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ABSTRACT

The integration of Distributed Energy Resources (DER), including wind energy and photovoltaic

(PV) panels, into power systems, increases the potential for events that could lead to outages and

cascading failures. This risk is heightened by the limited dynamic information in energy grid datasets,

primarily due to sparse Phasor Measurement Units (PMUs) placement. This data quality issue

underscores the need for effective methodologies to manage these challenges.

One significant challenge is the data gaps in low-resolution (LR) data from RTU and smart

meters, hindering robust machine learning (ML) applications. To address this, a systematic approach

involves preparing data effectively and designing efficient event detection methods, utilizing both

intrinsic physics and extrinsic correlations from power systems.

The process begins by interpolating LR data using high-resolution (HR) data, aiming to create

virtual PMUs for improved grid management. Current interpolation methods often overlook extrinsic

spatial-temporal correlations and intrinsic governing equations like Ordinary Differential Equations

(ODEs) or Differential Algebraic Equations (DAEs). Physics-Informed Neural Networks (PINNs) are

used for this purpose, though they face challenges with limited LR samples. The solution involves

exploring the embedding space governed by ODEs/DAEs, generating extrinsic correlations for initial

LR data imputation, and enforcing intrinsic physical constraints for refinement.

After data preparation, event data dimensions such as spatial, temporal, and measurement

categories are recovered in a tensor. To prevent overfitting, common in traditional ML methods,

tensor decomposition is used. This technique merges intrinsic and physical information across

dimensions, yielding informative and compact feature vectors for efficient feature extraction and

learning in event detection.

Lastly, in grids with insufficient data, knowledge transfer from grids with similar event patterns is a

viable solution. This involves optimizing projected and transferred vectors from tensor decomposition

to maximize common knowledge utilization across grids. This strategy identifies common features,

enhancing the robustness and efficiency of ML event detection models, even in scenarios with limited

event data.
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Chapter 1

GENERAL INTRODUCTION

Modern physical systems are continuously expanding to serve society more effectively. For example,

the Internet of Everything (IoE) is integrating devices into an intelligent web at an unparalleled

rate. Also, with more Distributed Energy Resources (DER) components added to the system.

This increase poses a heightened risk of event surges, outages, and cascading failures unless there

are robust methodologies and accurate system knowledge in place. Practical challenges, such as

untimely system updates, limited sensor coverage, sensor resolution differences, and bad sensor

data, often impede achieving comprehensive situational awareness. Additionally, as power systems

pivot towards uncertain energy sources like Photovoltaic (PV) and wind power and grapple with

unpredictable elements like Electric Vehicle (EV) charging, the demand for advanced tools, like

Phasor Measurement Units (PMUs), grows. Yet, existing machine learning (ML) techniques often

struggle with the intricacies of these data streams. Given the ever-changing nature of power systems,

it’s imperative to develop frameworks that ensure high situation awareness. This framework should

incorporate both intrinsic and extrinsic data interpolation and feature extraction, enabling efficient

tensor learning event detection and leveraging the full potential of both intrinsic and extrinsic power

system attributes.

The primary objective of this thesis is to devise a robust event detection method capable of

functioning effectively amidst compromised data quality. A crucial aspect of navigating these

challenges lies in the harmonious integration of both intrinsic and extrinsic learning.

Building upon this foundational understanding, addressing extrinsic data quality becomes pivotal.

The study leverages data from PMU and SCADA sensors to reconstruct missing dynamic states

within the power generation system using a semi-supervised learning framework. This endeavor faces

two predominant challenges based on the distinctive data properties. Firstly, the diverse locations

of PMU and SCADA sensors necessitate approximating data correlations to estimate missing data

precisely. Secondly, the paucity of dynamic transitions in SCADA samples underscores the imperative

need for efficient SCADA data utilization. To tackle the spatial challenge, Deep Neural Networks

(DNNs) with enhanced capacities are deployed to encapsulate spatial-temporal information, predicting
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dynamic states. For the temporal hurdle, a novel mechanism is designed for efficient SCADA data

use. Specifically, by iteratively repurposing the predicted dynamic states within SCADA data to

refine the DNN model, performance gradually escalates. The potency of this proposed training

technique garners validation within the framework of Expectation-Maximization (EM).

Having established the extrinsic framework, the next logical progression is to explore the intrinsic

realm. After external validation by discerning the spatial-temporal behaviors across diverse sensors,

there emerges a palpable potential in harnessing intrinsic data relations. This would both trim

computational expenses and amplify interpolation precision. Hence, an innovative interpolation

method is introduced, aiming to transmute Low-Resolution (LR) meters into “virtual” PMUs. By

tapping into the intrinsic physics-informed connections defined by Differential Algebraic Equations

(DAEs) in the power system and leveraging high-resolution data from accessible PMUs, this technique

algorithmically fills in gaps from LR meters. This strategy not only optimizes data utilization but

also ushers in a cost-effective yet potent monitoring and control approach for power systems. Such

a system promises informed decisions, ensuring robust system stability and resilience without the

financial strains of conventional installations.

Transitioning from data optimization, the focus shifts to the potency of robust event detection

systems, which often lie in the data’s underlying patterns and knowledge. The burgeoning advance-

ments in ML and Data Mining (DM), armed with proficient learning and rapid inference capabilities,

provide an ideal platform to distill this knowledge. Consequently, this thesis introduces advanced

learning-based models tailored for this very purpose.

Yet, a new dimension of complexity emerges when dealing with newer grids where data scarcity

hinders ML model-based event detection. The solution rests in knowledge transfer from a data-

abundant grid (source) to a data-deficient one (target). This study utilizes Transfer Learning (TL) as

the conduit for this knowledge migration. In this context, a comprehensive TL framework is proposed

for power system transfer learning, grounded in robust theoretical underpinnings and expansive

generalizability.

To round off the discussion, impeccable data quality is paramount, especially when considering

the intricacies associated with spatial and temporal aspects and sensors with varied resolutions.

Addressing these concerns, this research introduces an innovative approach to enhance data quality

both extrinsically and intrinsically. Armed with this refined data, the subsequent focus shifts to how
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the proposed intrinsic and extrinsic techniques function in event detection, ensuring they operate at

their zenith.

1.1 Research Objectives

1. Data Interpolation: Semi-Supervised Learning for Extrinsic Data Correlation:

Propose techniques to improve data quality extrinsically by merging PMU and SCADA sensor

data. Address spatial-temporal challenges by leveraging DNNs and iteratively refining the

model using SCADA data. This objective seeks to predict and recover missing dynamic states

in the power generation system, especially in the context of differing sensor resolutions and

locations.

2. Data Interpolation: Intrinsic Physics-Informed Approach to Enhance Data Quality:

Design a novel method to leverage intrinsic correlation among different nodes, transforming

Low-Resolution meters into “virtual PMUs”. By utilizing inherent physics-informed relationships

and high-resolution data, this objective aims to algorithmically interpolate missing values

algorithmically, ensuring a cost-effective yet high-quality power system monitoring solution.

3. Event Detection: Exploring Intrinsic Data Structures with Tensor Learning: Develop

cutting-edge ML models to intrinsically identify and classify events within power systems by

analyzing underlying patterns and system data. Ensure that these models are equipped with

the capabilities of fast inference and efficient learning, with a focus on differentiation and

localization of event types.

4. Event Detection: Extrinsic Knowledge Enhancement through Transfer Learning:

Establish a framework for robust event detection in grids with limited data. The primary

approach involves utilizing TL to migrate knowledge from a data-rich grid to a data-scarce

one. The framework should address challenges like data space homogeneity/heterogeneity and

ensure label space consistency even in scenarios of data space disjointing.
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1.2 Organization

The organization of this report is as follows:

1. Chapter 1 provides an overview of the research, including the motivation, objectives, and

organization of the study. It highlights the need for robust event detection methods with bad

data quality in power systems and introduces the concepts of intrinsic and extrinsic learning.

2. Chapter 2 conducts a survey on improving data quality extrinsically by merging PMU and

SCADA sensor data. The chapter addresses spatial-temporal challenges by leveraging DNNs and

iteratively refining the model using SCADA data under a semi-supervised learning framework.

The goal is to predict and recover missing dynamic states in the power generation system,

especially in the context of differing sensor resolutions and locations. The chapter proposes

data interpolation and fusion techniques, utilizing DNNs to capture complex relationships

between the sensor data. The effectiveness of the proposed methods is demonstrated through

extensive numerical validations.

3. Chapter 3 surveys on leveraging intrinsic properties to interpolate and enhance data in power

systems. The chapter focuses on transforming low-resolution meters into “virtual” PMUs

by utilizing inherent physics-informed relationships and high-resolution data. The goal is to

algorithmically interpolate missing values algorithmically, ensuring a cost-effective yet high-

quality power system monitoring solution. The chapter presents the design of the interpolation

method and discusses its advantages in terms of accuracy and efficiency. The proposed method

is validated through numerical experiments, demonstrating its effectiveness in enhancing data

quality and providing reliable power system monitoring.

4. Chapter 4 focuses on developing advanced ML models to intrinsically identify and classify

events within power systems. The chapter begins with a literature review of equation learning

and explores the maintenance of physical consistency in learning models. It discusses the use of

convex optimization techniques to ensure physical consistency in fully-observable and partially-

observable systems. The chapter also presents comprehensive experiments on diversified systems

to illustrate the outstanding performance of the proposed models. The results demonstrate

the effectiveness of the developed models in analyzing system data, recognizing underlying

patterns, and achieving high performance in event detection.
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5. Chapter 5 proposes an extrinsic framework for robust event detection using TL with limited

data. The chapter explores the use of TL to migrate knowledge from a data-rich grid to

a data-limited grid. It discusses two frameworks: one for supervised learning and another

for unsupervised learning. The supervised learning framework utilizes an ensemble model to

aggregate different supervised learning models with different biases. The unsupervised learning

framework leverages physical properties to provide labels in scenarios without label information.

Additionally, the chapter introduces a tensor-learning model that converts large-scale tensors

to compact and informative feature vectors for fast event identification. The proposed methods

are extensively validated through numerical experiments, demonstrating their high performance

in event detection.

6. Chapter 6 presents the conclusions and contributions of the research. Then, Chapter 6 discusses

the future directions of the research work.

5



Chapter 2

DATA INTERPOLATION: LEVERAGING SEMI-SUPERVISED LEARNING FOR EXTRINSIC

DATA CORRELATION

2.1 Introduction

A power-generation system integrates stochastic components and loads to facilitate clean and

low-cost production and consumption of power, such as Photovoltaic (PV) power and wind power that

highly depend on uncertain weather conditions. These components make the power system vulnerable

to dynamic environmental events. To better capture system dynamics, Phasor Measurement Units

(PMUs) are continually integrated into the power system to provide synchronized phasor measurements

with 30-120 samples per second (General Electric Energy Consulting 2018; “IEEE Standard for

Synchrophasor Measurements for Power Systems” 2011). This high resolution enables accurate

monitoring of the dynamic states.

However, installing a single PMU is relatively expensive and costs around several thousands of

dollars. According to the US Department of Energy (Young and Silverstein 2014), the cost of a single

PMU in the United States ranges from $40,000 to $180,000. Meanwhile, the conventional measuring

system of power systems, i.e., Remote Terminal Unit (RTU) based SCADA system, has been largely

deployed over the last decade (Simões Costa, Albuquerque, and Bez 2013). As a comparison,

the installation cost for an RTU sensor ranges from $200 to $5,000(Sayed and Gabbar 2017). In

addition, the expense of installing PMUs is not restricted to the equipment alone. Other costs include

communication infrastructure, data management systems, and cybersecurity precautions to assure

the security and dependability of the obtained data. These expenses may rapidly accumulate, making

it difficult for utilities to adopt PMUs on a large scale (Madani et al. 2011; Basetti and Chandel

2016). Compared to PMUs, SCADA measurements have relatively low resolution and can’t fully

record system dynamics. For example, the SCADA system provides only 0.5-2 measurement samples

per second (Ghosal and Rao 2015).

Therefore, numerous studies focus on optimal PMU placement to balance the PMU costs and

the benefits from PMUs (e.g., system observability). For example, (Baldwin et al. 1993) uses a
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dual search algorithm to achieve observability. (Aminifar, Fotuhi-Firuzabad, and Safdarian 2013)

presents a way to quantify the benefits associated with the development of a Wide-Area Measurement

System (WAMS) to reach an optimal PMU placement solution. However, in our chapter, I propose a

brand-new perspective to interpolate missing dynamic information of SCADA measurements based

on a few PMUs. Hence, with limited computational costs, SCADA sensors can be converted to

“virtual PMUs“ with the capacity to infer the intermediate missing values. Moreover, our DNN in

Hd-Deep-EM can achieve real-time inference for the intermediate data since the forward computations

of DNN, i.e., the DNN prediction, are very fast. The goal is achieved by combining the information

of SCADA data and PMU measurements to accurately estimate the missing dynamic states between

SCADA data, under the domain of Dynamic State Estimation (DSE).

DSE is an important topic in power systems with the growing uncertainties in the system from

both the generation and the demand sides (Shih and Huang 2002). DSE is challenging due to the

complex dynamic transitions of system states. Existing methods can be categorized into the following

groups. The first group utilizes PMU measurements and full system physical equations to estimate

dynamic states. The process includes prediction to forecast the future system states and filtering

to remove bad data and decrease errors based on current measurements, i.e., the so-called Kalman

Filter (KF) (Chang, Taranto, and Chow 1997; Scholtz 2004; Dorfler, Pasqualetti, and Bullo 2013).

KF-based methods require strict assumptions, e.g., lossless network with voltage magnitude to be

fixed at 1 p.u. To make the methods more appropriate for real-world systems, Extended Kalman

Filter (EKF) (Ghahremani and Kamwa 2011a; Netto, Zhao, and Mili 2016; Zhao, Netto, and Mili

2016) and Unscented Kalman Filter (UKF) (Ghahremani and Kamwa 2011b; Valverde and Terzija

2011) are employed. However, these methods still require the system dynamic model.

Therefore, the second group of methods utilizes PMU data without system parameters. Specifi-

cally, they introduce Koopman operator-based KF (KKF), a data-driven approach with Maximum

Likelihood Estimation (MLE) to estimate the system transition and observation matrices (Surana

2016, 2020; Netto and Mili 2018). In particular, Koopman operator can convert nonlinear dynamics

to a proper linear approximation, making the computation easy and enabling the embedded MLE

process. However, these methods still require certain statistical assumptions on the state distributions

(e.g., Student’s t-distribution). This may not be generalizable to diversified system conditions with
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the increasing penetration of renewable energy. Moreover, they still demand a certain number of

PMUs to achieve system-level observability.

Then, the third group of work assumes limited PMUs with a large number of SCADA sensors

across the system. Then, they try to estimate the missing values of SCADA data via methods

like information fusion (Qu, Wang, and Shen 2021), Bayesian methods (Camões et al. 2022), and

regression methods (Song and Shepperd 2007; Batista and Monard 2003; Le and Benjapolakul 2018).

These methods, however, are hard to capture complex spatial-temporal correlations of power system

datasets. Additionally, they typically suffer overfitting issues since the SCADA data contain limited

dynamic information.

In this chapter, I focus on the Deep Learning (DL) techniques that can effectively capture the

complex spatial-temporal correlation of PMU and SCADA data. These methods utilize hierarchical

feature learning to extract features spatially or temporally. To capture spatial correlations, methods

like Convolutional Neural Networks (CNNs)(Plathottam, Salehfar, and Ranganathan 2017; Gupta,

Gurrala, and Sastry 2018; C. Kim et al. 2019) and Graph Neural Network (GNN) can employ

square or graph-based kernels for convolution and extraction of local features. To obtain temporal

correlations, Recursive Neural Networks (RNNs)(Vermaak and Botha 1998; Ayad et al. 2018) and

Long Short-Term Memory (LSTM) (Graves et al. 2008) employ gates to filter sequential information

and learn useful patterns. In this chapter, I make use of the capacity of DNN to analyze spatial-

temporal data for dynamic state estimation. However, DNN-based methods require relatively large

datasets with diverse information. DNNs may overfit when the information is limited to uncover the

dynamic states. Notably, such a scenario often happens for SCADA data due to the low resolution.

Thus, it’s quite challenging to build a good DNN model to predict the dynamic states of SCADA

systems.

For the overfitting issues, I claim that they always exist no matter how I improve the DNN model.

Specifically, the overfitting is due to the limited samples in the low-resolution RTU sensors due to the

different sampling rates. If I only use the limited RTU data as output data in the training dataset,

most of the dynamic information is missing. Therefore, DNN tends to overly fit the RTU samples

without the motivation to explore how to estimate intermediate states.

This chapter addresses the system problem by explicitly introducing “more” training data with

dynamic information. Specifically, the new training data is derived from the predicted hidden states
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and the corresponding input PMU data, containing rich dynamic information. Subsequently, the

DNN can be trained with all the data to further improve the prediction. These two steps form an

iterative way of improving the neural network model’s performance. To elaborate on the effectiveness

of the procedure, I show that the iterative process is essentially an Expectation-Maximization (EM)

method with good convergence performance. Thus, I named our method Heterogeneous data Deep

EM (Hd-Deep-EM).

EM algorithms impact numerous topics in power systems. They mostly target probabilistic

load or power source monitoring(Pankratov et al. 2019; Xiang, Wang, and Wang 2019; Ganjavi

et al. 2017), where EM helps to estimate the underlying distributions with the maximal likelihood.

For example, (Pankratov et al. 2019; Xiang, Wang, and Wang 2019; Ganjavi et al. 2017) develop a

Gaussian Mixture Model (GMM) to model the density function of the load/source, and utilize EM

algorithm to find a suboptimal solution. Some other applications appear in PMU-based cyber attack

detection (Lee and Kundur 2014) and joint impedance and topology estimation (Yu, Weng, and

Rajagopal 2017). For example, in (Lee and Kundur 2014), the objective becomes the log-likelihood

of data with underlying cyber attacks.

There are also other studies to combine deep learning and EM algorithms for different domains.

Specifically, in signal processing, (Y. Zhang et al. 2022) develops a generalized expectation maximiza-

tion to estimate channel states and detect signals. (Shao et al. 2022) detects signals by leveraging

the deep unfolding to represent the iterative EM algorithm and improve the detection accuracy.

In computer vision, (Jiang et al. 2014) utilizes online EM algorithm to improve the inference in

the deep Bayesian network, achieving good image classification performances. (Jiang et al. 2014)

reconstructs images via EM network and employs the power of EM algorithm to tackle noises. In

general, those methods can hardly be applied to power system PMU and SCADA data due to different

resolutions. They also don’t provide solid theoretical guarantees. In this chapter, I theoretically

and experimentally clarify the effectiveness and efficiency of Hd-Deep-EM for dynamic hidden state

estimation.

For the numerical verification, the Hd-Deep-EM method is tested extensively at various conditions

on the synthetic 200- and 500-bus systems datasets, where the loading conditions and PMU/SCADA

sensor penetrations are diversified for extensive testing. To show the power of Hd-Deep-EM in facing

the spatial and temporal difference, I compare the proposed Hd-Deep-EM method with shallow EM
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algorithm and EM algorithm with a Vanilla neural network. To show the power of Hd-Deep-EM

in tackling the temporal trend from the SCADA measurements, I compare Hd-Deep-EM with the

traditional neural network. The benchmark methods include EM and deep learning approaches,

and Mean Square Error (MSE) is used for evaluating interpolation model accuracy. The results

show that our proposed Hd-Deep-EM method can efficiently interpolate missing data to the SCADA

measurement.

To summarize, I have the following contributions. (1) I formulate a data-driven problem to

utilize synchrophasors from limited PMUs and widespread RTU sensor measurements to estimate

the RTU data’s dynamic states and interpolate the missing values. The goal is promising since I

can utilize limited PMUs to boost the data quality of all RTU sensors. Additionally, the idea is

practical due to the high data correlations within a system. (2) I propose our Hd-Deep-EM to solve

the problem. Hd-Deep-EM has 3 strong properties to achieve high performance. First, Hd-Deep-EM

employs Deep Neural Networks (DNNs) to approximate the correlation from PMUs to RTU sensors.

While PMUs and RTU sensors locate at different places, the universal approximation power of

DNNs enables Hd-Deep-EM to capture such correlations. Second, I utilize a window of PMU data

to predict one sample of RTU sensors at a time slot. Therefore, the DNN in the Hd-Deep-EM

can capture the temporal trends for the prediction. This also enables the prediction to be robust

to noise, bad data, and the loss of synchronization. Third, the training of the DNN easily faces

overfitting issues due to the limited data in RTU sensors with little dynamic information. Therefore,

I propose an iterative process to utilize the predicted data in the RTU sensors to re-train the DNN,

following an Expectation-Maximization (EM) manner. Thus, the strong theoretical guarantees from

the EM algorithm support the convergence of Hd-Deep-EM. (3) I conduct comprehensive numerical

validations on transmission grids and show Hd-Deep-EM has the best performance compared to

other methods.

The rest of the chapter is organized as follows: Section 4.3 defines the problem. Section 4.4

proposes our Hd-Deep-EM. Section 4.6 conducts experiments for baselines and Hd-Deep-EM.
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Figure 1. A Moving Window-based Segmentation Procedure to Process the PMU Streams.

2.2 Problem Formulation

I denote that Np samples are for dp numbers of PMUs and Ns samples are for ds numbers of

SCADA data. Then, let Dp ∈ RNp×dp represent the PMU data matrix and Ds ∈ RNs×ds for the
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SCADA data. Moreover, due to the difference in resolution among PMUs and SCADA data, I have

Np ≫ Ns. Then, I denote the missing data matrix as Z ∈ R(Np−Ns)×ds . In the transmission system,

it’s reasonable to assume the SCADA sensors can achieve the full system observability (Manousakis

and Korres 2018), i.e., ds is comparable to the system node number. Our contribution is to use few

PMUs to interpolate the data for a large number of SCADA sensors, achieving the dynamic state

estimation via the dynamic information from PMUs.

I also describe the measurement types of PMUs and RTUs here. PMUs are highly accurate

devices that can measure the phasor quantities of voltage and current, such as magnitude, phase

angle, and frequency, in real-time. PMUs can also measure the rate of change of these parameters,

which is known as the frequency deviation or ROCOF (Rate of Change of Frequency) (Gharavi

and Hu 2017). These measurements are used to monitor the stability of the power system and

detect any disturbances or anomalies that may occur. RTUs, on the other hand, are used for remote

monitoring and control of power system equipment such as transformers, switches, and breakers.

They can measure a range of parameters, including voltage, current, power, and energy consumption

(Thomas and McDonald 2017). RTUs can also provide information on the status of equipment,

such as whether it is on or off and any faults or errors that may occur. In general, the above raw

data can be input to the DNN model. Then, with nonlinear activations like Rectified Linear Unit

(ReLU) (Glorot, Bordes, and Bengio 2011), the intermediate neurons after activations can represent

the nonlinear features of the model. In Experiment, I mainly focus on the prediction of voltage

magnitude as system states. However, other data have similar performance.

With the defined PMU and SCADA data flows, I need to process the raw data and formalize the

training data to estimate the dynamic states. While one can build a one-to-one mapping from the

PMU measurements to the SCADA data simultaneously, the mapping may not be robust if data

on either side have outliers. Thus, to improve the robustness, I propose utilizing the PMU data of

neighboring time slots as the input. Fig. 19 illustrates the process where I utilize a group of PMU

data (i.e., the blue box) as input to estimate the SCADA sample (i.e., the green box). Naturally, if I

input the intermediate PMU data that don’t have the corresponding SCADA data, the prediction

will be an estimate of the missing dynamic states of the SCADA data.

To predict the measurement states, mathematically, I employ a moving window to segment PMU

streams based on the resolution of the SCADA data.
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As shown in Fig. 19, for each timestamp of SCADA data, the PMUs data will extract a k × dp

moving window that has a center of the target timestamp. Subsequently, each extracted moving

window will be vectorized into an input vector. This procedure makes the processed PMUs and

SCADA data have the same number of samples Ns. Therefore, I have Xp ∈ RNs×(k×dp) as the input

PMU data matrix and Ds ∈ RNs×ds as the output SCADA data. In order to recover the Z with

function f , I also apply the moving window to the intermediate PMU streams to predict the missing

states Z. Specifically, I denote the PMU data matrix for recovering Z as X̃p ∈ R(Np−Ns)×(k×dp).

Finally, the strategy of this chapter is to learn the mapping rule

f : Xp ∪ X̃p →Ds ∪Z. (2.1)

The complete problem definition can be summarized as follows:

• Problem: Deep expectation maximization for data interpolation.

• Given: a set of PMU-based samples with Dp ∈ RNp×dp as the high resolution data and

Ds ∈ RNs×ds as the low resolution data, respectively.

• Output: a regression model to learn data mapping f between PMU data and SCADA data

and interpolate the missing value of the SCADA data.

2.3 Proposed Model

The design of the above mapping f can be diversified. However, existing works can not sufficiently

capture the spatial-temporal correlations of PMU and SCADA data. In this section, I first illustrate

that a well-designed DNN for the function f can efficiently handle the spatial-temporal correlations

and estimate the dynamic states. However, the training of the DNN may suffer overfitting due to

the scarce dynamic information in SCADA data. Then, I show the key is to resolve the issue is to

completely make use of the hidden dynamic states to update the mapping. Such a hidden value

estimation and parameter updating process lie in the domain of the Expectation-Maximization (EM)

algorithm.
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2.3.1 Expectation-Maximization Algorithm for Hidden State Estimation

EM algorithms are developed to tackle problems with latent variables, e.g., the hidden states in

SCADA data streams. Specifically, the EM algorithm is an iterative process to separately estimate

the statistics of latent variables and the corresponding parameters that determine the likelihood of

the latent data. Thus, to apply EM algorithms to our problem, the first step is to identify what

parameters should be used to determine the latent variables (i.e., the hidden states).

In general, one can categorize the parametric models into the generative and the discriminative

models. The generative model estimates the joint distributions between the known and the unknown

variables to generate new data. However, it’s hard to choose an appropriate model to estimate

hidden states. For example, GMM is usually used in most EM algorithms. However, the GMM

model is not capable to represent the distribution of hidden states in power systems with complex

spatial-temporal correlations.

Thus, in this chapter, I propose to utilize a discriminative mapping f to directly map from PMU

data to SCADA data. The advantage of a discriminative design is to maintain the spatial-temporal

correlations in the PMU data, thus boosting the approximation accuracy of the hidden states.

Mathematically, I can write the EM steps as follows.

• E step: Estimate the expected values of the hidden states in SCADA data streams. Namely,

input the corresponding PMU data to f and output hidden states.

• M step: Update parameters of f for better estimation.

Obviously, the design of f should be carefully considered. In the following section, I display our

design using deep learning techniques to achieve accurate dynamic state estimation.

Fig. 2 visualizes the process of the EM algorithms. To investigate the convergence of the EM

algorithm, many studies are done and one can refer to (Wu 1983) for more details.

2.3.2 Deep Neural Networks to Capture Spatial-Temporal Correlations

The core of our Hd-Deep-EM algorithm is the deep neural network (DNN) model, which is applied

to approximate the data interpolation mapping between PMU to SCADA measurement. Intuitively,
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Figure 2. An Illustration of the EM Algorithm.

a DNN model can help capture the temporal-spatial correlations and learn useful features for the

task. Specifically, the DNN model has multi-layer feed-forward neural network structure, which

consists of typical three-level network architecture: one input layer, several hidden layers, and one

output layer. Since the input data comes from PMU data Xp and the output data comes from the

SCADA data Ds, I denote x as the variable for Xp, y as the truth variable for Ds, and ŷ as the

predicted variable using the DNN. Then, the DNN function can be written as follows.

h0 = x,

hi = gi (W ihi−1 + bi−1) ,∀ i = 1, · · ·, Nl,

ŷ = gNl+1 (WNl+1hNl
+ bNl

) ,

(2.2)

where Nl denotes the number of layers for the neural network, h0 denotes the input matrix of the

network, hi is the output matrix of the i-th hidden layer, bi is the bias term, and g is the activation

function for each hidden layer. I elaborate more on the model of the DNN based on the following

perspectives.

2.3.2.1 Structure and Activations

DNN has a hierarchical structure to gradually extract non-linear features for the task. Generally,

the i-th hidden layer models the interactions between the (i − 1)-th features by introducing a
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connection weight matrix W i and a bias vector bi. Then, the result is activated via a non-linear

activation function g(·). The choice of g can vary, and some common options include Rectified Linear

Unit (ReLU), sigmoid function, and tangent function, etc. Notably, ReLU is the most commonly

used because ReLU-based DNN can efficiently tackle the gradient vanishing problem and has a high

efficiency to compute(Agarap 2019).

2.3.2.2 Loss function

After defining the structure and the inner activation functions, I need to train the DNN with a

loss function. For this regression problem, the Mean Square Error (MSE) can smoothly measure the

difference between the predicted output ŷ and the true output y:

L(W,B,x,y) =
1

|Ns|
∑
i∈Ns

(ŷ − y)
2
, (2.3)

where W = {W i}i is the set of layer-wise weights of the DNN, and B = {bi}i is the set of bias terms.

2.3.2.3 Training Process

With the defined loss function, training is conducted via minimizing the loss with given in-

put/output data. The minimization can be written as:

min
W,B

L(W,B,x,y). (2.4)

To solve the optimization, many algorithms can be utilized. For example, one can utilize either

Stochastic Gradient Descent (SGD)(Bottou 2012) or the Adam(Kingma and Ba 2017) to train the

model.

The defined DNN has the ability to learn the local features and determine the spatial-temporal

correlations. To well-train the DNN model to approximate the dynamic states, I require the data to

contain enough dynamic information. Nevertheless, the SCADA data has little dynamic information,

decreasing the DNN model performance.
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Figure 3. Illustration of the Computations for Proposed Hd-deep-em Method.

2.3.3 Deep Expectation Maximization to Boost the Training of the DNN

To resolve SCADA data scarcity, the key is to introduce more SCADA data with system dynamic

information. As the dynamic systems states of the SCADA system are hidden, the problem can be

decomposed into (1) estimating hidden values and (2) updating the model parameters as shown in

Fig. 25. Mathematically, this iterative procedure is an Expectation-Maximization (EM) algorithm.

This subsection derives the Hd-Deep-EM algorithm from training the DNN model, leading to the

so-called Hd-Deep-EM model.

In general, the EM algorithm tries to solve an optimization with missing quantities. For the

optimization to train the DNN in Equation (2.4), the hidden dynamic states of the SCADA data are

introduced. Thus, the optimization can be rewritten as:

min
W,B

L(W,B, z,x,y), (2.5)

where z represents the variable of missing values in the SCADA data. Namely, Z = {zi}
Np−Ns

i=1 .

Clearly, z is also the output of the DNN f given the input PMU data x at the corresponding time.

However, the unknown knowledge of z makes the direct optimization of Equation (2.5) impossible.

Therefore, the EM algorithm solves Equation (2.5) in an iterative manner. In the Expectation

(E) step, the algorithm tries to approximate the expected values of z using the current model and

data. Then, in the Maximization (M) step, the model tries to maximize the profit, i.e., minimize

the loss, to obtain a better model. More specifically, for the k-th iteration, EM algorithm has the

following formulations.
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• E step: Estimate the missing values of SCADA data zk. Based on the definition of z, the

expected estimation of zk can be written as:

zk = f(x;W k, Bk), (2.6)

where W k and Bk represent the parameters of the DNN at the k-th iteration. The input data

x comes from the intermediate PMU matrix X̃p that corresponds to the hidden timestamps of

the SCADA system. Then, the estimated values of zk can be added to train the (k + 1)-th

DNN model, which improves the training with more accurate dynamic information in zk. Thus,

the training process is the M step, shown as follows.

• M step: Retrain the DNN model to minimize the loss:

(W k+1, Bk+1) = arg min
Wk+1,Bk+1

L(W k, Bk, zk,x,y). (2.7)

The obtained parameters W k+1 and Bk+1 can formalize the (k + 1)-th DNN model. Since zk

is known values, Equation (2.7) can be conveniently trained using SGD or Adam algorithms.

All quantities of variable zk can formulate the missing state matrix Z. For different iterations,

the values of Z can change. Thus, I also add the superscript and utilize Zk to represent the

predicted missing values in the kth iteration, as shown in Fig. 25.

Finally, I summarize the complete algorithm for the Hd-Deep-EM model in Algorithm 1.

Algorithm 1 Hd-Deep-EM Algorithm.

Input: PMU data matrix Xp, SCADA data matrix Ds, PMU data matrix for recovering data X̃p.
Hyper-parameters: number of iterations K and DNN-related parameters like batch size and
learning rate.
Output: Missing data matrix Z for the dynamic states.

Initial parameters of the DNN f . k = 1 to K E step: Use Equation (2.6) to estimate the k-th
dynamic states. M step: Optimize Equation (2.7) to update parameters of the k-th DNN. =0

2.3.4 Double Expectation Maximization Algorithms for Noisy Data

For realistic datasets, noise may lower the performance of the state estimation. To tackle noise

data, I modify our Hd-Deep-EM algorithm for better estimation. Specifically, I can assume the
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noises are independent of measurements and can be easily modeled via a distribution model like

GMM. Then, a natural idea is to decompose the model for estimating hidden states and noises. Since

both data can be estimated via EM algorithms, I modify our Hd-Deep-EM and propose a Double

Hd-Deep-EM algorithms for noisy data.

Specifically, in each iteration, I utilize the DNN model f to represent the mapping from input

PMU data to the output. In the meantime, I propose to leverage another Gaussian model to estimate

the noises, formulating the double EM algorithms (Fig 25). Mathematically, the double EM steps

can be written as follows:

• E1 step: Estimate the missing values of SCADA data zk using Equation (2.6).

• E2 step: Compute the noise data

nk = y − f(x;W k, Bk). (2.8)

• M1 step: Update the parameters of Gaussian model using nk. Then, obtain nk+1 using the

Gaussian model.

• M2 step: Update parameters of DNN model f via:

min
Wk+1,Bk+1

L(W k, Bk, zk,x,y − nk+1). (2.9)

Note that for known SCADA data, I utilize y−nk+1 to take place of y to achieve the denoising.

In general, the algorithm can be summarized as Algorithm 2. I denote our algorithm as the

Double Hd-Deep-EM algorithm.

Algorithm 2 Double Hd-deep-em Algorithm for Noisy Data.

Input: PMU data matrix Xp, SCADA data matrix Ds, PMU data matrix for recovering data X̃p.
Hyper-parameters: number of iterations K and DNN-related parameters like batch size and
learning rate.
Output: Missing data matrix Z without noise for the dynamic states.

k = 1 to K Initial parameters of the DNN f and the Gaussian model. E step: Use Equations
(2.6) and (2.8) to estimate the k-th dynamic states and the noise. M step: Utilize the noise data
to update the Gaussian model. Then, optimize Equation (2.9) to update parameters of the k-th
DNN. =0
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2.3.5 Theoretical Support of Double Hd-Deep-EM Algorithm for Denoising

In the Double Hd-Deep-EM algorithm, I estimate parameters for both the DNN model and the

underlying distribution of noises, which requires certain guarantees for convergence to the true noise

distribution. The EM algorithm can provide the convergence theorem which states the decreasing

distance between the true likelihood of the noise distribution and the estimated likelihood using the

data in Equation (2.8). Specifically, I modify the convergence theorem from (Wu 1983) and propose

the following theorem:

Theorem 1. Let θ denote the parameters of the noise distribution. Then, let {θt} denote the

parameter sequence in the EM iteration and t represents the iteration index. If θ∗ is a limit point

of {θt}, then (1) θ∗ is a stationary point of the likelihood function of the noise data in Equation

(2.8), and (2) the sequence {l(θt)} is non-decreasing and converges to l(θ∗), where l(θ) represents

the likelihood of the noise distribution.

The proofs of Theorem 1 can be found in (Wu 1983). Basically, Theorem 1 justifies the convergent

dynamics of the EM algorithm. More specifically, Theorem 1 proves that the convergent point θ

exists for the parameters of the true distribution of the noises. Then, Theorem 1 illustrates the

convergence to θ using the EM algorithm.

The convergence is further supported by numerical validations where I investigate the proposed

Hd-Deep-EM algorithm and the Double Hd-Deep-EM for noiseless and noisy data, respectively. The

results demonstrate that our method has excellent denoising capacities under different noise levels.
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Figure 4. Selected Loading Scenarios for PSLF Data Generation.

Figure 5. The Visualization of 10 Pmus’ Voltage Magnitude (Vm) Measurements for Three Different
Events.
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2.4 Experiments

2.4.1 Dataset Description

In the experiment, I employ synthetic datasets from 200- and 500- bus systems (Engineering

Texas A&M University 2016a, 2016b). For data preparation, I employ a commercial-grade simulator,

Positive Sequence Load Flow (PSLF) to simulate PMU data with 60 samples per second. To diversify

datasets, I vary the loading conditions during the simulation, which leads to different system dynamics.

Specifically, I can change the initial condition of the load flow in PSLF by different loading curves. I

employ the load profiles in real-world PJM Interconnection (Data Miner 2 — dataminer2.pjm.com)

as different initialization points for the simulated systems. For example, Fig. 4 shows 4 loading

curves from the PJM data. I randomly select their points at different time slots for the initialization,

which boost the diversity of our experiments. Moreover, I introduce three different fault events to

our data set to validate the robustness of our algorithm. As shown in Fig. 39, I visualize the event

using Voltage Magnitude (VM) data obtained from PSLF. Further, I assume PMUs only locate at

partial buses, with a penetration η = 0.05. For the rest data, I assume they are SCADA data with a

sampling process. I obtain the SCADA data with 0.5 samples per second.

Totally, I have over 40 files of 10-second simulated data for each test system. To obtain Xp

from these time series, I utilize the moving window with the length to be 0.33 seconds (i.e., k = 20

samples) to reformalize the training data. Thus, I have dp = 200× η = 10; ds = 200× (1− η) = 190

for 200−bus test system and dp = 500×η = 25; ds = 500× (1−η) = 475 for 500−bus test system. In

general, I have Ds ∈ R20×190 and Xp ∈ R20×(20×10) for the 200-bus system and Ds ∈ R20×475 and

Xp ∈ R20×(20×25) for the 500-bus system. They are matrices of PMUs and SCADA measurements

data for one window. Further, I have Z ∈ R580×190 X̃ ∈ R580×200 for the 200-bus system and

Z ∈ R580×475 X̃ ∈ R580×500 for the 500-bus system. They are total extracted matrices for missing

SCADA data and PMU data to recover Z.
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2.4.2 Benchmark Method

As benchmarks for the effectiveness of the proposed model, I employ three distinct methods. The

details of these methods are as follows.

• EM algorithm + Linear Regression (LR): LR fits a linear model with coefficients to minimize the

error (Pedregosa et al. 2011). However, the LR model does not consider the spatial differences

between PMU and SCADA data.

• EM algorithm + Vanilla Deep Neural Network: This method considers a Hd-Deep-EM frame-

work with a vanilla DNN. Vanilla DNN does not take temporal correlations into account.

In particular, window-based segmentation is configured with k = 1 and does not consider

neighboring data for training. To differentiate from the suggested model, this method is referred

to as Hd-Deep-EM0 while the proposed model is referred to as Hd-Deep-EM1. In addition, the

proposed approach with noise consideration is referred to as the Double Hd-Deep-EM model.

• Deep Neural Network (DNN)(C.-Y. Cheng et al. 2020): DNN is extracted from the Hd-Deep-EM

to directly train the mapping without EM algorithm. DNN can utilize spatial and temporal

correlations effectively. However, the lack of dynamic information in SCADA data may hinder

the DNN’s effectiveness.

In general, by comparing the testing accuracy of the proposed model and the benchmark models,

I can evaluate the effectiveness of Hd-Deep-EM. As claimed in the proposed model, our Hd-Deep-EM

can (1) capture the complex spatial correlations between PMU and SCADA data, (2) incorporate

temporal correlations for a robust estimator, and (3) use the EM framework to iteratively incorporate

the temporal dynamics of the SCADA data for better DNN training. Especially compare our Double

Hd-Deep-EM with the LR+ EM to illustrate the high representational power of the DNN to capture

spatial correlations. Then, I compare Double Hd-Deep-EM with Hd-Deep-EM0 to understand to

impacts of considering temporal correlations to estimate the hidden states. Finally, I compare Double

Hd-Deep-EM with DNN to illustrate the design of the EM framework.

During the testing, the hyper-parameters for all models are fine-tuned to achieve the best accuracy.

Especially, I report the detailed results with respect to Mean Square Error (MSE) between the truth

and predict Z matrix (i.e., missing dynamic states of the SCADA system) for all methods.
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The true Z matrix is the missing value not reported in the RTU sensors. They are in fact

unknown to us. Therefore, I propose the following procedures to prepare data for validation.

• Simulation. I run a business-level simulator, Positive Sequence Load Flow (PSLF), to simulate

PMU data with 60 samples per second for 200-bus and 500-bus systems (Engineering Texas

A&M University 2016a, 2016b). For each node, I can obtain the PMU streams.

• Down-Sampling. I selected a limited number of buses and assumed they are placed with

PMUs. Then, the rest buses should be equipped with SCADA sensors. I achieve this target by

doing down-sampling for the streams of 60 samples per second. I extract 1 out of 30 samples in

the streams as the blue points. These samples are treated as the measurements of the SCADA

sensors. Correspondingly, the unselected data can formulate the true Z matrix. Notably, Z is

only used in testing to evaluate the prediction error.

Figure 6. Testing Error for the 200-bus System.
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Figure 7. Testing Error for the 500-bus System.

2.4.3 Deep Model Is Better Than Linear Model

In this subsection, I evaluate the effectiveness of our Hd-Deep-EM algorithm in tackling the

spatial difference by comparing our Hd-Deep-EM algorithm to LR + EM. The results show that

our model performs better than benchmarks. Specifically, I report the prediction performance of

simulated data as follows.

Fig. 6 and Fig. 7 demonstrates the performances for the two methods in two different test system.

The y-axis is the MSE error, and the x-axis represents the number of iterations during training.

From the above figures, I find that our Hd-Deep-EM algorithm is lower than the MSE error of 0.05

and 0.4, compared to shallow EM+ LR in 200- and 500- bus test system after convergence. The

better performance of the Hd-Deep-EM algorithm shows that the deep learning model can be better

than the LR model in our complex scenario.
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2.4.4 Consider Temporal Correlations Increase DNN Performance

In this subsection, I evaluate the effectiveness of our Hd-Deep-EM algorithm in integrating the

temporal correlations. Specifically, I compare Hd-Deep-EM0 and Double Hd-Deep-EM. Due to

the window-based segmentation, our Double Hd-Deep-EM can successfully integrate neighboring

measurements in the temporal domain to estimate the dynamic states at one time slot. However,

Hd-Deep-EM0 doesn’t have this treatment. Then, I report the results of simulated data as follows.

Fig. 6 and Fig. 7 demonstrate the performances for the two methods. From the above figures,

I find that our Double Hd-Deep-EM has an average of 0.05 and 0.06 testing MSE error for both

test systems after convergence. In comparison, Hd-Deep-EM0 has an error of 0.07 and 0.2. The

performance of these two methods can be explained as follow. Window segmentation can capture the

data before and after the SCADA time stamp, which can benefit from finding the temporal trending

of the PMU data and avoiding the negative impacts of the outliers. The better performance of the

Hd-Deep-EM algorithm with window segmented data shows that our proposed deep learning model

can easily capture the temporal trend for PMU data in our complex scenario. Finally, I observe that

in Fig. 7, DNN model can perform better than Hd-Deep-EM0 that doesn’t consider the temporal

correlations. This verifies our claims that considering proper temporal correlations in the DNN and

Hd-Deep-EM1 (noiseless) can improve the performance of estimating dynamic hidden states.

Figure 8. Hd-Deep-EM Prediction on Iteration 1.

26



Figure 9. Hd-Deep-EM Prediction on Iteration 3, 300.

Figure 10. Hd-Deep-EM Prediction on Iteration 6, 600.
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Figure 11. Hd-Deep-EM Prediction on Iteration 10, 000.

Figure 12. Data Interpolation Result after 10,000 Epoch.

2.4.5 EM Procedure Provides Better Training of the DNN

In this subsection, I evaluate the effectiveness of introducing the EM procedure by comparing

Hd-Deep-EM1 and a DNN model. First, I show a case study of how the EM algorithm can improve

the training of DNN. I consider a line trip in Fig. ?? and Fig. 12. Specifically, Fig. ?? shows the

iterative process and our EM framework helps the DNN to make more use of the dynamic data and

enable the DNN prediction to gradually converge to the true blue curve. Fig. 12 demonstrates the
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final comparison of our Hd-Deep-EM and vanilla DNN. I can find that only when I combine EM

algorithm with DNN model can I achieve a generalizable model to accurately predict the dynamic

data for the RTU sensors.

Then, I report the statistical results of simulated data as follows. Fig. 6 and Fig. 7 demonstrate

the performances for the two methods. I find that our Double Hd-Deep-EM has an average testing

error reduction of 0.01 and 0.02, compared to the DNN method. The reason, when training the

DNN model, the output SCADA data has limited dynamic information. Thus, direct training

can’t guarantee the DNN model performance to predict dynamic states. On the other hand, our

Hd-Deep-EM can iteratively predict the dynamic states and reuse the predicted results for training,

leading to a better training procedure to incorporate dynamic information.

2.4.6 Window-based Prediction Enable Certain Robustness to Non-synchronization

I claim that our method has certain robustness to the non-synchronization issues. The main

reason is that I utilize a window of PMU data, rather than single time-slot data, as the input to

the DNN model in Hd-Deep-EM. Therefore, our DNN model utilizes an interval of PMU data to

predict one point in the SCADA data streams. Due to the high temporal correlations, our DNN

contains certain tolerance for the mismatch. If the non-synchronization doesn’t exceed the range

of the window, DNN can deliver a good estimation. To support our claim, I conduct numerical

validations for the 200-bus case with 10 PMUs, shown in Table 1. I find that as long as the delay

time between PMU and SCADA sensors is less than 1s, our Hd-Deep-EM can always attain good

performance.

Table 1. Testing Error for Different Delay Time.

Delay Time(s) Hd-Deep-
EM1

EM + LR Hd-Deep-
Em0

DNN Double
Hd-Deep-EM

0 0.039 0.080 0.055 0.052 0.039
0.5 0.041 0.085 0.058 0.057 0.042
1 0.042 0.089 0.057 0.059 0.044

1.5 0.057 0.120 0.085 0.078 0.056
2 0.121 0.145 0.215 0.232 0.129
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2.4.7 Double Hd-Deep-EM Provides Better Performance in Tackling Noise

Figure 13. Testing Error for the 200-bus System with Noisy Data.

Figure 14. Testing Error for the 500-bus System with Noisy Data.

In this subsection, I evaluate the effectiveness of interpolating noisy data by comparing Double

Hd-Deep-EM among all three benchmark models and our Hd-Deep-EM1 method. In the experiment,

I introduce noise into our dataset to validate the effectiveness in tackling noisy data. Specifically, I

report the results of simulated data as follows. As shown in Fig. 13 and Fig. 14, I find that our

Double Hd-Deep-EM has an average testing error reduction of 0.04, 0.02, 0.02 and 0.01, compared

to EM+LR, Hd-Deep-EM0, DNN method and our proposed Hd-Deep-EM1 for the 200 bus system.

Furthermore, Double Hd-Deep-EM has an average testing error reduction of 0.01, 0.02, 0.03 and
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0.005, compared to bench mark methods and Hd-Deep-EM1 for the 500 bus system. The results

show that our Double Hd-Deep-EM has the best performance of robustness to noisy data.

2.4.8 Hd-Deep-EM Has Comparable Testing Time

In this subsection, I compare the training and testing time for different methods, shown in Table

2. The results show that the EM framework will generally increase the training time even when I

utilize the same iteration numbers. This is reasonable because vanilla DNN will only utilize RTU

samples, i.e., the blue dots in Fig. 12. However, the EM framework can bring more training samples,

making the training process more time-consuming. However, the training time is still affordable for

the offline process. Moreover, if I compare the testing time, I find that all Machine Learning (ML)

methods have a very quick inference time, which is due to the fast forward computation of the ML

model.

Table 2. The Training and Testing Time (S) for Different Data Interpolation Methods for the Scenario
on the 200-bus System with 1000 Iterations.

method training time testing time
Hd-Deep-EM1 508.32 0.03

EM + LR 481.52 0.01
Hd-Deep-Em0 492.80 0.03

DNN 19.21 0.01
Double Hd-Deep-EM 537.31 0.04

2.4.9 Sensitivity Analysis with Respect to Different PMU Locations

An essential point is about the placement and number of Phasor Measurement Units (PMUs)

compared to Supervisory Control and Data Acquisition (SCADA) sensors. Specifically, the locations

of PMUs and SCADA sensors can largely influence on the performance of Deep Learning (DL)

algorithms in power systems.

Then, I add the following experiments on the Illinois 200-bus system to check how the locations
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Figure 15. Different PMU Placement Test Case on Illinois 200-bus System.

of PMUs can affect the final results. Specifically, in our experiments in the manuscript, I conduct

uniform selections for 10 PMUs over the complete grids for 10 times, making PMUs widely located

in the grid. In this revised version, I propose a biased selection for 10 PMUs, shown in Fig. 15. I

define 5 different regions in the grid with 10 PMU placement and make the rest nodes placed with

SCADA sensors to monitor the whole grid. With obtained data, I conduct different methods and

report the results of MSE error in Table 3.

Table 3. Testing Error for Different PMU Placement Test Cases.

Cases Hd-Deep-
EM1

EM + LR Hd-Deep-
Em0

DNN Double Hd-
Deep-EM

Region 1 0.041 0.072 0.050 0.049 0.042
Region 2 0.039 0.080 0.055 0.052 0.039
Region 3 0.040 0.091 0.049 0.045 0.040
Region 4 0.032 0.064 0.049 0.042 0.036
Region 5 0.048 0.101 0.067 0.051 0.048

Uniform Selection 0.031 0.062 0.043 0.039 0.031

First, I observe that for all biased selections of PMUs, all methods perform worse than the

uniform selection. This is because PMU measurements have higher correlations to the neighboring

SCADA data. Thus, if PMUs can be placed in a wide range, their information can be better utilized

to interpolate the SCADA data of the complete grid. Second, I find that Region 4 has relatively

better performance since it locates in the central area of the grid, which makes the PMUs better to

monitor the whole grid. Thirdly, Region 2 has the third good performance. This is because I conduct
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4 out of 10 faults around Region 2. In general, if PMUs are widely placed or close to dynamic events,

the performance will be better.

2.4.10 Sensitivity Analysis with Respect to Noise Levels

In addition, I further evaluate Double Hd-Deep-EM performance with other benchmarks models

in 3 different level of noise injection to the simulated data. To quantify the level of the noise, I utilize

the Signal-to-Noise Ratio (SNR) which compares the level of a desired signal to the level of noise.

Signal-to-Noise Ratio can be defined as the ratio of signal power to noise power. The result of MSE

error is shown in the tables below.

Table 4. The MSE for Different Data Interpolation Methods in Different Noise Level for Illinois
200-bus Systems.

SNR
Ratio
(dB)

Double
Hd-

Deep-
EM

Hd-
Deep-
EM1

EM+
LR

Deep
EM0

DNN

25 0.03914 0.04874 0.08002 0.05214 0.05513

15 0.03923 0.05045 0.08204 0.05426 0.05525

10 0.04035 0.05765 0.08234 0.05987 0.05947

Table 5. The MSE for Different Data Interpolation Methods in Different Noise Level for South
Carolina 500-bus Systems.

SNR
Ratio
(dB)

Double
Hd-

Deep-
EM

Deep
EM1

EM+
LR

Deep
EM0

DNN

25 0.17596 0.17723 0.21794 0.17873 0.20601

15 0.17601 0.17983 0.21819 0.18073 0.20730

10 0.17616 0.18177 0.22056 0.18395 0.21049

According to the performance in Table 4 and Table 5, I find that our Double Hd-Deep-EM has an

average testing error reduction over different noise level of 0.013, 0.017, 0.014 and 0.042, compared

to Hd-Deep-EM1, EM+LR, Hd-Deep-EM0 and DNN method for 200 bus system. And Double
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Hd-Deep-EM has an average testing error reduction over different noise level of 0.004, 0.031, 0.005

and 0.043, compared to bench mark methods for 500 bus system.

2.4.11 Event Identification Accuracy Comparison with Different Dataset

Figure 16. Event Identification for Different Datasets.

To evaluate the effectiveness of interpolation, I propose to compare the interpolated SCADA

data, original SCADA data and PMU data for the data-driven task: identifying system events.

Specifically, the same event identification algorithm is performed among the three datasets. I utilize

the 5 different popular Supervised Learning methods to evaluate the results. The selected methods

are K Nearest Neighbor (KNN), Naive Bayes (NB), Decision Tree (DT), Logistic Regression (LR),

and Support Vector Machine (SVM). As shown in Fig. 16, I find that our interpolated data can best
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improve the different learning methods, with KNN being the best. Averagely, our merged dataset

has an average increase of 7.92%, and 36.35%, compared to the original PMU and SCADA datasets.

2.4.12 Investigations of Different Activation Functions and Initialization Methods

For the DNN models, the choices of activation functions and initialization methods for the weights

are biases are important. Therefore, in this subsection, I investigate the performance of different

designs. For the effectiveness of activation functions, I conduct the following experiments, as shown

in table 6. I find that the changes in the final results are insignificant for different hybrid activation

functions (Radford, Metz, and Chintala 2015) compared to ReLU functions. Thus, it’s reasonable to

utilize ReLU as the activation function given its lowest complexity.

Table 6. Testing Error for Different Activation Functions.

Activation Function Hd-Deep-EM1
ReLU 0.039

Softplus + ReLU 0.042
Softplus + ELU 0.041

Softplus + Leaky ReLU 0.039
Sigmoid + ReLu + Softplus 0.040

Hyperbolic Tangent + Sigmoid + ReLu 0.045

For the initialization methods, our experiments before utilize the He initialization method (K.

He et al. 2015). However, I agree that different initialization may cause different results. Some

other initialization methods in Pytorch include Uniform Initialization, Normal Initialization, Xavier

Initialization, etc (Paszke et al. 2019). To further quantify the impacts of these initialization methods,

I conduct the tests for the 200-bus case with 10 PMUs. The result is shown in Table 7. I find that

although I change different initialization for the weights and biases, the results are similar.

Table 7. Testing Error for Different Initialization Function.

Initialization Hd-Deep-EM1 Hd-Deep-Em0 DNN Double
Hd-Deep-EM

He 0.039 0.055 0.052 0.39
Uniform 0.041 0.053 0.051 0.40
Normal 0.038 0.057 0.053 0.42
Xavier 0.040 0.058 0.053 0.41
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Chapter 3

DATA INTERPOLATION: INTRINSIC PHYSICS-INFORMED APPROACH TO ENHANCE

DATA QUALITY

3.1 Introduction

The increasing integration of clean energy, such as Photovoltaic (PV) and wind generations,

introduces large uncertainty and intermittence to power systems. Hence, the system suffers more

and more disturbances, oscillations, and outages. It’s critical to understand and control system

dynamics to maintain system stability and resilience. To achieve the goal, tremendous methods arise

for transient analysis (Q. Zhu et al. 2018), outage detection (Haoran Li et al. 2019b, 2019a; Li, Ma,

and Weng 2022; Li, Ma, Weng, Blasch, et al. 2022), dynamic state estimation (Netto, Zhao, and Mili

2016; Le and Benjapolakul 2018; Qu, Wang, and Shen 2021) , parameter estimation (Li and Weng

2021; Haoran Li et al. 2023), control (Machowski et al. 2020), etc. Most of these studies rely on the

dynamic measurements from Phasor Measurement Units (PMUs) that produce 30 ∼ 120 samples per

second (“IEEE Standard for Synchrophasor Measurements for Power Systems” 2011).

However, PMU installation is costly. For example, the cost of a single PMU in the United

States ranges from $40,000 to $180,000 (Young and Silverstein 2014). Other costs are related to

communication infrastructure, data management systems, and cybersecurity precautions. These

expenses grow significantly as the number of PMUs increases, preventing extensive PMU installations

(Madani et al. 2011). In contrast, traditional Low-Resolution (LR) meters are relatively cheap. For

example, the installation cost for a Remote Terminal Unit (RTU) sensor ranges from $200 to $5,000

(Sayed and Gabbar 2017). RTUs provide 0.5 ∼ 2 samples per second for the Supervisory Control and

Data Acquisition (SCADA) system. While largely distributed, such LR meters can hardly provide

enough dynamic information. To boost dynamic observability without additional PMU placement,

one can algorithmically interpolate the missing values of LR meters, thus converting LR meters

to “virtual“ PMUs. In this chapter, I define such virtual PMUs as interpolated LR meters that

have PMU-level data resolutions as well as a certain tolerance of interpolation errors. They are
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not required to provide measurements as accurate as PMUs but can provide certain patterns of the

system dynamics.

In addition to SCADA systems in the transmission grid, I also provide two possible use cases in

distribution grids to build virtual PMUs. In case 1, I consider the next-generation smart meter with

a sampling rate much larger than 1 sample per 15min (Jones; Hawkins 2022). Thus, one can promote

the future smart meters into virtual PMUs as long as the future smart meters have around 1 ∼ 2

samples per second. In case 2, I can further reduce the communication costs via down-sampling

the micro-PMUs, e.g., producing 10 samplers per second. However, our model can convert the

down-sampled streams and the next-generation smart meter streams into virtual PMU streams.

In general, this chapter can serve as a reference for the development and trade-off of the future

distribution grid measuring infrastructures, communications, and AI computations.

Existing methods use the data correlations to estimate the underlying quantities, categorized

into model-based, optimization-based, signal analysis-based, and Machine Learning (ML)-based

methods. The first group introduces pre-defined models to connect samples. Typical models include

identity function, linear or polynomial functions (De Boor 1994), spline function (Habermann and

Kindermann 2007), etc. Obviously, the presumed formulations are biased to depict the power

system dynamic transitions. The second group leverages the data matrix’s properties to formulate

constrained optimization to infer missing entries. For example, (Gao et al. 2015) employ low-rank

property for data recovery. Specifically, they minimize the low-rankness of the measurement matrix.

However, the insufficient LR measurements make data less redundant and violate the low-rank

postulation.

In addition to data similarity, signal trends, structures, frequency, and modes can be mined for

interpolation, bringing signal analysis-based methods. For example, (Dong et al. 2013) introduces an

autoregressive model to extract trends for data imputation. Reference (Radchenko and Viazovska

2019) utilizes Fourier transformation to compute the basis for interpolation. (Mewett, Reynolds,

and Nazeran 2004) proposes a spectrum interpolation in the frequency domain. Instead of direct

computations for patterns or signatures, ML models learn useful features to estimate the missing

data. For instance, (Fukami, Fukagata, and Taira 2021) employs a spatial-temporal Convolutional

Neural Network (CNN) to conduct super-resolution for turbulent flows. (Jia, Yu, and Ma 2018) mines

such correlations using kernel methods so that seismic data are interpolated. (Z. Ma et al. 2023)
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combines Deep Learning (DL) and the Expectation-Maximization (EM) algorithm to capture the

dynamic patterns for power measurements iteratively. However, these methods can’t guarantee

physics consistency.

To tackle this fundamental problem, I note that power system dynamic measurements are governed

by Ordinary Differential Equations (ODEs) or Differential Algebraic Equations (DAEs). Hence, the

solution of the DAEs can provide accurate data imputation. Consequently, the problem can be

viewed as solving the DAEs, given multi-resolution samples from several LR meters and few PMUs.

Generally, the given DAEs can be solved via classic differential equation solvers (Tucker 2002), time-

domain simulations (Wang and Crow 2011), advanced transformation and decomposition techniques

(Liu and Sun 2020), ML models (Misyris, Venzke, and Chatzivasileiadis 2020), etc. In particular,

Physics-Informed Neural Network (PINN) (Raissi, Perdikaris, and Karniadakis 2019) has attracted

great attention to solve DAEs, due to the high flexibility to incorporate data, differentiability, fast

inference, efficient storage, etc. Therefore, employing a PINN for the virtual PMU conversion is

practical.

Specifically, PINN aims to approximate the solution of DAEs via a Deep Neural Network (DNN),

where the input is the time and the output is the solution at the given time. Furthermore, PINN

introduces a function-form loss that forces the DNN to maintain the DAE functions. The derivatives

of the DAE can be calculated by the so-called Automatic Differentiation (AD) (Chiu et al. 2022).

The above designs enable both feasibility and efficiency for PINN as the DAE solver. While gaining

a much better performance than other methods, PINN still has a convergence issue if the sampling

rate is low (Shin, Darbon, and Karniadakis 2020).

Thus, can I improve the PINN performance to achieve virtual PMU conversion? The key is to

utilize the fact that for power systems, HR/LR quantities lie in a low-dimensional embedding space

(i.e., a manifold) constrained by ODEs/DAEs (Hairer 2011). For example, Fig. 39 illustrates the

strong correlations of voltage magnitudes and angles. Therefore, I propose a systematic approach. In

step 1, I find a good initial guess of the missing LR data in the embedding space. In step 2, I refine the

interpolated data with the governing ODEs/DAEs, shown in the left and the middle part of Fig. 18.

More specifically, I build a mapping between HR and LR variables to represent the spatial-temporal

correlations, parameterized by another NN in the left part of Fig. 18. Nevertheless, training the

NN is also challenged by the limited LR samples. Luckily, the rich PMU-data patterns facilitate a
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Semi-Supervised Learning (SSL) paradigm, ensuring the trained NN gains high generalizability with

few LR quantities. Hence, SSL enables us to provide a good initial guess for the missing data. Then,

I can refine initial values with a PINN, making the interpolation satisfy DAEs, shown in the middle

part of Fig. 18.

PINN requires exact DAE functions. When the DAE parameters are unknown, I can estimate

them by leveraging interpolated and true measurements. The idea is possible due to the following

reasons: (1) Availability. The AD layer in CoPIE can provide derivatives for DAE parameter

estimation. (2) Fidelity. By our above designs, the fidelity of interpolated data is guaranteed to

some extent. (3) Robustness. Traditionally, the Least Absolute Shrinkage and Selection Operator

(LASSO) is widely utilized to identify nonlinear system dynamics (Brunton, Proctor, and Kutz

2016; Stanković et al. 2020). However, our interpolated data may contain certain errors that may

degrade the accuracy. To promote the robustness, I employ Error-Corrected LASSO (EC-LASSO)

(Loh and Wainwright 2011) to conduct parameter estimation, thus tolerating moderate errors from

interpolation, shown in the middle part of Fig. 18. In general, I term our framework as CoPIE: A

Coordinate framework for Physics-informed Interpolation and Estimation.

Figure 17. The Visualization of Voltage Magnitude (Vm) and Voltage Angle (Va) Measurements for
a Line Trip Event.

To summarize, I have the following contributions. (1) I formulate the problem of converting LR

meters into virtual PMUs. The problem is physics-informed data-driven with HR synchrophasors

from limited PMUs and widespread LR measurements. (2) To solve the problem, I propose our

CoPIE to maximally leverage the data patterns, spatial-temporal correlations, and the physics

(i.e., DAEs). (3) I propose strict theoretical validations on our CoPIE and claim that the error
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is limited. (4) I conduct comprehensive numerical validations on diversified grids and show that

CoPIE performs better than other methods.

The rest of the chapter is organized as follows: Section 4.3 defines the problem. Section 4.4

proposes our CoPIE. Section 3.4 provides the theoretical analysis. Section 4.6 conducts experiments.

Section ?? concludes the chapter.

Figure 18. An Illustration of the CoPIE Framework.

3.2 Problem Formulation

In this subsection, I formalize the problem of virtual PMU conversion through data interpolation.

To begin with, I illustrate what information is given. Generally, the information is included in a

DAE that governs the system dynamics:

ẋ(t) = f
(
x(t),y(t)

)
,

0 = g
(
x(t),y(t)

)
,

(3.1)

where the differential variable x(t) ∈ Rdx , the algebraic variable y ∈ Rdy , f(·) are nonlinear functions

to compute the derivative ẋ(t) = dx(t)
dt , and g(·) are algebraic functions of system constraints. In our

setting, parameters of equations f(·) and g(·) are unknown, and I only have samples of x(t) and

y(t), measured by LR meters or PMUs.

To further demonstrate the data availability, I assume there are few PMUs and a large number

of LR meters. These two types of sensors can together provide all synchronized measurements of

x(t) and y(t) at some specific time slot t. Therefore, I denote u(t) ∈ Rdu and w(t) ∈ Rdw as the
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measurements for PMUs and LR meters, respectively, where du ≪ dw and du + dw = dx + dy. Let

ϕ(·) be a partition function such that [x,y] = ϕ(u,w), i.e., ϕ(·) split the vector [u,w] into x and y.

Subsequently, by the difference of sampling rates, I assume that there are Nu samples for u and Nw

samples for w, where Nu ≫ Nw. In general, Fig. 19 visualizes the available datasets. I denote a

set of PMU samples as {u(ti)}Nu
i=1 and LR meter samples as {w(t̃i)}Nw

i=1, where I utilize ·̃ imply that

ti ̸= t̃i. Eventually, I can define our problem as follows.

• Problem: Convert LR meters to virtual PMUs via physics-informed data interpolation.

• Given: A set of PMU samples {u(ti)}Nu
i=1 and LR meter samples {w(t̃i)}Nw

i=1.

• Find: A parametric model to interpolate the missing dynamic data in LR meters.

With only measurements, CoPIE uses erroneous data to robustly estimate the parameters of

the DAE, boosting the data interpolation. Moreover, CoPIE maximizes the usage of data patterns

and spatial-temporal correlations in an SSL manner, obtaining a tight bound and state-of-the-art

numerical performance. I demonstrate CoPIE as follows.

3.3 Proposed Model

In this section, I first introduce the preliminary of a PINN. Then, I introduce our CoPIE framework

with both interpolation and estimation. Finally, I demonstrate the CoPIE’s training algorithm.

3.3.1 Preliminary of a PINN

PINN is composed of a DNN and an AD layer. The DNN aims to approximate the solution

of the DAE in Equation (3.1) with the universal approximation power. Mathematically, I denote

[u(t; Θ),w(t; Θ)] as the DNN, parameterized by Θ, which maps from the time index t to the DAE

solutions [u,w]. Usually, the DNN uses Sigmoid activation to guarantee both nonlinearity and

certain smoothness for approximating the physical solutions. For the loss function, one can enforce

the boundary-condition loss, i.e., the Mean Square Error (MSE), to fit the measurements:

L1(Θ) =

Nu∑
i=1

||u(ti)− u(ti; Θ)||22 +
Nw∑
i=1

||w(t̃i)−w(t̃i; Θ)||22, (3.2)

where || · ||p represents the lp norm.
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Figure 19. A Moving Window-based Segmentation Procedure to Process the PMU Streams.

Equation (3.2) slightly modifies the original boundary-condition loss and utilizes both the LR

and HR samples. I prove in Section 3.4 that additional HR samples reduce the approximation error.

Nevertheless, training with only L1(Θ) can easily meet overfitting. To make the approximation

generalize well, PINN includes an additional function-form loss.

[x(t; Θ),y(t; Θ)] =ϕ
(
u(t; Θ),w(t; Θ)

)
,

L2(Θ) =

∫ T

0

∣∣∣∣g(x(t; Θ),y(t; Θ)
)∣∣∣∣2

2

+
∣∣∣∣ẋ(t; Θ)− f

(
x(t; Θ),y(t; Θ)

)∣∣∣∣2
2
dt,

(3.3)
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Figure 20. An Illustration of the PINN Model. I Utilize I to Represent the Identity Function in the
AD Layer.

where ϕ(·) as the split function is defined in Section 4.3, T is the end time of the system dynamics,

and ẋ(t; Θ) is the numerical differentiation of x(t; Θ), generated by the AD layer using the chain

rule (Raissi, Perdikaris, and Karniadakis 2019).

The integration in Equation (3.3) can be numerically solved via a small step. Basically, L2(Θ)

maintains the DAE function form (i.e., Equation (3.1)) at each time slot in [0, T ]. Finally, one can

utilize a penalty term λ1 > 0 to balance the two losses, leading to the final PINN loss:

L(Θ) = L1(Θ) + λ1L2(Θ). (3.4)

The structure of a PINN is shown in Fig. 20. If well trained, PINN can accurately predict data

for arbitrary t ∈ [0, T ], i.e., conducting data imputation. Moreover, as long as I have enough data,

PINN can quickly converge to the true solution (Shin, Darbon, and Karniadakis 2020). However,

limited LR samples obstruct the convergence.

3.3.2 CoPIE to Improve Convergence

First, I clarify our design philosophy in a conceptual visualization in Fig. 21. The red points

represent measurements. The grey regions of the top part of Fig. 21 represent the estimate errors,

and the LR variables have a significant error region. However, if I can utilize the correlations and the

HR samples to project the interpolated data of LR variables, I can obtain a more restrictive error

region, as shown in the bottom figure. The solid and dotted arrows represent the projection, and
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the pink nodes are the projected results. This essentially makes use of the fact LR/HR data lie in

a low-dimensional embedding space, and a good projection helps to find the missing values in the

embedding. Subsequently, I can input the red and the pink nodes to the PINN and obtain further

refinement. Finally, for the PINN, if the parameters of DAE are unknown, I introduce EC-LASSO to

estimate parameters. The general framework is shown in Fig. 18.

Mathematically, the projection can be represented as a mapping from HR samples to LR samples,

denoted as h(·) : RK×du → Rdw , where K is the number of time slots (an even number) employed

to capture the temporal trend. Similarly, I utilize a neural network with a parameter set Ω to

represent the mapping, namely, h(·; Ω). Notably, there can be a lot of designs for this NN to conduct

spatial-temporal inference, e.g., the Transformer (Vaswani et al. 2017). However, I find that a fully

connected NN is enough in our Experiments, thanks to the strong correlations of voltage magnitudes

and angles. Then, to predict each LR sample w(t), I input the correspondingly synchronized HR

sample u(t) and the neighboring K samples [u(t−∆ ·K/2),u(t−∆ · (K/2− 1)), · · · ,u(t+∆ ·K/2)],

where ∆ is the sampling interval for PMUs. Basically, the spatial-temporal NN is defined as

h
(
u(t−∆ ·K/2),u(t−∆ · (K/2+ 1)), · · · ,u(t+∆ ·K/2); Ω

)
. The training of h(·; Ω), however, may

still suffer low generalizability since the output samples (LR samples) are limited. To address the

issue, I introduce SSL incorporating rich PMU data to promote generalizability.
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Figure 21. Conceptual Illustration of the Effectiveness of Spatial-temporal Restrictions.

Specifically, I divide the input data
{[

u(ti −∆ ·K/2), · · · ,u(ti +∆ ·K/2)
]}Nu−K/2

i=K/2

into the

labeled dataset U1 and the unlabeled dataset U2. Similarly, I denote the label (i.e., output value)

set {w(t̃i)}Nw
i=1 as W1. With U1, U2, and W1, there are many SSL algorithms to produce a highly

generalizable regression model. In particular, pseudo label-based method is a simple yet effective

procedure. One can refer to (Min and Tai 2022) for the theoretical proofs of the effectiveness of

pseudo label-based SSL. Authors in (Min and Tai 2022) provide a good convergence property as

long as unlabeled data set is large enough, satisfied in our setting. Hence, I propose to iteratively

generate pseudo label set Wk
2 for the kth iteration and retrain h(·) using U1, U2, W1, and Wk

2 for

the (k + 1)th iteration, shown in Algorithm 3. The left part of Fig. 18 illustrates the SSL training

for the spatial-temporal NN.

If well-trained, h(·,Ω) delivers a good estimation of interpolated data, namely, the pink nodes in
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Algorithm 3 Pseudo Label-based Training.

Input: Labeled input data U1, unlabeled input data U2, and output label (value) set
W1.

k = 0 Update Ωk using input U1 and output W1. Not converge Predict Wk
2 using h(·; Ωk) and

U2. k ← k + 1. Update Ωk using input U1/U2 and output W1/Wk
2 . =0

Output: the trained spatial-temporal NN h(·; Ω∗).

Fig. 21. Then, the LR data with initial interpolation and HR data are synchronized. With slight

abuse of notation, I denote {w̄(ti)}Nu
i=1 as the set of pink and red nodes. This dataset can be further

used for training the PINN, which serves as adding physical constraints to the data imputation.

Specifically, I have:

L1(Θ) =

Nu∑
i

||u(ti)− u(ti; Θ)||22

+

Nu∑
i

||w̄(ti)−w(ti; Θ)||22.

[
x(t; Θ),y(t; Θ)

]
= ϕ

(
u(t; Θ),w(t; Θ)

)
,

L2(Θ;f , g) =

∫ T

0

∣∣∣∣g(x(t; Θ),y(t; Θ)
)∣∣∣∣2

2

+
∣∣∣∣ẋ(t; Θ)− f

(
x(t; Θ),y(t; Θ)

)∣∣∣∣2
2
dt,

L(Θ;f , g) = L1(Θ) + λ1L2(Θ;f , g).

(3.5)

When the f(·) and g(·) are unknown in Equation (3.5), the related parameters can be estimated

via LASSO (Brunton, Proctor, and Kutz 2016). (Stanković et al. 2020) provides a good example

of applying LASSO in power systems for dynamic identification. I hence introduce EC-LASSO for

the estimation (Loh and Wainwright 2011) , which provides a certain tolerance for the errors of the

interpolated data. Specifically, I utilize the first equation of ẋ(t) = f(x(t),y(t)) as an example and

all other equations have similar procedures. For the first equation with Nu samples or imputed data,

I have the matrix format:

ẋ1 = (Z + E)β + n, (3.6)

where ẋ1 ∈ RNu is the derivative of the first state variable in Nu time slots, Z ∈ RNu×M is an

augmented library of all nonlinear bases for state variables x(t) and y(t) (Brunton, Proctor, and

Kutz 2016), where M is the number of nonlinear bases. For example, in power systems, I have

second-order polynomials for the voltage magnitude and sinusoidal functions for the voltage angle.

E ∈ RNu×M is a error matrix because of data interpolation. β ∈ RM and n ∈ RNu represent the
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system dynamical parameters and the noise vector, respectively. Hence, EC-LASSO provides the

following LASSO estimation with an error correction mechanism:

β∗ = argmin
β

1

Nu
||ẋ1 − Zβ||22 − β⊤ΣEβ + λ2||β||1, (3.7)

where ⊤ is the transpose operator, ΣE ∈ RM×M is the covariance matrix of E and λ2 is a positive

penalty term. Usually, I don’t have the exact covariance ΣE . I thus introduce a proper estimation

based on the statistics of Z for K times, i.e., Z1 ∼ ZK . These repeated matrices can be obtained

during our interpolation-estimation iteration, illustrated in Section 3.3.3. Mathematically, I can

compute:

Σ̂E =
1

Nu

Nu∑
n=1

∑K
k=1(Z

k
n − Z̄n·)(Z

k
n − Z̄n·)

⊤

(K − 1)
, (3.8)

where Zk
n represents the nth row of Zk, and Z̄n· =

1
K

∑K
k=1 Z

k
n. Basically, I can utilize the sample

covariance of Z1 ∼ ZK to approximate the error covariance (Loh and Wainwright 2011). Equations

(3.7) and (3.8) provide a convex optimization problem for EC-LASSO as long as Nu ≥M . Finally, I

combine PINN and EC-LASSO to coordinately interpolate data and estimate parameters, i.e., our

CoPIE framework.

3.3.3 Optimization Algorithm for CoPIE

I integrate the above techniques to optimize CoPIE. First, the SSL-based learning delivers a

warm start for interpolation. Then, I iteratively implement data imputation and physical parameter

estimation using LASSO. Notably, for every K times, I record the nonlinear matrices Z1 ∼ ZK .

Then, I can conduct EC-LASSO to improve the parameter estimation for one time. Such a procedure

is repeated until convergence. Eventually, the complete optimization algorithm for CoPIE is

demonstrated in Algorithm 4.

3.4 Theoretical validations on pinn and CoPIE

In this section, I provide theoretical validations to quantify errors for PINN and CoPIE. In

particular, I demonstrate what causes large errors for PINN and how CoPIE can resolve the issue

with good initialization of missing values.
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Algorithm 4 Optimization for the CoPIE Framework.

Input: A set of PMU samples {u(ti)}Nu
i=1 and LR meter samples {w(t̃i)}Nw

i=1.
Hyper-parameters: Penalty term λ1 for Equation (3.5), λ1 for Equation (3.7), number of iterations
K, and DNN-related parameters like number of epochs, number of iterations, batch size, and learning
rate.

Use Algorithm 3 to gain the trained spatial-temporal NN h(·; Ω∗) and the interpolated dataset
{w̄(ti)}Nu

i=1. k = 0. Use LASSO to estimate parameters of the DAE. Namely, use interpolated and
true data to formulate Equation (3.7). Then, set ΣE = 0 and solve the optimization to obtain
fk(·) and gk(·). Train CoPIE with fk(·) and gk(·) by minimizing L(Θ;fk, gk) in Equation (3.5).
Not converge k = 1 to K Use current PINN to update the dataset w(t). Prepare the augmented
matrix Zk. Use LASSO to estimate the parameters of the DAE. Namely, use interpolated and
true data to formulate Equation (3.7). Then, set ΣE = 0 and solve the optimization to obtain
fk(·) and gk(·). Train CoPIE with fk(·) and gk(·) by minimizing L(Θ;fk, gk) in Equation (3.5).
Use prepared matrices Z1 ∼ Zk to calculate estimate error covariance with Equation (3.8) and
obtain Σ̂E . Use EC-LASSO to estimate the parameters of the DAE. Namely, replace ΣE with
Σ̂E in Equation (3.7). Then, solve the optimization to obtain fk(·) and gk(·). Train CoPIE with
fk(·) and gk(·) by minimizing L(Θ;fk, gk) in Equation (3.5). =0

Output: the estimated DAEs and the optimal parameter set Θ∗ in CoPIE to interpolate the missing
values.

While Equation (3.1) makes it hard for further derivations, I assume a linearization for g(·), e.g.,

linearized power flow equations. Then, I can substitute y(t) with respect to a linear expression of

x(t) so that I convert the DAE in Equation (3.1) to Ordinary Differential Equations (ODEs):

ẋ(t) = f̃(x(t)). (3.9)

I further make the following assumption on f̃(·) to guarantee the unique solution:

Assumption 1. The function f̃(·) is Lipschitz continuous with respect to x(t).

I denote L > 0 as the Lipschitz constant. With slight abuse of notation, I denote the PINN

for the ODE as x(t; Θ), parameterized by Θ. Activated by sigmoid functions, x(t; Θ) is sufficiently

smooth. Then, the residual of the approximated solution minus the true solution exists. Furthermore,

I denote minimal the residual term and error term as:

r(t) = ẋ(t; Θ∗)− f̃(x(t; Θ∗)),

e(t) = x(t)− x̂(t; Θ∗),

(3.10)

where I denote Θ∗ as the (sub)-optimal parameter set after full training. Subsequently, I propose the

following theorem to demonstrate the error bound for PINN.
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Theorem 2. With the given Nw samples of x(t), constructed by the synchronized measurements of

PMUs and LR meters, the approximation error term of the PINN has the following upper bound:

||e(t)||2 ≤ e
LT
Nw max({||e(ti)||2}Nw

i=1)

+
e

LT
Nw

L
max({||r(t)||2 : 0 ≤ t ≤ T}),

(3.11)

where T introduced in Section 3.3.1 is the end point of the system dynamical interval.

Proof. The proof is a direct extension of Theorem III.1 in (Hillebrecht and Unger 2022).

Despite that the PINN tries to minimize ||e(ti)||2 and ||r(t)||2 via boundary-condition loss and

function-form loss, a relatively small Nw makes the exponential term large. Generally, the PINN

with only Nw samples suffer large errors. If I consider the additional Nu − Nw measurements of

PMUs, i.e., a small subset of entries for x(t), I can reduce the error bound, indicated by the following

theorem:

Theorem 3. With the given Nu samples of PMUs and Nw samples of LR meters, the approximation

error term of the PINN has the following upper bound:

||e(t)||2 = ||x(t)− x̃(t; Θ∗) + x̃(t; Θ∗)− x(t; Θ∗)||2

≤ e
LT
Nu max({||e2(ti)||2 + ||e1(ti)||2}Nu

i=1)

+
2e

LT
Nu

L
max({||r(t)||2 : 0 ≤ t ≤ T}),

(3.12)

where I utilize the subscript 1 and 2 to represent the PMU and LR entries, respectively. Furthermore,

I define x̃(t; Θ) as follows:

x̃(t; Θ) = [x1(t),x2(t; Θ
∗)]. (3.13)

Proof. To prove Theorem 3, I use a triangle inequality to upper bound the error. Then, I only need

to employ the conclusion of Theorem (2) twice to conclude the proof.

Since Nu ≫ Nw, the error in Equation (3.12) is much smaller than that in Equation (3.11).

However, it should be noted that the term ||e2(ti)||2 is not minimized during the training, given that

there are no measurements of LR variables for the Nw −Nu time slots. Therefore, the approximation

error is still non-negligible.

To further reduce the error, I introduce our CoPIE. Obviously, the significant improvement of

CoPIE lies in the spatial-temporal restriction and a powerful SSL framework that enforce x2(t; Θ
∗) ≈
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x2(t). Hence, I can assume there is a small constant δ > 0 such that ||e2(ti)||2 ≤ δ, ∀i ∈ {1, 2, · · · , Nu}.

Subsequently, I have the following error bound for CoPIE.

Theorem 4. Assume there exists a small constant δ > 0 such that ||e2(ti)||2 ≤ δ, ∀i ∈ {1, 2, · · · , Nu},

where ||e2(ti)||2 is defined in Equation (3.12). With the given Nu samples of PMUs and Nw samples

of LR meters, the approximation error of the CoPIE has the following upper bound:

||e(t)||2 = ||x(t)− x̃(t; Θ∗) + x̃(t; Θ∗)− x(t; Θ∗)||2

≤ e
LT
Nu max({δ + ||e1(ti)||2}Nu

i=1)

+
2e

LT
Nu

L
max({||r(t)||2 : 0 ≤ t ≤ T}),

(3.14)

where I utilize the subscript 1 and 2 to represent the PMU and LR entries, respectively. Furthermore,

x̃(t; Θ) is defined in Equation (3.13).

Proof. The proof is a direct extension of Theorem 3.

Since δ is a very small constant, the approximation error for CoPIE is very small. This validates

our CoPIE design.

3.5 Experiments

3.5.1 System Description

In the experiments, I include 5 different systems: an RLC circuit, IEEE 4-bus, 9-bus, 34-bus,

118-bus, and 123-bus system. These models cover circuit, transmission and distribution ODEs to

depict the system dynamics.

RLC Circuit: The RLC circuit is a second-order ODE where the current is the state variable.

The resistance, inductance, and capacitance are the physical parameters. The ground-truth result of

the voltage data with respect to time can be written in a closed-form solution. I assume one node

has 60 samples per second sampling rate while the other has 2 samples per second.

IEEE 4-bus system: The 4-bus system is introduced in (Misyris, Venzke, and Chatzivasileiadis

2020), where there are 2 generators with the second-order swing equation and the frequency dependent

loads with the first-order ODE. Voltage angle is treated as the state variable. The parameters and
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the initial values of the system can be found in (Misyris, Venzke, and Chatzivasileiadis 2020). I can

use the ode45 solver in MATLAB to obtain the ground-truth solution. The solution is accurate as

long as I set a very small step size.

IEEE 9-bus & 118-bus transmission systems: The parameters of IEEE 9-bus can be seen in

(Wang, Liu, and Sun 2015). The system considers the swing equation as well as the power balance

constraints in the DAE equations. Moreover, line parameters after a short-circuit fault are also

provided. Hence, I can conduct interpolation for the fault dynamics. The IEEE 118-bus system can

be referred to (Schneider et al. 2017). For both systems, I utilize the DAE solver in MATLAB to

conduct the simulation. Similarly, I can achieve accurate results as long as I set the step size to be

very small. For the transmission systems, I put PMUs at the generators with 60 samples per second.

Then, I put RTUs at load buses with 2 samples per second.

IEEE 34-bus & 123-bus distribution system: I also simulate distribution feeders of the IEEE

34-bus and 123-bus systems (Schneider et al. 2017). Similarly, I put micro-PMUs and LR meters like

smart meters at the generation and load buses, respectively. However, I assume micro-PMUs have 60

samples per second and increase the LR meters resolution to a relatively reasonable value, e.g., 2

samples per second.

Figure 22. Visualizations of the Interpolated Results of Our CoPIE. Samples of Hr Variables Are
Hidden Since They Are Too Dense.

3.5.2 Benchmark Methods

In this subsection, I introduce alternative benchmark methods as follows:

• Deep Neural Network (DNN)(C.-Y. Cheng et al. 2020): DNN can be directly utilized to

train the mapping from HR to LR data. DNN can capture spatial and temporal correlations

effectively. However, the lack of dynamic information in LR data hinders the DNN’s effectiveness.
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• Physics Informed Neural Networks (PINN) (Raissi, Perdikaris, and Karniadakis 2019):

PINN, as a DAE solver, can efficiently incorporate measurements and enforce DAE constraints

to the solution. However, PINN has convergence issues in the face of LR data.

• Hd-Deep-EM (Z. Ma et al. 2023): Hd-Deep-Em utilizes the EM algorithm to gradually

interpolate data and utilize data to train a mapping from HR to LR variables. Hence, this

model is similar to our SSL-based training for the spatial-temporal NN h(·; Ω). However, this

method can’t provide physics consistency, and there is no guarantee for the performance.

• Spline Interpolation: Spline interpolation (Wahba 1981) is an effective interpolation method

that employs piecewise-defined polynomials. Spline interpolation is revered for its flexibility

and smoothness. It represents an optimal choice when the data demonstrate a smooth nature

but may under-perform when there are abrupt changes or discontinuities. Moreover, the result

may not satisfy the underlying DAEs.

• Cubic Spline Interpolation: It’s a specific type of spline interpolation that applies cubic

polynomials to approximate the function between data points (McKinley and Levine 1998).

Cubic spline interpolation guarantees the continuity of the first and second derivatives across

adjacent intervals, yielding a smooth curve that well represents the data. However, it requires

substantial computation when dealing with a large dataset. Similarly, there is no physics

consistency.

Finally, I evaluate different methods by calculating the Mean Absolute Percentage Error (MAPE

(%)) between the interpolated data and the true data. I also use MAPE to measure the parameter

estimation performance of EC-LASSO.

3.5.3 CoPIE Visualization for Data Imputation: Excellent Match for Different Systems

In this subsection, I first visualize the interpolated data using CoPIE. Fig. 22 illustrates the

interpolated data for the RLC circuit, 4-bus, and 9-bus systems. The left plot is the result of the

RLC circuit. Clearly, the voltage signal is a sinusoidal waveform. I assume one node has 60 samples

per second in the red curve while the other has 2 samples per second (orange nodes) in the blue

curve. Clearly, I find that the interpolated data (dotted line) almost perfectly fits the blue curve.

This shows that our PINN can approximate the sinusoidal function well.
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For the IEEE 4-bus system, the red curves with dense HR samples are the generator voltage

angles while the blue curves are the load bus voltage angles, shown in the middle plot of Fig. 22.

The swing equation can gradually make the voltage angle at different buses stable. After I input

these data to CoPIE, I observe the interpolated line (i.e., dotted line). I observe that there is a small

mismatch at the beginning of the curves. However, other periods have a good match. The mismatch

is mainly due to our training setting: I fix the training iterations for all scenarios. If I keep training,

it’s clear that the dotted line will drop and fit the blue curves.

For the IEEE 9-bus system, the dynamics are more complicated since I add a three-phase fault

near bus 7 at the end of line 5− 7. In the right plot of Fig. 22, I can observe the fault dynamics at

around 0.75 ∼ 1.25s. The comparison between the dotted lines and the blue lines reveals that the

only mismatch happens around 0.75 ∼ 0.8s for the rotor speed deviations. Again, if I enable more

training, such mismatch will be reduced.

3.5.4 The General Performance for Different Data Imputation Methods

In this subsection, I still fix the sampling rates for the HR and LR samples to be 60Hz and 2Hz,

respectively. Then, I evaluate the performance of different methods. It’s noteworthy that PINN is

the only method that requires the DAE, and our CoPIE has the option to use the DAE or not since

I have a built-in estimation block. Table 8 presents the result.

Table 8. Interpolation Mape(%) of All Methods on Different Test Systems.

Method RLC 4-bus 9-bus 34-bus 118-bus 123-bus
CoPIE w/ DAE 0.85 0.05 0.30 1.53 1.35 1.49
CoPIE w/o DAE 0.86 0.06 0.31 1.55 1.72 1.88
PINN w/ DAE 1.21 1.81 3.06 5.39 11.20 12.27
Hd-Deep-EM 1.30 2.04 3.67 8.20 13.35 11.80

DNN 2.92 2.94 5.74 20.86 23.81 22.67
Cubic Spline 0.93 0.04 0.31 24.65 37.47 23.86

Spline 0.95 0.06 0.36 27.57 32.53 24.00

I have the following observations. First, if I compare CoPIE with or without DAE parameters, I

find that the difference is insignificant. This is because our embedded EC-LASSO block can efficiently

recover the DAE parameters (see more details in Section 3.5.5). As a consequence, the performance

of the two methods will converge with enough iterations and an optimized learning rate. Second,
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while PINN uses the DAE functions, its errors are much larger than those of CoPIE, especially for

large systems. This is because the LR samples can hardly help to reduce the accumulative errors for

PINN as a DAE solver, which becomes a bottleneck for all solvers.

Third, the correlation-based methods yield relatively large errors because they don’t have physics

consistency. Since Hd-Deep-EM has an SSL framework, it’s better than other correlation-based

methods. The worst case is the Spline method without biased assumptions and no physical guarantees.

Therefore, I can draw the conclusion that only CoPIE brings the possibility to turn LR meters into

virtual PMUs.

3.5.5 Effectiveness of EC-LASSO to Estimate Parameters

In this subsection, I investigate the effectiveness of EC-LASSO for the DAE parameter estimation.

Specifically, I still fix the HR/LR sampling rates to be 60/2Hz, respectively. Then, I set K = 5 in

Algorithm 4 and record the result of each iteration that runs K times the inner loop. Namely, I

present the MAPE(%) between the estimated and the true parameters during each iteration. Fig. 23

illustrates the result. For most cases, it takes only less than 5 iterations to make the MAPE less than

5%. This is because EC-LASSO can effectively utilize the interpolated data with an error correction

and generate accurate estimation.
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Figure 23. Mape(%) of the Parameter Estimation in Each Iteration.

3.5.6 Sensitivity Analysis with Respect to Different Sampling Resolution Ratios

Figure 24. Mape(%) with Respect to the Sampling Rate Ratio.
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In this subsection, I test the performance of CoPIE with different sampling rate. Specifically,

I fix the HR sampling rate to be 60Hz and vary the sampling rate ratio of HR to LR as follows:

{2 : 1, 10 : 2, 20 : 1, · · · , 90 : 1, 100 : 1}. Clearly, when the ratio is larger, there are more LR samples

and the interpolation error should be lower. Experimentally, I plot the MAPE (%) with respect to

the ratio in Fig. 24. The results imply that the MAPE can be maintained at less than 15% even

when the ratio is 100 : 1. Thus, I only require a very limited LR sampling rate so that I can turn LR

meters into virtual PMUs with an assured error bound. Second, I discover that the error increases

near linearly or sub-linearly. According to our Theorem 2, traditional PINN has exponential growth.

Only when I utilize CoPIE can I achieve linear or sublinear error bounds. More specifically, Theorem

4 shows that this error is only related to the HR samples and the approximation error. Hence, if I

increase the LR sample rate, I essentially reduce the approximation error of the spatial-temporal NN,

i.e., δ in Theorem 4, which is almost a linear reduction.
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Chapter 4

EVENT DETECTION: EXPLORING INTRINSIC DATA STRUCTURES WITH TENSOR

LEARNING

4.1 Introduction

Modern power systems significantly incorporate highly uncertain generations and loads to fa-

cilitate clean and low-cost productions and consumptions. To better accommodate the growing

uncertainty and maintain the system stability, a power system requires advanced tools for system

event identification. To capture the event dynamics, Phasor Measurement Units (PMUs) provide

synchronized phasor measurements with high-granularity (e.g., 30 or 60 samples per second) (Yuan,

Wang, and Wang 2020). Therefore, the PMU-based power system event identification is one of the

central topics to improve the system reliability.

With synchrophasors to record system dynamics, many efforts analyze measurement patterns and

identify when, where, and what type of events are. To find the event initialization time, methods like

change point detection (Haoran Li et al. 2019b) can detect abnormal intervals that imply events (e.g.,

line trip, generator trip, single-phase-to-ground fault, phase-to-phase fault, and three-phase fault).

However, to know more information about event types and locations, it’s challenging to analyze

high-dimensional PMU streams in the best way. One idea to find event types and locations is to

Figure 25. KTDC-Se Flowchart to Tackle Data (1) Correlation, (2) Volume, and (3) Unlabeled
Processing.

use expert information. For example, one can use signal transformation or filtering to map the time

series data into some physically meaningful domain for comparing with predefined thresholds. These

methods use wavelet transformation (D.-I. Kim et al. 2015), Kalman filtering (Pérez and Barros
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2008), and Swing Door Trending (SDT) (Cui et al. 2018), etc. For example, (Cui et al. 2018) utilizes

a swing door to compress data with a pre-defined door width, and the detectable events must have a

certain level of slope rate. However, as these methods need to pre-define some measures or thresholds,

the usage may be biased because of the specific design and test cases. Therefore, can I have a general

model?

For obtaining a general form, previous work proposes to use existing events and their labels to train

in a Supervised Learning (SL) manner. Such Machine Learning (ML) models typically extract features

for minimizing the loss function. For instance, Decision Tree (DT) (Haoran Li et al. 2019a) treats

each measurement as a factor to determine the final decision. Although transparent, such a method

is inefficient to make use of complex measurement correlations. Therefore, (De Yong, Bhowmik, and

Magnago 2015) proposes Support Vector Machine (SVM) to assign each input measurement a weight

to form the final feature. There are also more complex and powerful models such as Convolutional

Neural Network (CNN) (Yuxuan Yuan et al. 2021a), and Graph Neural Network (GNN) (Yuan,

Wang, and Wang 2020). They consider the spatial correlations with square and graph convolutions,

respectively. One can also couple the temporal information in Long Short-Term Memory (LSTM)

units. For example, (S. Zhang et al. 2018) uses LSTM to extract periodic patterns and data inertia

in time. However, for PMU data, it’s desirable to simultaneously consider correlations among spatial,

temporal, and measurement type dimensions. So, one can keep on increasing the model complexity.

But, PMU streams accumulate quickly into terabyte (TB) quantities for training due to high volumes,

large dimensionality, and complex correlations among the space, time, and measurement type (e.g.,

voltage magnitude, angle, frequency, etc.) dimensions.

To make the computation feasible, e.g., for real-time analysis, past work pre-processes PMU data

with various dimension reduction techniques before the learning phase (L. He et al. 2017; Sidiropoulos

et al. 2017), e,g., Principal Component Analysis (PCA) (Sidiropoulos et al. 2017; Abdi and Williams

2010) and Independent Component Analysis (ICA) (Nordhausen and Oja 2018). The pre-processing

can also select core statistics, including mean values (Ma, Basumallik, and Eftekharnejad 2020)

and wavelet basis coefficients (Kim 2021), etc. I further categorize these data processing techniques

by their treatments along the temporal and spatial dimensions. In the time domain, (Kapoor

et al. 2018) utilizes Kullback–Leibler (KL) divergence to measure the distribution change for time-

series measurements to detect events. (Hafiz et al. 2017) studies wavelet transformation families to
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transform signals into features. Then, these features are input to K-Nearest Neighbors (KNN) and

Naive Bayes (NB) to classify events. Similarly, (Shaw and Jena 2020) employs wavelet transformation

and Kalman filtering to process frequency measurements and produce features. (Yadav, Pradhan,

and Kamwa 2018; Z. Li et al. 2021) utilize Teager-Kaiser energy operator on PMU streams to identify

event time and locate events. Subsequently, PMUs that are close to events are selected as input to

KNN and LSTM.

In the spatial domain, (Weikang Wang et al. 2020) converts the frequency and angle measurements

into an image and utilizes CNN to capture the local features. (D. Ma et al. 2019) develops a graph

theory-based network partitioning algorithm to group different buses and locate events. More studies

investigate both dimensions together. (Shi, Foggo, and Yu 2021; Y. Cheng et al. 2022) develop a

Graph Signal Processing (GSP) method to capture temporal correlations of PMU measurements and

reorganize PMUs based on the magnitude of the temporal correlations. This re-organization enables

the following supervised learning model to better extract spatial information and identify events.

Some researchers store data in a 2-dimensional matrix and study the corresponding matrix-based

algorithms. (S. Liu et al. 2021) develops the two-Dimensional Orthogonal Locality Preserving

Projection (2-D-OLPP)-based method to extract spatial-temporal correlations. (Li, Wang, and Chow

2018) calculates the subspace of the PMU data matrix and produces measures over the subspace for

event identification. (Ge et al. 2015; Rafferty et al. 2016; S. Liu et al. 2019) employ PCA for the

data matrix to yield compact feature vectors. In general, these methods are diversified and have

different feature extraction capacities based on their own biases. There is a need to come up with a

unified and efficient design to capture the complex correlations of synchrophasor data among the

space, time, and measurement type domains.

In this chapter, I propose to merge the two steps of 3-D dimension reduction and supervised

learning into one step to avoid bias and improve efficiency. The key idea is to define a structure to

hold key information in different dimensions, e.g., the measurement types ignored by (Ma, Basumallik,

and Eftekharnejad 2020; Kim 2021; Yuxuan Yuan et al. 2021a). Based on such an idea, I design a

tensor learning framework to extract physically meaningful features with simple computations. Fig.

25 shows the design that easily includes the temporal, spatial, and measurement type dimensions.

The classification process in the tensor learning can directly provide the classification results while

the dimension reduction process for efficiency is via tensor decomposition. Hence, tensor unfolding
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can covert the decomposed core tensor to vectors for classification, enabling an end-to-end model

in Fig. 25. While tensor learning can extract key information quickly and systematically, I also

want to preserve the nice property of nonlinear feature extraction, like the property in CNN. For

such a purpose, I mathematically derive kernelization of the classifier to process non-linear physical

relationships in power systems.

While the proposed model is highly efficient, many realistic cases do not have enough labels for

training. For example, (Brahma et al. 2017) notes that out of 1, 013 PMU events recorded by a

utility, only 84 events are labeled. But, limited labeled data will decrease the learning accuracy. One

idea is to employ Semi-supervised learning to take advantage of widely available unlabeled data

in power systems, shown in the middle part of Fig. 25. But, there are challenges in integrating

Semi-supervised learning and kernel-based tensor learning. For example, I need to restrict the same

decomposition model for labeled and unlabeled data. I achieve the integration by aggregating all 3-D

PMU tensors into a 4-D tensor, where the additional dimension is the number of PMU tensors. Then,

a direct tensor decomposition of the 4-D tensor can maintain the same decomposition parameters for

all 3-D tensors, no matter if the data is with a label or not. To train the proposed Kernelized Tensor

Decomposition and Classification with Semi-supervision (KTDC-Se) from the above, I develop an

efficient coordinate descent method. Finally, when the tensor number is significantly large, I modify

our training method based on a mini-batch-based training scheme to save computational storage.

For the numerical verification, the KTDC-Se method is tested extensively at various conditions

on the Illinois 200-bus system, South Carolina 500-bus system (Li, Ma, and Weng 2022), and realistic

data sets from our utility partners. These conditions include different loading conditions and PMU

penetrations, etc. The benchmark methods include various supervised and semi-supervised learning

approaches, and cross-validation is used for evaluating model accuracy. The results show that our

proposed method can efficiently obtain highly accurate event identification and localization in large

systems with many data streams coming from PMUs. In general, I have the following contributions:

• Design the KTDC-Se model to incorporate massive labeled and unlabeled PMU streams.

Employ tensors to uncover the complex multi-dimensional correlations and create compact and

informative features to identify events;

• Derive a fast coordinate descent algorithm and its variational mini-batch version to train our

KTDC-Se; and
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• Conduct extensive experiments to demonstrate the high performance of KTDC-Se over other

models with synthetic and real-world datasets.

To emphasize the contributions, I summarize the basic principles of our designs as follows. (1)

The proposed model employs tensors to explore high-dimensional correlations and create more

compact and informative features for accurate and fast inference. (2) The proposed model is a

unified framework for dimension reduction and supervised learning, which prevents the bias induced

by separate steps and metrics. (3) The proposed model can take in rich unlabeled data for better

performance.

The remainder of the chapter is organized as follows: Section 4.2 introduces the notations and

tensor preliminaries for the model. Section 4.3 defines the problem. Section 4.4 proposes our KTDC-

Se. Section4.5 illustrates the learning algorithm. Section 4.6 conducts experiments for baselines and

KTDC-Se.

4.2 Notations and Preliminaries

To integrate PMU data reduction and machine learning in one tensorized framework, I first

introduce the basics of tensor algebra and the corresponding notations (Kolda and Bader 2009; Blasch

et al. 2021). To summarize, Table 9 presents the basic notations for different types of variables and

operations.

4.2.1 Tensor Notations

Multi-mode data can be stored in the so-called tensor (Lock 2018), the multi-dimensional arrays.

The number of dimensions for a tensor is referred to as order. For example, scalar (0-order tensor),

vector (1-order tensor), and matrix (2-order tensor). Then, for a D-order tensor X , I1× I2× · · ·× ID

are denoted as the dimensions, i.e., X ∈ RI1×I2×···×ID or X I1×I2×···×ID , where Ii (∀1 ≤ i ≤ D) is

the dimensionality of the ith dimension of X .
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h!
Table 9. Overview of Tensor Notations and Operators.

Notation Interpretation
a scalar
a vector
A matrix
X tensor, set, or space
X(n) unfolding of tensor X along mode n
◦ outer product
×n mode-n product
⊗ Kronecker product
∥·∥2 l2 norm of a vector
∥·∥F l2 Frobenius norm of a matrix or a high-order tensor

4.2.2 Tensor Operations

There are many types of operations for a tensor, like folding, unfolding, product, etc. This

subsection provides some operations used in the KTDC-Se method.

mode-n unfolding of a tensor. A tensor can be unfolded to a matrix, a process that is also known

as matrization. Specifically, for X I1×I2×···×ID , one can unfold it along the n-dimension (mode) to

obtain X(n) ∈ RIn×
∏

i=1,i ̸=n Ii . Mathematically, the result is:

X (i1, i2, · · · , iD) = X(n)(in, j),

j = 1 +

D∑
k=1,k ̸=n

(ik − 1)Jk, Jk =

k−1∏
m−1,m ̸=n

Im,

where X (i1, · · · , in) is denoted as the (i1, · · · , in)th entry of tensor X .

n-mode product. For a tensor X ∈ RI1×I2×···×ID and a matrix U ∈ RK×In , the n-mode product

is denoted as:
(X ×n U)(i1, · · · , in−1, k, in+1, · · · , iD)

=

In∑
in=1

X (i1, i2, · · · , iD)U(k, in),

where X ×n U ∈ RI1×···In−1×K×In+1···×IN is a tensor.

Tensor Tucker Decomposition. For a D-order tensor X ∈ RI1×···×ID , one key research topic is to

find the approximation using a set of small tensors. For example, PMU data is of high volume, and

low rank (Liao et al. 2018). Thus, the low-rank approximation is preferred to efficiently represent
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the PMU data and remove the redundant information. The target can be achieved via tensor

decomposition. Specifically, the so-called Tucker decomposition is (Kolda and Bader 2009):

X ≈ G ×1 U1 ×2 U2 · · · ×D UD

≈
R1∑

r1=1

· · ·
RD∑
rJ=1

G(r1, · · · , rD)ur1
1 ◦ · · · ◦ u

rD
D ,

where G ∈ RR1×···×RD is a core tensor in the factorization, and U i ∈ RIi×Ri is a base matrix along

mode i. uri
i is the rthi column of U i and ◦ is the outer product.

Finally, the Tucker decomposition can be rewritten in a matrix format:

X(n) = UnG(n)(UD ⊗ · · · ⊗Un+1 ⊗Un−1 ⊗ · · · ⊗U1)
⊤,

where ⊗ is the so-called Kronecker product and ⊤ represents the matrix transpose. In summary,

the introduced tensor operations lay foundations for the KTDC-Se integrated model with certain

physical interpretations. Specifically, tensor decomposition provides efficient feature extraction while

maintaining certain physical structures in the core tensor G. Further, tensor unfolding converts G to

vectors that can be input to a classifier, which enables an end-to-end model of decomposition and

classification.

4.3 Problem Formulation

In this section, I define the target problem using the above notation. Before introducing the

formulation, I first identify the study scope with the following points.

Data Preparation of PMU Tensors. For PMU streams, I follow the idea of (Yuan, Wang, and

Wang 2020; Shi, Foggo, and Yu 2021; Ma, Basumallik, and Eftekharnejad 2020) to extract a window

of PMU signals with sufficient information to indicate the event dynamics for training a classifier. As

shown in Fig. 36, each window of data can be formalized into a PMU tensor X ′ ∈ RT×L×M where T

denotes the number of time slots for each window, L denotes the number of PMUs, and M denotes

the number of measurement types (e.g., Voltage Magnitude (VM), Voltage Angle (VA), Frequency

(F), etc.). Further, with a slight abuse of notation, the total N PMU tensors are denoted as the total

event tensor X ∈ RN×T×L×M and assume the first H (H < N) sub-tensors along the first dimension

have labels. Correspondingly, the label vector is denoted as y ∈ ZH×1. In addition, to make the

tensor data comparable between different measurement types, I implement normalization to restrict
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each entry of the tensor within the range [0, 1]. More specifically, the normalization happens for each

entry of the tensor in the total N tensors in Fig. 36. Then, among the N values, the maximum value

of the specific entry is assigned to be 1, the minimum value is assigned to be 0, and the intermediate

value is corresponding transformed to be an entry within (0, 1).

Data Labels: Event Types and Locations. I focus on the tasks of distinguishing event types

and locating events. Since I are proposing data-driven approaches without the requirement of domain

knowledge, a diversified set of system event types and locations can be considered. For example, in

the experiment, I consider five event types, including line trip, generator trip, single-phase-to-ground

fault, phase-to-phase fault, and three-phase fault. Further, for each event type, I randomly create

2 different locations in the system. Similar treatments are implemented in many related studies

(li2022domain; Ma, Basumallik, and Eftekharnejad 2020; Kim 2021; Shi, Foggo, and Yu 2021; Li,

Ma, and Weng 2022).

Model Capacity of Tackling Multi-class Events. Our proposed method can handle events of

multi-classes. W e emphasize that in the following modeling process, each of our trained classifiers is

binary to make better use of kernel methods with hinge loss for high accuracy, which is similar to

Support Vector Machine (SVM) (Sánchez A 2003). Nevertheless, power system event identification is

essentially a multi-class classification problem, i.e., each unique combination of an event type and an

event location can indicate a unique label. Thus, the one-against-one method is utilized for training

multiple classifiers. Specifically, I train multiple binary models at the same time, and their majority

vote leads to the final event label that can be an arbitrary integer. One can refer to (Hsu and Lin

2002) for this method which has better performances than other multi-class SVMs.

Model Capacity of Tackling Cascading Events. Identifying cascading events is important for

power systems. For cascading events, the time interval between two events usually lasts for minutes

or hours (Bhatt et al. 2009). However, our model considers a time interval within a few seconds (e.g.,

0.5s in our experiments) because our goal is to conduct fast event identification. Thus, one approach

is to treat cascading events as independent events. Then, our training process can find the correct

decision boundary to classify events, including both single and cascading events. The above process

focuses on quickly identifying events but ignores sequentially predicting cascading events. While

the latter task is out of our study scope, our model still has a certain capacity to predict cascading

failures with enough event files and labels.
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Figure 26. Illustration of the Moving Window-based Division to Generate PMU Tensors.

Specifically, one can utilize a two-digit label y1y2 where y1 represents the current event status

and y2 represents the following event in an event sequence. If the current event status is a single

event, I can treat y2 = 0, which indicates the following system condition is normal. Subsequently,

the two-digit label needs to be converted to an integer by considering all the labels in the training

dataset for multi-class classification. Finally, as claimed above, I train multiple binary models to

vote for the integer label. In general, the above process utilizes a data-driven way to estimate the

correlations of cascading events during training for cascading event predictions. As long as I have

enough data, our tensor-based information compression and feature extraction lead to efficient event

identification and prediction.

Above notations and treatments summarize the common scenarios for power system event

identification and how KTDC-Se proposed model can handle them. In general, I define our problem

as follows.

• Problem type: semi-supervised event identification using PMU data.

• Given: a total event tensor X and a label vector y.

• Find: an abstract mapping f(X ) = y to compress the information in X and use the compressed

information to identify event labels in y.
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Figure 27. The Motivation of the KTDC-Se Model.

4.4 Proposed Model

The design of the above mapping f can be diversified. However, existing work suffers a key

challenge of biased selections of data compression and event identification without proper integration.

In this section, I design an end-to-end model that makes full use of tensor structure to achieve fast

computations, physical interpretations, high capacity with non-linear feature extractions, and high

accuracy under semi-supervision.

4.4.1 An Integrated Model with Efficiency and Physical Meanings

For an efficient model, I need to remove the redundancy in PMU measurements. Section 4.1 shows

the drawback of traditional methods: they can hardly explore the high-dimensional correlations.

Further, Section 4.2 illustrates that tensor is a natural container of high-dimensional data and

tensor Tucker decomposition is an excellent approach to uncover the cross-dimension correlations.

However, it is still unclear how I can design an efficient model to remove redundancy and capture

event information for different PMU event tensors, and how I can guarantee the model robustness by

tackling some labeled and rich unlabeled tensors.

For a detailed design, I show the motivation in Fig. 27. I utilize different colors to represent

different components of data. More specifically, I utilize light blue to represent tensor data X ′
and G.

Then, I utilize orange, blue, red, and green colors to represent the decomposed parameter matrices

A,B,C and D, respectively. These colors can help to distinguish the types of decomposed tensors.

Second, to emphasize the dimension of the decomposed tensors, I bold the corresponding lines in G′

and utilize different colors in B, C, and D to distinguish the bold lines. Then, the reader can easily

understand how the dimensions match. (3) I change the figures for output y1, y2, and y3 to circles,
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where the solid line represents y1 = 1, the two types of dotted lines represent y2 = −1 and y3 =?

(i.e., unknown).

For each PMU tensor X ′
, the left part of Fig. 27 visualizes the process of a Tucker decomposition

into base matrices B, C, and D and a core tensor G. G can maintain the structure as the PMU

tensor X ′
, leading to specific physical interpretations. Specifically, the base matrices can be viewed

as the bases along different dimensions, and the core tensor G represents the interactions among

these bases (Sidiropoulos et al. 2017). Thus, I can assume bases for different PMU tensors are similar

as long as the number of bases is sufficient enough. In contrast, the interaction tensor G contains

discriminative event information.

Then, to maximally remove the redundancy, I directly keep the same bases B, C, and D for

different PMU tensors during the decomposition, shown in the middle part of Fig. 27. Namely,

I utilize a direct Tucker decomposition for a 4-D total event tensor X . Then, B, C, and D are

naturally kept to be the same. Further, I want the core tensor G to contain distinguished event

information. Therefore, I employ the event labels to conduct a supervised learning-based classification

for dissimilarity maximization. The above procedure is for labeled tensors. For unlabeled tensors,

only the decomposition procedure is implemented to increase the model robustness to different

loading conditions. The concrete mathematical model of joint optimization is formulated in the

following subsection.

4.4.2 Semi-supervised Optimization for the Joint Model

In the semi-supervised learning setting, the 4-D total event tensor X in Section 4.4.1 contains all

labeled and unlabeled data. Mathematically, I implement the Tucker decomposition for X as follows:

X ≈ G ×1 A×2 B ×3 C ×4 D

≈
N∑

r1=1

R2∑
r2=1

R3∑
r3=1

R4∑
r4=1

G(r1, r2, r3, r4)ar1 ◦ br2 ◦ cr3 ◦ dr4 ,
(4.1)

where G ∈ RN×R2×R3×R4 is the core tensor, i.e., the compressed tensor with small information

redundancy. The matrices to scale the core tensors are A ∈ RN×N , B ∈ RT×R2 , C ∈ RL×R3 , and

D ∈ RM×R4 . ar1 , br2 , cr3 , and dr4 are the rth1 , rth2 , rth3 , and rth4 columns of A, B, C, and D,

respectively. R2 < T , R3 < L, and R4 < M are the pre-defined dimensions of the reduced tensors to

achieve the information compression.
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In the decomposition of Equation (4.1), the first dimension is fixed of the core tensor G to be N so

that the decomposition can still bring N features to represent different PMU tensors. Furthermore,

the decomposition can be rewritten as:

X(1) ≈ AG(1)(D ⊗C ⊗B)⊤, (4.2)

where X(1) ∈ RN×(T ·L·M) and G(1) ∈ RN×(R2·R3·R4) represent the mode-1 unfolding matrix of

tensors X and G, respectively. Clearly, columns in G(1) represent the compressed features that can

be utilized for the classifier training. Under semi-supervision, I utilize the labeled tensors with labels

for the classification. Then, I propose a joint decomposition-classification model.

min
G(1),A,B,C,D,w,b

J = ||X − G ×1 A×2 B ×3 C ×4 D||2F︸ ︷︷ ︸
J1, Reconstruction Loss

+ γ1 l(EG(1) ·w + b,y)︸ ︷︷ ︸
J2, Classification Loss

+γ2 ||w||22︸ ︷︷ ︸
J3, l2 Norm

,

(4.3)

where J , J1, J2, and J3 denote the total loss, reconstruction loss, classification loss and regularization

terms, respectively. E = [IH×H ,0H×(N−H)] ∈ RH×N denotes a selection matrix to select the

first H feature instances (i.e., the instances with labels) in G(1) for the classification. || · ||F and

|| · ||2 denote the Frobenius norm and the l2 norm, respectively. l(·, ·) represents the classification

loss function. The hinge loss of Support Vector Machine (SVM) is considered in this paper, i.e.,

l(EG(1) · w,y) =
∑H

i=1[1 − yi(f
⊤
i w + b)]+, where f i ∈ R(R2·R3·R4)×1 is the ith instance of the

transformed features and yi is the ith label in y. Namely, F = [f1,f2, · · · ,fH ]⊤ = EG(1). Further,

the hinge loss is defined as [1− t]+ = max(0, 1− t)p. Usually, one can treat p = 1 or p = 2 for l1- or

l2-SVM (L. He et al. 2017), respectively. γ1 and γ2 are positive hyper-parameters to reweight the

three terms in Equation (4.3).

4.4.3 Efficient Kernelization for Powerful Non-linear Feature Extractions

In the last two subsections, I successfully merge the data reduction and machine learning

model into one optimization under semi-supervision. However, many PMU measurements have

non-linear correlations. It is challenging to add non-linearity due to the computational cost. For

example, adding sigmoid or polynomial functions to the loss function l in Equation (4.3) significantly

increases the computations. This motivates the usage of kernel trick for nonlinear feature calculations.
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Specifically, (i) the kernel trick shows that I can find a kernel function k(f1,f2) such that k(f1,f2) =

ϕ(f1)
⊤ϕ(f2) = g(f⊤

1 f2). The inner product computations, i.e., the main calculation procedure for

the loss in Equation (4.3), can be conducted in the original feature space rather than the features

transformed from polynomial or sigmoid functions. (ii) Further, the input features of the classifier

in Equation (4.3) is a feature vector f with the dimension r = R2 · R3 · R4. Then, if I consider

utilizing d-degree polynomial features to represent the original features, I can obtain a rd-dimensional

feature vector ϕ(f). Then, the inner product over the rd-dimensional features can incorporate r2d

multiplications and r2d − 1 summations. In general, I need 2r2d − 1 operations, which is expensive.

(iii) However, the kernel trick enables another procedure of computations with a much smaller

computational cost. Basically, let f1 and f2 denote two r-dimensional features. Then, one only

need to consider the inner product within the original r-dimensional space with r2 multiplications

and r2 − 1 summations. Then, based on the kernel trick, only extra d multiplications are needed

to bring the same result as in (ii). In general, the total operation number is 2r2 − 1 + d, which

saves a lot of computational resources compared to the computations in (ii). Thus, I propose to

utilize kernel function to lift the data to high-dimensional or even infinite-dimensional feature space,

and the kernel trick can enable the calculation to happen in the original data space, which easily

maintains efficient calculations (Kung 2014).

Specifically, due to the Representer theorem (Schölkopf, Herbrich, and Smola 2001), the inner

product of the classification model can be rewritten as f⊤w =
∑H

i=1 αik(f ,f i), where k(·, ·) is the

kernel function and f ∈ R(R2·R3·R4)×1 is a variable in the feature space. Based on this equation, the

kernelized learning process is:

min
G(1),A,B,C,D,α,b

J = ||X − G ×1 A×2 B ×3 C ×4 D||2F︸ ︷︷ ︸
J1, Reconstruction Loss

+ γ1

H∑
i=1

[
1− yi(

H∑
j=1

αjk(f i,f j) + b)
]
+︸ ︷︷ ︸

J2, Classification Loss

+ γ2

H∑
i=1

H∑
j=1

αiαjk(f i,f j)︸ ︷︷ ︸
J3, Regularization

,

(4.4)

where α is the vector of all αis. Eventually, I re-emphasize the nice properties of KTDC-Se by (1)

using tensors to capture multi-dimensional correlations, (2) proposing a joint model for decomposition

69



and classification, (3) introducing kernels for non-linear features, and (4) conveniently tackling both

labeled and unlabeled data.

Treatment for New Data. If other types of events come without label information and if they

never appear in the historical dataset, our model can not directly output the event type and location

since this scenario is beyond our study scope. However, I can assign these new events a new label

that means “to be determined” . By doing this, I can view these new events as labeled data and

input them into our model. This procedure is helpful in providing guidance.

Treatment for Imbalanced Dataset. For power systems, the frequency of different events can

vary significantly, leading to an imbalanced dataset. Then, the classifier may be biased towards event

types with more data. To mitigate the imbalanced issue, there are approaches including reweighting

(Kotsiantis 2011; Wentao Wang et al. 2021; Ren et al. 2018), cost-sensitive training (Shen et al. 2015;

Tang et al. 2009; Zadrozny, Langford, and Abe 2003), and learning rate adaptation (He and Garcia

2009). The reweighting technique aims to balance the different classes by modifying the weights of the

samples. The cost-sensitive training tries to assign higher costs for misclassifying the minority class.

The learning rate adaptation adjusts the learning rate for gradient-based methods and encourages

more weight updating for the minority class. Luckily, these three types of methods are applicable to

our framework.

4.5 Learning Algorithm

The optimization in Equation (4.4) is non-convex. Thus, an alternative optimization algorithm is

proposed to update the individual variable in the optimization while fixing other variables, i.e., the

so-called coordinate descent method. This method is prevailing in the domain of tensor learning

due to its efficiency and good convergence property(Kolda and Bader 2009; L. He et al. 2017; Cao

et al. 2016). Further, to calculate the gradient and avoid the non-differentiable scenario, the l2 SVM

(Tang 2015; L. He et al. 2017) is utilized, i.e., p = 2 in the loss function l(·, ·). Then, to update each

variable, KTDC-Se only needs to calculate the gradients with respect to every single variable and

utilize the gradient descent for updating. Thus, the calculation of the gradients is shown as follows.
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4.5.1 Gradients of Matrices A, B, C, and D

Gradient of A. Based on matrix format of Tucker decomposition and for the convenience of later

derivations, I define H1 = G(1)(D ⊗C ⊗B)⊤. Then, the gradient of the loss function in Equation

(4.4) is calculated with respect to A. Mathematically, the gradient is:

∇AJ = ∇AJ1 = ∇Atr
(
(X(1) −AH1)

⊤ · (X(1) −AH1)
)

= 2(AH1H
⊤
1 −X(1)H

⊤
1 ),

(4.5)

where tr(·) represents the operation to obtain the matrix trace.

Gradients of B, C, and D. By symmetry, H2 = G(2)(D ⊗C ⊗A)⊤, H3 = G(3)(D ⊗B ⊗A)⊤,

and H4 = G(4)(C⊗B⊗A)⊤ can be defined. Then, ∇BJ , ∇CJ , and ∇DJ are calculated as follows:

∇BJ = 2(BH2H
⊤
2 −X(2)H

⊤
2 ),

∇CJ = 2(CH3H
⊤
3 −X(3)H

⊤
3 ),

∇DJ = 2(DH4H
⊤
4 −X(4)H

⊤
4 ).

(4.6)

4.5.2 Gradient of Mode-1 Unfolding Matrix G(1) of the Core Tensor

To update G(1), the following gradients are separately derived. For the reconstruction loss,

H̃ = (D ⊗C ⊗B)⊤ is denoted. Then, the gradient is:

∇G(1)
J1 = ∇G(1)

tr
(
(X(1) −AG(1)H̃)⊤ · (X(1) −AG(1)H̃)

)
= 2(A⊤AG(1)H̃H̃

⊤ −A⊤X(1)H̃
⊤
).

(4.7)

For the classification loss, ŷi =
∑H

j=1 αjk(f i,f j) + b is denoted for simplification. Based on the

chain rule, the gradient is:

∇f i
J2 =



2(ŷi − yi)
∑H

j=1 αj
∂k(f i,fj)

∂f i

+2αi

∑H
j ̸=i(ŷj − yj)

∂k(f i,fj)

∂f i
, if yiŷi < 1 ,

0, if yiŷi ≥ 1 .

(4.8)
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To elaborate on the above equation, polynomial and Radial Basis Function (RBF) kernels are

utilized as examples. For the polynomial kernel k(f i,f j) = (f⊤
i f j + c)d, where c is a constant and

d is the degree of the polynomial function, then

∂k(f i,f j)

∂f i

=


d(f⊤

i f j + c)d−1f j , if i ̸= j ,

2d(f⊤
i f j + c)d−1f i, if i = j .

(4.9)

For the RBF kernel k(f i,f j) = exp(−λ||f i − f j ||22), where λ is a positive constant:

∂k(f i,f j)

∂f i

= 2λk(f i,f j)(f j − f i). (4.10)

Recall that F = [f1,f2, · · · ,fH ]⊤ = EG(1), ∇F J2 = [∇f1
J2,∇f2

J2, · · · ,∇fH
J2]

⊤ can be

obtained. Thus, ∇G(1)
J2 = [∇f1

J2,∇f2
J2, · · · ,∇fH

J2,0, · · · ,0]⊤.

For the Regularization term, the result is:

∇f i
J3 = α2

i

∂k(f i,f i)

∂f i

+ 2αi

∑
j ̸=i

αj

∂k(f i,f j)

∂f i

. (4.11)

Similarly, ∇G(1)
J3 = [∇f1

J3,∇f2
J3, · · · ,∇fH

J3,0, · · · ,0]⊤ can be obtained. Summing the

gradients of the three loss functions can bring the total gradient, i.e., ∇G(1)
J = ∇G(1)

J1+γ1∇G(1)
J2+

γ2∇G(1)
J3.

4.5.3 Gradients of Classifier Parameters α and b

Gradient of α. The learning weight α is coupled with the classification loss and the regularization.

For the classification loss, then

∇αi
J2 =



∑H
j=1 2(ŷj − yj)k(f i,f j), if yiŷi < 1 ,

0, if yiŷi ≥ 1 .

(4.12)

Note that ŷj can be explicitly expressed by α, i.e., ŷj = k⊤
j α+b, where ki is the ith column vector

of the kernel matrix K, and the kernel matrix is defined as K(i, j) = k(f i,f j). Thus, the above

equation can be written to a matrix format. Specifically, if yiŷi < 1, ∇αi
J2 = 2k⊤

i ·Kα+2k⊤
i ·(b−yi)1
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can be written, where 1 is an all-one column vector. Further, one can obtain a general format:

∇αJ2 = 2KI0(Kα+ b1− y), (4.13)

where I0 satisfies

I0(i, j) =


1, if i = j and yiŷi < 1 ,

0, otherwise.

(4.14)

Further, for the regularization, it’s easy to find that

∇αJ3 = 2Kα. (4.15)

Finally, the total gradient is ∇αJ = γ1∇αJ2 + γ2∇αJ3.

Gradient of b. Similarly, I calculate the gradient with respect to b:

∇bJ = 1⊤I0(ŷ − y), (4.16)

where ŷ is the vector of all ŷis. With the above derivations, the final learning algorithm and flowchart

are presented in Algorithm 5 and Fig. 28.

Algorithm 5 Train-KTDC-Se(X ,y).
Input: Training tensor X and labels y.
Hyper-parameters: number of labeled data H, core tensor dimensions R2, R3, and R4,

regularization parameters γ1 and γ2, polynomial kernel parameters d and c, RBF kernel parameters
λ, and learning rate lr.

Output: Parameters Gk
(1),A,B,C,D,α, and b.

4.5.4 Training on Mini-batches

The above learning process may suffer storage issues when the number of training data N is large.

Specifically, when updating B, C, and D in Equations (4.6), the Kronecker product to calculate

H2, H3, and H4 requires a large storage for A ∈ RN×N . To mitigate this issue, I modify Algorithm

5 to train on mini-batches to save the memory(Zhao et al. 2014; Li, Weng, and Tong 2022).

Mathematically, I divide the training tensor X and labels y into K mini-batches {X i}Ki=1 and

{yi}Ki=1, respectively. Each X i contains some labeled data with labels to be yi and many unlabeled
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Figure 28. The Flowchart of the KTDC-SE Algorithm.

data. Then, in each iteration, I update the mini-batch-independent weights Ã,B,C,D and b.

Ã ∈ RÑ×Ñ is the matrix along the first dimension of each mini-batch tensor, where Ñ = ⌊N/K⌋

and ⌊·⌋ represents the floor function. Notably, keeping Ã the same for different mini-batches is an

additional restriction to maintain similarity of A, which doesn’t appear in the direct training of

Algorithm 5. However, this restriction further guarantees that the discriminative information is

contained in core tensors.

Further, KTDC-Se uses mini-batch-dependent parameters Gi
(1) ∈ RÑ×(R2·R3·R4) and αi for

the ith mini-batch, where αi ∈ RH̃×1 and H̃ = ⌊H/K⌋. Especially, Gi
(1) is a sub-block of G(1),

i.e., G(1) = [(G1
(1))

⊤, · · · , (GK
(1))

⊤]⊤. Correspondingly, I have F = [(F 1)⊤, · · · , (FK)⊤]⊤, where

F i = EiGi
(1) and Ei = [IH̃×H̃ ,0H̃×(Ñ−H̃)]. Essentially, αi is a sub vector of the final weight vector

α = [(α1)⊤, · · · , (αK)⊤]⊤.

Then, for the ith mini-batch, our training algorithm should obtain features Gi
(1), check the support

vectors in these features, and update their corresponding weights in αi. To maintain the coupling

between Gi
(1)(αi) and the rest Gj

(1)s (αjs), where j ̸= i, all the information in F , y and α should

be utilized to obtain ∇Gi
(1)
J2, ∇Gi

(1)
J3, ∇αiJ2, and ∇αiJ3 by Equations (4.8), (4.11), (4.13), and
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(4.15), respectively. Then, I can fix the corresponding gradients with respect to support vectors in

other mini-batches to 0s. Consequently, the complete algorithm can be seen in Algorithm 6.

Algorithm 6 Train-mini-batch-KTDC-Se(X ,y).
Input: Training tensor X = {X i}Ki=1 and labels y = {yi}Ki=1.
Output: Parameters {Gi

(1)}Ki=1, Ã,B,C,D,α, and b.
repeat i = 1 to K Utilize the complete information in G, y, and α and the mini-batch data to
obtain: Gi

(1), Ã,B,C,D,αi, b = Train-KTDC-Se(X i,yi|F ,y,α). F = [(F 1)⊤, · · · , (FK)⊤]⊤.
α = [(α1)⊤, · · · , (αK)⊤]⊤. until convergence =0

4.5.5 Testing on Mini-batches

For the cross-validation process or online testing, I have another total test tensor X̃ ∈ RÑ×T×L×M

that needs to experience the decomposition and classification to obtain the label ỹ ∈ ZÑ×1, where

I fix Ñ to be the number of PMU tensors in one mini-batch. The reason of fixing Ñ is that our

mini-batch training yields a parameter matrix Ã ∈ RÑ×Ñ that must be utilized for the test tensor

decomposition. Therefore, there should be Ñ PMU tensors in the total test tensor. For real-time

testing, if the testing PMU tensor number is not sufficient, I can repeat the testing tensor or utilize

some data from the historical dataset to complete the testing mini-batch. Thus the testing procedures

are as follows.

Obtain Test Feature Matrix G̃(1). To obtain G̃(1), I utilize the learned parameters Ã,B,C and

D. By setting the gradient in Equation (4.7) to 0, I can obtain

G̃(1) = (Ã
⊤
Ã)−1 · (Ã⊤

X̃(1)H̃
⊤
) · (H̃H̃

⊤
)−1, (4.17)

where X̃(1) represents mode-1 unfolding of tensor X̃ .

Predict label vector ỹ. Based on the Representer theorem, I need the learned weights α and

b, historical features in F = G(1), and test features in G̃(1) = [f̃
⊤
1 , · · · , f̃

⊤
Ñ ]⊤ to predict labels.

Specifically, I can first calculate a test kernel matrix K̃(i, j) = k(f̃ i,f j), where f̃ i ∈ G̃(1) and

f j ∈ F . Then, the predicted label can be obtained by:

ỹ = K̃α+ b. (4.18)

Remark: Since I have to train multiple binary models, our method requires a certain level of

computation for training. However, the model prediction is fast. For example, I show the average
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training and testing time in Table 13 in the experiments. Our method (KTDC-Se) has the second-

largest training time and the second-lowest testing time. The fast testing performance is because I

significantly reduce the number of model parameters by tensor Tucker decomposition. This structural

tensor decomposition guarantees that KTDC-Se can have compact and informative feature vectors,

bringing fast and accurate event identification. Therefore, in realistic applications, I can conduct

offline training using more time and computational resources. Then, our light model can be fast

implemented for online inference.

I can further improve efficiency by changing the structure of the model design. For example, I

can have one base model and restrict all sub-models to sharing the base model. These sub-models

represent different branches for classification. The multi-branch design can enable one-time training

for all classifiers. Moreover, this design can easily fit into our framework because of our gradient-

based training algorithms (i.e., Algorithms 5 and 6). More specifically, the chain rule for gradient

calculations enables the information of gradients to be passed from branches to the base, similar to

multi-branch neural networks (Al Rahhal et al. 2018). However, due to the space limit, I will discuss

this topic in future work.

4.6 Experiments

For validation, I test over synthetic data sets such as the Illinois 200-bus system and South

Carolina 500-bus system (Li, Ma, and Weng 2022; Li, Ma, Weng, and Farantatos 2022). I also test

our results with realistic data from our utility partners.

4.6.1 Dataset Description

I utilize Illinois 200-bus system and South Carolina 500-bus system (Li, Ma, and Weng 2022)

to generate event data. Five event types are considered, including line trip, generator trip, single-

phase-to-ground fault, phase-to-phase fault, and three-phase fault. For each event type, I consider 2

different event locations. Thus, there are 10 unique combinations of event types and locations, i.e.,

10 event labels.

Then, I vary the loading conditions for the simulation to generate diversified event files. Totally, I
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have 80 event files each of which has 10s event data. Further, I consider the data resolution to be 60

samples per second, yielding 600 samples for each event file. To extract tensors from these streams, I

utilize the moving window with the length to be 0.5s (i.e., 30 samples) and the moving gap to be

0.083s (i.e., 5 samples) to cut the PMU streams. I utilize a small moving window to obtain data

points. In our experiment, each window covers 0.5s (i.e., 30 samples of PMU measurements). Fig. 29

illustrates why I select 0.5s as an appropriate window length. Specifically, the plot is a visualization

of the PMU streams over time, where the x-axis represents the time and the y-axis represents the

measurements (VM denotes voltage magnitude, VA denotes voltage angle, and F denotes frequency).

I find that using 0.5s as the window length can appropriately include partial event information to

identify events. Next, the length is not too long to prevent fast and real-time detection. Finally, in

Section 4.6.7, I conduct the sensitivity analysis for the window length, which shows that the length

between [0.4, 0.7] can help to train an accurate model.
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Figure 29. The Demonstration for Window Length Selection.

In general, I have 5840 PMU tensors in total. For each PMU tensor, I have T = 30 for the

time dimension, L = 200η1 or L = 500η1 for the 200-bus and the 500-bus system, respectively,

where η1 ∈ {0.05, 0.1, 0.15, 0.2} represents the PMU penetrations for the grid. For each fixed η1,

PMU locations are randomly chosen for 5 times. Then, I set M = 3 for the measurement types,

i.e., voltage magnitude, voltage angle, and frequency. To summarize, I have X ∈ R5840×30×200η1×3

or X ∈ R5840×30×500η1×3 for training and testing. To mimic a semi-supervised setting, I consider

labeled data with the ratio of η2 = {0.1, 0.2, 0.3, 0.4, 0.5}, leading to a label vector y ∈ Z5840η2×1.

Finally, I also test our proposed method using real-world PMU data from our partner in Arizona,

USA. These files totally have 5 labels covering 3 types of line faults (single-phase-to-ground fault,
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phase-to-phase fault, and three-phase fault) at 2 locations. After tensorization of data in 35 PMUs, I

can obtain X ∈ R511×30×35×3 and y ∈ Z511×1.

Software For the simulation, I employ a commercial-grade simulator, Positive Sequence Load

Flow (PSLF) (General Electric Energy Consulting 2018) from General Electric (GE) company. For

the model development and validation, I use Python with Pycharm IDE.

Summary of data and feature dimensions

• For Illinois 200-bus system, the total event tensor is X ∈ R5840×30×200η1×3 and the input

data dimensions are {900, 1800, 2700, 3600}. Subsequently, I set R2 = 6, R3 ∈ {5, 5, 6, 8}, and

R4 = 2, and the feature dimensions are {60, 60, 72, 96}. For other benchmark methods, I employ

PCA to reduce the dimensionality of the raw data and obtain features with the dimension of

{120, 140, 150, 180}.

• For South Carolina 500-bus system, the total event tensor is X ∈ R5840×30×500η1×3 and the input

data dimensions are {2250, 4500, 6750, 9000}. Subsequently, I set R2 = 6, R3 ∈ {5, 6, 8, 10},

and R4 = 2, and the feature dimensions are {60, 72, 96, 120}. For other benchmark methods,

I employ PCA to reduce the dimensionality of the raw data and obtain features with the

dimension of {140, 180, 200, 240}.

• For datasets of the utility in Arizona, USA, the total event tensor is X ∈ R511×30×35×3 and the

input data dimension is 3150. Subsequently, I set R2 = 6, R3 = 6, and R4 = 2, and the feature

dimension is 72. For other benchmark methods, I employ PCA to reduce the dimensionality of

the raw data and obtain features with the dimension of 160.

Table 10. Testing Accuracy (%) (Mean ± Standard Deviation) for Real-world PMU Data.

KTDC-Se Resnet KTDC-Se-l MixMatch FixMatch SSLN
Accuracy 92.3 ± 0.8 77.1± 0.6 80.5± 1.1 82.6± 0.8 83.3± 1.6 83.5± 2.1
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4.6.2 Benchmark Methods

First, I train our KTDC-Se within the labeled data as a benchmark to demonstrate the impacts

of the unlabeled data. Further, I employ state-of-the-art Semi-Supervised Learning (SSL) methods

as benchmarks. The details of these methods are shown as follows.

• Deep Residual Network (Resnet) (K. He et al. 2016): Resnet is an efficient deep learning model

for classification. For this supervised learning model, I utilize only labeled data as comparison.

As PMU data have high dimensionality (e.g., 9000 for the 500-bus system with η1 = 0.2),

Principal Component Analysis (PCA) is utilized to pre-process data before training the Resnet.

• KTDC-Se-L: KTDC-Se-L is to train a KTDC-Se model with only labeled data by setting

N = H in the model, which demonstrates the effectiveness of employing unlabeled data for

training a classifier.

• MixMatch (Berthelot et al. 2019): MixMatch can guess low-entropy labels for unlabeled

instances with data augmentation. Then, MixMatch develops a probabilistic procedure to

mix the labeled and unlabeled data to train a deep learning classifier. Similarly, I employ

PCA to reduce the dimensionality of the mixed dataset from MixMatch and input them into a

Resnet (K. He et al. 2016) as the final classifier. For a fair comparison, the Resnet has the

same architecture as the first benchmark.

• FixMatch (Sohn et al. 2020): FixMatch first generates pseudo labels for data with weak data

augmentation. Then, FixMatch develops a criterion to decide the pseudo label is retained or

not. Finally, data with retained pseudo labels experience a strong data augmentation for the

classifier training. Similar to MixMatch, I utilize PCA + Resnet as the final classifier. For fair

comparison, the Resnet has the same architecture as the first benchmark.

• Semi-supervised Ladder Network (SSLN) (Rasmus et al. 2015): SSLN combines supervised and

unsupervised learning in deep neural networks with a joint loss function in a ladder network

with an auto-encoder model structure. Similarly, I pre-process the data with the PCA method.

During the testing, the hyper-parameters for all models are fine-tuned in the 3-fold cross-validation

to achieve the best accuracy. In general, by comparing the testing accuracy of KTDC-Se with Resnet,

and KTDC-Se-L, I can illustrate the effectiveness of using unlabeled data. By comparing the testing

accuracy of KTDC-Se and other methods, I can evaluate the performance of using an integrated
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model and two-stage models. Especially, Resnet, MixMatch, FixMatch, and SSLN have two separate

steps of data pre-processing and learning, which have their biased selections. By comparing the label

predicting time of KTDC-Se and other methods, I can evaluate the efficiency of the methods for

real-time inference. Finally, by comparing the choice of kernel selection, I can understand how the

non-linear kernels boost the performance.

4.6.3 Joint Optimization of KTDC-Se is Better Than Two-stage Models

In this subsection, I evaluate the integration design by comparing our KTDC-Se and other two-

stage models. By default, I set the kernel of our KTDC-Se to be polynomial with the degree d = 2.

Thanks to the integration without biased selection for the two-stage compression and classification,

our model performs much better than benchmarks. Specifically, I report the results of simulated and

real-world data as follows.

For the simulated data, I first fix η2 = 0.3 to divide the labeled and unlabeled datasets for training

and testing. Fig. 41 and 42 demonstrate the results for the two systems. Since for each η1 of one

system, I conduct 5 times randomization and 3-fold cross validation of the PMU location selection,

there can be multiple different values of the testing accuracy for each testing scenario. Thus, I present

the box plot in Fig. 41 and 42 to show the average and the variance.

I find that our KTDC-Se has an average accuracy promotion of 13.3%, 13.6%, and 9.3%, compared

to MixMatch, FixMatch, and SSLN, respectively. Notably, the latter 3 benchmark models utilize

PCA to pre-process data so that they can be trained at a reasonable cost. Even though these 4

methods utilize the same labeled and unlabeled data for training, the better performance of KTDC-Se

shows that an integrated model can be better than the two-stage models. This is because that the

integrated model avoids the biased selection of the two separate models. Further, the joint model

enables the identification of discriminative core tensors that are sensitive to the event labels.

In our experiment, I implement 5 times random sampling for PMU locations for a given PMU

penetration η1 for two systems. Intuitively, if the PMUs are closer to the event, the accuracy should

be higher. Then, for a fixed η1 and fixed event locations, the relative PMU locations with respect
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Figure 30. Testing Accuracy (%) for the 200-bus System.

Figure 31. Testing Accuracy (%) for the 500-bus System.
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Figure 32. F1 Score (%) for the 200-bus System.

Figure 33. F1 Score (%) for the 500-bus System.
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to the event location cause the accuracy variance. Therefore, 500-bus system usually has higher

accuracy variance than that of 200-bus system since 500-bus system has a larger range.

This information is also validated from Fig. 4 in the manuscript when η1 ∈ {0.05, 0.1, 0.15}.

However, when η2 = 0.2, I find that the 500-bus system has a higher accuracy mean and lower

accuracy variance. After careful checking, I find the reason is that 5 is a small number for random

sampling of PMU locations. Specifically, when η2 = 0.2, there are 4 out of 5 tests in the 500-bus

system to have PMU locations close to the event location. However, for the 200-bus system, there

are only 2 tests when PMU locations are close to the event locations. This shows that I may meet

the situation when the 500-bus system data brings better performance.

I also utilize F1 score to evaluate the performance for 200- and 500-bus systems. F1 score is the

harmonic mean of precision and recall metrics, which gives a much better evaluation for datasets of

imbalanced classes than accuracy (Joos Korstanje 2021). Under this setting, I re-evaluate Section

VI-D using F1 score. Fig. 32 and 32 illustrate that our proposed KTDC-Se model still has the best

performance in different scenarios under F1 score, which demonstrates the superiority of our model.

Compared to test accuracy, the result of F1 score for all methods is relatively lower. This is because

F1 score has an overall consideration of the precision and the recall rate. However, under the metric

of F1 score, KDTC-Se is still the best method.

For the real-world data, I report the testing accuracy in Table 10. I observe that the average

accuracy promotions of KTDC-Se are 9.7%, 9%, and 8.8%, compared to MixMatch, FixMatch, and

SSLN, respectively. This still supports the advantage of using an integrated model.

I further evaluate the accuracy for each event type for the 200-bus system with η1 = 0.1. The

results can be seen in Table 11. Other scenarios can bring similar results. I denote LT to represent

line trip, GT to represent generator trip, SP to represent single-phase fault, PP to represent phase-

to-phase fault, and TP to represent three-phase fault. Next, the numbers 1 and 2 represent the two

different locations. The result illustrates that three-phase faults are easier to identify since they are

more severe than others. On the other hand, the single-phase and phase-to-phase faults have lower

accuracy since they have similar fault behaviors.
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Table 11. Testing Accuracy (%) (Mean ± Standard Deviation) for Real-world PMU Data.

Label KTDC-Se Resnet KTDC-Se-l MixMatch FixMatch SSLN
LT1 96.8 81.5 86.3 84.5 85.2 92.6
LT2 97.2 81.7 87.2 84.2 84.9 93.1
GT1 98.3 82.3 87.4 85.1 85.4 94.2
GT2 97.8 83.2 86.8 84.0 84.9 92.5
SP1 95.7 80.6 84.6 82.5 83.3 89.8
SP2 96.1 81.0 84.8 82.7 83.6 91.3
PP1 96.5 81.5 85.2 83.1 84.5 90.6
PP2 97.2 81.2 85.4 82.6 85.1 91.5
TP1 98.5 85.1 88.7 86.2 87.2 92.6
TP2 99.3 85.7 87.9 87.4 87.7 93.0

Table 12. The Average Predicting Time (S) of the Testing Dataset for Different Methods.

KTDC-Se Resnet KTDC-Se-l MixMatch FixMatch SSLN
Time 1.3 3.8 0.4 3.8 3.7 6.4

Table 13. The Average Training/Testing Time (s) of the Training/Testing Dataset for Different
Methods.

KTDC-Se Resnet KTDC-Se-l MixMatch FixMatch SSLN
Training Time 359.6 325.7 45.8 333.6 345.4 431.3
Testing Time 1.3 3.8 0.4 3.8 3.7 6.4

4.6.4 Semi-supervised Learning Boosts KTDC-Se Model Performance

In this subsection, I compare KTDC-Se, Resnet, and KTDC-Se-L to illustrate the effectiveness of

semi-supervised learning. Specifically, for synthetic data, the average accuracy promotions are 18%

and 13.3%, compared to Resnet and KTDC-Se-L, respectively. For real-world data, the corresponding

accuracy promotions are 15.2% and 11.8%. These results show that there is a significant improvement

when using unlabeled data.

The performance can be explained as follows. First, I can compare KTDC-Se and KTDC-Se-L.

When doing the tensor decomposition of the PMU tensors, the unlabeled tensors in KDTC-Se enable

the core tensors to understand different loading conditions and maintain similarity for different

conditions as long as the event label is the same. Then, the trained classifier can successfully tackle

different operational scenarios. Second, I can compare KTDC-Se-L and Resnet. I find that Resnet
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has an even worse performance as Resnet also employs PCA to pre-process data. As illustrated in

Section 4.6.3, the two-stage model performs worse.

To further understand how much labeled data is needed for a good performance of KTDC-Se, I

utilize the simulated data to test and fix η1 = 0.1 and vary η2 ∈ {0.1, 0.2, 0.3, 0.4, 0.5} for the number

of labeled data. As a comparison, I also implement KTDC-Se-L for the labeled data. Further, I also

present the optimal testing accuracy via employing labels for all the PMU tensors to train the model,

i.e., η2 = 1. The results of average testing accuracy are shown in Fig. 34a and 34b.

Based on the plots, I have the following observations. (1) Training with extra unlabeled data

significantly improves the accuracy, which has been explained before. (2) KTDC-Se can efficiently

utilize the limited labels. For example, when η2 = 0.1, the testing accuracy is still higher than 94%.

This implies that KTDC-Se can filter information and group data by event labels in the feature space.

Such a good result comes from the joint learning process to generate compact and discriminative

features. (3) As η2 increases, the testing accuracy of KTDC-Se gradually increases up to the optimal

accuracy. Further, with only 30% of the labeled data, KTDC-Se can bring an accuracy almost close

to the optimal one. This again indicates the high efficiency of KTDC-Se to utilize limited labels.

4.6.5 Tensor-based Framework Enables Fast Inference

The model efficiency can be evaluated via the training and testing time. I utilize the simulated

data in Section 4.6.3 and report the computational time of all methods on the testing dataset in Table

13. Based on the results, I have the following conclusions. (1) SSLN has the largest computational

time due to its largest size with ladder networks, decoders, and encoders. (2) KTDC-Se has the

second largest computational time since each KTDC-Se is a binary classifier and I utilize multiple

binary models to create the final decision. Thus, the total training time for multiple models is

higher. (3) The total training time of KTDC-Se is still comparable to other models. This is because

training each binary model requires much smaller computations than other benchmark methods.

More specifically, the input dataset for each KTDC-Se model only covers two event classes and has a

much smaller size. (4) Resnet, MixMatch, and FixMatch have relatively close training times since

they have the same input data processed via PCA and similar DNN models for classification. (5)

KTDC-Se-L has the smallest training time since it only utilizes labeled data.
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(a) Sensitivity Analysis for the 200-bus System.

(b) Sensitivity Analysis for the 500-bus System.

Figure 34. Results of the Sensitivity Analysis with Respect to Labeled Data Ratios.
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I further find that KTDC-Se has the second lower testing time, which demonstrates its efficiency.

Further, KTDC-Se-L has the lowest time because it uses less data (i.e., only labeled data) for training.

Thus, the test kernel matrix has a much smaller size compared to that in KTDC-Se. According to the

prediction function in Equation (4.18), KTDC-Se-L has a lower testing time compared to KTDC-Se.

However, if I utilize both labeled and unlabeled data, KTDC-Se is much more effective in doing the

inference than other methods. The reason is that KTDC-Se employs tensor decomposition to explore

cross-dimension correlations and obtain a very compact core tensor for tests, but other methods

utilize PCA to compress data, which needs more features to achieve the best accuracy. Secondly,

other methods utilize a deep model to extract non-linear features, requiring more computational

time. Thirdly, Resnet, FixMatch, and MixMatch share the same DNN architecture and consume

similar times for testing. On the other hand, the ladder network in SSLN has a larger size and needs

more time to predict the label.

4.6.6 Non-linear Kernelization Largely Increases the Accuracy

In this subsection, I study the effectiveness of kernelization on the capacity of the classifier.

Specifically, I report the testing accuracy for the 200-bus system when η1 = 0.1 and η2 = 0.3. Other

results are similar and ignored due to the space limit. Then, I study the case with a constant kernel

(e.g., d = 1 for the polynomial kernel) and cases with different non-linear kernels. When kernel is a

polynomial function, I vary d ∈ {1, 2, 3}. When kernel is a RBF function, I vary λ ∈ {0.05, 0.1, 0.15}.

The results are shown in Table 14. First, if I compare the constant kernels with other kernels, I

find that adding non-linear kernels can significantly increase the accuracy. This is because the PMU

measurements have high non-linear correlations. Secondly, the polynomial kernel can lead to an

accuracy of 95.5% when d ≥ 2. For the RBF kernel, the accuracy is around 94.7% when λ ≥ 0.1.

This shows that the polynomial kernel, especially when d = 2, is better than others. The partial

reason is that the quadratic correlations largely lie in the power flow equations.

4.6.7 Sensitivity Analysis of the Window Length

Finally, I vary the length of the moving window to test the suitable region. Specifically, I conduct
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Table 14. The Testing Accuracy (%) (Mean ± Standard Deviation) for Different Kernels.

Kernel name d or λ Accuracy
Polynomial 1 89.22± 0.6
Polynomial 2 95.7 ± 0.3
Polynomial 3 95.4± 0.2
RBF 0.05 93.3± 0.6
RBF 0.1 94.7± 0.3
RBF 0.15 94.6± 0.5

the experiments for the 200-bus system with η1 = 0.1 and η2 = 0.3. Further, I set the kernel of our

KTDC-Se to be polynomial with the degree d = 2. The result is shown in Table 15. I have the

following observations on the results. First, when the window length is less than 0.3s, the accuracy

will decrease. This shows that when the window width is too small, the event dynamics may not

be completely covered and the classification will encounter errors. Second, the test accuracy will

decrease slightly when the window width is larger than 0.8s. This is because a large window will

contain both normal and event information, which reduces the classification accuracy. Third, the

best value of window length is 0.6s, and there is a robust region [0.4, 0.7] to produce an accurate

model.

Table 15. The Testing Accuracy (%) (Mean ± Standard Deviation) for Different Window Lengths.

Window length Accuracy
0.1 88.3± 0.3
0.2 89.2± 0.4
0.3 92.3± 0.3
0.4 95.3± 0.4
0.5 95.7± 0.3
0.6 95.9 ± 0.3
0.7 95.2± 0.2
0.8 93.5± 0.3
0.9 93.6± 0.2
1.0 94.1± 0.2
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Chapter 5

EVENT DETECTION: EXTRINSIC KNOWLEDGE ENHANCEMENT THROUGH TRANSFER

LEARNING

5.1 Introduction

Power systems are dramatically integrating highly uncertain components for cleaner, more

efficient, and lower-cost energy generations and consumption. For example, renewable energies like

Photovoltaic (PV) and wind power depend largely on the changing weather. The charging of Electric

Vehicles (EVs) also brings randomness to the electric grid. This unprecedented system evolution,

despite promising values, deteriorates traditional system monitoring and prevents the achievement of

situational awareness.

To enhance the system monitoring under changing operating points, Machine Learning (ML)

methods are more and more popular due to their high capacity of extracting informative features

from dynamic data streams. This advantage is especially expanded with the increasing deployment of

Phasor Measurement Units (PMUs) to provide high-resolution phasor data. PMU-based ML models

achieve great success in state estimation (Weng, Negi, and Ilić 2019), event identification (Haoran Li

et al. 2019a; H. Li et al. 2019; Yuxuan Yuan et al. 2021b), resilience improvement (Alimi, Ouahada,

and Abu-Mahfouz 2020), and cyber-attack detection (Mohammadpourfard et al. 2020), etc. These

applications, however, strictly assume that there are enough data for training.

Such an assumption is easily violated in the following scenarios. 1) For new grids, data scarcity

prevents ML model training. 2) For old grids with new meters or components (e.g., lines, generators,

and loads), the data dimensionality and distributions change after the new construction. Thus, old

ML models will fail, while new models are hard to train with limited data. 3) Even for stable grids

with long-term operations and few events, the number of event labels is limited. Thus, directly

training of a Machine Learning (ML) model is hard due to the limited labels. For example, the

fault data is intrinsically limited for a highly reliable grid. In general, I demand new principles to

fundamentally change the dilemma.

Therefore, I propose to utilize Transfer Learning (TL) for knowledge migration from a data-rich
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Figure 35. The Flowchart of the Proposed Transfer Learning Framework.

grid (source grid) to a data-limited grid (target grid). TL employs well-established feature extraction

techniques to obtain common features for enhancing the decision-making in the target domain (Pan

and Yang 2009). This approach promotes many TL applications to fields like object localization

(Guillaumin and Ferrari 2012), image classification (Y. Zhu et al. 2011), video pattern recognition

(Duan et al. 2009), sentiment analysis (Blitzer, McDonald, and Pereira 2006), and vehicle routing

detection (Feng et al. 2012), etc. For power systems, TL also has few applications on dynamic

security assessment (Ren and Xu 2019), load file generation (Li, Weng, and Tong 2020) and event

forecasting (X. He et al. 2020). However, these methods are restricted to a small scope and have

limited theoretical foundations. In this chapter, I aim to propose a general TL framework for power

system transfer learning with both strong theoretical foundations and high generalizability. Notably,

although I focus on event type differentiation and localization, these two tasks are representative for

situations of data space homogeneity/heterogeneity and label space identicalness/disjointing.

More specifically, I assume two grids can have either the same or different number of PMUs for

homogeneous and heterogeneous measurement spaces (Day and Khoshgoftaar 2017), respectively. As

for the label space, two grids share the same event-type set but completely different event-location

sets. For example, the location label of a line trip for one grid doesn’t have any physical meanings for

the other grid. Taking all the above characteristics into consideration, I try to answer the following

questions. (i) Can I propose a unified framework to incorporate datasets with the same or different

dimensionalities and minimize the knowledge transfer error? (ii) Can I bridge two disjoint label

spaces for physically meaningful label transfer?

For question (i), I focus on heterogeneous TL and treat the homogeneous scenario as one special

case. To align the dimensionality, existing work aims to find proper projections. (Zhou et al. 2014)

find the mapping from the source to the target by minimizing the Euclidean distance. This projection
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is inefficient and inaccurate for power system datasets since a) the Euclidean distance is an inaccurate

measure to evaluate the data distribution difference (Day and Khoshgoftaar 2017) which implies

that there is a distance between the distribution of the source and the target spaces. For example,

for two power systems, the PMU measurements usually have certain distribution distances due to

different operating conditions. b) the transformation requires a perfect reconstruction of target data

that has ultra-high dimensionality in power systems. For adapting distribution difference, Domain

Adaptation (DA) in TL minimizes distribution discrepancy for the source and the target domains to

obtain the common knowledge, which is theoretically sound and computationally inexpensive (Pan

and Yang 2009). For example, (Yan et al. 2018) improves the problem a) by introducing Entropic

Gromov-Wasserstein Discrepancy for a better evaluation but still meets the problem of b). (Tsai,

Yeh, and Wang 2016) utilizes the so-called Maximum Mean Discrepancy (MMD) (Long et al. 2013)

as the measure for problem a). For problem b), Principal Component Analysis (PCA) is employed

to pre-process the target domain’s data, thus making the conversion from the source to the target to

be an efficient dimensionality reduction process. However, PCA fixes the mapping for the target grid

to a subspace, thus reducing the capacity of finding common knowledge.

To increase the capacity, I propose to find two projections for both the source and the target data

to a common low-dimensional space. Within this space, I utilize MMD to measure the distribution

divergence. Further, to support the proposed method, I exhibit strong mathematical foundations

for the optimization formulation and the introduction of MMD measure. After projections, any ML

models can be further trained using the transformed data to perform tasks in the target grid as long

as the label spaces are the same. For disjoint label spaces in question (ii), a label-transfer process is

required. I find that usually, the disjoint labels indicate a local change to the system, e.g., the label

for a local event. These changes have higher impacts on PMUs that are closer to the change location.

Thus, I can select a fixed number of representative PMUs for two grids to relabel the local change.

Consequently, disjoint label spaces are mapped to one common label space for the label transfer,

thus complementing the total TL framework.

The complete framework is illustrated in Fig. 35. I aim to transfer knowledge from a long-operated

source grid to a new target grid, which boosts the performance of an ML model to identify events in

the target grid. To capture event patterns, I utilize PMU data with high resolutions and labels to

train a supervised ML model like a Deep Neural Network (DNN). However, as shown in the middle of
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Fig. 35, the measurement spaces of the source and the target system (1) have different distributions

due to different operating conditions, and (2) have different dimensions that cause heterogeneity.

Further, though two systems can have shared event type labels, they own (3) disjoint event-location

label spaces. Thus, traditional ML models fail to utilize all the information together, and I propose a

heterogeneous Transfer Learning (TL) framework to tackle these problems. Specifically, as shown in

the middle of Fig. 35, the data transfer process handles (1) and (2) via finding the common feature

space with the same dimensions and similar feature distributions from the source and the target

systems. Thus, these features can be input to the ML model (e.g., the DNN model at the right of Fig.

35) for training. Secondly, the label transfer process deals with (3) via categorizing event locations

into zones that have the same number and relative locations (e.g., Northwest and Southeast, etc.)

in the source and the target grid. Then, zone indices are treated as labels. Finally, the right part

of Fig. 35 illustrates that the event type or event zone labels are the output of the ML models for

training and predictions. In general, I have the following contributions:

• I formalize the problem of power system TL with a thorough consideration of the data-space

and label-space differences. With domain knowledge, I show that though data/label differences

exist, there is shared knowledge, and positive transfer can always happen.

• I propose a general framework to minimize the differences with strong mathematical guarantees

for highly efficient knowledge transfer.

• I will conduct extensive experiments to demonstrate the high performance of our framework

with datasets from different systems.

Remark: to the best of the author’s knowledge, this chapter is the first to consider both the

data space heterogeneity and label space non-overlaps. Primarily, I combine the domain knowledge

of event responses and rigorous mathematical proofs to build the model. With extensive experiments,

I show the effectiveness of our proposed models.

The rest of the chapter is organized as follows: Section 5.2 formalizes the problem. Section 5.3

demonstrates the data transfer process. Section 5.4 illustrates the label transfer approach. Section

5.5 evaluates the performance of the proposed framework.
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5.2 Problem Definition

In this chapter, the goal is to train a classifier that can analyze a period of PMU streams and

output the underlying event type and location. Note that some smart meter data with high resolutions

and qualities (Stegner et al. 2016; G. Liu et al. 2020; Zhu and Reinhardt 2019) can also be utilized

as long as the measurements can capture event dynamics. However, in this chapter, I focus on PMU

data. To prepare the input data, I employ a moving window to segment PMU streams. As shown in

Fig. 36, the window has fixed width and moving gap for the source and the target measurements.

Then, each time a small period of electric measurements (e.g., voltage, current, and frequency) for all

PMUs is gathered and vectorized into an input vector. Specifically, I denote x ∈ RdS and x̃ ∈ RdT as

the input vector variable for the source and the target grid, respectively, where dS and dT represent

the corresponding dimensionalities. Generally, I consider the scenario when dS ̸= dT due to different

PMU numbers in two grids. However, our models can also handle the case when dS = dT . Then, let

y and ỹ be the label variable of the input vectors for the source and the target grid. The label can be

the normal status, event types, and event locations. For event type labels, I have y, ỹ ∈ {1, 2, · · · ,K},

where K is the total number of event types in the power systems. For the event location label, I

have y ∈ {I1, I2, · · · , Ih} and ỹ ∈ {J1, J2, · · · , Jl}, where h and l are the number of event locations

for the source and the target grids, respectively. Note that {I1, I2, · · · , Ih} ∩ {J1, J2, · · · , Jl} = for

two disconnected power networks.

After the moving window segmentation, I denote {(xi, yi)
nS
i=1} and {(x̃i, ỹi)

nT
i=1} as a set of labeled

training instances from the source grid and the target grid, respectively, where nS and nT are the

number of samples for the source and the target grids, and I assume nS ≫ nT . With above notations,

I have the following problem formulations

• Problem: PMU-based Transfer learning for event type differentiation and event zone estimation.

• Given: a set of PMU-based samples with labels {(xi, yi)
nS
i=1} and {(x̃i, ỹi)

nT
i=1} from the source

and the target grids, respectively.

• Output: a classifier f to distinguish event types or identify event locations in the target grid.

The defined problem with high dS and dT forces us to find a cost-efficient data transfer process.
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Figure 36. A Moving Window-based Segmentation and Vectorization Procedure to Process PMU
Streams.

I show in the next section that this procedure is achieved via finding a common low-dimensional

feature space.

5.3 Data Transfer: Projection to Low-dimensional Feature Space

5.3.1 Validation of the Transfer Positivity

Before elaborating on data transfer details, a more fundamental issue should be first figured out:

will the data transfer be positive to enhance rather than deteriorate the ML model training for the

target grid? Namely, I want to avoid the so-called negative transfer (Rosenstein et al. 2005). To
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(a) Event Type Similarity of PMU Streams Between 200 Bus System, 500 Bus System and Actual System
Data.

(b) Event Location Similarity of Voltage Magnitude Drops Between 200 Bus System and 500 Bus System.

Figure 37. Illustrations of the Existence of Shared Knowledge for Event Type Differentiation and
Localization.
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illustrate the positivity of our transfer learning, I start from physics. Generally, as shown in Fig.

37a, I utilize simulated data from Illinois 200-bus system (Engineering Texas A&M University 2016a)

and South Carolina 500-bus system (Engineering Texas A&M University 2016b), and realistic data

from Western Electricity Coordinating Council (WECC) system (Usman and Faruque 2019) and

our utility partner in Arizona to demonstrate the Generator Trip (GT) and Line Fault (LF) events.

Note that I have another IEEE 14-bus simulation system (Illinois Center for a Smarter Electric Grid

2013) and its event performances are similar. Due to space limit, I don’t show this system’s event

curves. Further, with geographical information of the 200-bus and 500-bus systems, I utilize Fig.

37b to demonstrate LF event impacts on different PMUs from event centers to edges. Thus, I show

the similarity of the event geographical propagation.

Specifically, I have the following statements to support transfer positivity for most of the power

systems. (1) for different systems, the dynamical behaviors of each electric device are similar (North

American Electric Reliability Corporation 2017). Then, the aggregation of them in a system can

bring similar dynamics in response to a certain event. (2) the protection and response mechanism

to a specific event is similar (Qin, Li, and Zhu 2021). For example, for GT events, the inertial and

governor responses help to stabilize the frequency, leading to similar behaviors of frequency for the

first 3 curves in Fig. 37a. Based on (1) and (2), I observe similar behaviors of the GT and LF in

simulated data. For realistic data, I find that though they have disturbances, they have similar

patterns of the curve change tendency after a specific event.

For event zone estimation, I claim that the common knowledge lies in the event impact propagation

from the event locations to other areas. Specifically, I present the voltage magnitude drop after an

LF event for 200- and 500-bus systems, as shown in Fig. 37b. The impact of the event decreases as

the location is further and further away from the event center. Such a propagation, based on the

system damping characteristic, is general for different systems. Finally, the red dotted block in Fig.

37a and the sharp decreasing in the left part of Fig. 37b illustrate that the shared knowledge lies in

the low-dimensional space compared to the ultra high-dimensional input data. Thus, I propose the

following assumption that lays the foundations for further transfer learning.

Assumption 2. There exists a low-dimensional feature space that is extracted from the source and

the target data spaces and represents the common knowledge to the system event.

Remark: there may be some special systems that lose the event similarity compared to most of
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the power systems, leading to negative transfer (Rosenstein et al. 2005). However, in this chapter, I

focus on the potentials of transfer learning for most of the standard systems and the method design.

The investigation and quantification of negative transfer on power systems can be treated as a future

topic.

5.3.2 Data Transfer Objective Formulation

Based on Assumption 2, I propose to project x and x̃ to the d-dimensional latent feature space

with linear transformations T ∈ Rd×dS and T̃ ∈ Rd×dT , where d≪ dS and d≪ dT . Namely, I have

F (x) = Tx, F̃ (x̃) = T̃ x̃. (5.1)

I can add kernel mapping to x and x̃ for non-linearity. However, I find the linear mapping is

generally good enough in testing, and adding kernels don’t bring significant improvements. In the

following derivations, I focus on the linear mapping.

The optimal T and T̃ ultimately help to train a good classifier for event identification in the

target grid. Namely, I want the conditional probabilities to be approximately equal:

P (y|F (x)) ≈ P (ỹ|F̃ (x̃)), (5.2)

where P (·) represents the probability or probability density for the random variables. Equation

(5.2) indicates that the decision boundaries of the source and the target for each label are close.

Thus, I can utilize all the feature data to train the classifier.

Remark: Equation (5.2) as the goal can only be proposed and analyzed when the label spaces for

the source and the target grid are the same, e.g., label space for event types. For disjoint label

spaces for event locations, I propose to first align the label space in the next section. Then, all the

derivations based on equation (5.2) can be continued. For the convenience of later derivations, I still

assume the final common label space includes K unique labels.

To further understand the objective in equation (5.2), I rewrite the equation according to Bayes’

rule:
P (F (x)|y) ∗ P (y)∑

i P (F (x)|y = i) ∗ P (y = i)

≈ P (F̃ (x̃)|ỹ) ∗ P (ỹ)∑
i P (F̃ (x̃)|ỹ = i) ∗ P (ỹ = i)

.

(5.3)
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Equation (5.3) shows that for the source and the target grids’ data, if P (F (x)|y) ≈ P (F̃ (x̃)|ỹ)

and P (y) ≈ P (ỹ), equation (5.2) can be achieved. The former equation inspires a minimization of

the conditional probability of features given labels, but the latter condition is generally not true. For

instance, if the source grid is much older than the target grid, the probability of an event is generally

higher. Luckily, based on the probability theory, I have the following equations.

P (F (x)) =
∑
i

P (F (x)|y = i) ∗ P (y = i),

P (F̃ (x̃)) =
∑
i

P (F̃ (x̃)|ỹ = i) ∗ P (ỹ = i).

(5.4)

Therefore, guaranteeing P (F (x)) ≈ P (F̃ (x̃)) and P (F (x)|y) ≈ P (F̃ (x̃)|ỹ) together can lead

to the final goal of equation (5.2). Based on this observation, I can jointly minimize the distance

between P (F (x)) and P (F̃ (x̃)) and the distance between P (F (x)|y) and P (F̃ (x̃)|ỹ). Namely, I have

the following optimization problem:

min
T ,T̃

∑
y,ỹ

D(Tx, T̃ x̃|y = ỹ) + ηD(Tx, T̃ x̃) + λ||T ||2F + λ||T̃ ||2F ,

(5.5)

where D represents the distance of two distributions and η is a hyper-parameter to weight two

objectives and avoid numerical issues. λ is the penalty term and || · ||F represents the Frobenius

norm. The last two terms help to prevent overfitting. I term our optimization in equation 5.3.2 as

Heterogeneous Joint conditional and marginal Distribution Adaptation (HJDA). Remark: HJDA is

different from Joint Distribution Adaptation (JDA) in (Long et al. 2013), which utilizes the same

projection for two domains. HJDA considers different projection matrices T and T̃ since (1) nodes

in two grids are misaligned and can’t be treated as one input variable and (2) cross-grid transfer

learning is often heterogeneous, i.e., dS ̸= dT .
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Figure 38. Event Zone Categorization to Align Event Location Labels.

There are many measures for probability distance D in (5.3.2). The most popular one is

a nonparametric distance estimate: Maximum Mean Discrepancy (MMD) for its simplicity in

calculations and solidness with mathematical foundations (Long et al. 2013; Gretton et al. 2012;

Tsai, Yeh, and Wang 2016). In general, MMD evaluates the sample distribution difference over any

unit-ball function class in the characteristic Reproducing Kernel Hilbert Spaces (RKHS). Thus, the

MMD metric has two distinguished properties: (1) the unit-ball function class is rich enough to make

MMD powerful to represent the distribution difference. (2) RKHS brings fast convergence of the

estimate MMD to the true value as the sample size increases. One can find more strict mathematical

proofs of MMD’s properties in (Gretton et al. 2012). Based on the definition of MMD, I specify the

optimization problems as follows.

min
T ,T̃

∑
y,ỹ

D(Tx, T̃ x̃|y = ỹ) + ηD(Tx, T̃ x̃) + λ||T ||2 + λ||T̃ ||2,

=
∑

y=ỹ=k

|| 1

n
(k)
S

n
(k)
S∑

i=1

Txi −
1

n
(k)
T

n
(k)
T∑

i=1

T̃ x̃i||2

+ η|| 1
nS

nS∑
i=1

Txi −
1

nT

nT∑
i=1

T̃ x̃i||2 + λ||T ||2 + λ||T̃ ||2,

(5.6)

where n
(k)
S and n

(k)
T represent number of samples for label k, where 1 ≤ k ≤ K.

5.3.3 Data Transfer Optimization Algorithm

I can utilize gradient descent method to solve the optimization. The gradient with respect to T

is as follows.
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(5.7)

where X is the stack of all source samples, i.e., X = [x1, · · · ,xnS
], and Xk is the stack of source

samples with label k. The same stacking happens on X̃ and X̃k using target samples. Each element

for Mk, Nk, M0, and N0 is 4/
(
n
(k)
s

)2, 2/(n(k)
s n

(k)
t

)
, 4/n2

s, and 2/(nsnt), respectively. Similarly, I

can calculate ∇T̃ by symmetry. Finally, I solve the optimization by iteratively updating T and T̃

using the calculated gradients.

5.4 Label transfer: Label Alignment via PMU Indices

Figure 39. The Visualization of Five Types of Events in Experiments.

While HJDA in Section 5.3 guarantees a well-established data transfer process with solid mathe-

matical explanations, this procedure can only handle the identical label spaces for the source and the

target grid. For the event zone estimation problem, however, the label spaces are disjoint. Thus, I

propose a label alignment approach to achieve the cross-system label transfer.

As shown in Fig. 37b, system event has a decreasing impact from the event center to further
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areas. Thus, the event location can be reflected by the PMU locations. Therefore, I can select some

responsible PMUs, each of which aims at monitoring potential events in one local area. For example,

in Fig. 38, each system can be divided into 6 zones, i.e., the Northwest, North, Northeast, Southwest,

South, and Southeast areas for zone 1 ∼ 6.

I divide the zone based on the similarity measure of event impacts to responsible PMUs. Namely,

I select the responsible PMUs as the event zone centers. Then, the event impact similarity helps to

identify event zone boundaries, leading to the event zone division. Specifically, I have the following

steps. (i) I choose the event zone center via selecting responsible PMUs. In general, the

selection is based on the prior knowledge of the system, including the system topology, the factors to

determine the event frequency like loads, generation reserves, environments, and device ages, and the

availability of PMUs, etc. In this chapter, I focus more on demonstrating the potentials of event

zone divisions for Transfer Learning. Thus, I assume the responsible PMUs are evenly distributed

among the system. Then, for both the source and the target systems, I pick up the same number

of responsible PMUs, thus bringing the same number of event zones. Mathematically, the indices

of the responsible PMUs (i.e., 1, 2, · · · ,M for M responsible PMUs) can form the common set of

event zone labels for two grids. (ii) I identify the event zone boundaries via measuring the

similarity of event impacts on the responsible PMUs. Mathematically, the problem can be

solved via finding the PMU that suffers the largest distribution change before and after a certain

event. Thus, I utilize Maximum Mean Discrepancy (MMD) for evaluations. Specifically, for the jth

PMU in the source or target grid, let wi
j be the sample at the ith time slot. Then, I can calculate

the MMD distance of samples before and after an event:

Dj = ||
1

n0

n0∑
i=1

wi
j −

1

n1

n0+n1∑
k=n0

wk
j ||2, (5.8)

where n0 and n1 are the total number of time slots before and after the event, respectively. Therefore,

the MMD value Dj represents the corresponding event’s impacts on PMU j. Using equation (5.8) to

calculate one event’s impacts on all the responsible PMUs, I can rank and find the mostly-affected

PMU as the true responsible PMU for the specific event.

The complete process essentially relabels one event with its responsible PMU index (i.e., the zone

index), and the new label with the categorized geographical information can be directly applied to

another grid. Finally, though I only utilize a subset of PMUs for relabeling, all PMU measurements

can be inputted into the data transfer framework. This is because in the data transfer process, I
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have two projections to maximize the common features. This data-driven process will automatically

decide which PMU is important by weighting the PMU values using the transformation matrices.

Remark: in our label transfer process, I have a fixed number of event zones (i.e., M event

zones for M responsible PMUs) for the source and the target systems. However, I can do the

fine-grained selection by the prior knowledge of the system, including the system topology, the factors

to determine the event frequency like loads, generation reserves, environments, and device ages, and

the availability of PMUs, etc. Then, the zone numbers can be different for the source and the target

grids. In future work, I will extend the topic for Transfer Learning under overlapped but not the

same zone label spaces.

5.5 Experiment

5.5.1 Dataset Description

To diversify the testing scenarios, I utilize IEEE 14-bus system (Illinois Center for a Smarter

Electric Grid 2013), Illinois 200-bus system (Engineering Texas A&M University 2016a), and South

Carolina 500-bus system (Engineering Texas A&M University 2016b) to simulate events. The

simulation platform is based on a business-level software Positive Sequence Load Flow (PSLF)

(General Electric Energy Consulting 2018) from General Electric (GE) company. For each system

event simulation, I change the loading conditions and event locations to demonstrate the robustness

of our models. Table 16 displays all event types in our simulations. Further, as shown in Fig. 39, I

visualize the event using Voltage Magnitude (VM) data obtained from PSLF. The data are randomly

selected from 10 PMUs in the 200-bus system. As for the plots, similar event patterns can be found

in (Ma, Basumallik, and Eftekharnejad 2020), which demonstrates the correctness of the simulation.

Subsequently, I generate electric measurement streams with 30 samples per second to mimic the

realistic PMU streams, including voltage magnitude, voltage angle, current magnitude, current angle,

and frequency. To simulate the data-rich source grid and the data-limit target grid, I consider nS

nT
= 8.

Then, I first set nS = 400 and nT = 50 to test different scenarios, where I add noise and vary PMU

penetration levels. Secondly, I conduct sensitivity analysis with respect to the data points. I denote

N = nS + nT and vary N ∈ {400, 450, 500, 550, 600, 650, 700} and keep the ratio nS

nT
= 8.
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I add white Gaussian noise with signal-to-noise-ratio (SNR) to be 125 to mimic realistic PMU

noise (Ye Yuan et al. 2016). Then, I denote γ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3} as the PMU penetration

level to evaluate the model performance with different PMU numbers. For example, for the 200-bus

system, γ = 0.05 implies that I randomly select 10 PMUs to prepare the training data. For this

case, Fig. 40 visualizes the PMU locations in the 200-bus system, where the red and green circles

represent the nodes with generators and loads, respectively. The circle size represents the relative

generation/load values. Finally, I add labels from PMU 1 to PMU 10 for the PMU locations. For

the event zone estimation problem, the selected PMUs should cover the 6 monitoring regions in Fig.

38 so that I can form the common zone-index space for label transfer. Finally, I denote A→ B as

transfer learning from source grid A to target grid B.

Label Event Type
1 Line trip
2 Generator trip
3 Line fault
4 Load shedding
5 Transformer failure

Table 16. Categorization of Event Types for Simulations.

Figure 40. The Visualization of Pmu Locations for the 200-bus System.
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5.5.2 Model Description and Implementation Details

To comprehensively demonstrate the high-performance of our models, I have implemented the

following models for comparison.

• Principal Component Analysis (PCA) + Resnet (K. He et al. 2016). This is a benchmark method

to train a classifier without transfer learning. PCA aims to reduce the dimensionality of the PMU

data, and Deep Residual Network (Resnet) is the classifier for event type differentiation and

event zone estimation. The reason for using Resnet is that Resnet has excellent performances

in various ML tasks (Guo and Du 2019; L. Ma et al. 2020; Choi, Ryu, and Kim 2018).

• Heterogeneous Joint Distribution Adaptation (HJDA) + Resnet. I can use our proposed HJDA

to convert source and target data to a common feature space. Then, Resnet can be employed

to train classifiers based on the common features.

• Transfer Component Analysis (TCA) (Pan et al. 2010) + Resnet. TCA also employs MMD

measure to find projections to a latent space from the source and the target measurement

spaces. However, the objective only considers minimizing the marginal data distribution. Then,

Resnet can be employed to train the features in the latent space.

• Cross-Domain Landmark Selection (CDLS) (Tsai, Yeh, and Wang 2016) + Resnet. The

supervised version of CDLS finds the optimal matrix to project the source data to the PCA-

based subspace of the target data, where MMD is also employed as the objective for both the

marginal and the conditional distributions. With transferred datasets, Resnet can be employed

to train the classifier.

All the above methods can be utilized to event zone estimation problems with the help of our

proposed label transfer process.

I utilize 3-fold cross-validation to fine-tune the hyper-parameters and obtain the testing accuracy

for the final classifiers. Notably, the hyper-parameters of Resnet should stay the same: i.e., the same

hidden layers, number of neurons, activation function, learning rate, and so on. Thus, I create fair

comparisons among different transfer learning distribution adaptation methods.
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Figure 41. Testing Accuracy (%) for Scenario 14→ 200.
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Figure 42. Testing Accuracy (%) for Scenario 200→ 14.
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Figure 43. Testing Accuracy (%) for Scenario 14→ 500.
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Figure 44. Testing Accuracy (%) for Scenario 500→ 14.
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Figure 45. Testing Accuracy (%) for Scenario 200→ 500.

5.5.3 Transfer Learning-based Event Type Differentiation: Highly-Accurate Performance of the

Proposed HJDA

Fig. 41 to Fig. 46 illustrate the results of power system event identification using different

methods. I conduct comprehensive experiments for every two of the synthetic systems and with

changing γ. For each scenario, I find that our proposed HJDA (red box) performs the best over other

methods. Specifically, the average testing accuracy among all scenarios is 81.7%, 76.7%, 73.6%, and

64.6% for HJDA, CDLS, TCA, and PCA, respectively. This proves the general high performance of

our method. Further, I have the following analyses to verify the principles of our transfer learning

framework.

Positive transferability. Compared to the PCA method (grey box) without transfer learning,

other 3 transfer learning methods have a significant improvement for the testing accuracy, which

demonstrates the positive transferability of the power system PMU data for event type differentiation.

As I discussed in Section 5.3.1, the positive effect of transfer learning exists for power systems, which

is highly supported by our results.

HJDA vs. TCA. In each trial, HJDA has significant accuracy increasing compared to TCA
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Figure 46. Testing Accuracy (%) for Scenario 500→ 200.

(shallow green box). The average line in the box plot for HJDA is always higher than TCA, and

the box plots for these two methods do not have overlaps. The reason is that TCA only focuses on

minimizing the distance of marginal data distributions in equation (5.3.2). However, this does not

mean the general goal of conditional distribution in equation (5.2) can be minimized. Especially,

if the label distributions are different for two systems, equations (5.3) and (5.3.2) indicate that

conditional distributions in equation (5.2) can not match. In our simulation, I randomly implement

the event, so the label distribution for the source and the target is not the same. Thus, TCA does

not perform well. On the other hand, HJDA has a thorough consideration of the joint marginal and

conditional distributions, thus obtaining a much better performance.

HJDA vs. CDLS. Compared to the CDLS method (blue box), HJDA has a big improvement

when I test transfer learning between 14-bus and 500-bus systems, and a minor improvement when I

test transfer learning between 14-bus and 200-bus system or 200-bus and 500-bus system. I have

the following explanations for our observations. (i) CDLS method employs PCA to reduce the

dimensionality of the target data and finds the optimal projection from the source space to the

PCA-based target space with the same objectives of our methods. Thus, our method wins with the

ability to search for a better target projection rather than a fixed PCA transformation. Especially,
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the possibility of finding a better projection is promoted under the event label supervision. (ii) the

data distribution difference is largest between 14-bus and 500-bus system, and it is vital to utilize

a better projection for the target grid. Thus, HJDA performs much better for transfer learning in

14-bus and 500-bus systems. (iii) since CDLS employ the same objectives for optimization with

strong mathematical supports, CDLS can report good results for other transfer learning scenarios

when the source and the target grids’ data have relatively smaller distribution difference.

Performance with respect to system size. Intuitively, a larger system seems to have richer

information and can bring a better result. However, I observe an interesting and counter-intuitive

phenomenon: using a smaller-size system as the source grid can achieve a better performance than

treating it as the target grid. This is especially observed for transfer learning between 14-bus and

200-bus/500-bus systems.

The reason is that when I minimize the conditional distribution given labels, i.e., the first sum

term in equation (5.3.2), using an integer to represent a label with high complexity may cause

troubles. More specifically, for one specific event type, different event locations and magnitudes

essentially demand a more careful event categorization in minimizing the conditional distribution

differences. For example, the active power of generators for the 14-bus system has less variability

than that for the 500-bus system, making the data variance of the 500-bus system larger but with

the same label “generator trip“. Therefore, HJDA suffers an over-minimization that compresses too

much information in the 500-bus system to match the distribution in the 14-bus system. If I treat

the 500-bus system as the source grid, more data are used and over-compressed, thus deteriorating

the performance. To mitigate this issue, methods like label complexity analysis, regularization, or

non-linear domain adaptation can be utilized, and I will explore these methods in the future.

5.5.4 Transfer Learning-based Event Zone Estimation: Relabeling Technique Enable Positive

Transfer and High Accuracy of the Proposed HJDA

For event zone estimation, I divide each system into 6 zones to align the label, as shown in Fig.

38. For each zone, I assume there is a PMU (i.e., the responsible PMU) for monitoring. However, as

I discussed, the grid division can be flexible according to the availability of PMUs. Then, I conduct

line fault for different lines that are uniformly distributed in the monitoring regions. Subsequently,
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Figure 47. Testing Accuracy (%) for Scenario 14→ 200.
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Figure 48. Testing Accuracy (%) for Scenario 200→ 14.

for each line-fault event, I calculate its responsible PMU based on the ranking of the calculated

MMD value in equation (5.8). If the kth (1 ≤ k ≤ 6) responsible PMU has the largest MMD value, I

relabel the certain line fault as k.
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Figure 49. Testing Accuracy (%) for Scenario 14→ 500.
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Figure 50. Testing Accuracy (%) for Scenario 500→ 14.

After our relabeling techniques, I conduct different methods for data transfer and implement

one fixed Resnet to be the event zone estimation classifier. The final result is shown in Table 17. I

observe similar behaviors discussed in Section 5.5.3. Specifically, I have (i) HJDA performs better

than PCA, TCA, and CDLS. The averaged testing accuracy among all scenarios is 74.7%, 70.1%,

68.7%, and 60.6% for HJDA, CDLS, TCA, and PCA, respectively. (ii) information migration from a
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Figure 51. Testing Accuracy (%) for Scenario 200→ 500.
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Figure 52. Testing Accuracy (%) for Scenario 500→ 200.
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Table 17. The Testing Accuracy (%) (Mean ± Standard Deviation) of Different Methods + Resnet
for Event Zone Estimation.

HJDA CDLS TCA PCA
14→ 200 80.2 ± 4.4 74.4± 6.2 68.7± 3.5 60.6± 4.3
200→ 14 73.6 ± 3.6 66.5± 5.8 64.4± 4.7 56.3± 7.8
14→ 500 76.5 ± 5.4 73.5± 3.3 69.7± 4.3 58.3± 8.4
500→ 14 70.9 ± 2.4 68.4± 3.3 60.6± 6.9 56.3± 5.6
200→ 500 75.0 ± 6.7 68.3± 4.9 70.0± 6.7 58.3± 8.4
500→ 200 72.6 ± 4.1 69.7± 2.3 64.6± 5.0 60.6± 5.9

small system to a large system still brings better results. This indicates that the over-compression

phenomenon still exists, explained in Section 5.5.3. Basically, for a larger system, the monitoring

sub-region is wider with more variability for its inner events. For example, some line faults have

a bigger impact on the systems while others don’t. Thus, compressing all of these event data to

match the conditional distribution hurt the final classifier performance. I demand further theoretical

frameworks to analyze and prevent the over-compression problem.

5.5.5 Sensitivity Analysis with Respect to Data Numbers: Increasing Data Points Boost the

Performance of HJDA

In Section 5.5.3, I utilize N = 450 to demonstrate the results and show large improvements of

our HJDA over other methods. To further illustrate the improvements of all methods giving more

data, I conduct a sensitivity analysis with respect to data numbers for event type differentiation.

Specifically, I vary N ∈ {400, 450, 500, 550, 600, 650, 700}. Then, I report the mean of the testing

accuracy, and the results are shown from Fig. 47 to Fig. 52. I find that if N ≥ 550, our method

can reach the average accuracy larger or equal to 90.5%. When N = 700, the average accuracy

can be 95.7%. This shows that I can provide a reliable result for the utility partners. Further, I

observe that for each scenario, our method enjoys the largest improvement when the number of data

points increases. This illustrates the advantages of our method to efficiently absorb new information

from new data samples. Such a significant result is due to our method’s complete consideration of

conditional distribution and marginal distribution differences (compared to TCA + Resnet method)

and flexible projection process (compared to CDLS + Resnet method), as illustrated in Section V-C.
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5.5.6 Computational Time for Event Simulation and Model Training and Testing

The computational time is one of the most important evaluations for real-time applications. Thus,

I provide the time for developing both the power network for the dynamic simulation and the deep

residual network (Resnet) for classification. The former represents the simulation time in PSLF and

the latter includes the training/testing time of the classification model.

For the PSLF simulation of the power networks, I observe that the simulation time depends on

the system size. Specifically, for 14-bus, 200-bus, and 500-bus systems, the average simulation times

are 2.5s, 3.3s and 4.2s, respectively. This implies that PSLF can quickly generate high-quality event

data for the research usage.

For Resnet, our experiments include different transfer learning methods, including HJDA +

Resnet, CDLS + Resnet, TCA + Resnet, and PCA + Resnet. Specifically, HJDA, CDLS, TCA, and

PCA all include the dimensionality reduction process and I restrict the projected data to have the

same dimensionality and the Resnet to have the same architecture. Thus, I expect close training

and testing time for HJDA + Resnet, CDLS + Resnet, TCA + Resnet. As for the benchmark

PCA + Resnet without transfer learning, I only utilize the target data to train and test, leading to

much smaller training and testing time. Table 18 illustrates the result when I utilize the example of

200→ 500 with N = 450 for transfer learning-based methods and N = nT = 50 for the benchmark

method. Finally, I consider 3-fold cross validation. Thus, for transfer learning-based methods, I

obtain 300 data points for training and 150 points for testing. For the benchmark method, I obtain

33 data points for training and 17 data points for testing.

Table 18. The Training and Testing Time (S) for Resnet with Different Transfer Learning Methods
for the Scenario 200→ 500.

HJDA CDLS TCA PCA
Training time 12.51 13.65 13.01 1.64
Testing time 0.14 0.15 0.15 0.03

I find that (1) it takes around 13s for training with 300 data points. This training time is

affordable as the training process can be treated off-line to prepare the classifier, which doesn’t affect
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the real-time classification. (2) it takes around 0.23s for testing with 150 data points, which indicates

that I can achieve the real-time event identification.
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Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, I have addressed the challenges of event detection and data quality in power systems

by integrating intrinsic and extrinsic knowledge transfer.

In Chapter 2, we introduced intrinsic data interpolation via sensor fusion to improve data quality

in power systems. By merging PMU and SCADA sensor data, we addressed spatial-temporal

challenges and leveraged deep neural networks to predict and recover missing dynamic states. This

approach provided a novel solution to the problem of differing sensor resolutions and locations,

ensuring accurate and reliable data for event detection and monitoring.

Chapter 3 presented extrinsic data interpolation and enhancement, transforming low-resolution

meters into ”virtual“ PMUs. By utilizing inherent physics-informed relationships and high-resolution

data, missing values were algorithmically interpolated, resulting in a cost-effective yet high-quality

power system monitoring solution. The proposed method demonstrated its effectiveness in enhancing

data quality and providing reliable power system monitoring.

In Chapter 4, we developed advanced machine learning models for intrinsic event detection,

leveraging extensive datasets and tensor learning techniques to improve precision and enable real-time

reactions. By effectively analyzing large datasets, these models reduced redundant information and

irrelevant factors, improving the accuracy of event detection. The proposed models demonstrated

outstanding performance in recognizing underlying patterns and achieving high precision in event

classification.

Chapter 5 focused on extrinsic event identification using transfer learning. We proposed a

framework that allowed knowledge to be transferred from data-rich grids to data-limited grids,

enabling the latter to gain valuable insights from established grids. This approach addressed the

challenges of limited event data in new grids and provided a robust event detection method. The

framework incorporated transfer learning techniques to migrate knowledge and adapt it to the target

grid, ensuring accurate event detection and classification.
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Through extensive numerical validations, we demonstrated the effectiveness and high performance

of the proposed models and techniques in event detection and data quality improvement. The

results validated the robustness and accuracy of the developed models, showcasing their potential for

real-world applications in power systems.

6.2 Future Work

In the future, the following aspects should be further investigated to make more contributions to

the engineering and academic domains.

1. To learn symbolic equations of physical systems, the coherency of input data may cause the

issue of not able to identify the system theoretically. Thus, further investigations must be made

to study the identifiability of the physical system.

2. With the learned physics-consistent ML model, the next step is to achieve better planning,

economic dispatch, and system control.

3. More types of tensor decomposition techniques should be investigated to improve the tensor-

based event identification.
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