffuse in nature and difficult to define  and control such 

as agricultural regions and land development (Dressing et al., 2016; Speight, 2020). Pollutants are 

categorized on different characteristics such as organic and inorganic, pathogenic or 

nonpathogenic, source and origin, and by their impacts on environment and human health (Madhav 

et al., 2020). The type of pollutants contaminating water vary depending on the type of 

anthropogenic activity. Runoff from agricultural fields is likely to contain high concentrations of 

suspended solids, dissolved salts, nutrients (mainly nitrogen and phosphorus), pesticides, organic 
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matter, and pathogens.  Water used in domestic and municipal activities is likely to contain high 

bacterial loads, while that used in industrial and mining activities may also contain toxic organic 

compounds or emerging contaminants, which for some, only a small amount can lead to detrimental 

contamination.  

Although there is growing concern about emerging pollutants in industrial wastewater 

(Chowdhary et al., 2020; Rasheed et al., 2019; Wilson & Aqeel Ashraf, 2018; WWAP (United 

Nations World Water Assessment Programme), 2017) and the nutrients nitrogen and phosphorus, 

pathogens are still a major pollution concern. Waterborne pathogens and related diseases are a 

major public health concern because of the morbidity and, in extreme cases, the mortality they 

cause; the latter is estimated at 2.2 million deaths per year especially in populations of children 

(Ramírez-Castillo et al., 2015). They also impact the economy mainly by the high cost that 

represents their prevention and treatment (Habibi-Yangjeh et al., 2020). For example, some 

pathogens like Cryptosporidium spp., an intestinal parasite and a common cause of severe diarrhea 

especially in immunocompromised people and young children (Zahedi & Ryan, 2020), can only be 

killed using sophisticated and expensive water treatment methods rather than just chlorination 

(Gerba & Pepper, 2019). It has been suggested that waterborne diseases have an associated 

annual economic cost of 1 billion dollars in the US alone and 12 billion dollars worldwide (Ramírez-

Castillo et al., 2015). Pathogens are one of the most reported impairments of water quality 

throughout the US, according to the Environmental Protection Agency (EPA). For the period 2004 

to 2014 it was the top impairment reported for all assessed rivers and streams, bays and estuaries, 

and coastal shoreline (Dressing et al., 2016). 

 

1.2. Waterborne Diseases 

An organism causing disease to its host is called pathogen (Balloux & Van Dorp, 2017). 

Pathogens are a diverse group comprising viruses, bacteria, fungi, protozoa, worms, and even 

infectious proteins called prions, the most familiar are bacteria and viruses (Alberts, 2002). There 

is a vast abundance of bacteria and viruses on Earth, in fact, they inhabit all kinds of environments, 

it is estimated that there may be as many as 1x1031 viruses in existence (Nature Reviews 

https://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5704/
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Microbiology, 2011). It is worth noting that the human body carries an average of 3.8 x 1013 bacteria, 

primarily in the gut (Sender et al., 2016) ) and that a human adult will excrete their own weight only 

in fecal bacteria each year (Nature Reviews Microbiology, 2011) while the pathogen concentration 

in animal waste depends on the species, age, health, stress, and diet (Alegbeleye & Sant’Ana, 

2020). However, it is important to acknowledge that not all these microorganisms pose a threat to 

our well-being.  

Every living organism is affected by pathogens, a total of ~1400 known pathogens species 

affect humans (Nature Reviews Microbiology, 2011) which are diverse in size, shape, and content, 

each causing disease in a different way (Alberts, 2002).  Pathogens in humans can be transmitted 

by direct contact —person to person, droplet spread—, or indirect contact —airborne transmission, 

contaminated objects, food and drinking water, animal to person, animal reservoirs, insect bites, 

environmental reservoirs— (Van Seventer & Hochberg, 2017). When water acts as the passive 

carrier of pathogens the term waterborne is used, the diseases transmitted from contaminated 

water are known as waterborne diseases (Leclerc et al., 2002). 

A wide variety of pathogens excreted in feces are capable of initiating waterborne diseases, 

depending on factors such as pathogen survival, latency, ability for multiplication in the 

environment, and the required dose for establish infection; in theory, even a single organism is 

enough to cause an infection (Leclerc et al., 2002). There is a potential risk of pathogen spread 

into the environment wherever feces are deposited, stored, or applied to land (Alegbeleye & 

Sant’Ana, 2020) which can be heightened by the amount of produced feces. Manure and 

wastewater produced by farms and people has been estimated at 335 million tons of dry matter 

per year by Concentrated Animal Feeding Operations (CAFOs) and 18.1 million tons of dry matter 

per year by the citizens only in the US (Bradford et al., 2013). Diverse  symptoms can be caused 

by waterborne diseases as gastrointestinal, skin, ear, respiratory, eye, neurological or bloodstream 

problems with the most common being diarrhea and vomiting (Centers for Disease Control and 

Prevention, 2023a; Minnesota Department of Health, 2022b). Children under 5 years, the elderly, 

pregnant women, and the immunocompromised are more vulnerable to waterborne diseases due 

to reduced immunity (Gaffield et al., 2003; Rhoden et al., 2021). 
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Outbreaks of waterborne diseases happen all around the world. According to Yang et al., 

(2012) from 1991 to 2008 the reported outbreaks clustered in western Europe, central Africa, north 

India and southeast Asia. In the United States, 82 waterborne outbreaks were reported from 32 

states to the National Outbreak Reporting Systems (NORS) of the Centers for Disease Control and 

Prevention (CDC) during 2015 where recreational water (47), drinking water (23), other exposures 

(6), and unknown (6), were implicated in the outbreak (Centers for Disease Control and Prevention, 

2022c). Also in the US, for the period 1971–2020 the top causes of waterborne outbreaks were 

Legionella, Giardia, Norovirus spp., Shigella and Campylobacter in drinking water (Centers for 

Disease Control and Prevention, 2022d), and Cryptosporidium, Pseudomonas, Legionella, Shigella 

and Norovirus spp. in recreational water (Centers for Disease Control and Prevention, 2022b).  

 

1.3. Pathogens in Surface Water 

Most of the commonly occurring waterborne pathogens in the US, such as 

Cryptosporidium, Cyclospora spp., and E. coli O157:H7, typically stem from fecal waste on land, 

both from animals and humans (Minnesota Department of Health, 2022a, 2022c, 2022d); these 

pathogens can enter surface water through different channels. Other pathogens such as Legionella 

and Naegleria fowleri, occur naturally in waterbodies (Centers for Disease Control and Prevention, 

2018, 2023b). Sources of pathogens on land impacting surface water depend on the type of 

developed activities in the watershed. Land use, land cover and their change can impact water 

quality, particularly pathogen concentration (Pandey et al., 2012). Land use can contribute to soil 

erosion (Nakhle et al., 2021) while land use changes in the process of urbanization, 

industrialization, and agriculture can change the surface characteristics of watersheds and 

therefore the quality and quantity of runoff (Camara et al., 2019). Precipitation may increase the 

concentration of pathogens in surface water due to increased surface runoff from agricultural lands 

and urban areas and re-suspension from sediments.  

In an urban environment, where land use changed from forest or agricultural use to 

suburban and urban areas, the creation of impervious surfaces introduces hydraulic modifications 

that profoundly affect the quantity, path and therefore the quality of the stormwater runoff (Carstens 
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& Amer, 2019; National Research Council, 2009). During rainfall events, stormwater runoff is 

produced from both pervious and impervious areas, collecting pollutants such as pathogens as it 

passes over roads, streets, rooftops, and compacted lands (Gaffield et al., 2003; Müller et al., 

2020). Additionally, during periods of intense runoff combined sewer and less likely sanitary sewer 

overflows can discharge contaminated water directly into waterbodies (Office of Water Programs 

& California State University Sacramento, 2008; United States Environmental Protection Agency, 

2023f), Curriero et al., (2001) found that most waterborne disease outbreaks in the US follow large 

precipitation events. Other on-land sources of pathogens include Wastewater Treatment Plants 

(WWTPs) depending on the treatment process, when poorly operated, or when spills occur  

(Anastasi et al., 2012; Verburg et al., 2019), broken or leaky sewer pipes, failing or poorly sited 

septic systems, illicit sewer connections, urban litter, and domestic pet feces (Ahmed et al., 2018; 

Arnone & Perdek Walling, 2007; Benham et al., 2006).  

In agricultural settings, where the commonly associated pathogens are zoonotic microbes 

which are capable of causing disease in both animals and humans (Bradford et al., 2013), pathogen 

sources include direct deposition of livestock manure to waterbodies, runoff from fields with recent 

manure application, grazing activities, feedlots, CAFOs and ranches (Alegbeleye & Sant’Ana, 

2020; Burkholder et al., 2007). CAFOs and ranches produce considerable quantities of fecal waste, 

it is typical for nearby streams to contain pathogens as a result of the direct discharge of their 

effluents into the water, leaks from manure storage areas and ponds, the application of manure to 

nearby land, and accidental spills (Alegbeleye & Sant’Ana, 2020; Haack et al., 2015; Heaney et al., 

2015; Hubbard et al., 2020). It is worth noting that EPA considers agriculture as one of the major 

pollutant sources (United States Environmental Protection Agency, 2017a). Wildlife areas where 

feces from animals are continuously and randomly deposited on the soil surface become potential 

sources of pathogens when a rainfall event occurs, potentially carrying large quantities of 

pathogens to rivers (Bolds et al., 2022; Cox et al., 2005; Nguyen et al., 2018).  

There are other factors influencing the concentration and the fate and transport of 

waterborne pathogens including precipitation amount, type and location of sources on land, 

sediment, and the survival characteristics of individual organisms which in turn are influenced by 
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moisture, nutrient availability, temperature, pH, salt, and sunlight (Gerba, 2015; Jokinen et al., 

2012; United States Environmental Protection Agency, 2023c). The effect of temperature differs 

depending on the pathogenic organism species and strain, some organisms are more heat tolerant 

(Legionella spp.) or cold tolerant (Cryptosporidium spp.), with extreme cases called extremophiles 

thriving temperatures around 131 or 32 degrees Fahrenheit (hyperthermophiles or psychrophiles) 

respectively (D’Amico et al., 2006; Rampelotto, 2013). Generally cooler temperatures enable 

longer survival times and above certain temperature thresholds the survival rates typically 

decrease. In water bodies, water temperature, which is directly affected by air temperature, can 

strongly influence growth and survival rates of pathogens, and typically, the survival or growth of 

pathogens decreases with warmer temperatures (Islam et al., 2021; Shahid Iqbal et al., 2017; 

United States Environmental Protection Agency, 2023c). Watershed slope also plays an important 

role in water quality; under the force of gravity, water moves from higher to lower elevation with a 

speed and rate proportionate to the steepness and length of the slope. Many hydrological 

processes such as soil erosion, soil deposition, runoff, and infiltration have dependency on the 

speed and rate at which water moves on land, which in turn has a significant impact on surface 

water quality (Alberti, 2008; Lintern et al., 2018). Stream networks can also influence pathogen 

concentrations by influencing the water residence time and water dilution capacity (Wang et al., 

2018). Flow duration is the basis for hydrologic stream classification; perennial streams flow year-

round for which base flow is maintained by local or regional groundwater inflows; intermittent 

streams only flow continuously at certain times of the year due to a seasonal groundwater source; 

and ephemeral streams flow briefly during and immediately after precipitation in the vicinity (Levick 

et al., 2008). Flow also plays an important role in stream connectivity which controls the mobility of 

matter and organisms in the system (Jaeger et al., 2014; Wohl, 2017). River connectivity could 

explain pathogen sources and abundance —at locations with higher river connectivity increased 

abundance may be expected compared to sites with lower connectivity (Frick et al., 2020). 
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1.4. Escherichia coli (E. coli) as Water Quality Indicator 

In the US, Water Quality Standards (WQS) are provisions approved by EPA describing the 

desired condition of a water body and the means by which that condition will be protected or 

achieved.  WQS consist of at least three components: designated uses of a water body, Water 

Quality Criteria (WQC) to protect the designated uses, and antidegradation requirements to protect 

existing uses and high quality/high value waters (United States Environmental Protection Agency, 

2023b). The WQC are those scientifically defensible characteristics to protect aquatic life and 

human health (Schnoor, 2014). These can be numeric, as maximum pollutant concentration levels 

permitted, or narrative, as the description or the desired conditions of a water body (United States 

Environmental Protection Agency, 2023b). EPA provides national recommended WQC, however 

states and authorized tribes may adopt other scientifically defensible ones where appropriate 

(United States Environmental Protection Agency, 2017b). For ambient waters —those open waters 

such as rivers, lakes, and streams (United States Environmental Protection Agency, 2023g) — 

EPA recommends WQC for human health, recreation, aquatic life, and nutrients among others 

(United States Environmental Protection Agency, 2022i).  When these criteria are met, water quality 

will generally protect the designated use; if exceeded, the water quality may pose a human health 

or ecological risk, and protective or remedial action may be needed (United States Environmental 

Protection Agency, 2017b). Human health WQCs protect any designated uses related to ingestion 

of water, ingestion of aquatic organisms, or other waterborne exposure from surface waters (United 

States Environmental Protection Agency, 2017b, 2022p). The purpose of recreational WQCs is to 

safeguard recreational activities that involve direct contact with water, such as swimming, surfing, 

water skiing, tubing, and other similar activities that may involve immersion, ingestion, and a high 

level of bodily contact with water (United States Environmental Protection Agency, 2017b, 2021a, 

2023d). 

Those WQCs related to pathogens in ambient water use indicator organisms or surrogates 

given that identifying and isolating waterborne pathogens can prove to be challenging due to the 

difficulties and expenses involved in the testing for varieties of pathogens (Islam et al., 2021). 

Typically, nonpathogenic Fecal Indicator Bacteria (FIB) such as fecal coliform, E. coli, and fecal 
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streptococci and enterococci serve as surrogates to detect the potential presence of fecal waste 

and therefore a wide variety of most commonly occurring pathogens with fecal origin (Motlagh & 

Yang, 2019; Pandey et al., 2014). E. coli and total coliforms are the most commonly used FIB (Wen 

et al., 2020). A useful aspect of common FIB is their prevalence in the feces of various animals, 

including birds, mammals, and humans making them a reliable means of identifying fecal pollution. 

However, the lack of host specificity makes it challenging to identify the exact source of the pollution 

(E. Li et al., 2021), and they are ineffective to indicate the presence  of enteric viruses and protozoa 

from fecal waste or naturally occurring waterborne pathogens (Hussain, 2019).  

E. coli are a large and diverse group of gram-negative, rod-shaped bacteria found in food, 

the environment, and the gastrointestinal tract and feces of warm-blooded animals (Centers for 

Disease Control and Prevention, 2014). The hundreds of E. coli strains can be grouped into 

commensal organisms —not causing disease and normal residents of the gastrointestinal tract, 

intestinal pathogens —strains causing diarrheal intestinal disease referred as diarrheagenic E. coli, 

and extraintestinal pathogens – causing diseases outside of the intestinal tract (Gerba, 2015; 

Poolman, 2017). Diarrheagenic E. coli group includes Shiga Toxin-producing E. coli (STEC) also 

referred to as Verocytotoxin-producing E. coli (VTEC) or Enterohemorrhagic E. coli (EHEC). The 

most commonly identified STEC strain in the US is O157:H7 (Centers for Disease Control and 

Prevention, 2014) that can cause abdominal cramps, severe bloody diarrhea, fever, and hemolytic 

uremic syndrome that can lead to kidney failure and death (Johns Hopkins Medicine, 2019).  

E. coli concentrations in water are measured using different approaches such as 

Membrane filtration, Multiple Tube/Multiple Well, and Multiple Tube Fermentation with procedures 

standardized by EPA (Guidelines Establishing Test Procedures for the Analysis of Pollutants, 2020) 

resulting in measurement units of Colony-Forming Units per 100 milliliters (CFU/100 mL) or Most 

Probable Number per 100 milliliters (MPN/100mL). EPA WQC for E. coli is expressed in CFU/100 

mL. For recreational water the recommended values are a Geometric Mean (GM) of 126 

CFU/100mL and a Statistical Threshold Value (STV) of 410 CFU/100 mL, with weekly sampling to 

evaluate them over a 30-day period (United States Environmental Protection Agency, 2021a). 
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1.5. Pathogenic Impaired Waters in the US 

The Clean Water Act (CWA) regulates for pathogens found in ambient water bodies in the 

US  (United States Environmental Protection Agency, 2022h) while the Safe Drinking Water Act 

(SDWA) addresses pathogens in drinking water supplies (Centers for Disease Control and 

Prevention, 2022a). The CWA, a federal law originally enacted in 1948 with major updates in 1972, 

has a primary goal to achieve water quality that meets beneficial use requirements for a given 

waterbody. To accomplish this, the restoration and maintenance of the chemical, physical and 

biological integrity of the water in the country is supported by several actions mandated by this Act 

(United States Environmental Protection Agency, 2021e). Section 305(b) of the CWA requires 

states and territories to prepare and submit biennially to EPA a report including a description of the 

water quality of the Waters Of The US (WOTUS) in the state during the preceding years.  The 

section 303(d) is used to identify and make a list of those waters that are polluted —impaired 

waters— and their causes of pollution called Clean Water Act Section 303(d) List of Water Quality 

Limited Segments, and to establish a priority ranking for such waters and plans to restore 

degradation settling a Total Maximum Daily Load (TMDL) of the related pollutants (United States 

Environmental Protection Agency, 2021c, 2023h). A TMDL is a calculation that determines the 

maximum amount of a pollutant that can enter a waterbody to meet and maintain WQSs for that 

specific pollutant. It identifies a target for reducing the pollutant and distributes the necessary load 

reductions to the source(s) responsible for the pollutant (United States Environmental Protection 

Agency, 2022t). To develop a TMDL it must be  in accordance with the CWA regulations for waters 

with bacterial concentrations exceeding the WQCs; the identification of pollutant sources is 

fundamental, Waste Loads Allocations (WLAs) —the maximum load of pollutants allowed to be 

released (Minnesota Pollution Control Agency, 2022)— from those point sources as well as Load 

Allocation (LA) for those non-point sources should be defined (United States Environmental 

Protection Agency, 2022t). The point sources used to assign WLAs are all sources subject to 

regulation under the National Pollutant Discharge Elimination System (NPDES) program as 

WWTPs, stormwater discharges, and CAFOs. 
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According to EPA estimates, pathogens are the leading cause of impairment for 303 (d) 

listed waters. Since pathogens are not usually directly measured, the presence of FIB suggests the 

pollution is from fecal matter. Pandey et al., (2014) suggest that more than 480,000 km of rivers 

and shorelines as well as 2,000,000 Ha of lakes are impaired by pathogens in the US, while for the 

period 2004 to 2014 national totals for causes of impairments or threats to impairment obtained 

from this data show that at least 178,219 miles of rivers and streams, and 549,515 acres of lakes, 

reservoirs, and ponds are impaired by pathogens (Dressing et al., 2016). This is likely an 

underestimate because not all surface waters have been assessed and the spatiotemporal 

variability of water quality. 

While the EPA has played a fundamental role in controlling point source discharges to 

WOTUS thanks to the establishment of the NPDES program, for some potential point sources of 

pollutants, especially those not discharging to a WOTUS, there is often no federal or state/local 

approach to regulation and monitoring. Thus, there has been no comprehensive assessment of 

their contributions to water quality impairments or proximity to vulnerable communities. 

 

1.6. Drylands 

There are numerous definitions regarding drylands, but a commonly accepted definition is 

based on the comparison of the long-term average of Precipitation (P) to the long-term average of 

climatic water demand, known as Potential Evapotranspiration (PET). This numerical indicator is 

called the aridity index (Cherlet et al., 2018). This ratio indicates the maximum amount of water 

vapor capable of being lost by a ground completely covered with vegetation, in a given climate, 

involving both the evaporation that occurs from the soil and the transpiration that takes place from 

the vegetation within a particular area during a specified time frame (Gaur & Squires, 2018). Based 

on the aridity index, drylands are the climatic zones where the ratio of long-term mean annual 

precipitation to potential evapotranspiration is less than 0.65, with the subtypes hyper-arid (aridity 

index < 0.05), arid (0.05 ≤ aridity index < 0.2), semi-arid (0.2 ≤ aridity index < 0.5), and dry subhumid 

(0.5 ≤ aridity index < 0.65) (Cherlet et al., 2018; European Commission. Joint Research Center, 

2019). 
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Drylands are characterized by a combination of low precipitation, droughts, and heat waves 

inducing water scarcity (Food and Agriculture Organization of the United Nations, 2023; Gaur & 

Squires, 2018). In these areas, the soil is prone to erosion caused by wind and water, and there is 

intensive mineral weathering; additionally, the topsoil has low fertility due to limited organic matter 

content (Food and Agriculture Organization of the United Nations, 2023). Drylands are critical 

environments that cover more than 40% of the Earth land surface, where hyper-arid, arid, semiarid, 

and dry subhumid regions account for about 13, 31, 36, and 20% of this area, respectively (Plaza 

et al., 2018) and are home to around three billion people (Gaur & Squires, 2018; Mirzabaev et al., 

2019). Drylands encompass round 30% of urban areas where approximately 34% of the urban 

population resides, and about 44% of the world's agricultural land, which produces roughly 60% of 

the world's food exist. (Cherlet et al., 2018). In the US, 40% of the land is considered dryland 

(United States Geological Survey, 2016). 

The presence of ephemeral and intermittent streams is a characteristic of drylands and 

both are important for ecological and societal purposes (Jaeger et al., 2014). Ephemeral and 

intermittent headwater streams account for ~60% of total mean annual flow to all northeastern US 

streams and rivers, for example (Dewey et al., 2020). Ephemeral streams have characteristics that 

differ from perennial rivers as larger flood magnitudes compared to rivers of more humid regions, 

high sediment supply, and poor bank stabilization and cohesion due to the sparse or absent riparian 

vegetation and low presence of clay (Billi et al., 2018). Even slight variations in climate can result 

in significant changes in surface flows in dryland streams such as more frequent and extensive dry 

streambeds and reduced hydrologic connectivity particularly noticeable during prolonged droughts, 

that coupled with human population growth can lead them to reduce or cease flow (Jaeger et al., 

2014); as well as high transport of sediments with high magnitude storm events. 

E. coli can be transported in water as free cells or cells attached to particles of solids (e.g. 

soil and manure) affecting its fate and transport in aquatic systems (Cizek et al., 2008; Garcia-

Armisen & Servais, 2009; Krometis et al., 2007; Ribolzi et al., 2016; Soupir et al., 2010). Boithias 

et al., (2021) found that high values of in-stream E. coli concentrations were predominantly driven 

by surface runoff and soil surface erosion. This fact could be especially important in semi-arid areas 
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where soil erosion is considered one of the major threats (Xiong et al., 2018) and intense storms 

lead to high-energy flash floods (Rio et al., 2017; L. Yang et al., 2017).  

 

1.7. Pathogens and Climate Change 

 Greenhouse emissions due to human activities contribute to global warming. In the period 

2011-2020 an average increment of 1.09˚C with respect to the period 1850-1906 has been 

detected, being larger over land (1.59 ˚C) than over the ocean (0.88 ˚C); the increase has been 

faster in the last 50 years period (Intergovernmental Panel on Climate Change, 2023). Among the 

impacts of global warming are the increases in frequency and magnitude of heatwaves, heavy 

rainfall, droughts, tropical cyclones, and sea level rise.  

As the climate continues to change, experts predict that the rise in precipitation and 

temperatures will only worsen issues with fecal contamination (Islam et al., 2021) increasing the 

challenges of water availability and exposure to unsafe water. More than 3.3 billion people live in 

conditions that are highly vulnerable to climate change, including those with development 

constraints among which are Indigenous people, small-scale food producers and low-income 

households (Intergovernmental Panel on Climate Change, 2023). Studies suggest that if 

temperature increases 1.5 ˚C, around 951 million people living in drylands, excluding hyper-arid 

lands, will be exposed to increasing impacts related to water such as water stress, drought intensity, 

and habitat degradation. The fact that drylands currently cover a big portion of the global land area 

and are home to more than a third of the world population, special attention should be paid to these 

types of lands and their water resources.  

In the US it is expected that climate change includes higher temperatures and increases in 

the uncertainty in precipitation amount and seasonal timing (Melillo et al., 2014), especially 

increasing the frequency of heavy precipitation events and longer dry periods between events 

(United States Environmental Protection Agency, 2023c). Prein et al., (2016) found that the US 

Southwest has already experienced a 25% decrease in precipitation along with increased 

precipitation intensities in the period 1980-2010. Given the It is crucial to acknowledge the potential 
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impacts of waterborne pathogens due to the undeniable scientific evidence supporting climate 

change.  

The impact of climate change on waterborne pathogens will differ according to the 

characteristics of various watershed settings and will be influenced by local land use, water 

management, and other human activities that impact water sources, even though some 

generalizations can be identified. Expected rise in precipitation could result in similar increases in 

streamflow, which can impact water quality in a similar manner with the mobilization of pathogens 

(Wilkes et al., 2011) and resuspension from river and lake bed sediments (Garzio-Hadzick et al., 

2010; Wu et al., 2009)  leading to more peak concentrations. This can also occur with droughts as 

reduced flow volumes could result in less microbial dilution. Flooding could lead to inundation of 

drinking water and sewage treatment plants as well as to the increase of sewer overflow (Coffey et 

al., 2014). Projected increases in air and water temperatures could alter pathogen survival, 

replication and virulence (Levy et al., 2018) as well as human exposure to waterborne pathogens 

by extending the period of warm-weather recreational uses (United States Environmental 

Protection Agency, 2023c). 

 

1.8. Research Objectives and Dissertation Structure 

While studies have been conducted to understand the most probable factors that influence 

E. coli levels in surface waters (as previously described), the focus has been primarily in humid or 

temperate regions (Causse et al., 2015; Crosby et al., 2019; Xue et al., 2018), with few studies 

available in arid and semiarid regions, likely because temperate and humid regions support 

extensive agricultural production and have more water available to monitor (Azad Hossain, 

2013).Thus there are still more questions that need to be answered such as how pathogen drivers 

differ in arid and semiarid regions, and where potential sources of contamination exist, especially 

in underserved areas like Tribal lands, of which approximately 80% are located on arid or semi-arid 

regions (United Nations Environmental Programme, World Conservation Monitoring Centre, 2019; 

United States Census Bureau, 2020a). 
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This dissertation aims to investigate previously undocumented threats to water quality 

through understanding pathogen drivers in arid and semi-arid environments and documenting 

wastewater infrastructure on Tribal lands (Figure 1) by addressing two major questions 1) How do 

ephemeral streams (common in arid and semiarid areas) impact the presence of pathogens in 

surface waters? and 2) What are some unknown potential sources of water quality impairments in 

Tribal areas? To address the first question Chapter 1 uses publicly available water quality data, 

specifically E. coli concentrations for Arizona. Arizona has both arid and semi-arid regions and 

therefore a significant number of ephemeral rivers typical of this type of climate, so it makes an 

ideal case study area. The goal of this work is to identify the main drivers of E. coli concentration 

from a series of proposed predictors. Chapter 2 focuses on Tribes with government-to-government 

relationships with the state and Tribal land base in the US and the WWTPs serving their 

populations. Information about facilities discharging to a WOTUS from an EPA database as well as 

race data is used to identify and categorize these facilities with the goal of assessing the current 

state of wastewater infrastructure in these communities. Chapter 3 is centered on developing an 

algorithm using publicly available remotely sensed data to detect terminal Wastewater Lagoons 

(WWLs). This infrastructure is commonly used to treat domestic wastewater produced by small and 

rural communities. This work is expected to reduce the gap of information on the locations of 

facilities not discharging to a WOTUS that due to their possible lack of monitoring could become a 

source of pathogenic contamination. 
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Figure 1. Dissertation sketch showing how different possible pathogenic sources interact with arid 
and semi-arid environments. This research aims to bring a better understanding of E. coli drivers 
and sources. Created with BioRender.com. (Tilley et al., 2014) 
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CHAPTER 2 

ESCHERICHIA COLI DRIVERS IN SURFACE WATERS OF ARID AND SEMIARID REGIONS: A 

CASE OF STUDY OF ARIZONA 

 

As discussed previously, surface water, as streams and lakes, is an important source of 

freshwater due to its accessibility, a characteristic that also makes it susceptible to contamination 

(Walker et al., 2019). Climate change will exacerbate pressures on freshwater resources in many 

regions of the world that are already facing water stress. In the near future, climate change may 

impact the already highly variable spatial and temporal patterns of rainfall in arid and semi-arid 

regions especially, contributing to more water stress. Both rainfall and land degradation impact 

water security through reductions in the reliability, quantity, and quality of water flows mainly 

affecting surface water (UN Water, 2020). 

The challenges faced in water treatment, combined with extant and worsening water 

quantity concerns in arid and semiarid regions emphasizes the need to improve water quality by 

reducing in-stream pathogenic contamination. This requires an understanding of the combined 

impacts of point and non-point sources, climatic conditions, physical landscape characteristics, and 

anthropogenic activities on pathogen contamination at the watershed level (Pandey et al., 2012). 

This research attempts to answer the question of what drivers are important in influencing 

E. coli concentrations in Arizona streams through two approaches: (1) analyzing all in-stream E. 

coli observations with respect to the type of river and antecedent moisture conditions and (2) 

through the aggregation of E. coli data to the watershed level (10-digit Hydrologic Unit Codes 

(HUC10s)) (United States Geological Survey, n.d.-e) and then examining the relationship to 

different watershed characteristics using a linear regression model. 

 

2.1. Methods 

The first objective focuses on comparing hydrologic characteristics with all observations 

given the uniqueness of arid and semi-arid hydrology. In the second objective, a more typical 

aggregated approach was applied considering as many sources and drivers as possible. All 
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analyses were conducted using ArcGIS (Environmental Systems Research Institute (Esri), n.d.) 

and the statistical software R version 4.2.0 (R Core Team, 2022; RStudio Team, 2022). Figure 2 

outlines the methodological approach for both objectives of the study, with more details provided 

in the following sections. 

 
 
 

Figure 2. Methodological approach including the approach to both study objectives. Light blue color 
refers to the screening process, green color refers to objective 1 approach which uses all in-stream 
E. coli observations, while light purple outlines objective 2 approach that aggregates E. coli data to 
the watershed level before performing subsequent statistical analysis. 

 

2.1.1. Study Area 

The study was conducted on surface waters in Arizona, a state located in the southwest 

part of the US, bordering Mexico and other states of Utah, New Mexico, California, and Nevada. 

Arizona is the sixth largest state by land area and is characterized by arid and semi-arid climates 

with average annual precipitation ranging from around 3 inches in the southwest to around 40 

inches in some mountain areas (Arizona State Climate Office, n.d.) leading to scarce water 

resources (United States Environmental Protection Agency, 2021d). In summer, May - September, 
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monsoons cause heavy rainfall with the monsoon season in northern Arizona officially designated 

as June 15th to September 30th (United States Department of Commerce, n.d.). However, the 

onset and end of monsoonal rainfall can vary from year to year. Arizona has approximately 323,036 

stream miles of which only ~1.35 % are classified as perennial, ~12.45 % intermittent, and ~86.20% 

ephemeral, based on the US Geological Survey (USGS) National Hydrography Dataset (NHD) for 

Arizona (United States Geological Survey. National Geospatial Program, 2020). Even though the 

NHD is the most comprehensive source on stream extent and streamflow classification, it tends to 

be less accurate characterizing intermittent rivers and ephemeral streams (Fritz et al., 2020; Wang 

& Vivoni, 2022), adding a degree of uncertainty in the indicated amounts and further classification. 

These designations and their impact on water quality are highly important now, as the debate over 

what waterbodies are included in the federal definition of “Waters of the United States” (WOTUS) 

has been politically charged in recent years (Keiser et al., 2022; Sullivan et al., 2019) and even in 

recent Supreme Court rulings. According to the Arizona Department of Environmental Quality 

(ADEQ), E. coli is the most common surface water quality impairment in Arizona in the period 2012 

to 2021 in assessed surface waters focusing on perennial waters and excluding Indian reservations 

(Arizona Department of Environmental Quality, 2022a).  

 

2.1.2. Data 

1.1.2.1. In-Stream E. coli Concentration Observations. Through a search in the Arizona 

Water Quality Database (Arizona Department of Environmental Quality, n.d.-d) on June 2020 were 

downloaded 21,878 records with 38 E. coli related variables (listed in the supplementary 

information (Appendix A - SI 1.1. Table 1)), including values of E. coli concentration measured in 

CFU/100mL and MPN/100mL for water as the sample medium and for the period 1993 to 2020. 

This database stores surface and groundwater water quality data collected by ADEQ through the 

Monitoring Unit that conducts ambient monitoring of lakes and streams to assess their biological 

and chemical integrity to determine potential sources of pollution and provide guidance to improve 

their water quality conditions, and the Watershed Protection Unit that collects data in support 

development of TMDL; and other agencies for the state of Arizona (Arizona Department of 
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Environmental Quality, 2022b). The data were available across 1,186 different sites as part of 

various water quality monitoring programs. 

Records with negative or empty values of E. coli concentration, records with same date 

and time for the specific site, and those labeled as “duplicated”, “split”, or “blank” were removed 

from the database except those marked as “duplicated” without another record with the same date 

and same or similar time. Sites were classified into 8 different categories: Perennial, Intermittent, 

Ephemeral, Artificial Path, Well, Intermittent Spring, Canal/Ditch, and Not identified, described in 

the supplementary information (Appendix A - SI 1.2. Table 2), based on its geographic location 

according to the NHD Flowlines shapefile from the USGS for Arizona (United States Geological 

Survey. National Geospatial Program, 2020) using “Type” variable and Google Earth imagery to 

confirm as needed. Records in the time span from 2010 to 2019 and with sites classified as 

Perennial, Intermittent, Ephemeral, and Artificial Path within HUC10 watersheds completely inside 

Arizona, were selected for this study.  

 

2.1.2.2. Precipitation Data. Precipitation data in inches for the recorded sampling date 

(day 0) and for each of the 8 prior days (days 1 to 8) for each E. coli observation were obtained 

from the closest rain gauge to the site with available data for all 9 days. Three datasets were used 

to develop the precipitation data: the Global Historical Climatology Network – Daily (GHCN-Daily) 

from the National Oceanic and Atmospheric Administration (NOAA) (National Oceanic and 

Atmospheric Administration. National Centers for Environmental Information, n.d.), the Maricopa 

County Rainfall Data (Maricopa County, n.d.), and the Arizona Meteorological Network (AZMET) 

from the University of Arizona (The University of Arizona. The Arizona Meteorological Network, 

n.d.). Rain gauge locations, Station IDs, and precipitation data were accessed through their 

websites except for the GHCN-Daily where Station IDs and locations were extracted from the 

GHCND Stations layer created by NOAA National Centers for Environmental Information (NCEI) 

(National Oceanic and Atmospheric Administration. National Centers for Environmental 

Information, 2021). Precipitation for the 9 days associated with each record was also summed to 

create a total antecedent rainfall value. For each watershed (see next section), mean and median 
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values for precipitation on the sampling day, one day before up to eight days before, mean and 

median number of days, out of 9, with and without precipitation and until precipitation, as well as 

mean and median distance from the sample site to the rain gauge location were computed. 

 

2.1.2.3. Watersheds and Watershed Boundaries. To explore relationships between 

watershed characteristics and E. coli concentration values in the second objective, observations 

were also aggregated to the HUC10s. According to the USGS Watershed Boundary Dataset (WBD) 

accompanying the NHD for Arizona (United States Geological Survey. National Geospatial 

Program, 2020), 485 HUC10 watersheds cover Arizona and of them, 374 are located completely 

inside the state boundaries delineated by the USGS National Boundary Dataset (NBD) (United 

States Geological Survey. National Geospatial Technical Operations Center, 2021) while 77 are 

shared with neighboring states and 34 are shared with Mexico. Watersheds located completely 

inside Arizona and including more than 10 E. coli records were selected. 

 

2.1.2.4. Watershed Characteristics. 

2.1.2.4.1. Area. Watershed area in squared meters was determined using the USGS WBD 

information accompanying the NHD for Arizona (United States Geological Survey. National 

Geospatial Program, 2020). Specifically, the shapefile WBDHU10 was used for this purpose. 

 

2.1.2.4.2. River Length. The length of perennial, intermittent, and ephemeral rivers, as 

well as artificial paths for each watershed were derived using the line features in the USGS NHD 

for Arizona (United States Geological Survey. National Geospatial Program, 2020), which are 

available in the “NHDFlowline” shapefiles. One of the code values used by the USGS NHD is the 

feature code (“FCode”), a five-digit integer value, the first three referring to the type of the feature 

and the remaining to its characteristics, that includes most of the information needed to re-create 

the hydrography and allows automated processing (United States Geological Survey, n.d.-g). 

FCode values of 46003, 46006, 46007, and 55800, refer to features with hydrographic categories 

of intermittent, perennial, and ephemeral stream/rivers and artificial paths, respectively, and were 
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used in this study (United States Geological Survey, n.d.-c). Using length values, more 

characteristics were calculated including the total length (the length summation of all types); the 

sum of the lengths of artificial paths with perennial rivers as well as of intermittent with ephemeral 

rivers; the density (length per watershed area) for each type, the total, and the combinations of 

above; and the percent (length divided by the total length) for each type and the combinations. 

 

2.1.2.4.3. Mean Slope. Mean slope, in degrees, for each watershed was derived from a 

1/3 arc second (~10 meters) resolution Digital Elevation Model (DEM) acquired from the 3D 

Elevation Program (3DEP) seamless products of The National Map (United States Geological 

Survey, n.d.-a). Slope serves as a parameter to indicate the susceptibility to soil erosion (Nut et al., 

2021). 

 

2.1.2.4.4. Number of Potential Emitters. Number of CAFOs, dairies, farms and ranches, 

declared wildlife areas, and applications of biosolids or sludge areas were counted for each 

watershed from the ADEQ Arizona Unified Repository for Informational Tracking of the 

Environment (AZURITE) Places layer (Arizona Department of Environmental Quality, 2021a). 

WWTPs were obtained from the Enforcement and Compliance History Online (ECHO) database 

(https://echo.epa.gov/facilities/facility-search/results). Each of these entities has the potential to 

release E. coli or other fecal contamination into the environment. The number of CAFOs, dairies, 

and farms and ranches were added to account for the potential emitters related with animals in 

agriculture. Densities (number per watershed area) for each type and the combination were also 

calculated. While many factors contribute to whether or not these sources may indeed release fecal 

contamination, such as treatment level of WWTP, manure application locations, and total number 

of animals per farm, without access to detailed information for each source here the total number 

of emitters was used as an indicator of potential sources and contributions.  

 

2.1.2.4.5. Land Cover. Area, in squared meters, for each category of land cover in the 

watersheds was derived from the USGS National Land Cover Database (NLCD) 2016 (Dewitz, 

https://echo.epa.gov/facilities/facility-search/results
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2019). The database has a 30 m spatial resolution and 16-class categorization for the 

Conterminous United States (CONUS). The 2016 NLCD epoch was preferred over 2011 and 2019 

for being closer to the middle of the study period. To account for areas with different levels of 

urbanization, different types of vegetation, possible presence of wildlife and presence of water, ten 

combinations of land cover classes were constructed as shown in Table 1. Densities (land cover 

by watershed area) for all land cover classes and the combinations were computed. 

 

Table 1 

Combinations of Land Cover Classes Used to Account for Areas With Different Levels of 
Urbanization, Types of Vegetation, and Presence of Water 

No Land cover classes combination 

Urbanized area 

1 Developed, high intensity + Developed, medium intensity + Developed, low intensity + Developed, open 

space (Developed, HI + MI + LI + OS) 

2 Developed, low intensity + Developed, open space (Developed, LI + OS) 

3 Developed, high intensity + Developed, medium intensity (Developed, HI + MI) 

Vegetated area 

4 Grassland/herbaceous + Pasture/hay 

5 Barren land (rock/sand/clay) + Shrub/scrub 

6 Deciduous forest + Evergreen forest + Mixed forest 

Other land classifications 

7 Barren land (rock/sand/clay) + Deciduous forest + Evergreen forest + Mixed forest + Shrub/scrub + Woody 

wetlands + Emergent herbaceous wetlands 

8 Barren land (rock/sand/clay) + Deciduous forest + Evergreen forest + Mixed forest + Shrub/scrub 

9 Woody wetlands + Emergent herbaceous wetlands 

Water 

10 Open water + Woody wetlands + Emergent herbaceous wetlands 

 

 

2.1.3. Data Aggregation for Watershed-Based Analysis 

For each watershed the number of sites as well as the number of E. coli concentration 

values as a total and by site type were summarized. The number of samples from artificial paths 



  23 

and perennial river sites were added, as well as from intermittent and ephemeral sites. For the 

above mentioned data, densities and rates were computed, dividing the quantity by the watershed 

area or by the total number of samples in the watershed respectively. 

The GM was calculated for the E. coli concentration values in each watershed using 

Equation 1 where n is the number of values and xi are the values of E. coli concentration; values 

lower than 1 were replaced with 0.9 (Arizona Department of Environmental Quality, n.d.-a; Arizona 

Department of Environmental Quality. Surface Water Section, 2018) and values measured in 

CFU/100mL and MPN/100mL were considered equivalent (Makarowski, 2020; North Carolina 

Department of Health and Human Services, Division of Public Health, 2022) resulting in final GM 

reported in CFU/100mL. Although the two methods differ in their approach, with one directly 

counting visible colonies of bacterial growth and the other measuring growth statistically, they have 

been found to be strongly positively related. In some cases, MPN values have been found to be 

greater than CFU values (Cho et al., 2010). GM values were log transformed using a base 10 

logarithm (log10(GM)) and the distribution of these values was tested for normality using the 

Shapiro-Wilk test (α = 0.05). 

𝐺𝑀 = (∏ 𝑥𝑖
𝑛
𝑖 = 1 )

1

𝑛 = √𝑥1𝑥2…𝑥𝑛
𝑛                                                      (1) 

 

2.1.4. Statistical Analysis 

1.1.4.1. Exploratory Data Analysis Using E. coli Concentrations (Objective 1). Data 

subsets were created to obtain distributions of E. coli concentrations across multiple factors 

including site type, presence of rain, and their combinations (Table 2). 
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Table 2 

Data Subsets Analyzed According to Site Type, Presence of Rain on the Sampling Date and the 
Eight Previous Days, and Their Combinations 

No. Subsets Description 

According to site type 

1 Artificial path Records from artificial path sites 

2 Perennial Records from perennial path sites 

3 Intermittent + Ephemeral  Records from intermittent or ephemeral sites 

According to presence of rain 

4 In rain condition Records with rainfall presence at least in the sampling date or in one 

of the eight previous days 

5 In no rain condition Records without the presence of rainfall in the sampling date or in 

any of the previous eight days  

Combination 

6 Artificial path in rain condition Records from artificial path sites with rain presence in the sampling 

date or at least in one of the eight previous days 

7 Perennial in rain condition Records from perennial path sites with rain presence in the sampling 

date or at least in one of the eight previous days 

8 Intermittent + Ephemeral in rain 

condition 

Records from intermittent or ephemeral sites with rain presence in 

the sampling date or at least in one of the eight previous days 

9 Artificial path in no rain condition Records from artificial path sites without the presence of rain on the 

sampling date or on any of the previous eight days 

10 Perennial in no rain condition Records from perennial path sites without the presence of rain on the 

sampling date or on any of the previous eight days 

11 Intermittent + Ephemeral in no rain 

condition 

Records from intermittent or ephemeral sites without the presence of 

rain on the sampling date or on any of the previous eight days 

 

The twelve distributions in Table 2 and their logarithmic base 10 transformations, computed 

after adding the value 1 to all the E. coli concentration values to avoid undefined results, were 

tested for normality using the Shapiro-Wilks test. Comparison of not transformed distributions was 

done using the nonparametric Kruskal-Wallis rank sum test when comparing more than two 

distributions, otherwise the Wilcoxon rank sum test was used. Dunn’s test with Bonferroni 

correction was used as a post hoc test and the Epsilon squared test for effect size when Kruskal-
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Wallis test was applied, or Wilcoxon effect size (r) if Wilcoxon rank sum test was utilized. A 

significance level of 0.05 (α = 0.05) was used to determine significance with all these analyses.  

 

2.1.4.2. Regression Model on Watershed-Aggregated Data (Objective 2). Spearman’s 

rank correlation coefficient test was used first to summarize the strength and direction of the 

relationship between log10(GM) values and each of the 128 watershed characteristics (either 

observed or derived) listed in supplementary information (Appendix A - SI 1.3. Table 3), p-values 

less than 0.10 were considered as significant. Characteristics without a significant test result were 

considered to have no clear relationship with E. coli concentration values and therefore not included 

in further analysis. A stepwise linear regression model was then created using backward elimination 

with log10(GM) values as the dependent variable to assess the relative impacts of the significant 

characteristics. Based on the results, the least significant characteristic or related characteristic(s) 

(e.g., perennial river length - perennial river length/total river length - perennial river 

length/watershed area) were discarded, and a new linear regression model was created, repeating 

the process.  The different models were compared using the Akaike Information Criterion (AIC) 

values. A final model was selected when all model variables were significant at the level of 0.05. 

The resulting model variables were checked for multicollinearity using the Variable Inflation Factor 

(VIF), where values less than 5 were considered acceptable (Daoud, 2017). To evaluate the model, 

the adjusted coefficient of determination (R2) was calculated, the assumptions of linearity, 

homoscedasticity, and normality of the residuals were checked, and the studentized Breusch–

Pagan test was applied to test homoscedasticity while Shapiro-Wilks test was used to test 

normality, both using a significance level of 0.05.  

 

2.2. Results 

2.2.1. E. coli Data and its Variability 

A total of 4,558 E. coli concentration records were available from 2010 to 2019 on sites 

classified as perennial, intermittent, ephemeral, and artificial path. They are unevenly distributed 

across 610 different sites in Arizona, each of which contains between 1 - 178 records as presented 
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in Figure 3. 585 sites (95.90%) have less than 26 records while 8 (1.31%) have more than 100 

records. 2,622 (57.53%) records are located on perennial streams, 681 (14.94%) on intermittent 

streams, 99 (2.17%) on ephemeral streams, and 1,156 (25.36%) on artificial paths.  

 

 

Figure 3. Spatial distribution of the 610 sites analyzed in this study. Circles represent a site while 
color represents the number of records from the site. 

 

The distribution of the number of records according to the type of site across the years and 

months in the studied time span is presented in Figure 4A and Figure 4B. 2015 is the year with 

the least number of records (261) while 2013 has the most (585). Regarding the months, January 

has the least number of records (130), while August the most (777), followed by July (766) and 

June (679); this is likely due to the seasonal monsoon experience throughout much of Arizona 

which occurs June to August. The highest number of ephemeral records is 28 in 2019 while the 
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lowest is 0 in 2012. By month, the number of records in ephemeral sites range from 3 to 12, 

indicating consistently fewer ephemeral records overall. 

 

 

 

Figure 4. Concentration records. Number of E. coli concentration records categorized by type of 
site and A) year versus B) month. 

 

Variation in E. coli concentrations overall, and across different stream types are provided 

in Figure 5. All distributions are skewed right. Artificial paths presented with the lowest E. coli 
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median concentration (~17.50 CFU/100mL), followed by perennial streams (~25.90 CFU/100mL), 

and intermittent + ephemeral (~42.60 CFU/100mL) with the median of the overall dataset is of 

~25.90 CFU/100mL. While there were fewer samples available in the intermittent and ephemeral 

category, their higher median overall warrants further study given the previously mentioned debate 

over what kinds of streams should be included in WOTUS. 

 

 

 

 

 

 

 

 
Figure 5. Concentration distributions. E. coli concentration distributions for A) All site types, B) Site 
type Artificial Path, Perennial, and Intermittent + Ephemeral. Part B is zoomed in at the interval [0, 
1250] CFU/100mL for a better representation of the data in the first three quartiles. 

 

In the studied period, monthly median and maximum values of E. coli concentrations 

generally were higher in the presence of rain (on sampling date or within previous 8 days), while 

peak median and maximum concentrations were seen in the summer likely due to monsoons. 

Median values were higher in intermittent and ephemeral rivers especially in summer (Figures 6A 

and 6B). Time series of monthly median and maximum values of E. coli concentration are 

presented in supplementary information (Appendix A - SI 1.4. Figure 1). 
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Figure 6. Median and maximum concentration values. Monthly A) median and B) maximum E. coli 
concentration values from different types of streams for the entire studied period. The blue color 
represents values with rain on the sampling date or at least in one of the eight previous days, while 
black color indicates values without antecedent precipitation.    

 

Of the 485 HUC10 watersheds across Arizona, 106 had at least one E. coli record, but only 

47 met the requirements of being located completely inside Arizona and including more than 10 

records. These were chosen for objective 2 of the study and totaled to 4,313 records (2,504, 617, 

92, and 1,100 records from perennial, intermittent, ephemeral, and artificial path sites respectively), 

unevenly distributed across 517 sites. In each watershed the number of sites ranged from 1 to 94 

with a median value of 6. The maximum number of records within a watershed was 1,399 while the 

median value was 26. Resulting GM values across the watersheds ranged from ~3.91 CFU/100mL 

to ~336.69 CFU/100mL with a positively skewed probability density distribution (Figure 7A). The 

log10(GM) values ranged from ~0.59 to ~2.53 with a probability density distribution presented in 

Figure 7B, which, according to the Shapiro-Wilk test results (W = ~0.958, p = ~0.092), was normal 
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with an alpha level of 0.05. The spatial distribution of the log10(GM) values along with the 

watersheds they represent is depicted in Figure 7C. 

 

 

 

 

 

 

 

 

 

 

Figure 7. Geometric mean values. A) Probability density plot for Geometric mean of E. coli 
concentration values, B) Density plot for log transformed base 10 GM values, C) Spatial distribution 
of log base 10 transformed GM values, for 47 different HUC10s in Arizona. 

 

2.2.2. Predictor Variables Across Sites and Watersheds 

A total of 41,022 precipitation values were obtained from 205 different rain gauges ranging 

from ~0 to ~53 kilometers away from the sample site (Figure 8A). Of these, 173 rain gauges came 

from the GHCN- Daily dataset, 29 from the Maricopa County Rainfall dataset, and 3 from the 

AZMET dataset (Figure 8B). The rain gauge used was not always the same for a given site due to 

the availability of data for the specific dates in the records. Precipitation values ranged from 0 to 

5.09 inches (Figure 8C). The 9 days accumulative precipitation from the sampling dates ranged 

from 0 to 9 inches, with a median of ~0.12 inches (Figure 8D). 
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Figure 8. Rain gauges and precipitation. A) Distribution of distances, in kilometers, from the sample 
site to the rain gauge used to obtain precipitation values for each of the 4558 records. B) Number 
of rain gauges from each of the three datasets used to obtain precipitation data. C) Distribution of 
the 41,022 precipitation values, in inches, for the recorded sampling date (day 0) or for any of the 
8 prior days (days 1 to 8). D) Distribution of the 9 days accumulative precipitation, in inches, for 
each of the 4558 records.      

 

Minimum, median, and maximum values of mean precipitation in the sites of the 

watersheds for the sampling day are of 0 inches, 0.03 inches, and 0.29 inches, while for all nine 

days they were 0 inches, 0.39 inches, and 1.71 inches (Figure 9A). Respective median 

precipitation values are of 0 inches, 0 inches, 0.05 inches for the sampling day, and of 0 inches, 

0.07 inches, and 0.8 inches for the nine days (Figure 9B). Median number of days with precipitation 

presence in the 9 days period for the watersheds has minimum, median, and maximum values of 

0 days, 1 day, and 4 days, while the median number of days until precipitation, counted from the 

sampling day to the closest past day with rain presence, of 0 day, 6.5 days, and 9 days respectively 

(Figure 9C). Mean and median distances from the sample site to the rain gauge have minimum, 

median, and maximum values of ~1.26 kilometers, ~8.77 kilometers, ~37.46 kilometers, and ~1.31 

kilometers, ~9.05 kilometers, and ~41.42 kilometers respectively (Figure 9D).  



  32 

 

Figure 9. Precipitation. Distribution of A) mean precipitation, and B) median precipitation, measured 
in inches, for each site of the 47 studied watersheds, for the sampling day (day 0) and for all 9 days 
(days 0 to 8). C) Median number of days with precipitation presence in the 9 days period for sites 
in the watersheds and median number of days until precipitation, counted from the sampling day 
to the closest past day with rain presence. D) Distribution of mean and median distances, in 
kilometers, from the sample site to the rain gauge used to obtain precipitation values for all the 
records in each watershed. 

 

Watershed areas range from ~2.49x108 m2 to ~1.24x109 m2 (Figure 10A) and total river 

length from ~4.54x105 m to ~3.13x106 m (Figure 10B). On average in the watersheds there are 

more meters of ephemeral rivers than other types (~4.18x104 m for artificial paths, ~4.92x104 m for 

perennial, ~1.98x105 m for intermittent, and ~1.28x106 m for ephemeral) (Figure 10B).Terrain in 

the watersheds presents differences in its mean slope, from gently sloping (~2.08 degrees) with 

low susceptibility to soil erosion to moderately steep (~21.36 degrees) with very high susceptibility 

to soil erosion (Figure 10C). 
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Figure 10. Watersheds and rivers. Distribution of A) area values, in squared meters, B) length, in 
meters, of artificial paths, perennial, intermittent, and ephemeral rivers as well as of all these 
classes, and C) mean slope, in degrees, for all the 47 studied watersheds.   

 

The number of CAFOs, dairies, farms and ranches, WWTPs, declared wildlife areas, and 

areas with applications of biosolids or sludge in each watershed range significantly with there being 

more farms and ranches than other facility types in most watersheds (Figure 11A). The majority of 

the watersheds have none of these source types, however Fifteen land cover classes were 

identified: Open water; Developed, Open Space (OS); Developed, Low Intensity (LI); Developed, 

Medium Intensity (MI); Developed, Hi Intensity (HI); Barren land (rock/sand/clay); Deciduous forest; 

Evergreen forest; Mixed forest; Shrub/scrub; Grassland/herbaceous; Pasture/hay; Cultivated 

crops; Woody wetlands; and Emergent herbaceous wetland, with them the ten combinations of 

land cover classes in Table 1 were constructed, the distribution of the landcover and the 

combinations for all 47 watersheds is presented in Figure 11B and Figure 11C respectively. 

Majority of area is covered by Shrub/scrub land followed by Evergreen forest, or by the combination 

of Barren land (rock/sand/clay) + Deciduous forest + Evergreen forest + Mixed forest + Shrub/scrub 

+ Woody wetlands + Emergent herbaceous wetlands. 
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Figure 11. Emitters and land cover. A) Number of CAFOs, dairies, farms and ranches, wastewater 
treatment plants, declared wildlife areas, and areas with applications of biosolids/sludge in each 
watershed. B) Land cover distribution and C) Combination of land cover classes used to account 
for areas with different levels of urbanization, types of vegetation, and presence of water: 1 
Developed, HI + MI + LI + OS, 2 Developed, LI + OS, 3 Developed, HI + MI, 4 
Grassland/herbaceous + Pasture/hay, 5 Barren land (rock/sand/clay) + Shrub/scrub, 6 Deciduous 
forest + Evergreen forest + Mixed forest, 7 Barren land (rock/sand/clay) + Deciduous forest + 
Evergreen forest + Mixed forest + Shrub/scrub + Woody wetlands + Emergent herbaceous 
wetlands, 8 Barren land (rock/sand/clay) + Deciduous forest + Evergreen forest + Mixed forest + 
Shrub/scrub, 9 Woody wetlands + Emergent herbaceous wetlands. 10 Open water + Woody 
wetlands + Emergent herbaceous wetlands, as a total and as a percentage, according to the 
National Land Cover Dataset 2016 for all 47 studied watersheds.   
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2.2.3. The Impact of Site and Rainfall Characteristics on E. coli Concentrations (Objective 1) 

E. coli concentration distributions for the three types of sites and their transformations were 

not normal. A Kruskal-Wallis rank sum test showed that stream type had a significant, yet relatively 

weak effect on E. coli concentration (χ2 = 91.396, p < 2.2x10-16, ε2 = 0.0201). A post-hoc test using 

Dunn's test with Bonferroni correction showed significant differences between E. coli concentration 

distributions from artificial paths and intermittent + ephemeral streams (p = ~8.00x10-21), artificial 

path and perennial streams (p = ~3.37x10-9), and intermittent + ephemeral and perennial streams 

(p = ~1.19x10-7). 

With respect to antecedent rainfall, 2,766 records were classified as having antecedent 

rainfall, while another 1,792 records were classified as having no antecedent rainfall. Observations 

associated with previous rainfall had a median E. coli concentration of 42 CFU/100mL while records 

without previous rainfall had a median value of 13.6 CFU/100mL. Both distributions of E. coli 

concentration values and their log transformations were not normal. Distribution of E. coli 

concentrations between these two rainfall conditions were significantly different according to the 

Wilcoxon rank sum test (W = 3388453, p < 2.2x10-16, moderate effect size r = 0.311).  

Under antecedent rainfall conditions there were 619, 1,565, and 582 records classified as 

artificial paths, perennial, and intermittent + ephemeral sites, respectively, while for under no 

previous rainfall records the distribution was 537, 1,057, and 198. Median values of E. coli 

concentrations under rain conditions were 40.80 CFU/100 mL, 36.90 CFU/100 mL, and 81.45 

CFU/100 mL for the previously mentioned site types and under no rain conditions these values 

decreased to 7.3 CFU/100 mL, 16.0 CFU/100 mL, and 15.8 CFU/100 mL. All six distributions and 

their respective transformations are not normal. Kruskal-Wallis rank sum tests were thus used and 

showed that site type and rain conditions both had a significant and relatively moderate effect on 

E. coli concentrations (χ2 = 499.31, p < 2.2x10-16, ε2 = 0.11). A post-hoc test using Dunn's test with 

Bonferroni correction showed there were significant differences between distributions for all except 

between Perennial and Artificial Path under both antecedent rainfall conditions, and Perennial and 

Intermittent + Ephemeral under no antecedent rainfall conditions. Test results are summarized in 
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Table 3, resulting Dunn’s test p-values, indicative of the statistical difference significance, for the 

compared distributions are presented in Table 4. 

 

Table 3 

Number of Records, E. coli Concentration Median Values, and Normality for the 12 Studied 
Distributions. Differences between groups were tested using Kruskal-Wallis rank sum test when 
comparing more than two distributions, otherwise the Wilcoxon Rank sum test was used 

No. Distribution # of 

records 

E. coli 

concentration 

median value 

[CFU/100 mL] 

Normality Comparison 

between 

population 

medians 

Dist. Log10() 

1 All 4,558 25.90 No 

(W = 

0.073957,  

p < 2.2x10-16) 

No 

(W = 0.96174,  

p < 2.2x10-16) 

N/A 

According to site type 

2 Artificial path 1,156 17.50 No 

(W = 0.32579,  

p < 2.2x10-16) 

No 

(W = 0.9455,  

p < 2.2x10-16) 

Significantly 

different, yet 

relatively weak 

effect on E. coli 

concentrations  

(χ2 = 91.396,  

p < 2.2x10-16,  

ε2 = 0.0201) 

3 Perennial 2,622 25.90 No 

(W = 

0.072193, 

 p < 2.2x10-16) 

No 

(W = 0.96068,  

p < 2.2x10-16) 

4 Intermittent + 

ephemeral  

780 42.60 No 

W = 0.13273,  

p < 2.2x10-16) 

No 

(W = 0.96865,  

p = 6.895x10-12) 

According to presence of rain 

5 In rain condition 2,766 42 No 

(W = 0.1054,  

p < 2.2x10-16) 

No 

(W = 0.9741,  

p < 2.2x10-16) 

Significantly 

different  

(W = 3388453,  

p < 2.2x10-16, 

moderate effect 

size r = 0.311) 

6 In no rain condition 1,792 13.6 No 

W = 

0.014086, 

 p < 2.2x10-16) 

No 

(W = 0.96395, 

 p < 2.2x10-16) 

Combinations 

7 Artificial path in rain 

condition 619 40.80 

No 

(W = 0.41102, 

 p < 2.2x10-16) 

No 

(W = 0.96962, 

p = 5.034x10-10) 

Significantly 

different and 

relatively moderate 

effect on E. coli 

concentrations  

(χ2 = 499.31,  

p < 2.2x10-16,  

ε2 = 0.11) 

8 Perennial in rain 

condition 1,565 36.90 

No 

(W = 0.13135, 

 p < 2.2x10-16) 

No 

(W = 0.96658, 

 p < 2.2x10-16) 

9 Intermittent + 

ephemeral in rain 

condition 

582 81.45 

No 

(W = 0.15878, 

 p < 2.2x10-16) 

No 

(W = 0.97755, 

p = 8.705x10-08) 

10 Artificial path in no rain 

condition 537 7.3 

No 

(W = 0.41835, 

 p < 2.2x10-16) 

No 

(W = 0.91574, 

p < 2.2x10-16) 

11 Perennial in no rain 

condition 
1,057 16.0 

No 

(W = 

0.017229, 

 p < 2.2x10-16) 

No 

(W = 0.96807, 

p = 1.76x10-14) 

12 Intermittent + 

ephemeral in no rain 

condition 

198 15.8 

No 

(W = 0.28167, 

 p < 2.2x10-16) 

No 

(W = 0.96288, 

p = 4.498x10-05) 
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Table 4 

Dunn’s Test With Bonferroni Correction p-Values for Pairwise Comparison Between Distributions 
of E. coli Concentration Values for Different Site Types and Rain Conditions. p-values compared 
to the significance level of 0.05 (α = 0.05) tells which pair of distributions are statistically significantly 
different 

No. Compared distributions Difference  Dunn’s test p-value 

1 Artificial path – Perennial  Significant ~3.37x10-9 

2 Artificial path – Intermittent + Ephemeral Significant ~8.01x10-21 

3 Perennial – Intermittent + Ephemeral Significant ~1.19x10-7 

Both distributions under antecedent rainfall conditions 

4 Artificial path – Perennial  Not significant ~9.15 x 10-01 

5 Artificial path – Intermittent + Ephemeral Significant ~4.41 x 10-06 

6 Perennial – Intermittent + Ephemeral Significant ~2.99 x 10-04 

Both distributions under no antecedent rainfall conditions 

7 Artificial path – Perennial  Significant ~5.71 x 10-07 

8 Artificial path – Intermittent + Ephemeral Significant ~2.81 x 10-02 

9 Perennial – Intermittent + Ephemeral Not significant ~1.00 

Only the first distributions under antecedent rainfall conditions 

10 Artificial path – Artificial path Significant ~1.82 x 10-33 

11 Artificial path – Perennial  Significant ~1.92 x 10-16 

12 Artificial path – Intermittent + Ephemeral Significant ~1.79 x 10-07 

13 Perennial – Artificial path Significant ~3.13 x 10-58 

14 Perennial – Perennial Significant ~5.09 x 10-38 

15 Perennial – Intermittent + Ephemeral Significant ~2.98 x 10-12 

16 Intermittent + Ephemeral – Artificial path Significant ~5.60 x 10-64 

17 Intermittent + Ephemeral – Perennial Significant ~4.64 x 10-44 

18 Intermittent + Ephemeral – Intermittent + Ephemeral Significant ~3.20 x 10-19 
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2.2.4. Watershed Characteristics Influence on E. coli Concentrations (Objective 2) 

At the watershed level, Spearman’s rank correlation coefficient tests were performed to 

determine which of the 128 variables studied and listed in supplementary information (Appendix A 

- SI 1.3. Table 3) had a significant relationship to the log10(GM) E. coli concentrations across 

watersheds. The results showed that of the 128 variables tested, 49 were significant (p < 0.10; 

Figure 12). Most of the variables (40) were positively related to log10(GM) while 9 were negatively 

related. Precipitation related variables had the stronger relationships to E. coli. 

 

 

Figure 12. Significant characteristics. Characteristics with significant (p < 0.10) Spearman’s rank 
correlation coefficient test results (ρ), positive and negative directions of ordinates depict positive 
and negative correlation between log10(GM) and the corresponding characteristic. Spearman’s rank 
correlation coefficient (ρ) summarizes the strength and the direction of the relationship between 
log10(GM) values and watershed characteristics with possible values ranging from -1 to 1, the 
stronger the relationship the further away is ρ from zero, positive and negative values mean as one 
variable increases the other tends to increase or decrease respectively. The null hypothesis (Ho) 
stating no correlation between log10(GM) values and each watershed characteristic is rejected 
when the probability value (p) is lower than 0.10, accepting the alternative hypothesis (H1) that 
there is a correlation. 
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All 49 significant variables were included in the stepwise linear regression model with 

backward elimination. The final regression model included five variables, those independent 

characteristics in the watershed which contributions to E. coli concentration are the most important: 

CAFOs + dairies + farm/ranch (density) [unit/m2], Pasture/hay land use (density) [m2/m2], Median 

number of days out of 9 with precipitation [day], Evergreen forest (density) [m2/m2], Developed, 

high Intensity land use total [m2], the variables Pasture/hay land use (density) and Evergreen forest 

(density) were not included in the linear regression model with backward elimination result but they 

were significant according to the Spearman’s rank correlation coefficient test results. 

Corresponding coefficients, p-values, and VIF values, as well as the intercept, the adjusted R2, 

overall significance and AIC values are presented in Table 5. Supplementary information (Appendix 

A - SI 1.5. Figure 2) shows the residuals of the model with no obvious patterns which supports the 

linearity and homoscedasticity assumptions. Studentized Breusch–Pagan test has a value of ~4.58 

with 5 degrees of freedom and a p-value of 0.4699 suggesting homoscedasticity or that the 

variance of residuals is the same for any value. Shapiro-Wilk normality test result for residuals is of 

~0.98 with a p-value of 0.5296 indicating normal distribution. By comparing the magnitude of the 

coefficient estimates the relative importance of the different watershed characteristics analyzed can 

be determined. CAFOs + dairies + farm/ranch (density) has the greatest magnitude, with orders of 

magnitude greater than the remaining variables indicating its main influence on the model. For four 

of the variables (CAFOs + dairies + farm/ranch (density), Pasture/hay (density), Median number of 

days out of 9 with precipitation, and Evergreen forest (density)) the sign of the coefficient estimates 

is the same as the sign of the correlation identified by the Spearman’s rank statistics while for the 

variable Developed, high intensity is the opposite.  
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Table 5 

Results of the Final Linear Regression Model That Includes the Most Relevant of the Tested 
Variables to Assess the Relative Impacts on E. coli Concentration Values at the Watershed Level 

For the variables 

Variable Unit Coefficient p-value VIF 

CAFOs + dairies + farm/ranch (density) unit/m2 2.166 x 107 6.190 x 10-3 ~ 1.55        

Pasture/hay (density) m2/m2 5.117 x 101 2.763 x 10-2 ~ 1.07         

Median number of days out of 9 with precipitation day 2.489 x 10-1 2.04 x 10-5 ~ 1.05 

Evergreen forest (density) m2/m2 -7.147 x 10-1 5.47 x 10-4 ~ 1.12         

Developed, high intensity m2 -9.329 x 10-9 2.591x 10-3 ~ 1.44         

For the model 

Intercept 1.312 

Adjusted R2 0.5423 

Overall significance (p-value) 3.801 x 10-7 

AIC value ~ 36.40 

 

Spearman's rank correlation test measures the strength and direction of the association 

between only two variables one of them the dependent variable, while the linear regression model 

estimates the relationship of two or more variables with a dependent variable, being the sign of 

each variable dependent upon which variables are included in the model and not related with the 

one obtained from the Spearman’s rank correlation test, therefore the direction of the correlation 

between the five watershed characteristics included in the model and E. coli concentration must be 

taken from the Spearman’s rank analysis. The two analyses combined enable making conclusions 

about the relationships between watershed characteristics and E. coli concentration and their 

relative importance. This model should not be used to quantitatively estimate E. coli concentrations. 

A comparison between fitted values and observed values of log10(GM) is presented in Figure 13.   
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Figure 13. Comparison scatterplot. Scatterplot to compare log10(GM) observed values to fitted 
values produced by the multiple linear regression model five predictive variables (Table 5). 

 

2.3. Discussion 

E. coli concentrations from intermittent and ephemeral sites were significantly different from 

those in artificial paths and perennial rivers. Even though all E. coli concentration distributions for 

different stream types are right skewed, the median value for intermittent + ephemeral streams is 

almost 65 and 140 percent higher than those for perennial streams and artificial paths, respectively. 

Also, the E. coli concentration values between the median and the 75th percentile are almost 5 

times greater. These findings indicate that intermittent and ephemeral streams, which together 

represent an average ~95% of the stream network of the studied watersheds, could be important 

drivers of pathogen loads to perennial streams and other waterbodies.   

In general, rain increases the concentrations of E. coli in streams under antecedent rainfall 

conditions —E. coli median concentration was ~3 times higher than observations where no recent 

rain was observed.  Since contributions from ephemeral and intermittent streams would be minimal 

under no local rain conditions, the similarity during these conditions is not unexpected. Higher 

differences between concentrations of E. coli under rain conditions and under no rain conditions at 

the beginning of the monsoon season could be due to the contributions of subsurface and surface 
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flow, as subsurface flow increases during the monsoon season so does the E. coli concentration 

under no rain conditions, to the point where the rain does not increase in greater proportion the E. 

coli concentration at the end of the monsoon season. In intermittent and ephemeral streams there 

are marked differences in E. coli concentrations under rain and no rain conditions. Ephemeral 

streams flow under the direct influence of recent rain which forms runoff and erosion that can carry 

E. coli (Muirhead et al., 2006). Similarly, the flow of intermittent rivers is also affected by rain 

increasing the surface and subsurface components of the flow and thus E. coli concentration as 

well. 

It was found that at the watershed level, five of the studied variables are the most related 

to the presence of E. coli in the streams –hereafter discussed in more detail.   

CAFOs, dairies, farms, and ranches are related to the production, storage, and application 

of manure (Kast et al., 2019; Spiegal et al., 2022) which may contain numerous pathogens and E. 

coli. A significant positive correlation between their number and E. coli geometric means at the 

watershed scale was found. Previous research, as conducted by Hamner et al. (2014) and Heaney 

et al. (2015), found evidence of high concentrations of E. coli and the presence of specific related 

fecal markers in surface waters proximal to CAFOs and CAFOs liquid waste land application sites, 

likely due to direct discharges or surface runoff after rain events. While ADEQ issues various 

permits for these kinds of facilities related to the discharge of pollutants to water (e.g., the Aquifer 

Protection Permit) (Arizona Department of Environmental Quality, n.d.-b, n.d.-c, 2021b), the focus 

of these permits is typically on the protection of groundwater and contributions to ephemeral and 

intermittent rivers may not be a priority. 

According to the NLCD, Pasture/hay is an agriculture class (Jin et al., 2019) planted on a 

perennial cycle, for livestock grazing or the production of seed or hay crops (Multi-Resolution Land 

Characteristics Consortium, n.d.). A significant positive correlation between Pasture/hay land cover 

and E. coli concentrations was observed. Cattle-grazed pastures have been found to be significant 

contributors of E. coli to surface waters in Georgia  (Byers et al., 2005) and New Zealand (Donnison 

et al., 2004) as grazing activities increase the concentration of E. coli in soil and storm events 

mobilize it to streams, rivers, ponds and lakes. Likewise a hay area fertilized with manure was 
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found to be  a potent source of E. coli contamination to surface water via runoff in Vermont (Meals 

& Braun, 2006). 

Similar to the previous analysis, precipitation (and specifically, the median number of days 

with precipitation) had a significant positive correlation with E. coli concentrations. In previous 

research E. coli and preceding rainfall events have been found to be significantly correlated. Vidon 

et al. (2008) studied two artificially drained agricultural watersheds in the Midwest, finding 

significant correlation between E. coli concentration and the average precipitation in the 7 days 

preceding measurements. Hathaway et al., (2010) found that averages of 28 days and 2 days 

antecedent precipitation in an urbanized watershed in North Carolina were significant, likely 

because the antecedent rainfall conditions affect both the amount of water and energy available for 

E. coli transport leading to substantially higher runoff,  and the amount of moisture present in a 

watershed that is critical for E. coli survival (Chen & Chang, 2014; Schoener & Stone, 2019). 

Evergreen forest areas are those areas where more than 20% of the total vegetation cover 

is dominated by tree species that maintain their leaves all year (Multi-Resolution Land 

Characteristics Consortium, n.d.). In this study there was a significant negative correlation between 

Evergreen Forest and E. coli concentrations. This finding is in agreement with previous studies 

reporting decreased fecal contamination in forested areas (Brendel & Soupir, 2017; Hubbart et al., 

2022; Petersen & Hubbart, 2020; Tong & Chen, 2002). Forested areas can benefit water quality 

through filtering and promoting sedimentation (Anbumozhi et al., 2005). 

Developed, high-intensity land cover refers to areas where high numbers of people reside 

or work and impervious surfaces account for 80% to 100% of the total cover (Multi-Resolution Land 

Characteristics Consortium, n.d.). A significant correlation was observed between this type of land 

cover and E. coli concentrations. While developed, high intensity land cover covered only ~0.60% 

of the total watershed area, it was still found to be a significant driver of E. coli concentrations, 

suggesting that this type of land cover even small amounts can impact the water quality in these 

systems. This is in accordance with the findings of Chen & Chang, (2014) who studied three 

watersheds with different land uses (urban, suburban, and rural)  in Oregon and Washington where 

the urban watershed (84% urban land use) had the highest level of E.coli. The amount of 



  44 

impervious land cover area in developed areas redirects rainfall and decreases its infiltration into 

soil, consequently increasing surface runoff. Also, urban areas have more people and pets which 

can have adverse effects on stream water quality, increasing the amount of pollutants including 

pathogens (Crim et al., 2012; Hamid et al., 2020).  

The obtained results could be improved with the implementation of Microbial Source 

Tracking (MST) markers which are intended to discriminate between sources of fecal contamination 

based on the concept that various warm-blooded animal intestinal systems have different and 

specific gut microbial populations that could be used in genome sequencing.   

 

2.3.1. Limitations of the Study 

This study was limited by the scope of available data. Uneven spatial and temporal 

distribution of sites and records may lead to misrepresentation of ephemeral and intermittent rivers, 

dry season, as well as watersheds, especially those located in the northern and southwestern part 

of the state. Further work could explore ephemeral and perennial sites in the same watershed with 

more intensive sampling to expand the knowledge around the contributions from ephemeral 

streams. Related, observational sites used in this study were classified in the four used categories 

according to the NHD. Misclassifications in the NHD and site coordinates could affect the obtained 

results. 

Rain data were obtained from the closest rain gauge to the site, yet great distances could 

negatively impact the accuracy of site precipitation data. Additionally, in arid and semi-arid regions, 

where rainfall patterns can be sporadic and variable, rain in an upstream portion of a watershed 

could lead to intense flows at an observed site even if the closest rain gage showed no precipitation. 

Future work could consider larger spatial patterns of rainfall especially at upstream gages.  

 

2.4. Conclusions 

What drivers are important in influencing E. coli concentrations in Arizona streams were 

investigated using water quality data from 2010 – 2019 through two methods: first the influence of 

stream type and antecedent precipitation on concentrations and second watershed-level drivers of 
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concentrations. The results suggest that E. coli concentrations in this semiarid region vary 

according to the type of river (e.g., ephemeral, perennial) and the presence of rain. E. coli 

concentrations with the highest median values are associated with intermittent and ephemeral 

rivers. Antecedent rainfall conditions resulted in significantly elevated presence of E. coli in 

streams, especially in ephemeral streams. Moreover, the analysis demonstrates that at the 

watershed level, some types of land cover, the presence of specific sources, and precipitation are 

still important for explaining the presence of E. coli in rivers. Specifically, four watershed-level 

variables and rain explained more than 50% of the concentration of E. coli, with indicators of animal 

agriculture being a main influence associated with higher concentrations. Overall, the results 

indicate that ephemeral and intermittent rivers could play a key role in the presence of E. coli in 

watersheds. The impact of ephemeral rivers is likely under-recognized given the spatiotemporal 

variability and frequency of the studied samples. However, the importance and influence of non-

perennial streams should be considered in further sampling campaigns. The results of this study 

can help to inform future policy and management strategies to address elevated levels of E. coli in 

streams in arid and semiarid areas. Given recent debate over the status of ephemeral and 

intermittent rivers (Keiser et al., 2022; Sullivan et al., 2019), these results could inform future policy 

discussions given recent Supreme Court rulings (United States Environmental Protection Agency, 

2022d, 2023j, 2023k). If ephemeral streams are not considered in WOTUS and polluters could 

theoretically emit to these waterways without regulation, we could see increases in pathogens in 

the future in semiarid and arid regions like Arizona. 

 

 

 

 

 

 

 

 



  46 

CHAPTER 3 

WASTEWATER INFRAESTRUCTURE AS POSSIBLE POINT SOURCES OF POLLUTANTS ON 

TRIBAL LANDS 

 

As previously mentioned, WWTPs have the potential to be a source of pathogens and can 

significantly contribute to the contamination of surface water in a watershed (Kistemann et al., 2012; 

Sanders et al., 2013). With a total population of about one million where more than 50% are 

American Indian and Alaska Native alone (United States Census Bureau, 2020d) and with an area 

of more than 300 billion of square meters (United States Census Bureau, 2020a), Tribal lands lack 

of available information regarding the connectivity of Tribal communities to WWTPs. This 

information is important to understand current sanitation infrastructure which drives public health 

and community construction, knowledge of potential routes of pathogenic contamination through 

lack of infrastructure and/or discharging facilities. Of particular concern are the breath of 

wastewater treatment facilities across these rural and decentralized communities, human waste 

can contaminate clean drinking water sources if not properly controlled. A report from the 

Government Accountability Office in 2018 showed that there is a deficit of data related to American 

Indian communities in the US and the extent to which communities were connected to municipal 

wastewater treatment facilities or some basic sanitation system in general, recommending federal 

dollars should be invested in providing information to fill data gaps in an effort to recommend where 

infrastructure needs existed (United States Government Accountability Office, 2018b, 2018a, 

2018c). 

According to the Native American Rights Fund an Indian Tribe “was originally a body of 

people bound together by blood ties who were socially, politically, and religiously organized, who 

lived together in a defined territory and who spoke a common language or dialect” (Native American 

Rights Fund, n.d.). The US government currently recognizes Indian Tribes federally and by state, 

when the state has established such authority, and maintains a direct government-to-government 

relationship with 574 Federally Recognized Indian Tribes (FRITs) variously called tribes, nations, 

bands, pueblos, communities, colonies, rancherias, and villages, listed in supplementary 
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information (Appendix B - SI 2.1. Table 1). A majority of FRITs are isolated and rural with 227 

located in Alaska and the remaining located in 34 other states (Indian Entities Recognized and 

Eligible to Receive Services From the United States Bureau of Indian Affairs; Correction, 2021; 

Indian Entities Recognized by and Eligible to Receive Services From the United States Bureau of 

Indian Affairs, 2021; National Congress of American Indians, 2020; United States Department of 

the Interior, n.d.-b). Being federally recognized makes Indian Tribes eligible for funding and 

services from the Bureau of Indian Affairs and enables possession of certain inherent rights of self-

government or sovereignty; FRITs may also be automatically state recognized. Additionally, there 

are 66 Indian Tribes that are only state recognized (National Conference of State Legislatures, 

2020) and others that lack both federal and state recognition. 

Federal recognition gives Indian Tribes the authority to self-govern their territory as 

independent nations, driven by self-determination that is protected by the trust responsibility. In 

doing so, the government is responsible for holding land in trust as permanent homelands for FRITs 

as they continue to exercise their sovereignty and provide services to their Tribal citizens that 

include health care, law enforcement, education, utilities, housing, infrastructure, disposal, 

wastewater management, and environmental management and protection (National Congress of 

American Indians, 2020). The federal government of the US holds titles of areas of land in trust on 

behalf of FRITs to be permanent Tribal homelands; these are Federal Indian Reservations (FIRs). 

The history of federal policies on Tribal land rights is complex as FIRs are defined by geographic 

boundaries that are composed of their original ancestral territories or lands from the resettlement 

of FRITs by the government. There are other types of lands for the use of FRITs or Tribal members 

including Off-reservation Trust Lands (ORTLs), Allotted lands, Restricted status, State Indian 

Reservations, Hawaiian home lands, and Private properties (United States Census Bureau, 2021a; 

United States Department of the Interior, n.d.-a). Not every FRIT has a FIR or ORTL, some have 

more than one, and others share. Figure 14 depicts the number of FRITs with and without FIRs 

and/or ORTLs areas classified according to state. 
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Figure 14. Number of Federally Recognized Indian Tribes with and without Federal Indian 
Reservations (FIRs) and/or Off-reservation Trust Land (ORTLs) areas classified according to state. 
FIRs and ORTLs may cross states boundaries (Indian Entities Recognized and Eligible to Receive 
Services From the United States Bureau of Indian Affairs; Correction, 2021; Indian Entities 
Recognized by and Eligible to Receive Services From the United States Bureau of Indian Affairs, 
2021; United States Department of the Interior, n.d.-b). 

 

As stated, the CWA created the NPDES permit program to address to a certain extent 

water pollution by regulating point sources such as WWTP that discharge pollutants to WOTUS by 

mandating a permit and implementing a regular monitoring system. This program authorizes some 

state and FRITs governments by the US EPA to extend permits that, after a thorough review and 

analysis, specify the facility discharge requirements (limits on what to discharge, monitoring and 

reporting requirements, etc.) to ensure water quality will not be impacted for specific designated 

uses. Permit details include limits on what pollutants they can discharge in addition to monitoring 

and reporting requirements. For locations where the state or FRITs government is not authorized 

to extend permits, US EPA Regional authorities will permit facilities. In all cases, including FRITs, 

the US EPA is the final regulator (United States Environmental Protection Agency, 2022u). 
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As sovereign nations, FRITs are still subject to environmental regulations; however, the 

management of public water supplies (under the SDWA) and wastewater discharge will vary if the 

Indian Tribe has been granted state-status under the “Treatment as State” (TAS) provision (Haider 

& Teodoro, 2021), also known as Tribal Primacy. TAS was enacted by the US in 1987, allowing 

Indian Tribes to draft and enforce their own environmental laws. At a minimum, the Indian Tribe 

must be federally recognized (not state), have legal authority over their natural resources, and have 

the ability to manage such changes (National Primary Drinking Water Regulations 

Implementations, 2020). To date, the Navajo Nation is the only Indian Tribe with TAS status to 

implement the Public Water System Supervision (PWSS) program (United States Environmental 

Protection Agency, 2022f) but none has this status to implement the CWA § 402 referring to the  

NPDES (United States Environmental Protection Agency, 2022s, 2023e). Since 1987, only ~15% 

of Publicly Owned Treatment Works (POTWs) have been regulated by Indian Tribes that hold Tribal 

Primacy status, while the remaining are overseen by state and EPA (Haider & Teodoro, 2021). 

Wastewater generated on FIRs and/or ORTLs, here thereafter called Tribal lands, is 

managed through many types of facilities. Centralized secondary and in some cases, tertiary, 

wastewater treatment utilities with a sewer network serving a considerable number of people are 

more common near population centers. However, a significant number of wastewater facilities are 

decentralized, often located as close as possible to where the wastewater is generated. These 

decentralized systems may serve individual dwellings, single industries, or institutions and may be 

outhouses, lagoons, and septic systems. According to a 2019 report (Division of Sanitation 

Facilities Construction. Office of Environmental Health and Engineering. Indian Health Service., 

n.d.),  over 58,000 American Indian and Alaska Native homes are deficient in safe drinking water 

and improved sanitation, and 5-10% of Tribal households do not have basic sanitation (Indian 

Health Service, 2021; United States Environmental Protection Agency, 2023a). Lack of adequate 

water and wastewater services has been correlated with respiratory tract and skin infections in 

Alaska Native populations (Hennessy et al., 2008; Wenger et al., 2010).  

Information on Tribal wastewater facilities can be found in federal databases. The ECHO 

database at https://echo.epa.gov/ provides data on environmental regulatory compliance and 
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enforcement for public use and program management. This website provides data focused on 

inspection, violation, enforcement, and penalties for the Clean Air Act (CAA), Resource 

Conservation and Recovery Act (RCRA), SDWA, and CWA for more than 800,000 facilities 

nationwide regulated through an NPDES permit (United States Environmental Protection Agency, 

n.d., 2022e, 2023i). ECHO includes US EPA, state, local and Tribal environmental agency 

compliance and enforcement records that are reported into US EPA national databases. 

Information on permit data, inspection and/or compliance evaluation dates and findings, violations 

of environmental regulations, enforcement actions, and penalties assessed are available for all 

permitted facilities (United States Environmental Protection Agency, n.d., 2023i). The Integrated 

Compliance Information System National Pollutant Discharge Elimination System (ICIS-NPDES), 

Facility Registry Service (FRS), Toxics Release Inventory (TRI) data, and Emission Inventory 

System (EIS) are some of the available datasets in ECHO (United States Environmental Protection 

Agency, 2023i) to allow a better analysis such as FRS contains facility identification information 

while ICIS-NPDES allows tracking permit compliance and enforcement status of facilities regulated 

by the NPDES program. Permit information including facility location and permitted features (e.g., 

discharge points or outfalls), limits, and discharge monitoring data are available (United States 

Environmental Protection Agency, 2022g, 2022m). 

The goal was to achieve two objectives: first, to locate WWTPs as potential point sources 

of pathogens on FIRs and/or ORTLs, and second, to identify the connectivity of all 574 FRITs to 

WWTP facilities by identifying the number of WWTPs associated with them. To accomplish this, I 

reviewed NPDES permits available from EPA’s ECHO for proximity to and within spatial boundaries 

of Tribal lands, including those serving Tribal towns, casinos, K-12 schools, and those operated by 

private and Tribal utilities in addition to population race data from federal databases to develop a 

list of facilities located on Tribal lands and those that collect from predominantly Native American 

communities. 
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3.1. Methods  

The study was conducted for the entire US to find permitted WWTPs that are located on 

or near FIRs and/or ORTLs areas and those serving Tribal populations. All analyses were 

conducted using ArcGIS (Environmental Systems Research Institute (Esri), n.d.) and the statistical 

software R version 4.2.0 (R Core Team, 2022; RStudio Team, 2022). The flow diagram in Figure 

15 highlights the decision tree of data, various data sources, and the number of treatment plants 

identified in each step of the process.  

 

Figure 15. Followed procedure to find permitted facilities that mainly serve Tribal communities in 
the United States. 
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3.1.1. Study Area 

The study was conducted on land areas in the US administered as FIRs or ORTLs. In 

2020, approximately 327 land areas in the US were administered as FIRs or ORTLs by 290 FRITs 

(United States Census Bureau, 2020a), Figure 16 depicts the FIRs and ORTLs for which the US 

Census Bureau publishes data. Supplementary information (Appendix B - SI 2.1. Table 1) lists and 

relates FIRs and/or ORTLs with their corresponding FRIT(s). 

 

 

 

 

 

 

 

Figure 16. Distribution of Federal Indian Reservations (FIRs) and Off-reservation Trust Lands 
(ORTLs) along the United States. FIRs and ORTLs may cross states, counties, county 
subdivisions, and/or place boundaries (Environmental Systems Research Institute (Esri), 2022; 
United States Census Bureau, 2020a, 2020b). 

 

3.1.2. Data Acquisition Search Criteria 

A Tribal wastewater facility search was conducted in August 2020 using the search criteria 

listed in supplementary information (Appendix B - SI 2.2. Table 2) in EPA’s ECHO database 

(https://echo.epa.gov/); the resultant data table was customized to include additional “Facility 

Information” within the results output. Selected data included the Street Address, City, State, EPA 

Region, FRS Tribal Land Code, ICIS Tribal Land Flag, Within Spatial Tribal Boundary, FRS 

Spatially Derived Tribe, Latitude/Longitude, Facility Design Flow, and Actual Average Facility Flow. 

No criteria were selected for other fields. The names of the resulting field headers differed between 

the selected search criteria, the results table, and downloaded files, corresponding values are listed 

in supplementary information (Appendix B - SI 2.3. Table 3) under the columns “Result page field 
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name” and “Data download file field name” and described in accordance with the ECHO website 

(United States Environmental Protection Agency, 2022j). The column header “FacIndianCntryFlg” 

selected in the original search criteria as “FRS Tribal Land Code”, and “CWPIndianCntryFlg” as 

“ICIS Tribal Land Flag” refer to whether the facility is (“Y”) or is not (“N”) located in Indian Country 

in the FRS or the ICIS-NPDES databases, respectively. Indian Country is defined as Indian 

reservations, dependent Indian communities, and Indian allotments in accordance with the Title 18 

§ 1151 of the US Code (Crimes, 2011; United States Environmental Protection Agency, 2016a). 

“FacIndianSpatialFlg”, selected as “Within Spatial Tribal Boundary” in the search criteria, displays 

“Y” if the facility is located within a default value of ~40 km (25 miles) of a Tribal spatial boundary 

or “N” if the contrary, where a Tribal spatial boundary is defined using the US Census Bureau 2016 

Tribal boundary layer data, also called American Indian/Alaska Native/Native Hawaiian (AIANNH) 

Area National Shapefile, when developing the results responses for tribes in the lower 48 United 

States or the Bureau of Land Management Alaska State Office (LMASO) for responses for tribes 

in Alaska (United States Environmental Protection Agency, 2022j, 2022l). Also, the R (R Core 

Team, 2022; RStudio Team, 2022) package echor (Schramm, 2021) was used on April 7, 2022 to 

search and download the permitted facility data from ECHO listed and described in supplementary 

information (Appendix B - SI 2.4. Table 4).  

 

3.1.3. Location Update 

The US Census Bureau AIANNH Area National Shapefile for the year 2016 (United States 

Census Bureau, 2016) used by EPA ECHO differs from that for the year 2020 (United States 

Census Bureau, 2020a) in the number of registers. To avoid discarding facilities inside Tribal lands 

identified for 2020 from the ECHO website, using “Latitude” and “Longitude” the Tribal facilities 

were mapped along with the 2020 shapefile using ArcGIS Desktop 10.7.1®. Those facilities located 

within the boundaries of a FIR and/or ORTL were labeled as “Inside Federal Indian Reservation 

and/or ORTL” associated with the specific FRIT, or they were labeled as “Outside Federal Indian 

Reservation and/or ORTL”.   
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3.1.4. Screening Process 

For the facilities identified with the echor package, a screening process was executed 

consisting of discarding facilities already obtained from the ECHO website and those with same 

“SourceID”; “CWPPermitStatusDesc” equal to “Terminated”, “Denied”, or “Unpermitted”;  

“PermitComponents” equal to "Biosolids", "Biosolids, CAFO", "Biosolids, CSO", "Biosolids, 

Industrial Stormwater", "CAFO", "CAFO, Industrial Stormwater", "Construction Stormwater", 

"Construction Stormwater, Industrial Stormwater", "CSO", "Industrial Stormwater", "Industrial 

Stormwater, Urban Stormwater (Medium/Large MS4)", "Industrial Stormwater, Urban Stormwater 

(Small MS4)", "Urban Stormwater (Medium/Large MS4)", "Urban Stormwater (Medium/Large 

MS4), Urban Stormwater (Small MS4)", "Urban Stormwater (Small MS4)", and facilities with 

“FacIndianCntryFlg”, “CWPIndianCntryFlg”, and “FacIndianSpatialFlg” equal to “N” and located 

outside FIRs and/or ORTLs according to the US Census Bureau AIANNH area national shapefile 

for the year 2020. Of the remaining, facilities with Standard Industrial Classification (SIC) code 

values (United States Department of Labor, n.d.) listed in supplementary information (Appendix B 

- SI 2.5. Table 5) in “CWPSICCodes” were kept. Missing data was obtained from the ECHO website 

using the “SourceID” value. The facilities listed on the website and located in the same place were 

confirmed not to be terminated or retired. 

 

3.1.5. Population Demographics  

For this analysis, race data were evaluated from the 2010 census for the city location of 

each facility from the US Census Bureau (data.census.gov) (United States Census Bureau, n.d.-

c). Delays in 2020 Census data and public access to the Data Explorer tool prohibited use of the 

newer dataset (United States Census Bureau, 2021b). Information for six racial designations were 

provided: White alone or in combination with one or more other races, Black or African American 

alone or in combination with one or more other races, American Indian and Alaska Native alone or 

in combination with one or more other races, Asian alone or in combination with one or more other 

races, Native Hawaiian and Other Pacific Islander alone or in combination with one or more other 

races, and Some Other Race alone or in combination with one or more other races.  
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For facilities located in unincorporated communities or not census designated places, the 

website https://censusreporter.org/ was used, an independent project with the purpose of making 

US Census Bureau American Community Survey (ACS) 2019 5-Year data easier to use (Census 

Reporter, n.d.). Here, race data are categorized as: White, Black, Native, Asian, Islander, Other, 

Two or more, and Hispanic.  

 

3.1.6. Wastewater Facility Classification 

Facilities were classified in 8 different categories: 1) Not-Tribal serving, General ─ Outside 

Federal Indian Reservation and/or ORTL, “General” meaning the facility could serve a city, a 

school, a hotel, etc. and “Not-Tribal serving” meaning ≤50% of the population related were 

American Indian and Alaska Native alone or in combination with one or more other races (AI); 2) 

Not-Tribal serving, General ─ Inside Federal Indian Reservation and/or ORTL; 3) Tribal serving, 

Community ─ Outside Federal Indian Reservation and/or ORTL; 4) Tribal serving, Community ─ 

Inside Federal Indian Reservation and/or ORTL; 5) Tribal serving, School ─ Outside Federal Indian 

Reservation and/or ORTL; 6) Tribal serving, School ─ Inside Federal Indian Reservation and/or 

ORTL; 7) Tribal serving, Casino ─ Outside Federal Indian Reservation and/or ORTL; and 8) Tribal 

serving, Casino ─ Inside Federal Indian Reservation and/or ORTL. Casino facilities were classified 

as Tribal serving based on the ownership, although their services often cater to the general public. 

  

3.2. Results 

Results from the ECHO database search revealed 572 facilities in Indian Country or near/in 

a Tribal spatial boundary (~40 km) with an additional 70 identified by the 2020 American 

Indian/Alaska Native/Native Hawaiian (AIANNH) Area National shapefile, and 278 identified by 

using echor package, bringing the total number to 920. Spatial location (latitude and longitude) was 

then used to verify if facilities were inside (n = 522) or outside FRITs and/or ORTL (n= 398). Of 

those defined as Tribal serving (>50% AI, 327), 262 (~80%) were inside FRITs and/or ORTL, with 

an additional 65 locations outside. The distribution of wastewater facilities is summarized in Figure 

17A and supplementary information (Appendix B - SI 2.6. Table 6), including the breakdown for 

https://censusreporter.org/
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those serving the community versus schools and casinos (Figure 17C). The Tribal serving facilities 

are listed in supplementary information (Appendix B - SI 2.7. Table 7), and their location is shown 

in Figure 17B. Of those not-Tribal serving locations (n=593), 260 or ~44% were inside Tribal lands, 

while only ~16% (n=65) Tribal serving locations were outside Tribal lands.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Facilities. A) Facility classification according to those serving Federally Recognized 
Indian Tribe (FRIT) population. Facility distribution between Tribal and non-Tribal lands, 
predominantly AI serving (>50%) facilities and whether those include community, school or casino. 
B) Location of facilities classified as “Tribal serving” across the United States (United States Census 
Bureau, 2020a, 2020b, 2020c). C) Breakdown of total number of FRITs, those with a Federal Indian 
Reservation (FIR) and/or Off Reservation Trust Land (ORTL) and the total number of WWTP based 
on geographic location (inside/outside) and types of population served Tribal vs. Not-Tribal, 
community vs. school, vs, casino. 
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3.2.1. Tribal-Level Analysis 

Analysis of available NPDES permits shows that 94 FRITs have at least one facility inside 

the boundaries of their FIR and/or ORTL. Of these 65 have at least a Tribal serving facility, either 

community (n=51), school (n=8), or casino (n=24). In addition, ~50% (n = 33) of those 65 also have 

a non-Tribal facility onsite (service to population with less than 50% AI), while another 29 FRITs 

have only non-Tribal serving facilities. Analyzing the location of wastewater facilities inside and 

outside FIRs and/or ORTLs, 110 FRITs have facilities serving their community, school, and/or 

casino. 86 FRITs of them have at least one community specific location, 17 have at least one school 

specific location and 29 have at least a casino location.   

For the 210 Tribal serving wastewater treatment facilities (community serving) inside FIRs 

and/or ORTLs, serving 51 unique Tribes, the percentages of the estimated total AI population in 

the FIRs and/or ORTLs connected are shown in Figure 18. For example, the wastewater treatment 

facility serving Oneida Nation capturing > 50% AI by demographics only captures 8% of the total 

Tribal community living on the FIR and/or ORTL. On average, the total percentage of each AI 

population captured by wastewater infrastructure is 57% ± 27% (min, max, median 8, 100, 55).  
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Figure 18. Connected population. List of Federal Recognized Indian Tribes with estimated 
percentage (%) of American Indian population on the Federal Indian Reservation and/or Off-
reservation Trust Land that is connected to a community serving wastewater treatment plant 
(WWTP). n = number of Tribal community serving WWTP, n = 1 unless otherwise stated. 

 
 

3.3. Discussion 

3.3.1. Tribal Infrastructure  

3.3.1.1. Basic Sanitation Assessment. This analysis identified that 94 FRITs have 

registered NPDES permits within FIRs and/or ORTL boundaries, of them 51 are connected to 

community wastewater treatment plant facilities, covering an estimated 135,000 people or 36% of 

Tribal members on FIRs and/or ORTLs.  

However, 523 FRITs have unknown community sewage treatment practices. These could 

be because they 1) have on-site septic systems, 2) have sewer connections that feed into non-
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Tribal or off-reservation facilities, 3) have sewer connections that feed into reservation facilities 

located at a distance greater than 40 km, 4) are non-discharging (terminal lagoons), 5) do not 

discharge into surface water but to other locations such as infiltration basins, 6) recycle their 

wastewater for irrigation or other purposes, or 6) do not have FIR or ORTL that would require a 

wastewater facility. Additional methods should be used to determine if current infrastructure exists, 

but information is not available via EPA ECHO the database that captures only NPDES permitted 

(discharging) facilities. In rural communities, often common on Tribal reservations, decentralized 

wastewater treatment plants are common, generally non-discharging single-cell lagoon systems 

(United States Environmental Protection Agency, 2022q). Previous work has highlighted the 

importance of non-discharging systems to the total number of collection systems on Tribal 

reservations, particularly in the west (Driver et al., 2022).  

 

3.3.1.2. Opportunities for Monitoring. The delineation of facilities into communities, 

schools, and casinos adds a unique opportunity for monitoring. Casinos provide revenue and 

tourism, but visitors may act as infectious disease vectors or sources of illicit substances. 

Additionally, schools are incredibly important to the health of communities and may act as 

reservoirs of disease aiding spread from schools to isolated homes. Both of these types of facilities 

would be useful to community-level sentinel monitoring. 

 

3.3.1.3. Environmental Justice Concerns. The evaluation identified 260 of 522 (~50%) 

WWTP on Tribal lands that serve predominantly non-Tribal populations. Of these 102 serve 

commercial or industrial uses (e.g., hotels, lodges, processing plants and other construction uses) 

that are not included here. Thus, 158 predominantly serve non-Tribal communities on Tribal lands. 

In fact, the majority serve ≤ 10% of a Tribal-identifying population, which calls into question how 

the infrastructure ended up on Tribally-administered land (Figure 19). The Indian Health Sanitation 

(IHS) Facilities Act Public Law 86-121 is intended to serve AI/AN homes and communities with 

adequate water, sewage, and solid waste disposal (Indian Hospitals and Health Facilities, 2004). 

IHS recognizes that data on Tribal housing, sanitation services, and construction needs through 
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the Home Inventory Tracking System (HITS) and Sanitation Deficiency System (SDS) is incomplete 

(United States Government Accountability Office, 2018c).  Additionally, WWTP consume a large 

land footprint, are often considered visually unappealing, fraught with noise pollution from vehicular 

traffic and heavy machinery, as well as odor and pollution issues (Jensen et al., 2018). The 

treatment facilities in this study are covered by the NPDES permit program under the Clean Water 

Act (1972), so all of these facilities are discharging into water bodies. NPDES permits provide limits 

on target pollutants, which vary geographically, however numerous studies highlight the selective 

pressures of low levels of these regulated pollutants in effluent, to synergistic exposures and 

impacts of these compounds, and the various classes of unregulated contaminants (Deblonde et 

al., 2011; Huggett et al., 2003; Mason et al., 2016). An analysis of ECHO’s NPDES permits under 

the CWA demonstrated that Tribally-owned POTWs have statistically fewer numbers of inspections 

and more violations, further supporting environmental disparities impacting Tribal lands (Teodoro 

et al., 2018).  

 

 
Figure 19. Number of wastewater treatment plants (WWTP) on Tribal reservations or ORTL with 
WWTP infrastructure that predominantly serves non-Tribal populations.  
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3.4. Conclusions 

Publicly available permit data on federally regulated wastewater treatment facilities was 

successfully used to provide information on the number of FRITs administering FIRs and/or ORTL 

with municipal sanitation infrastructure. It was estimated that 36% or 135,000 people from 51 of 94 

FRITs with wastewater infrastructure in-place are served by community WWTPs. This is considered 

a conservative estimate of Tribal infrastructure connectivity and identified that additional tools are 

necessary to assess non-discharging facilities. I identified a list of 210 Tribal communities from 54 

FRITs with appropriate infrastructure to be applicable for wastewater monitoring activities.  
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CHAPTER 4 

WASTEWATER LAGOON DETECTION ON THE UNITED STATES TRIBAL LANDS USING 

REMOTELY SENSED DATA 

 

Various physical, chemical, and biological technologies, often used in combination, exist 

today to treat wastewater in an effort to return it to the desired level of water quality in the most 

economical manner. Method selection depends on several factors, such as wastewater 

characteristics, cost, efficiency, and required operation and maintenance (Rashid et al., 2021). 

Wastewater Lagoons, also known as stabilization ponds, are designed structures where 

mainly physical and biological processes are carried out to treat or stabilize wastewater. The most 

recognized part of this infrastructure is the containment that resembles a natural lagoon called a 

lagoon, pond, or cell  (State of Michigan. Department of Natural Resources & Environment, 2010). 

The size, water depth, number of ponds, and materials used in lagoon treatment systems vary 

according to several factors, such as the amount of wastewater to be treated, the type of pollutants 

to be removed, the level of treatment required, type of soil, amount of land area available, whether 

they are used alone or in conjunction with other wastewater treatment processes, and applicable 

regulations (Department of Environmental Protection. State of Maine, n.d.; United States 

Environmental Protection Agency, 2011).  

For the US wastewater lagoons are important wastewater infrastructure; in 2011 there were 

over 8,000 units representing more than 50% of the wastewater treatment facilities  (United States 

Environmental Protection Agency, 2011). They have been the main choice to treat domestic 

wastewater produced by small communities (Schulhof, 2022; United States Environmental 

Protection Agency, 2011), while cities and individual households normally treat their wastewater 

with more advanced technologies and septic systems, respectively (United States Environmental 

Protection Agency, 2022k). The concept of small community is not well defined. Muga & Mihelcic 

(2008) define small communities as those producing less than 5 Million Gallons per Day (MGD) or 

18.9 x 103 cubic meters of wastewater, while the US EPA defines those with 10,000 or fewer people 

and wastewater flow less than 1 MGD on average as small communities (United States 
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Environmental Protection Agency, 2023a). Treatment with wastewater lagoons has many 

advantages including: ability to treat many sources of wastewater, operability under a wide range 

of climatic conditions, low maintenance, and cost-effectiveness. However, Kayira & Wanda, (2021) 

and Painter et al., (2020) found indications of significant pollution in a river resulting from 

wastewater lagoons, this because wastewater lagoons are often unable to meet some water quality 

requirements, becoming a potential source of adverse environmental and human impacts when the 

implementation of other technology is cost-prohibitive —a common situation for small communities 

(Schulhof, 2022).  

Additionally to the ECHO database, the US EPA maintains the more specific Lagoon 

Inventory Dataset containing information from publicly or semi-publicly owned lagoon wastewater 

treatment systems where the lagoon is the main form of secondary treatment and there are not any 

other further steps (United States Environmental Protection Agency, 2022b). The facilities included 

in the Lagoon Inventory Dataset tend to serve rural communities with less than 3,000 people and 

those that are economically disadvantaged. Of the lagoons identified in this database, 33% of them 

discharge to waterbodies with an impaired status under Clean Water Act Section 303(d) and 

between September 2018 and September 2021, over 2,800 of the more than 4,600 lagoons in this 

dataset faced effluent exceedances, the most common being biological oxygen demand, total 

suspended solids, fecal indicator bacteria, pH, and ammonia (Schulhof, 2022). For those lagoons 

that do not require a NPDES permit (those that don’t actively discharge —hereafter called a 

“terminal wastewater lagoon”), there are no such publicly available databases to locate them or get 

data from. 

According to the US Census Bureau, rural areas comprise areas with populations less than 

2,500 residents (United States Census Bureau, n.d.-b). In 2020,  rural areas accounted for 97% of 

the total US land area,  had a population of about 46 million, or ~14% of the total population (Dobis 

et al., 2021; Schulhof, 2022). Rural settings have unique geographic and demographic 

characteristics that often cause their residents to face greater economic development challenges, 

as well as difficulties accessing services, less developed infrastructure, and lower personal 

incomes which can create a challenge for wastewater treatment (Schulhof, 2022).  
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Lands under American Indian control comprise more than 56 million acres (National 

Congress of American Indians, 2020); these lands encompass many small and rural communities 

that may be using wastewater lagoons, and oftentimes include terminal lagoons that are not 

designed to discharge to WOTUS. Almost 40% of Native individuals on reservations were living in 

poverty compared to the national rate of 13% in 2015 (National Congress of American Indians, 

n.d.), which may affect the community’s ability to maintain wastewater lagoon facilities, especially 

those that do not have the surveillance of an environmental agency, turning them into a potential 

source of contamination. Locating, quantifying, and evaluating lagoons within Tribal land areas 

could help advance wastewater management in these primarily rural areas; however, given many 

of the lands are rural and in arid areas, the lagoons are likely to be terminal and thus unaccounted 

for in existing databases.  

Remotely sensed data has been proven to be useful in identifying inland water bodies using 

different methodologies such as water indexes (Feyisa et al., 2014; McFeeters, 1996; Z. Wang et 

al., 2018; Xu, 2006), single band thresholds (Klein et al., 2015), or machine learning techniques 

(Ghasemigoudarzi et al., 2022). Some advantages of remotely sensed data are that many are freely 

available and cover a large area of the world, while some disadvantages are their potentially low 

spatial and temporal resolutions. Synthetic Aperture Radar (SAR), known for having the advantage 

of operating at wavelengths not impeded by cloud cover or a lack of illumination, and multi-spectral 

imagery are two types of remotely sensed data that have been successfully used to map inland 

water bodies including flooded areas, rivers, lakes and reservoirs (Kim et al., 2021; Schmitt, 2020). 

At a smaller scale both Ottinger et al. (2021) and Sun et al. (2020) successfully identified 

aquaculture ponds using remotely sensed data opening the door to the possibility of detecting 

smaller inland water bodies. 

The Copernicus program is an initiative of the European Commission in cooperation with 

partners such as the European Space Agency and the European Organization for the Exploitation 

of Meteorological Satellites that monitors the Earth and its environment delivering data, information, 

and services based on satellite and in situ data. This program is served by a constellation of 

dedicated satellites including the Sentinel family that hosts Sentinel-1A and 1B and Sentinel-2A 
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and 2B which operate simultaneously (Programme of the European Union, n.d.). The satellites 

have a repeat cycle at the Equator between 10 to 12 days. Sentinel-1 satellites perform C-band 

SAR imaging providing dual polarization. Sentinel-2 satellites obtain high-resolution and multi-

spectral images (13 bands) at different spatial resolutions. Both the repeat cycle and the high 

spatial resolution of these satellites make the use of their data highly advantageous (The European 

Space Agency, n.d.-a, n.d.-b, n.d.-e, n.d.-d, n.d.-f, n.d.-c). Google Earth Engine (GEE), a free cloud-

based platform for geospatial analysis at the planetary scale for academic and research use, allows 

the access and the use of very large geospatial datasets including Sentinel-1 and Sentinel-2 based 

datasets by virtue of its massive cloud-based computational capabilities (Gorelick et al., 2017). 

It is likely that the locations of terminal wastewater lagoons on Tribal lands can be derived 

using existing satellite-based methodologies for inland water detection. Knowing the location of 

terminal wastewater lagoons across these lands can be beneficial for infrastructure and land 

management, understanding demographic and environmental justice patterns, prioritizing technical 

and financial assistance, preventing water pollution, and monitoring of public health through 

wastewater-based epidemiology. Therefore, in this study I have two aims: 1) to develop an 

algorithm using free and publicly available input data that aids in the detection of wastewater 

lagoons on US federal Tribal lands, and 2) identify Tribal lands with highest potential of impacts 

due to wastewater lagoons. 

 

4.1. Methods 

To identify potential wastewater lagoons on Tribal lands I used a band threshold and 

geometry- based approach leveraging SAR, multi-spectral Surface Reflectance (SR), and several 

additional data sources, validating with information from an EPA database. I focused the search for 

lagoons on areas within Tribal lands near cities, towns, and educational institutions. I conducted 

satellite imagery and product processing, and the first stage of algorithm development within the 

GEE cloud-base analysis platform (Gorelick et al., 2017). Image and product processing, the 

second stage of algorithm development, validation, and spatial analyses were conducted using 

ArcGIS (Environmental Systems Research Institute (Esri), n.d.). Other statistical analyses were 
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performed using the software R and RStudio (R Core Team, 2023; RStudio Team, 2023). Figure 

20 schematizes the procedure followed, and the data preparation and analysis steps are detailed 

in the next sections. 

 

Figure 20. Flowchart depicting the general procedure to find possible terminal wastewater lagoons 
on Tribal lands. Yellow color refers to the stage using Google Earth Engine while green color to the 
Geographic Information System (GIS) stage, gray color represents data obtained from the different 
sources: United States Census Bureau (USCB), National Center for Education Statistics (NCES), 
United States Geological Survey (USGS), and United States Environmental Protection Agency 
(USEPA). AIANNH = American Indian/Alaska Native/Native Hawaiian; SAR = Synthetic Aperture 
Radar; GRD = Ground Range Detected; MSI = Multi Spectral Instrument; USGS = United States 
Geological Survey; 3DEP =3D Elevation Program; JRC =Joint Research Centre.  

 

4.1.1. Study Area 

The study was conducted on 484 land areas administered as FIRs, ORTLs, or joint-use 

areas. The total covered area is ~2.97x1011 m2 distributed as follows: 313 FIRs covering ~96.5%, 

168 ORTLs covering ~3.5%, and 3 joint-use areas covering ~0.002% depicted in Figure 21A and 

21B. The Navajo Nation administers the largest amount of land (~21.3%) while the Seminole Tribe 

of Florida manages the smallest area (<0.001%). These lands are distributed across 35 states and 
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may cross state boundaries, serving 290 FRITs listed in the Supplementary information (Appendix 

C - SI 3.1. Table 1). Only one is in Alaska while 106 are in California; Figure 16 in Chapter 2 depicts 

their distribution in the Contiguous US. The population in these areas has increased ~39% since 

2000 and has the highest poverty rate in the country (~39%). Most areas  are considered rural  

(National Congress of American Indians, 2020), thus combined with the high poverty rate indicates 

that Tribal lands are more likely to be served by wastewater lagoons than full-scale wastewater 

treatment plants. 

Tribal land area data were obtained from the American Indian/Alaska Native/Native 

Hawaiian (AIANNH) Area National shapefile of the US Census Bureau for the year 2022 (United 

States Census Bureau, 2022a). Values between 0001 to 4999 of the AIANNH area Census Code 

(AIANNHCE) referring to FIRs, ORTLs, and joint-used areas were used, this code is a 4-character 

nationally unique string assigned to legal and statistical AIANNH areas (United States Census 

Bureau, 2022b). Individual shapefiles were created for each area, when possible related FIRs and 

ORTL were grouped, the resulting areas —grouped, not grouped, and joint-use areas— are 

referred as Tribal lands. 

 

 

  

 

 

 

 

 

 

Figure 21. Tribal lands. A) Number and B) covered areas, according to the type of Tribal land. 
(United States Census Bureau, 2022a). 
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4.1.2. Study Time Period 

The training and detection process was centered on one entire year to mitigate the 

uncertainties arising from fluctuations in wastewater levels within the wastewater lagoons. These 

variations could be caused by daily cycles (e.g., day and night) as well as seasonal changes (e.g., 

summer and winter, school year or vacation timing), and weather conditions (e.g., hot and cold 

temperatures). I selected the period from January 1 to December 31, 2019, which was a year prior 

to the start of the Coronavirus Disease of 2019 (COVID-19) pandemic. During this period, I 

assumed a typical trajectory of life development without the influence of the pandemic, but if the 

number or quality of the images was low in 2019 then years 2020 or 2021 were used instead. 

 

4.1.3. Data Collection and Preparation 

4.1.3.1. Defining Areas of Interest Within Tribal Lands. Wastewater lagoons are 

expected to be on or near populated places such as cities and towns or where activities occur at 

group settings such as educational institutions, especially in rural areas. This strategic placement 

ensures convenient access to the facilities and therefore the management and treatment of 

wastewater can be efficiently carried out. In order to analyze the data effectively, the study 

concentrated on the areas on Tribal lands where incorporated places, Census Designated Places 

(CDPs), and educational institutions are located, as well as their surrounding areas (Figure 22). 

Incorporated places are officially recognized by the states as cities, towns, villages or boroughs. 

CDPs are areas with a designated name but lack legal recognition from the state and have 

undefined boundaries. Public elementary and secondary schools, private schools, and post-

secondary schools are considered educational institutions. A 2,500 meter radius around these 

areas was also included in the analysis. I created a shapefile with areas that encompass the 

recognized boundaries of incorporated places, as of January 1, 2022, and CDPs along with a 

2,500-meter perimeter around them that intersected Tribal lands. This was based on the "Places" 

shapefile for 2022, obtained from the US Census Bureau (United States Census Bureau, 2022a, 

2022b). 
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Point locations (latitude and longitude) of three types of educational institutions, public 

elementary and secondary schools, private schools, and post-secondary schools, were obtained 

from the shapefiles “Public School Locations – Current” (National Center for Education Statistics, 

2022b), “Private School Locations – Current” (National Center for Education Statistics, 2021), and 

“Postsecondary School Locations – Current” (National Center for Education Statistics, 2022a). 

These educational institutions are included in the National Center for Education Statistics Common 

Core of Data, which centralizes administrative and fiscal data about public schools, school districts, 

and state education agencies in the US (National Center for Education Statistics, n.d.-b), and the 

Private School Survey, or the Integrated Postsecondary Education Data System, which gathers 

information from colleges, universities and technical and vocational institutions participating in the 

federal student financial aid programs (National Center for Education Statistics, n.d.-a). I have 

generated a shapefile that comprises the areas as well as a 2,500 m radius around these three 

types of educational institutions located on Tribal lands (Figure 22). 

 

 

 

 

 

 

Figure 22. Areas of interest. A) Incorporated and census designated places (yellow) and 
educational institutions (green) including a 2,500 m surrounding area (red) within a Tribal land (sky 
blue).  B) A close-up view of a census designated place (yellow) and two public schools (green) 
within the Tribal land area shown in A). The areas of interest (red) include a 2,500 meter 
surrounding radius. (National Center for Education Statistics, 2021, 2022b, 2022a; United States 
Census Bureau, 2022a). 

 

4.1.3.2. Predictor Variables and Data. For each separate Tribal land, I compiled satellite 

imagery and other covariate data in GEE that I expected would aid in identifying areas with water 

that could be wastewater lagoons (Table 6). In order to identify potential wastewater lagoons, I 

focused on identifying areas with water, of a specific shape, and in low-sloping areas. To distinguish 

lagoons from waterbodies such as rivers, lakes, and lagoons, I can consider occurrence over time. 

A B 
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To distinguish a wastewater lagoon from natural permanent water features, I can consider their 

quasi-regular shape, often taking the form of rectangles or polygons. Conversely, areas that are 

narrow and elongated or irregular in shape are unlikely to be wastewater lagoons. Such shapes 

are more common in natural water accumulations. Finally I also know that wastewater lagoons 

have a recommended slope value between 5% to 7% (2.86˚ to 4.00˚) not exceeding 12% (6.84˚) 

(Arkansas Department of Health, 2007; Schultheis, 2022). Areas with high slopes are thus not 

suitable. Data and processing steps are described further in this section.  

 

Table 6 

Data Products and Sources Used in the Prediction of Wastewater Lagoons on Tribal Lands 
Data Source Spatial 

resolution 

Temporal 

resolution 

Reason for 

including 

VV polarization Sentinel-1 SAR GRD: C-band Synthetic 

Aperture Radar Ground Range Detected, 

log scaling 

10 m 12 days 

(single 

satellite) 

Helps to identify water  

NIR 

 Band 8,  

wavelength  

835.1/833 nm 

Harmonized Sentinel-2 MSI: MultiSpectral 

Instrument, Level-2A 

10 m 10 days 

(single 

satellite) 

Helps to identify water 

SWIR1  

Band 11 

wavelength 

1613.7/1610.4 nm 

Harmonized Sentinel-2 MSI: MultiSpectral 

Instrument, Level-2A 

20 m 10 days 

(single 

satellite) 

Helps to identify water 

Occurrence JRC Global Surface Water Mapping 

Layers, v1.3 

30 m 1984-2020 Identification of surface 

water 

Elevation USGS 3DEP 10m National Map Seamless 

(1/3 Arc-Second) 

10.2 m N/S 

and  

variable 

E/W 

1998-2020 To estimate slope; 

lagoons are suitable only 

on low slopes 

VV = vertical transmit/vertical receive polarization, NIR = Near Infrared, SWIR = Short-wave Infrared, N = north, S = south, E = east, W = 

west. 

 

4.1.3.2.1. SAR Based Imagery for Water Detection. For each Tribal land I generated a 

binary image where pixels with 1-values are considered related to water. The collection "Sentinel-

1 SAR GRD: C-band Synthetic Aperture Radar Ground Range Detected, log scaling” in GEE 
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(Google Developers, n.d.-b), was used to access Ground Range Detected (GRD) C-band SAR 

Images with Interferometric Wide (IW) swath instrument mode, and ascending orbit direction, 

originally captured by Sentinel-1 satellites, covering the Tribal land (S1). The single co-polarization, 

Vertical transmit/Vertical receive (VV) polarization band of these images was used to produce a 

reduced image by calculating the mean of all values at each pixel. The image produced was then 

utilized to generate a binary image clipped to the Tribal land area, having 1-values for pixels with 

values below -18, identifying pixels likely to be water. 

 

4.1.3.2.2. Spectral Based Imagery for Water Detection. Near Infrared (NIR) and Short-

wave Infrared (SWIR) bands are considered related to water in that it absorbs more energy in their 

wavelength causing low reflectance (Mondejar & Tongco, 2019). For each Tribal land I generated 

a binary image where pixels with 1-values are considered related to water. Spectral images of SR 

scaled by 10,000, originally obtained by Sentinel-2 satellites, with less than 10% of cloudy pixels 

covering the Tribal land (S2) were accessed from the collection “Harmonized Sentinel-2 MSI: 

MultiSpectral Instrument, Level-2A” in the Earth Engine Data Catalog (Google Developers, n.d.-a). 

These images were masked for opaque and cirrus clouds using the bits 10 and 11 of the QA60 

atmospheric band, downscaled dividing by 10,000, and reduced by calculating the median of all 

values at each pixel for all their 12 spectral bands. With the resulting image clipped to the area of 

the Tribal land, a binary image was created where pixels with values of 1 were those where pixels 

in NIR (B8) and SWIR1 (B11) bands that had values in the range 0 < B8 < 0.19 and 0 < B11 ≤ 0.12, 

respectively, indicating pixels likely to be water. 

 

4.1.3.2.3. Surface Water Bodies Image to Exclude Natural Waterbodies. To exclude 

areas with natural surface waterbodies I created a seamless binary image where 1-values 

represented areas with low frequency of water presence. To identify these areas the “JRC Global 

Surface Water Mapping Layers, v1.3” dataset in the Earth Engine Data Catalog (Earth Engine Data 

Catalog, n.d.) was used. This dataset produced by the Joint Research Centre of the European 

Commission under the Copernicus program with data from satellites Landsat 5, 7 and 8 of the 
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National Aeronautics and Space Administration /United States Geological Survey (USGS) Landsat 

Program and the methodology of Pekel et al., (2016). This data contains one image with 7 bands 

of 30 meters spatial resolution showing the location, temporal distribution, and statistics on the 

extent and change of surface water in the period 1984 to 2020. I applied a threshold (<35%) to the 

band “occurrence” to retain areas with low presence of water occurrence. This band refers to the 

frequency with which surface water was present in the period with values ranging from 0% to 100%. 

Permanent surface water has a 100% occurrence. 

 

4.1.3.2.4. Elevation Data to Exclude High Slope Areas. To exclude steep areas where 

the probability that a wastewater lagoon would be located is low, I generated a seamless binary 

image where 1-values represent areas with slope less than 6 degrees. Slope, in degrees, was 

calculated from the “elevation” band, in meters, in the “USGS 3DEP 10m National Map Seamless 

(1/3 Arc-Second)” dataset ingested in GEE (United States Geological Survey, n.d.-b). This dataset 

is a seamless digital elevation model for the US, with a pixel size of 10.2 meters north/south and 

variable east/west, developed by the 3D Elevation Program managed by the USGS National 

Geospatial Program (United States Geological Survey, n.d.-b).  

 

4.1.4. Wastewater Lagoon Algorithm Development and Evaluation 

The first stage of the algorithm was performed within GEE using a threshold-based 

approach both in preparing that data (Table 6, and as described above) and in creating a final 

binary image representing areas with semi-permanent water that are low-sloping. A threshold 

approach is used as a primitive model for image segmentation (Dey et al., 2010), and is widely 

applied in remote sensing and classification problems across disciplines (Coffer et al., 2020; 

Thomas et al., 2019). Using the predictor data described above, I generated a binary image 

consisting of pixels with a value of 1 only in areas where all the predictor binary images also had a 

value of 1, indicating water-related, low-sloping regions. This image was exported as a raster with 

0 values converted to 9999 values.  
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To obtain a more precise delineation of water related areas, I performed the second stage 

of the algorithm, which involved a geometry process using GIS software. The raster file was 

transformed into vectors, creating polygons with a value of 1 where pixels also had a value of 1. 

These were retained, aggregated within a distance of 100 meters, and further enclosed as convex 

hulls. The width and length of these new polygons were calculated, and the ratio of length to width 

was determined. Only those polygons with a ratio value less than or equal to 4 and were within 

previously described buffers of Places and Educational Institutions areas were retained. The final 

step consisted of using the imagery basemap in ArcMap to discriminate whether each remaining 

polygon could be a potential wastewater lagoon or not. 

 

4.1.4.1. Model Training. In order to establish predictor variables and thresholds described 

above, I experimented with various data, threshold values, and their combinations on both the 

Navajo Nation Reservation and Off-Reservation Trust Land, and the Pine Ridge Reservation. 

Although the EPA databases contain geographic information for permitted wastewater lagoons, 

they do not include data on those that are terminal or non-discharging to a WOTUS. Thus, I visually 

identified possible wastewater lagoons using base imagery in ArcMap. The potential lagoons were 

then combined with permitted wastewater lagoons and added to a shapefile. I then used this 

shapefile to compare the detected areas to the previously identified potential wastewater lagoons 

within these regions and adjust thresholds and predictor variables used in the final algorithm 

described above. 

 

4.1.4.2. Model Verification Using Permitted Wastewater Lagoons. While I cannot do a 

complete model validation effort since there is no wastewater lagoon database that includes both 

permitted and unpermitted lagoons, I still wanted to perform a verification to assess how well the 

algorithm worked for at least the permitted lagoons. Known wastewater lagoons on Tribal lands, 

publicly or semi-publicly owned, serving as the main form of secondary treatment without more 

advanced treatment or add-on technologies, and holding a NPDES permit that allows them to 

discharge pollutants into WOTUS, were obtained from the EPA Lagoon Inventory Dataset. This 
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dataset, updated May 2022 and revised on July 2022, contains compiled information from 18 

datasets about 4,537 wastewater lagoons including locations (latitude and longitude), although this 

dataset does not capture all wastewater lagoons in the US (United States Environmental Protection 

Agency, 2022r).  

Of the 4,537 locations of permitted wastewater lagoons in the EPA Lagoon inventory 

dataset, only 174 are on Tribal lands. Of them, 6 are in the same place as other wastewater 

lagoons, 5 are not on or near a visually identifiable wastewater lagoon, and 8 had to be relocated 

using the name of the wastewater lagoon, leaving a total of 163 wastewater lagoons to possibly be 

detected for verification of the approach.  

 

4.2. Results  

4.2.1. Wastewater Lagoon Identification 

Of the 31,732 different incorporated places and CDPs in the US, only 1,089 are at least 

partially located on a Tribal land area. Also, 769 of 101,662 public elementary and secondary 

schools, 53 of 21,572 private schools, and 43 of 6,847 post-secondary schools are located on Tribal 

lands. 

S1 and S2 images from 2019 were obtained for 315 Tribal lands, from 2020 images for 11 

Tribal lands, and from 2021 images for 1 Tribal land. A total of 23,074 S1 and 29,725 S2 images 

were used; the minimum, maximum, and median number of images used for a Tribal land was 10, 

490, and 57 for S1 and of 7, 1,193, and 66.5 for S2. Goshute reservation was an exception because 

only 1 S2 image from 2019 was used due to the low quality of the other images. This resulted in 

327 raster images after the first stage of the algorithm was applied. Figures 23A and 23B show 

the S1 mean and S2 median images for one Tribal land area while Figure 23C depicts a close-up 

of the resulting binary image after the application of the first stage of the algorithm, showing the 

detection of water-related, low-sloping regions.  
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Figure 23. Created images. A) S1 mean image and B) S2 median image, for Pine Ridge 
reservation, delineated in red color, a Tribal land under the administration of the Oglala Sioux Tribe. 
C) Close-up of the resulting binary image after the application of the first stage of the algorithm 
showing in orange color water-related, low-sloping regions (Corresponding S2 median image is 
used as background for visual context). 

 

After transformation of the raster files to vectors, 205,487 polygons with value of 1 were 

retained, Figure 24A presents six examples of these polygons. Aggregation resulted in 60,027 

polygons, Figure 24B shows the resulting polygons after aggregation of those in Figure 24A. 

Convex hull enclosing generated same number of polygons of which 47,961 have the length to 

width ratio less than or equal to 4, Figure 24C shows two examples with length to width ratio of 

1.94 (upper) and 5.32 (lower). Of them, 10,746 polygons overlapped Places and Educational 

Institutions areas. After using the imagery basemap in ArcMap to discriminate each remaining 

polygon, 834 (~7.8%) were identified as potential wastewater lagoon with 93 located on the same 

possible lagoon, 9,758 (~90.8%) were related to other kinds of water (e.g. rivers, ponds, lakes), 

and 154 (~1.4%) were related to other types of objects (e.g. grass, forest, asphalt).  
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Figure 24. Created polygons. In yellow color: A) Polygons with value of 1 obtained after 
transformation to vectors of the raster images resulting from the first stage of the algorithm. B) 
Polygons after aggregation with a 100 m distance. C) Polygons after convex hull enclosing. In the 
upper part, a polygon with a length to width ratio value of 1.94 (length = 371.67 m, width = 191.01 
m), while in the lower part a discarded polygon with a ratio value of 5.32 (length = 334.22 m, width 
= 62.82 m).  The imagery basemap in ArcMap is used as background for visual context. 
 

4.2.2. Verification  

With the algorithm, 113 of the 163 (~69.3%) wastewater lagoons in the EPA Lagoon 

inventory dataset on Tribal lands were detected. Out of the remaining 50 (~30.7%), 16 (~9.8%) 

were detected in the first stage but discarded in the second stage. This was because 2 of them 

were aggregated to polygons detecting rivers, 3 had the length to width ratio larger than 4, and 11 

were outside the defined areas of interest. The remaining 34 (~20.9%) were not detected in the 

first stage. Among them, 21 could not be detected as they were almost empty and the detection in 

the first stage is based on pixels related to water. Additionally, 11 were small with sizes similar to 

the pixel size of the used products, and 2 had a green color that is more related to vegetation than 

to water. Table 7 shows the distribution of detected and not detected wastewater lagoons and the 

cause when not detected. 

 

 

 

 

A) C) B) 
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Table 7 

Detection Status of 163 Wastewater Lagoons on Tribal Lands in the EPA Lagoon Inventory Dataset 
Action/Cause Subtotal Total % 

Detected 113  ~69.3 

Detected in the first stage but discarded in the second stage 16  ~9.8 

Aggregated with a waterbody 2 ~1.2  

Length/width > 4 3 ~1.8  

Outside areas of interest 11 ~6.8  

Not detected in the first phase 34  ~20.9 

Almost empty 21 ~12.9  

Small size 11 ~6.8  

Green color 2 ~1.2  

 

4.2.3. Permitted and Possible Unpermitted Wastewater Lagoons and Tribal Lands 

I classified lagoons (permitted and possible unpermitted) across all Tribal lands. The 163 

permitted wastewater lagoons serve on 33 Tribal lands to 35 FRITs, the minimum number serving 

a FRIT is 1 and the maximum 20 with a median value of 2. There are no records of permitted 

wastewater lagoons on 294 Tribal lands administered by 255 FRITs. With this approach, 628 

possible unpermitted wastewater lagoons were identified, these are distributed on 121 Tribal lands 

administered by 114 FRITs, their number in Tribal lands ranged from 1 to 121 with a median value 

of 2, with The Osage Nation having the highest number. There are no lagoon identifications on 206 

Tribal lands administered by 176 FRITs. Based on Tribal lands, 6 (covering ~3.7% of the total Tribal 

land area) only have permitted wastewater lagoons, while 27 (~61.3%) have both permitted and 

possible unpermitted, whereas 94 (~31.4%) have only possible unpermitted, and 200 (~3.7%) have 

no identified lagoons at all. Table 8 shows this distribution while Figure 25 shows the number of 

permitted and possible unpermitted wastewater lagoons on each FRIT listed in the Supplementary 

information (Appendix C - SI 3.1. Table 1) having at least one wastewater lagoon of any type. 
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Table 8 

Number of Permitted and Possible Unpermitted Wastewater Lagoons, Tribal Lands, Federally 
Recognized Indian Tribes, and Tribal Land Area 

Condition # of 

permitted 

WWLs 

# of 

possible 

unpermitted 

WWLs 

# of 

Tribal 

lands 

# of 

FRITs 

Area of 

the Tribal 

landsa  

With only permitted WWLs 20 0 6 6  ~3.7% 

With permitted and possible unpermitted WWLs 143 369 27 29 ~61.3% 

With only possible unpermitted WWLs 0 259 94 85  ~31.4% 

Without permitted or possible unpermitted WWLs 0 0 200 170  ~3.7% 

                                                                                              Total             163      628              327               290     

aWith respect to the total land area administered as FIRs, ORTLs, or joint-use areas of ~2.97x1011 m2. 
# = number, WWL = wastewater lagoon, FRIT = federally recognized Indian tribe. 

 

 

Figure 25. Wastewater lagoon quantities. Number of permitted and possible unpermitted 
wastewater lagoons serving Federally recognized Indian Tribes (FRITs). Numbers in y-axis refer 
to the FRIT number listed in Supplementary information (Appendix C - SI 3.1. Table 1). FRITs 
without wastewater lagoons are not depicted. 
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4.3. Discussion 

The findings suggest that the signature of small water bodies detected from a variety of 

satellite image datasets can be used in the future to locate currently unknown wastewater (or other 

types) lagoons. This information could help reveal where the efforts should be directed to prevent 

environmental impacts such as pathogenic contamination of surface water as well as to prioritize 

support to underserved communities through technical and financial assistance efforts. Bacteria 

are present in the WWTP influent. They also play a crucial role in wastewater treatment as they 

help break down organic matter, facilitate energy flow, and biochemical cycling. However, their 

abundant presence can pose a risk as they may emit harmful pathogens, especially if the WWTP 

is poorly operated or if leaks or floods occur. For example, Oluseyi Osunmakinde et al., (2019) 

found bacterial pathogens in treated wastewater effluent in South Africa, while Skwor et al., (2020) 

identified antibiotic-resistant pathogens in populations in rivers that receive treated wastewater in 

Wisconsin. Even WWTPs having an NPDES permit, which guarantees good management 

practices, regular monitoring, and oversight by the EPA, can still exceed effluent limits and become 

a source of pollution. Those operating with a low budget or without governmental oversight pose 

an even greater risk, even if they do not directly discharge into a WOTUS. In drylands, ephemeral 

and intermittent rivers comprise most of the river system but are not regularly monitored. Limited 

data suggest that their concentration of fecal contamination is higher than perennial rivers (see 

Chapter 1), which is especially concerning during the rainy season when river connectivity is at its 

highest. Contaminants can be transported to perennial streams that serve as water sources. 

The discussed approach mainly focuses on detecting WWL in domestic sewage treatment. 

Nevertheless, it can also be utilized to identify other similar lagoons that treat wastewater in 

industrial and agricultural settings, such as CAFOs and mining operations. Over the last few 

decades, there has been a rise in the number of CAFOs in the United States (Raff & Meyer, 2022). 

Despite EPA and environmental agency regulations, these facilities have been connected to low 

ambient water quality (Miralha et al., 2022). One contributing factor is that many of these operations 

use manure lagoons for biological treatment and extended animal waste storage. Depending on 

the state, CAFOs may be subject to regulation through an NPDES permit (Shea et al., 2022). 
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However, this varies by state and can make it challenging to obtain data that would aid in their 

effective management and monitoring. Mining operations can also pose a significant threat to 

ambient water conditions and the health of communities nearby. The wastewater produced by 

these operations is often stored in lagoons and can contain dangerous substances such as arsenic, 

cadmium, and chromium at high levels, which could potentially spill. In a study conducted by 

Santana et al., (2020), heavy metals were discovered in sediment, surface water, and groundwater 

samples taken from three mining areas located in a semi-arid region of Brazil. It would be highly 

advantageous to know the whereabouts of un- or under-regulated and abandoned mining sites in 

order to prevent environmental pollution. 

From the observations, I found that over 98% of the polygons detected were associated 

with water, with only about 7.8% identified as potential wastewater lagoons. The number of 

polygons considered increased significantly with the resolution in the delineation of natural surface 

water areas. It is crucial to fully identify surface water bodies to avoid misidentification. However, it 

is difficult to delineate rivers, lakes, and other surface water areas at a national level. It is well-

documented that water bodies such as lakes, rivers, and ponds undergo inter and intra-annual level 

variations due to factors such as evaporation, precipitation, and human use, affecting the area 

covered by water  (Guo et al., 2023; Larson & Schaetzl, 2001; M. Li et al., 2016; Lin et al., 2017; 

You et al., 2015).Therefore, I used a publicly accessible global dataset that maps the occurrence 

of surface water as a proxy for surface water areas. As a result, surface water areas that are only 

covered for a short period were not included as part of the water body in the used image and may 

not be discarded. Another factor that could impact the identification of surface water in the image 

being used is the pixel size. If a 30-meter pixel is only partially covered by water, it may not be 

classified as such (Pekel et al., 2016). 

 The delineation of the areas of interest is another factor that affected the detection of 

wastewater lagoons. Certain incorporated locations and CDPs have open areas on one side and 

developed spaces on the other near the border, which leads to the potential areas where 

wastewater lagoons might exist being disregarded. Detection of possible wastewater lagoons could 

be improved when including location of small towns, those with less than 2500 inhabitants that are 
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not included as incorporated places or CDPs, and casinos. Another factor is the type of terrain 

included in the areas of interest; the terrain of the Osage Nation contains a considerable number 

of small ponds that could contribute to the high number of possible unpermitted wastewater lagoons 

found.  

Identifying smaller or less full wastewater lagoons can be a challenge since the algorithm 

depends on products that have restricted resolution and wavelengths specifically designed for 

water detection. The possible wastewater lagoons detected could be facilities not discharging to a 

WOTUS to be considered subject to regulations. Alternatively, they could be wastewater lagoons 

that were previously permitted but are no longer in operation that have not been fully dismantled 

yet, such as those used during construction activities, man-made ponds for other purposes, or 

simply natural ponds. 

Tribal lands without permitted wastewater lagoons (~89.9%) could be serving their 

population with other types of facilities such as on-site septic systems, sewer connections that feed 

into more sophisticated wastewater treatment plants or recycling their wastewater for other uses. 

By identifying possible unpermitted wastewater lagoons, the number of Tribal lands without 

wastewater lagoon operations would decrease to ~52.9% considering that according to the US 

Census Bureau  in 2010 27 Tribal lands were not populated (United States Census Bureau, n.d.-

a).  When assessing the wastewater infrastructure for Tribal populations, it is important to consider 

all populated clusters. Merely having a wastewater lagoon on a Tribal land does not necessarily 

mean that it's servicing the entire population due to the vast expanse of Tribal lands. 

   

4.4. Conclusions 

Wastewater lagoons, especially those that may not be regularly monitored, could pose a 

risk to surface water when inadequately managed. Data regarding the location of those operating 

without an NPDES permit that allows the government oversight can be beneficial to tackle 

contamination especially by pathogens. This study offers a methodology that can be applied on a 

broad scale to locate possible unpermitted and permitted wastewater lagoons, or other small pond 

or lagoon features which may be sources of contaminants. The algorithm relies on free and publicly 
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available input data including satellite-based radar and optical imagery and other datasets such as 

slope and water occurrence, providing a new approach to detect small inland water features. I 

identified 628 possible wastewater lagoons located on 121 Tribal lands administered by 214 

Federally recognized Indian Tribes. I identified that other types of technology could potentially be 

utilized for managing the wastewater of at least 173 Tribal lands. This information could help in the 

management of infrastructure and water, the understanding of demographic and environmental 

justice patterns, and in prioritizing technical and financial assistance and monitoring of public health 

through wastewater-based epidemiology.  
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CHAPTER 5 

OUTLOOK AND FUTURE WORK 
 

It has been previously stated that environmental degradation, particularly affecting water 

resources, may be driven by development and population growth. This is due to the increase in 

pollutants and their sources, with underrepresented communities and drylands being among the 

most impacted. In previous chapters, I identified ephemeral and intermittent streams as having 

higher concentrations of E. coli and summarized the wastewater infrastructure in use for these 

areas. In this final chapter, I will link these concepts together by exploring the links between 

drylands and Tribal areas, as well as links between wastewater infrastructure, ephemeral and 

intermittent streams, and pathogen impairment. 

 

5.1. Relationship of Tribal Lands and Drylands 

Identification and quantification of Tribal land areas with four types of drylands —hyper 

arid, arid, semiarid, and dry subhumid— was carried out as I previously identified unique drivers 

(stream type) of E. coli in dryland ecosystems. Dryland subtypes in the US were identified from the 

Drylands dataset 2007 (United Nations Environmental Programme, World Conservation Monitoring 

Centre, 2019). The 484 FIRs, ORTLs, and joint-use areas serving 290 FRITs in 2022 cover an area 

of ~297.38x109 m2; of them, ~0.07% are classified as hyperarid, ~6.29% as arid, ~7.32% as dry 

subhumid, ~74.16% as semiarid, and the remaining ~12.16% as other (Figure 26). More than 85% 

of Tribal lands are thus classified as dryland.  
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Figure 26. Arid Tribal lands. A) Quantification and B) Map of the conterminous United States of 
Tribal land areas with climate classification based on Aridity Index (United Nations Environmental 
Programme, World Conservation Monitoring Centre, 2019; United States Census Bureau, 2022a). 
 

5.2. Tribal Population 

 The population living on Tribal lands could give a good indication of the potential impact on 

humans if surface water becomes polluted. Total population data on Tribal lands was extracted 

from table “P1 Race” in the Summary File 1 (SF 1) of the 2010 US Census Bureau 

(data.census.gov). The SF 1 includes population and housing characteristics for the total population 

as well as for race groups (United States Census Bureau, 2012). Of the 327 related Tribal lands 

27 were not populated in 2010 according to US Census data. For the rest their population varied 

between 1 and 173,667 (Figure 27) with a total of 994,881. 

 

 

 

 

 

 

 

Figure 27. Population. Total population living on Tribal lands in 2010 according to the U.S. Census 
Bureau; 27 of 327 related Tribal lands were not populated.    
 

B) 



  85 

5.3. Relationship of Wastewater Lagoons (Both Permitted and Possible Unpermitted) and 

Other Types of Wastewater Treatment Plants to Streams 

It is known that wastewater treatment plants have the potential to be a source of pathogens 

and can significantly contribute to the contamination of surface water in a watershed (Kistemann et 

al., 2012; Sanders et al., 2013) depending on the treatment process, when poorly operated, or 

when spills occur (Anastasi et al., 2012; Verburg et al., 2019). By determining the distance between 

wastewater treatment plants and surface waters, I can begin to identify potential pollution risk in 

Tribal lands.  

The shortest distance, in meters, from wastewater infrastructure (each permitted (known) 

and possible (identified in Chapter 3) wastewater lagoon and the wastewater treatment plants in 

the ECHO database (summarized in Chapter 2)) on Tribal lands to any perennial, intermittent, or 

ephemeral river, or artificial path nearby and to any pathogenic impaired stream segment was 

quantified. Information about perennial, intermittent, and ephemeral rivers, and artificial paths, was 

derived using the line features in the USGS National Hydrography Dataset (NHD) for all states 

containing Tribal lands. These features are incorporated in the “NHDFlowline” shapefiles acquired 

from The National Map (United States Geological Survey, n.d.-f). The Feature code (Fcode) values 

of 46000, 46003, 46006, 46007 and 55800, referring to stream/rivers and surrogates of flow 

direction in water bodies and flooding areas in rivers were used (United States Geological Survey, 

n.d.-d). For the 628 possible unpermitted wastewater lagoons identified in Chapter 3, the distance 

to the nearest river ranged between 0 and ~12,000 m with majority (~80%) within 500 m and to an 

intermittent river (~40%) (Figure 28A); furthermore ~37% are in the nearest 100 m with ~17% near 

to intermittent rivers (Figure 28B). For the 163 permitted wastewater lagoons from the EPA’s 

Lagoon Inventory Dataset, the nearest distance range between 0 and ~4,000 m also with majority 

(~88%) within 500 m and to an intermittent river (~55%) (Figure 28C). Moreover, ~50% are within 

100 m, ~34% near to an intermittent river (Figure 28D). Of the 522 facilities in the EPA’s ECHO 

database on Tribal lands, 368 are not included in the Lagoon Inventory Dataset and for them the 

nearest distance is up to ~12,000 m with majority (~79%) within 500 m and to an intermittent river 

(~40%) (Figure 28E), ~30% are within the 100 m, ~14% near to an intermittent river (Figure 28F). 
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Figure 28. Distances. Nearest distance from possible unpermitted Wastewater Lagoons (A, B), 
permitted Wastewater Lagoons (C, D), and permitted wastewater treatment plants (E, F), with 
figures on the right zooming into distances within 500 m. 

 

Location of pathogenically impaired WOTUS (Figure 29A) was obtained from the 

Assessment, Total Maximum Daily Load (TMDL) Tracking and Implementation System (ATTAINS) 

Geographic Information System (GIS) dataset (United States Environmental Protection Agency, 

2022a). ATTAINS summarizes information about reports submitted to EPA in compliance with the 

CWA, sections 303(d) and 305(b). Distance to the nearest impaired WOTUS for ~34% of possible 

unpermitted wastewater lagoons is less than 10,000 m (Figure 29B) while for permitted wastewater 

lagoons and other types of wastewater facilities for only ~19% and ~29% respectively (Figure 29C 

and 29D). 
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Figure 29. Pathogenic impaired Waters of the United States. A) Pathogenically impaired Waters of 
the United States (WOTUS) (red). (United States Census Bureau, 2022a; United States 
Environmental Protection Agency, 2022a). Distance to pathogenic impaired WOTUS from B) 
possible unpermitted, C) permitted wastewater lagoons, and D) other types of wastewater 
treatment plants on Tribal lands. 
 

As previously stated, intermittent rivers rely on seasonal groundwater sources. Therefore, 

reducing pathogenic levels from WWTPs may be limited, resulting in elevated concentrations. 

Unfortunately, the CWA-mandated monitoring campaigns may not include this type of river making  

essential to pay close attention to drinking water supplies, towns with large populations, and 

recreational areas with many visitors near intermittent rivers that are within 500 meters of WWTPs.  

 

5.4. Permitted Wastewater Treatment Plants and E. coli Violations 

 NPDES permits establish wastewater treatment plant effluent limitations to control 

discharges of pollutants to receiving waters based on available technology and the quality 

standards of the receiving water (United States Environmental Protection Agency, 2022n). Effluent 

self-monitoring results should be submitted to EPA through a Discharge Monitoring Report (DMR) 

A) 
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as established in the permit (Pennsylvania Department of Environmental Protection, n.d.). Through 

the package echor in R (Schramm, 2021), E. coli effluent violations for quarters in the last three 

years were searched for the 522 permitted wastewater treatment plants on Tribal lands listed in 

ECHO database using the parameter code 51040 corresponding to “E. coli”. There were records 

for 122 (~23.4%) wastewater treatment plants reporting one of the following “DMR Non-Receipt 

Reporting Violation”, “Non-Reportable Noncompliance Effluent Violation”, or “No Violation 

Identified”. The first refers to when DMRs are not received within 31 days of the due date (United 

States Environmental Protection Agency, 2022o), the second to effluent violations that will not be 

included in the official report (Noncompliance and Program Reporting, 2015), and the last to the 

absence of violations. The total number of retrieved records was 6,567 distributed into the 

mentioned categories respectively as follows ~11.4%, ~7.2%, and ~81.4% (Figure 30). For each 

WWTP the number of records ranges from 2 to 117, with ~17.2% reported with all three violations 

and the rest with one or two violations as detailed in Table 9.    

 

 

 

 

 

 

 

Figure 30. Number of records according to type of violation for wastewater treatment plants in 
ECHO database and on Tribal lands. 
 

 

 

 

 

 

 



  89 

Table 9 

Number of Wastewater Treatment Plants With One or Two Different Types of Violations Reported 
Quarterly in the Last Three Years 

And DMR Non-Receipt 
Reporting 
Violation 

No Violation 
Identified 

Non-Reportable 
Noncompliance 

Effluent Violation 

DMR Non-Receipt Reporting Violation 4 (~3.3%) 28 (~23.0%) 0 

No Violation Identified  44 (~36.1%) 25 (~20.5%) 

Non-Reportable Noncompliance 
Effluent Violation 

  0 

 

 There is no information about ~76.6% of the permitted wastewater treatment plants, for 

those which there are, 43.4% have had delays in presenting DMRs and 73.8% have reported no 

violation identified at least once. 

 

5.5. Takeaways and Final Remarks 

 This dissertation explored drivers and sources of pathogens on Tribal Lands through 

different approaches to better understand the threats to surface water in arid and semiarid lands. 

The results suggest that 1) Consistent monitoring of rivers over time and space is crucial for 

establishing a robust dataset for future analyses; 2) Monitoring of intermittent and ephemeral rivers, 

particularly in dry regions, is essential because they form the primary network of rivers and may 

contain high concentrations of E. coli during rainy seasons, potentially impacting perennial rivers 

and waterbodies; 3) It is important to identify and regulate wastewater treatment plants and other 

types of wastewater infrastructure that discharge to or are nearby  any waterbody, whether it is 

considered part of WOTUS or not, as their effluents, seepage, or accidental emissions could impact 

perennial surface waters.  
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1.1. Table 1. Variables Included in the Records Downloaded from the Arizona Water Quality 

Database of the Arizona Department of Environmental Quality (ADEQ). Not all fields in the 

database were populated. 

No. Variable No. Variable No. Variable 

1 Project 14 Lookup Result 27 Bottom Depth 

2 Site 15 Lab Reporting Limit 28 WQX Flag 

3 Trip# 16 Limit Unit 29 Last Updated Date 

4 Sample# 17 Dilution Multiplier 30 Short Desc 

5 Site ID 18 QA Flags 31 Type 

6 Trip Type 19 Lab Notation 32 County 

7 Medium 20 QA Memo 33 HUC 12 

8 Sample Date 21 Comments 34 HUC 14 

9 Sample Type 22 Credible Level 35 Eco 

10 Protocol 23 Sample Depth 36 Stream Name 

11 Result 24 Usability Code 37 Lat. 

12 Result Unit 25 Usability Originator 38 Long. 

13 Lab Internal No. 26 Top Depth   
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1.2. Table 2. Categories Used for Site/River Classification. 

No. Category Description  

1 Perennial Site located on a stream that always contains watera. 

2 Intermittent Site located on a stream that contains water for only part of the year, but more than 
just after rainstorms and snowmelta. 

3 Ephemeral Site located on a stream that contains water only during or after a local rainstorm or 
heavy snowmelta. 

4 Artificial Path Site located in water bodies or flooded areasa.  

5 Well Site located in a hole drilled into the ground to access water contained in an aquifer. 

6 Intermittent Spring Site located where a concentrated discharge of ground water flows at the ground 
surface only during part of the year. 

7 Canal/Ditch Site located on an artificial open waterway constructed to transport water, to irrigate 
or drain land, to connect two or more bodies of water, or to serve as a waterway for 
watercrafta.  

8 Not identified Site located in an unidentified place. 
a Description in accordance with the National Hydrography Dataset (NHD) User Guide. Retrieved June 2020, 
from https://nhd.usgs.gov/userguide.html. 
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1.3. Table 3. Observed and Derived Watershed Characteristics Evaluated.  

 
 
 
 
 
 

No
Variable/

Watershed area
(1) Unit No

Variable/

Total of the variable
Unit

1 Number of sample sites Total number of sampling sites located on perennial rivers, intermittent 

rivers, ephemeral rivers or artificial paths in a watershed.
U

2
✓ U/m2

3 Number of samples from artificial 

paths

Total number of samples obtained from sites located on artificial paths in a 

watershed.
U

10
✓ U/m2 17

✓
(2) U/U

4 Number of samples from 

ephemeral  rivers

Total number of samples obtained from sites located on ephemeral rivers 

in a watershed.
U

11
✓ U/m

2 18
✓

(2) U/U

5 Number of samples from 

intermittent rivers

Total number of samples obtained from sites located on intermittent rivers 

in a watershed.
U

12
✓ U/m2 19

✓
(2) U/U

6 Number of samples from perennial 

rivers

Total number of samples obtained from sites located on perennial rivers in 

a watershed.
U

13
✓ U/m

2 20
✓

(2) U/U

7 Number of samples from 

intermittent rivers + ephemeral 

rivers

Total number of samples obtained from sites located on intermittent rivers 

or ephemeral rivers in a watershed. U

14

✓ U/m2

21

✓
(2) U/U

8 Number of samples from perennial 

rivers + artificial paths

Total number of samples obtained from sites located on perennial rivers or 

artificial paths in a watershed.
U

15
✓ U/m

2 22
✓

(2) U/U

9 Total number of samples Total number of samples obtained from sites located on perennial rivers, 

intermittent rivers, ephemeral  rivers or artificial paths in a watershed. U

16

✓ U/m
2

23 Artificial path length Total length of artificial paths in a watershed. m 30 ✓ m/m2 37 ✓
(4) m/m

24 Ephemeral river length Total length of rivers classified as ephemeral in a watershed. m 31 ✓ m/m2 38 ✓
(4) m/m

25 Intermittent river length Total length of rivers classified as intermittent in a watershed. m 32 ✓ m/m2 39 ✓
(4) m/m

26 Perennial river length Total length of rivers classified as perennial in a watershed. m 33 ✓ m/m2 40 ✓
(4) m/m

27 Artificial path + perennial river 

length

Sum of the total lengths of artificial paths and rivers classified as perennial.
m

34

✓
m/m2 41

✓
(4) m/m

28 Intermittent  + ephemeral river 

length

Sum of the total lengths of rivers classified as intermittent and rivers 

classified as ephemeral.
m

35

✓
m/m2 42

✓
(4) m/m

29 Total river length Sum of the total lengths of rivers classified as perennial, intermittent or 

ephemeral and artificial paths. m
36

✓

m/m2

43 Mean slope Average degree of the terrain inclination in a watershed relative to the 

horizontal plane. ˚

44 Watershed area Area of a watershed. m
2

45 Areas with biosolid/sludge 

application

Number of areas where biosolids or sludges are applied in a watershed.
U

52
✓ U/m

2

46 Areas with wildlife Number of geographically defined areas which are designated or regulated 

and managed to serve as a refuge or preservation area for wildlife in a 

watershed.

U

53

✓ U/m
2

47 CAFOs Number of commercial animal feeding operations (CAFOs) in a watershed.
U

54
✓ U/m2

48 Dairies Number of businesses for the harvesting and/or processing animal milk in a 

watershed.
U

55
✓ U/m2

49 Farm/ranch Number of farms or ranches in a watershed. U 56 ✓ U/m2

50 WWTP Number of waste water treatment plant (WWTP) facilities installed at a site 

to treat and dispose of wastewater, predominantly of human origin in a 

watershed.

U

57

✓ U/m2

51 CAFOs + dairies + farm/ranch Sum of the number of CAFOs, dairies, and farms or ranches in a watershed.
U

58
✓ U/m

2

59 Barren land (rock/sand/clay)
(5) Areas of bedrock, desert pavement, scarps, talus, slides, volcanic material, 

glacial debris, sand dunes, strip mines, gravel pits and other accumulations 

of earthen material. Generally, vegetation accounts for less than 15% of 

total cover in a watershed.

m2

84

✓ m2/m2

60 Cultivated crops(5) Areas used for the production of annual crops, such as corn, soybeans, 

vegetables, tobacco, and cotton, and also perennial woody crops such as 

orchards and vineyards. Crop vegetation accounts for greater than 20% of 

total vegetation. This class also includes all land being actively tilled in a 

watershed.

m2

85

✓ m2/m2

61 Deciduous forest(5) Areas dominated by trees generally greater than 5 meters tall, and greater 

than 20% of total vegetation cover. More than 75% of the tree species 

shed foliage simultaneously in response to seasonal change in a watershed. m2

86

✓ m2/m2

62 Developed, high intensity (HI)(5) Highly developed areas where people reside or work in high numbers. 

Examples include apartment complexes, row houses and 

commercial/industrial. Impervious surfaces account for 80% to 100% of 

the total cover in a watershed.

m2

87

✓ m2/m2

63 Developed, low intensity (LI)(5) Areas with a mixture of constructed materials and vegetation. Impervious 

surfaces account for 20% to 49% percent of total cover. These areas most 

commonly include single-family housing units in a watershed. m2

88

✓ m2/m2

Related to sites

Related to samples

Related to rivers(3)

Related to terrain

Related to potential emitters

Related to Land use/Land cover

No. Variable Description Unit

Variable (density) Variable (rate)
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1.3. Table 3. (continued). 

 

No
Variable/

Watershed area
(1) Unit No

Variable/

Total of the variable
Unit

64 Developed, medium intensity (MI)(5) Areas with a mixture of constructed materials and vegetation. Impervious 

surfaces account for 50% to 79% of the total cover. These areas most 

commonly include single-family housing units in a watershed. m2

89

✓ m2/m2

65 Developed, open space (OS)(5) Areas with a mixture of some constructed materials, but mostly vegetation 

in the form of lawn grasses. Impervious surfaces account for less than 20% 

of total cover. These areas most commonly include large-lot single-family 

housing units, parks, golf courses, and vegetation planted in developed 

settings for recreation, erosion control, or aesthetic purposes in a 

watershed.

m2

90

✓ m2/m2

66 Emergent herbaceous wetlands(5) Areas where perennial herbaceous vegetation accounts for greater than 

80% of vegetative cover and the soil or substrate is periodically saturated 

with or covered with water in a watershed.
m2

91

✓ m2/m2

67 Evergreen forest
(5) Areas dominated by trees generally greater than 5 meters tall, and greater 

than 20% of total vegetation cover. More than 75% of the tree species 

maintain their leaves all year. Canopy is never without green foliage in a 

watershed.

m2

92

✓ m2/m2

68 Grassland/herbaceous
(5) Areas dominated by gramanoid or herbaceous vegetation, generally greater 

than 80% of total vegetation. These areas are not subject to intensive 

management such as tilling, but can be utilized for grazing in a watershed. m
2

93

✓ m
2
/m

2

69 Mixed forest
(5) Areas dominated by trees generally greater than 5 meters tall, and greater 

than 20% of total vegetation cover. Neither deciduous nor evergreen 

species are greater than 75% of total tree cover in a watershed.
m2

94

✓ m2/m2

70 Open water(5) Areas of open water, generally with less than 25% cover of vegetation or 

soil in a watershed.
m

2 95
✓ m

2
/m

2

71 Pasture/hay(5) Areas of grasses, legumes, or grass-legume mixtures planted for livestock 

grazing or the production of seed or hay crops, typically on a perennial 

cycle. Pasture/hay vegetation accounts for greater than 20% of total 

vegetation in a watershed.

m2

96

✓ m2/m2

72 Shrub/scrub
(5) Areas dominated by shrubs; less than 5 meters tall with shrub canopy 

typically greater than 20% of total vegetation. This class includes true 

shrubs, young trees in an early successional stage or trees stunted from 

environmental conditions in a watershed. 

m
2

97

✓ m
2
/m

2

73 Woody wetlands(5) Areas where forest or shrubland vegetation accounts for greater than 20% 

of vegetative cover and the soil or substrate is periodically saturated with 

or covered with water in a watershed.
m2

98

✓ m2/m2

74 Barren land (rock/sand/clay) + 

shrub/scrub

Total of barren land (rock/sand/clay) and shrub/scrub areas in a watershed.
m

2
99

✓ m
2
/m

2

75 Barren land (rock/sand/clay) + 

deciduous forest + evergreen 

forest + mixed forest + shrub/scrub

Total of barren land (rock/sand/clay), deciduous forest, evergreen forest, 

mixed forest, and shrub/scrub areas in a watershed.
m

2

100

✓ m
2
/m

2

76 Barren land (rock/sand/clay) + 

deciduous forest + evergreen 

forest + mixed forest + shrub/scrub 

+ woody wetlands + emergent 

herbaceous wetlands

Total of barren land (rock/sand/clay), deciduous forest, evergreen forest, 

mixed forest, shrub/scrub, woody wetlands, and emergent herbaceous 

wetlands areas in a watershed. m2

101

✓ m2/m2

77 Deciduous forest + evergreen 

forest + mixed forest

Total of deciduous forest, evergreen forest, and mixed forest areas in a 

watershed. m2
102

✓ m2/m2

78 Developed, HI + MI Total of Developed, high intensity and medium intensity areas in a 

watershed.
m2 103

✓ m2/m2

79 Developed, LI + OS Total of Developed, low intensity and open space areas in a watershed. m
2 104 ✓ m

2
/m

2

80 Developed, HI + MI + LI + OS Total of Developed, high intensity, medium intensity, low intensity and open 

space areas in a watershed.
m2 105

✓ m2/m2

81 Grassland/herbaceous + 

pasture/hay

Total of grassland/herbaceous and pasture/hay areas in a watershed.
m

2 106
✓ m

2
/m

2

82 Open water + woody wetlands + 

emergent herbaceous wetlands

Total of open water, woody wetlands, and emergent herbaceous wetlands 

areas in a watershed. m
2

107
✓ m

2
/m

2

83 Woody wetlands + emergent 

herbaceous wetlands

Total of woody wetlands and emergent herbaceous wetlands areas in a 

watershed. m
2

108
✓ m

2
/m

2

109 Mean precipitation in day 0 Mean value of the amounts of precipitation in the day 0 (sampling day) for 

all samples in a watershed.

in

110 Mean precipitation in day 1 Mean value of the amounts of precipitation in the day 1 (one day before 

the sampling day) for all samples in a watershed.

in

111 Mean precipitation up to day 1 Mean value of the sum of the amounts of precipitations in the day 0 

(sampling day) and day 1 (one day before the sampling day) for all samples 

in a watershed.
in

No. Variable Description Unit

Variable (density) Variable (rate)

Related to precipitation
(6)(7)

   

𝑛

1

  

  1

𝑛

1

  

   𝑖

1

𝑖= 

𝑛

1
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1.3. Table 3. (continued). 

 
 

No
Variable/

Watershed area(1) Unit No
Variable/

Total of the variable
Unit

112 Mean precipitation up to day 2 Mean value of the sum of the amounts of precipitations in the day 0 

(sampling day), day 1, and day 2 (one and two days before the sampling 

day) for all samples in a watershed.
in

113 Mean precipitation up to day 5 Mean value of the sum of the amounts of precipitations in the day 0 

(sampling day), day 1, day 2, day 3, day 4, and day 5 (one to five days before 

the sampling day) for all samples in a watershed.
in

114 Mean precipitation Mean value of the sum of the amounts of precipitations in the day 0 

(sampling day), day 1, day 2, day 3, day 4, day 5, day 7, and day 8 (one to 

eight days before the sampling day) for all samples in a watershed.
in

115 Median precipitation in day 0 Median value of the amounts of precipitation in the day 0 (sampling day) 

for all samples in a watershed.

in

116 Median precipitation in day 1 Median value of the amounts of precipitation in the day 1 (one day before 

the sampling day) for all samples in a watershed.

in

117 Median precipitation up to day 1 Median value of the sums of the amounts of precipitation in the day 0 

(sampling day) and day 1 (one day before the sampling day) for all samples 

in a watershed.
in

118 Median precipitation up to day 2 Median value of the sums of the amounts of precipitation in the day 0 

(sampling day), day 1, and day 2 (one and two days before the sampling 

day) for all samples in a watershed.

in

119 Median precipitation up to day 5 Median value of the sums of the amounts of precipitation in the day 0 

(sampling day), day 1, day 2, day 3, day 4, and day 5 (one to five days before 

the sampling day) for all samples in a watershed.

in

120 Median precipitation Median value of the sums of the amounts of precipitation in the day 0 

(sampling day), day 1, day 2, day 3, day 4, day 5, day 7, and day 8 (one to 

eight days before the sampling day) for all samples in a watershed.

in

121 Mean number of days with 

precipitation

Mean number of days, out of nine, with precipiation value greater than 

zero  in a watershed.

day

122 Mean number of days without 

precipitation

Mean number of days, out of nine, with precipiation value equal to zero  in 

a watershed.

day

123 Median number of days with 

precipitation

Median number of days, out of nine, with precipiation value greater than 

zero  in a watershed.

day

124 Median number of days without 

precipitation

Median number of days, out of nine, with precipiation value equal to zero  

in a watershed.

day

Variable (rate)

No. Variable Description Unit

Variable (density)
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1.3. Table 3. (continued). 

 
 
(1) Watershed area refers to variable number 44         
(2) Total of the variable is variable number 9 "Total number of samples"       
(3) Classification according to the NHD 20200616 for Arizona State or Territory Shapefile Model Version 2.2.1 by the National Geospatial Program of the 

United States Geological Survey retrieved from https://nationalmap.gov/viewer.html      
(4) Total of the variable is variable number 29 "Total river length"        
(5) Name and definition according to the National Land Cover Database Class Legend and Description 2016 at 

https://www.mrlc.gov/data/legends/national-land-cover-database-class-legend-and-description.      
(6) n = total number of samples in a watershed [unit].  

P0 = Precipitation in the sampling day (day 0) [in].           
 P1 = Precipitation one day before the sampling day (day 1) [in].          
 P2 = Precipitation two days before the sampling day (day 2) [in].         
 P3 = Precipitation three days before the sampling day (day 3) [in].          
 P4 = Precipitation four days before the sampling day (day 4) [in].          
 P5 = Precipitation five days before the sampling day (day 5) [in].         
 P6 = Precipitation six days before the sampling day (day 6) [in].         
 P7 = Precipitation seven days before the sampling day (day 7) [in].         
 P8 = Precipitation three days before the sampling day (day 8) [in].               
(7) Qi = 1 if Pi > 0         
 Qi = 0 if Pi = 0         
(8) Di = Distance between the location of the sampling site to the rain gauge used to obtain precipitation data for the day of sampling to eight days 

before the i sample [km].         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

No
Variable/

Watershed area(1) Unit No
Variable/

Total of the variable
Unit

125 Mean number of days until 

precipitation

Mean of the number of days without precipitation counted backwards, 

starting at 0,  from the day of sampling until the first day with precipitation 

value different from zero.
day

126 Median number of days until 

precipitation

Median of the number of days without precipitation counted backwards, 

starting at 0, from the day of sampling until the first day with precipitation 

value different from zero.
day

127 Mean distance from the sample 

site to the rain gauge

Mean of the distances between the location of the sampling site to the rain 

gauge used to obtain precipitation data for the day of sampling to eight 

days before for all samples in a watershed

km

128 Median distance from the sample 

site to the rain gauge

Median of the distances between the location of the sampling site to the 

rain gauge used to obtain precipitation data for the day of sampling to eight 

days before for all samples in a watershed km

No. Variable Description Unit

Variable (density) Variable (rate)

  𝑖

𝑛

𝑖=1

  

       1   2     …   𝑛  
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1.4. Figure 1. Monthly A) mean and B) maximum E. coli concentration values from different types 

of streams in all years of the studied period. Points are indicative of data existence in the considered 

month, blue color represents values with rain presence in the sampling date or at least in one of 

the eight previous days, while black color those with no presence of rain.    
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1.5. Figure 2. A) Residuals versus log10(GM) fitted values. The inexistence of no obvious pattern 

supports the assumptions of linearity and homoscedasticity. B) Q-Q plot of studentized residuals 

versus theoretical residuals. Most points approximately fall on the line suggesting residuals have a 

normal distribution. Residuals are the difference between predicted values using the model 

including the five variables: CAFOs + dairies + farm/ranch (density) [unit/m2], Developed- High 

Intensity [m2], Evergreen forest (density) [m2/m2], Pasture/Hay (density) [m2/m2] and Median 

number of days with precipitation in the 9 days [day] (fitted values) and observed values of 

log10(GM). Studentized residuals are the residuals fitted to a student distribution. Theoretical 

residuals are derived from a population following the theoretical student distribution. 
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APPENDIX B 

SUPPLEMENTARY INFORMATION – WASTEWATER INFRASTRUCTURE AS POSSIBLE 

POINT SOURCES OF POLLUTANTS ON TRIBAL LANDS 
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2.1. Table 1. Federally Recognized Indian Tribes (FRITs) and their corresponding Federal Indian 

Reservations (FIRs) and/or Off-reservation trust land (ORTL). 

 
 
 

State
a

Federally Recognized Indian Tribe
b

Federal Indian Reservation and/or Off reservation trust land
c Sub-total 

Federally 

Recognized 

Indian Tribes
f

Alabama Poarch Band of Creeks Indians Poarch Creek Reservation and Off-Reservation Trust Land 1

Agdaagux Tribe of King Cove

Akiachak Native Community

Akiak Native Community

Alatna Village

Algaaciq Native Village (St. Mary’s)

Allakaket Village

Alutiiq Tribe of Old Harbor 

Angoon Community Association

Anvik Village

Arctic Village
d

Asa’carsarmiut Tribe

Beaver Village

Birch Creek Tribe

Central Council of the Tlingit & Haida Indian Tribes

Chalkyitsik Village

Cheesh-Na Tribe 

Chevak Native Village

Chickaloon Native Village

Chignik Bay Tribal Council 

Chignik Lake Village

Chilkat Indian Village (Klukwan)

Chilkoot Indian Association (Haines)

Chinik Eskimo Community (Golovin)

Chuloonawick Native Village

Circle Native Community

Craig Tribal Association

Curyung Tribal Council

Douglas Indian Association

Egegik Village

Eklutna Native Village

Emmonak Village

Evansville Village (aka Bettles Field)

Galena Village (aka Louden Village)

Gulkana Village Council 

Healy Lake Village

Holy Cross Tribe 

Hoonah Indian Association

Hughes Village

Huslia Village

Hydaburg Cooperative Association

Igiugig Village

Inupiat Community of the Arctic Slope

Iqugmiut Traditional Council 

Ivanof Bay Tribe 

Kaguyak Village

Kaktovik Village (aka Barter Island)

Kasigluk Traditional Elders Council

Kenaitze Indian Tribe

Ketchikan Indian Community 

King Island Native Community

King Salmon Tribe

Klawock Cooperative Association

Knik Tribe

Kokhanok Village

Koyukuk Native Village

Levelock Village

Lime Village

Manley Hot Springs Village

Manokotak Village

McGrath Native Village

Mentasta Traditional Council

Metlakatla Indian Community, Annette Island Reserve Annette Island Reserve

Naknek Native Village

Native Village of Afognak

Native Village of Akhiok

Native Village of Akutan

Native Village of Aleknagik

Native Village of Ambler

Native Village of Atka

Native Village of Atqasuk

Native Village of Barrow Inupiat Traditional Government

Native Village of Belkofski

Native Village of Brevig Mission

Native Village of Buckland

Native Village of Cantwell

Native Village of Chenega (aka Chanega)

Alaska 227
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2.1. Table 1. (continued). 

 

State
a

Federally Recognized Indian Tribe
b

Federal Indian Reservation and/or Off reservation trust land
c Sub-total 

Federally 

Recognized 

Indian Tribes
f

Native Village of Chignik Lagoon

Native Village of Chitina

Native Village of Chuathbaluk (Russian Mission, Kuskokwim)

Native Village of Council

Native Village of Deering

Native Village of Diomede (aka Inalik)

Native Village of Eagle

Native Village of Eek

Native Village of Ekuk

Native Village of Ekwok 

Native Village of Elim

Native Village of Eyak (Cordova)

Native Village of False Pass

Native Village of Fort Yukon

Native Village of Gakona

Native Village of Gambell

Native Village of Georgetown

Native Village of Goodnews Bay

Native Village of Hamilton

Native Village of Hooper Bay

Native Village of Kanatak

Native Village of Karluk

Native Village of Kiana

Native Village of Kipnuk

Native Village of Kivalina

Native Village of Kluti Kaah (aka Copper Center)

Native Village of Kobuk

Native Village of Kongiganak

Native Village of Kotzebue

Native Village of Koyuk

Native Village of Kwigillingok

Native Village of Kwinhagak (aka Quinhagak)

Native Village of Larsen Bay

Native Village of Marshall (aka Fortuna Ledge)

Native Village of Mary’s Igloo

Native Village of Mekoryuk

Native Village of Minto

Native Village of Nanwalek (aka English Bay)

Native Village of Napaimute

Native Village of Napakiak

Native Village of Napaskiak

Native Village of Nelson Lagoon

Native Village of Nightmute

Native Village of Nikolski

Native Village of Noatak

Native Village of Nuiqsut (aka Nooiksut)

Native Village of Nunam Iqua 

Native Village of Nunapitchuk

Native Village of Ouzinkie

Native Village of Paimiut

Native Village of Perryville

Native Village of Pilot Point

Native Village of Point Hope

Native Village of Point Lay

Native Village of Port Graham

Native Village of Port Heiden

Native Village of Port Lions

Native Village of Ruby

Native Village of Saint Michael

Native Village of Savoonga

Native Village of Scammon Bay

Native Village of Selawik

Native Village of Shaktoolik

Native Village of Shishmaref

Native Village of Shungnak

Native Village of Stevens

Native Village of Tanacross

Native Village of Tanana

Native Village of Tatitlek

Native Village of Tazlina

Native Village of Teller

Native Village of Tetlin

Native Village of Tuntutuliak

Native Village of Tununak

Native Village of Tyonek

Native Village of Unalakleet

Native Village of Unga

Native Village of Wales

Native Village of White Mountain

Nenana Native Association

New Koliganek Village Council

New Stuyahok Village

Newhalen Village

Alaska
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2.1. Table 1. (continued). 

 

State
a

Federally Recognized Indian Tribe
b

Federal Indian Reservation and/or Off reservation trust land
c Sub-total 

Federally 

Recognized 

Indian Tribes
f

Newtok Village

Nikolai Village

Ninilchik Village

Nome Eskimo Community

Nondalton Village

Noorvik Native Community

Northway Village

Nulato Village

Nunakauyarmiut Tribe

Organized Village of Grayling (aka Holikachuk)

Organized Village of Kake

Organized Village of Kasaan

Organized Village of Kwethluk

Organized Village of Saxman

Orutsararmiut Traditional Native Council

Oscarville Traditional Village

Pauloff Harbor Village

Pedro Bay Village

Petersburg Indian Association

Pilot Station Traditional Village

Pitka’s Point Traditional Council 

Platinum Traditional Village

Portage Creek Village (aka Ohgsenakale)

Qagan Tayagungin Tribe of Sand Point

Qawalangin Tribe of Unalaska

Rampart Village

Saint George Island
e

Saint Paul Island
e

Salamatof Tribe 

Seldovia Village Tribe

Shageluk Native Village

Sitka Tribe of Alaska

Skagway Village

South Naknek Village

Stebbins Community Association

Sun’aq Tribe of Kodiak 

Takotna Village

Tangirnaq Native Village 

Telida Village

Traditional Village of Togiak

Tuluksak Native Community

Twin Hills Village

Ugashik Village

Umkumiut Native Village 

Village of Alakanuk

Village of Anaktuvuk Pass

Village of Aniak

Village of Atmautluak

Village of Bill Moore’s Slough

Village of Chefornak

Village of Clarks Point

Village of Crooked Creek

Village of Dot Lake

Village of Iliamna

Village of Kalskag

Village of Kaltag

Village of Kotlik

Village of Lower Kalskag

Village of Ohogamiut

Village of Red Devil

Village of Sleetmute

Village of Solomon

Village of Stony River

Village of Venetie
d

Village of Wainwright

Wrangell Cooperative Association

Yakutat Tlingit Tribe

Yupiit of Andreafski

Ak-Chin Indian Community Maricopa (Ak Chin) Indian Reservation and Off-Reservation Trust Land

Cocopah Tribe of Arizona Cocopah Reservation

Colorado River Indian Tribes of the Colorado River Indian Reservation Colorado River Indian Reservation

Fort McDowell Yavapai Nation Fort McDowell Yavapai Nation Reservation

Gila River Indian Community of the Gila River Indian Reservation Gila River Indian Reservation

Havasupai Tribe of the Havasupai Reservation Havasupai Reservation

Hopi Tribe of Arizona Hopi Reservation and Off-Reservation Trust Land

Hualapai Indian Tribe of the Hualapai Indian Reservation Hualapai Indian Reservation and Off-Reservation Trust Land

Kaibab Band of Paiute Indians of the Kaibab Indian Reservation Kaibab Indian Reservation

Navajo Nation Navajo Nation Reservation and Off-Reservation Trust Land

Pascua Yaqui Tribe of Arizona Pascua Pueblo Yaqui Reservation and Off-Reservation Trust Land

Quechan Tribe of the Fort Yuma Indian Reservation Fort Yuma Indian Reservation

Salt River Pima-Maricopa Indian Community of the Salt River Reservation Salt River Reservation

San Carlos Apache Tribe of the San Carlos Reservation San Carlos Reservation

San Juan Southern Paiute Tribe of Arizona Navajo Nation Reservation and Off-Reservation Trust Land

Alaska

Arizona 20
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State
a

Federally Recognized Indian Tribe
b

Federal Indian Reservation and/or Off reservation trust land
c Sub-total 

Federally 

Recognized 

Indian Tribes
f

Tohono O’odham Nation of Arizona Tohono O'odham Nation Reservation and Off-Reservation Trust Land

Tonto Apache Tribe of Arizona Tonto Apache Reservation and Off-Reservation Trust Land

White Mountain Apache Tribe of the Fort Apache Reservation Fort Apache Reservation

Yavapai-Apache Nation of the Camp Verde Indian Reservation Yavapai-Apache Nation Reservation and Off-Reservation Trust Land

Yavapai-Prescott Indian Tribe Yavapai-Prescott Reservation

Agua Caliente Band of Cahuilla Indians of the Agua Caliente Indian Reservation Agua Caliente Indian Reservation and Off-Reservation Trust Land

Alturas Indian Rancheria Alturas Indian Rancheria

Augustine Band of Cahuilla Indians Augustine Reservation

Bear River Band of the Rohnerville Rancheria Rohnerville (Rancheria) Trust Land

Berry Creek Rancheria of Maidu Indians of California Berry Creek Rancheria and Off-Reservation Trust Land

Big Lagoon Rancheria Big Lagoon Rancheria

Big Pine Paiute Tribe of the Owens Valley Big Pine Reservation and Off-Reservation Trust Land

Big Sandy Rancheria of Western Mono Indians of California Big Sandy Rancheria and Off-Reservation Trust Land

Big Valley Band of Pomo Indians of the Big Valley Rancheria Big Valley Rancheria

Bishop Paiute Tribe Bishop Reservation

Blue Lake Rancheria Blue Lake Rancheria and Off-Reservation Trust Land

Bridgeport Indian Colony Bridgeport Reservation and Off-Reservation Trust Land

Buena Vista Rancheria of Me-Wuk Indians of California

Cabazon Band of Mission Indians Cabazon Reservation

Cachil DeHe Band of Wintun Indians of the Colusa Indian Community of the Colusa 

Rancheria

Colusa Rancheria

Cahto Tribe of the Laytonville Rancheria Laytonville Rancheria

Cahuilla Band of Indians Cahuilla Reservation

California Valley Miwok Tribe

Campo Band of Diegueno Mission Indians of the Campo Indian Reservation Campo Indian Reservation

Barona Reservation and Off-Reservation Trust Land

Capitan Grande Reservation

Viejas Reservation and Off-Reservation Trust Land

Cedarville Rancheria Cedarville Rancheria and Off-Reservation Trust Land

Chemehuevi Indian Tribe of the Chemehuevi Reservation Chemehuevi Reservation

Cher-Ae Heights Indian Community of the Trinidad Rancheria Trinidad Rancheria and Off-Reservation Trust Land

Chicken Ranch Rancheria of Me-Wuk Indians of California Chicken Ranch Rancheria and Off-Reservation Trust Land

Cloverdale Rancheria of Pomo Indians of California

Cold Springs Rancheria of Mono Indians of California Cold Springs Rancheria

Coyote Valley Band of Pomo Indians of California Coyote Valley Reservation

Dry Creek Rancheria Band of Pomo Indians Dry Creek Rancheria and Off-Reservation Trust Land

Elem Indian Colony of Pomo Indians of the Sulphur Bank Rancheria Sulphur Bank Rancheria

Elk Valley Rancheria Elk Valley Rancheria and Off-Reservation Trust Land

Enterprise Rancheria of Maidu Indians of California Enterprise Rancheria and Off-Reservation Trust Land

Ewiiaapaayp Band of Kumeyaay Indians Ewiiaapaayp Reservation

Federated Indians of Graton Rancheria

Fort Bidwell Indian Community of the Fort Bidwell Reservation of California Fort Bidwell Reservation and Off-Reservation Trust Land

Fort Independence Indian Community of Paiute Indians of the Fort Independence 

Reservation

Fort Independence Reservation

Fort Mojave Indian Tribe of Arizona, California & Nevada Fort Mojave Reservation and Off-Reservation Trust Land

Greenville Rancheria Greenville Rancheria

Grindstone Indian Rancheria of Wintun-Wailaki Indians of California Grindstone Indian Rancheria

Guidiville Rancheria of California Guidiville Rancheria and Off-Reservation Trust Land

Habematolel Pomo of Upper Lake Upper Lake Rancheria

Hoopa Valley Tribe Hoopa Valley Reservation

Hopland Band of Pomo Indians Hopland Rancheria

Iipay Nation of Santa Ysabel Santa Ysabel Reservation

Inaja Band of Diegueno Mission Indians of the Inaja and Cosmit Reservation Inaja and Cosmit Reservation

Ione Band of Miwok Indians of California

Jackson Band of Miwuk Indians Jackson Rancheria

Jamul Indian Village of California Jamul Indian Village

Karuk Tribe Karuk Reservation and Off-Reservation Trust Land

Kashia Band of Pomo Indians of the Stewarts Point Rancheria Stewarts Point Rancheria and Off-Reservation Trust Land

Kletsel Dehe Band of Wintun Indians Cortina Indian Rancheria

Koi Nation of Northern California

La Jolla Band of Luiseno Indians La Jolla Reservation

La Posta Band of Diegueno Mission Indians of the La Posta Indian Reservation La Posta Indian Reservation

Lone Pine Paiute-Shoshone Tribe Lone Pine Reservation

Los Coyotes Band of Cahuilla and Cupeno Indians Los Coyotes Reservation

Lytton Rancheria of California Lytton Rancheria

Manchester Band of Pomo Indians of the Manchester Rancheria Manchester-Point Arena Rancheria

Manzanita Band of Diegueno Mission Indians of the Manzanita Reservation Manzanita Reservation and Off-Reservation Trust Land

Mechoopda Indian Tribe of Chico Rancheria

Mesa Grande Band of Diegueno Mission Indians of the Mesa Grande Reservation Mesa Grande Reservation

Middletown Rancheria of Pomo Indians of California Middletown Rancheria

Mooretown Rancheria of Maidu Indians of California Mooretown Rancheria and Off-Reservation Trust Land

Morongo Band of Mission Indians Morongo Reservation and Off-Reservation Trust Land

Northfork Rancheria of Mono Indians of California North Fork Rancheria and Off-Reservation Trust Land

Pala Band of Mission Indians Pala Reservation

Paskenta Band of Nomlaki Indians of California Paskenta Rancheria

Pauma Band of Luiseno Mission Indians of the Pauma & Yuima Reservation Pauma and Yuima Reservation

Pechanga Band of Luiseno Mission Indians of the Pechanga Reservation Pechanga Reservation

Picayune Rancheria of Chukchansi Indians of California Picayune Rancheria and Off-Reservation Trust Land

Pinoleville Pomo Nation Pinoleville Rancheria

Big Bend Rancheria

Likely Rancheria

Lookout Rancheria

Montgomery Creek Rancheria

Pit River Trust Land

Roaring Creek Rancheria

XL Ranch Rancheria

California 105

Capitan Grande Band of Diegueno Mission Indians of California (Barona Group of 

Capitan Grande Band of Mission Indians of the Barona Reservation) Viejas (Baron 

Long) Group of Capitan Grande Band of Mission Indians of the Viejas Reservation

Pit River Tribe, California (includes XL Ranch, Big Bend, Likely, Lookout, 

Montgomery Creek, and Roaring Creek Rancherias)

Arizona
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b

Federal Indian Reservation and/or Off reservation trust land
c Sub-total 

Federally 
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Indian Tribes
f

Potter Valley Tribe

Quartz Valley Indian Community of the Quartz Valley Reservation of California Quartz Valley Reservation and Off-Reservation Trust Land

Ramona Band of Cahuilla Ramona Village

Redding Rancheria Redding Rancheria

Redwood Valley or Little River Band of Pomo Indians of the Redwood Valley 

Rancheria

Redwood Valley Rancheria

Resighini Rancheria Resighini Rancheria

Rincon Band of Luiseno Mission Indians of Rincon Reservation Rincon Reservation and Off-Reservation Trust Land

Robinson Rancheria Robinson Rancheria and Off-Reservation Trust Land

Round Valley Indian Tribes, Round Valley Reservation Round Valley Reservation and Off-Reservation Trust Land

San Manuel Band of Mission Indians San Manuel Reservation and Off-Reservation Trust Land

San Pasqual Band of Diegueno Mission Indians of California San Pasqual Reservation and Off-Reservation Trust Land

Santa Rosa Band of Cahuilla Indians Santa Rosa Reservation

Santa Rosa Indian Community of the Santa Rosa Rancheria Santa Rosa Rancheria

Santa Ynez Band of Chumash Mission Indians of the Santa Ynez Reservation Santa Ynez Reservation

Scotts Valley Band of Pomo Indians of California

Sherwood Valley Rancheria of Pomo Indians of California Sherwood Valley Rancheria and Off-Reservation Trust Land

Shingle Springs Band of Miwok Indians, Shingle Springs Rancheria (Verona Tract) Shingle Springs Rancheria and Off-Reservation Trust Land

Soboba Band of Luiseno Indians Soboba Reservation and Off-Reservation Trust Land

Susanville Indian Rancheria Susanville Indian Rancheria and Off-Reservation Trust Land

Sycuan Band of the Kumeyaay Nation Sycuan Reservation and Off-Reservation Trust Land

Table Mountain Rancheria Table Mountain Rancheria and Off-Reservation Trust Land

Tejon Indian Tribe

Timbisha Shoshone Tribe Timbi-Sha Shoshone Reservation and Off-Reservation Trust Land

Tolowa Dee-ni’ Nation Smith River Rancheria and Off-Reservation Trust Land

Torres Martinez Desert Cahuilla Indians Torres-Martinez Reservation

Tule River Indian Tribe of the Tule River Reservation Tule River Reservation and Off-Reservation Trust Land

Tuolumne Band of Me-Wuk Indians of the Tuolumne Rancheria of California Tuolumne Rancheria

Twenty-Nine Palms Band of Mission Indians of California Twenty-Nine Palms Reservation and Off-Reservation Trust Land

United Auburn Indian Community of the Auburn Rancheria of California Auburn Rancheria and Off-Reservation Trust Land

Utu Utu Gwaitu Paiute Tribe of the Benton Paiute Reservation Benton Paiute Reservation and Off-Reservation Trust Land

Wilton Rancheria

Wiyot Tribe Table Bluff Reservation

Yocha Dehe Wintun Nation Rumsey Indian Rancheria

Yurok Tribe of the Yurok Reservation Yurok Reservation

Southern Ute Indian Tribe of the Southern Ute Reservation Southern Ute Reservation

Ute Mountain Ute Tribe Ute Mountain Reservation and Off-Reservation Trust Land

Mashantucket Pequot Indian Tribe Mashantucket Pequot Reservation and Off-Reservation Trust Land

Mohegan Tribe of Indians of Connecticut Mohegan Reservation

Miccosukee Tribe of Indians Miccosukee Reservation and Off-Reservation Trust Land

Big Cypress Reservation

Brighton Reservation

Coconut Creek Trust Land

Fort Pierce Reservation

Hollywood Reservation

Immokalee Reservation

Seminole (FL) Trust Land

Tampa Reservation

Coeur D’Alene Tribe Coeur d'Alene Reservation

Kootenai Tribe of Idaho Kootenai Reservation and Off-Reservation Trust Land

Nez Perce Tribe Nez Perce Reservation

Shoshone-Bannock Tribes of the Fort Hall Reservation Fort Hall Reservation and Off-Reservation Trust Land

Iowa Sac & Fox Tribe of the Mississippi in Iowa Sac and Fox/Meskwaki Settlement and Off-Reservation Trust Land 1

Iowa Tribe of Kansas and Nebraska Iowa (KS-NE) Reservation and Off-Reservation Trust Land

Kickapoo (KS) Reservation

Kickapoo (KS) Reservation/Sac and Fox Nation Trust Land joint-use area

Prairie Band Potawatomi Nation Prairie Band of Potawatomi Nation Reservation

Kickapoo (KS) Reservation/Sac and Fox Nation Trust Land joint-use area

Sac and Fox Nation Reservation and Off-Reservation Trust Land

Chitimacha Tribe of Louisiana Chitimacha Reservation

Coushatta Tribe of Louisiana Coushatta Reservation and Off-Reservation Trust Land

Jena Band of Choctaw Indians Jena Band of Choctaw Reservation

Tunica-Biloxi Indian Tribe Tunica-Biloxi Reservation and Off-Reservation Trust Land

Aroostook Band of Micmacs Aroostook Band of Micmac Trust Land

Houlton Band of Maliseet Indians Houlton Maliseet Reservation and Off-Reservation Trust Land

Indian Township Reservation

Passamaquoddy Trust Land

Pleasant Point Reservation

Penobscot Nation Penobscot Reservation and Off-Reservation Trust Land

Mashpee Wampanoag Tribe Mashpee Wampanoag Trust Land

Wampanoag Tribe of Gay Head (Aquinnah) Wampanoag-Aquinnah Trust Land

Bay Mills Indian Community Bay Mills Reservation and Off-Reservation Trust Land

Grand Traverse Band of Ottawa and Chippewa Indians Grand Traverse Reservation and Off-Reservation Trust Land

Hannahville Indian Community Hannahville Indian Community and Off-Reservation Trust Land

L'Anse Reservation and Off-Reservation Trust Land

Ontonagon Reservation

Lac Vieux Desert Band of Lake Superior Chippewa Indians of Michigan Lac Vieux Desert Reservation

Little River Band of Ottawa Indians Little River Reservation and Off-Reservation Trust Land

Little Traverse Bay Bands of Odawa Indians Little Traverse Bay Reservation and Off-Reservation Trust Land

Match-e-be-nash-she-wish Band of Pottawatomi Indians of Michigan

Match-e-be-nash-she-wish Band of Pottawatomi Reservation and Off-

Reservation Trust Land

Nottawaseppi Huron Band of the Potawatomi Huron Potawatomi Reservation and Off-Reservation Trust Land

Pokagon Band of Potawatomi Indians Pokagon Reservation and Off-Reservation Trust Land

Saginaw Chippewa Indian Tribe of Michigan Isabella Reservation and Off-Reservation Trust Land

Sault Ste. Marie Tribe of Chippewa Indians Sault Ste. Marie Reservation and Off-Reservation Trust Land

Michigan 12

Keweenaw Bay Indian Community

Louisiana 4

Maine 4

Passamaquoddy Tribe

Massachusetts 2

Florida 2

Seminole Tribe of Florida

Idaho 4

Kansas 4

Kickapoo Tribe of Indians of the Kickapoo Reservation in Kansas

Sac & Fox Nation of Missouri in Kansas and Nebraska

Colorado 2

Connecticut 2

California
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b

Federal Indian Reservation and/or Off reservation trust land
c Sub-total 

Federally 

Recognized 

Indian Tribes
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Lower Sioux Indian Community in the State of Minnesota Lower Sioux Indian Community

Bois Forte Reservation and Off-Reservation Trust Land

Fond du Lac Reservation and Off-Reservation Trust Land

Grand Portage Reservation and Off-Reservation Trust Land

Leech Lake Reservation and Off-Reservation Trust Land

Mille Lacs Reservation and Off-Reservation Trust Land

Minnesota Chippewa Trust Land

White Earth Reservation and Off-Reservation Trust Land

Prairie Island Indian Community in the State of Minnesota Prairie Island Indian Community and Off-Reservation Trust Land

Red Lake Band of Chippewa Indians Red Lake Reservation

Shakopee Mdewakanton Sioux Community of Minnesota

Shakopee Mdewakanton Sioux Community and Off-Reservation Trust 

Land

Upper Sioux Community Upper Sioux Community and Off-Reservation Trust Land

Mississippi Mississippi Band of Choctaw Indians Mississippi Choctaw Reservation and Off-Reservation Trust Land 1

Missouri Eastern Shawnee Tribe of Oklahoma 1

Assiniboine and Sioux Tribes of the Fort Peck Indian Reservation Fort Peck Indian Reservation and Off-Reservation Trust Land

Blackfeet Tribe of the Blackfeet Indian Reservation of Montana Blackfeet Indian Reservation and Off-Reservation Trust Land

Chippewa Cree Indians of the Rocky Boy’s Reservation Rocky Boy's Reservation and Off-Reservation Trust Land

Confederated Salish and Kootenai Tribes of the Flathead Reservation Flathead Reservation

Crow Tribe of Montana Crow Reservation and Off-Reservation Trust Land

Fort Belknap Indian Community of the Fort Belknap Reservation of Montana Fort Belknap Reservation and Off-Reservation Trust Land

Little Shell Tribe of Chippewa Indians of Montana

Northern Cheyenne Tribe of the Northern Cheyenne Indian Reservation Northern Cheyenne Indian Reservation and Off-Reservation Trust Land

Omaha Tribe of Nebraska Omaha Reservation

Ponca Tribe of Nebraska Ponca (NE) Trust Land

Santee Sioux Nation Santee Reservation

Winnebago Tribe of Nebraska Winnebago Reservation and Off-Reservation Trust Land

Duckwater Shoshone Tribe of the Duckwater Reservation Duckwater Reservation

Ely Shoshone Tribe of Nevada Ely Reservation

Fort McDermitt Paiute and Shoshone Tribes of the Fort McDermitt Indian Reservation Fort McDermitt Indian Reservation

Las Vegas Tribe of Paiute Indians of the Las Vegas Indian Colony Las Vegas Indian Colony

Lovelock Paiute Tribe of the Lovelock Indian Colony Lovelock Indian Colony

Moapa Band of Paiute Indians of the Moapa River Indian Reservation Moapa River Indian Reservation

Fallon Paiute-Shoshone Colony and Off-Reservation Trust Land

Fallon Paiute-Shoshone Reservation and Off-Reservation Trust Land

Pyramid Lake Paiute Tribe of the Pyramid Lake Reservation Pyramid Lake Paiute Reservation

Reno-Sparks Indian Colony Reno-Sparks Indian Colony and Off-Reservation Trust Land

Shoshone-Paiute Tribes of the Duck Valley Reservation Duck Valley Reservation

Summit Lake Paiute Tribe of Nevada Summit Lake Reservation and Off-Reservation Trust Land

Battle Mountain Reservation and Off-Reservation Trust Land

Elko Colony

South Fork Reservation and Off-Reservation Trust Land

Wells Colony

Walker River Paiute Tribe of the Walker River Reservation Walker River Reservation

Carson Colony

Dresslerville Colony

Stewart Community

Washoe Ranches Trust Land

Woodfords Community

Winnemucca Indian Colony of Nevada Winnemucca Indian Colony

Campbell Ranch

Yerington Colony

Yomba Shoshone Tribe of the Yomba Reservation Yomba Reservation

Jicarilla Apache Nation, New Mexico Jicarilla Apache Nation Reservation and Off-Reservation Trust Land

Mescalero Apache Tribe of the Mescalero Reservation Mescalero Reservation

Ohkay Owingeh Ohkay Owingeh

Pueblo of Acoma Acoma Pueblo and Off-Reservation Trust Land

Pueblo of Cochiti Pueblo de Cochiti

Pueblo of Isleta Isleta Pueblo

Pueblo of Jemez Jemez Pueblo

Pueblo of Laguna Laguna Pueblo and Off-Reservation Trust Land

Pueblo of Nambe Nambe Pueblo and Off-Reservation Trust Land

Pueblo of Picuris Picuris Pueblo

Pueblo of Pojoaque Pueblo of Pojoaque and Off-Reservation Trust Land

San Felipe Pueblo

San Felipe Pueblo/Santa Ana Pueblo joint-use area

San Felipe Pueblo/Santo Domingo Pueblo joint-use area

Pueblo of San Ildefonso San Ildefonso Pueblo and Off-Reservation Trust Land

Pueblo of Sandia Sandia Pueblo

Santa Ana Pueblo

San Felipe Pueblo/Santa Ana Pueblo joint-use area

Pueblo of Santa Clara Santa Clara Pueblo and Off-Reservation Trust Land

Pueblo of Taos Taos Pueblo and Off-Reservation Trust Land

Pueblo of Tesuque Tesuque Pueblo and Off-Reservation Trust Land

Pueblo of Zia Zia Pueblo and Off-Reservation Trust Land

Santo Domingo Pueblo

San Felipe Pueblo/Santo Domingo Pueblo joint-use area

Zuni Tribe of the Zuni Reservation Zuni Reservation and Off-Reservation Trust Land

Cayuga Nation

Oneida Indian Nation Oneida Nation Reservation

Onondaga Nation Onondaga Nation Reservation

Saint Regis Mohawk Tribe St. Regis Mohawk Reservation

Allegany Reservation

Cattaraugus Reservation

Oil Springs Reservation

Nevada 17

New York 8

New Mexico 21

Pueblo of San Felipe

Pueblo of Santa Ana

Santo Domingo Pueblo

Seneca Nation of Indians 

Montana 8

Nebraska 4

Paiute-Shoshone Tribe of the Fallon Reservation and Colony

Te-Moak Tribe of Western Shoshone Indians of Nevada (Four constituent bands: 

Battle Mountain Band; Elko Band; South Fork Band; and Wells Band)

Washoe Tribe of Nevada & California (Carson Colony, Dresslerville Colony, 

Woodfords Community, Stewart Community, & Washoe Ranches)

Yerington Paiute Tribe of the Yerington Colony & Campbell Ranch

Minnesota 6

Minnesota Chippewa Tribe 
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Shinnecock Indian Nation

Tonawanda Band of Seneca Tonawanda Reservation

Tuscarora Nation Tuscarora Nation Reservation

North Carolina Eastern Band of Cherokee Indians Eastern Cherokee Reservation 1

Spirit Lake Tribe Spirit Lake Reservation

Standing Rock Sioux Tribe of North & South Dakota Standing Rock Reservation

Three Affiliated Tribes of the Fort Berthold Reservation Fort Berthold Reservation

Turtle Mountain Band of Chippewa Indians of North Dakota Turtle Mountain Reservation and Off-Reservation Trust Land

Absentee-Shawnee Tribe of Indians of Oklahoma

Alabama-Quassarte Tribal Town

Apache Tribe of Oklahoma

Caddo Nation of Oklahoma

Cherokee Nation

Cheyenne and Arapaho Tribes

Citizen Potawatomi Nation

Comanche Nation

Delaware Nation

Delaware Tribe of Indians

Fort Sill Apache Tribe of Oklahoma Fort Sill Apache Indian Reservation

Iowa Tribe of Oklahoma

Kaw Nation

Kialegee Tribal Town

Kickapoo Tribe of Oklahoma

Kiowa Indian Tribe of Oklahoma

Miami Tribe of Oklahoma

Modoc Nation

Otoe-Missouria Tribe of Indians

Ottawa Tribe of Oklahoma

Pawnee Nation of Oklahoma

Peoria Tribe of Indians of Oklahoma

Ponca Tribe of Indians of Oklahoma

Quapaw Nation 

Sac & Fox Nation

Seneca–Cayuga Nation

Shawnee Tribe

The Chickasaw Nation

The Choctaw Nation of Oklahoma

The Muscogee (Creek) Nation

The Osage Nation Osage Reservation

The Seminole Nation of Oklahoma

Thlopthlocco Tribal Town

Tonkawa Tribe of Indians of Oklahoma

United Keetoowah Band of Cherokee Indians in Oklahoma

Wichita and Affiliated Tribes (Wichita, Keechi, Waco, & Tawakonie)

Wyandotte Nation

Burns Paiute Tribe Burns Paiute Indian Colony and Off-Reservation Trust Land

Confederated Tribes of Siletz Indians of Oregon Siletz Reservation and Off-Reservation Trust Land

Confederated Tribes of the Coos, Lower Umpqua and Siuslaw Indians
Coos, Lower Umpqua, and Siuslaw Reservation and Off-Reservation Trust 

Land

Confederated Tribes of the Grand Ronde Community of Oregon Grand Ronde Community and Off-Reservation Trust Land

Confederated Tribes of the Umatilla Indian Reservation Umatilla Reservation and Off-Reservation Trust Land

Confederated Tribes of the Warm Springs Reservation of Oregon
f Warm Springs Reservation and Off-Reservation Trust Land

Coquille Indian Tribe Coquille Reservation

Cow Creek Band of Umpqua Tribe of Indians Cow Creek Reservation and Off-Reservation Trust Land

Klamath Tribes Klamath Reservation

Rhode Island Narragansett Indian Tribe Narragansett Reservation 1

South Carolina Catawba Indian Nation Catawba Reservation and Off-Reservation Trust Land 1

Cheyenne River Sioux Tribe of the Cheyenne River Reservation Cheyenne River Reservation and Off-Reservation Trust Land

Crow Creek Sioux Tribe of the Crow Creek Reservation Crow Creek Reservation

Flandreau Santee Sioux Tribe of South Dakota Flandreau Reservation

Lower Brule Sioux Tribe of the Lower Brule Reservation Lower Brule Reservation and Off-Reservation Trust Land

Oglala Sioux Tribe Pine Ridge Reservation

Rosebud Sioux Tribe of the Rosebud Indian Reservation Rosebud Indian Reservation and Off-Reservation Trust Land

Sisseton-Wahpeton Oyate of the Lake Traverse Reservation Lake Traverse Reservation and Off-Reservation Trust Land

Yankton Sioux Tribe of South Dakota Yankton Reservation

Alabama-Coushatta Tribe of Texas Alabama-Coushatta Reservation and Off-Reservation Trust Land

Kickapoo Traditional Tribe of Texas Kickapoo (TX) Reservation and Off-Reservation Trust Land

Ysleta del Sur Pueblo Ysleta del Sur Pueblo and Off-Reservation Trust Land

Confederated Tribes of the Goshute Reservation Goshute Reservation

Northwestern Band of the Shoshone Nation Northwestern Shoshone Reservation

Paiute Indian Tribe of Utah (Cedar Band of Paiutes, Kanosh Band of Paiutes, 

Koosharem Band of Paiutes, Indian Peaks Band of Paiutes, and Shivwits Band of 

Paiute (UT) Reservation

Skull Valley Band of Goshute Indians of Utah Skull Valley Reservation

Ute Indian Tribe of the Uintah & Ouray Reservation Uintah and Ouray Reservation and Off-Reservation Trust Land

Chickahominy Indian Tribe

Chickahominy Indian Tribe—Eastern Division

Monacan Indian Nation

Nansemond Indian Nation 

Pamunkey Indian Tribe

Rappahannock Tribe, Inc.

Upper Mattaponi Tribe

New York

Oklahoma 37

Utah 5

Virginia 7

Oregon 9

South Dakota 8

Texas 3

North Dakota 4
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aAccording to the United States Department of the Interior. (n.d.). Tribal Leaders Directory. Indian Affairs. Retrieved July 
19, 2021, from https://www.bia.gov/bia/ois/tribal-leaders-directory/    
bAccording to Indian Entities Recognized and Eligible to Receive Services From the United States Bureau of Indian Affairs; 
Correction, 86 FR 18552 (2021) and Indian Entities Recognized by and Eligible to Receive Services From the United States 
Bureau of Indian Affairs, 86 FR 7554 (2021).    
cAccording to the United States Census Bureau. (2020). 2020 TIGER/Line Shapefiles [Data file]. 
https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2020&layergroup=American+Indian+Area+Geography  
dArctic Village and Village of Venetie are part of the affiliate Native Village of Venetie Tribal Government. eSaint 
George Island and Saint Paul Island are part of the Affiliate Pribilof Islands Aleut Communities of St. Paul & St. George 
Islands.    
fThe relation of Celilo Village with an especific FRIT could not be determined. Most residents of Celilo Village are members 
of either the Confederated Tribes and Bands of the Yakama Nation or Confederated Tribes of the Warm Springs Reservation 
of Oregon.        
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Confederated Tribes and Bands of the Yakama Nation
f Yakama Nation Reservation and Off-Reservation Trust Land

Confederated Tribes of the Chehalis Reservation Chehalis Reservation and Off-Reservation Trust Land

Confederated Tribes of the Colville Reservation Colville Reservation and Off-Reservation Trust Land

Cowlitz Indian Tribe Cowlitz Reservation

Hoh Indian Tribe Hoh Indian Reservation and Off-Reservation Trust Land

Jamestown S’Klallam Tribe Jamestown S'Klallam Reservation and Off-Reservation Trust Land

Kalispel Indian Community of the Kalispel Reservation Kalispel Reservation and Off-Reservation Trust Land

Lower Elwha Tribal Community Lower Elwha Reservation and Off-Reservation Trust Land

Lummi Tribe of the Lummi Reservation Lummi Reservation

Makah Indian Tribe of the Makah Indian Reservation Makah Indian Reservation

Muckleshoot Indian Tribe Muckleshoot Reservation and Off-Reservation Trust Land

Nisqually Indian Tribe Nisqually Reservation

Nooksack Indian Tribe Nooksack Reservation and Off-Reservation Trust Land

Port Gamble S’Klallam Tribe Port Gamble Reservation and Off-Reservation Trust Land

Puyallup Tribe of the Puyallup Reservation Puyallup Reservation and Off-Reservation Trust Land

Quileute Tribe of the Quileute Reservation Quileute Reservation

Quinault Indian Nation Quinault Reservation

Samish Indian Nation 

Sauk-Suiattle Indian Tribe Sauk-Suiattle Reservation

Shoalwater Bay Indian Tribe of the Shoalwater Bay Indian Reservation Shoalwater Bay Indian Reservation and Off-Reservation Trust Land

Skokomish Indian Tribe Skokomish Reservation and Off-Reservation Trust Land

Snoqualmie Indian Tribe Snoqualmie Reservation and Off-Reservation Trust Land

Spokane Tribe of the Spokane Reservation Spokane Reservation and Off-Reservation Trust Land

Squaxin Island Tribe of the Squaxin Island Reservation Squaxin Island Reservation and Off-Reservation Trust Land

Stillaguamish Tribe of Indians of Washington Stillaguamish Reservation and Off-Reservation Trust Land

Suquamish Indian Tribe of the Port Madison Reservation Port Madison Reservation

Swinomish Indian Tribal Community Swinomish Reservation and Off-Reservation Trust Land

Tulalip Tribes of Washington Tulalip Reservation and Off-Reservation Trust Land

Upper Skagit Indian Tribe Upper Skagit Reservation and Off-Reservation Trust Land

Bad River Band of the Lake Superior Tribe of Chippewa Indians of the Bad River 

Reservation

Bad River Reservation

Forest County Potawatomi Community Forest County Potawatomi Community and Off-Reservation Trust Land

Ho-Chunk Nation of Wisconsin Ho-Chunk Nation Reservation and Off-Reservation Trust Land

Lac Courte Oreilles Band of Lake Superior Chippewa Indians of Wisconsin Lac Courte Oreilles Reservation and Off-Reservation Trust Land

Lac du Flambeau Band of Lake Superior Chippewa Indians of the Lac du Flambeau 

Reservation of Wisconsin

Lac du Flambeau Reservation

Menominee Indian Tribe of Wisconsin Menominee Reservation and Off-Reservation Trust Land

Oneida Nation Oneida (WI) Reservation and Off-Reservation Trust Land

Red Cliff Band of Lake Superior Chippewa Indians of Wisconsin Red Cliff Reservation and Off-Reservation Trust Land

Sokaogon Chippewa Community Sokaogon Chippewa Community and Off-Reservation Trust Land

St. Croix Chippewa Indians of Wisconsin St. Croix Reservation and Off-Reservation Trust Land

Stockbridge Munsee Community Stockbridge Munsee Community and Off-Reservation Trust Land

Eastern Shoshone Tribe of the Wind River Reservation Wind River Reservation and Off-Reservation Trust Land

Northern Arapaho Tribe of the Wind River Reservation Wind River Reservation and Off-Reservation Trust Land

Wisconsin 11

Wyoming 2

Washington 29
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2.2. Table 2. Search criteria used on the ECHO website to obtain wastewater facilities within or 

related to any Tribal Land with a permit in any status. Fields not listed were left as default. 

Search criteria used on the ECHO website 

Search Type Water 

Community – Indian Country/Tribal Land  

ICIS Tribal Land Flag Yes 

FRS Tribal Land Code Yes 

On or Near Spatial Tribal Boundary Within Spatial Boundary 

Tribe No Selection 

Find Facilities That Match Any Tribal Options 

Facility Characteristics  

Permit Status Effective, Expired, Administratively Continued, Pending, Retired 

Permit Type 
NPD - NPDES Individual Permit, GPC - General Permit Covered 
Facility, UFT - Unpermitted Facility 

Permit Components POTW a 

aAccording to EPA, Facility Type is set to “POTW” if the permit has a “POTW” permit component and the linked facility has 
a “Facility Type of Ownership” value that is one of the following: County Government (CNG), Municipality (CTG), Municipal 
or Water District (MWD), Mixed Ownership (e.g., Public/Private) (MXO), School District (SDT), State Government (STF), 
Tribal Government (TRB). 
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2.3. Table 3. Description of the results fields after the search of wastewater facilities on the ECHO 

website using the criteria listed in supplementary information (Appendix B - SI 2.2. Table 2). 

Field 
No. 

Result page field name Data download file field name Descriptiona 

1 Facility Name  CWPName 
Company or permit holder name, as maintained in the 
ICIS-NPDES database.  

2 NPDES ID  SourceID 

A unique 9-character ID assigned for each permit within 
the National Pollutant Discharge Elimination System 
(NPDES) program. The ID may contain both letters and 
numbers and often begins with the two-letter 
abbreviation for the state in which the facility is permitted. 

3 Street Address CWPStreet 
Street address where facility is located, as maintained in 
the ICIS-NPDES database. 

4 City CWPCity 
City where facility is located, as maintained in the ICIS-
NPDES database.  

5 State CWPState 
State where facility is located, as maintained in the ICIS-
NPDES database.  

6 EPA Region CWPEPARegion The EPA region where the facility is located.  

7 FRS Tribal Land Code  FacIndianCntryFlg 

Displays “Y” if a facility is flagged as being located in 
Indian Country, or “N” if a facility is not located in Indian 
Country, based on information from the EPA's Facility 

Registry Service (FRS). 

8 ICIS Tribal Land Flag  CWPIndianCntryFlg 

Displays “Y” if a facility is flagged as being located in 
Indian Country, or “N” if a facility is not located in Indian 
Country, based on information from the EPA's Integrated 
Compliance Information System (ICIS).  

9 
Within Spatial Tribal 
Boundary  

FacIndianSpatialFlg 

Displays “Y” if a facility is located within 25 miles of a 
Tribal spatial boundary, or “N” if a facility is not located 
within or near a Tribal spatial boundary, as defined by 
the U.S. Census Bureau Tribal boundary layer data for 
tribes in the lower 48 states and Bureau of Land 
Management Alaska State Office data for tribes in 
Alaska.  

10 
FRS Spatially Derived 
Tribe  

FacDerivedTribes 

The tribes or Tribal territories located within 25 miles of 
the facility's location compared to the U.S. Census 
Bureau Tribal boundary layer data for tribes in the lower 
48 states and Bureau of Land Management Alaska State 
Office data for tribes in Alaska.  

11 Latitude FacLat 
Displays the latitude of the facility or permit holder as 
maintained in the program data system. 

12 Longitude FacLong 
Displays the longitude of the facility or permit holder as 
maintained in the program data system. 

13 
Facility Design Flow 
(MGD)  

CWPTotalDesignFlowNmbr 
The amount of wastewater flow, in million gallons per day 
(MGD), that the permitted facility is designed to 
accommodate, as entered in ICIS-NPDES. 

14 
Actual Average Facility 
Flow (MGD)  

CWPActualAverageFlowNmbr 
The actual amount of wastewater flow at the facility at 
the time of the permit application, in million gallons per 
day (MGD), as entered in ICIS-NPDES. 

15 Facility Type  CWPFacilityTypeIndicator The facility ownership classification in ICIS-NPDES. 

16 NPDES IDs NPDESIDs Displays all NPDES IDs associated with a FRS ID. 

aUnited States Environmental Protection Agency. (2022, August 9). Search Results Help—
Wastewater/Stormwater/Biosolids. Enforcement and Compliance History Online. https://echo.epa.gov/help/facility-
search/water-search-results-help.   
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2.4. Table 4. Output information from the ECHO database using the echor R package (Schramm, 

2021) for permitted wastewater facilities. 

Schramm, M. (2021). Introduction to echor. https://cran.r-project.org/web/packages/echor/vignettes/introduction.html 

 
 
 

ColumnID ObjectName Description 

1 CWPName Facility or permit holder name, as maintained in ICIS-NPDES. 

2 SourceID Unique Identifier assigned by EPA. 

3 CWPStreet Facility street address 

4 CWPCity City in which the facility is located. 

5 CWPState Facility location - two-digit state abbreviation. 

11 CWPEPARegion The EPA region where the facility is located. EPA has 10 regional 
offices that execute programs within several states and territories. 

16 FacIndianCntryFlg Flag showing Y/N whether the facility is located in Indian Country. 

17 CWPIndianCntryFlg Displays Y if a facility is located in Indian country. 

18 FacIndianSpatialFlg Returns &#8220;Y&#8221; if a facility is located within a Tribal 
spatial boundary as defined by the U.S. Census Bureau 2010 Tribal 
boundary layer data for tribes in the lower 48 states and Bureau of 
Land Management Alaska State Office data for native villages in 
Alaska. Returns &#8220;N&#8221; if a facility is not located within a 
Tribal or native Alaskan village area. 

19 FacDerivedTribes The tribes or Tribal territories located within 25 miles of the facility's 
location. 

21 CWPSICCodes Indicates the facility's or permit's primary Standard Industrial 
Classification (SIC) Code. 

22 CWPNAICSCodes Indicates the facility's or permit's primary North American Industry 
Classification System (NAICS) Code. 

23 FacLat The latitude of the facility in decimal degrees expressed using the 
NAD83 horizontal datum. The coordinate comes from the FRS EPA 
Locational Reference Tables (LRT) file which represents the most 
accurate value for the facility based on the available spatial 
metadata. 

24 FacLong The longitude of the facility in decimal degrees expressed using the 
NAD83 horizontal datum. The coordinate comes from the FRS EPA 
Locational Reference Tables (LRT) file which represents the most 
accurate value for the facility based on the available spatial 
metadata. 

25 CWPTotalDesignFlowNmbr The amount of wastewater flow in million gallons per day (MGD) that 
the facility is designed for. 

26 CWPActualAverageFlowNmbr The actual amount of the facility's wastewater flow measured in 
million gallons per day (MGD). 

27 CWPFacilityTypeIndicator Each National Pollutant Discharge Elimination System (NPDES) 
permit is defined by the program office as a Major or non-major 
discharger. This field also indicates the permit type. 

60 CWPPermitStatusDesc The current stage/status in the NPDES permit life cycle. 

65 CWPEffectiveDate Date (MM/DD/YYYY) that the permit became effective. 

66 CWPTerminationDate Date (MM/DD/YYYY) that the permit was terminated. 

69 PermitComponents Indicates the permit component(s) associated with the NPDES 
Permit Program Area. 

77 NPDESIDs Clean Water Act ID from the ICIS-NPDES (Integrated Compliance 
Information System - National Pollutant Discharge Elimination 
System) 

203 CensusBlockGroup A geographic unit used by the United States Census Bureau, 
generally defined to contain between 600 and 3,000 people. 
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2.5. Table 5. Standard Industrial Classification (SIC) Code of the studied facilities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aAccording to United States Department of Labor. (n.d.). Standard Industrial Classification (SIC) System Search. 
Occupational Safety and Health Administration. Retrieved October 4, 2022, from https://www.osha.gov/data/sic-
search?field_sic_number_value=9223&title_and_body= 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

No. SIC Code Descriptiona 

1 4952 Sewerage Systems 

2 
6515 Operators of Residential Mobile Home Sites 

3 
7011 Hotels and Motels 

4 
8211 Elementary and Secondary Schools 

5 
8221 Colleges, Universities, and Professional Schools 

6 
8222 Junior Colleges and Technical Institutes 

7 
8299 Schools and Educational Services, Not Elsewhere Classified 

8 
9223 Correctional Institutions 

9 
Blank   
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2.6. Table 6. Facility classification in eight categories based on location, race data, and name. 

Classification 

Outside Federal 
Indian Reservation 

and/or ORTL 

Inside Federal Indian 
Reservation and/or 

ORTL 

Sub- total Total 

Not-Tribal serving General 333 260   593 

Tribal serving 

Community 46 210 256 

327 School 12 20 32 

Casino 7 32 39 

Total 398 522   920 
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2.7. Table 7. Tribal serving facilities (Native American population > 50%) listed according to their 

location (inside or outside a Federal Indian Reservation and/or ORTL) and whom they serve 

(community, school or casino). 

 

 

No. SourceID CWPName

1 AK0053813 Metlakatla Sewer Treatment Plant

2 AZ0023078 Unknown

3 AZ0024058 Whiteriver Sewage Lagoons

4 AZ0024589 Hon-Dah Regional WWTF

5 AZ0024619 Upper Village Of Moenkopi WWTF

6 COG587101 Towaoc Lagoon 2

7 COG587103 Towaoc Lagoon 1

8 COG651002 Towaoc Wastewater Treatment System No. 1

9 FLR10I62B Abiaki Tribal Historic Preservation Office Building

10 ID0028347 Nez Perce Tribe - Lapwai Valley WWTP

11 KS0095206 Kickapoo Tribe In Kansas - Housing Site #1

12 ME0100773 Passamaquoddy WWTF

13 ME0101311 Penobscot Indian Nation

14 MN0025887 Usdi Bia Grnd Prtg Ind Res

15 MN0049794 Ogema

16 MN0058611 East Lake Sewage Lagoon

17 MN0059439 Ponsford WWSL

18 MN0059447 Nett Lake WWSL

19 MN0064165 Naytahwaush WWSL

20 MN0064173 White Earth WWSL

21 MN0064637 Mille Lacs WWTF

22 MN0068438 Big Rice Lake WWSL

23 MS0040924 Tucker Wastewater Treatment Facility

24 MS0043494 Standing Pine WWTF

25 MS0053503 Pearl River Wastewater Treatment Plant

26 MT0021890 Lodge Grass- Town Of

27 MT0029360 Lame Deer Lagoon

28 MT0030538 Crow Agency WTP

29 MT0030571 Wolf Point, City Of

30 MT0030597 Poplar, Town Of

31 MT0030775 Blackfeet Community Water Plant

32 MTDW0003I Two Medicine Water Co.

33 MTG589006 Browning, Town Of

34 MTG589009 Absaalooke Water And Wastewater Authority - Crow Agency Lagoon

1. Inside Federal Indian Reservation and/or ORTL

1.A. Community
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2.7. Table 7. (continued). 

 

No. SourceID CWPName

35 MTG589020 East Glacier Lagoons-Two Medicine Water

36 MTG589101 Blackfeet Utilities Commission

37 MTG589103 St. Mary Lagoons

38 MTG589104 Browning Lagoon

39 MTG589105 Last Starr WWTF

40 MTG589501 Wolf Point- City Of

41 MTG589502 Brockton, Town Of

42 MTG589601 Ashland Lagoons

43 MTG589602 Busby Lagoons

44 MTG589603 Muddy Cluster Lagoons

45 MTG589604 Birney Lagoons

46 MTG589701 Agency Lagoon

47 MTG589702 Lower Dry Fork Lagoon

48 MTG589703 Azure Lagoon

49 MTG589704 Blue Lagoon

50 MTG589705 Multi-Community Lagoon

51 MTG651005 Blackfeet Utilities, Heart Butte Lagoon

52 MTG651008 Pablo Water And Sewer District

53 MTG651009 Agency Lagoon

54 MTG651012 Browning, Town Of

55 MTG651013 Agency Wastewater Lagoon System

56 MTU000058 Town Of Pryor WWTF

57 NC0052469 Cherokee Wastewater Treatment Plant

58 ND0030970 Fort Yates WTP

59 ND0031143 Riverview Estates Wastewater Treatment Facility

60 NDG323281 Selfridge City Of

61 NDG589101 White Shield Wastewater Treatment Lagoon

62 NDG589103 Twin Buttes Wastewater Treatment Facility

63 NDG589106 Four Bears Wastewater Treatment System

64 NDG589107 Mandaree Wastewater Treatment Lagoons

65 NDG589108 New Town Water Resource Recovery Facility

66 NDG589109 Parshall Wastewater Treatment Facility

67 NDG589201 West Acres Wastewater Treatment Lagoons

68 NDG589202 St Michaels Wastewater Treatment Lagoon

69 NDG589205 Tokio Wastewater Treatment Lagoons

70 NDG589301 Mclauhglin Wastewater Treatment Facility

71 NDG589305 Porcupine Community Lagoon System

72 NDG589311 Kenel Lagoon System

1. Inside Federal Indian Reservation and/or ORTL

1.A. Community
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2.7. Table 7. (continued). 

 
 
 

No. SourceID CWPName

73 NDG589312 Fort Yates Lagoon System

74 NDG589313 Bear Soldier Lagoon System

75 NDG589314 Wakpala Lagoon System

76 NDG589315 Cannonball Lagoon System

77 NDG589401 City Of Belcourt

78 NDG589402 East Dunseith Wastewater Treatment Lagoons

79 NDG589403 Green Acre Wastewater Treatment Lagoons

80 NDG589404 Sky Dancer Wastewater Treatment Lagoons

81 NDG589406 Shell Valley Wastewater Treatment Lagoons

82 NDG589407 St Marys Wastewater Treatment Lagoons

83 NDG589408 Turtle Mountain Public Utilities Commission

84 NDG589411 Belcourt Recreation Area And Manufacturing Plant Wastewater Treatment Facility

85 NE0061263 Omaha Tribal Utility Comm

86 NE0113212 Winnebago Wastewater Treatment Facility

87 NE0132641 Village Of Santee Wastewater

88 NE0138932 Village Of Walthill WWTF

89 NM0030520 Dulce Wastewater Treat.Plt.

90 NM0030660 Mescalero Apache Wastewater

91 NM0031011 San Felipe Pueblo Wastewater Treatment Plant

92 NN0020265 Chinle WWTF

93 NN0020281 Kayenta WWTF

94 NN0020290 Tuba City WWTP

95 NN0020621 Shiprock WWTF

96 NN0021555 Window Rock WWTF

97 NN0022195 Ganado WWTP

98 NN0024228 Pinon WWTF

99 NN0030325 Pinehill WWTF

100 OR0032638 Confederated Tribes Of Warm Springs - Warm Springs WWTP

101 SD0020192 Eagle Butte WWTF

102 SD0020800 Lower Brule Sioux Tribe

103 SD0021601 City Of Martin

104 SD0022004 Lake Andes, City Of

105 SD0022713 City Of Batesland

106 SD0022756 Peever - Town Of

107 SD0027537 Whitehorse WWTF

108 SD0028637 Southern Missouri Recycling & Waste Management District

109 SD0034436 Unknown

110 SD0034614 Sicangu Village WWTP

1. Inside Federal Indian Reservation and/or ORTL

1.A. Community
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2.7. Table 7. (continued). 

 

No. SourceID CWPName

111 SD0034631 Lower Brule Water Trmnt Plnt

112 SDG584001 Lower Brule Rural Water Syst.

113 SDG589102 Ridgeview Wastewater Treatment Facility

114 SDG589103 Habitat For Humanity

115 SDG589104 Green Grass Wastewater Treatment Facility

116 SDG589105 Bear Creek Wastewater Treatment Facility

117 SDG589106 Blackfoot Wastewater Treatment Facility

118 SDG589107 Bridger Wastewater Treatment Facility

119 SDG589108 Cherry Creek Wastewater Treatment Facility

120 SDG589109 Iron Lightning Wastewater Facility

121 SDG589110 La Plant Wastewater Treatment Facility

122 SDG589111 Whitehorse Wastewater Facility

123 SDG589112 Thunder Butte Wastewater Treatment Facility

124 SDG589113 Swiftbird Wastewater Facility

125 SDG589114 Red Scaffold Wastewater  Facility

126 SDG589115 Foxridge Wastewater Treatment Facility

127 SDG589116 Dupree Wastewater Treatment Facility

128 SDG589120 Mni Waste Elk Pasture WWTF

129 SDG589201 Big Bend Lagoon System

130 SDG589202 Crow Creek Lagoon System

131 SDG589203 Fort Thompson Lagoon System

132 SDG589204 Stephan Lagoon System

133 SDG589205 Fort Thompson-East

134 SDG589401 West Brule Lagoon North

135 SDG589402 West Brule Lagoon South

136 SDG589501 Allen Lagoon

137 SDG589502 Evergreen Lagoon

138 SDG589503 Kyle Community Lagoon

139 SDG589504 Manderson Community Lagoon

140 SDG589505 Martin Sunrise Housing WW Lagoon

141 SDG589506 Oglala Community Lagoon

142 SDG589507 Pine Ridge Community Lagoon

143 SDG589508 Potato Creek Community Lagoon

144 SDG589510 Sharp'S Corner Lagoon System

145 SDG589511 Wakpamni Community Lagoon

146 SDG589512 Wolf Creek Community Lagoon

147 SDG589513 Wounded Knee Community Lagoon

148 SDG589514 Wanblee (Osha) Lagoon

1.A. Community

1. Inside Federal Indian Reservation and/or ORTL
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2.7. Table 7. (continued). 

 

No. SourceID CWPName

149 SDG589525 Porcupine Community Lagoon

150 SDG589528 Lakota Fund Housing Lagoon

151 SDG589601 Mission - Antelope Sanitation Facility

152 SDG589602 Black Pipe/Norris WWTF

153 SDG589605 Ideal Community

154 SDG589606 Okreek Community Lagoon

155 SDG589607 Parmelee Community

156 SDG589608 Rosebud Community

157 SDG589609 Spring Creek, Community Of

158 SDG589610 Soldier Creek - South

159 SDG589612 Two Strikes Community

160 SDG589616 City Of St Francis Wastewater Treatment Facility

161 SDG589617 Soldier Creek - North

162 SDG589619 Rosebud Sioux Tribe Water And Sewer

163 SDG589701 Lake Andes Housing

164 SDG589702 Marty Community Wastewater Lagoon

165 SDG589803 Old Agency Village WWTF

166 SDG589806 Long Hollow Water System

167 SDG589807 Peever Flats Housing WWTP

168 SDG589808 Enemy Swin Housing WWTP

169 SDG589809 Finley Heights Water System

170 SDG826743 Ravinia, Town Of

171 SDU000019 Two Strikes, Community Of

172 SDU000020 Springs Creek, Community Of

173 SDU000021 Parmelee, Town Of

174 SDU000024 Horse Creek, Community Of

175 SDU000025 White Horse, Community Of

176 SDU000026 Soldier Creek, Community Of

177 SDU000027 Rosebud, Community Of

178 SDU000028 Okreek, Community Of

179 SDU000030 Ideal, Community Of

180 SR0240281 St.Regis Mohawk Tribe WWTP

181 TX0052809 Alabama-Coushatta Tribe Of Tx

182 UTG589401 Fort Duchesne Wastewater Treatment Facility

183 UTG589402 Yellowstone Wastewater Treatment Facility

184 UTG589403 Sunshine Subdivision WWTF

185 UTG589404 Hilltop Sewage Lagoons

186 UTG589405 Whiterocks Sewage Lagoons

1. Inside Federal Indian Reservation and/or ORTL

1.A. Community
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2.7. Table 7. (continued). 

 

No. SourceID CWPName

187 UTG589406 Randlett Sewage Lagoons

188 WA0023213 Makah Tribal Counsel - Makah WWTP

189 WA0023434 Quinault Indian Nation - Taholah Village WWTP

190 WA0023442 Quinault Indian Nation - Queets Village WWTP

191 WA0025585 Quinault Indian Nation

192 WA0025666 Lummi Indian Business Council - Gooseberry Point WWTP

193 WA0025704 Wellpinit Sanitation & Maint F

194 WA0026280 Quileute Natural Resources

195 WA0026603 Quinault Indian Nation - Moclips River Estates WWTP

196 WA0026727 Lummi Tribal Sewer And Water District - Kwina Road Mbr WWTP

197 WI0036544 Bad River Band

198 WI0036579 Bad River Indian Reservation

199 WI0036587 Bad River Band

200 WI0046868 Menominee Tribal Enterprise

201 WI0049727 Red Cliff Band WWTF

202 WI0073041 Lac Courte Oreilles

203 WIG012679 Lincoln Avenue Capital Site

204 WINOEIA04 Avs All In One

205 WYG589101 Fort Washakie Hotsprings Lagoon

206 WYG589102 Great Plains Lagoon

207 WYG589103 Wastewater Treatment Lagoon

208 WYG589105 Mill Creek Lagoon

209 WYG589106 Ethete Wastewater Lagoon

210 WYG589107 Beaver Creek Lagoons

211 AZ0022501 Unknown

212 MTG589202 Saint Labre Indian School

213 NC0089907 Jacob Cornsilk Complex

214 ND0031160 Mha Interpretive Center

215 NDG589206 Four Winds Tate Topa Tribal School

216 NDG589307 Smee School District 15-3

217 NDG589409 Dunseith North Head Start Center Wastewater Treatment Center

218 NDG589410 Ojibwa Millennium School Wastewater Treatment Lagoons

219 SD0025453 Unknown

220 SDG589307 Smee School District #15-3

221 SDG589515 American Horse School

222 SDG589516 Crazy Horse School

223 SDG589517 Wolf Creek School WW

1.B. School

1. Inside Federal Indian Reservation and/or ORTL

1.A. Community
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2.7. Table 7. (continued). 

 

No. SourceID CWPName

224 SDG589518 Rocky Ford School

225 SDG589520 Little Wound School

226 SDG589521 Loneman School Corporation

227 SDG589523 Wanblee Headstart School

228 SDG589524 Porcupine Day School

229 SDG589526 Red Cloud Indian School

230 SDG589527 Oglala Lakota College

231 CA0004009 Chukchansi Gold Resort&Casino

232 CA0005241 Dry Creek Rancheria WWTF

233 CA0050008 Santa Ynez Band/Chumash WWTP

234 CA0084280 Table Mountain Rancheria WWTP

235 CA0084284 Hollywood Casino Waste Water Treatment Plant

236 CA0084697 Thunder Valley Casino WWTP

237 CAC442169 Thunder Valley Casino WWTP

238 LA0124656 Coushatta Casino Resort WWTP

239 MI0058582 Saganing WWTP

240 MI0058661 Gun Lake Gaming/Entertainment

241 MIG960083 Gun Lake Casino WWTP

242 MTG589706 Northern Winz Casino Lagoon

243 ND0030813 Dakota Magic Casino Hotel Wastewater Treatment Facility

244 ND0031135 Prairie Knights Casino And Resort

245 ND0031178 Spirit Lake Casino WWTF

246 ND0032107 Sky Dancer Wastewater Lagoons

247 NM0030678 Casa Blanca WWTP

248 NM0031224 Tesuque Casino Wastewater Treatment Plant

249 NN0030343 Northern Edge Casino WWTF

250 NN0030344 Twin Arrows Casino Water And Wastewater Systems

251 SD0034444 Grand River Casino & Resort

252 SD0034584 Rosebud Casino And Hotel

253 SD0034746 Dakota Sioux Casino

254 SD0034752 Grand River Casino And Resort

255 SD0034760 Prairie Winds Casino WWTF

256 SDG589519 Prairie Wind Casino

257 SDG589703 Fort Randall Casino/Hotel And Travel Plaza

258 SDG589801 Dakota Sioux Casino

259 TX0127582 Alabama Coushatta Tribe Of Tx

260 WA0025062 Swinomish Indian Tribal Community - Northern Lights Casino (North End WWTP)

1. Inside Federal Indian Reservation and/or ORTL

1.B. School

1.C. Casino
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2.7. Table 7. (continued). 

 

No. SourceID CWPName

261 WA0026743 Yakama Nation - Yakama Nation'S Legends Casino WWTP

262 WIG012390 Wis Dot - 9130-00-00

263 AK0043427 St George, City Of

264 AK0046655 Saxman, City Of

265 AK0053376 Klawock, City Of

266 AKG570064 Nulato Sewage Lagoons

267 AKG570097 Savoonga Sewage Lagoon

268 AKG572001 Atqasuk WWTF

269 AKG572022 Hoonah WWTF

270 AKG572036 Point Lay WWTF

271 AKG572048 Wainwright WWTF

272 AKG573001 Alakanuk Lagoon

273 AKG573002 Chuathbaluk Wastewater Lagoon

274 AKG573004 Dillingham Lagoon

275 AKG573006 Emmonak Lagoon

276 AKG573008 Kongiganak Lagoon

277 AKG573011 Napaskiak Lagoon

278 AKG573012 Noatak Lagoon

279 AKG573013 Nightmute Lagoon

280 AKG573014 Pilot Station Wastewater Lagoon

281 AKG573015 Quinhagak Sewage Lagoon

282 AKG573016 St  Marys Lagoon

283 AKG573017 St Michael Lagoon

284 AKG573018 Scammon Bay Lagoon

285 AKG573019 Selawik  Lagoon

286 AKG573025 Togiak Village Lagoon

287 AKG573026 Upper Kalskag Lagoon

288 AKG573030 Kipnuk Community Sewage Lagoon

289 AKG573031 Mountain Village Lagoon

290 AKG573035 Noorvik Lagoon

291 AKG573036 Kiana Sewage Lagoon

292 AKG573037 Galena 2 Lagoon

293 AKG573039 New Kasigluk Sewage Lagoon_2

294 AKG573040 Shageluk Sewage Lagoon

295 AKG573041 Old Kasigluk Lagoon

296 COG587102 White Mesa Wastewater Lagoon

1. Inside Federal Indian Reservation and/or ORTL

1.C. Casino

2. Outside Federal Indian Reservation and/or ORTL

2.A. Community
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2.7. Table 7. (continued). 

 
 
 
 

 

 

No. SourceID CWPName

297 NDG589308 Rock Creek Lagoon System (Bullhead Lagoons)

298 NDG589310 Little Eagle Community Lagoon System

299 NDG589405 San Haven Wastewater Treatment Lagoons

300 OK0028151 Anadarko Pwa

301 OK0030341 Stilwell Area Development Auth

302 OK0032328 Hulbert Public Works Authority

303 SDG589613 White Horse Community Of

304 SDU000022 Norris, Community Of(Black Pip

305 WI0036498 Lac Du Flambeau Indian Tribe

306 WI0071315 Keshena WWTF

307 WI0071501 Sokaogon Chippewa Wastewater Treatment System

308 WI0073059 Neopit Community Water System

309 AKG572006 Barrow WWTF

310 AKG572023 Joann A Alexie Memorial School WWTF

311 AKG572025 Mcqueen School WWTF

312 AKG572026 Tuntutuliak School WWTF

313 AKG572056 Little Diomede School WWTF

314 AKG572098 Paul T Albert High School WWTF

315 AKG573034 Shishmaref School WW Treatment Plant

316 MS0057649 Conehatta School Wastewater Treatment Plant

317 NN0020800 Nenahnezad Boarding School

318 NN0020958 Wingate High School

319 NNL020800 Nenahnezad Boarding School

320 SDG589117 Takini School Wastewater Facility

321 CA0049675 Buena Vista Casino

322 FLR10I625 Tampa Hard Rock Hotel And Casino

323 FLR10I62A Hardrock Orient Road

324 IA0073717 Winnavegas Casino

325 KS0093777 Harrah'S/Prairie Band Casino

326 MN0061336 Prairie Island

327 NM0030686 Rio Puerco WWTP/Route 66 Casino

2. Outside Federal Indian Reservation and/or ORTL

2.A. Community

2.B. School

2.C. Casino
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APPENDIX C 

SUPPLEMENTARY INFORMATION – WASTEWATER LAGOON DETECTION ON THE UNITED 

STATES TRIBAL LANDS USING REMOTELY SENSED DATA 
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3.1. Table 1. Federally Recognized Indian Tribes (FRITs) and their corresponding Federal Indian 

Reservations (FIRs), Off-reservation trust land (ORTL), and/or joint use area. 

 

   

A Celilo Village
c

1 Agua Caliente Band of Cahuilla Indians of the Agua Caliente Indian Reservation Agua Caliente Indian Reservation and Off-Reservation Trust Land

2 Ak-Chin Indian Community Maricopa (Ak Chin) Indian Reservation and Off-Reservation Trust Land
d

3 Alabama-Coushatta Tribe of Texas Alabama-Coushatta Reservation and Off-Reservation Trust Land

4 Alturas Indian Rancheria Alturas Indian Rancheria

5 Aroostook Band of Micmacs Aroostook Band of Micmac Trust Land

6 Assiniboine and Sioux Tribes of the Fort Peck Indian Reservation Fort Peck Indian Reservation and Off-Reservation Trust Land

7 Augustine Band of Cahuilla Indians Augustine Reservation

8 Bad River Band of the Lake Superior Tribe of Chippewa Indians of the Bad River 

Reservation

Bad River Reservation

9 Bay Mills Indian Community Bay Mills Reservation and Off-Reservation Trust Land

10 Bear River Band of the Rohnerville Rancheria Rohnerville (Rancheria) Trust Land

11 Berry Creek Rancheria of Maidu Indians of California Berry Creek Rancheria and Off-Reservation Trust Land

12 Big Lagoon Rancheria Big Lagoon Rancheria

13 Big Pine Paiute Tribe of the Owens Valley Big Pine Reservation and Off-Reservation Trust Land
d

14 Big Sandy Rancheria of Western Mono Indians of California Big Sandy Rancheria and Off-Reservation Trust Landd

15 Big Valley Band of Pomo Indians of the Big Valley Rancheria Big Valley Rancheria

16 Bishop Paiute Tribe Bishop Reservation

17 Blackfeet Tribe of the Blackfeet Indian Reservation of Montana Blackfeet Indian Reservation and Off-Reservation Trust Land

18 Blue Lake Rancheria Blue Lake Rancheria and Off-Reservation Trust Land

19 Bridgeport Indian Colony Bridgeport Reservation and Off-Reservation Trust Landd

20 Burns Paiute Tribe Burns Paiute Indian Colony and Off-Reservation Trust Land

21 Cabazon Band of Mission Indians Cabazon Reservation

22 Cachil DeHe Band of Wintun Indians of the Colusa Indian Community of the Colusa 

Rancheria

Colusa Rancheria

23 Cahto Tribe of the Laytonville Rancheria Laytonville Rancheria

24 Cahuilla Band of Indians Cahuilla Reservation

25 Campo Band of Diegueno Mission Indians of the Campo Indian Reservation Campo Indian Reservation

Barona Reservation and Off-Reservation Trust Land
d

Capitan Grande Reservation

Viejas Reservation and Off-Reservation Trust Land
d

27 Catawba Indian Nation Catawba Reservation and Off-Reservation Trust Land

28 Cedarville Rancheria Cedarville Rancheria and Off-Reservation Trust Land

29 Chemehuevi Indian Tribe of the Chemehuevi Reservation Chemehuevi Reservation

30 Cher-Ae Heights Indian Community of the Trinidad Rancheria Trinidad Rancheria and Off-Reservation Trust Land

31 Cheyenne River Sioux Tribe of the Cheyenne River Reservation Cheyenne River Reservation and Off-Reservation Trust Land

32 Chicken Ranch Rancheria of Me-Wuk Indians of California Chicken Ranch Rancheria and Off-Reservation Trust Land

33 Chippewa Cree Indians of the Rocky Boy’s Reservation Rocky Boy's Reservation and Off-Reservation Trust Land

34 Chitimacha Tribe of Louisiana Chitimacha Reservation

35 Cocopah Tribe of Arizona Cocopah Reservation

36 Coeur D’Alene Tribe Coeur d'Alene Reservation

37 Cold Springs Rancheria of Mono Indians of California Cold Springs Rancheria

38 Colorado River Indian Tribes of the Colorado River Indian Reservation Colorado River Indian Reservation

39 Confederated Salish and Kootenai Tribes of the Flathead Reservation Flathead Reservation

40 Confederated Tribes and Bands of the Yakama Nation Yakama Nation Reservation and Off-Reservation Trust Land

41 Confederated Tribes of Siletz Indians of Oregon Siletz Reservation and Off-Reservation Trust Land

42 Confederated Tribes of the Chehalis Reservation Chehalis Reservation and Off-Reservation Trust Land

43 Confederated Tribes of the Colville Reservation Colville Reservation and Off-Reservation Trust Land

44 Confederated Tribes of the Coos, Lower Umpqua and Siuslaw Indians Coos, Lower Umpqua, and Siuslaw Reservation and Off-Reservation Trust Land

45 Confederated Tribes of the Goshute Reservation Goshute Reservation

46 Confederated Tribes of the Grand Ronde Community of Oregon Grand Ronde Community and Off-Reservation Trust Land

47 Confederated Tribes of the Umatilla Indian Reservation Umatilla Reservation and Off-Reservation Trust Landd

48 Confederated Tribes of the Warm Springs Reservation of Oregon Warm Springs Reservation and Off-Reservation Trust Land

49 Coquille Indian Tribe Coquille Reservation

50 Coushatta Tribe of Louisiana Coushatta Reservation and Off-Reservation Trust Land

51 Cow Creek Band of Umpqua Tribe of Indians Cow Creek Reservation and Off-Reservation Trust Land

52 Cowlitz Indian Tribe Cowlitz Reservation

53 Coyote Valley Band of Pomo Indians of California Coyote Valley Reservation

54 Crow Creek Sioux Tribe of the Crow Creek Reservation Crow Creek Reservation

55 Crow Tribe of Montana Crow Reservation and Off-Reservation Trust Land

56 Dry Creek Rancheria Band of Pomo Indians Dry Creek Rancheria and Off-Reservation Trust Land
d

57 Duckwater Shoshone Tribe of the Duckwater Reservation Duckwater Reservation

58 Eastern Band of Cherokee Indians Eastern Cherokee Reservation

59 & 60 Eastern Shoshone Tribe of the Wind River Reservation/Northern Arapaho Tribe of the Wind River Reservation and Off-Reservation Trust Land

61 Elem Indian Colony of Pomo Indians of the Sulphur Bank Rancheria Sulphur Bank Rancheria

62 Elk Valley Rancheria Elk Valley Rancheria and Off-Reservation Trust Land

63 Ely Shoshone Tribe of Nevada Ely Reservation

26 Capitan Grande Band of Diegueno Mission Indians of California (Barona Group of 

Capitan Grande Band of Mission Indians of the Barona Reservation) Viejas (Baron 

Long) Group of Capitan Grande Band of Mission Indians of the Viejas Reservation

FRIT No. Federally recognized Indian Tribe
a

Reservation + Off reservation trust land
b
/joint-use area
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64 Enterprise Rancheria of Maidu Indians of California Enterprise Rancheria and Off-Reservation Trust Land
d

65 Ewiiaapaayp Band of Kumeyaay Indians Ewiiaapaayp Reservation

66 Flandreau Santee Sioux Tribe of South Dakota Flandreau Reservation

67 Forest County Potawatomi Community Forest County Potawatomi Community and Off-Reservation Trust Land

68 Fort Belknap Indian Community of the Fort Belknap Reservation of Montana Fort Belknap Reservation and Off-Reservation Trust Land

69 Fort Bidwell Indian Community of the Fort Bidwell Reservation of California Fort Bidwell Reservation and Off-Reservation Trust Land
70 Fort Independence Indian Community of Paiute Indians of the Fort Independence 

Reservation

Fort Independence Reservation

71 Fort McDermitt Paiute and Shoshone Tribes of the Fort McDermitt Indian Reservation Fort McDermitt Indian Reservation

72 Fort McDowell Yavapai Nation Fort McDowell Yavapai Nation Reservation

73 Fort Mojave Indian Tribe of Arizona, California & Nevada Fort Mojave Reservation and Off-Reservation Trust Land

74 Fort Sill Apache Tribe of Oklahoma Fort Sill Apache Indian Reservation

75 Gila River Indian Community of the Gila River Indian Reservation Gila River Indian Reservation

76 Grand Traverse Band of Ottawa and Chippewa Indians Grand Traverse Reservation and Off-Reservation Trust Land

77 Greenville Rancheria Greenville Rancheria

78 Grindstone Indian Rancheria of Wintun-Wailaki Indians of California Grindstone Indian Rancheria

79 Guidiville Rancheria of California Guidiville Rancheria and Off-Reservation Trust Land

80 Habematolel Pomo of Upper Lake Upper Lake Rancheria

81 Hannahville Indian Community Hannahville Indian Community and Off-Reservation Trust Land

82 Havasupai Tribe of the Havasupai Reservation Havasupai Reservation

83 Ho-Chunk Nation of Wisconsin Ho-Chunk Nation Reservation and Off-Reservation Trust Land

84 Hoh Indian Tribe Hoh Indian Reservation and Off-Reservation Trust Land
d

85 Hoopa Valley Tribe Hoopa Valley Reservation

86 Hopi Tribe of Arizona Hopi Reservation and Off-Reservation Trust Land

87 Hopland Band of Pomo Indians Hopland Rancheria

88 Houlton Band of Maliseet Indians Houlton Maliseet Reservation and Off-Reservation Trust Land

89 Hualapai Indian Tribe of the Hualapai Indian Reservation Hualapai Indian Reservation and Off-Reservation Trust Land

90 Iipay Nation of Santa Ysabel Santa Ysabel Reservation

91 Inaja Band of Diegueno Mission Indians of the Inaja and Cosmit Reservation Inaja and Cosmit Reservation

92 Iowa Tribe of Kansas and Nebraska Iowa (KS-NE) Reservation and Off-Reservation Trust Land

93 Jackson Band of Miwuk Indians Jackson Rancheria

94 Jamestown S’Klallam Tribe Jamestown S'Klallam Reservation and Off-Reservation Trust Land

95 Jamul Indian Village of California Jamul Indian Village

96 Jena Band of Choctaw Indians Jena Band of Choctaw Reservation

97 Jicarilla Apache Nation, New Mexico Jicarilla Apache Nation Reservation and Off-Reservation Trust Land

98 Kaibab Band of Paiute Indians of the Kaibab Indian Reservation Kaibab Indian Reservation

99 Kalispel Indian Community of the Kalispel Reservation Kalispel Reservation and Off-Reservation Trust Land

100 Karuk Tribe Karuk Reservation and Off-Reservation Trust Land

101 Kashia Band of Pomo Indians of the Stewarts Point Rancheria Stewarts Point Rancheria and Off-Reservation Trust Land
d

L'Anse Reservation and Off-Reservation Trust Land

Ontonagon Reservation

103 Kickapoo Traditional Tribe of Texas Kickapoo (TX) Reservation and Off-Reservation Trust Land
d

Kickapoo (KS) Reservation

Kickapoo (KS) Reservation/Sac and Fox Nation Trust Land joint-use area

105 Klamath Tribes Klamath Reservation

106 Kletsel Dehe Band of Wintun Indians Cortina Indian Rancheria

107 Kootenai Tribe of Idaho Kootenai Reservation and Off-Reservation Trust Land

108 La Jolla Band of Luiseno Indians La Jolla Reservation

109 La Posta Band of Diegueno Mission Indians of the La Posta Indian Reservation La Posta Indian Reservation

110 Lac Courte Oreilles Band of Lake Superior Chippewa Indians of Wisconsin Lac Courte Oreilles Reservation and Off-Reservation Trust Land

111 Lac du Flambeau Band of Lake Superior Chippewa Indians of the Lac du Flambeau 

Reservation of Wisconsin

Lac du Flambeau Reservation

112 Lac Vieux Desert Band of Lake Superior Chippewa Indians of Michigan Lac Vieux Desert Reservation

113 Las Vegas Tribe of Paiute Indians of the Las Vegas Indian Colony Las Vegas Indian Colony

114 Little River Band of Ottawa Indians Little River Reservation and Off-Reservation Trust Land

115 Little Traverse Bay Bands of Odawa Indians Little Traverse Bay Reservation and Off-Reservation Trust Land

116 Lone Pine Paiute-Shoshone Tribe Lone Pine Reservation

117 Los Coyotes Band of Cahuilla and Cupeno Indians Los Coyotes Reservation

118 Lovelock Paiute Tribe of the Lovelock Indian Colony Lovelock Indian Colony

119 Lower Brule Sioux Tribe of the Lower Brule Reservation Lower Brule Reservation and Off-Reservation Trust Land

120 Lower Elwha Tribal Community Lower Elwha Reservation and Off-Reservation Trust Land

121 Lower Sioux Indian Community in the State of Minnesota Lower Sioux Indian Community and Off-Reservation Trust Landd

122 Lummi Tribe of the Lummi Reservation Lummi Reservation

123 Lytton Rancheria of California Lytton Rancheria

124 Makah Indian Tribe of the Makah Indian Reservation Makah Indian Reservation

125 Manchester Band of Pomo Indians of the Manchester Rancheria Manchester-Point Arena Rancheria

126 Manzanita Band of Diegueno Mission Indians of the Manzanita Reservation Manzanita Reservation and Off-Reservation Trust Land

127 Mashantucket Pequot Indian Tribe Mashantucket Pequot Reservation and Off-Reservation Trust Land

128 Mashpee Wampanoag Tribe Mashpee Wampanoag Trust Land

129 Match-e-be-nash-she-wish Band of Pottawatomi Indians of Michigan Match-e-be-nash-she-wish Band of Pottawatomi Reservation and Off-

Reservation Trust Land

130 Menominee Indian Tribe of Wisconsin Menominee Reservation and Off-Reservation Trust Land

131 Mesa Grande Band of Diegueno Mission Indians of the Mesa Grande Reservation Mesa Grande Reservation

FRIT No. Federally recognized Indian Tribea Reservation + Off reservation trust landb/joint-use area

104 Kickapoo Tribe of Indians of the Kickapoo Reservation in Kansas/Sac & Fox Nation of 

Missouri in Kansas and Nebraska
e

102 Keweenaw Bay Indian Community
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132 Mescalero Apache Tribe of the Mescalero Reservation Mescalero Reservation

133 Metlakatla Indian Community, Annette Island Reserve Annette Island Reserve

134 Miccosukee Tribe of Indians Miccosukee Reservation and Off-Reservation Trust Land

135 Middletown Rancheria of Pomo Indians of California Middletown Rancheria

Bois Forte Reservation and Off-Reservation Trust Land
d

Fond du Lac Reservation and Off-Reservation Trust Land

Grand Portage Reservation and Off-Reservation Trust Land

Leech Lake Reservation and Off-Reservation Trust Land

Mille Lacs Reservation and Off-Reservation Trust Land

Minnesota Chippewa Trust Land

White Earth Reservation and Off-Reservation Trust Land

137 Mississippi Band of Choctaw Indians Mississippi Choctaw Reservation and Off-Reservation Trust Land
d

138 Moapa Band of Paiute Indians of the Moapa River Indian Reservation Moapa River Indian Reservation

139 Mohegan Tribe of Indians of Connecticut Mohegan Reservation

140 Mooretown Rancheria of Maidu Indians of California Mooretown Rancheria and Off-Reservation Trust Land

141 Morongo Band of Mission Indians Morongo Reservation and Off-Reservation Trust Land

142 Muckleshoot Indian Tribe Muckleshoot Reservation and Off-Reservation Trust Land

143 Narragansett Indian Tribe Narragansett Reservation

144 & 145 Navajo Nation/San Juan Southern Paiute Tribe of Arizona Navajo Nation Reservation and Off-Reservation Trust Land

146 Nez Perce Tribe Nez Perce Reservation

147 Nisqually Indian Tribe Nisqually Reservation

148 Nooksack Indian Tribe Nooksack Reservation and Off-Reservation Trust Land

149 Northern Cheyenne Tribe of the Northern Cheyenne Indian Reservation Northern Cheyenne Indian Reservation and Off-Reservation Trust Land

150 Northfork Rancheria of Mono Indians of California North Fork Rancheria and Off-Reservation Trust Land

151 Northwestern Band of the Shoshone Nation Northwestern Shoshone Reservation

152 Nottawaseppi Huron Band of the Potawatomi Huron Potawatomi Reservation and Off-Reservation Trust Land

153 Oglala Sioux Tribe Pine Ridge Reservation

154 Ohkay Owingeh Ohkay Owingeh

155 Omaha Tribe of Nebraska Omaha Reservation

156 Oneida Indian Nation Oneida Indian Nation Reservation

157 Oneida Nation Oneida (WI) Reservation and Off-Reservation Trust Land

158 Onondaga Nation Onondaga Nation Reservation

159 Paiute Indian Tribe of Utah (Cedar Band of Paiutes, Kanosh Band of Paiutes, 

Koosharem Band of Paiutes, Indian Peaks Band of Paiutes, and Shivwits Band of 

Paiutes)

Paiute (UT) Reservation

Fallon Paiute-Shoshone Colony and Off-Reservation Trust Land

Fallon Paiute-Shoshone Reservation and Off-Reservation Trust Land

161 Pala Band of Mission Indians Pala Reservation

162 Pascua Yaqui Tribe of Arizona Pascua Pueblo Yaqui Reservation and Off-Reservation Trust Land

163 Paskenta Band of Nomlaki Indians of California Paskenta Rancheria

Indian Township Reservation

Passamaquoddy Trust Land

Pleasant Point Reservation

165 Pauma Band of Luiseno Mission Indians of the Pauma & Yuima Reservation Pauma and Yuima Reservation

166 Pechanga Band of Luiseno Mission Indians of the Pechanga Reservation Pechanga Reservation and Off-Reservation Trust Land
d

167 Penobscot Nation Penobscot Reservation and Off-Reservation Trust Land

168 Picayune Rancheria of Chukchansi Indians of California Picayune Rancheria and Off-Reservation Trust Land

169 Pinoleville Pomo Nation Pinoleville Rancheria

Big Bend Rancheria

Likely Rancheria

Lookout Rancheria

Montgomery Creek Rancheria

Pit River Trust Land

Roaring Creek Rancheria

XL Ranch Rancheria

171 Poarch Band of Creeks Indians Poarch Creek Reservation and Off-Reservation Trust Land

172 Pokagon Band of Potawatomi Indians Pokagon Reservation and Off-Reservation Trust Land

173 Ponca Tribe of Nebraska Ponca (NE) Trust Land

174 Port Gamble S’Klallam Tribe Port Gamble Reservation and Off-Reservation Trust Landd

175 Prairie Band Potawatomi Nation Prairie Band of Potawatomi Nation Reservation

176 Prairie Island Indian Community in the State of Minnesota Prairie Island Indian Community and Off-Reservation Trust Land

177 Pueblo of Acoma Acoma Pueblo and Off-Reservation Trust Land

178 Pueblo of Cochiti Pueblo de Cochiti

179 Pueblo of Isleta Isleta Pueblo

180 Pueblo of Jemez Jemez Pueblo

181 Pueblo of Laguna Laguna Pueblo and Off-Reservation Trust Land

182 Pueblo of Nambe Nambe Pueblo and Off-Reservation Trust Land

183 Pueblo of Picuris Picuris Pueblo

184 Pueblo of Pojoaque Pueblo of Pojoaque and Off-Reservation Trust Land

San Felipe Pueblo

San Felipe Pueblo/Santa Ana Pueblo joint-use area

San Felipe Pueblo/Santo Domingo Pueblo joint-use area

FRIT No. Federally recognized Indian Tribe
a

Reservation + Off reservation trust land
b
/joint-use area

136 Minnesota Chippewa Tribe (Six component reservations: Bois Forte Band (Nett Lake); 

Fond du Lac Band; Grand Portage Band; Leech Lake Band; Mille Lacs Band; White Earth 

Band)

160 Paiute-Shoshone Tribe of the Fallon Reservation and Colony

164 Passamaquoddy Tribe

170 Pit River Tribe, California (includes XL Ranch, Big Bend, Likely, Lookout, Montgomery 

Creek, and Roaring Creek Rancherias)

185 Pueblo of San Felipe
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186 Pueblo of San Ildefonso San Ildefonso Pueblo and Off-Reservation Trust Land

187 Pueblo of Sandia Sandia Pueblo

188 Pueblo of Santa Ana Santa Ana Pueblo

189 Pueblo of Santa Clara Santa Clara Pueblo and Off-Reservation Trust Landd

190 Pueblo of Taos Taos Pueblo and Off-Reservation Trust Land

191 Pueblo of Tesuque Tesuque Pueblo and Off-Reservation Trust Land

192 Pueblo of Zia Zia Pueblo and Off-Reservation Trust Land

193 Puyallup Tribe of the Puyallup Reservation Puyallup Reservation and Off-Reservation Trust Land

194 Pyramid Lake Paiute Tribe of the Pyramid Lake Reservation Pyramid Lake Paiute Reservation

195 Quartz Valley Indian Community of the Quartz Valley Reservation of California Quartz Valley Reservation and Off-Reservation Trust Land

196 Quechan Tribe of the Fort Yuma Indian Reservation Fort Yuma Indian Reservation

197 Quileute Tribe of the Quileute Reservation Quileute Reservation

198 Quinault Indian Nation Quinault Reservation

199 Ramona Band of Cahuilla Ramona Village

200 Red Cliff Band of Lake Superior Chippewa Indians of Wisconsin Red Cliff Reservation and Off-Reservation Trust Land

201 Red Lake Band of Chippewa Indians Red Lake Reservation

202 Redding Rancheria Redding Rancheria

203 Redwood Valley or Little River Band of Pomo Indians of the Redwood Valley Rancheria Redwood Valley Rancheria

204 Reno-Sparks Indian Colony Reno-Sparks Indian Colony and Off-Reservation Trust Landd

205 Resighini Rancheria Resighini Rancheria

206 Rincon Band of Luiseno Mission Indians of Rincon Reservation Rincon Reservation and Off-Reservation Trust Landd

207 Robinson Rancheria Robinson Rancheria and Off-Reservation Trust Land

208 Rosebud Sioux Tribe of the Rosebud Indian Reservation Rosebud Indian Reservation and Off-Reservation Trust Land

209 Round Valley Indian Tribes, Round Valley Reservation Round Valley Reservation and Off-Reservation Trust Land

210 Sac & Fox Nation of Missouri in Kansas and Nebraska Sac and Fox Nation Reservation and Off-Reservation Trust Land

211 Sac & Fox Tribe of the Mississippi in Iowa Sac and Fox/Meskwaki Settlement and Off-Reservation Trust Landd

212 Saginaw Chippewa Indian Tribe of Michigan Isabella Reservation and Off-Reservation Trust Landd

213 Saint Regis Mohawk Tribe St. Regis Mohawk Reservation

214 Salt River Pima-Maricopa Indian Community of the Salt River Reservation Salt River Reservation

215 San Carlos Apache Tribe of the San Carlos Reservation San Carlos Reservation

216 San Manuel Band of Mission Indians San Manuel Reservation and Off-Reservation Trust Land
d

217 San Pasqual Band of Diegueno Mission Indians of California San Pasqual Reservation and Off-Reservation Trust Landd

218 Santa Rosa Band of Cahuilla Indians Santa Rosa Reservation

219 Santa Rosa Indian Community of the Santa Rosa Rancheria Santa Rosa Rancheria

220 Santa Ynez Band of Chumash Mission Indians of the Santa Ynez Reservation Santa Ynez Reservation

221 Santee Sioux Nation Santee Reservation

222 Santo Domingo Pueblo Santo Domingo Pueblo

223 Sauk-Suiattle Indian Tribe Sauk-Suiattle Reservation

224 Sault Ste. Marie Tribe of Chippewa Indians Sault Ste. Marie Reservation and Off-Reservation Trust Land

Big Cypress Reservation

Brighton Reservation

Coconut Creek Trust Land

Fort Pierce Reservation

Hollywood Reservation

Immokalee Reservation

Seminole (FL) Trust Land

Tampa Reservation

Allegany Reservation

Cattaraugus Reservation

Oil Springs Reservation

227 Shakopee Mdewakanton Sioux Community of Minnesota Shakopee Mdewakanton Sioux Community and Off-Reservation Trust Land

228 Sherwood Valley Rancheria of Pomo Indians of California Sherwood Valley Rancheria and Off-Reservation Trust Land

229 Shingle Springs Band of Miwok Indians, Shingle Springs Rancheria (Verona Tract) Shingle Springs Rancheria and Off-Reservation Trust Land
d

230 Shoalwater Bay Indian Tribe of the Shoalwater Bay Indian Reservation Shoalwater Bay Indian Reservation and Off-Reservation Trust Land

231 Shoshone-Bannock Tribes of the Fort Hall Reservation Fort Hall Reservation and Off-Reservation Trust Land

232 Shoshone-Paiute Tribes of the Duck Valley Reservation Duck Valley Reservation and Off-Reservation Trust Land
d

233 Sisseton-Wahpeton Oyate of the Lake Traverse Reservation Lake Traverse Reservation and Off-Reservation Trust Land

234 Skokomish Indian Tribe Skokomish Reservation and Off-Reservation Trust Landd

235 Skull Valley Band of Goshute Indians of Utah Skull Valley Reservation

236 Snoqualmie Indian Tribe Snoqualmie Reservation and Off-Reservation Trust Landd

237 Soboba Band of Luiseno Indians Soboba Reservation and Off-Reservation Trust Land

238 Sokaogon Chippewa Community Sokaogon Chippewa Community and Off-Reservation Trust Land

239 Southern Ute Indian Tribe of the Southern Ute Reservation Southern Ute Reservation

240 Spirit Lake Tribe Spirit Lake Reservation

241 Spokane Tribe of the Spokane Reservation Spokane Reservation and Off-Reservation Trust Land

242 Squaxin Island Tribe of the Squaxin Island Reservation Squaxin Island Reservation and Off-Reservation Trust Land

243 St. Croix Chippewa Indians of Wisconsin St. Croix Reservation and Off-Reservation Trust Land

244 Standing Rock Sioux Tribe of North & South Dakota Standing Rock Reservation

245 Stillaguamish Tribe of Indians of Washington Stillaguamish Reservation and Off-Reservation Trust Land

246 Stockbridge Munsee Community Stockbridge Munsee Community and Off-Reservation Trust Landd

247 Summit Lake Paiute Tribe of Nevada Summit Lake Reservation and Off-Reservation Trust Land

248 Suquamish Indian Tribe of the Port Madison Reservation Port Madison Reservation

FRIT No. Federally recognized Indian Tribe
a

Reservation + Off reservation trust land
b
/joint-use area

225 Seminole Tribe of Florida

226 Seneca Nation of Indians 
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a According to the Federal Register Vol. 86, No. 18, Pages 7554-7558 (5 pages), Friday, January 29, 2021, 
Notices, 86 FR 7554; and the Federal Register Vol. 86, No. 67, Pages 18552-18553 (2 pages), Friday, April 9, 2021, 
Notices, 86 FR 18552.  
b According to the United States Census Bureau. (2022). 2022 TIGER/Line Shapefiles [Data file]. 
https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2020&layergroup=American+Indian+Area+Geography  
c Most of the people living at Celilo are enrolled as members of either the Yakama Nation or the Confederated 
Tribes of the Warm Springs, some are enrolled Umatilla, and some Nez Perce (https://lillianpitt.com/celilo-village-then-
and-now/)  
d Reservation and/or Off-reservation trust land without population in 2010, accordig to the United States Census 
Bureau  
e Sac & Fox Nation of Missouri in Kansas and Nebraska is accounted for in FRIT No. 210  
 
 

249 Susanville Indian Rancheria Susanville Indian Rancheria and Off-Reservation Trust Land

250 Swinomish Indian Tribal Community Swinomish Reservation and Off-Reservation Trust Land

251 Sycuan Band of the Kumeyaay Nation Sycuan Reservation and Off-Reservation Trust Land
d

252 Table Mountain Rancheria Table Mountain Rancheria and Off-Reservation Trust Land
d

Battle Mountain Reservation and Off-Reservation Trust Landd

Elko Colony

South Fork Reservation and Off-Reservation Trust Land

Wells Colony

254 The Osage Nation Osage Reservation

255 Three Affiliated Tribes of the Fort Berthold Reservation Fort Berthold Reservation

256 Timbisha Shoshone Tribe Timbi-Sha Shoshone Reservation and Off-Reservation Trust Land

257 Tohono O’odham Nation of Arizona Tohono O'odham Nation Reservation and Off-Reservation Trust Land

258 Tolowa Dee-ni’ Nation Smith River Rancheria and Off-Reservation Trust Land

259 Tonawanda Band of Seneca Tonawanda Reservation

260 Tonto Apache Tribe of Arizona Tonto Apache Reservation and Off-Reservation Trust Land
d

261 Torres Martinez Desert Cahuilla Indians Torres-Martinez Reservation

262 Tulalip Tribes of Washington Tulalip Reservation and Off-Reservation Trust Land

263 Tule River Indian Tribe of the Tule River Reservation Tule River Reservation and Off-Reservation Trust Land

264 Tunica-Biloxi Indian Tribe Tunica-Biloxi Reservation and Off-Reservation Trust Land

265 Tuolumne Band of Me-Wuk Indians of the Tuolumne Rancheria of California Tuolumne Rancheria

266 Turtle Mountain Band of Chippewa Indians of North Dakota Turtle Mountain Reservation and Off-Reservation Trust Land

267 Tuscarora Nation Tuscarora Nation Reservation

268 Twenty-Nine Palms Band of Mission Indians of California Twenty-Nine Palms Reservation and Off-Reservation Trust Land
d

269 United Auburn Indian Community of the Auburn Rancheria of California Auburn Rancheria and Off-Reservation Trust Land

270 Upper Sioux Community Upper Sioux Community and Off-Reservation Trust Land

271 Upper Skagit Indian Tribe Upper Skagit Reservation and Off-Reservation Trust Land
d

272 Ute Indian Tribe of the Uintah & Ouray Reservation Uintah and Ouray Reservation and Off-Reservation Trust Land

273 Ute Mountain Ute Tribe Ute Mountain Reservation and Off-Reservation Trust Land

274 Utu Utu Gwaitu Paiute Tribe of the Benton Paiute Reservation Benton Paiute Reservation and Off-Reservation Trust Land

275 Walker River Paiute Tribe of the Walker River Reservation Walker River Reservation

276 Wampanoag Tribe of Gay Head (Aquinnah) Wampanoag-Aquinnah Trust Land

Carson Colony

Dresslerville Colony

Stewart Community

Washoe Ranches Trust Land

Woodfords Community

278 White Mountain Apache Tribe of the Fort Apache Reservation Fort Apache Reservation

279 Winnebago Tribe of Nebraska Winnebago Reservation and Off-Reservation Trust Land

280 Winnemucca Indian Colony of Nevada Winnemucca Indian Colony

281 Wiyot Tribe Table Bluff Reservation

282 Yankton Sioux Tribe of South Dakota Yankton Reservation

283 Yavapai-Apache Nation of the Camp Verde Indian Reservation Yavapai-Apache Nation Reservation

284 Yavapai-Prescott Indian Tribe Yavapai-Prescott Reservation

Campbell Ranch

Yerington Colony

286 Yocha Dehe Wintun Nation Rumsey Indian Rancheria

287 Yomba Shoshone Tribe of the Yomba Reservation Yomba Reservation

288 Ysleta del Sur Pueblo Ysleta del Sur Pueblo and Off-Reservation Trust Land

289 Yurok Tribe of the Yurok Reservation Yurok Reservation

290 Zuni Tribe of the Zuni Reservation Zuni Reservation and Off-Reservation Trust Land

FRIT No. Federally recognized Indian Tribe
a

Reservation + Off reservation trust land
b
/joint-use area

285 Yerington Paiute Tribe of the Yerington Colony & Campbell Ranch

277 Washoe Tribe of Nevada & California (Carson Colony, Dresslerville Colony, Woodfords 

Community, Stewart Community, & Washoe Ranches)

253 Te-Moak Tribe of Western Shoshone Indians of Nevada (Four constituent bands: Battle 

Mountain Band; Elko Band; South Fork Band; and Wells Band)


