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ABSTRACT

Climate change is one of the most pressing issues affecting the world today. An
important negative impact of climate change is on the transmission of mosquito-borne
diseases (MBDs), such as West Nile Virus (WNV). Climate is known to influence vec-
tor and host demography as well as MBD transmission. This dissertation addresses
some key questions of how vector and host demography impact MBD dynamics, ex-
emplified herein by WNV, and how expected and likely climate change scenarios will
affect demographic and epidemiological processes of MBD (here, WNV) transmis-
sion. First, a data fusion method is developed that connects non-autonomous logistic
model parameters to mosquito time series data. This method captures the inter-
annual and intra-seasonal variation of mosquito populations within a geographical
location. Next, a three-population WNV model for mosquito vectors, bird hosts, and
human hosts, with infection-age structure for the vector and bird host populations, is
introduced. Sensitivity analysis uncovers which parameter changes have the most in-
fluence on WNV outbreak variability. Finally, the WNV model is extended to include
the non-autonomous population model and temperature-dependent processes. Model
parameterization using historical temperature and human WNV case data from the
Greater Toronto Area (GTA) is performed and the results are then used to analyze
possible future WNV (as an example for many other VBDs) dynamics under two
climate change scenarios. The results from these scenarios suggest that WNV risk for
the GTA will substantially increase as average annual temperature increases due to
climate change, even under the most conservative assumptions. This demonstrates
the importance of ensuring that the warming of the planet is limited as much as

possible.
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Chapter 1

INTRODUCTION

1.1 Overview of Mosquito-Borne Diseases (MBDs)

Mosquitoes are responsible for more human deaths per year than any other animal
[14]. Mosquito-borne diseases are spread to humans and other hosts through the bites
of infectious female mosquitoes. These mosquitoes are referred to as vectors, the
word also used to denote the mode of disease transmission. Mosquito-borne diseases
(MBDs) such as malaria, dengue fever, and West Nile Virus are responsible for 350-
650 million human cases and over 630,000 deaths worldwide each year [93, 92]. Three
viruses responsible for MBDs — West Nile Virus (WNV), chikungunya, and Zika — were
introduced to the Americas over the past 24 years and have since become endemic
to these regions [15, 91, 59]. It is of critical interest to understand the degree to
which various factors affect MBD transmission and to be prepared for the next MBD

outbreak.
1.2 Environmental Factors on Mosquito Biology and MBDs

Mosquitoes go through three main immature stages before reaching their adult
stage. Eggs are laid in water by a female mosquito and become larvae upon hatch-
ing. From there, the larvae develop into pupae, and finally transform into adult
mosquitoes. The egg, larvae, and pupae stages require an aquatic habitat. Devel-
opment rates at each stage are affected by temperature and other environmental
variables [74]. As a result, weather and climate directly impact mosquito biology.

Adult female mosquitoes seek out a blood meal through biting humans, birds, or



other mammals in order to develop eggs — a process known as the gonotrophic cycle.
It is through the biting process where vector-borne disease (VBD) transmission may
occur — a susceptible mosquito may become infected from biting an infectious host,
and an infectious mosquito may pass on infection when biting a susceptible host.
The incubation period is the time it takes for an infection to develop after a host has
been exposed to a disease-causing organism (such as bacteria, viruses, or fungi). The
incubation period ends when the first signs or symptoms of the disease appear. The
incubation rate denotes the rate at which the pathogen develops inside the host or
vector and determines when pathogens are capable of being transmitted. It is the
reciprocal of the incubation period that typically lasts several days [63]. Since the
average lifespan of mosquitoes tends to be on the order of a couple weeks [86], the
age at which a mosquito becomes infected and the length of the incubation period
are critical factors in determining how many hosts an infectious mosquito can infect.
Both vectors and hosts experience an incubation period upon acquiring infection.
This is referred to as the extrinsic incubation period (EIP) for vectors, and intrinsic
incubation period (IIP) for hosts. The incubation period and the survival rate of
mosquitoes are both impacted by temperature in a nonlinear way [63, 16]. This is
one way in which weather and climate impact the transmission of MBD in addition
to the mosquito biology.

Additional biotic and abiotic factors affect the competency and transmission of
the disease at both individual and community levels [39]. Competency is the ability
to acquire infection and the potential to pass infection to others. It is a function
of viremia titer in the blood and duration of viremia presence [84]. Transmission
refers to the act of passing infection to others. Some of these factors include the
feeding preference of mosquitoes [37, 75], disease-induced mortality [39], and the

cross-protection by antibodies from similar infections [84, 60]. The myriad of factors



influencing VBD transmission — many of which are affected by climate itself — create

extensive challenges for mathematical modelers.
1.3 Overview of the West Nile Virus (WNV) Transmission Cycle

West Nile Virus (WNV) was first discovered in West Nile, Uganda in 1937 [76].
It was introduced to the United States in 1999 and has since become endemic to the
continental U.S. [15]. Most human cases of WNV are asymptomatic but 20% of them
result in a short, febrile illness and fully recover within a few weeks [15]. Roughly
1 in 150 infected people develop a severe illness from WNV| such as encephalitis or
meningitis, and around 10% of those who contract serious illness die from central
nervous complications [15]. Individuals with pre-existing medical conditions (e.g.,
diabetes, cancer, etc.) are at increased risk of developing serious illness from WNV.
There are no vaccines or medicines available to treat WNV, but symptoms can be
managed with over-the-counter drugs [15].

West Nile Virus can be transmitted to humans, birds, and other mammals through
the bites of infectious female Culer mosquitoes. However, cross-infection from hu-
mans to mosquitoes typically does not occur because infected humans do not develop
the viremia levels necessary for successful transmission. Since cross-infection only
occurs from mosquitoes to humans, humans are considered “dead-end” hosts. Avian
hosts are the main reservoir for WNV transmission, as cross-infection occurs in both

directions between birds and mosquitoes.
1.3.1 Transmission from Vectors to Birds

The time-since-infection (infection-age) plays a role in a mosquito’s probability of
passing infection to a host due to the mosquito’s short lifespan and amount of virus

present in its saliva. Though mosquitoes live roughly two weeks on average [86], an



infected mosquito must live long enough to survive the extrinsic incubation period
— the time it takes for the pathogen to develop in the mosquito — before infecting
others. The extrinsic incubation period (EIP) typically lasts several days. It was
originally thought that older female mosquitoes are the most efficient vectors since
the virus has more time to establish in the salivary glands [40, 65], but others argue
that young infectious mosquitoes are more likely to transmit to more hosts over their
lifetime due to their lower mortality rates [79]. In order for successful transmission to
occur from vector to host, the mosquito must overcome the following barriers during
the EIP [65]: (1) midgut infection barriers, (2) midgut escape barriers, (3) salivary
gland infection barriers, and (4) salivary gland escape barriers. Moreover, successful
transmission requires the host to be competent for the disease, which varies among

individual birds and other species [39].
1.3.2 Transmission from Birds to Vectors

Infected birds also go through an intrinsic incubation period (IIP) before being
able to transmit infection to a susceptible mosquito. It has further been shown
that transmission probability from birds to mosquitoes correlates with the amount of
viremia in the bird’s system [63], and varies nonlinearly as a function of infection-age.
Therefore, both the IIP and viremia levels of avian hosts influence the probability of
WNV transmission from bird to vector.

Over 300 species of birds have acquired WNV, but WNV competence and trans-
mission potential vary among species [15]. Corvids (e.g., crows, jays) tend to have
higher WNV-competence and WNV-induced death rates [39, 60]. Many state and lo-
cal agencies that monitor areas that have experienced WNV outbreaks have tracked
the number of dead birds as a proxy for monitoring WNV [15]. Species richness — the

number of different species in an ecological community — and relative abundance of



each species contribute to the overall WNV transmission experienced within a habi-
tat, and causes what is known as the “dilution effect” [80]. The diversity of host
species coupled with issues of consistent monitoring makes mathematical modeling of

WNV disease dynamics a challenging endeavor.
1.4 Mathematical Modeling Paradigms for MBDs

Mathematical modeling has been used for applications of vector-borne disease
modeling since Ronald Ross explained the malaria transmission cycle in the early
20th century [68]. Ross discovered that malaria is transmitted through the bites of
infectious mosquitoes and conceptualized the idea of the basic reproduction number.
The basic reproduction number, R, estimates the number of secondary cases that
result from the introduction of one infection into a wholly susceptible population.
This novel idea showed that it is not necessary to eradicate all mosquitoes to eliminate
malaria, but rather that a threshold value of Ry < 1 is sufficient for eliminating the
disease. Later, George Macdonald extended Ross’s framework to include analysis of
control methods used to eradicate malaria [47]. The Ross-Macdonald framework is
still used today to model MBDs [82, 10, 8, 88, 44, 64, 67].

Ross’s model used a single differential equation to determine Ry. A framework for
general disease epidemics was expanded into a compartmental model by Kermack &
McKendrick [36]. Their simple model comprises of three coupled differential equations
to represent susceptible (S), infected (I), and recovered (R) populations. Individuals
move from susceptible to infectious status by coming in contact with an infectious in-
dividualThe Kermack-McKendrick model may be combined with the Ross-Macdonald
framework to produce more complex models for MBD transmission.

The original Kermack-McKendrick model is formulated under the assumption of

constant population size and homogeneous mixing. These assumptions can be re-



laxed to accommodate more realistic scenarios. It is often useful to include demo-
graphic parameters (birth, migration, natural death, and/or disease-induced death)
for disease-endemic regions. Heterogeneity of the population can be incorporated by
stratifying the population into classes based on particular attributes, such as sex,
age, or behavior. In many compartmental ordinary differential equations (ODEs)
models for MBDs researchers have explored various aspects of infection transmission
and mitigation, including dependence on weather-related variables and assessment of
control strategies [8, 10, 44, 88]. Laperriere, Brugger & Rubel considered tempera-
ture dependence on immature and adult mosquito demography, biting rate, and EIP
[44], while the impact of precipitation on intraspecific competition and WNV trans-
mission was studied by Wang, et al. [88]. Models that assesses strategies for control
and mitigation often arrive at similar conclusions for optimal control. Both Blayneh,
et al. and Bowman, et al. found that culling mosquito populations provides a more
effective measure to reduce WNV transmission than controlling the bird population
or enforcing use of personal protection measures by humans [8, 10].

Compartmental ODE models for disease transmission are often preferred over
other types of mathematical and statistical models because of their tractability. Ad-
ditionally, it is relatively straightforward to find the basic reproduction number and
conduct stability analysis of the equilibria for autonomous ODE models. However, it
is not always the main goal to study the asymptotic behavior of a model — particularly
when systems are highly transient and complex. Extending the modeling framework
of an ODE system into a partial differential equation (PDE) system may be a good
option because it can provide additional insight about the spatial or age distribution
of the population, and may increase accuracy when comparing simulations to data —
despite being more mathematically demanding.

Recent PDE models for MBDs have been both theoretical and numerical in nature.



A theoretical PDE model by Maidana & Yang examined the spatial-temporal spread
of WNV and showed that traveling wave solutions were mainly impacted by avian ad-
vection [48]. A theoretical PDE model by Richard, et al. included chronological-age
and infection-age dependence for both human and Anopheles mosquito populations
for malaria transmission [64]. Richard, et al. used integrated semigroup theory to
prove the existence of unique solutions, and further analyzed the stability of equilibria.
Proving the existence and uniqueness of solutions is often a more delicate endeavor for
PDE models than for ODE models, but is necessary to establish minimal knowledge
of the long-term behavior of solutions or to design stable numerical methods. Rock,
Wood & Keeling developed a numerical PDE model for general MBD transmission
that included both chronological age and biting structure of mosquitoes [67]. Sim-
ulations using this model showed that total infections were less sensitive to biting
rates than chronological-age structure, suggesting that under the biting rates and
age-structure assumptions therein, human treatment may actually be more effective

at mitigating disease spread than mosquito control.
1.5 Climate Integrated Model for Mosquito-Borne Infectious Diseases (CIMMID)

Climate change is arguably one of the most pressing issues affecting our world to-
day, and one of the threats exacerbated by the changing climate is VBD-transmission
exeplified in this work by WNV [78, 5]. Mosquito populations are directly impacted
by climate in a nonlinear way — it needs to be warm enough for mosquitoes to grow
and develop, but not too hot that they cannot survive [16]. Similarly, precipitation
affects the availability of egg laying sites, but too much rain can flush out the eggs
out of their habitats before they hatch [50, 73, 88, 89]. Temperature is also known to
affect the mosquito biting rate [69] and survival [16], and the incubation period of the

pathogen [63]. Thus, it is important to create a comprehensive model that considers



the numerous factors affecting MBD transmission.

The Climate Integrated Model for Mosquito-borne Infectious Diseases (CIMMID)
is a project lead by Carrie A. Manore, Chonggang Xu, and Jeanne Fair, and funded by
the Laboratory Directed Research & Development (LDRD) at Los Alamos National
Laboratory. The LDRD projects are sponsored by the National Nuclear Security
Administration and promote agile responses to national security challenges, advance
the frontiers of science and technology, and attract and retain the technical workforce
[42].

The goal of CIMMID is to combine mechanistic modeling techniques with hetero-
geneous data fusion methods to assess future MBD risk under different climate change
scenarios across the Americas. This continental-scale model incorporates factors from
climate, human and other host species behavior, and mosquito biology. We want to
not only know the role that climate has on recent surges of MBD incidence in the re-
gion, but also understand how changes in human demographics, climate, and extreme
events will impact future MBD risk. To achieve this, we need an understanding of
human-mosquito interactions as well as information about mosquito abundance and
competence. Furthermore, we must use methods to fuse data across multiple spatial
and temporal scales, calibrate parameters for high-fidelity data regions, and quan-
tify uncertainty in parameter estimations, model structure, and forecasts. Figure 1.1
provides a schematic of the overall CIMMID process. This large-scale, interdisci-
plinary project involves a team of over 40 biologists, mathematicians, statisticians,

and computer scientists.
1.5.1 Intergovernmental Panel on Climate Change (IPCC) Scenarios

The Intergovernmental Panel on Climate Change (IPCC) establishes scenarios

for future climate conditions based on likely socioeconomic and concentration path-



Climatelweather i EyingFit  BriereFit
Mosquito s 5 - /
[ Populations B N i / ;
| ] + . 1 ) )

Land Use/
woss (Sl {8
/(\

Infrastructure

Human Socio- .
Populations economics ;’
’ S, H I, H R, I
Real-time, voluminous, noisy Mathematical, statistical, and Probabilistic forecasts with
data computational models quantified uncertainty

Figure 1.1: Schematic of the CIMMID Process. Multiple Data Streams Related to
Weather, Environmental Habitat, and Human and Mosquito Demographics Must Be
Fused to Inform Mathematical and Statistical Models to Produce Forecasts of Future
Mosquito-Borne Disease Risk.

ways [46]. Shared socioeconomic pathways (SSPs) refer to the policy conditions that
influence economic behaviors that may help or harm the changing climate. Repre-
sentative concentration pathways (RCPs) refer to the CO, emissions that lead to
increased global surface air temperature (GSAT).

The two most commonly studied climate change scenarios are the SSP2-4.5 and
SSP5-8.5 SSP-RCP combinations. The SSP2-4.5 is known as the “middle of the
road” scenario. Under this scenario, socioeconomic factors are expected to follow
historical trends without significant changes. The SSP5-8.5 is referred to as the
“worst case scenario.” This scenario assumes CO, emissions will double by 2050 due
to increased fossil-fuel-driven development. Relative to the conditions from 1850-
1900, the estimated GSAT is expected to rise by 2.7°C under SSP2-4.5 and as much
as 4.4°C under SSP5-8.5 [46]. To put this in perspective, there has been a 1.09°C
increase in GSAT from 1850-1900 to 2011-2022 [46].

In addition to increases of GSAT, global land precipitation is also expected to
increase. Relative to the recent past (1995-2014), global land precipitation is expected
to increase by 1.5-8.3% under SSP2-4.5 and 0.9-12.9% under SSP5-8.5 [46].



Changes in both air temperature and land precipitation will have consequences for
MBD transmission, as both mosquito lifecycle and epidemiology traits are influenced

by these climate factors.
1.5.2 The Relevance of Data Fusion Techniques

Mathematical and statistical models have traditionally been two separate classes
of modeling — mathematical models aim to understand the underlying process that
explain relationships between variables, while statistical models use data to quantify
the significance of detected trends in empirical observations. Both types of modeling
also have their shortcomings. For example, deterministic mathematical models cannot
capture the uncertainty that occurs in nature, and statistical models cannot assess
the impact of unobserved variables. But as capabilities for data storage and collection
grow alongside our knowledge of underlying processes, scientists and researchers can
use the best of both modeling approaches to enhance our understanding of physical
and biological phenomena [71]. An outstanding challenge in integrating these two
types of modeling is data fusion — the process of transforming collected data into a
usable format [5]. Data fusion is needed to reconcile disparate data streams of varying
spatial and temporal resolution.

The concept of determining dynamic equations from data is far from new, with
notable developments ranging from symbolic regression and chaotic data analysis to
adaptive inference [12, 9, 20, 22]. Crutchfield & McNamara developed a method
based on chaotic data analysis to reconstruct the deterministic portion of equations
of motion from data [20]. Symbolic regression was used by Bongard & Lipson to
generate equations for nonlinear coupled dynamical systems from time-series data
[9], and inspired the sparse regression method used by Brunton et al. based on the

assumption that only a few terms are needed to find the governing dynamics of
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a system [12]. Other methods for determining dynamic equations from data use
adaptive techniques to include an appropriate amount of complexity for the given
data resolution [22].

These techniques are extremely useful when the underlying physical laws are rel-
atively unknown. However, these techniques can be computationally expensive and
elusive for researchers with limited computer science or mathematics backgrounds.
Large-scale modeling frameworks like CIMMID are often comprised of multiple small-
scale submodels, and the teams that develop and use the these models tend to be
interdisciplinary in nature. The outputs of the individual submodels must both be in
a usable format for subsequent models, as well as comprehensible to those who need
to use them [52]. Accessibility of data and methods is key to pushing the boundaries
of scientific knowledge — it is essential for the platforms developed by interdisciplinary

teams to be understood by research scientists of diverse backgrounds.
1.6 Scope of the Dissertation

In this dissertation the goal is to help answer two questions related to improved
understanding of the weather, climate, and demographic influences on WNV trans-
mission. The first question is, “What is the impact of vector and host demography
on the dynamics of WNV?” The second question is, “what are some possible impacts
of expected and likely climate change scenarios on demographic and epidemiological
parameters for WNV transmission?”

The second and third chapters of the dissertation are focused on answering the
first question. In the second chapter, a non-autonomous logistic model is intro-
duced to infer the dynamic behavior of vector populations from time-series data. The
time-varying parameters of the logistic model introduced include periodic behavior

of the vector net growth rate and carrying capacity, to describe the seasonality of the
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mosquito population. We develop a data fusion framework that provides a means to
find the optimal model parameters to fit the start and duration of the mosquito season
based on time series data derived from the CIMMID mosquito process-based model.
The results from fitting the parameters highlight the inter-annual and intra-seasonal
variation of mosquito seasons for two different mosquito populations within a single
geographic region. We explore the sensitivity of the peak timing and magnitude to the
various logistic model parameters, and we investigate the connection between model
parameters and weather variables. These non-autonomous parameters are later used
in the fourth chapter to estimate the mosquito vector population of a time-continuous
epidemiological model for WNV.

The third chapter analyzes the effect of infection-age heterogeneity in both vector
and bird host populations on WNV dynamics. We develop a three population partial
differential equations (PDE) model for theoretically understanding how infection-
age-dependent processes impact the basic reproduction number. To our knowledge,
this is the first PDE model for WNV to incorporate infection-age dynamics on both
vector and host populations. The inclusion of infection-age heterogeneity in both
populations was inspired by experimental data showing the nonlinear relationship
between infection-age and WNV transmission from vectors to hosts and from hosts
to vectors. We proved the existence and uniqueness of a continuous solution under
some model assumptions, and investigated the sensitivity of the basic reproduction
number on the infection-age-dependent parameters. This chapter gives insights into
how infection-age-dependent processes of vectors and birds affect WNV outbreaks.

The second question posed will be addressed in the fourth chapter of the disserta-
tion. There, we extend the PDE model introduced in the third chapter to account for
temperature dependence of the vector mortality rate and transmission from vectors

to hosts. The extended model therein is fitted to historical human case data from
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the Greater Toronto Area for 2010-2017. The extended model incorporating said
temperature-dependent processes and the parameters resulting from fittings to real-
life WNV-incidence data are then used to project possible future dynamics under the
RCP4.5 and RCP8.5 climate change scenarios. Both scenarios lead to significantly
increased WNYV risk and variability compared to current incidence data for the re-
gion considered. This highlights the need for very effective vector control strategies

to mitigate future WNV transmission.
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Chapter 2

A DATA FUSION FRAMEWORK FOR MODELING MOSQUITO
POPULATIONS WITH TIME-DEPENDENT LOGISTIC GROWTH
PARAMETERS

2.1 Motivation for Data Fusion Framework

A comprehensive model that incorporates data streams for climate, land cover,
and mosquito and human populations is vital to assess future mosquito-borne disease
(MBD) risk under possible climate change scenarios. In order to achieve the long-term
goal of understanding how MBD transmission will be affected by climate change, it
is first necessary to incorporate the seasonal dynamics of mosquito populations into
the chosen model for MBD disease transmission. Currently, most epidemiological
models for mosquito-borne diseases assume a constant or classical logistic recruit-
ment rate of mosquitoes into a population [82, 10, 8]. However, it can be critical to
understand how mosquito abundance in a region changes both within a season as well
as over longer time spans of several years or decades. Two possible approaches for
connecting seasonal dynamics to epidemiological models include discrete models and
fully-coupled models. For discrete models, the dynamic population must be updated
and redistributed amongst the model classes at each time for which data is avail-
able. This option is challenging because it is not known how the distribution across
model classes changes in time. A fully-coupled model would combine the dynamics
of the mosquito and human epidemiological models into a single, fully parameter-
ized model. However, this option would limit the amount of complexity that can

be incorporated into the model due to the increased number of parameters needed
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for fitting the model, computational limitations, or differing temporal resolution be-
tween data and the model. One way to reconcile the shortcomings of each modeling
approach is to concatenate two submodels, first using a highly-detailed mosquito pop-
ulation model that considers many environmental variables and models each mosquito
life-cycle stage, followed by a simpler, time-dependent model that incorporates the
seasonal behavior of the highly-detailed vector population model into the subsequent
epidemiological model.

The overall comprehensive framework of CIMMID involves the combined effort
of earth systems models, mosquito population models, and human and other hosts
epidemiological models, to produce continental-scale infection risk quantification for
mosquito and human populations. Figure 2.1 shows a high-level overview of the
CIMMID framework. Climate, weather, land cover, and hydrology data are generated
from Earth Systems models. These data streams are then fed as inputs into the
mosquito Process-Based Model (PBM) [74], which generates two daily time-series of
mosquito populations: (1) the Total Population, consisting of all female mosquitoes
in the considered region, and (2) the Active Population, consisting of the average
number of female mosquito captures per trap per day. Mosquito population estimates
from the PBM are then used in the human epidemiological models for assessing MBD
risk. Each of the submodels must be integrated with the others in order for their
outputs to be suitable for the next tool in the workflow. Our data fusion framework
takes the discrete mosquito time series generated by the PBM and fits yearly periodic
per capita baseline growth rate and carrying capacity logistic parameters aimed at
reproducing the seasonal behavior observed in the PBM time series. These parameters
are then used as continuous-time demographic parameters of the vector population
in the human epidemiological models. The human epidemiological models generate

disease risk quantification for human and mosquito populations.

15



Human
disease

1 prevalence
Earth System = Mosquito Linkage Human Epi
Model PBM Model Model
N

Mosquito
disease
prevalence

Figure 2.1: High-Level Overview of the CIMMID Framework.

This chapter is focused on the CIMMID submodels highlighted within the green
box — the connection between the highly detailed mosquito PBM and the human
epidemiological model.

To provide further context that motivates the implementation of our data fusion
framework, we first introduce the data sources for the region of interest of this chapter

— the Greater Toronto Area, and provide additional details about the mosquito PBM.
2.1.1 Data Sources for the Greater Toronto Area

The Greater Toronto Area (GTA) consists of the City of Toronto and the four
surrounding Ontario Public Health Units. Figure 2.2 displays the daily time se-
ries of mosquito trap captures, mean temperature, and precipitation for years 2006-
2019. Mosquito trap data was obtained from Public Health Ontario’s West Nile Virus
(WNV) database [61], and temperature and precipitation data were obtained from
the ERAS reanalysis product [32].

Adult mosquitoes are trapped weekly during the mosquito season, which oc-
curs approximately from May through October. Between 2006-2019, over 115,000
mosquito observations from 2,722 trap sites were recorded. Since nearly 85% of the
traps used were Light Traps that target female mosquitoes actively seeking a blood

meal, we assume that all trapped mosquitoes are female. The majority of identi-
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Figure 2.2: (a) Daily Mosquito Trap Captures, (b) Daily Mean Temperature, and
(¢) Daily Precipitation of the Greater Toronto Area For 2006-2019.

fied mosquitoes were Culez pipiens and Culex restuans, which are known to transmit

WNV [74].
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2.1.2  Mosquito Process-Based Model (PBM)

Our data fusion framework is capable of fitting any discrete time series for mosquitoes.
However, in order to mitigate the impacts of data gaps or outliers from individual
traps, the trap data was first fed as an input for a mosquito process based model
(PBM) developed by Shutt, et al. [74]. Two significant challenges of applying trap

data to mechanistic mosquito population models are:
1. The sparsity of the data
2. Estimating the true underlying mosquito population size

It is common for mosquito traps not to capture any mosquitoes for days or weeks at a
time, making the time series of observations very sparse [74]. Further, since mosquito
trap data only accounts for a fraction of the mosquitoes within an area, it is difficult to
approximate the actual underlying mosquito population size from existing trap data
[70]. To overcome these challenges, the non-autonomous logistic model was fitted to
the daily time series mosquito data streams generated by the CIMMID [74].

The PBM mechanistically models the life stages of mosquito egg, larvae/pupae,
adult gonotrophic cycles, and diapause to estimate mosquito populations. Data
streams for daily temperature, daylight hours, and aquatic habitat availability in-
form the changes in the population size for each life stage. By incorporating mech-
anistic dynamics of the mosquito life cycle and heterogeneous fusion of various data
streams, the CIMMID mosquito PBM provides an improved estimation of the daily
true mosquito population size compared to fitting parameters to the temporally-coarse
data alone.

In addition to calibrating daily time series models to mosquito trap data, the PBM

can also produce synthetic time series counts of mosquito populations for locations
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where trap data is unavailable. The PBM was fitted to the GTA’s Culex trap data for
years 2005-2016, and then used to estimate the mosquito population sizes for years
2017-2019 based on temperature and precipitation gauge data stream records. The

PBM provides two time series outputs for adult female mosquito populations:

1. Total Population: estimates the total number of female mosquitoes in the GTA

each day.

2. Active Population: estimates the average number of mosquito trap captures per

trap per day.

The Active Population is used to address the sparsity issue in the mosquito trap data.
Trapped mosquitoes are typically in the bloodmeal-seeking stage of their gonotrophic
cycle. Therefore, the Active Population can help inform the forecasting and prediction
of MBD risk when connected to epidemiological models. On the other hand, the Total
Population estimates the total number of female mosquitoes in the GTA each day

and, therefore, can be used to inform mosquito mitigation and control measures.

2.1.3 Connecting Mosquito PBM with Human Epidemiological Models

To address the issue of connecting the discrete mosquito PBM time series to
the continuous-time human epidemiological model, we fit a non-autonomous logistic
model with periodic net growth rate and carrying capacity parameters to each of 15
consecutive years of the mosquito PBM time series. We refer to the non-autonomous
logistic model that connects the two CIMMID submodels as the “linkage model” or
the “logistic linkage model”. We first introduce the classic logistic model, followed
by the non-autonomous version with periodic parameters. We then considered ten
variations of the non-autonomous logistic growth model, allowing for different combi-

nations of fixed and periodic parameters to ensure a balance between parsimony and

19



enough flexibility to capture observed patterns throughout the considered time pe-
riod. A model selection procedure based on the Akaike Information Criterion (AIC)
shows that a four-parameter non-autonomous logistic model best captures the dy-
namics of both mosquito time series generated by the PBM, (a) the Total Population
including all adult female stages, and (b) the Active Population — blood-seeking fe-
males assumed to be in number directly proportional to the number of captures per
trap per day. We also quantified the error in each model’s projection with respect to
the PBM data and determined, not only optimal parameters for each year, but also
the best fitting for the start and duration of each mosquito season as these vary from
year-to-year. We also explore the sensitivity of the peak timing and magnitude to the
non-autonomous logistic parameters for each of the two mosquito population types,
and use regression models to model parameter dependence on weather-related vari-
ables based on the strongest correlations between them and fitted parameter values.
This method addresses the ongoing challenges of data and model fusion by serving as
a link between discrete, noisy population data and differential equations for mosquito-
borne epidemiology. The non-autonomous demographic parameters for the mosquito
population of the GTA are used to estimate the seasonally-varying vector popula-
tion for a partial differential equations model of WNV (or other VBDs) in the fourth
chapter of the dissertation. Thus, this data fusion framework helps to answer the first
question of the dissertation about the influence of seasonal demographic parameters

on WNV transmission.
2.2 The Logistic Model

A population of size P = P(t) with classical logistic growth dynamics is described

by the following mathematical model:

) 2
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The classical logistic growth model was first conceptualized by Francgois Verhulst
and has two parameters — the per capita baseline growth rate, r, and the carrying
capacity, K [85]. Here we assume that r is the net per capita baseline growth rate,
that is, the difference between the per capita recruitment and baseline mortality
rates of the population. The carrying capacity is the largest population size that can
be sustained by the environment. Under logistic growth, if a population is smaller
than the carrying capacity, its per capita rate of change decreases linearly as its size
approaches the carrying capacity; if a population is larger than the carrying capacity,
its per capita rate of change — that is negative in this case — increases linearly as its
size approaches the carrying capacity.

Density-dependent biological phenomena such as tumor growth, fishery manage-
ment, and mosquito populations, can all be modeled quite accurately assuming logistic
growth dynamics [41, 56, 69]. The classical logistic model and most of its applica-
tions assume the biological parameters remain constant with respect to time. This
simplifying assumption not only allows for simple tractability and analysis — as the
solution of the governing ODE is then explicit — but also serves as an approximation
when detailed population data is unavailable. However, the assumption of constant
parameters may fail to capture realistic behavior observed in nature, such as seasonal
variations that are much better approximated by periodic functions than by con-
stants. For the case of mosquitoes, whose populations are inherently time-dependent,
their growth rate is known to be influenced by environmental temperature [74], and
their carrying capacity depends on the availability of egg-laying sites and competition
between larvae [50, 73, 88, 89].

These logistic growth models can then be used to assess population control strate-
gies, or incorporated into a larger, mechanistic vector-borne disease modeling frame-

work to study transmission dynamics [50, 90, 82]. Thus, incorporating time-dependent
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parameters helps to address the uncertainty associated with population and epidemi-

ological models.
2.3 The Non-Autonomous Logistic Model

The non-autonomous logistic model consists of a single ordinary differential equa-

tion to represent the rate of change in the size of a population P = P(t):

ap(t) P(t)
S =rwpm(1- m) (22.1)

where r(¢) is the time-dependent per capita baseline net growth rate and K (t) is the
time-dependent carrying capacity.

Previous studies of the non-autonomous logistic model incorporate time-dependent
parameters and have contributed several theoretical and numerical results. Vance &
Coddington showed sufficient conditions for existence and uniqueness of solutions to
the non-autonomous logistic model for a population that persists [83]. Coleman estab-
lished the canonical solution to a non-autonomous logistic model where the carrying
capacity either varies slowly in time or remains near a constant value [18]. Oth-
ers have simulated scenarios modeled by the deterministic non-autonomous logistic
model with periodic parameters [28] and time delay [58]. Also, stable periodic solu-
tions have been shown to exist for a stochastic non-autonomous logistic model [35].
Banks [4] provides several applications of non-autonomous logistic models ranging
from agricultural populations to railroad mileage.

While the aforementioned results provide a useful basis for understanding the un-
derlying dynamics of various non-autonomous logistic models, current applications
tend to lack validation from real-life data and also assume that the infimum of the
time-dependent per capita baseline net growth rate is positive. In our application,

P(t) is the population size of adult female mosquitoes and r(t) is the difference be-
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tween the per capita rates of adult emergence and natural adult mortality. Therefore,
it is possible for the per capita baseline net growth rate to be negative. Examples
of a negative growth rate can occur during extreme weather events that kill a high
proportion of juvenile or adult mosquitoes, or may simply be a consequence of typi-
cal environmental patterns that cause some species of mosquitoes to enter diapause
during the winter season [38]. Here we use periodic functions to represent the yearly

seasonal fluctuations of r(t) and K(¢):

Mﬂzm—mm(%g, (2.2.9)

K@:m—&m%@%. (2.2.3)

Coefficients with the b subscript denote the baseline (mean) values, and the coefficients
with s subscripts represent the amplitude scaling factor of the cosine wave. We
choose to use a general time dependence on the parameters instead of including
parameter dependence on weather variables (e.g., temperature and precipitation) for
two reasons. First, although precipitation and water availability directly relates to
the carrying capacity, daily precipitation for the GTA is quite randomly distributed
and there is no discernible pattern for the time interval of interest (see Panel (c)
of Figure 2.2). Second, the highly-detailed nonlinear interactions between mosquito
populations and weather variables are already incorporated in the mosquito PBM,
and the purpose of the non-autonomous logistic model is to provide a simple way to
link the mosquito PBM output to seasonal demographic parameters for the human
epidemiological model. Keeping general time dependence on the parameters makes
the non-autonomous logistic model easier to use for mosquito populations from other
geographic locations and species whose population fluctuations may have a vastly

different response to environmental variables.
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2.4  Model Selection Procedure

Model selection involves finding a balance between having a model detailed enough
to capture important behavior of interest, but not too detailed that it overfits the
given dataset. In order to find the most suitable non-autonomous logistic model with
periodic 7 and K that works well across all years of data, we conducted a model
selection procedure based on the Akaike Information Criterion (AIC) [51]. The AIC
is based on information theory and discourages overfitting by penalizing models with
more parameters. Models with a smaller AIC score can reflect better goodness-of-fit
than models with larger AIC score.

Ten candidate non-autonomous logistic models with periodic coefficients were in-
cluded in the model selection procedure. For each candidate model a subset of the
parameters of model (2.2) is fitted to PBM mosquito data while keeping the remainder
of the parameters fixed. For the first four models (A-D), a constant carrying capacity
is assumed (i.e., K = K and K, = 0) and, for the remaining six models (E-K) — a
time-dependent carrying capacity. We show in Table 2.1 which parameters are fitted
for each candidate model. For candidate models in which we do not fit K or K}, (i.e.,
candidate models A, B, E, F, H, and J), the carrying capacity is predetermined as the
maximum value of the mosquito PBM time-series of each year. Additional aspects of

each candidate model are noted below:

e Model A: we use a per capita baseline net growth rate r, = 0.01 and fit the

scaling factor r;. We use the predetermined carrying capacity for K.

e Model B: we fit both coefficients of the per capita net growth rate (baseline r,

and scaling factor 74), and use the predetermined carrying capacity for K.

e Model C: we use a net growth rate with a baseline value of r, = 0.01 and fit
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the scaling factor r, as well as the carrying capacity K.

Model D: we fit both coefficients of the per capita net growth rate, along with

the carrying capacity K.

Model E: we use a per capita net growth rate with a baseline value of r, = 0.01
and fit the scaling factor r;. We also use a carrying capacity with the baseline
value K equal to the predetermined carrying capacity and the scaling factors

K, =100 for the Total Population and Ky = 1 for the Active Population.

Model F: we fit both the baseline and scaling coefficients of the per capita net
growth rate, and use a carrying capacity with baseline coefficient K} equal to
the predetermined carrying capacity and scaling factor Ky = 100 for the Total

Population and K, = 1 for the Active Population.

Model G: we use a per capita net growth rate with a baseline value of r, = 0.01
and a scaling factor of r; = —0.07, and fit both coefficients of the carrying

capacity (baseline Kj, and scaling factor Ky).

Model H: we use a per capita net growth rate with baseline valua r, = 0.01 and
fit the scaling factor r,. We also use a carrying capacity with baseline coefficient

K, equal to the predetermined carrying capacity and fit the scaling factor Kj.

Model J: we fit both coefficients of the per capita net growth rate, use a carrying
capacity with baseline Kj equal to the predetermined carrying capacity and fit

the scaling factor K.

Model K: we fit both coefficients of the per capita net growth rate and both

coefficients of the carrying capacity.
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Table B.1 provides additional details about the chosen initial values and search
space of parameter fitting for cach candidate model. Initial values and bounds con-
straints are based on estimated ranges for the per capita net growth rate [50, 90, 6]
and reasonable assumptions for the carrying capacity [1]. We note that this is not an
exhaustive list of all possible candidate models of hierarchical nature, but select the
ten models that would likely be the most representative of ecological processes.

Parameter fitting was carried out in Python using the least_squares function
from the SciPy Optimize library [72]. This function minimizes the sum of squared
deviations between the PBM output and corresponding model simulation. We use a
Trust Region Reflective algorithm for minimization, which allows us to incorporate
bounds on the parameter search space as described in Table B.1. Further details
about the selected search space constraints are included in Section 2.5. Simulations
using the candidate models use a fourth-order Runge-Kutta method to sove the model
ODEs.

The parameters for each candidate model were fitted for three different time in-
tervals for each mosquito population (Total and Active). We refer to these tests as
“Fitting Seasons,” and they roughly represent the duration and timing of mosquito
presence in the GTA. The three Fitting Seasons for the Total Population occur from
(i) May 1-October 1, (ii) May 15-October 15, and (iii) June 1-November 1, each year.
Each of them lasts 154 days, or 22 weeks. The Total Population time series poses
additional challenges for fitting the non-autonomous logistic model from November
to May since this is the period during which most or all adult female mosquitoes are
in diapause. However, it is believed that the majority of the mosquitoes remain in
diapause during this time frame and, therefore, are less relevant to model for vec-
tor control purposes. On the other hand, the Active Population can be modeled

throughout the year (365 days) without issue. The three Fitting Seasons for the
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Table 2.1: Candidate Models for the Model Selection Procedure. For Each Candi-
date Model We Fit a Subset of the Parameters of the Non-Autonomous Logistic Model
(2.2). For Models A-D We Consider a Constant Carrying Capacity (i.e., K, = K and
K, = 0), While For Models E-K We Consider a Time-Dependent Carrying Capacity.

Model | Parameters Fitted | Parameters Not Fitted
A Ty rp. K
B Th, T's K
C rs, K Tp
D Ty, sy I —

E T's o, Ko, K
F Tpy Ts Ky, K,
G Ky, K, Ty Ts
H T, K Ty K
J o, s, K K

K Ty, Tsy, Kp, K —

Active Population begin (i) May 1, (ii) May 15, and (iii) June 1, each year.
For each population, the AIC for candidate model j = A, B, ... | K, was calculated

from the sum of squared errors (SSE) over all M = 15 years of time series data [51]:

SSE,
n

AICj:n[1n< )} Lok 1), (2.3)

where,

M
SSE; =) " SSE/,
i=1

is the sum of the SSEs for years ¢ = 1,2, ...M for candidate model j, n is the number
of data points (154 fitting days x M years for Total Population, 365 fitting days x M
years for Active Population), and k is the number of parameters fitted.

The four-parameter model (Model K) has the lowest AIC for each of the three

Fitting Seasons for both Total and Active Populations and, consequently, was selected
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as the non-autonomous logistic model to fit the GTA mosquito populations. For the
remainder of this chapter, “the model” or “the linkage model” refers to the four-
parameter, non-autonomous, logistic model (2.2). Further details and discussion of

the AIC results are found in Section 2.8.
2.5 Parameter Optimization

The four-parameter model (Model K) was selected as it produced the lowest AIC
score for each of the three Fitting Seasons for both Total and Active Populations. We
then estimated the seasonal (yearly) net growth rate and carrying capacity parameter
functions for the Total and Active Populations of the GTA from 2005-2019 using
Model K. As explained in the previous section, a Trust Region Reflective algorithm
from the SciPy Optimize library [72] was used to find the optimal seasonal parameters
for the time-dependent per capita net growth rate and carrying capacity. Specifically,
the coefficients ry, 5, Kp, and Ky of (2.2.2)-(2.2.3) were found for each of the 15
seasons for each mosquito population type (Total and Active). The Trust Region
Reflective algorithm allows us to incorporate bounds constraints for parameters based
on estimated ranges for the per capita net growth rate [50, 90, 6] and reasonable
assumptions for the carrying capacity [1]. This algorithm is a least squares method
that minimizes the mean squared error between the PBM time series and the mosquito
population P(t). Other methods to infer parameters from data include gradient
descent [45], Bayesian inference [2, 81], and ensamble-adjusted Kalman filter [23].
Each of these methods are suitable for fitting a small number of model parameters,
but we used the Trust Region algorithm so as to also incorporate biologically suitable
parameter bounds [72]. This framework is related to the concept of determining
dynamics by providing a useful way to connect discrete time series data to numerous

time-dependent parameters in a continuous-time modeling approach [12, 22, 9, 20].
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2.5.1 Total Mosquito Population

The Total Mosquito Population includes all adult female mosquitoes in the GTA
— i.e., the Total Population captures the number of adult female mosquitoes through
all stages of the gonotrophic cycle — bloodmeal seeking, digestion and egg maturation,
and oviposition — as well as those in diapause. The optimal start and duration of the
mosquito fitting season for the Total Population changes from year-to-year and re-
flects the inter-annual variation of mosquito populations. The majority of mosquitoes
remain dormant in diapause during the cold winter and emerge once temperatures
become suitable for growth and survival [74]. Mosquitoes in diapause remain non-
biting, and thus do not pose a risk for contributing to infection propagation [38]. We
explored May 1-June 1 as “candidate start days” to begin fitting the Total Population
each year. The range of “candidate start days” refers to the time when mosquitoes
begin to emerge from their overwintering state in the GTA. Similarly, “candidate end
days” refer to the range of dates when most mosquitoes are likely to be in diapause.
We selected October 1-November 1 as the date range for the “candidate end days.”
The range of candidate start and end days provides an exhaustive grid-search across
the likely emergence and disappearance of mosquitoes for each season.

For each year, the initial condition, P(0), was selected as the value of the mosquito
PBM time series on the candidate start day. The initialized value of K}, was selected
as the maximum of the mosquito PBM time series between the candidate start day
and candidate end day. The bounds constraints for the parameters were selected as
—02<7,<0.2, -0.35<7r:;<0,1< K, <100,000, and 0 < K, < 100,000. Bounds
constraints for the per capita growth rate parameters were estimated from literature
values [50, 90] and were included to help ensure that we obtain biologically relevant

values. Although less is known about the bounds constraints for the carrying capacity
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parameters, we assumed the carrying capacity to be no more than one order of mag-
nitude larger than the largest value in the mosquito PBM time series. Parameters
ry and rg were initialized as r, = 0 and ry = —0.07 to provide a biologically relevant
starting place for optimization. Parameter K, was arbitrarily initialized as 0.1% of
the maximum baseline carrying capacity (i.e., K = 100) to reflect a small variation
in carrying capacity. The selected parameter initialization and constraints direct the
optimization algorithm to an appropriate solution — one that is both biologically valid
and numerically stable.

Each of the 14,415 fits (31 candidate start-days x 31 candidate end-days x 15
years) returns the fitted parameters along with the root mean squared error (RMSE).
The combination of the candidate start-day and candidate end-day with the lowest
RMSE for each year is selected as that year’s mosquito fitting season. The resulting
ry, Ts, Kp, and K, values obtained from the mosquito fitting season determine the
time-dependent per capita net growth rate and carrying capacity parameters for that

year.
2.5.2  Active Mosquito Population

The Active Mosquito Population represents the number of adult female mosquitoes
in the GTA currently seeking a blood meal in their gonotrophic cycle, so that they are
the most likely to be trapped. In other words, this is the population of mosquitoes
that are actively biting humans and other animals, and it provides a reasonable
source for understanding the magnitude of mosquito-borne disease risk on a given
day. The fitting season of the Active Population lasts 365 days since they go down
to zero during the winter, which the linkage model can easily capture (as opposed to
the Total Population time series that includes diapausing mosquito dynamics during

winter, which we avoided fitting). The range of “candidate start-days” was chosen
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from May 1-June 1 each year and fitted until the same calendar day the following
year. That is, new values for ry, 15, K;, and Ky are fitted every 365 days.

To ensure that the mosquito population remains non-negative, the initial condi-
tion, P(0), was selected as maximum between 0.01 and the mosquito PBM value on
the candidate start-day. The initial value of K, was chosen as the maximum value of
the mosquito PBM time series during the fitting season. The carrying capacity for the
Active Population is much lower than that of the Total Population because it is scaled
to the number of adult female mosquitoes captured per trap per day, rather than to
the entire population. Therefore, we reasonably assumed the bounds constraints for
Ky and K, tobe 1 < K, < 1,000 and 0 < K, < 1,000, respectively. Initialization
and bounds constraints for 7, and r, are as before, and K, was initialized as 0.1% of
the maximum K} value (i.e., Ky =1).

The root mean squared error (RMSE) was found for each of the 465 fits (31
candidate start days x 15 years), and the candidate start-day with the lowest RMSE
value for each year was selected as that season’s start day. For each year, simulations
last from the current season’s start day until the following season’s start day. That is,
the 365-day period used to fit the linkage model is extended/truncated to align with
the next season’s start day. The last season of the time series is simulated for the full
365 day period from that season’s start day. This produces a piecewise-continuous
function to approximate the Active Population size across the 15 years of time series

data.
2.6 Sensitivity Analysis

A sensitivity analysis was conducted to better understand the influence of non-
autonomous logistic model parameters on two quantities of interest. The quantities of

interest we explored were the peak magnitude and peak timing. The peak magnitude
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is defined as the greatest daily mosquito population within a season (max P(t)), and
the peak timing is the time t at which the peak magnitude occurs. Sobol sensitivity
indices [77] of each parameter were computed for the peak magnitude and timing
of the Total and Active Populations. Sobol sensitivity analysis is a variance-based
sensitivity measure that computes the percentage of variance that can be attributed
to each input parameter and their interactions [77, 94].

For each population type (Total and Active), we generated 1,024 (or 2'°) samples
of parameter combinations for the Sobol sensitivty analysis using the sobol.sample
function of the SALib sample package [34, 31]. To avoid selecting samples that would
be biologically invalid, we first re-scaled the carrying capacity equation (2.2.3) to

ensure that the linkage model would always produce a non-negative carrying capacity:

K(t) - K, (1 K, cos (%)) | (2.4)

where 0 < K, < 1. Sensitivity indices were computed for five model parameters: the
per capita baseline and scaling net growth rate parameters (r, and r,), the baseline
and re-scaled carrying capacity parameters (K, and K,), and the initial condition
P(0). Parameter ranges for 1y, 15, Kp, and P(0) were selected from the ranges ob-
tained from the parameter fitting of each population type (see Sections 2.9 and 2.10,
along with Tables B.2 and B.3). We decided to use these ranges for the parameter
sampling bounds instead of the original ranges selected for the parameter fitting (see
Sections 2.5.1 and 2.5.2) because some combinations of parameters could produce
numerically unstable output. In particular, numerical simulations tended to be un-
stable when large carrying capacity fluctuations were selected with large per capita
net growth rate values. Because of this, we limited the range of K, values to be
between 0 and 0.9.

Simulations of the non-autonomous logistic model were run for 184 days for the
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Total Population and 300 days for the Active Population for each parameter sample.
The time frame for the Total Population aligns with the time frame used for fitting
parameters (May 1 — Nov 1), and the time frame for the Active Population was
selected to ensure that only one peak would be generated during the period of simu-
lation. The peak magnitude and timing was computed from each simulation for both
populations, and the first and total order Sobol sensitivity indices were found using
the sobol.analyze function of the SALib sample package [34, 31]. First-order in-
dices measure the contribution to output variance by a single model input parameter
alone, while the total-order indices measure the contribution to the output variance
caused by the model input parameter and all higher-order interactions with other

model input parameterss [77, 31].
2.7 Parameter Prediction From Weather Variables

It is well known that climate and weather affect mosquito populations [16, 25, 54].
In order to decide if weather variables can be used to predict parameters of the logistic
linkage model from a simple linear relationship, we calculated Pearson correlations
between the four fitted coefficients in the parameter functions of the Total and Active
Populations (7, rs, K, Ks) and five yearly weather variables: (1) mean temperature
— the average daily temperature across the calendar year, (2) maximum temperature
— the highest daily temperature observed in the calendar year, (3) minimum temper-
ature — the lowest daily temperature observed in the calendar year, (4) temperature
range — the difference between the maximum and minimum daily temperatures of
the calendar year, and (5) total precipitation — the cumulative precipitation across
the calendar year. Temperature and precipitation data was collected from the ERAb5
data product [32].

For each mosquito population type, linear regression was applied to the combina-
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tion of parameter and weather variable producing the strongest correlation. Linear
regression was carried out in Python using Scikit Learn’s LinearRegression func-
tion. Generally, weak correlations were found between the 14 years of parameter val-
ues and weather variables for both mosquito populations, with a few cases of strong
correlations. The strongest correlation for the Total Population was between K, and
total precipitation (correlation of 0.714) and the strongest correlation for the Active
population was between 7, and the temperature range (correlation of 0.774). Simu-
lations were performed using predicted values of K, (for the Total Population) and
7y (for the Active Population) from the linear regression models and compared to the
original simulations with mosquito-PBM-time-series-fitted parameters. For the Total
Population’s simulations using predicted values of K3, the values of 7y, 7, initial con-
dition, and start and end days remained at their original fitted values for each year.
To avoid the possibility of a negative carrying capacity, values of K, were selected
as the minimum between the original fitted K, value and 1 less than the regression-
predicted Kj. For the Active Population simulations, we used regression-predicted
values of r,, and all other parameters and initial conditions remained at their origi-
nal mosquito-PBM-time-series-fitted values. Prediction performance was determined
from visual parsimony and was divided into three categories: good, acceptable, and

poor.
2.8 Results of Model Selection

Akaike Information Criterion (AIC) values from the three tests for the Total and
Active Populations in the GTA are shown in Tables 2.2 and 2.3, respectively. For
both populations, the four-parameter Model K has the lowest AIC value out of the
ten candidate models for each test. The three-parameter model with constant car-

rying capacity, Model D, also performs relatively well for both populations. Model
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Table 2.2: Akaike Information Criterion (AIC) Values For the Ten Candidate Models
of Greater Toronto Area’s Total Mosquito Population. The Fitting Season Refers to
the Start and End Dates of Model Fitting for Each Year of Time Series Data. Each
Fitting Season Lasts 154 Days, or 22 Weeks. The Four-Parameter Non-Autonomous
Logistic Model (Model K) Produces the Lowest AIC Values for Each Fitting Season.

Fitting Season | Model A | Model B | Model C | Model D | Model E

May 1-Oct 1 18472 18247 18409 17929 18471
May 15-Oct 15 18735 17923 18580 17716 18730
Jun 1-Nov 1 19428 18125 18966 17909 19426

Fitting Season | Model F | Model G | Model H | Model J | Model K

May 1-Oct 1 18247 17953 18178 18014 17485
May 15-Oct 15 17924 18572 18164 17876 17644
Jun 1-Nov 1 18124 19141 18798 18048 17853

G, the two-parameter model with time-dependent carrying capacity, performs fairly
well for the Total Population when the fitting season occurs from May 1-October 1,
but has poor performance when fitting from June 1-November 1. Since the fitting
season varies from year-to-year, Model K was selected to ensure better fitting quality
throughout the range of potential fitting seasons. The remainder of this chapter uses
“the model” or “the linkage model” to refer to the four-parameter non-autonomous

model (2.2) (Model K).
2.9 Parameter Fitting Results for Total Population

Parameter fitting results for the GTA’s Total Population are shown in Figure 2.3.
Panel (a) of Figure 2.3 shows the seasonal fittings of the linkage model (2.2) along
with the mosquito PBM output. Panel (b) of Figure 2.3 shows the relative root
mean squared error (RRMSE) value for each year’s optimal fitting. Although the

mean squared error metric was used as the cost function for parameter optimization,
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Table 2.3: Akaike Information Criterion (AIC) Values From the Ten Candidate
Models of Greater Toronto Area’s Active Mosquito Population. “Start” Refers to the
Initial Date of Model Fitting for Each Year of the Time Series Data. Model Fitting
Lasts 365 Days, or One Full Year. The Four-Parameter Non-Autonomous Logistic
Model (Model K) Produces the Lowest AIC Values for Each Fitting Season.

Start | Model A | Model B | Model C | Model D | Model E

May 1 12223 9137 11125 8400 11821
May 15 13337 8819 12545 8060 12991
Jun 1 14836 8707 13269 7883 14292

Start | Model F | Model G | Model H | Model J | Model K

May 1 9134 13501 8661 8197 7107
May 15 8826 12912 9930 8263 7384
Jun 1 8725 13363 12381 8658 7671

RRMSE values are presented in Panel (b) of Figure 2.3 to provide comparison of
the fitting performance across years. The parameters were fitted separately for each
year due to the deterministic nature of the linkage model and yearly variation in
the data. Nipa, Yang, & Allen used a stochastic differential equation model with
seasonality incorporated for the mosquito population in a dengue transmission model
[57]. As an alternative, we could select similar seasonal constants through averaging
many realizations of this stochastic model, but that method would be much more
computationally intensive.

For the Total Population, it can be observed that the PBM time series exhibits a
“tail” towards the end of each mosquito season. This occurs during the period from
November through April, where the majority of Culez mosquitoes in the GTA remain
dormant in a diapause state. During diapause, female mosquitoes are neither biting
nor secking a bloodmeal, and are therefore not a hazard for spreading infection [38].

The non-autonomous logistic model is fitted to the PBM time series data during the
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period when mosquitoes have emerged from diapause, which occurs roughly between
May and October in the GTA.

Figure B-1 provides a closer look at each year’s best fitting. Overall, the time-
dependent parameters of the non-autonomous logistic model lead to a good resolution
of the intra-seasonal and inter-annual variability of the Total Mosquito Population.
However, the linkage model fitting struggles to capture the peak magnitude for some
seasons — particularly for years 2007 and 2014, both of which had multiple peaks
during the mosquito season. Year 2013 had the lowest fitting performance and and
it happens to be the year with the greatest peak value and a distinctly bi-modal
mosquito season. The substantial increase of peak magnitude for 2013 is likely at-
tributable to unusually high flooding in the GTA for that year [24]. The linkage model
(2.2) was not fitted to the Total Population time series from late fall through early
spring, as it was assumed that the majority of adult female mosquitoes during that
period were in diapause. The mosquito fitting season and fitted parameter values
for each year are found in Table B.2 in the Appendix. We note that the minimum
carrying capacity value throughout the season is always nonnegative. Interestingly,
nearly half of the years show a constant carrying capacity throughout the mosquito
fitting season (for 7 of 15 years, K, = 0), while other years show larger variability
in the carrying capacity where K, ranges from 31-99% of the baseline value. This
explains why the three-parameter model with constant carrying capacity was the
second-best performing model after the four-parameter model with time-dependent
carrying capacity.

The difference in optimal candidate start- and end-date combinations between
years 2011 and 2014 highlight the intra-seasonal variation in mosquito populations
within a geographical location, as is apparent in the heatmaps of Figure 2.4. The

heatmaps present the normalized RMSE to best compare the fitting performance
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Figure 2.3: Fitting Results for the Greater Toronto Area’s Total Mosquito Pop-
ulation for Years 2005-2019. (a) Simulation of Model Fittings (Blue Curves) and
Mosquito Process-Based Model Output (Red Dots). (b) Relative Root Mean Squared
Error for Each Years’ Optimal Fit.

across start and end date combinations within a single year. For 2011, fitting is
optimal when the Mosquito Fitting Season begins the first week of May and ends
the first week of October. In 2014, a Mosquito Fitting Season from late May to mid
October provides the best fitting. Heatmaps of normalized RMSE values for GTA’s

Total Population for years 2005-2019 are shown in Figure B-2.
2.10 Parameter Fitting Results for Active Population

Parameter fitting results for the GTA’s Active Population are shown in Figure
2.5. Panel (a) shows the seasonal fittings of the linkage model (2.2) along with the
mosquito PBM output. Panel (b) shows the RRMSE values for each year’s optimal

fitting. A more detailed look at each year’s best fittings is provided in Figure B-3. The
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Figure 2.4: Heatmaps of the Normalized Root Mean Squared Error (RMSE) Values
from Total Population Fittings with Respect to Candidate Start and End Dates for
Years (a) 2011 and (b) 2014. Dark Purple Regions Denote the Candidate Start- and
End-Date Combinations with the Lowest RRMSE Values.

linkage model can accurately capture the peak magnitude for most mosquito seasons
but may struggle to capture peaks with greater magnitudes or stronger nonlinearities
reflected in steeper derivatives in the differential equation, and possibly causing insta-
bility in the numerical solver. Additionally, a clear discontinuity is observed between
the end of the 2011 season and the beginning of the 2012 season, showing that the
linkage model may not always provide a smooth, continuous fitting from year-to-year.
Nonetheless, the linkage model simulation generally avoids the noise in the time series
signal present at the beginning of each season.

Table B.3 in the Appendix provides the fitted parameters for each season. Simi-
larly to what we observed for the Total Population, the minimum carrying capacity
for each season is also nonnegative, and 6 of 15 years show a constant carrying capac-
ity. Interestingly, five of the six years with constant carrying capacity were the same
for both the Total and Active Populations.

Intra-seasonal variation of the linkage model fitting performance by start date is

shown in Figure 2.6 for the 2013 and 2019 seasons. Panels (a) and (c¢) show the
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Figure 2.5: Fitting Results for the Greater Toronto Area’s Active Mosquito Pop-
ulation for Years 2005-2019. (a) Simulations of Model Fittings (Blue Curves) and
Mosquito Process-Based Model Output (Red Dots). (b) Relative Root Mean Squared
Error for Each Year’s Optimal Fit.

fitting for each start date of the respective seasons, and Panels (b) and (d) show the
normalized RMSE for each start date. Similarly to what was observed for the Total
Population, the season start date of the Active Population varies year-to-year. The
start date of the fitting season directly relates to the peak magnitude achieved in
the simulation. May 20th is the optimal start date for the 2013 season (Panel (b)),
and May 1st is the optimal start date for the 2019 season (Panel (d)). Intra-seasonal
variation for the Active Mosquito Population for all years 2005—2019 is included in

Figures B-4 and B-5.
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Figure 2.6: Simulations (Curves) of the Active Mosquito Population By Start Date,
Mosquito Process-Based Model Output (Red Dots) for Years (a) 2013 and (c) 2019.
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Figure 2.7: Sensitivity of Peak Magnitude to Parameters for the Total (Blue
Bars) and Active (Orange Bars) Mosquito Populations in the Greater Toronto Area.
Interaction-Order Sensitivities Were Found by Taking the Difference Between the
Total-Order and First-Order Effects.

2.11 Results of Sensitivity Analysis

Sensitivity results to model parameters are displayed for the peak magnitude (Fig-
ure 2.7) and peak timing (Figure 2.8) of the Total and Active Mosquito Populations
in the GTA. The first-order effects measure the single model-parameter’s contribution
to the output variance, and the interaction-order effects measure the higher-order in-
teractions between model parameter input combinations [77] responsible for output
variance. The interaction-order effects were found by taking the difference between
the total-order and first-order effects.

The peak magnitude for both mosquito populations is most sensitive to the base-
line carrying capacity (K3) (Figure 2.7), followed by the variation in per capita net
growth rate (r,) — between 40-50% of the output variance is explained by K} alone, and
18-25% of the variance is explained by r, alone. We notice that the peak magnitude
of the Active Population has greater first- and interaction-order sensitivity to the per

capita baseline net growth rate (r,) than the Total Population. The interaction-order
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Figure 2.8: Sensitivity of Peak Timing to Parameters for the Total (Blue Bars) and
Active (Orange Bars) Mosquito Populations in the Greater Toronto Area. Interaction-
Order Sensitivities Were Found by Taking the Difference Between the Total-Order
and First-Order Effects.

sensitivities of the peak magnitudes for both populations are similar with respect to
other parameters.

For peak timing (Figure 2.8), both populations show the greatest sensitivity to the
per capita net growth rate parameters (r, and 7). However, the Active Population
has substantially greater first-order effects for r, and less sensitivity to r; compared
to the Total Population. Nearly 88% of the output variance can be attributed to
ry alone for the Active Population, compared to only 53% for the Total Population.
On the other hand, roughly 70% of output variance is attributed to r, for the Total
Population, whereas only 25% for the Active Population.

Discrepancies in sensitivity indices between the two populations are likely the
result of the slightly different parameter ranges used in the parameter sampling.
These differing parameter ranges were selected based on the differing characteristics
of the population size’s time series. When compared to the Active Population, the
fitted baseline carrying capacities and initial conditions for the Total Population were

up to two and four orders of magnitude greater, respectively (see Tables S2 and S3).
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Further investigation of parameter identifiability and sensitivity may yield additional
explanation about these differences [21, 94]. Nonetheless, both population types
clearly show that the peak magnitude is most sensitive to K} and r,, while the peak
timing is most sensitive to 1, and 7. This suggests that the fluctuations in per
capita net growth rate drive both peak magnitude and timing of the mosquito season.
Furthermore, the baseline carrying capacity is most influential for the peak size, and

the per capita baseline net growth rate is most influential for the timing of the peak.
2.12  Results of Parameter Prediction From Weather Variables

Pearson correlations showed that the strongest linear correlations between pa-
rameter functions’ coefficients and weather variables occurred between the log of K}
and yearly total precipitation for the Total Population (Panel (a) of Figure 2.9) and
between r, and yearly temperature range for the Active Population (Panel (b) of
Figure 2.9). Biologically, this indicates that the baseline carrying capacity of the To-
tal Population increases approximately exponentially as the yearly total precipitation
increases, and that the per capita baseline net growth rate of the Active Population
increases approximately linearly as the yearly temperature change increases.

Linear regression was used to define linear models to predict K, and r, values
for the Total and Active Populations, respectively. The exponential model K, =
2.217e1:0954F0t can be used to predict the Kj, value of the Total Population based on
the yearly total precipitation Pi,. The linear model 7, = 0.01297}45,4 — 0.612 can
be used to predict the 7, value of the Active Population based on yearly temperature
range 1range-

Year-by-year comparisons of fitted parameters and predictive exponential model
simulations for the Total Population are displayed in Figure 2.10. Prediction perfor-

mance was assessed by visual parsimony. Six years were deemed to have “good” pre-
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dictions by the exponential model (2007, 2011-2013, 2017, 2018), two years with “ac-
ceptable” predictions (2010 and 2016), and six years with “poor” predictions (2006,
2008, 2009, 2014, 2015, 2019). Predictions were considered “good” when their corre-
sponding simulations aligned closely to the PBM-time-series-fitted-parameter simula-
tions in both shape and magnitude. Predictions were considered “acceptable” if they
were relatively close to the fitted simulations, but may have slight variation in shape
or magnitude. Predictions were deemed “poor” when they greatly over or underes-
timated the magnitude of the fitted simulation peak. Predictions tended to perform
more poorly when K was overestimated — of the seven years that had a predicted
K, value greater than the fitted value, only two of those years were deemed “good”
fits, while the remaining five years were “poor” fits. On the other hand, of the seven
years that had a predicted K} value less than the fitted value, only one was deemed
a “poor” fit, while the other six years were considered “good” or “acceptable” fits.

Year-by-year comparisons of PBM-time-series-fitted-parameter and predictive lin-
ear model simulations for the Active Population are displayed in Figure 2.11. Nine
years were deemed to have “good” predictions by the linear model (2006-2009, 2011,
2012, 2014, 2016, 2018), two years had “acceptable” predictions (2015 and 2019),
and three years had “poor” predictions (2010, 2013, 2017). Poor predictions occurred
when the predicted r, value was much greater or much smaller than the fitted value.
An interesting observation to make is that both “acceptable” predictions occurred
when the the fitted value of r, < 0, but the linear model predicted r, > 0.

Figure 2.12 labels each data point’s year from the scatter plots and the regression
models from Figure 2.9. The years are labeled by color according to quality of the
linear model simulation: blue years represent “good” predictions, yellow years show
“acceptable” predictions, and red years indicate “bad” predictions. Overall, the linear

model for the Active Population performed better than the exponential one for the
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Figure 2.9: Scatter Plots for Models of (a) the Baseline Carrying Capacity K}, of the
Total Population and the Yearly Total Precipitation (Exponential), and (b) the Per
Capita Baseline Net Growth Rate 7, of the Active Population and Yearly Temperature
Change (Linear). Pearson Correlation and R?* Metrics are Displayed in the Top Left
Corner of Each Panel.

Total Population. However, the number of “bad” predictions from either model is too
high to consider the predictions reliable. The purpose of exploring fitted-parameter
correlations to weather variables and associated regression models was to see if simple
relationships with weather variables could be used to predict the parameter functions’
coefficients of the non-autonomous logistic model. These results emphasize the non-
linear relationships between mosquito population parameters and weather variables,

and how these relationships differ by type of population.
2.13 Discussion

As data availability and storage continue to expand, data-driven mechanistic and
mathematical models provide useful insights into the dynamics of various biological
processes, such as population growth [70, 12]. Mosquito populations have seasonal
fluctuations dependent on nonlinear, exogenous variables related, for example, to

climate, land cover, and human behavior [73, 5, 89], and modeling those fluctuations
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Figure 2.10: Year-by-Year Comparisons of Fitted Parameter (Blue Curves) and
Predictive Exponential Model (Green Curves) Simulations for the Total Population.
Red Dots Show the Mosquito Process-Based Model Time Series to Which the Non-
Autonomous Logistic Model was Fitted.

is an ongoing challenge. The ability to accurately quantify mosquito populations
is important — not only to understand their distribution across various spatial and
temporal scales, but also to inform vector-borne disease control and mitigation efforts,
particularly under the continued threat of climate change [2, 81, 54].

In this chapter, we fitted a non-autonomous logistic model with piecewise periodic
per capita net growth rate and carrying capacity parameter functions, to adult female
Culex mosquitoes in the Greater Toronto Area (GTA) for years 2005-2019. Although
most applications using non-autonomous logistic growth typically have only one of
the parameters vary through time — either the per capita growth rate or the carrying
capacity [4] — there is evidence that seasonal, time-dependent processes affect both

parameters, making it preferable to allow possible time-dependence for both of them
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Figure 2.11: Year-by-Year Comparisons of Fitted Parameter (Blue Curves) and
Predictive Linear Model (Purple Curves) Simulations for the Active Population.
Red Dots show the Mosquito Process-Based Model Time Series to Which the Non-
Autonomous Logistic Model was Fitted.

in our application [73, 88]. This assumption was supported through the model selec-
tion procedure, which showed that fitting a four-parameter non-autonomous logistic
model provided the most consistent fit across the time series data for two types of
mosquito populations, Total and Active.

Common challenges of fitting temporally sparse data of an unknown underlying
distribution were averted by fitting the per capita net growth rate and carrying ca-
pacity parameters to a mosquito process-based model (PBM) output that considers
the biological mechanisms of each life stage of the mosquito population [74]. The
joint implementation of the PBM and the non-autonomous logistic model allows us

to connect discrete time series values to parameters for continuous-time mechanis-

tic models [5]. The submodels are informed by real data, and challenges related to
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Figure 2.12: Scatter Plots for Regression Models of (a) the Baseline Carrying Ca-
pacity K}, of the Total Population and the Yearly Total Precipitation, and (b) the Per
Capita Baseline Net Growth Rate 7, of the Active Population and Yearly Temperature
Change. The Labels of Each Point on the Scatter Plot Indicate the Corresponding
Year of the Fitted Parameter and Weather Variable Combination. The Colors of the
Year Labels Indicate the Quality of the Predictive Simulation Using the Regression
Model (Black Lines): Blue Years Were “Good” Predictions, Yellow Years Were “Ac-
ceptable” Predictions, and Red Years Were “Poor” Predictions.

sample bias are reconciled through the mechanistic framework. Moreover, historical
weather data was used as a proxy for estimating the PBM’s time series output in the
absence of mosquito data (years 2017-2019) [74].

The non-autonomous logistic model captured the inter-annual variability observed
in the PBM time series for two mosquito populations in the GTA — the Total Mosquito
Population, which considers all adult female mosquitoes, and the Active Mosquito
Population, which estimates the average number of captured adult female mosquitoes
per trap per day. The quality and performance of model fitting are sensitive to the
start date of the fitting, with the optimal day to begin the fitting varying from year-
to-year. This highlights the need to incorporate temporal population variation in
subsequent models for mosquitoes. An outstanding question of interest is how to

select the parameter search space — the final parameter values obtained from the op-

timization framework were notably sensitive to the initialization values and bounds
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constraints. Parameter initialization and bounds constraints were selected based on
available knowledge of the per capita net growth rate [50, 90] and reasonable assump-
tions for the carrying capacity [1], which cannot be directly observed in nature. An
interesting result of the linkage model fitting was that it showed nearly half the years
considered best modeled using a constant carrying capacity (Ks = 0) for both pop-
ulations despite the model having the capability of modeling a time-dependent one.
This is consistent with Model D, the three-parameter model with constant carrying
capacity, being the second-best performing candidate model. We observe that con-
stant carrying capacities tend to be returned when the PBM time series has a more
symmetric peak or when the best fitting curve is symmetric. However, the curves
of the PBM time series are greatly non-symmetric for several years of each popula-
tion, and thus the flexibility of having a time-dependent carrying capacity is desirable
to produce a parsimonious output. As such, the interpretation of a time-dependent
carrying capacity may provide more of a phenomenological than a biological insight.
While our model does capture intra-annual variation, it can struggle to accurately
reproduce seasons with multiple, distinct mosquito peaks. This suggests an oppor-
tunity for modifying the linkage model for multi-modal data within a season. This
is particularly worthwhile for capturing the Total Population during the “off season”
(November though April for the GTA) when most mosquitoes are diapausing and not
at risk of spreading disease. Incorporating a semi-discrete framework in the linkage
model structure can allow us to quantify diapausing mosquitoes that can influence
initial infected populations as they emerge from overwintering [38]. Nonetheless, the
parameters fitted in the linkage model align with biologically sensible ranges to pro-
duce parsimonious fits that balance model accuracy with complexity.

Investigating the idenitifiability of model parameters and the sensitivity of the

outputs on them is a critical aspect of understanding data-driven models [94, 21].
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We performed a variance-based sensitivity analysis of the mosquito season’s peak
magnitude and timing to the logistic model parameters using Sobol sensitivity indices
[77]. Our results show that both the peak magnitude and timing are sensitive to the
amplitude variation of the per capita net growth rate (r5). Additionally, the peak
magnitude is notably sensitive to the baseline carrying capacity (K3), and the peak
timing is highly sensitive to the per capita baseline net growth rate (rp). Sensitivity
indices of the quantities of interest with respect to the model parameters can vary
based on the specific characteristics of the mosquito population — we noticed that peak
timing was much more sensitive to r, and less sensitive to r, for the Active Population
compared to the Total Population. Further identifiability studies are required to
explain the causes that drive these differing sensitivities [21]. We suspect that the non-
autonomous logistic model is practically unidentifiable, as numerous combinations of
parameter values can produce equally good fits. The fitted parameters obtained in
this study cannot be assumed as “ground truth” and should be interpreted with
caution.

Attempts to connect the logistic coefficient functions’ parameters to weather vari-
ables were less successful than we had hoped. We fitted exponential and linear models
of a single weather variable and parameter function coefficient to predict mosquito
dynamics using the non-autonomous logistic model. The yearly total precipitation
was selected to predict the baseline carrying capacity of the Total Population, and the
yearly temperature range was selected to predict the per capita baseline net growth
rate of the Active Population based on these relationships having the highest Pearson
correlations out of any parameter function coefficient and weather variable combina-
tion explored. Despite the relatively high correlations, only 58%, or 8 out of 14 years of
the Total Population simulations produced “good” or “acceptable” regression-based-

predictions when compared to their PBM-time-series-parameter-fitted simulations.
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The Active Population was fitted quite satisfactorily, showing high correlation and
R? metric with the yearly temperature range, and led to an excellent 78%, or 11 out
of 14 years of “good” or “acceptable” simulations. We suspect that these results stem
from the nonlinear effect weather has on population dynamics. Immature develop-
ment time, egg viability, and adult lifespan are all nonlinear functions of temperature
[54]. The interactions of these nonlinear processes make it difficult to reliably identify
the relation between growth rate and temperature. Though it is possible to extend
the non-autonomous parameter functions to allow for more complex nonlinearities
and multiple weather variables, we aimed to create a simple model to match its out-
put to the discrete mosquito PBM time series [74]. The PBM is a highly detailed,
high-fidelity model that considers not only temperature and precipitation, but other
water level data such as runoff and soil moisture, to construct a daily time series
from observed trap data. Thus, many of the nonlinear interactions between weather
variables and mosquito populations are already captured in the PBM, and our logis-
tic linkage method provides a way to seamlessly connect discrete time series data to
continuous-time epidemiological models. The PBM essentially fills in the gaps associ-
ated with sparse data sets and is used to infer the total number of mosquitoes within
each annual life cycle and gonotrophic stage. Trap data captures only a fraction
of the mosquitoes that are currently biting. Some epidemiological modeling stud-
ies informed by trap data estimate the true mosquito population by multiplying the
trap data by a constant factor [75], but this assumption is neither tied to ecological
processes nor considers the impact of environmental variables. Consequently, param-
eters in our model were fitted to the PBM time series instead of the raw trap data.
These considerations highlight the intricacies and complexities of modeling mosquito
population dynamics as it relates to weather and climate variables.

Although the results shown here are specific to the Culex pipiens and Culex restu-
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ans populations in the GTA, the non-autonomous logistic model framework can be
adapted to other mosquito species and geographic locations.

Parameters obtained for the Total Population can be used to analyze and inform
mitigation and control measures of mosquito populations, while parameters obtained
for the Active Population can aid the forecasting and prediction of mosquito-borne
disease risk in deterministic epidemiology models. The purpose of our linkage model
is to reconstruct an observed signal to be used as a subsequent model input for a
mosquito-borne epidemiological model. The non-autonomous logistic mosquito pa-
rameters will be used to estimate the seasonal vector population for the WNV partial
differential equations model in chapter 4.

The concept of determining dynamic equations from data is far from new, with
notable developments ranging from symbolic regression and chaotic data analysis to
adaptive inference [12, 9, 20, 22]. These techniques are useful when the underlying
physical laws are relatively unknown. However, these techniques can be computa-
tionally expensive and elusive for researchers with limited computer science or math-
ematics backgrounds [52]. Our framework can be very useful for applications where
the functional form of time-dependent parameters or candidate models are assumed
to be known, but optimization of numerous time-dependent parameter functions is
desired. Other applications that could benefit from this method include reactions
with Michaelis-Menten dynamics, the initiation of action potentials in neuroscience,
gene regulation, and circuit signals [22, 12]. The presented method provides a useful
way to connect discrete time-series data to a continuous-time modeling framework.

While cloud computing has increased accessibility for researchers to analyze large,
heterogeneous datasets [52], lack of publicly available data can still inhibit the ability
to obtain and analyze high-resolution data. There is currently no national open-access

mosquito data repository or standardized protocol for mosquito data collection for
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the United States [70]. This creates challenges for both data acquisition, data fusion,
and population modeling [5].

The future is promising for data-informed mechanistic models [5]. Statistical mod-
els alone are insufficient to estimate parameters in some coupled systems or systems
with unobserved variables [71], yet data is also necessary to validate mathemati-
cal models and produce reliable modeling forecasts. Mechanistic models are useful
to assess dynamics in locations where data is lacking or underlying drivers of the
dynamics are changing, for example, estimating the effect of the carrying capacity
that cannot be directly measured or assessing the impacts of mitigation strategies.
Comprehensive frameworks, such as CIMMID, that combine statistical with mathe-
matical modeling approaches, can provide robust output to inform decision makers

and resource allocation [5].
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Chapter 3

INFECTION-AGE DEPENDENT WEST NILE VIRUS MODEL

3.1 Mathematical Model

A deterministic system of partial differential equations models the West Nile Virus
(WNV) dynamics among three populations: mosquito vectors, bird hosts, and human
dead-end hosts. The total population sizes of the vectors, birds, and humans are
represented by N,, Ny, and Ny, respectively. Each species’ population is divided into

compartments based on infection status:

Ny(t) = S, (t) + 1, (1), (3.1.1)
Nb(t) = Sb(t) + Ib(t) + Rb(t), (3.1.2)
Na(t) = Sn(t) + In(t) + Ra(t), (3.1.3)

where S-compartments denote susceptible populations, I-compartments denote infec-
tious, and R-components denote recovered populations. Due to the relatively short
lifespan of mosquito vectors, the model assumes infected mosquitoes remain infectious
until death.

The infectious compartments for vectors and birds are further structured by

infection-age 7, defined as the time since acquired infection. Therefore,

I(t) = / i ), (3.2.1)
Ib(t) = /Ooo ib(T, t)dT, (3.2.2)

where i,(7,t) and i,(7,t) are the population densities of infected vectors and birds

with infection-age 7, respectively.
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Table 3.1: State Variables and Parameters of the Model (3.3).

State Variable | Description
Sy(t) Number of susceptible vectors at time ¢
I,(t) Number of infected vectors at time ¢
ip(T, 1) Infection-age density of vectors with infection-age 7 at time ¢
Sp(t) Number of susceptible birds at time ¢
Iy(t) Number of infected birds at time ¢
ip(T, 1) Infection-age density of birds with infection-age 7 at time ¢
Ry(t) Number of recovered birds at time ¢
Sh(t) Number of susceptible humans at ¢
I (1) Number of infected humans at time ¢
Ry(t) Number of recovered humans at time ¢
Parameter Description
A, Vector recruitment rate
o Natural vector per captia death rate
o Per capita vector biting rate
P Probability that vector bite is on a bird
Bob(T) Probability of disease transmission from infected vectors
with infection-age 7 to susceptible birds
Bon(T) Probability of disease transmission from infected vectors
with infection-age 7 to susceptible humans
B (T) Probability of disease transmission from infected birds
with infection-age 7 to susceptible vectors
Y (T) Per capita recovery rate of infected birds with infection-age 7
Yh Per capita recovery rate of infected humans
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The model consists of the following partial differential equation (PDE) system:

d’(‘islzv = Av - Abv(t)sv(t) - ,quv(t)a (331)
di, i, ,

- t o = —h 3.2
5 T g = Hei(T1), (3.3.2)
% = —Aw(t)5(t), (3.3.3)
8% 8Zb . .

81L + 5 o7 - /b(T)Zb(Tv t)) (334)
iy _ / Y(7)i(T, t)dT, (3.3.5)
),

ds

— = = A(D)Su(D), (3.3.6)
dI,

5 = Mon(t)Sa(t) = mIa(t), (3.3.7)
ARy

— = mda(t). (3.3.8)

Adult vectors are recruited into their susceptible population at constant per capita
rate A, and die naturally at constant rate p,. Vectors become infected at per capita

rate Ay, (1) — the force of infection from infected birds to susceptible vectors:

A (t) = —2 / " B ()i (7, D) (3.4.1)

Ny + Ny o
The per capita vector biting rate is «, p is the percentage of vector bites that are on
birds, and G, (7) denotes the per-bite probability of disease transmission from birds
with infection-age 7 to susceptible vectors. Similarly, A, (f) and A (t) represent the
forces of infection from infectious vectors to susceptible humans and from infectious

vectors to susceptible birds, respectively.

)\vh( Nb T Nh/ th Zv T, t) (3.4.2)
/\Ub(t) = m/o ﬁvb(T)Z'v(T, t)dT (343)

Infected birds with infection-age 7 recover from infection at per capita rate v,(7). In-
fected humans recover at per-capita rate 7,. Table 3.1 includes the state variables and

parameters of the model (3.3). The model (3.3) uses the following initial conditions,
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Figure 3.1: Schematic Diagram of the Model (3.3). The Red Dashed Lines Represent
the Cross Transmission Between Populations.

(Sv(0)7 iv (7—7 0)’Sb(0)» Z.b(Tﬂ 0)7 Rb(0)7 Sh(o)’ Ih(o)» Rh(o)) (351)

= (SO iO(T),S,?,ig(T),Rg,S,?,I,?,R%),

v v

and boundary conditions — corresponding to new infections, with infection-age 0,

i5(0,1) = Ay () S0 (1), 15(0,8) = Aoy (£) Sy (1) (3.5.2)

A schematic diagram of the model (3.3) is shown in Figure 3.1. The following

assumptions pertain to the model (3.3):

e The total population sizes of vectors, birds, and humans remain constant. This

assumption facilitates the proof of the existence and uniqueness of solutions.

e Although WNV-induced death affects certain bird species [39] and a small frac-
tion of infected humans [15], we neglect disease-induced death to make the

analysis of the model simpler.

e The model is intended to capture the seasonal dynamics of WNV, which is

typically on the order of several months. Therefore, demographic parameters
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(i.e., birth and death rates) for birds and humans are neglected. Demographic
parameters for vectors are included since their lifespan is generally on the order

of days to weeks [86].

e For simplicity, the model only considers vector bites on humans and birds.

Vector bites on other mammals are neglected.

e Vectors transmit infections to both birds and humans, but only birds can trans-
mit infection back to vectors due to the low amounts of viremia found in in-
fected human blood [15]. The probability of infection transmission depends on

the infection-age of the vector or bird.

e Due to the short lifespan of the vectors, we assume that infected vectors remain

infectious until death [86].

e Birds and humans may recover from infection. Birds recover at an infection-

age-dependent rate, and humans recover at an infection-age-independent rate.

e Due to the lack of conclusive evidence surrounding WNV re-infection, it is
assumed that humans and birds who have recovered from infection maintain

lifelong immunity against future WNV infection.
3.2 Integral Form

It is more convenient to work with the integral form of the model (3.3). First,
Equations (3.3.2) and (3.3.4) are integrated along the characteristics to yield the

infection-age-density of each population:

. I, (7
(1 — 1) HU(T(_)t) t <,

iy(T,t) = (3.6.1)
Aot — 7)S,(t — )L, (1) 7 <t,




. 1T, (7
' ip(r — t)nb(bT(_)t) t<r,
Zb(T, t) =

Aop(t — T)Sp(t — TI(1) 7 <,

where,

(1) = e 7,

TI,(7) = ¢~ I wledds,

(3.6.2)

(3.7.1)

(3.7.2)

denote, respectively, the probability of vector survival to age 7 and the probability
of infected birds recovering at exactly age 7. Detailed calculations determining the
characteristic form of (3.3.2) can be found in Appendix B. The method to determine
the characteristic form of (3.3.4) follows similarly. Equation (3.7.1) is the probabil-
ity that an infected vector survives to infection-age 7, and Equation (3.7.2) is the
probability that an infectious bird remains infectious at infection-age 7.

We would like to reformulate the model to be a function of ¢ only. We solve
the formally linear ODEs (3.3.1), (3.3.3), (3.3.5)-(3.3.8) to find expressions for state
variables Sy, (t), Sp(t), Ry(t), Su(t), In(t), and Ry(t), and Equation (3.6) with respect

to 7 to obtain I,(t) and [,(t). The integral form of the model (3.3) follows:
t
Sy(t) = SO, (t)e™ Jo Xo@ds L A / e o Ael@dary () (3.8.1)
0

t
I(t) = S,TL (1) / Ao (7)™ 8 Ant@)dagy
0

+ A, /O t I, (¢ — s) / t Ao ()=S0 " Awl@dagnas 4y (¢), (3.8.2)
Sy(t) = S0 Jo Ao (s)ds (3.8.3)
I(t) =5y /0 t s (I (t — e ooy -y (1), (3.84)
Ry(t) =S, /Ot /08 Y(T) A (s — T (7)eJo " Aevl@dagrgs 4 Fy(t), (3.8.5)
Sp(t) = S0 Jo dun()ds, (3.8.6)
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-t
I(t) = T, (t) + S, / Aon ()T, (t — s)e™ Jo Aen@dagg (3.8.7)
Jo

: 0
Ri(t) =50 /O /O ! Ao ()11, (n — s)e™ Jo Aon(@dag gy — Vhli"(t), (3.8.8)
where,
Aop(t) = OO Nh ( / Bup(t — T) Ao (7)™ J6 Aol g (3.9.1)
/ o(t=7) / Bu(t = 1) Aew(n DO dndr 4 Gy (t ))
Non(t) — Nb‘é +Nh < / Bun(t — ) Agy (7)e= 0 Auu)dn g (3.9.2)
/ (t—7) / Bun(t — 1) Aow(n OE dndr + Got ))
nlt) = s Nh Sb / (1 = )L (¢ = 7)Ap(r)e e 4oy (1)),
(3.9.3)
Fy(t) = /t Ooig(T—t)HH(’;(i)t)d@ (3.9.4)
Fy(t) = /Oo 0 (r —t)Hl_(I:_(_)t)dT, (3.9.5)
/ / ()0 — ) ( ) = yirds, (3.9.6)
I (£) = e, (3.9.7)
and
(t) = /Ooﬁvb (t +n)i(n H”(t(+)7’)dn, (3.9.8)
/ Bon(t + )il H e )”)dn, (3.9.9)
/ Bt + m)i0 () et (+)”)dn. (3.9.10)



Detailed calculations to find the integral form of the model (3.3) can be found in
Appendix B. Equations (3.9.4)-(3.9.10) can be parameterized directly from available
data. Additionally, (3.9.1)—(3.9.3) can be shown as a self-contained system — notice
that, with the exception of initial data, A, and A,; depend only on Ay, and A,

depends only on A, in their expressions therein.
3.3 Existence and Uniqueness of Solutions

The existence of a solution for (3.4.1)-(3.4.3) implies the existence of a solution
for the integral system (3.8). Let T > 0 be arbitrary and ¢ € [0,7%]. Assume
there exists some maximal infection-age A*, and let A = A* + T*. We employ the

following assumptions to guarantee the existence of a unique continuous solution for

(3.4.3)-(3.4.1):

(H1) The per capita biting rate o and mosquito recruitment rate A, are positive

constants.

(H2) Disease transmission probabilities B,,(7), Bun(7), and By, (7) are nonnegative

continuous functions that vanish beyond A;. That is,
Bvb(T) = ﬁvh(T) = Bbv(T) =0forT> AT.

(H3) The human per capita recovery rate 7y is a positive constant and the bird per

capita recovery rate 7,(7) is a nonnegative continuous function.
(H4) The natural per capita death rate for mosquitoes p, is a positive constant.

(H5) Initial densities i)(7), i%(7) are nonnegative, continuous, and vanish beyond

7> A*
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(H6) Initial and boundary conditions are compatible at ¢t = 0. That is,
i5(0) = A\ (0)SP, 9(0) = \py(0)SY.

Theorem 1. The system of integral equations (3.4.3)-(3.4.1) has a unique continuous

solution.

The proof of Theorem 1 is in Appendix B.

3.4 Basic Reproduction Number and Local Asymptotic Stability of Disease-Free

Equilibrium

The basic reproduction number, Ry, quantifies the average number of secondary
infectious hosts produced by one infected host during its infectious period in a wholly

susceptible host population. The basic reproduction number for our system is com-

puted as:
2 A SD
RO ,uv SO+SO (/ ﬁvb ’U )(/ /31)'0 Hb ) (310)
The factor ;’é‘j;so fo By (T)IIy(7)dT represents the average number of infectious

vectors produced by one infectious bird during its infectious period in a wholly sus-
0
ceptible population. Similarly, the factor % fooo Bob (7)1, (T)dT represents the aver-
b h
age number of infectious birds produced by one infectious vector during its infectious

period in a wholly susceptible population.

Theorem 2. The disease-free equilibrium is locally asymptotically stable if Ry < 1

and unstable if Ro > 1.

The proof of Theorem 2 is in Appendix B. A Ry less than unity implies that a

small introduction of WNV will not produce a sustained outbreak. We note that the
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epidemiological parameters for human infection do not appear in the Ry expression
because WNV only transmits in one direction — from vectors to humans. Nonetheless,
reducing the value of Rq will in turn reduce the amount of human WNYV infections

since less WNV-infected mosquitoes will be generated.
3.5 Choice of Infection-Age Dependent Parameter Functions

The model assumes that the vector-to-host transmission probabilities (with “host”
meaning birds or humans), bird-to-vector transmission probability from birds to vec-

tors, and bird recovery rate are functions of infection-age 7.
3.5.1 Vector-to-Bird Transmission Probability

Data from Reisen et al. [63] was fitted to a logistic curve to determine the infection-
age dependent per-bite probability of vector-to-bird transmission £,,(7). This data
shows the fraction of WNV transmitting Culex tarsalis mosquitoes at 22°C as a
function of infection-age [63]. The per-bite vector-to-bird transmission probability

takes the form:

- 1 + e—k'l(T—TO,l) )

ﬁvb(T)

(3.11.1)

where M), is the maximum per-bite transmission probability, 7 ; is the mean extrinsic
incubation period in days, and k; is the scale parameter with units of days™! that
affects the steepness of the graph of 3,,. We assume a baseline value of M; = 1
and fit 7p; and k; to the data in [63]. Parameter fitting was carried out using a
Levenberg-Marquardt algorithm from [72]. This algorithm uses a nonlinear least
squares approach to minimize the mean squared error between the data and model
output. Panel (a) of Figure 3.2 shows the results of the data fitting. The fitted values

of 791 and k; provide baseline estimates and are listed in Table 3.2.
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3.5.2 Bird-to-Vector Transmission Probability

Data from Komar et al. [39] and Reisen et al. [63] are used to inform the infection-
age-dependent bird-to-vector transmission probability Gy, (7). A unimodal relation-
ship between bird host viremia and infection-age is presented in [39] for ten passerine
species infected with WNV. Passerine species (e.g., crows, sparrows, robins, etc.) are
known to be highly competent WNV reservoirs and are present throughout North
America [39]. A linear relationship between bird-to-vector infection probability and
bird host viremia is shown in [63]. To construct a continuous function for Sy, (7), we
first use the linear relationship in [63] to transform the host viremia data from [39].
We then fitted a Gaussian function to this transformed data set. The bird-to-vector
infection transmission probability takes the form:

(r=b)?

Bou(T) = ae™ 22, (3.11.2)

where a is the maximum transmission probability, b is the time of occurrence of max-
imum transmission probability in days, and c is the standard deviation in days. We
used a trust region reflective algorithm [72] to fit parameters a, b, ¢ to the transformed
data from [39, 63]. Similar to the Levenberg-Marquardt algorithm used to fit param-
eters of (3.11.1), the trust region reflective algorithm is a nonlinear least squares
method for optimization. Unlike the Levenberg-Marquardt algorithm, the trust re-
gion algorithm accepts bound constraints to restrict the parameter search space. We
constrained the parameter search space to 0.85 < a < 1,3 <b<5,and1<c <2
to ensure fitted parameters would have biologically realistic values [39]. Panel (b) of
Figure 3.2 shows the results from fitting the transformed data. Fitted values of a, b, ¢

provide baseline estimates and are listed in Table 3.2.
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3.5.3 Bird Recovery Rate

The bird per capita recovery rate is typically measured through the level of WNV
antibody response [84] or the reciprocal of the infectious period [39]. Antibody re-
sponse is measured as a function of infection-age and has been observed to follow a
logistic pattern [84]. A bird is considered recovered from WNV infection when the
antibody response exceeds a certain threshold [84]. On the other hand, the bird infec-
tious period measures the length of time viremia is present [39]. It is unclear whether
or not antibody response and viremia levels are correlated [84, 39]. However, it may
be of interest to understand how the behavior of an infection-age-dependent recovery
rate impacts the dynamics of WNV transmission. Here, the bird per capita recovery
rate is assumed to have a logistic relationship with infection-age, as seen with the

antibody response data in VanDalen et al. [84]:

- 1 _|_ e—kQ(T—T()yg) '

V(7) (3.11.3)

Data from Komar et al. informs the baseline maximum per capita recovery rate M-
and the inflection point of the logistic curve 7o [39]. The mean infectious period
in days was selected as the baseline value of 755. What is unknown is the scale
parameter ko that affects how steep the curve is at 795. In panel (c) of Figure 3.2,
we show the logistic reovery rate over a range of values of the scale parameter ks to
display possible variation.

Table 3.2 displays the baseline and ranges of each parameter in Rg when assuming
the functional forms of B (7), Bpo(T), W(7) in (3.11). Baseline values and ranges
for demographic and biting parameters were obtained from experimental and other
modeling studies found in extant when possible. Parameters belonging to infection-

age-dependent functions had their baseline values fitted from experimental data and
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Table 3.2: Baseline Values and Ranges of Parameters in R,.

Parameter | Baseline Range Source
A, 3,776 1,302 — 5,183 [61];
[74]
a 0.5 0.30 — 1.00 [90];
[1];
[87];
[88];
[69]
s 0.066 0.05 - 0.33 [6];
[88];
23]
M, 1.00 0.85 — 1.00 Fitted from [63]
To,1 15.24 12 - 16 Fitted from [63]
ky 0.495 0.20 — 0.60 Fitted from [63]
a 1.0 0.85 - 1.0 Fitted from [63];
[39]
b 3.06 2.0-5.0 Fitted from [63];
[39]
c 1.41 1.0 - 2.0 Fitted from [63];
[39]
M, 0.50 0.30 — 0.60 Assumed from [39]
T0,2 4.50 3.0-5.0 Assumed from [39]
ko 0.50 0.30 - 1.0 Assumed
Sy 5,000 1,000 — 10,000 | Assumed
Sy 50,000 10,000 — 100,000 | Assumed
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Figure 3.2: Infection-Age-Dependent Parameter Functions. Data Fitting Results for
(a) the Vector-to-Bird Transmission Probability Data From [63] to a Logistic Function
and (b) the Transformed Bird-to-Vector Transmission Probability Data From [39, 63].
(c) Logistic Bird Per Capita Recovery Rate Over a Range of Values of the Scale
Parameter ky. The Values of the Maximum Recovery Rate and Mean Infectious
Period (Inflection Point) Were Informed from Results in [39)].

assumed a biologically realistic range. The parameter baseline and range values were
used to inform a sensitivity analysis on the basic reproduction number Ry. The
sensitivity analysis can provide insight on which demographic and epidemiological

parameters have the most influence on the dynamics of WNV outbreaks and inform

mitigation or control efforts.
3.6 Sensitivity Analysis

A sensitivity analysis was conducted to understand the impact of demographic
and epidemiological parameters on the basic reproduction number Ry. We used the
forward normalized sensitivity index on 14 model parameters using the approach in
[30].

The normalized forward sensitivity index is the ratio of relative rate of change in
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a quantity of interest ¢ with respect to parameter of interest p:

Our analysis uses ¢ = Rg and p belongs to the set:
- 0 QO
p = {A'U: Ho, &, M17 k17 70,1, M27 k2a 70,2, @, b7 C, Sh: Sb}

We detail the process for finding the normalized forward sensitivity index of the basic
reproduction number fyR” on the mosquito per capita mortality rate.
2 0
To find the partial derivative of Ry with respect to parameter p, let A = %,
vi&p h

B = [ Bu(T)y(T)dr, and C = [ By (7)Ip(7)dr. Then, the basic reproduction

number may be re-written as Ry = ABC. By the product rule,

IRy oC 0B 0A
— =A| B— + B 12
dp ( dp +O@C) O@p (3.12)
where,
OB [ (9Bulr) o1, (7)
o —/0 < op IL,(7) + Bup(7) op dr, (3.13.1)
oC [ 9By (7) anb(7)>
—_— = (—H T + o\ T p dT. 3.13.2
o= | (204 5 2 (3.152)
For p = y,, notice that:
0A —a?A, Sy —A
o = SO+SO) = “ (3.14.1)
0B
o / Bun(T / Bop(T)TIL,(T)dT, (3.14.2)
oC ) )
o 0. (3.14.3)
By substituting (3.14) into (3.12), we obtain:
ORo RO
G = —AC / )7L (r)dr = 2 (3.15)
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It follows that the normalized forward sensitivity index of p, on Ry is:

0 87—\),0 ﬂv
YR = <= / Bup(T) T, (1)dr — 1. (3.16)

Appendix C includes the expressions for the sensitivity indices of Ry with respect
to the remaining parameters of p. The normalized forward sensitivity indices of
Ry with respect to the various parameters can provide valuable information on the
impact of control strategies that target WNV. We first compute the baseline value
of Ry using the baseline parameter values found in Table 3.2. We then compute 777)30
at the baseline value for each parameter p € p. Additionally, for each p € p, we
compute the Ry and “/;30 for 20 uniformly sampled points from the range described in
Table 3.2. This process allows us to generate response curves of fyRO that show how
the relative sensitivities of Ry with respect to each parameter p change as their values
deviate from the baseline. By sampling points from the ranges presented in Table
3.2, we can find the relative sensitivities of R for parameter values that are within a
biologically realistic context. Computation of Ry and 7]7}0 for each parameter sample
and baseline value assumed a maximum infection-age of 30 days for both vectors and

birds, and used a stepsize of 0.01 days.
3.6.1 Baseline Sensitivity Indices

Table 3.3 shows the baseline sensitivity index for Ry with respect to each param-
eter. The most sensitive parameters of Ry at the baseline value include the mosquito
mortality rate (u,) and mosquito biting rate (). At the baseline value, a 1% increase
in p, results in a 2.36% decrease in Ry. A 1% increase in « results in a 2% increase in
Ry at the baseline value. These results are consistent with what was found in [6, 82].
The top three parameters for the highest sensitivity of Ry at their baseline values are

related to the demographic and biting processes. This highlights the importance of
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Table 3.3: Forward Normalized Sensitivity Indices of Parameters of Ry at Baseline
Values as Indicated in Table 3.2. Parameters are Ranked by Sensitivity Magnitude.
We See That Rg is Most Sensitive to the Mosquito Mortality and Biting Rates.

Parameter | % Parameter | %
" 22.36 ¢ 0.83

« 2.00 9 0.82

9 1.81 To2 0.47

To.1 -1.60 b -0.35

a 1.00 My -0.29

A, 1.00 ko 0.26

M, 1.00 ky -0.09

quantifying uncertainty of demographic and biting parameters when modeling MBDs
like WNV. This further demonstrates the impact that mosquito population control
measures may have on epidemic quantities like Rg. The infection-age-dependent func-
tion with the greatest sensitivity for Ry is the mean extrinsic incubation period (79,1)
that appears in the transmission probability — a 1% increase in 79 results in a 1.6%

decrease in Ry.
3.6.2 Sensitivity Results for Infection Transmission and Recovery Parameters

Figure 3.3 shows the basic reproduction number Ry and the sensitivity response
curve “/;30 with respect to parameters of the infection-age-dependent functions (3.11).
R, is proportional to the maximum transmission probabilities M; and a. Therefore,
sensitivity indices with respect to these parameters always have a value of one — a 1%
increase in M, or a results in a 1% increase of Ry.

The sensitivity of Ry to the maximum bird recovery rate M, mean intrinsic

incubation period b, and mean extrinsic incubation period 7, increases as these pa-

71



rameter values increase. Furthermore, Ry is a decreasing function of each of these
parameters. Small increases at greater values of M, b, or 79, result in greater re-
duction of Ry compared to the same relative increases at their baseline values. For
example, if the mean intrinsic incubation period increases from three days to five
days, then a 1% increase in b leads to 1.2% reduction of Ry compared to only 0.4%
reduction at the baseline value. Since increasing the incubation period equates to de-
creasing the incubation rate, lowering incubation rates can have a substantial impact
on lowering Ry.

On the other hand, the sensitivity of Rg with respect to the scale parameter
for vector-to-bird transmission probability k; and the standard deviation of bird-
to-vector transmission probability ¢ increases as these parameter values decrease.
Smaller values of k; correspond to larger values of Ry, but increasing k; at these
smaller values can have a greater impact on reducing Ry compared to increases at
the baseline value. On the contrary, smaller values of ¢ correspond to smaller values
of Ry, but slight increases in ¢ at these smaller values can have a greater impact on
increasing Ry.

The most interesting sensitivity responses occur for the mean infection period for
birds 792 and the scale parameter for the bird recovery rate ky. The non-monotonic
sensitivity behavior results from the negative exponential applied to the bird recovery
rate function (3.7.2). Interestingly, sensitivity to Ry peaks near the baseline value for
both 799 and ky. As values of 79 and ko deviate from the baseline, changes in these
parameters have less of an impact on Ry. Although parameters of the bird recovery
rate function show the most interesting sensitivity responses, they are generally the

least impactful on R,.
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Figure 3.3: The Basic Reproduction Number Ry (Blue Lines) and Sensitivity Re-
sponse Curves (Red Lines) as a Function of Transmission and Recovery Parameters
of Ry. Starred Values Indicate the Baseline Rg and Normalized Forward Sensitivity
Index. The Top Row Shows Parameters for the Transmission Probability of Vectors
to Hosts, Bu(7). The Middle Row Shows Parameters for the Transmission Proba-
bility of Birds to Vectors, fp, (7). The Bottom Row Shows Parameters for the Bird
Recovery Rate, 7,(7).

3.6.3 Sensitivity Results for Demographic and Biting Parameters

Figure 3.4 shows the basic reproduction number R, and the sensitivity response
curve %7)%0 with respect to the demographic and biting parameters of (3.3). The
sensitivity of Ry to the mosquito recruitment rate A, and mosquito biting rate o are
constant as a result of Rq depending linearly on A, and quadratically on «.

Changes in the initial susceptible human population Sp at greater values result

in greater changes to Ry compared to the same relative changes at the baseline
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value. The model assumes that mosquitoes are equally likely to seek out a bloodmeal
from humans as they are from birds. Increasing the human population decreases the
fraction of birds in the host population. Since humans do not transmit WNV back
to mosquitoes and their infection parameters do not appear in the R, expression,
increasing SY will decrease R values. Alternatively, increasing the initial susceptible
bird population Sp will increase Ry, but with decreasing impact from changes at
greater values of S).

The mosquito mortality rate pu, is by far the most impactful parameter on R,
across all ranges and parameters assessed. This is likely due to ., being involved with
both the steady state initial vector population (recall, SO = %) and the mosquito
survival probability II,(¢). All other parameters explored belong to a single processes
— i.e., they appear in exactly one of A, B, or C of (3.12), whereas u, appears in both
A and B expressions. A 1% increase of ji,, when j1,, = 0.33 results in a reduction of R
by over 5.22%. The mosquito mortality rate is the reciprocal of the mosquito lifespan.
Therefore, decreasing the mosquito lifespan equates to increasing its mortality rate.

Reducing the mosquito lifespan will have the greatest impact on reducing Ry.
3.7 Discussion

This chapter introduces a PDE model for WNV transmission between mosquito
vectors, bird hosts, and human dead-end hosts. The model includes infection-age-
dependent processes for both mosquito vectors and bird hosts, and we demonstrate
the impact of demographic and epidemiological parameters on WNV transmission
through sensitivity analysis. As far as we know, this is the first PDE model to in-
clude infection-age dependence on both vector and host populations. The model
assumes the vector-to-host transmission probability [3,,(7), bird-to-vector transmis-

sion probability (5, (7), and bird recovery rate 7,(7) are functions of infection-age
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Figure 3.4: The Basic Reproduction Number Ry (Blue Lines) and Sensitivity Re-
sponse Curves (Red Lines) as Functions of Demographic and Biting Parameters of
Ro. Starred Values Indicate the Baseline Ry and Normalized Forward Sensitivity
Index.

7. We proved that the model has a unique continuous solution under biologically
realistic assumptions for the infection-age-dependent processes. Moreover, we found
an analytic expression for the basic reproduction number Ry and showed that the
disease-free equilibrium is locally asymptotically stable if Ry < 1. We assumed logis-
tic functions for B,,(7) and v,(7) and a Gaussian function for G, (7). Parameters for
the infection-age-dependent processes were fitted to experimental data when available
or assumed biologically reasonable ranges. We determined the forward normalized
sensitivity indices for parameters of the basic reproduction number Ry for our sen-
sitivity analysis. The sensitivity analysis uses the aforementioned assumptions on
functions By(7), Bp(7), and v, (7). Under these assumptions, the mosquito mortality
and biting rates were found to have the greatest impact on Ry. Other families of
functions for the infection-age-dependent processes can be explored and may provide
different sensitivity results [30].

Our sensitivity analysis results suggest that control strategies for mitigating WNV
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transmission should focus on increasing the mosquito mortality rate and decreasing
the mosquito biting rate. Increasing the mosquito mortality rate may be achieved
through the use of adulticides [13]. Humans can decrease their risk of being bitten
by a mosquito by using mosquito repellent or insecticide nets. However, all of these
strategies may bring about unintended negative consequences, as use of these control
measures have shown to increase insecticide resistance in mosquitoes [66]. We also
note that the model assumes that mosquitoes are equally likely to bite birds as they
are humans. Decreasing the biting rate of mosquitoes on humans may not decrease the
biting rate overall, since mosquitoes will then resort to biting birds or other mammals
when a human bloodmeal is unavailable. Some modeling studies have explored the
seasonal shift in mosquito’s biting preference between birds and humans [23]. Overall,
identifying the best control strategy for minimizing WNV and other MBD risk is
a nontrivial challenge with no straightforward solution. This issue is compounded
further due to the effect that weather and climate have on MBD dynamics [5] In view
of the explanation provided above for the mosquito mortality rate, it is likely that
this parameter will be the most important in terms of curtailing infection prevalence
and incidence.

The next step is to incorporate explicit weather dependence on WNV transmis-
sion. Studies have evaluated temperature dependence on the mosquito mortality
rate [63], which happens to be the most influential parameter on R in our model.
Others have shown temperature dependence on the extrinsic incubation period [16].
Interestingly, the WNV infection and recovery parameters that had the most impact
on Ry for our model were the length of the incubation and infection periods. The
following chapter will introduce our extended WNV model that includes temperature-
dependent parameter functions, more realistic demographic processes, and connect

the model to true WNV human case data. We also attempt to explore possible future
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WNYV incidence under different climate change scenarios.
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Chapter 4

A NON-AUTONOMOUS WEST NILE VIRUS MODEL

4.1 Temperature-Dependent Processes on WNV Transmission

Mosquitoes are incapable of adequately regulating their body temperature due
to their ectothermic nature. Consequently, environmental temperature impacts both
mosquito lifespan [16] and mosquito-borne disease (MBD) transmission [63]. It is
critical to include temperature dependence in mosquito-borne disease models like
West Nile Virus (WNV), particularly for assessing the impact of climate change on
MBD transmission. Recent approaches for modeling MBD transmission under climate
change have included both mechanistic [82, 54] and statistical models [2]. Trejo et al.
included a temperature-dependent extrinsic incubation period (EIP) and mosquito
lifespan in a dengue transmission model and found that increasing temperatures un-
der climate change alters both dengue risk and efficacy of control measures [82]. Moser
et al. explored the effect of life history traits of Culer mosquitoes on a temperature-
dependent basic reproduction number for WNV [54]. The authors found that climate
change may cause WNV transmission by Cz. pipiens to increase along the northern
part of the US and decrease for the southern part of the US, while WNV transmission
by Cz. quinquefasciatus is expected to increase in most of the US [54]. Albrecht &
Kaufeld found that environmental temperature is a strong predictor of human WNV
cases in Ontario, Canada using a zero-inflated Poisson model with lagged temporal
covariates [2]. All studies highlighted the nonlinear effects of temperature on MBD
transmission and noted how these effects may vary based on characteristics of partic-

ular geographical regions.
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Here we extend our infection-age-dependent WNV model to include temperature
dependent processes for mosquito mortality and transmission probability. Recall that
the mosquito mortality rate u, was the single most influential parameter on the basic
reproduction number R of the simplified WNV PDE model (3.3), and the extrinsic
incubation period (EIP) 70, was the most influential parameter on R, related to
infection transmission. R, was also moderately sensitivite to the maximum vector-
to-host transmission probability per bite M;. The EIP and maximum transmission
probability appear in the expression for the per-bite probability of vector-to-host
transmission (,,. Both the average adult lifespan of mosquitoes and EIP decrease as
a function of temperature [16, 63], while the maximum transmission probability is a
unimodal function of temperature [43].

The temperature-dependent mosquito mortality rate is modeled using results from
Ciota et al., which presents the longevity of various Culex species as a linear function
of temperature [16]. The reciprocal of the mosquito lifespan gives the per capita

mortality rate as a function of temperature 7"

L T < 34.48°C,

—4.57TT+157.6°

(1) = (4.1.1)
37.8, otherwise.

The expression for the temperature-dependent EIP is found by taking the multi-

plicative inverse of the extrinsic incubation rate presented in Reisen et al. [63]:

! T > 15°C,

70.1(T) = (4.1.2)

232, otherwise.

The temperature-dependent maximum vector-to-host transmission probability is

modeled from the Briére relationship presented in Lambrechts et al. [43]:
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Figure 4.1: Heatmap of the Per-Bite Probability of Vector-to-Host Transmission

with Respect to Infection-Age and Temperature. Yellow Values Indicate the Highest
Probability of Infection Transmission.

0.0010447(T — 12.2586)/32.461 — T, 12.2586 < T < 32.461,
M(T) = (4.1.3)

0, otherwise.
The temperature-dependent EIP and maximum transmission probability are used
in the per-bite probability of vector-to-host transmission S (7, T'), which is now both
infection-age and temperature-dependent,

M, (T)

ﬁvb(ﬁ T) = 1 + e—ki(r—70.1(1))

(4.2)

Figure 4.1 depicts the transmission probability with respect to temperature and vector
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infection-age. The highest probability of transmission occurs beyond vector infection-
age of 15 days and between 25-28°C.

The above expressions for p,(7") and 70, (7") indicate that suitable temperatures
for WNV transmission occur within the range 15.8-33.2°C where the EIP is less than
the adult mosquito lifespan. Under global increases in average temperature, certain
areas are expected to become too hot for mosquito survival while others become
more suitable for longer WNV seasonal transmission [54]. Incorporating temperature
dependence on g, 701, and M; allows us to assess the impact of climate change

scenarios on WNYV transmission.
4.2 Time-Dependent Processes on WNV Transmission

Before we assess the impact of climate change scenarios on WNV transmission,
we must first understand the role that demographic processes have on current WNV
transmission. Both mosquito and bird populations are inherently time-varying with
inter-annual and inter-seasonal variation [49]. Many current mechanistic MBD mod-
els neglect to include time-varying populations as a simplifying model assumption
or due to lacking reliable data for parameterizing demographic processes [5, 52].
Some mechanistic models for WNV that do incorporate time-varying populations
have modeled juvenile mosquito processes [44, 88] and fitted bird populations to ob-
served relative frequency of WNV-competent birds [44, 69]. In addition to adding
temperature-varying processes for mosquito mortality and disease transmission, we
also extend the simplified WNV model (3.3) by incorporating time-varying demo-
graphic processes for vector and bird populations that are parameterized by data
from the Greater Toronto Area (GTA). The total population of mosquitoes N, (%)

and birds N,(t) follow the non-autonomous differential equations:
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AN, (t) N, (#)
W N0 (1 -z (t)> , (4.3.1)
d]\;’t(t) — ()N (1), (4.3.2)

where, in order to model seasonality, we let

2mt
ro(t) =1 —rgcos ( i > : (4.4.1)

365

2
K(t) = K — K, cos (%) , (4.4.2)
ro(t) = & — 65 cos(w(t + Ab)). (4.43)

The time-varying mosquito population N, (¢) follows a non-autonomous logistic
model with periodically-varying net growth rate r,(t) and carrying capacity K,(t).
The components of r,(t) and K,(t) are determined from fitting the logistic linkage
model to the total mosquito process-based model (PBM) time series for the Greater
Toronto Area [49]. Seasonal (yearly) values of r, 75, K, and Ky are fitted to the PBM
to capture the inter-annual variation in mosquito population. Further details about
the fitting process are found in [49].

The time-varying bird population N,(t) assumes a periodically-varying net growth
rate ry(t) to capture the population recruitment via hatching and migration. Seasonal
values of the baseline net growth rate ¢, amplitude scaling factor ¢,, and frequency
w are fitted to relative abundance data for WNV-competent birds in the GTA. Rela-
tive abundance is defined as the proportion of birds that are WNV-competent. The
WNV-competent birds in the GTA and include American Crows, American Robins,
Blue Jays, Common Grackles, European Starlings, House Finches, House Sparrows,
Northern Cardinals, Red-wing Blackbirds, Ring-billed Gulls, and Song Sparrows [39].
Relative abundance data was obtained from eBird [19] and a Gaussian Process Re-

gressor (GPR) [62] was applied on a weekly timescale to approximate daily time
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Figure 4.2: Results of Fitting the Bird Net Growth Rate 7,(t) to the GPR Time

Series of WNV-Competent Bird Relative Abundance in the GTA for 2010-2017.

series values. Fitting of parameter components of 7,(t) follow a similar process to
the fitting of mosquito parameters r,(t) and K,(t). The parameter At denotes the
time in days between the beginning of the bird and mosquito ecological seasons. For
the GTA, the ecological season for WNV competent birds begins in December [19],
whereas the mosquito ecological season starts around May [49]. Figure 4.2 shows the
result of fitting the bird net growth rate () to the GPR time-series. Table D.3
includes the yearly fitted parameter values of ¢, ¢, and w for years 2010-2017. More
details about the data sources used for parameterizing the bird population are found

in Section 4.4.2.
4.3  Full Mathematical Model

The population compartments are as previously defined (3.1)-(3.2). The full

model consists of the following partial-ordinary differential equation system:

B oM (1= AR - 0.0 (451
A T Tl ), (152
dd—Stb = 13 (t) Ny (1) — Aun(t) S (1), (45.3)
A S () B+ (1), (45.4)
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% B /000 W(7)io (7, t)AT — po B (1), (4.5.5)
djth = NpSh(t) — Aon(t) Sk (t), —pnSh(t) (4.5.6)
% = Aon()(t) = Y ln(t) = Onln(t) = pnTu(t). (4.5.7)
dzh = Wdnlt) = i Fin(t): (4.5.8)

Adult vectors are recruited into their susceptible population at a periodically-varying
logistic rate and die naturally at temperature-dependent per capita rate p, (7). Vec-
tors become infected at per capita rate Ay, (¢). Birds are recruited into their susceptible
population at a periodically-varying per capita net growth rate, ry(¢), die naturally
at constant per capita rate py, and become infected at per capita rate A;(t). Infected
birds with infection-age 7 either recover from infection at per capita infection-age-
dependent rate v,(7), die from disease-induced mortality at constant per capita rate
0p. or die naturally at constant per capita rate ji.

Humans are recruited into their susceptible population at constant rate A, and
die naturally at constant per capita rate p,. Humans become infected per capita at
rate Ay (t). Infected humans can recover from infection at constant per capita rate
~p, die from disease-induced mortality at constant per capita rate dy, or die naturally
at constant per capita rate uy,.

The expressions for the forces of infection are as follows:

Ap(t) = m% / h Bu(7, T (7, t)dr, (4.6.1)
Ao (t) = Nb(oi—"m / Bon (7, T)in(7, t)dr, (4.6.2)
Ao (t) = mz B (T)ip(T, t)dT, (4.6.3)

where \,;(t) represents the force of infection from vectors to birds, A\, (%) is the force

of infection from vectors to humans, and Ay, (t) is the force of infection from birds to
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vectors. Moreover, (,,(7,T) denotes the per-bite probability of disease transmission
from vectors with infection-age 7 to birds, at temperature T. Similarly, S, (7, T)
denotes the probability of disease transmission from vectors with infection-age 7 to
humans at, temperature 7', and S, (7,t) denotes the probability of disease transmis-
sion from birds with infection-age 7 to vectors at time ¢. Recall in Equation (3.4)
of the simplified WNV model that « represented the per capita biting rate on any
hosts (birds and humans). For the full model, we assume different vector biting rates
between birds and humans, which is a more realistic assumption. We let a = «
+ ayp, where o is the per capita biting rate on birds and «y, is the per capita bit-
ing rate on humans. Let p = a;/a be the the percentage of vector bites on birds.
Then o, = pa and o, = (1 — p)a. Further, we include the modification parameter
7 to tune the vector-to-host ratio. The total vector population obtained from the
mosquito PBM [74] is a structure estimate from trap data and vector lifecycle knowl-
edge. The demographic parameters for the total vector population were obtained
from the logistic linkage model in Chapter 2 of this dissertation and in [49] and con-
struct a continuous signal from a discrete time series. However, there still remains
uncertainty of the exact translation from the observed trap data to the true vector
population. This uncertainty is compounded from the lack of reliable data about the
true total bird population. The parameter 7 tunes the vector-to-host ratio to allow
numerical simulations to align with observed human case data.

Table 4.1 includes the definitions of the parameters of the full model. Table 4.2
contains the definitions of the time-varying parameter components. Table 4.3 shows
the definitions of the parameters involved with infection-age-dependent processes.
Values and sources for the parameters of the full model and infection-age varying
processes are listed in Tables D.1 and 4.3, respectively. The initial and boundary

conditions of the full model are as before (3.5.1)—(3.5.2). The following assumptions
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pertain to the full model (4.5):

e For simplicity, the model only considers vector bites on humans and birds.

Vector bites on other mammals are neglected.

e Vectors transmit infections to both birds and humans, but only birds can trans-
mit infection back to vectors due to the low amounts of viremia found in infected
human blood [15]. The probability of infection transmission depends on both

the infection-age of the vector or bird and environmental temperature.

e Duec to the short lifespan of the vectors, we assume that infected vectors remain

infectious until death.

e Infected birds and humans may either recover from infection, die from disease-
induced mortality, or die from natural causes. The per capita recovery rate
is infection-age-dependent for birds and constant for humans. Natural and

disease-induced per capita death rates are constant for both birds and humans.

e Despite evidence showing that vertical transmission can occur in laboratory
settings [3], we neglect vertical transmission in this model. All recruited popu-

lations are assumed to be susceptible to infection.

e Due to the lack of conclusive evidence surrounding WNV re-infection, it is
assumed that humans and birds who have recovered from infection maintain

lifelong immunity against future WNV infection.

There is currently no method to assess the qualitative dynamics or stability of
the full model (4.5) due to the time dependence of various parameters. However,
we expect the qualitative results to be the same as those in the simplified model

(3.3), but the addition of temperature and infection-age dependence will change the

36



Table 4.1: Parameters of the Full Model (4.5).

Parameter | Description Dimension
(1) Vector net per capita growth rate days™!
K, (1) Vector carrying capacity vectors
() Bird net per capita growth rate days™!
Ay Recruitment rate of humans days™!
ap Per capita vector biting rate on birds bites/(vector xday)
ap, Per capita vector biting rate on humans bites/(vectorxday)
n Modification parameter for scaling —
vector-host ratio
Bup(T,T) Per-bite probability of disease transmission bites™!

from infected vectors with infection-age 7
to susceptible birds, at temperature T’
Bun(1,T) | Per-bite probability of disease transmission bites *
from infected vectors with infection-age 7
to susceptible humans, at temperature 1’
B (T, ) Per-bite probability of disease transmission bites™!
from infected birds with infection-age 7
to susceptible vectors at time ¢

7 (T) Per capita recovery rate of infected birds days ™!
with infection-age 7
Y Per capita recovery rate of infected humans days™!
o (T') Natural per capita death rate of vectors, days™!
at temperature T'
b Natural per capita death rate of birds days !
b Natural per capita death rate of humans days™!
0p Disease-induced per capita death rate days™!
of infected birds
On Disease-induced per capita death rate days™!
of humans

quantitative outcome of the simulations. By fitting time, temperature, and infection-
age-dependent parameters to existing data, we hope to increase the accuracy of future
outbreak predictions compared with a model without temperature or infection-age
structure. The following section discusses the data sources used for quantifying the

total vector, bird, and human populations.
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Table 4.2: Components of Time-Dependent Parameters.

Parameter | Description Dimension
r Baseline vector per capita net growth rate days™!
Ts Amplitude scaling factor for vector per capita days™!
net growth rate
K Baseline vector carrying capacity vectors
K Amplitude scaling factor for vector carrying capacity days™!
[0) Baseline bird per capita net growth rate days™!
Os Amplitude scaling factor for bird per capita days™!
net growth rate
w Frequency of bird per capita recruitment rate days™1
At Time lag between vector and bird ecological seasons days
Table 4.3: Parameters of Infection-Age-Dependent Processes.
Parameter | Description Dimension
My (T) Maximum vector-to-host transmission probability —
kq Scaling parameter for vector-to-host days™!
transmission probability
101(T) Extrinsic incubation period days™!
a Maximum bird-to-vector transmission probability —
b Mean intrinsic incubation period days
c Standard deviation of intrinsic incubation period days
M, Maximum per capita bird recovery rate days™!
ko Scaling parameter for bird per capita recovery rate days™!
70,2 Mean duration of bird viremia days
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4.4 Data Sources for Total Populations

We use data sources from the Greater Toronto Area (GTA) for years 2010-2017
to parameterize the total vector, bird, and human populations. The GTA consists of

the five Ontario public health units: Durham, Halton, Toronto, Peel, and York.
4.4.1 Total Mosquito Population

The mosquito process-based model (PBM) by Shutt et al. uses daily temperature,
water data, daylight hours, and mosquito lifecycle knowledge to generate a daily time
series from the sparse mosquito trap data from Public Health Ontario [74, 61]. Yearly
parameters of the mosquito net per capita growth rate and carrying capacity were
fitted to the PBM time series. That is, r, rs, K, and K values of Equations (4.4.1)
and (4.4.2) were fitted for each year of the PBM time series. The time frame of
the mosquito season is also determined through the parameter fitting optimization
process, and the initial condition N, (0) becomes the value of the PBM time series on
the first day of the mosquito season. More details about the fitting process are found

in Chapter 2 of the dissertation and in [49].
4.4.2 Total Bird Population

To estimate the total number of WNV-competent birds in the GTA for each year,
we multiply the relative abundance of the WNV-competent birds in the GTA by the
total number of birds in the GTA.

Relative abundance is defined as the proportion of birds that are WNV com-
petent. Relative abundance data was obtained from eBird [19]. eBird is a citizen
science database managed by the Cornell Lab of Ornithology. Anyone can contribute

to eBird data by creating an online profile and submitting information about their
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bird sightings. The eBird database contains documentation of bird distribution and
abundance throughout time. Over 100 million bird sightings are submitted annually
by eBirders across the globe. Due to the unstructured and sparse nature of the eBird
data, a Gaussian process regressor (GPR) [62] was applied to the eBird dataset at a
monthly timescale to produce a daily time series of relative abundance estimates for
2010-2017. This process is similar to how the mosquito PBM was used to transform
the mosquito trap data to a daily time series, but mechanistic information is not taken
into account for the GPR. Yearly values for the bird net growth rate were found from
fitting ¢, ¢s, and w of Equation (4.4.3) to the GPR time series. Parameter fitting
uses a similar process to the one used to find the time-dependent parameters of the
total mosquito population.

Data to estimate the total number of birds in the GTA was obtained from the
North American Breeding Bird Survey (BBS) [11, 95]. The BBS was created in 1966
to monitor the effect of DDT usage on bird populations. It is now used to inform
researchers and wildlife managers of significant changes in population levels due to
habitat loss and land-use changes. It is jointly monitored by the US Geological Sur-
vey’s FEastern Ecological Science Center, Environmental Canada’s Canadian Wildlife
Service, and Mexico’s National Commission for the Knowledge and Use of Biodiver-
sity. Data for BBS is collected via roadside surveys once a year by volunteers skilled
in bird identification. Three-minute point counts are conducted by a single observer,
and the same observer records data for each of the 50 stops spaced 0.5 miles apart
on a survey route. There are over 4,100 survey routes across North America. At
each stop, every bird seen or heard within a 0.25 mile (400m) radius is recorded and
identified by species during the three-minute period. Population estimates are deter-
mined by multiplying the BBS bird density by the area of the GTA [7]. The BBS

bird density is found by dividing the BBS value of the GTA by the area sampled from
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Table 4.4: Breeding Bird Survey Estimates (BBS Values) of All Birds in the Greater
Toronto Area (GTA) for Years 2010-2017 [11]. Total Birds Estimate the Entire Bird
Population in the GTA as the Product of the BBS Bird Density and the GTA Region
Area. Initial Relative Abundance (RA) is the Proportion of WNV-Competent Birds
in the GTA from eBird Data After Applying the Gaussian Process Regressor [19, 62]
on the First Day of the Mosquito Season. Initial Bird Population N,(0) is Found by
Multiplying the Total Birds by the Initial RA.

Year | BBS Value | Total Birds (Millions) | Initial RA | N,(0) (Millions)
2010 3,043 8.67 0.25 2.19
2011 3,051 8.69 0.46 4.01
2012 3,098 8.83 0.36 3.19
2013 3,366 9.59 0.27 2.99
2014 3,064 8.73 0.26 2.24
2015 2,672 7.61 0.28 2.10
2016 2,259 6.43 0.33 2.13
2017 2,083 5.94 0.35 2.09

the survey stops. Five survey stops are located within the GTA region, and each stop
has a 0.4km-radius, producing a sample area of 2.5km?. This bird density is then
multiplied by 7,123.64km?, which is the total area of the GTA [26]. This yearly value
provides the total number of birds in the GTA.

The initial condition of the WNV-competent bird population N,(0) is found by
multiplying the relative abundance value of the GPR time series on the first day of
the mosquito season by the estimated total number of all birds in the GTA from BBS.
Values of yearly reported BBS values, estimated total bird population, initial relative
abundance of WNV-competent birds, and initial WNV-competent birds are outlined
in Table 4.4.
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4.4.3 'Total Human Population

Yearly estimates of human population data were not available for years 2010-
2017. We therefore use the population data from the Canadian Census from 2021 to
estimate the human population Nj(t) for each year of simulation [27]. The sum of
the human populations from the five Ontario public health units of the GTA result
in over 6.7 million humans. This value is used as the initial condition N,(0) for each

year of simulation.
4.5 Data Fitting and Simulations
4.5.1 Fitting to Human Case Data

Human case data from Public Health Ontario [61] is used to parameterize the per
capita vector biting rate on humans «; for years 2010-2017. We use a least squares
method in Python to fit the yearly per capita vector biting rate on humans, simi-
lar to the method that was used to fit the demographic parameters for the vector
and bird populations (Sections 4.4.1 and 4.4.2). The cost function is the sum of
squared errors between the cumulative new human infections and the yearly esti-
mated human cases. Yearly estimated human cases account for both symptomatic
and asymptomatic infections. Nearly 80% of human WNYV infections are assumed to
be asymptomatic. We assume that the reported value of human cases reflects the
true number of symptomatic infections. Dividing this value by 0.2 gives the esti-
mated value of total infections. Therefore, the fitted vector biting rate on humans
accounts for both symptomatic and asymptomatic cases. Similar to the process of
finding yearly parameters for the vector and bird populations, we fit a separate «;,

value for each year of fitting.
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4.5.2 Numerical Method

Numerical simulations were carried out in Python. Simulations were run for years
2010-2017 using the GTA data. The duration of simulation 7™ is the length between
the first day of the mosquito season (Start Date indicated in Table B.2) and December
1st of the indicated year in days. We use a step size of h = 0.1 days and assume an
equal number of time and infection-age steps for each year. That is, 7% = A*, and
the total number of time steps N = 1™ /h equals the total number of infection-age
steps M. We use daily temperature data from ERA5 [32].

Yearly parameters for the time-varying vector and bird populations are found in
Tables B.2 and D.3. For fitting o, we assume an initial estimate of 0.001 bites/(vector xday),
and a vector-to-host ratio modification of n = 25. All other parameter values are de-
scribed in Tables 4.1 and 4.3.

For each year, the total vector population N,(0) was initialized using values in
Table B.2, the total bird population Ny(0) was initialized using the relative abundance
values in Table D.3 multiplied by the estimated number of all birds from BBS data
[11], and the total human population N,(0) was initialized to 6.7 x10° people.

For initializing infectious compartments, we assumed a single vector with infection-
age zero to provide the initial infection. All other infection-age-structured compart-
ments for the vector and birds were initialized to zero. Susceptible vectors were
initialized to S,(0) = N,(0) — 1, Sp(0) = Ny(0), and S,(0) = N(0). The recovered
compartments were initialized to zero.

Trapezoidal quadrature is used to determine the force of infection at the time
boundary n = 0. For notational convenience, let U} ~ ip(7h, nh) denote the numerical
approximation of infected bird infection-age-density at time nh with infection-age

Jh, and let V" ~ iv(jh,nh) denote the numerical approximation of infected vector
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infection-age-density at time nh with infection-age jh. Further, let ™ ~ A\(nh) be
the force of infection from vectors to birds at time nh, y™ & Ay, (nh) be the force of
infection from birds to vectors at time nh, and 2™ & A\,;(nh) be the force of infection
from vectors to humans at time nh. Then the following estimates x, y, and z at the

time boundary n = 0:

M-1
20 :ﬁ <g> < OnoVe + 2 ; B30, V2 + BS@MV]&), (4.7.1)
0 oy (h P s . .
Y :W <§) (ﬁbfu,OUO +2 ; Brw,U; + ﬁbv,MUM>, (4.7.2)
- =%<ﬁ> ( Vo + ZMZ_:IBO Vi + By Vo) (4.7.3)
N+ NO\2/ \ 700 p vhj Vi T Poh M VM |

where 3, 5 is the per-bite vector-to-bird transmission probability at time nh (temper-
ature T™) and vector infection-age jh, By, ; is the per-bite bird-to-vector transmission
probability at bird infection-age jh, and tha‘ is the per-bite vector-to-human trans-
mission probability at time nh (temperature 7™) and vector infection-age jh.

The following steps occur for the remaining time steps n = 1,2,...N — 1. Next, U

and V are updated at the infection-age boundary j = 0,

Ugtt =a2"Sp, forn=0,1,..,N—1, (4.7.4)

Vot =St forn=0,1,..,N — 1. (4.7.5)

A first-order explicit Euler method updates U and V for infection ages j = 1,2, ..., M —

1 according to the rules outlined in Appendix D.3:

Vi = , (4.7.6)
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where p is the vector per capita mortality rate at time nh (temperature 77), rl is
the vector per capita net growth rate at time nh, K is the vector carrying capacity
at time nh, N;' is the total vector population size at time nh, rj is the bird per
capita net growth rate at time nh, and v, ; is the bird per capita recovery rate at bird
infection-age jh.

Updating Sy, Sy, Ry, Sk, In, and Ry, also uses a first-order explicit Euler method
for the next time step according to the rules outlined in Appendix D.3 (equations

omitted). Finally, trapezoidal quadrature is again used to update x, y, and z at the

next time point:

S h ias n+1 n+1

X _Ngt + N;LL (5) ( vbO +2 E Byij + Bvb MV ) , (478)
nt+l _ apT) (ﬁ) Un+1 92 § : ‘U’(H—l Un+1 4.7.9

Yy Nl;l + N}Tll 2 61)?),0 0 + — Bb?),j j + 6[)7)7]\[ M 5 ( . )

M—-1

h
Zn—l—l :% (_) ( ” Vn-l—l ) 6’0 Vn+1 + Vn—&-l). (4710)
NP4 Np\2)/)\7omo Z o7 oM
4.5.3 Simulations from Parameter Fitting

Simulations of infected vectors, birds, and humans for the GTA for years 2010-
2017 are displayed in Figure 4.3 along with the monthly reported human infections
from Public Health Ontario [61]. Table 4.5 contains the fitted a; values for each
year along with the respective residual between yearly cumulative human infections
and estimated human cases from the data [61]. Note that although «y, is fitted to
the yearly estimated human cases (symptomatic and asymptomatic), visualizations

display results for only symptomatic (true reported) cases.

95



There is generally a single peak of vector infections that occurs between August
and September. The largest peak of vector infections occurs for year 2010 with 412
infected vectors. For the infected birds, there is typically a large peak between August
and September each year, with smaller oscillations of infections both preceding and
proceeding the main peak. This behavior is observed from the temperature-varying
nature of the vector-to-bird transmission probability, which is not considered in the
bird-to-vector transmission probability. The largest peak for infected birds occurs for
September 2012 with 2,500 bird infections.

Year 2012 also shows the most human infections, with a peak of 64 symptomatic
human infections in September and 164 symptomatic infections overall. Interestingly,
this year has the second highest fitted «; value. The largest «; value occurred for
year 2017, which was also the year with the smallest peak values for vector and bird
infections. Moreover, there is only a 0.42 Pearson correlation between the fitted o,
values and yearly reported human cases from the GTA. This demonstrates that «;,
alone is not enough to determine the magnitude of peak human cases, but that the
vector, bird host, and temperature also significantly impact the outbreak.

Despite only fitting yearly «j, values to a single data point (yearly estimated
human cases), the model can accurately predict the peak occurrence of observed
human cases. This highlights the power of incorporating the temperature-varying
processes in the PDE model. Exceptions include year 2017, where our model shows
two smaller peaks for human infections in mid August and early October, compared
to the monthly data showing a single, larger peak in September. Despite this, the
yearly total number of human cases still aligns with the fitted model simulations. The
magnitude of the human infection peaks for 2011, 2012, and 2016 do not quite match
the values from the human case data, but this is likely due to the differing temporal

resolution between the model (daily infections) versus the data (monthly infections).
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Figure 4.3: Simulations of Infected Mosquito Vectors (Top Row), Birds (Middle
Row), and Symptomatic Humans (Bottom Row) for the Greater Toronto Area for
Years 2010-2017. The Red Dashed Line in the Bottom Row Shows the Reported
Monthly Human Cases from Public Health Ontario [61].

Next, we apply projections of future weather data under two climate change sce-

narios to investigate possible future dynamics of WNV transmission in the GTA.
4.6 Climate Change Scenario Analysis
4.6.1 Data Sources for Climate Change Projections

Data from NASA Earth Exchange Global Daily Downscaled Projections (NEX-
GDDP) provided information to estimated projected temperature and precipitation
time series for representative concentration pathways (RCP) 4.5 and 8.5 [55]. Recall
that RCP4.5 refers to the “middle of the road” scenario, where socioeconomic factors
are expected to follow historical trends, and that RCP8.5 is known as the “worst
case scenario” with increased fossil fuel driven development [46]. The NEX-GDDP
data was derived from 21 general circulation models (GCMs) developed from the 5th

assessment report of the Intergovernmental Panel on Climate Change. The NEX-
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Table 4.5: Fitted Values of the Vector Per Capita Biting Rate on Humans «y, for
the Greater Toronto Area for Years 2010-2017. The Parameter o), was Fitted to the
Yearly Estimated Human WNV Cases Based on Data from Public Health Ontario
[61]. Residual Values Indicate the Difference Between the Cumulative New Human
Infections from the Model and the Yearly Estimated Cases.

Year | Fitted o, Residual

2010 0.0188 2.84 x10~14

2011 0.1439 -2.84 x10~

2012 0.2741 -3.41 x10713

2013 0.0863 0.00

2014 0.1047 1.06 x10~14

2015 0.1168 -9.95 x1071

2016 0.0933 0.00

2017 0.6786 3.18 x10~ 12

GDDP data catalog provides daily maximum temperature, minimum temperatures,
and precipitation for years 1950-2100 under RCP4.5 and RCP8.5.

We use the Delta Method on a monthly timescale to estimate projected time series
of daily mean temperature and precipitation for an average year between 2080-2100
for the GTA [17]. Specifically, we calculated anomalies (deltas) between the monthly
averages of 2080-2100 and 2006-2020 NEX-GDDP data for both RCP4.5 and RCP8.5
scenarios. We add these monthly deltas to the monthly average of 2006-2020 data
from ERAD (bascline data) [32]. Note that the ERAS data was used to construct the
mosquito PBM time series of the historical data and for the daily temperature data
for simulations. The maximum and minimum daily temperatures of the NEX-GDDP
data were averaged to estimate the daily mean temperature, and all precipitation
time series applies a 14-day moving average before calculating delta values.

Figure 4.4 shows the temperature and precipitation for and average year of current
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conditions (2006-2020) and future projections (2080-2100) under RCP4.5 and RCP8.5
for the GTA. Under RCP4.5, the average temperature of the GTA is expected to
increase by 2.25°C, and average precipitation is expected to increase by 5.53%, with
the greatest increase expected for winter and spring months (December - April).
Average temperature is expected to increase by 5.06°C on average under RCP8.5,
with the greatest increase during the winter. Precipitation under RCP8.5 is expected
to increase by 11.38% on average, with relative increases over 20% for early spring.
The purpose of using projected GCM data specific for the GTA is because climate
change is expected to have a nonuniform effect on different micro-climates [46]. Other
studies that analyze climate change scenario impact on vectors and vector-borne
disease models assume a uniform increase of temperature [82, 54|, which may over
or underestimate the true expected conditions under climate change. The following
section explains how the projected time series data is used to estimate plausible

mosquito population sizes under the RCP4.5 and RCP8.5 scenarios.
4.6.2 Projections for Total Population Sizes

Projected daily mean temperature and precipitation time series found in Section
4.6.1 were fed into the mosquito PBM model [74] to construct daily time series of
mosquitoes for the GTA under RCP4.5 and RCP8.5. Since there is limited informa-
tion about how bird populations will be altered under climate change, we estimate a
relative abundance time series for WNV-competent birds using the average relative
abundance of the 2010-2017 time series generated from the eBird data applied with
the GPR [19, 62].

Projections of WNV-competent bird relative abundance, along with mosquito pop-
ulation sizes for the GTA under RCP4.5 and RCP8.5 are displayed in Figure 4.5 and

assume conditions for an average year between 2080-2100. Parameter values from
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Figure 4.4: Projected Time Series for (a) Temperature and (b) Precipitation for
an Average Year Between 2080-2100 Under Climate Scenarios RCP4.5 (Yellow) and
RCP8.5 (Green) Compared to an Average Year Between 2006-2020 (Blue). Precipi-
tation Time Series Represents a 14-Day Moving Average.

fitting the population time series are found in Table 4.6. Parameter values were fitted
using the methods described in Section 4.4.

Notice that the mosquito PBM time series for RCP4.5 and RCP8.5 conditions
are one and two orders of magnitude greater than the largest mosquito peak in the
historical PBM time series (see Figure 2.3). These projections are understandable and
plausible considering the overall 2.5 and 5°C temperature increases, and increased
precipitation expected in the spring [54, 73].

We now use the parameters fitted from the projected population time series into

the PDE model to simulate possible future dynamics of infected populations under

climate change scenarios RCP4.5 and RCP8&.5.
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Table 4.6: Fitted Parameter Values for Projected Vector and Bird Population Sizes
Under Climate Change Scenarios RCP4.5 and RCP8.5. Note That “Start Day” Refers
to the First Day of the Mosquito Season.

Parameter | RCP4.5 RCP8.5
Start Day May 24 June 1
r 0.029 0.018
Ts -0.080 -0.073
K 1.00 x10" | 1.00 x108
K, -9.5 x108 -9.5 x107
@ 2.10 x10°* | 2.10 x10°*
Os -5.38 x1073 | -5.38 x1073
w 0.01 0.01
At 165 173
N,(0) 365.98 3215.85
Ny (0) 901.06 897.97

4.6.3 Simulations of Climate Change Scenarios

Simulations of infected vector, bird, and human population sizes for an average
year between 2080-2100 for the GTA under climate change scenarios RCP4.5 and
RCPS8.5 are displayed in Figure 4.6. Simulations use parameters and initial conditions
from Tables 4.1, 4.3, and 4.6. Due to the uncertainty of the vector per capita biting
rate on humans, simulations use the mean and 95% confidence interval (CI) of the
ay, values obtained from fitting historical human case data. This provides a range of
possible human infection dynamics under the two climate change scenarios. Numerical
simulations were conducted using the method outlined in Section 4.5.2. Simulations
required that we reduce the vector-to-host tuning parameter from n = 25 to n =

12.5 for the RCP4.5 simulation and to n = 6.25 for the RCP8.5 simulation. These
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adjustments were necessary to avoid numerical instability, and we were unable to
achieve numerically stable simulations under the same value of 1 across all three
scenario conditions.

Peak infections for all populations are expected to occur around the same time as
under current conditions (late September - early October). Compared to the greatest
peak mosquito population from 2010-2017 simulations, peak mosquito population
is estimated to increase by one order of magnitude under RCP4.5 conditions and
by two orders of magnitude under RCP8.5 conditions. These estimates reflect the
large impact of temperature increases from climate change on mosquito populations.
However, when comparing the ratio of peak infected to total vectors across historical
and scenario conditions, this value increases 14.5 times under RCP4.5 and 25 times
under RCP8&.5. This demonstrates the possible large effect of increased temperature
on WNV transmission probability.

A difference of 162 human cases was observed between the greatest and least years
of reported cases between 2010-2017 — years 2010 and 2014 had the least number of
cases reported with 6 cases, and 2012 had the greatest number of reported cases with
168 cases. The range between overall symptomatic human infections is expected to
increase 22-fold under RCP4.5 and 75-fold under RCP8.5. These range estimates
were determined from taking the difference of overall symptomatic human infections
produced by simulations using the upper and lower 95% CI of «y, values from historical
data fitting. This shows how increased temperatures can lead to larger variation in
overall human infections from year to year.

Under the most conservative estimation of the vector per capita biting rate on
humans (lower 95% CI value), annual symptomatic human cases are expected to
be similar to the greatest number observed from 2010-2017 (139 vs. 168 cases).

However, RCP8&.5 conditions could lead to a 17-fold increase of overall human cases
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Figure 4.6: Simulations of Infected Vector (Top Row), Bird (Middle Row), and
Symptomatic Human (Bottom Row) Population Sizes for an Average Year Between
2080-2100 in the Greater Toronto Area Under Climate Change Scenarios RCP4.5 (Left
Side) and RCP8.5 (Right Side). For the Infected Symptomatic Human subfigures, the
Blue Lines Represent Simulations Using the Mean Vector Per Capita Biting Rate on
Humans oy, = 0.1896 from Fitting to Historical Human Case Data, and Shaded Areas
Reflect Simulations for the 95% Confidence Interval of Fitted a; Values ([0.0136,
0.3654]).

from the most conservative o, estimate. These estimates demonstrate the importance
of limiting the warming of our planet. These results will, hopefully, encourage policy

makers to make decisions that will protect their constituents from future WNV and

other MBD risk.
4.7 Discussion

This chapter brings together many pieces and parts to investigate the possible

impact of climate change on WNV transmission. We extend the simplified WNV
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PDE model of Chapter 3 to include temperature-dependent processes for the vector
per capita mortality rate and vector-to-host transmission probability, and incorporate
inter-annual and intra-seasonal variation of vector and bird host demography through
the data fusion technique described in Chapter 2. After parameterizing the model
using human WNV case data from the Greater Toronto Area (GTA), we then use
projected weather data from general circulation models to predict possible dynamics
of future WNV transmission. We demonstrate the importance of including temper-
ature dependence on demographic and epidemiological processes, as the model was
able to accurately capture the peak timing of human infections, despite fitting the
model to a single yearly data point.

Since there is limited information on how bird and human hosts population sizes
will change for the GTA under climate change, this study only focuses on the contri-
bution of changing mosquito populations affecting WNV transmission under climate
change. We decided to fit the vector per capita biting rate on humans to the yearly
estimated human WNV cases for two reasons. First, the per capita biting rate was
shown to be one of the most sensitive parameters of the basic reproduction number
of the simplified model. Second, there is likely temperature dependence on the biting
rate, as studies of other mosquito species showed temperature-dependent biting rates
[53, 69]. However, we do not know the functional form of this relationship for Culex
mosquitoes, as the effect of temperature on Culex biting has yet to be studied. Fu-
ture work may aim to extend the per capita biting rate to be temperature dependent
instead of fitting separately per capita biting rates for each year.

There is still a lot of uncertainty about the exact translation from mosquito trap
data to the true mosquito population. There is even more uncertainty about how the
vector population size scales to the total host population size. Here we incorporate

the parameter n to scale the vector-to-host population size ratio to a suitable level
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for generating a WNV outbreak with our assumed initial conditions. The selected
7 value affects the per capita vector-to-human biting rate g, that is fitted from the
historical human case data. It is challenging to select the best n for parameter fitting
because we lack bird infection data for comparing simulations. We found that we
cannot use the same 7 value in the climate scenario analysis as the one used in the
historical data due to numerical stability issues. However, reducing the n value in the
climate change scenarios may account for the likely increased human host population
size in the next 60-80 years.

Analyses for climate change scenarios RCP4.5 and RCP8.5 estimate that peak
and overall human WNV cases will substantially increase as temperature increases
from climate change. Further, additional variation and uncertainty of peak case
magnitude is expected under the worst case scenario of RCP8.5. These results show
how crucial it is to limit warming of our planet in order to mitigate future WNV
risk as much as possible. Although the results here are specific for WNV and for
the GTA, this framework ultimately aids in our preparation for future vector-borne
disease outbreaks.

It is worth revisiting the formulation of the force of infection equations, as different
assumptions underlying the formulation may lead to differing conclusions. For this
study, the force of infection considers the total vector biting rate o on the total host
population N, + Nj. We assume the biting rate on birds «y and the biting rate on
humans «j, to be proportions of the total biting rate on all hosts. We made this
assumption to aid in the translation from the simplified model to the full model.
Other studies formulate the force of infection by separating the host populations [6].
Under this modified assumption, the denominator of A, and Ay, would be N, and the
denominator of \,;, would be N,. It will be interesting to see how simulation results

under this alternative formulation will compare with our current model output, as it
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is possible that this alternative formulation may allow us to omit the vector-to-host
scaling parameter 7. It may even be worthwhile to incorporate a time-dependent per
capita biting rate between birds and humans, which has been previously documented
[75] and modeled for WNV [23]. Including these additional biological considerations

to the model may further inform our climate change scenario analysis.
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Chapter 5

CONCLUSION

As climate change continues to threaten our health and well being, and con-
sidering that mosquito-borne diseases take an enormous toll on human health and
the world economy, it is crucial to understand the complex impacts our climate has
on mosquito-borne disease (MBD) transmission. Understanding the role of climate
change and demography on future West Nile Virus (WNV) risk involves a compre-
hensive model that incorporates numerous data streams and submodel outputs. The
Climate Integrated Model for Mosquito-Borne Infectious Diseases (CIMMID) project
at the Los Alamos National Laboratory aims to develop a continental scale model
for analyzing MBD risk under climate change scenarios. This dissertation aims to
answer two questions to enhance our knowledge about modeling WNV transmission.
The first question asks about the impact of vector and host demography on WNV
dynamics. The second question addresses the possible impacts of expected and likely
climate change scenarios on demographic and epidemiological parameters for WNV
transmission.

The second chapter prepares us to address the question of vector demography on
WNYV transmission. In that chapter, we develop a non-autonomous logistic model
to capture the pattern of discrete mosquito time series data. Incorporating non-
autonomous parameters allowed us to analyze the inter-annual and intra-seasonal
variation of mosquito populations within a geographic region. We discovered that
the parameters of the non-autonomous model have different sensitivity to the sea-
sonal peak magnitude and timing for different types of mosquito populations. We

also learned that we cannot simply connect the fitted parameters to weather data
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due to the complex, nonlinear interactions between mosquito processes and their en-
vironment. However, this data fusion framework is valuable for being a powerful tool
in aiding the CIMMID initiative. The data fusion method using the non-autonomous
logistic model is seamlessly integrated into the CIMMID framework. CIMMID uses
earth systems models to partition land area into different units, called hydropop
units, based on hydrology, vegetation, and population characteristics. There are tens
of thousands of hydropop units for the North American continent, and each one de-
livers input into the mosquito process-based model (PBM) to generate time series of
daily mosquito estimates. The data fusion framework of the non-autonomous logistic
model facilitates the connection between the discrete time series data and continuous
demographic parameters for the epidemiological models.

The third chapter addresses the question of vector and host demography by an-
alyzing infection-age dynamics. We developed a three-population partial differential
equations model that has infection-age heterogeneity for both mosquito vector and
bird host populations. To our knowledge, this is the first PDE model for WNV that
incorporates infection-age dependence on both vector and host populations. We es-
tablish the existence of a unique continuous solution under certain model assumptions.
Results from sensitivity analysis indicate that control strategies for WNV mitigation
should focus on increasing the vector mortality rate and decreasing the vector bit-
ing rate. We plan to submit the work in this chapter for publication in the Journal
of Theoretical Biology, Mathematical Biosciences, or Mathematical Biosciences and
Engineering.

The fourth chapter is the culmination of the dissertation and addresses our ques-
tions of interest. In this chapter, we connect the non-autonomous logistic model for
mosquito populations from the second chapter with the infection-age structured WNV

PDE model from the third chapter. We further extended the model to include tem-
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perature dependence on the vector per capita mortality rate (demographic parameter)
and transmission probability from vectors to hosts (epidemiological parameter). In-
corporating this temperature dependence allowed us to analyze possible future WNV
dynamics under climate change scenarios using projected weather data from general
circulation models. We fitted the vector per capita biting rate on humans to historical
human case data, which was used to inform the range of likely future dynamics under
climate change scenarios RCP4.5 and RCP8.5. The main takeaway from the scenario
analysis is that temperature increases due to climate change will not only increase
the overall number of human WNV infections for the GTA, but we can also expect
a wider variation of outbreak magnitude from year-to-year. We plan to revisit the
formulation of the force of infection before submitting the work for publication.
Future work will involve exploring the climate change impact on WNV transmis-
sion of other geographic locations with different regional characteristics. For example,
Maricopa County, Arizona, which has a hot, dry climate compared to the GTA where
it is temperate and wet. Despite these environmental differences, both areas have
suffered WNV outbreaks in recent years. Since climate change is expected to have a
heterogeneous impact across different types of micro-climates, it will be interesting
to see if climate change will cause Maricopa County to be too hot for vector-borne
disease transmission, or if the mosquito season will shift to earlier spring or later
fall. By understanding the role that climate and demography have on MBD such as
WNYV, we can better prepare to mitigate future outbreaks that will be driven by the

increased transmission risk that will result from climate change.
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Table B.1: Candidate Models for the Model Selection Procedure. Models A—D Con-
sider a Constant Carrying Capacity, While Models E-K Consider a Time-Varying
Carrying Capacity. Entries with a Solid Line (“ ”) Indicate that the Param-
eter was not Fitted for that Model, and Rather was Held Constant at the Initial
Value. For Entries with Two Lines, the Upper Line Refers to the Values Used for
the Total Mosquito Population, and the Lower Line Refers to the Values Used for the
Active Mosquito Population. The Initial K or K}, Value for Each Model is the Maxi-
mum Value of the Mosquito Process-Based Model Time-Series used for Each Season’s
Fitting. ”Parameters Fitted” Refers to the Parameter Components which were Op-
timized for Each Season. "Initial” Columns Indicate Initial Values of the Respective
Parameter for Each Year. ”Range” Columns Refer to the Constraint Bounds ([Min,
Max]) that Directed the Search Space for the Respective Parameter Optimization.

Model | . [® "o Ts "s K or K, . Ks K
initial range initial | range range initial range
A 0.01 -0.07 | -0.35, 0
B 0 [-0.2, 0.2] | -0.07 | [-0.35, 0 - -
[1, 100,000]
C 0.01 -0.07 | [-0.35, 0] 1, 1,000]
[1, 100,000]
D 0 [-0.2, 0.2] | -0.07 | [-0.35, 0] 1, 1,000]
E 0.01 | —— | -0.07 | [-0.35, 0] E— 1(1)0 —_—
F 0 [-0.2, 0.2] | -0.07 | [-0.35, 0] E— 1(1)0
[1, 100,000] | 100 | [0, 100,000]
G | 001 | ——— ) 007 S, L0000 |1 | [0, 1,000]
100 | [0, 100,000]
H 0.01 | —— | -0.07 | [-0.35, 0] E— 1 0, 1,000]
100 | [0, 100,000]
J 0 [-0.2, 0.2] | -0.07 | [-0.35, 0] E— 1 0, 1,000]
[1, 100,000] | 100 [ [0, 100,000]
K 0 [-0.2, 0.2] | -0.07 | [-0.35, 0] 1, 1,000] 1 0, 1,000]
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Table B.2: Fitted Parameter Values of the Model (2.2) for Greater Toronto Area’s
Total Mosquito Population from Years 2005-2019. For Each Year, the Mosquito
Fitting Season Lasts from the Indicated Start Date Through End Date (mm/dd/yyyy

Format).

Year | Start Date | End Date Y T K, K P0) | RMSE
2005 | 05/11/2005 | 10/01/2005 | -0.003 | -0.056 | 32174 | O 627.31 | 1242
2006 | 05/20/2006 | 10/01/2006 | -0.065 | -0.328 | 26771 | 24996 | 187.51 | 1195
2007 | 05/20/2007 | 10/01/2007 | -0.007 | 0.137 | 7749 | 2408 | 444.91 | 684
2008 | 05/18/2008 | 10/01/2008 | -0.014 | -0.110 | 63880 | 63278 | 499.13 | 1229
2009 | 06/01/2009 | 11/01/2009 | -0.024 | -0.350 | 18456 | 16695 | 57.00 1247
2010 | 05/01/2010 | 11/01/2010 | 0.001 | -0.076 | 51744 | O 176.74 | 903
2011 | 05/07/2011 | 10/01/2011 | 0.001 | -0.069 | 51421 | 6004 | 255.78 | 383
2012 | 05/09/2012 | 10/01/2012 | -0.007 | -0.075 | 15458 | O 721.52 | 938
2013 | 05/01/2013 | 11/01/2013 | -0.005 | -0.068 | 100000 | 0 520.20 | 3524
2014 | 05/25/2014 | 10/09/2014 | -0.031 | -0.182 | 8248 0 248.95 | 1097
2015 | 05/18/2015 | 10/17/2015 | -0.004 | -0.114 | 9452 0 402.98 | 647
2016 | 06/01/2016 | 10/03/2016 | -0.015 | -0.067 | 51915 | 46951 | 3293.05 | 580
2017 | 05/18/2017 | 10/01/2017 | -0.027 | -0.091 | 100000 | O 803.38 | 1535
2018 | 06/01/2018 | 10/16/2018 | -0.013 | -0.048 | 100000 | 93746 | 5379.55 | 798
2019 | 05/04/2019 | 10/01/2019 | -0.008 | -0.101 | 98758 | 98758 | 1916.85 | 1221

Table B.3: Fitted Parameter Values of the Model’s (2.2) Mosquito Fitting Season
for Greater Toronto Area’s Active Mosquito Population from Years 2005-2019. For
Each Year, the Mosquito Fitting Season Lasts from the Indicated Start Date through
End Date (mm/dd/yyyy Format).

Year | Start Date | End Date Tp Ts K, K, | P(0) | RMSE
2005 | 05/09/2005 | 05/26/2006 | -0.012 | -0.094 | 826.4 | 826.0 | 1.22 | 0.59
2006 | 05/27/2006 | 05/12/2007 | -0.101 | -0.350 | 43.2 | 40.6 | 0.25 | 0.79
2007 | 05/13/2007 | 05/30/2008 | 0.002 | -0.250 | 11.3 | 6.2 | 0.01 | 0.62
2008 | 05/31/2008 | 05/30/2009 | -0.009 | -0.350 | 37.3 | 34.3 [0.42 | 0.75
2009 | 05/31/2009 | 05/06/2010 | -0.036 | -0.350 | 23.7 | 22.2 | 0.12 [ 0.98
2010 | 05/07/2010 | 05/02/2011 | -0.011 | -0.101 | 182.9 [ 0.0 | 0.16 | 0.57
2011 | 05/03/2011 | 05/29/2012 | 0.026 | -0.198 [ 22.2 | 22.1 | 0.01 | 0.44
2012 | 05/30/2012 | 05/19/2013 | -0.083 | -0.175 | 18.4 | 2.1 2.03 | 0.53
2013 | 05/20/2013 | 04/30/2014 | -0.091 | -0.21 | 1000 | 0.0 0.17 | 1.70
2014 | 05/01/2014 | 05/19/2015 | -0.002 | -0.154 | 14.5 | 0.0 0.01 | 0.87
2015 | 05/20/2015 | 05/14/2016 | -0.037 | -0.134 | 16.2 | 0.0 0.53 | 0.39
2016 | 05/15/2016 | 04/30/2017 | 0.027 [-0.329 | 185 | 14.8 | 0.01 | 0.59
2017 | 05/01/2017 | 05/12/2018 | -0.003 | -0.145 | 46.4 | 0.0 0.01 | 0.49
2018 | 05/13/2018 | 04/30/2019 | 0.034 |-0.317 | 19.7 | 13.4 | 0.01 | 0.82
2019 | 05/01/2019 | 04/30/2020 | -0.004 | -0.139 | 94.4 | 0.0 0.01 | 0.60
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Figure B-1: Simulations of the Optimal Model Fits for the Total Population in the
GTA (Blue Curves) and PBM Time Series (Red Dots) for Years 2005-2019.
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Figure B-2: Heatmaps of the Normalized Root Mean Squared Error (RMSE) Values
from Total Population Fittings with Respect to Candidate Start and End Dates for
Years 2005-2019. Dark Purple Regions Denote the Candidate Start and End Date

Combinations with the Lowest Normalized Values.
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Figure B-3: Simulations of the Optimal Model fits for the Active Population in the
GTA (Blue Curves) and PBM Time Series (Red Dots) for Years 2005-2019.
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Figure B-4: Simulations (Curves) and Normalized Root Mean Squared Error Values
of the Active Population in the Greater Toronto Area for Fitting Start Dates May
1st—June 1st for Years 2005-2011.
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APPENDIX C

SIMPLIFIED WNV MODEL

130



C.1 Method of Characteristics for Infected Birds

Let &,&,v: Ry X R — R be the characteristics of (3.3.4), where 7 = &, t = &,
and 7, = v. We aim to find solutions z € R, and t € R such that,

§(Z7y) = (fl(z,y),fg(z,y)), (Cll)
iv(&(2,y)) = v(z,y). (C.1.2)

Case 1: Suppose t < 7. Then the system (C.1) transforms into the following initial
value problem (IVP):

d&
ay £(2,0) = 2, (C.2.1)
dés
a &(2,0) =0, (C.2.2)
Z—Z = —w(&(2,9))v(z,y), v(z,0) = i(2). (C.2.3)

Integrating (C.2.1) and (C.2.2) gives:

§u(z,y) =y +alz), (C.3.1)
a2, y) =y + ca(2), (C.3.2)
where ¢;(z) and ¢y(z) are functions of z. Applying initial conditions gives:
Cl(z) =z, (033)
c2(z) = 0. (C.3.4)

Substituting (C.3.3) and (C.3.4) into (C.3.1) and (C.3.2) gives the expression for
JENNE

E(z.y) = (&%), &(2.9) = (v +a(2),y + 2(2) = (y + 2,9). (C.4)
Substituting (C.4) into (C.2.3) yields:

dv

d_y = _’Yb(y + Z)U(Z, y):

and solving by separation of variables gives
v(z,y) = v(z,0)e Jo wlst2)ds, (C.5)
Noting that (7,t) = £(z,y), we can solve for z and y as functions of 7 and t:

T=&4(2y) =2+,
t==&(z,y) =y,
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implies,

y=t,
z=T1—1.

Transforming (C.5) back to original variables gives:
ip(T,t) = i)(T — t)e~ Jowlr—ttads iy < 7 (C.6)
Let TI,(7) = e Jo %(*)45 Using the change of variable, a = 7 — t + s,

e fg Vo(T—t+s)ds _ e I, wla)da
o JT w(@dat [T pp(a)da
o 3 w(a)da

e fOT_t ’Yb(a)da

()
Hb(T — t) ’
Therefore, (C.6) becomes,
‘ _ 00 4y _Ie(7) ;
in(T,t) =iy (T Omeg, Ht<T (C.7)

Case 2: Suppose now that 7 < ¢. Then the system (C.1) transforms into the following
IVP:

% =5 &1(0,y) =0, (C.8.1)
% =L &(0,y) =y, (C.8.2)
% = =08z )v(zy); 0(0,9) = A (y) Sp(y). (C.8.3)
Integrating (C.8.1) and (C.8.2) gives:
&1(2,9) = 2+ c3(y). (C.9.1)
&(29) =2+ aly), (C.9.2)
where ¢3(y) and ¢4(y) are functions of y. Applying initial conditions gives:
ca(y) =0, (C.9.3)
cly) =y (C.9.4)

Substituting (C.9.3) and (C.9.4) into (C.9.1) and (C.9.2) gives the expression for
JENNE

5(272/) = (51(27y)?§2(z>y)) = (Z +c3(y)7z +C4(y)) = (Z>y + Z)' (ClO)
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Substituting (C.10) into (C.8.3) yields:

dv

& = (i),

and solving by separation of variables gives,
0(2,y) = Aup(y) S y)e Jo 1w, (C.11)

Noting that (7,t) = £(z,y), we can solve for z and y as functions of 7 and t:

T = fl(z’y) =z,
t:§2(27y) :Z+y7
implies,
z2=T,
y=1—rT.

Transforming (C.11) back to original variables gives:
ip(T,t) = Ay (t — 7)Sp(t — T)Ip(7), if 7 < t. (C.12)

To verify that the initial and boundary conditions are compatible, suppose t = 7 = a.
Then,

iy(a,a) = i)(0),(a), from (C.7), (C.13.1)
in(a,a) = \p(0)SPTT,(a), from (C.12). (C.13.2)

Thus, in order for (C.13.1) and (C.13.2) to be equivalent, it follows that 7(0) =
A (0)SY.
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C.2 Integral Form of the Model

The integral form of (3.3.1) is found using variation of parameters:
Sy(t) = SOIL, (t)e~ Jodw()ds 1 A / te—fcf““bv<a>danv(t— s)ds. (C.14.1)
0
Applying the change of variable, n =t — s, the integral form of (3.3.1) becomes,
Sy(t) = SUIL,(t)e Jo (s 4 o, / R Ao (DIOTT (1) dly. (C.14.2)
0

To obtain the integral form of (3.3.2), integrate (3.6.1) with respect to 7:
I,(t) = / ip(T,t)dT
0

:/0 )\bv(t—T)Sv(t—T)Hv(T)dT—F/txig(T—t)%(h_

N J/
-~

Fi(t)

Applying the change of variable, n =t — 7 gives:
t
I,(t) = / Moo (M) Sy (ML, (t — n)dn + Fi(t).
0
By substituting (C.14.2) for S,(n), the expression for I,(t) becomes,
t
(1) = SUL(E) [ Nuln)e Bmondy
0
t N n—s
s [ A= = s)em B sy 4 F (),
0o Jo
Changing the order of integration for the second term of I,(¢) simplifies the expression:
t
(1) = SUL(E) [ Nm)e By
0

t ¢ .
+ A, / I, (t — s) / Ao ()™ J0 " @dagngs 4+ B (). (C.15)
0 s
The integral form of (3.3.3) is found using separation of variables:

Sp(t) = Sl(y)ef Il Auvp(s)ds (C.16)

To get the integral form of (3.3.4), integrate (3.6.2) with respect to 7:

L(t) = /0 il t)dr
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— /Oit Aop(t — 7)Sp(t — )y (7)dT + /'00 i) (T — t)HHb(T) dr .

& b(T—t)

Fy(t)

Applying the change of variable, n =t — 7 gives:
Y
0= [ AamSi(nh(t — n)dn + Fife).
Jo

Substituting (C.16) for S,(n) in the expression for [,(t) further gives:

t t
Iy(t) = Sz?/ Ao (MLt = m)e o Xv % dny 1 Fy(1). (C.17)
0

To obtain the integral form of (3.3.5), integrate with respect to t:

- /0 t | /0 T o (PVin(r. 8)drds
_ /0 t /0 o (Pin(rs)drds + /0 t / T (r)in(r, s)drds.

Substitute (3.6.2) to get,

/ / Yo(T)Ap (s — 7)Sp(s — 7)d7ds —I—/ / Y (7)ig (T — b)Hbl_(IT(—)s)deb'

Fg(t

Substitute in (C.16) for S to obtain,

=5, / / Yo (T) A (5 — T (T)e™Jo " Aw(@dagrgs 4 puy). (C.18)
The integral form of (3.3.6) is found using separation of variables:

Sp(t) = SO~ Jo dun(s)ds, (C.19)
To obtain the integral form of (3.3.7), first substitute (C.19) for S (¢):

dI,

— = St (B)e P — g I (1),

Then solve using variation of parameters to obtain:

t
In(t) = ID ¢ -l—S,?/ Ao (8)e™ Jo don(@da o= (t=5) g (C.20)
N — N —
(0 ’ I (t=5)
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Finally, to obtain the integral form of (3.3.8), substitute (C.20) for I (¢):

dRy

t

dt ’thhHh( ) A/th(l)/ ’Uh( )Hh(f — 9) fO vh(a)dadg
0

Integrating with respect to ¢ and simplifying terms gives:

I ()

(2

torn
Ri(t) = 1S / / Ao ()L (1 — s)e~ o don@ioggy (C.21)
0 0

To get the integral form of (3.4), we first substitute (3.6) for i,(7,t) and é(7, t):

_ o IT, ()
Avb(t) = Nb T Nh / ﬁvb >\bv t— T) (t - 7— dT + / Bvb 7' — t) 1,(7’ — 1‘) d’7'>,
Aon(t) = N, i N / Bon(T) Ao (t — 7)Sy(t — )L, (7)dT + / Bon(T)id (T —t) lzi(i)t)d7> ,

/\bv(t) = N, _Tj N, / Bbv vb t - T)Sb(t — T)Hb dT —l—/ Bbv Zb T — t) H:_([T(_)f)d7—>

Applying the changes of variables n = ¢t — 7 and n = 7 — t to the first and second
terms of each expression, respectively yields:

( / Buslt = 1) (1) So ()L (¢ — )y + /Owﬁvbuw)z%(n)%dn),

Gr(1)
(C.22.1)

Aon(t) = Nb+ N, (/ Bon(t — 1) Xow(1) Sy ()11, (¢ — n)dn+/ooo ﬁvh(t-l—n)ig(n)%dn),

(1)
(C.22.2)

</ Boo (&= 1) Ao () Sp () Iy (£ =1 dn+/ Bou(t + )i (n)—Hﬁz(;)n)dn)

G'3(t)
(0.22.3)

Awp(t) =

Nb+Nh

A(t) = Ny + Nh

Substituting (C.14.2) and (C.16) for S,(n) and Sy(n) further yields:

t
_ a 0 N — Jo" Ao (s)ds
/\vb(t) Nb+ Nh <Squ(t)‘/0 ﬁvb(t n)Abv(n)e d77
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+A/ / Bup(t — 0w ()L, (1 — )L, (t — n)e f”bﬂ<“““dsdn+01<t>>,

Aon(t) = Nb+N; <SOH /ﬁ“”t_ 1) Ao (7)€ 0 Aee ()5 gy

+ A / / ﬁvh )\bv ) (7] — S)Hv(t — 7})6* I Abu(a)dadsdn 4 Gg(t)> 7

_ a 0 o — [ Aup(8)ds o
(C.23.1)

Finally, simplify the expressions for A, (t) and A\, (¢) by changing the order of inte-
gration for their second terms:

t
Aob(t) = N, i N, <53Hv(t) / Bun(t — n) Ay (m)e™ I o5y
0
t t
+A, / I, (t — s) / Bup(t — n)Abm)e—fo”‘”bv@d‘ldnds+Gl(t>),
0 S
(C.23.2)
Aon(t) = N, + Nh <SOH / Bun(t — 1) Ay ()™ Jo 2o )y
+ A, / IL,(t — s) / ﬂvh(t—n)Abv(n)e—fo"”Ab““)dadnds+G2<t>>'
0 0
(C.23.3)
t
@] n
Ao (t) = N, + N, (53 / B (t — 1) A () e~ J0 Xt (¢ — )iy + Gg(t))-
0

137



C.3 Proof of Existence and Uniqueness of the Model

For notational convenience, let z(t) = A\y(t), y(t) = Aon(t), and z(t) = Ny (2).
Then from (C.22),

z(t) = N, i N (/0 Bon(t —1)2(n)Se ()1, (t — n)dn+G1(t)),

zwzmjm<ﬂmﬁﬂmw&mewm+@w>

Let,
Bu(t) = w2 (Bu(®)IL(D), Fo(t) = 52 (G1(1)),
By(t) = 525 (B (OII(1)),  F(t) = 525 (Gs(1)).
Then,
wwaé&aﬂmw&ww+nw, (C.26.1)
4&54&mem&mm+mw. (C.26.2)

Substituting (3.8.1) and (3.8.3) into (C.26) yields,
t S
x(t) = / By(t = 5)2(s) (S, (s)e™ 5 = 4, / e =L, () ) ds + F (1),
0 0
(C.27)
t
2(t) = / By(t — s)x(s)Se™Jo #@dags 4 B (t). (C.28)
0

Note that B,(t), By(t), F,,(t), and F,(t) are nonnegative continuous functions that
vanish beyond ¢ > A*, and are therefore bounded. Further, note that S,(¢) and Sy(¢)
are nonnegative for t > 0. Let,

F1(2(s)) = =(s) (Sgnv(.g)e—fa“2<a>da A, /0 R z<a>danv(n)dn), (C.29)
Folx(s)) = 2(s)SPe Jo #(@)da, (C.30)

Then,
x(t) = /0 B,(t — s)F1(2(s))ds + F,(t), (C.31.1)
2(t) = /Ot By(t — 5)§2(x(s))ds + Fp(t). (C.31.2)
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$1 is continuously differentiable in z and §» is continuously differentiable in x. More-
over, §; and Fo are uniformly continuous in s € [0, A7|. Therefore, §; is Lipschitz
continuous in z and §» is Lipschitz continuous in z. Il.e., there exists constants
Ly, Ly > 0 such that,

[81(2(s)) = F1(2(s))] < Lalz(s) = 2(s)], (C.32)
[2(z(s)) = Fa(L(s))| < Lofx(s) — Z(s)]. (C.33)
Let Q7 = [0, Ap] and X = C(Qr) x C(Qr), where C(€Qr) is the space of continuous
functions on Qp. Further, X is endowed with the norm ||z||x = ||z1]| + ||z2||, where

|.]| is the usual norm on C(27). We define the operator ®(z, z) = (¢.(z, 2), ¢.(, 2))
of X onto itself where the operators ¢,(z, z), and ¢,(z, z) are given by:

O.(2)(t) = / By(t — 5)F1(2(s))ds + F,(t), (C.34.1)
Jo
o, (x)(t) = / By(t — 8)Fa(x(s))ds + Fy(t). (C.34.2)
0
We prove the convergence of ® to a fixed point by the iterative process:
30 (2,y,2) = (219, 209) = (6, (=), 6,(a 1)), for k=12  (C.35)
Le.,
28 (1) = gy (2FD)(2) = /t B,(t — 8)F1(2%7V(s))ds + F,(t), (C.36)
0
2B (t) = ¢ (2% V) (1) = / By(t — 5)F2(x*V(s))ds + Fy(t), (C.37)
0
where we take (2, z) = (2@, 2(9) = (0,0). Let,
Dy (t) = sup [OF (1) — d*=D (7)), (C.38)
T€[0,t]
where,
9(r) = @D (r)] = o) () — 2D () 4 o) D) (C39)

Then @, (t) is a nonnegative, nondecreasing function of ¢ and,

Du(A") = |0 — B . (C.40)
Notice that,
D(t) = sup | () = 2O(7)| + |2 (7) = 2O (7)]]. (C.41)
= sup |Fy(7) + Fp(7)], (C.42)
(0,4
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and that,

D, (A*) = F, + Fy, where F; = sup Fi(t), fori=v,b. (C.43)
te[0,A%]

By the Lipschitz continuity of §; and §o,
t
Bena(t) = [ Bult = o)F(=(5) = Sa( V)l
0
t
+ [ Bult = 9l s) = Falal (),
0

t t
gE/ Ly|z2®(s) — 2D (s)|ds —l—Fb/ Lo|z®(s) — 25~V (s)|ds, (C.44)
0 0

where,
B; = sup B;, fori=w,b. (C.45)
t€[0,A*]

Let BL = max{B,Ly, ByLy}. Then,

t
®yir(t) < BL / Dy (s)ds. (C.46)
0

By induction, it follows that,

(1) < (1) EL

(BLt)*

< (Fy+ F)—p

— 0as k — 0. (C.47)

Therefore, the sequence {®*)} generated by (C.35) is a Cauchy sequence in X, and
thus convergent. Hence, there exists a (x(¢),2(¢)) in X which is the limit of the
sequence and is a fixed point for the operator ®.

We prove the uniqueness of solutions by contradiction. That is, assume (x(t), z(t))
and (Z(t), Z(t)) are two solutions of (C.31). Then,

t

|z(t) = Z()| + |2(t) — 2()| = /0 By(t = s)[81(2(s)) — $1(2(s))[ds

+ /O By(t — 9)[8a(x(s)) — Sala(s))lds.  (C.48)

By the Lipschitz continuity of §; and §» and BL as defined before,

z(t) — 2(t)[ + |2(t) — 2(¢)] < BL/O (I2(s) = 2(s)| + [ (s) = Z(s)[)ds. ~ (C.49)
By Grownwall’s Lemma, it follows that,
lx(t) — z(t)| + |2(t) — z(t)| <0, (C.50)

Hence z(t) = z(t) and 2(t) = Z(¢) on Qp. The existence of a unique solution for ()
follows from the existence of a unique solution for z(t).
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C.4 Local Asymptotic Stability of Disease-Free Equilibrium
The vector-host model (3.3)-(3.4) is linearized about the equilibrium,

(S;_7E’U(T)7 Slj_a;b(’r)? R;_7 5;71;7 R?Z_)7

by taking:
So(t) = S+ x,(t), (C.51.1)
io(7,8) = 4,(7) + yu(7, 1), (C.51.2)
Sp(t) = Sy + z(1), (C.51.3)
in(1, 1) = i (T) + yb(T, 1), (C.51.4)
Ry(t) = Ry + 2(t), (C.51.5)
Su(t) = Sy + zn(t), (C.51.6)
In(t) = I, +yn(t), (C.51.7)
Ru(t) = B + z(1) (C.51.8)

7, (1) = e, (C.52.1)
iy(T,1) = Gp(T)e (C.52.2)
xy(t) = Tpe, (C.52.3)
iy (T, 1) = Gy (7)eM, (C.52.4)
z(t) = Ze, (C.52.5)
an(t) = Tpe™, (C.52.6)
yn(t) = gne™, (C.52.7)
2 (t) = ZpeM. (C.52.8)

Here, Z,, Ty, Zy, Th, Un, Zn, are arbitrary non-zero constants, and ,(7), 7s(7) are arbi-
trary functions of 7 that are not identically zero. This results in the following system
(the bars have been omitted):

Az, = —ﬁ (S: /0 Boo (7)o (T)dT + 24 /0 ﬁbv(T)Eb(T)dT) iy,
(C.53.1)
Ayo(T) + dy;y) = — Yo (T), (C.53.2)
- (s* | oy [ ﬁvmﬁvwﬁ) (C.53.3)
N+ NS 0 ’
Ayp(T) + d%s—fj—) = —(7)ys(7), (C.53.4)
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Y /000 Yo (T)yp(7)d, (C.53.5)

o (e [T . 7
AT, = NT N <Sh /0 Bon (T)yo(T)dT + xh/o ﬁvh(T)zv(T)dT> , (C.53.6)
o o0 > -
Ayp = W (S;-:_ /0 ﬁvh(T)yv(T)dT + xh/ﬂ ﬁvh(T)ZU(T)dT) — YrYh, (0537)
AZn = YnYn, (C.53.8)

with initial conditions:

yv(o) N+ + N+ ( / ﬁbv yb dT + :Ev/ Bbv 'lb ), (C539)

yW”=N$%N§G?A ale )i+ [ Balrliu(r)ar ). (€510

Here, N," = S+ [[" is(T)d7 + R and N, = S} + I,' + R;} are the steady-state total
populations of birds and humans respectively. Solutions of the system (C.53) give the
eigenvalues (\) and eigenvectors of the differential operator. Knowing the distribution
of the eigenvalues is sufficient to determine the stability of a given equilibrium for
PDE operators — if all eigenvalues have negative real parts, then the corresponding
equilibrium is locally asymptotically stable [33, 29]. On the other hand, if there is an
eigenvalue with a positive real part, then the equilibrium is unstable. The equilibrium
of interest is the disease-free equilibrium (DFE), & = (52,0, 57,0,0,57,0,0), where
SY = & Note that at &, N, = S and N, = Sj. Under the DFE, the system (C.53)

simphﬁes to:

o=~ (80 [ butmr)ar ) = (C54.)
Ayo(7) + dy;é( m) _ — s (7), (C.54.2)
Ay = (Sb / Bun (7 )y (7 ) (C.54.3)
Aoo(7) + dzg—i) — ()7, (C.54.4)
Aoy — /0 (P (r)dr, (C.54.5)
oy = —m <s,2 /O h 5vh(7)yv(T)dT), (C.54.6)
Ay = ﬁ (S;? /O ) ﬁvh(f)yv(f)df) — YhYn, (C.54.7)
AZh = VhUn, (C.54.8)
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with initial conditions:

1) o
I o
yp(0) = S (SI?/O ﬁvb(T)yv(T)dT)- (C.54.10)
Using variation of parameters to solve the differential equations of (C.54) gives:
yo(1) = y(0)e TL(7), (C.55.1)
yo(1) = yp(0)e L (7). (C.55.2)

Substituting (C.55.2) into (C.54.10) gives:

yU(O) = ﬁ (Sg/(; ﬂbfv(T)yb(())e_)\THb(T)dT> . (0553)

Further substituting in (C.54.10) yields:

00 = () sts8( [ patomtrar) ([ mirie iy )

(C.55.4)
By substituting in (C.55.1), dividing both sizes by ,(0), and substituting S? = %,
we get:

= SQOA _|_S;0 < / Bop(T)e ML (7 >< / By (T)e N, (7)dr ) (C.55.5)

Equation (C.55.5) is a transcendental equation, and can therefore have many solu-
tions. It is enough to show that all solutions A of (C.55.5) have negative real parts
to show the stability of mathcal Ey. We denote,

GO = — ;ﬁf;o ( / Bus(r)e L (v )( / By (7)e T (7 )df). (C.56)

Notice that G(0) = Ry. Suppose that Ry > 1. Then by (H2), G()) is a decreasing
function of A. Since G(0) > 1 and limy —, o G(A\) = 0, then there exists a AT > 0
such that G(A\T) = 1. Therefore, & is unstable when Ry > 1.

Suppose now that Ry < 1. Then for all A = a + b with a < 0,

2A SO
G| < P SO-I—SO </ Bup(T _’\T‘H )(/ Boo ()| €7 [My(7) )
20 QO
< ol S;X+SSO </ Bup(T)e" 1L, (1) T) </0 5bv(T)€_aTHb(T)dT> <Ry < 1.

The equation G(\) = 1 cannot be satisfied for A’s with a < 0. Therefore, & is locally
asymptotically stable when Ry < 1.
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C.5 Forward Normalized Sensitivity Indices

Recall that the basic reproduction number Ry can be written as:

2A SO o)
Ro = MU SO+SO / Bup(T Hv(T)de/0 B (7)1 (7)dT

and that the partial derivatives of Ry with respect to parameter p are found from
Equation (3.12). The forward normalized sensitivity indices 7;30 for the parameters
of Ry are as follows:

M =1, (C.57.1)
M = J\ZlB ,/Om(f = moa)e T GG (7L, () dT, (C.57.2)
T = % /0 ) e~ ) g (1)L, (7)dr, (C.57.3)
T = (C.57.4)
T = 20/ b) By (7) Uy (7)dr, (C.57.5)
T = 20 i (028 (), (C.57.6)
" = %1 () [ (s (©577)

ks = _kQ / By (7)) (7 /(9—7’0,2)6_k2(s—T0’2)“/2(S)deT, (C.57.8)
TR, = kﬂ” / By (T) (7 / —kals=702)2(5) dsdlr, (C.57.9)
T —1, (C.57.10)
Tl =2, (C.57.11)

Yo = — (MU / Bub(T)IL, (7)TdT + 1> (C.57.12)
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APPENDIX D

FULL WNV MODEL
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Table D.1: Values, Equations, and Sources for Parameters of the Full Model (4.5).

D.1 Parameter Values and Sources

Parameter | Value/Equation Dimension Source
o (t) Eq. (4.4.1) days™ 49
K,(t) Eq. (4.4.2) vectors 49
5 (t) Eq. (4.4.3) days™! Assumed from
19
Ay, 1/(365x75) days™ 10J;
44
ap 1 bites/(vectorxday) | [1];
8
ap, Varies bites/(vectorxday) | Fitted from
[61]
n Varies — Assumed
Bop(T,T) Eq. (4.2) bites Assumed from
63/;
43
Bon(T,T) Eq. (4.2) bites™! Assumed from
63;
43
Bro(T, 1) Eq. (3.11.2) bites ™! Assumed from
39]
Y (T) Eq. (3.11.3) days ! Assumed from
39
Vn 1/14 days™! 44
1 (T) Eq. (4.1.1) days ™! 16
m 1/(365x4) days ! 44
L, 1/(365x75) days™ 10J;
44
) 0.001 days™! 88
on 1.00 x107° days™! 8]
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Table D.2:

Values, Equations, and Sources for Parameters of Infection-Age-
Dependent Processes.
Parameter | Value/Equation | Dimension | Source
My (T) Eq. (4.1.3) [43]
k1 0.495 days™' Fitted from [63]
101(T) Eq. (4.1.2) days™! 63]
a 1 — Fitted from
63
39
b 3.06 days Fitted from
[63];
39
c 1.41 days Fitted from
63|;
39
M, 0.5 days™! 39
ko 0.5 days™! Assumed from
39]
70,2 4.5 days Assumed from
39]

D.2 Parameter Fittings for Bird Net Growth Rate

Table D.3: Fitted Parameter Values of Equation (4.4.3) for the WNV-Competent
Bird Relative Abundance in the Greater Toronto Area for Years 2010-2017. For Each
Year, the Bird Ecological Season Lasts from the Indicated Start Date Until the Start
Date of the Following Year.

Year | Start Date o Os w Ny(0) | RMSE
2010 | 12/16/2009 | -2.56x107" | -5.45 x1073 0.01 0.149 0.016
2011 | 12/1/2010 1.20x107% | -9.68 x107° 0.01 0.145 0.014
2012 | 12/4/2011 3.39x10~* [ -5.31 x107° 0.01 0.202 | 2.52x107°
2013 | 12/31/2012 | -8.30 x10~* | -5.34 x107° | 8.61 x107° | 0.175 0.011
2014 | 12/31/2013 | 2.77 x10°* | -4.77 x10°° 0.01 0.153 | 6.62 x10°°
2015 | 12/17/2014 | 4.90 x10~* | -5.18 x107* 0.01 0.152 0.013
2016 | 12/1/2015 4.39 x10~* | -6.02 x107° 0.01 0.171 0.015
2017 | 12/1/2016 3.03 x107° [ -5.29 x107° 0.01 0.208 0.014
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D.3 Numerical Implementation

Numerical implementation of the model is delicate due to the time-varying nature
of both mosquito and bird populations. The sign of the net growth rate for mosquitoes
7,(t) and birds r(t) determines how the populations should be stratefied across the
infection classes. When 7,(t) > 0 (r,(¢) > 0), then more mosquitoes (birds) are being
recruited to the population than are dying. Note that since r,(t) and 7,(t) are net
growth rates, they represent the difference in individuals entering and leaving the
population. Actual recruitment rates for mosquitoes v, (t) and birds v(t) may be
back-calculated from the net growth rates using the natural mortality rates:

ro(t) = tho(t) = po(T), (D.1.1)
ro(t) = u(t) — pw, (D.1.2)

where 7' is the temperature at time £. We assume the disease-induced mortality rate
for WNV infected birds is small enough to neglect when back-calculating the true
bird recruitment rate.

We assume all new individuals are recruited to their respective susceptible class
and that individuals only become infected through the biting transmission process.
Thus, when r,(t) > 0, vector equations follow:

d(iv = 1y()Nu(?) <1 - ?8) — Ao (t)Su(2), (D.2.1)
% " % = (D)l 1), (D.2.2)

with infection-age boundary condition i,(0,t) = Ay, (0)S,(0). When ry(t) > 0, bird
equations follow:

D N~ A1), (D.3.1)
O O () 8y i, ). (D.3.2)

with infection-age boundary condition i,(0,%) = Ay(0).S,(0).

However, when 7,(t) < 0 (r,(¢) < 0), then individuals are dying at the same rate
or greater than those recruited. We must ensure that the appropriate number of
individuals are removed from each infection class to avoid biologically unreasonable
(negative population) simulations. For example, under equations (D.2) with r,(¢) < 0,
then N,(t) is numerically less than S,(¢) + I,(¢) and causes numerical instability.
Therefore, when r,(t) < 0, vector equations follow:

d(iv = 7,()S,(t) <1 - ggg) — Ao (£)Sy (1), (D.4.1)
iy Oiy, , N,(t)
ot + or 7y ()i (T, 1) (1 - A’v(t)> ) (D.4.2)
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and when 74(t) < 0, bird equations follow:

Db r(0)SH(1) ~ AnlD)S(0), (D.5.1)
Oiy, Oty .
e r(Din(r 1) (D.5.2)

The infection-age boundary conditions for equations (D.4) and (D.5) are the same as
the ones for (D.2) and (D.3), respectively. Equations (D.4) and (D.5) are not valid for
the case where 7,(t) > 0 or r4(t) > 0 since this would add individuals to the infected
compartments that would otherwise come from the biting process. Further, notice
that for both cases r,(t) > 0 and r,(t) < 0, equations sum up to the equation for
the total mosquito population (4.3.1) (similar for bird population). We can therefore
ensure that the populations stratified across infection classes add up to the total
population values that align with the PBM and GPR data.
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