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ABSTRACT

Over the past few decades, there is an increase in demand for various ground robot

applications such as warehouse management, surveillance, mapping, infrastructure

inspection, etc. This steady increase in demand has led to a significant rise in the non-

holonomic differential drive vehicles (DDV) research. Albeit extensive work has been

done in developing various control laws for trajectory tracking, point stabilization,

formation control, etc., there are still problems and critical questions in regards to

design, modeling, and control of DDV’s - that need to be adequately addressed.

In this thesis, three different dynamical models are considered that are formed by

varying the input/output parameters of the DDV model. These models are analyzed

to understand their stability, bandwidth, input-output coupling, and control design

properties. Furthermore, a systematic approach has been presented to show the im-

pact of design parameters such as mass, inertia, radius of the wheels, and center

of gravity location on the dynamic and inner-loop (speed) control design properties.

Subsequently, extensive simulation and hardware trade studies have been conducted

to quantify the impact of design parameters and modeling variations on the perfor-

mance of outer-loop cruise and position control (along a curve). In addition to this,

detailed guidelines are provided for when a multi-input multi-output (MIMO) con-

trol strategy is advisable over a single-input single-output (SISO) control strategy;

when a less stable plant is preferable over a more stable one in order to accommodate

performance specifications.

Additionally, a multi-robot trajectory tracking implementation based on receding

horizon optimization approach is also presented. In most of the optimization-based

trajectory tracking approaches found in the literature, only the constraints imposed

by the kinematic model are incorporated into the problem. This thesis elaborates

the fundamental problem associated with these methods and presents a systematic
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approach to understand and quantify when kinematic model-based constraints are

sufficient and when dynamic model-based constraints are necessary to obtain good

tracking properties.

Detailed instructions are given for designing and building the DDV based on

performance specifications, and also, an open-source platform capable of handling

high-speed multi-robot research is developed in C++.
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Chapter 1

INTRODUCTION AND OVERVIEW OF WORK

1.1 Introduction and Motivation

Over the past three decades, the promise of driverless and robotic vehicles has

greatly accelerated research in the area [86]-[59]. This promise includes a wide range

of application areas; e.g. search and rescue, surveillance, mapping, assisting first

responders, assisting law enforcement, infrastructure inspection, warehouse logistics,

and much more. The steady increase in research efforts in this area can also be par-

tially attributed to the advances in networking, sensing, and computing technologies,

which resulted in the development of powerful and cost-efficient hardware. Partic-

ularly, these new technologies (e.g., NVIDIA Jetson, Teensy, Raspberry Pi, Intel

RealSense, RP LIDAR) have enabled researchers to incorporate principled methods

from areas such as optimization, data science, computer vision, control theory, and

machine learning, which were once considered computationally intensive. Hence, a

vast amount of literature is currently available addressing various driverless/robotic

vehicle outer-loop control objectives such as trajectory tracking, static and dynamic

obstacle avoidance, multi-robot formation control, etc. Given this, there are still

fundamental problems and critical questions that have to be adequately addressed

in order to unleash the true potential of these forward-looking vehicles. This forms

the primary focus of this thesis and will be presented in detail in the forthcoming

paragraphs.

The work presented in this thesis is an extension of the master’s thesis research

1



conducted by Zhenyu Lin [46], and Zhicho Li [45] 1 . The central objective of their

work involves utilizing off-the-shelf technologies (e.g. Arduino, Raspberry Pi, com-

mercial RC cars) to develop cost-efficient ground robots that are capable of facili-

tating multi-vehicle robotic research. This is a major step intended to achieve the

long-term goal of developing a fleet of Flexible Autonomous Machines Operating in

an Uncertain Environment (FAME). This fleet can involve multiple ground and air

robots that can work collectively in order to perform a common task. They have also

thoroughly examined the kinematic and dynamic models of non-holonomic differen-

tial drive ground vehicle (DDV) and rear-wheel drive vehicle followed by a system

identification procedure to estimate the nominal plant parameters. Further to this,

the following outer-loop control objectives have been implemented on hardware: (1)

cruise-control along a curve, (2) planar (x − y) Cartesian stabilization, (3) vehicle-

target spacing-control, (4) multi-robot spacing-control along line/curve, (5) tracking

slowly-moving remote-controlled quadrotor, (6) avoiding obstacle while moving to-

wards a target.

This thesis attempts to answer the following critical questions involved in the mod-

eling, design, and control of DDV’s 2 : 1) What critical parameters impact key vehicle

characteristics (i.e. static, dynamic and control properties)? 2) When is a single-input

single-output (SISO) controller sufficient? When is a multiple-input multiple-output

(MIMO) controller necessary? 5) When is a kinematic model sufficient for design and

evaluation? When is a dynamic model essential for design and evaluation? 6) How do

the above impact speed and position-direction control design (along a curved path)?

Further to this, a detailed literature survey has been presented in the next section,

which will form the basis for outlining the central contributions of this thesis in the

1Zhenyu Lin and Zhico Li are former graduate students who have completed their MS Thesis
work under Dr. Armando A. Rodriguez

2DDV - throughout this thesis, DDV will refer to non-holonomic differential drive vehicle
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upcoming sections.

1.2 Literature Survey: Ground Robotics - State of the Field

As mentioned earlier, a great deal of work has been done in the areas of hardware

design, modelling, and control of ground robots/vehicles (includes both holonomic

and non-holonomic). An effort is made to shed light on some of the works which are

most relevant to developments within this thesis. The wide range of research works

are topically organized as follows:

• nonlinear system control work within [14] (asymptotic stabilization);

• DDV modelling and control work within [5] (local stabilizability of non-holonomic

systems), [85] (the classic parking problem involved with under-actuated sys-

tems and non-smooth stabilization issues), [31] (Lie bracket based controlla-

bility for DDV’s), [22] (dynamic modelling of a DDV using Newton-Euler and

Lagrangian Methodologies), [4], [69] (input-output coupling effects in dynamic

modelling of DDV and SISO controller design);

• modelling and control of longitudinal platoon of non-identical vehicles [71], [72];

• trajectory tracking of single and multiple DDV’s [36], [37], [38], [68] (nonlinear

outer-loop control design and stability robustness issues);

• formation control strategies for DDV’s [19], [30] (leader follower approach, lya-

punov based nonlinear controller design);

• formation control of DDV’s using receding horizon optimization approach [19],

[35], [16], [53];

The following paragraphs are intended to provide a brief overview of the various

technical details that would be considered throughout this thesis.
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• DDV Modelling. A differential drive/deferentially steered/deferentially wheeled

robot is a mobile robot that has two rear wheels that are capable of rotating

independent of each other i.e., each wheel is attached to a separate actuator.

Since the wheels can rotate independently of one another, there is no require-

ment for any sort of additional steering mechanism. This makes it a widely

used platform in both academic and commercial robotic applications. Depend-

ing on the actuators used to control the wheel speed, the inputs to the DDV

vary, for example, if the actuators consist of armature controlled Direct Current

(DC) motors the input signal would be the voltage supplied to these motors.

The sum of voltages contributes to the linear velocity v and the difference of

voltages contributes to the angular velocity ω of the vehicle. Other commonly

used actuators include stepper motors and brushless DC motors. In Chapter 2,

detailed step by step instructions for the construction of a DDV is provided.

– Kinematic Model. [27], [36] present the kinematic model (ignoring the

effect of forces/torques acting on the system) of a DDV. The kinematic

model defines the relation between the inputs v, ω 3 and the pose of DDV

(x, y, θ). This model assumes that any form of linear and angular velocities

(v, ω) can be attained instantaneously by the DDV. This, of course, is not a

realistic assumption because from Newton’s second law of motion we know

that achieving instantaneous velocity would require infinite acceleration.

Admittedly, this model is the most simple representation of a differential

drive robot and is widely used in several simulators, e.g. in MATLAB,

Gazebo, etc. Nevertheless, it should be noted that in real-world conditions

it is impossible to generate the (v, ω) instantaneously due to the actuator

3v refers to linear velocity and ω refers to the angular velocity, this is notation will be followed
throughout this thesis
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limitations and mass-inertia effects. Therefore, it is important to model the

dynamics of a DDV including that of actuators in order to truly understand

the behavior of the system.

– Dynamical Model. As mentioned earlier, the dynamic model considers the

impact of various forces acting on a system and the actuators responsible

for generating the forces. The dynamic model of the DDV ((ear , eal) →

(v, ω)) can be divided into two parts: 1) dynamics of the vehicle excluding

the actuators [60], [12] - from input actuator torque to output linear and

angular velocities (τr, τl) → (v, ω), 2) dynamics of the actuator - from

input voltages to output actuator torques (ear , eal) → (τr, τl). The input

to the actuator dynamics vary depending on the actuator considered, in

this thesis an armature controlled DC motor is being used. In [22], the

authors have presented a two-input two-output (TITO) nonlinear time

invariant model of the DDV - including the DC motor dynamics as well

as the mass-inertia effects of the vehicle. This nonlinear model can be

linearized to obtain a fourth-order TITO linear time invariant (LTI) model.

This TITO LTI model has been exploited within [46], [4], [45] for control

design, and also as the basis for all the studies presented within this thesis.

Additionally, in this thesis, we consider three different input/output vari-

ations of the TITO LTI model: Model 1 :- (ear , eal)→ (ωr, ωl), Model 2 :-

(ear , eal) → (v, ω), Model 3 :- (ear + eal , ear − eal) → (v, ω). The first dy-

namical model representation is widely used in most of the literature since

its easy to obtain a reliable and accurate measurement of wheel angular

velocities using less sophisticated sensors such as encoders, but nowadays,

with the development of powerful and cost-effective microcontrollers and

sensors such as IMUs, LIDARs, stereo cameras it has become possible to
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measure the linear and angular velocities in a reliable and accurate man-

ner. Moreover, model 1 is decoupled at low frequencies (this is not true

for model 2) i.e. frequencies below β
Iw

, where β denotes the motor shaft

angular velocity damping constant and Iw denotes the rotational moment

of inertial, thereby facilitating the use of a simple PI-based controller.

In regard to model 2 - (ear , eal) → (v, ω), the map from input voltages

to linear and angular velocities remains coupled at all frequencies, which

would require the use of MIMO control design ideas. In [46], the au-

thors presented the idea of employing a decentralized PI controller which

is originally designed for a P[ear ,eal ]→[ωr,ωl] system in order to control the

P[ear ,eal ]→[v,ω] system. They have provided mathematical proof stating that

such a controller design would indeed be feasible however, it comes at a

cost of increased uncertainty in controller effort that can lead to controller

saturation. In order to overcome the limitations of model 2 we have come

up with model 3 - (ear + eal , ear − eal) → (v, ω) in which the map from

sum and difference of input voltages to the linear and angular velocity of

the DDV remains decoupled 4 at all frequencies, thereby facilitating the

use of a simple PI-based controller. Furthermore, an in-depth analysis is

presented in Chapter 4 to understand and quantify the impact of critical

design parameters on the static and dynamic properties of model 1 and

model 3 (e.g., mass, moment of inertia, center of gravity, radius of the

wheel, and operation point). This analysis becomes crucial in corroborat-

ing the results presented in Chapters 5, 6.

– Non-Holonomic DDV Controllability. The non-holonomic restrictions/-

4absolute decoupling in case of both model 1 - (ear
, eal

)→ (ωr, ωl) and model 3 - (ear
+eal

, ear
−

eal
) → (v, ω) is achieved only when d = 0 i.e. the center of gravity coincides with the midpoint of

the axis joining the two wheels
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constraints are introduced by the underactuated nature of the DDV i.e.

the system has two independent control inputs (left/right motor voltages

(ear , eal)) which are less than the three degrees of freedom (x, y, θ) that

are meant to be controlled. A system is said to be controllable if there

exists an input function u(t) that can transfer the state of the system from

any initial state xi(t) to any final state xf (t) within a finite amount of

time. And according to Brockett’s Theorem [14], it is impossible to sta-

bilize a non-holonomic system using a continuous time-invariant feedback

law. Furthermore, [5] exploits the work of Brockett to show that a classic

position stabilization objective (xref , yref , θref ) cannot be attained with a

single continuous control law i.e., in order to park a vehicle at the de-

sired position, one has to switch control laws or the use of a discontinuous

time-invariant/time-varying/non-smooth control law is essential.

An underlying consequence of the above is that the linearized kinematic

model of the DDV is uncontrollable [14] - this might seem obvious since

the DDV cannot move sideways or in the lateral direction. In spite of

this, from a nonlinear geometric (Lie-bracket) point of view [31]; i.e. the

nonlinear kinematic model of the DDV is controllable. This confirms our

common real-world experience that a non-holonomic DDV can be moved

from any initial state (xi, yi, θi) to the final state (xf , yf , θf ) i.e the vehicle

can be parked in any location. Thus, it can be said that a DDV is locally

(linearly) uncontrollable while it is globally (nonlinearly) controllable. In

Section 4.5.1 of [46] a more thorough mathematical review of the above

ideas has been presented.

• Classical Controls. The text [66] addresses the classical control design funda-
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mentals. Internal model principal concepts that are critical for reference com-

mand following, and input output disturbance attenuation are addressed within

[28], [66]. The general proportional plus integral plus derivative (PID) control

design, analysis and tuning concepts are presented in the text [7]. Fundamental

performance limitations are addressed in [66], [79].

• Multivariable Control. Detailed discussion on multivariable system analysis

and control system design are presented in [67], [64], [63], [52], [78], [29].

• Relevant Nonlinear Control. Fundamental theory addressing the existence

of continuous stabilizing control laws for nonlinear systems was first presented

within this novel work [14]. This work has been exploited within [5] and [85] to

address the classical parking problem (position control) for DDV’s. A nonlinear

control law for position control while utilizing the Lyapunov ideas to guarantee

asymptotic stabilization of the system is presented in [36].

• DDV Inner-Loop Control. In [9] and [75], a PID based inner-loop control

design has been presented; within [26], [4] a PI-based inner-loop control design

has been discussed. In this thesis, within Chapter 4, we have presented PI-

based inner-loop control laws for P[ear ,eal ]→[ωr,ωl] and P[ear+eal ,ear−eal ]→[v,ω] plants

respectively. Specifically, the inner-loop control law design methodology and

parameter trade studies presented in [46] are utilized to design the inner-loop

control law presented within this thesis. Though we have presented a decen-

tralized inner-loop control law, a centralized design becomes necessary under

specific DDV design configurations. A detailed review of the conditions required

in order to switch from a decentralized to centralized inner-loop control law is

presented within Chapter 5.
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• DDV Outer-Loop Control. One of the primary objectives of this thesis

is to understand and quantify the impact of design parameters on the perfor-

mance of outer-loop control laws. To do this, we have exploited the existing

literature on speed and position-direction control and have conducted extensive

simulation and hardware trails to collect the required data. Before we proceed

further, it is important to highlight the difference between trajectory tracking

and path following. In some of the works that are currently available we of-

ten find these terms being used interchangeably. Trajectory tracking refers to

following x(t), y(t) commands i.e., (x, y) commands with very specific temporal

constraints, whereas path following refers to following a curve/path without

strict temporal constraints [2]. Standard linear control laws are designed for

trajectory tracking and path following within [21]; nonlinear techniques such

as feedback linearization and Lyapunov-based controller design are presented

within [36], [61], [23] and [25].

– Cruise Control. Cruise control is one of the most simple and widely used

feature in robotic research platforms and commercial on-road vehicles. The

cruise control law is designed based on the plant and inner-loop PI control

laws presented in Chapters 3 and 4. As mentioned earlier, we have designed

decentralized inner-loop speed control laws for two different input/output

variations of the plant i.e. P[ear ,eal ]→[ωr,ωl] and P[ear+eal ,ear−eal ]→[v,ω]. The

inputs to each of these inner-loop systems is (vref , ωref ) and output is

(v, ω). The map from reference commands (vref , ωref ) to actual velocities

(v, ω) can be approximated as a simple first-order decoupled system (e.g.

diag( a1
s+a1

, a2
s+a2

)). This is a consequence of the well designed inner-loop

control system. Therefore the output θ controller just sees a simple first
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order system a2
s+a2

from ωref → ω, and from classical root locus ideas [66],

a simple proportional (P) controller will be sufficient to track the reference

commands θref . However, if the gain is too large, oscillations (or even limit

cycle behaviour) are expected in θ and in that case, a simple PD controller

with roll off can be designed to resolve the issue [46].

– Planar Cartesian Stabilization. In [85], the authors have presented the

design of linear control laws to stabilize the posture of the vehicle at a

desired position (xref , yref ) and orientation θref in the two dimensional

space. This can also be referred to as the classic parking problem. A

subcategory of this problem is the planar Cartesian stabilization problem

which refers to moving the vehicle from an initial (x, y) coordinate to the

target (xref , yref ) coordinate. Within [85], the authors have presented a

linear control law that utilizes the error between the vehicle current pose

(x, y, θref ) and the target pose (xref , yref , θref ) in order to get arbitrarily

ε-close to the desired position (xref , yref ). This work forms the foundation

for the linear control laws for planar Cartesian stabilization presented in

Chapter 5.

• Optimal Control. According to Brockett’s theorem [14], it is impossible

to stabilize a non-holonomic DDV at a given posture (xref , yref , θref ) using a

smooth, time-invariant and static state feedback control law. In order to solve

this trajectory tracking problem, several control algorithms have been developed

[34]. Out of the several approaches that were produced, feedback linearization

and receding horizon optimal control have gained a lot of prominences. In

feedback linearization, an algebraic transformation is applied to the nonlinear

dynamics of the system in order to obtain the equivalent linear dynamics - so
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that linear control laws can be applied directly to the nonlinear system. Within

[56], [17] and [74], the authors have presented different methods for solving the

trajectory tracking problem using feedback linearization. Although feedback

linearization is a promising approach to solve the trajectory tracking problem it

is not possible to impose state constraints that fundamentally exist in real-world

scenarios. These constraints can be the result of nonlinearities imposed due to

actuators (such as bandwidth limitation, actuator saturation, high-frequency

noise, etc.) or due to dynamic obstacles present in the path. Whereas, optimal

control based approaches facilitate incorporating these constraints into the op-

timization problem in a systematic manner. Therefore, optimal control based

approaches have been very successful and are widely being employed for real-

world robotics applications such trajectory tracking [40], lane changing [89],

obstacle avoidance [3], multi-robot formation control [42], etc.

In optimization-based approaches, the error dynamics of the trajectory track-

ing problem are first computed. Using the error dynamics and model of the

system as constraints, an optimization algorithm is employed to generate a se-

quence of control inputs that can minimize the trajectory tracking error (cost

function) over a finite time horizon while subject to various system and con-

trol constraints. Depending on the nature of the constraints, the optimization

problem can be categorized as linear and nonlinear optimization. One of the

major disadvantages of using nonlinear optimization methods over linear meth-

ods is the extensive computational burden involved in solving the non-convex

optimization problem on-line. A linear optimization involves finding a global so-

lution by solving a convex optimization problem. Therefore, linear optimization

approaches are preferred over nonlinear approaches especially if the system at

hand involves faster dynamics and has limited computational power. However,
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the majority of the linear optimization approaches found in the literature as-

sume high inner-loop bandwidth and therefore just consider only the kinematic

model while formulating the optimization dynamics. This is fundamentally in-

correct because assuming a high inner-loop bandwidth means that actuators

can instantaneously generate the angular speed corresponding to the reference

commands/input voltages - which is not practically possible in the real-world.

Every actuator has a bandwidth limitation and output saturation that are not

represented by the kinematic model. Therefore, considering the dynamic model

of the system along with the kinematic model of the system during the optimiza-

tion process is critical for implementing trajectory tracking in the real-world.

• Multi-Robot Formation Control. The area of multi-robot coordination has

received a great deal of attention over the past decade. As stated within [47], a

group of mobile robots can exhibit a high level of robustness and fault-tolerant

properties under highly efficient principles. A group of robots can perform

several tasks that may be impossible for a single robot; some examples include

large area exploration [15], surveillance [82], object transportation [88], [11],

construction [80], etc. Multi-robot formation control is one of the key aspects

of multi-robot coordination and has received much attention in recent years.

There are several formation control strategies in literature and some of the

widely used ones are behavior methods, leader-follower methods, and virtual

structure methods. In behaviour based methods, the main objective is divided

into several low-level tasks that are to be performed by individual robots in

order to achieve the group behaviour [8], [58], [41], [48], and [11]. In the virtual

structure approach, the entire formation is treated as a single rigid entity, and

the desired trajectory is assigned to the virtual structure which traces it down
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to the trajectories that each individual member in the virtual structure should

follow [43], [24] and [65]. In the leader-follower approach, one of the robots is

designated as a leader and the rest are considered as followers. The objective

of the followers is to track the leader robot while maintaining a fixed distance

and orientation with respect to the leader robot. Once the motion of the leader

is given, each follower employs a local control law to track the leader, and thus

the desired formation of the system is achieved [20], [18], [83], [81] and [33].

A significant advantage of the leader-follower approach when compared to oth-

ers is that conventional single robot trajectory tracking algorithms can be di-

rectly applied to design the local control laws for the follower [44]. In this thesis

(Chapter 6), we consider the leader-follower approach for multi-robot trajectory

tracking and each follower employs the receding horizon optimization scheme.

The pose (x, y, θ) information of the leader along with the required relative

distance and orientation information (∆d,∆θ) with respect to leader robot are

utilized to generate the reference commands (xref , yref , θref ) for the follower

robot. These reference commands will serve as the input to the optimization-

based trajectory tracking approach mentioned earlier. One of the key objectives

of this thesis is to quantify the performance variations that occur due to the

incorporation of dynamic and kinematic constraints into the optimization prob-

lem when compared to just using the kinematic constraints. We have conducted

extensive simulation and hardware trails to collect the required data and the

results have been summarized in Chapter 6.

1.3 Contributions - Fundamental Questions Addressed

The following questions have been addressed within this thesis
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• How to build a high-speed DDV for research? How to design an

open-source platform capable of handling multi-robot research? In

order to build a DDV it is important to have a clear understanding of the de-

sign requirements. These design requirements are dictated by the trade studies

that are intended to be performed and also by the vehicle dynamics - espe-

cially the limitations of the dynamic model. A brief description of the design

requirements followed by detailed instructions for building the DDV has been

presented in Chapter 2. Another crucial part of building a DDV is actuator

selection. In Chapter 2, we have presented guidelines for selecting an actuator

based on the maximum velocity and minimum bandwidth requirements along

with a thorough market analysis of existing actuators and their characteristics.

Furthermore, to carry out high-speed multi-robot research an open-source plat-

form has been developed using open-source software and hardware tools. The

major hardware and software components of this platform are: 1) Ubuntu 16.04

Operating System 2) Robotics Operating System 3) FKIE Multimaster Pack-

age 3) HTC Vive Virtual Reality System 4) NVIDIA Jetson TX2 Module. A

detailed overview of the system-level architecture involved in addressing the

global/local command, control, computing, communications (C4), and sensing

(S) requirements of the fleet of DDV’s, followed by a brief description of indi-

vidual software nodes/components is presented in Chapter 2.

• What critical design parameters (e.g., mass, moment of inertia, cen-

ter of gravity, radius of the wheel, operation points, etc.) impact the

dynamic characteristics of the DDV? In this thesis, a systematic approach

is taken to understand and quantify the impact of these design parameters on

the performance of DDV. In Chapter 4, we have presented the kinematic model
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of the vehicle along with the non-holonomic constraints and its limitations.

Furthermore, a nonlinear dynamical model of the DDV including the actuator

dynamics is presented. Using this dynamical model, detailed frequency domain

trade studies are presented to understand the impact of critical design param-

eters on the input-output coupling, stability, and bandwidth properties of the

DDV. These critical design parameters include mass (m), radius of the wheel

(r), moment of inertia (I), center of gravity (d), equilibrium linear and angular

velocity (veq, ωeq).

In addition to the trade studies, we have presented the dynamic decoupling

moment of inertia condition (Idecoupling = m(dw
2

)2) and aspect ratio condition

(ARdecoupling = l
dw
≈
√

2). Here, l represents the length and dw represents the

width of the DDV. The implication of these Idecoupling and ARdecoupling condi-

tions is that if a DDV is designed adhering to either of these conditions, then

the inputs and outputs of the (ear , eal)→ (ωr, ωl) model will become fundamen-

tally decoupled allowing for a simple decentralized (SISO) control design. To

our knowledge, these dynamic decoupling conditions are not examined in the

literature and the ARdecoupling condition was first introduced in the thesis work

of Anvari [4], who was a former member of this lab.

• What is the optimal way to model a DDV and how does it impact

the controller design? In this thesis, we consider three different input/output

variations of the TITO LTI model: 1) (ear , eal)→ (ωr, ωl). 2) (ear , eal)→ (v, ω).

3) (ear+eal , ear−eal)→ (v, ω). The (ear , eal)→ (ωr, ωl) dynamical model repre-

sentation is widely used in most of the literature since its easy to obtain a reliable

and accurate measurement of wheel angular velocities using less sophisticated

sensors such as encoders, but nowadays, with the development of powerful and
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cost-effective microcontrollers and sensors such as IMUs, LIDARs, stereo cam-

eras it has become possible to measure the linear and angular velocities in a

reliable and accurate manner. Moreover, (ear , eal)→ (ωr, ωl) model is decoupled

at low frequencies (this is not true for (ear , eal)→ (v, ω) system) i.e. frequencies

below β
Iw

, where β denotes the motor shaft angular velocity damping constant

and Iw denotes the rotational moment of inertial, thereby facilitating the use

of a simple PI-based controller. In regard to the (ear , eal) → (v, ω) model, the

map from input voltages to linear and angular velocities remains coupled at all

frequencies, which would require the use of MIMO control design ideas. In order

to overcome this, we have come up with (ear +eal , ear−eal)→ (v, ω) model rep-

resentation in which the map from sum and difference of input voltages to the

linear and angular velocity of the DDV remains completely decoupled 5 at all

frequencies, thereby facilitating the use of a decentralized PI-based controller.

Furthermore, an in-depth analysis is presented in Chapter 4 to understand the

impact of critical design parameters on the dynamic properties of P[ear ,eal ]→[ωr,ωl]

and P[ear+eal ,ear−eal ]→[v,ω] systems.

• How do these critical design parameters impact the speed and position-

direction control design? In Chapter 4, detailed trade studies have been pre-

sented that show the impact of variation in design parameters on the stability,

bandwidth, and input-output coupling of P[ear ,eal ]→[ωr,ωl] and P[ear+eal ,ear−eal ]→[v,ω]

models. To further understand and quantify the impact of these design param-

eters on the speed and position-direction control, eight different DDV designs

have been considered that are formed by varying the moment of inertia, center

of gravity location, and input-output modeling. By designing and implementing

5absolute decoupling in case of both (ear
, eal

)→ (ωr, ωl) and (ear
+eal

, ear
−eal

)→ (v, ω) models
is achieved only when d = 0 i.e. the center of gravity coincides with the midpoint of the axis joining
the two wheels
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outer-loop cruise control and planar Cartesian stabilization algorithms, we have

compared and quantified the performance of each of these eight DDV designs.

In Chapter 5, a systematic approach has been presented to perform these outer-

loop speed (cruise control) and position-direction (planar Cartesian stabiliza-

tion) control performance trade studies, and the corresponding simulation and

hardware results are discussed in detail. An overview of some of the key hard-

ware results 6 is as follows:

– Cruise Control. From varying radius of curvature of the trajectory (R) for

fixed tracking velocity (vref = 1m/s), it was observed that systems with

higher moment of inertia exhibit a steep increase in errors (||ve||∞, ||θe||∞)

and control effort for a decrease in R ≤ 0.75 m. For R > 0.75 m it

was observed that designs with higher coupling between the inputs and

outputs at lower frequencies tend to exhibit higher errors and control effort.

Similarly, by varying the trajectory tracking velocity while maintaining a

fixed radius of curvature (R = 1.5 m), it was observed that for vref ≤ 1.7

m/s, designs with higher coupling between the inputs and outputs at lower

frequencies tend to exhibit higher errors and control effort when compared

to other systems.

– Planar Cartesian Stabilization. From varying trajectory tracking velocity

(vref ) for fixed radius of curvature of trajectory (R = 1.5 m), it was ob-

served that systems with higher moment of inertia exhibit a steep increase

in the tracking errors (||xe||∞, ||ye||∞) and control effort with an increase

in vref ≥ 1.8 m/s. For vref < 1.8 m/s, it was observed that designs with

higher coupling between the inputs and outputs at lower frequencies tend

6for detailed information regarding the performance metrics and DDV design configurations
please look into Chapter 5

17



to exhibit higher tracking errors and control effort. Similarly, by varying

the radius of curvature of the trajectory while maintaining a fixed tracking

velocity (vref = 1 m/s), it was observed that for R ≥ 1.25 m, systems

with higher coupling between the inputs and outputs at lower frequencies

tend to exhibit higher errors and control effort when compared to other

systems.

• Does a less stable system possess any advantage when compared to

a more stable system? For high-speed trajectory tracking that requires

sharp/aggressive maneuvers it is advantageous to have dynamically coupled or

less stable systems. This is due to the fact that they are inherently unbalanced

and therefore do not require additional control effort to perform these aggressive

maneuvers [54]. This intuitive understanding has been bolstered by the speed

and position-direction control performance trade studies presented in Chapter

4. In case of cruise control, it was observed that the systems with more stable

plants tend to exhibit higher tracking errors (||ve||∞, ||θe||∞) and control effort

when compared to the less stable systems, with an increase in the tracking

velocity vref ≥ 1.7 m/s at a constant radius of curvature of the trajectory R =

1.5 m. Similarly, in the case of planar Cartesian stabilization, it was observed

that the systems with more stable plants tend to exhibit higher tracking errors

(||xe||∞, ||ye||∞) and control effort when compared to the less stable systems,

with a decrease in radius of curvature of the trajectory R ≤ 1.25 m at a constant

tracking velocity vref = 1 m/s.

• When is a SISO controller sufficient? and when is MIMO controller

necessary? This question can be answered at different levels based on the

design of the DDV. In Chapter 3, it is shown that (ear + eal , ear − eal)→ (v, ω)
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model of a DDV is fully decoupled at all frequencies when d = 0. So in this

case, a SISO controller design will suffice. In the case of a (ear , eal) → (ωr, ωl)

system, it has been shown that when either of the dynamic decoupling condi-

tions are met i.e., Idecoupling = m(dw
2

)2 or ARdecoupling = l
dw
≈
√

2, the model

becomes fully decoupled and therefore a SISO control design is sufficient. How-

ever, for d = 0, (ear , eal) → (ωr, ωl) system is shown to exhibit very little

coupling between the inputs and outputs at dc, which gradually increases with

the frequency of operation. In this particular case, from the results presented

in [4], a SISO controller would be sufficient as long as the operating bandwidth

is significantly lower compared to the peak coupling frequency. A MIMO con-

troller becomes necessary only in case of high performance/aggressive control

objectives in which the bandwidth of the control loop is sufficiently close to the

peak coupling frequency. A more concrete answer to this question is provided

via the outer-loop cruise control and planar Cartesian stabilization performance

trade studies presented in Chapter 4. An overview of those results is as follows:

– Cruise Control. From the trade studies performed by varying tracking ve-

locity (vref ) for a fixed radius of curvature (R = 1.5 m), it was observed

that for vref ≤ 1.8 m/s and R ≥ 1.5 m, a SISO controller is sufficient to

provide good 7 trajectory tracking performance for a system with input-

output coupling. However, for vref < 1.85 m/s, a MIMO controller is nec-

essary to achieve a similar performance. Similarly, from the trade studies

performed by varying radius of curvature of the trajectory for a fixed track-

ing velocity (vref = 1 m/s), it was observed that for R ≥ 1 m and vref ≥ 1

7good trajectory tracking performance is a relative measure that depends on the control objec-
tives/application requirements, please refer to the trade studies presented in Chapter 5 to get a
detailed view of the performance metrics that are considered
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m/s, a SISO controller is sufficient to provide good trajectory tracking

performance for a system with input-output coupling. However, for R < 1

m, a MIMO controller is necessary to achieve similar performance.

– Planar Cartesian Stabilization. From the trade studies performed by vary-

ing tracking velocity (vref ) for a fixed radius of curvature (R = 1.5 m), it

was observed that for vref ≤ 1.35 m/s and R ≥ 1.5 m, a SISO controller

is sufficient to provide good trajectory tracking performance for a system

with input-output coupling. However, for vref > 1.35 m/s, a MIMO con-

troller is necessary to achieve a similar performance. Similarly, from the

trade studies performed by varying radius of curvature of the trajectory for

a fixed tracking velocity (vref = 1 m/s), it was observed that for R ≥ 1.8 m

and vref ≥ 1 m/s, a SISO controller is sufficient to provide good trajectory

tracking performance for a system with input-output coupling. However,

for R < 1.8 m, a MIMO controller is necessary to achieve a similar perfor-

mance.

• When a kinematic model sufficient for design and evaluation? When

is a dynamic model essential for design/evaluation? To answer this

question, we consider a hierarchical inner-outer loop architecture with a PI-

based wheel angular velocity (ωr, ωl) controller in the inner-loop and a receding

horizon optimization-based outer-loop controller. Detailed discussion on why

an optimization-based approach is chosen for trajectory tracking (x, y, θ) is pre-

sented in Section 6.1. In most of the literature available, the trajectory tracking

optimization problem is formulated based on only the kinematic model of the

DDV, and the dynamics of the system are completely ignored. In these ap-

proaches, the inner-loop speed control system is assumed to offer perfect track-
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ing i.e. infinite bandwidth. This is clearly not the case with real-world systems

because every actuator or a real-world system will have limitations, and there-

fore it’s incorrect to consider perfect inner-loop tracking because an actuator

will never produce instantaneous speeds for a given input voltage. Hence, it

is necessary to include the constraints imposed by the dynamical model in ad-

dition to those of the kinematic model in order to improve the performance

of the trajectory tracking controller. To further provide a quantitative answer

to the above question, we have taken a systematic approach in performing the

simulation and hardware trade studies and the results obtained are discussed

extensively in Chapter 6. A brief summary of those results is as follows:

– Based on the trade studies performed at constant trajectory tracking ve-

locity (vref ) and radius of curvature of trajectory (R) while varying the

inner-loop bandwidth (Bi), it is observed that for Bi ≥ 7.5 rad/sec, a kine-

matic model-based optimization approach is sufficient to provide good 8

trajectory tracking properties, given that vref ≤ 1 m/s, and R ≥ 1.5 m.

However, for Bi < 7.5 rad/sec, a combined kinematic and dynamic model-

based optimization approach is necessary to achieve similar performance.

– Based on the trade studies performed at constant radius of curvature (R)

and inner-loop bandwidth (Bi) while varying the trajectory tracking ve-

locity (vref ), it is observed that for vref ≤ 1.6 m/s, a kinematic model

based optimization approach is sufficient to provide good trajectory track-

ing properties, given that Bi ≥ 10 rad/sec, and R ≥ 1.5 m. However, for

vref > 1.6 m/s, a combined kinematic and dynamic model based optimiza-

8good trajectory tracking performance is a relative measure that depends on the control objec-
tives/application requirements, please refer to the trade studies presented in Chapter 6 to get a
detailed view of the performance metrics that are considered
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tion approach is necessary to achieve a similar performance.

– Based on the trade studies performed at constant trajectory tracking ve-

locity (vref ) and inner-loop bandwidth (Bi) while varying the radius of

curvature of trajectory (R), it is observed that for R ≥ 1.6 m, a kinematic

model-based optimization approach is sufficient to provide good trajec-

tory tracking properties, given that vref ≤ 1 m/s, and Bi ≥ 10 rad/sec.

However, for R < 1.6 m, a combined kinematic and dynamic model based

optimization approach is necessary to achieve a similar performance.

1.4 Organization of Thesis

The remainder of the thesis is organized as follows:

• Chapter 2 (page 24) presents the detailed design process involved in the devel-

opment of the DDV followed by a brief discussion on the command, control,

communications and sensing (C4S) requirements and software architecture of

the open-source platform that is developed in order to conduct multi-robot re-

search.

• Chapter 3 (page 55) describes the mathematical concepts that are frequently

used throughout this thesis.

• Chapter 4 (page 65) presents the dynamic model of a DDV and a thorough dis-

cussion on the three different input-output representations of the model followed

by extensive design trade studies.

• Chapter 5 (page 113) presents the eight DDV designs and the corresponding

inner and outer-loop control laws, followed by a detailed discussion on the trade

studies conducted.
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• Chapter 6 (page 164) describes a multi-robot formation control strategy based

on receding horizon optimization and the corresponding simulation and hard-

ware trade studies.

• Chapter 7 (page 191) presents the summary and future research directions.
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Chapter 2

OVERVIEW OF THE DIFFERENTIAL DRIVE VEHICLE PLATFORM

2.1 Introduction and Overview

This chapter consists of two parts: First, we present a brief overview of the design

requirements that were considered followed by a step by step procedure involved in

the development of the DDV; Second, a detailed description of the global and local

command, control, communications, computing (C4), and sensing (S) capabilities

of the DDV platform are mentioned followed by a brief overview of the software

framework.

2.2 Hardware Design Requirements

The typical design parameters of a DDV are its length, width, height, total mass,

center of gravity location, moment of inertia 1 and actuator characteristics. It is

required that the DDV design should be capable of having adjustable total mass,

moment of inertia, and center of gravity in order to perform the various trade stud-

ies. Chapter 5 provides a detailed description of the various trade studies that were

considered in this thesis. In addition, the dynamic model of the DDV presented in

this thesis is based on the two-dimensional approximation of the actual vehicle i.e.

the height of the center of gravity is not considered while modeling the dynamics of

the vehicle 2 . This means that the current DDV dynamical model does not provide

1moment of inertia refers to the total moment of inertia (I) of DDV

2Albeit this two-dimensional vehicle dynamical model is adapted in most of the existing literature,
this does not mean that the height of the vehicle has negligible impact on dynamics. Incorporating
the height of the vehicle into the dynamical model is an active topic and will be considered for future
research
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us with any insight into choosing the height of the vehicle, so what should be the

ideal height of the DDV? A simple thought experiment would help up understand

that the taller the vehicle is, the easier it is to topple during aggressive maneuvers.

Therefore, in order for the two-dimensional model to be valid, especially during high-

speed maneuvers, the center of gravity should be maintained as close to the ground

as possible.

Generally, variation in the moment of inertia can be achieved by changing the

placement of various components on the vehicle while holding the length, width,

and center of gravity of the vehicle to be constant. Furthermore, variation in mass

can be achieved by adjusting(add/remove) the mass directly at the center of gravity,

this would ensure no change in the center of gravity. Besides, adjusting the mass

will impact the moment of inertia of the vehicle unless the center of gravity (the

point where the mass is added) coincides with the wheel axis (d = 0). Similarly,

variations in the center of gravity will cause a variation in the moment of inertia of

the vehicle, and this variation can be achieved either by changing the placement of

various components on the vehicle or by adding additional mass at different locations.

In this thesis, the first option is considered because altering the mass will impact the

actuator performance and will therefore bias the variations due to the center of gravity

and moment of inertia.

In Appendix A, a MATLAB program for calculating the moment of inertia as a

function of the center of gravity, length, width, and mass of the vehicle is given. Ad-

ditionally, this function also gives the minimum and maximum values of the moment

of inertia and center of gravity that can be obtained by varying the positions of the

camera, Lithium Polymer battery, and the Li-on battery.
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2.3 Actuator Selection

A DDV can be equipped with different kinds of motors, e.g. DC motors, BLDC

motors, stepper motors[73], etc. In general, DC motors are mostly preferred for low

speed and high torque applications and have a very simple speed/torque control setup.

Whereas, BLDC motors are widely used for high-speed high torque applications such

as quadcopters, electronic skateboards, etc. And also, BLDC motors have become

more prominent nowadays due to the development of Li-ion battery technologies.

Thereby it is advisable to use BLDC motors when the overall size and weight of the

vehicle is a concern. In this thesis, we would be using an armature controlled DC

motor to perform various trade studies. In the future, these trade studies can be

replicated for BLDC motors as well.

The following steps demonstrate the process involved in selecting an actuator:

First, let us introduce the parameters “m” (mass of the fully-loaded vehicle),“mc”

(mass of the vehicle without wheels and motors), “mw” (mass of the wheels and

motors),“R” (radius of the wheels). Given that mc = 4.17 Kg, m = m, R = 0.039

m, we have to select the actuators that can produce a maximum velocity = 3.0 m/s;

minimum settling time = 0.3 s.

Second, the required speed of the motor i.e rated speed = 735 RPM (calculated

based on the maximum required velocity). Using Newtons equations of motion, we

can calculate the minimum required acceleration(amin) and torque(τmin) to ensure

the velocity and rise time requirements are satisfied.

amin = 10.0m/s2, τmin ≥ (mc +mw)
Ramin

2
(2.1)

From equation (2.1), it can be observed that τmin is a function of mass of the

motors (mw). Usually, the total mass of the motor drivers and batteries remains

constant irrespective of the motor selected and thereby can be included in mc, but, if
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the selected motors require specific motor drivers or batteries, equation (2.1) should

be modified to reflect this.

To sum it up, the motors to be selected should meet the following specifications

Rated Speed > 735 RPM , Rated Torque > τmin

The motor drivers and batteries should be chosen according to the stall, continuous,

and peak current requirements of the selected motors.

Note:

1. Product websites generally mention the stall torque and no-load speed, and this

is often confused with rated speed and rated torque.

2. The calculations mentioned above are valid under the assumption that there

is no loss due to friction (static/dynamic). Therefore, it is always advisable to

select the motors that are beyond the above specifications by 10 to 15 percent.

A detailed market analysis has been performed in order to understand the charac-

teristics of commercial motors available. We have considered 22 various motor models

from different manufactures - complete information including the web-page informa-

tion of these 22 motor models is presented in Appendix A. Figure 2.1 shows the

characteristics of these 22 motor models. Figures 2.2,2.3 compare the speed, torque,

input and output power characteristics of these motors. In Figure 2.2, models 3,4

marked in red have the required rated speed and rated torque characteristics, and

the speed vs torque plot in Figure 2.3 gives a better understanding of their perfor-

mance. In Figure 2.3, only motor models 3,4,11,22 are highlighted since they have

significantly better performance curves compared to other models and also in order

to reduce the clumsiness of the plots.
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Finally, based on the rated speed and rated torque requirements, motor model 3

has been chosen for this thesis. Figure 2.4 shows the characteristics of this motor.

Please note that models 3,4 both have the same performance characteristics.
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Figure 2.4: Selected DC Motor(Model 3) Characteristics

2.4 Detailed DDV Build Guide

In this section, details of all the hardware components necessary for building the

DDV are presented followed by brief instructions to assemble these components. The

following is the list of all the required components:

1. HTC Vive VR System: We would be using the Vive to track the motion

of the DDV to a fraction of a millimeter. The Vive consists of one headset,

two base stations, two controllers, and trackers. Each base station can enable

tracking in an area of 5m × 5m, and the controllers are required to calibrate the

system. We use two base stations to track an area of approximately 8m × 4m.

The tracker should be placed vertically above the center of the wheel axis of the

DDV, and the tracking information consists of position and velocity data along

31



the x, y and z axis i.e. (x, y, θ, ẋ, ẏ, θ̇), as well as the orientation and angular

velocity information along these axis i.e. (θx, θy, θz, θ̇x, θ̇y, θ̇z). The update rate

of tracking can be varied up to 1kHz [87], [1].

Figure 2.5: From top, Base Stations, VR Headset, Controllers

Figure 2.6: Vive Tracker

2. NVIDIA Jetson TX2: Jetson TX2 module is a highly power-efficient(15W)

embedded artificial intelligence(AI) computing platform manufactured by
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NVIDIA. This module consists of a 256-core NVIDIA Pascal GPU architec-

ture with 256 CUDA cores and two Denver 64-bit CPUs along with Quad-Core

A57 Complex. Also, it has 8GB of 128-bit LPDDR4 Memory, 32GB of inter-

nal storage, and 59.7GB/s of memory bandwidth. This device is capable of

running a standard Ubuntu OS (14.04, 16.04 or 18.04). Additionally, it has a

built-in WiFi module with a frequency range of 2.4GHz to 2.5GHz and can be

powered by using the 19V Energizer battery pack.

Figure 2.7: NVIDIA Jetson TX2 Module

3. Arduino Mega 2560: This is a microcontroller module based on the AT-

mega2560. It has 16 analog pins and 54 input/output pins out of which 16 are

PWM capable. Also, it has 256KB of flash memory, 8KB of SRAM and 4KB

of EEPROM, and a 16MHz crystal oscillator. This device can be powered by

connecting it to the NVIDIA TX2’s USB port.
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Figure 2.8: Arduino Mega 2560 Module

4. Vyper DC Motor Driver: Vyper is a high current(120A continuous current)

single-channel DC motor driver which can be operated at 7V to 36V battery

voltage range. It can withstand a peak current of 250A and also has a fail-safe

shut off functionality in case of control signal disconnection or over-heating.

This functionality is highly essential because at full load the actuator can draw

up to 133A. Since it is a single-channel controller, we have to use two of these

in order to control the robot. Each of these motor drivers is connected to the

12V Li-ion battery supply, and the DC motor.
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Figure 2.9: Vyper DC Motor Driver

5. Wheel Encoder: This is a Hall-effect sensor-based magnetic encoder. This

encoder has a two-channel quadrature output with 256 pulses per channel per

revolution (i.e. 1024 counts per revolution) for sensing the speed and the

direction of the motor. This encoder should be mounted on the motor drive

side - to the shaft, and would require both 3.3V and 5.0V power supply as

input (can be supplied by connecting to Arduino Mega Module).

Figure 2.10: Wheel Encoder

6. Energizer Battery Pack: This lithium-polymer battery pack has a capacity

of 18000mAh and can output DC voltages 5V, 12V, 19V at rated current of

2100mA, 2000mA, and 3500mA respectively. It requires an input of 19V at a
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rated current of 3500mA in order to recharge. This battery pack(19V output)

is used to power the NVIDIA TX2 module and the 5V output can be utilized

to power the USB hub or Arduino Mega module. The USB bub is utilized

to connect external devices/sensors such as Intel RealSense Depth Camera or

RPLIDAR to the NVIDIA TX2 since the TX2 module has only one USB3.0

port. These devices draw power from the 5V supply connected to the USB hub.

Figure 2.11: Energizer Battery Pack

7. Hyperion LiPo Battery: This a 5000mAh lithium-polymer battery pack that

outputs a nominal voltage of 11.1V at a continuous discharge rate of 125A and

burst discharge rate of 250 A. Since each of the motors can draw a maximum of

133A each, we need two of these lithium polymer batteries to power each motor

individually.
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Figure 2.12: Hyperion LiPo Battery

8. Single Pole Single Throw Switch (SPST): This SPST switch is required to

turn on/off the power supply to the motors. Two SPST switches are required

since each motor has a separate power supply. These switches are capable of

operating at 250V at a rated current of 180A.

Figure 2.13: SPST Switch

9. Wheels and Castor Wheels: The radius of the wheel is directly proportional

to the rated torque and inversely proportional to the rated speed of the motor.

Hence wheels of any size can be chosen as long as it adheres to the rated speed

and rated torque calculations specified in Section 2.3. Apart from the size of

the wheel, it is important to choose wheels that can provide sufficient grip

between the contact surface and the wheels in order to reduce the chance of

slipping. This is important because the DDV dynamical model presented in

Chapter 3 assumes there is no slip between the wheels and the contact surface.
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When it comes to the castor wheels, we have chosen 0.5-inch metal ball castors

over wheel castors since they have very minimal to almost no impact on the

dynamical model.

Figure 2.14: Metal Castor Wheel

10. Motor Bracket: This is a C-Channel Aluminium motor bracket designed to

attach the model 3 motor to the chassis of the DDV. Please note that this is not

a universal bracket and has to be replaced according to the motor model chosen.

We require two motor brackets(one for each motor) and additional information

such as CAD models or technical drawings are available in Appendix A.

Figure 2.15: Motor Bracket

11. Polylactic Acid(PLA) 3D Printer Filament: PLA is a low cost - biodegrad-

able material that is widely used as a 3D printing filament. A single 1Kg spool
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will be sufficient to print all the parts required for 6 DDV’s. Additional details

about the 3D printed parts will be provided in the next section.

12. Acrylic Sheets: This is a transparent thermoplastic homopolymer that is

well known for its lightweight and high impact resistance properties. It is used

to build the chassis of the DDV; additional details about building the chassis

will be provided in the next section. We would require two acrylic sheets of

dimensions 62cm × 42cm × 0.5cm in order to build one DDV.

(a) PLA 3D Printer Filament (b) Acrylic Sheets

Figure 2.16: DDV Chassis Build Materials

13. Miscellaneous Parts: The following table shows the list of various nuts, bolts,

spacers, and connecting wires that are required for building the DDV
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Name Dimension Quantity

M3 Bolt,Nut,Flat & Split Washer 30 mm 12

M3 Bolt,Nut,Flat & Split Washer 20 mm 20

M3 Bolt,Nut,Flat & Split Washer 6 mm 3

3/16′′ - 32 Bolt 35 mm 4

1/4′′ - 28 Bolt,Nut & Washer 30 mm 4

M3 Standoffs 40 mm 24

M3 Standoffs 20 mm 16

XT60 Connectors - 2

Table 2.1: Miscellaneous Parts

Components Assembly: Let us begin with the list of components that have to

be 3D printed or laser cut out of acrylic sheets. The components shown in Figure

2.17 are made out of acrylic sheets, and the components shown in Figure 2.18 are 3D

printed. The link to the .stl files of all these models is available in Appendix A.
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(a) Base Plate(Top View) (b) Top Plate (Top View)

(c) Support Plate (Top View)

Figure 2.17: Laser Cut Components
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(a) Adjustable Castor Wheel Mount

(Isometric View)

(b) Wheel Adapter

(Isometric View)

(c) Motor Clamp (Isometric View)

Figure 2.18: 3D Printed Components

The components shown in Figure 2.17 and the motor clamp shown in Figure 2.18c

are required to build the chassis of the vehicle. The following figures will illustrate the

assembly procedure. First, attach the encoder (Figure 2.10) and the motor bracket

(Figure 2.15) to the motor using the 3/16′′- 32 size bolts. Second, arrange the base

plate, support plate, and the motors as shown in Figure 2.19 and fix them together

with the motor clamp (Figure 2.18c) using the 30mm M3 bolts. In Figure 2.19b, the
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colors highlight the following components: Yellow - Base Plate; Red - Support Plate;

Blue - Motor; Orange - Motor Bracket; Green - Motor Clamp; Violet - Li-Po Battery;

Grey - Motor Driver. The motor driver and the Li-Po battery can either be attached

using the M3 30mm bolts or Velcro strips.

(a) Top View (b) Isometric View

(c) Actual Assembly

Figure 2.19: Chassis Assembly 1

Second, we have to fix the components (i.e. Arduino, SPST switch, NVIDIA

TX2, Vive tracker, Li-Po Battery) on the top plate, before attaching the top plate
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to the motor clamps using the 1/4′′ - 28 size bolts (Figure 2.20g) and M3 standoffs

(Figure 2.20f). The SPST switch can be screwed into the base plate (Figure 2.20h),

while the Energizer Li-Po battery can be fixed using Velcro strips. The Arduino

Mega and the TX2 modules have to be attached using the M3 standoffs. This assem-

bly procedure can be seen in Figure 2.20. In Figure 2.20b, the colors highlight the

following components: Yellow - Top Plate; Green - SPST Switch; Red - Energizer

Li-Po Battery; Violet - Arduino Mega Module; Blue - NVIDIA TX2 Module; Black -

Cardboard/Plastic Base for Tracker

(a) Top View (b) Isometric View

(c) Side View (d) Actual Assembly

Figure 2.20: Chassis Assembly 2
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(e) M3 Standoffs(20mm, 60mm) (f) M3 Standoffs(20mm, 60mm)

(g) Top Plate - Motor Bracket Assembly (h) SPST Switch

Figure 2.20: Chassis Assembly 2

Third, the wheels should be attached to the motor shaft using the wheel adapter

shown in Figure 2.18b. Next, the castor wheels (Figure 2.14) should be fixed to the

adjustable castor wheel mounts (Figure 2.18a). As shown in Figure 2.21 this castor

wheel setup should be attached to the front and rear of the DDV by either using

hot glue or 20mm M3 bolts. The adjustable mount allows the castor wheels to be
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raised or lowered based on the requirement. This feature is required because over

prolonged use of the DDV, the elasticity of the wheels changes and this can cause a

change in the height of the DDV which requires a realignment of the castor wheels.

Furthermore, depending on the rigidity of the surface/ground material, the drop in

the DDV height varies, this again requires a realignment of the castor wheels height

in order to maintain proper contact.

Figure 2.21: Adjustable Castor Wheel

Finally, the Vive tracker should be attached vertically above the center of the

wheel. Since the Vive tracker is prone to low-frequency noise caused by chassis vi-

brations or uneven ground surfaces, a damper such as foam or sponge (Figure 2.22)

can be sandwiched between the tracker and the DDV. This damper will absorb the

vibrations and thereby improves the quality of measurement. Figure 2.23 shows the

final form of the DDV.
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Figure 2.22: Tracker with Damper

2.5 C4S Requirements and Software Architecture

In this section, a detailed overview of the system-level architecture involved in ad-

dressing the global/local command, control, computing, communications (C4), and

sensing (S) requirements of the fleet of DDV’s. Figure 2.24 describes the software

architecture of the DDV, and the following discussion on the global/local C4S re-

quirements will be centered around this architecture.

• Global and Local Computing: The purpose of the global/central computer

is to gather information from various sensors and perform all the heavy com-

puting that would facilitate an analytical understanding of the performance

of all the robotic vehicles 3 in the fleet and also for several other purposes.

These purposes include online optimization, decision making, data transmis-

sion/broadcasting, objective adaptation, etc. The local computing involves on-

board computers or embedded devices that handle the low-level control and

sensing requirements of a single robotic vehicle. In this thesis, the global/cen-

tral computing is performed by an extremely powerful DELL Precision 5820

3robotic vehicles include ground, air, space, sea or underwater vehicles
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(a) Isometric View

(b) Top View

Figure 2.23: DDV with Vive Tracker

Tower Workstation. This workstation runs the Ubuntu 16.04 Operating Sys-

tem (OS) and is directly linked to HTC Vive VR System, and also with all the

DDV’s via WiFi. This workstation computes the position and velocity informa-

tion (x, y, θ, ẋ, ẏ, θ̇) of all the DDV’s, accepts the control commands from the

user, and transmits this information to all the DDV’s via WiFi. Apart from the

transmission of data, it also records the crucial information sent by different

DDV’s. We utilize the Robotics Operating System (ROS) framework to write
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Figure 2.24: DDV Software Architecture

all the software nodes that would facilitate the process mentioned above. An

overview of various nodes run in the workstation are shown in Figure 2.24 and

a brief description of each of these nodes is mentioned further below.

When it comes to local computing, each of the DDV’s is equipped with NVIDIA

TX2 Module and an Arduino Mega Module. These on-board embedded devices

handle all the computations required for the independent functioning of the

DDV’s. Generally, the NVIDIA TX2 board runs the outer loop controller and

handles data from sensors such as Intel RealSense Camera, RPLIDAR, IMU,
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etc, while the Arduino Mega runs the inner-loop controller, sends commands

to the motor drivers, and handles data from wheel encoders. In this thesis,

we utilize the NVIDIA TX2 to run the outer loop controller, communicate with

the Arduino module, and to transmit/receive data from the central workstation.

The TX2 module runs the Ubuntu 16.04 OS and utilizes the ROS framework

to implement the above functionalities. The Arduino Mega runs the inner-loop

controller, obtains the rotation information from the wheel encoders, receives/-

transmits information with the NVIDIA TX2 module, and sends the commands

to the motor driver. A detailed overview of the various ROS nodes run in the

TX2 and Arduino modules are shown in Figure 2.24.

• Global and Local Sensing: The purpose of global sensing is to understand

the state of the robotic vehicles in the fleet and also to detect the changes

in the operating environment. The global sensing suite can involve sensors

such as stereo cameras, motion capture systems, QR code scanners, etc. In

this thesis, we are using an HTC Vive Motion Capture System and the data

received from the individual vehicles in the fleet as the global sensing unit. This

system enables us to precisely determine the position and velocity information

of individual vehicles as well as the status of inner and outer control loops.

The local sensing consists of Hall effect sensor based magnetic encoders that

provide the linear and angular velocity of the vehicle. Though the HTC Vive

Motion Capture system can provide us with data up to fraction of a millimeter

accuracy, the only disadvantage is that it is not portable. Nevertheless, we still

use it because the focus of this thesis is to conduct and analyze the trade-studies.

In the future, a vision-lab-based localization system can be considered instead

of the current system since they offer greater portability and lesser computing
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power requirement. [49], [55], [76] and [13] highlight the on-going works in this

area.

• Command and Control: As mentioned earlier, the central workstation does

all the heavy computing such as obtaining data from the global sensing suite,

data logging, filtering, estimation, trajectory planning, switching between con-

trol schemes/objectives, safety-critical maneuvers, etc. Basically, the central

workstation updates the objectives for individual vehicles while continuously

monitoring their performance. During safety-critical maneuvers that involve

a possible collision amongst the vehicles or with an external object the central

workstation overrides the local control of individual vehicles or issues commands

to bring them to an immediate halt. In this thesis, during a safety-critical sce-

nario, a human operator can assume control of the local vehicle - manual control

mode. The user can issue velocity and angular velocity commands using the

keyboard or joystick connected to the central computer. When multiple ve-

hicles are involved, the user can choose to control the vehicles individually or

stop the motion of the entire fleet. In the future, this process can be completely

automated.

The local command and control are constrained to individual vehicles. Each

vehicle would receive commands from the central workstation. These commands

include start/stop motion, trajectory coordinates, switching between control

schemes such as manual control (receives direct commands from the user), cruise

control, planar Cartesian stabilization, or position control. More specifically, the

local control can be divided into two parts: Outer-Loop Control; Inner-Loop

Control. The outer-loop control/controller issues command to the inner-loop

controller based on the commands received from the central workstation. The
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inner-loop controller is associated with the linear and angular velocity (v, ω)

control of the DDV. It receives the desired linear and angular velocity commands

(vref , ωref ) from the outer loop controller and generates the actuator control -

PWM signals (u1, u2) to vary the speed of the motors.

• Global and Local Communications: Here, the global communication refers

to data transfer between the individual vehicles and the central workstation; and

the local communication refers to the communication between various vehicles

within the fleet and also the communication between various devices within

a vehicle. Global communication and inter-vehicle communication is achieved

over WiFi (IEEE 802.11 (2.4GHz)). In the case of intra-vehicle communication,

the data exchange between Arduino Mega, NVIDIA TX2, and various sensor

modules is achieved via serial communication.

• Software Framework: As mentioned before, Ubuntu 16.04 OS is installed on

the workstation and in each of the NVIDIA TX2 boards. All the NVIDIA TX2’s

and the workstation are connected to a common WiFi network. Further, we

utilize the ROS framework to implement the various function discussed earlier.

The following is a brief description of the various nodes mentioned in Figure

2.24.

– Steam VR. Steam VR is a part of the Steam application suite. It provides

the drivers for the HTC Vive VR hardware and also the software support

that is required to convert the raw sensor data recorded by the Vive into

a meaningful pose and velocity data.

– Tracker Node. This node acts as a bridge between the ROS framework and

the Steam VR application. This node obtains the pose and velocity data

generated by the Steam VR app and converts them into ROS compatible
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data (topics/messages). Further to this, this node converts the data from

quaternions to Euler angles and performs basic axis rotation and transla-

tion operations in order to map the data with the real-world work-space.

Apart from this, this node can also adjust the frequency of the pose and

velocity data before sending it to the filter node.

– Filter Node. This node obtains the pose and velocity information from the

tracker node and passes it through a moving average filter (a simplified

form of low pass filter) in order to remove the high-frequency noise. The

window size of this moving average filter has to be determined by trial and

error.

– Master Sync & Discovery Nodes. The master sync and discovery nodes are

part of the FKIE Multimaster package [84]. The main idea of these nodes

is to set up and manage a multi-master network. In simpler terms, this

package lets every device present on a network run their own ROS Mas-

ter (roscore) while facilitating the exchange of topics and services across

these devices i.e. multi-master network. In our case, each of the devices

connected to the WiFi network i.e. the workstation and ground robots

(Nvidia TX2’s), have their own ROS master running and each of them

run the master sync and discovery nodes in order to exchange informa-

tion among themselves. The number of devices that can communicate

using this package is limited by the WiFi router capacity i.e. the maxi-

mum number of clients allowed by the router. Additional details about the

functionalities of master sync and discovery nodes can be obtained from

[32].

– Keyboard Node. As the name suggests, this node obtains the user input via
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the keyboard or the joystick and transmits it to the ground robots. Proper

functioning of this node is crucial for all the manual control operations.

– Data Logger Node. This node obtains the data from the filter node and in-

dividual ground robots and records them into .csv files. The data recorded

by this node consists of the global pose and velocity information of each

of the ground robots and also data such as control signal, error signal,

encoder readings, and other miscellaneous data that is required to ana-

lyze the performance of the inner and outer-loop controllers in each of the

ground robots.

– Outer-loop Control Node. This node runs on the NVIDIA TX2 in each of

the ground robots and it implements the outer loop control laws and also

establishes communication with the ground station and the other robots

in the network.

– Serial Node. The serial node is responsible for establishing serial commu-

nication between the Arduino Mega and the NVIDIA TX2.

– Inner-Loop Control Node. This is the most preliminary node in this soft-

ware framework and it runs on the Arduino Mega in each of the ground

robots. This node implements the inner-loop control laws, obtains the ro-

tation data from the encoder, provides the control signals for the motor

drivers, and communicates with the outer-loop control node running on

the NVIDIA TX2.
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Chapter 3

MATHEMATICAL PRELIMINARIES

3.1 Overview

The work presented in this thesis mainly utilizes concepts from the following

areas: classical control theory, optimization, non-linear systems, linear systems, dy-

namic modeling. Most of the content presented in the upcoming chapters should

be easy to comprehend provided the reader has a basic background in the topics

mentioned above. This chapter reviews some of the mathematical concepts that are

frequently used throughout this work. These mathematical concepts include dis-

cretization of continuous-time linear state-space models, conversion between Euler

angles and quaternions, and linearization of nonlinear systems.

3.2 Discretization of Linear State Space Models

Discretization is the process of converting a continuous-time system into a discrete-

time system. This process is highly crucial: in order for any continuous time vari-

able, mathematical functions to be analyzed using a digital computer, it has to be

discretized first; in order to implement a controller on an embedded platform such

as Arduino or NVIDIA TX2, it has to be discretized first. Therefore, it is highly

crucial to understand the properties or behavior of a system post the discretization

process. The behavior of a discrete-time system converges with that of its continuous-

time equivalent only when the sample time Ts −→ 0. However, this assumption is not

possible in the real-world since the computations become intractable as the sampling

time is reduced. So in order to reduce the discretization error (the deviation of the
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discrete model behavior with respect to its continuous-time equivalent) various nu-

merical approximation techniques are developed, such as Forward Euler, Backward

Euler, Tustin, and Zero-order Hold (Exact discretization) (Chapter 3 in [62]).

Let us consider a continuous-time representation of plant P (s) in state-space rep-

resentation as:

ẋ(t) = Ax(t) +Bu(t) (3.1)

y = Cx(t) +Du(t) (3.2)

The discrete time equivalent of this system can be written as:

xk+1 = Adxk +Bduk (3.3)

yk = Cdxk +Dduk (3.4)

The following table provides the relation between the discrete-time matrices

(Ad, Bd, Cd, Dd) and the continuous-time matrices (A,B,C,D) for each of the ap-

proximation method. The last row shows the relation between the s domain and z

domain for each of the approximation methods [50].
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Continuous Forward Eu-

ler

Backward Eu-

ler

Tustin ZOH

A Ad = I + TA (I − TA)−1 (I+AT
2

)(I−AT
2

)−1 eAT

B Bd = TB T (I − TA)−1B (I − AT
2

)−1B
√
T

∫ T
0
eATBdτ

C Cd = C C(I − TA)−1
√
TC(I − AT

2
)−1 C

D Dd = D D + C(I −

TA)−1BT

D + C(I −
AT
2

)−1B T
2

D

P (s) s = 1
T

(z − 1) s = 1
T

(z−1)
z

s = 2
T

(z−1)
(z+1)

(1 −

z−1)Z[P (s)
s

]

Table 3.1: Discretization Methods

When it comes to designing and implementing a controller for a plant, there

are two methods: 1) Approximate method 2) Exact method. In the approximate

method, a continuous-time controller is first designed based on the continuous-time

plant and it is later discretized using one of the numerical approximation methods.

In the exact method, the continuous-time plant is first discretized and a discrete-

time controller is designed based on the discrete-time plant. In this thesis, we will

be using the first method i.e. the approximate method for designing the controllers.

And also, out of the four different approximation methods that have been mentioned

above, Tustin approximation best preserves the frequency domain characteristics of

the continuous-time plant post discretization, while the ZOH best preserves the time

domain characteristics of the continuous-time plant post discretization. In this thesis,

we would be using the ZOH in order to discretize the continuous-time controllers.
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3.3 Reference Frames, Euler Angles and Quaternions

The position of an object in a three-dimensional Euclidean space can be rep-

resented using a three-dimensional vector. Several coordinate systems have been

developed to describe a point in three-dimensional space such as Cartesian coordi-

nates, spherical coordinates, cylindrical coordinates, etc. In this thesis, we would be

primarily dealing with the Cartesian coordinates system to model the dynamics of

the vehicle. When it comes to representing the orientation of the object, we will be

using the Euler angles since they provide us with an intuitive understanding of the

real-world object orientation. Before we proceed further into understanding Euler

angles and rotation matrices, it is very important to discuss the frame of reference.

In order to define the position and orientation of an object, it is important to

define the frame of reference from which the position and orientation of the system

are being measured/observed. In most of the ground-robot literature, we come across

two different frames of reference: Ground/Earth Frame of Reference, Robot Frame

of Reference. The ground frame is a global frame that is fixed to the environment

or the plane in which the DDV moves. This frame is denoted by (XI , YI , ZI); for a

DDV the ZI axis can be ignored since its motion is constrained within the X − Y

plane. The robot frame of reference is a local reference frame attached to the DDV,

and thus, keeps moving with it. This frame is denoted as (Xr, Yr). These frames are

visualized in Figure 3.1. Please note that the coordinate systems defined with respect

to the ground frame and robot frame follow the Right-Hand rule.

Since the movement of the DDV is constrained within a plane, we would only

require a single variable θ (yaw angle) to define the orientation of the DDV at any

given point in space. If the ZI and Zr axis are parallel, then the yaw angle can also be

defined as the angle by which the ground frame should be rotated about the ZI axis

58



in order to align with the robot frame. Also, the primary reason for defining a robot

coordinate frame is because, in multi-robot problem formulations such as trajectory

tracking, formation control, obstacle avoidance, etc., it is observed that defining the

error dynamics of the system with respect to the robot frame simplifies the complexity

of the error dynamics and also provides a more intuitive understanding of the system

behavior [16], [36].

Consider the scenarios presented in Figure 3.1. In this case, the coordinates of

the point P with respect to the robot frame can be obtained using the following

equations.

Figure 3.1: Rotation of Translation of Coordinate Axis in Two Dimensions

x′ = (x− hr) cos θ − (y − kr) sin θ (3.5)

y′ = (x− hr) sin θ + (y − kr) cos θ (3.6)

This operation can be generalized for the three-dimensional case as well. Now, one

might wonder why do we need to consider three-dimensional rotation or transna-

tional operations since a two-dimensional space is sufficient to define the motion and
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the associated dynamics of the DDV. This is because the existing localization and

mapping libraries currently available (including the HTC Vive system) provide the

position and orientation of the object in three-dimensional space. In order to work

with these libraries and manipulate the data as per our requirement, we need to be

aware of rotation operations in three-dimensional space. It is also important to note

that in most of these libraries/software packages the rotation operations are repre-

sented in Quaternions - more information regarding Quaternions will be discussed in

the upcoming paragraphs.

Consider the following Figure 3.2. Here, (XI , YI , ZI) represent the ground coordi-

nate axis and (Xr, Yr, Zr) represent the robot coordinate axis. The angles φ, θ, andψ

represent rotation around XI , YI and ZI axis respectively. We use the standard right-

hand rule to assign the direction of rotation i.e. rotation in the counterclockwise

direction is considered to be positive.

Figure 3.2: Rotation in Three Dimensions

Given the angles φ, θ and ψ - the angles by which the ground coordinate axis

has to be rotated in order to coincide with the robot coordinate axis 1 , the new

1Please note that rotation operation is non-commutative
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coordinates of point P with respect to robot coordinate axis (P ′) are given by the

following rotation matrices:

P ′ = Rz(ψ)y(θ)x(φ)P = Rz(ψ)Ry(θ)Rx(φ)P (3.7)

where

Ry(θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 (3.8)

Rx(φ) =


1 0 0

0 cosφ −sinφ

0 sinφ cosφ

 (3.9)

Rz(ψ) =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (3.10)

Rz(ψ)y(θ)x(φ) = Rz(ψ)Ry(θ)Rx(φ)

=


cosψ cos θ cosψ sin θ sinφ− sinψ cosφ cosψ sin θ cosφ+ sinψ sinφ

sinψ cos θ sinψ sin θ sinφ+ cosψ cosφ sinψ sin θ cosφ− cosψ sinφ

− sin θ cos θ cosφ cos θ cosφ


(3.11)

Although the rotation matrix has nine entries, it really requires only three numbers

φ, θ, and ψ to construct it. Using rotation matrix can be considered computationally

inefficient since each of the nine elements needs to be calculated and when applied

within a loop, perhaps after thousands of iterations, the numerical inaccuracies due

to sin and cosine computations can degrade the orthogonality i.e. the rows will lose
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their orthogonality [39]. This begs the question: is there a better way to represent

rotations in three-dimensional space and perhaps reducing the numerical complexity

in the process? This problem is addressed by Quaternions. A quaternion is a 4-tuple

that can represented as q0 + q1i + q2j + q3k, where (qi ∈ R) and the symbols i, j, k

satisfy the following identities: i2 = j2 = k2 = −1;ij = k; ji = −k;jk = i, kj = −i;

ki = j, ik = −j. In [10], the authors have presented a more detailed and intuitive

explanation for quaternions.

A vector in three dimensional space can be expressed using quaternion as q =

0 +xi+ yj+ zk. A rotation operation can be expressed using the quaternion qR such

that norm |qR| = 1. The coordinates of point P defined in the ground frame can now

be expressed with respect to the robot frame as:

qP ′ = qR qP q∗R (3.12)

and here

qR = q0 + q1i+ q2j + q3k (3.13)

q∗R = q0 − q1i− q2j − q3k (3.14)

Given the Euler angles - φ, θ, ψ one can calculate the qR as follows:

|q0| =

√
Trace(R) + 1

4
(3.15)

|q1| =

√
R11

2
+

1− Trace(R)

4
(3.16)

|q2| =

√
R22

2
+

1− Trace(R)

4
(3.17)

|q3| =

√
R33

2
+

1− Trace(R)

4
(3.18)

here R is the rotation matrix from equation (3.11). Similarly, given qR the rotation
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matrix can be calculated as follows:

R = 2


q20 + q21 − 0.5 q1q2 − q0q3 q0q2 + q1q3

q0q3 + q1q2 q20 + q22 − 0.5 q2q3 − q0q1

q1q3 − q0q2 q0q1 + q2q3 q20 + q23 − 0.5

 (3.19)

One common misconception about quaternions is that they can prevent the gimbal

lock problem. In fact, there have been several articles on the internet that address

this issue incorrectly and often attribute this to the use of Euler angles. In [39], the

authors have given a clear explanation (including experimental results) regarding the

significance of using quaternions over rotation matrices; the gimbal lock problem, and

how it has been misinterpreted by the so-called internet community.

3.4 Linearization of Nonlinear Systems

Consider a non-linear state space representation of form:

ẋ(t) = f(x(t), u(t)), x(0) = x0 (3.20)

y(t) = g(x(t), u(t)) (3.21)

where, f is function mapping Rn×Rm −→ Rn, and g is a function mapping Rn×Rm −→

Rp. A point xe ∈ Rn is called an equilibrium point if there a specific ue ∈ Rm such

that

f(xe, ye) = 0 for all t ≥ 0 (3.22)

A linear state space representation that approximates the non-linear system about

the equilibrium point (xe, ye) can be obtained as follows [66]:

δẋ(t) = Aδx(t) +Bδu(t), δx(0) = δx0 (3.23)

δy(t) = Cδx(t) +Dδu(t) (3.24)
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where

A =


∂f1
∂x1

· · · ∂f1
∂xn

...
...

...

∂fn
∂x1

· · · ∂fn
∂xn


(xe,ue)

B =


∂f1
∂u1

· · · ∂f1
∂um

...
...

...

∂fn
∂u1

· · · ∂fn
∂um


(xe,ue)

(3.25)

C =


∂g1
∂x1

· · · ∂g1
∂xn

...
...

...

∂gp
∂x1

· · · ∂gp
∂xn


(xe,ue)

D =


∂g1
∂u1

· · · ∂g1
∂um

...
...

...

∂gp
∂u1

· · · ∂gp
∂um


(xe,ue)

(3.26)

δu(t)
def
= u(t)− ue; δx(t)

def
= x(t)− xe; (3.27)

δy(t)
def
= y(t)− ye; δx0

def
= x0 − xe; ye

def
= g(xe, ue) (3.28)
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Chapter 4

MODELLING AND DESIGN TRADE STUDIES FOR A

DIFFERENTIAL-DRIVE MOBILE ROBOT

4.1 Introduction and Overview

In this chapter, we try to shed some light on the dynamic properties of three

different input/output representations of DDV models 1 . Further to this, we also try

to answer some of the fundamental questions associated with the modeling of DDV’s:

1) How the different design parameters (such as mass, moment of inertia, center of

gravity, radius of wheels) will impact the behavior of these models? 2) When is a de-

centralized controller sufficient? When is a centralized controller necessary. In order

to answer these questions, we first present a brief overview of the kinematic (Section

4.2.1) and dynamic model (Section 4.2.2) of the DDV followed by actuator dynamics

and parameter estimation (Section 4.2.3). The two-input two-output (TITO) nonlin-

ear time-invariant model, taken from [22], will form the basis of this discussion. Next,

we present the three different models of the DDV and analyze each of these designs in

the frequency domain while varying the different design parameters mentioned above.

Further, the frequency domain analysis presented in this chapter will pave the way

for illustrating the impact of these trade studies on the performance of speed and

position-direction control laws presented in Chapter 4.

1P[ear ,eal
]→[ωr,ωl]; P[ear ,eal

]→[v,ω]; P[ear+eal
,ear−eal

]→[ωr,ω]. Here, (ear , eal
) represent the voltage

inputs to the right and left actuators, (v, ω) represent the linear and angular velocity of the vehicle,
and (ωr, ωl) represent the right and left wheel angular velocities
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4.2 Modeling of a Differential-Drive Ground Robot

Mobile robots are categorized as differential drive vehicles because of their use

of the so-called differential drive mechanism. This mechanism involves two motors,

aligned along the same axis, that can rotate independently. Rotation in the same

direction allows the vehicle to go forward/backward, while rotation in opposite direc-

tions allows the vehicle to turn left/right. This differential drive mechanism eliminates

the necessity for a steering mechanism, which in turn simplifies the dynamics of the

vehicle and thereby used by the majority of researchers. Withing in this thesis, we

assume that both of the actuators are identical in order to simplify the dynamical

model and gain useful insights, however, in practice the differences in the actuators

should be considered.

We first discuss the kinematic model of the DDV, followed by the dynamic model

without including the DC motor dynamics. Next, we discuss the actuator dynamics

and present a brief overview of the procedure for estimating the motor dynamics.

Finally, we present the linear state-space representation of the dynamic model of the

DDV including the actuator dynamics. In order to comprehend the discussions pre-

sented in forthcoming sections, it is necessary to take a look at the various parameter

definitions presented in Table 4.1. Further to this, in Table 4.2, the nominal values

for these vehicle parameters have been specified. Please note that column two (DDV -

150 RPM) in Table 4.2 corresponds to an older DDV that is equipped with low-speed

high torque - 150 RPM motors, while column three corresponds to the high-speed

high torque - 5,300 RPM motors described in Chapter 2. The parameters mentioned

in Table 4.2 are directly measurable except for I, the value of I is estimated by ap-

proximating the moment of inertia values of individual components and combining

them together using the parallel and perpendicular axis theorems. The MATLAB
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code for estimating the value of I has been presented in Appendix B.

Parameter Definition

m Mass of fully loaded vehicle, m = mc + 2mw

mc Mass of vehicle without wheels and motors

mw Mass of single wheel-motor combination

Iw Wheel+motor moment of inertia about axle

I Total inertia: I = Ic +mcd
2 + 2mwL

2
w + Iw

r Radius of wheels

l Length of the robot chassis

dw Distance between two wheels (at midpoint)

d Distance c.g. lies forward of wheel axles

La Armature inductance

Ra Armature resistance

Kb Back EMF constant

Kt Torque constant

Kg Motor-wheel gear (down) ratio

β Speed damping constant

Table 4.1: DDV Nominal Parameter Definitions
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Parameter Value (DDV - 150 RPM) Value (DDV - 5,300 RPM)

m 3.4 kg 6.80 kg

mc 2.76 kg 4.17 kg

mw 0.32 kg 1.315 kg

I 0.042 kg m2 0.332 kg m2

r 0.042 m 0.039 m

l 0.28 m 0.434 m

dw 25 m 0.324 m

d 0.025 m 0 m

Table 4.2: DDV Nominal Parameter Values

4.2.1 Differential-Drive Robot Kinematics

The purpose of the kinematic model is to represent the motion of the system

without considering the mass, inertia, or the forces affecting the motion. For a DDV,

the purpose of a kinematic model is to relate the linear and angular velocities of the

vehicle with the geometric parameters of the vehicle i.e. wheel radius, and width of

the vehicle.

The various parameters associated with the DDV are presented in Figure 4.1. Let

(XI , YI) represents that coordinate axis of the global frame, and it can be seen that

(x, y) represent the position coordinates of the DDV with respect to the global frame

and θ represents that angle made by the DDV’s longitudinal axis with the XI axis.

More precisely, the (x, y) coordinates correspond to the center of the wheel axis.

Before we present the kinematic model, it is important to understand the con-

straints/assumptions that characterize the motion of a differential drive vehicle.
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• Zero Lateral Motion: This means that the DDV cannot move along its lateral

axis. This constraint is quite intuitive since the vehicle cannot move sideways

without turning unless the vehicle is fitted with mecanum wheels. It is this

constraint that results in the non-holonomic nature of the DDV. Therefore, by

equating the velocity of the vehicle in the lateral direction to zero, we obtain

the following condition

− ẋ sin θ + ẏ cos θ = 0 (4.1)

• Zero Wheel Slip/Pure Rolling Motion: This constraint assumes that there

is always sufficient friction between the wheels and the ground surface to ensure

that there is no slip along the longitudinal axis and no skidding along the lateral

axis of the DDV.

Based on the above constraints, the kinematic model of the robot can be derived

as shown in [22]. Equation (4.2) shows the kinematic model of the DDV.


ẋ

ẏ

θ̇

 =


cos θ

sin θ

0

 v +


0

0

1

ω (4.2)

where v =
√
ẋ2 + ẏ2 represents the linear velocity of the vehicle, and ω = θ̇ represents

the angular velocity of the vehicle. From the above model, (v, w) can be seen as

control inputs to vary the position (x, y, θ) of the vehicle. Well, this is not intuitive

- especially to a controls person because in real-world scenarios the mass and inertia

effects prevent the system from generating instantaneous (v, ω). This is the reason

why a dynamic model is essential to design a practical control law, and a direct

consequence of this phenomenon will be discussed in Chapter 6.

The linear and angular velocities of the DDV can be related to the wheel angular
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Figure 4.1: DDV Visualization

velocities as shown in equations (4.3),(4.4). A detailed derivation of this relation is

presented in [46].

v
ω

 = M

ωr
ωl

 (4.3)

M =

 r
2

r
2

r
dw
− r
dw

 , M−1 =

1
r

dw
2r

1
r
−dw

2r

 (4.4)
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4.2.2 Differential-Drive Robot Dynamics

The purpose of the dynamical model is to capture the effect of various forces acting

on a system that can impact its motion. There are two widely used approaches for

deriving the dynamic model of a plant or system in general - the Lagrange Dynamic

Approach and the Newton-Euler Approach. In [22], the author has presented the

detailed steps involved in deriving the dynamics of a DDV using both approaches.

The results obtained are presented in equations (4.5) - (4.7).

(m+
2Iw
r2

)v̇ −mcdω
2 =

1

r
(τr + τl) (4.5)

(I +
d2wIw
2r2

)ω̇ +mcdωv =
dw
2r

(τr − τl) (4.6)

Iw + r2

d2w
(1
4
md2w + I) r2

d2w
(1
4
md2w − I)

r2

d2w
(1
4
md2w − I) Iw + r2

d2w
(1
4
md2w + I)


ω̇r
ω̇l


=

 0 r2
d2w
mcdω

− r2

dw
mcdω 0


ωr
ωl

 +

τr
τl


(4.7)

In the above nonlinear time-invariant equations, (τR, τL) represent the input torques

acting on the right and left wheels, (v, ω) represent the linear and angular velocities of

the vehicle, and (ωr, ωl) represent the angular velocities of the right and left wheels.

Equations (4.5), (4.6) and equation (4.7) essential represent the same dynamics -

substituting equation (4.3) in equations (4.5), (4.6) yields equation (4.7). The other

parameters that appear in the above equations are as follows: Iw represents the

moment of inertia of the wheel-motor system about the vehicle axis, r represents the

radius of the wheel, dw represents the distance between the midpoints of two wheels,

m represents the mass of the entire vehicle, I represents the total moment of inertia

71



of the vehicle including the motors and wheels, mc represents the mass of the vehicle

excluding the actuators and wheels, and d represents the distance between the center

of gravity and the midpoint on the vehicle axis.

4.2.3 Actuator (DC Motor) Dynamics and Parameter Estimation

DC motors are one of the most commonly used actuators in mobile robotic applica-

tions. There are two classes of DC motors: 1) Field-current controlled; 2) Armature-

current controlled [66]. In this thesis, we would be dealing with the armature-current

controlled DC motor. In this particular motor class, the armature voltage (ea) is

used as a control input while maintaining the field circuit conditions to be constant.

Specifically, for a permanent magnet DC motor, the dynamics can be modeled by the

linear time-invariant (LTI) equations presented below. Figure 4.2 shows the block

diagram representation of DC motor dynamics.

Figure 4.2: DC Motor Speed - Voltage Dynamical Model

Armature Equation:

ear,l = La
diar,l
dt

+Raiar,l + ebr,l (4.8)

Back EMF Equation:

ebr,l = KbKgωr,l (4.9)

Torque Equation:

τbr,l = Ktiar,l (4.10)
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Load Equation:

τr,l = Kgτbr,l −K2
gβωr,l (4.11)

here, ear,l represent the input voltages applied to the right and left motors, and τr, τl

represent the output torque generated by the corresponding DC motors. The follow-

ing are the other parameters presented in the above equation: ωr,l and ebr,l represent

the wheel angular velocities and back emf of right and left motors respectively, Kb

represents the back emf constant, Kt represents the motor torque constant, β repre-

sents the damping constant, Ra represents the armature resistance, La represents the

armature inductance, iar,l represents the armature current.

Based on the above equations, the motor transfer function from input voltage ea

to the angular speed ω can be represented as follows:

ωr,l
ear,l

=

[
Kt
Kg

(Iws+ β)(Las+Ra) +KtKb

]
(4.12)

Equation (4.12) is a second-order transfer function. Furthermore, we can assume

that the armature inductance La is negligibly small (since La/Ra << 1), in which

case, the motor transfer function presented in equation (4.12) can be approximated

as a first order system as shown below

ωr,l
ear,l
≈

[
Kt

KgRaIw

s+ Raβ+KtKb
RaIw

]
(4.13)

Given the above, we arrive at the following equations for the motor dominant pole

and DC gain

Motor DC Gain =

Kt
Kg

Raβ +KtKb

(4.14)

Motor Dominant Pole =
Raβ +KtKb

RaIw
(4.15)

From equation (4.15) it can be inferred that the bandwidth of the motor is de-

pendent on the parameters β,Kt, Kb, Iw, and Ra i.e. the motor response is faster
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for larger β,Kt, and Kb values, and for smaller Iw, and Ra values. Although this

inference might seem interesting, the parameters cannot be varied in an actual motor

since they are fixed during manufacturing. Therefore, the above understanding can

be used as a guide while selecting/purchasing the motors. The motor parameters

mentioned in Table 4.3 are estimated by iterating between the model-based simula-

tions and experimental step response data collected at different input voltages and

operation speeds. Column two (DDV - 150 RPM) corresponds to an older DDV that

is equipped with 150 RPM motors, while columns three and four correspond to the

new motors presented in Chapter 2. A detailed description of the procedure involved

in estimating these values has been presented in [45] - section 3.5.2.

One major drawback of the first-order model in equation (4.13) is that it does

not include the effect of static friction and battery internal resistance. Under no-

load/off-ground case, the DC motor has a linear behavior throughout the operating

point, however, under load/on-ground case, the nonlinearities due to static friction

(causes an increase in armature current at low voltage) and battery internal resistance

(responsible for torque saturation at high voltage) dominate. A simple method to

model the behavior of the motor under load is to estimate the parameters locally

using piece-wise linear first-order models that fit locally. Please refer to section 3.7

in [45] to get a thorough insight on dealing with DC motor nonlinearities under load.

A small scale chassis dynamo-meter setup has been built (Figure 4.3) to estimate

the parameters of the motor under load that are accurate within the local operation

points (Input: 0 V - 6 V; Output: 0 rad/s - 51 rad/sec).
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Par 150 RPM Motor

(With Load)

5,300 RPM Motor

(With Load)

5,300 RPM Motor

(No Load)

Iw 1.67×10−6 kg m2 573×10−6 kg m2 29×10−6 kg m2

La 1.729×10−6 H 13.2×10−6 H 13.2×10−6 H

Ra 3.01 Ω 0.8 Ω 0.8 Ω

Kb 9.5×10−3 V/rad/s 0.201 V/rad/s 0.0183 V/rad/s

Kt 9.5×10−3 Nm/A 0.201 Nm/A 0.0183 Nm/A

Kg 50 1 1

β 3.29×10−6 Nms 7.4×10−6 Nms 110×10−6 Nms

Table 4.3: DC Motor Parameter Values

Figure 4.3: Small Scale Chassis Dynamo-meter Setup
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4.2.4 TITO LTI Model with Actuator Dynamics

In this section, we combine the dynamic model of the DDV discussed in Section

4.2.2 with the actuator dynamics presented in the previous section to form the com-

plete nonlinear dynamics representation of the DDV. Further to this, we derive the

state space representation of the TITO LTI model of the DDV including the actuator

dynamics. Though this state representation is first presented in [46], [45], we have

made minor corrections to the A and B matrices. This TITO LTI model will be used

as the basis for controller design and parameter trade studies in the frequency domain

presented in the forthcoming sections. Figure 4.5 represents the block diagram of the

nonlinear dynamical model from motor input voltages to wheel angular velocities,

and Figure 4.4 represents the DDV dynamics excluding the actuator dynamics.

Figure 4.4: DDV Dynamics (τr, τl)→ (ωr, ωl)

From Figure 4.4 it can be clearly seen that there is coupling introduced due to the

motor torques (τr, τl) at the input and also due to the intermediate linear and angular

velocities (v, ω) outputs. The associated fourth-order state-space representation of the

TITO LTI model is given by
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Figure 4.5: DDV Dynamics (ear , eal)→ (ωr, ωl)

ẋ = Ax+Bu y = Cx+Du (4.16)

where x = [v ω iar ial ]
T , u = [ear eal ]

T and y = [ωr ωl]
T ,

A =



−2βK2
g

r2A

2mcdωeq
A

KtKg
rA

KtKg
rA

−mcdωeq
B

−(mcdveq
B

+
βd2wK

2
g

2r2B
) Ktdw

2rB
−Ktdw
2rB

−KgKb
Lar

−KgKbdw
2Lar

−Ra
La

0

−KgKb
Lar

KgKbdw
2Lar

0 Ra
La


B =



0 0

0 0

1
La

0

0 1
La


(4.17)

C =

1
r

dw
2r

0 0

1
r
−dw
2r

0 0

 D =

0 0

0 0

 (4.18)

where A = (m + 2Iw
r2

) and B = (I + d2wIw
2r2

), v represents the linear velocity of the

vehicle, ω represents the angular velocity of the vehicle, (iar , ial) represent the ar-

mature current of the right and left motors respectively and (ear , eal) represent the

input voltages to the right and left motors respectively. The latter being the control
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inputs to the DDV. Additional system parameters shown in equations (4.17), (4.18)

are as follows: β represents the damping constant of the motor, Kg represents the

motor gear ratio, Kb represents the back emf constant, Kt represents the torque con-

stant of the vehicle, R represents the radius of the wheel, mc represents the mass of

the vehicle excluding the motors and wheels, d represents the distance between the

center of gravity and the midpoint of the DDV wheel axis, dw represents the dis-

tance between the midpoints of two wheels, (veq, ωeq) represent the equilibrium linear

and angular velocities at which the TITIO model has been linearized, Ra represents

the resistance of the motor armature winding, and La represents the inductance of

the winding (often negligibly small). Please note that during the derivation of this

state-space representation, both the motors are assumed to have the same internal

parameters: β, Kb, Kt, Ra, La. Though this is a widely used assumption throughout

the literature, its implications will be considered in future work.

4.3 Design Trade Studies

In this section, we will introduce the three different variations of the TITO LTI

system - presented in section 4.2.4 - based on the input and output parameters: 1)

(ear , eal) → (ωr, ωl); 2) (ear , eal) → (v, ω); 3) (ear + eal , ear − eal) → (v, ω). Further

to this, we will address the reasons for considering these different models and provide

insights into the input-output coupling and controller design aspects. In addition

to this, we will present the frequency domain analysis of these models for different

design parameter variations.

4.3.1 TITO LTI Model - Input/Output Variations and Analysis

Lets consider the notations P[ear ,eal ]→[ωr,ωl], P[ear ,eal ]→[v,ω] and P[ear+eal ,ear−eal ]→[v,ω]

to represent the input to output transfer functions of the (ear , eal)→ (ωr, ωl), (ear , eal)

78



→(v, ω) and (ear +eal , ear−eal)→ (v, ω) LTI systems. With these notations in mind,

we can establish the relationship between them as follows:

P[ear ,eal ]→[v,ω] = MP[ear ,eal ]→[ωr,ωl] (4.19)

P[ear+eal ,ear−eal ]→[v,ω] = MP[ear ,eal ]→[ωr,ωl]E (4.20)

M =

 r
2

r
2

r
dw
− r
dw

 , E =

1
2

1
2

1
2
−2

2

 (4.21)

The above transfer functions relationship can be extended to the state-space rep-

resentations as well. The fourth-order state-space representation of the (ear , eal) →

(v, ω) system is given by

ẋ = Ax+Bu y = MCx+Du (4.22)

where x = [v ω iar ial ]
T , u = [ear eal ]

T and y = [v ω]T . The corresponding represen-

tation for the (ear + eal , ear − eal)→ (v, ω) system is given by

ẋ = Ax+BEu y = MCx+Du (4.23)

where x = [v ω iar ial ]
T , u = [ear + eal ear − eal ]T and y = [v ω]T . Please note that

the A, B, C and D matrices correspond to those in equations (4.17), (4.18).

Before we proceed with discussing the coupling and control issues associated with

these three systems, it is important that we make the following observation in order

to guide the discussion.

1. From equation (4.7) and Figure 4.5, it can be inferred that the dynamics of

a DDV are nonlinear in nature and naturally there exists coupling between

the input wheel torques and the output of the system (irrespective of what we

consider as output i.e. (v, ω) or (ωr, ωl).
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2. However, under specific conditions, the dynamical models presented in equa-

tions (4.5) - (4.7) exhibits the special properties as shown here:

• At d = 0 i.e. when the center of gravity of the DDV coincides with the

midpoint of its wheel axis, the dynamical model becomes linear in nature.

This also means that the state-space representation of the TITO LTI model

becomes independent of the (veq, ωeq) terms. At d = 0 we haveω̇r
ω̇l

 =

 1
c1r2

+ d2w
4c2r2

1
c1r2
− d2w

4c2r2

1
c1r2
− d2w

4c2r2
1

c1r2
+ d2w

4c2r2


τr
τl

 (4.24)

v̇
ω̇

 =

 1
c1r

1
c1r

dw
c2r
− dw
c2r


τr
τl

 (4.25)

where c1 = (m+ 2Iw
r2

) and c2 = (I + d2wIw
2r2

). We consider the motor output

torques (τr, τl) as the input to the system instead of motor voltages (ear , eal)

because this would simplify the calculations involved. Moreover, the results

obtained based on the input torque system will be valid for the input

voltage system as well.

• In order to further examine the models is equations (4.24), (4.25), lets

adopt the following notationω̇r
ω̇l

 =

P11 P12

P21 P22


τr
τl

 (4.26)

v̇
ω̇

 =

Q11 Q12

Q21 Q22


τr
τl

 (4.27)

where P11 = P22 = 1
c1r2

+ d2w
4c2r2

, P12 = P21 = 1
c1r2
− d2w

4c2r2
, Q11 = Q12 = 1

c1r
,

Q21 = −Q22 = dw
c2r

. From equation (4.26) it can be seen that the matrix is

symmetric i.e. same diagonal and off-diagonal elements, and there exists
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coupling between the inputs (τr, τl) and the outputs (ωr, ωl). In order to

decouple the system, the off-diagonal element (P12, P21) should become

zero. Hence, equating the terms (P12, P21) to zero yields the following

condition.

Idecoupling = m(
dw
2

)2 (4.28)

The consequence of this result is that

if we can design a DDV with d = 0 and I = Idecoupling, the resulting

(ear , eal)→ (ωr, ωl) system is linear and decoupled across all input-output

combinations.

Further, if we assume that the mass of the vehicle is uniformly distributed

and the moment of inertia of the wheel motor combination is negligible

(Iw ≈ 0), we can further simplify the Idecoupling condition to obtain the

following

ARdecoupling =
l

dw
=
√

2

√
1− 6(

Iw
mcd2w

) ≈
√

2 (4.29)

here l represents the length of the vehicle and dw represents the width

of the vehicle (width of the vehicle is also assumed to be equal to the

distance between the wheel midpoints). This condition gives us the ratio

of length to the width that has to considered while designing a DDV in

order to obtain a linear and decoupled dynamical system. An aspect ration

of
√

2 is quite intuitive and can be observed in most of the current on-road

vehicles. Please note that the AR condition has been first addressed in [4],

and minor corrections have been made to that result before reintroducing

it in this thesis.
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• Now that we have derived the Idecoupling condition that would decouple

the (ear , eal)→ (ωr, ωl) system in equation (4.24), can a similar result be

obtained for the (ear , eal)→ (v, ω) system shown in equation (4.25)? This

will not be possible because from equation (4.27), we know that Q11 = Q12

and Q21 = −Q22. So, any attempt to constrain the design parameters such

as I,dw,m or R in order to make the off-diagonal elements to zero will effect

the diagonal elements as well.

From the aforementioned paragraph, it is clear that (ear , eal) → (v, ω)

cannot be decoupled by constraining the design parameters, nevertheless,

let us consider the following linear transformation on the plant inputτr
τl

 =

1
2

1
2

1
2
−1

2


τr + τl

τr − τl

 = E

τr + τl

τr − τl

 (4.30)

here E is a non-singular matrix. Substituting this in equation (4.25) yields

the following relation v̇
ω̇

 =

 1
c1r

0

0 − dw
c2r


τr + τl

τr − τl

 (4.31)

Equation (4.31) suggests that if we consider the sum and difference of

torques as inputs to the (v, ω) system, the resultant system remains de-

coupled for all operating points (veq, ωeq), irrespective of the variations in

the design parameters. Since the output motor torque is a linear func-

tion of the applied input voltage 2 , this result can be extended to the

(ear +eal , ear−eal)→ (v, ω) system as well. The consequence of this result

that

2more specifically, output motor torque is a function of input voltage and angular velocity of
the wheel as shown in Figure 4.5, but in most practical cases, the damping constant is very small
making the impact of wheel angular velocity negligible
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for d = 0, if we consider the sum and difference of voltages as inputs to

the (v, ω) system, the resulting (ear + eal , ear − eal)→ (v, ω) system is

decoupled at all operating points (veq, ωeq) - irrespective of any variations

in design parameters such as I, dw, m or r.

As a result of these decoupling properties, it is desirable to consider the

(ear + eal , ear − eal)→ (v, ω) system over the (ear , eal)→ (v, ω) system.

Based on the above discussion, it can be justified to classify the DDV models into

two categories - d = 0 and d 6= 0 - and perform design trade studies to understand

their impact on input-output coupling and bandwidth of the system.

4.3.2 Trade Studies for d = 0

As mentioned earlier, at d = 0 the (ear , eal)→ (ωr, ωl) and (ear + eal , ear − eal)→

(v, ω) systems become independent of the operating points (veq, ωeq). Assuming that

the motor parameters are fixed and since d = 0, we can consider the moment of

inertia I, the mass of the vehicle m, and the radius of the wheel r as the critical

design parameters.

Variation in Moment of Inertia I. The following bode magnitude and singular

value plots will enable us to understand the variation in dynamic properties of the

(ear , eal) → (ωr, ωl) and (ear + eal , ear − eal) → (v, ω) systems as the parameter I is

varied.
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Figure 4.6: Bode Magnitude Response of P[ear ,eal ]→[ωr,ωl] System: Varying I
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Figure 4.7: Singular Value Response of (ear , eal)→ (ωr, ωl) System: Varying I

From the frequency response plots presented above, the following observations can
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be made for the (ear , eal)→ (ωr, ωl) plant:

• The system remains decoupled when the moment of inertia I is equal to IAR
3

• At dc there is a little coupling between the inputs and outputs, but as the value

of I is varied beyond the IAR, there is a peak in the off-diagonal elements at 11

rad/sec

• It is also observed that the diagonal elements show a negligible amount of vari-

ation with the changes in the moment of inertia
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Figure 4.8: Bode Magnitude Response of P[ear+eal ,ear−eal ]→[v,ω] System: Varying I

3IAR = Idecoupling
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Figure 4.9: Singular Value Response of (ear + eal , ear − eal)→ (v, ω) System: Varying

I

From the frequency response plots mentioned above, the following observations

can be made for the (ear + eal , ear − eal)→ (v, ω) plant:

• The system is decoupled for all possible variations of I

• It can be see that the input-output frequency response is unsymmetric, and

the minimum singular value at low frequencies is associated with the output

velocity v channel

• The response from the (ear + eal → v) channel is unperturbed by the variations

in I, however, the response from (ear−eal → ω) channel becomes slightly faster

as the value of I is reduced.

Variation in Mass of the Vehicle m. The mass m of the DDV is increased while

keeping the mass of the motor wheel combination mw to be the same. This variation
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in m is considered under the assumption that actuator characteristics remain the

same in spite of an increase in the mass.
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Figure 4.10: Bode Magnitude Response of P[ear ,eal ]→[ωr,ωl] System: Varying m
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Figure 4.11: Singular Value Response of P[ear ,eal ]→[ωr,ωl] System: Varying m
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From the frequency response plots presented above, the following observations can

be made for the P[ear ,eal ]→[ωr,ωl] plant:

• At dc there is a little coupling between the inputs and outputs, but with the

increase in the value of m, there is an increase in the input-output coupling

with the peak occurring at 3.56 rad/sec

• It can also be noticed that varying the mass of the system has a negligible

impact on the response of diagonal elements
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Figure 4.12: Bode Magnitude Response of P[ear+eal ,ear−eal ]→[v,ω] System: Varying m
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Figure 4.13: Singular Value Response of P[ear+eal ,ear−eal ]→[v,ω] System: Varying m

From the frequency response plots presented above, the following observations can

be made for the P[ear+eal ,ear−eal ]→[v,ω] plant:

• The major point over here is that the (ear + eal , ear − eal) → (v, ω) system

remains decoupled irrespective of the variation in the total mass of the system

• The response from the (ear − eal → ω) channel is unperturbed by the variations

in m, however, the response from (ear + eal → )̌ channel becomes slightly faster

as the value of m is increased

Variation in Radius of the Wheel r. Here the radius of the wheel is varied under

the assumption that the actuator characteristics remain constant.
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Figure 4.14: Bode Magnitude Response of P[ear ,eal ]→[ωr,ωl] System: Varying r
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Figure 4.15: Singular Value Response of P[ear ,eal ]→[ωr,ωl] System: Varying r

From the frequency response plots presented above, the following observations can
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be made for the P[ear ,eal ]→[ωr,ωl] plant:

• From the response of the diagonal elements, it can be noticed that the increase

in the radius of the wheel makes the response slower

• At dc it can be noticed that there is a little coupling between the inputs and

outputs, but it gradually increases with frequency until reaching a peak

• Further, it can be observed that the increase in the radius of the wheel has

shifted the peak from 5.27 rad/sec to 1.04 rad/sec
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Figure 4.16: Bode Magnitude Response of P[ear+eal ,ear−eal ]→[v,ω] System: Varying r
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Figure 4.17: Singular Value Response of P[ear+eal ,ear−eal ]→[v,ω] System: Varying r

From the frequency response plots presented above, the following observations can

be made for the (ear + eal , ear − eal)→ (v, ω) plant:

• The main point to be noticed is that (ear+eal , ear−eal)→ (v, ω) system remains

decoupled irrespective of the variations in the radius of the wheel r

• In the case of off-diagonal elements it can be noticed that an increase in the

r values causes an increase in the gain while reducing the bandwidth of the

system

4.3.3 Trade Studies for d 6= 0

For d 6= 0, the dynamics of (ear , eal) → (ωr, ωl) and (ear + eal , ear − eal) →

(v, ω) systems become nonlinear and hence the TITO LTI models are dependent on

the operation points (veq, ωeq). Not to mention, the models also lose their unique

decoupling properties that existed when d = 0. Given this, we can consider veq, ωeq,
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d, m, r and I as the critical design parameters. Please note that the effect of other

parameters such as length, width, or mass of the wheel-motor combination will be

captured by one or the other parameters that are mentioned earlier. The following

bode magnitude and singular value plots will enable us to understand the variation

in dynamic properties of the (ear , eal) → (ωr, ωl) and (ear + eal , ear − eal) → (v, ω)

systems as each of these parameters are varied.

Dominant Pole Variation with d. The figure shown below represents the variation

in the position of the dominant pole with respect to the variation in the value of the

center of gravity d as the equilibrium velocity is increased veq. The position of mc is

shifted in order to vary the value of d. The value of d is limited to (−2.8,+2.8) m

since it is the maximum possible variation that is allowed within the DDV dimensions

without adding additional mass. A positive value of the d indicates that the center of

gravity of the vehicle is located towards the front of the vehicle from the wheel axis,

and a positive veq denotes that the vehicle is moving in the forward direction.
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Figure 4.18: Dominant Pole Variation with d
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From the above above figure, the following observations can be made:

• Irrespective of the variation in d the system remains stable as long as the veq is

less than 1.5 m/s

• For veq ≥ 1.5 m/s and d < 0, the system becomes unstable when the d is reduced

beyond a certain value within the existing limits i.e. −2.8 ≤ d < 0

• For d > 0, the system remains stable irrespective of the variations in the value

of veq, and for veq > 1 m/s the variations in the dominant pole location is almost

negligible

Variation in Equilibrium Velocity veq. The following figures show the frequency

response of the (ear , eal)→ (ωr, ωl) and the (ear + eal , ear − eal)→ (v, ω) systems for

the variation in veq values at d = 0.1 m and ωeq = 0.8 rad/sec.
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Figure 4.19: Bode Magnitude Response of P[ear ,eal ]→[ωr,ωl] System: Varying veq
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Figure 4.20: Singular Value Response of P[ear ,eal ]→[ωr,ωl] System: Varying veq

From the frequency response plots presented above, the following observations can

be made for the (ear , eal)→ (ωr, ωl) plant:

• There is a peak in off-diagonal element response at a frequency of 3.8 rad/sec

• There is an increase in coupling at low frequencies with an increase in the

equilibrium velocity veq

• The diagonal elements are less susceptible to the variation in the equilibrium

velocity veq
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Figure 4.21: Bode Magnitude Response of P[ear+eal ,ear−eal ]→[v,ω] System: Varying veq
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Figure 4.22: Singular Value Response of P[ear+eal ,ear−eal ]→[v,ω] System: Varying veq

From the frequency response plots presented above, the following observations can
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be made for the P[ear+eal ,ear−eal ]→[v,ω] plant:

• It can be observed that there is a decrease in coupling as the vehicle moves at

higher speeds

• Unlike the (ear , eal) → (ωr, ωl) plant, there is no peak in off-diagonal element

response with an increase in the equilibrium velocity

• It can also be noticed that the response from (ear − eal → ω) tends to become

slower with the increase in veq while the (ear + eal → )̌ remains unperturbed

Variation in Equilibrium Angular Velocity ωeq. The following figures show the

frequency response of the (ear , eal) → (ωr, ωl) and the (ear + eal , ear − eal) → (v, ω)

systems for the variation in ωeq values at d = 0.1 m and veq = 0.8 rad/sec.
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Figure 4.23: Bode Magnitude Response of P[ear ,eal ]→[ωr,ωl] System: Varying ωeq
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Figure 4.24: Singular Value Response of P[ear ,eal ]→[ωr,ωl] System: Varying ωeq

From the frequency response plots presented above, the following observations can

be made for the P[ear ,eal ]→[ωr,ωl] plant:

• There is a peak in off-diagonal elements response at a frequency of 6 rad/sec

• There is an increase in coupling at lower frequencies with an increase in the

absolute value of the equilibrium angular velocity |ωeq|
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Figure 4.25: Bode Magnitude Response of P[ear+eal ,ear−eal ]→[v,ω] System: Varying ωeq
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Figure 4.26: Singular Value Response of P[ear+eal ,ear−eal ]→[v,ω] System: Varying ωeq

From the frequency response plots presented above, the following observations can

99



be made for the P[ear+eal ,ear−eal ]→[v,ω] plant:

• There is an increase in coupling with an increase in the |ωeq|

• No significant change is observed in the response of the diagonal elements with

the variation in ωeq

Variation in Center of Gravity Location d. The following figures show the

frequency response of the (ear , eal) → (ωr, ωl) and the (ear + eal , ear − eal) → (v, ω)

systems for the variation in d values at veq = 2.0 m/sec and weq = 0.8 rad/sec.
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Figure 4.27: Bode Magnitude Response of P[ear ,eal ]→[ωr,ωl] System: Varying d
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Figure 4.28: Singular Value Response of P[ear ,eal ]→[ωr,ωl] System: Varying d

From the frequency response plots presented above, the following observations can

be made for the P[ear ,eal ]→[ωr,ωl] plant:

• There is a significant increase in coupling if dv < 0 i.e. the velocity of the vehicle

and the direction of the center of gravity from the wheel axis are in opposite

directions

• There is a significant variation in case of diagonal elements if the dv < 0
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Figure 4.29: Bode Magnitude Response of P[ear+eal ,ear−eal ]→[v,ω] System: Varying d
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Figure 4.30: Singular Value Response of psdv System: Varying d

From the frequency response plots presented above, the following observations can
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be made for the P[ear+eal ,ear−eal ]→[v,ω] plant:

• There is a significant increase in coupling if dv < 0 i.e. the velocity of the vehicle

and the direction of the center of gravity from the wheel axis are in opposite

directions

• Unlike the diagonal elements in (ear , eal)→ (ωr, ωl) plant, the diagonal elements

in (ear + eal , ear − eal)→ (v, ω) are less susceptible to variations in d

• Almost negligible variation in the response from (ear + eal → )̌ channel is ob-

served with the variation in center of gravity location d

Variation in Moment of Inertia I. The following figures show the frequency

response of the (ear , eal)→ (ωr, ωl) and the (ear + eal , ear − eal)→ (v, ω) systems for

the variation in I values at veq = 2.0 m/sec, weq = 0.8 rad/sec and d = 0.1 m.
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Figure 4.31: Bode Magnitude Response of P[ear ,eal ]→[ωr,ωl] System: Varying I
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Figure 4.32: Singular Value Response of P[ear ,eal ]→[ωr,ωl] System: Varying I

From the frequency response plots presented above, the following observations can

be made for the (ear , eal)→ (ωr, ωl) plant:

• With the increase in the value of the moment of inertia I, there is an increase

in coupling at high frequencies with a peak occurring at 4.2 rad/sec

• However, it can be observed that the diagonal elements are less susceptible to

the variations in I
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Figure 4.33: Bode Magnitude Response of P[ear+eal ,ear−eal ]→[v,ω] System: Varying I
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Figure 4.34: Singular Value Response of P[ear+eal ,ear−eal ]→[v,ω] System: Varying I

From the frequency response plots presented above, the following observations can be
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made for the (ear + eal , ear − eal)→ (v, ω) plant:

• There is a slight increase in coupling at high frequencies but this is negligible

when compared to that of the (ear , eal)→ (ωr, ωl) plant.

• Almost negligible variation in the response from (ear + eal → )̌ channel is

observed with the variation in I, though a slight increase in the response of

(ear − eal → ω) channel is observed at high frequencies

Variation in Mass of the Vehicle m. The following figures show the frequency

response of the (ear , eal) → (ωr, ωl) and the (ear + eal , ear − eal) → (v, ω) systems

for the variation in m values at veq = 2.0 m/sec, weq = 0.8 rad/sec and d = 0.1 m.

Please note that m is varied by adding mass to the center of gravity location without

changing the mass of motor wheel combination mw. And also, it is assumed that

varying the mass m of the system does not affect the motor characteristics.
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Figure 4.35: Bode Magnitude Response of P[ear ,eal ]→[ωr,ωl] System: Varying m
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Figure 4.36: Singular Value Response of P[ear ,eal ]→[ωr,ωl] System: Varying m

From the frequency response plots presented above, the following observations can

be made for the (ear , eal)→ (ωr, ωl) plant:

• From the response of the off-diagonal elements, it can be noticed that increas-

ing the mass m causes an increase in the input-output coupling with a peak

occurring at 4.65 rad/sec

• When compared to the off-diagonal elements, the response of the diagonal ele-

ments shows a negligible variation with an increase in the value of m
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Figure 4.37: Bode Magnitude Response of P[ear+eal ,ear−eal ]→[v,ω] System: Varying m
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Figure 4.38: Singular Value Response of P[ear+eal ,ear−eal ]→[v,ω] System: Varying m

From the frequency response plots presented above, the following observations can
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be made for the (ear + eal , ear − eal)→ (v, ω) plant:

• From the off-diagonal elements response, it can be noticed that an increase in

the value of m causes a very slight increase in the input-output coupling that

is almost negligible when compared to that of (ear , eal)→ (ωr, ωl) system

• In case of diagonal elements response, there is a slight reduction in the gain at

higher frequencies for the (ear + eal → )̌ channel, but the (eareal → ω) channel

shows negligible variations with an increase in m

Variation in Radius of the Wheel r. he following figures show the frequency

response of the (ear , eal)→ (ωr, ωl) and the (ear + eal , ear − eal)→ (v, ω) systems for

the variation in r values at veq = 2.0 m/sec, weq = 0.8 rad/sec and d = 0.1 m.
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Figure 4.39: Bode Magnitude Response of P[ear ,eal ]→[ωr,ωl] System: Varying r
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Figure 4.40: Singular Value Response of P[ear ,eal ]→[ωr,ωl] System: Varying r

From the frequency response plots presented above, the following observations can

be made for the (ear , eal)→ (ωr, ωl) plant:

• From the response of the diagonal elements, it can be noticed that increasing

the radius of the wheel r tends to make the diagonal elements slower

• From the response of the off-diagonal elements, it can be noticed that increasing

the value of r causes an increase in coupling at lower frequencies
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Figure 4.41: Bode Magnitude Response of P[ear+eal ,ear−eal ]→[v,ω] System: Varying r
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Figure 4.42: Singular Value Response of P[ear+eal ,ear−eal ]→[v,ω] System: Varying r

From the frequency response plots presented above, the following observations can
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be made for the (ear + eal , ear − eal)→ (v, ω) plant:

• From the off-diagonal elements response, it can be seen that an increase in the

radius of the wheel r causes an increase in the input-output coupling at lower

frequencies

• For the off diagonal elements response, it can be noticed that (ear + eal → )̌

channel response becomes slightly slower with an increase in r, however, the

(ear − eal → ω) channel response is almost unchanged especially at lower fre-

quencies
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Chapter 5

IMPACT OF DESIGN PARAMETERS ON OUTER-LOOP: SPEED AND

POSITION CONTROL PERFORMANCE

5.1 Introduction and Overview

In the previous chapter, we have seen how the design parameters can impact the

coupling and bandwidth properties of the (ear , eal) → (ωr, ωl) and (ear + eal , ear −

eal) → (v, ω) systems. The goal of this chapter is to understand how these design

parameters impact the performance of trajectory tracking along a curve for different

outer loop algorithms. In order to conduct this study, we first consider eight variations

of the DDV vehicle based on our study in the previous chapter and theorize about

different aspects that we intend to observe (Section 5.2). Secondly, in Section 5.3 we

consider the low-frequency approximated models of these eight variations and design

decentralized PI controllers for inner-loop (v, ω) speed control, that would enable

these eight different models to have an identical closed-loop i.e. same bandwidth

and phase margin. In the last section, Section 5.4, we briefly discuss the design and

implementation of outer-loop cruise control and planar Cartesian stabilization along

a curve followed by detailed time-domain analysis of the performance trade studies.

5.2 DDV Design Notations and Analysis

Figure 5.1 shows the different design variations that we would be considering

in this chapter and also the corresponding notations. Primarily, the designs are

separated based on the location of the center of gravity d i.e. d = 0 and d > 0,

and subsequently, the moment of inertia I is varied to classify the designs further.
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Finally, these designs are further classified based on the input-output models. Albeit

in the previous chapter we have presented the impact of variations in m, r, I and

d on the performance of the plant, we have considered only the variations due to d,

I and input-output modeling for experimental trade studies in this chapter. This is

because variations in r and m will affect the torque-speed characteristics of the motor

which in turn changes several other motor parameters in the DDV model.

Figure 5.1: DDV Design Notations

The eight design variations represented in Figure 5.1 will be abbreviated as follows:

• D1M1: d = 0, I = IAR, (ear , eal)→ (ωr, ωl)

• D1M2: d = 0, I = IAR, (ear + eal , ear − eal)→ (v, ω)
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• D2M1: d = 0, I = 4IAR, (ear , eal)→ (ωr, ωl)

• D2M2: d = 0, I = 4IAR, (ear + eal , ear − eal)→ (v, ω)

• D3M1: d > 0, I = IAR, (ear , eal)→ (ωr, ωl)

• D3M2: d > 0, I = IAR, (ear + eal , ear − eal)→ (v, ω)

• D4M1: d > 0, I = 4IAR, (ear , eal)→ (ωr, ωl)

• D4M2: d > 0, I = 4IAR, (ear + eal , ear − eal)→ (v, ω)

The following equations represent the TITO transfer function representation of

the eight design variations. For designs D3Mi and D4Mi (i = 1,2), since the d 6= 0, the

transfer function representations shown in equations (5.3) - (5.4) and (5.7) - (5.8) are

obtained at operation point veq = 1 m/s,ωeq = 0.8 rad/sec 1 . Additionally, Figures

5.2 - 5.5 represent the bode magnitude plots and singular value plots corresponding

to these eight design variations. Based on these plots and the transfer function pole

locations, the following inference can be made

• Stability: D1M1 ≈ D1M2 > D2M1 ≈ D2M2; D3M1 ≈ D3M2 > D4M1 ≈ D4M2

• Moment of Inertia: D2M1 ≈ D2M2 > D1M1 ≈ D1M2; D4M1 ≈ D4M2 > D3M1

≈ D3M2

• Input-Output Coupling: D2M1 > D1M1 ≈ D2M2 ≈ D1M1; D4M1 > D3M1 >

D3M2 ≈ D4M2

1For d 6= 0, the TITO DDV model is non-linear and therefore it has to be linearized at specific
operating points to represent in transfer function from, please refer to Section 4.3.1
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PD1M1:

Pear,l→[ωr,ωl] =

 44335(s+ 3184)(s+ 5.113) 1.4552e-11(s+ 3067)(s+ 5.343)

1.4552e-11(s+ 3067)(s+ 5.343) 44335(s+ 3184)(s+ 5.113)


(s+ 3184)2(s+ 5.113)2

(5.1)

PD2M1:

Pear,l→[ωr,ωl] =

27711(s+ 3186)(s+ 2.045) 16623s(s+ 3187)

16623s(s+ 3187) 27711(s+ 3186)(s+ 2.045)


(s+ 3186)(s+ 3184)(s+ 5.113)(s+ 1.278)

(5.2)

PD3M1:

Pear,l→[ωr,ωl] =

44335(s+ 3184)(s+ 5.706) 32787(s+ 3187)

32787(s+ 3187) 44335(s+ 3184)(s+ 5.706)


(s+ 3184)2(s+ 6.109)(s+ 5.156)

(5.3)

PD4M1:

Pear,l→[ωr,ωl] =

 27711(s+ 3186)(s+ 2.282) 16623(s+ 3187)(s+ 0.4933)

16623(s+ 3187)(s+ 0.4933) 27711(s+ 3186)(s+ 2.282)


(s+ 3184)2(s+ 5.11)(s+ 1.541)

(5.4)

PD1M2:

P
ear + eal

ear − eal

→[v,ω]

=

931.03(s+ 5.106) 0

0 2629.6(s+ 5.113)


(s+ 3184)(s+ 5.113)(s+ 5.106)

(5.5)

PD2M2:

P
ear + eal

ear − eal

→[v,ω]

=

931.03(s+ 1.278) 0

0 658.61(s+ 5.113)


(s+ 3186)(s+ 5.113)(s+ 1.278)

(5.6)
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PD3M2:

P
ear + eal

ear − eal

→[v,ω]

=

931.03(s+ 3184)(s+ 6.152) −386.74(s+ 3187)

273.47(s+ 3187) 2633.3(s+ 3184)(s+ 5.113)


(s+ 3184)2(s+ 6.109)(s+ 5.156)

(5.7)

PD4M2:

P
ear + eal

ear − eal

→[v,ω]

=

931.03(s+ 3186)(s+ 1.538) −96.726(s+ 3187)

68.413(s+ 3186) 658.61(s+ 3184)(s+ 5.113)


(s+ 3186)(s+ 3184)(s+ 5.11)(s+ 1.541)

(5.8)

Plant Frequency Response. The bode magnitude response of each of the eight

designs is presented in the figures below. From Figure 5.2, it can be observed that

D1M2, D2M2, and D1M1 plants remain completely decoupled at all frequencies,

whereas for D2M1, there is a little coupling at dc between the input and output

which further increase with frequency and reaches its peak at 3.41 rad/sec (a SISO

control strategy is sufficient at lower operation bandwidth i.e. close to DC, but would

require a MIMO control strategy for operation bandwidth close to or greater than

3.41 rad/sec). From Figure 5.3, it can be noticed that all the four plants i.e. D3M1,

D3M2, D4M1, and D4M2, exhibit a significant amount of coupling between the input

and output at all frequencies, and particularly D4M1 exhibits an increase in coupling

at higher frequencies with a peak occurring at 3.41 rad/sec.
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Figure 5.2: Plant Frequency Response D1 & D2
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Figure 5.3: Plant Frequency Response D3 & D4

Plant Singular Values. The singular values of each of the eight designs are pre-
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sented in the figures below. From Figure 5.4, it can be noticed that the minimum

and maximum singular values of the D1M1 plant coincide at all frequencies due to

the symmetric nature of the plant and the absence of coupling between the input and

output, whereas in the case of D2M1, we can see that the minimum and maximum

singular values coincide at lower frequencies but diverge at a frequency of 3.4 rad/sec

due to an increase in the coupling between the input and output. In case of D1M2

and D2M2, performing a svd analysis at dc showed that the minimum singular value

is associated with the (ear + eal → v) channel while the maximum singular value is

associated with the (ear−eal → ω) channel. From Figure 5.5, it can be observed that

there is a slight deviation between the minimum and maximum singular values of

the D3M1 and D4M1 plants due to coupling between the input and output at lower

frequencies and particularly in the case of D4M1, we can see that the minimum and

maximum singular values diverge even more at a frequency greater than 3.4 rad/sec

due to an increase in the input-output coupling as seen in the bode magnitude plot. In

case of D3M2 and D4M2, performing a svd analysis at dc showed that the minimum

singular value is associated predominantly with the (ear + eal → v) channel while

the maximum singular value is associated predominantly with the (ear − eal → ω)

channel.
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Figure 5.4: Plant Singular Values D1 & D2
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Figure 5.5: Plant Singular Values D3 & D4
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5.3 Inner-Loop Decentralized Control Design and Implementation

From Figures 5.2 - 5.3 it can be observed that D1M1, D1M2, and D2M2 are com-

pletely decoupled while the remaining designs have a significant amount of coupling.

As we already know, in the case of a decoupled system we can go for a decentral-

ized PID based controller design, while we require a multi-variable controller in case

of a D3M1, D3M2, D4M1, and D4M2 in order to overcome the input-output cou-

pling. However, in this performance study, we would design decentralized PI-based

controllers for all the eight model variations so that we can have a common base for

comparing their performance. Figures 5.6, 5.7 show the block diagram representation

of the closed-loop control for (ear , eal)→ (ωr, ωl) and (ear +eal , ear−eal)→ (v, ω) sys-

tems. Form these figures it can be seen that both the inner-loop systems are designed

to accept (vref , ωref ) as input and produce (v, ω) as output.

Figure 5.6: (ear , eal)→ (ωr, ωl) System Inner-Loop Control Block Diagram

Figure 5.7: (ear + eal , ear − eal)→ (v, ω) System Inner-Loop Control Block Diagram

As mentioned earlier in Section 5.1, we would like to design the inner-loop con-

troller such that all the eight design variations have similar closed-loop characteristics

i.e. bandwidth and phase margin. From [46], it can be seen that a PI-based inner-
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loop speed controller with one pole roll-off and a command prefilter is sufficient to

control the low-frequency dynamics of a DDV. Given this, we choose the inner-loop

design criteria as follows: 1) Stable closed-loop system 2) Exhibits zeros steady-state

error to step reference input, step output disturbances, and step input disturbances

3) Closed-loop phase margin of approximately 60◦ and a bandwidth of 10rad/sec

4) High-frequency sensor noise and output overshoot attenuation. Based on these

criteria the controller chosen has the following structure:

Ki =
gi(s+ zi)

s
(

100

s+ 100
), W =

zi
s+ zi

(5.9)

The pole at the origin (the integrator) is required, based on the internal model

principle, in order to ensure zero steady-state error to step reference commands,

step input disturbances, and step output disturbances. The prefilter is required in

order to ensure there is no overshoot in the output signal which is caused due to

the derivative action of the controller zero. Furthermore, a one-pole roll-off almost

a decade above the open-loop unit gain crossover frequency (10 rad/sec) is added in

order to attenuate high-frequency controller inputs i.e. K(∞) → 0. Theoretically,

we can increase the bandwidth of the inner-loop indefinitely by using a controller

(since none of the plants have transmission zeros), however, in a real-world, every

practical system has limitations introduced due to peripheral components such as

sensors, actuators, analog to digital converters, sampling rates, etc. and in our case,

the actuators have the least bandwidth limitation close to 11 rad/sec for speeds

beyond 3 m/s. Ideally, based on the factor of ten rule, it is advised to set the inner-

loop bandwidth close to one-tenth of the minimum bandwidth limit enforced by the

peripheral components. However, in our design we choose it to be approximately

10 rad/sec in order to understand the effect of input-output coupling and external

disturbances that are prevalent at higher frequencies.
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The decentralized PI controllers designed based on the above-mentioned criteria

are presented below. Please note that the prefilter and the roll-off at high frequency

are omitted for brevity.

KD1M1 = Kear,l→[ωr,ωl] =

 (0.64s+4.86)
s

0

0 (0.64s+4.86)
s


KD2M1 = Kear,l→[ωr,ωl] =

 (1.07s+6.90)
s

0

0 (1.07s+6.90)
s


KD3M1 = Kear,l→[ωr,ωl] =

 (0.63s+5.22)
s

0

0 (0.63s+5.22)
s


KD4M1 = Kear,l→[ωr,ωl] =

 (1.06s+6.96)
s

0

0 (1.06s+6.96)
s



(5.10)

KD1M2 = K
ear + eal

ear − eal

→[v,ω]

=

 (30.64s+231.5)
s

0

0 10.83s+81.87
s



KD2M2 = K
ear + eal

ear − eal

→[v,ω]

=

 (30.64s+231.5)
s

0

0 (46.56s+144.8)
s



KD3M2 = K
ear + eal

ear − eal

→[v,ω]

=

 (30.64s+231.5)
s

0

0 (10.61s+94.2)
s



KD4M2 = K
ear + eal

ear − eal

→[v,ω]

=

 (30.64s+231.5)
s

0

0 (46.34s+157.2)
s



(5.11)
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Reference Signal to Output (Try) Frequency Response. The bode magnitude

response of the inner-loop system with pre-filter for each of eight designs is presented

in the figures below. From Figure 5.8, by observing the response of the diagonal

elements it can be seen that all the systems exhibit a close loop bandwidth of ap-

proximately 10 rad/sec with the D2M1 system exhibiting a slight peak at 4 rad/sec.

More importantly, it can be noticed that D1M2 and D2M2 have no coupling between

the inputs and outputs. In the case of D1M1 and D2M1, it can be noticed that they

exhibit a slight but almost negligible amount of coupling at low frequencies with a

peak occurring at 4 rad/sec for the D2M1 system. From Figure 5.9, by observing

the response of the diagonal elements it can be seen that all the systems exhibit a

close loop bandwidth of approximately 10 rad/sec with the D4M1 system exhibiting

a slight peak at 4 rad/sec. From observing the response of the off-diagonal elements,

it can be seen that all the four designs i.e. D3M1, D3M2, D4M1, D4M2, exhibit

little coupling between the inputs and outputs at dc that gradually increases with

frequency and with a peak occurring in between 4 rad/sec - 6 rad/sec.
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Figure 5.8: Inner-Loop Frequency Response Try: D1 & D2
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Figure 5.9: Inner-Loop Frequency Response Try: D3 & D4

Open Loop Singular Values. The open-loop singular values at error for the inner-

loop system for each of the eight designs are presented in the figures below. Since we

are using a decentralized controller, the open-loop singular values at error will be the

same as those at the input for the (ear , eal) → (ωr, ωl) models, whereas they would

differ for the (ear + eal , ear − eal) → (v, ω) models. From Figure 5.10, it can be seen

that the minimum and maximum singular values match at lower frequencies for all the

systems except for the D2M2 for which they exhibit a very slight deviation. At low

frequencies, the singular value plots exhibit a slope of -20 dB/dec due to the integral

action in each control channel, and this suggests that low-frequency reference com-

mands will be followed, and low-frequency output disturbances and high-frequency

sensor noise will be attenuated. More specifically, reference commands with frequency

content below 1.2 rad/sec will be followed to within about 20 dB i.e. with a steady-

state error of about 10% and output disturbances with frequency content below 1.2

rad/sec should be attenuated by approximately 20 dB for all the designs.
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Figure 5.10: Open Loop Singular Values: D1 & D2

From Figure 5.11, it can be seen that the minimum and maximum singular values

show a very slight deviation at low frequencies for all the designs, particularly in the

case of D3M1 and D3M2. At low frequencies, the singular value plots exhibit a slope

of -20 dB/dec due to the integral action in each control channel. This suggests that

low-frequency reference commands will be followed, and low-frequency output distur-

bances and high-frequency sensor noise will be attenuated. More specifically, reference

commands with frequency content below 1.2 rad/sec will be followed to within about

20 dB i.e. with a steady-state error of about 10% and output disturbances with fre-

quency content below 1.2 rad/sec should be attenuated by approximately 20 dB for

all the designs.
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Figure 5.11: Open Loop Singular Values: D3 & D4

Sensitivity Singular Values. The sensitivity singular values at error for the inner-

loop system for each of the eight designs are presented in the figures below. Since

we are using a decentralized controller, the sensitivity singular values at error will

be the same as that at the input for the (ear , eal) → (ωr, ωl) models, whereas they

would differ for the (ear + eal , ear − eal) → (v, ω) models. From Figure 5.12, it can

be seen that low-frequency reference commands will be followed and low-frequency

output disturbances will be attenuated. More specifically, it can be seen that reference

commands with frequency content below 1.27 rad/sec should be followed to within

about 20 dB i.e. with a steady-state error of about 10%, and output disturbances

with frequency content below 1.27 rad/sec should be attenuated by approximately 20

dB for all the designs. Further, in the case of D2M1, there is a peak of approximately

1.8 dB in the maximum singular values at 6.8 rad/sec, while in the case of remaining

plants i.e. D1M1, D1M2, D2M2 a peak of approximately 0.65 dB, which is not

significant enough, is observed at 48.8 rad/sec.
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Figure 5.12: Sensitivity Singular Values: D1 & D2

From Figure 5.13, it can be seen that low-frequency reference commands will be

followed and low-frequency output disturbances will be attenuated. More specifically,

it can be seen that reference commands with frequency content below 1.20 rad/sec

should be followed to within about 20 dB i.e. with a steady-state error of about

10%, and output disturbances with frequency content below 1.27 rad/sec should be

attenuated by approximately 20 dB for all the designs. Further, in the case of D4M1,

there is a peak of approximately 1.58 dB in maximum singular values at 6.8 rad/sec,

while in the case of remaining plants i.e. D3M1, D3M2, D4M2 a peak of approximately

0.65 dB, which is not significant enough, is observed at 48.8 rad/sec.
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Figure 5.13: Sensitivity Singular Values: D3 & D4

Complementary Sensitivity Singular Values. The complementary sensitivity

singular values at error for the inner-loop system for each of the eight designs are

presented in the figures below. Since we are using a decentralized controller, the

complementary sensitivity singular values at error will be the same as that at the

input for the (ear , eal) → (ωr, ωl) models, whereas they would differ for the (ear +

eal , ear − eal) → (v, ω) models. From Figure 5.14, it can be seen that low-frequency

reference commands will be followed for all the designs, although a better inference

regarding the same can be made from the sensitivity singular values. Further, in the

case of D2M1, there is a peak of approximately 2.64 dB in maximum singular values

at 4.0 rad/sec, while in the case of D2M2 a peak of approximately 0.68 dB, which is

not significant enough, is observed at 4.0 rad/sec.
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Figure 5.14: Complementary Sensitivity Singular Values: D1 & D2

From Figure 5.15, it can be seen that low-frequency reference commands will be

followed for all designs, though a better inference regarding the same can be made

from the sensitivity singular values. Further, in the case of D4M1, there is a peak of

approximately 2.24 dB in the maximum singular values at 4.0 rad/sec, while in the

case of D4M2 a peak of approximately 0.68 dB, which is not significant enough, is

observed at 4.0 rad/sec.
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Figure 5.15: Complementary Sensitivity Singular Values: D3 & D4

5.4 Outer-Loop Control Design and Impact of Design Parameters: Simulation and

Hardware Trade Studies

Based on the results presented in Sections 5.2, 5.3, we were able to rank the

eight designs based on their natural - stability, input-output coupling, and closed-loop

control effort. These variations are a consequence of the changes in design parameters.

Now, in order to understand how the eight designs impact the performance of outer

loop trajectory tracking algorithms, we shall begin by designing and implementing

PID based (v, θ) Cruise Control and Planar (x, y) Cartesian Stabilization along a

curve. Figure 5.16 shows the simulation trajectory for testing and recording the

performance of these algorithms. Column 1 in Table 5.1 shows various parameters

that we would be comparing for each of the eight designs. The following sections will

provide more details into the design, implementation, and time-domain analysis of

the performance of these algorithms.
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Name Cruise Control Planar Cartesian Stabilization

||θe||∞ vs vref
2 *

||θe||∞ vs R 3 *

||ve||∞ vs vref *

||ve||∞ vs R *

||xe||∞ vs vref *

||xe||∞ vs R *

||ye||∞ vs vref *

||ye||∞ vs R *

U 4 s vref * *

U vs R * *

2 vref - tracking velocity

3 R - radius of the track

4 U - control effort

Table 5.1: Summary of Trade Studies Conducted
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Figure 5.16: Reference Trajectory Visualization

5.4.1 Outer-Loop 1: (v, θ) Cruise Control

In this section, we will show the design and implementation of the (v, θ) cruise

control along a curve. Figures 5.17, 5.18 show the block diagrams of the closed-loop

system implementation for both P[ear ,eal ]→[ωr,ωl] and P[ear+eal ,ear−eal ]→[v,ω] plants in the

inner-loop. Here, the (v, θ) are obtained from the HTC Vive Motion capture system,

the data is passed through a moving average filter before passing into the feedback

loop. The (vref , θref ) commands are predetermined based on reference velocity, sam-

pling rate, length, and radius of curvature of the trajectory.
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Figure 5.17: (ear , eal)→ (ωr, ωl) System Outer-Loop Cruise Control Block Diagram

Figure 5.18: (ear + eal , ear − eal) → (v, ω) System Outer-Loop Cruise Control Block

Diagram

The error dynamics of the cruise control system are quite simple and can be

expressed as

ėθ = −ω (5.12)

where eθ is the error between the desired orientation and actual orientation, and ω

is the angular velocity of the DDV. These error dynamics can be stabilized using a

proportional controller as follows

ω = −kθ eθ (5.13)

Using a proportional controller is completely justified because the system from in-

puts (vref , ωref ) to outputs (v, ω) can be expressed as diag( a
s+a

, b
s+b

) - as long as the

inputs are within the bandwidth limit of the inner-loop. This is a consequence of the

well designed inner loop. Therefore, for the outer-loop θ control we can just use a

proportional controller to stabilize the system provided that the gain is not too large

- remember, the bandwidth of the outer-loop control should always be less than that
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of the inner-loop by a factor of five at least (BWouterloop ≤ 0.2BWinnerloop). If the

gain is too large, the system will begin to oscillate, and in that case, a PD controller

with a proper roll-off, and prefilter would be better.

Simulation and Hardware Trade Studies

The following figures show the variation in the ve, θe and RMS Voltage (control effort)

with respect to changes in the radius of the track, and reference velocity - for each of

the eight design variations.

Increasing Tracking Velocity (vref) for Fixed Radius of Curvature of Tra-

jectory (R). The simulation and hardware data presented in Figure 5.19 - 5.28 are

obtained at inner-loop bandwidth Bi = 10 rad/sec and radius of track R = 1.5 m

while varying the trajectory tracking velocity. The hardware results had to be limited

to trajectory tracking velocity vref ≤ 2 m/s due to the physical restrictions of the

experimental setup.
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Figure 5.19: ||θe||∞ vs Reference Velocity: Simulation Results
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Figure 5.20: ||θe||∞ vs Reference Velocity: Hardware Results
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Figure 5.21: ||θe||∞ vs Reference Velocity: Simulation Results

1 1.2 1.4 1.6 1.8 2

Ref Velocity (m/s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 
e

Figure 5.22: ||θe||∞ vs Reference Velocity: Hardware Results
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Figure 5.23: ||ve||∞ vs Reference Velocity: Simulation Results
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Figure 5.24: ||ve||∞ vs Reference Velocity: Hardware Results
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Figure 5.25: ||ve||∞ vs Reference Velocity: Simulation Results
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Figure 5.26: ||ve||∞ vs Reference Velocity: Hardware Results
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Figure 5.27: Control Effort vs Reference Velocity: Simulation Results
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Figure 5.28: Control Effort vs Reference Velocity: Simulation Results
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From Figures 5.19 - 5.28, the following observations can be made:

• Comparing simulation and hardware results it can be noticed that the eight

design variations follow the same trend, however, the deviations in errors cor-

responding to different designs are more significant in case of hardware results.

• In both simulation and hardware plots, increasing the trajectory tracking ve-

locity vref causes an increase in ||ve||∞, ||θe||∞, RMS Voltage irrespective of the

properties of each of the eight systems.

• From ||ve||∞, ||θe||∞ vs trajectory tracking velocity plots, it can be seen that the

systems with more stable plants i.e. D1M1, D1M2, D3M2, and D3M1, exhibit

higher errors and control effort, when compared to the other systems, with an

increase in trajectory tracking velocity vref ≥ 1.7 m/s, at a constant R = 1.5

m.

• For vref ≤ 1.7 m/s, it can be noticed that systems with higher input-output

coupling at lower frequencies i.e. D2M1 and D4M1, exhibit higher errors

||ve||∞, ||θe||∞ and control effort when when compared to other systems.

• For D2M2, we notice that ||ve||∞ ≤ 0.8, ||θe||∞ ≤ 0.44 at R = 1.5 m and Bi = 10

rad/sec. This means that as long as radius of curvature R ≥ 1.5 m and inner-

loop bandwidth Bi = 10 rad/sec, the trajectory tracking performance will not

be affected significantly for variations in reference velocity vref ≤ 2 m/s.

• For D4M2, we can see that ||ve||∞ ≤ 0.8, ||θe||∞ ≤ 0.44 for 1 ≤ vref ≤ 1.8,

at R ≥ 1.5 m and Bi ≥ 10 rad/sec. Within this reference tracking velocity

range 1 ≤ vref ≤ 1.8 it can be seen that D4M2 performance is similar to that

of D2M2, but steeply increases for vref > 1.8 m/s.
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• For vref < 1.8 m/s, a SISO controller is sufficient to provide good trajectory

tracking properties for a system with input-output coupling, at R ≥ 1.5 m.

• However, for vref < 1.85, a MIMO controller is necessary to achieve a similar

performance.

Varying Radius of Curvature of Trajectory (R) for Fixed Tracking Velocity

(vref). The simulation and hardware data presented in Figures 5.29 - 5.38 is obtained

at inner-loop bandwidth Bi = 10 rad/sec and trajectory tracking velocity vref = 1

m/s while varying the radius of curvature. The hardware results had to be limited

to radius of curvature R ≤ 2 m due to the physical restrictions of the experimental

setup.
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Figure 5.29: ||θe||∞ vs Radius of Track: Simulation Results
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Figure 5.30: ||θe||∞ vs Radius of Track: Hardware Results
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Figure 5.31: ||θe||∞ vs Radius of Track: Simulation Results
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Figure 5.32: ||θe||∞ vs Radius of Track: Hardware Results

1 1.5 2 2.5 3

Radius (m)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 
e

Figure 5.33: ||ve||∞ vs Radius of Track: Simulation Results
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Figure 5.34: ||ve||∞ vs Radius of Track: Hardware Results
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Figure 5.35: ||ve||∞ vs Radius of Track: Simulation Results
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Figure 5.36: ||ve||∞ vs Radius of Track: Hardware Results
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Figure 5.37: Control Effort vs Radius of Track: Simulation Results
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Figure 5.38: Control Effort vs Radius of Track: Simulation Results

From Figures 5.29 - 5.38, the following observations can be made:

• Comparing simulation and hardware results it can be noticed that the eight

design variations follow the same trend, however, the deviations in errors cor-

responding to different designs are more significant in case of hardware results.

• In both simulation and hardware plots, reducing the radius of curvature R

causes an increase in ||ve||∞, ||θe||∞, and RMS Voltage irrespective of the prop-

erties of each of the eight systems.

• From ||ve||∞, ||θe||∞ vs radius of curvature plots, it can be seen that the systems

with higher moment of inertia i.e. D2M1, D2M2, D4M1, and D4M2, exhibit a

steep increase in errors and control effort, when compared to the other systems,

with a decrease in radius of curvature R ≤ 0.75 m, at a constant vref = 1 m/s.
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• For R ≥ 0.75 m, it can be noticed that systems with higher input-output

coupling at lower frequencies i.e. D2M1 and D4M1, exhibit higher errors

||ve||∞, ||θe||∞ and control effort when when compared to other other systems.

• For D2M2, we notice that ||ve||∞ ≤ 0.4, ||θe||∞ ≤ 0.44 at vref = 1 m/s and

Bi = 10 rad/sec. This means that as long as tracking velocity vref ≤ 1 m/s and

inner-loop bandwidth Bi = 10 rad/sec, the trajectory tracking performance will

not be affected significantly for variations in radius of curvature 0.75 ≤ R m.

• For D4M2, we can see that ||ve||∞ ≤ 0.4, ||θe||∞ ≤ 0.44 for 2 ≥ R ≥ 1, at

vref ≤ 1 m/s and Bi = 10 rad/sec. Within this radius of curvature range

2 ≥ R ≥ 1 it can be seen that D4M2 performance is similar to that of D2M2,

but steeply increases for R < 1 m.

• For R > 1 m, a SISO controller is sufficient to provide good trajectory tracking

properties for a system with input-output coupling, at vref ≥ 1 m/s.

• However, for R < 1 m, a MIMO controller is necessary for systems to achieve

similar performance.

5.4.2 Outer-Loop 2: Planar (x, y) Cartesian Stabilization

In this section, we will show the design and implementation of the planar (x, y, θ)

outer-loop control law [85]. Figures 5.39 and 5.40 show the block diagram repre-

sentations of the closed loop system implementation for both P[ear ,eal ]→[ωr,ωl] and

P[ear+eal ,ear−eal ]→[v,ω] plants in the inner-loop. Here, (x, y, θ) are obtained from the

HTC Vive Motion capture system, and the data is passed through a moving average

filter before passing it to the feedback loop. The (xref , yref ) commands are prede-

termined based on the reference velocity, sampling rate, length, and radius of the
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trajectory.

Figure 5.39: (ear , eal)→ (ωr, ωl) System Outer-Loop Control Block Diagram

Figure 5.40: (ear +eal , ear−eal)→ (v, ω) System Outer-Loop Control Block Diagram

Figure 5.39 shows the notations used to define the error dynamics of the system.

Here es represents the distance between the desired position and actual position of

the vehicle, eθ represents the angle between the desired longitudinal axis orientation

and actual longitudinal axis orientation of the vehicle. The non-linear error dynamics

of this system can be expressed using the following equationsės
ėθ

 =

 −1 tan(eθ)es

sin( eθ) cos( eθ)
es

−1


v
w

 (5.14)

Let us consider the proportional control law as shown in [85], [46] - which is as followsv
ω

 =

ks
kθ


es
eθ

 (5.15)

Substituting the above equation in the non-linear error dynamics and linearizing them

about the equilibrium es = eθ = 0 yields the followingės
ėθ

 =

−ks 0

0 ks − kθ


es
eθ

 (5.16)
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These linearized error dynamics will be exponentially stable (local stability at the

equilibrium point) if kθ > ks > 0. As mentioned in [45], the use of a proportional

controller is justified as long as the bandwidth of the outer-loop is less than that of

the inner-loop by a factor of 5 (BWouterloop ≤ 0.2BWinnerloop).

The following figures show the variation in xe, ye, θe and RMS Voltage (control

effort) with respect to changes in the radius of the track, and reference velocity - for

each of the eight design variations.

Increasing Tracking Velocity (vref) for Fixed Radius of Curvature of Tra-

jectory (R). The simulation and hardware data presented in Figure 5.41 - 5.50 are

obtained at inner-loop bandwidth Bi = 10 rad/sec and radius of track R = 1.5 m

while varying the trajectory tracking velocity. The hardware results had to be limited

to trajectory tracking velocity vref ≤ 2 m/s due to the physical restrictions of the

experimental setup.
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Figure 5.41: ||xe||∞ vs Reference Velocity: Simulation Results
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Figure 5.42: ||xe||∞ vs Reference Velocity: Hardware Results
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Figure 5.43: ||xe||∞ vs Reference Velocity: Simulation Results
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Figure 5.44: ||xe||∞ vs Reference Velocity: Hardware Results
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Figure 5.45: ||ye||∞ vs Reference Velocity: Simulation Results
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Figure 5.46: ||ye||∞ vs Reference Velocity: Hardware Results
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Figure 5.47: ||ye||∞ vs Reference Velocity: Simulation Results
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Figure 5.48: ||ye||∞ vs Reference Velocity: Hardware Results
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Figure 5.49: Control Effort vs Reference Velocity: Simulation Results
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Figure 5.50: Control Effort vs Reference Velocity: Simulation Results

From Figures 5.41 - 5.50, the following observations can be made:

• Comparing simulation and hardware results it can be noticed that the eight

design variations follow the same trend, however, the deviations in errors cor-

responding to different designs are more significant in case of hardware results.

• In both simulation and hardware plots, increasing the trajectory tracking ve-

locity vref causes an increase in ||xe||∞, ||ye||∞, RMS Voltage irrespective of the

properties of each of the eight systems.

• From ||xe||∞, ||ye||∞ vs trajectory tracking velocity plots, it can be seen that

the systems with higher moment of inertia i.e.D2M1, D2M2, D4M1, and D4M2,

exhibit a steep increase in errors and control effort, when compared to the other

systems, with an increase in trajectory tracking velocity vref ≥ 1.8 m/s, at a

constant R = 1.5 m.
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• For vref ≤ 1.8 m/s, it can be noticed that systems with higher input-output

coupling at lower frequencies i.e. D2M1 and D4M1, exhibit higher errors

||xe||∞, ||ye||∞ and control effort when when compared to other other systems.

• For D2M2, we notice that ||xe||∞ ≤ 3.5, ||ye||∞ ≤ 2.5 at R = 1.5 m and Bi = 10

rad/sec. This means that as long as radius of curvature R ≥ 1.5 m and inner-

loop bandwidth Bi = 10 rad/sec, the trajectory tracking performance will not

be affected significantly for variations in reference velocity vref ≤ 1.8 m/s.

• For D4M2, we can see that ||xe||∞ ≤ 3.5, ||ye||∞ ≤ 2.5 for 1 ≥ vref ≥ 1.35, at

R ≥ 1.5 m and Bi = 10 rad/sec. Within this reference tracking velocity range

1 ≤ vref ≤ 1.35 it can be seen that D4M2 performance is similar to that of

D2M2, but steeply increases for vref > 1.35 m/s.

• For vref < 1.35 m/s, a SISO controller is sufficient to provide good trajectory

tracking properties for a system with input-output coupling, at R ≥ 1.5 m.

• However, for vref > 1.35 m/s, a MIMO controller is necessary to achieve a

similar performance.

Varying Radius of Curvature of Trajectory (R) for Fixed Tracking Velocity

(vref). The simulation and hardware data presented in Figure 5.51 - 5.59 are obtained

at inner-loop bandwidth Bi = 10 rad/sec and trajectory tracking velocity vref = 1

m/s while varying the radius of curvature. The hardware results had to be limited

to radius of curvature R ≤ 2 m due to the physical restrictions of the experimental

setup.
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Figure 5.51: ||xe||∞ vs Radius of Track: Simulation Results
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Figure 5.52: ||xe||∞ vs Radius of Track: Hardware Results
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Figure 5.53: ||xe||∞ vs Radius of Track: Simulation Results
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Figure 5.54: ||xe||∞ vs Radius of Track: Hardware Results
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Figure 5.55: ||ye||∞ vs Radius of Track: Simulation Results

0.5 1 1.5 2

Radius (m)

0.2

0.4

0.6

0.8

1

1.2

1.4

 y
e

Figure 5.56: ||ye||∞ vs Radius of Track: Hardware Results
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Figure 5.57: ||ye||∞ vs Radius of Track: Simulation Results
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Figure 5.58: ||ye||∞ vs Radius of Track: Hardware Results
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Figure 5.59: Control Effort vs Radius of Track: Simulation Results

1 1.5 2 2.5 3

Radius (m)

13.5

14

14.5

15

15.5

16

16.5

17

R
M

S
 V

o
lt
a

g
e

 (
v
)

Figure 5.60: Control Effort vs Radius of Track: Simulation Results

From Figures 5.51 - 5.59, the following observations can be made:
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• Comparing simulation and hardware results it can be noticed that the eight

design variations follow the same trend, however, the deviations in errors cor-

responding to different designs are more significant in case of hardware results.

• In both simulation and hardware plots, reducing the radius of curvature R

causes an increase in ||xe||∞, ||e||∞, and RMS Voltage irrespective of the prop-

erties of each of the eight systems.

• From ||xe||∞, ||ye||∞ vs radius of curvature plots, it can be seen that the systems

with more stable plants i.e. D1M1, D1M2, D3M2, and D3M1, exhibit higher

errors and control effort, when compared to the other systems, with a decrease

in radius of curvature R ≤ 1.25 m, at a constant vref = 1 m/s.

• For R ≥ 1.25 m, it can be noticed that systems with higher input-output

coupling at lower frequencies i.e. D2M1 and D4M1, exhibit higher errors

||xe||∞, ||ye||∞ and control effort when when compared to other other systems.

• For D2M2, we notice that ||xe||∞ ≤ 1.0, ||ye||∞ ≤ 0.7 at vref = 1 m/s and

Bi = 10 rad/sec. This means that as long as tracking velocity vref ≤ 1 m/s and

inner-loop bandwidth Bi = 10 rad/sec, the trajectory tracking performance will

not be affected significantly for variations in radius of curvature 1 ≤ R m.

• For D4M2, we can see that ||xe||∞ ≤ 1.0, ||ye||∞ ≤ 0.7 for 2 ≥ R ≥ 1.8, at

vref ≤ 1 m/s and Bi = 10 rad/sec. Within this radius of curvature range

2 ≥ R ≥ 1 it can be seen that D4M2 performance is similar to that of D2M2,

but steeply increases for R < 1.8 m.

• For R > 1.8 m, a SISO controller is sufficient to provide good trajectory tracking

properties for a system with input-output coupling, at vref ≤ 1 m/s.
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• However, for R < 1.8 m, a MIMO controller is necessary to achieve similar

performance.
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Chapter 6

MULTI-ROBOT FORMATION CONTROL USING RECEDING HORIZON

OPTIMIZATION

6.1 Introduction and Overview

Over the past two decades, the area of multi-robot control has received a significant

amount of attention. This surge in research efforts is because of the fact that a group

of multi-robot systems, under well-defined control and coordination principles, can

behave like a single entity and exhibit a high level of fault tolerance and robustness

when compared to single robot systems [35]. A multi-robot fleet can accomplish

tasks that would be highly impossible for a single robot system. These tasks include

large area exploration [15], surveillance and mapping [82], object transportation [88],

construction and manufacturing [80].

The basis for achieving all these high-level objectives mentioned above includes

some of the fundamental tasks such as multi-robot trajectory tracking, longitudinal

platooning, formation control and, static and dynamic obstacle avoidance. There are

various approaches to implement these tasks and some of the most common ones

include leader-follower-based, virtual structure-based, and behavior-based. In the

virtual structure approach, the whole formation is treated as a single structure, and

the desired motion of each element in this virtual structure is converted to the desired

trajectories that have to be followed by each robot in the formation. Whereas in the

behavior-based approach, each robot is pre-assigned with several desired behaviors,

and the final control is derived by weighing each of the individual robot behaviors. In

the leader-follower approach, one of the robots acts as a leader and all other robots
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have to maintain a fixed distance and orientation with respect to the leader. Here,

only the leader pose information, and the desired relative distance and orientation

information have to be passed to the individual followers, and each of the followers has

a local control law that would enable them to maintain the desired relative position

and orientation. Consequently, the formation control problem can be viewed as a

natural extension of the single robot trajectory tracking problem [44]. Therefore, the

approaches used for a single-robot trajectory tracking problem can be extended to

design the control laws for the leader-follower approach. For this reason, we would

be considering the leader-follower approach within this thesis.

A single DDV trajectory tracking problem has always caught the eye of the re-

searchers because of the challenges it imposed due to the under-actuated, non-linear,

and multivariable nature of the dynamical model [57]. According to Brockett’s theo-

rem [14], it would be impossible to design a smooth, time-invariant, and continuous

feedback control law in order to asymptotically stabilize the non-holonomic system in

a given configuration. Given this, several methods are proposed overtime to control

this system, they include, receding horizon optimization approaches [16], feedback lin-

earization approaches [56], time-varying control approaches [70], discontinuous time-

varying feedback [6], etc. One of the common problems with traditional trajectory

tracking controllers [36] is that it would not be possible to include additional con-

trol objectives such as obstacle avoidance; optimizing performance parameters such

as total control effort, tracking time, etc; or to incorporate constraints on states or

output variables that are fundamental to trajectory tracking in real-world scenarios.

For this reason, optimization-based approaches are gaining prominence because they

systematically address these limitations.

In the receding horizon approach, an optimization problem is solved at every time

step in order to generate a finite control sequence that would minimize the tracking
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error over a finite horizon while subject to the constraints imposed by the prediction

model, input/output parameters, and control parameters. Depending on the nature of

the objective function and the constraints imposed, the optimization problem can be

further classified into linear or non-linear optimization. While non-linear optimization

is computationally intensive due to the NP-hard nature of the optimization, linear

optimization approaches are widely preferred because of their comparatively less ex-

pensive computational demands and also due to the existence of a global solution to

the quadratic/linear objective functions. Albeit the linear optimization approaches

are highly successful and widely used in several applications, in most of the literature

available, the optimization problem is formulated based on only the kinematic model,

and the dynamics of the system are completely ignored. In these approaches, the

inner-loop speed control system is assumed to offer perfect tracking i.e. infinite band-

width. This is clearly not the case with real-world systems because every actuator or a

real-world system will have limitations, and therefore it’s incorrect to consider perfect

inner-loop tracking because an actuator will never produce the instantaneous speeds

for a given input voltage. Moreover, several practical effects such as input voltage

dead-zone, minimum actuator reaction time (or bandwidth), actuator saturation, or

high-frequency noise are not modeled within a kinematic model. Hence, it is neces-

sary to include the constraints imposed by the dynamical model in addition to those

of the kinematic model in order to improve the performance of the trajectory tracking

controller. A drawback of including the constraints imposed by the dynamical model

along with that of the kinematic model is that increased computation load.

In this chapter, we try to answer when a kinematic model would be sufficient?

and when a kinematic plus dynamical model is necessary for trajectory tracking?.

In order to answer this, we examine the two different optimization problem formu-

lations to understand their impact on the performance of trajectory tracking i.e. 1)
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with only kinematic model-based constraints, 2) with both kinematic and dynamical

model-based constraints. In Section 6.2, we provide the multi-robot problem for-

mulation based on the leader-follower approach, and in Section 6.3 we present the

simulation and hardware performance results for the two different optimization for-

mulations. Table 6.1 shows the summary of various performance trade studies that

were conducted and Figure 6.1 shows the reference trajectory that was considered for

these trade studies.

Kinematic Constraints Kin + Dyn Constraints

||xe||∞ vs vref * *

||ye||∞ vs vref * *

||θe||∞ vs vref
1 * *

||xe||∞ vs R * *

||ye||∞ vs R * *

||θe||∞ vs R 2 * *

||xe||∞ vs BW * *

||ye||∞ vs BW * *

||θe||∞ vs BW 3 * *

1 vref - tracking velocity

2 R - radius of the track

3 BW - bandwidth of inner-loop

Table 6.1: Summary of Trade Studies Conducted
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Figure 6.1: Reference Trajectory Visualization

6.2 Problem Formulation: Leader-Follower Approach

Consider a group of N non-holonomic differential drive robots denoted by the

subscripts i and j, where i ∈ {2, 3, ..., N} represents the follower robots and j ∈ {1}

represents the leader robot. The goal of the follower i is to always maintain a fixed

distance ldi,j and orientation θdi,j with respect to the leader j and Figure 6.2 represents

this leader-follower formulation of the robots. The pose information of the leader is

always available to the follower along with the relative distance ldi,j and orientation θdi,j.

Using this information, the desired pose of the follower (xdi , y
d
i , θ

d
i ) can be calculated

as 
xdi

ydi

θdi

 =


xj + ldi,j cos θdi,j

yj + ldi,j sin θdi,j

θj

 (6.1)
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Figure 6.2: Multi-Robot Leader-Follower Formulation

where (xi, yi, θi) represent the current pose of the follower. The desired pose (xdi , y
d
i , θ

d
i )

is given as the input reference command to the optimization-based outer-loop con-

troller that is being implemented in each follower robots. Figure 6.3 represents the

implementation of the outer-loop control law in each of the follower robots.

6.2.1 Prediction Model

The kinematic model along with inner-loop control system i.e. (ωrefr,i , ω
ref
l,i ) →

(ωr,i, ωl,i), forms the prediction model for the optimization problem. The kinematic

model of the follower robot can be represented as follows:


ẋi

ẏi

θ̇i

 =


cos θi

sin θi

0

 vi +


0

0

1

ωi (6.2)

vi
ωi

 =

 r
2

r
2

r
dw
− r
dw


ωr,i
ωl,i

 (6.3)
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Figure 6.3: Closed-Loop Block Diagram Representation

here, (vi, ωi) represent the linear and angular velocity of the follower, (ωr,i, ωl,i) rep-

resent the left and right wheel angular velocities respectively, r represents the radius

of the wheel and dw represents the width 4 of the DDV. In order to incorporate the

kinematic model into the optimization problem, it has to be linearized about the time

varying local operation points (xopi , y
op
i , θ

op
i ). The linearized kinematic model is given

by

ẋi = [−r
2
ωopr,i sin θ

op
i −

r

2
ωopl,i sin θopi ]θi + [

r

2
cos θopi ]ωr,i + [

r

2
cos θopi ]ωl,i (6.4)

ẏi = [
r

2
ωopr,i cos θopi +

r

2
ωopl,i cos θopi ]θi + [

r

2
sin θopi ]ωr,i + [

r

2
sin θopi ]ωl,i (6.5)

θ̇i =
r

dw
ωr,i −

r

dw
ωl,i (6.6)

For nominal plant parameters i.e. d = 0, the inner-loop control system can be ap-

proximated as a first order transfer function [ωr,i, ωl,i] = diag( Bi
s+Bi

, Bi
s+Bi

)[ωrefr,i , ω
ref
l,i ],

where Bi represents the bandwidth of the inner-loop. This simple first order approx-

imation is a direct consequence of the well designed inner loop PI controller. In time

domain, this inner-loop system can be expressed as first order ODEs as

ω̇r,i = −Biωr,i +Biω
ref
r,i (6.7)

ω̇l,i = −Biωl,i +Biω
ref
l,i (6.8)

4the distance between the two wheels (at midpoint)
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6.2.2 Trajectory Tracking

The fundamental thought behind trajectory tracking is to ensure that the error

between the current follower pose (xi, yi, θi) and the desired pose (xdi , y
d
i , θ

d
i ) converges

to zero. The following equations represent the error between the desired and the actual

pose of the follower (in robot frame of reference), and Figure 6.4 shows the physical

interpretation of these errors (e1, e2, e3).

Figure 6.4: Desired and Actual Pose - Error Representation

171




e1

e2

e3

 =


cos θi sin θi 0

− sin θi cos θi 0

0 0 1



xdi − xi

ydi − yi

θdi − θi

 (6.9)

Using the above equations, the non-linear error dynamics can be derived as follows:

ė1 = vdi cos(θdi − θi) + [e2
r

dw
− r

2
]ωr,i − [e2

r

dw
+
r

2
]ωl,i (6.10)

ė2 = vdi sin(θdi − θi)− e1
dw
r
ωr,i + e1

dw
r
ωl,i (6.11)

ė3 = ωdi −
r

dw
ωr,i +

r

dw
ωl,i (6.12)

where vdi =
√

(ẋdi )
2 + (ẏdi )

2, ωdi = θ̇di and ωr,i, ωl,i are the right and left wheel angular

velocities. These non-linear error dynamics have to be linearized about the time

varying local operating points (e1, e2, e3, ωr,i, ωl,i) before they can be incorporated

into the optimization problem. The linearized error dynamics are as follows:

ė1 = [
r

dw
ωopr,i −

r

dw
ωopl,i ]e2 − [vdi sin(eop3 )]e3 + [eop2

r

dw
− r

2
]ωr,i − [eop2

r

dw
+
r

2
]ωl,i (6.13)

ė2 = [− r

dw
ωopr,i +

r

dw
ωopl,i ]e1 + [vdi cos(eop3 )]e3 − [eop1

r

dw
]ωr,i + [eop1

r

dw
]ωl,i (6.14)

ė3 = − r

dw
ωr,i +

r

dw
ωl.i (6.15)

6.2.3 Control Strategy

As shown in Figure 6.3, we employ a hierarchical inner-outer loop control for

trajectory tracking. The outer-loop employs a receding horizon optimization scheme

which minimizes the quadratic objective function to generate the reference angular

velocity commands (ωrefr,i , ω
ref
l,i ) for the inner-loop controller. The inner-loop system

employs a decentralized PI controller (Chapter 5, page 121) to track these reference

commands generated by the outer-loop. The receding horizon optimization scheme
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utilizes a model of the system and the error dynamics of the task to make predic-

tions about the system’s future behavior. A quadratic programming library/solver

(such as MATLAB’s Interior Point Solvers) is utilized to solve for the control actions

(ωrefr,i , ω
ref
l,i ) that can minimize the objective function J while subject to constraints

imposed by the prediction model and error dynamics. At every time step/sampling

instant, the optimizer produces a control sequence for a given prediction horizon.

The first input from the control sequence is applied as input to the inner-loop sys-

tem; the prediction horizon is shifted by one-time step and the optimization problem

is resolved with the updated prediction model and error dynamics.

In order to track aggressive maneuvers, a non-linear optimization method is con-

sidered to provide better performance when compared to a linear optimization method.

This is because a non-linear optimization method utilizes the non-linear model of

the system to predict the system’s behavior while minimizing the objective function

within the prediction horizon and thereby, it can closely track the non-linear behavior

of the trajectory. However, the non-linear optimization methods are computationally

intensive due to the NP-hard nature of the problem, and thereby less preferred when

it comes to real-time implementation in systems with high-speed dynamics. There-

fore, we would be employing the linear optimization method (linear receding horizon

optimization) within this thesis. In the linear optimization method, the non-linear

prediction model of the system is linearized at local operating points and updated

into the optimization problem at every time step/sampling instant in order to capture

the non-linear dynamics of the system as closely as possible, this is called as succes-

sive online linearization. Furthermore, in linear optimization, the objective function

is formulated as a quadratic function which is subject to linear equality/inequality

constraints. This ensures that the optimization problem is a quadratic programming

problem (QP) that is convex in nature and hence, a globally optimal solution is
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attainable.

The trajectory tracking optimization problem at time instant t can be formulated

as shown in equation (6.16), here t is omitted for brevity. As mentioned in sec-

tion 6.1, in order to emphasize the importance of dynamic model-based constraints

in the design of the linear optimization-based controller for trajectory tracking, we

compare the performance differences of the two optimization problem formulations:

Formulation I (kinematic + dynamic model), Formulation II (kinematic model only).

min
u(.)

J =

p−1∑
i=1

xTe (n+ i)Qxe(n+ i) +
c∑
i=0

u(n+ i)TRu(n+ i) (6.16)

subject to (6.17)

Formulation I or Formulation II,

u(n+ i) ∈ U

where n represents the sampling instant, xe = [e1, e2, e3] is the trajectory tracking

error that has to be minimized, u = [ωrefr,i , ω
ref
l,i ] is the input variable to the inner-

loop controller, p is the prediction horizon, c is the control horizon, Q ∈ R3 × R3

and R ∈ R2 × R2 are weighing matrices to tune the performance of the trajectory

tracking (Q > 0, R > 0), U ⊂ R2 are the constraints on the input variables which are

represented as inequality constraints U = {u ∈ R2 : 0 rad/sec ≤ u ≤ 51.3 rad/s}.

Formulation I. This includes the equality constraints introduced by the trajectory

tracking error dynamics and the prediction model of the plant; the prediction model

consists of the kinematic model and the dynamic model of the inner-loop system i.e.

the inner-loop (ωrefr,i , ω
ref
l,i ) → (ωr,i, ωl,i) is assumed to have finite bandwidth. The

constraints included in Formulation I are

• Error Dynamics: Equations (6.13) - (6.15)

• Kinematic Model: Equations (6.4) - (6.6)
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• Dynamic Model: Equations (6.7) - (6.8)

Formulation II. This also includes the equality constraints introduced by the trajec-

tory tracking error dynamics and the prediction model, however, the prediction model

only considers the kinematic model i.e. the inner-loop (ωrefr,i , ω
ref
l,i ) → (ωr,i, ωl,i) sys-

tem is assumed to have infinite bandwidth. The constraints included in Formulation

II are

• Error Dynamics: Equations (6.13) - (6.15)

• Kinematic Model: Equations (6.4) - (6.6)

• Dynamic Model: ωr,i = ωrefr,i ; ωl,i = ωrefl,i

Figure 6.5 shows the visual representation of the two formulations.

Figure 6.5: Formulation I and II - Block Diagram Representation

The performance of an optimization-based controller depends on the process pa-

rameters such as prediction horizon (p), control horizon (c), weighing matrices Q &

R. The matrix Q penalizes the trajectory tracking errors, which means larger the
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value of Q, a faster convergence rate for the error terms (e1, e2, e3). However, a faster

convergence rate would mean larger control inputs (ωrefr,i , ω
ref
l,i ), and more chance for

overshoot and control saturation. Therefore, there is always a trade-off between the

error convergence rate (bandwidth) and the control signal overshoot. Increasing the

value of the R matrix decreases the overshoot in the control inputs but the settling

time increases. In other words, R is inversely proportional to the bandwidth of the

controller. Having a high bandwidth is essential to achieve good maneuverability

during aggressive maneuvers. The prediction horizon (p) affects the convergence rate

of the tracking error as well. As the prediction horizon increases, there is a decrease

in the settling time of tracking errors, which in turn increases the overshoot in control

inputs that can cause controller saturation. Also, increasing the prediction horizon p

would mean more number of prediction steps, which in turn lead to an increase in the

computation time per sampling instant. A simple rule of thumb while choosing p is

to start with a value of less than 15 ∼ 20 samples and keep increasing it until further

increase has only minor impacts on performance. The control horizon (c) should be

within 20− 30% of prediction horizon [51]. After carefully turning the controller for

the desired tracking performance, the final parameters are as follow:

Q =


10 0 0

0 15 0

0 0 1

 , R =

10 0

0 10

 , p = 22, c = 4 (6.18)

6.3 Impact of Kinematic and Dynamic Model Constraints: Simulation and

Hardware Trade Studies

The following figures show the variation in xe, ye, and θe with respect to changes

in radius of the track, tracking velocity and bandwidth of the inner-loop - for both
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Formulation I, Formulation II.
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Figure 6.6: ||xe||∞ vs Inner-Loop Bandwidth: Simulation Results
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Figure 6.7: ||xe||∞ vs Inner-Loop Bandwidth: Hardware Results
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Figure 6.8: ||ye||∞ vs Inner-Loop Bandwidth: Simulation Results

178



2 4 6 8 10

Bandwidth (rad/s)

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 y
e

Figure 6.9: ||ye||∞ vs Inner-Loop Bandwidth: Hardware Results
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Figure 6.10: ||θe||∞ vs Inner-Loop Bandwidth: Simulation Results
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Figure 6.11: ||θe||∞ vs Inner-Loop Bandwidth: Hardware Results

Varying Inner-Loop Bandwidth Bi. The simulation and hardware results pre-

sented in Figures 6.6 - 6.11 are obtained at reference velocity vref = 1 m/s and radius

of track R = 1.5 m while varying the inner-loop bandwidth. The hardware results had

to be limited to inner-loop bandwidth Bi ≤ 10 rad/s due to the physical restrictions

of the experimental setup.

From Figures 6.6 - 6.11, the following observations can be made:

• In both simulation and hardware plots, reducing the inner-loop bandwidth Bi

causes an increase in ||xe||∞, ||ye||∞, ||θe||∞ irrespective of Formulation I (Kin

+ Dyn Const) or Formulation II (Kin Const).

• For Formulation I, we notice that ||xe||∞ ≤ 0.75, ||ye||∞ ≤ 0.7, ||θe||∞ ≤ 0.57

at vref = 1 m/s and R = 1.5 m. This means that as long as tracking velocity

vref ≤ 1 m/s and radius of track R ≥ 1.5 m, the trajectory tracking performance
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will not be affected significantly for lower inner-loop bandwidth 2 ≤ Bi rad/sec.

• For Formulation II, we can see that ||xe||∞ ≤ 0.75, ||ye||∞ ≤ 0.7, ||θe||∞ ≤ 0.57

for 10 ≥ Bi ≥ 7.5, at vref ≤ 1 m/s and R ≥ 1.5 m. Within this inner-loop

bandwidth range 7.5 ≥ Bi ≥ 10 it can be seen that Formulation II performance

is similar to that of Formulation I, but steeply increases for Bi < 7.5 rad/sec.

• For Bi ≤ 5 rad/sec, we can notice that ||xKin+Dyne − xkine ||∞ ≥ 0.1, ||yKin+Dyne −

ykine ||∞ ≥ 0.1, ||θKin+Dyne − θkine ||∞ ≥ 0.1. This means that for Bi ≤ 5 rad/sec,

a minimum deviation of 0.1 m can be expected in the position tracking perfor-

mance between Formulation I and Formulation II.

• For Bi > 7.5 rad/sec, a kinematic model based optimization scheme is sufficient

to provide good trajectory tracking properties, given that vref ≤ 1 m/s, and

R ≥ 1.5 m.

• However, for Bi < 7.5 rad/sec, a dynamic model-based optimization scheme is

necessary to achieve similar performance.
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Figure 6.12: ||xe||∞ vs Reference Velocity: Simulation Results
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Figure 6.13: ||xe||∞ vs Reference Velocity: Hardware Results
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Figure 6.14: ||ye||∞ vs Reference Velocity: Simulation Results
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Figure 6.15: ||ye||∞ vs Reference Velocity: Hardware Results
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Figure 6.16: ||θe||∞ vs Reference Velocity: Simulation Results
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Figure 6.17: ||θe||∞ vs Reference Velocity: Hardware Results
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Varying Trajectory Tracking Velocity vref . The simulation and hardware results

presented in Figures 6.12 - 6.17 are obtained at inner-loop bandwidth Bi = 10 rad/sec

and radius of track R = 1.5 m while varying the trajectory tracking velocity. The

hardware results had to be limited to trajectory tracking velocity vref ≤ 2 m/s due

to the physical restrictions of the experimental setup.

From Figures 6.12 - 6.17, the following observations can be made:

• In both simulation and hardware plots, increasing the reference tracking velocity

vref causes an increase in ||xe||∞, ||ye||∞, ||θe||∞ irrespective of Formulation I

(Kin + Dyn Const) or Formulation II (Kin Const).

• For Formulation I, we notice that ||xe||∞ ≤ 1.8, ||ye||∞ ≤ 1.5, ||θe||∞ ≤ 0.8

at Bi = 10 rad/sec and R = 1.5 m. This means that as long as the inner-

loop bandwidth Bi ≥ 10 rad/sec and radius of track R ≥ 1.5 m, the trajectory

tracking performance will not be affected significantly for variations in trajectory

tracking velocity vref ≤ 2 m/s.

• For Formulation II, we can see that ||xe||∞ ≤ 1.8, ||ye||∞ ≤ 1.5, ||θe||∞ ≤ 0.8

for 1.6 ≥ vref ≥ 1, at Bi ≥ 10 rad/sec and R ≥ 1.5 m. Within this trajectory

tracking velocity range 1.6 ≥ vref ≥ 1 it can be seen that Formulation II

performance is similar to that of Formulation I, but steeply increases for vref >

1.6 m/s.

• For vref ≥ 1.65 m/s, we can notice that ||xKin+Dyne −xkine ||∞ ≥ 0.1, ||yKin+Dyne −

ykine ||∞ ≥ 0.1, ||θKin+Dyne − θkine ||∞ ≥ 0.2. This means that for vref ≥ 1.65

m/s, a minimum deviation of 0.1 m can be expected in the position tracking

performance between Formulation I and Formulation II.

• For vref < 1.6 m/s, a kinematic model-based optimization scheme is sufficient
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to provide good trajectory tracking properties, given that Bi ≥ 10 rad/sec, and

R ≥ 1.5 m.

• However, for vref > 1.6 m/s, a dynamic model-based optimization scheme is

necessary to achieve a similar performance.
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Figure 6.18: ||xe||∞ vs Radius of Track: Simulation Results
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Figure 6.19: ||xe||∞ vs Radius of Track: Hardware Results
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Figure 6.20: ||ye||∞ vs Radius of Track: Simulation Results
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Figure 6.21: ||ye||∞ vs Radius of Track: Hardware Results
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Figure 6.22: ||θe||∞ vs Radius of Track: Simulation Results
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Figure 6.23: ||θe||∞ vs Radius of Track: Hardware Results

Varying Radius of Curvature of Trajectory R. The simulation and hardware

results presented in Figures 6.18 - 6.23 are obtained at reference velocity vref = 1

m/s and inner-loop bandwidth Bi = 10 rad/s while varying the radius of curvature.

The hardware results had to be limited to radius of curvature R ≤ 2 m due to the

physical restrictions of the experimental setup.

From Figures 6.18 - 6.23, the following observations can be made:

• In both simulation and hardware plots, reducing the radius of curvature of tra-

jectory R causes an increase in ||xe||∞, ||ye||∞, ||θe||∞ irrespective of Formulation

I (Kin + Dyn Const) or Formulation II (Kin Const).

• For Formulation I, we notice that ||xe||∞ ≤ 0.7, ||ye||∞ ≤ 0.7, ||θe||∞ ≤ 0.78 at

vref = 1 m/s and Bi = 10 rad/sec. This means that as long as tracking velocity

vref ≤ 1 m/s and inner-loop bandwidth Bi ≥ 10 rad/sec, the trajectory tracking
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performance will not be affected significantly for variations in radius of curvature

0.5 ≤ R m.

• For Formulation II, we can see that ||xe||∞ ≤ 0.7, ||ye||∞ ≤ 0.7, ||θe||∞ ≤ 0.78

for 2 ≥ R ≥ 1.6, at vref ≤ 1 m/s and Bi ≥ 10 rad/sec. Within this radius of

curvature range 2 ≥ R ≥ 1.6 it can be seen that Formulation II performance is

similar to that of Formulation I, but steeply increases for R < 1.6 m.

• For R ≤ 0.8 m, we can notice that ||xKin+Dyne − xkine ||∞ ≥ 0.1, ||yKin+Dyne −

ykine ||∞ ≥ 0.1, ||θKin+Dyne − θkine ||∞ ≥ 0.05. This means that for R ≤ 0.8 m, a

minimum deviation of 0.1 m can be expected in the position tracking perfor-

mance between Formulation I and Formulation II.

• For R > 1.6 m, a kinematic model-based optimization scheme is sufficient to

provide good trajectory tracking properties, given that vref ≤ 1 m/s, and Bi ≥

10 rad/sec.

• However, for R < 1.6 m, a dynamic model-based optimization scheme is neces-

sary to achieve similar performance.
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Chapter 7

SUMMARY AND FUTURE DIRECTIONS

7.1 Summary of Work

In this thesis, we have presented detailed instructions on how to choose the actu-

ators based on the DDV performance requirements, and also a step by step guide to

building the DDV. An open-source software framework is developed using C++ that

is capable of handling multi-robot research. We have also compared and analyzed the

dynamic and control design properties of three different DDV models (P[ear ,eal ]→[ωr,ωl],

P[ear ,eal ]→[v,ω], and P[ear+eal ,ear−eal ]→[v,ω]). Additionally, we have also shown how the

critical design parameters such as mass, moment of inertia, radius of wheels and

center of gravity location can impact the bandwidth, stability, and decoupling prop-

erties of the DDV. Subsequently, the impact of critical design parameters on the

performance of the outer-loop cruise (v, ω) and position control (x, y) algorithms is

also presented. Classical control methodologies have been used to design the inner-

loop and outer-loop control laws. A multi-robot trajectory tracking strategy based

on receding horizon optimization is presented. In addition to this, the impact of

kinematic model-based constraints and the dynamic model based constraints on the

performance of trajectory tracking is also studied. Finally, all the simulation results

have been compared and verified with hardware data.

7.2 Directions for Future Research

Future work will involve each of the following:
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• Localization. Development of a lab-based localization system using a variety

of on-board technologies (e.g. cameras, lidar, ultrasonic, etc.). Localization is

essential for multi-robot systems that operate in both static and dynamic envi-

ronments - in these scenarios, having an on-board system capable of performing

localization at high navigation speeds will be very crucial.

• Onboard Sensing. Addition of multiple onboard sensors; e.g. additional ul-

trasonics, cameras, lidar, GPS, etc. that can duplicate the potential of a motion

capture system in open environments will be extremely beneficial.

• Advanced Image Processing. Use of advanced image processing and opti-

mization algorithms [49], [77].

• Multi-Vehicle Cooperation. Cooperation between ground, air, and sea vehi-

cles - including quad-rotors, micro-air vehicles, and eventually nano-air vehicles.

• Impact of DDV Dynamics on Multi-Robot Control Objectives. The

trade studies presented in Chapter 6 for multi-robot formation control can be

revisited with additional constraints on the optimization problem such as inter-

robot collision avoidance, minimum time/energy trajectory tracking or adaptive

formation control in response to external obstacles, etc.

• Environment Mapping. Rapid and efficient mapping of unknown and par-

tially known areas via multiple robotic agents using pose graph optimization.

• Modeling and Control. More accurate dynamic models and control laws.

This can include the development of multi-rate control laws that can signifi-
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cantly lower sampling requirements and dynamic models that incorporate the

3-dimensional model of the DDV.

• Control-Centric Vehicle Design. Understanding when simple control laws

are possible and when complex control laws are essential. This includes under-

standing how control-relevant specifications impact (or can drive) the design of

a vehicle.
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APPENDIX A

ADDITIONAL HARDWARE INFORMATION
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Hardware Laser Cut Files - Website Link:
https://tinyurl.com/y4rxvpan

Hardware 3D Print Files - Website Link:
https://tinyurl.com/y4rxvpan

Motor Specifications and Product Purchase Website Links:
https://tinyurl.com/y4tazghq
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MATLAB CODE
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1 % Trade Studies at d = 0
2 clc
3 close all
4 clear all
5 s = tf([1 0],[1]);
6 md = 0; m = 3.4; % if d = 0;
7 %% Different Plant Models with the respective parameters as input
8 % at d = 0
9 % Plant model from e r, e l to W r, W l decoupled

10 % Plant model from (e r + e l), (e r−e l) to V, W decoupled
11 %%
12 % Plant model from e r, e l to W r, W l
13 % Singular and Bode Plots for different values of I
14 %(including the I AR conditions)
15 d = 0; Veq = 2; Weq = 0.8; % in m/s max value is 0.14 for hardware
16 L = 1; dw = L/sqrt(2); R = 0.042; % default values L = 0.3536 //\\
17 %has to be chosen based on the corresponding AR value (AR calculation.m)
18 Iw = 1.67e−06; A = m + 2*Iw/(R*R); % default values //\\
19 %has to be chosen based on the corresponding AR value
20 I AR = I ARcalculation(d,Iw,L,A,R,dw);
21 %[max,min] = Imaxmin(d,Iw,L,md,dw);
22 Plant1 = Plantww(d, Veq, Weq, dw, Iw, I AR, L, md,R)
23

24 I = [0.42499999999 0.42500 0.42500000001 0.4292 0.4462 0.4675 0.3825];
25

26 P1 = Plantww(d, Veq, Weq, dw, Iw, I(1), L, md,R);
27 P2 = Plantww(d, Veq, Weq, dw, Iw, I(2), L, md,R);
28 P3 = Plantww(d, Veq, Weq, dw, Iw, I(3), L, md,R);
29 P4 = Plantww(d, Veq, Weq, dw, Iw, I(4), L, md,R);
30 P5 = Plantww(d, Veq, Weq, dw, Iw, I(5), L, md,R);
31 P6 = Plantww(d, Veq, Weq, dw, Iw, I(6), L, md,R);
32 P7 = Plantvw(d, Veq, Weq, dw, Iw, I(7), L, md,R);
33

34 figure;
35 bodemag(P7);
36 grid on;
37 h axes = findobj(gcf, 'type', 'axes');
38 xlabel('Frequency','FontSize',12);
39 ylabel('Magnitude','FontSize',12);
40 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
41 % size and brightness of grid and size of x & y axis numbers
42 title('Frequency Response for $ d = 0 $ ','FontWeight','bold',...
43 'FontSize',14,'Interpreter','latex')
44

45 h line = findobj(gcf, 'type', 'line');
46 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
47

48

49 %% Singular Values Plot
50 winit = −1;
51 wfin = 2;
52 nwpts = 200;
53 w = logspace(winit,wfin,nwpts);
54 P1 = sigma(P1,w); P2 = sigma(P2,w); P3 = sigma(P3,w); P4 = sigma(P4,w);
55 P5 = sigma(P5,w);
56 P6 = sigma(P6,w); P7 = sigma(P7,w);
57 P1 = 20*log10(P1); P2 = 20*log10(P2); P3 = 20*log10(P3);
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58 P4 = 20*log10(P4);
59 P5 = 20*log10(P5);
60 P6 = 20*log10(P6); P7 = 20*log10(P7);
61 figure;
62 subplot(2,1,1);
63 semilogx(w, P7(1,:), w, P1(1,:), w, P2(1,:), w, P3(1,:), w, P4(1,:),...
64 w, P5(1,:), w, P6(1,:))
65 %clear sv
66 grid on;
67 h axes = findobj(gcf, 'type', 'axes');
68 xlabel('Frequency','FontSize',12);
69 ylabel('Magnitude','FontSize',12);
70 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
71 % size and brightness of grid and size of x & y axis numbers
72 title(...
73 'Max Singular Values $ (e r,e l)\rightarrow(\omega r,\omega l) $ for $
74 d = 0 $', 'FontWeight','bold','FontSize',14, 'Interpreter','latex')
75

76 h line = findobj(gcf, 'type', 'line');
77 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
78

79 subplot(2,1,2);
80 semilogx(w, P7(2,:), w, P1(2,:), w, P2(2,:), w, P3(2,:), w, P4(2,:),...
81 w, P5(2,:), w, P6(2,:))
82 %clear sv
83 grid on;
84 h axes = findobj(gcf, 'type', 'axes');
85 xlabel('Frequency','FontSize',12);
86 ylabel('Magnitude','FontSize',12);
87 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
88 % size and brightness of grid and size of x & y axis numbers
89 title(...
90 'Min Singular Values $ (e r,e l)\rightarrow(\omega r,\omega l) $ for $
91 d = 0 $','FontWeight','bold','FontSize',12, 'Interpreter','latex')
92

93 h line = findobj(gcf, 'type', 'line');
94 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
95

96

97

98

99 % Put legend and enhance appearance
100 % Legend bug with subscript, use '\ ' instead of ' '
101 [hL,hObj]=legend({'$I = 0.9I {AR}$','$I = I {AR}ˆ−$','$I = I {AR}$',...
102 '$I = I {AR}ˆ+$','$I = 1.01I {AR}$','$I = 1.05I {AR}$',...
103 '$I = 1.1I {AR}$'},'Interpreter','latex');
104 hTL=findobj(hObj,'type','Text'); %
105 set(hTL,'FontSize',11); % font size for letters in legend
106 hTL=findobj(hObj,'type','line'); %
107 set(hTL,'LineWidth',1.2); % thickness of lines in legend
108 set(hL,'FontSize',1,'Position',[0.5 0.5 0.25 0.26]);
109 % distance between lines in legend [x,y,width, height]
110

111

112 %%
113 % Plant model from (e r + e l), (e r−e l) to V, W
114 % Singular and Bode Plots for different values of I
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115 %(including the I AR conditions)
116 md = 0; m = 3.4; % if d = 0;
117 Plant1 = Plantsdv(d, Veq, Weq, dw, Iw, I AR, L, md,R)
118

119

120 I = [0.3825 0.42560 0.4675 0.6375 0.8500 1.2750];
121

122 P1 = Plantsdv(d, Veq, Weq, dw, Iw, I(1), L, md,R);
123 P2 = Plantsdv(d, Veq, Weq, dw, Iw, I(2), L, md,R);
124 P3 = Plantsdv(d, Veq, Weq, dw, Iw, I(3), L, md,R);
125 P4 = Plantsdv(d, Veq, Weq, dw, Iw, I(4), L, md,R);
126 P5 = Plantsdv(d, Veq, Weq, dw, Iw, I(5), L, md,R);
127 P6 = Plantsdv(d, Veq, Weq, dw, Iw, I(6), L, md,R);
128

129 figure;
130 bodemag(P1,P2,P3,P4,P5,P6);
131 grid on;
132 h axes = findobj(gcf, 'type', 'axes');
133 xlabel('Frequency','FontSize',12);
134 ylabel('Magnitude','FontSize',12);
135 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
136 % size and brightness of grid and size of x & y axis numbers
137 title(...
138 'Frequency Response $(e r + e l, e r − e l)\rightarrow(v,\omega)$ for
139 $d = 0$','FontWeight','bold','FontSize',14, 'Interpreter','latex')
140

141 h line = findobj(gcf, 'type', 'line');
142 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
143

144 % Put legend and enhance appearance
145 % Legend bug with subscript, use '\ ' instead of ' '
146 [hL,hObj]=legend({'$I = 0.9I\ {AR}$','$I = I\ {AR}$',...
147 '$I = 1.01I\ {AR}ˆ+$','$I = 1.5I\ {AR}$','$I = 2.0I\ {AR}$',...
148 '$I = 3.0I\ {AR}$'},'Interpreter','latex');
149 hTL=findobj(hObj,'type','Text'); %
150 set(hTL,'FontSize',11); % font size for letters in legend
151 hTL=findobj(hObj,'type','line'); %
152 set(hTL,'LineWidth',2); % thickness of lines in legend
153 set(hL,'FontSize',1,'Position',[0.5 0.5 0.25 0.24]);
154 % distance between lines in legend [x,y,width, height]
155

156 %% Singular Values Plot
157 winit = −1;
158 wfin = 2;
159 nwpts = 200;
160 w = logspace(winit,wfin,nwpts);
161 P1 = sigma(P1,w); P2 = sigma(P2,w); P3 = sigma(P3,w); P4 = sigma(P4,w);
162 P5 = sigma(P5,w);
163 P6 = sigma(P6,w);
164 P1 = 20*log10(P1); P2 = 20*log10(P2); P3 = 20*log10(P3);
165 P4 = 20*log10(P4);
166 P5 = 20*log10(P5);
167 P6 = 20*log10(P6);
168 figure;
169 subplot(2,1,1);
170 semilogx(w, P1(1,:), w, P2(1,:), w, P3(1,:), w, P4(1,:), w, P5(1,:),...
171 w, P6(1,:))
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172 %clear sv
173 grid on;
174 h axes = findobj(gcf, 'type', 'axes');
175 xlabel('Frequency','FontSize',12);
176 ylabel('Magnitude','FontSize',12);
177 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
178 % size and brightness of grid and size of x & y axis numbers
179 title(...
180 'Max Singular Values $ (e r + e l, e r − e l)\rightarrow(v,\omega)$
181 for $d=0$','FontWeight','bold','FontSize',14, 'Interpreter','latex')
182

183 h line = findobj(gcf, 'type', 'line');
184 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
185

186 subplot(2,1,2);
187 semilogx(w, P1(2,:), w, P2(2,:), w, P3(2,:), w, P4(2,:), w, P5(2,:),...
188 w, P6(2,:))
189 %clear sv
190 grid on;
191 h axes = findobj(gcf, 'type', 'axes');
192 xlabel('Frequency','FontSize',12);
193 ylabel('Magnitude','FontSize',12);
194 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
195 % size and brightness of grid and size of x & y axis numbers
196 title(...
197 'Min Singular Values $ (e r + e l, e r − e l)\rightarrow(v,\omega) $ for
198 $d=0$','FontWeight','bold','FontSize',12, 'Interpreter','latex')
199

200 h line = findobj(gcf, 'type', 'line');
201 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
202

203

204

205

206 % Put legend and enhance appearance
207 % Legend bug with subscript, use '\ ' instead of ' '
208 [hL,hObj]=legend({'$I = 0.9I {AR}$','$I = I {AR}$',...
209 '$I = 1.01I {AR}ˆ+$','$I = 1.5I {AR}$','$I = 2.0I {AR}$',...
210 '$I = 3.0I {AR}$'},'Interpreter','latex');
211 hTL=findobj(hObj,'type','Text'); %
212 set(hTL,'FontSize',11); % font size for letters in legend
213 hTL=findobj(hObj,'type','line'); %
214 set(hTL,'LineWidth',1.2); % thickness of lines in legend
215 set(hL,'FontSize',1,'Position',[0.5 0.5 0.25 0.24]);
216 % distance between lines in legend [x,y,width, height]
217

218

219

220

221

222 %%
223 % Plant model from e r, e l to W r, W l
224 % Singular and Bode Plots for different values of m
225 %(variations in total mass without changing I w)
226

227 % Bode Plot
228
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229 md = 0; m = 3.4; % if d = 0;
230 d = 0; Veq = 2; Weq = 0.8; % in m/s max value is 0.14 for hardware
231 L = 1; dw = L/sqrt(2); R = 0.042; % default values L = 0.3536 //\\
232 %has to be chosen based on the corresponding AR value (AR calculation.m)
233 Iw = 1.67e−06; A = m + 2*Iw/(R*R); % default values //\\
234 %has to be chosen based on the corresponding AR value
235 I AR = I ARcalculation(d,Iw,L,A,R,dw);
236 [max,min] = Imaxmin(d,Iw,L,md,dw);
237 Plant1 = Plantww(d, Veq, Weq, dw, Iw, I AR, L, md,R)
238

239 I = [0.42499999999 0.42500 0.42500000001 0.4292 0.4462 0.4675 0.3825];
240

241

242 P1 = newPlantww(d, Veq, Weq, dw, Iw, I(5), L, md,R,m);
243 P2 = newPlantww(d, Veq, Weq, dw, Iw, I(5), L, md,R,m+0.5);
244 P3 = newPlantww(d, Veq, Weq, dw, Iw, I(5), L, md,R,m+1);
245 P4 = newPlantww(d, Veq, Weq, dw, Iw, I(5), L, md,R,m+1.5);
246 P5 = newPlantww(d, Veq, Weq, dw, Iw, I(5), L, md,R,m+2);
247 P6 = newPlantww(d, Veq, Weq, dw, Iw, I(5), L, md,R,m+2.5);
248 P7 = newPlantww(d, Veq, Weq, dw, Iw, I(5), L, md,R,m+3);
249

250 figure;
251 bodemag(P1,P2,P3,P4,P5,P6,P7);
252 grid on;
253 h axes = findobj(gcf, 'type', 'axes');
254 xlabel('Frequency','FontSize',12);
255 ylabel('Magnitude','FontSize',12);
256 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
257 % size and brightness of grid and size of x & y axis numbers
258 title(...
259 'Frequency Response $ (e r,e l)\rightarrow(\omega r,\omega l) $ for
260 $ d = 0 $ ','FontWeight','bold','FontSize',14, 'Interpreter','latex')
261

262 h line = findobj(gcf, 'type', 'line');
263 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
264

265 % Put legend and enhance appearance
266 % Legend bug with subscript, use '\ ' instead of ' '
267 [hL,hObj]=legend({'$m = 3.4 \ kg$','$m = 3.9 \ kg$','$m = 4.4 \ kg$',...
268 '$m = 4.9 \ kg$','$m = 5.4 \ kg$','$m = 5.9 \ kg$','m = 6.4 \ kg'},...
269 'Interpreter','latex');
270 hTL=findobj(hObj,'type','Text'); %
271 set(hTL,'FontSize',11); % font size for letters in legend
272 hTL=findobj(hObj,'type','line'); %
273 set(hTL,'LineWidth',2); % thickness of lines in legend
274 set(hL,'FontSize',1,'Position',[0.5 0.5 0.25 0.26]);
275 % distance between lines in legend [x,y,width, height]
276

277 %% Singular Values Plot
278 winit = −1;
279 wfin = 2;
280 nwpts = 200;
281 w = logspace(winit,wfin,nwpts);
282 P1 = sigma(P1,w); P2 = sigma(P2,w); P3 = sigma(P3,w); P4 = sigma(P4,w);
283 P5 = sigma(P5,w);
284 P6 = sigma(P6,w); P7 = sigma(P7,w);
285 P1 = 20*log10(P1); P2 = 20*log10(P2); P3 = 20*log10(P3);

208



286 P4 = 20*log10(P4);
287 P5 = 20*log10(P5);
288 P6 = 20*log10(P6); P7 = 20*log10(P7);
289 figure;
290 subplot(2,1,1);
291 semilogx( w, P1(1,:), w, P2(1,:), w, P3(1,:), w, P4(1,:), ...
292 w, P5(1,:), w, P6(1,:),w,P7(1,:))
293 %clear sv
294 grid on;
295 h axes = findobj(gcf, 'type', 'axes');
296 xlabel('Frequency','FontSize',12);
297 ylabel('Magnitude','FontSize',12);
298 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
299 % size and brightness of grid and size of x & y axis numbers
300 title(...
301 'Max Singular Values $(e r,e l)\rightarrow(\omega r,\omega l)$ for...
302 $ d=0$','FontWeight','bold','FontSize',14, 'Interpreter','latex')
303

304 h line = findobj(gcf, 'type', 'line');
305 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
306

307 subplot(2,1,2);
308 semilogx( w, P1(2,:), w, P2(2,:), w, P3(2,:), w, P4(2,:),...
309 w, P5(2,:), w, P6(2,:),w,P7(1,:))
310 %clear sv
311 grid on;
312 h axes = findobj(gcf, 'type', 'axes');
313 xlabel('Frequency','FontSize',12);
314 ylabel('Magnitude','FontSize',12);
315 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
316 % size and brightness of grid and size of x & y axis numbers
317 title(...
318 'Min Singular Values $ (e r,e l)\rightarrow(\omega r,\omega l) $ for
319 $ d = 0 $','FontWeight','bold','FontSize',12, 'Interpreter','latex')
320

321 h line = findobj(gcf, 'type', 'line');
322 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
323

324

325

326

327 % Put legend and enhance appearance
328 % Legend bug with subscript, use '\ ' instead of ' '
329 [hL,hObj]=legend({'$m = 3.4 \ kg$','$m = 3.9 \ kg$','$m = 4.4 \ kg$',...
330 '$m = 4.9 \ kg$','$m = 5.4 \ kg$','$m = 5.9 \ kg$','m = 6.4 \ kg'},...
331 'Interpreter','latex');
332 hTL=findobj(hObj,'type','Text'); %
333 set(hTL,'FontSize',11); % font size for letters in legend
334 hTL=findobj(hObj,'type','line'); %
335 set(hTL,'LineWidth',1.2); % thickness of lines in legend
336 set(hL,'FontSize',1,'Position',[0.5 0.5 0.25 0.26]);
337 % distance between lines in legend [x,y,width, height]
338

339

340 %%
341 % Plant model from e r, e l to W r, W l
342 % Singular and Bode Plots for different values of R
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343

344 % Bode Plot
345

346 % change in R results in change in IW, however, no significant
347 % difference is observed
348

349 md = 0; m = 3.4; % if d = 0;
350 d = 0; Veq = 2; Weq = 0.8; % in m/s max value is 0.14 for hardware
351 L = 1; dw = L/sqrt(2); R = 0.042; % default values L = 0.3536 //\\
352 %has to be chosen based on the corresponding AR value (AR calculation.m)
353 Iw = 1.67e−06; A = m + 2*Iw/(R*R); % default values //\\
354 %has to be chosen based on the corresponding AR value
355 I AR = I ARcalculation(d,Iw,L,A,R,dw);
356 [max,min] = Imaxmin(d,Iw,L,md,dw);
357 Plant1 = Plantww(d, Veq, Weq, dw, Iw, I AR, L, md,R)
358

359 I = [0.42499999999 0.42500 0.42500000001 0.4292 0.4462 0.4675 0.3825];
360

361 R = 0.042; m wheel = 0.096;
362 rm = 0.0248 ; m motor = 0.224;
363 Iw = 0.5*m motor*rm*rm + 0.5*m wheel*R*R;
364 I = I Newcalculation(0,Iw,L,md,dw);
365

366 P1 = newPlantww(d, Veq, Weq, dw, Iw, I, L, md,R,m);
367 R = R+0.01;
368 Iw = 0.5*m motor*rm*rm + 0.5*m wheel*R*R;
369 I = I Newcalculation(0,Iw,L,md,dw);
370 P2 = newPlantww(d, Veq, Weq, dw, Iw, I, L, md,R,m);
371 R = R+0.01;
372 Iw = 0.5*m motor*rm*rm + 0.5*m wheel*R*R;
373 I = I Newcalculation(0,Iw,L,md,dw);
374 P3 = newPlantww(d, Veq, Weq, dw, Iw, I, L, md,R,m);
375 R = R+0.01;
376 Iw = 0.5*m motor*rm*rm + 0.5*m wheel*R*R;
377 I = I Newcalculation(0,Iw,L,md,dw);
378 P4 = newPlantww(d, Veq, Weq, dw, Iw, I, L, md,R,m);
379 R = R+0.01;
380 Iw = 0.5*m motor*rm*rm + 0.5*m wheel*R*R;
381 I = I Newcalculation(0,Iw,L,md,dw);
382 P5 = newPlantww(d, Veq, Weq, dw, Iw, I, L, md,R,m);
383 R = R+0.01;
384 Iw = 0.5*m motor*rm*rm + 0.5*m wheel*R*R;
385 I = I Newcalculation(0,Iw,L,md,dw);
386 P6 = newPlantww(d, Veq, Weq, dw, Iw, I, L, md,R,m);
387

388

389 R = 0.042; Iw = 1.67e−06;
390 figure;
391 bodemag(P1,P2,P3,P4,P5,P6);
392 grid on;
393 h axes = findobj(gcf, 'type', 'axes');
394 xlabel('Frequency','FontSize',12);
395 ylabel('Magnitude','FontSize',12);
396 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
397 % size and brightness of grid and size of x & y axis numbers
398 title(...
399 'Frequency Response $ (e r,e l)\rightarrow(\omega r,\omega l) $ for
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400 $ d = 0 $ ','FontWeight','bold','FontSize',14, 'Interpreter','latex')
401

402 h line = findobj(gcf, 'type', 'line');
403 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
404

405 % Put legend and enhance appearance
406 % Legend bug with subscript, use '\ ' instead of ' '
407 [hL,hObj]=legend({'$R = 0.042 \ m$','$R = 0.052 \ m$',...
408 '$R = 0.062 \ m$','$R = 0.072 \ m$','$R = 0.082 \ m$',...
409 '$R = 0.092 \ m$'},'Interpreter','latex');
410 hTL=findobj(hObj,'type','Text'); %
411 set(hTL,'FontSize',11); % font size for letters in legend
412 hTL=findobj(hObj,'type','line'); %
413 set(hTL,'LineWidth',2); % thickness of lines in legend
414 set(hL,'FontSize',1,'Position',[0.5 0.5 0.25 0.26]);
415 % distance between lines in legend [x,y,width, height]
416

417 %% Singular Values Plot
418 winit = −1;
419 wfin = 2;
420 nwpts = 200;
421 w = logspace(winit,wfin,nwpts);
422 P1 = sigma(P1,w); P2 = sigma(P2,w); P3 = sigma(P3,w);
423 P4 = sigma(P4,w); P5 = sigma(P5,w);
424 P6 = sigma(P6,w);
425 P1 = 20*log10(P1); P2 = 20*log10(P2); P3 = 20*log10(P3);
426 P4 = 20*log10(P4); P5 = 20*log10(P5);
427 P6 = 20*log10(P6);
428 figure;
429 subplot(2,1,1);
430 semilogx( w, P1(1,:), w, P2(1,:), w, P3(1,:), w, P4(1,:), w, P5(1,:),...
431 w, P6(1,:))
432 %clear sv
433 grid on;
434 h axes = findobj(gcf, 'type', 'axes');
435 xlabel('Frequency','FontSize',12);
436 ylabel('Magnitude','FontSize',12);
437 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
438 % size and brightness of grid and size of x & y axis numbers
439 title(...
440 'Max Singular Values $ (e r,e l)\rightarrow(\omega r,\omega l) $ for
441 $ d = 0 $','FontWeight','bold','FontSize',14, 'Interpreter','latex')
442

443 h line = findobj(gcf, 'type', 'line');
444 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
445

446 subplot(2,1,2);
447 semilogx( w, P1(2,:), w, P2(2,:), w, P3(2,:), w, P4(2,:), w, P5(2,:),...
448 w, P6(2,:))
449 %clear sv
450 grid on;
451 h axes = findobj(gcf, 'type', 'axes');
452 xlabel('Frequency','FontSize',12);
453 ylabel('Magnitude','FontSize',12);
454 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
455 % size and brightness of grid and size of x & y axis numbers
456 title(...
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457 'Min Singular Values $ (e r,e l)\rightarrow(\omega r,\omega l) $ for
458 $ d = 0 $','FontWeight','bold','FontSize',12, 'Interpreter','latex')
459

460 h line = findobj(gcf, 'type', 'line');
461 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
462

463

464

465

466 % Put legend and enhance appearance
467 % Legend bug with subscript, use '\ ' instead of ' '
468 [hL,hObj]=legend({'$R = 0.042 \ m$','$R = 0.052 \ m$',...
469 '$R = 0.062 \ m$','$R = 0.072 \ m$','$R = 0.082 \ m$',...
470 '$R = 0.092 \ m$'},'Interpreter','latex');
471 hTL=findobj(hObj,'type','Text'); %
472 set(hTL,'FontSize',11); % font size for letters in legend
473 hTL=findobj(hObj,'type','line'); %
474 set(hTL,'LineWidth',1.2); % thickness of lines in legend
475 set(hL,'FontSize',1,'Position',[0.5 0.5 0.25 0.26]);
476 % distance between lines in legend [x,y,width, height]
477 %%
478 % Plant model from e r + e l, e r − e l to V,W
479 % Singular and Bode Plots for different values of m
480 %(variations in total mass without changing I w)
481

482 % Bode Plot
483

484 md = 0; m = 3.4; % if d = 0;
485 d = 0; Veq = 2; Weq = 0.8; % in m/s max value is 0.14 for hardware
486 L = 1; dw = L/sqrt(2); R = 0.042; % default values L = 0.3536 //\\
487 % has to be chosen based on the corresponding AR value
488 % (AR calculation.m)
489 Iw = 1.67e−06; A = m + 2*Iw/(R*R); % default values //\\
490 % has to be chosen based on the corresponding AR value
491 I AR = I ARcalculation(d,Iw,L,A,R,dw);
492 [max,min] = Imaxmin(d,Iw,L,md,dw);
493 Plant1 = Plantww(d, Veq, Weq, dw, Iw, I AR, L, md,R)
494

495 I = [0.42499999999 0.42500 0.42500000001 0.4292 0.4462 0.4675 0.3825];
496

497

498 P1 = newPlantsdv(d, Veq, Weq, dw, Iw, I(5), L, md,R,m);
499 P2 = newPlantsdv(d, Veq, Weq, dw, Iw, I(5), L, md,R,m+0.5);
500 P3 = newPlantsdv(d, Veq, Weq, dw, Iw, I(5), L, md,R,m+1);
501 P4 = newPlantsdv(d, Veq, Weq, dw, Iw, I(5), L, md,R,m+1.5);
502 P5 = newPlantsdv(d, Veq, Weq, dw, Iw, I(5), L, md,R,m+2);
503 P6 = newPlantsdv(d, Veq, Weq, dw, Iw, I(5), L, md,R,m+2.5);
504 P7 = newPlantsdv(d, Veq, Weq, dw, Iw, I(5), L, md,R,m+3);
505

506 figure;
507 bodemag(P1,P2,P3,P4,P5,P6);
508 grid on;
509 h axes = findobj(gcf, 'type', 'axes');
510 xlabel('Frequency','FontSize',12);
511 ylabel('Magnitude','FontSize',12);
512 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
513 % size and brightness of grid and size of x & y axis numbers
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514 title(...
515 'Frequency Response $(e r + e l, e r − e l)\rightarrow(v,\omega)$ for
516 $d = 0 $','FontWeight','bold','FontSize',14, 'Interpreter','latex')
517

518 h line = findobj(gcf, 'type', 'line');
519 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
520

521 % Put legend and enhance appearance
522 % Legend bug with subscript, use '\ ' instead of ' '
523 [hL,hObj]=legend({'$m = 3.4 \ kg$','$m = 3.9 \ kg$','$m = 4.4 \ kg$',...
524 '$m = 4.9 \ kg$','$m = 5.4 \ kg$','$m = 5.9 \ kg$'},'Interpreter',...
525 'latex');
526 hTL=findobj(hObj,'type','Text'); %
527 set(hTL,'FontSize',11); % font size for letters in legend
528 hTL=findobj(hObj,'type','line'); %
529 set(hTL,'LineWidth',2); % thickness of lines in legend
530 set(hL,'FontSize',1,'Position',[0.5 0.5 0.25 0.26]);
531 % distance between lines in legend [x,y,width, height]
532

533 %% Singular Values Plot
534 winit = −1;
535 wfin = 2;
536 nwpts = 200;
537 w = logspace(winit,wfin,nwpts);
538 P1 = sigma(P1,w); P2 = sigma(P2,w); P3 = sigma(P3,w);
539 P4 = sigma(P4,w); P5 = sigma(P5,w);
540 P6 = sigma(P6,w); P7 = sigma(P7,w);
541 P1 = 20*log10(P1); P2 = 20*log10(P2); P3 = 20*log10(P3);
542 P4 = 20*log10(P4); P5 = 20*log10(P5);
543 P6 = 20*log10(P6); P7 = 20*log10(P7);
544 figure;
545 subplot(2,1,1);
546 semilogx( w, P1(1,:), w, P2(1,:), w, P3(1,:), w, P4(1,:), ...
547 w, P5(1,:), w, P6(1,:))
548 %clear sv
549 grid on;
550 h axes = findobj(gcf, 'type', 'axes');
551 xlabel('Frequency','FontSize',12);
552 ylabel('Magnitude','FontSize',12);
553 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
554 % size and brightness of grid and size of x & y axis numbers
555 title(...
556 'Max Singular Values $(e r + e l, e r − e l)\rightarrow(v,\omega)$ for
557 $d = 0$','FontWeight','bold','FontSize',14, 'Interpreter','latex')
558

559 h line = findobj(gcf, 'type', 'line');
560 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
561

562 subplot(2,1,2);
563 semilogx( w, P1(2,:), w, P2(2,:), w, P3(2,:), w, P4(2,:), w, P5(2,:),...
564 w, P6(2,:));
565 %clear sv
566 grid on;
567 h axes = findobj(gcf, 'type', 'axes');
568 xlabel('Frequency','FontSize',12);
569 ylabel('Magnitude','FontSize',12);
570 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
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571 % size and brightness of grid and size of x & y axis numbers
572 title(...
573 'Min Singular Values $(e r + e l, e r − e l)\rightarrow(v,\omega)$ for
574 $d = 0$', 'FontWeight','bold','FontSize',12, 'Interpreter','latex');
575

576 h line = findobj(gcf, 'type', 'line');
577 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
578

579

580

581

582 % Put legend and enhance appearance
583 % Legend bug with subscript, use '\ ' instead of ' '
584 [hL,hObj]=legend({'$m = 3.4 \ kg$','$m = 3.9 \ kg$','$m = 4.4 \ kg$',...
585 '$m = 4.9 \ kg$','$m = 5.4 \ kg$','$m = 5.9 \ kg$'},'Interpreter',...
586 'latex');
587 hTL=findobj(hObj,'type','Text'); %
588 set(hTL,'FontSize',11); % font size for letters in legend
589 hTL=findobj(hObj,'type','line'); %
590 set(hTL,'LineWidth',1.2); % thickness of lines in legend
591 set(hL,'FontSize',1,'Position',[0.5 0.5 0.25 0.26]);
592 % distance between lines in legend [x,y,width, height]
593

594 %%
595 % Plant model from e r+ e l, e r+ e l to V, W
596 % Singular and Bode Plots for different values of R
597

598 % Bode Plot
599

600 % change in R results in change in IW, however, no significant
601 % difference is observed
602

603 md = 0; m = 3.4; % if d = 0;
604 d = 0; Veq = 2; Weq = 0.8; % in m/s max value is 0.14 for hardware
605 L = 1; dw = L/sqrt(2); R = 0.042; % default values L = 0.3536 //\\
606 % has to be chosen based on the corresponding AR value
607 % (AR calculation.m)
608 Iw = 1.67e−06; A = m + 2*Iw/(R*R); % default values //\\
609 % has to be chosen based on the corresponding AR value
610 I AR = I ARcalculation(d,Iw,L,A,R,dw);
611 [max,min] = Imaxmin(d,Iw,L,md,dw);
612 Plant1 = Plantww(d, Veq, Weq, dw, Iw, I AR, L, md,R)
613

614 I = [0.42499999999 0.42500 0.42500000001 0.4292 0.4462 0.4675 0.3825];
615

616 R = 0.042; m wheel = 0.096;
617 rm = 0.0248 ; m motor = 0.224;
618 Iw = 0.5*m motor*rm*rm + 0.5*m wheel*R*R;
619 I = I Newcalculation(0,Iw,L,md,dw);
620

621 P1 = newPlantsdv(d, Veq, Weq, dw, Iw, I, L, md,R,m);
622 R = R+0.01;
623 Iw = 0.5*m motor*rm*rm + 0.5*m wheel*R*R;
624 I = I Newcalculation(0,Iw,L,md,dw);
625 P2 = newPlantsdv(d, Veq, Weq, dw, Iw, I, L, md,R,m);
626 R = R+0.01;
627 Iw = 0.5*m motor*rm*rm + 0.5*m wheel*R*R;
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628 I = I Newcalculation(0,Iw,L,md,dw);
629 P3 = newPlantsdv(d, Veq, Weq, dw, Iw, I, L, md,R,m);
630 R = R+0.01;
631 Iw = 0.5*m motor*rm*rm + 0.5*m wheel*R*R;
632 I = I Newcalculation(0,Iw,L,md,dw);
633 P4 = newPlantsdv(d, Veq, Weq, dw, Iw, I, L, md,R,m);
634 R = R+0.01;
635 Iw = 0.5*m motor*rm*rm + 0.5*m wheel*R*R;
636 I = I Newcalculation(0,Iw,L,md,dw);
637 P5 = newPlantsdv(d, Veq, Weq, dw, Iw, I, L, md,R,m);
638 R = R+0.01;
639 Iw = 0.5*m motor*rm*rm + 0.5*m wheel*R*R;
640 I = I Newcalculation(0,Iw,L,md,dw);
641 P6 = newPlantsdv(d, Veq, Weq, dw, Iw, I, L, md,R,m);
642

643

644 R = 0.042; Iw = 1.67e−06;
645 figure;
646 bodemag(P1,P2,P3,P4,P5,P6);
647 grid on;
648 h axes = findobj(gcf, 'type', 'axes');
649 xlabel('Frequency','FontSize',12);
650 ylabel('Magnitude','FontSize',12);
651 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
652 % size and brightness of grid and size of x & y axis numbers
653 title(...
654 'Frequency Response $(e r + e l, e r − e l)\rightarrow(v,\omega)$ for
655 $d = 0 $','FontWeight','bold','FontSize',14, 'Interpreter','latex')
656

657 h line = findobj(gcf, 'type', 'line');
658 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
659

660 % Put legend and enhance appearance
661 % Legend bug with subscript, use '\ ' instead of ' '
662 [hL,hObj]=legend({'$R = 0.042 \ m$','$R = 0.052 \ m$',...
663 '$R = 0.062 \ m$','$R = 0.072 \ m$','$R = 0.082 \ m$',...
664 '$R = 0.092 \ m$'},'Interpreter','latex');
665 hTL=findobj(hObj,'type','Text'); %
666 set(hTL,'FontSize',11); % font size for letters in legend
667 hTL=findobj(hObj,'type','line'); %
668 set(hTL,'LineWidth',2); % thickness of lines in legend
669 set(hL,'FontSize',1,'Position',[0.5 0.5 0.25 0.26]);
670 % distance between lines in legend [x,y,width, height]
671

672 %% Singular Values Plot
673 winit = −1;
674 wfin = 2;
675 nwpts = 200;
676 w = logspace(winit,wfin,nwpts);
677 P1 = sigma(P1,w); P2 = sigma(P2,w); P3 = sigma(P3,w);
678 P4 = sigma(P4,w); P5 = sigma(P5,w);
679 P6 = sigma(P6,w);
680 P1 = 20*log10(P1); P2 = 20*log10(P2); P3 = 20*log10(P3);
681 P4 = 20*log10(P4); P5 = 20*log10(P5);
682 P6 = 20*log10(P6);
683 figure;
684 subplot(2,1,1);
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685 semilogx( w, P1(1,:), w, P2(1,:), w, P3(1,:), w, P4(1,:), w, P5(1,:),...
686 w, P6(1,:))
687 %clear sv
688 grid on;
689 h axes = findobj(gcf, 'type', 'axes');
690 xlabel('Frequency','FontSize',12);
691 ylabel('Magnitude','FontSize',12);
692 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
693 % size and brightness of grid and size of x & y axis numbers
694 title(...
695 'Max Singular Values $ (e r + e l, e r − e l)\rightarrow(v,\omega)$for
696 $d = 0$','FontWeight','bold','FontSize',14, 'Interpreter','latex')
697

698 h line = findobj(gcf, 'type', 'line');
699 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
700

701 subplot(2,1,2);
702 semilogx( w, P1(2,:), w, P2(2,:), w, P3(2,:), w, P4(2,:), w, P5(2,:),...
703 w, P6(2,:))
704 %clear sv
705 grid on;
706 h axes = findobj(gcf, 'type', 'axes');
707 xlabel('Frequency','FontSize',12);
708 ylabel('Magnitude','FontSize',12);
709 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
710 % size and brightness of grid and size of x & y axis numbers
711 title(...
712 'Min Singular Values $(e r + e l, e r − e l)\rightarrow(v,\omega)$ for
713 $d = 0$','FontWeight','bold','FontSize',12, 'Interpreter','latex')
714

715 h line = findobj(gcf, 'type', 'line');
716 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
717

718

719

720

721 % Put legend and enhance appearance
722 % Legend bug with subscript, use '\ ' instead of ' '
723 [hL,hObj]=legend({'$R = 0.042 \ m$','$R = 0.052 \ m$',...
724 '$R = 0.062 \ m$','$R = 0.072 \ m$','$R = 0.082 \ m$',...
725 '$R = 0.092 \ m$'},'Interpreter','latex');
726 hTL=findobj(hObj,'type','Text'); %
727 set(hTL,'FontSize',11); % font size for letters in legend
728 hTL=findobj(hObj,'type','line'); %
729 set(hTL,'LineWidth',1.2); % thickness of lines in legend
730 set(hL,'FontSize',1,'Position',[0.5 0.5 0.25 0.26]);
731 % distance between lines in legend [x,y,width, height]

1 % Trade Studies at d ˜= 0
2 clc
3 close all
4 clear all
5 s = tf([1 0],[1]);
6 md = 0; m = 3.4; % if d = 0;
7 %% Different Plant Models with the respective parameters as input
8 % at d = 0
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9 % Plant model from e r, e l to W r, W l decoupled
10 % Plant model from (e r + e l), (e r−e l) to V, W decoupled
11 %%
12 % Plant model from e r, e l to W r, W l
13 % Singular and Bode Plots for different values of Veq
14 d = 0.1; Veq = 2; Weq = 0.8; % in m/s max value is 0.14 for hardware
15 L = 0.3536; dw = L/sqrt(2); R = 0.042; % default values L = 0.3536 //\\
16 %has to be chosen based on the corresponding AR value (AR calculation.m)
17 Iw = 1.67e−06; A = m + 2*Iw/(R*R); % default values //\\
18 %has to be chosen based on the corresponding AR value
19 I = I Newcalculation(d,Iw,L,md,dw);
20 [max,min] = Imaxmin(d,Iw,L,md,dw);
21 Plant1 = Plantww(d, Veq, Weq, dw, Iw, I, L, md,R);
22

23 Veq = [0.1 0.2 0.6 1 3 5];
24

25 P1 = Plantww(d, Veq(1), Weq, dw, Iw, I, L, md,R);
26 P2 = Plantww(d, Veq(2), Weq, dw, Iw, I, L, md,R);
27 P3 = Plantww(d, Veq(3), Weq, dw, Iw, I, L, md,R);
28 P4 = Plantww(d, Veq(4), Weq, dw, Iw, I, L, md,R);
29 P5 = Plantww(d, Veq(5), Weq, dw, Iw, I, L, md,R);
30 P6 = Plantww(d, Veq(6), Weq, dw, Iw, I, L, md,R);
31

32 figure;
33 bodemag(P1,P2,P3,P4,P5,P6);
34 grid on;
35 h axes = findobj(gcf, 'type', 'axes');
36 xlabel('Frequency','FontSize',12);
37 ylabel('Magnitude','FontSize',12);
38 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
39 % size and brightness of grid and size of x & y axis numbers
40 title(...
41 'Frequency Response $ (e r,e l)\rightarrow(\omega r,\omega l)$ for
42 $d \neq 0$','FontWeight','bold','FontSize',14, 'Interpreter','latex')
43

44 h line = findobj(gcf, 'type', 'line');
45 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
46

47 % Put legend and enhance appearance
48 % Legend bug with subscript, use '\ ' instead of ' '
49 [hL,hObj]=legend({'$v\ {eq} = 0.1 \ m/s$','$v\ {eq} = 0.2 \ m/s$',...
50 '$v\ {eq} = 0.6 \ m/s$','$v\ {eq} = 1.0 \ m/s$',...
51 '$v\ {eq} = 3.0 \ m/s$','$v\ {eq} = 5.0 \ m/s$'},'Interpreter','latex');
52 hTL=findobj(hObj,'type','Text'); %
53 set(hTL,'FontSize',11); % font size for letters in legend
54 hTL=findobj(hObj,'type','line'); %
55 set(hTL,'LineWidth',2); % thickness of lines in legend
56 set(hL,'FontSize',1,'Position',[0.5 0.5 0.26 0.24]);
57 % distance between lines in legend [x,y,width, height]
58

59 %% Singular and Bode Plots for different values of Weq
60 d = 0.1; Veq = 2; Weq = 0.8; % in m/s max value is 0.14 for hardware
61 L = 0.3536; dw = L/sqrt(2); R = 0.042; % default values L = 0.3536 //\\
62 %has to be chosen based on the corresponding AR value (AR calculation.m)
63 Iw = 1.67e−06; A = m + 2*Iw/(R*R); % default values //\\
64 %has to be chosen based on the corresponding AR value
65 I = I Newcalculation(d,Iw,L,md,dw);
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66 [max,min] = Imaxmin(d,Iw,L,md,dw);
67

68 Weq = [−8.0 −2.5 −0.5 0.5 2.5 8.0];
69

70 P1 = Plantww(d, Veq, Weq(1), dw, Iw, I, L, md,R);
71 P2 = Plantww(d, Veq, Weq(2), dw, Iw, I, L, md,R);
72 P3 = Plantww(d, Veq, Weq(3), dw, Iw, I, L, md,R);
73 P4 = Plantww(d, Veq, Weq(4), dw, Iw, I, L, md,R);
74 P5 = Plantww(d, Veq, Weq(5), dw, Iw, I, L, md,R);
75 P6 = Plantww(d, Veq, Weq(6), dw, Iw, I, L, md,R);
76

77 figure;
78 bodemag(P1,P2,P3,P4,P5,P6);
79 grid on;
80 h axes = findobj(gcf, 'type', 'axes');
81 xlabel('Frequency','FontSize',12);
82 ylabel('Magnitude','FontSize',12);
83 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
84 % size and brightness of grid and size of x & y axis numbers
85 title(...
86 'Frequency Response $(e r,e l)\rightarrow(\omega r,\omega l)$ for
87 $d\neq 0$','FontWeight','bold','FontSize',14, 'Interpreter','latex')
88

89 h line = findobj(gcf, 'type', 'line');
90 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
91

92 % Put legend and enhance appearance
93 % Legend bug with subscript, use '\ ' instead of ' '
94 [hL,hObj]=legend({'$\omega\ {eq} = −8.0 \ rad/s$',...
95 '$\omega\ {eq} = −2.5 \ rad/s$','$\omega\ {eq} = −0.5 \ rad/s$',...
96 '$\omega\ {eq} = 0.5 \ rad/s$','$\omega\ {eq} = 2.5 \ rad/s$',...
97 '$\omega\ {eq} = 8.0 \ rad/s$'},'Interpreter','latex');
98 hTL=findobj(hObj,'type','Text'); %
99 set(hTL,'FontSize',10); % font size for letters in legend

100 hTL=findobj(hObj,'type','line'); %
101 set(hTL,'LineWidth',2); % thickness of lines in legend
102 set(hL,'FontSize',1,'Position',[0.5 0.5 0.28 0.24]);
103 % distance between lines in legend [x,y,width, height]
104

105 %% %% Singular and Bode Plots for different values of d
106 % the behaviour in the bode plots can be associated with the dominat
107 % pole variation wrt to d
108 d = 0.1; Veq = 2; Weq = 0.8; % in m/s max value is 0.14 for hardware
109 L = 0.3536; dw = L/sqrt(2); R = 0.042; % default values L = 0.3536 //\\
110 % has to be chosen based on the corresponding AR value
111 % (AR calculation.m)
112 Iw = 1.67e−06; A = m + 2*Iw/(R*R); % default values //\\
113 % has to be chosen based on the corresponding AR value
114 I = I Newcalculation(d,Iw,L,md,dw);
115 [max,min] = Imaxmin(d,Iw,L,md,dw);
116

117 d = [−0.09 −0.08 −0.04 0.04 0.08 0.09];
118 I = [I Newcalculation(d(1),Iw,L,md,dw) I Newcalculation(d(2),Iw,L,md,dw)
119 I Newcalculation(d(3),Iw,L,md,dw) I Newcalculation(d(4),Iw,L,md,dw)
120 I Newcalculation(d(5),Iw,L,md,dw)
121 I Newcalculation(d(6),Iw,L,md,dw)];
122
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123 P1 = Plantww(d(1), Veq, Weq, dw, Iw, I(1), L, md,R);
124 P2 = Plantww(d(2), Veq, Weq, dw, Iw, I(2), L, md,R);
125 P3 = Plantww(d(3), Veq, Weq, dw, Iw, I(3), L, md,R);
126 P4 = Plantww(d(4), Veq, Weq, dw, Iw, I(4), L, md,R);
127 P5 = Plantww(d(5), Veq, Weq, dw, Iw, I(5), L, md,R);
128 P6 = Plantww(d(6), Veq, Weq, dw, Iw, I(6), L, md,R);
129

130 figure;
131 bodemag(P1,P2,P3,P4,P5,P6);
132 grid on;
133 h axes = findobj(gcf, 'type', 'axes');
134 xlabel('Frequency','FontSize',12);
135 ylabel('Magnitude','FontSize',12);
136 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
137 % size and brightness of grid and size of x & y axis numbers
138 title(...
139 'Frequency Response $(e r,e l)\rightarrow(\omega r,\omega l)$ for
140 $d\neq 0$','FontWeight','bold','FontSize',14, 'Interpreter','latex');
141

142 h line = findobj(gcf, 'type', 'line');
143 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
144

145 % Put legend and enhance appearance
146 % Legend bug with subscript, use '\ ' instead of ' '
147 [hL,hObj]=legend({'$d = −0.1 \ m$','$d = −0.05 \ m$',...
148 '$d = −0.02 \ m$','$d = 0.02 \ m$','$d = 0.05 \ m$','$d = 0.1 \ m$'},...
149 'Interpreter','latex');
150 hTL=findobj(hObj,'type','Text'); %
151 set(hTL,'FontSize',10); % font size for letters in legend
152 hTL=findobj(hObj,'type','line'); %
153 set(hTL,'LineWidth',2); % thickness of lines in legend
154 set(hL,'FontSize',1,'Position',[0.5 0.5 0.26 0.24]);
155 % distance between lines in legend [x,y,width, height]
156

157 %% plot of dominant pole vs d
158 figure;
159 load('dpole 2 1.mat');
160 d = −0.28:0.01:0.28
161 plot(d,h(1,:),d,h(2,:),d,h(3,:),d,h(4,:),d,h(5,:),d,h(6,:),d,h(7,:));
162 grid on;
163 h axes = findobj(gcf, 'type', 'axes');
164 xlabel('d (m)','FontSize',12);
165 ylabel('Dominant Pole ','FontSize',12);
166 set(h axes,'LineWidth',2,'FontSize',12,'GridAlpha',0.15);
167 % size and brightness of grid and size of x & y axis numbers
168 title('Dominant Pole vs $d$','FontWeight','bold','FontSize',14, ...
169 'Interpreter','latex')
170

171 h line = findobj(gcf, 'type', 'line');
172 set(h line, 'LineWidth',1.8); % Lines with thicker width for
173 % plots
174 [hL,hObj]=legend({'$v {eq} = 0.0 \ m/s$','$v {eq} = 0.5 \ m/s$',...
175 '$v {eq} = 1.0 \ m/s$','$v {eq} = 1.5 \ m/s$','$v {eq} = 2.0 \ m/s$',...
176 '$v {eq} = 2.5 \ m/s$','$v {eq} = 3.0 \ m/s$'},'Interpreter','latex');
177 hTL=findobj(hObj,'type','Text'); %
178 set(hTL,'FontSize',10); % font size for letters in legend
179 hTL=findobj(hObj,'type','line'); %
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180 set(hTL,'LineWidth',2); % thickness of lines in legend
181 set(hL,'FontSize',1,'Position',[0.5 0.5 0.27 0.24]);
182 % distance between lines in legend [x,y,width, height]
183

184 %% %% Singular and Bode Plots for different values of I
185 % the behaviour in the bode plots can be associated with the dominat
186 % pole variation wrt to d
187 d = 0.1; Veq = 2; Weq = 0.8; % in m/s max value is 0.14 for hardware
188 L = 1; dw = L/sqrt(2); R = 0.042; % default values L = 0.3536 //\\
189 %has to be chosen based on the corresponding AR value (AR calculation.m)
190 Iw = 1.67e−06; A = m + 2*Iw/(R*R); % default values //\\
191 %has to be chosen based on the corresponding AR value
192 I = I Newcalculation(d,Iw,L,md,dw);
193 [max,min] = Imaxmin(d,Iw,L,md,dw);
194

195 I = [0.4 0.5 0.7 0.9 1.2 1.7];
196

197 P1 = Plantww(d, Veq, Weq, dw, Iw, I(1), L, md,R);
198 P2 = Plantww(d, Veq, Weq, dw, Iw, I(2), L, md,R);
199 P3 = Plantww(d, Veq, Weq, dw, Iw, I(3), L, md,R);
200 P4 = Plantww(d, Veq, Weq, dw, Iw, I(4), L, md,R);
201 P5 = Plantww(d, Veq, Weq, dw, Iw, I(5), L, md,R);
202 P6 = Plantww(d, Veq, Weq, dw, Iw, I(6), L, md,R);
203

204 figure;
205 bodemag(P1,P2,P3,P4,P5,P6);
206 grid on;
207 h axes = findobj(gcf, 'type', 'axes');
208 xlabel('Frequency','FontSize',12);
209 ylabel('Magnitude','FontSize',12);
210 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
211

212 % size and brightness of grid and size of x & y axis numbers
213 title(...
214 'Frequency Response $ (e r,e l)\rightarrow(\omega r,\omega l) $ for
215 $d\neq0$','FontWeight','bold','FontSize',14, 'Interpreter','latex');
216

217 h line = findobj(gcf, 'type', 'line');
218 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
219

220 % Put legend and enhance appearance
221 % Legend bug with subscript, use '\ ' instead of ' '
222 [hL,hObj]=legend({'$I = 0.4 \ Kg.mˆ2$','$I = 0.5 \ Kg.mˆ2$',...
223 '$I = 0.7 \ Kg.mˆ2$','$I = 0.9 \ Kg.mˆ2$','$I = 1.2 \ Kg.mˆ2$',...
224 '$I = 1.7 \ Kg.mˆ2$'},'Interpreter','latex');
225 hTL=findobj(hObj,'type','Text'); %
226 set(hTL,'FontSize',10); % font size for letters in legend
227 hTL=findobj(hObj,'type','line'); %
228 set(hTL,'LineWidth',2); % thickness of lines in legend
229 set(hL,'FontSize',1,'Position',[0.5 0.5 0.27 0.24]);
230 % distance between lines in legend [x,y,width, height]
231

232

233 %%
234 % Plant model from e r, e l to W r, W l
235 % Singular and Bode Plots for different values of m
236 %(variations in total mass without changing I w)
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237

238 % Bode Plot
239

240 md = 0; m = 3.4; % if d = 0;
241 d = 0.1; Veq = 2; Weq = 0.8; % in m/s max value is 0.14 for hardware
242 L = 1; dw = L/sqrt(2); R = 0.042; % default values L = 0.3536 //\\
243 %has to be chosen based on the corresponding AR value (AR calculation.m)
244 Iw = 1.67e−06; A = m + 2*Iw/(R*R); % default values //\\
245 %has to be chosen based on the corresponding AR value
246 I AR = I ARcalculation(d,Iw,L,A,R,dw);
247 [max,min] = Imaxmin(d,Iw,L,md,dw);
248 Plant1 = Plantww(d, Veq, Weq, dw, Iw, I AR, L, md,R)
249

250 I = [0.42499999999 0.42500 0.42500000001 0.4292 0.4462 0.4675 0.3825];
251

252

253 P1 = newPlantww(d, Veq, Weq, dw, Iw, I(5), L, md,R,m);
254 P2 = newPlantww(d, Veq, Weq, dw, Iw, I(5), L, md,R,m+0.5);
255 P3 = newPlantww(d, Veq, Weq, dw, Iw, I(5), L, md,R,m+1);
256 P4 = newPlantww(d, Veq, Weq, dw, Iw, I(5), L, md,R,m+1.5);
257 P5 = newPlantww(d, Veq, Weq, dw, Iw, I(5), L, md,R,m+2);
258 P6 = newPlantww(d, Veq, Weq, dw, Iw, I(5), L, md,R,m+2.5);
259 P7 = newPlantww(d, Veq, Weq, dw, Iw, I(5), L, md,R,m+3);
260

261 figure;
262 bodemag(P1,P2,P3,P4,P5,P6,P7);
263 grid on;
264 h axes = findobj(gcf, 'type', 'axes');
265 xlabel('Frequency','FontSize',12);
266 ylabel('Magnitude','FontSize',12);
267 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
268 % size and brightness of grid and size of x & y axis numbers
269 title(...
270 'Frequency Response $(e r,e l)\rightarrow(\omega r,\omega l)$ for
271 $d \neq 0$','FontWeight','bold','FontSize',14, 'Interpreter','latex');
272

273 h line = findobj(gcf, 'type', 'line');
274 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
275

276 % Put legend and enhance appearance
277 % Legend bug with subscript, use '\ ' instead of ' '
278 [hL,hObj]=legend({'$m = 3.4 \ kg$','$m = 3.9 \ kg$','$m = 4.4 \ kg$',...
279 '$m = 4.9 \ kg$','$m = 5.4 \ kg$','$m = 5.9 \ kg$'},'Interpreter',...
280 'latex');
281 hTL=findobj(hObj,'type','Text'); %
282 set(hTL,'FontSize',11); % font size for letters in legend
283 hTL=findobj(hObj,'type','line'); %
284 set(hTL,'LineWidth',2); % thickness of lines in legend
285 set(hL,'FontSize',1,'Position',[0.5 0.5 0.25 0.26]);
286

287 %% Singular Values Plot
288 winit = −1;
289 wfin = 2;
290 nwpts = 200;
291 w = logspace(winit,wfin,nwpts);
292 P1 = sigma(P1,w); P2 = sigma(P2,w); P3 = sigma(P3,w);
293 P4 = sigma(P4,w); P5 = sigma(P5,w);

221



294 P6 = sigma(P6,w); P7 = sigma(P7,w);
295 P1 = 20*log10(P1); P2 = 20*log10(P2); P3 = 20*log10(P3);
296 P4 = 20*log10(P4); P5 = 20*log10(P5);
297 P6 = 20*log10(P6); P7 = 20*log10(P7);
298 figure;
299 subplot(2,1,1);
300 semilogx( w, P1(1,:), w, P2(1,:), w, P3(1,:), w, P4(1,:), w, P5(1,:),...
301 w, P6(1,:))
302 %clear sv
303 grid on;
304 h axes = findobj(gcf, 'type', 'axes');
305 xlabel('Frequency','FontSize',12);
306 ylabel('Magnitude','FontSize',12);
307 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
308 % size and brightness of grid and size of x & y axis numbers
309 title(...
310 'Max Singular Values $(e r,e l)\rightarrow(\omega r,\omega l)$ for
311 $d \neq 0$','FontWeight','bold','FontSize',14, 'Interpreter','latex')
312

313 h line = findobj(gcf, 'type', 'line');
314 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
315

316 subplot(2,1,2);
317 semilogx( w, P1(2,:), w, P2(2,:), w, P3(2,:), w, P4(2,:), w, P5(2,:),...
318 w, P6(2,:))
319 %clear sv
320 grid on;
321 h axes = findobj(gcf, 'type', 'axes');
322 xlabel('Frequency','FontSize',12);
323 ylabel('Magnitude','FontSize',12);
324 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
325 % size and brightness of grid and size of x & y axis numbers
326 title(...
327 'Min Singular Values $(e r,e l)\rightarrow(\omega r,\omega l)$ for
328 $d \neq 0$','FontWeight','bold','FontSize',12, 'Interpreter','latex')
329

330 h line = findobj(gcf, 'type', 'line');
331 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
332

333

334

335

336 % Put legend and enhance appearance
337 % Legend bug with subscript, use '\ ' instead of ' '
338 [hL,hObj]=legend({'$m = 3.4 \ kg$','$m = 3.9 \ kg$','$m = 4.4 \ kg$',...
339 '$m = 4.9 \ kg$','$m = 5.4 \ kg$','$m = 5.9 \ kg$'},'Interpreter',...
340 'latex');
341 hTL=findobj(hObj,'type','Text'); %
342 set(hTL,'FontSize',11); % font size for letters in legend
343 hTL=findobj(hObj,'type','line'); %
344 set(hTL,'LineWidth',1.2); % thickness of lines in legend
345 set(hL,'FontSize',1,'Position',[0.5 0.5 0.25 0.26]);
346 % distance between lines in legend [x,y,width, height]
347

348

349 %%
350 % Plant model from e r, e l to W r, W l
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351 % Singular and Bode Plots for different values of R
352

353 % Bode Plot
354

355 % change in R results in change in IW, however, no significant
356 % difference is observed
357

358 md = 0; m = 3.4; % if d = 0;
359 d = 0.1; Veq = 2; Weq = 0.8; % in m/s max value is 0.14 for hardware
360 L = 1; dw = L/sqrt(2); R = 0.042; % default values L = 0.3536 //\\
361 %has to be chosen based on the corresponding AR value (AR calculation.m)
362 Iw = 1.67e−06; A = m + 2*Iw/(R*R); % default values //\\
363 %has to be chosen based on the corresponding AR value
364 I AR = I ARcalculation(d,Iw,L,A,R,dw);
365 [max,min] = Imaxmin(d,Iw,L,md,dw);
366 Plant1 = Plantww(d, Veq, Weq, dw, Iw, I AR, L, md,R)
367

368 I = [0.42499999999 0.42500 0.42500000001 0.4292 0.4462 0.4675 0.3825];
369

370 R = 0.042; m wheel = 0.096;
371 rm = 0.0248 ; m motor = 0.224;
372 Iw = 0.5*m motor*rm*rm + 0.5*m wheel*R*R;
373 I = I Newcalculation(0,Iw,L,md,dw);
374

375 P1 = newPlantww(d, Veq, Weq, dw, Iw, I, L, md,R,m);
376 R = R+0.01;
377 Iw = 0.5*m motor*rm*rm + 0.5*m wheel*R*R;
378 I = I Newcalculation(0,Iw,L,md,dw);
379 P2 = newPlantww(d, Veq, Weq, dw, Iw, I, L, md,R,m);
380 R = R+0.01;
381 Iw = 0.5*m motor*rm*rm + 0.5*m wheel*R*R;
382 I = I Newcalculation(0,Iw,L,md,dw);
383 P3 = newPlantww(d, Veq, Weq, dw, Iw, I, L, md,R,m);
384 R = R+0.01;
385 Iw = 0.5*m motor*rm*rm + 0.5*m wheel*R*R;
386 I = I Newcalculation(0,Iw,L,md,dw);
387 P4 = newPlantww(d, Veq, Weq, dw, Iw, I, L, md,R,m);
388 R = R+0.01;
389 Iw = 0.5*m motor*rm*rm + 0.5*m wheel*R*R;
390 I = I Newcalculation(0,Iw,L,md,dw);
391 P5 = newPlantww(d, Veq, Weq, dw, Iw, I, L, md,R,m);
392 R = R+0.01;
393 Iw = 0.5*m motor*rm*rm + 0.5*m wheel*R*R;
394 I = I Newcalculation(0,Iw,L,md,dw);
395 P6 = newPlantww(d, Veq, Weq, dw, Iw, I, L, md,R,m);
396

397

398 R = 0.042; Iw = 1.67e−06;
399 figure;
400 bodemag(P1,P2,P3,P4,P5,P6);
401 grid on;
402 h axes = findobj(gcf, 'type', 'axes');
403 xlabel('Frequency','FontSize',12);
404 ylabel('Magnitude','FontSize',12);
405 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
406 % size and brightness of grid and size of x & y axis numbers
407 title(...
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408 'Frequency Response $ (e r,e l)\rightarrow(\omega r,\omega l)$ for
409 $ d\neq0$','FontWeight','bold','FontSize',14, 'Interpreter','latex');
410

411 h line = findobj(gcf, 'type', 'line');
412 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
413

414 % Put legend and enhance appearance
415 % Legend bug with subscript, use '\ ' instead of ' '
416 [hL,hObj]=legend({'$R = 0.042 \ m$','$R = 0.052 \ m$',...
417 '$R = 0.062 \ m$','$R = 0.072 \ m$','$R = 0.082 \ m$',...
418 '$R = 0.092 \ m$'},'Interpreter','latex');
419 hTL=findobj(hObj,'type','Text'); %
420 set(hTL,'FontSize',11); % font size for letters in legend
421 hTL=findobj(hObj,'type','line'); %
422 set(hTL,'LineWidth',2); % thickness of lines in legend
423 set(hL,'FontSize',1,'Position',[0.5 0.5 0.25 0.26]);
424 % distance between lines in legend [x,y,width, height]
425

426 %% Singular Values Plot
427 winit = −1;
428 wfin = 2;
429 nwpts = 200;
430 w = logspace(winit,wfin,nwpts);
431 P1 = sigma(P1,w); P2 = sigma(P2,w); P3 = sigma(P3,w);
432 P4 = sigma(P4,w); P5 = sigma(P5,w);
433 P6 = sigma(P6,w);
434 P1 = 20*log10(P1); P2 = 20*log10(P2); P3 = 20*log10(P3);
435 P4 = 20*log10(P4); P5 = 20*log10(P5);
436 P6 = 20*log10(P6);
437 figure;
438 subplot(2,1,1);
439 semilogx( w, P1(1,:), w, P2(1,:), w, P3(1,:), w, P4(1,:), w, P5(1,:),...
440 w, P6(1,:))
441 %clear sv
442 grid on;
443 h axes = findobj(gcf, 'type', 'axes');
444 xlabel('Frequency','FontSize',12);
445 ylabel('Magnitude','FontSize',12);
446 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
447 % size and brightness of grid and size of x & y axis numbers
448 title(...
449 'Max Singular Values $(e r,e l)\rightarrow(\omega r,\omega l)$ for
450 $d \neq 0$','FontWeight','bold','FontSize',14, 'Interpreter','latex')
451

452 h line = findobj(gcf, 'type', 'line');
453 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
454

455 subplot(2,1,2);
456 semilogx( w, P1(2,:), w, P2(2,:), w, P3(2,:), w, P4(2,:), w, P5(2,:),...
457 w, P6(2,:))
458 %clear sv
459 grid on;
460 h axes = findobj(gcf, 'type', 'axes');
461 xlabel('Frequency','FontSize',12);
462 ylabel('Magnitude','FontSize',12);
463 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
464 % size and brightness of grid and size of x & y axis numbers
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465 title(...
466 'Min Singular Values $(e r,e l)\rightarrow(\omega r,\omega l)$ for
467 $d \neq 0$','FontWeight','bold','FontSize',12, 'Interpreter','latex')
468

469 h line = findobj(gcf, 'type', 'line');
470 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
471

472

473

474

475 % Put legend and enhance appearance
476 % Legend bug with subscript, use '\ ' instead of ' '
477 [hL,hObj]=legend({'$R = 0.042 \ m$','$R = 0.052 \ m$',...
478 '$R = 0.062 \ m$','$R = 0.072 \ m$','$R = 0.082 \ m$',...
479 '$R = 0.092 \ m$'},'Interpreter','latex');
480 hTL=findobj(hObj,'type','Text'); %
481 set(hTL,'FontSize',11); % font size for letters in legend
482 hTL=findobj(hObj,'type','line'); %
483 set(hTL,'LineWidth',1.2); % thickness of lines in legend
484 set(hL,'FontSize',1,'Position',[0.5 0.5 0.25 0.26]);
485 % distance between lines in legend [x,y,width, height]

1 % Trade Studies at d ˜= 0
2 %continuation of the ppt 2 1 d nonzero with the singular value plots
3 clc
4 close all
5 clear all
6 s = tf([1 0],[1]);
7 md = 0; m = 3.4;
8 winit = −1;
9 wfin = 2;

10 nwpts = 200;
11 w = logspace(winit,wfin,nwpts);
12 %% Different Plant Models with the respective parameters as input
13 % at d = 0
14 % Plant model from e r, e l to W r, W l decoupled
15 % Plant model from (e r + e l), (e r−e l) to V, W decoupled
16 %%
17 % Plant model from e r, e l to W r, W l
18 % Singular and Bode Plots for different values of Veq
19 d = 0.1; Veq = 2; Weq = 0.8; % in m/s max value is 0.14 for hardware
20 L = 0.3536; dw = L/sqrt(2); R = 0.042; % default values L = 0.3536 //\\
21 %has to be chosen based on the corresponding AR value (AR calculation.m)
22 Iw = 1.67e−06; A = m + 2*Iw/(R*R); % default values //\\
23 %has to be chosen based on the corresponding AR value
24 I = I Newcalculation(d,Iw,L,md,dw);
25 [max,min] = Imaxmin(d,Iw,L,md,dw);
26 Plant1 = Plantww(d, Veq, Weq, dw, Iw, I, L, md,R);
27

28 Veq = [0.1 0.2 0.6 1 3 5];
29

30 P1 = Plantww(d, Veq(1), Weq, dw, Iw, I, L, md,R);
31 P2 = Plantww(d, Veq(2), Weq, dw, Iw, I, L, md,R);
32 P3 = Plantww(d, Veq(3), Weq, dw, Iw, I, L, md,R);
33 P4 = Plantww(d, Veq(4), Weq, dw, Iw, I, L, md,R);
34 P5 = Plantww(d, Veq(5), Weq, dw, Iw, I, L, md,R);
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35 P6 = Plantww(d, Veq(6), Weq, dw, Iw, I, L, md,R);
36

37 P1 = sigma(P1,w); P2 = sigma(P2,w); P3 = sigma(P3,w);
38 P4 = sigma(P4,w); P5 = sigma(P5,w);
39 P6 = sigma(P6,w);
40 P1 = 20*log10(P1); P2 = 20*log10(P2); P3 = 20*log10(P3);
41 P4 = 20*log10(P4); P5 = 20*log10(P5);
42 P6 = 20*log10(P6);
43

44 figure;
45 subplot(2,1,1);
46 semilogx(w, P1(1,:), w, P2(1,:), w, P3(1,:), w, P4(1,:), w, P5(1,:),...
47 w, P6(1,:))
48 %clear sv
49 grid on;
50 h axes = findobj(gcf, 'type', 'axes');
51 xlabel('Frequency','FontSize',12);
52 ylabel('Magnitude','FontSize',12);
53 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
54 % size and brightness of grid and size of x & y axis numbers
55 title(...
56 'Max Singular Values $(e r,e l)\rightarrow(\omega r,\omega l)$ for
57 $d \neq 0$','FontWeight','bold','FontSize',14, 'Interpreter','latex')
58

59 h line = findobj(gcf, 'type', 'line');
60 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
61

62 subplot(2,1,2);
63 semilogx(w, P1(2,:), w, P2(2,:), w, P3(2,:), w, P4(2,:), w, P5(2,:),...
64 w, P6(2,:))
65 %clear sv
66 grid on;
67 h axes = findobj(gcf, 'type', 'axes');
68 xlabel('Frequency','FontSize',12);
69 ylabel('Magnitude','FontSize',12);
70 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
71 % size and brightness of grid and size of x & y axis numbers
72 title(...
73 'Min Singular Values $(e r,e l)\rightarrow(\omega r,\omega l)$ for
74 $d \neq 0$','FontWeight','bold','FontSize',12, 'Interpreter','latex')
75

76 h line = findobj(gcf, 'type', 'line');
77 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
78

79 % Put legend and enhance appearance
80 % Legend bug with subscript, use '\ ' instead of ' '
81 [hL,hObj]=legend({'$v {eq} = 0.1 \ m/s$','$v {eq} = 0.2 \ m/s$',...
82 '$v {eq} = 0.6 \ m/s$','$v {eq} = 1.0 \ m/s$','$v {eq} = 3.0 \ m/s$',...
83 '$v {eq} = 5.0 \ m/s$'},'Interpreter','latex');
84 hTL=findobj(hObj,'type','Text'); %
85 set(hTL,'FontSize',11); % font size for letters in legend
86 hTL=findobj(hObj,'type','line'); %
87 set(hTL,'LineWidth',2); % thickness of lines in legend
88 set(hL,'FontSize',1,'Position',[0.5 0.5 0.26 0.24]);
89 % distance between lines in legend [x,y,width, height]
90

91 %% Singular and Bode Plots for different values of Weq
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92 d = 0.1; Veq = 2; Weq = 0.8; % in m/s max value is 0.14 for hardware
93 L = 0.3536; dw = L/sqrt(2); R = 0.042; % default values L = 0.3536 //\\
94 %has to be chosen based on the corresponding AR value (AR calculation.m)
95 Iw = 1.67e−06; A = m + 2*Iw/(R*R); % default values //\\
96 %has to be chosen based on the corresponding AR value
97 I = I Newcalculation(d,Iw,L,md,dw);
98 [max,min] = Imaxmin(d,Iw,L,md,dw);
99

100 Weq = [−8.0 −2.5 −0.5 0.5 2.5 8.0];
101

102 P1 = Plantww(d, Veq, Weq(1), dw, Iw, I, L, md,R);
103 P2 = Plantww(d, Veq, Weq(2), dw, Iw, I, L, md,R);
104 P3 = Plantww(d, Veq, Weq(3), dw, Iw, I, L, md,R);
105 P4 = Plantww(d, Veq, Weq(4), dw, Iw, I, L, md,R);
106 P5 = Plantww(d, Veq, Weq(5), dw, Iw, I, L, md,R);
107 P6 = Plantww(d, Veq, Weq(6), dw, Iw, I, L, md,R);
108

109 P1 = sigma(P1,w); P2 = sigma(P2,w); P3 = sigma(P3,w);
110 P4 = sigma(P4,w); P5 = sigma(P5,w);
111 P6 = sigma(P6,w);
112 P1 = 20*log10(P1); P2 = 20*log10(P2); P3 = 20*log10(P3);
113 P4 = 20*log10(P4); P5 = 20*log10(P5);
114 P6 = 20*log10(P6);
115

116 figure;
117 subplot(2,1,1);
118 semilogx(w, P1(1,:), w, P2(1,:), w, P3(1,:), w, P4(1,:), w, P5(1,:),...
119 w, P6(1,:))
120 %clear sv
121 grid on;
122 h axes = findobj(gcf, 'type', 'axes');
123 xlabel('Frequency','FontSize',12);
124 ylabel('Magnitude','FontSize',12);
125 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
126 % size and brightness of grid and size of x & y axis numbers
127 title(...
128 'Max Singular Values $ e r,e l)\rightarrow(\omega r,\omega l)$ for
129 $d \neq 0$','FontWeight','bold','FontSize',14, 'Interpreter','latex')
130

131 h line = findobj(gcf, 'type', 'line');
132 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
133

134 subplot(2,1,2);
135 semilogx(w, P1(2,:), w, P2(2,:), w, P3(2,:), w, P4(2,:), w, P5(2,:),...
136 w, P6(2,:))
137 %clear sv
138 grid on;
139 h axes = findobj(gcf, 'type', 'axes');
140 xlabel('Frequency','FontSize',12);
141 ylabel('Magnitude','FontSize',12);
142 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
143 % size and brightness of grid and size of x & y axis numbers
144 title(...
145 'Min Singular Values $(e r,e l)\rightarrow(\omega r,\omega l)$ for
146 $d \neq 0$','FontWeight','bold','FontSize',12, 'Interpreter','latex')
147

148 h line = findobj(gcf, 'type', 'line');
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149 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
150

151 % Put legend and enhance appearance
152 % Legend bug with subscript, use '\ ' instead of ' '
153 [hL,hObj]=legend({'$\omega {eq} = −8.0 \ rad/s$',...
154 '$\omega {eq} = −2.5 \ rad/s$','$\omega {eq} = −0.5 \ rad/s$',...
155 '$\omega {eq} = 0.5 \ rad/s$','$\omega {eq} = 2.5 \ rad/s$',...
156 '$\omega {eq} = 8.0 \ rad/s$'},'Interpreter','latex');
157 hTL=findobj(hObj,'type','Text'); %
158 set(hTL,'FontSize',10); % font size for letters in legend
159 hTL=findobj(hObj,'type','line'); %
160 set(hTL,'LineWidth',2); % thickness of lines in legend
161 set(hL,'FontSize',1,'Position',[0.5 0.5 0.28 0.24]);
162 % distance between lines in legend [x,y,width, height]
163

164 %% %% Singular and Bode Plots for different values of d
165 % the behaviour in the bode plots can be associated with the dominat...
166 pole
167 % variation wrt to d
168 d = 0.1; Veq = 2; Weq = 0.8; % in m/s max value is 0.14 for hardware
169 L = 0.3536; dw = L/sqrt(2); R = 0.042; % default values L = 0.3536 //\\
170 %has to be chosen based on the corresponding AR value (AR calculation.m)
171 Iw = 1.67e−06; A = m + 2*Iw/(R*R); % default values //\\
172 %has to be chosen based on the corresponding AR value
173 I = I Newcalculation(d,Iw,L,md,dw);
174 [max,min] = Imaxmin(d,Iw,L,md,dw);
175

176 d = [−0.09 −0.08 −0.04 0.04 0.08 0.09];
177 I = [I Newcalculation(d(1),Iw,L,md,dw) I Newcalculation(d(2),Iw,L,md,dw)
178 I Newcalculation(d(3),Iw,L,md,dw) I Newcalculation(d(4),Iw,L,md,dw)
179 I Newcalculation(d(5),Iw,L,md,dw)
180 I Newcalculation(d(6),Iw,L,md,dw)];
181

182 P1 = Plantww(d(1), Veq, Weq, dw, Iw, I(1), L, md,R);
183 P2 = Plantww(d(2), Veq, Weq, dw, Iw, I(2), L, md,R);
184 P3 = Plantww(d(3), Veq, Weq, dw, Iw, I(3), L, md,R);
185 P4 = Plantww(d(4), Veq, Weq, dw, Iw, I(4), L, md,R);
186 P5 = Plantww(d(5), Veq, Weq, dw, Iw, I(5), L, md,R);
187 P6 = Plantww(d(6), Veq, Weq, dw, Iw, I(6), L, md,R);
188

189 P1 = sigma(P1,w); P2 = sigma(P2,w); P3 = sigma(P3,w);
190 P4 = sigma(P4,w); P5 = sigma(P5,w);
191 P6 = sigma(P6,w);
192 P1 = 20*log10(P1); P2 = 20*log10(P2); P3 = 20*log10(P3);
193 P4 = 20*log10(P4); P5 = 20*log10(P5);
194 P6 = 20*log10(P6);
195

196 figure;
197 subplot(2,1,1);
198 semilogx(w, P1(1,:), w, P2(1,:), w, P3(1,:), w, P4(1,:), w, P5(1,:)...
199 w, P6(1,:))
200 %clear sv
201 grid on;
202 h axes = findobj(gcf, 'type', 'axes');
203 xlabel('Frequency','FontSize',12);
204 ylabel('Magnitude','FontSize',12);
205 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
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206 % size and brightness of grid and size of x & y axis numbers
207 title(...
208 'Max Singular Values $(e r,e l)\rightarrow(\omega r,\omega l)$ for
209 $d \neq 0$','FontWeight','bold','FontSize',14, 'Interpreter','latex')
210

211 h line = findobj(gcf, 'type', 'line');
212 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
213

214 subplot(2,1,2);
215 semilogx(w, P1(2,:), w, P2(2,:), w, P3(2,:), w, P4(2,:), w, P5(2,:),...
216 w, P6(2,:))
217 %clear sv
218 grid on;
219 h axes = findobj(gcf, 'type', 'axes');
220 xlabel('Frequency','FontSize',12);
221 ylabel('Magnitude','FontSize',12);
222 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
223 % size and brightness of grid and size of x & y axis numbers
224 title(...
225 'Min Singular Values $(e r,e l)\rightarrow(\omega r,\omega l) $ for
226 $d\neq 0$','FontWeight','bold','FontSize',12, 'Interpreter','latex')
227

228 h line = findobj(gcf, 'type', 'line');
229 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
230

231 % Put legend and enhance appearance
232 % Legend bug with subscript, use '\ ' instead of ' '
233 [hL,hObj]=legend({'$d = −0.1 \ m$','$d = −0.05 \ m$',...
234 '$d = −0.02 \ m$','$d = 0.02 \ m$','$d = 0.05 \ m$','$d = 0.1 \ m$'},...
235 'Interpreter','latex');
236 hTL=findobj(hObj,'type','Text'); %
237 set(hTL,'FontSize',10); % font size for letters in legend
238 hTL=findobj(hObj,'type','line'); %
239 set(hTL,'LineWidth',2); % thickness of lines in legend
240 set(hL,'FontSize',1,'Position',[0.5 0.5 0.26 0.24]);
241 % distance between lines in legend [x,y,width, height]
242

243 %% %% Singular and Bode Plots for different values of I
244 % the behaviour in the bode plots can be associated with the dominat
245 % pole variation wrt to d
246 d = 0.1; Veq = 2; Weq = 0.8; % in m/s max value is 0.14 for hardware
247 L = 1; dw = L/sqrt(2); R = 0.042; % default values L = 0.3536 //\\
248 %has to be chosen based on the corresponding AR value (AR calculation.m)
249 Iw = 1.67e−06; A = m + 2*Iw/(R*R); % default values //\\
250 %has to be chosen based on the corresponding AR value
251 I = I Newcalculation(d,Iw,L,md,dw);
252 [max,min] = Imaxmin(d,Iw,L,md,dw);
253

254 I = [0.4 0.5 0.7 0.9 1.2 1.7];
255

256 P1 = Plantww(d, Veq, Weq, dw, Iw, I(1), L, md,R);
257 P2 = Plantww(d, Veq, Weq, dw, Iw, I(2), L, md,R);
258 P3 = Plantww(d, Veq, Weq, dw, Iw, I(3), L, md,R);
259 P4 = Plantww(d, Veq, Weq, dw, Iw, I(4), L, md,R);
260 P5 = Plantww(d, Veq, Weq, dw, Iw, I(5), L, md,R);
261 P6 = Plantww(d, Veq, Weq, dw, Iw, I(6), L, md,R);
262
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263 P1 = sigma(P1,w); P2 = sigma(P2,w); P3 = sigma(P3,w);
264 P4 = sigma(P4,w); P5 = sigma(P5,w);
265 P6 = sigma(P6,w);
266 P1 = 20*log10(P1); P2 = 20*log10(P2); P3 = 20*log10(P3);
267 P4 = 20*log10(P4); P5 = 20*log10(P5);
268 P6 = 20*log10(P6);
269

270 figure;
271 subplot(2,1,1);
272 semilogx(w, P1(1,:), w, P2(1,:), w, P3(1,:), w, P4(1,:), w, P5(1,:),...
273 w, P6(1,:))
274 %clear sv
275 grid on;
276 h axes = findobj(gcf, 'type', 'axes');
277 xlabel('Frequency','FontSize',12);
278 ylabel('Magnitude','FontSize',12);
279 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
280 % size and brightness of grid and size of x & y axis numbers
281 title(...
282 'Max Singular Values $(e r,e l)\rightarrow(\omega r,\omega l)$ for
283 $d \neq 0$','FontWeight','bold','FontSize',14, 'Interpreter','latex')
284

285 h line = findobj(gcf, 'type', 'line');
286 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
287

288 subplot(2,1,2);
289 semilogx(w, P1(2,:), w, P2(2,:), w, P3(2,:), w, P4(2,:), w, P5(2,:),...
290 w, P6(2,:))
291 %clear sv
292 grid on;
293 h axes = findobj(gcf, 'type', 'axes');
294 xlabel('Frequency','FontSize',12);
295 ylabel('Magnitude','FontSize',12);
296 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
297 % size and brightness of grid and size of x & y axis numbers
298 title(...
299 'Min Singular Values $(e r,e l)\rightarrow(\omega r,\omega l)$ for
300 $d \neq 0$','FontWeight','bold','FontSize',12, 'Interpreter','latex')
301

302 h line = findobj(gcf, 'type', 'line');
303 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
304

305 % Put legend and enhance appearance
306 % Legend bug with subscript, use '\ ' instead of ' '
307 [hL,hObj]=legend({'$I = 0.4 \ Kg.mˆ2$','$I = 0.5 \ Kg.mˆ2$',...
308 '$I = 0.7 \ Kg.mˆ2$','$I = 0.9 \ Kg.mˆ2$','$I = 1.2 \ Kg.mˆ2$',...
309 '$I = 1.7 \ Kg.mˆ2$'},'Interpreter','latex');
310 hTL=findobj(hObj,'type','Text'); %
311 set(hTL,'FontSize',10); % font size for letters in legend
312 hTL=findobj(hObj,'type','line'); %
313 set(hTL,'LineWidth',2); % thickness of lines in legend
314 set(hL,'FontSize',1,'Position',[0.5 0.5 0.27 0.24]);
315 % distance between lines in legend [x,y,width, height]
316

317 %%
318 % Plant model from e r + e l, e r − e l to V,W
319 % Singular and Bode Plots for different values of m
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320 $(variations in total mass without changing I w)
321

322 % Bode Plot
323

324 md = 0; m = 3.4; % if d = 0;
325 d = 0.1; Veq = 2; Weq = 0.8; % in m/s max value is 0.14 for hardware
326 L = 1; dw = L/sqrt(2); R = 0.042; % default values L = 0.3536 //\\
327 %has to be chosen based on the corresponding AR value (AR calculation.m)
328 Iw = 1.67e−06; A = m + 2*Iw/(R*R); % default values //\\
329 %has to be chosen based on the corresponding AR value
330 I AR = I ARcalculation(d,Iw,L,A,R,dw);
331 [max,min] = Imaxmin(d,Iw,L,md,dw);
332 Plant1 = Plantww(d, Veq, Weq, dw, Iw, I AR, L, md,R)
333

334 I = [0.42499999999 0.42500 0.42500000001 0.4292 0.4462 0.4675 0.3825];
335

336

337 P1 = newPlantsdv(d, Veq, Weq, dw, Iw, I(5), L, md,R,m);
338 P2 = newPlantsdv(d, Veq, Weq, dw, Iw, I(5), L, md,R,m+0.5);
339 P3 = newPlantsdv(d, Veq, Weq, dw, Iw, I(5), L, md,R,m+1);
340 P4 = newPlantsdv(d, Veq, Weq, dw, Iw, I(5), L, md,R,m+1.5);
341 P5 = newPlantsdv(d, Veq, Weq, dw, Iw, I(5), L, md,R,m+2);
342 P6 = newPlantsdv(d, Veq, Weq, dw, Iw, I(5), L, md,R,m+2.5);
343 P7 = newPlantsdv(d, Veq, Weq, dw, Iw, I(5), L, md,R,m+3);
344

345 figure;
346 bodemag(P1,P2,P3,P4,P5,P6);
347 grid on;
348 h axes = findobj(gcf, 'type', 'axes');
349 xlabel('Frequency','FontSize',12);
350 ylabel('Magnitude','FontSize',12);
351 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
352 % size and brightness of grid and size of x & y axis numbers
353 title(...
354 'Frequency Response $(e r + e l,e r − e l)\rightarrow(v,\omega)$ for
355 $d\neq0$','FontWeight','bold','FontSize',14, 'Interpreter','latex')
356

357 h line = findobj(gcf, 'type', 'line');
358 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
359

360 % Put legend and enhance appearance
361 % Legend bug with subscript, use '\ ' instead of ' '
362 [hL,hObj]=legend({'$m = 3.4 \ kg$','$m = 3.9 \ kg$','$m = 4.4 \ kg$',...
363 '$m = 4.9 \ kg$','$m = 5.4 \ kg$','$m = 5.9 \ kg$'},'Interpreter',...
364 'latex');
365 hTL=findobj(hObj,'type','Text'); %
366 set(hTL,'FontSize',11); % font size for letters in legend
367 hTL=findobj(hObj,'type','line'); %
368 set(hTL,'LineWidth',2); % thickness of lines in legend
369 set(hL,'FontSize',1,'Position',[0.5 0.5 0.25 0.26]);
370 % distance between lines in legend [x,y,width, height]
371

372 %% Singular Values Plot
373 winit = −1;
374 wfin = 2;
375 nwpts = 200;
376 w = logspace(winit,wfin,nwpts);
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377 P1 = sigma(P1,w); P2 = sigma(P2,w); P3 = sigma(P3,w);
378 P4 = sigma(P4,w); P5 = sigma(P5,w);
379 P6 = sigma(P6,w); P7 = sigma(P7,w);
380 P1 = 20*log10(P1); P2 = 20*log10(P2); P3 = 20*log10(P3);
381 P4 = 20*log10(P4); P5 = 20*log10(P5);
382 P6 = 20*log10(P6); P7 = 20*log10(P7);
383 figure;
384 subplot(2,1,1);
385 semilogx( w, P1(1,:), w, P2(1,:), w, P3(1,:), w, P4(1,:), w, P5(1,:),...
386 w, P6(1,:))
387 %clear sv
388 grid on;
389 h axes = findobj(gcf, 'type', 'axes');
390 xlabel('Frequency','FontSize',12);
391 ylabel('Magnitude','FontSize',12);
392 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
393 % size and brightness of grid and size of x & y axis numbers
394 title(...
395 'Max Singular Values $((e r + e l,e r − e l)\rightarrow(v,\omega))$ for
396 $d\neq0$','FontWeight','bold','FontSize',14, 'Interpreter','latex')
397

398 h line = findobj(gcf, 'type', 'line');
399 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
400

401 subplot(2,1,2);
402 semilogx( w, P1(2,:), w, P2(2,:), w, P3(2,:), w, P4(2,:), w, P5(2,:),...
403 w, P6(2,:))
404 %clear sv
405 grid on;
406 h axes = findobj(gcf, 'type', 'axes');
407 xlabel('Frequency','FontSize',12);
408 ylabel('Magnitude','FontSize',12);
409 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
410 % size and brightness of grid and size of x & y axis numbers
411 title(...
412 'Min Singular Values $(e r + e l,e r − e l)\rightarrow(v,\omega)$ for
413 $d\neq0$','FontWeight','bold','FontSize',12, 'Interpreter','latex')
414

415 h line = findobj(gcf, 'type', 'line');
416 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
417

418

419

420

421 % Put legend and enhance appearance
422 % Legend bug with subscript, use '\ ' instead of ' '
423 [hL,hObj]=legend({'$m = 3.4 \ kg$','$m = 3.9 \ kg$','$m = 4.4 \ kg$',...
424 '$m = 4.9 \ kg$','$m = 5.4 \ kg$','$m = 5.9 \ kg$'},'Interpreter',...
425 'latex');
426 hTL=findobj(hObj,'type','Text'); %
427 set(hTL,'FontSize',11); % font size for letters in legend
428 hTL=findobj(hObj,'type','line'); %
429 set(hTL,'LineWidth',1.2); % thickness of lines in legend
430 set(hL,'FontSize',1,'Position',[0.5 0.5 0.25 0.26]);
431 % distance between lines in legend [x,y,width, height]
432

433 %%
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434 % Plant model from e r+ e l, e r+ e l to V, W
435 % Singular and Bode Plots for different values of R
436

437 % Bode Plot
438

439 % change in R results in change in IW, however, no significant
440 % difference is observed
441

442 md = 0; m = 3.4; % if d = 0;
443 d = 0.1; Veq = 2; Weq = 0.8; % in m/s max value is 0.14 for hardware
444 L = 1; dw = L/sqrt(2); R = 0.042; % default values L = 0.3536 //\\
445 %has to be chosen based on the corresponding AR value (AR calculation.m)
446 Iw = 1.67e−06; A = m + 2*Iw/(R*R); % default values //\\
447 %has to be chosen based on the corresponding AR value
448 I AR = I ARcalculation(d,Iw,L,A,R,dw);
449 [max,min] = Imaxmin(d,Iw,L,md,dw);
450 Plant1 = Plantww(d, Veq, Weq, dw, Iw, I AR, L, md,R)
451

452 I = [0.42499999999 0.42500 0.42500000001 0.4292 0.4462 0.4675 0.3825];
453

454 R = 0.042; m wheel = 0.096;
455 rm = 0.0248 ; m motor = 0.224;
456 Iw = 0.5*m motor*rm*rm + 0.5*m wheel*R*R;
457 I = I Newcalculation(0,Iw,L,md,dw);
458

459 P1 = newPlantsdv(d, Veq, Weq, dw, Iw, I, L, md,R,m);
460 R = R+0.01;
461 Iw = 0.5*m motor*rm*rm + 0.5*m wheel*R*R;
462 I = I Newcalculation(0,Iw,L,md,dw);
463 P2 = newPlantsdv(d, Veq, Weq, dw, Iw, I, L, md,R,m);
464 R = R+0.01;
465 Iw = 0.5*m motor*rm*rm + 0.5*m wheel*R*R;
466 I = I Newcalculation(0,Iw,L,md,dw);
467 P3 = newPlantsdv(d, Veq, Weq, dw, Iw, I, L, md,R,m);
468 R = R+0.01;
469 Iw = 0.5*m motor*rm*rm + 0.5*m wheel*R*R;
470 I = I Newcalculation(0,Iw,L,md,dw);
471 P4 = newPlantsdv(d, Veq, Weq, dw, Iw, I, L, md,R,m);
472 R = R+0.01;
473 Iw = 0.5*m motor*rm*rm + 0.5*m wheel*R*R;
474 I = I Newcalculation(0,Iw,L,md,dw);
475 P5 = newPlantsdv(d, Veq, Weq, dw, Iw, I, L, md,R,m);
476 R = R+0.01;
477 Iw = 0.5*m motor*rm*rm + 0.5*m wheel*R*R;
478 I = I Newcalculation(0,Iw,L,md,dw);
479 P6 = newPlantsdv(d, Veq, Weq, dw, Iw, I, L, md,R,m);
480

481

482 R = 0.042; Iw = 1.67e−06;
483 figure;
484 bodemag(P1,P2,P3,P4,P5,P6);
485 grid on;
486 h axes = findobj(gcf, 'type', 'axes');
487 xlabel('Frequency','FontSize',12);
488 ylabel('Magnitude','FontSize',12);
489 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
490 % size and brightness of grid and size of x & y axis numbers
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491 title(...
492 'Frequency Response $(e r + e l,e r − e l)\rightarrow(v,\omega)$ for
493 $d\neq0$','FontWeight','bold','FontSize',14, 'Interpreter','latex')
494

495 h line = findobj(gcf, 'type', 'line');
496 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
497

498 % Put legend and enhance appearance
499 % Legend bug with subscript, use '\ ' instead of ' '
500 [hL,hObj]=legend({'$R = 0.042 \ m$','$R = 0.052 \ m$',...
501 '$R = 0.062 \ m$','$R = 0.072 \ m$','$R = 0.082 \ m$',...
502 '$R = 0.092 \ m$'},'Interpreter','latex');
503 hTL=findobj(hObj,'type','Text'); %
504 set(hTL,'FontSize',11); % font size for letters in legend
505 hTL=findobj(hObj,'type','line'); %
506 set(hTL,'LineWidth',2); % thickness of lines in legend
507 set(hL,'FontSize',1,'Position',[0.5 0.5 0.25 0.26]);
508 % distance between lines in legend [x,y,width, height]
509

510 %% Singular Values Plot
511 winit = −1;
512 wfin = 2;
513 nwpts = 200;
514 w = logspace(winit,wfin,nwpts);
515 P1 = sigma(P1,w); P2 = sigma(P2,w); P3 = sigma(P3,w);
516 P4 = sigma(P4,w); P5 = sigma(P5,w);
517 P6 = sigma(P6,w);
518 P1 = 20*log10(P1); P2 = 20*log10(P2); P3 = 20*log10(P3);
519 P4 = 20*log10(P4); P5 = 20*log10(P5);
520 P6 = 20*log10(P6);
521 figure;
522 subplot(2,1,1);
523 semilogx( w, P1(1,:), w, P2(1,:), w, P3(1,:), w, P4(1,:), w, P5(1,:),...
524 w, P6(1,:))
525 %clear sv
526 grid on;
527 h axes = findobj(gcf, 'type', 'axes');
528 xlabel('Frequency','FontSize',12);
529 ylabel('Magnitude','FontSize',12);
530 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
531 % size and brightness of grid and size of x & y axis numbers
532 title(...
533 'Max Singular Values $(e r + e l,e r − e l)\rightarrow(v,\omega)$ for
534 $d\neq 0$','FontWeight','bold','FontSize',14, 'Interpreter','latex')
535

536 h line = findobj(gcf, 'type', 'line');
537 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
538

539 subplot(2,1,2);
540 semilogx( w, P1(2,:), w, P2(2,:), w, P3(2,:), w, P4(2,:), w, P5(2,:),...
541 w, P6(2,:))
542 %clear sv
543 grid on;
544 h axes = findobj(gcf, 'type', 'axes');
545 xlabel('Frequency','FontSize',12);
546 ylabel('Magnitude','FontSize',12);
547 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
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548 % size and brightness of grid and size of x & y axis numbers
549 title(...
550 'Min Singular Values $(e r + e l,e r − e l)\rightarrow(v,\omega)$ for
551 $d\neq0$','FontWeight','bold','FontSize',12, 'Interpreter','latex')
552

553 h line = findobj(gcf, 'type', 'line');
554 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
555

556

557

558

559 % Put legend and enhance appearance
560 % Legend bug with subscript, use '\ ' instead of ' '
561 [hL,hObj]=legend({'$R = 0.042 \ m$','$R = 0.052 \ m$',...
562 '$R = 0.062 \ m$','$R = 0.072 \ m$','$R = 0.082 \ m$',...
563 '$R = 0.092 \ m$'},'Interpreter','latex');
564 hTL=findobj(hObj,'type','Text'); %
565 set(hTL,'FontSize',11); % font size for letters in legend
566 hTL=findobj(hObj,'type','line'); %
567 set(hTL,'LineWidth',1.2); % thickness of lines in legend
568 set(hL,'FontSize',1,'Position',[0.5 0.5 0.25 0.26]);
569 % distance between lines in legend [x,y,width, height]

1 % Trade Studies at d ˜= 0 Contd.
2 clc
3 close all
4 clear all
5 s = tf([1 0],[1]);
6 md = 0; m = 3.4; % if d = 0;
7 %% Different Plant Models with the respective parameters as input
8 % at d = 0
9 % Plant model from e r, e l to W r, W l decoupled

10 % Plant model from (e r + e l), (e r−e l) to V, W decoupled
11 %%
12 % Plant model from (e r + e l), (e r−e l) to V, W decoupled
13 % Singular and Bode Plots for different values of Veq
14 d = 0.1; Veq = 0; Weq = 0.8; % in m/s max value is 0.14 for hardware
15 L = 0.3536; dw = L/sqrt(2); R = 0.042; % default values L = 0.3536 //\\
16 %has to be chosen based on the corresponding AR value (AR calculation.m)
17 Iw = 1.67e−06; A = m + 2*Iw/(R*R); % default values //\\
18 %has to be chosen based on the corresponding AR value
19 I = I Newcalculation(d,Iw,L,md,dw);
20 [max,min] = Imaxmin(d,Iw,L,md,dw);
21 Plant1 = Plantsdv(d, Veq, Weq, dw, Iw, I, L, md,R);
22

23 Veq = [0.1 0.2 0.6 1 3 5];
24

25 P1 = Plantsdv(d, Veq(1), Weq, dw, Iw, I, L, md,R);
26 P2 = Plantsdv(d, Veq(2), Weq, dw, Iw, I, L, md,R);
27 P3 = Plantsdv(d, Veq(3), Weq, dw, Iw, I, L, md,R);
28 P4 = Plantsdv(d, Veq(4), Weq, dw, Iw, I, L, md,R);
29 P5 = Plantsdv(d, Veq(5), Weq, dw, Iw, I, L, md,R);
30 P6 = Plantsdv(d, Veq(6), Weq, dw, Iw, I, L, md,R);
31

32 figure;
33 bodemag(P1,P2,P3,P4,P5,P6);
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34 grid on;
35 h axes = findobj(gcf, 'type', 'axes');
36 xlabel('Frequency','FontSize',12);
37 ylabel('Magnitude','FontSize',12);
38 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
39 % size and brightness of grid and size of x & y axis numbers
40 title(...
41 'Frequency Response $(e r + e l, e r − e l)\rightarrow(v,\omega)$ for
42 $d\neq0$','FontWeight','bold','FontSize',14, 'Interpreter','latex')
43

44 h line = findobj(gcf, 'type', 'line');
45 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
46

47 % Put legend and enhance appearance
48 % Legend bug with subscript, use '\ ' instead of ' '
49 [hL,hObj]=legend({'$v\ {eq} = 0.1 \ m/s$','$v\ {eq} = 0.2 \ m/s$',...
50 '$v\ {eq} = 0.6 \ m/s$','$v\ {eq} = 1.0 \ m/s$',...
51 '$v\ {eq} = 3.0 \ m/s$','$v\ {eq} = 5.0 \ m/s$'},'Interpreter','latex');
52 hTL=findobj(hObj,'type','Text'); %
53 set(hTL,'FontSize',11); % font size for letters in legend
54 hTL=findobj(hObj,'type','line'); %
55 set(hTL,'LineWidth',2); % thickness of lines in legend
56 set(hL,'FontSize',1,'Position',[0.5 0.5 0.26 0.24]);
57 % distance between lines in legend [x,y,width, height]
58

59 %% Singular and Bode Plots for different values of Weq
60 d = 0.1; Veq = 2; Weq = 0.8; % in m/s max value is 0.14 for hardware
61 L = 0.3536; dw = L/sqrt(2); R = 0.042; % default values L = 0.3536 //\\
62 %has to be chosen based on the corresponding AR value (AR calculation.m)
63 Iw = 1.67e−06; A = m + 2*Iw/(R*R); % default values //\\
64 %has to be chosen based on the corresponding AR value
65 I = I Newcalculation(d,Iw,L,md,dw);
66 [max,min] = Imaxmin(d,Iw,L,md,dw);
67

68 Weq = [−8.0 −2.5 −0.5 0.5 2.5 8.0];
69

70 P1 = Plantsdv(d, Veq, Weq(1), dw, Iw, I, L, md,R);
71 P2 = Plantsdv(d, Veq, Weq(2), dw, Iw, I, L, md,R);
72 P3 = Plantsdv(d, Veq, Weq(3), dw, Iw, I, L, md,R);
73 P4 = Plantsdv(d, Veq, Weq(4), dw, Iw, I, L, md,R);
74 P5 = Plantsdv(d, Veq, Weq(5), dw, Iw, I, L, md,R);
75 P6 = Plantsdv(d, Veq, Weq(6), dw, Iw, I, L, md,R);
76

77 figure;
78 bodemag(P1,P2,P3,P4,P5,P6);
79 grid on;
80 h axes = findobj(gcf, 'type', 'axes');
81 xlabel('Frequency','FontSize',12);
82 ylabel('Magnitude','FontSize',12);
83 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
84 % size and brightness of grid and size of x & y axis numbers
85 title(...
86 'Frequency Response $(e r + e l,e r − e l)\rightarrow(v,\omega)$ for
87 $d\neq0$ ','FontWeight','bold','FontSize',14, 'Interpreter','latex')
88

89 h line = findobj(gcf, 'type', 'line');
90 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
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91

92 % Put legend and enhance appearance
93 % Legend bug with subscript, use '\ ' instead of ' '
94 [hL,hObj]=legend({'$\omega\ {eq} = −8.0 \ rad/s$',...
95 '$\omega\ {eq} = −2.5 \ rad/s$','$\omega\ {eq} = −0.5 \ rad/s$',...
96 '$\omega\ {eq} = 0.5 \ rad/s$','$\omega\ {eq} = 2.5 \ rad/s$',...
97 '$\omega\ {eq} = 8.0 \ rad/s$'},'Interpreter','latex');
98 hTL=findobj(hObj,'type','Text'); %
99 set(hTL,'FontSize',10); % font size for letters in legend

100 hTL=findobj(hObj,'type','line'); %
101 set(hTL,'LineWidth',2); % thickness of lines in legend
102 set(hL,'FontSize',1,'Position',[0.5 0.5 0.28 0.24]);
103 % distance between lines in legend [x,y,width, height]
104

105 %% %% Singular and Bode Plots for different values of d
106 % the behaviour in the bode plots can be associated with the dominat
107 % pole variation wrt to d
108 d = 0.1; Veq = 2; Weq = 0.8; % in m/s max value is 0.14 for hardware
109 L = 0.3536; dw = L/sqrt(2); R = 0.042; % default values L = 0.3536 //\\
110 %has to be chosen based on the corresponding AR value (AR calculation.m)
111 Iw = 1.67e−06; A = m + 2*Iw/(R*R); % default values //\\
112 %has to be chosen based on the corresponding AR value
113 I = I Newcalculation(d,Iw,L,md,dw);
114 [max,min] = Imaxmin(d,Iw,L,md,dw);
115

116 d = [−0.08 −0.07 −0.06 0.01 0.04 0.08];
117 I = [I Newcalculation(d(1),Iw,L,md,dw) I Newcalculation(d(2),Iw,L,md,dw)
118 I Newcalculation(d(3),Iw,L,md,dw) I Newcalculation(d(4),Iw,L,md,dw)
119 I Newcalculation(d(5),Iw,L,md,dw)
120 I Newcalculation(d(6),Iw,L,md,dw)];
121

122 P1 = Plantsdv(d(1), Veq, Weq, dw, Iw, I(1), L, md,R);
123 P2 = Plantsdv(d(2), Veq, Weq, dw, Iw, I(2), L, md,R);
124 P3 = Plantsdv(d(3), Veq, Weq, dw, Iw, I(3), L, md,R);
125 P4 = Plantsdv(d(4), Veq, Weq, dw, Iw, I(4), L, md,R);
126 P5 = Plantsdv(d(5), Veq, Weq, dw, Iw, I(5), L, md,R);
127 P6 = Plantsdv(d(6), Veq, Weq, dw, Iw, I(6), L, md,R);
128

129 figure;
130 bodemag(P1,P2,P3,P4,P5,P6);
131 grid on;
132 h axes = findobj(gcf, 'type', 'axes');
133 xlabel('Frequency','FontSize',12);
134 ylabel('Magnitude','FontSize',12);
135 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
136 % size and brightness of grid and size of x & y axis numbers
137 title(...
138 'Frequency Response $(e r + e l,e r − e l)\rightarrow(v,\omega)$ for
139 $d\neq 0$','FontWeight','bold','FontSize',14, 'Interpreter','latex')
140

141 h line = findobj(gcf, 'type', 'line');
142 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
143

144 % Put legend and enhance appearance
145 % Legend bug with subscript, use '\ ' instead of ' '
146 [hL,hObj]=legend({'$d = −0.08 \ m$','$d = −0.06 \ m$',...
147 '$d = −0.04 \ m$','$d = 0.01 \ m$','$d = 0.04 \ m$',...
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148 '$d = 0.08 \ m$'},'Interpreter','latex');
149 hTL=findobj(hObj,'type','Text'); %
150 set(hTL,'FontSize',10); % font size for letters in legend
151 hTL=findobj(hObj,'type','line'); %
152 set(hTL,'LineWidth',2); % thickness of lines in legend
153 set(hL,'FontSize',1,'Position',[0.5 0.5 0.26 0.24]);
154 % distance between lines in legend [x,y,width, height]
155

156 %% plot of dominant pole vs d
157 figure;
158 load('dpole 3 1.mat');
159 plot(h(1,:),h(2,:));
160 grid on;
161 h axes = findobj(gcf, 'type', 'axes');
162 xlabel('d (m)','FontSize',12);
163 ylabel('Dominant Pole ','FontSize',12);
164 set(h axes,'LineWidth',2,'FontSize',12,'GridAlpha',0.15);
165 % size and brightness of grid and size of x & y axis numbers
166 title('Dominant Pole vs $d$','FontWeight','bold','FontSize',14, ...
167 'Interpreter','latex')
168

169 h line = findobj(gcf, 'type', 'line');
170 set(h line, 'LineWidth',1.8); % Lines with thicker width for
171 % plots
172

173

174 %% %% Singular and Bode Plots for different values of I
175 % the behaviour in the bode plots can be associated with the dominat
176 % pole variation wrt to d
177 d = 0.1; Veq = 2; Weq = 0.8; % in m/s max value is 0.14 for hardware
178 L = 1; dw = L/sqrt(2); R = 0.042; % default values L = 0.3536 //\\
179 %has to be chosen based on the corresponding AR value (AR calculation.m)
180 Iw = 1.67e−06; A = m + 2*Iw/(R*R); % default values //\\
181 %has to be chosen based on the corresponding AR value
182 I = I Newcalculation(d,Iw,L,md,dw);
183 [max,min] = Imaxmin(d,Iw,L,md,dw);
184

185 I = [0.4 0.5 0.7 0.9 1.2 1.7];
186

187 P1 = Plantsdv(d, Veq, Weq, dw, Iw, I(1), L, md,R);
188 P2 = Plantsdv(d, Veq, Weq, dw, Iw, I(2), L, md,R);
189 P3 = Plantsdv(d, Veq, Weq, dw, Iw, I(3), L, md,R);
190 P4 = Plantsdv(d, Veq, Weq, dw, Iw, I(4), L, md,R);
191 P5 = Plantsdv(d, Veq, Weq, dw, Iw, I(5), L, md,R);
192 P6 = Plantsdv(d, Veq, Weq, dw, Iw, I(6), L, md,R);
193

194 figure;
195 bodemag(P1,P2,P3,P4,P5,P6);
196 grid on;
197 h axes = findobj(gcf, 'type', 'axes');
198 xlabel('Frequency','FontSize',12);
199 ylabel('Magnitude','FontSize',12);
200 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
201 % size and brightness of grid and size of x & y axis numbers
202 title(...
203 'Frequency Response $(e r + e l,e r − e l)\rightarrow(v,\omega)$ for
204 $d\neq 0$','FontWeight','bold','FontSize',14, 'Interpreter','latex')
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205

206 h line = findobj(gcf, 'type', 'line');
207 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
208

209 % Put legend and enhance appearance
210 % Legend bug with subscript, use '\ ' instead of ' '
211 [hL,hObj]=legend({'$I = 0.4 \ Kg.mˆ2$','$I = 0.5 \ Kg.mˆ2$',...
212 '$I = 0.7 \ Kg.mˆ2$','$I = 0.9 \ Kg.mˆ2$','$I = 1.2 \ Kg.mˆ2$',...
213 '$I = 1.7 \ Kg.mˆ2$'},'Interpreter','latex');
214 hTL=findobj(hObj,'type','Text'); %
215 set(hTL,'FontSize',10); % font size for letters in legend
216 hTL=findobj(hObj,'type','line'); %
217 set(hTL,'LineWidth',2); % thickness of lines in legend
218 set(hL,'FontSize',1,'Position',[0.5 0.5 0.27 0.24]);
219 % distance between lines in legend [x,y,width, height]

1 % Trade Studies at d ˜= 0 Contd.
2

3 clc
4 close all
5 clear all
6 s = tf([1 0],[1]);
7 md = 0; m = 3.4;
8 winit = −1;
9 wfin = 2;

10 nwpts = 200;
11 w = logspace(winit,wfin,nwpts);
12 %% Different Plant Models with the respective parameters as input
13 % at d = 0
14 % Plant model from e r, e l to W r, W l decoupled
15 % Plant model from (e r + e l), (e r−e l) to V, W decoupled
16 %%
17 % Plant model from (e r + e l), (e r−e l) to V, W decoupled
18 % Singular and Bode Plots for different values of Veq
19 d = 0.1; Veq = 2; Weq = 0.8; % in m/s max value is 0.14 for hardware
20 L = 0.3536; dw = L/sqrt(2); R = 0.042; % default values L = 0.3536 //\\
21 %has to be chosen based on the corresponding AR value (AR calculation.m)
22 Iw = 1.67e−06; A = m + 2*Iw/(R*R); % default values //\\
23 %has to be chosen based on the corresponding AR value
24 I = I Newcalculation(d,Iw,L,md,dw);
25 [max,min] = Imaxmin(d,Iw,L,md,dw);
26 Plant1 = Plantww(d, Veq, Weq, dw, Iw, I, L, md,R);
27

28 Veq = [0.1 0.2 0.6 1 3 5];
29

30 P1 = Plantsdv(d, Veq(1), Weq, dw, Iw, I, L, md,R);
31 P2 = Plantsdv(d, Veq(2), Weq, dw, Iw, I, L, md,R);
32 P3 = Plantsdv(d, Veq(3), Weq, dw, Iw, I, L, md,R);
33 P4 = Plantsdv(d, Veq(4), Weq, dw, Iw, I, L, md,R);
34 P5 = Plantsdv(d, Veq(5), Weq, dw, Iw, I, L, md,R);
35 P6 = Plantsdv(d, Veq(6), Weq, dw, Iw, I, L, md,R);
36

37 P1 = sigma(P1,w); P2 = sigma(P2,w); P3 = sigma(P3,w);
38 P4 = sigma(P4,w); P5 = sigma(P5,w);
39 P6 = sigma(P6,w);
40 P1 = 20*log10(P1); P2 = 20*log10(P2); P3 = 20*log10(P3);
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41 P4 = 20*log10(P4); P5 = 20*log10(P5);
42 P6 = 20*log10(P6);
43

44 figure;
45 subplot(2,1,1);
46 semilogx(w, P1(1,:), w, P2(1,:), w, P3(1,:), w, P4(1,:), w, P5(1,:), ...
47 w, P6(1,:))
48 %clear sve r, e l to W r, W l
49 grid on;
50 h axes = findobj(gcf, 'type', 'axes');
51 xlabel('Frequency','FontSize',12);
52 ylabel('Magnitude','FontSize',12);
53 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
54 % size and brightness of grid and size of x & y axis numbers
55 title(...
56 'Max Singular Values $(e r + e l,e r − e l)\rightarrow(v,\omega)$ for
57 $d\neq0$','FontWeight','bold','FontSize',14, 'Interpreter','latex')
58

59 h line = findobj(gcf, 'type', 'line');
60 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
61

62 subplot(2,1,2);
63 semilogx(w, P1(2,:), w, P2(2,:), w, P3(2,:), w, P4(2,:), w, P5(2,:), ...
64 w, P6(2,:))
65 %clear sv
66 grid on;
67 h axes = findobj(gcf, 'type', 'axes');
68 xlabel('Frequency','FontSize',12);
69 ylabel('Magnitude','FontSize',12);
70 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
71 % size and brightness of grid and size of x & y axis numbers
72 title(...
73 'Min Singular Values $(e r + e l,e r − e l)\rightarrow(v,\omega)$ for
74 $d\neq0$','FontWeight','bold','FontSize',12, 'Interpreter','latex')
75

76 h line = findobj(gcf, 'type', 'line');
77 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
78

79 % Put legend and enhance appearance
80 % Legend bug with subscript, use '\ ' instead of ' '
81 [hL,hObj]=legend({'$v {eq} = 0.1 \ m/s$','$v {eq} = 0.2 \ m/s$',...
82 '$v {eq} = 0.6 \ m/s$','$v {eq} = 1.0 \ m/s$','$v {eq} = 3.0 \ m/s$',...
83 '$v {eq} = 5.0 \ m/s$'},'Interpreter','latex');
84 hTL=findobj(hObj,'type','Text'); %
85 set(hTL,'FontSize',11); % font size for letters in legend
86 hTL=findobj(hObj,'type','line'); %
87 set(hTL,'LineWidth',2); % thickness of lines in legend
88 set(hL,'FontSize',1,'Position',[0.5 0.5 0.26 0.24]);
89 % distance between lines in legend [x,y,width, height]
90

91 %% Singular and Bode Plots for different values of Weq
92 d = 0.1; Veq = 2; Weq = 0.8; % in m/s max value is 0.14 for hardware
93 L = 0.3536; dw = L/sqrt(2); R = 0.042; % default values L = 0.3536 //\\
94 %has to be chosen based on the corresponding AR value (AR calculation.m)
95 Iw = 1.67e−06; A = m + 2*Iw/(R*R); % default values //\\
96 %has to be chosen based on the corresponding AR value
97 I = I Newcalculation(d,Iw,L,md,dw);
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98 [max,min] = Imaxmin(d,Iw,L,md,dw);
99

100 Weq = [−8.0 −2.5 −0.5 0.5 2.5 8.0];
101

102 P1 = Plantsdv(d, Veq, Weq(1), dw, Iw, I, L, md,R);
103 P2 = Plantsdv(d, Veq, Weq(2), dw, Iw, I, L, md,R);
104 P3 = Plantsdv(d, Veq, Weq(3), dw, Iw, I, L, md,R);
105 P4 = Plantsdv(d, Veq, Weq(4), dw, Iw, I, L, md,R);
106 P5 = Plantsdv(d, Veq, Weq(5), dw, Iw, I, L, md,R);
107 P6 = Plantsdv(d, Veq, Weq(6), dw, Iw, I, L, md,R);
108

109 P1 = sigma(P1,w); P2 = sigma(P2,w); P3 = sigma(P3,w);
110 P4 = sigma(P4,w); P5 = sigma(P5,w);
111 P6 = sigma(P6,w);
112 P1 = 20*log10(P1); P2 = 20*log10(P2); P3 = 20*log10(P3);
113 P4 = 20*log10(P4); P5 = 20*log10(P5);
114 P6 = 20*log10(P6);
115

116 figure;
117 subplot(2,1,1);
118 semilogx(w, P1(1,:), w, P2(1,:), w, P3(1,:), w, P4(1,:), w, P5(1,:), ...
119 w, P6(1,:))
120 %clear sv
121 grid on;
122 h axes = findobj(gcf, 'type', 'axes');
123 xlabel('Frequency','FontSize',12);
124 ylabel('Magnitude','FontSize',12);
125 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
126 % size and brightness of grid and size of x & y axis numbers
127 title(...
128 'Max Singular Values $(e r + e l,e r − e l)\rightarrow(v,\omega)$ for
129 $d\neq0$','FontWeight','bold','FontSize',14, 'Interpreter','latex')
130

131 h line = findobj(gcf, 'type', 'line');
132 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
133

134 subplot(2,1,2);
135 semilogx(w, P1(2,:), w, P2(2,:), w, P3(2,:), w, P4(2,:), w, P5(2,:),...
136 w, P6(2,:))
137 %clear sv
138 grid on;
139 h axes = findobj(gcf, 'type', 'axes');
140 xlabel('Frequency','FontSize',12);
141 ylabel('Magnitude','FontSize',12);
142 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
143 % size and brightness of grid and size of x & y axis numbers
144 title(...
145 'Min Singular Values $(e r + e l,e r − e l)\rightarrow(v,\omega)$ for
146 $d\neq0$','FontWeight','bold','FontSize',12, 'Interpreter','latex')
147

148 h line = findobj(gcf, 'type', 'line');
149 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
150

151 % Put legend and enhance appearance
152 % Legend bug with subscript, use '\ ' instead of ' '
153 [hL,hObj]=legend({'$\omega {eq} = −8.0 \ rad/s$',...
154 '$\omega {eq} = −2.5 \ rad/s$','$\omega {eq} = −0.5 \ rad/s$',...
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155 '$\omega {eq} = 0.5 \ rad/s$','$\omega {eq} = 2.5 \ rad/s$',...
156 '$\omega {eq} = 8.0 \ rad/s$'},'Interpreter','latex');
157 hTL=findobj(hObj,'type','Text'); %
158 set(hTL,'FontSize',10); % font size for letters in legend
159 hTL=findobj(hObj,'type','line'); %
160 set(hTL,'LineWidth',2); % thickness of lines in legend
161 set(hL,'FontSize',1,'Position',[0.5 0.5 0.28 0.24]);
162 % distance between lines in legend [x,y,width, height]
163

164 %% %% Singular and Bode Plots for different values of d
165 % the behaviour in the bode plots can be associated with the dominat
166 % pole variation wrt to d
167 d = 0.1; Veq = 2; Weq = 0.8; % in m/s max value is 0.14 for hardware
168 L = 0.3536; dw = L/sqrt(2); R = 0.042; % default values L = 0.3536 //\\
169 %has to be chosen based on the corresponding AR value (AR calculation.m)
170 Iw = 1.67e−06; A = m + 2*Iw/(R*R); % default values //\\
171 %has to be chosen based on the corresponding AR value
172 I = I Newcalculation(d,Iw,L,md,dw);
173 [max,min] = Imaxmin(d,Iw,L,md,dw);
174

175 d = [−0.08 −0.07 −0.06 0.01 0.04 0.08];
176 I = [I Newcalculation(d(1),Iw,L,md,dw) I Newcalculation(d(2),Iw,L,md,dw)
177 I Newcalculation(d(3),Iw,L,md,dw) I Newcalculation(d(4),Iw,L,md,dw)
178 I Newcalculation(d(5),Iw,L,md,dw)
179 I Newcalculation(d(6),Iw,L,md,dw)];
180

181 P1 = Plantsdv(d(1), Veq, Weq, dw, Iw, I(1), L, md,R);
182 P2 = Plantsdv(d(2), Veq, Weq, dw, Iw, I(2), L, md,R);
183 P3 = Plantsdv(d(3), Veq, Weq, dw, Iw, I(3), L, md,R);
184 P4 = Plantsdv(d(4), Veq, Weq, dw, Iw, I(4), L, md,R);
185 P5 = Plantsdv(d(5), Veq, Weq, dw, Iw, I(5), L, md,R);
186 P6 = Plantsdv(d(6), Veq, Weq, dw, Iw, I(6), L, md,R);
187

188 P1 = sigma(P1,w); P2 = sigma(P2,w); P3 = sigma(P3,w);
189 P4 = sigma(P4,w); P5 = sigma(P5,w);
190 P6 = sigma(P6,w);
191 P1 = 20*log10(P1); P2 = 20*log10(P2); P3 = 20*log10(P3);
192 P4 = 20*log10(P4); P5 = 20*log10(P5);
193 P6 = 20*log10(P6);
194

195 figure;
196 subplot(2,1,1);
197 semilogx(w, P1(1,:), w, P2(1,:), w, P3(1,:), w, P4(1,:), w, P5(1,:),...
198 w, P6(1,:))
199 %clear sv
200 grid on;
201 h axes = findobj(gcf, 'type', 'axes');
202 xlabel('Frequency','FontSize',12);
203 ylabel('Magnitude','FontSize',12);
204 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
205 % size and brightness of grid and size of x & y axis numbers
206 title(...
207 'Max Singular Values $(e r + e l,e r − e l)\rightarrow(v,\omega)$ for
208 $d\neq 0$','FontWeight','bold','FontSize',14, 'Interpreter','latex')
209

210 h line = findobj(gcf, 'type', 'line');
211 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
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212

213 subplot(2,1,2);
214 semilogx(w, P1(2,:), w, P2(2,:), w, P3(2,:), w, P4(2,:), w, P5(2,:),...
215 w, P6(2,:))
216 %clear sv
217 grid on;
218 h axes = findobj(gcf, 'type', 'axes');
219 xlabel('Frequency','FontSize',12);
220 ylabel('Magnitude','FontSize',12);
221 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
222 % size and brightness of grid and size of x & y axis numbers
223 title(...
224 'Min Singular Values $(e r + e l,e r − e l)\rightarrow(v,\omega)$ for
225 $d\neq0$','FontWeight','bold','FontSize',12, 'Interpreter','latex')
226

227 h line = findobj(gcf, 'type', 'line');
228 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
229

230 % Put legend and enhance appearance
231 % Legend bug with subscript, use '\ ' instead of ' '
232 [hL,hObj]=legend({'$d = −0.1 \ m$','$d = −0.05 \ m$',...
233 '$d = −0.02 \ m$','$d = 0.02 \ m$','$d = 0.05 \ m$',...
234 '$d = 0.1 \ m$'},'Interpreter','latex');
235 hTL=findobj(hObj,'type','Text'); %
236 set(hTL,'FontSize',10); % font size for letters in legend
237 hTL=findobj(hObj,'type','line'); %
238 set(hTL,'LineWidth',2); % thickness of lines in legend
239 set(hL,'FontSize',1,'Position',[0.5 0.5 0.26 0.24]);
240 % distance between lines in legend [x,y,width, height]
241

242 %% %% Singular and Bode Plots for different values of I
243 % the behaviour in the bode plots can be associated with the dominat
244 % pole variation wrt to d
245 d = 0.1; Veq = 2; Weq = 0.8; % in m/s max value is 0.14 for hardware
246 L = 1; dw = L/sqrt(2); R = 0.042; % default values L = 0.3536 //\\
247 %has to be chosen based on the corresponding AR value (AR calculation.m)
248 Iw = 1.67e−06; A = m + 2*Iw/(R*R); % default values //\\
249 %has to be chosen based on the corresponding AR value
250 I = I Newcalculation(d,Iw,L,md,dw);
251 [max,min] = Imaxmin(d,Iw,L,md,dw);
252

253 I = [0.4 0.5 0.7 0.9 1.2 1.7];
254

255 P1 = Plantsdv(d, Veq, Weq, dw, Iw, I(1), L, md,R);
256 P2 = Plantsdv(d, Veq, Weq, dw, Iw, I(2), L, md,R);
257 P3 = Plantsdv(d, Veq, Weq, dw, Iw, I(3), L, md,R);
258 P4 = Plantsdv(d, Veq, Weq, dw, Iw, I(4), L, md,R);
259 P5 = Plantsdv(d, Veq, Weq, dw, Iw, I(5), L, md,R);
260 P6 = Plantsdv(d, Veq, Weq, dw, Iw, I(6), L, md,R);
261

262 P1 = sigma(P1,w); P2 = sigma(P2,w); P3 = sigma(P3,w);
263 P4 = sigma(P4,w); P5 = sigma(P5,w);
264 P6 = sigma(P6,w);
265 P1 = 20*log10(P1); P2 = 20*log10(P2); P3 = 20*log10(P3);
266 P4 = 20*log10(P4); P5 = 20*log10(P5);
267 P6 = 20*log10(P6);
268
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269 figure;
270 subplot(2,1,1);
271 semilogx(w, P1(1,:), w, P2(1,:), w, P3(1,:), w, P4(1,:), w, P5(1,:),...
272 w, P6(1,:))
273 %clear sv
274 grid on;
275 h axes = findobj(gcf, 'type', 'axes');
276 xlabel('Frequency','FontSize',12);
277 ylabel('Magnitude','FontSize',12);
278 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
279 % size and brightness of grid and size of x & y axis numbers
280 title(...
281 'Max Singular Values $(e r + e l,e r − e l)\rightarrow(v,\omega)$ for
282 $d\neq 0$','FontWeight','bold','FontSize',14, 'Interpreter','latex')
283

284 h line = findobj(gcf, 'type', 'line');
285 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
286

287 subplot(2,1,2);
288 semilogx(w, P1(2,:), w, P2(2,:), w, P3(2,:), w, P4(2,:), w, P5(2,:),...
289 w, P6(2,:))
290 %clear sv
291 grid on;
292 h axes = findobj(gcf, 'type', 'axes');
293 xlabel('Frequency','FontSize',12);
294 ylabel('Magnitude','FontSize',12);
295 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
296 % size and brightness of grid and size of x & y axis numbers
297 title(...
298 'Min Singular Values $(e r + e l,e r − e l)\rightarrow(v,\omega)$ for
299 $d\neq0$','FontWeight','bold','FontSize',12, 'Interpreter','latex')
300

301 h line = findobj(gcf, 'type', 'line');
302 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
303

304 % Put legend and enhance appearance
305 % Legend bug with subscript, use '\ ' instead of ' '
306 [hL,hObj]=legend({'$I = 0.4 \ Kg.mˆ2$','$I = 0.5 \ Kg.mˆ2$',...
307 '$I = 0.7 \ Kg.mˆ2$','$I = 0.9 \ Kg.mˆ2$','$I = 1.2 \ Kg.mˆ2$',...
308 '$I = 1.7 \ Kg.mˆ2$'},'Interpreter','latex');
309 hTL=findobj(hObj,'type','Text'); %
310 set(hTL,'FontSize',10); % font size for letters in legend
311 hTL=findobj(hObj,'type','line'); %
312 set(hTL,'LineWidth',2); % thickness of lines in legend
313 set(hL,'FontSize',1,'Position',[0.5 0.5 0.27 0.24]);
314 % distance between lines in legend [x,y,width, height]

1 % Inner−Loop frequency response plots
2 clc
3 close all
4 clear all
5 s = tf([1 0],[1]);
6 md = 0; m = 3.4; % if d = 0;
7 %% Different Plant Models with the respective parameters as input
8 % at d = 0
9 % Plant model from e r, e l to W r, W l decoupled
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10 d1 = 0; d2 = 0.08; Veq = 2; Weq = 0.8; % independent of Veq and Weq
11 L = 1; dw = 1/sqrt(2); R = 0.042; % default values L = 0.3536 //\\
12 %has to be chosen based on the corresponding AR value (AR calculation.m)
13 Iw = 1.67e−06; A = m + 2*Iw/(R*R); % default values //\\
14 %has to be chosen based on the corresponding AR value
15 I1 = 0.4250; % I AR
16 I2 = 1.7;% 4.0I AR
17 %[max,min] = Imaxmin(d2,Iw,L,md,dw)
18 PlantD1M1 = Plantww(d1, Veq, Weq, dw, Iw, I1, L, md,R); I1 = 0.42560;
19 PlantD1M2 = Plantsdv(d1, Veq, Weq, dw, Iw, I1, L, md,R); I1 = 0.4250;
20

21 PlantD2M1 = Plantww(d1, Veq, Weq, dw, Iw, I2, L, md,R);
22 PlantD2M2 = Plantsdv(d1, Veq, Weq, dw, Iw, I2, L, md,R);
23

24 PlantD3M1 = Plantww(d2, Veq, Weq, dw, Iw, I1, L, md,R);
25 PlantD3M2 = Plantsdv(d2, Veq, Weq, dw, Iw, I1, L, md,R);
26

27

28 PlantD4M1 = Plantww(d2, Veq, Weq, dw, Iw, I2, L, md,R);
29 PlantD4M2 = Plantsdv(d2, Veq, Weq, dw, Iw, I2, L, md,R);
30

31 %bodemag(PlantD1M2, PlantD2M2)
32 PD1M1 = minreal(zpk(tf(PlantD1M1)));
33 PD1M2 = minreal(zpk(tf(PlantD1M2)));
34

35 PD2M1 = minreal(zpk(tf(PlantD2M1)));
36 PD2M2 = minreal(zpk(tf(PlantD2M2)));
37

38 PD3M1 = minreal(zpk(tf(PlantD3M1)));
39 PD3M2 = minreal(zpk(tf(PlantD3M2)));
40

41 PD4M1 = minreal(zpk(tf(PlantD4M1)));
42 PD4M2 = minreal(zpk(tf(PlantD4M2)));
43

44 KD1M1 = [0.6435 + 4.8633/s 0; 0 0.6435 + 4.8633/s]*(100/(s+100));
45 KD1M2 = [30.6428 + 231.5868/s 0; 0 10.8341 + 81.8799/s]*(100/(s+100));
46

47 KD2M1 = [1.0713 + 6.9057/s 0; 0 1.0713 + 6.9057/s]*(100/(s+100));
48 KD2M2 = [30.6428 + 231.5868/s 0; 0 46.5661 + 144.8851/s]*(100/(s+100));
49

50 KD3M1 = [0.63861 + 5.2248/s 0; 0 0.63861 + 5.2248/s]*(100/(s+100));
51 KD3M2 = [30.6428 + 231.5868/s 0; 0 10.6159 + 94.2519/s]*(100/(s+100));
52

53 KD4M1 = [1.0666 + 6.9621/s 0; 0 1.0666 + 6.9621/s]*(100/(s+100));
54 KD4M2 = [30.6428 + 231.5868/s 0; 0 46.3477 + 157.2715/s]*(100/(s+100));
55

56

57 WD1M1 = [ (4.8633/0.6435)/(s+ 4.8633/0.6435) 0;...
58 0 (4.8633/0.6435)/(s+(4.8633/0.6435))]
59 WD1M2 = [ (231.5868/30.6428)/(s + 231.5868/30.6428) 0;...
60 0 (81.8799/10.8341)/(s + 81.8799/10.8341)]
61

62 WD2M1 = [ (6.9057/1.0713)/(s + 6.9057/1.0713) 0;...
63 0 (6.9057/1.0713)/(s + 6.9057/1.0713)]
64 WD2M2 = [ (231.5868/30.6428)/(s+231.5868/30.6428) 0;...
65 0 (144.8851/46.5661)/(s+144.8851/46.5661)]
66
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67 WD3M1 = [ (5.2248/0.63861)/(s+5.2248/0.63861) 0;...
68 0 (5.2248/0.63861)/(s+5.2248/0.63861)]
69 WD3M2 = [ (231.5868/30.6428)/(s+231.5868/30.6428) 0;...
70 0 (94.2519/10.6159)/(s+94.2519/10.6159)]
71

72 WD4M1 = [(6.9621/1.0666)/(s+6.9621/1.0666) 0;...
73 0 (6.9621/1.0666)/(s+6.9621/1.0666)]
74 WD4M2 = [(231.5868/30.6428)/(s+231.5868/30.6428) 0;...
75 0 (157.2715/46.3477)/(s+157.2715/46.3477)]
76

77

78 LD1M1 = PD1M1*KD1M1;
79 LD1M2 = PD1M2*KD1M2;
80

81 LD2M1 = PD2M1*KD2M1;
82 LD2M2 = PD2M2*KD2M2;
83

84 LD3M1 = PD3M1*KD3M1;
85 LD3M2 = PD3M2*KD3M2;
86

87 LD4M1 = PD4M1*KD4M1;
88 LD4M2 = PD4M2*KD4M2;
89 %%
90 SD1M1 = (eye(2) + LD1M1)ˆ−1;
91 SD1M2 = (eye(2) + LD1M2)ˆ−1;
92

93 SD2M1 = (eye(2) + LD2M1)ˆ−1;
94 SD2M2 = (eye(2) + LD2M2)ˆ−1;
95

96 SD3M1 = (eye(2) + LD3M1)ˆ−1;
97 SD3M2 = (eye(2) + LD3M2)ˆ−1;
98

99 SD4M1 = (eye(2) + LD4M1)ˆ−1;
100 SD4M2 = (eye(2) + LD4M2)ˆ−1;
101

102 %% complimentary sensitivity
103 CD1M1 = LD1M1*(eye(2) + LD1M1)ˆ−1;
104 CD1M2 = LD1M2*(eye(2) + LD1M2)ˆ−1;
105

106 CD2M1 = LD2M1*(eye(2) + LD2M1)ˆ−1;
107 CD2M2 = LD2M2*(eye(2) + LD2M2)ˆ−1;
108

109 CD3M1 = LD3M1*(eye(2) + LD3M1)ˆ−1;
110 CD3M2 = LD3M2*(eye(2) + LD3M2)ˆ−1;
111

112 CD4M1 = LD4M1*(eye(2) + LD4M1)ˆ−1;
113 CD4M2 = LD4M2*(eye(2) + LD4M2)ˆ−1;
114

115 %% Try
116 inM = ([1/R dw/(2*R); 1/R −dw/(2*R)]);
117 M = [R/2 R/2; R/dw −R/dw];
118

119 TD1M1 = M*(LD1M1*(eye(2) + LD1M1)ˆ−1)*WD1M1*inM;
120 TD1M2 = CD1M2*WD1M2;
121

122 TD2M1 = M*(LD2M1*(eye(2) + LD2M1)ˆ−1)*WD2M1*inM;
123 TD2M2 = CD2M2*WD2M2;
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124

125 TD3M1 = M*(LD3M1*(eye(2) + LD3M1)ˆ−1)*WD3M1*inM;
126 TD3M2 = CD3M2*WD3M2;
127

128 TD4M1 = M*(LD4M1*(eye(2) + LD4M1)ˆ−1)*WD4M1*inM;
129 TD4M2 = CD4M2*WD4M2;
130

131 %% Tru
132 TRD1M1 = (KD1M1*(eye(2) + LD1M1)ˆ−1)*WD1M1*inM;
133 TRD1M2 = KD1M2*SD1M2*WD1M2;
134

135 TRD2M1 = (KD2M1*(eye(2) + LD2M1)ˆ−1)*WD2M1*inM;
136 TRD2M2 = KD2M2*SD2M2*WD2M2;
137

138 TRD3M1 = (KD3M1*(eye(2) + LD3M1)ˆ−1)*WD3M1*inM;
139 TRD3M2 = KD3M2*SD3M2*WD3M2;
140

141 TRD4M1 = (KD4M1*(eye(2) + LD4M1)ˆ−1)*WD4M1*inM;
142 TRD4M2 = KD4M2*SD4M2*WD4M2;
143

144

145 %% Open Loop
146 winit = −1;
147 wfin = 4;
148 nwpts = 200;
149 w = logspace(winit,wfin,nwpts);
150 P1 = sigma(LD1M1,w); P2 = sigma(LD2M1,w); P3 = sigma(LD1M2,w);
151 P4 = sigma(LD2M2,w);
152 P1 = 20*log10(P1); P2 = 20*log10(P2); P3 = 20*log10(P3);
153 P4 = 20*log10(P4);
154 figure;
155 subplot(2,1,1);
156 semilogx(w, P1(1,:), w, P2(1,:), w, P3(1,:), w, P4(1,:))
157 %clear sv
158 grid on;
159 h axes = findobj(gcf, 'type', 'axes');
160 xlabel('Frequency','FontSize',12);
161 ylabel('Magnitude','FontSize',12);
162 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
163 % size and brightness of grid and size of x & y axis numbers
164 title('Max Singular Values: Open Loop','FontWeight','bold',...
165 'FontSize',14, 'Interpreter','latex')
166

167 h line = findobj(gcf, 'type', 'line');
168 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
169

170 subplot(2,1,2);
171 semilogx(w, P1(2,:), w, P2(2,:), w, P3(2,:), w, P4(2,:))
172 %clear sv
173 grid on;
174 h axes = findobj(gcf, 'type', 'axes');
175 xlabel('Frequency','FontSize',12);
176 ylabel('Magnitude','FontSize',12);
177 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
178 % size and brightness of grid and size of x & y axis numbers
179 title('Min Singular Values: Open Loop','FontWeight','bold',...
180 'FontSize',12, 'Interpreter','latex')
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181

182 h line = findobj(gcf, 'type', 'line');
183 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
184

185

186 % Put legend and enhance appearance
187 % Legend bug with subscript, use '\ ' instead of ' '
188 [hL,hObj]=legend({'D1M1','D2M1','D1M2','D2M2'},'Interpreter','latex');
189 hTL=findobj(hObj,'type','Text'); %
190 set(hTL,'FontSize',11); % font size for letters in legend
191 hTL=findobj(hObj,'type','line'); %
192 set(hTL,'LineWidth',1.2); % thickness of lines in legend
193 set(hL,'FontSize',1,'Position',[0.5 0.5 0.2 0.2]);
194 % distance between lines in legend [x,y,width, height]
195

196 %%
197 winit = −1;
198 wfin = 4;
199 nwpts = 200;
200 w = logspace(winit,wfin,nwpts);
201 P1 = sigma(LD3M1,w); P2 = sigma(LD4M1,w); P3 = sigma(LD3M2,w);
202 P4 = sigma(LD4M2,w);
203 P1 = 20*log10(P1); P2 = 20*log10(P2); P3 = 20*log10(P3);
204 P4 = 20*log10(P4);
205 figure;
206 subplot(2,1,1);
207 semilogx(w, P1(1,:), w, P2(1,:), w, P3(1,:), w, P4(1,:))
208 %clear sv
209 grid on;
210 h axes = findobj(gcf, 'type', 'axes');
211 xlabel('Frequency','FontSize',12);
212 ylabel('Magnitude','FontSize',12);
213 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
214 % size and brightness of grid and size of x & y axis numbers
215 title('Max Singular Values: Open Loop','FontWeight','bold',...
216 'FontSize',14,'Interpreter','latex')
217

218 h line = findobj(gcf, 'type', 'line');
219 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
220

221 subplot(2,1,2);
222 semilogx(w, P1(2,:), w, P2(2,:), w, P3(2,:), w, P4(2,:))
223 %clear sv
224 grid on;
225 h axes = findobj(gcf, 'type', 'axes');
226 xlabel('Frequency','FontSize',12);
227 ylabel('Magnitude','FontSize',12);
228 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
229 % size and brightness of grid and size of x & y axis numbers
230 title('Min Singular Values: Open Loop','FontWeight','bold',...
231 'FontSize',12,'Interpreter','latex')
232

233 h line = findobj(gcf, 'type', 'line');
234 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
235

236

237 % Put legend and enhance appearance
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238 % Legend bug with subscript, use '\ ' instead of ' '
239 [hL,hObj]=legend({'D3M1','D4M1','D3M2','D4M2'},'Interpreter','latex');
240 hTL=findobj(hObj,'type','Text'); %
241 set(hTL,'FontSize',11); % font size for letters in legend
242 hTL=findobj(hObj,'type','line'); %
243 set(hTL,'LineWidth',1.2); % thickness of lines in legend
244 set(hL,'FontSize',1,'Position',[0.5 0.5 0.2 0.2]);
245 % distance between lines in legend [x,y,width, height]
246 %% Sensitivity
247

248 winit = −1;
249 wfin = 4;
250 nwpts = 200;
251 w = logspace(winit,wfin,nwpts);
252 P1 = sigma(SD1M1,w); P2 = sigma(SD2M1,w); P3 = sigma(SD1M2,w);
253 P4 = sigma(SD2M2,w);
254 P1 = 20*log10(P1); P2 = 20*log10(P2); P3 = 20*log10(P3);
255 P4 = 20*log10(P4);
256 figure;
257 subplot(2,1,1);
258 semilogx(w, P1(1,:), w, P2(1,:), w, P3(1,:), w, P4(1,:))
259 %clear sv
260 grid on;
261 h axes = findobj(gcf, 'type', 'axes');
262 xlabel('Frequency','FontSize',12);
263 ylabel('Magnitude','FontSize',12);
264 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
265 % size and brightness of grid and size of x & y axis numbers
266 title('Max Singular Values: Sensitivity','FontWeight','bold',...
267 'FontSize',14,'Interpreter','latex')
268

269 h line = findobj(gcf, 'type', 'line');
270 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
271

272 subplot(2,1,2);
273 semilogx(w, P1(2,:), w, P2(2,:), w, P3(2,:), w, P4(2,:))
274 %clear sv
275 grid on;
276 h axes = findobj(gcf, 'type', 'axes');
277 xlabel('Frequency','FontSize',12);
278 ylabel('Magnitude','FontSize',12);
279 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
280 % size and brightness of grid and size of x & y axis numbers
281 title('Min Singular Values: Sensitivity','FontWeight','bold',...
282 'FontSize',12,'Interpreter','latex')
283

284 h line = findobj(gcf, 'type', 'line');
285 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
286

287

288 % Put legend and enhance appearance
289 % Legend bug with subscript, use '\ ' instead of ' '
290 [hL,hObj]=legend({'D1M1','D2M1','D1M2','D2M2'},'Interpreter','latex');
291 hTL=findobj(hObj,'type','Text'); %
292 set(hTL,'FontSize',11); % font size for letters in legend
293 hTL=findobj(hObj,'type','line'); %
294 set(hTL,'LineWidth',1.2); % thickness of lines in legend
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295 set(hL,'FontSize',1,'Position',[0.5 0.5 0.2 0.2]);
296 % distance between lines in legend [x,y,width, height]
297

298 %%
299

300 winit = −1;
301 wfin = 4;
302 nwpts = 200;
303 w = logspace(winit,wfin,nwpts);
304 P1 = sigma(SD3M1,w); P2 = sigma(SD4M1,w); P3 = sigma(SD3M2,w);
305 P4 = sigma(SD4M2,w);
306 P1 = 20*log10(P1); P2 = 20*log10(P2); P3 = 20*log10(P3);
307 P4 = 20*log10(P4);
308 figure;
309 subplot(2,1,1);
310 semilogx(w, P1(1,:), w, P2(1,:), w, P3(1,:), w, P4(1,:))
311 %clear sv
312 grid on;
313 h axes = findobj(gcf, 'type', 'axes');
314 xlabel('Frequency','FontSize',12);
315 ylabel('Magnitude','FontSize',12);
316 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
317 % size and brightness of grid and size of x & y axis numbers
318 title('Max Singular Values: Sensitivity','FontWeight','bold',...
319 'FontSize',14,'Interpreter','latex')
320

321 h line = findobj(gcf, 'type', 'line');
322 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
323

324 subplot(2,1,2);
325 semilogx(w, P1(2,:), w, P2(2,:), w, P3(2,:), w, P4(2,:))
326 %clear sv
327 grid on;
328 h axes = findobj(gcf, 'type', 'axes');
329 xlabel('Frequency','FontSize',12);
330 ylabel('Magnitude','FontSize',12);
331 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
332 % size and brightness of grid and size of x & y axis numbers
333 title('Min Singular Values: Sensitivity','FontWeight','bold',...
334 'FontSize',12,'Interpreter','latex')
335

336 h line = findobj(gcf, 'type', 'line');
337 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
338

339

340 % Put legend and enhance appearance
341 % Legend bug with subscript, use '\ ' instead of ' '
342 [hL,hObj]=legend({'D3M1','D4M1','D3M2','D4M2'},'Interpreter','latex');
343 hTL=findobj(hObj,'type','Text'); %
344 set(hTL,'FontSize',11); % font size for letters in legend
345 hTL=findobj(hObj,'type','line'); %
346 set(hTL,'LineWidth',1.2); % thickness of lines in legend
347 set(hL,'FontSize',1,'Position',[0.5 0.5 0.2 0.2]);
348 % distance between lines in legend [x,y,width, height]
349

350 %% Complimentary Sensitivty
351
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352 winit = −1;
353 wfin = 4;
354 nwpts = 200;
355 w = logspace(winit,wfin,nwpts);
356 P1 = sigma(CD1M1,w); P2 = sigma(CD2M1,w); P3 = sigma(CD1M2,w);
357 P4 = sigma(CD2M2,w);
358 P1 = 20*log10(P1); P2 = 20*log10(P2); P3 = 20*log10(P3);
359 P4 = 20*log10(P4);
360 figure;
361 subplot(2,1,1);
362 semilogx(w, P1(1,:), w, P2(1,:), w, P3(1,:), w, P4(1,:))
363 %clear sv
364 grid on;
365 h axes = findobj(gcf, 'type', 'axes');
366 xlabel('Frequency','FontSize',12);
367 ylabel('Magnitude','FontSize',12);
368 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
369 % size and brightness of grid and size of x & y axis numbers
370 title('Max Singular Values: Complementary Sensitivity','FontWeight',...
371 'bold','FontSize',14, 'Interpreter','latex')
372

373 h line = findobj(gcf, 'type', 'line');
374 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
375

376 subplot(2,1,2);
377 semilogx(w, P1(2,:), w, P2(2,:), w, P3(2,:), w, P4(2,:))
378 %clear sv
379 grid on;
380 h axes = findobj(gcf, 'type', 'axes');
381 xlabel('Frequency','FontSize',12);
382 ylabel('Magnitude','FontSize',12);
383 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
384 % size and brightness of grid and size of x & y axis numbers
385 title('Min Singular Values: Complementary Sensitivity','FontWeight',...
386 'bold','FontSize',12, 'Interpreter','latex')
387

388 h line = findobj(gcf, 'type', 'line');
389 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
390

391

392 % Put legend and enhance appearance
393 % Legend bug with subscript, use '\ ' instead of ' '
394 [hL,hObj]=legend({'D1M1','D2M1','D1M2','D2M2'},'Interpreter','latex');
395 hTL=findobj(hObj,'type','Text'); %
396 set(hTL,'FontSize',11); % font size for letters in legend
397 hTL=findobj(hObj,'type','line'); %
398 set(hTL,'LineWidth',1.2); % thickness of lines in legend
399 set(hL,'FontSize',1,'Position',[0.5 0.5 0.2 0.2]);
400 % distance between lines in legend [x,y,width, height]
401

402 %%
403

404 winit = −1;
405 wfin = 4;
406 nwpts = 200;
407 w = logspace(winit,wfin,nwpts);
408 P1 = sigma(CD3M1,w); P2 = sigma(CD4M1,w); P3 = sigma(CD3M2,w);
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409 P4 = sigma(CD4M2,w);
410 P1 = 20*log10(P1); P2 = 20*log10(P2); P3 = 20*log10(P3);
411 P4 = 20*log10(P4);
412 figure;
413 subplot(2,1,1);
414 semilogx(w, P1(1,:), w, P2(1,:), w, P3(1,:), w, P4(1,:))
415 %clear sv
416 grid on;
417 h axes = findobj(gcf, 'type', 'axes');
418 xlabel('Frequency','FontSize',12);
419 ylabel('Magnitude','FontSize',12);
420 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
421 % size and brightness of grid and size of x & y axis numbers
422 title('Max Singular Values: Complementary Sensitivity','FontWeight',...
423 'bold','FontSize',14, 'Interpreter','latex')
424

425 h line = findobj(gcf, 'type', 'line');
426 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
427

428 subplot(2,1,2);
429 semilogx(w, P1(2,:), w, P2(2,:), w, P3(2,:), w, P4(2,:))
430 %clear sv
431 grid on;
432 h axes = findobj(gcf, 'type', 'axes');
433 xlabel('Frequency','FontSize',12);
434 ylabel('Magnitude','FontSize',12);
435 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
436 % size and brightness of grid and size of x & y axis numbers
437 title('Min Singular Values: Complementary Sensitivity','FontWeight',...
438 'bold','FontSize',12, 'Interpreter','latex')
439

440 h line = findobj(gcf, 'type', 'line');
441 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
442

443

444 % Put legend and enhance appearance
445 % Legend bug with subscript, use '\ ' instead of ' '
446 [hL,hObj]=legend({'D3M1','D4M1','D3M2','D4M2'},'Interpreter','latex');
447 hTL=findobj(hObj,'type','Text'); %
448 set(hTL,'FontSize',11); % font size for letters in legend
449 hTL=findobj(hObj,'type','line'); %
450 set(hTL,'LineWidth',1.2); % thickness of lines in legend
451 set(hL,'FontSize',1,'Position',[0.5 0.5 0.2 0.2]);
452 % distance between lines in legend [x,y,width, height]
453

454 %% Try
455 figure;
456 bodemag(TD1M1,TD2M1,TD1M2,TD2M2,w);
457 grid on;
458 h axes = findobj(gcf, 'type', 'axes');
459 xlabel('Frequency','FontSize',12);
460 ylabel('Magnitude','FontSize',12);
461 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
462 % size and brightness of grid and size of x & y axis numbers
463 title('Frequency Response','FontWeight','bold','FontSize',14, ...
464 'Interpreter','latex')
465
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466 h line = findobj(gcf, 'type', 'line');
467 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
468

469 % Put legend and enhance appearance
470 % Legend bug with subscript, use '\ ' instead of ' '
471 [hL,hObj]=legend({'D1M1','D2M1','D1M2','D2M2'},'Interpreter','latex');
472 hTL=findobj(hObj,'type','Text'); %
473 set(hTL,'FontSize',11); % font size for letters in legend
474 hTL=findobj(hObj,'type','line'); %
475 set(hTL,'LineWidth',2); % thickness of lines in legend
476 set(hL,'FontSize',1,'Position',[0.5 0.5 0.25 0.2]);
477 % distance between lines in legend [x,y,width, height]
478

479

480 figure;
481 bodemag(TD3M1,TD4M1,TD3M2,TD4M2,w);
482 grid on;
483 h axes = findobj(gcf, 'type', 'axes');
484 xlabel('Frequency','FontSize',12);
485 ylabel('Magnitude','FontSize',12);
486 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
487 % size and brightness of grid and size of x & y axis numbers
488 title('Frequency Response','FontWeight','bold','FontSize',14, ...
489 'Interpreter','latex')
490

491 h line = findobj(gcf, 'type', 'line');
492 set(h line, 'LineWidth',1.5); % Lines with thicker width for plots
493

494 % Put legend and enhance appearance
495 % Legend bug with subscript, use '\ ' instead of ' '
496 [hL,hObj]=legend({'D3M1','D4M1','D3M2','D4M2'},'Interpreter','latex');
497 hTL=findobj(hObj,'type','Text'); %
498 set(hTL,'FontSize',11); % font size for letters in legend
499 hTL=findobj(hObj,'type','line'); %
500 set(hTL,'LineWidth',2); % thickness of lines in legend
501 set(hL,'FontSize',1,'Position',[0.5 0.5 0.25 0.2]);
502 % distance between lines in legend [x,y,width, height]
503

504 %% Tru
505

506 winit = −1;
507 wfin = 4;
508 nwpts = 200;
509 w = logspace(winit,wfin,nwpts);
510 P1 = sigma(TRD1M1,w); P2 = sigma(TRD2M1,w); P3 = sigma(TRD1M2,w);
511 P4 = sigma(TRD2M2,w);
512 P1 = 20*log10(P1); P2 = 20*log10(P2); P3 = 20*log10(P3);
513 P4 = 20*log10(P4);
514 figure;
515 subplot(2,1,1);
516 semilogx(w, P1(1,:), w, P2(1,:), w, P3(1,:), w, P4(1,:))
517 %clear sv
518 grid on;
519 h axes = findobj(gcf, 'type', 'axes');
520 xlabel('Frequency','FontSize',12);
521 ylabel('Magnitude','FontSize',12);
522 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18); ...
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523 % size and brightness of grid and size of x & y axis numbers
524 title('Max Singular Values: Tru','FontWeight','bold','FontSize',14,...
525 'Interpreter','latex')
526

527 h line = findobj(gcf, 'type', 'line');
528 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
529

530 subplot(2,1,2);
531 semilogx(w, P1(2,:), w, P2(2,:), w, P3(2,:), w, P4(2,:))
532 %clear sv
533 grid on;
534 h axes = findobj(gcf, 'type', 'axes');
535 xlabel('Frequency','FontSize',12);
536 ylabel('Magnitude','FontSize',12);
537 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
538 % size and brightness of grid and size of x & y axis numbers
539 title('Min Singular Values: Tru','FontWeight','bold','FontSize',12,...
540 'Interpreter','latex')
541

542 h line = findobj(gcf, 'type', 'line');
543 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
544

545

546 % Put legend and enhance appearance
547 % Legend bug with subscript, use '\ ' instead of ' '
548 [hL,hObj]=legend({'D1M1','D2M1','D1M2','D2M2'},'Interpreter','latex');
549 hTL=findobj(hObj,'type','Text'); %
550 set(hTL,'FontSize',11); % font size for letters in legend
551 hTL=findobj(hObj,'type','line'); %
552 set(hTL,'LineWidth',1.2); % thickness of lines in legend
553 set(hL,'FontSize',1,'Position',[0.5 0.5 0.2 0.2]);
554 % distance between lines in legend [x,y,width, height]
555 winit = −1;
556

557 %%
558 wfin = 4;
559 nwpts = 200;
560 w = logspace(winit,wfin,nwpts);
561 P1 = sigma(TRD3M1,w); P2 = sigma(TRD4M1,w); P3 = sigma(TRD3M2,w);
562 P4 = sigma(TRD4M2,w);
563 P1 = 20*log10(P1); P2 = 20*log10(P2); P3 = 20*log10(P3);
564 P4 = 20*log10(P4);
565 figure;
566 subplot(2,1,1);
567 semilogx(w, P1(1,:), w, P2(1,:), w, P3(1,:), w, P4(1,:))
568 %clear sv
569 grid on;
570 h axes = findobj(gcf, 'type', 'axes');
571 xlabel('Frequency','FontSize',12);
572 ylabel('Magnitude','FontSize',12);
573 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
574 % size and brightness of grid and size of x & y axis numbers
575 title('Max Singular Values: Tru','FontWeight','bold','FontSize',14,...
576 'Interpreter','latex')
577

578 h line = findobj(gcf, 'type', 'line');
579 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
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580

581 subplot(2,1,2);
582 semilogx(w, P1(2,:), w, P2(2,:), w, P3(2,:), w, P4(2,:))
583 %clear sv
584 grid on;
585 h axes = findobj(gcf, 'type', 'axes');
586 xlabel('Frequency','FontSize',12);
587 ylabel('Magnitude','FontSize',12);
588 set(h axes,'LineWidth',1.5,'FontSize',10,'GridAlpha',0.18);
589 % size and brightness of grid and size of x & y axis numbers
590 title('Min Singular Values: Tru','FontWeight','bold','FontSize',12,...
591 'Interpreter','latex')
592

593 h line = findobj(gcf, 'type', 'line');
594 set(h line, 'LineWidth',1.2); % Lines with thicker width for plots
595

596

597 % Put legend and enhance appearance
598 % Legend bug with subscript, use '\ ' instead of ' '
599 [hL,hObj]=legend({'D3M1','D4M1','D3M2','D4M2'},'Interpreter','latex');
600 hTL=findobj(hObj,'type','Text'); %
601 set(hTL,'FontSize',11); % font size for letters in legend
602 hTL=findobj(hObj,'type','line'); %
603 set(hTL,'LineWidth',1.2); % thickness of lines in legend
604 set(hL,'FontSize',1,'Position',[0.5 0.5 0.2 0.2]);
605 % distance between lines in legend [x,y,width, height]

1 % dominant pole vs d for increasing v eq
2 clc
3 close all
4 clear all
5

6 loop = 3; % 1 − PID design %2 Wr,Wl design %3 ICC Paper Plant
7 s = tf([1 0],[1]);
8 md = 0; % if d = 0;
9 %% Different Plant Models with the respective parameters as input

10

11 % Plant model from e r, e l to W r, W l with coupling
12 % Plant model from e r, e l to W r, W l decoupled
13 % Plant model from e r, e l to V, W with coupling
14 % Plant model from (e r + e l), (e r−e l) to V, W decoupled
15 %%
16 % Plant model from e r, e l to W r, W l (with coupling)
17 Veq = 1.0; % in m/s
18 Weq = 0.0; % in m/s
19 d = 0.28; % in m/s max value is 0.14 for hardware
20 L = 0.3536; dw = L*sqrt(2); R = 0.042; % default values L = 0.3536//\\
21 %has to be chosen based on the corresponding AR value (AR calculation.m)
22 Iw = 1.67e−06;% default values //\\
23 %has to be chosen based on the corresponding AR value
24 I = I cal(d,Iw,L,md,dw);
25 [ma,mi] = Imaxmin(d,Iw,L,md,dw);
26 i = 0; kk = 1; h = ones(7,57)
27 for j = 0: 0.5:3
28 Veq = j;
29 for d = −0.28:0.01:0.28
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30 i= i+1;
31 I = I cal(d,Iw,L,md,dw);
32 Plant1 = Plantww(d, Veq, Weq, dw, Iw, I, L, md,R);
33 dpole(i) = max(real(pole(Plant1)));
34 end
35 h(kk,:)=dpole;
36 kk = kk +1;
37 i = 0;
38 end
39 d = −0.28:0.01:0.28;
40 plot(d,h(1,:),d,h(2,:),d,h(3,:),d,h(4,:),d,h(5,:),d,h(6,:),d,h(7,:))

1 % e r, e l to V,W Plant
2 function [Plant] = Plantvw(d,Veq,Weq,dw,Iw,I,L,md,R)
3

4 % Plant model from e r, e l to V, W
5

6 s = tf([1 0],[1]);
7 z = tf('z');
8

9 %% Plant Model
10 m = 3.4; mc = 2.76 + md; I = I ; Iw = Iw; L = L; d = d; dw = dw;
11 Weq = Weq; Veq = Veq;
12 Ao = m + 2*Iw/(Rˆ2); Bo = I + (2*Iw*dwˆ2)/Rˆ2;
13 % Linear Plant without actuator − Motor Torque to V,W
14

15 % Linear Plant without actuator − Motor Torque to Wr, Wl
16 Tmain2 = [(1/(s*R*R))*((1/Ao)+(L*L/Bo)) ...
17 (1/(s*R*R))*((1/Ao)−(L*L/Bo)); ...
18 (1/(s*R*R))*((1/Ao)−(L*L/Bo)) (1/(s*R*R))*((1/Ao)+(L*L/Bo))];
19

20 % Right Motor Actuator Dynamics − voltage to motor torque
21 Kt = 0.0337; Kg = 50; Kb = Kt; B = 1.3023e−04; La = 22.8e−06; Ra = 2.9;
22

23 % Left Motor Actuator Dynamics − voltage to motor torque
24 Kt = 0.0046; Kg = 50; Kb = Kt; Beta = 2.29e−06; La =1.729e−03;Ra = 5.51;
25

26 A = m + 2*Iw/(R*R); B = I + dw*dw*Iw/(2*R*R);
27

28 % ULTIMATE − CORRECT representation of Plant using State Space
29 %form derived on Sept 21st, 2019
30 As =[−2*Beta*Kg*Kg/(A*R*R) 2*mc*d*Weq/A (Kt*Kg/(R*A)) (Kt*Kg/(A*R));
31 −mc*d*Weq/B (−mc*d*Veq/B)−(Beta*dw*dw*Kg*Kg/(2*R*R*B)) ...
32 dw*Kt*Kg/(2*R*B) −dw*Kt*Kg/(2*B*R) ;
33 −Kb*Kg/(La*R) −Kb*Kg*dw/(2*La*R) −Ra/La 0 ;
34 −Kb*Kg/(La*R) Kb*Kg*dw/(2*La*R) 0 −Ra/La ];
35 Bs = [0 0; 0 0; 1/La 0; 0 1/La]; Cs = [1 0 0 0; 0 1 0 0];Ds = [0 0;0 0];
36 Mains = ss(As,Bs,Cs,Ds);
37 MainTfs = minreal(tf(Mains)); Mains = ss(MainTfs);
38 MainTfs = minreal(zpk(MainTfs));
39

40 % Alternate representation of Plant from Lin's thesis ea −r,l to Wr,Wl
41 % H1 = Kt/(La*m*R*R*s*s + (Ra*m*R*R + 2*La*B)*s + (2*Kb*Kt + 2*Ra*B));
42 % H2 = dw*dw*Kt/(I*La*R*R*s*s + (I*Ra*R*R + dw*dw*La*B)*s +
43 %(Kb*Kt*L*L + dw*dw*Ra*B));
44 % Plant3 = [H1+0.5*H2 H1−0.5*H2; H1−0.5*H2 H1+0.5*H2];
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45 %Plant3 = minreal(zpk(Plant3));
46 Plant = Mains;
47

48 end

1 % e r, e l to W r, W l Plant
2 function [Plant] = Plantww(d, Veq, Weq, dw, Iw, I, L, md,R)
3

4 % Plant model from e r, e l to W r, W l
5

6 R = R; dw = dw;
7

8 Temp = Plantvw(d,Veq,Weq, dw, Iw, I,L,md,R);
9 %MainTfs = ([1/R dw/(2*R); 1/R −dw/(2*R)])*Temp; % This code is for

10 %obtaining the transfer function represntation of the plant
11 %MainTfs = minreal(tf(MainTfs)); MainTfs = minreal(zpk(MainTfs));
12

13 Temp.C = ([1/R dw/(2*R); 1/R −dw/(2*R)])*Temp.C;
14 Plant = Temp;
15

16 end

1 % (e r + e l), (e r−e l) to V, W Plant
2 function [Plant] = Plantsdv(d, Veq, Weq, dw, Iw, I, L, md,R)
3

4 % Plant model from (e r + e l), (e r−e l) to V, W
5

6 dw = dw;
7

8 Temp = Plantvw(d,Veq,Weq,dw,Iw,I,L,md,R);
9 %MainTfs = Temp*[0.5 0.5; 0.5 −0.5]; % this code is for transfer

10 %function representation of the plant
11 %MainTfs = minreal(tf(MainTfs)); MainTfs = minreal(zpk(MainTfs));
12

13 Temp.B = Temp.B*[0.5 0.5; 0.5 −0.5];
14 Plant = Temp;
15

16 end

1 % I as a function of d; d is varied by shifting m c to new location (db)
2 function [I] = I cal(d,Iw,L,md,dw)
3 % I as a function of d, dw
4 % range of d is −0.03 to 0.03
5 m = 3.4;
6 mc = 2.76; % mass without motors
7 mw = (m − mc)*0.5 ; % mass of individual motor and wheel
8 %dw = 0.25*167;
9 % the Li−ion battery, camera and the Lipo battery are shifted to match

10 % the new d value, so no new mass is being added md = 0 always
11 %% Iw estimation (max and min value estimation)
12

13 %rw = 0.1; m wheel = 0.181;
14 %rm = 0.0248 ; m motor = 0.096;
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15 %maxval = 0.5*m motor*rm*rm + 0.5*m wheel*rw*rw;
16 % minval = maxval/8;
17

18 %% Ic calculation
19

20 m plate = 0.411;
21

22

23 db = d*m/(mc);
24

25

26 Ic = mc*(db − d)*(db − d);
27

28

29 %% I approximation
30

31 I approx = (1/12)*m*(L*L + dw*dw); % in order to verify
32 %if the calculated I is right or wrong
33

34 %% I original
35

36 % Iw = wheel+motor moment of inertia about wheel axel
37 I = Ic + (mc+md)*d*d + 2*mw*dw*dw + Iw;
38

39

40 end

1 %I as a function of d; d is varied by shifting camera and LiPo battery
2 %location
3 function [I] = I Newcalculation(d,Iw,L,md,dw)
4 % I as a function of d, dw
5 % range of d is −0.03 to 0.03
6 m = 3.4;
7 mc = 2.76; % mass without motors
8 mw = (m − mc)*0.5 ; % mass of individual motor and wheel
9 %dw = 0.25*167;

10 % the Li−ion battery, camera and the Lipo battery are shifted to match
11 % the new d value, so no new mass is being added md = 0 always
12 %% Iw estimation (max and min value estimation)
13

14 %rw = 0.042; m wheel = 0.181;
15 %rm = 0.0248 ; m motor = 0.096;
16 %maxval = 0.5*m motor*rm*rm + 0.5*m wheel*rw*rw;
17 %minval = maxval/8;
18

19 %% Ic calculation
20 %
21 % plate
22 Ic = md*(L/2)ˆ2; % initial value, md is the
23 %additional mass that has to be added to manipulate d,
24 m plate = 0.411;
25

26

27 Ic = Ic + (2/12)*m plate*(L*L + dw*dw) + 2*m plate*d*d;
28 % for the two acryllic sheets
29 % 3d print
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30 % m3d = 0.055;
31 % l3d = 0.079;
32 % Ic = Ic + 2*m3d*l3d*l3d;
33 % Nvidia
34 m nvidia = 0.4;
35 l nvidia = 0.12*dw;
36 Ic = Ic + m nvidia*((l nvidiaˆ2) + (dˆ2));
37 m bat = 0.492;
38 m lipo = 0.185;
39 m cam = 0.077;
40 db = d*mc/(m bat + m cam + m lipo);
41

42 % battery
43 m bat = 0.492;
44 l cam = 0.404*L;
45 l = 0.108;
46 w = 0.101;5
47 Ic = Ic + (1/12)*m bat*(l*l + w*w) + m bat*(db − d)*(db − d);
48 % camera
49 m cam = 0.077;
50 l cam = 0.404*L;
51 Ic = Ic + m cam*(db − d)*(db − d);
52 % LiPo
53 m lipo = 0.185;
54 l lipo = 0.404*L;
55 l = 0.10;
56 w = 0.034;
57 Ic = Ic + m lipo*(db − d)*(db − d) + (1/12)*m lipo*(l*l + w*w);
58 % arduino + motor shield
59 m ard shield = 0.062;
60 L ard shield = 0.033;
61 Ic = Ic + m ard shield*(L ard shield)ˆ2; % doesn't really matter
62 %% I approximation
63

64 I approx = (1/12)*m*(L*L + dw*dw); % in order to verify if
65 %the calculated I is right or wrong
66 %% I original
67

68 % Iw = wheel+motor moment of inertia about wheel axel
69 I = Ic + (mc+md)*d*d + 2*mw*dw*dw + Iw;
70

71 end
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1

2 // Description: Arduino code for generic PI inner−loop
3 #include <Servo.h>
4 #include <math.h>
5 #include <ros.h>
6 #include <ros/time.h>
7 #include <tf/tf.h>
8 #include <tf/transform broadcaster.h>
9 #include <nav msgs/Odometry.h>

10 #include <geometry msgs/Vector3.h>
11 #include <geometry msgs/Vector3Stamped.h>
12 #include <geometry msgs/Twist.h>
13 #include <std msgs/Int8.h>
14 #include <Adafruit Sensor.h>
15 #include <Adafruit BNO055.h>
16 #include <utility/imumaths.h>
17

18 Servo left; // create servo object to control right motor
19 Servo right; // create servo object to control left motor
20

21 unsigned long Time=0; // Starting time
22 unsigned long lastMilli = 0;
23 double td = 0.0095; // T = 0.01 sec (100 hz)
24 unsigned long sample time= td*1000*0.1 ;
25

26 double wd ; // Desired angular speed of COM about ICC(Instantaneous
27 //center of curvature)
28 double vd ; // Desired longitudinal speed of center of mass
29

30 double wR; // present angular speed of right motor
31 double wL; // present angular speed of left motor
32 double wRp=0.0; // previous angular speed right motor
33 double wLp=0.0; // previous angular speed left motor
34 double wLn; // average angular speed (wL + wLp)/2
35 double wRn; // average angular speed (wR + wRp)/2
36

37 double CPR = 1024.0; // encoder counts per revolution
38 double LdVal = 0.0;
39 double RdVal = 0.0;
40 long Lcount; // Present Encoder value
41 long Rcount; // Present Encoder value
42 long Lcount last=0; // Previous encoder value
43 long Rcount last=0; // Previous encoder value
44

45 double Radius = 0.04; // Change it (radius of wheel) 0.045
46 double Length = 0.32; // Change it (distance between wheels) 0.555 0.308
47

48 double wdr = 0; // Desired angular speed of right wheel using wd &
49 // vd prefilter parameter x {n+1}
50 double wdl = 0; // Desired angular speed of left wheel using wd &
51 //vd prefilter parameter x {n+1}
52 double wdr p= 0.0; // prefilter parameter x {n} for right motor
53 double wdl p= 0.0; // prefilter parameter x {n} for left motor
54 double wrf; // prefilter parameter y {n+1} for right motor
55 double wlf; // prefilter parameter y {n+1} for left motor
56 double wrf p= 0.0; // prefilter paramter y {n} for right motor
57 double wlf p= 0.0; // prefilter parameter y {n} for left motor'
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58

59 double CR; // Controller output y {n+2} Right motor
60 double CR p=0.0; // Controller output y {n+1} Right motor
61 double CR pp=0.0; // Controller output y {n} Right motor
62 double CR ppp=0.0;
63 double CR pppp=0.0;
64 double CL; // Controller output y {n+2} Left motor
65 double CL p=0.0; // Controller output y {n+1} Left motor
66 double CL pp=0.0; // Controller output y {n} Left motor
67 double CL ppp=0.0;
68 double CL pppp=0.0;
69

70 double Lerror; // Lerror = wlf(output of prefilter/ reference speed)
71 // − wLn.....or... Controller input x {n+2}
72 double Lerror p = 0.0; // Controller input x {n+1}
73 double Lerror pp = 0.0; // Controller input x {n}
74 double Lerror ppp = 0.0;
75 double Lk = 0.0;
76 double Rerror; // Rerror = wrf(output of prefilter/ reference speed)
77 // − wRn....or.....Controller input x {n+2}
78 double Rerror p = 0.0; // Controller input x {n+1}
79 double Rerror pp = 0.0; // Controller input x {n}
80 double Rerror ppp = 0.0;
81 double Rk = 0.0;
82

83 double Lx = 0.0; // left − integrator anti−windup
84 double Rx = 0.0; // right − integrator anti−windup
85

86 double PWMR; // Controller output for right motor
87 double PWML; // Controller output for left motor
88 int val; // input to the motors
89

90 double A ; // Controller gain kp of
91 // K = (kp + ki/s) * (100/(s+100))
92 double B ; // Controller gain ki
93 double C ; // Controller gain kp of
94 // K = (kp + ki/s) * (100/(s+100))
95 double Kp = 0.5; double Ki; double Kd; long long EN; long long DE;
96 long long DE1;
97 double ta = 1/1260;
98 double Po = 0.0; double scale;
99 double g = 1.0; double z; // Controller gain ki

100 double alpha = 200.0; // Roll off parameter alpha
101 double h ; // prefilter parameter z = ki/kp
102 //obtained from K = (g(s+z)/s)*(100/(s+100))
103 // for PD controller double b1; double b0; double c1; double c0;
104 // double A;
105

106

107 // Subscriber call back to /cmd vel
108 void twist message cmd(const geometry msgs::Twist& msg)
109 {
110 wdr = msg.linear.x ;
111 wdl = msg.angular.x ;
112 //wdl = wdr;
113 //if (wdr == 0) g = 0.0;
114 //else g = 1.0;
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115 g = msg.linear.z;
116 //z = msg.angular.z;
117 }
118

119

120 // Node handle
121 ros::NodeHandle arduino nh ;
122

123 //geometry msgs::Twist msg ;
124 //geometry msgs::Vector3Stamped rpm msg;
125 geometry msgs::Twist rpm msg ;
126

127

128 // Publisher of the right and left wheel angular velocities
129 //ros::Publisher pub("robot 2/arduino vel", &rpm msg); // Add robot *
130 ros::Publisher pub("arduino vel", &rpm msg);
131

132 // Subscriber of the reference velocities coming from the outerloop
133 ros::Subscriber<geometry msgs::Twist> sub("cmd vel",...
134 &twist message cmd);
135 //ros::Subscriber<std msgs::Int8> sub2("emergency stop", &callBack );
136

137

138 // Left Encoder
139 #define LH ENCODER A PK0 // pin A8 (PCINT16)
140 #define LH ENCODER B PK1 // pin A9 (PCINT17)
141 static long left ticks = 0L;
142 volatile bool LeftEncoderBSet ;
143

144 // Right Encoder
145 #define RH ENCODER A PB0 // Digital pin 53 (PCINT 0)
146 #define RH ENCODER B PB1 // Digital pin 52 (PCINT 1)
147 static long right ticks = 0L;
148 volatile bool RightEncoderBSet ;
149

150 #define LEFT 0
151 #define RIGHT 1
152

153 static const int8 t ENC STATES [] = {0,1,−1,0,−1,0,0,1,1,0,0,−1,0,−1,...
154 1,0};
155 //encoder lookup table
156

157 /* Interrupt routine for LEFT encoder, taking care of actual counting */
158 ISR (PCINT2 vect) // pin change interrupts for port K (A8,A9)
159 {
160 static uint8 t enc last=0;
161 enc last <<=2; //shift previous state two places
162 enc last |= (PINK & (3 << 0)) >> 0 ;
163 left ticks −= ENC STATES[(enc last & 0x0f)]; // changed from −ve to
164 // +ve after interchanging the M1A and M1B wires
165 }
166

167 /* Interrupt routine for RIGHT encoder, taking care of actual
168 // counting */
169 ISR (PCINT0 vect) // pin change interrupts for port J
170 // (Digital pin 14,15)
171 {
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172 static uint8 t enc last=0;
173 enc last <<=2; //shift previous state two places
174 enc last |= (PINB & (3 << 0)) >> 0 ;
175 right ticks −= ENC STATES[(enc last & 0x0f)]; // changed from −ve to
176 // +ve after interchanging the M1A and M1B wires
177 }
178

179 void SetupEncoders()
180 {
181 // Initializing the encoder pins as input pins
182

183 // set as inputs DDRD(pins 0−7) , DDRC(A0−A5)
184 // (The Port D Data Direction Register − read/write)
185 DDRK &= ˜(1<<LH ENCODER A); // PK0 pin A8
186 DDRK &= ˜(1<<LH ENCODER B); // PK1 pin A9
187 DDRB &= ˜(1<<RH ENCODER A); // Digital pin 53 (PB0)
188 DDRB &= ˜(1<<RH ENCODER B); // Digital pin 52 (PB1)
189

190 /* Pin to interrupt map:
191 * D0−D7 = PCINT 16−23 = PCIR2 = PD = PCIE2 = pcmsk2
192 * D8−D13 = PCINT 0−5 = PCIR0 = PB = PCIE0 = pcmsk0
193 * A0−A5 (D14−D19) = PCINT 8−13 = PCIR1 = PC = PCIE1 = pcmsk1
194 */
195

196 /*
197 For Atmega 2560 pin change interrupt enable flags
198 PCIE2 : PCINT23−16
199 PCIE1 : PCINT15−8
200 PCIE0 : PCINT7−0
201 */
202

203 // tell pin change mask to listen to left encoder pins and right pins
204 PCMSK2 |= (1 << LH ENCODER A)|(1 << LH ENCODER B);
205 PCMSK0 |= (1 << RH ENCODER A)|(1 << RH ENCODER B);
206

207 // enable PCINT1 and PCINT2 interrupt in the general interrupt mask
208 // the Pin Change Interrupt Enable flags have to be set in the PCICR
209 // register. These are bits PCIE0, PCIE1 and PCIE2 for the groups of
210 // pins PCINT7..0, PCINT14..8 and PCINT23..16 respectively
211 PCICR |= (1 << PCIE0) | (1 << PCIE2);
212 //PCICR |= (1 << PCIE2) ;
213 }
214

215

216 void setup() {
217 // put your setup code here, to run once:
218 Serial.begin(115200);
219

220 // initialize the encoders
221 SetupEncoders();
222

223 // attach servo to pin 51,11
224 left.attach(51);
225 right.attach(43);
226

227 // Arduino node
228 arduino nh.initNode() ;
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229

230 //broadcaster.init(arduino nh) ; //added
231

232 arduino nh.getHardware()−>setBaud(115200);
233 arduino nh.advertise(pub); // setting up subscriptions
234 arduino nh.subscribe(sub); // setting up publications
235

236 }
237

238 void loop() {
239

240 if (millis() − Time > sample time)
241 {
242 Time = millis() ;
243

244 // Update Motors with corresponding speed and send speed values
245 //through serial port
246

247 Update Motors(vd, wd);
248 publish data();
249 arduino nh.spinOnce();
250

251 }
252

253 }
254

255 // UPDATE MOTORS
256 void Update Motors(double vd, double wd)
257 {
258

259 //Prefilter
260 wrf = ( (td*h)*wdr + (td*h)*wdr p − (td*h − 2)*wrf p )/(2 + td*h);
261 wlf = ( (td*h)*wdl + (td*h)*wdl p − (td*h − 2)*wlf p )/(2 + td*h);
262 wrf p = wrf;
263 wlf p = wlf;
264 wdr p = wdr;
265 wdl p = wdl;
266

267

268 // Encoder counts
269 Lcount = left ticks ;
270 Rcount = right ticks ;
271 LdVal = (double) −(Rcount − Rcount last)/(td) ; // Counts per second
272 // simple interchagne to match notation
273 RdVal = (double) (Lcount − Lcount last)/(td) ; // Counts per second
274 // simple interchagne to match notation
275 Lcount last = Lcount;
276 Rcount last = Rcount;
277

278 // Present angular velocities
279 wL = (LdVal/CPR)*(2*3.14159) ; // rads/sec
280 wR = (RdVal/CPR)*(2*3.14159) ; // rads/sec
281

282 wLn = (wL + wLp)/2.0; // avg with previous values to make it even
283 // smoother
284 wRn = (wR + wRp)/2.0;
285
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286 wLp = wL; // saving present angular velocities to be used in the next
287 // loop
288 wRp = wR; // saving present angular velocities to be used in the next
289 // loop
290

291 Rerror = wdr − wRn ; // error (ref − present) pre−fileter − should be
292 // added to prevent overshoot, reduces the jerk
293 Lerror = wdl − wLn ; // error (ref − present)
294

295 // Inner loop controller PID
296

297 CL = CL p + 0.259*Lerror − 0.2166*Lerror p;
298

299 CR = CR p + 0.259*Rerror − 0.2166*Rerror p;
300

301

302 CL pppp = CL ppp;
303 CL ppp = CL pp;
304 CL pp = CL p;
305

306 CR pppp = CR ppp;
307 CR ppp = CR pp;
308 CR pp = CR p;
309

310 Lerror ppp = Lerror pp;
311 Lerror pp = Lerror p;
312 Lerror p = Lerror;
313 Rerror ppp = Rerror pp;
314 Rerror pp = Rerror p;
315 Rerror p = Rerror;
316

317 if (CL < 0) CL = 0;
318 if (CL > 100) CL = 100;
319 if (CR < 0) CR = 0;
320 if (CR > 100) CR = 100;
321

322 CL p = CL;
323 CR p = CR;
324

325 CL = CL + 1570;
326 CR = CR + 1570;
327 left.writeMicroseconds(CL*g);
328 right.writeMicroseconds(CR*g);
329

330

331 }
332

333 void publish data(){
334

335 rpm msg.linear.x = wRn;//rigt angularVelocity;
336 rpm msg.linear.y = wLn;//right angularVelocity;
337 rpm msg.linear.z = Time;
338 rpm msg.angular.x = CL;
339 rpm msg.angular.y = CR;
340 rpm msg.angular.z = g;
341 pub.publish(&rpm msg);
342 //Serial.println(Time);
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343

344 }

1

2 // Description: ROS Node to send Pose data from ground station
3 // (HTC Vive) to NVIDIA TX2s
4 #include "ros/ros.h"
5 #include "std msgs/String.h"
6 #include "std msgs/Int8.h"
7 #include <tf/tf.h>
8 #include<geometry msgs/Vector3.h>
9 #include<geometry msgs/Vector3Stamped.h>

10 #include<geometry msgs/Twist.h>
11 #include<geometry msgs/Point.h>
12 #include<geometry msgs/PoseWithCovarianceStamped.h>
13 #include<sensor msgs/Joy.h>
14 #include <sstream>
15 #include <iostream>
16 #include <fstream>
17

18

19 class readData{
20 public:
21 readData();
22 private:
23 ros::NodeHandle n;
24 ros::Publisher pub;
25 ros::Subscriber sub;
26 ros::Publisher pub2;
27 ros::Subscriber sub2;
28 void callBack(const geometry msgs::PoseWithCovarianceStamped::
29 ConstPtr& msg);
30 void callBack2(const geometry msgs::PoseWithCovarianceStamped::
31 ConstPtr& msg);
32 geometry msgs::Point tracker1;
33 geometry msgs::Point tracker2;
34 };
35

36 readData::readData(){
37 sub = n.subscribe<geometry msgs::PoseWithCovarianceStamped>
38 ("/vive/LHR D254C151 pose", 1000, &readData::callBack,this);
39 sub2 = n.subscribe<geometry msgs::PoseWithCovarianceStamped>
40 ("/vive/LHR 90C2F95A pose", 1000, &readData::callBack2,this);
41 pub = n.advertise<geometry msgs::Point>("tracker 1",1000);
42 pub2 = n.advertise<geometry msgs::Point>("tracker 2",1000);
43 }
44

45 void readData::callBack(const geometry msgs::
46 PoseWithCovarianceStamped::ConstPtr& msg){tf::Quaternion q1(
47 msg−>pose.pose.orientation.x,
48 msg−>pose.pose.orientation.y,
49 msg−>pose.pose.orientation.z,
50 msg−>pose.pose.orientation.w);
51 tf::Quaternion q2(0.707, 0.000, 0.000, 0.707);
52 tf::Matrix3x3 m(q2*q1);
53 double roll, pitch, yaw;
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54 static double yaw prev = 0, relYaw = 0;
55 m.getRPY(roll, pitch, yaw);
56 // converts the Quaternion to Euler angles
57 if ((std::abs(yaw − yaw prev)) > 3.141) {
58 if (yaw > yaw prev) relYaw = relYaw − (2*3.141 −
59 std::abs(yaw − yaw prev));
60 else relYaw = relYaw + (2*3.141 − std::abs(yaw − yaw prev));
61 //if (yaw < yaw prev) relYaw = relYaw +
62 //(2*3.141 − std::abs(yaw − yaw prev));
63 }
64 else {
65 relYaw = relYaw + (yaw − yaw prev);
66 }
67

68 yaw prev = yaw;
69 tracker1.x = −(msg−>pose.pose.position.x);
70 tracker1.y = msg−>pose.pose.position.z;
71 tracker1.z = relYaw;
72 pub.publish(tracker1);
73 }
74 void readData::callBack2(const geometry msgs::
75 PoseWithCovarianceStamped::ConstPtr& msg){tf::Quaternion q1(
76 msg−>pose.pose.orientation.x,
77 msg−>pose.pose.orientation.y,
78 msg−>pose.pose.orientation.z,
79 msg−>pose.pose.orientation.w);
80 tf::Quaternion q2(0.707, 0.000, 0.000, 0.707);
81 tf::Matrix3x3 m(q2*q1);
82 double roll, pitch, yaw;
83 m.getRPY(roll, pitch, yaw);
84 tracker2.x = −(msg−>pose.pose.position.x);
85 tracker2.y = msg−>pose.pose.position.z;
86 tracker2.z = yaw;
87 pub2.publish(tracker2);
88 }
89 //return 0;
90

91

92 int main(int argc, char **argv)
93 {
94 ros::init(argc, argv, "vive data send");
95

96 //TeleopJoy teleop turtle;
97 readData dude;
98

99 ros::spin();
100

101 return 0;
102 }

1

2 //Description: ROS Node for Cruise Control
3 //Fri 22 May 2020 12:17:46 AM MST
4 #include "ros/ros.h"
5 #include "ros/time.h"
6 #include "std msgs/Int8.h"
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7 #include "std msgs/String.h"
8 #include "std msgs/Float64MultiArray.h"
9 #include <cmath>

10 #include <tf/tf.h>
11 #include<geometry msgs/Vector3.h>
12 #include<geometry msgs/Vector3Stamped.h>
13 #include<geometry msgs/Twist.h>
14 #include<geometry msgs/Point.h>
15 #include<geometry msgs/PoseWithCovarianceStamped.h>
16 #include<sensor msgs/Joy.h>
17 #include <sstream>
18 #include <iostream>
19 #include <fstream>
20

21 double Radius = 0.039;
22 double Length = 0.324;
23

24 class readData{
25 public:
26 readData();
27 private:
28 ros::NodeHandle n;
29 ros::Publisher pub; // publish to cmd vel: wr, wl
30 ros::Publisher pub2; // publish the experiment simulation data: x,y,
31 // theta,v,w,Vref,theta ref
32 ros::Subscriber sub; // subscribe to keyboard
33 ros::Subscriber sub2; // subscribe to tracker 1: x,y,theta
34 void callBack(const geometry msgs::Twist::ConstPtr& msg);
35 // subscribe to the keyboard
36 void callBack2(const geometry msgs::Point::ConstPtr& msg);
37 // subscribe to the tracker 1
38 geometry msgs::Twist vel; std msgs::Float64MultiArray expData;
39 double wr; double wl; // for now the values are going to be in
40 // micro seconds to test the rpm of the motor and log the data
41 int cruise = 0; int initial = 0;
42 double x i; double y i; double theta i; double x f; double y f;
43 double theta f;
44 double v ref; double w ref; double theta ref; double theta err;
45 double k theta = 5.0;
46 std::string line; std::string sV ref; std::string sTheta ref;
47 std::ifstream ifile
48 {"/home/smanne1/catkin ws/src/highBW/src/Cruise 05r.csv"};
49 };
50

51 readData::readData(){
52 sub2 = n.subscribe<geometry msgs::Point>("/tracker 1", 1,
53 &readData::callBack2,this);
54 sub = n.subscribe<geometry msgs::Twist>("/keyboard",10,
55 &readData::callBack,this);
56 pub = n.advertise<geometry msgs::Twist>("cmd vel",1);
57 pub2 = n.advertise<std msgs::Float64MultiArray>("exp data",10000);
58 }
59

60 void readData::callBack(const geometry msgs::Twist::ConstPtr& msg){
61 if (msg−>linear.x == 2) cruise = 1;
62 else {
63 cruise = 0;
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64 initial = 0; // resets the initial to record the initial values
65 // of x,y,theta
66 }
67 }
68

69 void readData::callBack2(const geometry msgs::Point::ConstPtr& msg){
70 if (cruise == 1){
71 if (initial == 0){
72 x i = msg−>x;
73 y i = msg−>y;
74 theta i = msg−>z;
75 initial = 1;
76 }
77 x f = (msg−>x − x i)*cos(theta i) + (msg−>y − y i)*sin(theta i)
78 + 0.0;
79 // add the starting value of the robot instead of 500
80 y f = −(msg−>x − x i)*sin(theta i) + (msg−>y − y i)*cos(theta i)
81 + 0.0;
82 theta f = msg−>z − theta i;
83

84 if (std::getline(ifile, line)) { // read the current line
85 std::istringstream iss{line}; // construct a string stream
86 // from line
87 std::getline(iss, sTheta ref, ',');
88 std::getline(iss, sV ref,',');
89

90 //ROS INFO("%s\n", sV ref.c str());
91 v ref = std::stod(sV ref);
92 theta ref = std::stod(sTheta ref);
93 }
94

95 // outerloop code
96 theta err = theta ref − theta f;
97 w ref = k theta * theta err;
98

99 wr = (2*v ref + Length*w ref)/(2*Radius);
100 wl = (2*v ref − Length*w ref)/(2*Radius);
101

102 vel.linear.x = wr;
103 vel.angular.x = wl;
104 vel.linear.z = 1;
105 pub.publish(vel); // cmd vel to the inner loop
106

107 expData.data = { x f, y f, theta f, v ref, theta ref};
108 pub2.publish(expData);
109

110 }
111 else {
112 wr = 0.0;
113 wl = 0.0;
114 vel.linear.z = 0;
115 vel.linear.x = wr;
116 vel.angular.x = wl;
117 pub.publish(vel); // cmd vel to the inner loop
118

119 }
120
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121

122 }
123

124 int main(int argc, char **argv){
125 ros::init(argc, argv, "Cruise");
126

127 //TeleopJoy teleop turtle;
128 readData dude;
129

130 ros::spin();
131

132 return 0;
133 }

1

2 //Description: ROS Node for writing data into a .csv file
3 #include "ros/ros.h"
4 #include "ros/time.h"
5 #include "std msgs/String.h"
6 #include "std msgs/Int8.h"
7 #include "std msgs/Float64.h"
8 #include "std msgs/Float64MultiArray.h"
9 #include <cmath>

10 #include <tf/tf.h>
11 #include<geometry msgs/Vector3.h>
12 #include<geometry msgs/Vector3Stamped.h>
13 #include<geometry msgs/Twist.h>
14 #include<geometry msgs/Point.h>
15 #include<geometry msgs/PoseWithCovarianceStamped.h>
16 #include<sensor msgs/Joy.h>
17 #include <sstream>
18 #include <iostream>
19 #include <fstream>
20

21 double Radius = 0.039; // Change it (radius of wheel) 0.045
22 double Length = 0.324; // Change it (distance between the wheels (dw)
23 int emergency = 0;
24

25 class emergencyStop{ // stop the robot if any axes of the
26 //joystick is moved
27 public:
28 emergencyStop();
29 private:
30 ros::NodeHandle n;
31 ros::Subscriber sub;
32 void callBack(const sensor msgs::Joy::ConstPtr& joy);
33

34 };
35 emergencyStop::emergencyStop(){
36 sub = n.subscribe<sensor msgs::Joy>("joy", 10, &emergencyStop::
37 callBack,this);
38 }
39

40 void emergencyStop::callBack(const sensor msgs::Joy::ConstPtr& joy){
41 if (joy−>axes[1] + joy−>axes[2] + joy−>axes[3] != 0)
42 emergency = 1;
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43 }
44

45 class readData{
46 public:
47 readData();
48 private: // emergency stop feature programmed in the robot3
49 // module incase of high current
50 void callBack(const geometry msgs::Twist::ConstPtr& msg);
51 void callBack2(const std msgs::Float64MultiArray::ConstPtr& msg);
52 void dataWrite(const geometry msgs::Twist::ConstPtr& msg);
53 geometry msgs::Twist vel;
54 std::string filename =
55 "/home/smanne1/catkin ws/src/highBW/matlab/robot1/arduino.csv";
56 std::string filename2 =
57 "/home/smanne1/catkin ws/src/highBW/matlab/robot1/cruiseData.csv";
58 int i; double vdf; double wdf; double wdr; double wdl; double Rwdr;
59 double Rwdl;
60 ros::NodeHandle n;
61 ros::Subscriber sub;
62 ros::Subscriber sub2;
63

64 };
65

66 readData::readData(){
67 sub = n.subscribe<geometry msgs::Twist>("arduino vel", 10,
68 &readData::callBack,this);
69 sub2 = n.subscribe<std msgs::Float64MultiArray>(
70 "exp dataRecord", 10000,&readData::callBack2,this);
71 i = 0;
72 }
73

74 void readData::callBack(const geometry msgs::Twist::ConstPtr& msg){
75 dataWrite(msg);
76 }
77

78

79 void readData::dataWrite(const geometry msgs::Twist::ConstPtr& msg){
80 //vdf = msg−>linear.y;
81 //wdf = msg−>angular.y;
82 //wdr = (2*vdf + Length*wdf)/(2*Radius); // actual angular
83 //velocities
84 //wdl = (2*vdf − Length*wdf)/(2*Radius);
85

86 //Rwdr = (2*(msg−>linear.x) + Length*(msg−>angular.x))/(2*Radius);
87 // reference angular velocities
88 //Rwdl = (2*(msg−>linear.x) − Length*(msg−>angular.x))/(2*Radius);
89

90 vdf = (msg−>linear.x + msg−>linear.y)*Radius/2;
91 wdf = (msg−>linear.x − msg−>linear.y)*Radius/Length;
92

93 std::ofstream myfile;
94 ROS INFO("printing data");
95 myfile.open(filename.c str(), std::ios::app);
96 myfile << " Right Angular Vel " << msg−>linear.x <<
97 " Left Angular Vel " << msg−>linear.y;
98 myfile << " Time " << msg−>linear.z << " Ref Right " <<
99 msg−>angular.x;
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100 myfile << " Ref Left " << msg−>angular.y << "\n";
101 // myfile << " Position x " << msg−>linear.z << " Position y "
102 //<< msg−>angular.z << "\n";
103 myfile.close();
104 //return 0;
105 }
106

107 void readData::callBack2(const std msgs::Float64MultiArray::
108 ConstPtr& msg){
109 std::ofstream myfile2;
110 ROS INFO("printing data");
111 myfile2.open(filename2.c str(), std::ios::app);
112 myfile2 << " Position x " << msg−>data[0] << " Position y "
113 << msg−>data[1];
114 myfile2 << " Theta " << msg−>data[2] << " Linear Velocity "
115 << msg−>data[3];
116 myfile2 << " Angular Velocity " << msg−>data[4] << " Time "
117 << msg−>data[5];
118 myfile2 << " X ref " << msg−>data[6] << " Y ref " <<
119 msg−>data[7] << "\n";
120 // myfile << " Position x " << msg−>linear.z << " Position y "
121 //<< msg−>angular.z << "\n";
122 myfile2.close();
123 }
124

125

126 int main(int argc, char **argv)
127 {
128 ros::init(argc, argv, "ground station data receive Vive2");
129

130 //emergencyStop delta;
131 readData dude;
132

133 ros::spin();
134

135 return 0;
136 }

1

2 // Description: ROS Node for generic outer−loop
3 //Fri 22 May 2020 12:17:46 AM MST
4 #include "ros/ros.h"
5 #include "ros/time.h"
6 #include "std msgs/Int8.h"
7 #include "std msgs/String.h"
8 #include "std msgs/Float64MultiArray.h"
9 #include <cmath>

10 #include <tf/tf.h>
11 #include<geometry msgs/Vector3.h>
12 #include<geometry msgs/Vector3Stamped.h>
13 #include<geometry msgs/Twist.h>
14 #include<geometry msgs/Point.h>
15 #include<geometry msgs/PoseWithCovarianceStamped.h>
16 #include<sensor msgs/Joy.h>
17 #include <sstream>
18 #include <iostream>
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19 #include <fstream>
20

21 class readData{
22 public:
23 readData();
24 private:
25 ros::NodeHandle n;
26 ros::Publisher pub; // publish to cmd vel: wr, wl
27 ros::Publisher pub2; // publish the experiment simulation data: x,y,
28 // theta,v,w,Vref,theta ref
29 ros::Subscriber sub; // subscribe to keyboard
30 ros::Subscriber sub2; // subscribe to tracker 1: x,y,theta
31 void callBack(const geometry msgs::Twist::ConstPtr& msg);
32 // subscribe to the keyboard
33 void callBack2(const geometry msgs::Point::ConstPtr& msg);
34 // subscribe to the tracker 1
35 geometry msgs::Twist vel; std msgs::Float64MultiArray expData;
36 double wr; double wl; // for now the values are going to be
37 //in micro seconds to test the rpm of the motor and log the data
38 int cruise = 0; int initial = 0;
39 double x i; double y i; double theta i; double x f; double y f;
40 double theta f;
41 double v ref; double theta ref; std::string line; std::
42 string sV ref;
43 std::string sTheta ref;
44 std::ifstream ifile {
45 "/home/smanne1/catkin ws/src/highBW/src/Cruise.csv"};
46 };
47

48 readData::readData(){
49 sub2 = n.subscribe<geometry msgs::Point>("/tracker 1", 1,
50 &readData::callBack2,this);
51 sub = n.subscribe<geometry msgs::Twist>("/keyboard",10,
52 &readData::callBack,this);
53 pub = n.advertise<geometry msgs::Twist>("cmd vel",1);
54 pub2 = n.advertise<std msgs::Float64MultiArray>("exp data",10000);
55 }
56

57 void readData::callBack(const geometry msgs::Twist::ConstPtr& msg){
58 if (msg−>linear.x == 2) cruise = 1;
59 else {
60 cruise = 0;
61 initial = 0; // resets the initial to record the initial values
62 // of x,y,theta
63 }
64 vel.linear.x = msg−>linear.x*(51/2);
65 vel.angular.x = msg−>angular.z;
66 if (vel.linear.x < 0) vel.linear.x = 0;
67 if (vel.angular.x < 0) vel.angular.x = 0;
68 pub.publish(vel);
69 }
70

71 void readData::callBack2(const geometry msgs::Point::ConstPtr& msg){
72 if (cruise == 1){
73 if (initial == 0){
74 x i = msg−>x;
75 y i = msg−>y;
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76 theta i = msg−>z;
77 initial = 1;
78 }
79 x f = (msg−>x − x i)*cos(theta i) + (msg−>y − y i)*sin(theta i)
80 + 0.0;
81 // add the starting value of the robot instead of 500
82 y f = −(msg−>x − x i)*sin(theta i) + (msg−>y − y i)*cos(theta i)
83 + 0.0;
84 theta f = msg−>z − theta i;
85

86

87

88 expData.data = { x f, y f, theta f, v ref, theta ref};
89 pub2.publish(expData);
90 }
91 }
92

93 int main(int argc, char **argv){
94 ros::init(argc, argv, "tesla1");
95

96 //TeleopJoy teleop turtle;
97 readData dude;
98 ros::spin();
99

100 return 0;
101 }

1 //Description: ROS Node for Planar Cartesian Stabilization
2 //Fri 22 May 2020 12:17:46 AM MST
3 #include "ros/ros.h"
4 #include "ros/time.h"
5 #include "std msgs/Int8.h"
6 #include "std msgs/String.h"
7 #include "std msgs/Float64MultiArray.h"
8 #include <cmath>
9 #include <tf/tf.h>

10 #include<geometry msgs/Vector3.h>
11 #include<geometry msgs/Vector3Stamped.h>
12 #include<geometry msgs/Twist.h>
13 #include<geometry msgs/Point.h>
14 #include<geometry msgs/PoseWithCovarianceStamped.h>
15 #include<sensor msgs/Joy.h>
16 #include <sstream>
17 #include <iostream>
18 #include <fstream>
19

20 double Radius = 0.039;
21 double Length = 0.324;
22

23 class readData{
24 public:
25 readData();
26 private:
27 ros::NodeHandle n;
28 ros::Publisher pub; // publish to cmd vel: wr, wl
29 ros::Publisher pub2; // publish the experiment simulation data: x,y,
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30 // theta,v,w,Vref,theta ref
31 ros::Subscriber sub; // subscribe to keyboard
32 ros::Subscriber sub2; // subscribe to tracker 1: x,y,theta
33 void callBack(const geometry msgs::Twist::ConstPtr& msg);
34 // subscribe to the keyboard
35 void callBack2(const geometry msgs::Point::ConstPtr& msg);
36 // subscribe to the tracker 1
37 double fcn(double xp,double yp); // to compute the theta err
38 // (refer matlab Cartesian code)
39 geometry msgs::Twist vel; std msgs::Float64MultiArray expData;
40 double wr; double wl; // for now the values are going to be in
41 // micro seconds to test the rpm of the motor and log the data
42 int cruise = 0; int initial = 0;
43 double x i; double y i; double theta i; double x f; double y f;
44 double theta f;
45 double v ref; double w ref; double theta ref; double x ref;
46 double y ref;
47 double d err; double theta err; double k theta = 6.0;
48 double k v = 1.0;
49 double xp; double yp; // used by function 'fcn'
50 std::string line; std::string sX ref; std::string sY ref;
51 std::ifstream ifile
52 {"/home/smanne1/catkin ws/src/highBW/src/Cartesian BW.csv"};
53 };
54

55 readData::readData(){
56 sub2 = n.subscribe<geometry msgs::Point>("/tracker 1", 1,
57 &readData::callBack2,this);
58 sub = n.subscribe<geometry msgs::Twist>("/keyboard",10,
59 &readData::callBack,this);
60 pub = n.advertise<geometry msgs::Twist>("cmd vel",1);
61 pub2 = n.advertise<std msgs::Float64MultiArray>("exp data",10000);
62 }
63

64 void readData::callBack(const geometry msgs::Twist::ConstPtr& msg){
65 if (msg−>linear.x == 2) cruise = 1;
66 else {
67 cruise = 0;
68 initial = 0; // resets the initial to record the initial values
69 // of x,y,theta
70 }
71 }
72

73 void readData::callBack2(const geometry msgs::Point::ConstPtr& msg){
74 if (cruise == 1){
75 if (initial == 0){
76 x i = msg−>x;
77 y i = msg−>y;
78 theta i = msg−>z;
79 initial = 1;
80 }
81 x f = (msg−>x − x i)*cos(theta i) + (msg−>y − y i)*sin(theta i)
82 + 500.0;
83 // add the starting value of the robot instead of 500
84 y f = −(msg−>x − x i)*sin(theta i) + (msg−>y − y i)*cos(theta i)
85 + 501.5;
86 theta f = msg−>z − theta i;
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87

88 if (std::getline(ifile, line)) { // read the current line
89 std::istringstream iss{line}; // construct a string stream
90 // from line
91 std::getline(iss, sX ref, ',');
92 std::getline(iss, sY ref,',');
93

94 //ROS INFO("%s\n", sV ref.c str());
95 x ref = std::stod(sX ref);
96 y ref = std::stod(sY ref);
97 }
98

99 // outerloop code
100 xp = x ref − x f;
101 yp = y ref − y f;
102

103 theta ref = fcn(xp, yp);
104 theta err = theta ref − theta f;
105

106 v ref = sqrt(pow(xp,2) + pow(yp,2))*cos(theta err)*k v;
107 w ref = k theta * theta err;
108

109 wr = (2*v ref + Length*w ref)/(2*Radius);
110 wl = (2*v ref − Length*w ref)/(2*Radius);
111

112 vel.linear.x = wr;
113 vel.angular.x = wl;
114 vel.linear.z = 1;
115 pub.publish(vel); // cmd vel to the inner loop
116

117 expData.data = { x f, y f, theta f, x ref, y ref};
118 pub2.publish(expData);
119

120 }
121 else {
122 wr = 0.0;
123 wl = 0.0;
124 vel.linear.z = 0;
125 vel.linear.x = wr;
126 vel.angular.x = wl;
127 pub.publish(vel); // cmd vel to the inner loop
128

129 }
130

131

132 }
133

134 double readData::fcn(double xp, double yp){
135 static double xo = 1.0, yo = 0.0, theta = 0.0;
136 double a1,b1,c1,dtheta,sign;
137

138 // calculate the value of theta
139 a1 = sqrt( pow(xp,2) + pow(yp,2));
140 b1 = sqrt( pow(xo,2) + pow(yo,2));
141 c1 = sqrt( pow(xp − xo, 2) + pow(yp − yo ,2));
142

143 if ((a1 != 0) && (b1 != 0))
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144 dtheta = acos(std::max(std::min( (pow(a1,2) + pow(b1,2) −
145 pow(c1,2))/(2*a1*b1) ,1.0),−1.0));
146 else
147 dtheta = 0.0;
148

149 // calculate the direction of rotation
150 sign = 1.0;
151 if (dtheta != 0){
152 sign = (−yo/xo)*xp + yp;
153 if (sign != 0){
154 if ((xo > 0) && (yo > 0))
155 sign = sign/std::abs(sign);
156 else if ((xo < 0) && (yo < 0))
157 sign = −sign/std::abs(sign);
158 else if ((xo > 0) && (yo < 0))
159 sign = sign/std::abs(sign);
160 else if ((xo < 0) && (yo > 0))
161 sign = −sign/std::abs(sign);
162 else if ((xo == 0) && (yo >= 0)){
163 if (xp != 0)
164 sign = −xp/std::abs(xp);
165 else
166 sign = 0;
167 }
168 else if ((xo == 0) && (yo <= 0)){
169 if (xp != 0)
170 sign = xp/std::abs(xp);
171 else
172 sign = 0;
173 }
174 else if ((xo >= 0)&&(yo == 0)){
175 if (yp != 0)
176 sign = yp/std::abs(yp);
177 else
178 sign = 0;
179 }
180 else if ((xo <= 0) && (yo == 0)){
181 if (yp != 0)
182 sign = −yp/std::abs(yp);
183 else
184 sign = 0;
185 }
186 }
187 }
188

189 xo = xp; yo = yp;
190 theta = theta + dtheta*sign;
191 return theta;
192

193 }
194

195

196 int main(int argc, char **argv){
197 ros::init(argc, argv, "Cartesian");
198

199 //TeleopJoy teleop turtle;
200 readData dude;
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201

202 ros::spin();
203

204 return 0;
205 }

1

2 //Description: ROS Node for calculating (v,w) from pose values
3 //(x,y,theta)
4 #include "ros/ros.h"
5 #include "ros/time.h"
6 #include "std msgs/String.h"
7 #include "std msgs/Int8.h"
8 #include "std msgs/Float64MultiArray.h"
9 #include <cmath>

10 #include <tf/tf.h>
11 #include<geometry msgs/Vector3.h>
12 #include<geometry msgs/Vector3Stamped.h>
13 #include<geometry msgs/Twist.h>
14 #include<geometry msgs/Point.h>
15 #include<geometry msgs/PoseWithCovarianceStamped.h>
16 #include<sensor msgs/Joy.h>
17 #include <sstream>
18 #include <iostream>
19 #include <fstream>
20

21 int buffer length = 50;
22 std::deque<double> filterbuffer v(buffer length,0.0);
23 std::deque<double> filterbuffer w(buffer length,0.0);
24

25 class readData{
26 public:
27 readData();
28 private:
29 ros::NodeHandle n;
30 ros::Publisher pub;
31 ros::Subscriber sub;
32 //ros::Subscriber sub2;
33 void callBack(const std msgs::Float64MultiArray::ConstPtr& msg);
34 void callBack2(const geometry msgs::Twist::ConstPtr& key);
35 geometry msgs::Twist vel;
36 geometry msgs::Point pre msg;
37 std msgs::Float64MultiArray exp dataRecord;
38 double time; double expTime = 0.0;
39 double ts = 1.0/105.0;
40 double pre time2 = 0.0;
41 double pre time = 0.0;
42 double inA; double inB;
43 double yaw = 0.0; // this is absolute yaw angle
44 };
45

46

47 // using Joy will cause serious problems − when joy is not publishing on
48 // to the topic
49 readData::readData(){
50 sub = n.subscribe<std msgs::Float64MultiArray>("exp data", 10000,
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51 &readData::callBack,this);
52 pub = n.advertise<std msgs::Float64MultiArray>("exp dataRecord",
53 10000);
54 //sub2 = n.subscribe<geometry msgs::Twist>("/keyboard",10,
55 //&readData::callBack,this);
56 pre msg.x = 0.0; pre msg.y = 0.0; pre msg.z = 0.0;
57 }
58

59 void readData::callBack(const std msgs::Float64MultiArray::
60 ConstPtr& msg){
61

62 time = ros::Time::now().toSec();
63 vel.linear.y =
64 sqrt(pow(((msg−>data[0] − pre msg.x)/(time − pre time)),2) +
65 pow(((msg−>data[1] − pre msg.y)/(time − pre time)),2));
66 // the next four conditions are not ncessary, they are covered
67 // by the last 4, all the if conditions are not necessary as
68 // well, by default the vel.linear.y is always positive
69

70 // convert the theta from relative to absolute
71 if (!(((msg−>data[2]) > −3.141) && (msg−>data[2] < 3.141))){
72 // it theta is out of −pi to pi range enter the loop
73 yaw = msg−>data[2];
74 if (msg−>data[2] > 0){
75 while(!((yaw > −3.141) && (yaw < 3.141)))
76 yaw = yaw − (2*3.141);
77 }
78 if (msg−>data[2] < 0){
79 while(!((yaw > −3.141) && (yaw < 3.141)))
80 yaw = yaw + (2*3.141);
81 }
82 }
83 else yaw = msg−>data[2];
84

85

86 if ( ((msg−>data[0] − pre msg.x)>0) && ((msg−>data[1] −
87 pre msg.y)==0)){
88 if (std::abs(yaw) > (3.141/2))
89 vel.linear.y = vel.linear.y;
90 else
91 vel.linear.y = −vel.linear.y;
92 }
93 else if (((msg−>data[0] − pre msg.x)==0)&&((msg−>data[1] −
94 pre msg.y)<0))
95 {
96 if (yaw > (0))
97 vel.linear.y = vel.linear.y;
98 else
99 vel.linear.y = −vel.linear.y;

100 }
101 else if (((msg−>data[0] − pre msg.x)<0)&&((msg−>data[1] −
102 pre msg.y)==0))
103 {
104 if (std::abs(yaw)<(3.141/2))
105 vel.linear.y = vel.linear.y;
106 else
107 vel.linear.y = −vel.linear.y;
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108 }
109 else if (((msg−>data[0] − pre msg.x)==0)&&((msg−>data[1] −
110 pre msg.y)>0))
111 {
112 if (yaw < (0))
113 vel.linear.y = vel.linear.y;
114 else
115 vel.linear.y = −vel.linear.y;
116 }
117 else if (((msg−>data[0] − pre msg.x)>0)&&((msg−>data[1] −
118 pre msg.y)>0))
119 {
120 if ((yaw < (−3.141/2))&&(yaw > (−3.141/1)))
121 vel.linear.y = vel.linear.y;
122 else
123 vel.linear.y = −vel.linear.y;
124 }
125 else if (((msg−>data[0] − pre msg.x)>0)&&((msg−>data[1] −
126 pre msg.y)<0))
127 {
128 if ((yaw > (3.141/2))&&(yaw < (3.141/1)))
129 vel.linear.y = vel.linear.y;
130 else
131 vel.linear.y = −vel.linear.y;
132 }
133 else if (((msg−>data[0] − pre msg.x)<0)&&((msg−>data[1] −
134 pre msg.y)<0))
135 {
136 if ((yaw > (0))&&(yaw < (3.141/2)))
137 vel.linear.y = vel.linear.y;
138 else
139 vel.linear.y = −vel.linear.y;
140 }
141 else if (((msg−>data[0] − pre msg.x)<0)&&((msg−>data[1] −
142 pre msg.y)>0))
143 {
144 if ((yaw < (0))&&(yaw > (−3.141/2)))
145 vel.linear.y = vel.linear.y;
146 else
147 vel.linear.y = −vel.linear.y;
148 }
149

150

151 filterbuffer v.push front(vel.linear.y);// buffer implementation
152 double sum v = 0.0;
153 for (int i = 0; i < buffer length; i++){
154 sum v = sum v + filterbuffer v[i];
155 }
156 vel.linear.y = sum v/(buffer length); // buffer end
157 filterbuffer v.pop back();
158 pre msg.x = msg−>data[0];
159 pre msg.y = msg−>data[1];
160 pre time = time;
161 if (std::abs(vel.linear.y) < 0.015)
162 vel.linear.y = 0;
163

164
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165 //if ((msg−>data[2]*pre msg.z)>0) // this conditions is
166 // required when the range of theta is from −pi to pi and it's
167 // absolute. Now it's relative to the starting value i.e. it
168 // keeps increasing or decreasing from the starting value.
169 //{
170 time = ros::Time::now().toSec();
171 vel.angular.y = (msg−>data[2] − pre msg.z)/(time − pre time2);
172 filterbuffer w.push front(vel.angular.y);
173 double sum w = 0.0;
174 for (int i = 0; i < buffer length; i++){
175 sum w = sum w + filterbuffer w[i];
176 }
177 vel.angular.y = sum w/(buffer length);
178 filterbuffer w.pop back();
179 pre msg.z = msg−>data[2];
180 pre time2 = time;
181 //}
182 //else {
183 //pre msg.z = msg−>data[2];
184 //}
185

186 if (std::abs(vel.angular.y) < 0.01)
187 vel.angular.y = 0;
188

189

190 exp dataRecord.data = {msg−>data[0], msg−>data[1], msg−>data[2],
191 −vel.linear.y, vel.angular.y, expTime, msg−>data[3],
192 msg−>data[4]};
193 expTime = expTime + ts;
194

195 pub.publish(exp dataRecord);
196

197 }
198

199 void readData::callBack2(const geometry msgs::Twist::ConstPtr& key){
200

201 }
202

203 int main(int argc, char **argv)
204 {
205 ros::init(argc, argv, "ground station innerLoop2");
206

207 //TeleopJoy teleop turtle;
208 readData dude;
209

210 ros::spin();
211

212 return 0;
213 }
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