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ABSTRACT 

 

The origin of life remains unknowable to current science. Scientists cannot see into the 

origin of life on Earth, and until humanity discovers life elsewhere in the universe and 

begin to compare this alien life to Earth, it is likely to be undiscoverable. However, alien 

life may be so different from life as it is currently known that it may not be recognizable 

when it is found. Therefore, astrobiology needs a universal theory for life to avoid detection 

methods being biased towards Earth-based life. This also extends to the instrumentation 

sent into space, which should be built to detect universal properties of life. Assembly 

theory, a novel measure of complexity and arguably the only testable agnostic biosignature 

in current science, is used here to provide precision requirements for mass spectrometry 

instrumentation on future spaceflight missions with the goal of finding life elsewhere. 

 

Universal properties are not only applicable to the origins of life, but also to technologically 

advanced societies. Predictable patterns are found in today’s industrially based society, 

such as energy usage as a function of population density. These patterns may serve as the 

basis for technosignatures that are evidence of advanced extraterrestrial civilizations. 

Patters found in patent chemistry are explored, as well as predictions of chemical 

complexity based on assembly theory, to determine how complex chemistry is built by 

human society and which statistical patterns may be found in extraterrestrial civilizations. 

 

Moving beyond astrobiology, science cannot be done in a vacuum but must be 

communicated and taught to others. Topics such as a universal definition of life, 
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biosignatures, and increasing complexity mean nothing without interest and engagement 

from others, particularly students. To this end, transformative pedagogical tools are used, 

particularly sociotransformative constructivism (sTc), to build and teach an Earth Science 

and Astrobiology curriculum to a classroom of high school incarcerated students. The 

impact of this class on their science learning and how they personally identify as scientists 

is studied. 
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1: INTRODUCTION 

Origin of Life Theories 

Charles Darwin's theory of evolution, which postulated that living things evolved through 

selection processes over time, has not generally been challenged over the past 160 years of 

biology (Darwin, 1872; Minoru Kanehisa, 2019; Pagel, 1999). Technological advances in 

recent years have further enhanced our understanding of evolution through discoveries 

such as Rosalind Franklin’s discovery of the structure of DNA (Sayre, 2000) and 

searchable sequence libraries (Chen et al., 2019; Federhen, 2012). Nevertheless, the 

underlying question of how evolution (and life) originated on Earth remains unanswered. 

 

To address the origin of life, scientists often utilize at least one of four possible fields – 

geology & planetary science, the history of metabolism, evolutionary biology (particularly 

through phylogenetics), and biophysics. Here, I explain each, and ultimately propose a 

measure that moves past each. 

 

Some scientists address the origin of life through geology, where they specifically study 

how biochemistry emerges from geological processes. The Miller-Urey experiment in 

1952 is a classic example of this approach, where the mixing of water, methane, ammonia, 

and hydrogen with an electric current within a closed system led to the synthesis of at least 

four amino acids used in biochemistry – i.e., glycine, alanine, aspartic acid, and 

aminobutyric acid (Miller & Urey, 1959). Recent analyses of the experiment have found 

that over 23 amino acids and other biochemically meaningful compounds were 

synthesized, but not detected due to the limitations of 1950s analytical capabilities (Parker 
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et al., 2011). This experiment and subsequent analyses link simple, abiotic chemistry that 

likely existed on the primordial Earth to more complex biochemical compounds that form 

the basis of life as we know it today (McCollom, 2013). 

 

The Miller-Urey experiment was done in a laboratory-based closed system, as have many 

recent iterations as well (Cooper et al., 2017; Parker et al., 2014). However, the 

environmental conditions on the prebiotic Earth are unlikely to be as pristine as those found 

in these controlled experiments (McCollom, 2013). Therefore, the geologic approach to 

the origin of life is also performed through observation and study of environments on Earth. 

The environments which are studied are similar to what existed roughly four billion years 

ago when the origin of life as we know it likely occurred  (Bromberg et al., 2022). 

Hydrothermal systems such as those in Yellowstone (Shock, 1990) and on the seabed 

(Martin et al., 2008) are particularly interesting because there is a consistent supply of 

geothermal energy and potential for prebiotic chemical reactions which link different 

chemical species as electron donors (Shock et al., 2010). If these or similar environments 

are found elsewhere in the universe, there could be a high likelihood of finding 

extraterrestrial life there. 

 

Beyond Earth-based environments, scientists also investigate the possibility of building 

blocks of life originating beyond our planet (panspermia). Meteorites, such as the 

Murchison meteorite that fell in Australia in 1969, provide valuable insights into the 

potential for life to arise through abiotic processes in space. The Murchison meteorite 
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contained eight of the 20 biochemical amino acids used in protein formation and an 

additional 44 amino acids not used in protein formation (Koga & Naraoka, 2017; 

Kvenvolden et al., 1970; Martins et al., 2008). This discovery demonstrates amino acid 

formation outside of Earth and suggests the widespread availability of the compounds 

necessary for Earth-like life. 

 

Metabolic chemistry provides another approach to studying the origin of life, where 

scientists work backwards from existing chemistry and biology to predict the 

environmental conditions and chemical reactions present at the time when the last universal 

common ancestor (LUCA) lived. All life is united through central metabolic pathways, 

such as the tricarboxylic acid cycle (TCA), that is at least partially found in all living 

organisms. Using a network of existing biochemistry, Goldford et al. demonstrated that 

basic biological building blocks such as lipids can be generated from a variant of the TCA 

cycle under plausible prebiotic environmental conditions (Goldford et al., 2019). 

Furthermore, the central carbon metabolism, which includes the TCA cycle, has been 

shown to be optimally efficient at converting small metabolites into biomass (Noor et al., 

2010). The prevalence of the TCA cycle, as well as the high degree of optimality, suggest 

environmental conditions that favor these carbon reactions were present and possibly even 

common 3.8 billion years ago when life first emerged on Earth. Finding a similar set of 

optimized chemical reactions elsewhere would suggest the presence of life. 
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Yet another approach to studying the origin of life is to use present-day genomic data to 

extrapolate possible historic environmental conditions. This top-down approach is 

complementary to geology or planetary science approaches, which approach the origin of 

life in a bottom-up manner. Gene sequencing techniques have improved scientific 

understanding of the tree of life that represents phylogenetic relationships between living 

organisms starting at LUCA (Hug et al., 2016). Weiss et al. used a consensus phylogenetic 

tree of life to model the genes that were likely to exist near the origin of life, which is a 

novel approach compared to prior studies (Weiss et al., 2018) that focused on the 

universality of different genes as a proxy for existence at the origin of life (Kyrpides et al., 

1999). However, radiation of genes does not correspond directly with historical 

environments, particularly given the dramatic environmental changes over Earth’s history 

that necessitated and favored novel chemical reactions (Anbar et al., 2007; Raup, 1986). 

Genetic data instead allows for extrapolation into the enzymes and reactions present within 

genomes (Chen et al., 2019). This suggests that LUCA had many reactions necessary to 

survive in a hydrothermal vent environment and had a similar biochemistry to many of 

today’s prokaryotes which are found in the Earth’s crust (Weiss et al., 2018). While this 

hypothesis is untestable, it shows that the origin of life can be approached through existing 

biology, rather than through predicting or experimenting on abiotic geologic processes.  

 

The final approach to studying the origin of life is to predict the phenotype (expressed 

chemistry) of the first organisms from the physics of biology and chemistry. This approach 

explores the known chemical bases of present-day life, such as the set of 20 amino acids 
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used nearly exclusively in proteins (Lopez & Mohiuddin, 2020) or lipid membranes 

(Kahana et al., 2021), to infer what features were present at the origin of life. Autocatalytic 

sets that provide physically possible mechanisms where biochemical molecules can self -

replicate and potentially begin to evolve (Hordijk et al., 2010; Xavier et al., 2020) are 

favored in this approach. The existence of lipid membranes that spontaneously emerge due 

to hydrophobic and hydrophilic interactions in a water-based system, is considered 

potentially essential due to the need for compartmentalization of chemical species and 

reactions, allowing the evolution of autocatalytic reactions (Deamer, 2017; Lancet et al., 

2018). Moreover, the emergence of specific types of chemistry can provide clues to how 

life is structured, such as the emergence of homochiral chemical species that are predicted 

by physical models of chemistry (Blackmond, 2010; Gleiser et al., 2012; Gleiser & Walker, 

2012). These insights suggest the properties of the first organisms and their chemistry can 

be predicted by their physical properties. 

 

These four approaches - geologic and planetary science, metabolic history, phylogenetics, 

and biophysics - provide complementary insights into the origin of life. Two approaches 

focus on chemical reactions, one on biological processes and evolution, and the third on 

the physical basis of biology and chemistry. Together, they illuminate the complex 

interplay between environmental conditions, chemistry, and biology that led to the 

emergence of life on Earth. However, these and other physics-based hypotheses suffer from 

the same deep-seated problem found across the field of astrobiology: the lack of practical 

results and generalizability. None of these models has yet created an origin of life event, 
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rendering them hypotheses rather than proven theories (Walker, 2017). To definitively 

answer how life originated on Earth and begin to understand how evolution might arise in 

radically different chemical systems elsewhere in the universe, universal solutions must be 

generated, tested, and applied. Essentially, the fundamental question that remains 

unanswered by research on the origin of life is: What are the universal properties of life? 

 

Assembly Theory 

To begin answering the question of what the universal properties of life are, we must look 

at chemistry, as chemical species and reactions are easily identifiable elsewhere in the 

universe when compared to other possibly universal phenomena, such as gravity waves or 

dark matter. Chemical reactions and the processes they create are fundamental to the 

universe, regardless of the environmental or thermodynamic conditions where potential 

life could be found. Finding the chemical processes that result in universal properties of 

life is challenging. Many chemical reactions and compounds could potentially result in life 

(Bains, 2004),and observational limitations make it extremely difficult to detect these 

processes elsewhere (Seager & Bains, 2015). Assembly Theory (AT) offers a promising 

solution to this problem, as it abstracts chemical processes so that universal properties of 

life can still be based in chemistry, regardless of the elemental makeup or environmental 

conditions of alien chemistry. This dissertation prominently features AT, as proposed and 

formulated by members of my dissertation committee (Cronin & Walker, 2016; Marshall 

et al., 2021, 2017). 
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Assembly Theory is based on the idea that living systems create complex structures that 

are not possible through abiotic processes. This theory proposes that living systems, 

regardless of their chemical composition or environmental conditions, produce a level of 

chemical complexity that is unique to life (Cronin & Walker, 2016). While AT can be 

applied to any organizational system, the focus of this dissertation is on small molecules 

(e.g., not proteins nor macromolecules). AT works by abstracting a chemical compound 

into a graph, with elements as nodes and bonds between the elements representing 

elements. The graph is then broken down into its smallest decomposable components 

(usually two elements bonded together) that are used to recursively reconstruct the original 

graph. This reconstruction assumes unlimited energy and unlimited intermediate parts. The 

minimum number of steps required to build a graph is the assembly index, or the molecular 

assembly value (MA) when applied to chemical compounds. Previous research has shown 

that compounds with an MA of 15 or higher are only produced as a result of biological 

processes, suggesting a complexity threshold of life on Earth (Marshall et al., 2021). 

Although this number may be different when applied to alternative chemistries or different 

systems, the fact that AT can measure complexity and that complex compounds (MA ≥ 15) 

are only observed through living processes suggests that AT can be used as a biosignature 

for life elsewhere (Marshall et al., 2021). 

 

AT has a physical manifestation that can be useful for space exploration in addition to its 

clear delineation of biochemical processes. According to previous studies, there is a strong 

positive correlation between the MA of a compound and the output from an ion trap mass 
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spectrometer – specifically, the MA matches the number of second-fragmentation peaks in 

an Orbitrap Fusion Lumos Tribrid spectrometer (Marshall et al., 2021). This is significant 

because mass spectrometers have been used in space since the Apollo missions of the early 

1970s (Arevalo et al., 2020). Mass spectrometry outputs can be employed to construct an 

accurate structural graph of a detected molecule, which can then be used to calculate its 

MA, even though ion trap machines have not yet been sent to space (Arevalo et al., 2018; 

Willhite et al., 2021), making it challenging to directly correlate existing extraterrestrial 

spectra with MA. Chapter 2 of this dissertation investigates the ability of mass 

spectrometers on spaceflight missions to differentiate molecules to enable the direct 

application of AT to the search for life elsewhere, considering the broad spectrum of 

chemistry that could exist elsewhere in the universe. 

 

Assembly Theory and Complex Systems Science 

AT offers a method for measuring complexity that can be applied to detect life elsewhere 

in the universe. The results of biochemical evolution and selection on a chemical level lead 

to a complexification process (Marshall et al., 2021; Peng et al., 2020; E. Smith & 

Morowitz, 2016; Williams, 1997) as well as to chemical evolution across ecosystems 

(Sterner & Elser, 2017). Beyond astrobiology, AT can also be applied to measuring other 

types of complexity, such as how societies adapt and evolve to scientific discoveries and 

inventions. This approach involves looking at higher-order structures, such as reactions 

between compounds and relationships between individuals, rather than focusing on 

specific elements or individuals in a system. By doing so, seemingly disparate systems can 

be directly compared. Complex systems science studies the interactions between individual 
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agents in a system and the resulting dynamics that emerge (Siegenfeld & Bar-Yam, 2020). 

There are various methods used to measure dynamics in complex systems science, such as 

large-scale language models and non-linear dynamic studies of physical systems (Bradley 

& Kantz, 2015; Nguyen et al., 2020). One of the most common approaches for 

extrapolating data in complex systems science is network science. 

 

Network Science 

The field of network science is concerned with the interactions between individuals, which 

are analyzed at the system level (Barabási, 2013). This methodology is applicable to a wide 

range of systems, including biochemical metabolism (Barkai & Leibler, 1997; Goldford et 

al., 2019; H. Kim et al., 2019) social networks (e.g., Twitter, (Ke et al., 2017)), and energy 

grids (West, 2018). Regardless of the system under study, nodes within a network represent 

individual actors (e.g., people or metabolites) and edges represent the relationships 

between them (e.g., friendship or chemical reactions). Nodes and edges form the 

underlying structure of networks, and this structure can reveal common features across 

networks. For example, a small-world network structure, where very few nodes have a high 

degree (i.e., more connections) as compared to low-degree nodes, is a common feature of 

many networks, including social networks, metabolic networks, and human-engineered  

networks such as airport connections (Barabási, 2013; Broido & Clauset, 2019; Kunegis et 

al., 2013). Specifically, a small-world structure is one where the degree distribution of all 

nodes can be modeled by a power-law distribution, a decreasing, heavy-tailed exponential 

function. The preferential attachment model, where new nodes are exponentially more 

likely to attach to high-degree nodes than to low-degree nodes, is often used to describe 
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the growth of small-world networks (Barabási, 2013; Clauset et al., 2009; Jeong et al., 

2003). The presence of small-world networks in living systems suggests an evolutionary 

basis for this structure. In an astrobiological context, unstructured chemical reaction 

networks have been observed in exoplanetary atmospheres, although it is unclear if more 

structured chemical networks exist due to detection limitations (Fisher et al., 2022; Kiang 

et al., 2018). 

 

One application of network science is to compare and measure the complexity of different 

systems. Fully random networks, where nodes and edges have no correlation or pattern, 

can be easily distinguished from networks created by living systems through the 

measurement of the degree distribution (Barabási, 2013). The degree distribution of living 

systems' networks can be categorized as a power-law distribution and a high preferential 

attachment index (Clauset et al., 2009; Jeong et al., 2003; Newman, 2001). The degree 

distribution of a network allows for comparisons of the "life-like" qualities of systems 

across a variety of fields, including social and biological systems.  

 

Chemical Scaling Patterns 

The higher-order levels of organization in life reveal interesting observations and trends 

across systems. For example, in the context of societal complexity, there is an exponential 

increase in the production of objects, including chemical compounds, reactions, and patents 

(Brooks et al., 2011; Coley et al., 2018; Guo et al., 2021; Hähnke et al., 2015; Szymkuć et 

al., 2021). In addition, the amount of scientific literature has also increased exponentially, 

leading to a decrease in the influence of individual papers (Park et al., 2023). Moreover, 
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the human population increased exponentially since the Industrial Revolution, but the rate 

of innovation has remained linear at best (Szymkuć et al., 2021; West, 2018). Taken 

together, there are exponential increases in various factors – production, research, and 

population – without a corresponding increase in innovation. Innovation can have a wide 

variety of meanings, such as novel chemical reaction classes created per year based on a 

set of author-defined reaction classes and chemical patent databases (Szymkuć et al., 2021), 

or inventions and novel ideas, both of which are increasing sub-exponentially (Kempes et 

al., 2019; West, 2018). The third chapter of my dissertation tests how exponential 

production leads to innovation in chemistry by using AT as an agnostic means of measuring 

complexity. This is an improvement on previous work, as AT does not rely upon author-

defined reaction classes. The third chapter also explores how social structures, such as cost, 

usage rates, individuals, and companies potentially drive innovation in chemistry. 

 

Size Limitations of AT 

It is worth mentioning that both Chapters 2 and 3 exclusively focus on small molecules, 

rather than macromolecules or larger structures. Part of this is a computational limit of AT 

– the number of possible construction paths increase exponentially as the size of the final 

structure increases. This leads to the AT calculation likely being an NP-hard problem, a 

computational classification where every possible construction path much be analyzed in 

order for the most optimal path to be found (Johnson, 1985). Additionally, the base unit of 

larger structures may be different. For example, when considering proteins, the base unit 

of an AT calculation may be the bonds between elements, or it may be the amino acids that 
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form the peptide backbone. This becomes even more of an issue when considering 

technological structures, where the base unit may be a joining step between disparate parts, 

such as in the case of building a piece of IKEA furniture. Ultimately, the challenges of 

considering different sizes and defining base units was outside the scope of Chapters 2 and 

3. I exclusively used a base unit of bonds connecting two elements, which allows 

comparisons between the specifications necessary to search for complex life elsewhere and 

the increase in patent chemistry complexity. 

 

Science Communication 

The implications of Chapters 2 and 3 in this dissertation may be profound. The possibility 

of unambiguously discovering life and habitable worlds elsewhere is one of the highest 

priority goals of NASA (Christensen et al., 2022), and the observed agnostic increase in 

chemical complexity can extend to predict future societal patterns. However, none of these 

lofty goals and implications are worthwhile without science communication and education 

to non-scientists. In fact, at this current stage in astrobiology where life has not been 

discovered elsewhere, the main output of the field of astrobiology is science 

communication regarding the potential rewards, impacts, and incremental progress of the 

search for life. 

 

Astrobiology is a unique field of science in terms of how it influences popular culture. The 

idea of alien life elsewhere in the universe has been present in scientific and cultural circles 

for centuries. Brake and Hook link this idea to both the Copernican revolution and 

Darwin’s Theory of Evolution (Brake & Hook, 2007). By defining the solar system as 
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heliocentric, Copernicus turned the cosmos into something inhuman, or “alien”. This 

directly contradicted religious thought, where the cosmos was centered around Earth and 

humanity, and led to an era of “terrestrial mediocrity”, where “the history of astronomy 

[and other planetary sciences] is a history of increasing humiliation” for human-centric 

thought (quotes from “The Information”, by Martin Amis (Amis, 1995)). Additionally, 

through Darwin’s Theory of Evolution (Darwin, 1872), it became well-known that humans 

do not occupy a special place in the hierarchy of species – we are equally as evolved as 

every other living species on the planet (Gould, 2002). This recognition of humanity’s non-

unique place on Earth provided a fertile ground for exploration of the idea of extraterrestrial 

beings (Sagan & Druyan, 2011). Contemporaries of Darwin, particularly the French 

astronomer Camille Flammarion, hypothesized about the prevalence of other worlds where 

evolution could occur (Flammarion, 1980). Early science fiction writers such as H.G. Wells 

with “The Time Machine” (H. G. Wells, 2005) and “The War of the Worlds” (H. G. Wells, 

2003) and Olaf Stapledon with “Last and First Men” (Stapledon, 2008) popularized the 

ideas of evolution and alien life within the emerging genre of science fiction that continues 

to be fertile and popular ground for exploring astrobiology in both writing and film (e.g., 

Chambers, 2015; Kubrick, 1968; Nekola Nováková, 2020), among many others.  

 

The exploration of and interest in alien life in popular fiction is only one reason why 

astrobiology is an ideal science for science communication. As an emerging, 

interdisciplinary field of science (Billings, 2012; Dick, 2012), astrobiology is uniquely 

suited as a case study for highlighting the continual evolution and progress of science. The 
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ongoing search for life elsewhere is in the nascent stages of discovery, and techniques and 

theories are continually being proposed and discussed, in both scientific literature and 

popular science articles. The excitement surrounding this cutting-edge science allows for 

non-astrobiologists to observe and explore an emerging field of science (Fergusson et al., 

2012). Additionally, astrobiology consists of a wide variety of established scientific 

disciplines, such as: geology (Domagal-Goldman et al., 2016); biology (Kolb, 2014; 

O’Malley-James & Lutz, 2013); astronomy (Shaw, 2007); physics (Walker, 2017); 

chemistry (Bains, 2004; Marshall et al., 2021); computer science (Gisiger, 2001; Vitas & 

Dobovišek, 2019); oceanography and atmospheric science (Clarke, 2020; Fisher et al., 

2022); even philosophy (Chon, 2021; Dick, 2012) among many others. This incredibly 

wide range of possible entry points to studying the origin, emergence, and search for life 

gives many non-astrobiologists reasons to engage with and become interested in 

astrobiology (and science) in general (Impey, 2021). 

 

Prison Education 

Since astrobiology is an ideal science for introducing non-scientists to science, I use it to 

increase science interest and identity among juvenile prisoners in Chapter 4 of this 

dissertation. I developed and taught a place-based Earth Science & Astrobiology course 

based on transformative pedagogy at Life Learning Academy (LLA) within the Lewis-

Sunrise Detention Unit in the Arizona Department of Corrections, Rehabilitation, and Re-

entry (ADCRR). This course was part of the curriculum within LLA and fits within the 

Arizona Science Standards for Earth and Space Science. The students who were a part of 

this course are minors under the age of 18 who were charged as adults within the state of 
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Arizona. This mixed-methods study conducted both quantitative and qualitative research 

on the outcomes of the class in regard to the student’s learning, interest, and identity with 

Earth Science as a whole, of which astrobiology is considered a sub-field and was 

mentioned extensively throughout the course. 

 

Studying the impact of science education – in fact, education in general – on juvenile 

offenders is extremely rare. Most prison education opportunities and research have been 

conducted on adult male offenders at the expense of female and juvenile offenders (Rose 

& Rose, 2014). Additionally, most research performed on prison education efforts has 

focused on reducing recidivism, which is the rate at which former offenders are 

reincarcerated. The research overwhelmingly shows – again, for adult male offenders – 

that education is one of the highest achieving interventions for lowering recidivism 

(Baranger et al., 2018; Courtney, 2019; Ellison et al., 2017; Esperian, 2010; Fabelo, 2002; 

Gaes, 2008). However, there are relatively few efforts to explore how transformative 

pedagogical tools can be applied within a prison environment, particularly within science. 

Recent work describes how advocating for reintegration education results in improved 

outcomes upon release (Flynn & Higdon, 2022) and how education writ large can be a 

method and motivator for positive transformation for offenders (Szifris et al., 2018). This 

highlights how specific transformative pedagogical structure can lead to improved 

outcomes within a prison environment. 
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Specifically, we use the sociotransformative constructivism (sTc) pedagogy developed by 

Alberto Rodriguez (A. J. Rodriguez, 1998; Alberto J. Rodriguez, 2015; Alberto J. 

Rodriguez & Morrison, 2019). Sociotransformative constructivism is built using 

educational social justice theory (Maulucci, 2012) and transformative pedagogy, with an 

emphasis on the transformative results of teaching towards diversity and understanding of 

student’s cultures and unique viewpoints. Here, building a curriculum based on sTc is 

specifically designed to lead to change within the established power structures in a prison 

environment so that students are empowered to take control of their learning, instead of 

having their education dictated to them by those in power (A. J. Rodriguez, 1998; Szifris 

et al., 2018). The use of Earth Science and astrobiology as the scientific topics are meant 

to assist the transformative nature of the curriculum and provide a wide, inclusive entry 

point to increased science interest and identity. 
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2: EXPLORING THE MOLECULAR LIMITS OF LIFE 

Introduction 

The unambiguous detection of extra-terrestrial life is a grand challenge for the scientific 

community (Hays et al., 2015; National Academies of Sciences & Medicine, 2019). 

Detecting alien life is difficult because we suspect that life beyond Earth may be radically 

different than life as we know it, including the possibility that it is based on completely 

different metabolic and genetic materials (Bains, 2004). We cannot use standard 

approaches from molecular biology or genomics to determine whether a sample is the 

product of life as those approaches are specific to our biosphere. Thus, the challenge of life 

detection involves one key unanswered question. How can we unambiguously determine 

if a chemical system is the product of life? We are at a point where this question can begin 

to be answered using state-of-the-art chemical detection methods (Arevalo et al., 2020), 

combined with assembly theory applied to molecular life detection (Y. Liu et al., 2021; 

Marshall et al., 2021) but it is not yet clear whether these insights can be deployed on life 

detection missions within the solar system. Here, we give the design constraints for the 

development of future life detection missions based on assembly theory that use mass 

spectrometry as the primary analytical technique. I use a cheminformatics approach to 

explore unconstrained chemical space that allows us to avoid the biases of known 

biochemistry to determine the mass range and resolution required for a space-flight mass 

spectrometer to unambiguously identify the molecular signatures of life using assembly 

theory. Ultimately, our starting hypothesis is that life elsewhere in the universe uses 

unfamiliar chemistry, and we must be prepared with methods capable of detecting life, 

independent of the large space of possible chemical options alien life might use.  
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We use assembly theory (AT), a novel measure of complexity, to determine if a chemical 

compound can be built from a living system (Y. Liu et al., 2021; Marshall et al., 2021). 

Assembly theory improves on previous complexity measures by providing an 

experimentally testable measure that can be interpreted as an unambiguous biosignature. 

Previous metrics of molecular complexity, which are mainly developed for computational 

drug discovery, all involve various theoretical or computational pitfalls (Méndez-Lucio & 

Medina-Franco, 2017). For example, structural measures – based on chiral centers, 

molecular weight, or compactness – are simple measures of complexity, but only consider 

one single measure of a compound rather than a holistic view (Sheridan & Kearsley, 2002). 

More complex measures, such as graph-based measures that consider subgraph counts 

(Bertz, 1981), quantum mechanics (Luzanov & Babich, 1995), or information theory 

(Böttcher, 2016) among many other possible factors (von Korff & Sander, 2013), 

ultimately lack correlation with experimental data, as well as with each other (Méndez-

Lucio & Medina-Franco, 2017).  

 

In contrast, AT considers the amount of information required to build a molecule from the 

space of possible chemistry available to create a range of complexity values from low 

(commonly available compounds) to high (exceedingly rare compounds that are only 

created by living system (Marshall et al., 2021; Sharma et al., 2022)). Specifically, the 

measurement of the molecular assembly index (MA) of a compound is done by calculating 

the fewest possible bonding steps necessary to build that compound from basic component 
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bonds. It is important to note that while these assembly steps do not correspond to actual 

chemical reactions used in synthesis, the MA - the integer value of the smallest number of 

bonding steps necessary to build the full compound – linearly correlates to fragmentation 

data found through mass spectroscopy (Marshall et al., 2021), providing a physical 

grounding and experimental verification of MA as a measure of a molecule’s complexity 

independent of the route of synthesis. The shortest path is calculated through a graph-based 

approach. The molecule is converted into a computational graph, with elements as nodes 

and bonds as edges. This graph is randomly fragmented into sub-graphs consisting of two 

elements and one bond, which are then recursively merged to create the full graph of the 

compound at hand. The intermediate sub-graphs created along this recursive process can 

be re-used, meaning symmetrical structures have a lower MA than non-symmetrical ones. 

Regarding the search for life, previous work has demonstrated that only living systems 

produce compounds with MAs of 15 or higher (Marshall et al., 2021). This is an estimate 

based on observed biochemistry, so for this work, we extend the definition of complex 

chemistry to include compounds with a MA of 20 or higher to account for potentially 

unknown abiotic processes elsewhere which could result in high MA values. 

 

Additionally, AT includes copy number as an essential measure. This value is the number 

of each unique molecule in a sample, where high values represent high concentrations of 

molecules within an environment and high robustness of the construction processes 

necessary to build a given molecule. A compound with a high copy number, typically in 

the order of 104 (Marshall et al., 2021), in conjunction with a high (≥ 15) MA suggests that 
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a living system preferentially selects for the existence of that compound in light of all other 

possible compounds available within chemical space (Sharma et al., 2022).  

 

We can measure the MA of a compound, along with a trivial measure of copy number, 

through mass spectrometry (Marshall et al., 2021). Mass spectrometry can be used to 

determine the molecular weight of a compound (or mix of compounds) from the mass-to-

charge ratio (m/z) of ionized molecular fragments and has a long legacy on space missions 

from Apollo 15 in 1971 to proposed missions to Europa, Mercury, and elsewhere (Arevalo 

et al., 2020; Chou, Mahaffy, et al., 2021). Mass spectrometers require a minimum ion count 

in the 100s to 10000s, thereby automatically satisfying the copy number constraint of AT 

for any detected molecule. Developing assembly theory as a life detection method using 

mass spectrometry in space therefore has only two theoretical constraints: 1) determining 

the precision necessary for a mass spectrometry spectra signal to provide evidence of 

previously unknown, distinguishable, high-assembly molecules, then 2) ascertaining if the 

detected molecules have a sufficiently high MA to be considered a sign of life. There are 

many technical challenges required to building a mass spectrometer which fits these 

constraints, which are beyond the scope of this dissertation. 

 

There are several challenges involved in sending high-precision instrumentation on 

spacecraft that make detecting complex chemical compounds difficult. These challenges 

include the low precision of heritage instruments (technology used on previous missions) , 

the long development time required to add newer and more precise instruments to future 
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missions, and the potential for mixed samples of unknown chemistry (Arevalo et al., 2020; 

Merder et al., 2020; Ren et al., 2018). Given these challenges, current spaceflight mass 

spectrometry technology is not designed to identify the complex molecules that provide 

evidence of life, as both high mass range and high mass resolution (m/ΔM) are necessary. 

The mass range corresponds to the lowest and highest values (in Daltons) where ionized 

fragments can be read. Different mass spectrometry designs can provide different mass 

ranges, with the highest ranges belonging to time-of-flight instruments that are capable of 

detecting fragments up to nearly 10,000 Daltons in recent spaceflight missions (Arevalo et 

al., 2020). Mass resolution is the closest separation between spectral peaks, where higher 

m/ΔM values correspond to stronger distinguishing power between peaks (G Marshall et 

al., 2013). Terrestrial mass spectrometers, such as Fourier transform ion cyclotron 

resonance machines, have incredibly high mass resolution (> 108 m/ΔM). However, these 

instruments are very large and sensitive, making them functionally impossible to include 

as part of a spaceflight mission (Arevalo et al., 2018; Chou, Mahaffy, et al., 2021). 

Technological advancement of spaceflight mass spectrometry instrumentation is necessary 

to advance the field of biosignature detection so that future missions will be able to detect 

high-MA chemical structures indicative of life in unknown chemical mixtures leading to 

more confident assessment of positive detection.  

 

Current mass spectroscopy approaches to identify unknown compounds involve matching 

spectra to known chemical formulas (Kind & Fiehn, 2007) and integration of spectra into 

large-scale databases such as PubChem (S. Kim et al., 2019). As mass spectrometry 
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technology advances, the mass accuracy is routinely at the sub-ppm level (Tamara et al., 

2021), and can be as high as the sub-0.1 ppm level (Bowman et al., 2020). Previous 

research has determined a mass spectrometer with a mass precision of 3 ppm is required 

for detection of high-mass metabolic compounds (Kind & Fiehn, 2006), and that a top of 

the line mass spectrometers (6 ppb mass precision) can distinguish complex chemical  

mixtures (Merder et al., 2020). However, these ultra-high-resolution methods are limited 

when it comes to analyzing extra-terrestrial chemistry, as we expect alien worlds to present 

potentially unknown chemical environments (Bains, 2004; Méndez et al., 2021) that may 

present a wider range of chemicals that that found on Earth. For example, many alternative 

hypotheses for chemical life have been proposed, involving unique chemical conditions for 

their evolution (Bains et al., 2021; Cleland, 2019; Irwin & Schulze-Makuch, 2020). The 

enormous range of potential chemistry elsewhere is the chemical space available to life. 

Research by Ruddigkeit et al found that with a limited set of elements and a size restriction 

of 17 atoms, over 166 billion compounds can be potentially created on Earth (Ruddigkeit 

et al., 2012), and it is estimated there are over 1060 different chemical structures available 

throughout the universe (Mullard, 2017). Exploration of this chemical space is necessary 

to provide mass range & resolution recommendations to future spaceflight mass 

spectrometers to distinguish unknown extraterrestrial chemistry.  
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Figure 1: Chapter 2 concept figure. 
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Results  

Building Chemical Space 

The chemistry observed on Earth is an extremely small subset of all chemistry, estimated 

at only 10-50 of all possible chemical space available (Awale et al., 2017). It is very likely 

that living systems elsewhere are based on different chemical substrates, ranging from 

systems based on different energetic constraints (Bains, 2004) to unpredictable “life as we 

don’t know it” (Cleland, 2019; Marcheselli, 2019). To build a model of potential chemical 

space available to life elsewhere that could be detected by spaceflight missions, we used 

the cheminformatics enumeration program MOLGEN 5.0 to find structures and formulas 

of possible chemistry. This model included compounds that may be impossible to form on 

Earth due to thermodynamic and/or stability constraints, but could exist given different 

planetary environments (Guttenberg et al., 2021; Irwin & Schulze-Makuch, 2020; Seager 

& Bains, 2015). We limited our study to compounds containing carbon, hydrogen, 

nitrogen, oxygen, phosphorous, and sulfur (CHNOPS), as these form the bulk of Earth-

based organic chemistry (Pace, 2001). Additionally, they are good targets for the bulk 

elemental composition of alien life because of the chemistry they can mediate and their 

high availability throughout the universe (Cockell et al., 2021). This element restriction 

also fits with current spaceflight mission directives of finding biomolecules that are similar 

to those on Earth (Meadows et al., 2022; National Academies of Sciences & Medicine, 

2019). 

 

MOLGEN 5.0 takes a specific number of elements, then outputs all theoretically possible 

chemical structures and formulas which contain that number of elements. We provided 
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MOLGEN 5.0 with an upper limit of atoms permitted for each of these elements in a 

compound. If this upper limit was set to five for all atoms, then the maximum number of 

each type of atom in the enumerated chemical structures allowed would be five. Structures 

containing fewer than five elements would be permitted. For example, with an upper limit  

of five CHNOPS elements, the maximum number of C atoms allowed would be five (with 

fewer than five permitted), the maximum number of N atoms allowed would be five, and 

so on. We did not apply this upper limit to Hydrogen so that as many H atoms as necessary 

can be added to ensure the generated structure was chemically plausible. We counted the 

number of possible formulas across a molecular weight distribution to categorize the size 

of chemical space available to each elemental limit. Here, chemical space shows an initial 

increase in the number of unique formulae as molecular weight increases. However, the 

number of unique formulae decreases as the number of atoms approaches the upper limit 

due to fewer combinations of atoms available (Figure 2). MOLGEN 5.0 became 

prohibitively computationally expensive as the upper limit of elements within a compound 

is increased, so we fit a Gaussian distribution to each molecular formula count distribution 

to predict the size of chemical space for high elemental limits (Figure 2) and validated this 

fit using a two-sample Kolmogorov-Smirnov (KS) test (Massey, 1951) (Table 1). This fit 

scales with increasing upper elemental limits (i.e., Figure 4, Figure 5, Figure 6) and is 

necessary to model chemical space of larger compounds.  
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Figure 2: The number of CHNOPS chemical formulas with modelled gaussian 

distributions. 

 

 

Figure 3: Assembly values of 10000 chemical structures and (inset) likelihood of high-

assembly compounds as a function of molecular weight. 
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Table 1: KS Goodness of Fit tests of Gaussian modelled distributions for upper elemental 

limits 6-15. 

Maximum Element Count KS Statistic P-value 

5 0.0133 0.1037 

6 0.0157 0.0200 

7 0.0105 0.2361 

8 0.0173 0.0056 

9 0.0128 0.0777 

10 0.0232 4.4011e-05 

11 0.0238 2.5470e-05 

12 0.0151 0.0207 

13 0.0200 0.0007 

14 0.0199 0.0007 

15 0.0123 0.0979 
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Figure 4: Linear regression predicting µ (mean) and σ (standard deviation) values for 
Gaussian distributions of number of formulae. I performed a linear regression on an 

upper elemental limit of 6-15 heavy atoms, and this regression was validated by testing at 

an upper limit of 20 (black dots – see Figure 5).  
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Figure 5: The predicted µ (mean) and σ (standard deviation) (Figure 4) accurately predict 

the computationally generated distribution of molecular weights where the maximal 

number of elements is 20. 
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Figure 6: The number of formulas at a given molecular weight (left) and the cumulative 

number of formulas as a function of increasing molecular weight. 

 

Molecular Assembly Over Chemical Space  

We expect high-assembly compounds to be found more often as molecular weight 

increases. As the number of atoms increases, the number of bonds tends to increase, leading 

to an increase in the number of steps necessary to form a full chemical structure, meaning 

higher MA is possible (Sharma et al., 2022). We calculated the likelihood that a chemical 

compound has a high molecular assembly index as a function of molecular weight. An MA 

≥ 15 has been shown to be the delimitation in chemistry between compounds generated 

uniquely by Earth life and those that can also be generated from non-biological sources 

(Marshall et al., 2021). We also highlight MA values ≥ 20 to unambiguously account for 

unknown boundary cases where abiotic processes can potentially build a compound with a 
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MA between 15 and 20. We generated 10,000 random chemical structures corresponding 

to molecular weights between 50 and 1500 Daltons with an upper limit of 10 atoms of each 

element and calculated the assembly index of each compound (Figure 3). This random 

structure generation was done using an assembly-based algorithm. For each structure, we 

randomly chose a formula from the formulae output of MOLGEN 5.0, then iteratively built 

bonds between distinct atoms in the formula until all atoms were part of a single chemical 

graph. The graphs were validated using RDKit’s 3D embedding tool that transforms a 

chemical graph into 3D space and rejects graphs where bonds cannot be mapped to physical 

structures due to valence rules, bonding limitations, or other physical constraints 

(Landrum, 2020). Only validated graphs -i.e., thermodynamically possible molecules - 

were used in the MA analysis. We performed a logistic regression to find the likelihood of 

discovering a complex compound (MA ≥ 15 or MA ≥ 20) at a given molecular weight 

sampled from this random chemical space (Figure 2b). Above 654 Daltons, the likelihood  

of a compound with an MA ≥15 goes to 100%, and above 862 Daltons, the likelihood is 

100% for compounds with an MA ≥ 20. Any instruments utilized to search for assembly-

related biosignatures should have a high precision at high molecular weights, starting with 

at least 654 Daltons to identify high-MA (≥ 15) compounds and 862 Daltons for 

unambiguously high-MA (≥ 20) compounds. 
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Figure 7: Precisions at which high-assembly compounds can be detected. 

 

We calculated the number of detectable high-MA formulas by a mass spectrometer across 

various precisions using the theoretical number of formulas available in chemical space 

and the likelihood of finding a high MA compound at a given molecular weight. We first 

defined the mass range in which we searched for the number of unique formulae. We 

defined the mass range over five orders of magnitude, 100 to 10-4 Daltons. For each order 

of magnitude, we split our pre-defined m/z range (275 – 861 defined by the molecular 
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weight where the likelihood of finding of high-MA compounds is between 0 and 1 (Figure 

3, inset), then subtracted by one to account for ionization) into chunks. For example, if the 

mass range is 1 Dalton, we calculated the number of distinct formulae with a m/z of 275-

276 (exclusive), 276-277 m/z, 278-279 m/z, and so forth. We then multiplied the number 

of distinct formulae by the likelihood of finding a high-MA (≥ 20) compound at a particular 

m/z value (Figure 3). This provides the number of high-MA formulae which are 

theoretically detectable at a specific m/z value given a particular mass precision (Figure 7). 

As our goal is to find the resolution at which mass spectrometers can detect 10 or fewer 

high-MA formulas, we highlight the precisions where 1-10 formulae can be detected, as 

well as where fewer than one formula can be detected, which represents resolutions which 

are better than necessary for the purposes of finding high-MA compounds. Importantly, as 

the number of possible structures increases up through 609 m/z, it becomes less certain that 

a unique structure can be identified with a fixed resolution, requiring a more precise 

instrument. After 609 m/z, fewer high-MA structures are detected due to our constraints 

put on the graph enumeration, as our pre-defined upper limit of 10 CNOPS elements lead 

to fewer combinations of atoms and therefore fewer formulas. 

Mission Specification 

Mass spectrometry on spaceflight missions is steadily increasing in precision, and as a 

result, this leads to a steadily increasing capacity to meaningfully detect high-assembly 

chemical compounds (Figure 8). A quadrupole mass spectrometer (QMS) on the recent 

Curiosity Mars Rover has a mass detection range between 1.5 - 535.5 Daltons (Da) with a 

resolution of 5355 m/ΔM (Mahaffy et al., 2012). The ion trapping mass spectrometer in 



 

34 

 

the Mars Organic Molecule Analyzer (MOMA) instrument suite in the European Space 

Agency’s ExoMars 2020 Rover allows for a mass range of 50-500 Da and a resolution over 

500 m/ΔM  in gas chromatography mode, and a mass range of 50-1000 Da with the same 

resolution in laser desorption ionization mode (Goesmann et al., 2017; Li et al., 2017). The 

proposed time-of-flight mass spectrometry (TOFMS) instruments on the Jupiter Icy Moon 

Explorer (JUICE) mission has a mass detection range of 1-1000 Daltons with a mass 

resolution of 757 m/ΔM below 642 Da (Föhn et al., 2021). The proposed Dragonfly mass 

spectrometer (DraMS) on the upcoming NASA New Frontiers mission to Titan has a high 

mass range up through 1950 Da, but a mass resolution of roughly 1375 m/ΔM up through 

550 Da, with a lower resolution beyond that (Stern et al., 2023). The upcoming Europa 

Clipper mission includes two mass spectrometers: a TOFMS with a mass resolution up to 

23,822 m/ΔM from 16-114 Da (Brockwell et al., 2016); and a Fourier transform mass 

spectrometry instrument, the Characterization of Ocean Residues and Life Signatures 

(CORALS) Orbitrap with mass range of 20-600 Da and 120,000 m/ΔM mass resolution  

(Willhite et al., 2021). Similarly, a prototype of a space based OrbiTrap instrument, 

CosmOrbitrap, has been developed to have a similar mass range to CORALS, with a mass 

resolution as high as 140000 m/ΔM (Arevalo et al., 2018). 

The CORALS and the proposed CosmOrbitrap mass spectrometers can detect ≤  10 

formulas that correspond to high assembly, up through 448 and 461 Da, respectively. While 

this range is incredibly useful for the potential detection of biosignatures, we observe a 

mixture of low-assembly and high-assembly compounds at higher mass values through 862 

Da (861 m/z) (Figure 3). Obtaining precise structural data up to 862 Da is essential, so we 
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recommend that future development of mass spectrometers on spacecraft missions aim for 

a mass precision of 552,252 m/ΔM at minimum 862 Da, or a factor of 3.9 higher precision 

at 1.4 times higher mass range than achieved by the proposed CosmOrbitrap instrument.  

 

Figure 8: The minimum m/∆M resolution necessary to distinguish exactly 10 high-MA 

compounds at each molecular weight. 

 

Distinguishing Existing Biochemistry 

We tested the distinguishability of terrestrial biochemistry using two existing spaceflight 

mass spectrometers and our recommended instrument resolution (Figure 9). As our goal is 

to provide a resolution which can determine 10 or fewer potential structures given unknown 
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chemical space, we use known biochemistry as a control to ensure that our 

recommendation of 552,252 m/ΔM – and the resolution of state-of-the-art mass 

spectrometers – can sufficiently distinguish living systems. We used the MOMA Laser 

Desorption/Ionization mass spectrometer on the 2020 ExoMars Rover (MOMA LDI; 500 

m/ΔM mass resolution) and the Fourier transform mass spectrometer (CORALS; 120,000 

m/ΔM) on the soon-to-launch Europa Clipper mission to represent state-of-the-art, flight-

ready instruments which are currently being used or will be soon used in life detection 

missions. We obtained 10208 chemical formulas and corresponding molecular weights 

from the Kyoto Encyclopedia of Genes and Genomes (KEGG) (M. Kanehisa & Goto, 

2000), a commonly used database for cataloguing small molecular metabolism found on 

Earth. Using the molecular weights of each compound, we calculated the number of 

formulas for whose largest mass spectrometry peaks overlap (cannot be distinguished) at 

three different mass resolutions. The m/z value of the largest peak is the molecular weight 

subtracted by one to account for ionization and does not take fragmentation into account, 

as the MOMA LDI and CORALS use different fragmentation methods and future mass 

spectrometers may also not follow the same methods. For each of the three resolutions (500 

m/ΔM, 120,00 m/ΔM and 552,252 m/ΔM), we split the full m/z range into bins, with the 

bin size dependent upon the resolution. We use equation [7] to find the m/z precision of 

each compound, which then was used to place compounds into m/z bins. The number of 

KEGG formulae which appear in each bin is the overlap count. For the MOMA LDI 

instrument, the highest overlap occurs at a m/z of 338, where 50 unique formulae overlap. 

In contrast, the highest overlap value for CORALS occurs with only five formulae 
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overlapping. This occurs three times, at m/z values of 226, 240, and 269. Our 

recommendation’s highest overlap occurs at 300 m/z with only three formulae, at m/z 

values of 227, 266, 304, and 320. Both CORALS and our recommended mass resolution 

have fewer than 10 overlaps throughout the m/z range of small molecule metabolism, 

demonstrating the viability of detecting Earth-based biochemistry using existing mass 

spectrometry technology. While potential chemical space is much larger than terrestrial 

metabolism, it is likely that living systems elsewhere do not include all potential chemistry 

available (Dobson, 2004). Therefore, these high-resolution instruments (both CORALS 

and our recommendation) are potentially sufficient for unambiguously detecting high-MA 

compounds elsewhere. Low-resolution mass spectrometers, such as the MOMA LDI 

instrument, cannot distinguish between biomolecules on Earth, meaning they are 

potentially unsuited for detecting biosignatures given the possibilities of chemical space 

elsewhere.  
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Figure 9: The number of overlapping biochemical compounds within KEGG as a 

function of different mass resolutions. 

 

Chemical Space of Life 

Our mass spectrometer recommendation is based the assumption that the chemical space 

available on other planets is unconstrained, and therefore can be modelled by random 

chemical structures. Constrained systems show a similar distribution of molecular 

assembly values as that of random chemistry (Figure 10), justifying the use of this random 

chemistry as the foundation of our instrument recommendations. We compared assembly 
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values of chemical formulas across three structural databases: randomly generated 

structures; GDB17 (Reymond, 2015); and PubChem (S. Kim et al., 2019), each of which 

represent different sets of constraints and prior knowledge of a system. We built 

distributions of assembly indices for compounds sampled over structures with the same 

formulae. Two hundred chemical formulae were randomly selected, each of which had at 

least 100 isomeric structures in GDB17 and PubChem. We additionally generated 100 

random structures for each formula, for a total of 300 structures for each formula (100 

obtained from PubChem, 100 obtained from GDB17, and 100 randomly built). We found 

the MA for all structures and calculated the average and standard deviation of the MA 

values within each formula, separated by database. The average MA & standard deviation 

across each database show there is no difference between the constrained PubChem and 

GDB17 datasets and the less constrained randomly generated chemical structures, as all 

formulas occupy the same space of molecular assembly values. 

PubChem is the most constrained of the three databases used, as it contains only 

compounds which have been experimentally verified and utilized in some form. The 

structures in PubChem are curated from a wide variety of sources, all of which involve 

real-world usage of compounds (S. Kim, Thiessen, Cheng, et al., 2016). This curation 

imposes a layer of physical implementation onto chemical space - if a compound is not 

used in real-world chemistry or if it is not entered into the database, it is not included. It is 

ultimately subject to the scientists who input the data, which incorporates a bias not found 

within the enumeration methods of the two other data sources used here. We do not 

consider this a negative, as PubChem still holds an extremely large amount of chemical 
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data (over 90 million unique chemical structures) and is useful for our purposes when 

recognizing the constraints of data entry. In comparison, GDB17 is built from graph-based 

enumeration and includes chemical and reactivity constraints, as well as size and elemental 

restrictions. Structures must have no more than 17 non-hydrogen atoms, must be stable, 

and must satisfy functional group reactivity constraints (Ruddigkeit et al., 2012). The third 

source of structures used here are random chemical structures, built using iteratively 

connecting random bonds between a given set of atoms. We used the same process as in 

Figure 2, but here we generated separate structures in the MA – molecular weight 

correlation experiment. The stability and reactivity of these random structures is not 

considered, so many of these structures may only be possible in other planetary 

environments with vastly different thermodynamic constraints.  
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Figure 10: MA distributions over chemical databases representing differently curated and 

biased chemical space distributions. 

 

Overall, the similarities in MA distributions between relatively unconstrainted random 

chemistry and the more constrained GDB17 and PubChem databases show that the random 

chemical structures used to generate the mass spectrometry recommendations occupy a 

similar MA space to the chemistry we observe here on Earth. The overlapping distributions 

justify the application of randomly generated chemical structures to model and predict 

chemistry produced by potentially biochemical processes elsewhere, as random structures 

and biochemical structures share the same molecular assembly profile.  
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Methods 

Formula Generation 

A python script was used to run MOLGEN 5.0 analysis, using a MOLGEN 5.0 license 

belonging to the Cronin group to generate formulas and incorporates the default bad list 

defined by MOLGEN 5.0. The search query used was:  

mgen C-010H0-100N0-10O0-10P0-10S0-10 -mass X -badlist badlist.sdf -o <output.txt> 

This example query is for a formula generation where the upper element limit is 10, and 

where X is a range of atomic masses from 50-2000. The outputs were stored on a secure 

server at the University of Glasgow.  

Rather than exhaustively generating all possible chemical structures for our constraints, we 

found all possible chemical formulas from CHNOPS elements, and limited the maximum 

number of atoms for each element (excluding Hydrogen) to 5 through 10, inclusive ().   
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Figure 11: The number of formulas generated for 0-1500 Daltons, as a function of the 

maximum number of CHNOPS elements (6-10 shown here). 

 

Fitting Formula Count  

To model the number of possible molecular formulas given an arbitrary upper limit without 

performing the computationally expensive step of generating every molecular formula, we 

fit an exponential curve to the exhaustive formula counts (Figure 11) for the upper atomic 

limits in the range 5-15, inclusive. We used the Python library numpy (Harris et al., 2020) 

to calculate a weighted exponential fit for each distribution. We used linear regression to 

fit the exponential equation (12). 

 𝑦 = 𝐴𝑒𝐵𝑥  (1) 
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In practice, fitting an exponential using linear regression without weighting overfits smaller 

values. Therefore, we weighted the regression by 𝑦 to properly fit all values. The 𝑟2  value 

for this weighted fit is 0.991 (p-value = 3.667e-9). For the exponential function, A = 0.4598 

and B = 9.8410. (Figure 12) 

 

Figure 12: The number of formulas per maximum element count modelled using an 

exponential curve. 

 

Molecular Formula Size Fitting & Distributions 

We calculated the average molecular weight for each chemical formula for all maximum 

number of elements in the range 5-15, inclusive, using the molmass python package, 
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v10.18. For each upper limit of the number of atoms of each element, we fit a Gaussian 

distribution ((2) to the distribution of molecular weights, with μ as the average molecular 

weight and σ as the standard deviation (SI Figure 3). 

 
𝑓(𝑥) =

1

𝜎√2𝜋
𝑒−

1
2

(
𝑥−𝜇

𝜎
)

2

 
(2) 

 

To test the validity of this Gaussian model to the molecular weight distribution generated 

from MOLGEN 5.0 formulas, we used a two-sample Kolmogorov-Smirnov (KS) 

test(Massey, 1951) to measure similarity between the modelled Gaussian distribution and 

the formula-generated molecular weight distribution. This test was done using the Scipy 

python library (Virtanen et al., 2020). The KS test makes no assumptions about the two 

distributions being compared, as it compares the cumulative distribution functions of each 

distribution. All KS statistics are less than 0.025 (Table 1).  

Mean/Standard Deviation Fitting 

To model the Gaussian distribution of molecular weights given an arbitrary upper 

elemental atom limit without performing the computationally expensive step of generating 

formulas and calculating molecular weights, we fit a linear regression to the average 

molecular weight and standard deviation for each of the upper limits in the range 5-15, 

inclusive (molecular weight m=0.999, b=1.003e-5, standard deviation m=0.999, 

b=0.0006). The r2 value for both the average (μ) and standard deviation (σ) are 1.000, with 

a pvalue of 2.200e-32 and 4.148e-23 for the molecular weight and standard deviation fits, 

respectively). Therefore, using the linear relationship calculated here, molecular weight 

distributions for compounds with arbitrarily large numbers of elements & atoms can be 
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modelled. We tested this with an upper element atom limit of 20 as a proof of concept, with 

the KS statistic = 0.0102 and the p-value = 1.61e-9 (Figure 4, Figure 5).  

Random Molecule Generation 

We built random molecules for MA calculations through a generative assembly process. 

Given a molecular formula, all chemically possible bonds which can be formed between 

the given atoms are generated. For example, given two Carbon atoms, the possible bonds 

would be C-C, C=C, and C≡C. Two bonds are randomly sampled with uniform probability 

from this distribution. If these bonds can chemically be bonded together, they are kept and 

are part of the growing molecule. If not, two other bonds are chosen. This process iterates 

through randomly sampling one bond to add to the growing molecule until all atoms in the 

chemical formula are accounted for. The final molecule is checked by the 3D embedding 

tool within RDKit (Landrum, 2020) for chemical feasibility. The random molecule 

generation code was written by Stuart Marshall. 

Assembly Index Calculations 

The MA of chemicals was found using the latest version of the Molecule Assembly code 

(written by Stuart Marshall in Go), with a timeout of 300 seconds. 

Number of Possible Molecules 

We calculated the number of theoretically possible molecules detected within increasingly 

smaller molecular weight ranges and specific DOFs. We calculated the likelihood of 

finding molecules through a two-step process. First, we found the cumulative distribution 

function – the probability that a random variable will have a value less than or equal to a 

specific value (Error! Reference source not found.) - at a specific molecular weight plus 
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a given precision, then subtracted the cumulative distribution function at the same 

molecular weight minus the given precision (Error! Reference source not found.). 

 𝑐𝑑𝑓(𝑥) = 𝑃(𝑋) (3) 

 𝑃(𝑚𝑤 ± 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

= 𝑐𝑑𝑓(𝑚𝑤 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) − 𝑐𝑑𝑓(𝑚𝑤 − 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) 

(4) 

 

This likelihood is multiplied by the theoretically expected number of molecular formulae 

generated from the given atomic limit (Error! Reference source not found.). The 

exponential fit from (12) is used here, with A = 0.4598 and B = 9.8410. 

 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑒𝑠(𝑚𝑤 ± 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

= 𝑃(𝑚𝑤 ± 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) ∗ 0.4598𝑒9.841∗𝑎𝑡𝑜𝑚𝑖𝑐  𝑙𝑖𝑚𝑖𝑡  

(5) 

 

These calculations are repeated for all possible ranges within four standard deviations of 

the average theoretical molecular weight to create distributions of the number of 

theoretically possible molecules which can be detected. 

Likelihood 

We generated the likelihood of finding a high MA compound (using MA ≥ 15 and MA ≥ 

20 as delimiters) through logistic regression, using the GLM 4.4 method in R. 

The likelihood values from the logistic regression were included in a modified version of 

(Error! Reference source not found.), resulting in the number of molecules found at a 

particular weight which have a molecular assembly value greater than 15 (or 20, depending 

on the delimiter used) (Error! Reference source not found.). 
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 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 (𝑀𝐴 ≥ 15, 𝑚𝑤 ± 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

= [𝑒𝑞. 5] ∗ (1 − 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑀 ≤ 15, 𝑚𝑤 ± 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) 

(6) 

 

m/ΔM Calculation 

We calculated m/ΔM values necessary for detecting at least 10 distinct formulae through 

taking the ratio of the Dalton precision required to detect 10 or fewer formulae at a given 

m/z value between 275 – 861, and the m/z value. This precision can be thought of as the 

maximum values of the “Ideal” section denoted in (Figure 7). We used (Error! Reference 

source not found.) across all m/z values in the range 275.00000 – 861.00000 m/z 

(inclusive), with a stepwise increase of 1e-5 m/z. 

 m

ΔM
=

𝑚/𝑧

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

(7) 

 

KEGG Overlap 

Formulas were taken from the Kyoto Encyclopedia of Genes and Genomes (KEGG) in 

August 2022. The 10208 formulas found is an exhaustive list of formulas present in the 

database. The molecular weights of each formula were calculated using the molmass 

python library v10.18, and the overlaps at various mass resolutions were calculated using 

python scripts. 

Assembly Theory Over Different Databases 

Assembly theory results over different chemical databases (MOLGEN 5.0, GDB, and 

PubChem) representing differently curated and biased chemical space distributions were 

calculated. We found 100 isomers from each database - generated through randomly 
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building graphs, sampled from GDB17, and sampled from PubChem - across 200 chemical 

formulas. These chemical formulas were randomly selected from formulas which satisfied 

three constraints: 1) there were 100 or more isomers available within the publicly available 

GDB17 dataset (https://gdb.unibe.ch/downloads/); 2) the formulas contained only the 

elements C, H, N, O, and P; and S) there were 100 or more structures available in PubChem. 

Python scripts were used to search GDB17 data and query the PubChem API in order to 

satisfy these constraints in September 2022. The 100 random structures were generated 

using the random molecular assembly code described above. Assembly values were 

generated in parallel using the AssemblyGo method and python scripts running on the 

Agave cluster at Arizona State University. 

Discussion 

Future life detection missions must have the capability to detect unknown biochemistry. 

Our work recommends that mass spectrometers used on spaceflight missions 1) have a 

mass resolution of at least 552,252 m/ΔM; and 2) have a mass range of at least 861 Daltons. 

This mission specification will unambiguously distinguish high-MA (≥ 15) molecules, 

while a lower mass resolution of 435,714 m/ΔM is sufficient for detecting compounds with 

MA ≥ 20. These recommendations are regularly achieved by terrestrial mass spectrometers 

but are roughly four times higher than that of proposed instruments. Recent engineering 

work by Arevalo et al (Arevalo et al., 2018) has been focused on developing ion trap mass 

spectrometers for space exploration that may dramatically increases the capabilities of 

future instruments and missions. We hope that this recommendation will serve as a 

benchmark for future instrument development focused on detecting high-MA compounds. 

https://gdb.unibe.ch/downloads/
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It is important to note that these recommendations, particularly those based on enumerated 

MOLGEN 5.0 formulas & randomly generated structures, make very few assumptions 

regarding the chemistry present in alien living systems. This is purposeful - there is a wide 

range of abiotic chemistry that is plausible elsewhere in the universe (Seager, 2010; Shaw, 

2007), and an even larger scope of potential organic chemistry (Awale et al., 2017; Bains, 

2004). Our mass spectrometry recommendations, based on random chemistry, should be 

treated as a useful null model for detecting complex compounds generated by life. While 

these recommendations have been derived within the context of assembly theory, the 

advantages of higher resolution across higher mass ranges would benefit many other 

research topics relevant to astrobiology and the broader planetary science and astronomy 

community (Arevalo et al., 2020; Chou, Grefenstette, et al., 2021). We additionally show 

that the proposed CORALS mass spectrometer can distinguish Earth-based biochemical 

compounds in a similar fashion to our recommended mass spectrometer, highlighting that 

lower resolution instruments are likely sufficient for detecting alternative chemistries that 

have a similar chemical space as biochemistry on Earth. However, our proposed mass 

resolution will ensure that complex compounds generated from living systems will be 

definitively detected and allow for unambiguous biosignature identification. 
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3: SOCIAL DYNAMICS SHAPE CHEMICAL INNOVATION 

Introduction 

"Life…is the greatest chemist, and evolution is her design process."(Arnold, 2019) This 

quote, attributed to Nobel laureate Frances Arnold, underscores the critical role that 

chemistry plays in the evolution of life on Earth. Over the course of 3.5 billion years, 

evolution has shaped the formation of novel and innovative chemical processes that 

underpin the functions of living organisms (E. Smith & Morowitz, 2016). However, with 

recent technological advancements, society has gained the ability to design and manipulate 

chemical reactions and compounds in ways that surpass the strict confines of biological 

evolution (Arnold, 2019; Derry & Williams, 1960; Judson, 2017). This revolution has 

placed today's chemical innovation at the intersection of science and society, presenting 

both opportunities and challenges for our understanding of the natural world and how 

society and technology contributes to its growing complexity.  

 

Chemical innovation in modern society has been shaped by several competing forces, from 

scientific breakthroughs to patent protections to financial market pressures. Breakthroughs 

such as the synthesis of insulin or the development of nitrogen fertilizer in the early 20th 

century have yielded immense benefits to society (Gomollón-Bel, 2019; Smil, 2004; 

Vecchio et al., 2018) and importantly were not done in a scientific vacuum, but rather 

within a society where patents which grant sole rights to the patent-holder for usage and 

publication of an invention. Famously, the inventors of insulin synthesis - Fredrick 

Banting, James Collip, and Charles Best – sold their patent to the University of Toronto 

for $1, believing it to be unethical to monetize such a discovery (Vecchio et al., 2018). This 
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is uncommon in chemistry, particularly for high-quality discoveries which hold potential 

for profits, encouraging authors to register patents (Anton & Yao, 2004; Hall & Harhoff, 

2012; Moser, 2007). Today, it is estimated that as much as 77% of all novel chemical data 

is only found in patents instead of scientific publications and other literature (Bregonje, 

2005; Senger et al., 2015). Novel compounds are more likely to be made publicly available 

in less time via patents than compared to scientific literature (Akhondi et al., 2019; 

Bregonje, 2005; Krallinger et al., 2017). Various uses of compounds are also more likely 

to be reported in patent literature (Bregonje, 2005), and many compounds are available 

only within patent-specific databases (Asche, 2017).  

 

This amount of chemical data in patent literature makes patents the ideal data source to 

explore how society influences chemistry over time. There has been an increasing 

recognition and study of the influence of society on chemistry and science writ large - 

innovative science is performed as part of and in conjunction with pressures exerted  by 

society & policy (Edler & Fagerberg, 2017; Owen et al., 2012; Ware, 2001). These 

pressures can take a variety of forms, such as the monetary value of patents, or author and 

organizational fame and recognition. Previous work has shown individual researchers are 

on average risk-averse, which potentially hinders their ability to develop novel inventions 

(Foster et al., 2015; Jia et al., 2017). Research output can also be predicted on the level of 

topics, where simple models have been developed which describe scientific research output 

within sub-categories of physics (Jia et al., 2017) and computer science, where funding 

strongly precedes research into specific topics (Hoonlor et al., 2013). Additionally, there 
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are modest correlations between the prestige of an academic institution and the scientific 

output by researchers there (Deville et al., 2014). At the level of patent classifications, 

which are given to a patent by the US Patent & Trademark Office (USPTO) and denote the 

type of invention, the majority of inventive effort is given to combining existing 

classifications rather than developing inventions which necessitate novel classifications 

(Strumsky et al., 2012). These results suggest a combinatorial approach to novel inventions 

(Youn et al., 2015), where new inventions are predominately driven by merging existing 

ideas.  

 

Here, we measure the outcomes of this combinatorial, societally driven approach to patent 

chemistry innovation through network growth models and assembly theory (Figure 13). 

Network analysis over patent data allows for system-level time-series exploration into the 

creation and subsequent evolution of chemistry which is not possible from a snapshot of a 

database. For example, chemical patent databases often have high redundancy, where 

compounds are referenced many times across multiple databases (Yonchev et al., 2018), 

but high redundancy does not implicitly imply high usage. A high usage compound would 

be one found across many patents, such as a frequently used solvent like acetone. A 

network built on patent data can identify these highly used compounds through time-series 

connectivity measures where high-usage compounds are more connected to patents than 

sparingly used ones. A high connectivity over time suggests a high degree of importance 

for that compound. Networks are also useful for determining system-level trends, such as 

how the network grows over time (Broido & Clauset, 2019; Szymkuć et al., 2021). One 
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potential growth model would contain a system of chemical reactions which produces a 

single novel compound but utilizes commonly available substrates to produce that single 

novel invention. This example would suggest a preferential attachment model (Jeong et al., 

2003; Newman, 2001) of chemistry evolution where common compounds are utilized with 

higher frequency than uncommon compounds to make novel chemistry, as opposed to more 

random explorations of chemical space (Barabasi & Albert, 1999; Reymond, 2015).  

 

In addition to the combinatorial growth of patents, we study the evolution of patent 

chemistry complexity over time using assembly theory (AT, Y. Liu et al., 2021; Marshall 

et al., 2021). There are many metrics of molecular complexity, mainly for computational 

drug discovery, but all involve various theoretical or computational pitfalls (Méndez-Lucio 

& Medina-Franco, 2017). For example, structural measures – based on chiral centers, 

molecular weight, or compactness – are relatively simple to compute, but only consider a 

single measure of a compound rather than a holistic view (Sheridan & Kearsley, 2002). 

More complex measures, such as graph-based measures which consider subgraph counts 

(Bertz, 1981), quantum mechanics (Luzanov & Babich, 1995), or information theory 

(Böttcher, 2016) among many other possible factors (von Korff & Sander, 2013), 

ultimately lack correlation with experimental data, as well as with each other (Méndez-

Lucio & Medina-Franco, 2017). As a complexity measure, AT is uniquely experimentally 

verifiable. Originally designed to discover biomolecules built by living systems elsewhere 

in the universe (Chou, Grefenstette, et al., 2021; Marshall et al., 2017), AT considers the 

amount of information required to build a molecule from the space of possible chemistry 
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available to create a range of complexity values from low to high, where high values 

represent compounds which are combinatorically nearly impossible to create without living 

systems (Marshall et al., 2021; Sharma et al., 2022).  

 

Specifically, the measurement of the molecular assembly index (MA) of a compound is 

done through calculating the fewest possible joining steps necessary to build that 

compound from basic component bonds. It is important to note that while these joining 

steps do not correspond to actual chemical reactions used in synthesis, the MA – an integer 

value representing the number of steps in the theoretically shortest path to build a full 

compound - does correspond to fragmentation data found through mass spectroscopy 

(Marshall et al., 2021), providing a physical grounding and experimental verification of 

MA as a measure of a molecule’s complexity independent of the route of synthesis. The 

shortest path is calculated through a graph-based approach where sub-graphs are 

recursively merged to create the full graph of the compound at hand. The intermediate sub-

graphs created along this recursive process can be re-used, allowing symmetrical structures 

to have a lower MA than non-symmetrical ones. The details of the algorithm and software 

implementation can be found in the SI. When applied to time-series patent chemistry data, 

the MA of compounds over time give an agnostic measure of the changing complexity of 

chemistry, meaning MA does not depend on the details of how the molecules are 

synthesized, only how complex they are. This is an improvement over previous human-

derived measures of measuring complexity over chemical patents (Szymkuć et al., 2021), 
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as there could be biases introduced through classifications which are not present in 

assembly theory. 

 

Figure 13: Assembling chemical networks from the SureChemBL database over time, 

calculating preferential attachment, and calculating assembly indices. 
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Results & Methods 

Network Statistics 

The SureChemBL database contains patent chemical data from 1962 through 2020, 

containing chemical data from the US, European, and Japanese Patent offices. The database 

has roughly 17 million unique compounds, with data from textual analysis since 1976 and 

from image recognition since 2007 (Falaguera & Mestres, 2021; Papadatos et al., 2016). 

We use 1976 as a starting point for the analyses in this project to consider patents with a 

full set of compounds. While larger publicly available chemical databases exist (Gaulton 

et al., 2017; S. Kim, Thiessen, Bolton, et al., 2016; Reymond, 2015), SureChemBL 

uniquely connects chemical structures and reactions with timestamped patent literature. 

This database is incomplete, as it is missing patents from China (the leading patent-

developing country (Christodoulou et al., 2018)), among many others. Additionally, it is 

likely biased due to intricacies of patent law - in the US, for example, patents have to 

demonstrate a “significant, immediate, and well-defined use”, which can be difficult to 

prove in terms of chemistry (Seymore, 2013), while prior to 1988 Japanese patent law 

required multiple patents for multi-step inventions (Sakakibara & Branstetter, 2001). This 

wealth of metadata across such a large publicly available database makes SureChemBL a 

leading source of information for tracking large-scale chemical usage and innovation over 

time.  

 

We built a bipartite, undirected network from SureChemBL patent data (Papadatos et al., 

2016) from 1980-2020, inclusive, using the igraph python library (Csardi et al., 2006). A 

bipartite network is where two types of objects (nodes) are connected via some relationship 
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to form edges. We added both patents and chemical compounds as nodes, with edges 

defined as links between a patent and all compounds listed as used within that patent. These 

edges are undirected, as there is no causal influence between the patent and the compounds 

or vice versa. New patents are added to the full network and are connected to either existing 

compounds that have been used in prior patents or to newly added compounds. These new 

compounds may or may not be newly invented compounds - the task of finding novel 

compounds and distinguishing between these and previously known compounds is difficult 

(Falaguera & Mestres, 2021) and beyond the scope of this project, as we are interested in 

how the use of various chemical compounds changes over time within the patent record. 

 

There are 551,235 compounds and 70,772 patents listed in SureChemBL before 1980, and 

these nodes and the edges between them were considered as the base network prior to 

adding compounds and patents from January 1980. We calculated a variety of network 

statistics over the evolving patent-compound network to highlight the characteristics of 

social chemistry growth. There is a large increase in new compounds added per month in 

2008, when SureChemBL added image recognition to its database. Image recognition 

allowed chemical compounds which were only described visually in patents to be added to 

the database. Prior to 2008, only compounds which were explicitly written within patents 

and could be labeled using textual analysis were included. We also calculated the average 

compound degree (Error! Reference source not found.) - the average number of patents 

containing a randomly selected compound – which decreases exponentially across the 

entire time series. The average patent degree (Error! Reference source not found.) - the 
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average number of unique compounds within a randomly selected patent record - increases 

over time before leveling off in the early 2010s. There is an increase in average patent 

degree in 2008, suggesting that image recognition added roughly 10 compounds per patent. 

Additionally, the data suggests that the diversity of compounds within patents increased 

with the addition of image recognition, as there is a large increase in the number of novel 

compounds added per month in 2008 (Figure 14). 

 

𝑘  =  
1

𝑁
 ∑ 𝑘𝑖

𝑁

𝑖=1

 
(8) 

 

The largest connected component of the network - the maximum number of nodes which 

are connected by edges - is also found using the igraph python library (Csardi et al., 2006). 

Figure 15 describes the number of nodes (compounds and patents) found within this largest 

connected component compared to the number of compounds and patents in the full 

network discovered at a given month. 
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Figure 14: Network statistics over SureChemBL patent chemistry. 
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Figure 15: Largest connected component Size (patents + compounds) 

 

The average clustering coefficient is also calculated for each node (compounds and patents) 

(Figure 16). The average clustering coefficient of all nodes N is calculated through Error! 

Reference source not found., where ki are the neighbors of node i, and Li is the number 

of edges between all neighbors. 
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Figure 16: Average clustering coefficient 

 

We also tested the underlying growth equation of both compounds and patents. The 

exponential growth function describes the number of total compounds and patents with a 

small r-squared value. The exponential fits were generated using the weighted 

numpy.polynomial.polynomial.polyfit method, which generated a sum of squares of the 

regression (SSR) value. The total sum of squares (SST) was generated for the total number 

of patents and compounds, with a r2 value (SSR / SST) of 3.30e-10 for compounds and 

3.49e-10 for patents (Figure 17, Figure 18).  
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Figure 17: Compound exponential growth fit. The total number of compounds (in units of 

107 individual compounds) are listed on the x-axis.  

 

Figure 18: Patent exponential growth fit. The total number of patents (in units of 106 

individual patents) are listed on the x-axis. 
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Preferential Attachment 

We calculated the attachment of patents to compounds in 5-year intervals from 1980-2019 

(Figure 19), as well as for the full 40-year time series (Figure 20), which measures the 

average number of patents using a given compound within each interval. For each 

compound, we found the degree of every compound at every month. The compound degree 

measures how many patents contain a given compound. The cumulative sum of degrees at 

each month across the 5-year period divided by the 60 (the number of months in one 5-

year interval), returns the average preferential attachment index.  

 

Figure 19: Preferential attachment indices across all SureChemBL data in 5-year 

increments. 



 

65 

 

 
Figure 20: Full preferential attachment, 1980-2019. 

 

The preferential attachment model is a statistical phenomenon of degree distributions 

within networks (Barabasi & Albert, 1999), as well as a growth model which describes 

how new nodes are added to existing networks over time (Jeong et al., 2003). Here, a 

preferential attachment model means new patents would  use popular, pre-existing 

compounds with power-law frequency. That is, it is much more likely that new patents 

would use those compounds which are already present in a large number of patents than 

compounds which are rarely found in the patent literature. In a linear preferential 

attachment model, this likelihood of choosing a highly-connected compound decreases as 

a power-law function, as demonstrated through the Barabasi-Albert model of network 

growth (Barabási, 2013). 
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In this model, based on preferential attachment, the likelihood Π(k) of a new node 

connecting to a random node i is based on the degree of node i, ki , and the total degree of 

a network with N nodes (Error! Reference source not found.).  

 
𝛱(𝑘𝑖)  =  

𝑘𝑖

∑ 𝑘𝑗
𝑁
𝑗

 
(10) 

 

In the theoretical preferential attachment model, the degree of each node increases 

according to (Error! Reference source not found.), where t is the timestep where the node 

ki is added to the network, and m(t/ti) is the number of edges added to node ki between time 

t and ti. 

 

𝑘𝑖  =  𝑚 (
𝑡

𝑡𝑖

)

1
2
 

(11) 

 

This equation predicts that the degree for every node in the network at hand increases at 

the same exponential rate (here, ½) and that degree growth is sublinear, since newly added 

nodes have more options with which to connect to. It also predicts that earlier-added nodes 

will have higher degrees than later-arriving nodes ((Barabási, 2013).  

 

An experimental test (Barabási, 2013; Redner, 2005) of preferential attachment is also 

performed. This test has four algorithmic steps and was calculated for all 5-year periods 

within the SureChemBL compound-patent network: 1980-1984, 1985-1989, 1990-1994, 
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1995-1999, 2000-2004, 2005-2009, 2010-2014, and 2015-2019 (all inclusive). For each 

step, we work through the calculation on a specific SureChemBL compound 

(SureChemBL229199) for the period between 1980-1984. 

 

Step 1 

The number of patents utilizing each compound present in the SureChemBL network are 

found at every timestep. Timesteps in this case are individual months within the five-year 

period, so the first timestep is January of the first year considered. There are 60 total 

timesteps within each period. This is done for all compounds found within the entire five-

year period, so if no patents utilize a given compound during a specific timestep, that 

particular time step is listed as 0 in our analysis. For SureChemBL229199, these results 

should be interpreted as in January 1980, there were 5 patents which used this compound. 

In February 1980, there was only 1 patent using it, and so on through December 1984, 

where 0 patents used it. 

 

SureChemBL229199 results: [5, 1, 3, 1, 2, 2, 0, 0, 1, 1, 1, 0, 1, 0, 2, 2, 4, 0, 1, 0, 1, 1, 0, 1, 

1, 1, 3, 0, 0, 2, 1, 0, 2, 2, 0, 0, 1, 0, 1, 1, 0, 2, 1, 0, 0, 1, 2, 0, 1, 0, 1, 3, 1, 3, 1, 0, 2, 2, 1, 0] 

 

Step 2 

The cumulative number of patents referencing each compound is found at each timestep. 

This shows the cumulative degree of each compound throughout the time period, as the 

edges between compound and patent do not disappear once created in the network 

structure. The cumulative sum is built using the numpy python library (Harris et al., 2020). 
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For SureChemBL229199, the degree in January 1980 is 5, the same as in Step 1. The degree 

in February 1980 is 6 (5 + 1), and the final degree of the compound in December 1984 is 

66. 

 

SureChemBL229199 results: [5, 6, 9, 10, 12, 14, 14, 14, 15, 16, 17, 17, 18, 18, 20, 22, 26, 

26, 27, 27, 28, 29, 29, 30, 31, 32, 35, 35, 35, 37, 38, 38, 40, 42, 42, 42, 43, 43, 44, 45, 45, 

47, 48, 48, 48, 49, 51, 51, 52, 52, 53, 56, 57, 60, 61, 61, 63, 65, 66, 66] 

 

Step 3 

The attachment index, a, is calculated through finding the difference in degree (number of 

cumulative patents) at every timestep, then averaging these differences (Error! Reference 

source not found.). Here, t is the number of timesteps, and k is the degree at each timestep 

t. 

 
𝑎 =

1

𝑡
∑ (𝑘𝑖+1 − 𝑘𝑖) 

𝑡

𝑖 = 0

 
(12) 

 

SureChemBL229199 results: 1.0338983050847457 

 

Step 4 

The attachment index a is calculated for every compound present in the SureChemBL 

network within the time period analyzed. These results are then graphed against the initial 

degree - the number of patents using that particular compound within the first month of the 

analysis. A linear regression model is used to determine if the results experimentally 
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demonstrate preferential attachment. A slope of 1 or higher demonstrates preferential 

attachment, as it shows those compounds which have a high initial degree have a linearly 

(or superlinearly) related attachment index.  

 

In theoretical preferential attachment models, there is a distinction between “internal 

links”, which are edges connecting two nodes which previously exist in a network, and 

“external links”, which link a new node to either another new node or a previously existing 

one (Jeong et al., 2003). In this patent network, there are no internal links, as the only 

possible new connections which can be made are from newly registered patents to either 

new or existing compounds. The preferential attachment network is calculated using 

compounds for this reason - once added to the network, patents cannot make new nodes. 

However, if a compound is used in multiple patents, then the degree of the compound 

increases. As we are interested in the changing usage of chemical compounds over time, 

we calculate preferential attachment using changes in compound degree over time. 

The average attachment index is calculated through averaging the results of Error! 

Reference source not found. for every compound present within a given period. The 

standard deviation and standard error were also calculated for each 5-year period (Table 

2). 
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Table 2: Average Preferential Attachment Values 

Year Average Attachment Standard Deviation Standard Error 

1980-1984 0.0783 0.9575 0.001116 

1985-1989 0.0879 1.2781 0.001305 

1990-1994 0.1061 1.8071 0.001601 

1995-1999 0.1312 2.6399 0.002046 

2000-2004 0.1977 5.3109 0.003203 

2005-2009 0.1614 5.1401 0.002149 

2010-2014 0.1565 5.1103 0.001886 

2015-2019 0.1660 5.5983 0.002011 

 

In a degree/attachment index plot, such as those in Figure 19 and Figure 20, preferential 

attachment is distinguished by a linear or superlinear relationship between initial degree 

(x-axis) and average attachment index (y-axis). We demonstrate the linear-to-superlinear 

relationship (calculated by linear regression minimizing the chi-squared error between all 

data points within a 5-year increment) between initial degree and the average attachment 

index of a compound, denoting preferential attachment. This is additionally confirmed by 

power-law analysis of the compound degree distribution within each time frame (Figure 

21, Table 3).   
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Figure 21: Compound degree distribution power law fits 

 

Table 3: Compound Degree Power Law Fit Statistics 

Month Power Law Alpha 

Power Law 

Sigma Xmin Exponential R 

Exponential 

p-value 

1984-12 1.8099 0.0007768 1.0000 3964938.268 0.0000 

1989-12 1.8562 0.0006501 1.0000 5857216.654 0.0000 

1994-12 1.8687 0.0005456 1.0000 7828779.998 0.0000 

1999-12 1.8645 0.0004580 1.0000 9929113.35 0.0000 

2004-12 1.7959 0.0003429 1.0000 12161916.29 0.0000 

2009-12 1.7734 0.0002516 1.0000 16352054.54 0.0000 

2014-12 1.7905 0.0002128 1.0000 20427204.44 0.0000 

2019-12 1.8935 0.0002075 1.0000 27602685.79 0.0000 

 

A preferentially built, scale-free network represents a small number of compounds being 

found in many patent records, while nearly all compounds are found in very few patents. 

This is not entirely surprising, as some compounds are extremely common across chemistry 
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(e.g., acetone, ethyl acetate, and hexane (Joshi & Adhikari, 2019)) and would be expected 

to be found within many patents. This growth model of preferential attachment also follows 

various other socially created networks (Kunegis et al., 2013; Pham et al., 2015), adding to 

the literature of networks based on society following preferential attachment growth 

models and resulting in scale-free networks. 

 

Tracking Preferential Attachment Across Compound Classes 

We are particularly interested in classes of compounds which are utilized more often than 

expected in patents and can provide context to trends in social chemistry, such as 

researchers and companies using certain compounds more often due to social influence. 

We do not focus on common solvents and other compounds which are prevalent in 

laboratories - these are so ubiquitous that they provide little information about social 

pressures within chemistry. Rather, we first explored compounds which highlight changing 

influences and innovation using preferential attachment. Those compounds which have 

increasing preferential attachment scores than expected show an outsize influence on 

chemistry than initially shown. The attachment index is the result from Error! Reference 

source not found., and individual compounds of interest are found from literature. The 

SureChemBL dataset uses InChI representation for chemical identification, so when 

necessary, PubChem (S. Kim et al., 2019) is used to find the InChI representation of 

compounds of interest. 

 

 We tested various sets of compounds, including psychedelic drugs (Nutt, 2019) (Figure 

22) and SARS/HCV drugs (Elfiky & Ibrahim, 2020) (Figure 23). We also tested green 
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solvents (Pacheco-Fernández & Pino, 2019), which exhibited a much higher than expected 

usage (Figure 24). These solvents are a result of a decades-long effort to reduce the use of 

toxic organic solvents, with notable successes such as sodium dodecysulphate (SDS), an 

amphiphilic solvent used in tandem with magnetic nanoparticles (Qi et al., 2016). Between 

2015 and 2019, over 1400 patents per month used SDS in some fashion, up from under 100 

patents per month in the early 1980s. The attachment index of SDS in 2019 is 700,000 

times the standard error of the average attachment index (Table 2). The use of preferential 

attachment to detect social trends such as this effort to increase the usage of green solvents 

such as SDS and others like 1-hexanol (Shen et al., 2020), 1-octanol (Chong et al., 2018), 

and decanoic acid (Florindo et al., 2019) in comparison with a growing environmental 

movement in chemistry (de Marco et al., 2019; Płotka-Wasylka et al., 2018) shows the 

power of large-scale network analyses of social chemistry to observe and quantify trends. 
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Figure 22: Psychedelic drug attachment over time. 
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Figure 23: SARS/HCV drug attachments over time. 
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Figure 24: Green solvent attachment. 
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Molecular Assembly 

We measured the assembly index of randomly sampled novel SureChemBL compounds 

within each month from 1976 to 2020. The assembly number of a compound is generated 

using four computational steps. First, a chemical structure is converted into a graph-based 

representation, using the RDKit cheminformatics python library (Landrum, 2020). This 

structure is then randomly fragmented into component parts, creating the fundamental 

building blocks of the graph structure. In chemical terms, these fundamental components 

are two or three atoms connected by bonds, all of which correspond to atom-atom pairings 

present within the compound. These fragments are then iteratively joined together, with 

intermediate structures and component parts available for re-use, to create the minimal 

assembly path of the initial graph. The number of steps in this minimal assembly path is 

the assembly index of the chemical compound (Marshall et al., 2021). For all analyses 

shown here, we used the AssemblyGo calculator 

(https://gitlab.com/croningroup/cheminformatics/molecular-assembly), which calculates 

the MA using a split-branch algorithm, with a timeout of 300 seconds. When this timeout 

is reached, the split-branch algorithm returns the best possible MA value found at that time. 

All MA values were calculated using the Agave supercomputing cluster at Arizona State 

University. 

 

The novel fragments are built from the MA building process. A fragment is an intermediate 

step within an assembly pathway. These are graph-based fragments which represent partial 

chemical structures, which may or may not be physically plausible. Taken together, 

fragments give a measure of the diversity of assembly pathways and overall structures 

https://gitlab.com/croningroup/cheminformatics/molecular-assembly
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within a dataset. Novel fragments are those which have not been utilized in prior assembly 

pathways, representing new substructures which have not been used before and  providing 

a loose measure of diversity within patent chemistry. We calculated novel fragments from 

a randomly sampled set of 1000 compounds per month between 1980 and 2020 and built 

the cumulative number of fragments from the summation of these novel fragments. We 

find the number of novel fragments decreases and eventually stabilizes over time, 

suggesting the rate of finding novel structures has stagnated at best. 

Molecular Assembly Compound Sampling 

 

In total, we sampled 2,033,834 compounds from SureChemBL. These compounds came 

from two sampling runs – one based on random sampling within individual months, and 

the other based on random sampling of patent authors and assignees.  

 

The first sampling run found roughly 960,000 compounds. We sampled 2000 compounds 

per month from 1980-2020, inclusive. The sampling steps are outlined below: 

1. Within each set of 2000 compounds per month, 1000 compounds (full database 

compounds) were taken entirely by random from the set of compounds which had 

been added to the database by that particular month.  

a. For example, a random set of 1000 compounds taken in July 1993 (the birth 

month of the author) would only include compounds listed in patents prior 

to July 1993.  

2. The other 1000 compounds (the novel set) are compounds that are randomly 

sampled from those added to the database for the first time in that particular month.  
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a. Using the July 1993 example again, there were roughly 10000 compounds 

added in July 1993 that were not previously found in SureChemBL. The 

novel compound set was randomly taken only from that set of 10000. 

 

The second sampling run was performed for the patent authors and assignee analysis. In 

total, we obtained 1053834 compounds. These sampling steps are also outlined below. 

1. We randomly sampled 10000 patents from SureChemBL, with no date or 

compound restrictions.  

2. From those 10000 patents, we found all authors (21947 total) and assignees (6165 

total) associated with those patents. 

a. We removed all non-company assignee records, resulting in 1950 total 

assignees.  

b. Assignee filtering was done by removing all assignees which did not 

include at least one of the following key terms: “Corp”, “Inc”, “Co”, “Ltd”, 

“Llc”, “Lllp”, “Rlllp”, “Corporation”, “Incorporated”, “Limited”, 

“Company”, “Univ”, “University”. This was done so that authors were not 

co-listed and therefore co-analyzed within assignees. 

3. We found all patents associated with each of the 21947 authors and 1850 assignees 

discovered in step 2.  

a. In total, this resulted in 7056912 patents associated with authors and 667165 

patents associated with assignees. 
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4. In order to make MA calculations tractable, we randomly sampled 100000 patents 

from the 7056912 patents associated with authors and found all unique compounds 

associated with those patents. 

a. In total, there were 1034394 compounds associated with authors. 

5. We also randomly sampled 1000 unique assignees and found 1751784 additional 

unique compounds.  

Molecular Assembly, Molecular Weight, and Novel Fragment Trends 

 

For all sampled compounds, we found the earliest date of entry in SureChemBL. We use 

this as a proxy for invention – while we do not know if this represents the exact date of 

invention for each compound, it provides an estimate of when a compound was added to 

the growing patent record of chemistry. Figure 25 shows the increases of MA and 

molecular weight (in Daltons, calculated using RDKit) over time, and here we show the 

linear regression fits over time. Prior to 1980, the sample size of the compounds is much 

lower compared to future years and does not contain novel compound sampling. 

Additionally, prior to 1972, only 10 compounds are present, skewing the graph without 

adding much sampling power.  
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Figure 25: Changing chemical properties (assembly indices, molecular weights and 

fragment diversity) of compounds from 1980 - 2020. 

 

The average MA of compounds increases linearly from 8.857 in January 1980 to 23.891 in 

December 2020, showing for the first time an agnostically measured increase in complexity 

of patent chemistry. Additionally, the average molecular weight of the compounds 

increases linearly over time from 231.061 to 504.431 Daltons. The linear regression r2 

values (0.933 for MA over time and 0.928 for molecular weight over time) show that both 

MA and molecular weight increase linearly over time (Figure 26 and Figure 27).  
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Figure 26: MA over time with linear fit 

 
 

Figure 27: Molecular weight (Daltons) over time with linear fit 
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We are also particularly interested in how MA can be correlated with various physical 

molecular characteristics, as this would ground the theoretical MA measurement to the 

physical world. There has been observed correlations with MA and mass spectrometry 

spectra output, as well as with molecular weight (Marshall et al., 2021). However, the 

molecular weight correlation was performed with an outdated version of the MA code 

which estimated the MA of various compounds. Here, we use the most recent version of 

MA calculations, and only include compounds for which the exact MA value was 

computed. In total, there are roughly 600,000 compounds which have exact calculations. 

We computed the spearman correlation coefficient (we assumed non-gaussian 

distributions) between the MA of these compounds and their molecular weight (in Daltons) 

and number of non-Hydrogen bonds. Both molecular values were calculated using RDKit. 

The spearman coefficient of the MA-Molecular Weight correlation was 0.699, while the 

MA-Bonds correlation was 0.77 (Figure 28, Figure 29). Both show a strong positive 

correlation, with bonds having a tighter correlation with MA values. 

 
Figure 28: MA / molecular weight correlation 
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Figure 29: MA / number of bonds correlation 
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Social Factors and Molecular Assembly 

 

Figure 30: Effect of various factors (cost, network degree, individual authors, assignees, 

and patent classifications) on MA increase over time. 

MA & Cost 

We tested several possible factors which could potentially explain the increase in MA over 

time. We first explored the cost of compounds, hypothesizing that higher-MA compounds 

are associated with higher costs due to increased discovery and production expenses of 

more complex compounds. We use cost data from the Reaxys database (Lawson et al., 

2014) collected from Dr. Dario Caramelli and Dr. Hessam Mehr from the University of 

Glasgow, where each compound has a specific price in GBP per gram. We sampled 50,000 

compounds from their unpublished analysis and calculated the MA from all 50,000 using 

the AssemblyGo split-branch algorithm with a timeout of 300 seconds (Figure 31). In total, 

we calculated the exact MA for 46,187 compounds (Figure 32). From these data, we found 

a weak positive correlation (spearman coefficient = 0.125) between cost and MA., 
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suggesting increasing cost over time plays a small factor in the observation of increasing 

MA.  

 

Figure 31: Cost (GBP per gram) / MA, all compounds 
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Figure 32: Cost (GBP per gram) / MA, exact MA only 

 

Additionally, from these 50,000 original sampled compounds, we found 2185 which were 

also present in the SureChemBL database. This joining operation was done by comparing 

the InChI representations of the original 50,000 compounds to the InChI representations of 

the 17 million SureChemBL compound database. For the 2185 compound subset, we found 

the date of earliest entry in SureChemBL to test if there exists a correlation between cost 

and time. We find a slight positive correlation (spearman = 0.324), which is slightly 
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stronger than the original cost/MA correlation and further suggests cost has a small positive 

affect on increasing MA over time (Figure 33). 

 

Figure 33: Cost over time (colored by MA value) 

MA & Degree 

We also tested the influence of how often a compound is used in patents on MA (Figure 

30). We used the network from Figure 14 to obtain compound degrees, the number of 

patents where a compound is used as of December 2019. We used the end of the 2010s as 

a cutoff in order to match the preferential attachment timeframe in Figure 19. We observe 
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a weak negative correlation (coefficient = -0.141) between degree and MA, suggesting that 

higher-MA compounds are used less often in patents than lower-MA compounds. This is 

not unexpected for the same reasons as cost slightly correlates with MA – there appears to 

be a higher effort level required to create and subsequently use higher-MA compounds. 

Additionally, as shown in Figure 14 and Figure 21, compound degree is decreasing over 

time. This suggests more higher-MA compounds are being created, helping contribute to 

the increase in MA we observe across patent chemistry. 

 

MA & Individuals, Companies, and Patent Classifications 

We were particularly interested in applying social dynamics to MA through individual 

patent authors, assignees (companies, universities, or other ownership groups associated 

with a patent), and classifications (USPTO designation of the type of invention) associated 

with patents. We randomly sampled patents within the SureChemBL database and 

analyzed the changing MA statistics of authors, assignees, and classifications associated 

within. In total, we analyzed data from 21947 authors, 1850 assignees, and 2923 

classifications. A minimum of 10 patents was necessary for any individual author, assignee, 

and classification to be included. Additionally, we limited assignees to those that were 

obviously companies or universities, in order to avoid double-counting authors. When 

multiple authors, assignees, or classifications are associated with a single patent, we 

included that patent within every analysis for each individual designation. For each 

individual analysis, we calculated the average MA of each patent associated with a single 

author/assignees/classification, then performed a linear regression over time to observe 
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how MA changes over time. The change in MA of the linear regression – either positive, 

negative, or zero – is recorded for each individual analysis (see SI for specific methodology 

and an example). This change in MA is represented on the x-axis of each histogram in 

Figure 30, with the total number of patents associated with that change shown on the y-

axis. A detailed example of this methodology is shown below. The average MA change for 

authors is 0.412, showing a very small bias towards creating larger compounds over time. 

For assignees, this average is higher, at 0.989, and for classifications it is even higher at 

1.643. Sample sizes are likely not responsible for the differences between authors, 

assignees and classifications, as MA change stay consistent across dropout tests within 

each category (shown below). These averages are supported by the percentile of the data 

where zero MA change appears – for authors, 0 MA change is in the 41st percentile; for 

assignees, 0 MA change is in the 34th percentile; and for classifications, 0 MA change is in 

the 22nd percentile. These results suggest different types of patents, as classified by the 

USPTO, are more responsible for increasing MA over time, with assignees being less 

responsible, but still more of a driver of increasing MA than authors, who ultimately have 

little influence on MA changes over time. 

Social MA Methodology & Example 

We walk through one specific example to explain this process – this explores patents which 

listed the University of Arizona as the assignee. We first filter the list of all patents to only 

include the University of Arizona (labeled  “UNIV_ARIZONA” in the data) and calculate 

the average MA of the compounds associated with every patent. There are 494 patents in 

the dataset associated with University of Arizona in total. Figure 34shows the average MA 

of patents over time. 
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Figure 34: Average MA of all 494 patents associated with the University of Arizona over 

time. 

 

We built a linear regression model to fit these data, demonstrating that patents associated 

with the University of Arizona have a slight positive trend over time. We calculate the delta 

MA (2.704 assembly units) over the time series, which is the change in average MA of the 

linear regression line from the time of the first patent considered to the time of the final 

patent (Figure 35). The linear regression statistics for the University of Arizona are shown 

in Table 4. 

 

We graph the deltaMA in Figure 30, weighted by the number of patents associated for each 

individual For example, since the University of Arizona had 494 patents associated with a 
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delta MA of 2.704, we graphed 494 occurrences of 2.704 onto the assignee histogram in 

Figure 30. 

Table 4: Linear Regression Statistics For University of Arizona Patents. 

=============================================================== 

Dep. Variable:      y      R-squared:                        0.018 
Model:                       OLS      Adj. R-squared:                0.016 

Method:                  Least Squares    F-statistic:                      9.029 
Date:                 Wed, 05 Apr 2023    Prob (F-statistic):             0.00279 
Time:                         11:25:10     Log-Likelihood:                 -1490.6 

No. Observations:     494      AIC:                             2985. 
Df Residuals:             492      BIC:                              2994. 

Df Model:                  1                                          
Covariance Type:       nonrobust                                          
=============================================================== 

                 coef     std err           t        P>|t|       [0.025       0.975] 
----------------------------------------------------------------------------------------------------------- 

const       -165.1187     59.448      -2.778      0.006     -281.921      -
48.316 
x1             0.0002    8.09e-05       3.005       0.003     8.41e-05        0.000 

=============================================================== 
Omnibus:                     143.136    Durbin-Watson:                    0.402 
Prob(Omnibus):           0.000    Jarque-Bera (JB):              510.705 

Skew:                           1.298    Prob(JB):                      1.26e-111 
Kurtosis:                      7.251    Cond. No.                      1.96e+08 
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Figure 35: Average MA of patents with linear regression and delta MA shown. 

 

For all individual authors, individual assignees and unique classifications, we performed 

the same tests to calculate the delta MA of average MA across patents. For each individual 

author, individual assignee and unique classification, we calculated the r2 value of the linear 

regression in order to evaluate how close the average MA of patents over time was to a 

linear fit. The linear regression slopes (y-axis) by the delta MA (x-axis) and r2 values 

(coloring of data points) for all authors, assignees, and classifications are shown here. Each 

data point is sized by the number of patents associated with each individual. Additionally, 
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the histogram of slopes also shown vertically here (rather than horizontally as in Figure 

30), and is not weighted by the number of patents per individual (Figure 36). 
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Figure 36: Author, Assignee, and Classification regression results. 

 

We also performed dropout analyses on the weighted bulk results from each of the author, 

assignee and classification analyses in order to test if basic statistics – specifically, the 

mean, median and skew – significantly changed as a result of smaller sample size. We 

performed 1000 iterations of 20% dropout, where 20% of the individual authors, individual 

assignees or unique classifications were removed from each analysis. We removed 

individuals or classifications instead of patents because each individual/classification had 

potentially different numbers of patents associated with them, and since we are testing at 

the level of individuals/classifications, we wanted to ensure the data is statistically rigorous 

in regard to perturbations at the individual level. Across all 1000 iterations of individual 

authors, individual assignees and unique classifications, the mean, median, and skew are 

stable, showing that the results are robust in regard to individuals (Figure 37, Figure 38, 

Figure 39). 
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Figure 37: Author dropout tests results 

 

Figure 38: Assignee dropout tests results 
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Figure 39: Classification dropout tests results 

 

Discussion 

Preferential Attachment 

We found the SureChemBL patent-compound network grows according to the preferential 

attachment model - specifically, patents are more likely to use compounds that were 

already highly used in previous patents. Those compounds which were rarely utilized in 

patents are unlikely to be utilized in future patents. This growth model results in a scale-

free network structure (SI Table 1) where relatively few compounds are ubiquitous in 

patent chemistry and the vast majority of compounds are used in very few patents. Scale-

free networks are found in a wide variety of systems, including other chemical networks 

such as biological metabolism (Broido & Clauset, 2019), and this result adds patent 

chemical networks to the growing body of systems which have this property. 
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Patent chemistry networks fill an interesting niche in the landscape of network science and 

scale-free networks. There are constraints put on it through chemical reactions, in a similar 

fashion to biochemistry and other chemical reactions networks, as patents can only use 

chemically feasible reactions, limiting the type of compounds utilized within a patent. 

Additionally, there are social constraints put on patent chemistry through the nature of 

patents and economics - these documents protect specific compounds and reactions from 

use elsewhere, and as such can prevent the spread of these compounds to other patents, 

resulting in a low degree for protected compounds. Additionally, these patents are done to 

protect intellectual property of scientists and companies, possibly resulting in some form 

of profit for the patent authors and/or assignees. The motivation behind the patents, 

therefore, is driven at least in part by market forces. Most socially derived networks have 

some form of constraints, such as human-human interaction networks that are constrained 

by location, but most of these networks do not have a law- or economy-based constraint. 

The result that patent chemistry is limited by both physical and social constraints, yet still 

is built according to the preferential attachment model and results in a scale-free structure, 

highlights the ubiquity of these kinds of networks across systems. 

 

The role of individual compounds within the network is also explored here, with green 

solvents highlighted as a particularly intriguing example of compounds which become 

more connected over time. The motivation for green chemistry is fairly obvious as 

environmental issues become more pressing and urgent (Gałuszka et al., 2013; Raccary et 

al., 2022), but we encourage other researchers in various chemical disciplines to research 
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their own compounds of interest to study the relative popularity of compounds and patents 

over time relating to their individual fields.  

 

Assembly 

Beyond the growth of the patent network, the compounds themselves provide intriguing 

insight into how chemistry grows and changes over time. Using assembly theory, we 

observe a growing trend in the MA of compounds over time, showing compounds have 

steadily become more complex over the last 40 years. The average molecular weight of 

compounds has also linearly increased and is positively correlated with MA (see SI Figure 

25). The reasons for this linear increase are not immediately clear, however. We 

hypothesize that novel fragments – which also grow at a linear rate – are responsible for 

new combinations of atoms and bonds, resulting in a corresponding rise in MA. Despite a 

shallow understanding of the underlying mechanisms of increasing MA over time, we 

highlight the importance of this observation. It has been hypothesized that life becomes 

more complex over time (Bettencourt et al., 2007; Llanos et al., 2019; Szathmáry & Smith, 

1995; Szymkuć et al., 2021), and by using assembly theory as an essential quantifiable 

definition of complexity, we demonstrate that chemistry used within human systems is, in 

fact, becoming more complex. It is important to note that complexity is not a synonym of 

disruption (Park et al., 2023). In fact, these results go further than the premise that patents 

are less disruptive over time proposed in (Park et al., 2023), as we observe a consistent 

linear increase in MA compared to an exponential growth of patents. This suggests 

chemistry is predominately re-using similar patents and has hewn to this model since at 
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least 1980, as opposed to finding more complex structures in the past and less complexity 

in the present.  

 

There are many potential social reasons for increasing MA, from cost, usage rates, and 

various levels of usage within social hierarchies. The slight positive correlation between 

cost and MA highlights that as molecules have more joining steps, it presumably costs 

more to discover and synthesize (which, therefore, leads to a higher price). This fits the 

overall hypothesis of AT, which postulates that high-MA molecules are exceedingly rare 

to make in combinatorial chemical space, and that any high-MA molecule found in high 

abundance would be the result of a dedicated process (Marshall et al., 2022; Sharma et al., 

2022), be that biochemistry or a group of scientists working to discover a novel drug. The 

inverse of this is that as MA increases, we find that the usage of compounds - measured 

through network degree - decreases within patent literature. This may be related to the cost, 

as higher-priced (higher-MA) compounds require more funding and resources to obtain, 

and are therefore used less frequently than established, cheaper compounds. We 

hypothesize that cost and usage These two factors show that social pressures, specifically 

market pressure, scientific research & synthesis time, and resources, have an impact on the 

MA of chemistry produced within society and affect the trajectory of how complex 

chemistry is produced at scale. 

 

MA increase emerges at different levels of social interactions. Taken as a collective, 

individual patent authors have very little impact on how MA increases changes at large 

scales. There are individuals who have a career where the average MA of their associated 
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patents steady increases, but there is a roughly equal number of individuals who have the 

opposite and have a decrease in MA, with a plurality of authors having no trend 

whatsoever. However, both companies and USPTO classifications exhibit behavior which 

results in increased MA values. More companies and classifications have a steady increase 

in MA in patents over time, with classifications having a stronger increase than companies. 

We suggest that while individual authors have a specific skill set and possibly work on 

similar tasks – and therefore similar compounds – throughout their career, the long-term 

direction provided by companies allows for discovery of new, more complex compounds. 

Additionally, we different companies working within the same classification compete to 

discover novel, often higher-MA compounds, allowing for higher-order emergent behavior 

which selects for highly complex compounds.  
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4: EARTH SCIENCE CURRICULA FOR INSTITUTIONALIZED YOUTH  

Introduction 

This work highlights an Earth Science curriculum built and taught in Spring 2022 in 

collaboration with teachers in the Arizona Department of Corrections, Rehabilitation and 

Reentry (ADCRR) and the impact of this curriculum on the Science, Technology, 

Engineering, and Mathematics (STEM) identity of the students taking the course. We use 

the sociotransformative constructivism (sTc) (A. J. Rodriguez, 1998) framework and a 

place-based focus on the Sonoran Desert to develop the lessons and activities covered here. 

Topics covered include planetary formation, interacting geologic systems leading to the 

origin of life, potential life on other planets and possible similarities to that on Earth, and 

the impacts of human-driven climate change (Table 3). Graduate student and faculty 

volunteers were included in the creation and teaching of lessons, so that the students could 

learn from experts in various topic fields and be introduced to a diverse range of scientists.   

 

The student’s STEM identities towards Earth Science topics were collected using a 

modified version of the Colorado Learning Attitudes about Science Survey (W. Adams et 

al., 2006), to quantitatively study how their perception of themselves within Earth Science 

changed over the twelve-week course. Additionally, we developed a final project which 

required students to create unique planets and ecosystems based on geologic constraints. 

We qualitatively assessed the project reports to measure the impact of the sTc framework 

used to build the curriculum, as well as to measure other emergent themes - such as 

references to the flora and fauna found within the Sonoran Desert - that were expressed 

within the student projects.  
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While the vast majority of research on prison education is focused on the impacts of 

education on reducing recidivism in adult learners (Baranger et al., 2018; Courtney, 2019; 

Ellison et al., 2017; Esperian, 2010; Fabelo, 2002; Gaes, 2008), there are efforts to move 

the conversation of prison education beyond solely recidivism and instead highlight the 

transformative opportunities of education within the prison environment. Flynn and 

Higdon advocate for incarcerated persons engaging with their education in a way that 

ensures meaningful interactions with outside society (Flynn & Higdon, 2022), while Szifris 

and others describe education as a method of positive personal change for those 

incarcerated (Szifris et al., 2018). This study adds to this transformative effort by utilizing 

sociotransformative constructivism (Alberto J. Rodriguez & Morrison, 2019) within 

science education in a youth educational setting in ADCRR. The impact of education 

opportunities for incarcerated persons under 18 years old is largely unstudied, and while 

this study does not address large-scale issues within juvenile prison education at large, it 

highlights how the sociotransformative constructivism framework in conjunction with 

interactive, place-based teaching strategies can lead to personal identity changes towards 

science in prison education efforts, particularly to youth learners. 

 

Earth science is an ideal subject for prison education, as it incorporates and informs 

interdisciplinary thinking from scientific disciplines such as geology, atmospheric 

sciences, planetary science, biology, astrobiology, and even sociology through the effects 

of climate change (Orion, 2019; Pennington et al., 2020). The various fields and topics 
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which can be covered within an earth science curriculum allow students to not only connect 

knowledge across multiple disciplines, but also gives intersectional perspectives and ways 

for students to relate to different ways of scientific thinking using real-world, place-based 

lessons (Gosselin et al., 2016; Núñez et al., 2020; Semken et al., 2017). For example, the 

study of climate change is fundamentally a study at the interface of geological processes 

and human impacts on them (Pennington et al., 2020). Arizona - and the Sonoran Desert 

in particular - is already affected by climate change through hotter summers and a changing 

fire regime (Aslan et al., 2021; Hantson et al., 2021). As LLA is located within the Sonoran 

Desert, this focus on earth science specific to Arizona is personally relatable to the students 

here in a way that other subjects would not be. Additionally, the Next Generation Science 

Standards, which were used by the Arizona Department of Education to build the Arizona 

Science Standards followed within this project, emphasize cross-cutting concepts so that 

students learn to solve problems using techniques from seemingly disparate fields (Pruitt, 

2014).  

 

This project introduces students to these various earth science topics through a 

sociotransformative constructivism (sTc) framework (A. J. Rodriguez, 1998). sTc is a 

synthesis of educational social justice (Maulucci, 2012) and constructivist learning theory, 

which results in educational practices that teaches towards diversity and understanding (A. 

J. Rodriguez, 1998). The sTc framework has been used in many educational settings (Avsar 

Erumit et al., 2021; Tolbert et al., 2022; Varelas et al., 2022), but rarely within a prison 

environment. In general, there is a lack of applied educational theory to prison education, 
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particularly in how education can lead to change within prison structures (Szifris et al., 

2018). This work will contribute to this lack of literature through the application of sTc to 

a specifically designed youth prison education class. 

  



 

106 

 

Theoretical Framework 

The sTc framework is built on four specific components for educators to shape their 

classrooms to teach to their student’s diverse experiences and ensure that lessons are 

designed to facilitate student’s understanding. These components are four unique - but 

often overlapping - elements: dialogic conversation, authentic activity, metacognition, and 

reflexivity (A. J. Rodriguez, 1998; Alberto J. Rodriguez, 2015). Dialogic conversation is 

the emphasis on understanding why a speaker (either the student or educator) chooses to 

speak in a specific way based on their experiences. Crucially, a dialogic conversation can 

only occur if there is an established trust between the speaker and listener, so that there are 

no power hierarchies within the conversation (Bakhtin, 2010; Howe et al., 2019). An 

authentic activity is a hands-on, tactile lesson which is specifically designed to teach a 

subject, but also is designed to incorporate student’s experiences through tying it to the 

student's culture and everyday life.  Metacognition also draws on student’s experiences by 

encouraging them to identify where they personally fit into lessons, and additionally reflect 

on why and how they are learning specific topics. Reflexivity occurs when students bring 

their own social upbringing, location (both ideological and geographical), and beliefs to 

the lessons to explore their place in the subject material. All these components are based 

in experience-based learning and a critical approach to education (Wang et al., 2019), and 

force both students and educators to examine power structures embedded within the 

classroom (such as teacher-student relationships) and also within larger society. 

 

The use of sTc to bring diversity to the forefront of teaching emphasizes cross-cultural 

education, meaning that the perspectives, knowledge and contributions of the student’s 
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cultures are represented within the curriculum developed here to empower students within 

this course (Aronson & Laughter, 2016). This is the sociotransformative element of sTc, 

and allows students from culturally diverse backgrounds to see themselves within the 

material and provides a platform for these students to become empowered and have a sense 

of personal agency towards the course material (A. J. Rodriguez, 1998; Alberto J. 

Rodriguez & Morrison, 2019). 

 

The social constructivist theory within sTc focuses on learning as an individual process 

which comes about through personal experience within a wider culture. The student’s 

culture influences how they see themselves and the world around them, and when 

combined with their own personal views and experiences, the student is able to make better 

sense of the world and results in higher levels of thinking (Amineh & Asl, 2015; Vygotsky 

& Cole, 1978). Approaching education in a constructivist manner allows educators to teach 

in a way that brings their student’s cultural and personal experiences to the forefront, as 

well as understand that these experiences are critical to learning and development.  

 

Within a prison environment specifically, the relationship between educators as outsiders 

to the prison reflects the historical and cultural context of the prison system in the United 

States, where those in prison are often due to the result of cumulative disadvantages, such 

as the multiple disadvantages (economic, social, political, etc.…) attached to communities 

such as young, male persons of color from low-income neighborhoods (Bishop & Frazier, 

1988; Kurlychek & Johnson, 2019). Those who teach prison education, who are often 



 

108 

 

associated with universities, often do not have the same racial makeup of prisoners - in 

adult facilities, over 50% of prisoners are Black or Latinx (Gramlich, 2019), while only 

11% of college prison instructors are (Krupnick, 2018). This dichotomy in racial and power 

relationships present in prison education work (Taylor et al., 2021) necessitate an 

egalitarian approach (Young, 2006) using sTc to build trust between educators and students 

through deconstructing traditional social power structures within the classroom (Collins & 

Blau, 1979; Taylor et al., 2021; Tolbert et al., 2018). 
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Methods 

Research Design 

We used a simultaneous multi-methods design for this project involving both quantitative 

and qualitative data analysis (Morse, 1991) (Figure 40). The two distinct methods of data 

analysis did not inform each other, making this a simultaneous study rather than a mixed 

method design. The qualitative research, which was the main focus of the study, was 

performed on individual project reports. These written reports were converted to electronic 

form and coded using the NVivo analysis software tool (Edwards-Jones, 2014). We 

initially used the four components of sTc - dialogic conversation, authentic activity, 

metacognition, and reflexivity - as well as two markers of science identity as codes. The 

science identity codes were based on knowing and using science. After reading the 

individual reports, we also included five codes based on recurrent themes across the reports 

and included each of these as part of one of the overarching sTc components. These codes 

were designed around sTc to evaluate the curriculum using the same framework in which 

it was built and taught. 

 

We also conducted a survey based on the Colorado Learning Attitudes about Science 

Survey (CLASS) (W. K. Adams et al., 2008; W. Adams et al., 2006) at the beginning and 

end of the 12-week class. This quantitative survey was designed to measure the Earth 

Science identity of the students and how this identity changed over the course of the class. 
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Figure 40: Mixed-methods study overview. 

 

Classroom Setting 

=The class ultimately reached over 20 students, but only five were present throughout the 

entire course we designed as sentence times, age limits, and new arrivals all influenced the 

number of students within the classroom on a day-to-day basis. The survey and project 

described below, administered to these five students, are designed to measure the learning 

outcomes and connections made by the students. 

 

We worked in collaboration with the administrative staff and teachers within ADCRR, 

particularly Dr. Debra Skinner and Jordan Remold to build a curriculum for a quarter-long 

(12 weeks) Earth Science course. The author and Jordan Rembold co-taught this class 
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during spring 2022. This class started on January 3rd and ended on March 26th to two 

separate classes of students, teaching over 20 students in total. 

 

Prison Environment 

Throughout the course, we were challenged and sometimes limited by the structure placed 

by teaching within a prison. This class was designed so that lessons and activities were 

built on top of previous ones, but a significant number of students started in the middle of 

the class due to sentencing and movement within the prison. Additionally, while 

experimental & activity materials were nearly consistently approved to bring into the 

classroom, the students were not permitted to interact with technology such as computers, 

so technology-based lessons and activities were not permitted. The approval process to 

bring materials into LLA consisted of submitting lists of materials at minimum one week 

before the planned lesson and receiving written permission from the warden of the Lewis-

Sunrise facility. The teachers were responsible for purchasing and bringing in materials. 

The ban on student technology allowed for a greater tactile learning experience but limited 

the type and diversity of activities available to the students. Also, the minors unit is a 

subunit of a larger prison complex, and disruptions in other units caused class delays and 

sometimes cancellations. One example of a disruption was a 45-minute delay due to 

searches in the adult wings of the prison. A guest speaker from ASU was present, and the 

delay turned a planned 1-hour activity into an impromptu question and answer session to 

give the students an opportunity to learn from the speaker and ensure their curiosity was 

addressed. While the students were disappointed to miss the activity, they were engaged in 

the short time available with the guest speaker. 
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Survey Instrument 

The goal of the curriculum is to increase earth science knowledge and science identity of 

the students within the course. A student’s science identity is how a student perceives 

themselves and navigates through learning science (Tytler, 2014). A strong science identity 

is related to when a student is recognized as having an affinity for science and also develops 

an increasing interest in a subject (Dou et al., 2019). This results in a student identifying 

personally and/or being recognized as a person who has an affinity for scientific topics. If 

a student is not recognized for their affinity or does not develop a science-specific interest, 

which could result from a variety of reasons, such as underrepresentation of experts who 

look similar to them in positions of power (Barton & Tan, 2010; Hazari et al., 2020), then 

they do not have a strong science identity.  

 

We modified the CLASS survey (W. Adams et al., 2006) to test changes in STEM identity. 

The CLASS survey, initially designed for physics and then extended to chemistry (W. K. 

Adams et al., 2008) and other science subjects (Semsar et al., 2011; Wilcox & 

Lewandowski, 2016), tests how students view themselves compared to experts in a given 

scientific field. Previous work with CLASS measures how this identity compares to 

classroom achievement (W. Adams et al., 2006; Deslauriers et al., 2019; Hazari et al., 

2010). Here, we are limited by two factors - first, the survey is not validated for earth 

science, and therefore cannot definitively show an increase in earth science identity. 

Second, there are only five students who ultimately participated in the survey, which limits 

the statistical power of the results. However, we can show trends over time within this 

limited sample size, so while we cannot give specific answers to changes in STEM identity, 
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we can observe the impact of the curriculum on how the surveyed students view themselves 

within earth science. The modified CLASS earth science survey is shown in Table 5. We 

gave the survey to students twice - once at the beginning of the course, and again at the 

very end of the course. Each question is scored on a Likert scale of 1-5, where 1 is “Strongly 

Disagree” and 5 is “Strongly Agree”. 
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Table 5: Survey Instrument, Based on the CLASS Survey, Given Out to Students in the 

Earth Science Class Developed as Part of This Project. 

1. A significant problem in learning earth science is being able to memorize all the 

information I need to know. 

2. After I study a topic in earth science and feel that I understand it, I have difficulty 

solving problems on the same topic. 

3. Knowledge in earth science consists of many disconnected topics.  

4. When I solve an earth science problem, I locate an equation that uses the variables 

given in the problem and plug in the values. 

5. If I get stuck on an earth science problem on my first try, I usually try to figure 

out a different way that works. 

6. Nearly everyone is capable of understanding earth science if they work at it. 

7. If I don’t remember a particular equation needed to solve a problem on an exam, 

there’s nothing much I can do (legally!) to come up with it. 

8. If I want to apply a method used for solving one earth science problem to another 

problem, the problems must involve very similar situations. 

9. Learning earth science changes my ideas about how the world works. 

10. I can usually figure out a way to solve earth science problems. 

11. The subject of earth science has little relation to what I experience in the real 

world. 

12. To understand earth science, I sometimes think about my personal experiences 

and relate them to the topic being analyzed. 

13. If I get stuck on an earth science problem, there is no chance I’ll figure it out on 

my own. 

 

Arizona State Standards 

In order to fit within Arizona state curriculum standards, we built the curriculum on 

Arizona Standards for Earth & Space Science (Arizona Science Standards, 2018, p. 80), 
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which are based on Next Generation Science Standards (Pruitt, 2014). These standards 

emphasize that inquiry and knowledge are equally important in learning scientific topics. 

The two specific core standards which apply to this course are: 

 

E1: The composition of the Earth and its atmosphere and the natural and human 

processes occurring with them shape the Earth’s surface and its climate. 

 

E2: The Earth and our solar system are a very small part of one of many galaxies 

within the Universe. 

 

Within the Arizona Earth & Space Science core standard E1, there are four specific sub-

standards detailed within the full state standards, all of which are covered within this class. 

These are detailed in Table 6 below.  

Table 6: High School Sub-Standards Within the E1 Core Idea of the Arizona State 

Standards. Adapted from (Arizona Science Standards, 2018, p. 80). 

Arizona State 

Sub-Standard 

Description 

HS.E1U1.11 The foundation for Earth’s global climate system is the electromagnetic radiation 

from the Sun as well as its reflection, absorption, storage, and redistribution among 

the atmosphere, ocean, and land systems and this energy’s reradiation into space. 

HS.E1U1.12 Earth’s systems, being dynamic and interacting, cause feedback effects that can 

increase or decrease the original changes. 

HS.E1U1.13 Continental rocks, which can be older than 4 billion years, are generally much older 

than rocks on the ocean floor, which are less than 200 million years old. 

HS.E1U1.14 Global climate models are often used to understand the process of climate change 

because these changes are complex and can occur slowly over Earth's history. 

Though the magnitudes of human impacts are greater than they have ever been, so 

too are human abilities to model, predict, and manage current and future impacts. 
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Place-Based Curriculum 

We used the geology of Arizona, particularly the central Arizona basin and range region 

where the school is located, throughout the curriculum to incorporate elements of place-

based learning (Semken et al., 2017; G. A. Smith, 2002), even within a prison environment. 

The integration of Arizona-specific volcanoes, rocks, climate change risks, and heat 

mitigation solutions allowed for students to meaningfully understand and relate to the 

material in a way that fits with their personal experiences, beliefs, and approach learning 

in a way that puts them at the center (Butler & Sinclair, 2020; Sheerman, 2020). 

Units 

The first three weeks of the curriculum consist of introductory geology topics, specifically 

the water cycle, carbon cycle, planetary formation, and the rock cycle. This geology unit 

was designed to provide a foundation for the students in terms of geological topics, so that 

later units can build upon this basic knowledge.  

 

The second unit, interacting systems, focuses on the various interactions found in earth 

science between seemingly distinct geologic topics. We dealt specifically on geology-

atmosphere and geology-biology interactions, allowing students to learn how abiotic 

factors interact and also how living systems are interconnected with geological processes. 

We used volcanoes as a specific example of geology-atmosphere interactions, as they are 

common to the basin-and-range geography of central Arizona. The students learned about 

the various types of volcanoes, from the shield volcanoes in Arizona to the stratovolcanoes 

in the Pacific Ring of Fire, as well as how the ash clouds lead to micro- and macro-climate 

perturbations. 
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As the final part of this unit, we introduced geology-biology interactions by discussing the 

origin of life on Earth, as well as predicting what extraterrestrial life would look like given 

different geologic restrictions. This activity, done over two class periods, allowed students 

to bring their own experiences into the classroom (reflexivity) and  we focused on how 

these extraterrestrial life models can relate to various ecosystems and their own learning 

experiences (metacognition). 

 

The final unit we designed was focused on climate change. This unit was the culmination 

of the previous two, as it utilized both geology knowledge and the interactions between 

different systems, with a focus on Arizona-specific climate change risks and solutions. The 

place-based curriculum gave students the opportunity to personally relate to the material, 

as well as to reflect on how climate change affects Arizona communities and why it is an 

important subject to study for the state’s future (reflexivity). In this section, we also enabled 

students to create space to discuss their personal viewpoints on climate change, and how 

they think they have been and will be affected by climate change (dialogic conversation). 

One specific example from the classroom which highlights the impact of using sTc within 

the classroom was a discussion on drought in Arizona. This discussion occurred in Week 

9, near the end of the main curriculum. As a part of the conversation, I used the example 

of how water distribution laws applied to the Colorado River have caused dramatic changes 

to water flow within Arizona, specifically how the Colorado now flows sporadically 

through Yuma, the southernmost US city on the river. Unbeknownst to me, two of the 
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students were originally from Yuma, and immediately reflected out loud on their 

experience of growing up with the river flowing constantly, then drying up as they got 

older. As the discussion leader, I gave these students space to describe their experience, 

and other students asked questions of them, allowing them to lead the discussion. This 

sharing of these personal experiences with the topic at hand showed the trust the students 

had in the classroom, as they were comfortable sharing their lived experience, but also 

demonstrated the educational usefulness of incorporating sTc components into lessons. 

 

The materials used on a day-to-day basis, such as activity guides, assignments, and slides, 

can be found here: 

https://drive.google.com/drive/folders/1l7OPN2fpyd3XZCNTYRFdKcmoZcEhF8Kk?us

p=sharing  

 

Arizona State University Volunteer Coordination 

In addition to teaching with Jordan Rembold, I wanted to ensure the students enrolled in 

this course learn from a diverse range of scientists and expertise. To that end, I asked 

various graduate students, undergraduate students, and professors in the School of Earth 

and Space Exploration to co-present classes. All graduate students went through a 

background check performed by the ADCRR in order to be approved to teach. 

Additionally, I worked individually with each student to create a lesson plan which 

followed the sTc framework, as well as the AZ state standards and the specific earth science 

curriculum which the class follows. 

 

https://drive.google.com/drive/folders/1l7OPN2fpyd3XZCNTYRFdKcmoZcEhF8Kk?usp=sharing
https://drive.google.com/drive/folders/1l7OPN2fpyd3XZCNTYRFdKcmoZcEhF8Kk?usp=sharing
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In total, seven ASU volunteers assisted with teaching throughout the course. One faculty 

member, Dr. Darryl Reano, assisted with the survey implementation, while five graduate 

students and one undergraduate student volunteered their expertise to plan and teach a 

class.  

Table 7: List of Units and Weeks When Each Unit Was Taught: Geology (Blue), 

Interacting Systems (Green), Climate Change (Orange), and the Final Project (Purple). 

 

Week Topic 

01: Jan 3-7 (Geology Unit) Cycles (Water & Carbon) 

02: Jan 10-14 (Geology) Planetary Formation 

03: Jan 17-21 (Geology) Rock Cycle 

04: Jan 24-28 (Interacting Systems Unit) Geologic Energy Systems & Hydrosphere 

05: Jan 31 - Feb 4 (Interacting Systems) Geologic Energy Systems & Hydrosphere 

06: Feb 7-11 (Interacting Systems) Atmosphere 

07: Feb 14-18 (Interacting Systems) Interactions Between Geologic & Living Systems 

08: Feb 21-25 (Climate Change Unit) Geologic Climate 

09: Feb 28 - Mar 4 (Climate Change) Arizona Climate Change 

10: Mar 7-11 (Climate Change) Natural Resources 

11: Mar 14-18 (Climate Change) Hazard Risks & Future Climate Change 

12: Mar 21-25 Final Project 

 

Final Project 

The students were required to complete a final project which was the culmination of the 

class. Students had to choose different planetary characteristics (Table 8), predict the 

behavior of different systems, including life, on their personalized planet (Table 9), and 

construct their planet using various materials which were approved by ADCRR for use 

within the classroom. The students also had to write a final report describing the various 
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components of their planet, as well as the various inhabitants of their planet and how they 

interact with other inhabitants and the distinct geologic processes of their individual 

planets. The students were evaluated on their work developing their ideas, building their 

planets, and on the final report. This project replaced a multiple-choice exam as the 

summative evaluation metric for the end of the class. 

 

This project was built using the sTc framework such that the authentic activity, reflexivity, 

and dialogic conversation components were incorporated. The student’s experience of both 

imagining and building a planet based on how they envision it to be allowed their own 

personal experiences and beliefs to be incorporated into the project (authentic activity & 

reflexivity). Dialogic conversation, particularly the trust between students and teacher that 

was built up throughout the previous 11 weeks of the course, was included through how 

the students described the various components of their planets and the interactions between 

different lifeforms. These descriptions were often spontaneous while students were 

creating their project, ranging from calling across the room to the instructors to 

conversations between students as they moved around the classroom. Our decision to 

replace a multiple-choice exam with a writing-based project, as well as giving the students 

freedom to talk about their planets to each other, was based on the trust established between 

the students and teachers. 

 

One example of a final project and report is shown in Figure 41. This student built a 0.5 

Earth gravity planet with minimal water, some tectonic activity, and a thin atmosphere. 
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Biological life is found around small oases scattered around the planet, while there is a 

large mountain range around the equator, where the only tectonic activity is found.  

Table 8: Planetary Constraints Available for Students to Build Their Planet. 

From the following possible constraints, choose (circle) at least one (1) from each row. 

The circled choices will inform your model planet and the life you create on it. 

Gravity / Size 

 

Circle one 

option 

¼ the 
gravity & 

size of 
Earth 

Roughly Earth-
sized 

4x the gravity 
& size of 

Earth 

10x the 
gravity & 

size of 
Earth 

Other 
(spec

ify 
belo
w) 

Tectonic 

Activity 

 

Circle one 

option 

 

No tectonic 
activity 

Some tectonic 

activity 
(occasional 

volcanoes & 
earthquakes) 

Constant 

tectonic 
activity 

(constant 
volcanoes & 
earthquakes) 

  

Other 
(spec

ify 
belo
w) 

Water 

 

Circle one 

option 

Minimal 
water 
(desert 

planet) 

Some water 
(lakes present) 

Majority 
water 

(oceans, 

lakes, rivers) 

All water Other 
(spec

ify 

belo
w) 

Gasses 

Circle 2 or 

more 

Carbon 

Dioxide 

Water (must 

align with water 
row) 

Nitrogen Ammonia Ozon

e 

Gasses 

(continued) 

Circle 2 or 

more 

Oxygen Sulfur Other (specify 
below) 
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Table 9: Planning Worksheet Where Students Predict Future Outcomes of Their Planet’s 
Geosphere, Hydrosphere, Atmosphere, Biosphere, and Climate. Based on Their 

Individual Choices in Table 8. 

Use the spaces below to plan the construction and various processes of your planet. The 
answers are entirely up to you, as long as they are consistent with your planet. 

Geosphere: Describe in three (3) phrases 
the general geology of your planet (for 

example, “volcanic”, “one continent”, 
“full of craters”) 

 

___________________________________ 

 

 

 

 

___________________________________ 

 

Geosphere: What colors will the surface 
of your planet be? On the circle below, 

color what a section of your planet’s 
surface. 

 

Hydrosphere: How will the living 
organisms on your planet use & store 
water? 

 
 

___________________________________ 

 

 

___________________________________ 

Hydrosphere: Is there a water cycle on 
your planet? Briefly how this is different / 
similar to the water cycle on Earth. 

 

 

__________________________________ 

 

 

__________________________________ 

 

Atmosphere: Would the gasses in your 

atmosphere be visible from space? Draw 
what you think your planet’s atmosphere 
would look like. 

 

 

Atmosphere: How would the gasses in 

your planet affect life? (For example, 
more oxygen means larger organisms) 
 

__________________________________ 

 

 

__________________________________ 

 

 

__________________________________ 
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Biosphere: Write two (2) characteristics of 
life on your planet. Be consistent with the 

geosphere, hydrosphere, and atmosphere! 
 

___________________________________ 

 

 

___________________________________ 

 

 

Biosphere: Draw what a possible 
organism on your planet could look like 

Climate: What is the current climate of 
your planet (for example, write if there are 
seasons, or if it stays one temperature) 

 

 

___________________________________ 

 

 

___________________________________ 

 

Climate: What would the climate look like 
in 1000 years? Will it be the same or 
different? 

 
 

__________________________________ 

 

 

__________________________________ 
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Figure 41: Example final project planet - this desert planet includes liquid water and a 

single mountain range lining the equator. 

 

Results 

Survey 

Due to movement within the prison, only five students were able to complete both the pre- 

and post-class surveys. The results for these five students are shown in percentages, which 

reflect the answers which the students’ responses agreed with expert scientist views. The 

expert views were taken from the validated CLASS survey results from biology and 

chemistry, as the questions can be generally applied to earth science. This demonstrated 

how much their views align with those of scientists, and therefore is a measure of science 

identity (W. K. Adams et al., 2008). As a whole, the agreement with scientist views 

increased by 7% throughout the course. This was entirely due to a large increase in Student 
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4, while the other students’ science identity stayed the same or dropped (Figure 42). This 

is reflective of prior results of the CLASS survey in undergraduate courses (W. K. Adams 

et al., 2008) and similar other studies across STEM classes (Teichmann et al., 2022). Some 

proposed explanations for this trend in other studies are gender-based, where male-

identifying students are more likely to drive observed decreases (Teichmann et al., 2022), 

or the desire for students to provide answers that the teachers “wants” in pre-tests, which 

fades throughout the class (W. Adams et al., 2006). When broken down by question 

classification, though, there were some more specific trends., Student answers from the 

“problem solving - confidence” showed that on average, the student’s agreement with 

expert answers decreased by 33.3%. Students 2 and 5 had the same initial and final percent 

agreement (66.6% and 33.3%, respectively) (Figure 43). (C) Answers from the “problem 

solving - general” category demonstrated that average agreement increased by 16.7% 

(Figure 44), while answers from the “real world connections” category increased by 6.67% 

on average (Figure 45). 

 

From a post-class interview with Jordan Rembold, the students initially had a “big 

misconception” about science because “it didn’t apply to them because of how they grew 

up, or where they are at now.” From this course, she observed that the students “are more 

open to the idea of learning and working towards a solution, not just looking at a problem 

and not knowing where to go”, and “approach problems differently now for sure, because 

now they can see that there is not always one right answer, there can be many or there can 

be no answer at this moment.” The trend towards disagreement with experts shown in the 
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majority of these students may not be representative of learning outcomes in this particular 

study. 

 

Figure 42: Overall change in Earth Science identity of the five students who completed 

both pre- and post-class CLASS surveys. 
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Figure 43: Student answers and changes from the “problem solving - confidence” 

questions. 

 

Figure 44: Student answers and changes from the “problem solving - general” questions. 
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Figure 45: Student answers and changes from the “real-world connections” questions. 

 

Thematic Analysis 

The qualitative codes include geologic content knowledge that students learned throughout 

the course, as well as further extensions of STEM knowledge into different subjects. Three 

themes that we observed for different STEM subject areas included climate change, which 

was a focus of the last third of the course, as well as natural (Darwinian) evolution and 

technological adaptations. We define natural evolution as changes in an organism which 

solve a problem brought about by other organisms, while technological adaptation is using 

some form of technology to solve a problem, such as through using tools to access water. 

We also included the dialogic conversation component of sTc, which was demonstrated 

through joking and informal language within reports, which highlighted the comfort and 

trust students felt in the class. We also observed spiritual elements within some of the planet 

reports, as well as aggressive behaviors of organisms within the student’s planets.  (Table 

10).  
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Table 10: Qualitative Analysis Codes. 

Codes and Subcodes Definition 

Geologic Content 

Knowledge 

 

Mention of any geologic features (e.g., mountains, 
volcanoes, and earthquakes), earth materials (e.g., minerals, 

elements), erosional agents (e.g., ice, water, wind), and 
other abiotic agents related to earth science. 

Other STEM disciplinary knowledge (e.g., biology, geoconnections to other 

topics, etc. )  

Climate Change 
(included within other 
STEM) 

Identification of a changing climate - either cooling or 
warming - by mentioning relationships between components 
of the atmosphere, hydrosphere, biosphere, and geosphere. 

Natural Evolution 

(included within other 
STEM) 

Features or traits in organisms which have evolved 

“naturally” or through technology to adapt to specific 
environments and/or have influenced the behavior of 

organisms (both from their own species and other species). 

Technology-supported 
adaptations (included 
within other STEM) 

Technological progress to solve a problem (e.g., converting 
sweat to water on a dry planet). 

Dialogic Conversation 

Informal language and 
joking / profanity 
(included within 

Dialogic Conversation) 

Occasions of language that does not traditionally appear in 
academic writing (e.g., jokes) and profanity 

Spirituality (included 
within Dialogic 

Conversation) 

Identifying elements of the planet which include sacred or 
spiritual elements (e.g., sacred trees). 

Strength / Aggression 
(included within 
Dialogic Conversation) 

Organisms have traits or behaviors that reflect fighting and 
aggressive tendencies, or geologic features are potentially 
named after strength/aggression-related topics (e.g., “Roid” 

as a planet name, only first mention needs to be coded). 
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The geologic content knowledge code is where students demonstrated knowledge of the 

geologic content that was discussed in class. The course broadly covered geological topics, 

from geologic features such as mountains and volcanoes to how abiotic materials like 

minerals are formed to how different erosional agents (e.g., water) interact with these 

features and materials. The students referenced many different forms of geology in their 

reports, such as:  

 

Planet Roid’s plate tectonics shift occasionally, forming 

mountains, volcanoes, and causing roid-quakes. 
Consequently, it destroys water-contained rocks and trees. 

The water-contained rocks destroyed create a small lake. 
The heat then evaporates the lake, which gives the 
inhabitants of Planet Roid a short amount of time to 

gather/consume water from the lake. Planet Roid is 
enormous with many craters. It also has many mountains and 

dust. 
[Essay 03] 

 

The dust particles floating around Planet Roid mix with the 
H2O and form mud, H2O exposed to heat will exporated a 

short amount of time, which is why water is usually stored 
in rocks or trees. 

[Essay 03] 

 
Vulcans are a breed of gigantic fire birds that live in 

volcanoes, they have an armored layer made of obsidian. 
[Essay 04] 

 

once every year earthquak’s come and shaft the plant so 
sometime’s different part’s of the plants spreads and creats 

new forms in the plant 
[Essay 05] 

 

While the course broadly covered earth science, some non-earth science topics frequently 

emerged within their reports. The first is climate change, which was an extensive part of 
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the course and focused on applications of different earth science topics to the current 

climate change crisis. The students referenced how the climate of their planets can change 

quickly, as well as how humanity and pollution is affecting Earth [brackets added by the 

authors for clarity]: 

  

About 65% of planet CZAR was frozen many years ago, and 
yes just like the earthlings say it was indeed an ice age. 

However for some reason, a reason no one quite figure out 
the ice melted and the water level [dropped]. 

[Essay 01] 

 
The atmosphere on Planet X is very clean because there are 

no humans on this planet and humans tend to harm their 

planet and atmosphere just take a look at earth. 
[Essay 04] 

 

The first quote highlights how the climate warmed for an unknown reason, causing this 

planet to transition from an ice age to a warmer climate - even if the water levels dropped, 

which does not correlate with melting ice. The second quote is more direct as a criticism 

of anthropogenic climate change, where this student specifically blames humans for 

harming the Earth and uses their planet as a comparison. Their planet has no humans, and 

therefore is not affected by the pollution and large-scale destruction caused by them.  

 

The topic of biological evolution also appeared throughout the reports. This was not a 

formal topic in class, but it was mentioned periodically throughout discussions in order to 

understand how living systems emerged and adapted to various geological events. The code 

definition focused on where students used evolution to solve problems or describe how 

their organisms interacted with other types of biological creatures: 
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Around wintertime is when temperatures tend to drop 
drastically from 15 degrees to below zero this causes 
Vulcans to hibernate in their volcanoes because they are very 

sensitive to the cold weather. This is also the time that the 

Krotocanoes hunt for food because they don’t have to 

worry about the Vulcans hunting them. 
[Essay 04] 

 

sometime’s different part’s of the plants spreads and 
[creates] new forms in the plant but over time [trees and 

mountains] start to disinagrate due to the cold weather that 
go under 115- degrees [Celsius] so when earthquaks come 

there all ready-frozen so when it hit they just fall apart but 
they leave seed that grow and rebuild the nature. 

[Essay 05] 

 

Both quotes highlight evolution through the predator-prey relationship between the 

Vulcans and Krotocanoes and the life cycle of plants, but also make geologic concepts an 

integral part of how these organisms evolve. In both, winter plays a vital role - through 

removing a predator from the ecosystem and allowing a prey species to search for food in 

turn in the first quote, and second through providing the means for seeding new ground in 

the second. The seasonal aspect of both planets demonstrates that the students were able 

to integrate weather cycles and atmospheric concepts into evolution, a topic that was not 

specifically taught as part of this class. 

 

Additionally, the organisms in these reports solved problems through technological 

adaptations. This can be thought of as an engineering theme which explores how students 

approached and solved a problem that their organisms were facing using some form of 
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technology instead of using biological evolution to adapt their organisms to fit their world. 

Some examples of these problems and their technology-based solutions are: 

 

Unexpected bacteria in the swamps and ponds could make 

you very sick if you don’t sterilize water. 

[Essay 01] 
 

If we go and [visit] my planet we will have to bring [our] 
own oxygen. 

[Essay 02] 
 

The humans, however, have enhanced technology that can 

convert the body’s sweat into H2O. Humans of Planet 
Roid also extract water from mud. 

[Essay 03] 
 

All three of these quotes solved problems that the students imagined, then created 

solutions for. In the first example, bacteria in the water needs to be sterilized in order to 

be clean, showing a control of fire and technology in order to solve the problem of 

finding clean water. The second shows a clear link to atmospheric science, where the 

student recognizes that their planet does not have oxygen in the atmosphere and takes 

care to mention that if humans visit, we need to solve the problem of breathing. Their 

solution of bringing oxygen assumes some level of technology to 1) transport breathable 

oxygen, and 2) a mechanism for breathing oxygen. The third quote, which comes from a 

planet with a hot, dry environment, shows how humans have adapted to live in this harsh 

geology through recycling and extracting water. 

  

We also found three themes relating to the dialogic conversation element of sTc. While the 

questions on the reports were primarily on scientific knowledge and the interactions 
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between organisms, the students were able to show their trust in us as teachers and bring 

in their own real-world experiences and thoughts into the project through 1) informal 

language, joking, and profanity, 2) spirituality, and 3) strength & aggression.  

 

The informal language, joking, and profanity involves students writing in language that 

normally does not fit within a traditional science classroom. We did not police this informal 

language and profanity within the classroom because it allowed the students to more freely 

express themselves and their thoughts during discussions and written assignments. This 

highlights how this classroom diverges from a traditional science classroom, where this 

kind of language would likely be heavily censored.  

 
The swamps are something else though. They say a world 

without crime is prabably a boring blan world. Well if you 
disagree then never cross the swamp lands, the hippies are 

like best friends with the damn gators it’s insane.  
[Essay 01] 

 

However I need to be very specific there are no misqueetos 

on planet CZAR there is no use for them. 

 [Essay 01]  
 

You name it, we got it, but let me remind Planet CZAR 

has zero, natha, zilch, no misqueetoes none what so ever. 
Planet CZAR in earth terms is one big fat country. You don’t 

need a “pass port” to travel Planet CZAR. Come explore 
Planet CZAR you never know you may never leave. 

 [Essay 01] 

 

The first quote highlights a silly anecdote which is not related to the swamp ecosystem of 

this planet. Rather, it deviates from the expected description of a swamp and instead gives 

a description of how well the “hippies” and gators get along, along with some profanity 
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associated with the gators. The second and third quotes are linked by the author’s likely 

hatred of mosquitos, as this student used a running joke about ensuring their planet has no 

mosquitos throughout their essay (the second quote is found near the beginning, while the 

third quote is the final paragraph). The infomercial-style third quote also is a humorous 

way to end the essay. 

 

Some reports also brought spiritual aspects in as well. We did not explicitly mention 

religion as part of the course, but it was an integral part of how some of the student’s planets 

functioned, such as: 

 

Across this jungle terrain in the heart of the land lies the 
sacred tree Balsion - (Bal-si-on). The Balsion is what gives 
life to Planet X from the creatures to the plants this tree is 

protected by a force that won’t allow any harm to it. The 

tree also heals plate techtonics so that this massive 

continent won’t separate into a bunch of smaller 

continents and of course this would happen because volcano 
eruptions tend to cause earthquakes which cause plate 

techtonic shifts. 
[Essay 02] 

 
So in zooland the hydrosphere in the [planet contains] water 
that [is] able to cutain healin and gives you energy. 

[Essay 04] 

 

The tree in the first quote heals the planet through interacting with its geology. The sacred 

Balsion tree not only works to heal the planet and prevent catastrophic earthquakes and 

volcanoes, but also demonstrates how this student has a deep understanding of geology 

where plate tectonics lead to continental drift. This knowledge is integrated into their planet 

and explained through a spiritual lens. The second quote also contains healing elements, 
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this time through the spiritual idea of healing water. This could show the necessity of water 

in biology and life on Earth but is not directly linked to biology in the same way the first 

quote is directly linked to geology. 

 

Finally, many of the student’s reports contained instances of strength and aggression  

shown through in various ways, such as through violence between different organisms, 

between humans, and within disease: 

 

It’s too dangerous to catch fish in the king shark’s territory 

because the king shark is the peace keeper of the ocean 
eating what doesn’t belong. 

[Essay 01] 

 
The spideroids and cockaroids tend to act aggressively when 

feeling threatened. Their only method of survival is 

violence. 

[Essay 03] 

 
The cockaroids and spideroids hate the humans because 

they experiment on the cockaroids and spideroids. Also 

because they invaded their home. 

[Essay 03] 

 
zefora is a type of [virus] that is air born so when creates get 

the [virus] they go savage but after a [certain] time it goes 
away. 

[Essay 05] 

 

The appearance of these quotes may be a result of the power dynamics within the prison 

environment, where these students are at the lowest rung of the power structure. Their 

teachers, guards, volunteers and other ADCRR employees all are part of a structure which 

removes power from the students. The aggressive tendencies found within the organisms 
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and humans within these reports may be a way to push against this power dynamic and use 

imaginary characters to act in ways that they cannot. This school project is one of the few 

places where these students have freedom and power to create and manipulate their world, 

so this is a natural place for the students to express themselves within the bounds of what 

they are allowed to do.  

 

Additionally, the final quote may reflect the nature of living through COVID-19 within 

such a controlled environment and power structure. This class took place in Spring 2022, 

when the first Omicron variant wave was beginning to subside in Arizona. Social 

distancing was not possible in the prison, and the real health concerns of COVID-19 and 

the impact on the students cannot be ignored. 
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Limitations 

The prison environment was not without its challenges. Every activity which included 

outside materials needed to be fully vetted and approved by the ADCRR, and all materials 

were required to be counted before and after an activity. Additionally, the students were 

permitted to only have pencil and paper - while we could show videos on TV screens to 

the entire class, individualized technology was not permitted and could not be used as part 

of this class.  

 

Outside of classroom materials, the class was subject to facility rules and lockdowns. This 

was not common, but two classes over the span of the quarter were pushed back due to 

lockdowns. The interruptions due to the prison environment necessitated day-to-day 

changes to the schedule. Overall, we were able to complete the entire curriculum and 

complete the course, but some weeks were interrupted due to factors outside of our control. 

These factors also extended to the students. While over 20 students were impacted as part 

of this class, only five were present from the beginning of the 12-week class to the end. 

This is due to a variety of reasons, such as students turning 18 and moving to adult facilities, 

students being released, or students entering the prison in the middle of the course. This 

required that lessons include background material that had been covered previously or rely 

solely on critical thinking without much required knowledge - with students coming and 

going throughout the course, all with different academic backgrounds, it was nearly 

impossible to assume background knowledge, even of course activities done weeks 

previously. 
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Discussion 

This work presents an established structure for teaching Earth Science in a unique 

environment and provides resources so that other educators working in prison 

environments or elsewhere can incorporate sTc into future lessons and curricula. The 

students included sTc frameworks and earth-science specific topics into their reports, 

highlighting how the curriculum developed here was able to influence the students’ 

learning and thinking about earth science. 

 

The quantitative survey data does not show the same influence, as four of the five students 

surveyed did not show an increase in science identity. However, my personal experience 

in the classroom was that throughout the 12-week class, the students became more curious, 

engaged with myself and guest speakers more, and were able to more closely related earth 

science to their personal experiences. From an interview with Jordan Rembold, the 

student’s education has “opened their eyes to a new world that they would have never been 

exposed to in the outside world at a public school.” One specific activity that seemed to 

stick with the students was touching and interacting with different types of rocks - some 

students “say that looking at the different rocks was a new experience that they had never 

had and never realized how interesting rocks and the Earth can be.” This activity, and the 

lessons throughout the curricula, were designed to build that curiosity and personal 

connection, and from our observations in the classroom, these lessons were able to achieve 

that goal. 
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Current and future work on this project involves expanding it to different subjects and 

continuing the partnership between ASU and ADCRR. While it was initially set up and 

launched as a self-contained 12-week science course, this class has many themes and topics 

that can be expanded in other subjects, such as including culturally specific stories of 

historical geologic events in English class or creating topological maps as part of History. 

Also, the students consistently requested additional graduate student volunteer instructors 

throughout the course. Future planning will involve more graduate students and train them 

to build their own lessons and modules within the sTc framework, so that they can 

incorporate sTc over multiple lessons and allow the juvenile students to have a more in-

depth understanding of the research that they do. 
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5: CONCLUDING DISCUSSION 

To definitively find life beyond our Earth, astrobiology must undergo a fundamental 

paradigm shift. It is imperative that researchers reach a consensus on what life can look 

like elsewhere. In my dissertation, I propose that assembly theory represents this crucial 

paradigm shift, capable of enabling the discovery of life within the professional lifetimes 

of today's scientists, provided that life indeed exists elsewhere in our Solar System. 

Moreover, it is important to note that assembly theory holds value beyond its potential in 

discovering life. This theory sheds light on the factors driving the complexification of 

societies, which could include the intriguing possibility of understanding the societal 

structures of extraterrestrial civilizations. By applying assembly theory, researchers could 

unravel the forces that shape the evolution of societies and foster a deeper understanding 

of our place in the universe.  

 

Additionally, the utility of assembly theory extends beyond the realm of scientific 

discovery. It can be employed as an invaluable tool for educators to teach about the field 

of astrobiology and its connection to society. By incorporating assembly theory into sTc-

driven curricula, instructors can effectively engage students in an inclusive, culturally 

sensitive manner and cultivate a broader appreciation for the implications of astrobiology 

beyond the boundaries of traditional scientific disciplines. 

 

The second chapter in my dissertation focuses on the application of assembly theory to 

space missions. Most space missions do not focus on directly discovering – for example, 
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the upcoming Europa Clipper mission is not classified as a life detection mission. Rather, 

the mission objectives are focused on assessing the potential habitability of Europa. This 

is consistent across nearly all recent space missions, with the exception of the Viking rover 

missions in the 1970s, which were categorized as life detection missions, but ultimately 

did not discover life. Assembly theory, by contrast, is explicitly designed to feature as the 

core component of future life detection missions, providing that mass spectrometry 

technology is sufficiently precise to distinguish individual molecules. The engineering 

goals specified within my dissertation provides NASA with specific, tangible 

measurements that will definitively detect molecules created as a part of a living system. 

 

The second chapter of my dissertation delves into the practical application of assembly 

theory in the context of space missions. It is noteworthy that the primary objectives of most 

space missions do not directly revolve around the search for extraterrestrial life (Neveu et 

al., 2018). A case in point is the forthcoming Europa Clipper mission, which is not 

classified as a life detection mission, but instead aims to only assess the potential 

habitability of Jupiter's moon, Europa (Pappalardo et al., 2015). This mission's focus on 

habitability assessment aligns with the overarching trend observed in recent space 

missions. Aside from the Viking rover missions in the 1970s, which were explicitly 

categorized as life detection missions, most contemporary missions have not pursued direct 

life discovery  (Dick, 2006). It is worth noting that despite the efforts of the Viking 

missions, they did not yield conclusive evidence of life on Mars. Considering the de-

emphasis on life detection missions, assembly theory is designed explicitly to serve as the 
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core framework for future missions which emphatically focus on life detection, provided 

that the advances in mass spectrometry technology recommended by my dissertation are 

made.  

 

Beyond providing NASA with specific engineering goals, the mass spectrometer 

recommendations in my dissertation are useful for life detection because it will give a 

binary yes/no answer to if there is life elsewhere on the timeline of current scientific 

careers. Current means of searching for life elsewhere cannot give a binary answer, as 

highlighted by the continued detection and arguments surround phosphine on Venus 

highlight. Additionally, some theories regarding intelligent life cannot be resolved within 

the lifetime of current scientists. The Search for Extraterrestrial Intelligence (SETI) and 

similar organizations look for signs of intelligent life that humanity could potentially 

communicate with. However, given the vastness of space and the limits of today’s 

communication technology, as well as the lack of evidence of actively communicating 

civilizations, it is unlikely that any such effort will result in the discover of life elsewhere. 

Simon Conway Morris backs up this idea that intelligent life is difficult to find in his book 

“Life’s Solution: Inevitable Humans in a Lonely Universe”, where he argues that life is 

likely common, but intelligent life that humanity can interact with is rare, if present at all  

(Morris, 2003). An alternate hypothesis is the Dark Forest Hypothesis, which is featured 

prominently in Cixin Liu’s The Dark Forest trilogy (C. Liu, 2015). This hypothesis uses 

game theory to argue that communicating on a galactic level is ultimately an antagonistic 

and fatal process. Regardless of the various search methods and hypotheses, assembly 
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theory using mass spectrometers is nearly ready to be used in life detection missions, giving 

scientists a testable means of answering the question of if there is life elsewhere in the solar 

system. 

 

The third chapter in my dissertation is more theorical in nature, as it discovers patterns of 

complexity within the extremely wide space of chemistry within patents. The study of 

patent chemistry draws from many different fields of study. These include experimental 

chemistry and medical research, where public and private funding is available to develop 

new compounds, to sociology, as patents are discovered and registered in a competitive, 

social environment. Finding overarching, meaningful patterns within such a broad field of 

study is difficult, but through multiple avenues of research – network science & assembly 

theory – I found that the organization of individual agents within the invention of patents 

has a strong effect on the complexity of the compounds found within them. As a whole, 

the molecular assembly index of chemical compounds used within patents increases over 

time. However, different agents operate at different levels of inventions. Individual patent 

authors work usually work in small teams, either as part of research groups in academia or 

within dedicated companies. These authors have very little effect on the increase of patents 

– that is, on average individual authors do not invent or work with increasingly more 

complex compounds over the course of their careers. This intuitively makes sense, as 

individual scientists may have a defined skill set when it comes to chemical reactions and 

molecules and not branch out from that skill set to discover different, more complex, 

molecules. 
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Assignees and social classifications, in contrast, have more of an effect on complexity. On 

average, the organization responsible for patents (the assignee) sees an increase in MA of 

compounds over time within its patents. Potentially, assignees can pivot and respond to 

market forces, funding sources, and other societal pressures. These societal pressures may 

be responsible for driving increases in complexity This increase is seen on an even higher 

level, where compounds within a particular patent classification provided by the USPTO 

increase over time at an even greater rate than assignees. Since classifications demonstrate 

a higher rate of increase, it would be interesting to explore how interest or funding within 

different classifications – measured through grants, investment, or stock market growth  - 

affects complexification of compounds. This hypothesis is not covered within this 

dissertation, but I believe this area of research could be fruitful in predicting future 

increases in complexity in chemistry.  

 

There is also an astrobiological bent to increasing complexity in patent chemistry. In order 

to communicate elsewhere in the universe, a civilization most likely needs a high level of 

technology. This could involve metalworking, radio waves, and so on – essentially, this 

civilization will need to be industrialized in order to communicate outside its home solar 

system. Given the potential universality of assembly theory as a biosignature (Marshall et 

al., 2021), as well as the commonalities shared among cities and industrial processes 

(Bettencourt et al., 2007; West, 2018), it is possible that extraterrestrial societies would 

exhibit the same complexification patterns demonstrated here.  
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The educational research presented in this dissertation provides a wrapper for the 

astrobiological research I completed. Education is essential for science, as without it, there 

is no shared understanding and appreciation for scientific discoveries. This is particularly 

true in the field of astrobiology, as the impacts of discovering alien life are ripe for 

misinterpretation. It is easy to imagine a scenario where life is definitively discovered 

elsewhere, but the hard science behind its discovery is incomprehensible to the average 

non-scientist. In this scenario, the news of such a discovery is filtered  through various 

science communicators, reporters, and likely other non-scientists on social media channels. 

The critical thinking and understanding required to parse this wide variety of information 

(and potential misinformation) comes from a holistic and engaging education in science, 

which is where the application of sociotransformative constructivism to astrobiology is 

useful. My dissertation gives a resource that demonstrates that sTc can be effectively 

applied to astrobiology through providing educators with an example of how to use sTc 

within a science classroom, including lessons on astrobiology. 

 

Taken together, my research shown here demonstrates the use of assembly theory to both 

future life detection missions and the complexification of society, but also the importance 

of education in scientific understanding. 
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