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ABSTRACT

Tracking disease cases is an essential task in public health; however, tracking the

number of cases of a disease may be difficult not every infection can be recorded by

public health authorities. Notably, this may happen with whole country measles case

reports, even such countries with robust registration systems. Eilertson et al. (2019)

propose using a state-space model combined with maximum likelihood methods for

estimating measles transmission. A Bayesian approach that uses particle Markov

Chain Monte Carlo (pMCMC) is proposed to estimate the parameters of the non-

linear state-space model developed in Eilertson et al. (2019) and similar previous

studies. This dissertation illustrates the performance of this approach by calculat-

ing posterior estimates of the model parameters and predictions of the unobserved

states in simulations and case studies. Also, Iteration Filtering (IF2) is used as a

support method to verify the Bayesian estimation and to inform the selection of prior

distributions.

In the second half of the thesis, a birth-death process is proposed to model the un-

observed population size of a disease vector. This model studies the effect of a disease

vector population size on a second affected population. The second population fol-

lows a non-homogenous Poisson process when conditioned on the vector process with

a transition rate given by a scaled version of the vector population. The observation

model also measures a potential threshold event when the host species population

size surpasses a certain level yielding a higher transmission rate. A maximum like-

lihood procedure is developed for this model, which combines particle filtering with

the Minorize-Maximization (MM) algorithm and extends the work of Crawford et al.

(2014).
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Chapter 1

INTRODUCTION

People have studied disease modeling from both statistical and mathematical

modeling perspectives. This dissertation tries a hybrid approach where we use two

statistical methodologies in the context of mathematical models. Both of them use

state-space models. The first model is in the context of Susceptible-Infected-Recovery

(SIR) models, and the second one is in the context of birth-death models.

When a population is exposed to a pathogen and its potential transmission, a

state-space model may approximate the underlying reality based on regular reports

(number of cases of infected or deaths). This type of modeling could become perti-

nent to avoiding high number of cases or fatalities. For instance, models for disease

dynamics can be used to predict unobservable quantities and may help us understand

how the diseases spread based on different interventions.

Developing effective prevention campaigns usually depends on the understanding

of the transmission phenomenon. However, uncovering precise mechanism of trans-

mission is challenging. One way to model disease incidence is by using non-linear

state-space models. When the specification of a state-space model mimics the true

incidence in the population, it typically demands a complex structure and a sig-

nificant number of parameters to be estimated. The estimation process may be a

difficult task for standard methods. Sequential Monte Carlo, also called Particle Fil-

tering, are simulation-based methods for filtering and smoothing that may facilitate

the estimation process in non-linear state-space models. In addition, more complex

computational methods such as Particle Markov Chain Monte Carlo (pMCMC) and

Iteration Filtering (IF) are methods based on Bayesian framework and likelihood

1



maximization, respectively.

The outline of this dissertation is as follows. Chapter 2 provides a background

of the pMCMC and the iteration filtering (IF2) computational tools to calculate

Bayesian and maximum likelihood estimators. This adaptation considers two ap-

proaches, one by following the R package pomp and a second one by using my im-

plementation. Chapter 3 gives a presentation that uses both the pMCMC and the

iteration filtering (IF2) computational tools to approximate the Bayesian and max-

imum likelihood estimators for the parameters of the model proposed by Eilertson

et al. (2019) and to compare with their results. This paper explores a non-linear

state-space model to estimate measles transmission at the country level. Mainly, this

chapter is primarily a presentation of a method to perform Bayesian analysis of the

whole country presenting the model of Eilertson et al. (2019).

Chapter 4 features a paper that proposes a model to understand the dynamics of

the interaction of the population of a disease vector and host population. A birth-

death process is used to model the vector population. In addition, the model includes

an observational model that is the count of cases in the host population. The host

population model incorporates a threshold parameter that denotes an additional in-

fection rate when the vector population size passes above certain level. This model

also assumes that the vector population is unobserved, and the available data is the

number of reported infection cases from the affected population. Further, this chap-

ter offers a novel estimation procedure based on the combination between particle

filters and the MM algorithm which is a generalization of the method presented in

Crawford et al. (2014). Finally, some simulation studies and an extension of the

proposed model that applies the model to cholera deaths reported in Bengal’s Dacca

district from 1891 to 1940 illustrate the approach. This data set presents a seasonal

behavior that is considered in the specification of the birth-death model by means of

2



a sinusoidal function.
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Chapter 2

BACKGROUND

2.1 Introduction

In this chapter, we are going to give some background on the types of models that

will be used in Chapter 3, disease dynamics. Non-linear state-space models are a

framework for various methods that allow an approximation to the true incidence in

a population even when the reports are partially or imperfectly observed. Eilertson

et al. (2019), based on previous works, propose a state-space model for the estimation

of measles transmission, which includes a fairly high number of parameters given the

length of the data (Simons et al. (2012); Chen et al. (2012)). The authors used particle

filters to predict the unobserved states of the system, which also gives a Monte Carlo

approximation of the likelihood function which is then maximized directly over this

Monte Carlo generated function to arrive at parameter estimates.

Alternatively, particle Markov chain Monte Carlo (pMCMC) developed in Andrieu

et al. (2010) allows for Bayesian estimation of model parameters while exploiting

particle filtering. In addition, iteration filtering (IF) methods use particle filters

within a maximum likelihood framework (Ionides et al. (2006, 2015)). This differs

from the Eilertson et al. (2019) approach because IF does not need to do explicit

maximization. Here, we describe both a Bayesian framework while using pMCMC to

sample from posteriors and the iteration filtering (IF2) for comparison. This approach

will bypass the well-known downsides of optimizing over a Monte Carlo approximated

likelihood function.

This chapter is organized as follows: section 2.2 includes the conceptual back-

4



ground of the SMC and MCMC algorithms and how they are combined to produce

the pMCMC method to enable Bayesian inference. Also, this section includes a

description of the iteration filtering algorithm. To familiarize ourselves with these

methods, section 2.3 shows a toy example that illustrates the use of the SMC and

PMCMC methods. Finally, section 2.4 collects the main conclusions.

2.2 Some Techniques to Predict States and Estimate Parameters in a State Space

Model (SSM)

Given the complexity of obtaining analytic solutions in the system of non-linear

and non-Gaussian SSM, filtering and smoothing can be challenging to perform. Many

algorithms such as Important sampling (IS), Sequential Monte Carlo (SMC), Markov

chain Monte Carlo (MCMC), or the combination of some of them approximate so-

lutions for the predicting and the updating steps, see Tsay and Chen (2018). These

methods are just a short list of the many procedures there are available for this issue.

2.2.1 SMC

SMC is one of the main tools used for Monte Carlo statistical inference; some

of its applications are known in the literature as particle filtering, see Doucet et al.

(2010). Based on Monte Carlo approximations, SMC accomplishes the prediction and

updating steps by focusing on conditional distributions Douc et al. (2014). Suppose

{X(1)
t−1, ..., X

(m)
t−1} are a sample with each of the X

(j)
t−1 follows a density pθ(xt−1|Y1:t−1)

where Y1:t = {Y1, ..., Yt}. At time step t, we want to get samples {X(1)
t , ..., X

(m)
t }

following the distribution pθ(xt|Y1:t) where Y1:t includes a new observation Yt. To

perform this task, two steps can be developed. First move into the space of xt from

xt−1 by keeping the observations till t−1, i.e. Y1:t−1, this is called the prediction step.

To obtain a sample from pθ(xt|Y1:t−1), we use the following

5



pθ(xt, xt−1|Y1:t−1) = pθ(xt|xt−1, Y1:t−1)pθ(xt−1|Y1:t−1)

= pθ(xt|xt−1)︸ ︷︷ ︸
“state equation”

pθ(xt−1|Y1:t−1)︸ ︷︷ ︸
“performed at t− 1”

.
(2.1)

Suppose X
(j)
t follows the distribution fθ(xt|X(j)

t−1). Thus, {(X(1)
t , X

(1)
t−1), ...,

(X
(m)
t , X

(m)
t−1 )} are random samples following the distribution pθ(xt, xt−1|Y1:t−1). Now

to perform the second step, which is drawing samples from pθ(xt|Y1:t−1, Yt) including

the observation Yt, important sampling can be used. Since the marginal samples

{X(1)
t , ..., X

(m)
t } are generated from the trial distribution pθ(xt|Y1:t−1) and the target

distribution is pθ(xt|Y1:t) then by using a weight function we obtain

wt(xt) =
pθ(xt|Y1:t−1, Yt)

pθ(xt|Y1:t−1)
∝ pθ(xt, Yt|Y1:t−1)

pθ(xt|Y1:t−1)

=
pθ(xt|Y1:t−1)pθ(Yt|Xt, Y1:t−1)

pθ(xt|Y1:t−1)
= pθ(Yt|Xt).

(2.2)

Here we introduce some specific forms for some of the conditional densities pθ(·|·)

which represents a generic form, that is pθ(yt|xt) = gθ(yt|xt), and pθ(xt|xt−1) =

fθ(xt|xt−1). These forms need to be defined to do the calculations. Thus, we can

notice that wt(X
(j)
t ) = gθ(Yt|X(j)

t ) supplies an evaluation on how likely we observe Yt

if the state xt is truly located at X
(j)
t . To continue moving from t to t+1 we can check

that wt+1 = wtgθ(Yt+1|Xt+1), for details see Tsay and Chen (2018), page 404. Hence,

the full distribution of the latent process can be predicted recursively starting from a

defined initial state samples {X(1)
0 , ..., X

(m)
0 } following µθ(·). Then samples, at t = 1,

{X(1)
1 , ..., X

(m)
1 } are generated where each of the X

(j)
1 follows a density fθ(x1|X(j)

0 ),

and the weights are calculated w1(X
(j)
1 ) = gθ(Y1|X(j)

1 ).

Now discussing how to estimate the parameters θ ∈ Θ following the SMC tech-

niques, the evaluation of the likelihood function is required to obtain maximum like-

lihood estimators or Bayesian estimators, thus
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LY1:T (θ) = pθ(Y1:T ) =

∫
pθ(x1:T , Y1:T )dx1:T (2.3)

where t = 1, ..., T with T being the total number of observations, and

pθ(x1:T , Y1:T ) = µθ(x0)︸ ︷︷ ︸
“initial conditions”

T∏
t=1

fθ(xt|xt−1)︸ ︷︷ ︸
“time evolution process”

T∏
t=1

gθ(Yt|xt)︸ ︷︷ ︸
“observation process”

. (2.4)

We note that fθ(xt|xt−1) defines the state equation or the time evolution process

Andrieu et al. (2010). Using the fact that:

LY1:T (θ) = pθ(Y1)
T∏
t=2

pθ(Yt|Y1:t−1), (2.5)

through SMC, we can estimate the likelihood as:

L̂Y1:T (θ) =
T∏
t=1

1

N

N∑
j=1

wt(X
(j)
1:T ), (2.6)

where N is the number of particles in the SMC step. Next, we discuss how PMCMC

combines SMC and Markov chain Monte Carlo (MCMC) techniques.

2.2.2 PMCMC

To do Bayesian inference when θ ∈ Θ is an unknown parameter, typically we rely

on the posterior distribution

p(θ|Y1:T ) ∝
∫
pθ(x1:T , Y1:T )dx1:T p(θ)︸︷︷︸

“prior density”

, (2.7)

which in the context of non-linear non-gaussian models, p(θ|Y1:T ) does not usually

admit a close form expression, whereby inference is complex in practice. That is

why approximations are necessary. Particle Markov chain Monte Carlo (pMCMC) is
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a computational tool that combines SMC and MCMC to do Bayesian inference by

sampling from the posterior distribution (Andrieu et al. (2010)). Particle MCMC is

applied to areas such as epidemiology (Rasmussen et al. (2011); Endo et al. (2019)),

finance (Pitt et al. (2012); Lux (2021)), and other fields.

The second part of the pMCMC algorithm is Markov chain Monte Carlo (for

MCMC, for example, see Robert and Casella (2009)) particularly Metropolis-Hasting

(MH). However, other MCMC techniques could be incorporated, such as block sam-

pling, adaptive MCMC, or Gibbs sampling, although the latter demands some extra

requirement in the SMC algorithm, see for instance Lindsten et al. (2014). In the

context of Andrieu et al. (2010) Gibbs sampler requires the named “the conditional

SMC update”. Under these modifications this algorithm is called in Andrieu et al.

(2010) “Particle Gibbs sampler”. For the rest of this report, we will only focus on the

algorithm pMCMC, SMC + MH.

A pseudocode of algorithm pMCMC is given as follow:

Step 1: initialization, i = 0,

a) Set an initial parameter value θ(0),

b) Run a SMC to generate samples {X1:T}, targeting pθ(0)(x1:T |Y1:T ), and the

approximate partial likelihood p̂θ(0)(Y1:T ). Randomly choose one trajectory

X
(0)
1:T from {X1:T}.

Step 2: for iteration i ≥ 1,

a) Sample a new parameter θ∗(i) from the proposal distribution q(θ∗(i)|θ(i−1))

based on the previous value θ(i−1),

b) Run a SMC to generate samples {X∗1:T}, targeting pθ∗(i)(x1:T |Y1:T ), and

the approximate marginal likelihood p̂θ∗(i)(Y1:T ). Randomly choose one
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trajectory X
∗(i)
1:T from {X∗1:T} as candidate for a MCMC sample,

c) Compare the marginal likelihood with that in the previous iteration

p̂θ(i−1)(Y1:T ). With probability

min

{
1,

p̂θ∗(i)(Y1:T )p(θ∗(i))

p̂θ(i−1)(Y1:T )p(θ(i−1))

q(θ(i−1)|θ∗(i))
q(θ∗(i)|θ(i−1))

}
(2.8)

updated θ(i) = θ∗(i), X
(i)
1:T = X

∗(i)
1:T , and p̂θ∗(i)(Y1:T ) = p̂θ(i)(Y1:T ). Otherwise,

keep the values from the previous iteration: θ(i) = θ(i−1), X
(i)
1:T = X

(i−1)
1:T ,

and p̂θ(i)(Y1:T ) = p̂θ(i−1)(Y1:T ).

This pseudo-code completes our discussion of pMCMC. Now, we will discuss an

alternative method in the likelihood framework that exploits particle filtering to ap-

proximate the likelihood.

2.2.3 Iteration Filtering IF2

Iteration filtering is a method that combines iterations or repetitions of a particle

filter with perturbation of model parameters to maximize the likelihood, see Ionides

et al. (2015). This combination improves the numerical stability of data cloning, a

method created by Lele et al. (2007), where SMC computations numerically approxi-

mate the Bayes map. Thus, the iteration filtering algorithm provides a foundation for

stable algorithms, and it is a generalization of the data cloning method. Iteration Fil-

tering is mainly helpful in the context of complex models for which global likelihood

optimization is challenging. In such cases, Ionides et al. (2015) recommend running

multiple searches and continuing each search to obtain narrower limits of available

computations.

In the context of (2.4), the pseudocode of IF2 is given as follow:

Step 1: Inputs and initialization
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a) Inputs: number the iterations M , and number of particles J .

b) Initialization: {Xj
0 , j = 1, . . . , J} following µθ(·), and {Θj

0, j = 1, . . . , J}

following h(θ|σ2
m), with m = 1, ...,M , and perturbation scale σ2

1:M

Step 2: 1. For m in 1 : M

2. ΘF,j
0,m ∼ h

(
θ | Θj

m−1;σ2
m

)
for j in 1 : J

3. XF,j
0,m ∼ µ

(
x0; ΘF,j

0,m

)
for j in 1 : J

4. For t in 1 : T

5. ΘP,j
t,m ∼ h

(
θ | ΘF,j

t−1,m, σ
2
m

)
for j in 1 : J

6. XP,j
t,m ∼ f

(
xt | XF,j

t−1,m; ΘP,j
t,m

)
for j in 1 : J

7. wjt,m = g
(
Yt | XP,j

t,m; ΘP,j
t,m

)
for j in 1 : J

8. Draw k1:J with P [kj = i] = wit,m/
∑J

u=1w
u
t,m

9. ΘF,j
t,m = ΘP,kj

t,m and XF,j
t,m = XP,kj

t,m for j in 1 : J

10. End For

11. Set Θj
m = ΘF,j

T,m for j in 1 : J

12. End For,

where M is the number of iterations, J number of particles, {Θj
m, j = 1, ..., J} the

initial parameter swarm, h(θ|σ2
m) the perturbation density, σ2

1:M the perturbation

scale, this is by taking a random walk with smaller variance. This procedure shows

that the steps between 4 and 10 represent the particle filter algorithm applied to the

extended model where the parameters are stochastic perturbed, for each t = 1, ..., T

with T being the total number of observations. The M loop iterates the particle filter

with decreasing perturbations of the variance parameter. The superscripts F and P
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denote solutions to the filtering and the prediction problem, respectively. The weights

wjt,m denotes the likelihood of the data at time t for particle j in filtering iteration

m. Thus, the output is the final parameter swarm, {Θj
M , j = 1, ..., J}. This final

parameter swarm is recycled by taking the mean, for instance, for each parameter,

respectively which constitute the starting parameters for the next iteration. For this

notation, we eliminate the parenthesis from the superscripts j for simplicity. Now,

let us look at a simulation example to illustrate SMC and PMCMC.

2.3 Simulation Example

To illustrate how SMC works and how PMCMC exploits the strengths of SMC,

we developed a toy simulation. The simulation example is defined as follows

Fθ(Xt−1) = aXt−1 + bXt−1/(1 +X2
t−1)) + γ,

Xt = Fθ(Xt−1) +Wt.

(2.9)

H(Xt) = X2
t /20,

Yt = H(Xt) + Vt,

(2.10)

where X0 ∼ N(2γ, 1), with Wt ∼ N(0, 1) independent of Vt ∼ N(0, 1) and each

sequence independent of X0. And, θ = (a = .5, b = 25, γ = 8) 1 . Figure 4.1 shows

an output of this simulation with a sample size of T = 50. Now, from this simulation

data, we are going to follow both the SMC and MCMC algorithms as we mentioned

in section 2.2. To get results by using these two techniques in R there are several

packages that allow to implement those such as LibBi (Murray (2013)), Nimble (de

Valpine et al. (2017)), pomp (King et al. (2016)) , RBi which is an interface to LibBi,

1Taken from Douc et al. (2017), page 297.
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among others. Particularly, here, we use the package pomp (King et al. (2016)) for

both pMCMC and IF2, and we developed our own code to contrast our results and

to verify our own implementation.

Figure 2.1: Simulation of Xt and Yt for t = 1, ..., 200

2.3.1 Particle Filter and Comparison

For the implementation of the SMC or the particle filter with bootstrap re-

sampling according to equations (2.4), (2.9), (2.10) we follow this scheme:

Since the goal of using the SMC algorithm, in the pMCMC method, is to produce

a prediction of the hidden process, Figures 2.2 and 2.3 show this prediction for the

particle filters (coloring lines) and the true state (black line). To obtain these predic-

tions, we used both our implementation code and the pomp R package. We can draw
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x0 initial condition x0 ∼ N(2γ, 1)

fθ(xt|xt−1) is defined as xt ∼ N(F (xt−1), 1)

gθ(yt|xt) is defined as yt ∼ N(H(xt), 1)

data set y1:50

θ = (a, b, γ) = c(0.5,25,8)

Np # particles = 5000 and 10000

two important conclusions from these results: first, the particle filter covered the

true states under the 5000 and 10000 particles cases, and second, our implementation

displays results close to pomp. Further, the running time is practically the same. In

addition, in Figure 2.4, we show the effective sample size for both cases 5000 and

10000 particles, and the results from our implementation look similar to the results

from pomp. These parallel outcomes allow us to be confident about our performance

and our results.

Figure 2.2: Estimation (filter) of the State Xt with 5000 particles colored lines, the
black line represents the true State. (a) shows the results by using our own code, and
(b) shows the results by using the pomp R package

(a) Our (b) Pomp
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Figure 2.3: Estimation (filter) of the State Xt with 10000 particles colored lines, the
black line represents the true State. (a) shows the results by using our own code, and
(b) shows the results by using the pomp R package

(a) Our (b) Pomp

Figure 2.4: Effective sample size (efss) from our implementation (black line), and
from pomp (red line)

(a) (b)
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2.3.2 PMCMC and Comparisons

Now, from the previous results and by following the pseudocode given in 2.2.2, we

estimate the parameters of the model in (2.9) by combining the SMC and the MCMC

algorithms. For the first part of these outcomes we compare the parameter estimation

using as a proposal distribution, q(θ∗(i)|θ(i−1)), a normal random walk with diagonal

covariance matrix; and independent Normal prior distributions with mean {0.5, 25, 8}

and standard deviation {0.52, 12.5, 4} respectively for the parameters {a, b, γ}. In

order to check stationarity condition it is recommended to run several Markov chains

see Robert and Casella (2009) or Dahlin and Schön (2019). Therefore, by using

pomp, we simulated five independent chains with 104 particles and 105 iterations. We

burned in using the first half, and we used a thinning parameter equal to 50. From our

implemented procedure, we run one chain. Figure 2.5 shows the main results from the

pMCMC algorithm. In figures 2.6a, 2.6b, and 2.6c we present the estimated marginal

posterior for a, b, and γ, five coloring lines from pomp and one black line for our

implementation. The gray line represents the prior distribution. From these figures,

we cannot see appreciably significant differences between pomp and ours. Also, the

estimated marginal posterior covers the true parameter value (red line). Something

to remark on here, regarding the parameter b, is that a transformation like eb could

help to improve the estimation in the sense that we should not restrict the range of

the parameter b. Figures 2.6d-2.6f include the trace of the Markov chain. All of them

exhibit a behavior approximately stationary, and figures 2.6g-2.6i show the ACF for

each Markov chain.

In addition, we obtain results by using an independent uniform priors with limits

{0.05, 2.5, 0.8} and {2.5, 125, 40} respectively for the parameters {a, b, γ}. In Figure

2.6 we show these outcomes. We notice that the results in this case are similar to those
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we obtained under the normal prior assumption. We also notice that the estimation

of the marginal posterior for the parameter b is more precise under the normal prior

distribution.
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Figure 2.5: Density plots (Figures a, b, and c): Normal prior distribution (gray line),
posterior estimations (coloring line by using pomp), and by using our implementa-
tion (black line), red line correspond to the true parameter value. Trace plots of the
Markov chain (Figures d, e, and f) for the parameters a, b, and γ parameters, respec-
tively. ACF plots for each Markov chain (Figures g, h, and i) for the parameters a,
b, and γ parameters, respectively

(a) a (b) b (c) γ

(d) (e) (f)

(g) (h) (i)
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Figure 2.6: Density plots (Figures a, b, and c): Uniform prior distribution (gray line),
posterior estimations (coloring line by using pomp), and by using our implementa-
tion (black line), red line correspond to the true parameter value. Trace plots of the
Markov chain (Figures d, e, and f) for the parameters a, b, and γ parameters, respec-
tively. ACF plots for each Markov chain (Figures g, h, and i) for the parameters a,
b, and γ parameters, respectively

(a) a (b) b (c) γ

(d) (e) (f)

(g) (h) (i)
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2.4 Conclusions

By using a simulated example, we evaluate our implementation of the pMCMC

method. It was compared with the results obtained from the R package pomp. The

running time for the SMC or particle filter is similar to time by using pomp. Still,

the running time for the pMCMC algorithm with our implementation is almost three

times the total time by using pomp.
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Chapter 3

BAYESIAN ESTIMATION OF PARAMETERS FROM WHOLE COUNTRY

ANNUAL MEASLES CASES USING PARTICLE MCMC (PMCMC)

3.1 Introduction

Tracking disease cases is an important task in public health, so to do this tracking,

there are basic SIR models, see for instance Anderson and May (1991), Bjørnstad et al.

(2002), or Allen (2008). It is often hard to keep track of the number of cases since

not every infection is reported to the public health authorities. That is a problem

for public health officials, so we will come up with a method that treats the cases as

hidden unobservable quantities. Then, we will have an observation model and put all

of these aforementioned quantities within a state space model.

The under-reported surveillance data produces a partially observed time series.

Due to the existence of imperfect observations, health professionals often only par-

tially observe the actual cases in a population. Notably, this happens with the measles

case reports in whole countries, even those with solid registration systems (Simons

et al. (2012)). Under these conditions, estimating the true number of disease cases is

difficult and problematic for policymakers when planning and setting funding priori-

ties (WHO (2007)).

Linear and non-linear state-space models are a class of models for which standard

procedures exists in order to allow a quantification of the distribution of the true

number of cases in a population even when the reports are only partially observed.

This is known as Filtering. State space models combine a state equation, X, and an

observation equation Y , where Y is a transformed version of X typically with noise
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added. Thus, these models help predict the unobserved number of cases of diseases

in a population and the dynamics of disease infection more generally (see, Eilertson

et al. (2019)). Simons et al. (2012) propose a state space model that incorporates

surveillance data to estimate incidence and age distribution based on the reported

number of measles cases. By using the annual reports from 192 countries, 65 with vital

registration and 128 countries with inadequate vital registration data, they concluded

that underreporting is estimated to be below 10%. Chen et al. (2012), previously

produced a methodology for a similar kind of data setup by developing state space

methods to predict unobserved measles burden. They were estimating the parameters

of the model using an extended Kalman Filter to calculate the likelihood function then

maximizing.

Eilertson et al. (2019) propose using a state-space model combined with maximum

likelihood methods for estimating measles transmission, which includes a relatively

high number of parameters given the length of the data. The authors used particle fil-

ters to predict the system’s unobserved states in particular the number of susceptibles

and the number of infecteds, which also produces a Monte Carlo approximation of the

likelihood function, that is then maximized directly to arrive at parameter estimates.

In addition, they include age classes within the states. Based on this model, without

considering the age classes, we propose an alternative Bayesian approach that uses

particle Markov chain Monte Carlo (pMCMC) from Andrieu et al. (2010) to draw

from the posteriors and iteration filtering (IF2) method from Ionides et al. (2015).

We are going to be using IF2 as a check on the Bayesian approach and also to inform

priors. This approach differs from the Eilertson et al. (2019) because IF2 has stronger

theoretical underpinnings; moreover, it does not need to do explicit maximization.

This approach will bypass the well-known downsides of optimizing over a Monte Carlo

approximated likelihood function.
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This chapter is organized as follows: section 3.2 describes the model proposed

by Eilertson et al. (2019) removing the age-classes component. Section 3.3 develops

a simulation study to explore Bayesian analysis using pMCMC and IF2 as check.

Section 3.4 presents a study case implementing the model proposed by Eilertson et al.

(2019). Finally, section 3.5 states the main conclusions and some recommendations.

3.2 Model Description

The model considered here, from Eilertson et al. (2019), is a phenomenological

model with some mechanistic aspects for dynamics at the country level to provide a

national estimates of the measles disease burden. This model mimics the behavior

captured by the conventional SIR-type model. Although the model in Eilertson et al.

(2019) considers the age effect, we emphasized the application of the simpler version

without including the age classes more similar to Chen et al. (2012). We evaluate the

model via simulation using the covariates that consist of population size, number of

births and vaccination rate of the national data of the country of India, and then we

do case studies with selected countries. To clarify this model, we write it in a different

way than the model is written in Eilertson et al. (2019). We use a set of independent

uniform random variables and indicator functions to represent the model, as we can

see in equations (3.1-3.5). This model is on an annual timescale, where St is the

number of susceptibles, the people in a population vulnerable to becoming sick at

year t, which is a function of the number of susceptibles and the number of infected

individuals in the previous year St−1, and It−1, respectively. Also, St is function of the

number of births at year t, Bt, modified by the fraction of immunized people through

vaccination Vt. According to Chen et al. (2012), Vt is defined as the efficacy of the

measles vaccine, which is a linear combination of V1,t and V2,t the vaccine coverage

with one and two doses at time t, respectively. Thus, Vt is given as in (3.2).
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St = St−1 +Bt(1− Vt)− It−1,

S0 = M ×N1,

M ∼ U(0.01, 0.1),

(3.1)

Vt = 0.85V1,t(1− V2,t)− 0.99V1,tV2,t, (3.2)

For the initial condition S0, we draw from a uniform random variable, M , between

1% and 10% of the total population, N1, at t = 1 in which the latter being a proxy

for the population at t = 0. The expected number of infected persons in Eilertson

et al. (2019) is assumed to be an increasing function of the fraction of the population

that is susceptible St
Nt

; therefore, the number of infecteds, It, each year is modeled

as a binomial draw with parameters St and dynamic probability πt as described in

(3.4). In this sense, the form of πt reflects the indirect protection of herd immunity

as a fraction of the population. An illustration of the attack rate πt as function of the

parameters β0 and β1 and the fraction St/Nt (values between 0 and 1) is provided in

Figure 3.2a. This illustration ignores the noise term et. This figure allows us to see

how much πt changes as we change the parameters β0 and β1. The et are a sequence

of independent normal random variables, through time, with zero mean and fixed

variance σ2
e . Thus,

It =
St∑
j=1

1πt(j, t), (3.3)

where

1πt(j, t) =


1 if Uj,t < πt

0 otherwise,
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πt = logit−1

(
β0 + β1

St
Nt

+ et

)
,

et ∼ N(0, σ2
e),

(3.4)

The number of reported cases, Ct, comes from the surveillance data, which we as-

sume as a subset of the actual number of infected It because of the effect of under

reporting. Thus, Ct follows a conditionally binomial distribution with parameters It

and probability ρr, which is distinct for each country.

Ct =
It∑
i=1

1ρr(i, t), (3.5)

1ρr(i, t) =


1 if Ri,t < ρr

0 otherwise.

The random variable, M , and the sequences of random variables Uj,t, et, and Ri,t are

independent from each other and through t, i, and j. In Table 3.1, we summarize

all the terms in the model. In the coming sections, we will evaluate the estimators

associated with this model. The evaluation will be considered in two simulation cases:

first by estimating the three parameters β0, β1, and θr fixing σ2
e ; and the second by

including the fourth parameter σ2
e . Subsequently, we will use some countries’ data

sets to evaluate estimations in a real context.
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Table 3.1: Description of Model Terms

Term Description Type

St Number of Susceptible at time t Unobserved

It Number of Infected at time t

Bt Births at time t Given

Vt Fraction of immunized people through vaccination

Nt Population size at time t

Ct Observed number of cases reported in year t

πt Probability of attack rate in year t Parameter

β0 Parameter in attack rate function

β1 Parameter in attack rate function

σ2
e Attack rate variation (of et)

ρr Probability of reporting a case

et Effect of unspecified influences on attack rate Random variable

M , Uj,t, and Ri,t Independent uniform random variables.

Figure 3.1: Parameters behavior. (a) shows the curves obtained from equation (3.4)
for πt where xt represents the fraction of susceptible in a population and by selecting
some values for β0 and β1. (b) Logistic transformation for parameter ρr.

(a) (b)
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3.3 Simulation Study

In this section, we develop Bayesian statistical methodology for the model pre-

sented in the previous section. The Bayesian estimation procedure uses particle

MCMC (pMCMC) to generate approximate samples from the posterior. Particle

MCMC is a computational tool that enables Bayesian analysis, and IF2 that calcu-

lates maximum likelihood estimators allows us to check the fidelity of this analysis,

especially in the case of real data, and also it allows us to empirically select priors.

In this section, we evaluate the estimation for this model via simulation.

We simulate 36 observations (mimicking the sample size of the real measles data

which we will analyze in section 3.4) for Xt =
(
St, It

)
which is the system equation

and therefore unobserved, and Yt = Ct, which is the observed number of cases. Also,

we use the covariates Bt, Vt, and Nt (see Table 3.1 and Figures 3.2) from the country

of India. For this simulation study we set the values of the vector of parameters as

Θ = (β0, β1, θr, σ
2
e) = (1.3, 30,−5, 0.52), these values correspond to results obtained

in Eilertson et al. (2019). To avoid difficulties in the estimation of the parameter

representing the probability of reporting a case, ρr, since it has a restricted range

(0, 1), we used a logistic transformation ρr = eθr/(1 + eθr). A realization with these

settings is displayed in Figure 3.2b.

To perform the estimation we consider two cases: first, we estimate the three

parameters β0, β1, and θr by fixing the parameter σ2
e as it is suggested in Eilertson

et al. (2019), and second we estimate the full parameter vector Θ. Now we consider

the first case.
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Figure 3.2: Covariates: Populations size (Nt), Number of births (Bt), vaccine rate
(V1t), and number of Cases (Ct) . These data are from country of India
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3.3.1 Three Parameters Estimation

A key part of the model is the attack rate in year t, πt, which includes the parame-

ters β0, β1, and σ2
e . To understand the relationship between these parameters and the

attack rate, we create curves of πt vs. xt which represent the fraction of susceptibles

in the population whose values are between 0 and 1, and with a collection of selected

values for β0 and β1 without taking into account the effect of et, see Figure 3.2a. Also,

to understand the behavior of the parameter ρr under the logistic transformation, we

display a curve in Figure 3.2b. These plots allow us to define values for the three
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Figure 3.3: Simulated susceptible population size and number of cases using covariates
Nt, Bt, and Vt from the country of India.
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parameters to be considered in the current simulation study. Particularly, values for

θr around -5 provides values for ρr around 0.1, and the colored lines in Figure 3.2a

provides us some guesses for β0, β1.

The iteration filtering (IF2) algorithm, described in section 2.2.3, yields maximum

likelihood estimators of the parameters of a partially-observed Markov process. The

IF2 performs a specified number of particle-filter iterations. At each iteration, the

particle filter is performed on an augmented version of the hidden states which include

the parameter vector Θt; the algorithm is presented in Ionides et al. (2015). In the

system equation these parameter values are undergoing a Gaussian random walk with

a normal transition density with zero mean and variance following a perturbation scale

as we described in the Chapter 2, Section 2.2.3.

In practice, to better explore the parameter space, Ionides et al. (2015) recom-

mends using several filtering iterations. The implementation of the IF2 algorithm is

carried out by using the R package called pomp with the following specifications: we

use 20 filtering iterations, 20000 particles, and 450 iterations. Each filtering starts at
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the true parameter values and a cooling parameter of 0.7, which defines the perturba-

tion scale and, in steps of the context of the R package pomp, this cooling parameter

means that every 70 iterations, the standard deviation of the random walk corre-

sponding to each parameter decreases by half of the current value. The results of the

estimation from this method are shown in Figure 3.4. These figures include estimates

of the log-likelihood for each filtering iteration (colored lines), the mean of each filter

iteration for the three parameters, and the transformation to the original parameter

ρr.

The pMCMC implemented here, described in section 2.2.2, is the one that uses

particle Metropolis-Hastings from Andrieu et al. (2010). Particle MCMC combines

a particle filter and Metropolis Hasting, a more complete discussion of Metropolis

Hasting is carried out in Robert and Casella (2009). First, the particle filter approxi-

mates the hidden states (finds the filtering distribution) and obtains estimates of the

likelihood. Second, Metropolis-Hastings (MH) generates a Markov chain based on the

likelihood estimators provided by the particle filter whose draws are approximately

the target distribution, see Dahlin and Schön (2019).

To carry out a Bayesian analysis, we attach prior distributions to our parameters

β0, β1, and θr, the selected priors are distributed independently normal. We choose

four sets of hyper-parameters to check if the posterior densities depend substantially

on the prior choice. The hyper-parameters selected are: prior 1 centered on the true

parameter, prior 2 centered on the true parameter value with double the standard

deviation compared to prior 1, prior 3 modified the mean of the β1 displacing to the

left of the true value, and prior 4, all the priors move the mean to the right of the true

parameter values, respectively, see Table 3.2. We focus on only these four choices for

a running time, but for future work, more choices will be explored.

The choice of the proposals is influential on the performance of the MH algo-
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Figure 3.4: Results from IF2 with initial values: β0 =1.3, β1 =30, and θr =-5
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rithm. In practice, proposals with scaling calibration are a set of proposals discussed

in Section 6.4 of Robert and Casella (2009). Running the MH with random walk pro-

posals with different scale parameters is good practice to improve the mixing rate of

the chains; see example 6.5 in Robert and Casella (2009). Following this recommen-

dation, here we select proposal distribution, q(Θ∗(i)|Θ(i−1)), of a multivariate normal

random walk with diagonal covariance matrix Σ = diag(ε2j), where ε2j denotes a vector

with three variances and j = 1, .., 5, thus we consider five proposals as we summarize
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in Table 3.2.

Now by combining the four selected priors and the five selected proposals, we

display in Figure 3.5 kernel density estimates from the posterior. Each row, in Figure

3.5, corresponds to a different set of hyper-parameters, and each column represents

the parameter which is being estimated. The entries in every row and every column

represents the posteriors estimates (colored lines, which are related to the selected

proposals, see Table 3.2). Gray lines denote prior densities, and the red line represents

the true parameter value. From these results, we can see that the posterior densities

do not change substantially across choices of priors, which allows us to conclude that

the Bayesian estimation is robust with respect to these priors. In these results, we also

include the posterior densities for the original parameter ρr and the corresponding

prior as follows.

Prior transformation for ρr and θr. θr ∼ N(µθr , σ
2
θr

).

ρr =
eθr

1 + eθr
,

θr = log

(
ρr

1− ρr

)
.

fρr(ρr) = fθr

(
log

(
ρr

1− ρr

))∣∣∣∣ ddρr log
(

ρr
1− ρr

)∣∣∣∣
fρr(ρr) = fθr

(
log

(
ρr

1− ρr

))(
1

ρr(1− ρr)

)
,

(3.6)

where fθr(·) is N(µθr , σ
2
θr

), and eθr

1+eθr
is monotonically increasing.

The estimation of the posterior densities is based on the simulation of independent

Markov chains with 50000 particles and 105 iterations. Based on the trace (the states

of the Markov chain) and the estimated ACF of the Markov chain, we burn the 30

thousand initial values and choose a thinning parameter equal to 20, Figures 3.6 -

3.9. From the posterior marginal densities (colored curves), we have that the posterior

density covers the true parameter (red line) in most cases. For a few cases, it is not
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Table 3.2: Specifications of the Prior and Proposal Distributions

β0 β1 θr

Prior 1 Normal µ 1.3 30 -5

(grey line) σ2 12 102 0.052

Prior 2 Normal µ 1.3 30 -5

(grey line) σ2 22 202 0.12

Prior 3 Normal µ 1.3 0 -5

(grey line) σ2 22 202 0.12

Prior 4 Normal µ 3 46 -4.9

(grey line) σ2 32 302 0.152

Standard deviation (εj)

proposal distribution

β0 β1 θr

Posterior

j = 1 0.05 0.5 0.005

j = 2 0.1 1 0.01

j = 3 0.5 5 0.05

j = 4 1 10 0.1

j = 5 1.5 15 0.15

covered; however, it is visibly quite close especially given the small sample size (36

sample time points). In addition, Figures 3.10 show the histograms, the scatter plots

and the contour lines for the posterior densities estimated under the proposal 3, see

Table 3.2, according to the criterion of nearly uncorrelated defined below. From these

plots, we can identify a strong correlation between the posterior estimate densities

for the parameters β0 and β1 for each of the simulated chains.

Now we evaluate the predictive properties of the model and methods. Given the

system equation and the observation process in (2.4), the one-step ahead prediction

density is given by

pθ(Yt+1|Y1:t) =

∫ ∫
pθ(Yt+1|xt+1)pθ(xt+1|xt)pθ(xt|Y1:t)dxt+1dxt. (3.7)

To produce an estimate of this density, we proceed as follows

1. xt is approximate by pθ(xt|Y1:t), where j = 1, ..., J and J is the total number of

particles.

2. x
(j)
t+1|t is approximate by fθ(xt+1|xt), where f(·) as we specified in Chapter 2.

3. Y
(j)
t+1|t is approximate by gθ(Yt+1|xt+1), where g(·) as we specified in Chapter 2.
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Thus, at t+ 1 we obtain a cloud of potential values {Y (1)
t+1|t, Y

(2)
t+1|t, ..., Y

(J)
t+1|t}. Now,

we propose three methods to calculate one-step ahead predictions.

1. Hold θ constant from the IF2 estimates, whose results are called MLETRAD.

2. Hold θ constant by taking the MAP estimators, i.e., taking the mode of the

posterior estimates, whose results are called MAPTRAD.

3. We draw samples θi from the posterior estimates, whose results are called POST-

PRED.

Predictions from methods MLETRAD and MAPTRAD are performed as follows:

We calculate {Y (1)
t+1|t, Y

(2)
t+1|t, ..., Y

(J)
t+1|t}, then we take the average of these predictions

as a point prediction, this is

Ŷt+1 =
1

J

J∑
j=1

Y
(j)
t+1|t. (3.8)

With the method POSTPRED, we draw sequentially samples θi, i = 1, ...,M , from

the posterior estimates and with each sample we calculate {Y (i,1)
t+1|t, Y

(i,2)
t+1|t, ..., Y

(i,J)
t+1|t}

then averaging values across the samples leads to a Monte Carlo approximation to

the one-step ahead prediction density, for example see Prado and West (2010) and

Leung et al. (2019). Thus, we obtain a point prediction Ŷt+1.

Since we combined different priors and proposals, we obtained a posterior esti-

mate for each combination. To evaluate the predictive properties of the model and

methods, we choose one of these posterior estimates. We choose posterior estimates,

whose corresponding estimated ACF of the Markov chain exhibits nearly uncorre-

lated behavior (the posterior densities estimated under proposal 3). In Figures 3.11

we show the results of the one-step ahead predictions. For methods MLETRAD and
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MAPTRAD, we run the particle filters with 1000 particles and for method POST-

PRED we run the particle filters with 1000 particles per sample θi, with i = 1, ..., 50

(see Figures 3.11). The actual number of cases is represented with a red line. Also,

in Figures 3.11 we show the graphs for the four evaluated priors. From these results,

we conclude that the performance of the one-step ahead predictions under the dif-

ferent priors is similar. For all the cases, the true value is covered by the clouds of

particles. To ease the reading of these results, we only include the estimates of a

selected number of cases for some time points. In addition, Figures 3.12 include the

residuals and studentized residuals. From these plots, we can see a good behavior of

the residuals since they fluctuate around zero with a bigger spread of the residuals

with the method POSTPRED.

Finally, we forecast several steps ahead beyond the sample. We will use a similar

methodology for the forecast, but it will be conditioned on all data. For these calcu-

lations, we assume that the Birth rate is constant and equal to the last observation;

for the population size, we do a linear regression with the observations of the past

five years, and then we use that to predict the population growth. For the effective

vaccination rate, we consider three scenarios: optimistic (with an effective vaccination

rate (EVR) of 95%), moderate (75% EVR), and pessimistic (50% EVR). The results

of these forecasts are shown in Figures 3.13. Each row in this figure corresponds to

each evaluated prior. In conclusion, all the estimates include the true value except for

the first-time point in the pessimistic scenario with methods MLETRAD and MAP-

TRAD. These forecasts are also based on 1000 particles, as we explained above. Also,

Figures 3.14 and 3.15 include residuals and studentized residuals. In these figures,

we notice an increasing pattern for the residuals under the optimistic scenario and a

decreasing pattern for the residuals under the pessimistic scenario. Furthermore, an

increasing spread through time is common for all cases. These results, once again,

34



allow us to conclude about the robustness of the implemented Bayesian estimation

method.
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Figure 3.5: Posteriors estimations (colored lines) from pMCMC with initial values:
β0 =1.3, β1 =30, and θr =-5 (first column β0, second column β1, third column
θr, and fourth column ρr). Normal prior for the parameters β0, β1, θr. Each row
corresponds to a priors (gray lines) as we specified in Table 3.2. The colored lines for
the posteriors correspond to the selected proposals, see Table 3.2. The true parameter
values is represented with a red line.
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Figure 3.6: Markov chains and estimated ACF with prior 1. Top: The state of the
Markov chain. Each row correspond to the proposal specified in Table 3.2. Bottom:
The estimated ACF of the Markov chain. Each row correspond to the proposal
specified in Table 3.2.
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Figure 3.7: Markov chains and estimated ACF with prior 2. Top: The state of the
Markov chain. Each row correspond to the proposal specified in Table 3.2. Bottom:
The estimated ACF of the Markov chain. Each row correspond to the proposal
specified in Table 3.2.
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Figure 3.8: Markov chains and estimated ACF with prior 3. Top: The state of the
Markov chain. Each row correspond to the proposal specified in Table 3.2. Bottom:
The estimated ACF of the Markov chain. Each row correspond to the proposal
specified in Table 3.2.
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Figure 3.9: Markov chains and estimated ACF with prior 4. Top: The state of the
Markov chain. Each row correspond to the proposal specified in Table 3.2. Bottom:
The estimated ACF of the Markov chain. Each row correspond to the proposal
specified in Table 3.2.
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Figure 3.10: Parameters posterior estimation relationship with proposal (green) (Ta-

ble 3.2). (a) Under prior 1, the Pearson correlation between β̂0 and β̂1 is 0.81, between

β̂0 and θ̂r is 0.66, and between β̂1 and θ̂r is 0.85. (b) Under prior 2, the Pearson cor-

relation between β̂0 and β̂1 is 0.92, between β̂0 and θ̂r is 0.76, and between β̂1 and θ̂r
is 0.76. (c) Under prior 3, the Pearson correlation between β̂0 and β̂1 is 0.91, between

β̂0 and θ̂r is 0.58, and between β̂1 and θ̂r is 0.78. (d) Under prior 4, the Pearson

correlation between β̂0 and β̂1 is 0.96, between β̂0 and θ̂r is 0.86, and between β̂1 and
θ̂r is 0.92.
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Figure 3.11: Comparison of the predictions inside sample (a) prior 1, (b) prior 2,
(c) prior 3, and (d) prior 4. The posterior considered is the one under the case of
proposal (green) (Table 3.2).

(a) One-step ahead predictions (b) One-step ahead predictions

(c) One-step ahead predictions (d) One-step ahead predictions

Figure 3.12: Comparison of the residuals inside sample (a) prior 1, (b) prior 2, (c)
prior 3, and (d) prior 4 and studentized residuals inside sample (e) prior 1, (f) prior
2, (g) prior 3, and (h) prior 4. The posterior considered is the one under the case of
proposal (green) (Table 3.2).

(a) Prior 1 (b) Prior 2 (c) Prior 3 (d) Prior 4

(e) Prior 1 (f) Prior 2 (g) Prior 3 (h) Prior 4
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Figure 3.13: Comparison of the forecast using estimations from IF2 (MLETRAD),
MAPTRAD (taking the mean of the posterior distribution), and POSTPRED (tak-
ing random draws from the posterior, respectively). Each row in the Figure corre-
spond to each prior considered and posterior (green) (see Table 3.2). Three scenarios
of the effective vaccination rate (EVR) are evaluated optimistic (95%), moderate
(75%), and pessimistic (50%).

(a) Optimistic 95% (EVR) (b) Moderate 75% (EVR) (c) Pessimistic 50% (EVR)

(d) Optimistic 95% (EVR) (e) Moderate 75% (EVR) (f) Pessimistic 50% (EVR)

(g) Optimistic 95% (EVR) (h) Moderate 75% (EVR) (i) Pessimistic 50% (EVR)

(j) Optimistic 95% (EVR) (k) Moderate 75% (EVR) (l) Pessimistic 50% (EVR)
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Figure 3.14: Forecast residuals using methods MLETRAD, MAPTRAD, and
POSTPRED. Each row in the Figure correspond to each prior considered and
posterior (green) (see Table 3.2). Three scenarios of the effective vaccination rate
(EVR) are evaluated optimistic (95%), moderate (75%), and pessimistic (50%).

(a) Optimistic 95% (EVR) (b) Moderate 75% (EVR) (c) Pessimistic 50% (EVR)

(d) Optimistic 95% (EVR) (e) Moderate 75% (EVR) (f) Pessimistic 50% (EVR)

(g) Optimistic 95% (EVR) (h) Moderate 75% (EVR) (i) Pessimistic 50% (EVR)

(j) Optimistic 95% (EVR) (k) Moderate 75% (EVR) (l) Pessimistic 50% (EVR)
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Figure 3.15: Forecast studentized residuals using methods MLETRAD,
MAPTRAD, and POSTPRED. Each row in the Figure correspond to each prior
considered and posterior (green) (see Table 3.2). Three scenarios of the effective vac-
cination rate (EVR) are evaluated optimistic (95%), moderate (75%), and pessimistic
(50%).

(a) Optimistic 95% (EVR) (b) Moderate 75% (EVR) (c) Pessimistic 50% (EVR)

(d) Optimistic 95% (EVR) (e) Moderate 75% (EVR) (f) Pessimistic 50% (EVR)

(g) Optimistic 95% (EVR) (h) Moderate 75% (EVR) (i) Pessimistic 50% (EVR)

(j) Optimistic 95% (EVR) (k) Moderate 75% (EVR) (l) Pessimistic 50% (EVR)
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3.3.2 Simulation Study Including the Parameter σ2
e

Under this simulation study the parameter σ2
e is no longer fixed. Thus, our pa-

rameter vector to be estimated has four entries Θ = (β0, β1, θr, σ
2
e). Again, we use

particle MCMC (pMCMC) to facilitate Bayesian estimation and the IF2 as a support

method. For the IF2, we used the same conditions described in section 3.3.1. In

Figure 3.16, we plot the estimations from IF2.

For the Bayesian inference, this study considers similar conditions for the param-

eter β0, β1, and θr as those considered in the previous section, i.e., normal priors and

normal random walk proposals. For the parameter σ2
e , we consider inverse gamma

priors and we define the transformation parameter τ 2
e = log(σ2

e) to avoid restrictions

on the exploration of the parameters space. The prior calculation of the parameter

τ 2
e is given as follows.

Prior transformation for τ 2
e . σ2

e ∼ IG(a, b).

τ 2
e = log(σ2

e),

σ2
e = exp{τ 2

e }.

fτ2e (τ 2
e ) = fσ2

e

(
exp{τ 2

e }
)∣∣∣∣ ddτ 2

e

exp{τ 2
e }
∣∣∣∣,

fτ2e (τ 2
e ) = gσ2

e

(
exp{−τ 2

e }
)
exp{−τ 2

e },

(3.9)

where gσ2
e
(·) ∼ G(a, b). Thus, the proposal for τ 2

e is also a normal random walk. The

specifications of the priors and the proposals considered in this study are described in

Table 3.3. According to these settings the results from pMCMC are shown in figures

3.17 - 3.21. By combining the three selected priors and the five selected proposals, we

show the kernel density estimates in Figure 3.17. Each row represents the results of

the estimation of the posterior densities (colored lines, the colored lines correspond

to the selected proposals, see Table 3.3) associated with each fixed prior (gray line).
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The red line represents the true parameter value. These results again do not show

substantial changes in the posterior densities with respect to the choice of the priors

for the parameters β0, β1, and θr, which allows us to conclude the robustness of

the Bayesian estimation. However, we can not conclude the same for the posterior

estimate of the parameter τ 2
e (σ2

e). In this case, the posterior is highly sensitive to

the prior choice. In Figures 3.21 we show the relationship between the estimated

posterior densities. In these plots, we observe a high correlation between β0 and β1.

Also, a low correlation is observed between τ 2
e and the other parameters.

Figures 3.22 and 3.24 show the results of the one-step ahead predictions and

forecast under the three scenerios (pessimistic, moderate and optimistic) described in

the previous section. Figures 3.22 exhibit an increasing spread of the predictions as

the mean of the prior for σ2
e increases. We can see the same behavior more clearly,

for the forecast. These results mimic the ones obtained by Eilertson et al. (2019), the

likelihood is insensitive to the σ2
e parameter, and therefore the posterior is sensitive

to its priors. Given these results, the parameter σ2
e is fixed in the next section, where

we analyzed the model in the context of real data. Also, in Figures 3.23, 3.25, and

3.26, we include the residuals and the studentized residuals.

Table 3.3: Specifications of the Prior and Proposal Distributions

β0 β1 θr σ2
e

Prior 1 Normal µ 1.3 30 -5 Beta (5, 1)

(grey line) σ2 22 302 0.12

Prior 2 Normal µ 1.3 30 -5 Beta (5, 4)

(grey line) σ2 22 302 0.12

Prior 3 Normal µ 3 46 -4.9 Beta (5, 9)

(grey line) σ2 32 302 1.52

Standard deviation (εj)

proposal distribution

β0 β1 θr τ2e

Posterior

j = 1 0.05 0.5 0.005 0.005

j = 2 0.1 1 0.01 0.01

j = 3 0.5 5 0.05 0.05

j = 4 1 10 0.1 0.1

j = 4 1.5 15 0.15 0.15

47



Figure 3.16: Results from IF2 with initial values: β0 =1.3, β1 =30, θr =-5, and

σ2
e =0.5
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Figure 3.17: Posteriors estimations (colored lines) from pMCMC with initial values:
β0 =1.3, β1 =30, θr =-5 and σ2

e =0.5 (first column β0, second column β1, third
column θr, fourth column ρr, fifth column, sixth column τ 2

e , and seventh column σ2
e).

Normal priors for the parameters β0, β1, θr, and inverse gamma prior for σ2
e . Each

row corresponds to a priors (gray lines) as we specified in Table 3.3. The colored
lines for the posteriors correspond to the selected proposals, see Table 3.3. The true
parameter values is represented with a red line.
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Figure 3.18: Markov chains and estimated ACF with prior 1. Top: The state of the
Markov chain. Each row correspond to the proposal specified in Table 3.3. Bottom:
The estimated ACF of the Markov chain. Each row correspond to the proposal
specified in Table 3.3.
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Figure 3.19: Markov chains and estimated ACF with prior 2. Top: The state of the
Markov chain. Each row correspond to the proposal specified in Table 3.3. Bottom:
The estimated ACF of the Markov chain. Each row correspond to the proposal
specified in Table 3.3.
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Figure 3.20: Markov chains and estimated ACF with prior 3. Top: The state of the
Markov chain. Each row correspond to the proposal specified in Table 3.3. Bottom:
The estimated ACF of the Markov chain. Each row correspond to the proposal
specified in Table 3.3.
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Figure 3.21: Parameters posterior estimation relationship with proposal (green) (Ta-

ble 3.3). (a) Under prior 1, the Pearson correlation between β̂0 and β̂1 is 0.83, between

β̂0 and θ̂r is 0.51, and between β̂1 and θ̂r is 0.79. (b) Under prior 2, the Pearson cor-

relation between β̂0 and β̂1 is 0.79, between β̂0 and θ̂r is 0.26, and between β̂1 and θ̂r
is 0.54. (c) Under prior 3, the Pearson correlation between β̂0 and β̂1 is 0.83, between

β̂0 and θ̂r is 0.46, and between β̂1 and θ̂r is 0.64.
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Figure 3.22: Comparison of the predictions inside sample (a) prior 1, (b) prior 2, and
(c) prior 3. The posterior considered is the one under the case of proposal (green)
(Table 3.3).

(a) One-step ahead predictions (b) One-step ahead predictions

(c) One-step ahead predictions

Figure 3.23: Comparison of the residuals inside sample (a) prior 1, (b) prior 2, (c)
prior 3, and studentized residuals inside sample (e) prior 1, (f) prior 2, (g) prior 3.
The posterior considered is the one under the case of proposal (green) (Table 3.3).

(a) Prior 1 (b) Prior 2 (c) Prior 3

(d) Prior 1 (e) Prior 2 (f) Prior 3
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Figure 3.24: Comparison of the forecast using estimations from IF2 MLETRAD,
MAPTRAD (taking the mode of the posterior distribution), and POSTPRED (tak-
ing random draws from the posterior, respectively). Each row in the Figure corre-
spond to each prior considered and posterior (green) (see Table 3.3). Three scenarios
of the effective vaccination rate (EVR) are evaluated optimistic (95%), moderate
(75%), and pessimistic (50%).

(a) Optimistic 95% (EVR) (b) Moderate 75% (EVR) (c) Pessimistic 50% (EVR)

(d) Optimistic 95% (EVR) (e) Moderate 75% (EVR) (f) Pessimistic 50% (EVR)

(g) Optimistic 95% (EVR) (h) Moderate 75% (EVR) (i) Pessimistic 50% (EVR)
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Figure 3.25: Forecast residuals using methods MLETRAD, MAPTRAD, and
POSTPRED. Each row in the Figure correspond to each prior considered and
posterior (green) (see Table 3.2). Three scenarios of the effective vaccination rate
(EVR) are evaluated optimistic (95%), moderate (75%), and pessimistic (50%).

(a) Optimistic 95% (EVR) (b) Moderate 75% (EVR) (c) Pessimistic 50% (EVR)

(d) Optimistic 95% (EVR) (e) Moderate 75% (EVR) (f) Pessimistic 50% (EVR)

(g) Optimistic 95% (EVR) (h) Moderate 75% (EVR) (i) Pessimistic 50% (EVR)
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Figure 3.26: Forecast studentized residuals using methods MLETRAD,
MAPTRAD, and POSTPRED. Each row in the Figure correspond to each prior
considered and posterior (green) (see Table 3.2). Three scenarios of the effective vac-
cination rate (EVR) are evaluated optimistic (95%), moderate (75%), and pessimistic
(50%).

(a) Optimistic 95% (EVR) (b) Moderate 75% (EVR) (c) Pessimistic 50% (EVR)

(d) Optimistic 95% (EVR) (e) Moderate 75% (EVR) (f) Pessimistic 50% (EVR)

(g) Optimistic 95% (EVR) (h) Moderate 75% (EVR) (i) Pessimistic 50% (EVR)
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3.4 Case Studies

In this section, we fit the model (3.1-3.5) to observed data. We focus on the

annual measles reports in India (IND), China (CHN), and United Arab Emirates

(ARE) between 1980 and 2014. The data also include the yearly population size,

the number of births, and the effective vaccination rate as covariates; Figures 3.28a,

3.33a, and 3.38a report these data. We perform a Bayesian analysis of this data with

the form of the priors as previously, and we will use IF2 to help us select appropriate

priors, so this is a kind of empirical Bayes. These two algorithms pMCMC and IF2

are described in sections 2.2.2 and 2.2.3, respectively.

We fit the model in (3.1-3.5) using the results of the estimation of the parameters

obtained in Eilertson et al. (2019) as starting values for the parameters to do a

preliminary analysis. Also, the simulation results in the previous sections help us

select priors and proposals. Furthermore, we use data from 12 countries (we only

report the results for the countries mentioned before). Thus we propose the following

steps:

1. We take some initial values, run IF2 for those, and do that for a couple of

different initial values, and see if they agree.

2. Given the data for any country, we do a search of the parameters β0, β1, and

θr to find appropriate initial values for S0 in (3.1) such that the prediction of

the number of cases Ĉ1 be reasonably close to the observation C1. To do that,

we set a grid of K uniform random values around the estimates from step 1,

[θ̂
(1)
0 −δ, θ̂

(1)
0 +δ] (the super script is used to show that the estimation comes from

step 1), for each of three parameters. Then, we calculate Ĉ1k, k = 1, 2, 3, ..., K,

and keep the one whose C1 − Ĉ1k is the minimum.
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3. Given the parameter values in step 2, we rerun IF2. From this result, we set

starting values for the parameter vector Θ and we set priors, see Table 3.4.

4. We run pMCMC by using the results in the previous step. The proposal is

selected by following the results from simulations in the earlier sections; these

are summarized in Table 3.4.

We split the results of this application by country. Figures 3.28b, 3.33b, and

3.38b show the estimates from IF2. The conditions for IF2 are 20000 particles, 450

iterations, and a cooling parameter of 0.7. The three cases show convergence. For

the Bayesian estimation, we simulate independent chains with 504 particles and 105

iterations. For the three cases, we burned the first 304 iterations and thin parameters

20, 30, and 10 for IND, CHN, and ARE, respectively. Figures in 3.28 include density

plots (prior, gray line, and posterior colored lines), ACF plots, and trace plots for

India. Similarly, Figures in 3.33 and 3.38 include the same results for China and

United Arab Emirates, respectively.

In Figures 3.29, 3.34, and 3.39, we can see the relationship of the estimated pa-

rameters for IND, CHN, and ARE, respectively. For the ARE country particularly,

we can identify a non-linear dependency between the estimations.

To evaluate the quality of these estimators, we chose one of the posterior estimates

to calculate one-step ahead predictions and forecasts. From the estimated ACF of

the Markov chain, we choose the posterior related to the proposal whose ACF is close

to uncorrelated. Thus, we choose the posterior (red), (black), and (blue), for IND,

CHN, and ARE, respectively (see Table 3.4). In Figures 3.30, we summarized one-step

ahead predictions and forecast for the three scenarios, optimistic (with an effective

vaccination rate (EVR) of 95%), moderate (75% EVR), and pessimistic (50% EVR).

For the covariates, we assume that the Birth rate is constant and equal to the last
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observation; for the population size, we do a linear regression with the observations of

the past five years, and then we use that to predict the population growth. Also, we

compare the prediction capacity with the estimations from IF2 and pMCMC. From

pMCMC outcomes, we perform MAP predictions, MAPTRAD, and POSTPRED, as

we described in section 3.3.1. We display the results for some time points about the

one-step ahead predictions for better visualization. In general, the three methods

provide predictions that cover the number of infected cases. In other words, the IF2

(MLETRAD) forecasts a fewer number of infecteds than the other two ways. This

behavior is common under the three scenarios.

Figures in 3.35 and 3.40 include prediction outcomes for the countries CHN and

ARE, respectively. In the case of CHN, we obtain more similar predictions under

three methods for both one-step ahead predictions and forecasts. Regarding ARE,

the (MLETRAD) forecasts less infecteds than the other two methods. However, there

is an increasing spread of the forecast under the three scenarios as the forecast horizon

increase.

Finally, Figures 3.31, 3.36, and 3.41 include both the residuals and standarized

residuals.
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Table 3.4: Specifications of the Prior and Proposal Distributions

Priors β0 β1 θr

IND Normal µ -4.89 35 -5.03

(grey line) σ2 32 202 0.52

CHN Normal µ -3 32 -3.3

(grey line) σ2 0.92 32 0.12

ARE Normal µ -7.06 75.18 -1.8

(grey line) σ2 0.12 12 0.12

Standard deviation (εj)

proposal distribution

Posterior β0 β1 θr

IND

j = 1 0.02 0.02 0.01

j = 2 0.75 5 0.015

j = 3 1.5 10 0.03

j = 4 2 15 0.06

j = 5 3 20 0.12

CHN

j = 1 0.15 0.5 0.012

j = 2 0.3 1 0.025

j = 3 0.6 2 0.05

j = 4 0.9 3 0.075

j = 5 1.5 5 0.125

ARE

j = 1 0.02 0.02 0.01

j = 2 0.04 0.08 0.02

j = 3 0.16 0.5 0.04

j = 4 0.3 2 0.08

j = 5 0.5 5 0.1
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Country of India (IND)

Figure 3.27: (a) Data cases from country of India refer to the number of births,
number of reported measles cases, population size, and the effective vaccination rate.
(b) Parameter estimation by using IF2 20 independent chains are evaluated, 420
iterations and a cooling parameter of 0.7.
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Figure 3.28: Top: Posteriors estimations (colored lines) from pMCMC with initial
values: β0 =-4.89, β1 =35, and θr =-5.03 (first column β0, second column β1, third
column θr, and fourth column ρr). Normal priors for the parameters β0, β1, θr (gray
line). The colored lines for the posteriors correspond to the selected proposals, see
Table 3.4. Middle: The estimated ACF of the Markov chain. Each row correspond
to the proposal specified in Table 3.4. Bottom: The state of the Markov chain. Each
row correspond to the proposal specified in Table 3.4. Thin parameter 20.
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Figure 3.29: Parameters posterior estimation relationship under proposal (red) (Table

3.4). The Pearson correlation between β̂0 and β̂1 is 0.90, between β̂0 and θ̂r is 0.79,

and between β̂1 and θ̂r is 0.50.
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Figure 3.30: Comparison of the one-step ahead predictions and forecast using es-
timations from IF2 (MLETRAD), MAPTRAD (taking the mean of the posterior
distribution), and POSTPRED (taking random draws from the posterior, respec-
tively). Three scenarios of the effective vaccination rate (EVR) are evaluated opti-
mistic (95%), moderate (75%), and pessimistic (50%).

(a) One-step ahead predictions (b) Optimistic 95% (EVR)

(c) Moderate 75% (EVR) (d) Pessimistic 50% (EVR)

Figure 3.31: Residuals and studentized residuals one-step ahead predictions using
the three methods MLETRAD, MAPTRAD, and POSTPRED. Three scenarios
of the effective vaccination rate (EVR) are evaluated optimistic (95%), moderate
(75%), and pessimistic (50%).

(a) Residuals (b) Studentized residuals
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China (CHN)

Figure 3.32: (a) Data cases from China refer to the number of births, number of
reported measles cases, population size, and the effective vaccination rate. (b) Pa-
rameter estimation by using IF2 20 independent chains are evaluated, 420 iterations
and a cooling parameter of 0.7
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Figure 3.33: Top: Posteriors estimations (colored lines) from pMCMC with initial
values: β0 =-4.89, β1 =35, and θr =-5.03 (first column β0, second column β1, third
column θr, and fourth column ρr). Normal prior for the parameters β0, β1, θr (gray
line). The colored lines for the posteriors correspond to the selected proposals, see
Table 3.4. Middle: The estimated ACF of the Markov chain. Each row correspond
to the proposal specified in Table 3.4. Bottom: The state of the Markov chain. Each
row correspond to the proposal specified in Table 3.4. Thin parameter 30.
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Figure 3.34: Parameters posterior estimation relationship under proposal (black) (Ta-

ble 3.4). The Pearson correlation between β̂0 and β̂1 is 0.80, between β̂0 and θ̂r is

0.68, and between β̂1 and θ̂r is 0.67.
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Figure 3.35: Comparison of the one-step ahead predictions and forecast using es-
timations from IF2 (MLETRAD), MAPTRAD (taking the mean of the posterior
distribution), and POSTPRED (taking random draws from the posterior, respec-
tively). Three scenarios of the effective vaccination rate (EVR) are evaluated opti-
mistic (95%), moderate (75%), and pessimistic (50%).

(a) One-step ahead predictions (b) Optimistic 95% (EVR)

(c) Moderate 75% (EVR) (d) Pessimistic 50% (EVR)

Figure 3.36: Residuals and studentized residuals one-step ahead predictions using
the three methods MLETRAD, MAPTRAD, and POSTPRED. Three scenarios
of the effective vaccination rate (EVR) are evaluated optimistic (95%), moderate
(75%), and pessimistic (50%).

(a) Residuals (b) Studentized residuals
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United Arab Emirates (ARE)

Figure 3.37: (a) Data cases from United Arab Emirates refer to the number of births,
number of reported measles cases, population size, and the effective vaccination rate.
(b) Parameter estimation by using IF2 20 independent chains are evaluated, 420
iterations and a cooling parameter of 0.7 (we omitted the two first iterations for a
better visualization).
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Figure 3.38: Top: Posteriors estimations (colored lines) from pMCMC with initial
values: β0 =-4.89, β1 =35, and θr =-5.03 (first column β0, second column β1, third
column θr, and fourth column ρr). Normal prior for the parameters β0, β1, θr (gray
line). The colored lines for the posteriors correspond to the selected proposals, see
Table 3.4. Middle: The estimated ACF of the Markov chain. Each row correspond
to the proposal specified in Table 3.4. Bottom: The state of the Markov chain. Each
row correspond to the proposal specified in Table 3.4. Thin parameter 30.
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Figure 3.39: Parameters posterior estimation relationship under proposal (black) (Ta-

ble 3.4). The Pearson correlation between β̂0 and β̂1 is 0.80, between β̂0 and θ̂r is

0.68, and between β̂1 and θ̂r is 0.67.
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Figure 3.40: Comparison of the one-step ahead predictions and forecast using es-
timations from IF2 (MLETRAD), MAPTRAD (taking the mean of the posterior
distribution), and POSTPRED (taking random draws from the posterior, respec-
tively). Three scenarios of the effective vaccination rate (EVR) are evaluated opti-
mistic (95%), moderate (75%), and pessimistic (50%).

(a) One-step ahead predictions (b) Optimistic 95% (EVR)

(c) Moderate 75% (EVR) (d) Pessimistic 50% (EVR)
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Figure 3.41: Residuals and studentized residuals one-step ahead predictions using
the three methods MLETRAD, MAPTRAD, and POSTPRED. Three scenarios
of the effective vaccination rate (EVR) are evaluated optimistic (95%), moderate
(75%), and pessimistic (50%).

72



3.5 Conclusion

A Bayesian estimation that uses particle MCMC (pMCMC) was implemented in

the context of the non-linear state space model proposed in Eilertson et al. (2019)

without considering the age classes. Also, we implemented iteration filtering (IF2) as

a supporting method. We assessed the proposed Bayesian estimation method using

both simulation examples and real data sets. Although both the Bayesian method

throughout pMCMC and IF2 exhibit similar results, the Bayesian approaches can

produce credible intervals for the parameter estimations. Also, we evaluated the pos-

terior estimates’ robustness by considering different hyper-parameter specifications for

the selected priors. Furthermore, choosing several proposals allowed us to improve

the mixing rate.

Addressing simulation examples with three and four parameters for the model

proposed in Eilertson et al. (2019) allowed us to evaluate the proposed Bayesian esti-

mation procedure. In the case of the fourth parameter σ2
e , we found that the estimates

of the posterior densities are sensitive to the choice of priors. Regarding this fact, our

results mimic the ones found by Eilertson et al. (2019). We also evaluated the model

by performing one-step ahead predictions and forward predictions. The calculation of

these predictions was based on three methods, one by using the estimations from IF2

(MLETRAD) and the other by using the results from pMCMC: a MAP estimations,

taking the mode from the estimates of the posterior density (MAPTRAD) and pos-

terior predictions (POSPRED). Moreover, we obtained one-step ahead predictions

from four different priors whose results allowed us to confirm the robustness of the

proposed Bayesian estimation. Besides considering the posterior estimates from the

four priors, the forward predictions also evaluated three scenarios for the effective

vaccination rate: optimistic, moderate, and pessimistic.
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For the application to observed data, we proposed a Bayesian approach to fit the

model proposed by Eilertson et al. (2019). We took advantage of the faster implemen-

tation of the IF2 algorithm to find reasonable initial conditions S0, initial parameter

values, and priors to perform the estimations using the pMCMC algorithm. Although

we fitted the model using 12 countries’ data sets, we reported results for three of them

India, China, and United Arab Emirates. The countries showed similarities in the

dynamic of the reported measles cases, a notorious decrease in the number of reported

cases from 1990. The convergence of the parameter probability of reporting a case,

θr, is common for the three countries according to the IF2 algorithm. However, the

convergence for the parameters β0 and β1 is not apparent for China and India. The

estimations from the two algorithms are similar for the three countries. However, the

one-step ahead predictions from IF2 for India have a slightly better performance than

the predictions from pMCMC. For the other two countries, the predictions with the

method, posterior predictions, exhibit better performance.

Some weaknesses of the used algorithms were identified in countries with few

reported cases. Notably, in the case of Colombia, the number of reported cases since

2005 is close to zero. These dynamics are typical for most South America countries.

Also, the dynamics of the reported cases with extreme observations like Ethiopia or

Congo, fitting the model is a difficult task. Specifically, in the case of Ethiopia, the

extreme observations happened mainly before 1988, and subsequent removing this

part of the sample, the estimation became problematic because of the scarcity of

data.
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Chapter 4

A BIRTH-DEATH MODEL WITH THRESHOLD MECHANISM

4.1 Abstract

A birth-death process is proposed to model the unobserved population size of a

disease vector. This model considers the transmission effect to a second species by

defining a stochastic process based on the vector population’s size. This third element

of the model measures a potential threshold event when the host species’ population

size surpasses a certain level yielding a higher transmission rate. A maximum likeli-

hood procedure is developed for this model which combines particle filtering with the

EM algorithm.

4.2 Introduction

A birth-death process is a special class of continuous-time Markov chain that is

often used to study how the number of individuals in a population change over time.

However, their applications are not restricted to this area Lanchier (2017). In a

birth-death (BD) process, the state of the system is the number of individuals. Two

reactions can occur: births, where the number of individuals increases by one, and

deaths, where the number of individuals decreases by one. Instead of these consid-

erations, when the rates depend on the population dynamic, this kind of modeling

becomes more realistic in various applications. This kind of dependence is called a

general BD process, see Crawford et al. (2014).

Statistical inference over general BD data observations depends on transition prob-

abilities. Some authors have emphasized the calculation of the transitions probabili-
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ties in terms of continued fractions expression for the Laplace transform of the tran-

sition probabilities, see for instance Crawford and Suchard (2012), Crawford et al.

(2014). Nevertheless, Crawford et al. (2014) are pioneers in inference over the set

of parameters in a general BD process using likelihood-based inference. Other ap-

proaches to the estimation process consider the case of likelihood-free alternatives such

as approximate Bayesian computation, see Drovandi and Pettitt (2011) or Owen et al.

(2014).

Since a general BD process tracks only one population, it limits some biological or

epidemiological applications. In many situations, the interaction between two or more

species becomes crucial to understanding the dynamics of these populations, such as

competition or infection events. Extensions of the BD process to bivariate processes

are recent topics in the literature, such as the competition process, which allows birth

and death events as well as individual movement events from one population to the

other, see Reuter (1961), and Ho et al. (2018). Further extension is the branching

processes to study bivariate populations in the context of birth-death-shift process Xu

et al. (2014). This extension allows multiple events to occur per observation interval.

A third extension which is a subclass of a competition process, is proposed by Ho et al.

(2018). They develop an efficient method to compute the transition probabilities in

this context.

This chapter proposes an extension of the general BD process to evaluate the

interaction between two populations. We feature a model that studies the effect

of a disease vector population size on a second affected population. We assume

that the vector population follows a birth-death process with a threshold mechanism

(BDTM) as it affects the second population as we present in section 4.4. We also

assume that the vector population is unobserved. Furthermore, the second population

follows a non-homogenous Poisson process when condition on the vector process with
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a transition rate given by the dynamic of the vector population. Our motivation for

this paper is to estimate the threshold of the vector population size that causes an

increasing transmission to the second population.

Since the estimation of transition probabilities for this kind of process is a difficult

task Ho et al. (2018), to the estimation process, we propose a method based on the

EM algorithm Dempster et al. (1977) and Sequential Monte Carlo (SMC) approach

Doucet et al. (2010). In section 4.4 we derive likelihood-based closed-form expressions

for the estimators. These closed form expressions depend on the realization paths of

the unobserved vector population, which is a continuous-time Markov process, and

the observed data of the population size from the affected group (number of infected),

which is a set of discrete-time observations. In this sense, using an SMC method, we

simulate exact continuous paths inside each time interval for the unobserved vector

population, corresponding to the discrete-time observations. Thus, based on these

simulated paths and the observed data, a set of weighted paths approximates the

unobserved vector population size.

4.3 Threshold Mechanism

Before presenting a full model, we will give some literature review related to the

model we will discuss in the next section. A Poisson process with change points can

be defined as either changing over states or over time. Changes points over the state

and over time are related to nonlinearity and non-stationarity, respectively, see Tong

(2015). These kinds of models, mainly in the econometrics literature, are also known

as models with structural breaks, see Aue and Horváth (2013). In real applications,

discrimination between these two models is a difficult task, mainly because we have

just one realization, which is why the detection of changing points is relevant Tong

(2015).
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From the perspective of change points over time Akman and Raftery (1986);

Raftery and Akman (1986) propose a test to identify change points in a Poisson

process by following an asymptotic and Bayesian approach, respectively. They assume

that the Poisson process has rate λ1 for the period of time 0 6 t 6 τ before the

change (jump), and the poisson process has rate λ2 after the jump in the time interval

τ 6 t 6 T . Also these authors propose an interval estimate for the rates λ1, λ2, and

the time τ where the change happens. Loader (1992) proposes a log-linear model with

change point to the rate function of a non-homogenous Poisson process as long as a

model selection procedure. Thus, the rate function λ(t) is fitted with an exponential

function λ(t) = exp{a+bt} if 0 6 t 6 τ , and λ(t) = exp{a+δ+bt} if τ 6 t 6 T where

a, b, δ, and τ are unknown parameters (τ denotes the time for the change point).

West and Ogden (1997), a maximum likelihood point estimate and Bayesian-based

interval estimator are obtained for a change point in a Poisson process. Given the

discontinuity in the changes of the rate of the Poisson process “jumps” to finding

the maximum likelihood estimators for the three parameters, the rate before the

jump (λ1), the rate after the jump (λ2), and the jump parameter τ a range over a

set of points on the interval [0, T ] is considered for τ . Thus, the likelihood, λ̂1(τ)

and λ̂2(τ) are computed for each valor of τ . For the interval estimation, something

similar is developed by defining a prior for the change-point τ . Boudjellaba et al.

(2001) focuses on exact distributions of test statistics to produce confidence intervals

instead of asymptotic approximations.

From the perspective of change points over the state, Wang et al. (2014) frames and

analyzes a self-excited threshold Poisson autoregression process. This model assumes

that the observations {Yt} follow a Poisson distribution conditioned on an intensity

process that is defined with two regimes. More specifically, the intensity process

{λt} follows a GARCH model defined by Bollerslev (1986) to fit the conditional
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heteroskedasticity by using the fact that the Poisson mean coincides with its variance.

Regarding the estimation of the threshold parameter, they consider searching over all

candidates of values on a given interval [0, r∗]. However, since the number of values

in this range could be large and if the bound is too broad, both cases have limitations

for the estimation process because the former depends on computational resources,

which could be limited. The last number of observations might not be enough to

guarantee consistent estimates. To solve these inconveniences, they reduce the search

interval by considering a range for a given empirical quantile from the observations

{Yt}.

Other methodologies to detect and analyze change points over state are by fol-

lowing the mixture distributions approach. For example, Smith (1989); Davison and

Smith (1990) propose statistical models to fit exceedances over high thresholds. The

simplest statistical models considered by these authors to fit exceedances over a given

threshold are based on the Poisson point process. More complicated models are de-

fined based on generalized Pareto distributions. This kind of representation is often

referred to as Poisson-GPD Scarrott and MacDonald (2012). Under the generalized

Pareto distributions approach Behrens et al. (2004) analyze extremal events consid-

ering explicitly the uncertainty about the threshold where it is directly estimated.

To estimate the threshold, they propose both a parametric form and a generalized

Pareto distribution to fit the observations below and beyond the threshold, respec-

tively. The estimation routine uses Bayesian methods. Subsequently, do Nascimento

et al. (2012) propose a semiparametric approach for extreme value density estima-

tion. For observations under a given threshold, a combination of a mixture of Gamma

distributions is used; while for the observations above the threshold, the generalized

Pareto distribution is adopted. This methodology allows for the estimation of all

model parameters, even the threshold parameter. In addition, future predictions are
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provided under this approach. Other papers that used the mixture distributions ap-

proach include Frigessi et al. (2002); Tancredi et al. (2006); Diebolt et al. (2005),

among others. Now, we turn to the definition of the model.

4.4 Model

Now we define the model that we will use. This model has two coupled equa-

tions: the first Xt measures a population size using a birth-death process, the second

corresponds to the observation model and includes a threshold mechanism.

Xt = X0 + Y1

(∫ t

0

(α1Xs + a)ds

)
− Y2

(∫ t

0

(α2Xs + b)I{Xs>0}ds

)
, (4.1)

g(xt) = θ1xt + θ2xtI{Xt>c},

Zt = Y3

(∫ t

0

g
(
Xs

)
ds

)
,

(4.2)

where I{Xt>c} = 1 if Xt > c and zero otherwise; and

Wn = Ztn − Ztn−1 . (4.3)

The model in (4.1) is a general birth-death process (GBD) in a continuous time

with immigration and emigration rates (Crawford et al. (2014)). We propose this

model to understand the dynamic of a vector population with a threshold mechanism.

Thus, Xt measures the population size (x) of the disease vector at times t > 0. In

this sense, from state Xt = x transitions to state x + 1 take place with exponential

rate λx = α1x + a where α1 is the birth rate and a the immigration rate. Likewise,

exponential transitions to state x − 1 take place with rate µx = α2x + b where

α2 is the death rate and b the emigration rate. In addition, the model in (4.2)

represents a threshold effect, infection transmissions from vector population to a
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second species. In 4.18, Ztn counts the number of infecteds, in the second species,

that become up to time tn; tn in the continuous time framework is the n observation

time. Furthermore, g(xt) = (θ1 + θ2I{Xt>c})xt is the infection rate where θ1 denotes

the number of infections per vector, θ2 denotes the additional infection rate per vector

when the population size of the vectors is over the threshold, and c is the threshold

parameter.

4.5 Inference for the Model

Since the vector population is often not fully observed, in the proposed model, we

assume that the process {Xt} is unobserved. Instead, we assume tracking the reports

of the number of infected. These reports are available in most cases in discrete-time,

monthly or annually for instance. Under these conditions, the estimation process is

nontrivial. To fit the proposed model, we need to predict the states of {Xt}, which

have a discrete state space, and to estimate the parameters of the model. For the

third element of the model, we will create approximation of the model to ensure that

the likelihood function is continuous and differentiable in c. Thus, instead of using a

strict threshold, we will optimize over this approximation, and that will be easier if we

use a smooth function. So, we replace the indicator in (4.2) with a logistic function

Φc(xt) = exp{((xt − c)/σ)} which also has a tuning parameter σ. As a result, when

the tuning parameter is small, this approximates the threshold model.

Crawford et al. (2014) develop a methodology to estimate the transition probabili-

ties for a given GBD using Laplace transforms ( Crawford and Suchard (2012)). Also,

these authors propose a modification of the EM algorithm Dempster et al. (1977) by

defining a surrogate function for the (M-step) following the minorize-maximization

(MM) (Lange (2012)) to estimate the birth and death parameters under several con-

ditions. The notation used by Crawford et al. (2014) to establish the log-likelihood
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function includes variables Uk, Dk, and Tk that accumulate the number of births,

deaths and the time spend in each state k. Thus, Uk, Dk represent the number of up

steps and down steps for the GBD {Xt} up to time t. Thus, the log-likelihood for

a continuous observed process has a simple form where the sum is over all possible

states k:

l(θ) =
∞∑
k=0

[
Uk log(λk(θ)) +Dk log(µk(θ))− (λk(θ) + µk(θ))Tk

]
(4.4)

where λk and µk are the birth and death rates, respectively. However, when the

process {Xt} is observed in a discrete time, the estimation of the transition rates is

difficult because the state path between observations is unobserved. Thus, the quan-

tities Uk, Dk, and Tk are unknown for every state k. Since the maximization of the

log-likelihood is not possible due to the missing observations between the discrete

observations, the MM algorithm is implemented to impute the missing information

between time points. Thus, the MM algorithm allows to do inference over the pa-

rameters.

In the context of our proposed model, we cannot apply these methods directly

because we do not observe the GBD {Xt}.

4.5.1 Log-likelihood for the Proposed Model

To specify the likelihood function, we follow the expression in (4.4), but we define

a new notation. The likelihood function in (4.5) can be read as follows: the last

term comes from the remainder of time in the Markov chain after the last event,

the second to the last term comes from Poisson observations conditioned on Xs for

s ∈ [tn−1, tn] and tn in the continuous time framework is the n observation time. The

first and second terms are counting the transitions between states of the continuous

Markov chain, so those count the number of up steps and down steps along to the
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corresponding rates

L =
N∏
n=1

exp

{∫ tn

tn−1

log(α1Xs + a)dU1s

}
exp

{∫ tn

tn−1

log(α2Xs + b)dU2s

}
exp

{
(Ztn − Ztn−1) log

(∫ tn

tn−1

g
(
Xs

)
ds

)
− log(Ztn − Ztn−1)!

}
× exp

{
−
∫ tn

tn−1

[
a+ b+ (α1 + α2)Xs

]
ds

}
× exp

{
−
∫ tn

tn−1

[
θ1 + θ2Φc(Xs)

]
Xsds

}
,

(4.5)

where

U1(t) = Y1

(∫ t

0

(α1Xs + a)ds

)
, and

U2(t) = Y2

(∫ t

0

(α2Xs + b)I{Xs>0}ds

)
.

Given a set of observations {Zt1 , Zt2 , ...., Ztn}, the log-likelihood function for n

time intervals is

l = log(L) =
N∑
n=1

(∫ tn

tn−1

log(α1Xs + a)dU1s +

∫ tn

tn−1

log(α2Xs + b)dU2s

+ (Ztn − Ztn−1) log

(∫ tn

tn−1

g
(
Xs

)
ds

)
− log(Ztn − Ztn−1)!

−
∫ tn

tn−1

[
a+ b+ (α1 + α2)Xs

]
ds

−
∫ tn

tn−1

[
θ1 + θ2Φc(Xs)

]
Xsds

)
,

(4.6)

We switched notation because it allows us to write what happens in each in-

terval (given by the discrete observations) as an integral, which helps us when we
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think about the particle filtering and when we think about changing the number

of states. To maximize the log-likelihood function we apply the minorize-maximize

(MM) algorithm, Lange (2012). To do this we minorize the log-likelihood function

l(Θ) in (4.6) by finding a surrogate function (M) such that l(Θ) ≥ M(Θ|Θ(m)) and

l(Θ(m)) = M(Θ(m)|Θ(m)), where Θ is the vector of parameters. The main difficulty to

maximize (4.6) is the impossibility to separate the terms inside the log(·) function.

Therefore the minorization step is applied for these log(·) terms. First, we use the

fact that the log(·) terms are log-concave. Thus

log (α1Xs + a) = log

(
ρ
α1Xs

ρ
+ (1− ρ)

a

(1− ρ)

)
, with ρ ∈ [0, 1]

> ρ log

(
α1Xs

ρ

)
+ (1− ρ) log

(
a

1− ρ

)
, by log -concave property

> ρ log

(
α1Xs

ρ

)
+ (1− ρ) log

(
a

1− ρ

)
+ ρ log

(
ρ2
)

+

(1− ρ) log
(
(1− ρ)2

)
,

(since 0 6 ρ 6 1, log
(
ρ2
)
< 0, log

(
(1− ρ)2

)
< 0)

= ρ log (ρα1Xs) + (1− ρ) log((1− ρ)a)

= ρ log (ρα1) + ρ log (Xs) + (1− ρ) log((1− ρ)a)

Now, we choose

ρ = ρ
(m)
1 =

α
(m)
1 Xs

α
(m)
1 Xs + a(m)

(4.7)

for a given α
(m)
1 and a(m). Similarly, we have for the term
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log (α2Xs + b) > ρ2 log (ρ2α2) + (1− ρ2) log ((1− ρ2) b)

with

ρ2 = ρ
(m)
2 =

α
(m)
2 Xs

α
(m)
2 Xs + b

(4.8)

for a given α
(m)
2 and b(m). For the term

log

(∫ tn

tn−1

g (Xs) ds

)
= log

(
(tn − tn−1)

∫ tn

tn−1

g (Xs)
1

tn − tn−1

ds

)
> log (tn − tn−1) +

∫ tn

tn−1

log

(
g (Xs)

1

tn − tn−1

)
ds,

(Jensen’s inequality),

= log (tn − tn−1)− (tn − tn−1) log (tn − tn−1) +∫ tn

tn−1

log (g (Xs)) ds.

Since g (Xs) = (θ1 + θ2Φc (Xs))Xs, by minorization step we have

log (g (Xs)) = log [(θ1 + θ2Φc (Xs))Xs] = log (θ1 + θ2Φc (Xs)) + log (Xs)

≥ ρ3 log (ρ3θ1) + (1− ρ3) log ((1− ρ3) θ2) + (1− ρ3) log (Φc (Xs)) +

log (Xs)

with

ρ3 = ρ
(m)
3 =

θ
(m)
1

θ
(m)
1 + θ

(m)
2 Φc(m) (Xs)

. (4.9)

By combining everything we have
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l(Θ) ≥M(Θ|Θ(m))

=
N∑
n=1

(∫ tn

tn−1

[
ρ

(m)
1 log

(
ρ

(m)
1 α1

)
+
(

1− ρ(m)
1

)
log
((

1− ρ(m)
1

)
a
)]
dU1(s)+∫ tn

tn−1

[
ρ

(m)
2 log

(
ρ

(m)
2 α2

)
+
(

1− ρ(m)
2

)
log
((

1− ρ(m)
2

)
b
)]
dU2(s)+

(zn − zn−1)

[
τ +

∫ tn

tn−1

{
ρ

(m)
3 log

(
ρ

(m)
3 θ1

)
+(

1− ρ(m)
3

)
log
((

1− ρ(m)
3

)
θ2

)
+(

1− ρ(m)
3

)
log (Φ (Xs))

}
ds
]
− log (zn − zn−1)!+∫ tn

tn−1

ρ
(m)
1 log (Xs) dU1(s) +

∫ tn

tn−1

ρ
(m)
2 log (Xs) dU2(s)+

(zn − zn−1)

∫ tn

tn−1

log (Xs) ds

−
∫ tn

tn−1

[
a+ b+ (α1 + α2)Xs

]
ds

−
∫ tn

tn−1

[
θ1 + θ2Φc(Xs)

]
Xsds

)
,

where τ = log (tn − tn−1) (1− (tn − tn−1)). Now letting

Q
(
Θ|Θ(m)

)
= EΘ(m)

(
M
(
Θ | Θ(m)

)
| Z1, · · · , ZN

)
(4.10)

We approximate the calculation of this expectation by particle filtering. For each

pair of adjacent time points, we simulate J interval time trajectories for {Xt}, that

is, X
(j)
(tn−1,tn] with n = 1, ..., T and j = 1, ..., J . Thus, the approximation of the

expected value in (4.10) is given by

Q
(
Θ|Θ(m)

)
≈

N∑
n=1

M
(
Θ | Θ(m)

)
ω(j)
n , (4.11)

where the weights ω
(j)
n have a Poisson form to evaluate at Wn = Zn−Zn−1 with mean
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∫ tn
tn−1

g(X
(j)
s )ds. To simplify the notation we refers to the weights as ω(j) although

they are calculated for each time interval. Thus,

Q(Θ|Θ(m))

=
N∑
n=1

J∑
j=1

(∫ tn

tn−1

[
ρ

(m,j)
1 log

(
ρ

(m,j)
1 α1

)
+
(

1− ρ(m,j)
1

)
log
((

1− ρ(m,j)
1

)
a
)]
dU

(j)
1 (s)+

∫ tn

tn−1

[
ρ

(m,j)
2 log

(
ρ

(m,j)
2 α2

)
+
(

1− ρ(m,j)
2

)
log
((

1− ρ(m,j)
2

)
b
)]
dU

(j)
2 (s)+

(Zn − Zn−1)

[
τ +

∫ tn

tn−1

{
ρ

(m,j)
3 log

(
ρ

(m,j)
3 θ1

)
+(

1− ρ(m,j)
3

)
log
((

1− ρ(m,j)
3

)
θ2

)
+(

1− ρ(m,j)
3

)
log
(
Φ
(
X(j)
s

))}
ds
]
− log (Zn − Zn−1)!+∫ tn

tn−1

ρ
(m,j)
1 log (Xs) dU

(j)
1 (s) +

∫ tn

tn−1

ρ
(m,j)
2 log

(
X(j)
s

)
dU

(j)
2 (s)+

(Zn − Zn−1)

∫ tn

tn−1

log
(
X(j)
s

)
ds

−
∫ tn

tn−1

[
a+ b+ (α1 + α2)X(j)

s

]
ds

−
∫ tn

tn−1

[
θ1 + θ2Φc(X

(j)
s )

]
X(j)
s ds

)
ω(j),

(4.12)

where ρ
(m,j)
1 , ρ

(m,j)
2 , and ρ

(m,j)
3 are given in (4.7), (4.8), and (4.9) evaluated at X

(j)
s .

Now from (4.12) we maximize, thus we obtain the estimators for each parameter,

respectively as follow

∂Q

∂α1

=
N∑
n=1

J∑
j=1

ω(j)

(
1

α1

∫ tn

tn−1

ρ
(m,j)
1 dU

(j)
1s −

∫ tn

tn−1

X(j)
s ds

)
= 0,

then

α̂
(m+1)
1 =

∑N
n=1

∑J
j=1w

(j)
∫ tn
tn−1

ρ
(m,j)
1 dU

(j)
1 (s)∑N

n=1

∑J
j=1 ω

(j)
∫ tn
tn−1

X
(j)
s ds

,
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â(m+1) =

∑N
n=1

∑J
j=1w

(j)
∫ tn
tn−1

(1− ρ(m,j)
1 )dU

(j)
1 (s)

N
,

α̂
(m+1)
2 =

∑N
n=1

∑J
j=1w

(j)
∫ tn
tn−1

ρ
(m,j)
2 dU

(j)
2 (s)∑N

n=1

∑J
j=1 ω

(j)
∫ tn
tn−1

X
(j)
s ds

,

b̂(m+1) =

∑N
n=1

∑J
j=1w

(j)
∫ tn
tn−1

(1− ρ(m,j)
2 )dU

(j)
2 (s)

N
,

θ̂
(m+1)
1 =

∑N
n=1 (Zn − Zn−1)

∑J
j=1 w

(j)
∫ tn
tn−1

ρ
(m,j)
3 ds∑N

n=1

∑J
j=1w

(j)
∫ tn
tn−1

X
(j)
s ds

θ̂
(m+1)
2 =

∑N
n=1 (Zn − Zn−1)

∑J
j=1 w

(j)
∫ tn
tn−1

(
1− ρ(m,j)

3

)
ds∑N

n=1

∑J
j=1w

(j)
∫ tn
tn−1

Φc

(
X

(j)
s

)
X

(j)
s ds

For parameter c we first calculate the derivative of the function Φc(x) = e(x−c)/σ

1+e(x−c)/σ

respect to c, this is:

Φ′c(x) =
∂Φc(x)

∂c
=
−1
σ
e(x−c)/σ

1 + e(x−c)/σ +
1
σ
e(x−c)/σ

(1 + e(x−c)σ)2

=
1

σ
Φc(x)

(
e(x−c)/σ

1 + e(x−c)/σ − 1

)
=− Φc(x)

1/σ

1 + e(x−c)/σ .

Hence, for the parameter c we have

∂Q

∂c
=

N∑
n=1

(Zn − Zn−1)
J∑
j=1

ωj

∫ tn

tn−1

(
1− ρ(m,j)

3

) 1

Φc

(
X

(j)
s

)Φc

(
X(j)
s

)(
− 1

σ

)
Φ1c

(
X(j)
s

)
ds

− θ2

N∑
n=1

J∑
j=1

ωj

∫ tn

tn−1

Φc

(
X(j)
s

)
Φ1c

(
X(j)
s

)(
− 1

σ

)
X(j)
s ds,
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or

∂Q

∂c
=

1

σ
[−

N∑
n=1

(Zn − Zn−1)
J∑
j=1

w(j)

∫ tn

tn−1

(
1− ρ(m,j)

3

)
Φ1c

(
X(j)
s

)
ds

+θ2

N∑
n=1

J∑
j=1

w(j)

∫ tn

tn−1

Φc

(
X(j)
s

)
Φ1c

(
X(j)
s

)
Xs

(j)ds

]
,

(4.13)

where Φ1c(x) = 1
1+e(x−c)/σ

.

Since this latter expression cannot be solved analytically, we solve it numerically

as follows: at every iteration of the MM algorithm, we use the derivative with respect

to c, ∂Q
∂c

, information to move c in the right direction such that ∂Q
∂c

goes to zero.

Next, we evaluate both the model and the estimation method with some simulation

examples.

4.6 Results

In this section, we explore some simulation cases to evaluate the proposed method-

ology to estimate parameters in a BD process with discrete time observations, and

with our proposed model.

4.6.1 BD Process Example

To simulate from our model we choose birth and death rate parameters α1 = 0.5

and α2 = 0.55, and immigration and emigration rates a = 2.2, b = 0, respectively.

We simulate a sample with a terminal time N = 500 with initial value X0 = 100.

The third element of the model is defined as in (4.14) with parameter values θ1 = 1,

θ2 = 3, and c = 50. This simulation is developed by using the exact stochastic

simulation algorithm of Gillespie (1977) which is discretized for n = 1, 2, 3, ..., N , see

Wilkinson (2006) for details. Once we discretized, Wn is simulated Poisson with mean
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g(xn). These discretized values represent our observation data. A realization from

this simulation is displayed in Figure 4.1.

g(xn) =


θ1xn, if xn ≤ c

θ1xn + θ2xn, o.w.

(4.14)

Figure 4.1: Simulation example: terminal time 500, observations period 1, X0=100,
α1=0.5, a =2.2, α2=0.55, b = 0, θ1 = 1, θ2 = 3, c = 50, and σ =1. The red line in
figure Xn (left panel) represents the threshold parameter c.
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In terms of the implementation of the proposed estimation method since we could

not find a closed form for the threshold estimator, and since the implementation of

any optimization procedure is highly time-consuming when the number of particles

increases, we implemented the gradient ascent algorithm to get a faster estimation, see

Lange (1995, 2012). This is, for the m iteration, where we use the MM algorithm, cm

is updated as cm = cm−1 + εc
∂Q
∂c

, if ∂Q
∂c
< εQ we keep the current value for cm = cm−1;

εQ and εc can be defined arbitrarily, but for this example we fix them for the values

εQ = 0.1 and εc = 0.01, respectively.

We split this simulation study into several cases to test the proposed estimation
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method. a) Starting from the true parameter values, we evaluate the behavior of

the estimates first for the six parameters α1, α2, a, θ1, θ2, and c; then for the five

parameters by fixing the immigration rate a. We use 100 iterations with 5000 particles

for the first half and 10000 particles for the second half. The tuning parameter σ is

fixed at 1. To simplify the remaining simulation cases we consider the estimates for

the five parameters α1, α2, θ1, θ2, and c.

b) In this case, we evaluate the convergence properties of the proposed estimators.

We start some of the parameters far from the true values.

c) The effect of the tuning parameter σ is evaluated in this case. We compare the

estimates by considering these values for the tuning parameter σ = 0.5, 1, 2, 4.

d) We evaluate the quality of the estimators when the time interval increase or

the observations period increase. For this case, we compare the estimation behavior

with observations period 0.25, 0.5, 1, 2, and 4. Also, we consider the comparison

under the same number of observations and with equal terminal time.
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4.6.2 Results Case a)

In Figures 4.2 and 4.3 we show the results of the estimation of each parameter,

starting from the true parameter values birth rate α1=0.5, immigration rate a =2.2,

death rate α2=0.55, emigration rate b = 0, infections per vector θ1 = 1, additional

infection rate θ2 = 3, threshold parameter c = 50, initial value X0=100 and tuning

parameter σ =1. Also, the log-likelihood estimation (loglik), the Q function (Qfunct

see (4.12)), the effective sample size (EFFSS), and derivative ∂Q
∂c

(see (4.13) are display

in these plots. From these results, we conclude a fast converge for the parameters θ1,

θ2, and c. We observe an increasing behavior regarding the estimates for the birth,

immigration, and death rate parameters, although they stabilize at the end of the

iterations. However, the estimation of the log-likelihood function and the Q function

converge around the 20th iteration. Furthermore, the derivative ∂Q
∂c

fluctuates around

zero, which confirms the convergence of the threshold parameter c. The effective

sample size (EFFSS) is close to the 50%.

In Figures 4.4 we evaluate the quality of these estimates. From the left to the

right: one step ahead predictions, and residuals of Xn (top panel) and Wn (bottom

panel). The one step ahead predictions are calculate with the parameter estimates

of the last iteration. The terminal time is 500, with observations period 1. In Figure

4.5a black dots represent the true values for Xn and the red ones the mean of the

one step ahead predictions with 10000 particles. Figure 4.5b includes the residuals.

Similarly, we have in Figures 4.5c, and 4.5d for Wn. Blue dots in Figure 4.5c represents

a confidence interval 3 times the standard deviation respect to the mean of the one

step ahead predictions.

These outputs allow us to conclude that the proposed estimation method of par-

ticle filtering, in combination with the MM algorithm, produces good estimates for
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all the parameters. Now, we will explore some of the properties of the proposed

estimators using simulations.

Figure 4.2: Parameter estimates: terminal time 500, observations period 1, X0=100,
birth rate α1=0.5, immigration rate a =2.2, death rate α2=0.55, emigration rate
b = 0, infections per vector θ1 = 1, additional infection rate θ2 = 3, threshold
parameter c = 50, and tuning parameter σ =1. Log-likelihood estimation (loglik),
Q function (Qfunct see (4.12)), effective sample size (EFFSS), derivative ∂Q

∂c
(see

(4.13)).
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Figure 4.3: Parameter estimates: terminal time 500, observations period 1, X0=100,
birth rate α1=0.5, immigration rate a =2.2, death rate α2=0.55, emigration rate
b = 0, infections per vector θ1 = 1, additional infection rate θ2 = 3, threshold
parameter c = 50, and tuning parameter σ =1. Log-likelihood estimation (loglik),
Q function (Qfunct see (4.12)), effective sample size (EFFSS), derivative ∂Q

∂c
(see

(4.13)).
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Figure 4.4: From the left to the right: one step ahead predictions, and residuals of Xn

(top panel) and Wn (bottom panel) with the parameter estimates of the last iteration:
terminal time 500, observations period 1, X0=100, birth rate α1=0.5, immigration
rate a =2.2, death rate α2=0.55, emigration rate b = 0, infections per vector θ1 = 1,
additional infection rate θ2 = 3, threshold parameter c = 50, and tuning parameter
σ =1.
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4.6.3 Results Case b)

To evaluate the robustness of convergence for these estimators, we started the

estimation far away from the true values. First, we move the initial value of each

parameter, one by one. Then, we move these values in pairs α1 and α2, θ1 and θ2.

Finally, we move all the initial values away from the true values. Here, we only

report the cases in which we move all the initial values; see Figures in 4.5. These

results conclude that the convergence happens around the 20th iteration in most of

the estimates.

96



Figure 4.5: Parameter estimates starting far away from the true values: terminal
time 500, observations period 1, X0=100, birth rate α1=0.5, immigration rate a =2.2,
death rate α2=0.55, emigration rate b = 0, infections per vector θ1 = 1, additional
infection rate θ2 = 3, threshold parameter c = 50, and tuning parameter σ =1. Log-
likelihood estimation (loglik), Q function (Qfunct see (4.12)), effective sample size
(EFFSS), derivative ∂Q

∂c
(see (4.13)).
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4.6.4 Results Case c)

This case evaluates the effect of the tuning parameter in the estimation procedure.

Figure 4.6 shows the results of the estimation as well as the checking plots. In

these outcomes, the convergence for the estimates of the parameters θ1. θ2 and c is

convincing. For parameters θ1. θ2 as the tuning parameter increases, the estimates

move close to the true value. Regarding the threshold parameter c, the estimates

converge for all the cases, but the convergence demands more iterations as the tuning

parameter increase. We observe similar behavior for the estimates of the birth and

death rate parameters α1 and α2, i.e., as the value of the tuning parameter increase,

we need to increase the number of iterations. Still, the estimates go far away from

the actual values. The log-likelihood estimate and the Q function, the estimates with

high values of σ are not stable. Also, the effective sample size tends to decrease as

the tuning parameter increases. In conclusion, these results suggest small values for

σ close to 1 or 2 at least given the other parameters values.
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Figure 4.6: Parameter estimates using different values for the tuning parameter σ =
0.5, 1, 2, 4, 8.: terminal time 500, observations period 1, X0=100, birth rate α1=0.5,
immigration rate a =2.2, death rate α2=0.55, emigration rate b = 0, infections per
vector θ1 = 1, additional infection rate θ2 = 3, and threshold parameter c = 50.
Log-likelihood estimation (loglik), Q function (Qfunct see (4.12)), effective sample
size (EFFSS), derivative ∂Q

∂c
(see (4.13)).
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4.6.5 Results Case d)

This case evaluates the quality of the proposed estimators in terms of the obser-

vation period and the terminal time. Firstly, this case evaluates the effect of scale

separation between the vector dynamics and the case observations as the time be-

tween observations grows. Let ∆ = tnOP − t(n−1)OP the separation between the vector

dynamics, where OP is the observation period, and n ∈ N; therefore, we have observa-

tions every OP time unit. Thus, as OP increases, both the Xn (we keep the notation

Xn to notice the discretization of the true latent process) and Wn tend to be uncor-

related. To confirm this fact, we simulate Xt by following the proposed model with

these conditions: initial value X0=100, birth rate α1=0.5, immigration rate a =2.2,

death rate α2=0.55, emigration rate b = 0, infections per vector θ1 = 1, additional

infection rate θ2 = 3, and threshold parameter c = 50. The values we selected for

the observation period are {0.5, 1, 2, 4}. Then we create the ACF plots for Xn, which

is the discretization of the true latent process, and Wn the observations. Figures

4.7 include the ACF plots for Xn and Wn for the selected observation period (OP )

values, and by increasing the terminal time (TT ), in order to have the same number

of observations in each case, TT = 500. From these outcomes, we confirm that as

the OP increases, the autocorrelations of Xn and Wn decrease. Also, in Figures 4.8

we can see how the estimates move far away from the true values, and the effective

sample size also decreases as the OP increases.

Furthermore, we evaluate the estimates’ behavior when TT increases by keeping

the same OP selected values. In this example, the ACF plots have similar behavior

as the previous ones, see Figures 4.9. The results in Figures 4.10 show that as the

OP increases the estimates for the parameters θ1, θ2, and c move far from the true

values; however, the estimates for α1 and α2 do not exhibit a convergence behavior. In
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addition, we isolate the effect of the threshold parameter by fixing it in the estimation

process. By fixing c, the convergence of the parameters α1 and α2 improve for OP = 1,

see Figures 4.11. From these results, we conclude that as the number of observations

increases, more iterations are needed, at least for the two parameters α1 and α2;

however, it becomes highly computational and time-consuming.
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Figure 4.7: ACF plots (using different observations period (OP ) 0.5, 1, 2, 4 and
different terminal time (TT ) 250, 500, 1000, 2000, respectively; for a total of 500
observations for each scenery. Initial value X0=100, birth rate α1=0.5, immigration
rate a =2.2, death rate α2=0.55, emigration rate b = 0, infections per vector θ1 = 1,
additional infection rate θ2 = 3, and threshold parameter c = 50.
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(a) OP = 0.5, TT = 250
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(b) OP = 1, TT = 500
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(c) OP = 2, TT = 1000
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(d) OP = 4, TT = 2000
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Figure 4.8: Parameter estimates using different observations period (OP ) 0.5, 1, 2,
4 and different terminal time (TT ) 125, 250, 500, 1000, 2000, respectively; for a
total of 500 observations for each scenery. Initial value X0=100, birth rate α1=0.5,
immigration rate a =2.2, death rate α2=0.55, emigration rate b = 0, infections per
vector θ1 = 1, additional infection rate θ2 = 3, and threshold parameter c = 50.
Log-likelihood estimation (loglik), Q function (Qfunct see (4.12)), effective sample
size (EFFSS), derivative ∂Q

∂c
(see (4.13)).
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Figure 4.9: ACF plots using different observations period (OP ) 0.5, 1, 2, 4 and a
fix terminal time (TT ) 2000. Initial value X0=100, birth rate α1=0.5, immigration
rate a =2.2, death rate α2=0.55, emigration rate b = 0, infections per vector θ1 = 1,
additional infection rate θ2 = 3, and threshold parameter c = 50.
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(b) OP = 1
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(c) OP = 2
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(d) OP = 4
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Figure 4.10: Parameter estimates using different observations period (OP ) 0.5, 1, 2,
4 and fix terminal time 2000. Initial value X0=100, birth rate α1=0.5, immigration
rate a =2.2, death rate α2=0.55, emigration rate b = 0, infections per vector θ1 = 1,
additional infection rate θ2 = 3, and threshold parameter c = 50. Log-likelihood
estimation (loglik), Q function (Qfunct see (4.12)), effective sample size (EFFSS),
derivative ∂Q

∂c
(see (4.13)).
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Figure 4.11: Parameter estimates using different observations period (OP ) 1, 2, 4 and
fix terminal time (TT ) 2000. Initial value X0=100, birth rate α1=0.5, immigration
rate a =2.2, death rate α2=0.55, emigration rate b = 0, infections per vector θ1 = 1,
additional infection rate θ2 = 3, and threshold parameter is fixed at c = 50. Log-
likelihood estimation (loglik), Q function (Qfunct see (4.12)), effective sample size
(EFFSS), derivative ∂Q

∂c
(see (4.13)).
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4.7 Case Study

Cholera is a disease caused by infection of the small intestine by Vibrio cholera

characterized by massive diarrhea, vomiting, and dehydration: death occurs in severe

untreated cases. Mainly, it is endemic in easter India, and Bangladesh (Rabbani and

Greenough (1999)). The world experienced seven cholera pandemics in the last 194

years. Outbreaks can occur where water supply, sanitation, food safety, and hygiene

are inadequate. Also, contaminated food (especially seafood) is a more common cause

of cholera in developed countries, whereas contaminated water is more common in

developing countries.

Early observations have recognized that fish and shellfish are important vehicles of

the transmission of cholera. This kind of seafood has been the culprit in many cholera

outbreaks since the nineteenth century. When the surrounding water is contaminated

by sewage or other environmental sources, fish are likely contaminated by cholera. In

Dhaka, the capital city o Bangladesh two outbreaks of cholera in 1974 and 1975 were

identified Khan et al. (1983). A case-control study revealed that the attacks of cholera

were significantly associated with eating seafood in restaurants.

The study of the dynamics of cholera in Dhaka has been in the literature in the

last several decades. Koelle and Pascual (2004) proposes a non-linear time series

model which include extrinsic effects such as seasonality and long-term changes, for

example. In this section, we will extend the model proposed in section 4.4 in the

context of cholera deaths reported in Bengal’s Dacca district from 1891 to 1940, see

Ionides et al. (2015). This data set presents a seasonal behavior that is considered in

the specification of the birth-death model by means of a sinusoidal function. Here we

also adapted the estimators, particularly the estimator for the birth parameter α1.
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4.7.1 Model Extension

The extension of the model in (4.1) consists in a simple modification in the birth

term, this is

Xt = X0 + Y1

(∫ t

0

(α1sXs + a)ds

)
− Y2

(∫ t

0

(α2Xs + b)I{Xs>0}ds

)
, (4.15)

where

α1s = β1

(
cos

(
4π

12
s+ ω

)
+ 1

)
, (4.16)

g(xt) = θ1xt + θ2xtI{Xt>c},

Zt = Y3

(∫ t

0

g
(
Xs

)
ds

)
,

(4.17)

where I{Xt>c} = 1 if Xt > c and zero otherwise; and

Wn = Ztn − Ztn−1 . (4.18)

4.7.2 Inference

By following the estimation procedure exposed in section 4.5.1, the log-likelihood

function is given in terms of the parameters birth rate α1s through the parameter

β1 (we assume that ω is known), immigration rate a, death rate α2, emigration rate

b, and the parameters of the observation equation θ1, θ2, and the threshold c. The

estimators for all the parameters except for β1 and a are the same as we found in

section 4.5.1. Then we will calculate the estimators for these.

Replacing the birth rate term in the log-likelihood function in (4.6) and by ap-

plying the minorize-maximize (MM) algorithm, Lange (2012) over the first term we

have:

108



ρ = ρ
(m)
1∗ =

α
(m)
1s Xs

α
(m)
1 Xs + a(m)

. (4.19)

Replacing α1s by the expression in (4.16) we obtain

ρ = ρ
(m)
1∗ =

β
(m)
1

(
cos
(

4π
12
s+ ω

)
+ 1
)
Xs

β
(m)
1

(
cos
(

4π
12
s+ ω

)
+ 1
)
Xs + a(m)

. (4.20)

Thus, the estimators for β1 and a are given by

β̂
(m+1)
1 =

∑N
n=1

∑J
j=1w

(j)
∫ tn
tn−1

ρ
(m,j)
1∗ dU

(j)
1 (s)∑N

n=1

∑J
j=1 ω

(j)
∫ tn
tn−1

(
cos
(

4π
12
s+ ω

)
+ 1
)
X

(j)
s ds

,

and

â(m+1) =

∑N
n=1

∑J
j=1w

(j)
∫ tn
tn−1

(1− ρ(m,j)
1∗ )dU

(j)
1 (s)

N
,

respectively. Now we will fit the extended model to the cholera deaths reported in

Bengal’s Dacca district and the corresponding parameter estimates.

4.7.3 Results and Discussions

Ionides et al. (2015) analyze the observed Cholera mortality data from Bengal’s

Dacca district over the years 1891 to 1940, see Figure 4.12. The data, consisting

of monthly counts of cholera mortality, is available in the R package pomp (King

et al. (2016)). In Ionides et al. (2015), based on the model developed in King et al.

(2007), an extension of the Susceptible-Infected-Recovered (SIR) model is proposed.

This model, includes the number of births, related to the total population size in

the susceptible component of the SIR model. Also, this model includes seasonal

transmission rates and seasonal environmental reservoir parameters; each of these

seasonal effects includes 6 components or parameters.
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Figure 4.12: Cholera deaths reported in Bengal’s Dacca district over the years 1891
to 1940

(a)

To fit the proposed model to the Cholera mortality data, we do an exploration

of the model by defining a grid of values for the parameters β1, α2, θ1, θ2 and the

threshold parameter c. Based on this exploration we established the following initial

conditions: initial value X0 = W1/50, where W1 is the first observation Cholera

mortality, birth rate β1=0.5, immigration rate a =0, death rate α2=0.501, emigration

rate b = 0, infections per vector θ1 = 1, additional infection rate θ2 = 50, threshold

parameter c = 20, and ω = −2. Thus, we run 100 iterations with the MM algorithm

with 5000 particles in the first half of the iterations and 1000 particles in the second

half.

Figures 4.13 show the results of the parameter estimates. All the estimates exhibit

a convergence behavior around 0.7 for the parameters β1 and α2, approximately 11

for the parameter θ1, close to 0.5 for the parameter θ2 and around 80 for the threshold

parameter c. Both the Log-likelihood estimation (loglik) and Q function (Qfunct)
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stabilize around the 15 iterations, and similarly happen with the derivative ∂Q
∂c

whose

values fluctuate around zero after the ten first iterations. The effective sample size

(EFFSS) moves around 20%. From these results, although we observed a convergence

behavior the estimates for the parameter θ2 is effectively zero and the effective sample

size is essentially zero.

About the quality of these estimates we include in Figures 4.14 the one step ahead

prediction and the corresponding residuals. Although the predictions try to track the

data’s dynamic in general the predictors are poor.

4.7.4 Other Extensions

Also, using the diffusion representation of the birth-death process (Adke and

Moyal (1963); Pinto et al. (2009)), we could use the proposed model to analyze

the number of investors in the financial system. Further it would be necessary to

modify the distribution of the observation equation where the data would include the

asset price at the end of each trading day. A third potential extension is the Covid

cases where the observations are Covid deaths. In this context, when the number of

cases goes above a certain threshold, we could expect more deaths which implies a

change in the death rate. That is because the hospitals are full, and the capacity to

care for people exceeds their limits. This situation was observed in several stages of

the pandemic around the US and the world. SIS epidemic model would be a good

representation of this extension, see Crawford et al. (2014).
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Figure 4.13: Parameter estimates initial value X0=52.82, birth rate β1=0.5, immi-
gration rate a =0, death rate α2=0.501, emigration rate b = 0, infections per vector
θ1 = 1, additional infection rate θ2 = 50, threshold parameter c = 20. Log-likelihood
estimation (loglik), Q function (Qfunct see (4.12)), effective sample size (EFFSS),
derivative ∂Q

∂c
(see (4.13)).
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Figure 4.14: Top panel: Cholera mortality data (black dots) and one step ahead
predictions (red dots). Middle panel: Residuals of Cholera mortality data. Bottom
panel: Studentized Residuals of Cholera mortality data
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4.8 Conclusion

This study proposes a new model for disease incidence that evaluates the inter-

action between two species which incorporates a birth-death process to model the

unobserved population size of a vector species. In addition, the transmission rate

from the vector species to the second one includes a threshold parameter that mea-

sures the effect of the transmission when the host species’ population size surpasses a

certain level. Our proposed model was evaluated under some simulation cases. Also,

we offer a novel estimation method that combines particle filter with the MM algo-

rithm. The particle filter allows us to recreate paths in the continuous-time domain,

representing the host population dynamic. Thus, we calculated weights for each path

and each time interval given by the second species’ incidence reports collected in dis-

crete time. As a consequence, these calculations were used in the defined estimators.

The proposed estimators are an extension of the ones proposed by Crawford et al.

(2014).

The simulation studies reveal that our model and our estimation method behave

well. Four simulation cases were considered. The first case allowed us to conclude

that the proposed estimation method of particle filtering, in combination with the MM

algorithm, produces good estimates for all the parameters, even when we included

the immigration rate parameter. Also, the quality of our estimates was assessed

by contrasting the simulated observations with the one step ahead predictions. We

confirmed that the estimates behaved well according to the residuals’ behavior. The

second case, allowed us to conclude about the robustness of the convergence. In

general, the convergence happens around the 20th iteration in most of the estimates.

Since the proposed observation model includes an indicator function, we created

an approximation of the model using a logistic function to ensure that the likelihood
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function is continuous and differentiable in the threshold parameter c. The defined lo-

gistic function has a tuning parameter σ, therefore, the third simulation case assessed

the effect of this tuning parameter. At least for the parameter values considered

in this simulation case, small values for σ close to 1 or 2 are the best choice. The

fourth case evaluated the effect of the observation period (OP ), concluding that as

the OP increases, the estimates for all the parameters move far from the true value.

However, more iterations are necessary for the estimation process when the number

of observations increases.

We adapted the proposed model to the Cholera mortality data from Bengal’s

Dacca district. Although this model is simple compared with the model fitted in

Ionides et al. (2015), this tries to follow the movements of the data. The parameter

estimates show good behavior regarding their convergence; however, the estimates for

the parameter θ2 are close to zero. According to the low effective sample size, the one

step ahead predictors are poor.

Although the proposed model did not fit properly with the Cholera mortality

data, some conditions could be considered to improve the fitted model. For example,

by defining some restrictions over the parameter θ2. Furthermore, a simulation study

over this case could be considered, especially when searching the initial condition

for the hidden states and initial values for the parameters in terms of the scaling.

Also, including more seasonal components, or even covariates, could be an interesting

improvement of the model. Finally, we recognize that the dynamic of these data is

complex, and maybe this data set is not the best choice to assess the proposed model.

Other examples could be considered in future works like the extensions we mentioned

above, such as in the context of COVID cases or financial data.
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Chapter 5

CONCLUSION

This dissertation explores a previously proposed non-linear state-space model to

estimate measles transmission at the country level. A Bayesian approach that uses

particle MCMC (pMCMC) was developed to estimate the parameters of the non-

linear state-space model. Also, iteration filtering (IF2) was used as a support method

to verify the Bayesian estimation and inform prior distributions’ selection. Particle

Markov Chain Monte Carlo (pMCMC) and Iteration Filtering (IF) are complex com-

putational methods based on the Bayesian framework and likelihood maximization,

respectively. Thus, Chapter 2 provided a background of the pMCMC and the itera-

tion filtering (IF2). Chapter 3 implemented these computational tools that provided

a novel set of estimators for the non-linear state-space model.

In particular, Chapter 2 presented the Bayesian estimation that uses pMCMC

and iteration filtering by using two approaches: one by following the R package pomp

and a second by using our implementation. The two approaches were contrasted via

simulation, obtaining similar results and running time for the performance of the

particle filtering procedure; however, the time expended in the complete adaptation

for both pMCMC and IF2 was superior in our implementation.

Chapter 3 presented a non-linear state-space model to estimate measles trans-

mission at the country level as proposed in Eilertson et al. (2019) and provided a

presentation of a method to perform Bayesian analysis of the whole country level.

The exploration of the model and the implementation of the Bayesian methods were

carried out firstly by developing some simulation studies and secondly by considering

some case studies. Addressing simulation examples with three and then four pa-
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rameters for the model allowed the evaluation of the proposed Bayesian estimation

procedure. The case of the fourth parameter allowed us to find that the estimates

of the posterior density of the σ2 parameter is quite sensitive to the choice of priors.

Regarding this fact, these results mimic the ones found in previous studies. Also, this

chapter evaluated the model by performing one-step ahead and forward predictions.

The calculation of these predictions was based on three methods and the combination

of different selected priors and proposals, allowing a variety of predictions and mainly

confirming the robustness of the implemented Bayesian analysis. The case studies

exploited the benefit of the faster computational properties of the IF2 algorithm to

find reasonable initial conditions S0, initial parameter values, and priors to perform

the estimations using the pMCMC algorithm. The result from this application al-

lowed confirmation of the robustness of the method and also allowed identification of

some weaknesses of the method in the context of countries with few reported cases

and countries with extreme observations. Thus, the provided method improves on

the work in Eilertson et al. (2019) with a lower computational cost.

Finally, Chapter 4 proposed a birth-death process to model the unobserved pop-

ulation size of a disease vector. This model studies the effect of a disease vector

population size on a second affected population. There are many similar models, but

the presentation given here of a case number that depends on a birth-death process is

unique. Also, this chapter reformulated and extended the model presented in Craw-

ford et al. (2014), making the proposed likelihood method much more compatible

with particle filters. The proposed model was evaluated under some simulation cases.

Also, a novel estimation method was offered that combines particle filter with the

MM algorithm. In addition, the first steps of a case study are in progress, extending

the proposed model.
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