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ABSTRACT  
   

Stream metabolism is a critical indicator of ecosystem health and connects stream ecology 

to global change. Hence, understanding the controls of metabolism is essential because streams 

integrate land use and could be net sources or sinks of carbon dioxide (and methane) to the 

atmosphere. Eleven aridland streams in the southwestern US (Arizona) across a hydroclimatic and 

size (watershed area) gradient were surveyed, and gross primary production (GPP) and ecosystem 

respiration (ER) were modeled and averaged seasonally over a period of 2-4 years. The seasonal 

averaged GPP went as low as 0.001 g O2m-2d-1 (Ramsey Creek in 1st quarter of 2017) and as high 

as 14.6 g O2m-2d-1 (Santa Cruz River in 2nd quarter of 2017), whereas that of ER ranged from 0.003 

(Ramsey Creek in 1st quarter of 2017) to 20.3 g O2m-2d-1 (Santa Cruz River in 2nd quarter of in 

2017). The coefficient of variation (CV) of these GPP estimates within site ranged from 42% (Upper 

Verde River) to 157% (Wet Beaver Creek), with an average CV of GPP 91%, whereas the CV of 

ER ranged from 32% (Upper Verde River) to 247% (Ramsey Creek), with an average CV of ER 

85%. Among 4 main categories of hypothetical predictors (hydrology, nutrient concentration, local 

environment, and size) on CV and point measurement of stream metabolism, the following 

conclusion was made: hydrologic variation only predicted the ER and CV of ER but not the GPP or 

CV of GPP; light and its CV controlled GPP and its CV, respectively, whereas temperature was 

one of the controlling factors for ER; CV of nutrient concentration was one of the drivers of CV of 

GPP, nitrate concentration was correlated with point measurement of GPP and ER while soluble 

reactive phosphorus (SRP) concentration was only relevant to GPP; watershed area was correlated 

with CV of GPP, while depth mattered to both GPP and ER. My work will enhance our 

understanding of streams at multiple temporal and spatial scales and ultimately will benefit river 

management practice. 
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INTRODUCTION 

Ecosystem metabolism (photosynthesis and respiration) is a fundamental property of ecosystems. 

In streams, gross primary productivity (GPP) represents the amount of organic matter synthesized 

by photosynthetic organisms or autotrophs; ecosystem respiration (ER) results from the breakdown 

of organic matter by both autotrophs and heterotrophs (Webster et al. 1995; Mulholland et al. 2001). 

Together they demonstrate energy flow through food webs (Bernhardt et al. 2017), and are 

important indicators of biogeochemical cycling, especially nutrient cycling driven by carbon cycling 

(Cole et al. 2007; Tranvik et al. 2009). Stream metabolism provides an integrative quantification of 

nutrient dynamics and energy supply and dissipation (Izagirre et al. 2008; Williamson et al. 2008). 

Understanding stream metabolism can help us further quantify ecosystem services (Hall and Tank, 

2003; Sobota et al. 2012), like pollution abatement and nutrient retention (Gücker and Pusch, 2006; 

Merseburger et al. 2011); and quantify ecosystem function, such as the fate of terrestrial carbon 

fixation, allochthonous subsidies to aquatic food webs, and food-web energy fluxes (Tranvik et al. 

2009; Cole et al. 2011).  

Stream metabolism varies in space across river basins and networks (e.g., Finlay 2011; Yates et 

al. 2013; Dodds et al. 2018) and in time from season to season and from year to year (e.g., 

Uehlinger and Naegeli, 1998; Roberts et al. 2007; Beaulieu et al. 2013), which reflects differences 

in the abiotic environment across similar spatial and temporal scales (Roberts et al. 2007; Yates et 

al. 2013). Much of our understanding of factors controlling stream metabolism derives from work 
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on single streams in different biomes or climate zones (Marzolf et al. 1994; Mulholland, 2001), or 

streams affected by land-use change (Young and Huryn, 1999; Guecker et al. 2009). Many factors 

affect the rates of GPP and ER, including light availability (Dodds et al. 1999; Mulholland et al. 

2001; Roberts et al. 2007, Bernhardt et al. 2018), riparian canopy (Uehlinger, 2006), nutrient 

concentration (Grimm and Fisher, 1986; Guasch et al. 1995) and hydrologic conditions (Acuna 

2004; Acuna et al. 2004; Roberts et al. 2007). However, researchers have seldom compared spatial 

variation in the temporal variability in GPP and ER of streams in response to spatial variation in 

temporal variability of key drivers like hydrology, nutrient concentrations, temperature and light 

(Cole et al. 1991, Hall 2016). Further, few studies have assessed how these factors may interact 

with each other to influence stream metabolism and how these factors vary in relative importance 

across streams (but see Mulholland et al. 2001; Bernot et al. 2010; Savoy et al. 2019, Koenig et al. 

2019). Hence, there is a need for a more detailed description of the spatiotemporal patterns of 

metabolism in streams. Here, I use a hydroclimatic gradient to examine the role that hydrologic 

regime, nutrient concentration, and environmental factors including geomorphology play directly 

and indirectly in the spatial and temporal variation in GPP and ER. 

In arid and semiarid regions, many once-perennial rivers are becoming intermittent due to water 

appropriation (Sabo et al. 2010; Sabo et al. 2017) and climatic drying (Larned et al. 2010; Gleick 

2003). Despite the temporary appearance of non-perennial streams and rivers on the landscape, 

they are critical to the health of river systems and networks, providing essential functions and 

values just as larger perennial rivers (Meyer et al. 2003; Nadeau and Rains, 2007; Larned et al. 
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2010). In the US Southwest, most desert streams and rivers are intermittent, and they experience 

cycles of flooding and drying (Lake, 2003) and extremes in streamflow (Moran et al. 2019) that 

make them ideal systems to study space-time variability of physical characteristics. These aridland 

streams and rivers share some similarities in hydrologic regimes and physical environment at local 

and regional or watershed scales, and hence, in the resulting ecological processes. For instance, 

relatively high temperature and abundant light in the warm desert regions of Arizona favor high in-

stream productivity that may at times exceed ecosystem respiration (Minshall 1978; Grimm 1987; 

Lamberti and Steinman 1997; Sinsabaugh 1997, Uehlinger et al. 2002). Illustrating the spatial 

difference in seasonal GPP and ER and their variance in aridland streams and quantifying the 

drivers and constraints on stream metabolism is difficult (Bernhardt et al. 2018). Seasonal and 

interannual patterns reflect a highly dimensional and multiscale set of morphological, 

biogeochemical, and hydrologic controls that challenge comparisons across streams (Savoy et al. 

2019), given the extremely dynamic nature of aridland streams. Failure to understand how and why 

stream metabolism differs in space and time will limit our potential to monitor alterations to non-

perennial stream networks that result from climate change and development activities (Hamada 

2016). Here, I contribute to filling that knowledge gap by relating rates and variance in stream 

metabolism across four years to differences among 11 aridland streams in hydroclimatic regime 

and other environmental variables. 

In this research, multiple short-term (mostly <7 days) measurements of GPP and ER were 

averaged to represent seasonal stream metabolism, streams were categorized in accordance with 
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features of their seasonal flow signals, and interannual and seasonal discharge variations were 

characterized. I addressed how differences in size represented by the watershed area, local 

environment (water temperature and photosynthetically active radiation), nutrient concentrations, 

and hydrological variability impacted stream ecosystem metabolism. Additionally, I focused on how 

the variance of these potentially influential variables controlled the variance of GPP and ER. 

STUDY SITE AND METHODS 

Study site 

Chosen sites were 11 first- to third-order, gauged streams in Arizona draining hot desert to semi-

arid mountainous watersheds (Table 1, Figure 1). The streams were located across a hydroclimatic 

gradient from dominance by strong Pacific winter precipitation driven by frontal storms and weak 

summer monsoonal precipitation to dominance by strong monsoonal precipitation with weak winter 

frontal rainfall. The similarities and dissimilarities in overall climate facilitated comparisons across 

the hydroclimatic gradient of seasonal and interannual variation in biological patterns and 

processes, as well as further exploration of the complicated interactions among hydrology, 

meteorology, and geomorphology and response of stream systems. Each year is divided into 4 

quarters, as the 1st quarter starts in January and ends in March, the 2nd and 3rd quarters comprise 

April, May, June, and July, August, September, respectively. The 4th quarter includes October, 

November, and December. The summer monsoon usually occurs during the 3rd quarter whereas 

the winter frontal storms are often seen during the 1st quarter.  
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Table 1: Basic information of study sites and data collection. Site number corresponds to numbers on the Map 

(Figure 1). 

Stream and Number on the 

Map 

Watershed 

area (km2) 

USUS 

station ID 

Historic discharge data 

length (years, to 2020) 

Metabolism 

data 

Agua Fria River (AF, #1) 1498 9512500 80 2016-2019 

Babacomari River (BB, #2) 409 9471380 19 2016-2017 

Bonita Creek (BN, #3) 773 9447800 39 2016-2019 

Eagle Creek (EG, #4) 1592 9447000 76 2016-2019 

Ramsey Creek (RM, #5) 20 9470750 20 2016-2017 

San Francisco River (SF, #6) 4273 9444500 96 2016-2017 

San Pedro River (SP, #7) 3159 9471000 116 2016-2019 

Santa Cruz River (SC, #8) 210 9480500 71 2016-2019 

Sycamore Creek (SY, #9) 420 9510200 60 2016-2017 

Upper Verde River (VD, #10) 5504 9503700 59 2016-2017 

Wet Beaver River (WB, #11) 284 9505200 59 2016-2017 

 

Figure 1: Map of study sites. Site number corresponds to numbers in Table 1. 
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Data collection and metabolism modeling 

Estimation of stream metabolism, i.e., daily GPP and ER, was based on the single-station diel 

dissolved oxygen (DO) change method (Odum 1956), implemented by applying measured changes 

in DO over several-day periods using the R package streamMetabolizer (https://github.com/USGS-

R/streamMetabolizer). Specifically, daily variation in oxygen production and consumption by stream 

organisms was used to estimate GPP and ER:  

dDO/dt= (GPP+ER)/z +K(DOsat-DO) 

dDO/dt is the change in dissolved oxygen concentration through time.  

GPP is the rate of production of photosynthetic O2, in units of oxygen, g O2m-2 d-1 

ER is the rate of consumption of oxygen through autotrophic and heterotrophic respiration, 

in units of oxygen, g O2m-2 d-1 

K is gas exchange rate coefficient, governing the volume of net oxygen exchange between 

the water column and the overlying air 

K(DOsat-DO) is the volume of net oxygen exchange 

 

In the field, sensors were deployed at the upstream and downstream boundaries of each study 

reach, collecting time series data of dissolved oxygen (DO), water temperature, air pressure, and 

conductivity at 10-min intervals (YSI sensors; Yellow Springs, OH), and photosynthetically active 

radiation (PAR) at 5-min intervals (Odyssey sensors; mfr info). For each stream during each survey, 

two different modeling scenarios using observed (Obs_light) and modeled light values (Mod_light) 
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were set up for both upstream (UP) and downstream (DOWN) locations. The ‘Obs_light’ model 

averages data collected from upstream and downstream Odyssey sensors to better reflect the 

energy received by the stream reach during observation, whereas for the the ‘Mod_light’ scenario, 

an estimate of solar insolation was made using the light model in the streamMetabolizer package 

based on the geographic location, elevation, date, and daily maximum PAR. Three cross sections 

at the upstream, downstream, and midpoint of the 100-m study reach were chosen by the field 

team to measure multiple water depth at 30-cm intervals of each cross section. The median of 

these measurements was used to represent the water depth over the sampling periods (<3 days), 

whereas during longer surveys (>3 days), linear interpolation between two median depths was 

applied to reflect changes in morphometry throughout the survey (i.e., as the stream dried or 

flooded). A linear regression between point measurement of discharge at each site and discharge 

data taken from the corresponding nearest USGS gauge station at the same time was used to 

calibrate the continuous discharge data and better represent the real discharge condition of study 

reaches. Daily GPP and ER at upstream (UP) and downstream (DOWN) locations of each study 

reach were modelled separately based on the YSI sensor data, light data (Mod_light and Obs_light 

modeling scenarios), water depth, and calibrated discharge. 

Initially the nighttime regression model in the streamMetabolizer package was applied to estimate 

the gas exchange coefficient, K600, and the output was compared with on-site measurement to 

better set priors (daily bin positions to pool K600 values) for hierarchical Bayesian model. This 

state-space model is hierarchically structured and includes both observation and process error, 
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allowing us to use information from many days to inform estimates on each individual day (Appling 

et al. 2018). I accepted the default model specifications including the initial daily mean and standard 

deviation of GPP and ER. The model was fit with Markov Chain Monte Carlo (MCMC) sampler in 

Stan (Carpenter et al. 2017). The estimation was made with 18,000 MCMC samples from the 

posterior distribution after parameters were converged. The Gelman-Rubin convergence statistic 

(R-hat R� statistic) of the MCMC sampling for each MCMC iteration was checked and all R-hat 

values of GPP, ER, K600 and process error were below 1.1, indicating the convergence of the 

three MCMC chains used in the model. R2 between measured DO and modeled DO was calculated 

to evaluate fitting of the two model scenarios using modeled light and observed light, and the result 

with higher R2 was retained. Finally, estimates from upstream and downstream locations were 

averaged after poor-fitting results (R2 < 0.4) were dropped. GPP and ER were both expressed in 

units of mass oxygen per unit area per time, g O2m-2 d-1, and daily net ecosystem productivity (NEP, 

g O2m-2 d-1) was calculated as the balance of daily GPP and ER values. 

Additionally, water samples were collected during each survey, and standard methods were applied 

during samplings, sample preparations and analytics (American Public Health Association and 

American Water Works Association, 1995). Ammonium and soluble reactive phosphorus (SRP) 

were analyzed by colorimetry using an automated discrete analyzer. Chloride, fluoride, nitrate and 

sulphate were measured by ion chromatography. Total nitrogen and dissolved organic matter were 

determined by chemical oxidation. Sodium and potassium were analyzed using a flame analyzer 

while calcium and magnesium were analyzed by atomic absorption spectrometer. 
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Characterizing features of the discharge variation 

To give historical reference for observations collected in specific years, I quantified the seasonal 

and stochastic components of streamflow variation for each site using long-term data preceding 

the metabolism measurements (see Table 1 for discharge data length).  

Visualizing the discharge seasonality 

Long-term discharge data were imported from USGS website using R package waterData and log 

transformed. Plots were generated based on log-normalized discharge against the ordinal days 

(day 1 to day 365) for each of the study site with the seasonal discharge signal overlaid. The signal 

was specified as non-stationary and simple linear regression was applied to estimate the long-term 

linear trend. The residuals were used to calculate the seasonal signal. Predicted flow and 

corresponding residual at each time point were calculated from seasonal signal and long-term trend 

coefficient. By visualization these streams were categorized into 4 different subsets in accordance 

with the timing of the streamflow signal within year. Winter rain-dominated streams always have 

peak discharge before day 100 (hereafter “winter” category), and summer monsoon-dominated 

streams usually experience only one sharp increase in discharge in summer after day 200 

(hereafter “summer” category). If two peaks were captured, the streams were impacted by the 

mixed effect of both winter frontal and summer monsoon (referred as “bimodal” category). Streams 

with no significant peaks detected throughout the year were labeled as “flashy” representing either 

“flashy” or “constant” sites (referred as “flashy” category). 
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Identifying hydrologic regimes using anomalies 

Discrete Fast Fourier Transform (DFFT) applied to the normalized, log10-transformed mean daily 

streamflow data allowed for decomposition of the time-series data and extraction of featured 

frequencies and amplitudes to reconstruct the long-term seasonal signal in periodic flow variation 

(Sabo and Post, 2008). DFFT can also identify daily anomalies referenced to the seasonal patterns. 

The time series of daily average discharge anomalies was given by the difference between 

observed and expected daily variation, and the whole record was computed to extract three strings 

of yearly anomalies: high-flow anomalies (the maximum yearly high-flow anomaly), low-flow 

anomalies (the minimum yearly low-flow anomaly), and net annual anomalies (NAA, the yearly sum 

of all daily residuals). High- and low-flow anomalies represent the severity or magnitude of the most 

extreme events of each year, whereas net annual anomalies enable easy comparison of the 

observed year with respect to the historic record; years with positive NAA are ‘wetter’ years than 

the long-term record, or high-flow-dominated years (hereafter “wet” regime), whereas negative NAA 

means low-flow-dominated, or ‘drier’ (hereafter “dry” regime). These three annual indices were 

calculated for each stream to collectively quantify the distance and direction to which the hydrologic 

regime in a particular year deviated from historic seasonal expectations. Delta NAA was also 

calculated as the difference between the NAA of the current year and the previous year to show 

the yearly variation in the interannual net anomalies. For comparison purpose, only the most recent 

20 years discharge data were taken, and annual extreme residuals were detected using R package 

discharge (Shah et al. 2019). Catastrophic variability for high and low flow events was also explored 
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with the help of this R package and the following parameters were calculated for each stream: flood 

pulse extent (FPext), high spectral anomaly frequency (HSAF), low spectral anomaly frequency 

(LSAF), high spectral anomaly magnitude (HSAM), low spectral anomaly magnitude (LSAM), mean 

Net Annual Anomaly (NAA), catastrophic variability for high and low flow events (HFsigma and 

LFsigma respectively), and signal noise ratio (snr) (Sabo et al. 2017). 

 

Analyzing the shift between different regimes 

Regime shift can be illustrated visually by abrupt transitions between strings of positive and 

negative anomalies. The structure of the variances in the anomalies was explored using a spectral 

method, wavelet analysis, which decomposes nonstationary time series into scale- and location-

specific measures of frequency-power (Cazelles et al. 2008; Torrence and Compo, 1998). The 

hydroclimate of the study systems is influenced by overlapping ENSO and PDO cycles and the 

seasonal discharge signals experience change in frequency over time (Sabo and Post, 2008). 

Wavelets sheds lights on the transit times of regime shifts between strings of high- and low-flow 

years by quantifying the time scales (e.g., in years) and locations (dates in the time series within 

bands of frequency, i.e., El Niño, 3-5 years, or Decadal Oscillations, 10 years) of regime shifts 

(Foufoula-Georgiou and Kumar, 1994). Specifically, Morlet mother wavelet function was applied on 

the daily discharge anomalies against a theoretical blue-noise background using the discharge 

(Shah et al. 2019) and WAVELETCOMP (Roesch and Schmidbauer, 2014) packages in R. 

Significant blue noise in the wavelet scalogram represents negative autocorrelation (i.e., regime 
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shift), and was identified across multiple time scales (1-2 years). A time series of annual power 

maxima was calculated, reflecting peak transition periods between wet and dry regimes. Maximum 

shift between regimes is illustrated by time series of peak transition (maximum annual significant 

blue noise). Significant peak transition was detected based on 95% confidence interval (CI) of 

normal distribution. The features of regime shift, including the lag time since last peak (RTrecent), the 

relative consistency of return interval (i.e., coefficient of variation of return interval) (CVRT) etc. were 

calculated.  

 

Data analysis: drivers of spatiotemporal variation in metabolism of aridland streams 

Local environmental drivers of the variation of the seasonal mean of GPP and ER for each site 

during each survey were studied, along with the factors that contributed to the spatial difference in 

the coefficient of variation (CV) of the seasonal GPP and ER. Two Principal Component 

Analyses (PCA) were run first to summarize the information content and reduce the dimensionality 

in this high-dimension database, as multiple predicted factors that might contribute to the CV of 

seasonal GPP and ER from site to site were proposed. Due to the small sample size (11 streams), 

I sought a smaller set of summary indices that could be more easily visualized and analyzed. The 

first PCA was applied on the CV of all the available concentration data of SRP, DOC, fluoride, 

chloride, sulfate, nitrate, sodium, ammonium, potassium, magnesium and calcium. Another PCA 

was run on the hydrologic variables, including maximum annual aggregate blue noise power, flood 

pulse extent (FPext), high spectral anomaly frequency (HSAF), low spectral anomaly frequency 
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(LSAF), high spectral anomaly magnitude (HSAM), low spectral anomaly magnitude (LSAM), mean 

Net Annual Anomaly (NAA), catastrophic variability for high and low flow events (HFsigma and 

LFsigma respectively), and signal noise ratio (snr). The model with variables explaining over a 

certain percentage of the total variability was kept for subsequent analyses and only the first 

principal component (PC1) in each of the PCA was saved. Multiple linear regression (MLR) 

techniques were then employed as an exploratory tool targeting potential drivers controlling the CV 

of GPP and ER. Linear mixed-effect analysis was conducted with the R package of nlme (Zuur et 

al. 2009), with CV of GPP and ER as the response variables. PC1 of the water chemistry 

parameters and PC1 of the hydrological variables, the CV of water temperature and CV of? PAR 

were treated as the explanatory variables. The ‘lme4’ package in R was used to fit the linear mixed 

effect models, as these variables are considered to be independent across site but correlated within 

site. The constant variance function structure using varIdent, which allows different variances 

according to level of categorical factors (site and season), was used instead of the unstructured 

variance function structure when the former had lower Akaike Information Criterion (AIC) values, 

indicating better model fits. Analysis assumptions were checked with diagnostic plots and marginal 

R2 (R2
MLR(m)) for fixed effects, and conditional R2 (R2

MLR(c)) for both fixed and random effects was 

calculated using the MuMIn package.  

Analytical models were also set up to determine the drivers of seasonal mean GPP and ER. PCA 

was conducted on the same set of water chemistry parameters, including soluble reactive 

phosphorus (SRP), DOC, fluoride, chloride, sulfate, nitrate, sodium, ammonium, potassium, 
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magnesium and calcium, and the first two principal components (PC1 and PC2) were used as 

explanatory variables in the next step, multiple linear regression analysis. The net seasonal 

anomaly (nsa) and seasonal sum of aggregate blue noise power (sumpower.seasonal), which were 

used to represent the hydrologic parameters, as well as water depth of the channel, water 

temperature, and PAR were all tested as explanatory variables in the MLR to explore their 

associations with the mean seasonal averaged GPP and ER (the response variables). Furthermore, 

a few individual nutrient concentration variables, PAR, water temperature, depth and one of 

hydrologic parameters were examined in the MLR to detect strong associations between specific 

nutrient concentration parameter and stream metabolism. 

 

RESULTS 

Ecosystem metabolism in aridland streams 

In my study of 11 desert and mountain streams and rivers located in the arid southwestern US, the 

mean rate of seasonal GPP and ER across all sites was 1 g O2m-2d-1 (ranging from 0.02 to 7 g 

O2m-2d-1) and 3 g O2m-2d-1 (ranging from 0.07 to 8 g O2m-2d-1), respectively (Table 2). The Verde 

River was one of the most productive streams, with the highest GPP and ER, and Ramsey Creek 

had the lowest GPP and ER (Figure 2 A and B). The mean rates of metabolism across multiple 

sampling days within each survey varied considerably among sites and among seasons. The GPP 

went as low as 0.001 g O2m-2d-1 (Ramsey Creek in 1st quarter 2017) and as high as 15 g O2m-2d-1 
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(Santa Cruz River in 2nd quarter 2017), whereas ER ranged from 0.003 (Ramsey Creek in 1st 

quarter 2017) to 20 g O2m-2d-1 (Santa Cruz River in 2nd quarter 2017). The temporal variation in 

GPP and ER were close; the CV of GPP of each site ranged from 42% (Upper Verde River) to 157% 

(Wet Beaver Creek), with an average CV of GPP 91%, whereas the CV of ER ranged from 32% 

(Upper Verde River) to 247% (Ramsey Creek), with an average CV of ER 85% (Table 3). Among 

all the sites, the Verde River had a substantially lower variation in both GPP and ER, whereas the 

highest variation of GPP from season to season occurred in Wet Beaver Creek and largest 

difference of ER appeared in Ramsey Creek. The 2nd quarter, comprising April, May, and June in 

my study and representing the pre-monsoon period, was the most productive season, with mean 

GPP and ER across all sites being 3 and 5 g O2m-2d-1, respectively. On the contrary, the 4th quarter 

(October, November, and December) was the least productive season with the lowest average 

GPP of 1 g O2m-2d-1, but this season showed the highest variance of GPP across sites (CV 147%). 

The lowest variance of both GPP and ER from site to site and lowest mean ER all occurred in the 

1st quarter (January, February, and March), a relatively cold season associated with winter frontal 

storms. 

On average, all streams were heterotrophic with a negative mean NEP and P:R ratios < 1 (Figure 

2 C). The biggest difference between GPP and ER was seen in Agua Fria River (NEP -3 g O2m-2d-

1). More specifically, most sites had negative NEP during most surveys, with a few exceptions, such 

as the San Francisco River, San Pedro River, and Ramsey Creek. Autotrophic ecosystem 

metabolism occurred primarily in the pre-monsoon 2nd quarter; GPP was higher than ER in only 14 
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of 95 measurements (15%), including seven 1st-quarter surveys, three 2nd-quarter and 4th-quarter 

surveys respectively, and only one 3rd-quarter (monsoon) survey. Streams were close to metabolic 

balance in about half of the measurements, and 29 of 81 (36%) measurements were strongly 

heterotrophic, with P to R ratios <0.25. 

 



  17 

Table 2: Seasonal mean GPP and ER, unit g O2/m2/day. 

site 
Season/ 

quarter 

2016 2017 2018 2019 

GPP ER NEP GPP ER NEP GPP ER NEP GPP ER NEP 

AF 

1st  1.619 -3.503 -1.884 
   

0.809 -3.654 -2.845 0.913 -0.641 0.272 

2nd 0.335 -2.429 -2.094 3.169 -8.841 -5.672 1.621 -4.636 -3.015 
   

3rd 0.526 -7.603 -7.077 1.045 -2.716 -1.671 0.878 -3.352 -2.475 
   

4th 0.085 -3.804 -3.719 0.746 -6.530 -5.784 
      

BB 

1st  1.027 -2.972 -1.946 3.565 -4.769 -1.204 
      

2nd 1.409 -3.396 -1.987 3.569 -5.814 -2.245 
      

3rd 
   

1.454 -5.220 -3.766 
      

4th 0.319 -0.332 -0.012 2.153 -7.837 -5.685 
      

BN 

1st  0.513 -2.955 -2.442 0.808 -3.066 -2.258 0.588 -3.350 -2.762 
   

2nd 0.864 -3.582 -2.717 3.637 -8.088 -4.451 1.090 -3.430 -2.340 1.874 -3.448 -1.574 

3rd 0.821 -4.913 -4.092 1.946 -3.956 -2.010 0.402 -4.105 -3.704 
   

4th 0.139 -5.056 -4.917 0.184 -3.094 -2.910 
      

EG 

1st  
   

0.335 -3.289 -2.954 
      

2nd 0.093 -0.952 -0.859 0.205 -3.640 -3.435 1.034 -4.206 -3.172 
   

3rd 0.052 -1.835 -1.783 0.209 -1.262 -1.053 0.212 -0.737 -0.525 0.644 -1.711 -1.067 

4th 0.016 -2.423 -2.407 0.063 -1.795 -1.732 0.282 -2.419 -2.137 
   

RM 

1st  0.001 -0.004 -0.003 0.001 -0.003 -0.002 
      

2nd 0.087 -0.004 0.083 0.032 -0.436 -0.404 
      

3rd 
   

0.009 -0.005 0.003 
      

4th 0.005 -0.005 -0.001 0.049 -0.005 0.044 
      

SC 

1st  1.791 -2.469 -0.678 5.102 -6.951 -1.848 0.117 -2.033 -1.915 7.180 -6.423 0.757 

2nd 4.075 -5.610 -1.535 14.593 -20.345 -5.752 0.943 -1.845 -0.902 
   

3rd 1.118 -5.024 -3.906 
   

0.367 -0.432 -0.065 
   

4th 0.072 -0.276 -0.205 3.963 -5.297 -1.334 
      

SF 

1st  0.363 -1.639 -1.276 3.271 -0.292 2.979 
      

2nd 1.658 -0.880 0.778 0.619 -3.688 -3.069 
      

3rd 0.635 -0.774 -0.139 1.515 -1.839 -0.323 
      

4th 0.792 -0.880 -0.088 0.553 -0.258 0.295 
      

SP 

1st  1.723 -1.555 0.168 1.918 -2.044 -0.126 2.357 -2.271 0.087 1.343 -1.722 -0.378 

2nd 1.018 -1.109 -0.091 1.715 -2.797 -1.082 3.940 -5.985 -2.045 
   

3rd 1.143 -1.922 -0.779 
   

1.444 -1.852 -0.409 
   

4th 1.845 -1.775 0.070 0.764 -1.222 -0.459 
      

SY 
1st  0.427 -2.835 -2.409 0.242 -0.241 0.001 

      

2nd 
   

1.225 -2.748 -1.523 
      

VD 

1st  8.426 -7.414 1.011 2.266 -2.900 -0.634 
      

2nd 8.380 -8.852 -0.471 10.540 -10.194 0.346 
      

3rd 7.179 -10.815 -3.636 6.759 -8.352 -1.593 
      

4th 5.176 -7.654 -2.478 3.572 -5.822 -2.250 
      

WB 

1st  0.275 -1.160 -0.885 
         

2nd 
   

5.391 -10.223 -4.831 
      

3rd 0.773 -1.908 -1.135 0.655 -1.867 -1.212 
      

4th 0.393 -1.415 -1.021 0.229 -0.881 -0.652 
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Table 3: Mean and CV of seasonal mean GPP and ER 

site 
GPP_mean_mean 

(g O2/m2/day) 

ER_mean_mean 

(g O2/m2/day) 

NEP_mean 

(g O2/m2/day) 

GPP_mean_CV 

(%) 

ER_mean_CV 

(%) 

AF 1.068 -4.337 -3.269 79  -56  

BB 1.928 -4.334 -1.860 65  -55  

BN 1.072 -4.087 -3.015 92  -35  

EG 0.286 -2.206 -1.920 106  -51  

RM 0.026 -0.066 -0.040 124  -247  

SC 3.575 -5.155 -1.580 121  -108  

SF 1.176 -1.281 -0.106 82  -88  

SP 1.746 -2.205 -0.459 49  -61  

SY 0.631 -1.941 -1.310 83  -76  

VD 6.537 -7.750 -1.213 42  -32  

WB 1.286 -2.909 -1.623 157  -124  
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Figure 2: Stream metabolism for each stream averaged by season. A: Seasonal mean GPP (g O2/m2/day); B: 

Seasonal mean ER (g O2/m2/day); C: seasonal mean GPP: seasonal ER (P:R) 

 

B 

A 
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Hydrological features of aridland streams 

Within-year (seasonal) signal of streamflow  

The 11 study streams were categorized into four different subsets in accordance with the timing of 

the streamflow signal within year (Figure 3). Winter rain-dominated streams (Sycamore Creek and 

Wet Beaver Creek) have peak discharge before day 100 (hereafter “winter” category), and summer 

monsoon-dominated streams (Santa Cruz River and San Pedro River) usually experience only one 

sharp increase in discharge in late summer, after day 200 (hereafter “monsoon” category). If two 

peaks were captured, the streams were impacted by the mixed effect of both winter frontal and 

summer monsoon; for instance, Agua Fria River, San Francisco River, Eagle Creek and Ramsey 

Creek (referred to as “bimodal”). There were three other streams for which no significant peaks 

were detected throughout the year: Babacomari River, Bonita Creek and Verde River, so they are 

C 
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labeled as “flashy” sites. Some of these streams exhibited strong seasonality in discharge. For 

example, the Santa Cruz and San Pedro Rivers experienced the within-year dry season and wet 

season repeatedly. On the contrary, no seasonality was identified in Babacomari River and Verde 

River. Compared with others in the “bimodal” category, the seasonality of hydrologic regime in 

Ramsey Creek was relatively weak. 

Figure 3: Seasonal signal of streamflow, 11 streams were categorized into 4 subsets. A: Winter; B: Summer; 

C: Bimodal; D: Flashy. 
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Hydrologic regimes and regime shifts 

Discrete Fast Fourier Transform (DFFT) was applied to describe both intra-annual and inter-annual 

difference in streamflow for the past 20 years - the former is illustrated by the timing and magnitude 

of the annual extreme residuals (Figure 4 a, b, c, and d), whereas the later represents departures 

from the long-term hydrologic trend- anomalies (Figure 4 A, B, C, and D). The exact timing the 

annual extreme residuals in each year (Figure 4 a, b, c, and d) corresponds but does not 



  24 

necessarily match seasonal discharge signal of each hydrological categories (Figure 3). For 

example, for a stream in the “winter” group, only some of the annual extreme residuals appeared 

in winter but most happened in March and April (Table S1 and Figure S1 in the Appendix). For the 

year-to-year variations, the 20-year period encompassed both wet and dry periods in all sites 

(Figure 4 A, B, C, and D). Some sites, like Wet Beaver Creek, San Pedro River, and San Francisco 

River, experienced more frequent transitions between negative flow anomalies (dry regime) and 

positive flow anomalies (wet regime), with relatively short intervals between each hydrologic regime 

shift.  

Wavelet analysis showed that there were numerous hydrologic regime shifts in most of the time 

series (Figure S2 in the Appendix). The annual power maxima of Wet Beaver Creek and San Pedro 

River provide a comparison between systems with varied frequency of hydrologic regime shifts and 

different consistency of return intervals (Figure 5). Additionally, antecedent hydro-climatic 

conditions have a strong lagged autocorrelation (memory), that significantly impacted the peaks of 

flood waves. The memory effect also differed in these streams. 
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Figure 4: DFFT result. a, b, c, and d: Annual extreme residuals of discharge along time (X axis: year; Y axis: 

Residual event magnitude; dash line: low-flow event magnitude equal to 2 sigma; dotted line: high-flow event 

magnitude equal to 2 sigma; empty square: annual extreme high-flow residuals; empty dot: annual extreme 

low-flow residuals. A, B, C and D: Net annual anomalies (red: dry regime with negative NAA; blue: wet regime 

with positive NAA) and delta net annual anomalies of each year (red: dry regime without regime shift; green: 

regime shift from dry to wet; blue: regime shift from wet to dry; purple: wet regime without regime shift). One 

stream was chosen as an example for each subset. A and a: Winter; B and b: Summer; C and c: Bimodal; D 

and d: Flashy. See Figure S1 in the Appendix for the full result. 
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Figure 5: Scale-average time series of max annual aggregate blue noise power along time, using Wet Beaver 

and San Pedro rivers as two examples. X axis: year, Y: aggregate blue noise power. See Appendix Figure S2 

for full result. 
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Drivers of spatiotemporal variation in stream metabolism 

Controls on the seasonal mean GPP and ER 

PCA on the seasonal mean of water chemistry parameters showed that the first two principal 

components combined (PC1 and PC2) explained around 43% of the variance in the water 

chemistry dataset and were used for next step multiple linear regression analysis (Table 4 A and 

B). PC1 was negatively correlated with all the seasonal mean of concentration (sodium -0.455, 

potassium -0.438, chloride -0.397, etc). PC2 was positively correlated with some variables like 

chloride (0.374) and DOC (0.362), and negatively correlated with some others like Ammonium (-

0.448). No strong correlation was found between net seasonal anomaly and seasonal sum of 

aggregate blue noise power (p=0.594), and they were both included in the MLR model. The result 

indicated that the second principal component (PC2) of water chemistry parameters and water 

depth were strong predictors of GPP (adjusted R2=0.3512), while water depth was one of the most 

significant predictors of ER (adjusted R2=0.555, Table 5). Furthermore, individual nutrient 

concentration variables were explored, and I found that GPP was significantly correlated with nitrate 

concentration, SRP concentration, water depth, temperature, and PAR (adjusted R2=0.626, Table 

7). For ER, nitrate concentration, temperature, and depth were significant predictors of ER 

(adjusted R-squared=0.652). Neither the aggregate blue noise power nor the net seasonal anomaly 

was found to correlated with GPP. Only seasonal mean of ER responded to blue noise power. 
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Table 4 A: PCA result: the first 3 principal components of seasonal mean of water chemistry variables.  

Importance of components PC1 PC2 PC3 

Standard deviation 1.779 1.249 1.203 

Proportion of Variance 0.288 0.142 0.132 

Cumulative Proportion 0.288 0.430 0.561 

 

Table 4 B: The matrix of seasonal mean of water chemistry variable loadings 

  PC1 PC2 PC3 

SRP_mean -0.330 0.483 -0.116 

DOC -0.288 0.532 0.060 

Fluoride -0.124 0.084 0.148 

Chloride -0.440 0.012 0.316 

Sulfate -0.303 0.059 -0.414 

Nitrate -0.124 -0.374 -0.120 

Sodium -0.476 -0.316 0.148 

Ammonium -0.077 -0.007 -0.650 

Potassium -0.445 -0.105 0.135 

Magnesium -0.186 -0.462 -0.001 

Calcium -0.165 -0.095 -0.462 
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Table 5: MLR result using mean GPP and ER as response variables. Hypothesized predictor variables with * 

have statistically significant association with the response variable, with p <0.05. 

response 

variable 
Predicted variables 

Coefficient

s Estimate 
Std. Error t value Pr(>|t|) 

Adjusted 

R-squared 

F-statistic 

p-value 

Mean 

GPP 

(Intercept) -1.48E+00 1.36E+00 -1.091 0.279822 

0.3512 1.83E-05 

PC1_waterchem -5.14E-03 1.64E-01 -0.031 0.975111 

PC2_waterchem*** -7.01E-01 1.96E-01 -3.567 0.000717 

temp.water_mean 1.26E-01 7.39E-02 1.71 0.092483 

light_median 1.63E-03 1.28E-03 1.268 0.209654 

depth_mean** 4.74E+00 1.72E+00 2.752 0.007827 

NSA 1.17E-03 8.98E-03 0.13 0.897241 

sumpower.seasonal -4.45E-07 3.29E-05 -0.014 0.989257 

Mean 

GPP 

(Intercept). -1.68E+00 9.10E-01 -1.841 0.070602 

0.6261 3.56E-12 

DOC. 5.26E-03 2.91E-03 1.805 0.076026 

Nitrate*** 5.28E-02 7.18E-03 7.347 6.38E-10 

SRP_mean*** -1.63E+00 3.99E-01 -4.095 0.000128 

temp.water_mean* 1.29E-01 5.00E-02 2.578 0.012404 

light_median* 2.41E-03 9.62E-04 2.506 0.014952 

sumpower.seasonal -2.13E-05 2.59E-05 -0.824 0.413387 

depth_mean** 4.14E+00 1.30E+00 3.19 0.002265 

Mean ER 

(Intercept) 1.24E+00 1.39E+00 0.894 0.3748 

0.555 5.22E-10 

PC1_waterchem 1.15E-01 1.68E-01 0.686 0.4952 

PC2_waterchem* 4.51E-01 2.01E-01 2.247 0.0284 

temp.water_mean* -1.67E-01 7.54E-02 -2.213 0.0307 

light_median -5.76E-04 1.31E-03 -0.44 0.6616 

depth_mean*** -1.14E+01 1.76E+00 -6.485 1.88E-08 

sumpower.seasonal. 6.50E-05 3.36E-05 1.935 0.0577 

NSA 1.16E-02 9.17E-03 1.267 0.21 

Mean ER 

(Intercept) 1.66E+00 1.08E+00 1.535 0.12996 

0.652 4.49E-13 

DOC -4.66E-03 3.47E-03 -1.345 0.18376 

Nitrate*** -4.38E-02 8.55E-03 -5.125 3.34E-06 

SRP_mean 7.60E-01 4.74E-01 1.603 0.11427 

temp.water_mean** -1.60E-01 5.94E-02 -2.684 0.00939 

light_median -1.54E-03 1.15E-03 -1.343 0.18419 

sumpower.seasonal* 7.65E-05 3.08E-05 2.487 0.01566 

depth_mean*** -1.08E+01 1.54E+00 -7.004 2.46E-09 
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Controls on the variance of stream metabolism 

PCA on the CV of water chemistry parameters showed that PC1 was positively correlated with the 

CV of calcium (0.312), potassium (0.136) and sulfate (0.051), and negatively correlated with the 

CV of all other parameters (SRP, DOC, fluoride, chloride, nitrate, sodium, ammonium, and 

magnesium). The first principal component combined explained almost 30% of the variance in the 

water chemistry dataset and was selected for next step analysis (Table 6A and 6B). Another PCA 

was run on the hydrologic variables and the first principal component combined explained over 60% 

of the variance in the hydrological dataset and was selected for next step analysis (Table 6C and 

6D). PC1 was negatively correlated with LSAM (-0.323), HSAF (-0.283), LSAF (-0.284) and snr (-

0.108), and positively correlated with all other parameters, like HFsigma (0.383), LFsigma (0.379), 

FPExt (0.363) etc. 

Furthermore, linear regression model specifically demonstrated that size had no control over CV of 

concentrations of them (p=0.992), nor was it associated with CV of local environmental factors like 

water temperature (p=0.680) and PAR (p=0.909), but size, represented by the watershed area was 

significantly corelated with hydrological variability (p=0.047) (Table 7). 

Lastly, the multiple linear regression models revealed that CV of GPP was driven by the first 

principal component of water chemistry parameters, size (watershed area) and CV of PAR (Table 

8). More specifically, CV of SRP and CV of nitrate concentration and CV of PAR were significantly 

corelated with CV of GPP. PC1 of hydrology is the only factor found to be associated with the CV 

of ER. 
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Table 6 A: PCA results: the first 3 principal components of coefficient of variation of water chemistry 

parameters 

Importance of 

components 
PC1 PC2 PC3 

Standard deviation 1.796 1.598 1.299 

Proportion of Variance 0.293 0.232 0.153 

Cumulative Proportion 0.293 0.525 0.679 

Table 6 B: The matrix of chemistry variable loadings 

 PC1 PC2 PC3 

SRP -0.412 -0.348 0.027 

DOC -0.084 -0.519 0.009 

Fluoride -0.307 0.386 -0.329 

Chloride -0.285 0.286 0.343 

Sulfate 0.051 0.219 0.468 

Nitrate -0.265 0.484 -0.022 

Sodium -0.479 -0.080 0.076 

Ammonium -0.042 0.045 0.478 

Potassium 0.136 -0.121 0.555 

Magnesium -0.477 -0.265 0.013 

Calcium 0.312 -0.053 -0.107 

Table 6 C: PCA result: the first 3 principal components of hydrological variables 

Importance of components PC1 PC2 PC3 

Standard deviation 2.499 1.426 0.994 

Proportion of Variance 0.624 0.203 0.099 

Cumulative Proportion 0.624 0.828 0.927 

Table 6 D: The matrix of chemistry variable loadings 

  PC1 PC2 PC3 

aggregate.power 0.269 0.376 -0.152 

HSAM 0.373 0.113 -0.218 

LSAM -0.323 -0.373 -0.123 

HSAF -0.283 0.434 -0.301 

LSAF -0.284 0.399 -0.288 

FPExt 0.363 0.285 0.083 

NAAmean 0.300 -0.170 0.435 

HFsigma 0.383 -0.087 -0.167 

LFsigma 0.379 0.018 -0.293 

snr -0.108 0.491 0.657 
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Table 7: LR result exploring the correlation between size (watershed area) and other predicted variables. 

Predicted predictor variables with * have statistically significant association with size, with p <0.05 

Independent variable 
Dependent 

variable 
adj.r.squared Intercept Slope P-value 

area 

PC1_waterchem -0.111 -0.005 0 0.993 

PC1_hydro* 0.301 1.304 -0.001 0.047 

temp.water_cv -0.089 19 0 0.68 

light_cv -0.109 182.8 0 0.909 

 

Table 8: MLR result using CV of GPP and ER as response variables. Predicted predictor variables with * have 

statistically significant association with the response variable, with p <0.05. 

Response 

variable 

Predicted 

variables 

Coefficients 

Estimate 
Std. Error t value Pr(>|t|) 

Adjusted 

R-squared 

F-statistic 

p-value 

CV of 

GPP 

(Intercept) -65.395 45.837 -1.427 0.213 

0.781 0.0192 

PC1_waterchem

* 
-11.235 4.017 -2.797 0.038 

PC1_hydro -0.984 3.195 -0.308 0.771 

area* -0.008 0.003 -2.814 0.037 

temp.water_cv -1.715 1.44 -1.191 0.287 

light_cv* 1.127 0.366 3.084 0.027 

CV of 

GPP 

(Intercept)* -285.5 88.1 -3.24 0.0317 

0.825 0.02674 

Nitrate_cv* 0.8628 0.3084 2.798 0.0489 

SRP_mean_cv* 1.087 0.3149 3.453 0.026 

PC1_hydro -5.016 2.968 -1.69 0.1663 

area -0.004967 0.002804 -1.771 0.1512 

temp.water_cv -7.062 2.63 -2.685 0.0549 

light_cv* 1.977 0.4962 3.985 0.0163 

CV of ER 

(Intercept) 146.586 119.439 1.227 0.266 

0.527 0.072 

PC1_waterchem 6.107 10.118 0.604 0.568 

PC1_hydro* -16.635 6.342 -2.623 0.039 

temp.water_cv -0.404 3.745 -0.108 0.918 

light_cv -1.215 0.947 -1.283 0.247 

CV of ER 

(Intercept) 93.8029 223.5017 0.42 0.6921 

0.5743 0.08878 

Nitrate_cv 0.4489 0.7769 0.578 0.5885 

SRP_mean_cv -0.4518 0.7547 -0.599 0.5755 

PC1_hydro -17.8544 7.5318 -2.371 0.0639 

temp.water_cv -3.2109 6.8547 -0.468 0.6592 

light_cv -0.7652 1.3297 -0.575 0.5899 
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DISCUSSION 

Streams and rivers are active processors of and/or substantial sinks for carbon, and the global 

carbon budget needs to consider including these fluxes (Cole et al. 2007; Battin et al. 2008, 2009). 

According to Griffiths et al. (Griffiths et al 2013) and Battin et al. (2009), terrestrial carbon flux to 

inland waters is either respired and released as atmospheric CO2 (50%) or stored in sediments 

(33%). Further, 25% of the total flux was estimated to be the CO2 evasion from streams and rivers 

(Battin et al. 2008). Hence, understanding the variance on gross primary production (GPP), 

ecosystem respiration (ER), and net ecosystem production (NEP) of the fluvial ecosystems is of 

great importance. In addition to connecting stream ecology to global carbon fluxes, stream 

metabolism is a critical indicator of ecosystem health with significant influences on ecosystem 

functioning (Fellows et al., 2006; Correa-González et al., 2014). Stream metabolism also has 

multiple implications for ecological processes. For instance, stream metabolism affects secondary 

productivity by affecting the nutritional resource quality for consumers in the food chains (Boëchat 

et al., 2011). Anthropogenic influences on metabolism may change nitrogen and phosphorus 

retention (Gücker and Pusch, 2006; Merseburger et al., 2011) as well as organic matter processing 

(Tank et al., 2010). These biogeochemical changes are important to drinking-water quality and 

pollution abatement, which are important ecosystem services that rivers and streams provide (Hall 

and Tank, 2003; Sobota et al., 2012). There has been a long and rich history of studies on the rates 

and controls on stream metabolism owing to its ecological importance. As a result, ecologists have 
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gained some insight by comparing metabolic rates and some hypothetical factors among streams 

and rivers (e.g., Mulholland et al., 2001; Bernot et al., 2010; Hoellein et al., 2013). However, due to 

the diverse and dynamic nature of rivers and streams and their complex linkages with the 

surrounding terrestrial ecosystems, no universal or regional controlling factors on stream 

metabolism have yet been concluded (Bernhardt et al. 2018).  

This study provided one of the most comprehensive analyses of stream metabolism currently 

available in the southwestern US desert and mountainous area, as these sites span diverse regions 

and share similarities and dissimilarities in hydroclimatic conditions that potentially influence GPP 

and ER. Using a significant spatial gradient in stream order (size) and hydrologic variability, I 

focused on the variation (CV) of both explanatory and response variables and how variation in 

drivers (hydrology, nutrient concentrations, local environment and size) may affect variation in 

response (photosynthesis and respiration). These predicted variables represent the difference of 

disturbance regime in magnitude, timing and frequency within the catchment and the stability of 

local environment in terms of the temperature and PAR, while the variations of GPP and ER are 

important indicators for evaluation of stability at the ecosystem level. 

As a result, I found that: 1) although vast variation in hydrologic variability was observed across 11 

streams (Figure 3, 4, 5 and Appendix Figure S1, Figure S2 and Table S1) both interannually and 

intra-annually (seasonally), hydrologic variation only predicted the CV of ER but not the CV of GPP. 

The CV of photosynthesis and respiration responded differently to discharge anomalies 

representing hydrologic variability. 2) The variability in nutrient supply and PAR were the dominant 
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controls on the CV of GPP but not ER, while the CV of water temperature was not associated with 

CV of GPP or ER at all. 3) Watershed area, representing the size of study rivers and streams, was 

correlated with the hydrologic variability but not with the CV of local environment (water temperature 

and PAR) or CV of nutrient loadings. Size only predicted the CV of GPP but not CV of ER. 

Additionally, the seasonal dynamic of stream metabolism was also illustrated by repeated short-

term (mostly <7 days) measurement of GPP and ER. The analysis of the effects of nutrient 

concentration, PAR, water temperature, hydrology and water depth on seasonal averaged 

estimates of GPP and ER revealed the following findings: 1) hydrologic condition was not correlated 

with GPP but with ER. 2) Nitrate concentration and water depth were both strong predictors on 

GPP and ER. 3) PAR predicted GPP whereas water temperature predicted GPP and ER. 4) Water 

depth was a strong determinant of both GPP and ER. Generally, the findings revealed in my 

research are consistent with previous studies, but I also noted several major differences between 

my study and others already published which will be discussed as following. 

Seasonal stream metabolism in aridland and the CV of stream metabolism 

The range of daily GPP and ER rates presented in my study are similar to those of previous 

research. Mulholland et al. (2001) reported GPP ranging from <0.1- 15 g O2m-2d-1 and ER ranging 

from 2.4-11 g O2m-2d-1 for 11 streams across the continental US. The NEP was reported negative 

for all streams except Sycamore Creek. Six of the eight streams were strongly heterotrophic, with 

P to R ratios below 0.25 (Mulholland et al. 2001). Noted by Marzolf and Ardón (2021), across all 

202 GPP and ER measurements from 83 streams and rivers across the global tropics, median GPP 
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was 0.4 g O2m-2d-1 (ranging from 0.01 to 11.7 g O2m-2d-1) and median ER was 4.30 g O2m-2d-1 

(range from 0.1 to 42.1 g O2m-2d-1). Similarly, these streams were predominately heterotrophic with 

NEP being negative; in other words, GPP being lower than ER. In my study of 11 aridland streams 

and rivers located in the southwestern US, seasonal GPP and ER and their CV were all in the 

range mentioned in the existing literature. In only 14 of 95 measurements (14.74%) was GPP higher 

than ER, including seven in the cool winter rainy season (1st quarter), three in the pre-monsoon 

season (2nd quarter), three in the late fall-winter (4th quarter), and only one in the monsoon season 

(3rd quarter). Sycamore Creek was reported to be autotrophic during summer (Grimm and Fisher, 

1984) and I found this stream was autotrophic in 1st quarter 2017, but heterotrophic the rest of the 

time. Only 29 of 81 (36%) of measurements were strongly heterotrophic with P to R ratios lower 

than 0.25. This percentage is slightly lower than that found in previous studies (Bernot et al. 2010). 

In other word, the selected streams and rivers have notably higher P to R ration in general and 

hence may differ from closed canopy and less flashy river systems already studied. 

Features of hydrologic variation of aridland streams 

Aridland streams and rivers are hydrologically diverse and dynamic (Sabo and Post, 2007; Cooper 

et al. 2013). Although all located in the desert Southwest in Arizona, these streams demonstrate 

similarities and dissimilarities from site to site and from time to time in terms of the seasonality and 

anomalies of streamflow. The hydrological category is a novel concept proposed in my study, with 

the purpose of showing variation with respect to the form of the seasonal signal of rainfall and 

hence discharge. This will also help to distinguish the efficiency of summer monsoon and winter 
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frontal storms in generating streamflow in aridland streams. The hydrological features of these 

streams were interpreted using the seasonal signal of flow from a different angle of some existing 

studies. For instance, Blasch et al. reported clear winter peaks in Upper Verde River in 2006 

(Blasch et al. 2006) though I did not detect strong seasonal signal. Furthermore, the timing of the 

hydrologic variability was represented by filtering out the annual extreme residuals in each calendar 

year. The annual extreme residuals did not necessarily occur in the season(s) anticipated to have 

floods. For instance, as a winter-frontal dominated stream, Sycamore Creek often had its annual 

extreme residuals in the winter rain season from January to March (52%) and sometimes from July 

to September (i.e., monsoon, 29%) or from October to December (19%). Santa Cruz River was 

dominated by summer monsoon, and 76% of the peak events happened from July to September. 

These streams and rivers also show evident difference in terms of the net annual anomalies. Some 

streams experienced frequent hydrological regime shifts in the recent 2 decades record, like Wet 

Beaver Creek and San Francisco River, which both had six shifts from dry regime to wet regime 

and five from wet regime to dry regime. Some others like Verde River only saw two shifts from dry 

regime to wet regime and two from wet regime to dry regime. In addition to regime-shift frequency, 

wavelet analysis also provides insight into hydrological regime shifts. Significant blue noise signals 

showed the transitions between different regimes. The time series of maximum annual blue noise 

power at scales of 1-2 years was plotted to demonstrate the clear qualitative differences in the 

wavelet spectra of flow from different streams and rivers. This, along with DFFT, is an important 

and initial step to identify, characterize and classify the hydroclimatic regimes of stream flow. 
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Hydrology predicting ER but not GPP 

GPP and ER and their CVs responded differently to hydrological variability. Neither GPP nor the 

CV of GPP was correlated with the hydrologic regime or high-flow parameters, but ER and the CV 

of ER did respond to hydrological variation. This research is novel as we focused on the impact of 

varied hydrologic regime, frequency, timing, and magnitude of regime shifts instead of discharge 

itself. Some studies within individual streams (e.g., Mulholland et al., 2001; Bernot et al., 2010) and 

syntheses across sites (Hoellein et al., 2013) concluded that hydrologic disturbance impacts 

organic matter transport and hence the accumulation and temporal attributes of hydrologic variation 

describing the magnitude, duration, timing, and frequency of extreme events are predicted to 

associate with metabolism in streams. Floods and droughts have been considered as the main 

formats that hydrologic variations contribute to the temporal variation in stream metabolism. Floods 

may scour biofilms and streambed, reduce light availability to algae, and change the abundance of 

biota including benthic algae (Fisher et al. 1982; Power and Stewart, 1987; Grimm and Fisher 1989). 

Also, increased streamflow can elevate DOC concentrations, which may lead to reduced GPP due 

to light attenuation (Leggieri et al., 2013). Droughts and river drying, though receiving far less 

attention, cause mortality of primary producers. Additionally, streams with unstable sediments such 

as sand are especially sensitive to increased discharge and they usually have low production rates 

according to a study by Hondzo et al (2013). As a result, aridland streams experiencing frequent 

hydrologic disturbances can have a relatively low GPP and high ER. In my study, stream ER was 

stimulated by hydrological events, and the CV of ER was negatively correlated with discharge 
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anomalies. Although the decrease in biomass and metabolism after floods events in aridland 

streams has been previously reported (Fisher et al. 1982, Vilches and Giorgi, 2010; Acuña et al., 

2011), I did not find evidence that the rate and variability of seasonal GPP responded to the stability 

of hydrological condition over long term (annual or longer scale). It is likely because, on the one 

hand, the memory effect of extreme hydrological events on primary production is muted as the 

impact does not last long in aridland streams due to the extremely dynamic nature. On the other 

hand, DFFT and wavelet methods—which quantify the features of hydrologic regimes at annual 

and decadal scales—do not consider shorter-term hydrologic variation, which does not match the 

scale of stream metabolism and the variation of GPP and ER. In other words, change of GPP and 

ER in response to hydrologic events occurred in days (O'Connor et al., 2012) and hence, the daily 

variation of metabolism would be necessary to detect the association with short-term hydrologic 

characteristics. This study lacks high-resolution temporal metabolism data that would be required 

and therefore cannot fully test the role of hydrologic variation in controlling daily metabolism. 

PAR correlated with GPP and temperature correlated with ER 

The local environmental variables water temperature and PAR appear to be be strong determinants 

of mean and CV of stream metabolism across 11 aridland streams. Significant association was 

detected between PAR and GPP, and between CV of PAR and CV of GPP as well. This finding 

agrees with other studies of stream metabolism (Naiman, 1983; Bott et al., 1985; Young & Huryn, 

1999, Mulholland et al., 2001). Small headwater streams with a high proportion of canopy cover 

often have high light intensity and duration of daylight, primarily as a result of the lower density of 
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riparian vegetation found in arid and semi-arid regions. Streams with high percentage of canopy 

cover usually receive seasonally different amount of light as the leaves emerge and shade the 

stream in summer and autumn, leading to seasonality of GPP in the streams covered by canopy 

(Mulholland et al. 2000). Temperature was confirmed to have a modest effect on ER in my study. 

But the CV of ecosystem respiration wasn’t significantly associated with the CV of temperature. 

The study by Bott et al. (1985) found temperature being “the best single predictor of R”, which 

explained 33% of the variation in respiration of streams across four different biomes in US. At an 

annual scale, mean temperature was found to explain 38% of the variation in mean ER in a 

comparative study of 22 streams (Sinsabaugh 1997). Streams with high variance of water 

temperature should have increased likelihood to observe an effect on ER (Mulholland et al. 2001, 

Perkins et al. 2012). Although hard to be detected as in Arizona, as the temperature range from 

site to site is relatively narrow, this finding supported water temperature as a predictor of ER. 

Nutrient concentrations determining GPP and ER 

In my project, nitrate concentration was found to be strongly associated with ER while 

concentrations of nitrate and SRP both were strong predictors of GPP. The CV of GPP was also 

attributed to the CV of the PC1 of all water chemistry parameters. In literature, nutrient 

concentration and availability (e.g., Grimm and Fisher, 1984; Gausch et al., 1995) together with the 

quantity and quality of organic matter (e.g., Webster et al., 1997) are important predictors of ER. 

Few studies found out that the increasing nitrate concentrations affects the efficiency of biotic 

uptake and nitrate denitrification, as related to photosynthetic production and respiration (Peterson 
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et al. 2001; Duff et al. 2008; Mulholland et al. 2008). The detailed explanation is, the increased 

availability of carbon favors the immobilization- nutrient uptake by heterotrophic microbes, and the 

increase in the carbon and nutrient usually leads to an increase in heterotrophic activity and a 

decrease in oxygen concentration due to respiration. As a result, the anaerobic environment can 

foster denitrification (Grimm 2005). In aridland streams, sometimes the benthic production could 

fuel over 80% of the hyporheic respiration through dissolved material leaching (Jones et al. 1995). 

Highly varied precipitation dictates nutrient status of stream ecosystems and nutrient received by 

streams from the surrounding catchment. In this case, concentration of nutrient and organic matter 

should be one of the determinants of the metabolic rate of streams.  

Water depth driving stream metabolism and watershed area driving CV of GPP  

Lastly, watershed area (size) was driving the hydrologic regime and CV of GPP, as expected. But 

it was not a significant driver of CV of ER, CV of nutrient concentrations, or CV of local 

environmental factors including PAR and temperature. Although not supported by this data, some 

existing literature indicated that large catchments are usually associated with high ER due to a 

higher drainage of nutrients and carbon, while canopy shading and hydrologic disturbance are 

believed to decline between small streams and large rivers (e.g., Marzolf and Ardón, 2021; Finlay, 

2011; Hoellein et al., 2013; Howarth & Sherman, 1991). Water depth, although not correlated with 

temperature or light, was a strong predictor on point measurement of GPP and ER. 
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CONCLUSION 

To conclude, 11 aridland streams in Southwest US- Arizona across a hydroclimatic and size 

(watershed area) gradient were surveyed. The seasonal averaged GPP ranged from 0.001 g O2m-

2d-1 to 4.6 g O2m-2d-1 and ER from 0.0026 g O2m-2d-1 to 20 g O2m-2d-1. It was concluded that 

hydrologic variation only predicted the ER and CV of ER but not the GPP or CV of GPP; PAR and 

its CV controlled GPP and its CV respectively whereas temperature was one of the controller on 

ER; CV of nutrient concentration was one of the drivers of CV of GPP, nitrate concentration was 

correlated with point measurement of GPP and ER while SRP concentration was only relevant to 

GPP; watershed area was correlated with CV of GPP, while depth mattered to both GPP and ER. 

Generally, most of these findings concerning the predictors on GPP and ER were consistent with 

previous studies, but it is also noted that several differences existed between my study and others 

already published conclusions and some guesses were made to explain such inconsistency. The 

study system- 11 streams and rivers in arid and semi-arid region in Southwest US are highly 

dynamic and share lots of similarities and dissimilarities, with notably higher P:R in general. 

Additionally, the focused of this work was the variation of variables, and how variation in response 

variables (the rate of photosynthesis and respiration) responded to the variation in explanatory 

variables, which hasn’t been thoroughly explored in existing literature. Admittedly, there are some 

limitations in this study. For example, short-term features of the discharge variations need to be 

further explored and linked to the variation of stream metabolism. The metabolism model has 
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limited capacity and accuracy in predicting the GPP and ER when the diurnal GPP-driven O2 signal 

was weak. Short-term (mostly <7 days) repeated measurements of metabolism were used to 

capture seasonal dynamics and that provided limited information on the spatiotemporal variation in 

photosynthetic productivity and ecosystem respiration in aridland streams (Ulseth et al., 2019; 

Savoy et al., 2019; Bernhardt et al., 2018). The next step movement would be to utilize the 

continuous monitoring data from StreamPULSE project to model daily GPP and ER, analyze the 

temporal and spatial features with time series methods that are time-scale appropriate and further 

address the linkages between the changing controls and changing stream metabolism. 

The visualization of hydrologic features and stream metabolism can better inform our 

understanding of streams at the multiple temporal and spatial scale and ultimately river 

management practice (Fausch et al. 2002, Naiman et al. 2012, Saunders et al. 2018). Resolving 

how changes and variations in the abiotic conditions like hydrology, temperature, PAR, nutrient 

loadings may drive changes and variations in biotic responses of GPP and ER is one essential step 

in the understanding the complex patterns of metabolic regimes (Bernhardt et al., 2017). This work 

reveals that aridland streams could be vulnerable to discharge alteration related to flow regime 

shifts under global climate change and anthropogenic activities, and alteration of nutrient loading 

leading to further dissolved oxygen consumption. Such impact at the base of the food web has 

great implications for ecosystem functioning and upper level of food webs in streams. 
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TABLE S1: THE PERCENTAGE OF TIMING OF THE ANNUAL EXTREME RESIDUALS 

OCCURRED IN EACH QUARTER OF THE YEAR, 2000-2020. Annual.max and annial.min were 

referred as the most extreme high-flow and low-flow events annually. For example, in AF (Agua 

Fria River), 38.10% of the most extreme high-flow events occurred in the 1st quarter of the year in 

the most recent 20 years’ record. 

type site 
1st 

quarter 

2nd 

quarter 

3rd 

quarter 

4th 

quarter 

annual.max 

AF 38.10% 0 38.10% 23.80% 

BB 14.30% 4.80% 71.40% 9.50% 

BN 28.60% 14.30% 52.40% 4.80% 

EG 38.10% 4.80% 52.40% 4.80% 

RM 28.60% 4.80% 52.40% 14.30% 

SC 9.50% 4.80% 76.20% 9.50% 

SF 28.60% 0 38.10% 33.30% 

SP 4.80% 4.80% 76.20% 14.30% 

SY 52.40% 0 28.60% 19.00% 

VD 33.30% 4.80% 57.10% 4.80% 

WB 47.60% 0 23.80% 28.60% 

annual.min 

AF 19.00% 0 81.00% 0 

BB 4.80% 0 61.90% 33.30% 

BN 47.60% 0 28.60% 23.80% 

EG 52.40% 4.80% 38.10% 4.80% 

RM 28.60% 4.80% 61.90% 4.80% 

SC 4.80% 0 95.20% 0 

SF 4.80% 42.90% 47.60% 4.80% 

SP 4.80% 0 95.20% 0 

SY 66.70% 9.50% 9.50% 14.30% 

VD 95.20% 4.80% 0 0 

WB 81.00% 19.00% 0 0 
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FIGURE S1: DFFT RESULT FOR ALL 11 STREAMS. a- k: Annual extreme residuals of 

discharge along time (X axis: year; Y axis: Residual event magnitude; dash line: low-flow event 

magnitude equal to 2 sigma; dotted line: high-flow event magnitude equal to 2 sigma; empty 

square: annual extreme high-flow residuals; empty dot: annual extreme low-flow residuals. A- K: 

Net annual anomalies (upper, red: dry regime with negative NAA; blue: wet regime with positive 

NAA) and delta net annual anomalies of each year (lower, red: dry regime without regime shift; 

green: regime shift from dry to wet; blue: regime shift from wet to dry; purple: wet regime without 

regime shift). 
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FIGURE S2: SCALE-AVERAGE TIME SERIES OF MAX ANNUAL AGGREGATE BLUE NOISE 

POWER ALONG TIME FOR ALL 11 STREAMS. X axis: year, Y: aggregate blue noise power. 
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