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ABSTRACT  
   

Decision trees is a machine learning technique that searches the predictor space 

for the variable and observed value that leads to the best prediction when the data are 

split into two nodes based on the variable and splitting value. Conditional Inference Trees 

(CTREEs) is a non-parametric class of decision trees that uses statistical theory in order 

to select variables for splitting. Missing data can be problematic in decision trees because 

of an inability to place an observation with a missing value into a node based on the 

chosen splitting variable. Moreover, missing data can alter the selection process because 

of its inability to place observations with missing values. Simple missing data approaches 

(e.g., deletion, majority rule, and surrogate split) have been implemented in decision tree 

algorithms; however, more sophisticated missing data techniques have not been 

thoroughly examined. In addition to these approaches, this dissertation proposed a 

modified multiple imputation approach to handling missing data in CTREEs. A 

simulation was conducted to compare this approach with simple missing data approaches 

as well as single imputation and a multiple imputation with prediction averaging. Results 

revealed that simple approaches (i.e., majority rule, treat missing as its own category, and 

listwise deletion) were effective in handling missing data in CTREEs. The modified 

multiple imputation approach did not perform very well against simple approaches in 

most conditions, but this approach did seem best suited for small sample sizes and 

extreme missingness situations. 
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CHAPTER 1 

INTRODUCTION 

The general purpose of psychological science is to explain and predict human 

behavior. Psychology explains human behavior by theorizing the mechanisms behind a 

mental process and uses predictions as a way to anticipate behaviors before they occur 

(Yarkoni & Westfall, 2017). Research conducted in this field aims to explain and predict 

behaviors simultaneously with the use of statistical models. However, Yarkoni and 

Westfall (2017) argue explanation and prediction are two separate goals that researchers 

ultimately have to choose between: researchers can either develop complex models that 

will accurately predict behaviors but fail to respect known psychological constraints, or 

develop simple models that are theoretically elegant but have limited capacity to make 

accurate predictions. Historically, social and behavioral fields have favored explanation 

as the primary goal of research with prediction as a secondary goal. But more recently, 

researchers have started to identify situations where prediction should be prioritized over 

explanation (Yarkoni & Westfall, 2017). 

Exploratory methods, focused on prediction, are becoming increasingly popular in 

psychological research (Yarkoni & Westfall, 2017). Specifically, exploratory methods 

based on machine learning theory adopted from other fields (e.g., computer science) have 

recently been considered and combined with statistical methods common in 

psychological research (e.g., structural equation modeling). As more researchers engage 

in data exploration, methodologists are adapting and implementing machine learning 

techniques in psychological research (e.g., Brandmaier, von Oertzen, McArdle, & 

Lidenberger, 2013; Grimm, Mazza, & Davoudzadeh, 2017; Hajjem, Bellavance, 
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Larocque, 2011; Jacobucci, Grimm, & McArdle, 2016; Masyn, 2013; McNeish, 2015; 

Sela & Simonoff, 2012; Strobl, Malley & Tutz, 2009). Though machine learning methods 

have started to gain the attention of quantitative psychologists, there has been little 

research conducted on how these methods perform under data conditions commonly seen 

in the psychological and behavioral sciences. One common feature of behavioral science 

data is incompleteness or missingness.  

 Regardless of the nature of a study (exploratory or theory-driven), missing data 

are an inescapable problem in psychological research. The type of missing data we 

consider in this paper are observations that do not have a value for a given variable. 

Encountering missing data is inevitable because it is often due to situations beyond the 

researcher’s control (e.g., participant unwillingness to divulge information, inadvertent 

skipping, fatigue, time considerations, etc.). Missing data are problematic because they 

can introduce nonresponse bias when there are systematic differences between 

nonresponding and responding participants. Nonresponse bias affects estimated model 

parameters and threatens the validity of conclusions drawn from a statistical model. Since 

researchers cannot completely prevent nonresponse bias, there has been an extensive 

amount of research conducted on the topic of missing data and various statistical 

approaches have been developed to handle missing data. 

 Though missing data has been extensively studied in theory-driven / confirmatory 

statistical frameworks in psychology (e.g., ANOVA, regression, latent variable modeling, 

psychometrics, etc.), the approaches for dealing with missing data in the machine 

learning / exploratory framework have been under-researched. There is existing literature 

on missing data in the fields that traditionally use machine learning methods like 
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computer science; however, understanding the classic missing data problem from an 

interdisciplinary standpoint, such as through the lens of psychological science, may offer 

a new perspective for how best to deal with missing data when employing machine 

learning techniques. For example, there is potential for an interdisciplinary perspective to 

offer new ideas in terms of the scope, research methods, and approaches for dealing with 

the missing data problem when conducting machine learning methods.  

This dissertation focuses on the topic of missing data in a specific machine 

learning method, decision trees. My objectives are to: (1) review current literature 

regarding missing data in decision tree algorithms, (2) propose a modified multiple 

imputation approach for handling missing data in conditional inference trees, and (3) 

conduct a simulation study to evaluate the proposed approach.  
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CHAPTER 2 

AN OVERVIEW OF DECISION TREES 

In the 1950s, scientists began to wonder if computers could “think” and started 

testing whether machines could perform intellectual tasks normally carried out by 

humans (Chollet & Allaire, 2018). This led to the development of artificial intelligence 

(AI), which is an interdisciplinary science that aims to design computer algorithms that 

can perform tasks that require human intelligence (Chollet & Allaire, 2018). AI has 

become increasingly popular in science, technology, media, and popular culture. There 

are numerous famous applications, such as computers that can play chess, self-driving 

cars, chatbots, tailored media streaming (e.g., Netflix and Spotify), targeted 

advertisement, and social media content. In the early stages of AI, computers were able to 

perform at the human level only when programmed using a large set of rules for 

manipulating information (Chollet & Allaire, 2018). These early stages of AI produced 

computers that were efficient within the limits of the pre-programmed rules. However, 

computers were not able to handle vague, novel problems until the development of 

machine learning algorithms (Chollet & Allaire, 2018).  

Machine learning is a subfield of AI which was developed to mimic human 

decision making without relying on pre-programmed rules for each specific decision. 

Instead, the machine learning algorithms are programmed to develop its own rules for 

solving problems by learning from past experience. First, the algorithms need to 

understand the relationships between certain attributes and a desired outcome that has 

been observed. This information is given to an algorithm in the form of data which 

contain predictor and outcome variables. Once the algorithms are given data with known 
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outcome values as training data, they explore the predictor data space and finds natural 

patterns that it can use to make decisions. This process is sometimes referred to as data 

mining because the algorithm searches through large-scale data and “mines” out patterns 

within a vast data space. Once patterns are determined from the data in the form of a 

model, the same model is applied to a new data set to evaluate how well the algorithm 

generalizes. If the algorithm performs well at predicting values in new test data, the 

researchers are confident that the model will perform similarly when the outcome values 

are unknown.  

Machine learning is a large field comprised of numerous algorithms (see 

Carbonell, Michalski, & Mitchell, 1983 for an extensive overview). Decision trees have 

become one of the most popular machine learning methods (Berk, 2008). In this paper, I 

provide a broad overview of decision trees, with a specific focus on the Classification and 

Regression Tree (CART) algorithm (Breiman et al., 1984) and the Conditional Inference 

Tree (CTREE) algorithm (Hothorn et al., 2004).   

Decision trees 

 Decision trees were developed to discriminate among classes (categories) of 

objects (outcome variables; Carbonell, Michalski, & Mitchell, 1983). The purpose of 

decision tree algorithms is to select object attributes and values of these attributes that 

identify sets of objects with identical classification (Carbonell, Michalski, & Mitchell, 

1983). This process was developed to resemble human reasoning in a flowchart 

structured as an inverted tree (shown in Figure 1). The basic structure of the tree 

represents the decisions the algorithm makes to arrive at its prediction of the outcome. 
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Figure 1 

 

Decision Tree Example: Diagram  
 

 
 

Decision trees typically use recursive partitioning, which is a process that 

involves repeatedly splitting a multivariate data space into two distinct sub spaces based 

on the relationship with the outcome. Consider the data space in Figure 2 with two 

predictors,  and . Splitting rules are used to identify the regions of a multivariate 

space that are most similar. For example, the first split (shown in red) partitions the data 

space into two distinct subspaces. The first region,  includes any data point with a 

value on and the other region,  , includes any data point where . The 

partitioning process is repeated until the distinct sub spaces are considered to have 

identical classification. Note that each of the regions from the first split (shown in red) 

were each split again to create four sub spaces with identical classifications. For example, 

 was further split into two distinct regions in which data points located where  

and  are grouped into one region and the other region contains data points 

located where  and . Similarly,  was split into two sub regions based 

on a cutoff value of 35 on . 
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Figure 2 
 

Decision Tree Example: Partitioning Illustration 

 
Note. This figure corresponds with the decision tree in Figure 1 and illustrates the 
partitioning of the data space. The first split is shown in red with a cutoff value of 20 on 

 The second layer of splits is shown in blue with a cutoff value of 5.6 on and shown 

in green with a cutoff value of 35 on . 

 

The splits in Figure 2 are often represented in tree like structure shown in Figure 

1. The root of the tree is the very first node in the diagram which corresponds to the 

entire data space in Figure 2 (prior to making any splits). Each node specifies the mean of 

the outcome within a data space that contains a certain percentage of the data. For 

example, the root node indicates that the outcome has a mean of 11 in the data space 

which contains 100% of the data points. The branches are the arrows that specify which 

variable and values on the variable were used to split the data. For example, branches 

from the root node indicate that any case with a value less than 20 on  would be placed 

in one node and any value greater than or equal to 20 would be place in the other node 

(this corresponds to the first split shown in red in Figure 2). The two nodes created from 
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the root node are referred to as daughter or child nodes with the root node referred to as 

the parent node. Parent nodes represent the data that was used for a split into two 

separate groups that resulted into two child nodes. The nodes that have branches (i.e., two 

arrows) that point beneath are nonterminal nodes (Breiman et al., 1984). For example, the 

first three nodes in the tree would be considered  nonterminal. The very last nodes without 

any branches extending out beneath are considered leaves or terminal nodes. 

 The process of determining how partitions of the data are made and evaluated 

differ across decision tree algorithms. I discuss two different algorithms: CART (Breiman 

et al, 1984) and CTREE (Hothorn et al., 2004). First, I provide a broad overview of 

classification and regression trees. Then I will describe one of the most popular 

algorithms, CART, followed by an alternative algorithm, CTREE, which is the focus of 

this study. 

The Classification and Regression Tree (CART) Algorithm 

The CART algorithm was developed by Breiman et al. (1984) for conducting both 

classification and regression trees. CART is a greedy decision tree algorithm that 

recursively partitions data and fits a simple prediction model within each partition 

(James, Witten, & Hastie, 2013; Loh, 2011). The term greedy indicates that the CART 

algorithm searches for the best possible outcome without considering any previous or 

future splits (Berk, 2008). Three critical aspects of the CART algorithm are variable 

splitting, stopping criteria, and outcome prediction.  

Variable Splitting 

For variable splitting, the CART algorithm selects the variable and partitioning 

value that splits the data into two groups where the outcome is maximally homogenous 
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within each group (Breiman et al., 1984). The two resulting groups are often referred to 

as child nodes (with the node that was split referred to as the parent node). All values of 

the predictors are considered decision points to partition the data into two child  nodes. 

For a regression tree (numeric outcome), the predictor variable and splitting value that 

minimizes the residual sums of squares (RSS) is used to split the node (Berk, 2008). For a 

classification tree (categorical outcome), the predictor variable and splitting value that 

best minimizes the Gini index (entropy can also be used) is used to partition the node.  

A regression tree is grown using RSS as the criterion for variable splitting. James 

et al., (2013) describes building regression trees by considering a predictor space that is 

made up of values from predictors  that can be partitioned into  distinct 

regions . Observations that fall within each  region are given predicted 

values equal to the mean of the observations that fall within . Considering all possible 

predictors, the variable  and splitting value  are chosen to split the predictor space into 

two distinct sub spaces  and  based on which value minimizes the 

RSS (James et al., 2013). First, the algorithm considers split value  and predictor  for 

splitting the predictor space into two nodes or regions, such that   

 and  

and computes the RSS as  

 

(1) 

where is the mean for the observations within region  and is the mean for 

the observations within region  (James et al., 2013). This process is continued for 

all splitting values and predictors, and the predictor and split value that minimizes the 
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RSS is chosen to partition the data as long as the improvement in RSS meets some 

threshold (i.e., stopping criterion). Once the split occurs, splitting is considered again 

within each of the resulting child nodes and the same process is repeated. Within the 

predictor space region determined by a previous split, values of  and  are again 

considered to split that node into two child nodes that minimizes the RSS. This process 

continues by repeatedly splitting the predictor space to grow the regression tree until a 

stopping criterion is reached.  

A classification tree is grown much like a regression tree. Instead of predicting the 

mean of all the training set data that within a predictor space region, classification trees 

predict which class  each observation belongs to by determining the modal class for the 

observations within a region (James et al., 2013). For classification trees, the splitting 

criterion is node purity as measured by the Gini index or entropy. The Gini index is a 

measure of uncertainty and used to assess whether a node contains observations mostly 

from a single class. The Gini index is calculated as 

 

(2) 

where  is the proportion of the observations in region  from class . An alternative 

measure to node purity is entropy, which is a measure of information.  The entropy is 

calculated as 

 

(3) 

where  is the natural logarithm. Whether the Gini Index or entropy is used to 

determine quality of a potential split, small values indicate greater node purity (i.e., that a 
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node contains observations mostly from a single class). Splits that lead to the smallest 

Gini Index or entropy value (indicating greatest node purity) are retained when 

partitioning. This process in repeated on each child node to grow the classification tree 

until a stopping criterion is reached. 

Stopping Criteria 

 Stopping criteria include tree depth, sample size required to partition a node, or a 

minimum improvement in prediction accuracy. The tree depth criterion is specified as the 

number of layers, such that the decision tree is grown until the desired level of  splits is 

reached. Another stopping criterion is related to sample size. That is, the tree is grown 

until it reaches a specified minimum number of cases in one or more of the terminal 

nodes. The minimum improvement in prediction accuracy criterion indicates a tree will 

be grown by adding a layer of splits only if the new layer improves how well the 

predicted values match the actual outcome values by a certain threshold. One commonly 

used method is cost complexity pruning, which can be considered a pre-pruning method 

(Therneau & Atkinson, 2019). Cost complexity pruning indicates which split does not 

improve prediction accuracy beyond a pre-specified threshold (e.g., minimum reduction 

of RSS in regression trees). A threshold is often referred to as the complexity parameter, 

or cp value, and computed using the following formula: 

 

(4) 

where  is the risk,  is the number of splits for a given tree, and  is the tree with no 

splits (Therneau & Atkinson, 2019). The prespecified cp value indicates at which point a 

tree stops splitting based on its prediction accuracy. A common value to set the cp 

parameter is .01 (Therneau & Atkinson, 2019). In a regression tree, cp is a measure of the 
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overall increase in . Thus, if , then a split of the node is not retained if the  

doesn’t increase by more than 1% and no further splits are considered. Stopping criteria 

based on minimum improvement in prediction accuracy reduces tree size so that tree 

pruning via cross-validation will only need to remove a few branches to obtain optimal 

tree depth.  

Pruning 

Once a stopping criterion is reached, the decision tree can be pruned, or reduced 

in size, based on k-fold cross-validation. The purpose of cross validation is to avoid 

overfitting a tree to the observations in hand (i.e., training data) by estimating its error 

rate for a new sample (i.e., test data). Since an actual test data set should only be 

considered once when the final tree structure is determined, cross-validation allows for 

pruning a tree based on an estimate of the test error rates. Cross-validated estimates are 

obtained using only the training data set, which is the data used to construct the tree. The 

k-fold cross-validation approach randomly divides the training data set into k 

approximately equally sized subsets that are referred to as folds. One of the folds is 

considered a holdout sample that will act as a test data set to obtain a test error estimate, 

while a tree is fit to the rest of the  folds. For a regression tree, the Mean Square 

Error (MSE) is calculated when predicting values in the holdout fold. This process is 

repeated  times so that every fold will be the holdout sample exactly once. This process 

will produce  MSEs such as , and the cross-validated estimate (

) is computed by averaging these MSE values (James et al., 2013). For a 

classification tree, the same process is conducted for k-fold cross-validation. However, 

instead of using MSE, the number of misclassified observations is evaluated  times from 
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each hold out fold. The  for classification trees is computed by averaging the number 

of misclassified observations,  (James et al., 2013). Both regression and classification 

trees are pruned to the tree size that produces the smallest 𝐶𝑉 estimate.  Conditional 

Inference Tree (CTREE) Algorithm 

 Popular decision tree algorithms like CART use an exhaustive approach to 

recursive partitioning. At each partition, the algorithm searches across every possible 

split to maximize the homogeneity in each node and selects the best possible split. 

Exhaustive approaches have been known to lead to overfitted trees and biased variable 

selection by favoring variables with many possible splits (Hothorn et al., 2004). While 

overfit trees can be pruned back via cross validation, the problem with biased variable 

selection is not easily remedied. 

To address these problems, Hothorn et al. (2004) developed conditional inference 

trees (CTREE) which uses a statistical approach to recursive partitioning. Unlike the 

exhaustive approaches, the statistical approach splits the data based on the association 

between predictors and outcome which allows for unbiased variable selection among 

variables with different scales. The algorithm tests the global null hypothesis of 

independence for every predictor and the outcome. If the hypothesis is rejected, the 

variable with strongest association to the outcome is selected to split. If the hypothesis is 

not rejected, then the algorithm stops splitting. This statistically motivated stopping 

criteria has been shown to produce trees with predictive performance as good as 

optimally pruned trees (Hothorn et al., 2004). 

 The general method for recursive partitioning by conditional inference is 

completed in the following three steps (Hothorn et al., 2004): First, test the global null 
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hypothesis of independence between each of the  predictors and the outcome . If the 

null is not rejected, the algorithm stops splitting. If the null hypothesis is rejected, the 

algorithm finds the predictor  which has the strongest association with . Second, split 

 into two distinct groups where the case weights  and  determine the subgroups. 

Last, the first two steps are recursively repeated with modified case weights. 

Variable Selection and Stopping Criterion 

 The first step described above involves determining the splitting variable and 

stopping criterion. First, it is assumed that the conditional distribution of  given 

the predictors  depends on a function  of the predictors:  

 

(5) 

Within each node, the global test of independence is formulated in terms of  partial 

hypotheses  with the null hypothesis  (Hothorn et al., 

2004). Both variable selection and stopping criterion are determined by testing . If we 

fail to reject  at a pre-specified , the algorithm stops partitioning. If we reject , the 

association between  and each of the predictors  is measured by p-values 

that indicate a deviation from the partial hypothesis  (Hothorn et al., 2004). The 

predictor with the strongest association with  is the selected as the splitting variable.  

The following formula is used to compare the associations between each of the 

predictors  and  (Hothorn et al., 2004): 

 

(6) 
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where  is the learning sample,  represents case weights (assumed here to be zero or 

one for convenience),  is a non-random transformation of the predictor , 

and  is considered the influence function which depends on the 

responses  in a permutation symmetric way (Hothorn et al., 2004). The 

distribution of  under the partial hypothesis depends on the joint distribution of 

and  which is almost always unknown. Therefore, Hothorn et al., (2004) use 

permutation tests to rid the dependency by fixing the predictors and conditioning on all 

possible permutations of the responses. The permutation test procedures were originally 

developed by Strasser and Weber (1999), and the derivation can be found in Hothorn et 

al. (2004). The permutations allow for the calculation of the conditional expectation  

and covariance , which in turn allows for the standardization of Equation 7. The result is 

a test statistic  that is used to compare the predictors. If the predictors have different 

scales of measurement, the test statistics  will likely bias the 

variable selection. To unbias variable selection, the algorithm switches to the p-value 

scale and the p-values for the condition distribution of the test statistic  

are used to compare predictors with different scales (Hothorn et al., 2004). The purpose is 

to identify the predictor with the minimum p-value : 

 

(7) 

where  is the symmetric group of all permutations of the elements  with 

case weights that are equal to 1 (Hothorn et al., 2004). The predictor with the smallest 

significant p-value is selected as the splitting variable and then evaluated to determine its 

optimal split point. 
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Splitting Criteria 

 Once a splitting variable is determined, the second step in the general partitioning 

algorithm involves determining the optimal split point. The goodness of split statistic is a 

special case of Equation 7 

 

(8) 

where is a subset of the sample space of the predictor  (Hothorn et al., 2004). 

Equation 9 measures the discrepancy between the two sample spaces under consideration. 

Again, the conditional expectation  and covariance  are computed using the 

permutation test procedure originally developed by Strasser and Weber (1999). The split 

 that maximizes the test statistic over all possible sets of  becomes the optimal split 

point: 

 

(9) 

After partitioning the data at the optimal split point, the entire procedure repeats. The 

algorithm recursively partitions the data by repeatedly searching for a splitting variable 

and optimal split point until the null hypothesis is not rejected. 
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CHAPTER 3 

MISSING DATA 

Missing data occur when an observation contains no value for a given variable 

and is often due to situations beyond the researcher’s control. There are numerous 

situations that lead to missing data, which makes it difficult to know exactly how and 

why each missing value appears in a data set. Rubin (1976) proposed using observed 

variables to predict the occurrence of missing values and coined the term missing data 

mechanisms to classify relationships between missing values and observed variables. 

Missing data mechanisms describe how the propensity for a missing value relates to other 

variables and itself. Rubin (1976) presented three types of missing data mechanisms: 

missing completely at random (MCAR), missing at random (MAR), and missing not at 

random (MNAR).  

Data are MCAR when missingness on variable  is unrelated to both the observed 

variables (i.e., non-  variables) and the underlying values of  itself (Enders, 2003; 

Rubin, 1976). MCAR situations are desirable because missing data patterns are 

unsystematic and therefore unlikely to bias results. However, MCAR requires the strict 

assumption that missing values are not related to any of the studied variables, which is 

rarely met in practice (Enders, 2010; Muthén et al., 1987; Raghunathan, 2004). Data are 

MAR when missingness is systematic and correlated with other variables in the data set. 

Specifically, data are considered MAR when missing values on the variable  are related 

to other variables in a data set but not related to  itself (Enders, 2003; Rubin, 1976). 

Data are MNAR when missing values on  are dependent on the underlying values of  

itself (Enders, 2003; Rubin, 1976).  
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The missing data mechanisms determine how well a given missing data approach 

will perform. According to Baraldi and Enders (2010), deletion approaches (i.e., list-

wise, pairwise, etc.) perform well in situations when data are MCAR, whereas more 

advanced approaches, such as multiple imputation or full-information maximum 

likelihood, outperform deletion and produce unbiased parameter estimates when data are 

MCAR or MAR. However, many approaches commonly used to handle missing data 

(e.g., deletion, single or multiple imputation, full-information maximum likelihood, etc.) 

do not perform well when data are MNAR. In the subsequent sections, I provide 

descriptions of the following approaches for handling missing data: deletion, single 

imputation, multiple imputation, and full-information maximum likelihood. 

Deletion 

 A traditional method for treating missing data involves deleting or removing cases 

that contain missing values from an analysis. Deletion methods have been widely adopted 

since they provide a relatively simple solution to missing data. Specifically, listwise 

deletion and pairwise deletion are the most popular methods for treating missing data 

across the social and behavioral sciences (Peugh & Enders, 2004; Enders, 2010). Due to 

their popularity, both methods are widely available in most statistical software (Enders, 

2010).  

Listwise deletion removes any case in a data set that contains one or more missing 

values. The advantage of this approach is its simplicity.  Listwise deletion does not 

require special software, unlike more complicated missing data approaches. Once all the 

cases with missing values are removed from the data set, the complete cases make up a 

consistent sample that may be used across different analyses. However, given the number 
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of cases with missing values, listwise deletion could result in considerably reduced 

sample sizes.  

Pairwise deletion removes cases with missing values on an analysis-by-analysis 

basis. That is, cases with missing values are removed only if a variable needed for the 

analysis contains the missing value. If a case contains missing values exclusively on 

variables that are not of interest to the researcher, then that case would be included in the 

analysis. In comparison with listwise deletion, pairwise deletion is more likely to retain a 

higher percentage of cases resulting in larger sample sizes. Since values are removed 

analysis-by-analysis basis, this method will typically result in different samples for every 

analysis.  

When considering deletion approaches, it is important to note that there are 

limitations to these approaches. The reduction in sample size from deleting cases reduces 

statistical power. Therefore, deletion approaches should only be considered if the 

percentage of missing values is fairly small or there is a large sample of complete cases 

(Enders, 2010).  

Imputation 

 Another common way of handling missing data is to impute (i.e., fill in) the 

missing values before conducting an analysis. This approach alleviates some of the 

problems of deletion approaches by filling in missing values to retain sample size and 

statistical power. Imputation approaches typically fall under the category of single 

imputation, which replaces each missing value with a single value, or multiple imputation 

which involves repeatedly copying a data set and filling in the missing values with 

slightly different estimates using random variation. This section will focus on methods 
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for single imputation such as regression imputation, stochastic regression imputation, and 

hot deck imputation.  

Regression Imputation 

 Regression imputation predicts missing values from the complete data via 

regression equations. Since variables are often correlated, the complete variables can be 

used to predict missing values on other variables. In regression imputation, the complete 

cases are used to create a regression estimate of the missing values. The resulting 

predicted values replace the missing values to create a complete data set for subsequent 

analyses. As the number of variables increase (specifically those containing missing 

values) so does the potential for more complex missing data patterns. For a simple 

bivariate example, the regression equation would predict missing values on a variable  

from the complete case variable,  

 

(10) 

A major limitation of this approach is that all imputed values fall on the same 

regression line, which attenuates variability and increases R2 (Enders, 2010). Regression 

imputation has been shown to produce biased results by overestimating correlations and  

R2 (Beale & Little, 1975; Gleason & Staelin, 1975; Kromrey & Hines, 1994; Olinsky, 

Chen, & Harlow, 2003; Raymond & Roberts, 1987; Buck, 1960). However, methods 

such as stochastic regression imputation have been developed address this limitation. 

Stochastic Regression Imputation  

 Since regression imputation produces biased results by creating imputed variables 

that perfectly correlate with missing data, stochastic regression imputation was developed 

to eliminate this bias by introducing variability in the imputed values (Enders, 2010). 
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Stochastic regression imputation uses the same methods as regression imputation but 

adds a normally distributed residual term to each predicted score. Consider the bivariate 

example from regression imputation where missing values on a variable  are predicted 

from the complete case variable, . Stochastic regression imputation differs from 

regression imputation by including the normally distributed residual term,  

 

where 

 

(11) 

 Stochastic regression uses the same method as standard regression, but includes 

the addition of the residual term, . The residual term is a random value from a normal 

distribution with a mean of zero and variance equal to the residual variance from the 

regression of the variable with missing values  on the complete case variable  

Overall, stochastic regression imputation produces unbiased parameter estimates when 

data are MAR. In fact, the stochastic regression imputation often performs well in 

comparison to the typically favored multiple imputation approach since both methods 

share the same imputation procedure. However, a limitation of stochastic regression 

imputation is that it is a single imputation approach, which ultimately produces 

attenuated standard errors and risks inflating Type-I errors.  

Hot Deck Imputation 

 Hot deck imputation replaces missing values with scores from similar 

respondents. An observation containing a missing value on a target variable will be 

matched with other observations on pre-specified matching variables (e.g., race, gender, 

social economic status, grade level, marital status, etc.). Matching can be done with both 
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categorical and continuous variables. The researcher then replaces the missing value with 

a random draw from the distribution of the matched responses. 

 A limitation of hot deck imputation is that this approach has been shown to 

produce substantially biased estimates of correlations and regression coefficients (Enders, 

2010; Schaffer & Graham, 2002). As with most imputation procedures, hot deck 

imputation underestimates standard errors and often requires additional procedures (e.g., 

jackknife) to increase sampling error in the imputed values (Enders, 2010).  

Multiple Imputation 

Multiple imputation is generally the favored imputation approach because it 

produces estimates that are consistent, asymptotically efficient, and asymptotically 

normal when data are MAR and all assumptions are met (Allison, 2002). The multiple 

imputation approach involves a three-step procedure that includes the imputation phase, 

analysis phase, and pooling phase.  

Imputation Phase 

It has been shown that single imputation (without random variation) tends to 

underestimate the variances and covariances of variables that contain missing data, which 

leads to biased parameter estimates (Allison, 2002). Multiple imputation, on the other 

hand, is more effective at producing unbiased estimates by increasing variance in the 

variable with missing values. Specifically, this is done in the imputation phase by 

repeatedly copying a data set and filling in the missing values with slightly different 

estimates using random variation.  

Many procedures have been developed for filling in missing values with random 

variation (Lavori, Dawson, & Shera, 1995; Raghunathan, Lepkowski, Van Hoewyk, & 
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Solenberger, 2001; Royston, 2005; Schafer, 1997; van Buuren, 2007). However, the most 

popular imputation method in the social and behavioral sciences (Allison, 2002; Enders, 

2010) is the data augmentation algorithm (Schafer, 1997; Tanner & Wong, 1987). Data 

augmentation relies heavily on Bayesian methodology in a two-step procedure, where 

missing values are repeatedly imputed in the I-Step and parameters are repeatedly 

updated using posteriors in the P-Step (Enders, 2010). The data augmentation process 

starts with the I-Step followed by the P-Step to update the estimated values, which 

informs the next I-Step, and so forth. These two steps toggle back and forth until a 

specific convergence criterion is reached.  

I-Step. The purpose of the imputation phase is to repeatedly impute unique values 

for all missing values in a data set. The I-Step first uses regression equations to predict 

missing values where random residuals are added to the predicted scores to create 

random variance in the imputed values (identical to stochastic regression). From the 

imputed data set, the estimated mean vector and covariance matrix are used to create a 

conditional distribution (also known as posterior predictive distribution) in the P-Step, 

which will be discussed further in the next section. In the next I-Step, imputed values are 

drawn from the conditional distributions estimated in the previous P-Step. This process is 

summarized in the following equation from Enders (2010) 

 

(12) 

where each I-Step is represented in terms of  and imputation values for a particular I-

Step is represented by . The proportion of missing data is  and the proportion of 

observed data is . Whereas,  represents the parameters used to generate the 

imputation regression equation; specifically,  is the estimated mean vector and 
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covariance matrix from the P-Step proceeding a particular I-Step (i.e., ; Enders, 

2010).  

P-Step. As mentioned previously, the purpose of the P-Step is to estimate the 

mean vector and covariance matrix from imputed values in the previous I-Step and create 

a conditional distribution that can then be used to draw values from in the next I -Step. 

The P-step uses a Bayesian framework to estimate the mean vector and covariance matrix 

from imputed values and then new parameter values are generated using a Monte Carlo 

simulation.  

First, the P-Step computes sample means (  as well as sum of squares and cross 

products matrix (  from imputed values in the proceeding I-Step to define the posterior 

distribution of the covariance matrix 

 

(13) 

where  is the posterior with mean vector and imputed data matrix  from 

previous I-Step, which follows an inverse Wishart distribution  with  

degrees of freedom and the sum of squares and cross products matrix  (Enders, 2010). 

Next, a Monte Carlo simulation uses the posterior defined in Equation 14 to draw a new 

covariance matrix which is referred to as the simulated covariance matrix  (Enders, 

2010).  

 Once the data augmentation algorithm obtains a new covariance matrix, then a 

new set of means is derived. This procedure involves estimating sample means and using 

the simulated covariance matrix to create the new set of means. First, the posterior 

distribution of the mean vector is defined by 
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(14) 

where is the posterior, which follows a multivariate normal distribution (i.e., 

) with sample mean vector and simulated covariance matrix  (Enders, 2010). 

Next, a Monte Carlo simulation is used to draw a new set of means  from the posterior 

defined in Equation 15.  

 The purpose of the P-Step is to use imputed values to create  and  that can be 

then used for the next I-Step. Overall, the P-Step can be summarized in the following 

equation 

 

(15) 

where is the estimated parameters (  and ) from the P-Step based on  observed 

data and  imputed values from the previous I-Step (Enders, 2010). The new parameter 

values  and  from the P-Step are used in the next I-Step to generate a new set of 

regression coefficients. The regression coefficients generate new imputed values and 

create an imputed data set. The new imputed values from that I-Step are then used for the 

next P-Step. The I- and P-Steps are repeatedly cycled to create imputed data sets until a 

convergence criterion is reached. 

 Convergence. Using Markov Chain Monte Carlo procedures (Jackman, 2000), 

the algorithm cycles between the I- and P-Steps to create the following data augmentation 

 

(16) 

where  denotes imputed values from I-Step  and  denotes the estimated parameters 

from P-Step  (Enders, 2010). The long chain of imputed values across the I-Steps are 

essentially drawn from a distribution that averages over the entire range of the posterior 

distribution. Similarly, the simulated parameters from the long chain of P-Steps are 
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drawn from the posterior distribution that averages over all possible values of missing 

data.  

 A feature of the I- and P-Step cycle is that each sequential step (i.e., and  

produces imputed values that are dependent on the previous imputations. This is because 

the simulated parameters of a P-Step are determined by the imputed values of the 

previous I-Step. While imputed values derived from a particular I-Step are determined by 

the simulated parameters from the previous P-Step. The I- and P- step dependency 

produces successive data sets that are correlated to some degree. 

 Data augmentation converges when distributions become stationary and do not 

change in a systematic way. A complicated aspect of this definition is the dependent 

nature of the I- and P-Steps. Therefore, it is important to assess how many cycles are 

needed before imputed data sets from and  can be considered independent. A 

common method for evaluating the number of  imputations that need to be conducted 

before and  are independent involves assessing the behavior of the simulated 

parameters over many P-Steps (Enders, 2010). If  and  are correlated, then the 

imputed values will likely be dependent. If  and  are not correlated, then the two 

parameter sets should produce independent imputations. Once desired number of cycles 

are completed, the imputed values from the final iteration of a single chain are used to 

create the first imputed data set (Azur, Stuart, Frangakis, & Leaf, 2011). The entire 

imputation process is repeated as many times is needed to reach the desired number of 

imputed data sets, 𝑚. The resulting imputed data sets will be analyzed in the analysis 

phase.  

Analysis Phase 
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 This phase involves running the analysis of interest  times; that is, once for each 

complete data set created in the imputation phase. This process does not involve any 

other variables or additional procedures. The results from each analysis are collected and 

stored so that they can be combined in the pooling phase.  

Pooling Phase 

 The purpose of the pooling phase is to combine the results from all  analyses to 

create a single set of results. The analysis phase produces  parameters and standard 

errors. The purpose of the pooling phase is to combine all results into a single parameter 

estimate and standard error estimate.  

Parameters. Rubin (1987) developed a simple method to calculate a single 

parameter estimate by taking the average over all  estimates: 

 

(17) 

where the single pooled estimate  is calculated by taking the sum of each estimate  for 

every data set  and dividing by the total number of imputations, Enders, 2010). 

However, this method assumes that the parameters are asymptotically normally 

distributed. In situations where this assumption does not hold, Schafer (1997) suggests 

applying transformations (e.g.,  transformations for Pearson correlation coefficients) 

before the pooling phase.  

 Standard Errors. In addition to estimated parameters, the standard errors need to 

be pooled. Rubin (1987) also developed methods for averaging standard errors. There are 

two types of variances involved in pooling standard errors: within-imputation variance 

and between-imputation variance. Within-imputed variance estimates the sampling 
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variability if there was no missing data. Using complete cases only, the average of 

sampling variances can be calculated in the following equation 

 

(18) 

where the within-imputation variance  is calculated by summing each squared 

standard error  from data set  and dividing by the total number of imputations  

(Enders, 2010).  

 As mentioned previously, multiple imputation is more effective than single 

imputation at producing unbiased estimates (Allison, 2002; Enders, 2010). This is 

because missing data has no variance and single imputation simply fills in missing values 

but does not account for sampling error, which typically leads to underestimated standard 

errors. Multiple imputation, however, introduces sampling error for the missing values by 

repeatedly copying a data set and filling in the missing values with slightly different 

estimates using random variation. Between-imputation variance accounts for the 

additional source of sampling error introduced across multiply imputed data sets. The 

average variance of parameter estimates across all  imputations (i.e., between-

imputation variance) is calculated as  

 

(19) 

where the between-imputation variance represented by  is the average squared 

difference of each estimated parameter  for data set  and the single pooled estimate  

(Enders, 2010) 
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 Together the within-imputation and between imputation variances make up the 

total variance to create a single point estimate of standard error. Specifically, the total 

variance is  

 

(20) 

where the total variance is the sum of the within-imputation variance , between-

imputation variance , and the variance of the single pooled estimate of  (i.e., 

representing sampling error of the mean estimate),  (Enders, 2010). The last term in 

this equation represent serves as a correction for using finite number of imputation and 

essentially drops to 0 as  approaches infinity (Enders, 2010). The square root of  is 

the pooled multiple imputation standard error estimate. 

In conclusion, multiple imputation is a three-phase process that can be 

computationally intense. The analysis phase requires repeatedly calculating possible 

imputed values by drawing from observed data and posterior distributions. The analysis 

and pooling phases are relatively the easy to implement, but these methods can become 

cumbersome with complex statistical models and many imputations. However, 

sophisticated software has been developed for user-friendly implementation of multiple 

imputation for a wide variety of statistical models. Though there are many options and 

popular software programs for employing multiple imputation (Allison, 2002; Enders, 

2010) include NORM (Schaffer, 1997), PROC MI (SAS Institute Inc., 2015), and 

Multivariate Imputation by Chained Equations (MICE; van Buuren & Groothuis-

Oudshoorn, 2011).  

Predictive Mean Matching  
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 Another popular method for implementing multiple imputation is predictive mean 

matching, which was originally proposed by Rubin (1986) and Little (1988). Predictive 

mean matching is the default approach in the mice package (van Buuren & Groothuis-

Oudshoorn, 2011). First, this approach predicts values on a target variable using a 

specified imputation model. Then a set of complete cases with similar prediction as the 

missing entry are identified. The complete cases matched with the missing data entry are 

known as donors. One of the donors is then randomly selected and its observed value 

replaces the missing entry. The predictive mean matching approach optimizes each target 

variable separately and only requires a one-number summary that relates to the covariates 

and target variable (van Buuren, 2018). 

 There are various ways to select donors. Four popular methods for donor selection 

that have been identified by Andridge and Little (2010) will be described in this section. 

In the following descriptions, �̂�𝑖 represents the predicted value of the rows with observed 

𝑦𝑖 where 𝑖 =  1,… , 𝑛𝑖 . Whereas  �̂�𝑗 denotes the predicted value of the rows with missing 

value 𝑦𝑗 where 𝑗 =  1,… ,𝑛𝑗 . For the four donor selection approaches: (1) the first 

involves choosing a threshold 𝜂 and take all 𝑖 for which |�̂�𝑖 − �̂�𝑗| <  𝜂. Then randomly 

selecting one donor from the candidates and replacing the missing value with the 

observed value of the donor. (2) The second approach involves selecting the closest 

donor candidate for which |�̂�𝑖 − �̂�𝑗| is minimized. (3) The third approach involves pre-

specifying the number of candidate donors 𝑑 for which |�̂�𝑖 − �̂�𝑗| is minimal and then 

randomly sampling one of them. (4) The last approach involves sampling one donor with 
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a probability that depends on |�̂�𝑖 − �̂�𝑗|. For some approaches, any number of candidate 

donors can be specified; however, it is typical to use five candidate donors in a set.  

 In addition to donor selection, there are several ways to match candidate donors 

with missing values. Van Buuren (2018) describes four matching procedures labeled 

Type 0-3. In Type 0, �̂� =  𝑋𝑜𝑏𝑠𝛽 is matched to �̂�𝑗 = 𝑋𝑚𝑖𝑠𝛽  where 𝛽 is the estimate of 𝛽. 

This approach ignores sampling variability in 𝛽  and therefore leads to improper 

imputations. Type 1 procedure involves �̂� =  𝑋𝑜𝑏𝑠 𝛽  is matched to �̇�𝑗 = 𝑋𝑚𝑖𝑠�̇�  where �̇� 

is a value randomly drawn from the posterior distribution of 𝛽. In Type 2, �̇� =  𝑋𝑜𝑏𝑠 �̇�  is 

matched to �̇�𝑗 = 𝑋𝑚𝑖𝑠 �̇� . Type 3 uses the following procedure: �̇� =  𝑋𝑜𝑏𝑠 �̇�  is matched to 

𝑦 ̈ = 𝑋𝑚𝑖𝑠 �̈� which represents two draws for 𝛽 (one for the donor and one for the 

recipient). The advantages and disadvantages of using each matching procedure Type 0-3 

can be found in van Buuren (2018).  

 Overall predictive mean matching is a popular approach to treating missing data. 

This method is robust to misspecifications of imputation model and provides imputation 

that possess characteristics of the complete data (van Buuren, 2018). 

Limitations of Multiple Imputation 

When considering multiple imputation, it is important to note the limitations. A 

major limitation is that it is possible to get different estimates for every application of 

multiple imputation. If multiple imputation is implemented correctly, the differences in 

estimates should be negligible. However, two researchers to use multiple imputation on 

the same data using the same methods will arrive at different parameter estimates and 

standard errors (Allison, 2002). Another limitation is that multiple imputation is 
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computationally cumbersome and sophisticated software is needed to implement multiple 

imputation (Allison, 2002).  

Full Information Maximum Likelihood 

Full information maximum likelihood (FIML) estimation is an approach for 

obtaining parameter estimates even when data contain missing values. Like multiple 

imputation, FIML is almost always better than traditional methods (e.g., deletion, mean 

substitution, single imputation, etc.) at producing unbiased parameter estimates when 

data are MAR or MCAR (Baraldi & Enders, 2010; Enders, 2010). FIML has become a 

popular approach that is widely available in statistical software packages (Enders 2010). 

Due to its popularity, this section will include a brief overview of FIML even though this 

approach does not apply to machine learning techniques like decision trees (which will be 

discussed in further detail in this section). 

Maximum likelihood (ML) estimation uses all available data to identify which 

population parameters most likely produced the observed values in a dataset (Baraldi & 

Enders, 2010; Enders, 2010). The starting point of ML is to specify a population 

distribution, which is often the multivariate normal distribution in the social and 

behavioral sciences. Once the distribution is specified, a set of population parameters are 

evaluated. The likelihood that the observed data were drawn from a particular set of 

population parameters is calculated using the log-likelihood. Log-likelihood is a 

measurement of the standardized distance between a set of observed values and a specific 

set of population parameters like mean and variance. For example, the log-likelihood for 

a set of observed scores from the univariate normal distribution is 
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(21) 

where the term in brackets is the probability density function which describes the shape 

of the normal curve. The squared z-score that appears in the exponent of the function is 

the standardized distance between an observed value and the population mean. Large z-

scores produce small log-likelihood values, whereas small z-scores produce large log-

likelihood values. A log-likelihood value is collected for each individual observation and 

the sum of the individual log-likelihood values produce the sample log-likelihood. ML 

repeatedly substitutes different population parameters until it identifies which set of 

parameters produce the highest sample log-likelihood. 

This process can be extended to the multivariate framework. Consider the 

following matrix formula to calculate log-likelihoods for each individual case 

 

(22) 

where  is the number of variables,  is a vector of scores for an individual,  represents 

the population mean and  represents the population covariance. The formula still 

includes the squared z-score, which evaluates the standardized distance between a set of 

observed values from an individual and the population mean from a multivariate normal 

distribution. As previously mentioned, the sample log-likelihood is computed by 

summing together individual log-likelihood values. The ML process repeats this process 

with different population parameters until it identifies which set of parameters produce 

the highest sample log-likelihood. 

ML estimation may be conducted with either complete or incomplete data. When 

working with the individual log-likelihood, treating missing data is often referred to as 
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full information maximum likelihood (FIML). Though the procedures are similar, the 

difference between working with complete and incomplete data is that the log-likelihood 

value needs to be calculated for each case when data are missing; 

 

(23) 

where  is the number of variables with complete data,  is a vector of scores for an 

individual,  represents the population mean and  represents the population covariance. 

The difference between Equation 23 and Equation 24 is that the population parameters 

now have a subscript , which indicates that the matrices can vary across individuals so 

that log-likelihood is computed for each case using only the variables and parameters that 

have complete data (Enders, 2010). For example, if a dataset contained four variables, 

, and a particular case was missing a value on , then FIML would calculate the 

individual log-likelihood value using the population parameters for  and ignore 

the parameters for The likelihood calculation for that particular case would not 

contain any reference to  It is possible that the formula for calculating log-likelihoods 

could be different for each missing data pattern (Enders, 2010). Once the log-likelihoods 

are calculated for each case, the individual values are summed together to obtain a 

sample log-likelihood value. Even with missing data, the sample log-likelihood value 

represents the probability of drawing the observed values from the multivariate normal 

distribution with a particular mean vector and covariance matrix. Regardless of whether 

the data are complete or incomplete, the estimation process repeatedly computes various 

combinations population parameters until it identifies the set of parameters that produce 

the highest sample log-likelihood value.  
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 While FIML is an effective method for obtaining parameter estimates across 

various statistical techniques (e.g., regression, structural equation modeling, item 

response theory, etc.), the procedure is not appropriate when working with a data-driven 

technique such as decision trees. By nature, decision trees do not assume a population 

distribution and estimate population parameters. However, other techniques like deletion 

and imputation have been adopted and applied in the machine learning framework. These 

traditional missing data techniques as well as ones specifically designed for decision trees 

are covered in the following section. 
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CHAPTER 4 

MISSING DATA IN CONDITIONAL INFERENCE TREES 

Missing data are problematic in decision trees because an observation with a 

missing value on the predictor variable is unable to be placed into a child node. Given the 

challenges of missing data handling in decision trees, multiple strategies have been 

developed, such as deletion approaches, surrogate splits, single imputation, and multiple 

imputation. A broad overview of each missing data approaches specifically designed for 

decision trees is described in the following sections.  

Deletion 

There are two deletion strategies that can be employed in conditional inference 

trees. The first is to simply remove observations where a missing value is present (aka 

listwise deletion). This approach is taken when preprocessing the data. The second 

strategy for conditional inference trees is to retain cases with missing values until a 

variable with missing values is selected (akin to pairwise deletion). For example, consider 

a case that contains a missing value on a predictor, . This case would be retained in the 

decision tree until  is selected to partition the data. Thus, if is not selected, then the 

case is retained in the model. Importantly, the case contributes to the formation of the 

decision tree until it cannot be placed into a child node because of the missing value.  

Surrogate Splits 

When an observation has a missing value on the splitting variable, surrogate splits 

use another variable in the data set to place the observation in the decision tree. Surrogate 

split is the default method for handling missing data in the ctree package (Hothorn et 

al., 2006) in R (R Core Team, 2020). In this approach, a missing observation for a 
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particular predictor variable is given a case weight set to zero. If the variable containing 

the missing observation is selected as a splitting variable, then the case weight is set to 

zero again and the splitting value is determined using complete observations. A surrogate 

split is implemented by finding where to place the missing observation that would lead to 

roughly the same division of observations as the original split (Hothorn et al., 2006). The 

missing observation is replaced with a binary variable which codes the split.  

Single Imputation 

Imputation strategies use information from the complete data to estimate what a 

missing value could be if it was observed. Single imputation draws a plausible value from 

a predictive distribution based on available data (Little & Rubin, 2002) to fill in the 

respective missing value. Since single imputation is employed prior to conducting a 

conditional inference tree analysis, the same variety of imputation techniques can be 

employed as for other statistical models. Mean/mode imputation or random replacement 

are a few simple single imputation techniques. More sophisticated imputation models are 

typically built on a linear or logistic regression model depending on the nature of the 

variable with the missing values. However, imputation models have also been built upon 

partitioning algorithms, such as decision trees and random forest imputation (Tang & 

Ishwaran, 2017).  

Multiple Imputation  

 As mentioned previously, multiple imputation involves three phases: imputation, 

analysis, and pooling. Identical to single imputation, the imputation phase can be easily 

implemented in conditional inference trees since imputation is conducted prior to 

analysis. However, the analysis phase of multiple imputation requires the same statistical 
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model fit to each imputed data set, and this is unlikely to happen with conditional 

inference trees because of its exploratory nature. The analysis phase of multiple 

imputation in conditional inference trees may result in completely different tree structures 

(i.e., variables and splitting values). Different tree structures make the pooling phase 

impossible to implement because of the variable selection and data partitioning 

components of decision tree algorithms. There are several articles that mention multiple 

imputation as a possible strategy for treating missing data in decision trees but do not 

describe the methods for pooling results from each imputed tree (García-Laencina, 

Sancho-Gómez, Figueiras-Vidal, & Verleysen, 2008; Saar-Tsechansky & Provost, 2007). 

Several researchers employed multiple imputation on missing data by simply ignoring the 

different tree structure and averaging together predicted values (Feelders, 1999; Twala, 

2009), which is a viable strategy when researchers are primarily concerned about 

prediction. This approach is akin to bagging (Breiman, 1996) and will almost always 

result in better prediction accuracy (Twala, 2009). The problem with averaging predicted 

values over different trees is that it does not provide a single set of splitting rules or tree 

structure and makes interpretation challenging. 

 To my knowledge, little research has been conducted on how to implement the 

analysis and pooling phase of multiple imputation in conditional inference tree analyses. 

However, a few studies have employed multiple imputation and compared multiple 

imputation with other missing data methods (Feelders, 1999; Twala, 2009). These studies 

are discussed in greater detail in Comparison Studies section. Although multiple 

imputation methods specifically designed for conditional inference trees seem lacking, 
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decision tree algorithms have been proposed as imputation engine for predicting missing 

values for other statistical models (Burgette & Reiter, 2010; Van Buuren, 2012). 

Comparison Studies 

 Several studies have compared approaches for treating missing data in decision 

trees, which can be applied to conditional inference trees (Batista & Monard, 2003; 

Beaulac & Rosenthal, 2020; Feelders, 1999; Rodgers, Jacobucci, & Grimm, 2021; Twala, 

2009). In this section, I briefly summarize across the studies and report which missing 

data approaches produced the best results.   

 Across the reviewed studies, the following approaches were compared: listwise 

deletion, single imputation (k-nearest neighbor imputation, EM/logistic imputation, 

decision tree imputation, distribution-based imputation), mean/mode imputation, multiple 

imputation with prediction averaging, surrogate splits, and methods that were developed 

and implemented in other decision tree algorithms (e.g., C4.5 and C5.0). Most studies 

used complete data sets from the UCI machine learning repository and artificially 

imposed missing values, while a few studies conducted simulations (Beaulac & 

Rosenthal, 2020; Rodgers et al., 2021).   

 The best performing missing data approaches for decision trees were determined 

based on the findings of all five comparison studies. Multiple imputation outperformed 

all approaches it was compared against when data were MCAR and MAR (Feelders, 

1999; Rodgers et al., 2021; Twala, 2009). However, this approach should be used with 

caution because prediction accuracy always improves as predicted values are averaged 

across trees. Additionally, the results from multiple imputation cannot be interpreted as 

the predicted values were likely produced from different tree structures. To address this 
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problem, Rodgers et al. (2021) proposed a modified imputation approach specifically for 

CART that would produce a single tree structure, which allows for interpretation of 

decision rules. The modified multiple imputation approach outperformed single 

imputation, surrogate splits, and deletion methods when data were MAR, especially with 

small sample sizes (Rodgers et al., 2021).  

In the remaining studies, the second-best performing approaches to multiple 

imputation were single imputation approaches that were applied to MAR and MCAR data 

(Feelders, 1999; Twala, 2009). However, it is important to consider the different single 

imputation approaches. For example, EM single imputation performed well for numeric 

variables (Twala, 2009), whereas decision tree single imputation and k-nearest neighbor 

imputation performed best with categorical variables (Twala, 2009; Batista & Monard, 

2003). Additionally, surrogate splits performed well when there are high correlations 

among variables (Twala, 2009). Although the author does not report the magnitudes of 

the correlations, data sets are available on the University of California, Irvine Machine 

Learning Repository: https://archive.ics.uci.edu/ml/index.php. It is important to note 

listwise deletion performed poorly and therefore is not recommended (Twala, 2009). 

When data were MNAR, the separate class approach was shown to have the best 

performance (Beaulac & Rosenthal, 2020); however, the way in which missing values 

were generated in the Beaulac and Rosenthal (2020) study perfectly aligned with the 

separate class procedure for treating missing data. Any observation with a certain 

outcome value was recoded as missing, and separate class recodes missing values as its 

own category. Therefore, more research needs to be done on missing data approaches for 

treating MNAR data.  

https://archive.ics.uci.edu/ml/index.php
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In conclusion, the current method of employing multiple imputation (i.e., 

averaging predicted values over different imputed tree structures) is recommended if a 

researcher is only interested in prediction accuracy and not interested in interpretability. 

Multiple imputation and single imputation (specifically EM, decision tree, and k-nearest 

neighbor imputation) are recommended when MAR and MCAR. The surrogate split 

approach is an appropriate approach to use when variables are highly related. More 

research should be done to determine the best approach for treating MNAR data.  

Multiple imputation is generally recommended over other approaches across the 

various studies; however, the researchers have primarily focused on prediction accuracy 

of the collection of decision trees as opposed to obtaining a single tree that can be 

interpreted. Alternatively, Rodgers et al. (2021) proposed a modified multiple imputation 

procedure that allows for tree interpretability by producing a single tree structure. Instead 

of averaging predicted values across trees for each imputed set, the modified procedure 

fits a single tree to all of the multiply imputed datasets at once. That is, the imputed 

datasets are combined and stacked into a single dataset and evaluated simultaneously. 

The traditional multiple imputation approach (with prediction averaging) will almost 

always outperform the modified procedure or any other approach in prediction accuracy 

because this method is akin to bagging or random forests. However, the modified 

approach allows for tree interpretability and has been shown to outperform other deletion, 

single imputation, and surrogate split approaches when data are MAR (Rodgers et al. 

2021). Since this approach was initially developed for CART, the purpose of this study is 

to expand the modified imputation approach to conditional inference trees.  

Proposed Approach for Handling Missing Data in Conditional Inference Trees   
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The purpose of this project is to modify the multiple imputation approach 

specifically for conditional inference trees. The proposed approach follows the first three 

steps of multiple imputation (i.e., impute, analyze, and pool); however, the pooling step is 

different. First, data are imputed from a distribution specifically modeled for the missing 

data. Second, a conditional inference tree is fit to the imputed data, and the depth of the 

resulting tree is recorded. Tree depth measures the length of the path from the furthest 

terminal node to the root (example shown in Figure 3).  

Figure 3 

Tree Depth Example 
 

 
 

Third, the first two steps are repeated multiple times (e.g., ). Figure 4 depicts a simple 

example of the first three steps. Fourth, the imputed datasets are stacked to create a 

single, large data set consisting of  rows, where  is the number of imputed 

datasets and  is the sample size for each imputed dataset. A CTREE is then fit to the 
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stacked dataset with the tree depth fixed to the average depth (rounded to nearest whole 

number) obtained when a tree was fit to each imputed dataset. Thus, in this pooling step, 

we pool the tree depth and then use the average depth as the maximum depth when fitting 

a tree to the stacked data. This leads to a single decision tree that is indirectly determined 

to the stacked multiply imputed dataset with a single set of decision rules that are easily 

interpreted (shown in Figure 5).  

Figure 4 

Multiple imputation approach for decision trees 

 

 
Note. This figure illustrates the imputation and analysis phase of the modified multiple 
imputation approach for decision trees. 
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Figure 5 

 
Modified Multiple Imputation Approach for Decision Trees 

 
 

Note. This figure illustrates the pooling phase of the modified multiple imputation 

approach. Multiply imputed datasets are stacked into a single data frame, a decision tree 
is fit to the stacked dataset, and the decision tree is pruned based on the average tree 

depth from individual trees.  
 

Fitting the final conditional inference tree to the stacked multiply imputed dataset 

provides a single set of decision rules, but ignores the variability across imputed datasets. 

While imputation variability is an important component of the calculation of standard 

errors in the application of multiple imputation with a theoretically driven statistical 

model (e.g., multiple regression model), standard errors are not part of decision trees. The 

splitting values in conditional inference trees are considered point estimates, and 

conditional inference trees do not provide information the uncertainty of the point 

estimate.  
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Pooling the tree depth is an important aspect of the modified multiple imputation 

approach. We note that the optimal tree depth cannot be determined through statistical 

significance of the stacked multiply imputed data because sample size is inflated. For 

example, say we have a dataset with 10% MCAR missingness on ten variables. We 

conduct  imputations and stack the multiply imputed data. Approximately 35% of 

the sample will have complete data leading to the same data appearing in the stacked d ata 

20 times. Another ~39% of the sample will be missing one value leading to 90% of their 

data appearing in the stacked data 20 times. The high degree of the same data appearing 

in the dataset and inflated sample size will affect the statistically motivated stopping 

criterion. Thus, using statistical significance with the stacked multiply imputed data leads 

to an overgrown (overfit) CTREE. Instead, determining tree size based on pooling tree 

depth leads to more appropriately sized decision trees.  

A Monte Carlo simulation study examined the performance of the modified 

multiple imputation approach outlined above and compared its performance to the 

missing data methods currently implemented with decision trees in terms of its predictive 

performance, variable selection, variable importance, and tree size. 
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CHAPTER 5 

METHODS 

A Monte Carlo simulation study was conducted to compare how well different 

missing data approaches perform with conditional inference trees. Data were generated 

from a population tree structure, missing values were generated following different 

missing data protocols, conditional inference trees were fit to these datasets using each 

missing data handling approach, and I examined various indices of the resulting 

prediction model. This process was repeated 1,000 times for every condition. Baseline 

measures were taken from complete datasets (i.e., containing no missing values) and used 

for comparison. The performance of each missing data approach was examined with 

respect to prediction accuracy, variable selection, and variable importance.  

Data Generation 

 Data were generated using R (R Core Team, 2020). All predictor variables were 

drawn from a standard normal distribution (i.e., , ). Depending on the 

condition, one ( ) or four ( ) predictor variables were created. Three 

predictor variables,    and , were generated to correlate .4 or .6 with the  

variables, and    and  were subsequently used to generate the outcome using a 

series of decision rules from a population decision tree. The population tree structure 

includes six splits and seven terminal nodes. The outcome variable, , was generated 

from the population tree shown in Figure 6 with values generated from a normal 

distribution with the mean and variance reported in each terminal node. Of note, the first 

split in the population tree is on . Additionally, six distractor predictor variables,  

through  were generated from a standard normal distribution and correlated .15 with , 
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, and   . Depending on the condition, distractor variables either correlated .02 or .09 

with the single predictor  or all four predictors ( ). The simulated dataset 

includes 10 or 13 predictor variables (i.e., three used in the population decision tree, one 

or four used for missing data generation, and six distractors), and the outcome variable.  

Figure 6 

Population Tree Structure 

 

 
 

Manipulated Features 

 Manipulated features include sample size and characteristics of missing values. 

The sample sizes include , , and  to cover a range of sample 

sizes commonly seen in the social and behavioral sciences. Missing values were imposed 

across all predictors; however, the nature of the missing values varied for , which will 

be the first splitting variable in the population tree structure. Varied aspects included the 

missing data mechanism, the percentage of missing data, the number of variables that the 

likelihood of a missing value is dependent on, and the degree of association between 

likelihood of missingness and the other variable(s) in the dataset. Missing data generation 
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on all other predictors (all variables not including ) were MCAR with a 2.5% 

likelihood of being recoded as missing. 

Missing Data Generation. The method for imposing missing values on  variable 

 closely follows methods from Mazza, Enders, and Ruehlman (2015). Missing values 

were designed to either be missing at random (MAR) or missing completely at random 

(MCAR). In the MAR condition, missing values on  were generated to relate to one (

) or four variables ( , , , and ). The association between the likelihood of 

missingness and the other variable(s) in the dataset were specified using a logist ic 

regression model (Agresti, 2012; Johnson & Albert, 1999; Mazza et al., 2015), with slope 

and intercept parameters chosen to produce the desired level of association between the 

underlying missingness probability and the complete variable(s) as well as the overall 

percentage of missing values. Slopes were selected such that the strength of association 

between the underlying missingness probability and the complete variable(s) was either 

 = .2 for a moderate association or  = .4 for a strong association. Intercepts were 

selected so that percentage of missing values on  will either be 15% or 30%, which are 

rates commonly found in psychological and educational research (Enders, 2003). The 

MCAR condition will have fewer manipulated features than the MAR conditions because 

missingness was unrelated to any other variables in the dataset. Since MCAR occurs 

when the likelihood of missingness occurs at random, the slope for the logistic regression 

model was 0 and intercepts were chosen such that the percentage of missing values are 

either 15% or 30% on .  

Approaches for Handling Missing Data. Listwise deletion, delete if selected, 

majority rule, surrogate splits, single imputation, a multiple imputation with prediction 
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averaging, and the proposed multiple imputation approach were used to handle the 

missing data. Listwise deletion was employed by deleting cases with missing values prior 

to analyses. Delete if selected was applied using the control settings (i.e., 

maxsurrogate=0) from the ctree package (Hothorn, Hornik, Zeileis, 2006) in R (R 

Core Team, 2020). The majority rule approach was also employed using the control 

function by specifying that no surrogates would be used in the analyses (i.e., majority 

= TRUE). The surrogate split approach used the default method (previously described) to 

place observations with missing values.  

For single and multiple imputation, data were imputed using the mice package 

(Buuren & Groothuis-Oudshoorn, 2011) in R (R Core Team, 2020). The elementary 

imputation method was specified using program defaults, which uses predictive mean 

matching. In the single imputation approach, missing values will be imputed once to 

create a single dataset (i.e.,  = 1), which will then be analyzed. In the multiple 

imputation approaches, missing values were imputed 20 times (i.e.,  = 20). According 

to Buuren and Groothuis-Oudshoorn (2011), mice assumes that the multivariate 

distribution of an incomplete variable is completely specified by a vector of unknown 

parameters, . Sampling iteratively, the algorithm models the conditional distributions of 

the incomplete variable given the other variables to obtain a posterior distribution of . 

Using Gibbs sampling, the algorithm selects and fills in plausible values for the missing 

values on the incomplete variables. The distributions are assumed for each variable 

instead of the whole dataset. The chained equations within mice refers to concatenating 

univariate procedures to fill in missing data  (Buuren & Groothuis-Oudshoorn, 2011).  
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Stopping Criteria. CTREEs recursively partition data until there is no significant 

association between predictors and the outcome. Optimal tree sizes are determined by 

significance tests for listwise deletion, delete if selected, majority rule, surrogate splits, 

and single imputation. In multiple imputation with prediction averaging, each tree 

obtained optimal size by significance tests, but the predicted values from each tree was 

averaged. In the modified multiple imputation approach, the multiply imputed data was 

stacked and analyzed with the maximum tree depth set to the average depth when a 

CTREE was fit to each imputed dataset separately.  

Evaluation Metrics 

 Four evaluation metrics were examined to assess and compare the performance of 

the missing data approaches. The metrics are the mean square error (MSE) in a test 

dataset, the proportion of replicates where the first splitting variable was , variable 

importance metrics, and the median number of splits.  

 The final decision tree from each missing data approach was used to generate 

predicted values in the test dataset with N = 10,000 drawn from the same population. The 

test dataset contained no missing values and was not used to estimate any of the models. 

The predicted values in the test dataset were calculated and used to determine the MSE. 

Lower MSE values indicated stronger prediction accuracy, whereas higher MSE values 

indicated weaker prediction accuracy. The performance of missing data approaches was 

compared to each other and with the conditional inference tree estimated using the 

complete data.  

 The second evaluation metric was the proportion of replicates where  is the first 

variable selected to split the data. Recall that variable  is the first variable split in the 
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population tree. Thus, the proportion of times  (i.e., the target variable) is correctly 

selected for the first split indicates the CTREE properly selected the primary splitting 

variable. The third evaluation metric is variable importance. Variable importance 

assessed the degree to which each variable contributes the prediction of the outcome. 

Variable importance was calculated for every predictor by summing together the decrease 

in error for every split using the variable as the splitting variable. Variable importance 

values for  , and  were compared across each missing data approach and with the 

complete data.  

 The median number of splits was the last evaluation metric. Seven decision trees 

were fit (i.e., complete data and the six missing data approaches) for each replication 

within a condition. The median number of splits across all replications within a condition 

was recorded for each approach. The number of splits were compared across missing data 

approaches as well as in the population decision tree as an indication of proper tree size. 
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CHAPTER 6 

RESULTS 

Overall, simple missing data techniques such as majority rule, treat missing as its 

own category, and listwise deletion performed better than the proposed multiple 

imputation approach, single imputation, and surrogate splits. Notably, listwise deletion 

was highly influenced by sample size (i.e., producing the greatest amount of MSE in 

small sample size conditions) but correctly selected the first splitting variable more often 

than all other approaches. The proposed multiple imputation approach (closely followed 

by single imputation) performed better than surrogate splits when data were MAR with 

multiple variables strongly predicting missing values and when dealing with small 

sample sizes. Multiple imputation with prediction averaging had the greatest prediction 

accuracy but did not produce an interpretable tree structure. The following sections 

summarize and compare the approaches for each outcome.   

Mean Square Error (MSE) 

Analyses of variance (ANOVAs) were conducted to assess which simulation 

conditions (i.e., missing data approach, missing data pattern, sample size, percent of 

missing values, strength of relationship among predictors, and the number of predictors) 

had the greatest impact on MSE. On average, MSE was most influenced by sample size (

= .88). Other important conditions included the percent of missing values ( = .04) 

and strength of the relationship among predictors ( = .04). The method for treating 

missing data (e.g., deletion, imputation, surrogate splits, etc.) was also influential ( = 

.01). 
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Each missing data handling approach (e.g., listwise deletion, treating missing as 

its own category, majority rule, surrogate splits, single imputation, multiple imputation 

with prediction averaging, and the proposed multiple imputation approach were used to 

handle the missing data) was compared with the control condition where a CTREE was 

fit to the complete datasets. All MSEs reported in the following tables and graphs 

represent the percent increase in MSE over the complete data conditions to allow for 

direct comparisons. For example, a MSE of zero for a given missing data approach would 

indicate that the approach performed identical to having no missing data (i.e., the 

respective control condition with complete data). Comparisons were made across 

simulation conditions that were shown to have the greatest impact on MSE: sample size 

(Table 1), percent missing (Table 2), and the strength of the relationship among 

predictors (Table 3). Missing data patterns were also evaluated across the comparisons.  

Missing data approaches generally produced minimal differences in MSE values. 

Multiple imputation with prediction averaging consistently produced the least MSE, 

which was likely because it is essentially an ensemble approach like bagging (Breiman, 

1996). The average MSE for this approach most closely resembled the results when the 

CTREE was fit to the complete data (see Figures 7-8). Majority rule and treating missing 

as its own category led to greater MSE than the multiple imputation approach with 

prediction averaging but lower MSE than the remaining approaches. Differences between 

majority rule and treat missing as its own category approaches were minimal (i.e., 

average MSE differed by .01 at most) and became less apparent in the larger sample size 

conditions. These three approaches consistently produced the lowest MSE across the 

conditions (see Tables 1-3). 
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Table 1. Percent Increase in MSE Across Sample Size 
 

 N = 200 N = 500 N = 1,000 

 MCAR MAR (.2) MAR (.4) MCAR MAR (.2) MAR (.4) MCAR MAR (.2) MAR (.4) 

Complete Data 0 0 0 0 0 0 0 0 0 

Listwise Deletion 0.08 0.07 0.07 0.03 0.03 0.03 0.02 0.02 0.02 
Own Category 0.05 0.04 0.04 0.03 0.02 0.01 0.02 0.01 0.01 

Majority Rule 0.04 0.04 0.04 0.03 0.02 0.01 0.02 0.01 0.01 

Surrogate Splits 0.05 0.04 0.05 0.03 0.02 0.02 0.02 0.02 0.02 

Single Imputation 0.06 0.05 0.05 0.04 0.03 0.03 0.02 0.02 0.02 

Multiple Imputation* 0.05 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 

Prediction Averaging 0.01 <0.01 <0.01 0.01 <0.01 <0.01 0.01 <0.01 <0.01 

  (*) indicates the proposed modified multiple imputation approach 
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Table 2. Percent Increase in MSE Across Percentage of Missing Values 
 

 15% 30% 

 MCAR MAR (.2) MAR (.4) MCAR MAR (.2) MAR (.4) 

Complete Data 0 0 0 0 0 0 

Listwise Deletion 0.03 0.03 0.03 0.05 0.05 0.05 

Own Category 0.02 0.01 0.01 0.05 0.03 0.03 

Majority Rule 0.02 0.01 0.01 0.05 0.03 0.03 

Surrogate Splits 0.02 0.01 0.02 0.05 0.04 0.04 

Single Imputation 0.02 0.02 0.02 0.06 0.05 0.05 

Multiple Imputation* 0.02 0.02 0.02 0.05 0.04 0.05 

Prediction Averaging <0.01 -0.01 -0.01 0.02 0.01 0.01 

  (*) indicates the proposed modified multiple imputation approach 
 

 
Table 3. Percent Increase in MSE Across Relationship Among Predictors 

 

 r = .16 r = .36 

 MCAR MAR (.2) MAR (.4) MCAR MAR (.2) MAR (.4) 

Complete Data 0 0 0 0 0 0 

Listwise Deletion 0.04 0.04 0.04 0.04 0.04 0.04 

Own Category 0.03 0.02 0.02 0.04 0.02 0.02 

Majority Rule 0.03 0.02 0.02 0.04 0.02 0.02 

Surrogate Splits 0.03 0.03 0.03 0.04 0.03 0.03 

Single Imputation 0.04 0.04 0.04 0.04 0.03 0.03 

Multiple Imputation* 0.04 0.03 0.04 0.04 0.03 0.03 

Prediction Averaging 0.01 0.01 0.01 0.01 <0.01 <0.01 

  (*) indicates the proposed modified multiple imputation approach 

 

The remaining approaches (the proposed multiple imputation approach, single 

imputation, surrogate splits, and listwise deletion) produced greater MSE than the 

multiple imputation approach with prediction averaging, majority rule, and treat missing 

as its own category. Out of the remaining approaches, surrogate splits performed slightly 

better than the imputation approaches across most conditions. Surrogate splits produced 
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lower MSE in conditions with larger sample sizes (Table 1), weak relationships among 

predictors (Table 3), and when data were MCAR. The proposed multiple imputation 

approach produced lower MSE in conditions with small sample sizes (i.e., when N = 200; 

Table 1), and performed as well as surrogate splits when there were strong relationships 

among predictors (Table 3), high percentage of missing values (Table 2), and data that 

were MAR. Single imputation produced slightly greater MSE than the proposed multiple 

imputation approach and surrogate splits in small sample size and MCAR conditions but  

performed well in larger sample size conditions (Table 1). Listwise deletion had the 

greatest MSE in small sample size conditions but performed fairly well in large sample 

size conditions (Table 1). In fact, listwise deletion performed similar to surrogate splits 

and single imputation, as well as outperformed the proposed multiple imputation 

approach when N = 1,000.  

MSE in Extreme Simulation Conditions. MSE values for each missing data 

approach were compared across extreme simulation conditions. The least  severe 

condition in regards to missingness had 15% percent missing values on predictor  that 

were MCAR and a weaker relationship among predictors ( . The most severe 

missingness condition had 30% percent missing values on predictor , four predictors 

that were more strongly related to missing values ( ) in the MAR condition, and 

a relatively stronger relationship among the predictors ( . Since sample size had 

the greatest impact on MSE, the least and most severe missingness conditions were 

compared across the same sample size (i.e., ).  
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Figure 7 

Mean Square Error in the Least Severe Missingness Condition 
 

 

Note. MSE produced across each missing data approach in the least severe missingness 

condition where 15% of the data on  were MCAR, the predictors were correlated 

.16,and N = 200. Missing data approaches include: (A) Baseline - Complete Data; (B) 

Listwise Deletion; (C) Treat Missing as Own Category; (D) Majority Rule; (E) Surrogate 

Splits; (F) Single Imputation; (G) Proposed Multiple Imputation Approach; (H) Multiple 

Imputation with Prediction Averaging.  

 Across the missing data approaches, MSE values in the least severe missingness 

condition are illustrated in Figure 7. As expected, the multiple imputation approach with 

prediction averaging (H) outperformed all the approaches and most closely resembled the 
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complete data condition (A). The amount of MSE produced by the remaining missing 

data approaches was fairly similar. Specifically, treating missing as its own category (C), 

majority rule (D), surrogate splits (E), single imputation (F), and the proposed multiple 

imputation approach (G) had similar distributions of MSE. The distribution of MSE 

values in the listwise deletion approach (B) had more spread and greater right skew than 

the other approaches illustrating larger percent increase in MSE over the complete data 

condition.  

Figure 8 

Mean Square Error in the Most Severe Missingness Condition 
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Note. MSE produced across each missing data approach in the most severe missingness 

condition with 30% of the data on  were MAR with a multiple variables predicting 

missing values ( = .4), predictors were correlated .36, and N = 200. Missing data 

approaches include: (A) Baseline - Complete Data; (B) Listwise Deletion; (C) Treat 

Missing as Own Category; (D) Majority Rule; (E) Surrogate Splits; (F) Single 

Imputation; (G) Proposed Multiple Imputation Approach; (H) Multiple Imputation with 

Prediction Averaging.  

 Histograms of MSE values from the most severe missingness condition are shown 

in Figure 8. Again, the multiple imputation approach with prediction averaging (H) had a 

small spread in the distribution of MSEs centered around zero, indicating it performed 

similar to the complete data condition. most closely resembled the complete data 

condition (A). The proposed multiple imputation approach (G) performed better than the 

remaining approaches. The distribution of MSEs peaked around zero with fewer scores in 

the right skew tail.  Single imputation, treating missing as its own category, majority rule, 

and surrogate splits had a wider spread across MSE values in comparison with the 

proposed approach. Listwise deletion had the longest right skew tail indicating that it had 

the greatest percent increase in MSE. 

Table 4. Percent Increase in MSE Across Severe Missingness Conditions 

 Least 

Severe 

Most 

Severe 

(A) Complete Data 0 0 

(B) Listwise Deletion 0.06 0.09 

(C) Own Category 0.03 0.05 

(D) Majority Rule 0.02 0.05 

(E) Surrogate Splits 0.03 0.06 

(F) Single Imputation 0.04 0.05 

(G) Multiple Imputation* 0.03 0.04 

(H) Prediction Averaging -0.01 -0.01 

 (*) indicates the proposed modified multiple imputation approach 

 



 
 

 

 

60 

Number of Splits  

The number of splits in each tree was recorded. Table 5 summarizes the number 

of splits found across each missing data approach. Multiple imputation with prediction 

averaging did not produce a single tree structure, so the number of splits was not 

recorded.  

Trees produced in the proposed multiple imputation approach had large 

differences in number of splits. Though this approach seemed to generally follow the 

other approaches on average (it also had a median of three splits), there were situations 

when the proposed approach grossly overfit and produced trees with as many as 31 splits. 

To further investigate which conditions contributed to overfitting, all trees that contained 

more than 13 splits were evaluated. The pattern indicated that the proposed multiple 

imputation tended to overfit when dealing with large sample sizes, such as when  = 

1,000 (see Table 6). Each approach had a total of 20,000 replications within each sample 

size condition. Out of the 20,000 replications, the proposed approach produced decision 

trees with more than 13 splits 13 times when N = 200, 221 times when N = 500, and 

2,287 times when N = 1,000. Overfit trees in the large sample size conditions were likely 

contributing to high MSE in large sample size conditions. The average MSE in the 

proposed approach improved by 0.01 in the N = 1,000 condition when all replications 

with more than 13 splits are excluded. While having more than 13 splits was a clear 

indication of overfitting in a population with six splits, it is likely that there was 

overfitting in the remaining replications with less than the arbitrary cut off of 13 splits.  
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Table 5. Number of Splits 
 

 MCAR MAR (.2) MAR (.4) 
 median mean min max median mean min max median mean min max 

Complete Data 3 2.91 0 9 3 2.86 1 9 3 2.87 0 8 
Listwise Deletion 2 2.36 0 9 2 2.31 0 8 2 2.32 0 8 
Own Category 3 3.25 0 10 3 2.93 0 9 3 2.94 0 10 
Majority Rule 3 3.23 0 11 3 2.96 0 13 3 2.99 0 10 
Surrogate Splits 3 3.00 0 10 3 3.17 0 11 3 3.36 0 12 
Single Imputation 3 3.05 0 10 3 3.11 0 9 3 3.22 0 9 
Multiple Imputation* 3 4.85 0 31 3 4.74 0 31 3 4.92 0 31 
Prediction Averaging - - - - - - - - - - - - 

  (*) indicates the proposed modified multiple imputation approach 
 

 
 
Table 6.  Prevalence of Overfitted Models Produced by the Proposed Approach 

 

 Number of Splits  13 Number of Splits < 13 

 Frequency Average MSE Frequency Average MSE 

N = 200 13 0.21 19987 0.04 

N = 500 222 0.11 19778 0.03 

N = 1,000 2294 0.07 17706 0.02 

Note. The population tree structure had a total of six splits. Trees that contained 13 or more splits were considered overfitted models. 
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While the proposed approach had a problem overfitting, listwise deletion seemed 

to have a problem underfitting more often than the other approaches and averaged two 

splits. Overall, all approaches except the proposed multiple imputation and listwise 

deletion produced relatively similar tree structures in terms of average number of splits.  

Proportion of Correct First Splits 

The proportion of times that  was chosen for the first split was recorded. Figure 

9 illustrates the performances of each approach in the least severe and most severe 

missingness conditions. Across all approaches, higher rates of missing values and smaller 

sample sizes led to fewer instances where  was chosen for the first split.  

Listwise deletion correctly selected first split more frequently than the other 

approaches and most closely resembled the complete data conditions. The performance of 

the other approaches depended on the missing data pattern, strength of association among 

predictors and missing values, and the percentage of missing data. All approaches were 

compared with the complete data condition where the correct first split was made 82% of 

the time. In the least severe simulation condition, listwise deletion selected  most 

frequently, which was 76% of the time. Majority rule, treat missing as its own category, 

and surrogate splits selected  for the first split 72% of the time. The proposed multiple 

imputation approach correctly selected  for the first split 69% of the time, and single 

imputation did so 68% of the time.  

However, the pattern of results switched in the most severe missing data 

condition, where there was 30% missingness on , four predictors that were more 

strongly related to missing values, and a stronger relationship among the predictors. 
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Again, listwise deletion outperformed the other approaches and selected  for the first 

split roughly 73% of the time, which most closely resembled the complete data cond ition 

(78%). The proposed multiple imputation approach and single imputation correctly 

selected  for the first split 55% of the time, whereas majority rule, treat missing as its 

own category, and surrogate splits only selected the correct first split 44% of the time.  

Figure 9 

 

Proportion of Correct First Splits: Severe Missingness Conditions 

 
Note. The first panel (top) represents the least severe missingness condition where 15% 

of the data on  were MCAR, the predictors were correlated .16, and N = 200. In the 

second panel (bottom), 30% of the data on  were MAR with a multiple variables 

predicting missing values ( = .4), predictors were correlated .36, and N = 200. Missing 

data approaches include: (A) Baseline - Complete Data; (B) Listwise Deletion; (C) Treat 

Missing as Own Category; (D) Majority Rule; (E) Surrogate Splits; (F) Single 
Imputation; (G) Proposed Multiple Imputation Approach; (H) Multiple Imputation with 
Prediction Averaging. 
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Variable Importance 

 Variable importance values ranged from 0 to 1 for , , and . Recall that 

was the target variable containing missing values and it was the first splitting variable, 

which is often associated with the greatest importance value. A rank order correlation 

was computed to evaluate whether approaches were in agreement with order of predictor 

importance. A rank order correlation of 1.00 was found across each pair of approaches, 

which suggested that all approaches placed the exact same order of predictor importance 

– with  having the greatest importance value and z3 least importance value. However, 

the degree to which approaches placed importance on each of the predictors varied. 

Average importance values in the extreme missingness conditions are illustrated in 

Figure 10.  

In the least severe missingness condition, each missing data approach was 

compared with the complete data condition (A) which produced the following importance 

values: 0.65 for , 0.30 for , and 0.01 for . Listwise deletion (B) most closely 

resembled complete data (A) because, on average, it had only slightly higher importance 

placed on  (0.66) and slightly lower importance placed on . Following 

listwise deletion, the next best performance was the proposed multiple imputation 

approach (G) and surrogate splits (E), which produced identical importance values. In 

comparison with the complete data condition, these approaches assigned a slightly lower 

importance value on  (0.61) and a slightly higher importance on  (0.32). This pattern 

of having lower importance values for   and higher importance for on , was also 

found in the remaining approaches (C, D, and F) with slightly larger differences with 
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complete data condition (i.e., importance values were either 0.58 or 0.59 for   and 0.34 

for ). Overall, there were minimal differences in variables importance across missing 

data approaches in the least severe condition. 

Figure 10 

Variable Importance: Severe Missingness Conditions 
 

 
Note. The first panel (left) represents a condition where 15% of the data on  were 

MCAR, the predictors were correlated .16, and N = 200. In the second panel (right), 30% 
of the data on  were MAR with a multiple variables predicting missing values ( = 

.4), predictors were correlated .36, and N = 200. Missing data approaches include: (A) 

Baseline - Complete Data; (B) Listwise Deletion; (C) Treat Missing as Own Category; 
(D) Majority Rule; (E) Surrogate Splits; (F) Single Imputation; (G) Proposed Multiple 

Imputation Approach; (H) Multiple Imputation with Prediction Averaging. 
 

The variable importance values produced in the most severe missingness 

condition are also shown in Figure 10. Again, each missing data approach was compared 

with the complete data. Listwise deletion (B) most closely resembled the complete data 

(A) and was the only approach that overestimated the importance of  (0.68) and 

underestimated the importance of   (0.23). The remaining approaches had a reverse 

pattern (i.e., underestimated the importance of  and overestimated the importance of 



 

 66 

). Every approach (including listwise deletion) overestimated the importance of  with 

values equal to 0.03 or 0.04. Out of the remaining approaches, the next best was the 

proposed approach (G) closely followed by single imputation (F) and treat missing as its 

own category (C). The proposed approach produced an importance value of 0.50 for 

and 0.38 for  , whereas the other approaches had an importance value of 0.51 for  

and 0.41 for . The worst performing approaches were majority rule (D) and surrogate 

splits (E), which indicated that  and  had equal importance. Majority rule (D) and 

surrogate splits (E) produced importance values of 0.47 and 0.45 for  and 0.41 and 0.42 

for  respectively. 
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CHAPTER 7 

DISCUSSION 

A modified multiple imputation approach was proposed for handling missing data 

in CTREEs. The proposed approach involved four steps: (1) Impute missing values, (2) 

Fit a decision tree to the imputed dataset and retain the tree depth, (3) Repeat steps 1 and 

2 multiple times, and (4) Stack all imputed datasets into a single data frame and fit a 

CTREE to the stacked dataset with the tree depth set to the average tree depth from each 

imputed dataset. A simulation was conducted to compare the proposed approach to 

listwise deletion, treat missing as its own category, majority rule, surrogate splits, single 

imputation, and multiple imputation with prediction averaging under multiple MAR and 

MCAR conditions. 

Simulation results revealed that simple techniques, such as majority rule, treat 

missing as its own category, and listwise deletion were effective approaches for handling 

missing data in CTREEs. Specifically, majority rule and treat missing as its own category 

generally produced lower MSE than the other approaches and generated reasonably sized 

trees. These approaches correctly selected the first variable for splitting when 

missingness was less severe (i.e., not related to predictors and occurred less frequently). 

However, majority rule and treat missing as its own category approaches had trouble 

selecting the correct variable for the first split when there was a high percentage of 

missing values that were strongly related to the predictors. Any differences between 

majority rule and treat missing as its own category were minimal and often negligible. 

Listwise deletion performed nearly as well as these approaches in terms of MSE when 
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dealing with large sample sizes. Listwise deletion also consistently outperformed all other 

approaches in selecting the correct variable for the first split, which accurately reflected 

the population and increases confidence in interpreting its tree structure. Though the tree 

structure was more consistent with the population in terms of variable selection, the trees 

generated by this approach were often smaller than the population tree structure 

suggesting the average tree underfit the data. Another problem with listwise deletion was 

that it produced a greater MSE when working with small sample sizes. 

The proposed multiple imputation did not perform very well against simple 

approaches in most conditions; however, this approach did seem best suited for small 

sample sizes and extreme missingness situations (i.e., when data contained a higher 

percent missing values, predictors that were more strongly related to missing values in 

the MAR condition, and there was a relatively stronger relationship among the 

predictors).  In these instances, the proposed multiple imputation produced lower MSE 

and correctly selected the variable for first split. The setback to this approach is that it 

had issues with overfitting in the large sample size conditions.  

Surrogate splits had similar performance to the proposed multiple imputation 

approach but produced lower MSE when there was a weak relationship among predictors 

and large sample sizes. It did not select the correct first variable for splitting in the 

extreme missingness conditions, but seemed to produce reasonably sized trees across the 

simulation conditions. Single imputation was comparable to the proposed multiple 

imputation approach; however, single imputation produced greater MSE when the data 

were MCAR, when there were weak relationships among the predictors, and a high 
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percentage of missing values. Single imputation performed similarly to the proposed 

multiple imputation approach in selecting the correct first variable split and generated 

reasonably sized trees. 

Recommendations 

 The following recommendations are based on current simulation results. Multiple 

imputation with prediction averaging is recommended when the researcher is only 

concerned with prediction accuracy and has no interest in interpreting the tree’s structure. 

Listwise deletion is recommended the sample size is large. When dealing with sample 

sizes of 500 or greater, listwise deletion had adequate prediction accuracy and its variable 

selection was shown to most closely aligned with population structure. Also, this 

approach is easy to implement. When dealing with small sample sizes, either majority 

rule or treat missing as its own category is recommended. The proposed multiple 

imputation is not recommended based on the current simulation results, but the 

implementation of the approach as this approach has limitations, which are described in 

detail below. Perhaps future research will address the limitations and modify the 

proposed approach to improve its effectiveness in treating missing data in CTREEs, 

particularly in large samples.  

Limitations and Future Directions 

A limitation of the proposed modified multiple imputation approach is the pooling 

method. That is, when analyzing the stacked multiply imputed dataset, the tree depth was 

set to the average depth obtained when each imputed dataset was analyzed separately. 

The goal of using the average tree depth when analyzing the stacked multiply imputed 
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dataset was to obtain an appropriate tree size. While this adaptation of the pooling phase 

in multiple imputation helped with controlling tree size, it ultimately was not effective at 

preventing overfitting, especially with large sample sizes. Pooling tree depth in the 

proposed approach became problematic as the average tree depth and sample size 

increased. As tree depth increased, the variation in the total number of possible splits 

increased. For example, a tree with a depth of two has a minimum of two splits and a 

maximum of three splits, whereas a tree with a depth of five has a minimum of five splits 

and maximum of 31 splits. CTREE uses a statistically motivated  stopping criteria (i.e., p-

values), which is highly influenced by sample size. Stacking multiple imputed datasets 

inflates sample size by the number of imputations ( ). Inflated sample sizes led to 

overfitting because the algorithm was more likely find statistically significant splits on 

trivially related predictors and max out the possible number of splits in a given tree depth. 

Therefore, the proposed approach had serious problems with overfitting when sample 

size was larger and this issue is likely exacerbated when dealing with more complex tree 

structures. 

Since averaging tree depth was unreliable in controlling tree size, future research 

should consider additional methods to prevent overfitting. For example, a researcher 

might adjust the p-value criterion based on sample size. Consider a situation where a 

researcher has a sample size of 1,000 and the proposed multiple imputation approach 

(with  = 20 imputations) produces a stacked, multiply imputed dataset with 20,000 

cases. Using an adaptive approach to setting the p-value criterion, such as reducing the p-

value for 20,000 cases that is equivalent to the p-value criterion for 1,000 cases, will 
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likely produce a more appropriately sized trees than using a fixed criterion like p < .05. If 

averaging tree depth and adjusting p-values still leads to overfit trees, then perhaps a 

researcher could also implement a Bonferroni correction.  

Another limitation of this study is that the missing data were handled with a single 

imputation approach. A variety of imputation methods have been developed, which are 

typically built upon linear or logistic regression models. However, imputation models 

have also been built upon partitioning algorithms, such as decision trees and random 

forest imputation (Tang & Ishwaran, 2017), and these imputation approaches were not 

considered. Lastly, future studies might consider expanding the missing conditions to 

include higher percentage of missing values, consider missing values on the dependent 

variable, and include missingness across several variables (instead of primarily focusing 

on a single predictor such as ). 

Conclusion 

The purpose of this research was to determine which missing data approaches 

commonly used in social and behavioral sciences could be applied to the CTREE 

machine learning algorithm. The first objective of this project was to survey the current 

literature for different approaches researchers use to handle missing data when working 

with decision tree algorithms. As a result, popular missing data approaches included: 

listwise deletion, majority rule, treat missing as its own category, single imputation, k-

nearest neighbor imputation, mean/mode imputation, EM/logistic imputation, decision 

tree imputation, distribution-based imputation, multiple imputation, surrogate splits, and 

methods that were developed and implemented in other decision tree algorithms (e.g., 
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C4.5 and C5.0). Generally, these approaches can be categorized as follows: deletion, 

forced partitioning (e.g., majority rule or treat missing as its own category), imputation, 

surrogate splits, or other approaches designed for specific algorithms outside the scope of 

this project. Missing data approaches like deletion and imputation are commonly used in 

social and behavioral sciences, whereas approaches like surrogate splits were developed 

specifically for decision trees. The second objective of this project was to propose 

modifying the pooling procedure from traditional multiple imputation so that this 

approach would produce a tree with a single set of decision splits and values. Multiple 

imputation is commonly used in theoretically driven statistical models; however, the 

current method for implementing this approach in the machine learning framework does 

not allow for tree interpretability. It seems social and behavioral researchers would be 

interested in interpreting decision rules in a tree model. Therefore, the proposed 

modification aimed to improve the application of multiple imputation in decision trees for 

researchers who prefer obtaining an interpretable tree structure over purely maximizing 

outcome prediction.  

A motivation for this project was to develop an understanding of the classic 

missing data problem from an interdisciplinary standpoint. Most missing data approaches 

found in the machine learning literature review have been evaluated and implemented in 

computer science and related fields. To my knowledge, it is common practice for the 

methodologists in these fields to use complete data sets (mostly from the UCI machine 

learning repository) and artificially impose missing values to evaluate missing data 

approaches. Methodologists in psychology often conduct simulation studies to evaluate 
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and compare statistical methods. It seems that from a methodologist standpoint there may 

be some benefits to employing simulations in addition to the current methods using 

empirical data. The primary benefit of conducting simulations is having control over the 

population tree structure and relationships among the variables. Due to the nature of 

decision trees, which repeatedly mine for patterns in the data, there are instances when 

identical complete data sets can produce slightly different trees that vary in selected 

variables and splitting values. This could be problematic when only using empirical data 

sets as it is unknown whether variation in trees from complete and treated data are due to 

random variation in the algorithm or the actual treatment of missing data. Knowing the 

true generating tree structure allows the researcher to exercise more control by 

determining how well a missing data approach recovers the generating tree structure 

relative to the complete data sets. Therefore, the final object of this project was to 

conduct a simulation to evaluate and compare performance across approaches.  

Machine learning methods are becoming increasingly popular in psychology 

where missing data is pervasive and must be addressed. However, the way in which 

missing data are typically handled with machine learning algorithms has been under-

researched. Though some approaches like deletion and imputation are implemented 

across disciplines, there has been relatively little work done to compare their 

effectiveness, especially via simulation. Furthermore, the approaches that have been 

adopted in machine learning framework might not appeal to psychological researchers 

(e.g., deletion could reduce sample size and traditional multiple imputation does not 

produce an interpretable tree structure). The current study sought to bridge this gap and 
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provide more relevant recommendations within the context of psychological data. As 

machine learning becomes a more common tool in psychology and related fields, more 

work must be done to better adapt these approaches for situations that are typical in the 

social and behavioral sciences. 
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