
Learning Interpretable Action Models of Simulated Agents

Through Agent Interrogation

by

Shashank Rao Marpally

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2021 by the
Graduate Supervisory Committee:

Siddharth Srivastava, Chair
Yu (Tony) Zhang

Georgios E. Fainekos

ARIZONA STATE UNIVERSITY

May 2021

ABSTRACT

Understanding the limits and capabilities of an AI system is essential for safe and

effective usability of modern AI systems. In the query-based AI assessment paradigm,

a personalized assessment module queries a black-box AI system on behalf of a user

and returns a user-interpretable model of the AI system’s capabilities. This thesis

develops this paradigm to learn interpretable action models of simulator-based agents.

Two types of agents are considered: the first uses high-level actions where the user’s

vocabulary captures the simulator state perfectly, and the second operates on low-

level actions where the user’s vocabulary captures only an abstraction of the simulator

state. Methods are developed to interface the assessment module with these agents.

Empirical results show that this method is capable of learning interpretable models

of agents operating in a range of domains.

i

DEDICATION

To my mom, dad, uncle, grandpa, and grandma for supporting me always.

ii

ACKNOWLEDGMENTS

I would like to sincerely thank Dr. Siddharth Srivastava for guiding and supporting

me throughout my research. I would like to thank Dr. Yu (Tony) Zhang for giving me

the chance to participate in research in his lab and for his constant encouragement.

I would also like to thank Pulkit Verma for constantly advising me through this

thesis and being a valuable research collaborator and the members of the Autonomous

Agents and Intelligent Robots Lab for providing a great research environment to foster

ideas. Lastly, I would like to thank my mother, father, uncle, and grandparents, for

their unwavering support and faith in me.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

2 RELATED WORK . 3

3 BACKGROUND . 5

3.1 Classical Planning Task . 5

3.2 Agent Interrogation Task . 5

3.3 Agent Assessment Module . 6

3.3.1 Agent Models . 7

3.3.2 Model Abstraction . 7

3.3.3 Agent Queries . 8

3.3.4 Agent Interrogation Algorithm . 9

4 LEARNING ACTION MODELS OF SIMULATED AGENTS 16

4.1 Learning action models of Type-1 agents . 18

4.1.1 Domains . 21

4.2 Learning action models of Type-2 agents . 22

4.2.1 Action discovery . 22

4.2.2 Domains . 28

5 EXPERIMENTS AND RESULTS . 35

5.1 Type-1 Agents . 35

5.1.1 Sokoban . 35

5.1.2 Doors . 35

5.2 Type-2 Agents . 36

iv

CHAPTER Page

5.2.1 Zelda . 37

5.2.2 CookMePasta . 39

5.2.3 Escape . 42

5.2.4 Snowman. 44

6 CONCLUSIONS AND FUTURE WORK . 48

BIBLIOGRAPHY. 50

v

LIST OF TABLES

Table Page

3.1 Sample Query in AIA Without pu . 12

3.2 Sample Query in AIA With pu . 13

5.1 Results for Zelda Domain . 38

5.2 Results for CookMePasta Domain . 41

5.3 Results for Escape Domain . 43

5.4 Results for Snowman Domain . 46

vi

LIST OF FIGURES

Figure Page

3.1 Agent Assessment Module (Verma et al. (2021)) . 6

3.2 Hierarchical Abstractions Used in AIA (Verma et al. (2021)) 11

4.1 Sample State of GVGAI’s Zelda Domain . 17

4.2 PDDLGym’s Sokoban Domain . 21

4.3 PDDLGym’s Doors Domain . 21

4.4 Sample Discovered Action That Can Fail to Execute in Simulator 26

4.5 Sample Zelda State and Sprite Set . 29

4.6 Sample CookmePasta State and Sprite Set . 30

4.7 Sample Escape State and Sprite Set . 31

4.8 Sample Snowman State and Sprite Set . 32

5.1 Sample Actions from Zelda Domain . 39

5.2 Sample Actions from CookMePasta Domain . 42

5.3 Sample Actions from Escape Domain . 44

5.4 Sample Actions from Snowman Domain . 47

vii

Chapter 1

INTRODUCTION

The development of AI systems has reached an interesting milestone. It is now,

more than ever, much easier to access AI systems, whether it is a digital assistant in

smartphones, assistive devices, or autonomous cars. Although some of them are far

more affordable than others, this does mean that overall, a broader section of society

can now obtain some form of an AI system. This also poses a parallel problem: How

is one to ascertain that the AI system that he/she uses is safe, reliable, and/or can

perform the required task? More often than not, these AI systems are “black-box”

to the end-user, meaning the end-user cannot readily ascertain the reasoning and

decision-making process underlying the AI system. Thus, to judge the suitability

of an AI system for a task, it is important to develop methods to approximate its

internal model and gauge its capabilities, limitations, and strengths. The widespread

usage of AI systems and easy accessibility make the problem of ensuring safety of AI

systems an important next step before the advent of large-scale generalizable AI that

humans and corporations may depend upon to take important decisions. Similarly,

interpretability and explainability of AI systems are also the problems that must be

addressed to hold the system accountable for its decisions. Currently, commercial

robotic systems are limited in functionality to perform basic tasks. As robots become

more and more autonomous and capable of performing complex tasks, it becomes

even more important to ensure they operate safely and follow the expectations of

a designer. For example, a robotics researcher may want to acquire a robot for

performing certain tasks and thus would need to assess the capabilities and limitations

of the robot, or, a robot technician may want to verify if a robot’s internal model

1

follows his/her expectations after a firmware update. Learning the internal action

model of a system is one way to learn the capabilities and limitations of the system.

For agents based on symbolic-planning models, this means learning the preconditions

and effects of the actions that make the internal model of the agent. Quite often,

such systems may operate on low-level commands and provide interfaces to end-

users to operate the system using high-level commands. For example, internally, a

robot operates using motor controls but they can be controlled using frameworks

that provide more user-friendly high-level control. Learning the action model of such

agents provides a challenge and an opportunity at the same time since the same

low-level actions in different states can result in different results, learning the model

in terms of low-level actions can result in a model that is difficult to interpret and

learning interpretable models can also help in interacting with such systems using

user-specific interpretable high-level vocabulary. To this end, this thesis develops a

framework to learn interpretable abstract action models of simulator-based agents

using the agent assessment module developed in Verma and Srivastava (2020) and

Verma et al. (2021). Two types of simulated agents are considered, namely:

• Type-1: Simulator-based agents where the user’s vocabulary captures the sim-

ulator state perfectly. The agents provide access to a set of symbolic action

headers that the agent assessment module can use, and a reference ground-

truth model that can be used to check the accuracy of the learnt model.

• Type-2: Simulator-based agents where the user’s vocabulary captures only an

abstraction of the simulators state. These agents do not have a ground-truth

model for reference and do not provide a set of action headers which is required

as an input to the agent assessment module.

2

Chapter 2

RELATED WORK

The concept of action model learning has been explored greatly in the past. In con-

trast to many related works that explore learning action models from observations of

behavior (Gil (1994); Yang et al. (2007); Cresswell et al. (2009) and Zhuo and Kamb-

hampati (2013), The Agent Assessment Module (AAM) developed in Verma and

Srivastava (2020) and Verma et al. (2021) is one of the first approaches to address

inferring relational models of black-box agents using an agent-interrogation strat-

egy (query-and-answer approach). Cresswell et al. (2009) proposes LOCM, which

uses finite-state machines to create action models from a collection of plans. Each

state machine represents the precondition and effect of the actions in the domain.

LOCM uses one finite state machine for each action and this limitation is overcome

by LOCM2 (Cresswell and Gregory (2011)), where a single object can be represented

by multiple state machines. Learning static relations in a domain is a non-trivial task.

Static relations refer to literals that never change over the course of a plan trace. The

problem here is that since these do not appear in the add or delete lists of an ac-

tion’s effect, they could be overlooked. But this is a problem since static relations

can appear in the preconditions of certain operators. Since LOCM2 uses dynamic

properties of the domain, it is unable to learn the static relations that may appear

in certain actions. This is addressed by LOP (Gregory and Cresswell (2015)) where

static relations are discovered by finding the minimal set of static predicates for each

action that preserves the length of the optimal plan. Stern and Juba (2017) introduce

the safe model-free planning problem, learn a conservative model for safe planning,

and provide only soundness guarantees. In contrast, AAM is theoretically guaran-

3

teed to learn the complete and correct model, which can be directly used for safe

planning. Additionally, AAM does not require the intermediate states in execution

traces. Konidaris et al. (2018) develop methods to autonomously learn the abstract

representation required for a computer game domain that internally operates on low-

level actions. This work assumes that a set of high-level options are available to

the agent which can be used to explore the environment and learn skills. In con-

trast, the problem addressed in this thesis is that of learning abstract actions, given

user-defined vocabulary or abstract state representations through agent interrogation.

FAMA (Aineto et al. (2019)) reduces model recognition to a planning problem and

can work with partial action sequences and/or state traces as long as correct initial

and goal states are provided. It can end up learning spurious preconditions since pre-

conditions are learned as a post-processing step. This also results in oscillating model

accuracy. Bonet and Geffner (2020) is one of the few methods for learning relational

models when the action schema, predicates, etc. are not available. But, this approach

is viable for small state spaces only. Simulator domains often have very large state

spaces. Suárez-Hernández et al. (2020) propose two algorithms (OARU, AU) to solve

the problem of recognizing actions given a state transition and a knowledge library of

relational actions. These algorithms are restricted to symbolic inputs and determin-

istic action effects but support partially observable transitions. AU unifies a trivial

ground action with an existing action using weighted partial Max-SAT. The precision

and recall of the model, however, are calculated with respect to the actual library

of actions available. Čertickỳ (2014) proposes the 3SG algorithm that is shown to

learn the action models of games with incomplete information. This model is learned

directly from observation with known action signatures of the high-level actions. 3SG

is shown to be fast, but not guaranteed to be precise.

4

Chapter 3

BACKGROUND

3.1 Classical Planning Task

A classical planning task is a 5 tuple Π = (P,A,O, s0, γ) consisting of a set of

predicate symbols P, a set of Actions A, set of Objects O, an initial state s0 and

goal condition (or set of goal states) γ. Each predicate p ∈ P with an arity n can be

instantiated with n objects from O. A predicate p is said to be “grounded” when the

parameters in p are substituted with objects o ∈ O. A state consists of a collection

of ground predicates. A state transitions into another state by the application of an

action a ∈ A which consist of an action signature (name and the parameters), a set of

preconditions and a set of add and delete effects. An action can be applied in a state

if it follows the preconditions of the action. Upon application of an action in a state,

the atoms in the add effects of the action are added to the state and the atoms in

the delete effects of the action are removed from the state. the solution to a planning

task is a plan π which is a sequence of actions such that applying π to s0 results in a

state sF which satisfies the goal condition γ. Classical planning tasks can be encoded

in a STRIPS-Like language like PDDL into a domain.pddl file which defines P, and A

and a problem file which defines a particular O, s0, γ and many off-the-shelf planners

can solve the task given these files.

3.2 Agent Interrogation Task

Let the agent A’s planning model is represented as a pair M = 〈P,A〉, where

P = {pk1
1 , . . . , p

kn
n } is a finite set of predicates with arities ki; A = {a1, . . . , ak} is a

5

finite set of parameterized actions (operators). Each action aj ∈ A is represented as a

tuple 〈header(aj), pre(aj), eff(aj)〉, where header(aj) is the action header consisting

of action name and action parameters, pre(aj) represents the set of predicate atoms

that must be true in a state where aj can be applied, eff(aj) is the set of positive or

negative predicate atoms that will change to true or false respectively as a result of

execution of the action aj. Each predicate can be instantiated using the parameters

of an action, where the number of parameters are bounded by the maximum arity of

the action. Now, the Agent Interrogation task can be defined as:

Definition 1. An agent interrogation task is defined as 4 tuple: 〈MA,Q,P,AH〉,

where MA is the true model (unknown to AAM) of the agent A being interrogated,

Q is the class of queries that can be posed to the agent by AAM, and P and AH are

the sets of predicates and action headers that AAM uses based on inputs from H and

A.

The objective of the agent interrogation task is to derive the agent model MA

using P and AH .

3.3 Agent Assessment Module

Figure 3.1: Agent Assessment Module (Verma et al. (2021))

As shown in Fig 3.1, the Agent Assessment Module takes as input the user’s

interpretable vocabulary, and uses the Agent Interrogation Algorithm to query the

6

agent and learn its model in this vocabulary. As in Verma and Srivastava (2020), for

simplicity, it is assumed that the user understands models in a STRIPS-Like language

(PDDL).

3.3.1 Agent Models

Agent models are represented as a collection of predicate(p)-action(a)-location(l)-

mode(m) (palm) tuples. If a model M contains the palm tuple λ = 〈p, a, l,m〉, it

represents the fact that the action a ∈ A in model M has the predicate p ∈ P in

location l in the mode m, where l ∈ {pre, eff}, and m ∈ {+,−, ∅}. For example, if

the model M has the palm tuple <holding,pick-up,pre,->, it means that the action

‘pick-up’ in modelM has the predicate ‘holding’ in negative form in the precondition.

Two palm tuples λ1 = 〈p1, a1, l1,m1〉 and λ2 = 〈p2, a2, l2,m2〉 are considered to be

variants of each other (λ1 ∼ λ2) iff they differ only on mode m, i.e., λ1 ∼ λ2 ⇔ (λ1p =

λ2p)∧ (λ1a = λ2a)∧ (λ1l = λ2l)∧ (λ1m 6= λ2m). Hence, mode assignment to a pal tuple

γ = 〈p, a, l〉 can result in 3 palm tuple variants γ+ = 〈p, a, l,+〉, γ− = 〈p, a, l,−〉, and

γ∅ = 〈p, a, l, ∅〉. Let P∗ represent the set of all possible predicates instantiated with

action parameters and Λ be the set of all possible palm tuples which can be generated

using the predicate vocabulary P∗ and an action header set AH . Let U be the set of

all consistent (abstract and concrete) models that can be expressed as subsets of Λ,

such that no model has multiple variants of the same palm tuple.

3.3.2 Model Abstraction

Given the above form of representation of models in AAM as a collection of palm

tuples, an abstraction of a modelM with respect to a palm tuple λ is another model

M′ where M′ is obtained by removing the palm tuple λ from M i.e., M′ =M\ λ.

Thus, as in Verma and Srivastava (2020):

7

Definition 2. The abstraction of a model M with respect to a palm tuple λ ∈ Λ, is

defined by fλ : U → U as fλ(M) =M\ λ.

This notion of abstraction and concretization of model now allows defining the

model lattice L as:

Definition 3. A model lattice L is a 5-tuple L = 〈N,E,Γ, `N , `E〉, where N is a

set of lattice nodes, Γ is the set of all pal tuples 〈p, a, l〉, `N : N → 22Λ
is a node label

function where Λ = Γ× {+,−, ∅} is the set of all palm tuples, E is the set of lattice

edges, and `E : E → Γ is a function mapping edges to edge labels such that for each

edge ni → nj, `N(nj) = {ξ ∪ {γk}| ξ ∈ `N(ni), γ = `E(ni → nj), k ∈ {+,−, ∅}}, and

`N(>) = {φ} where > is the supremum containing the empty model φ.

Based on the agent’s response to a query, an edge is selected that can be used to

concretize the parent node with the selected pal tuple.

3.3.3 Agent Queries

In simplified terms, suppose P is the set of all predicates P∗ instantiated by objects

O of the domain, and sI ⊆ P , the queries (called plan-outcome queries QPO) posed

to the agent are of the form: “If you were in state sI and were to perform an action-

sequence/plan π, what would be the resulting state?”. The agent’s response to this

query, QPO comprises of l, the longest prefix of the plan π that it is successfully able

to execute, and the resulting state sF ⊆ P after executing the l steps of the plan.

Thus, QPO : U → N × 2P where N is the set of all natural numbers. In AAM, the

agent’s response to queries is used to ascertain which model between two possible

models is inconsistent with that of the agent. This allows pruning of models and

subsequently, sub-lattices originating from that model.

Definition 4. Two models Mi and Mj are said to be distinguishable, denoted as

8

Mi Mj, iff there exists a query that can distinguish between them, i.e., ∃Q Mi
QMj

where Mi
QMj =⇒ Q(Mi) 6= Q(Mj).

Thus, queries must be able to distinguish between models to be useful;

i.e., ∃Q Mi
QMj. Finding the query that can distinguishes between models is framed

as a planning problem. To avoid the unnecessary computation of generating queries

for models that cannot be distinguished, it is important to first determine if two

models can be distinguished:

Definition 5. Let Q be a query such that Mi
QMj; Q(Mi) = 〈`i, 〈pi1, . . . , pim〉〉,

Q(Mj) = 〈`j, 〈pj1, . . . , pjn〉〉, and Q(MA) = 〈`A, 〈pA1 , . . . , pAk 〉〉. Mi’s response to Q is

consistent with that of MA, i.e. Q(MA) |= Q(Mi) if `A = len(πQ), len(πQ) = `i

and {pi1, . . . , pim} ⊆ {pA1 , . . . , pAk }.

Similarly, given two distinguishable models, one of the models can be pruned

depending on the response from the agent:

Definition 6. Given an agent-interrogation task 〈MA,Q,P,AH〉, two modelsMi and

Mj are prunable, denoted as Mi〈〉Mj, iff ∃Q ∈ Q :Mi
QMj ∧ (Q(MA) |= Q(Mi)

∧ Q(MA) 6|= Q(Mj)) ∨ (Q(MA) 6|= Q(Mi) ∧ Q(MA) |= Q(Mj)).

3.3.4 Agent Interrogation Algorithm

Algorithm 1 summarizes the Agent Interrogation Algorithm (AIA), that is used to

solve the Agent Interrogation task. This section elaborates on the various components

of the algorithm. AIA takes as input, the agent A, the set of instantiated predicates

P∗, the set of all action headers AH , and a set of random states S as input, and

gives the set of functionally equivalent estimated models represented by poss models

as output. S can be generated in a pre-processing step given P∗. AIA initializes

poss models as a set consisting of the empty model φ (line 3) representing that AAM

9

Algorithm 1 Agent Interrogation Algorithm (AIA)

1: Input: A,AH ,P∗,S

2: Output: poss models

3: Initialize poss models = {φ}

4: for γ in some input pal ordering Γ do

5: new models ← poss models

6: pruned models= {}

7: for each M′ in new models do

8: for each pair {i, j} in {+,−, ∅} do

9: Q, Mi, Mj ← generate query(M′, i, j, γ, S)

10: Mprune ←filter models(Q,MA,Mi,Mj)

11: pruned models← pruned models ∪Mprune

12: end for

13: end for

14: if pruned models is ∅ then

15: update pal ordering(Γ,S)

16: continue

17: end if

18: poss models ← new models ×{γ+, γ−, γ∅} \ pruned models

19: end for

is starting at the supremum > of the model lattice. In each iteration of the main loop,

a pal tuple is selected. The order in which the pal tuples are not important, apart from

the preconditions being selected first. The reason for this will be elaborated upon in

later sections. After a pal tuple is selected, the models in poss models are refined

with each of three possible modes for a pal tuple to obtain the the list new models.

Next, for every pair of models Mi,Mj in new models, a distinguishing query Q is

generated. The agent A, and the two models Mi,Mj as well as the query Q are

10

then passed to filter models which returns the model(s) which is inconsistent with

the agent and can be pruned. In case no models can be pruned, which happens when

the agent A is unable to run the query, the list of pal tuples is updated. A sample

Figure 3.2: Hierarchical Abstractions Used in AIA (Verma et al. (2021))

run of this is show in Fig 3.2. AIA begins with the most abstract model φ and is

concretized by pal tuples γ1 and γ2 sequentially. Each concretization generates 3

models, 2 of which are discarded based on the agent’s responses to queries(a). The

remaining possible models are propagated further(b). As shown in (c), eliminating

one model in the abstract level discards 3n models n levels down.

Query Generation

Algorithm 2 describes the query generation process. It takes as input, a model M′,

the indices i, j corresponding to the modes i.e., i, j ∈ {+,−, ∅}, a pal tuple γ and the

set of random states for the domain S, and outputs a query Q that can distinguish

between the modelsMi =M
⋃
γi andMj =M

⋃
γj using any of the random states

in S. Generating a distinguishing query Q is framed as a planning problem PPO. In

order to distinguish betweenMj andMi, Qmust be such thatQ(Mi) 6= Q(Mj). Let

γ = 〈p, a, l〉 and the two refined models areM′
m =M′∪〈p, a, l,m〉, where m ∈ {i, j}.

11

Algorithm 2 Query Generation Algorithm

1: Input: M′, i, j, γ, S

2: Output: Q,Mi,Mj

3: Mi,Mj ← add palm(M′, i, j, γ)

4: for sI in S do

5: dom, prob ← get planning prob (sI ,Mi,Mj)

6: π ← planner(dom, prob)

7: Q ← 〈sI , π〉

8: if π then break end if

9: end for

10: return Q, M′ ∪ {γi}, M′ ∪ {γj}

Temporary models M′′
i and M′′

j are then created as:

M′′
m =M′

m∪{〈pu, a′, l′,+〉 : ∀a′, l′ 〈a′, l′〉 6∈ {〈a∗, l∗〉 : ∃m∗ 〈p, a∗, l∗,m∗〉 ∈ M′}}

∪ {〈pu, a′, l′,−〉 : ∀a′, l′ 〈a′, l′〉 ∈ {〈a∗, l∗〉: l∗=eff ∧∃m∗〈p, a∗, l∗,m∗〉∈M′}}

Here, pu is a dummy predicate representing “unknown predicate” which is added

when l = pre in disjunction with the predicate p to the preconditions of both models.

M1 M2 MA

putdown

precondition 〈empty〉 〈empty〉 (not(ontable ?x))

effect 〈empty〉 〈empty〉 (ontable ?x)

pickup

precondition (ontable ?x) (not (ontable ?x)) (ontable ?x)

effect 〈empty〉 〈empty〉 (not(ontable?x))

Table 3.1: Sample Query in AIA Without pu

12

M1 M2 MA

putdown

precondition pu pu (not(ontable ?x))

effect pu pu (ontable ?x)

pickup

precondition (ontable ?x) ∨pu (not (ontable ?x)) ∨pu (ontable ?x)

effect pu pu (not (ontable ?x))

Table 3.2: Sample Query in AIA With pu

The dummy predicate pu is added to avoid incorrect pruning of possible domain

models. Suppose pu is not used in query generation. Consider the example shown

in table 3.1 for the Blocksworld domain. Here, the models M1 and M2 are the

two models being considered, concretized from the abstract model using the pal

tuple λ = 〈pickup, ontable, pre〉. The agent’s true model is shown in the last col-

umn. Now, consider the query Q = 〈sI = (not (ontable(B)), π = [putdown ,pickup]〉.

Now, Q(M2) = 〈2, (not (ontable(B))〉 and Q(M1) = 〈1, (not(ontable(B))〉, thus,

Q(M1) 6= Q(M2) and so M1
QM2. Now, Q(MA) = 〈2, (not (ontable(B))〉 =

Q(M2). Thus, M1
QM2 ∧ (Q(MA) |= Q(M2) ∧ Q(MA) 6|= Q(M1)) Therefore,

using definition 6, M1 can be pruned. But this is incorrect since the pal tuple λ’s

mode in M1 matches with that of Ma. This discrepancy occurs since the effects of

the action putdown can change the state but this is not modelled in the domain since

the pal tuple λ′ = 〈 putdown,ontable,eff 〉 has not been refined yet. To overcome this,

the dummy predicate pu is added temporarily to the two models under consideration

as shown in table 3.2. Now, for the same query Q = 〈sI = (not (ontable(B)), π =

[putdown ,pickup]〉, Q(M1) = Q(M2) = 〈0, (not (ontable(B))〉 and thus the models

are not prunable. The planning problem for query generation is expressed as PPO =

13

〈MPO, sI . The domain for PPO is MPO = 〈PPO,APO〉 where PPO = PM′′
i ∪PM′′

j ∪pψ

and each action a ∈ APO, has the same header as AH , pre(a) = pre(aM
′′
i) ∨ pre(aM

′′
j)

and

eff(a) = (when (pre(aM
′′
i) ∧ pre(aM

′′
j))(eff (aM

′′
i) ∧ eff (aM

′′
j)))

(when ((pre(aM
′′
i) ∧ ¬pre(aM

′′
j))∨

(¬pre(aM
′′
i) ∧ pre(aM

′′
j))) (pψ)),

Under this formulation, each action has a precondition which is a disjunction of the

preconditions of the same action in both the models M′′
i and M′′

j . The effect of

each action is conditional upon whether the precondition for just one model was

satisfied or that of both the models were satisfied. The former case would result in

the dummy predicate pψ to be set to True and the latter case results in a effect which

is the disjunction of the effects of the action from both the models. The initial state

sI = s
M′′

i
I ∧ sM

′′
j

I , where s
M′′

i
I and s

M′′
j

I are copies of all predicates in sI , and G is the

goal formula expressed as ∃p (pM
′′
i ∧ ¬pM′′

j) ∨ (¬pM′′
i ∧ pM′′

j) ∨ pψ. With this of the

planning problem, the goal would be reached when either an action is applicable in

only one of the models and not the other, or an execution of an action yields different

predicates to be set to True.

Filtering Possible Models

This function takes as input a distinguishing Query Q, the agent A and the two

partially refined modelsMi andMj and gives the set of pruned modelsMprune that

are inconsistent with the agent A. IfMi
QMj, then Q(Mi) 6= Q(Mj) and based on

Q(A), it determines if the two models are prunable i.e., Mi〈〉Mj. The policy from

pruning out a model Mi is based on the rule described in Theorem 1

14

Theorem 1. Let Mi,Mj ∈ {M+,M−,M∅} be the models generated by adding

the pal tuple γ to M′ which is an abstraction of the true agent model MA. Sup-

pose Q = 〈sQI , πQ〉 is a distinguishing query for two distinct models Mi,Mj, i.e.

Mi
QMj, and the response of modelsMi,Mj, andMA to the queryQ areQ(Mi) =

〈`i, 〈pi1, . . . , pim〉〉,Q(Mj) = 〈`j, 〈pj1, . . . , pjn〉〉, andQ(MA) = 〈`A, 〈pA1 , . . . , pAk 〉〉. When

`A = len(πQ), Mi is not an abstraction of MA if len(πQ) 6= `i or {pi1, . . . , pim} 6⊆

{pA1 , . . . , pAk }.

Update PAL ordering

In case the agent A is unable to execute the query Q, i.e., len(πQ) 6= `A, the agent

replies with the failed action aF = π[`+1] and the final state sF . The models Mi

and Mj are generated by refining the model M using the pal tuple γ. Thus Mi

and Mj only differ in terms of the mode of the pal tuple γ. Thus both the models

would reach the same state sF after executing the first l steps of the plan. To find the

predicates that are necessary for the execution of the action af , a state is needed in

which it is executable. This state is obtained by searching in S such that s ⊃ sF and

A can execute aF . Now, the predicates p′ ⊆ s \ sF are sequentially iterated over and

added to sF to check if A can still execute af . Similar to Stern and Juba (2017), it

is assumed that any predicate instantiation corresponding to false literals in a state

will not appear in aF ’s precondition in the positive mode. Thus, if A cannot execute

af in state sf ∪ p′, the predicates in p′ which are in negative mode, are added to in

af ’s precondition, and if A can execute af , the predicates in p′ are added in ∅ mode.

All pal tuples whose modes are correctly inferred in this way are therefore removed

from the pal ordering.

15

Chapter 4

LEARNING ACTION MODELS OF SIMULATED AGENTS

Simulator environments are widely used to test both planning and learning algo-

rithms. They can operate on actions of variable granularity, from high-level param-

eterized actions like in PDDLGym (Silver and Chitnis (2020)) to simple low-level

keyboard-based commands.

Since AAM requires rudimentary query answering capabilities only (when action

signatures are available), it can be connected to simulators that answer queries in

any format provided suitable translators to convert the output states into symbolic

state representation are available. Thus, AAM is connected to simulators in the

PDDLGym suite. PDDLGym provides OpenAI gym-like simulators for standard

PDDL domains like BlocksWorld, Sokoban etc. Furthermore, since PDDLGym envi-

ronments are based on symbolic planning domains, the action signatures are readily

available. These simulators provide the capability to set an input initial state and

execute a sequence of actions and provide the end result in image format. To translate

the image into predicates that AAM understands, predicate classifiers are developed

to extract state information in the user-defined vocabulary. AIA learns action mod-

els directly based on the agent’s replies and thus it is assumed that the predicate

classifiers are noise-free and provide an accurate state representation of the output

image. Although simulators provide a good approximation of realistic agents that

operate in sequential decision-making domains, those that are not based on symbolic

domains, operate using rudimentary actions like “Up”, “Down”, “Left”, “Right” and

“Use Item”. This presents an opportunity to learn action models of agents in terms

of abstracted actions, that correspond to a sequence of low-level actions within the

16

simulator. For example, consider the simulated environment shown below: This sim-

Figure 4.1: Sample State of GVGAI’s Zelda Domain

ulator only operates using low-level actions input using the keyboard (Arrow Keys,

Space bar). It is possible to learn an action that makes the player obtain the key

using a series of low-level actions (keyboard inputs). An abstracted version of this

sequence of actions is a single action that can achieve the same result. To comply with

the assumptions of AIA, the following conditions are ensured for the environments:

• Simulator is “stationary”: the world state does not change until the player

executes an action

• Simulator dynamics are deterministic

To work directly with the Agent Assessment Module, the simulator must also possess

two rudimentary functionalities:

• Random State Generator: In order to generate distinguishing queries QPO, a

set of random states is to be passed as input to the query generation function.

Thus the simulator must be able to provide a set of random states that are

“valid” based on its internal model.

• Query Answering: The simulator must be able to run plan outcome queries

QPO = 〈sI , π〉. This means the simulator must allow setting a random initial

17

state directly and run a sequence of grounded actions which, are based directly

on the actions available in A.

• State validator: Setting the simulator to a certain initial state requires that the

state be valid in terms of the symbolic vocabulary used to define it.

4.1 Learning action models of Type-1 agents

These simulated agents operate on high-level actions and the user’s vocabulary

perfectly captures the simulator state. Since AIA requires the action headers AH

as input, one option for learning action models of simulators would be to use those

which are based directly on symbolic planning domains. PDDLGym is well suited for

these requirements since it provides a simulator-like OpenAI Gym interface for some

planning domains. The actions are directly derived from “domain.pddl” files and the

states are rendered by using a mapping from the grounded objects in the domain to

images. This image renders corresponding to objects in the domain are then arranged

in a way that conveys the visual understanding of the state.

Random State Generation

Both the domains considered have a grid structure. Thus to generate a random state,

each cell of a grid was randomly assigned to an object. The resulting state was then

converted to a symbolic state using a simple mapping. To make sure these states are

valid, these were also checked with the state validation function.

Query Answering Policy

Algorithm 3 summarizes the query answering policy for PDDLGym simulators. The

function takes as input the query Q which consists of the initial state sI and the plan

π and outputs the length of longest executable prefix of the plan π, l and the final

18

state after executing l steps of the plan from sI , sF . First the simulator is queried

to set the initial state sI . This can fail if the state being set is “invalid”. This could

occur due to various reasons, some of which have been enumerated below taking the

sokoban domain as an example:

• Mutually exclusive atoms being set to True in conjunction: For example, a grid

cell cannot be both “clear” and contain an object or a “wall”.

• Dependent predicates not being set correctly: For example, the ‘at-goal(?ob)’

predicate is set to true when a block is moved into the goal. Thus, if at-

goal(block) is True, at(block,goal) must be True as well.

• Atoms that are necessary for defining a “meaningful” simulator state being ab-

sent: For example, For a simulator state to be meaningful/valid, the “player”’s

position must be encoded in the state. Thus, if there does not exist a literal l

such that at(player,l) ∈ sI for some l ∈ Olocation where Olocation is the set of all

grounded objects of type “location” in the domain, then the state is invalid.

These state validation checks are added to make sure the states being set by the simu-

lator are meaningful and semantically coherent with respect to the states encountered

in a typical simulator run. If the simulator can successfully set the initial state, then

each step of the plan π is sequentially run on the simulator. Since the simulator

returns the result of an action execution as an image, these images are returned to

AAM as query response and thus have to be converted to symbolic states.

Extracting State from Images

For the Sokoban and Doors domains, the grid-like structure of the state images was

exploited to extract the state information. The grid contours were detected by thresh-

olding the image followed by using OpenCV’s get contour() function. The contours

19

Algorithm 3 Query Answering Algorithm (PDDLGym)

1: Input: sI , π

2: Output: l, sF

3: success = simulator.set state(sI)

4: if success == True then

5: state = sI

6: for i, a in enumerate(π) do

7: next state = simulator.step(a)

8: if next state == state then

9: return i, state

10: end if

11: state = next state

12: end for

13: else

14: return 0, sI

15: end if

16: return length(π), state

were filtered to keep the grid cells only. For example, in the Sokoban domain, state

renders typically consist of the player, blocks, clear cells, walls and goal locations.

Since each of these objects are unique, either template matching or simple color

matching can be used to match the contents of each of the filtered contours with

that of the closest object’s image render. Thus, each cell of the grid is classified into

whether it is clear, or has any of the aforementioned objects. After this, the symbolic

state is generated by a simple process of matching the grid cells to the corresponding

predicates. For example, if the grid cell “cell 1 0” is classified as a clear cell, the state

would have the literal “clear(cell 1 0)” set to True and if the grid cell “cell 1 0” is

20

classified as a cell containing the “player”, then the state would contain the literal

“at-player(cell 1 0)”.

4.1.1 Domains

Sokoban

Figure 4.2: PDDLGym’s Sokoban Domain

Fig 4.2. Shows a sample simulated state for the “Sokoban” domain. The world

consists of blocks that can be pushed onto any of the goal cells in the grid and the

episode ends when all blocks are pushed into goal cells.

Doors

Figure 4.3: PDDLGym’s Doors Domain

Fig 4.3. Shows a sample simulated state for the “doors” domain. The world

consists of distinct rooms, each assigned with a key randomly spawned in the grid.

21

The player is to obtain the key to the final door (which may be locked within other

rooms) and escape to end an episode.

4.2 Learning action models of Type-2 agents

For simulators of this type, the user’s vocabulary captures only an abstraction of

the state. In the context of simulator agents, “low-level actions” refer to low-level

controllers that are used to directly interact with the simulator. For example, simple

games such as those from the General Video Game AI competition or Atari Games

suite, use keyboard arrow keys as action input to transition the state of the game.

Learning abstract actions for these games presents a unique challenge since the same

low-level action can operate differently depending upon the state of the simulator.

For example, executing the low-level move-right action (right arrow key) in a state

where the cell next to that of the player is not blocked by a wall or some other

sprite results in the player’s current cell becoming clear and a change in the player’s

location; while executing the same action in a state where the cell next to the player

is blocked, results in no effect. More importantly, Low-level actions do not have an

associated action signature that is required as an input to the Agent Interrogation

Algorithm for learning the internal action model of the simulator. This means that

actions have to be discovered before being learned. The next sections elaborate on the

functionalities and methodologies for learning abstract action models of such agents.

This thesis develops a grounded version of the models. Future work can explore

extracting relational models from the learned grounded models.

4.2.1 Action discovery

Since the set of abstract action headers AH is no longer available, it must be

generated. One way to achieve this is to collect random execution traces from the

22

Algorithm 4 Action Discovery Algorithm(ADA)

1: Input: A, n

2: Output: action objects

3: action objects = ∅

4: for i = 1 : n do

5: tr = generate random trace(A)

6: for each state-action-next state triple, {sli, ai, sli+1} in tr do

7: sH1 ← abstract state(sli)

8: sH2 ← abstract state(sli+1)

9: if sH1 6= sH2 then

10: aH = new action()

11: aH .state before= sH1

12: aH .state after= sH2

13: if aH = not in action objects then

14: aH .assign predicate types()

15: action objects.append(aH)

16: end if

17: end if

18: end for

19: end for

20: return action objects

agent and discover unique actions from the traces. An action here is uniquely defined

as a transition from an abstract state to another. Note that defining an action in

this way makes it difficult to obtain traces with action execution failures i.e. since

an action a discovered from traces is uniquely defined as a transition from s1 → s2,

it is not possible to observe an action failing to apply in a state in a trace since it

wouldn’t be discovered without the s1 → s2 transition. Algorithm 4 describes the

23

Action discovery algorithm to generate a list of Action objects containing arbitrarily

named actions. First, a random trace is generated using the simulator (line 3-5).

Note that since these state-action sequences are directly generated from the simu-

lator, they would consist of low-level states and actions. For each of the “low-level

traces”, the states before and after the action execution are abstracted using the state

abstraction function abstract state. This function maps low-level states obtained from

the simulator to high-level states in terms of the user’s vocabulary (line 7,8). Note:

For this work, the abstractions are assumed to be “pseudo-lossy” i.e., although in-

formation is lost in the abstraction of a state from the low-level simulator state to

the user’s interpretable vocabulary, the states generated by refining an abstract state

are all connected. Future work can address true “lossy” abstractions. When the

abstracted states sH1 and sH2 correspond to different states,an arbitrary name for the

action object corresponding to the transition sH1 → sH2 is generated and stored in

the abstract objects list. Additionally, the member function assign predicate type()

is run for the object aH . Note that the states here consist of predicates grounded

by objects in the domain. This means all state transitions and consequently, actions

are described by literals. Inferring a relational operator from grounded actions is a

non-trivial problem. This is because, in order to lift the operator to first order, its

parameter list must be set. This can be arbitrarily long due to the presence of static

predicates. Thus, a grounded action model is learned ie; the preconditions and effects

of the actions consist of grounded literals and the parameter lists are empty. The as-

sign predicate type() function classifies the grounded literals present in the pre-state

(Stern and Juba (2017)) of an action. Let L = sH1 ∪ sH2 ; ie; L is the set of all literals

present in either sH1 or sH2 . The assign predicate types() function classifies the literals

l ∈ L as:

• Added literals: l ∈ sH2 and l 6∈ sH1

24

• Deleted literals: l ∈ sH1 and l 6∈ sH2

Query Answering Policy

Algorithm 5 and 6 summarize the query answering function for simulators based on

low-level actions. The function takes as input the QueryQ consisting of an initial state

sI , plan π and the action objects list generated from the action discovery algorithm

(Algorithm 4) (which is run when the agent A is initialized) and outputs the length of

the longest executable prefix of the plan π, l and the final state after executing l steps

of the plan from sI , sF . Similar to the previous case, first, the simulator state is set

to the initial state sI which can fail due to the same reasons described in section 4.1.

Then, for each named action in the plan, π, the action object corresponding to this

name is obtained from action objects using the get action object function. Recall that

each action stored in action objects had literals corresponding to added literals and

deleted literals. Next, the literals corresponding to the added literals are added and

deleted literals are deleted from the state. It is assumed that literals being added to

the state are not already present and literals being deleted from the state are already

present. If either of these is not true, the action is deemed to have failed to execute

and the length of execution l and the state so far is returned. The new state obtained

is then checked for validity by setting the simulator state to this state. Finally, the

previous state and the updated new state are refined to the simulator’s vocabulary

and the agent is asked to plan from the previous state to the new state using the

simulator. This is necessary because the simulator has no knowledge of the action

a and can only plan using low-level actions. Thus, to check if the transition from

state→ next state is possible, the agent is asked to plan between these states. Since

this functionality is not typically provided with simulators, a simple A* search algo-

rithm is used to plan internally using a heuristic that calculates the distance between

25

two states as: h(s1, s2) = player manhattan distance(s1, s2) + editing distance(s1, s2)

where player manhattan distance(s1, s2) returns the manhattan distance between the

players location in the two input states and editing distance(s1, s2) returns the num-

ber of literals that are different between s1 and s2. If the agent can successfully plan

Figure 4.4: Sample Discovered Action That Can Fail to Execute in Simulator

between these states, then the execution of the action a is considered to be success-

ful. This step is required since the simulator cannot perform the high-level actions

directly and must be operated using actions from its own action space. Further, it

is possible that the application of add and delete effects of a discovered action on

a state s may result in a valid state but this transition may not be possible in the

low-level simulator. For example, consider the action a shown in figure Fig. 4.4. The

action a adds the literals clear-cell 0 2 and deletes the literals at-monster0-cell 0 2,

next to monster, and monster alive-monster0 to the state shown in (a) to yield the

state (b). These effects can be applied to the state shown in (c), but there is no se-

quence of low-level actions that can bring about this change in the simulator’s state.

Thus the action a cannot be applied in the state shown in (c). Such cases mandate

the additional step of querying the agent to plan between the pre and post states of

26

a discovered action.

AIA and Dependent Predicates

As mentioned in section 3.3.4, The update pal ordering function in AIA is called when

the agent is unable to answer a query Q = 〈sI , π〉. For non-simulator domains, this

function creates a state with all predicates set to True and finds the minimal state

required to run the failing action a by eliminating those literals, whose removal does

not change the answer from the agent to the query Q. For simulator-based domains,

this cannot be done since the state validator checks the validity of a state based on

hard domain-specific rules. This also means that sequentially removing predicates

and testing the agent’s response to Q to infer the mode of a pal tuple can prove to be

erroneous since the fact that a state is invalid does not necessarily imply that a literal

is required as a precondition for the execution of an action. In order to correctly

learn the mode of precondition of an action (a) in domains with derived predicates

(p) and hard state validation rules, it must be checked if ∃s ∈ S such that the agent

can execute the action a from state s where l 6∈ s where l is the predicate p grounded

with a set of compatible objects from the domain. If such state s does not exist, then

it can be inferred that the pal tuple 〈p, a, pre〉 must be in the + mode otherwise, in

∅ mode. Searching through the entire set of simulator state S is a computationally

expensive task and is a functionality that is required in the simulator itself. Without

this, some spurious preconditions may be learned in the final learned model.

27

4.2.2 Domains

Zelda

Fig 4.5 shows a sample simulator state for the “Zelda” domain. The world consists

of a key that can be used to open a door to escape, the player, and monsters that

must be eliminated before escaping through the door. An episode/trace of the game

ends when the player has killed all the monsters and used the key to escape through

the door. The player can move one cell at a time in the direction it is facing. Only

the orientation information is lost in abstracting the simulator state to the user-

interpretable vocabulary. If the player moves into the cell containing the key, the

player picks up the key and if the player executes the low-level action “ACTION USE”

or the corresponding keyboard command when facing a monster in a cell adjacent to

the monster, the monster is slain. Similarly, using the key when next to the door and

facing the door opens it. The abstract predicates used to describe the state in this

domain consist of:

• at(?ob-sprite, ?loc-location): True when ob is at location loc

• monster alive(?ob-sprite): True when ob is alive

• next to monster(): True when the player is next to a monster

• has key(): True when the player has obtained the key

• escaped(): True when the player has slain the monster, obtained the key, opened

the door and escaped

• wall(?loc - loc): True when the location loc has a wall

• clear(?loc - loc): True when the location loc is clear (no objects)

28

where “sprite” refers to any of “player”,“key” and “monster” and “location” refers

to any of the cells in the grid.

Door Key Monster Player

Figure 4.5: Sample Zelda State and Sprite Set

CookMePasta

Fig 4.6 shows a sample simulator state for the ‘Cook-Me-Pasta’ domain. The world

consists of ‘raw pasta’, ‘sauce’, ‘boiling water’ and ‘tuna’. The objective of the game

is to make the final product ‘pasta’, which is obtained by combining (pushing into)

‘cooked pasta’ (‘boiling water + ‘raw pasta’) with ‘cooked sauce’ (‘sauce’ + ‘tuna’).

The abstract predicates used to describe the state in this domain consists of:

• at(?ob-sprite,?location): True when the sprite ob is at the grid location location.

Here, a sprite refers to any objects of type player, boiling water, pasta,

tomato, tuna, cooked sauce and, cooked pasta.

• wall(?loc - location): True when a wall is at location loc

• clear(?loc - location): True when the cell loc is clear

29

• pasta cooked(): True when the pasta has been created

Boiling Water Player Pasta Tomato Tuna

Figure 4.6: Sample CookmePasta State and Sprite Set

Escape

Fig 4.7 shows a sample simulated state for the “escape” domain. The world consists

of movable blocks and “holes”. The blocks can be pushed into the “holes” to clear

out a path from the player’s location to the goal to complete the game. The abstract

predicates used to describe a state in this game are:

• at(?ob - sprite,?loc - location): True when a sprite (player/block) is at a location

loc

• wall(?loc - location): True when a wall is at location loc

• is door(?loc - location): True when a door(goal) is at the cell location loc

• is hole(?loc - location): True when a hole is at the cell location loc

• clear(?loc - location): True when the cell location loc is clear

30

Block Goal Hole Player

Figure 4.7: Sample Escape State and Sprite Set

Snowman

Fig 4.8 shows a sample simulated state for the “snowman” domain. The world consists

of 3 pieces of a snowman: the top, middle and bottom piece, A key which can be

used to unlock a door and the goal cell. The objective of the game is to assemble the

snowman in the goal location in order, constrained by the player being able to hold

only 1 piece at any given time. The abstract predicates used to define a state in the

snowman domain consist of:

• at(?ob - sprite, ?loc - location): True when the sprite (player/key/lock/any of

the snowman pieces) ob is at the location loc.

• is goal(?loc - location): True when the cell location loc is the goal cell

• player has(?ob - sprite): True when the player is holding the any of the snowman

pieces (ob)

• has key(): True when the player has picked up the key

31

• top placed(): True when the top piece has been placed in the goal location

• middle placed(): True when the middle piece has been placed in the goal loca-

tion

• bottom placed(): True when the bottom piece has been placed in the goal loca-

tion

• wall(?loc - location): True when the cell location loc has a wall

• clear(?loc - location): True when the cell location loc is clear

Player Key Lock Goal Bottom Piece Middle Piece Top Piece

Figure 4.8: Sample Snowman State and Sprite Set

Note: In all the domains, the grid structure is maintained by using the pred-

icates “leftOf(?ob1-location,?ob2-location)”, “rightOf(?ob1-location,?ob2-location)”,

“above(?ob1-location,?ob2-location)” and “below(?ob1-location,?ob2-location)” but

these predicates are added to the abstract model being used in AIA as preconditions

for all discovered actions for the sake of simplicity.

32

Algorithm 5 Query Answering Policy (low-level simulators) Part: 1

1: Input: sI , π, action objects

2: Output: l, sF

3: state = sI

4: next state = state

5: success = simulator.set state(sI)

6: if success 6= True then

7: return 0, sI

8: end if

9: for i, al in enumerate(π) do

10: a = get action object(action objects,al)

11: for l in a.added atoms() do

12: if l ∈ next state then

13: return i,next state

14: else

15: next state.add(l)

16: end if

17: end for

18: for l in a.deleted atoms() do

19: if l 6∈ next state then

20: return i,next state

21: else

22: next state.delete(l)

23: end if

24: end for

25: success = simulator.set state(next state)

33

Algorithm 6 Query Answering Policy (low-level simulators) Part: 2

26: if success == True then

27: sim initial state = get sim state(state)

28: sim final state = get sim state(next state)

29: plan success, plan = agent.plan(sim initial state,sim final state)

30: if plan success == True then

31: state = next state

32: else

33: return i,state

34: end if

35: end if

36: end for

37: return length(π),state

34

Chapter 5

EXPERIMENTS AND RESULTS

The simulator agents were implemented in Python and all the experiments were run

on a system with i9-9900 processor, 64gb RAM and an RTX 2080. To optimize the

implementation, the queries and the simulator planning requests (initial and goal

state) were stored in a hashmap and retrieved instead of repeatedly generating the

same query or planning between the same two states.

5.1 Type-1 Agents

The agent was initialized with an instance of either the “doors” or the “Sokoban”

PDDLGym simulator. Some predicates in the ground-truth domain models for PDDL-

Gym domains are only present to aid the processing and rendering of the state image

and these are added to the abstract model that AIA starts with for the sake of sim-

plicity. Additionally, since PDDLGym domains have a ground-truth PDDL file, the

accuracy of the learned models can be checked against the ground-truth domains.

5.1.1 Sokoban

The agent was initialized with 20 random valid states and AIA learned the correct

model with 201 queries (over 5 runs), for 3 actions and 35 instantiated predicates.

5.1.2 Doors

The agent was initialized with 20 random valid states and AIA learned the correct

model with 252 queries (over 5 runs), for 2 actions and 10 instantiated predicates.

35

5.2 Type-2 Agents

Since the simulators developed based on the games from the GVGAI suite are

not directly based on planning domains, there is no ground-truth model to check

the accuracy of the learned model. Thus, to check the correctness of the learned

model, the states in the traces collected during action discovery were abstracted and

the learned model was used to plan from the initial state of the trace to each of

the intermediate states.In all of the domains described below, the learned model was

able to run the complete traces used to discover actions. ie; given the initial state s0

and the intermediate states sk for k ∈ len(trace), the learnt model M was able to

plan between s0 → sk∀k ∈ [0, len(trace)]. Thus, since the learned model was found

to be consistent with the generated traces and all the actions were learned (AIA is

guaranteed to converge), it can be said that from empirical evidence, this method to

learn action models of Type-2 agents is sound and complete. The next few sections

discuss the results for the chosen domains. In all of the domains, a general trend

of increase in the number of queries with increase in the number of pal tuples was

observed. Additionally, to detect a majority of the possible actions in a domain, a

random initial state was solved and used as a trace. Thus, since every initial state

in a trace is random, there is no correlation between the number of actions detected

and the grid-size. The tables in each section also compare the number of queries

required by AIA to The number of queries required for a Näıve/brute-force approach.

The latter is obtained by using the expression: number of pal tuples ∗2|P|. This is

because, for each predicate in each action in both precondition and location, a query

would be required for each state. In all of the domains, AIA learned the model with

significantly smaller number of queries as compared to the Näıve approach.

36

5.2.1 Zelda

Table 5.1 shows the results of the number of queries required to learn the model,

the number of actions, and the number of pal tuples for different grid sizes. Fig. 5.1

show some of the notable actions learned by AIA (The actions are named for the sake

of interpretability since discovered actions are named arbitrarily):

• (a) follows the domain dynamics of slaying a monster which is only possible

when the player is next to the monster.

• (b) follows the domain dynamics of getting the key when the player moves into

the cell containing the key

• (c) follows the domain dynamics of moving into a cell when the cell is clear

• (d) follows the domain dynamics of escaping through the door when the monster

has been killed and the player has the key.

37

Number of grid cells |P| |A| Number of pal tuples Number of Queries (AIA) Number of Queries (Näıve)

12 58 6 288 235 8.3E+19

20 96 9 612 512 4.85E+31

30 142 9 792 696 4.42E+45

42 202 18 2160 1891 1.39E+64

64 308 16 2688 2423 1.4E+96

Table 5.1: Results for Zelda Domain

38

Figure 5.1: Sample Actions from Zelda Domain

5.2.2 CookMePasta

Table 5.2 shows the results for the number of queries required to learn the model,

the number of actions and the number of pal tuples for different grid sizes. Fig. 5.2

show some of the notable actions learned by AIA:

• (a) follows the domain dynamics of combining the raw-pasta and water when

39

the raw-pasta is pushed into the water by the player

• (b) follows the domain dynamics of moving into a cell when the cell is clear

• (c) follows the domain dynamics of combining the cooked-pasta and cooked-

sauce to obtain the finished pasta when one of them is pushed into the other

by the player.

• (d) follows the domain dynamics of pushing the pot of boiling water onto a clear

cell by the player when the player and boiling water pot are next to each other.

40

Number of grid cells |P| |A| Number of pal tuples Number of Queries (AIA) Number of Queries (Näıve)

20 112 30 3000 2136 1.56E+37

30 160 38 4712 3523 6.89E+51

42 226 40 6720 5075 7.25E+71

64 351 58 14732 11115 6.8E+109

Table 5.2: Results for CookMePasta Domain

41

Figure 5.2: Sample Actions from CookMePasta Domain

5.2.3 Escape

Table 5.3 shows the results for the number of queries required to learn the model,

the number of actions and the number of pal tuples for different grid sizes. Fig. 5.3

show some of the notable actions learned by AIA:

• (a) follows the domain dynamics of moving into a cell when the cell is clear

• (b) follows the domain dynamics of the player being able to push a block when

the cell adjacent to the block is clear and the player is adjacent to the block

• (c) follows the domain dynamics of escaping (trace terminating action) when

the player moves into the goal cell.

• (d) follows the domain dynamics of pushing a block into a hole when the block

is adjacent to a hole and the player is adjacent to the block

42

Number of grid cells |P| |A| Number of pal tuples Number of Queries (AIA) Number of Queries (Näıve)

9 41 4 136 114 2.99E+14

16 79 9 558 445 3.37E+26

20 101 12 936 740 2.37E+33

42 214 31 4464 3602 1.18E+68

Table 5.3: Results for Escape Domain

43

Figure 5.3: Sample Actions from Escape Domain

5.2.4 Snowman

Table 5.4 shows the results for the number of queries required to learn the model,

the number of actions and the number of pal tuples for different grid sizes. Fig. 5.4

show some of the notable actions learned by AIA:

• (a) follows the domain dynamics of picking up the bottom-piece when the player

is adjacent to the cell containing the piece.

• (b) follows the domain dynamics of the player dropping the top piece in a clear

cell when it is next to the cell.

44

• (c) follows the domain dynamics of stacking the top piece when the player is

next to the cell, is holding the top piece and the bottom and middle pieces are

already stacked.

45

Number of grid cells |P| |A| Number of pal tuples Number of Queries (AIA) Number of Queries (Näıve)

20 109 57 5358 3953 3.47754E+36

25 135 45 4950 3653 2.15603E+44

30 162 64 8192 6189 4.78905E+52

42 222 74 11840 9228 7.98014E+70

64 322 51 9996 8401 8.5405E+100

Table 5.4: Results for Snowman Domain

46

Figure 5.4: Sample Actions from Snowman Domain

47

Chapter 6

CONCLUSIONS AND FUTURE WORK

This thesis developed methods to learn action models of two types of simulated agents

using the Agent Assessment Module:

• Simulators operating on high-level actions, where the user’s vocabulary captures

the simulator state perfectly.

• Simulators operating on low-level actions, where the user’s vocabulary captures

an abstraction of the simulator state.

Sokoban and Doors domains from the PDDLGym suite of environments were used to

showcase AAM’s compatibility with typical black-box simulators commonly used for

symbolic reinforcement learning tasks. This involved adding functionalities like state

validation checks and converting the simulator’s image output to symbolic states.

Correct models for both domains were learned by AIA provided the image-to-state

converter is assumed to be noiseless. For both domains, AIA learned the correct

model. Simplified versions of games from the GVGAI suite are used to assess the

functionalities required to learn interpretable action models of simulators based on

low-level actions. It was concluded that the agent additionally required planning

capabilities to answer queries and the interfacing framework must discover actions

from low-level traces that can be directly obtained from the simulator. Four domains

were adapted from the GVGAI collection, namely, Zelda, Cookmepasta, Escape, and

Snowman, and interpretable abstract action models of these domains were learned

using AAM. Since there is no ground truth model to compare the learned model

48

against, it was instead used to plan end-to-end as well as between the intermediate

states of the traces collected during action discovery. The learned model was able

to plan successfully for all state transitions within the collected traces. Thus, from

empirical results, this method of learning action models of simulated agents appears

to be sound and complete. There are many possible future work directions. The

abstractions can be made truly lossy which would possibly result in an approximation

of the true model rather than an accurate model since the application of the same

action on different groundings of an abstract state can result in different states which

may not be connected. Simulators with stochastic actions and a dynamic environment

can be investigated to learn the functionalities and modifications required for AAM

to learn the model of a realistic simulator domain. Additionally, the modifications

required within AAM to accommodate noisy image-classifiers when learning models

of Type-1 agents could be investigated.

49

BIBLIOGRAPHY

Aineto, D., S. J. Celorrio and E. Onaindia, “Learning action models with minimal
observability”, Artificial Intelligence 275, 104–137 (2019).

Bonet, B. and H. Geffner, “Learning first-order symbolic representations for planning
from the structure of the state space”, in “Proc. ECAI”, (2020).

Čertickỳ, M., “Real-time action model learning with online algorithm 3 sg”, Applied
Artificial Intelligence 28, 7, 690–711 (2014).

Cresswell, S. and P. Gregory, “Generalised domain model acquisition from action
traces”, in “Proc. ICAPS”, (2011).

Cresswell, S., T. McCluskey and M. West, “Acquisition of object-centred domain
models from planning examples”, in “Proc. ICAPS”, (2009).

Gil, Y., “Learning by experimentation: Incremental refinement of incomplete planning
domains”, in “Proc. ICML”, (1994).

Gregory, P. and S. Cresswell, “Domain model acquisition in the presence of static
relations in the lop system”, in “Proceedings of the International Conference on
Automated Planning and Scheduling”, vol. 25 (2015).

Konidaris, G., L. P. Kaelbling and T. Lozano-Perez, “From skills to symbols: Learn-
ing symbolic representations for abstract high-level planning”, Journal of Artificial
Intelligence Research 61, 215–289 (2018).

Silver, T. and R. Chitnis, “PDDLGym: Gym environments from PDDL problems”, in
“ICAPS Workshop on Bridging the Gap Between AI Planning and Reinforcement
Learning (PRL)”, (2020).

Stern, R. and B. Juba, “Efficient, safe, and probably approximately complete learning
of action models”, in “Proc. IJCAI”, (2017).

Suárez-Hernández, A., J. Segovia-Aguas, C. Torras and G. Alenyà, “Online action
recognition”, (2020).

Verma, P., S. R. Marpally and S. Srivastava, “Asking the right questions: Learning
interpretable action models through query answering”, Proceedings of the AAAI
Conference on Artificial Intelligence (2021).

Verma, P. and S. Srivastava, “Learning generalized models by interrogating black-box
autonomous agents”, in “AAAI 2020 Workshop on Generalization in Planning”,
(2020).

Yang, Q., K. Wu and Y. Jiang, “Learning action models from plan examples using
weighted max-sat”, Artificial Intelligence 171, 2-3, 107–143 (2007).

Zhuo, H. H. and S. Kambhampati, “Action-model acquisition from noisy plan traces”,
in “Proc. IJCAI”, (2013).

50

