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ABSTRACT  

 

The emerging multimodal mobility as a service (MaaS) and connected and 

automated mobility (CAM) are expected to improve individual travel experience and entire 

transportation system performance in various aspects, such as convenience, safety, and 

reliability. There have been extensive efforts in the literature devoted to enhancing existing 

and developing new methodologies and tools to investigate the impacts and potentials of 

CAM systems. Due to the hierarchical nature of CAM systems and associated intrinsic 

correlated human factors and physical infrastructures from various resolutions, simply 

considering components across different levels into a single model may be practically 

infeasible and computationally prohibitive in operation and decision stages. One of the 

greatest challenges in existing studies is to construct a theoretically sound and 

computationally efficient architecture such that CAM system modeling can be performed 

in an inherently consistent cross-resolution manner. This research aims to contribute to the 

modeling of CAM systems on layered transportation networks, with a special focus on the 

following three aspects: (1) layered CAM system architecture with a tight network and 

modeling consistency, in which different levels of tasks can be efficiently performed at 

dedicated layers; (2) cross-resolution traffic state estimation in CAM systems using 

heterogeneous observations; and (3) integrated city logistics operation optimization in 

CAM for improving system performance. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

As population, economic growth, and personal travel activities continue to increase, 

traffic congestion, air quality, and sustainability issues require systematic and innovative 

solutions based on a deep understanding of overall demand and supply interactions. Recent 

emerging trends in multimodal mobility as a service (MaaS) and connected and automated 

mobility (CAM) made available by public-private partnerships may create a revolutionary 

paradigm shift for automatic mobility applications (Jittrapirom et al., 2017). CAM 

technologies are expected to provide convenient and reliable travel services with seamless 

connections across different layers of multimodal transportation systems using 

individualized active traffic management. It is only a matter of time before the 

transportation infrastructure of freeways, roads, and traffic control systems must 

accommodate self-driving vehicles (SDVs) at the same time as manually driven vehicles 

(MDVs). In large scale systems that exist in nearly all metropolitan areas, the question is 

how can we efficiently, reliably and safely accomplish this?  

Recognizing the differences between CAM and existing human-driver-oriented 

transportation system, researchers have begun to develop new methodologies and enhance 

existing analysis, modeling, and simulation (AMS) tools to evaluate and quantify the 

effects of CAM from various aspects, such as efficiency, reliability, and safety. Owing to 

the rapid deployment of telecommunication and vehicular technologies, it can be expected 

that CAM systems will be complicated hierarchical systems involving human factors and 

physical components from various resolutions. From a computational architecture 
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perspective, simply considering components across different levels in a single model may 

be practically infeasible and computationally prohibitive in the operation and decision 

stages. A layered decomposition approach needs to be adopted in the design of CAM 

system architectures. In the field of telecommunications, providing a typical basis for the 

coordination of industry standards, the open systems interconnection model has seven 

inter-related conceptual layers, including the physical, data link, network, transport, 

session, presentation, and application layers (Zimmermann, 1980). Each layer is 

responsible for dedicated tasks and shares necessary information with the adjacent layers. 

This layer-based decomposition structure dramatically reduces the modeling complexity 

and increases the system reliability, while, at the same time, introduces challenges in 

designing effective feedback and coordination mechanisms to synchronize the status of 

different layers. 

In the field of transportation, the multiresolution modeling (MRM) framework has 

been applied in the analysis and simulation of multimodal transportation systems (Hadi et 

al., 2022; Zhou et al., 2021). A typical MRM structure includes the macroscopic, 

mesoscopic, and microscopic layers. The major challenge of adopting MRM 

methodologies is ensuring the inherent consistency between different resolutions, in terms 

of network representation consistency or performance measure consistency. A feedback 

loop is required to execute different models at different layers using a fixed-point solution 

to achieve a higher degree of modeling consistency. This research highlights the need of 

designing an inherently consistent layered CAM modeling framework, such that critical 

tasks such as system state estimation and operation optimization can be efficiently 
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performed, and layer consistency ranging from high-level trip requests to low-level vehicle 

motion planning or platoon can be achieved. 

This dissertation aims to develop fundamental knowledge needed to design such a 

system. More specifically, the research will study and develop decision models and 

algorithms, and attendant decision-support systems to manage, in real time, large fleets of 

SDVs and MDVs on the current infrastructure, without the need to construct special roads 

or guideways. This research will assume that SDVs are cyber-connected and that, through 

cyber mechanisms of computing and communication, it is possible to guide these SDVs, 

both individually and in platoons, on our transportation infrastructure efficiently, without 

sacrificing comfort, safety and efficiency in mobility. The fundamental concepts in the 

decision-support architecture are (a) controlling directions, speeds and stops to individual 

SDVs in real-time, (b) grouping SDVs in platoons, (c) moving SDVs in platoons, with 

short and uniform headways, using the concept of cyber-enabled virtual tracks on the roads, 

and (d) providing traffic signals on the roads and blocking control (platooning sizing and 

dispatching) on the virtual tracks to maximize throughput and other desirable traffic 

performance measures. In addition to the tools developed for operating SDVs in real time, 

this research aims to help transportation planning agencies to efficiently satisfy increasing 

transportation demand with limited road infrastructure expansion and constrained road 

capacity through efficient urban logistics solutions. Finally, the research and tools will be 

integrated into the current and new open-source ecosystems for computer science, 

operations research, and transportation engineering.  

This dissertation will address fundamental knowledge in networking self-driving 

agents at large scales to meet temporally and spatially distributed traveler demand. The 
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goal is to develop a set of new models for integrated traveler mobility optimization and 

multi-agent-based control under the new environment of shared CAM networks. It will 

investigate a novel cyber-track based concept and methods that optimally provide real-time 

guidance to meet temporally and spatially distributed traveler demand for travelling agents 

(from origins to destinations), possibly leading to new large scale nonlinear optimization 

methods that include vehicular dynamics and safety/comfort consideration.  

By taking full advantage of distributed computing power associated with connected 

SDVs, the dispatching and operating system for SDVs will simultaneously route and 

control individual SDVs and platoons on existing highways and streets. Based on a space-

time cyber track network modeling framework for representing physical transportation 

system with constraints, the dissertation will also develop real-time algorithms for 

proactive control of traffic supply infrastructure that optimizes delays and other 

performance metrics. The dissertation will integrate parallel computing and hierarchical 

system control, as well as a wide range of vehicle routing/scheduling algorithms, to ensure 

the safety, efficiency and reliability of CAM operations. The research will also study the 

computational tractability of large-scale deployment of SDVs using tools of cloud 

computing, computational graphs and parallel computation. The research will utilize 

standard model protocols, such as general modeling network specification (GMNS), of 

collecting steaming data from connected SDVs and managing, distributed computing, and 

effective logistics for SDV fleets. 

 

1.2 Challenges and Motivations 
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Although substantial efforts have been devoted to CAM modeling with significant 

progress in recent years, there are still some critical research gaps need to be addressed, 

especially in the following three directions. 

(1) Layered CAM system modeling architecture. 

First, rigorously defined hierarchical multiresolution network representation 

schemes are required to support the optimization and simulation of CAM systems. 

Particularly, the commonly used spatial-continuous road link representation in low-level 

vehicle motion models relies on complicated nonlinear functions when describing lane-

changing maneuvers and interactions between different vehicles. Second, many studies 

have been conducted on independent CAM simulation and optimization. However, 

performing simulation and optimization separately without internally consistent network 

representations may result in significant gaps between the results from the two modules. 

Third, the theoretically important aspects of layer decomposition and schedulability have 

not been completely exploited to recognize the hierarchical and partially schedulable nature 

of CAM systems, particularly in the presence of computationally intensive coordination 

tasks. Forth, significant progress has been made in the industry, such as NVIDIA and 

Qualcomm, to improve the computing capacity of individual cars by providing powerful 

processors (Zaveria, 2022); there is a critical need to estimate the system-level theoretical 

and practical computing capacity needs for network-oriented vehicle routing and 

movement coordination, particularly based on a well-defined MRM network structure. 

Finally, a viable pathway to an open-source CAV and CAM ecosystem with a standard 

data interface is fundamentally important, which can significantly facilitate research and 

cooperation in the transportation community. 
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(2) Cross-resolution traffic state estimation in CAM systems 

Although numerous efforts have been made for different aspects of the TSSI 

problem, namely, cross-resolution modeling, state representation/smoothing, selection of 

underlying traffic flow models, utilization of heterogeneous data sources, and handling of 

partial differential equations in capturing traffic flow dynamics, very few studies have 

completely integrated all the above elements in a mathematically rigorous and 

computationally tractable estimation framework. Innovative efforts in this direction of 

model integration include Treiber and Helbing (2002) and Sun et al. (2017), highlighting 

the need for a deep examination of the dynamics and uncertainties of systems when a full 

set of coupled elements is incorporated into the model. 

(3) Integrated city logistics operation optimization in CAM systems 

The following modeling challenges are observed in the related vehicle routing 

problem (VRP) and arc routing problem (ARP) literature. First, most studies treat travel 

speeds on roads as constant, while the time-varying feature of transportation networks is 

largely simplified. A realistic, parsimonious and mathematically rigorous model with a 

calibration workflow for time-dependent travel time is important for VRP deployment and 

applications. Second, the system-wide impact of service vehicles in city logistics to the 

entire transportation system (with other travelers and road users) has not been 

systematically studied. Third, in most studies, a single model was developed for real-life 

rich ARP (RARP) applications, which lacks a comprehensive investigation and 

comparison on the effects of rich constraints. Finally, recognizing of the high complexity 

of RAPRs, most studies developed heuristics for solving real-life problems, while exact 
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approaches are critically needed to offer theoretical benchmarks for quantifying the 

solution quality and the degree of optimality. 

 

1.3 Research Overview 

This research focuses on the modeling of emerging CAM from a layered 

perspective, with a special interest in the designing of inherently consistency cross-

resolution system architecture and methodologies of system state estimation and operation 

optimization. The three main research thrusts of this dissertation are detailed below. 

 

Research thrust 1: Layered CAM system modeling architecture 

This thrust introduces a new virtual track-based framework and open-source tools 

for modeling partially schedulable CAM systems on layered networks. First, a coupled 

network representation is developed for macroscopic, mesoscopic, and microscopic CAM 

system modeling with tight inherent consistencies. This enables the behaviorally sound 

modeling of demand-supply interactions in hierarchical CAM systems from a layer 

decomposition perspective such that different levels of tasks can be performed in proper 

layers to achieve a balance between representation details and computational efficiency. A 

spatial-discrete virtual track-based microscopic network representation is designed for both 

high-fidelity vehicle dynamics modeling and maintaining consistency with high-level 

routing decisions in CAM applications to enable individualized active traffic management. 

Second, based on the proposed layered network structure, this research examines effective 

methods of traffic simulation, optimization, and operation of CAM systems, with a special 

focus on different degrees of system schedulability. Third, two open-source packages, 
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osm2gmns and CAMLite, are introduced to support open-source ecosystems and the 

research community for CAM system modeling. Representative numerical experiments are 

performed to demonstrate the effectiveness of the proposed methodologies and open-

source tools. 

 

Research thrust 2: Cross-resolution traffic state estimation in CAM systems 

This thrust presents an integrated cross-resolution framework for the traffic system 

state identification (TSSI) problem by simultaneously considering traffic state estimation 

(TSE), traffic flow model parameter estimation (MPE), and queue profile estimation (QPE) 

on transportation networks using heterogeneous data sources. Systematically considering 

the three tasks, that is, TSE, MPE, and QPE, in an integrated modeling framework helps to 

fully utilize information from different components and takes advantage of larger solution 

spaces, which is expected to improve the reliability and accuracy of system identification 

results. However, potential inconsistencies between different modeling components are 

introduced at the same time and should be carefully dealt with to ensure model feasibility. 

To minimize such inconsistencies, a novel nonlinear programming model is developed to 

formulate the TSSI problem by considering traffic flow models and observations from 

different resolutions. At the macroscopic level, this research uses a fluid queue 

approximation to model the traffic system of interest. Based on the assumption of 

polynomial arrival and departure rates, critical system measures such as time-dependent 

delay, travel time, and queue length are analytically derived. At the mesoscopic level, with 

the adoption of continuous space-time distribution (CSTD) functions, a continuous traffic 

state representation scheme is introduced to model traffic flow variables such as traffic 
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volume, speed, and density. CSTD functions maintain the differentiability of traffic state 

variables such that partial differential equations in traffic flow models can be 

comprehensively considered in the proposed framework. A computational graph is 

constructed to represent the nonlinear programming model in a sequential propagation 

structure, which is then solved using a forward-backward method. Extensive numerical 

experiments based on real-world and hypothetical datasets are designed to demonstrate the 

effectiveness of the proposed framework. 

 

Research thrust 3: Integrated city logistics operation optimization in CAM systems 

City logistics, as an essential component of the city operation system, aims at 

managing the complex flow of goods and services from providers to customers efficiently. 

Delays associated with peak-period traffic congestion exists in both large and small 

metropolitan areas. As many of the service tasks in city logistics are needed to be performed 

during peak hours, operators of urban management movement should consider reducing 

the total trip time and delay when designing service plans. Equally important, the 

congestion impact of service vehicles to other road users should also be considered. This 

research focuses on formulating and solving RARPs in city logistics with a congested urban 

environment. This work highlights the needs of embedding a structurally parsimonious 

time-dependent travel time model in RARP for producing high-quality and practically 

useful solutions. A fluid queue model based analytical approach is presented for link travel 

time calibration in the form of polynomial arrival rate functions. Accordingly, system-wide 

(societal) impact of vehicles routing is analytically derived and incorporated into the RARP 

models which enables traffic managers to systematically consider operation costs and 
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societal impacts when designing routing policies in real-life city logistics applications. 

Additionally, this research develops two new representation schemes for time-dependent 

travel time modeling in RARPs, including a discretized time-expanded representation 

scheme and a nonlinear polynomial representation scheme. Three modeling approaches for 

RARPs are proposed, with different perspectives of capturing time-dependent travel time 

and formulating problem-specific constraints. With a real-life sprinkler truck routing 

problem as the representative example of RARP, two efficient exact solution algorithms, 

including a Lagrangian relaxation-based method and a branch-and-price based method, are 

developed. The latter one is embedded with an enhanced parallel branch-and-bound 

algorithm. Extensive numerical experiments are conducted based on real-world networks 

and traffic flow data to demonstrate the effectiveness of the proposed methods. 

 

1.4 Organization of the Dissertation 

The remainder of this dissertation is organized as follows. Chapter 2 provides a 

comprehensive literature review of CAM system modeling architecture, system state 

estimation, and system operation optimization. Chapter 3 develops new methodologies and 

open-source tools for modeling partially schedulable CAM systems based on an innovative 

construct of layered virtual track networks, with a special focus on the following aspects 

with the long-term goal of a fully integrated simulation and optimization modeling 

paradigm. Chapter 4 provides an integrated modeling framework to systematically 

consider different aspects of TSSI in a unified mathematical programming structure. 

Specifically, the proposed modeling framework simultaneously performs the critical tasks 

of TSE, MPE, and QPE using multi-source data based on a continuous space-time 
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distribution function-based traffic state representation scheme. Chapter 5 focuses on 

formulating and solving rich arc routing problems (RARPs) in city logistics, with 

highlighting the needs of embedding a structurally parsimonious time-dependent travel 

time model in RARP for producing high-quality and practically useful solutions. Chapter 

6 concludes this dissertation with a discussion on future research. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Layered CAM System Modeling Architecture 

2.1.1 Review on CAM Modeling Methodologies 

The existing studies on CAM systems are divided and reviewed in two categories. 

Studies in the first category mainly focus on the investigation of lower vehicle- or platoon-

level motion control to improve the stability and efficiency of a certain group of vehicles 

(typically lane-level applications). In the second category, studies are more concerned with 

higher-level vehicle coordination to improve the performance of the traffic system of 

interest (typically an intersection or along a corridor). 

An early study of the first category for vehicle platooning on automated highways 

was conducted by Alvarez and Horowitz (1999). Their study focused on a single-lane 

scenario and designed a safe zone between two platoons considering the distance, relative 

speed, and maximum acceleration and deceleration rates. In recent years, studies on the 

connected and autonomous vehicles (CAVs) have become an emerging topic in both 

academia and industry owing to the fast development of advanced sensing and 

communication techniques. Various aspects on CAVs, including evaluating the effects on 

the current traffic system with human driven vehicles (Zhou and Zhu, 2021; Ma et al., 

2021; Sala and Soriguera, 2021; Sun et al., 2022), efficient platoon formation strategies 

(Mahbub and Malikopoulos, 2021; Woo and Skabardonis, 2021; Wu et al., 2021; Wang et 

al., 2020; Mu et al., 2021; Bang and Ahn, 2017), platoon stability and controllability 

analysis (Gong et al., 2019; Ma et al., 2019; Zhou et al., 2020; Zhou et al., 2022), distributed 

control algorithms (Guo et al., 2020; Zhang et al., 2022; Shen et al., 2022), mixed traffic 
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flow modeling (Gong and Du, 2018; Mahbub and Malikopoulos, 2021; Woo and 

Skabardonis, 2021; Zhong et al., 2020; Sala and Soriguera, 2021; Lai et al., 2020; Feng et 

al., 2021), adaptive control under dynamic environments with uncertainties (Gong et al., 

2019; Guo et al., 2020; Chen et al., 2018; Wang et al., 2020; Wang et al., 2022; Amirgholy 

et al., 2020; Ruan et al., 2022; Wang et al., 2020; Xiong et al., 2021; Ma et al., 2022; Wei 

et al., 2017), and multi-objective optimization (Han et al., 2020; Ma et al., 2019; Ma et al., 

2021; Wang et al., 2021) have been extensively investigated. These studies primarily focus 

on detailed longitudinal control strategies of a certain group of vehicles, and the interest is 

to analyze or improve the group-level performance. 

Studies in the second category aim to improve the overall traffic system 

performance by coordinating vehicles within a target area. These studies focus on 

interactions between vehicles from different lanes or even road links, whereas detailed 

vehicle motion dynamics modeling is usually simplified to reduce the modeling 

complexity. At present, CAV trajectory optimization primarily focuses on single isolated 

intersection applications (Yao and Li, 2021; Mohebifard and Hajbabaie, 2021; Mirheli et 

al., 2019; Ma et al., 2021; Ma et al., 2017; Yao and Li, 2020; Chen et al., 2021). There is 

increasing interest in integrated models for joint traffic signal and CAV trajectory 

optimization to further improve traffic system efficiency within intersections (Tajalli and 

Hajbabaie, 2021; Guo et al., 2019; Niroumand et al., 2020; Soleimaniamiri et al., 2020; Li 

and Zhou, 2017; Yu et al., 2018). Simultaneously, improving road segment throughput and 

merging area capacity by properly coordinating CAV trajectories on freeways has garnered 

substantial attention (Li et al., 2018; Yang et al., 2020; Hu and Sun, 2019; Amini et al., 

2021; Sun et al., 2020). 
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One of the critical challenges in CAM modeling is developing theoretically 

rigorous, computationally tractable, and behaviorally sound models for describing 

interactions between vehicles from adjacent lanes, while maintaining consistency with 

complex route choice and link selections in a network setting. Without an integrated lane-

changing and path planning model, simulation or optimization results may either generate 

unreasonable lane-switching vehicle trajectories or reply on over-simplistic modeling 

assumptions; for instance, vehicles are not allowed to change lanes in control areas. This 

research attempts to properly model the lane-changing maneuvers of CAVs without 

introducing complicated nonlinear functions. 

 

2.1.2 Review on Problem Decomposition and Schedulability in Complex Systems 

CAM systems have been recognized as complex cyber-physical systems owing to 

their high dynamics, stochasticity, and large number of interconnected components and 

decision-making agents. Across various disciplines, the key performance indices of such a 

complex system include scalability, reliability, and controllability. As a representative 

example, the communication system has been extensively studied for its system 

performance improvement using layered decomposition and coordination. Some examples 

are problem decomposition methods for network utility maximization (Palomar and 

Chiang, 2016), layering as optimization decomposition (Chiang et al., 2007), and cross-

layer congestion, routing, and scheduling design (Chen et al., 2006). In comparison, a 

related MRM methodology in the transportation domain is primarily applied in simulation 

and control applications (Nava et al., 2012; Shelton et al., 2019; Massahi et al., 2019; Hadi 

et al., 2016; Rajaram et al., 2016; Li et al., 2015a; Xing et al., 2021; Gavriilidou et al., 
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2019; Van Lint and Calvert, 2018). Hadi et al. (2022) and Zhou et al. (2021) offer 

comprehensive summaries of advanced MRM developments in the transportation AMS 

domain. In the transportation field, guaranteeing mathematical modeling consistency and 

designing theoretically sound feedback mechanisms from the perspective of system 

optimization needs to be profoundly studied.  

The potential benefits of adopting reservation or scheduling have been investigated 

for various transportation systems, including freeways (Koolstra, 1999), arterial 

intersections (Xie et al., 2012), bike sharing (Chiariotti et al., 2018), taxis (Wang and Cheu, 

2013), buses (Tong et al., 2017), and parking systems (Liu et al., 2014). In recent years, 

the advancement of sensing and communication techniques has enabled the incorporation 

of schedule elements as an integrated part of evolving CAM systems. Similar to finding 

optimal schedules in railway and aircraft systems, many studies have been conducted to 

optimize the operation of CAM systems from various perspectives, such as route guidance 

(Lu et al., 2016), vehicle trajectory control (Han et al., 2020; Karimi et al., 2020; Wei et 

al., 2017), and signal timing (Li et al., 2015b; Mohebifard and Hajbabaie, 2019). Most 

existing studies focus on the optimal control of fully schedulable CAM systems or real-

time operations under fully automated or mixed traffic conditions, whereas robust two-

stage control or real-time re-scheduling of partially schedulable systems has not been 

sufficiently examined. 

 

2.1.2 Review on Open-source Tools for CAM Modeling 
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The development of open-source tools is essential in the CAM and MaaS 

communities. Open-source tools provide free access to the broad public and allow capable 

end users to adapt tools to their customized modeling needs.  

As shown in Fig. 1, CAM modeling tools are classified into three different classes. 

Simulation tools in the first class target either the vehicle or aggregated flow level travel 

demand modeling using well-defined traffic flow models depending on the modeling 

fidelity. The modeling objective is to simulate or reproduce real-life traffic flow evolution 

to provide evaluation and decision support for effective traffic management and control 

strategies. The related open-source tools, to name a few, include microscopic simulator 

SUMO (Behrisch et al., 2011), activity based modeling framework MATSim (Horni et al., 

2016), and mesoscopic dynamic traffic assignment package DTALite (Zhou and Taylor, 

2014). In particular, SUMO is a highly portable, microscopic, and space-continuous 

multimodal traffic simulation tool, which allows the modeling of traveling agents including 

road vehicles, public transport, and pedestrians, and provides various APIs to enhance the 

ability of modeling customization. MATSim is an activity-based, extendable, multi-agent 

simulation framework implemented in Java. A queue-based demand-loading scheme was 

implemented in a parallel computing fashion to enable large-scale scenario modeling. 

DTALite is a lightweight dynamic network loading simulator that embeds Newell’s 

simplified kinematic wave model (Newell, 1993). 

Existing optimization tools in the first class primarily focus on optimizing vehicle 

routings with certain service requests to minimize total system cost, which is typically 

modeled as vehicle routing problems (VRPs). Open-source tools in this category include 

OR-Tools (https://github.com/google/or-tools), VROOM (https://github.com/VROOM-

https://github.com/google/or-tools
https://github.com/VROOM-Project/vroom
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Project/vroom), jsprit (https://github.com/graphhopper/jsprit), and VRPLite (Zhou et al., 

2018). Among the four tools, the first three tools adopt constructive heuristics, whereas 

VRPLite aims to find optimized space-time vehicle service/traveling paths in a Lagrangian 

relaxation framework. 

These software tools provide specific modeling functionalities in one domain. 

Systematic design is still required for a fully integrated mathematical optimization, 

scheduling, and simulation framework, particularly based on a commonly defined shared 

modeling network system at different scales. OpenStreetMap, as an open map website, 

provides free map content to the public; however, conversion tools are still critically 

needed to address three challenges (Ory, 2020): (1) the original data in OpenStreetMap are 

not directly routable in a standard transportation planning model, (2) structure of road link 

attributes is not completely aligned with travel planning and multimodal simulation 

models, and (3) user-contributed attribute data are not sufficiently complete for high-

fidelity simulation at the lane or meter-by-meter cell levels. To address the first challenge, 

open-source package OSMnx developed by Boeing (2017) offers rich graph analysis 

functionalities in modeling, projecting, visualizing, and analyzing real-world street 

networks from OpenStreetMap. In the context of CAM fields, open-source network 

preparation tools using unified network formats are critically needed to improve 

transparency and reproducibility in research collaboration, which motivates the building of 

open-source packages osm2gmns and CAMLite.  

 

https://github.com/VROOM-Project/vroom
https://github.com/graphhopper/jsprit
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Fig. 1. Three Classes of CAM Modeling Tools. 

 

The development of related open-source tools for use in the second and third classes 

relies on successful private-public partnerships that can closely connect academia and 

industry because of the modeling complexities. CARLA (Dosovitskiy et al., 2017) and 

CARMA (FHWA, 2022) are the two most popular tools in the second and third classes, 

respectively. CARLA provides open three-dimensional digital assets, flexible 

specifications of sensor suites, and environmental conditions to support the development, 

training, and validation of autonomous driving systems. The CARMA program, led by 

FHWA, aims to provide an open-source software platform with agile development 

practices to develop and test cooperative driving automation features associated with the 

infrastructure, properly equipped vehicles, and other road users. 

 

2.2 Cross-resolution Traffic State Estimation in CAM Systems 

2.2.1 Literature Review on Traffic State Estimation 

Traffic states of interest include vehicle travel speed and trip travel time in early 

studies (Coifman, 2002; Cheu et al., 2002), while other fundamental state variables such 

as traffic volume, speed, and density on the two-dimensional space-time plane are more 
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considered in recent studies. Seo et al. (2017) offered an excellent summary of model-

driven, data-driven, and streaming-data-driven methods. Model-driven methods focus on 

embedding interpretable traffic flow functional forms and considering tight couplings of 

different traffic states to provide a systematic inference at partially observable or 

unobservable areas. In comparison, data-driven and streaming data-driven approaches rely 

heavily on statistical patterns identifiable from historical and real-time streaming data. 

Recent developments along this line indicate that highly accurate estimations can be 

provided for locations with sufficient sensor data coverage (Antoniou et al., 2013; Chen et 

al., 2007; Tao et al., 2012; Bhaskar et al., 2014; van Erp et al., 2018; Ma and Qian, 2021). 

This study mainly focuses on the enhancement of model-driven methods while fully 

utilizing advanced computational techniques for emerging data-driven applications. 

Existing model-driven methods in the literature are reviewed from the following four 

aspects. 

 

Traffic flow models: continuum flow models 

Continuum flow models in the TSE are used to characterize complex system 

dynamics, particularly congestion formation, propagation, and dissipation. In the most 

notable first-order LWR model (Lighthill and Whitham, 1955; Richards, 1956), traffic flow 

dynamics can be described by three basic equations: the fundamental equation 𝑞 = 𝑘𝑣, the 

flow conservation equation 
𝜕𝑞

𝜕𝑥
+
𝜕𝑘

𝜕𝑡
= 𝑢𝑥,𝑡 , and the speed-density relationship equation, 

where 𝑞, 𝑘, and 𝑣 are the flow, density, and speed, respectively, and 𝑢𝑥,𝑡 is the net vehicle 

generation rate. Other higher-order continuum flow models include Payne–Whitham’s 

model (Payne, 1971; Whitham, 1974), Phillips’s model (Phillips, 1979), and Zhang’s 
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model (Zhang, 1998). The flow conservation law in continuum flow models is typically 

represented by a PDE. Recognizing the difficulty in obtaining closed-form solutions for 

PDEs, many researchers have developed a wide range of finite-difference approximations 

and finite element methods (Grossmann et al., 2007) to solve these equations numerically. 

Many existing studies approximate the original PDE using a set of linear equations. For 

example, Nanthawichit et al. (2003) built a discrete form of the Payne–Whitham model 

using the finite difference method, and Wang and Papageorgiou (2005) used the space-

time discretized form of the second-order validated macroscopic traffic flow model 

proposed by Papageorgiou et al. (1990) in their TSE model. Work et al. (2008) formulated 

a Godunov discretization scheme to cast a new LWR-based PDE into a velocity-based cell 

transmission model. Other efforts involved the use of the cell transmission model 

(Daganzo, 1994), which is a discretization form of the original LWR model, in traffic state 

estimators (Sun et al., 2003; Tampère and Immers, 2007). An alternative shock-fitting 

approach aims to solve PEDs analytically (Wong and Wong, 2002; Sun et al., 2011), and 

these methods can potentially achieve a higher degree of accuracy. It should be noted that 

strong simplistic assumptions such as the linear speed-density relationship in Wong and 

Wong (2002) are required for the shock-fitting approach, and the corresponding 

applications to largescale instances are computationally intensive. 

 

Multi-source data: mapping heterogeneous measurements to system states 

Fusing different types of traffic measurements can improve system-wide 

observability from different perspectives; however, the theoretical challenge is to 

systematically establish a set of computationally tractable and inherently consistent 
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measurement equations. Various studies have been devoted to specific measurement 

categories, such as GPS and mobile phone-based data (Nanthawichit et al., 2003; Herrera 

and Bayen, 2010; Duret and Yuan, 2017; Cheng et al., 2006; Work 2010), Bluetooth data 

(Bhaskar et al., 2014), video detection data (Quiros et al., 2016), and license plate 

recognition data (Zhan et al., 2020). Recently, the utilization of streaming data from 

connected vehicles in TSE has received significant attention (Shahrbabaki et al., 2018; Seo 

et al., 2015; Bekiaris-Liberis et al., 2017; Luo et al., 2019). In addition to traffic flow 

systems, heterogeneous data sources are also widely used to estimate flow states in other 

systems. For example, Shang et al. (2019) integrated Lagrangian and Eulerian observations 

to estimate the passenger flow state in an urban rail transit network. One of the challenging 

issues is that, owing to detection errors, simply combining different data from various 

detectors may introduce inconsistencies into TSE models and the resulting state 

estimations. Doan et al. (1999) offered a comprehensive discussion of error sources in data 

observations, model structures, sensor data, and historical data. 

 

Estimation model: formulating estimation model as optimization or online filtering 

problems  

The ultimate challenge, once the underlying traffic flow models are selected and 

multi-source data are readily available, is the construction of an internally consistent and 

numerically stable estimation model considering the following aspects: (a) measurement 

equations as the mapping between traffic states of interest with traffic flow models and 

multi-source data and (b) assumptions about the error structure that lead to different forms 

of the objective function or methods of recursive state estimate updates. Ashok (1996) 
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discussed the equivalence and connection between the optimization problem of minimizing 

nonlinear generalized least squares and Kalman filtering (KF) from a state-space modeling 

perspective. Along the line of a generalized least square estimation framework, Deng et al. 

(2013) proposed ways of incorporating an extended stochastic three-detector model 

(Newell, 1993) to use multiple data sources. Zheng and Su (2016) built a convex 

optimization problem for the TSE using linearization techniques and solved the problem 

using the split Bregman iteration method. By adopting the Hamilton-Jacobi equation, 

Canepa and Claudel (2017) converted the TSE problem into a mixed integer linear 

programing problem. The challenge to be addressed is how to efficiently produce high-

quality results, particularly for medium- or largescale instances. 

In the category of filtering approaches, the original TSE problem is modeled as a 

recursive state learning/updating problem, and the focus is on capturing the nonlinearity in 

the system dynamics evolution, and various spatial and temporal correlations among the 

states. Several types of filters have been progressively adapted, such as particle filtering 

(PF) and mixture KF (Sun et al., 2003). Work et al. (2008) used the ensemble KF technique 

in their customized velocity cell transmission model to estimate the velocity field on a 

highway using data obtained from GPS devices. Using cellphone network data, Cheng et 

al. (2006) proposed two Bayesian framework-based traffic estimation models, both of 

which were implemented using PF. Using a speed-extended cell transmission model, 

Mihaylova et al. (2007) developed a PF framework for real-time estimation of traffic states 

in freeway networks. 
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Underlying traffic state representation scheme: discretization or continuous function-

based scheme 

The traffic state representation scheme determines in which form the traffic states 

of interest are represented. Almost all existing studies in the literature have adopted a 

discretization-based state representation scheme. That is, with a preset discretization 

resolution, the space-time regime on which the traffic states need to be estimated is 

discretized into a finite number of grids. With the assumption that the states on each grid 

are homogeneous, independent state variables can then be created and estimated on the 

associated grids. Although the adoption of discretization-based state representation 

schemes can help simplify the modeling process, issues such as state discontinuity are 

introduced simultaneously. Another potential impact is that discretization breaks the 

differentiability of traffic states, preventing traffic theories on flow dynamics represented 

by partial differential equations (PDEs) from being directly imposed on the TSE models. 

There are a few studies in the literature that didn’t adopt the discretization-based 

state representation scheme. Treiber and Helbing (2002) designed a nonlinear 

spatiotemporal low-pass filter to estimate traffic state variables based on data from 

stationary detectors. The estimation outputs were the velocity, flow, or other traffic 

variables as smooth functions of space and time. In a follow-up study by Van Lint and 

Hoogendoorn (2010), with the relaxation of restrictions such that data were structured in a 

temporal or spatial manner, the authors proposed an enhanced filter algorithm for traffic 

state estimations using heterogeneous data from traffic sensors on freeways. 
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2.2.2 Literature Review on Model Parameter Estimation 

MPE refers to the process of estimating and calibrating parameters in traffic flow 

models using observed traffic data. Various methods have been proposed to solve the MPE 

problem (e.g., Cremer and Papageorgiou, 1981; Ngoduy and Hoogendoorn, 2003; 

Brockfeld et al., 2004; Spiliopoulou et al., 2014; Paz et al., 2015; Spiliopoulou et al., 2017; 

and Seo et al., 2019). It has also been recognized that traffic flow model parameters can be 

location-dependent and time-varying because they are affected by various factors such as 

traffic incidents and road or weather conditions. Therefore, directly adopting pre-calibrated 

traffic flow models in a specific application, especially under conditions that are different 

from those where the parameters are calibrated, may be problematic.  

Several studies related to online dynamic traffic assignment (DTA) have focused 

on the adaptive calibration of traffic flow parameters and joint estimation of demand and 

supply parameters of DTA systems (Qin and Mahmassani, 2004; Antoniou et al., 2007). 

An excellent application can be found in the study for developing a weather-responsive 

traffic estimation and prediction system with simulation-based DTA as the core state 

estimator (Hou et al., 2013; Mahmassani et al., 2014). In the area of TSE, applying pre-

calibrated traffic flow models in TSE is still a common practice in the literature, while the 

joint estimation of traffic states and traffic flow models has not yet received sufficient 

attention. Evidently, the joint estimation process can take advantage of a larger solution 

space (with both the variables of traffic states and traffic flow model parameters) to better 

approximate the ground truth. If reliable inferences are obtained, one can better interpret 

the dynamics of traffic states owing to changes in demand flow patterns or variations in 

supply parameters. Significant research efforts along this line in TSE include the works of 
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Wang and Papageorgiou (2002), Tampère and Immers (2007), Sun et al. (2017), Shi et al. 

(2021), and Wang et al. (2022). 

 

2.2.3 Literature Review on Queue Profile Estimation 

Limiting the maximum queue length and avoiding queue spill back are the most 

important tasks of signal control at oversaturated intersections during peak hours; 

therefore, QPE has always been a recurrent topic in urban traffic management. Various 

methods have been developed for QPE using different types of data sources. To name a 

few, Liu et al., 2009; Ban et al., 2011; Comert and Cetin, 2011; Comert, 2013; Lee et al., 

2015; Tiaprasert et al., 2015; Ramezani and Geroliminis, 2015; and Zhao et al., 2019. For 

freeways, researchers have mainly focused on the delay and queue caused by work zones 

and traffic incidents (e.g., Chien et al., 2002; Jiang and Adeli, 2004; Ghosh-Dastidar and 

Adeli, 2006; and Li et al, 2006). In terms of queue modeling on freeway bottlenecks, Cao 

et al. (2015) developed a time-space discrete macroscopic model based on the shockwave 

theory for real-time queue estimation in uninterrupted freeway flow. Based on fluid queue 

approximation, a recent study by Cheng et al. (2022) analytically derived system measures, 

such as time-dependent delay and queue length, with the assumption of polynomial flow 

rates in a queuing system. 

Table 1 compares related studies with this study in terms of the tasks considered, 

modeling approach, and solution method. 
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Table 1 Comparison of Related Studies on TSE, MPE, and QPE. 
Publication Tasks Modeling approach Solution method 

Sun et al. (2017) TSE, MPE Nonlinear optimization Closed-form formula, Gauss-

Newton method. 

Shi et al. (2021) TSE, MPE Nonlinear optimization Gradient descent method 

Wang et al. (2016) TSE State-space model Particle filtering 

Canepa and Claudel 

(2017) 

TSE Mixed integer linear  

programming 

Mathematical programming 

solver 

Liu et al. (2009) QPE Lighthill–Whitham–

Richards shockwave 

theory 

Numerical derivations 

Duret and Yuan (2017) TSE Lighthill–Whitham–

Richards model in 

Lagrangian space 

Numerical solutions obtained 

with Godunov scheme 

Jabari and Liu (2013) TSE State-space model Kalman filtering 

Zheng et al. (2018) TSE State-space model Kalman filtering 

Seo et al. (2019) MPE Lighthill–Whitham–

Richards model 

Filtering method, expectation 

maximization algorithm 

This research TSE, 

MPE,QPE 

Nonlinear optimization Gradient descent method 

 

 

2.3 Integrated City Logistics Operation Optimization in CAM Systems 

In this section, related existing studies are reviewed along two lines: (1) time-

dependent travel time modeling in vehicle routing and arc routing problems and (2) rich 

arc routing problems 

 

2.3.1 Time-dependent Travel Time Modeling in Vehicle Routing and Arc Routing 

Problems 

The important study by Malandraki (1989) first formulated link travel time as a 

piecewise-constant function of the departure time. Later on, this approach was adopted by 

Malandraki and Daskin (1992) and Chen et al, (2006). Yet, this approach might not satisfy 

the First-In-First-Out (FIFO) property. The FIFO property states that, among two identical 

vehicles that travel along the same path, the one that departs earlier from the origin node 
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could always arrive at the destination node earlier than the other vehicle. Two major 

approaches are proposed to address the potential FIFO violation issue in the piecewise 

constant representation. First, piecewise-linear functions are considered by Ahn and Shin 

(1991) and improved by Fleischmann et al., (2004). In this approach, a linear transition 

function is built to connect travel times in two adjacent time periods such that travel time 

changes slowly and smoothly. It can be proved that the FIFO property holds if the slope of 

linear lines is less than 45°. Another method proposed by Ichoua et al., (2003) starts with 

time-dependent link travel speed in the form of a piecewise-constant function and 

derives/computes piecewise-linear travel times satisfying the FIFO property. Table 2 

summarizes the above three major methods for time-dependent travel time modeling in 

VRP and ARP models. Xiao and Konak (2016) offers a more detailed classification and 

illustration.  

Figliozzi (2012) offered a comprehensive set of benchmarks for modeling time-

dependent travel times in VRP. The important modeling aspect of time discretization is 

further studied by Boland et al. (2017) for a broader class of continuous-time shortest path 

and service network design problems. One can find the related studies in Scherr et al. 

(2020), Belieres et al. (2021), He et al. (2021), Marshall et al. (2021), Vu et al. (2022), 

Hewitt (2022), and Lagos et al. (2022). In particular, for the fundamentally important time-

dependent shortest path problem, the study by He et al. (2021) systematically considers 

degree 4 and degree 6 polynomial functions to approximate time-dependent travel time 

through the piecewise linear interpolants sampled at integer points. The polynomial 

function can be calibrated for an extended time period (e.g., 24 hours of a day) using real 

world travel time data, while the related non-linear functional form could have many local 
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minima and maxima, which could greatly affect the computational efficiency of dynamic 

discretization discovery algorithms (see Boland et al., 2017). 

In fact, how to obtain reliable and accurate travel time estimates from field data has 

remained a challenging problem for the VRP field, while many published papers still use 

randomly generated or hypothetical travel time distributions for simplicity. By utilizing 

data from advanced traffic information systems in Berlin, Fleischmann et al. (2004) 

proposed a smoothing method to ensure the resulting travel time functions satisfy the FIFO 

property. By using traffic flow data collected from a Belgian highway, Jabali et al. (2009) 

created a speed profile with five periods, including two periods for morning and afternoon 

peak hours and three periods for the remaining non-peak hours, for each link within the 

research area. Kritzinger et al. (2012) adopted 15-minute link travel time information from 

floating car data and developed an extended version of Dijkstra’s algorithm to compute the 

distance matrices between points with various departure times. In the paper by Gmira et al. 

(2021), the authors developed a discrete-event simulator that generates travel speed updates 

for real-time vehicle routing applications. Different from the aforementioned numerically 

driven approximation approaches, Van Woensel et al. (2007) first proposed an innovative 

queue-theoretic modeling scheme for calibrating expected travel times which was adopted 

in the studies by Van Woensel et al. (2008) and Lecluyse et al. (2009).  
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Table 2 Three Major Methods for Representing Time-dependent Travel Times in 

VRP/ARP. 
Graphical illustration of methods Description 

 

Method type: piecewise-

constant travel time function 

Modeling details: each link has 

a constant travel time within 

each pre-defined time period 

FIFO property: not 

necessarily satisfied 

 

Method type: piecewise-linear 

travel time function 

Modeling details: each link has 

a constant travel time within 

each pre-defined time period; a 

linear transition line is built 

between two adjacent periods 

FIFO property: satisfied 

 

Method type: piecewise-linear 

travel time function 

Modeling details: a piecewise-

constant travel speed function is 

constructed for each link first; 

piecewise-linear travel time 

function is then derived based 

on its corresponding speed 

function 

FIFO property: satisfied 

 

2.3.2 Rich Arc Routing Problems 

Considerable efforts have been devoted to the ARP and its variants. Interested 

readers are referred to a number of survey papers (Wøhlk, 2008; Corberán and Prins, 2010; 

Corberán and Laporte, 2015; Mourão and Pinto, 2017; Corberán et al., 2021). In this 

subsection, with the focus on mathematical modeling and solution method development, 

existing studies are reviewed along two research lines, including real-life applications of 

RARP on urban networks and ARP with time-dependent travel times. 
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Three representative applications of RARP as the urban management movement 

problem  

Sprinkler truck routing problem: Li et al. (2008) investigated the water truck 

routing problem in open pit mines in which the travel time along a road for each truck is 

not fixed but relies on its leading truck on the same road. The authors proposed minimum 

cost flow and set-partitioning based heuristics solution algorithms. Huang and Lin (2014) 

formulated the street tree watering problem as the periodic arc routing problem with refill 

points where the watering frequency of each street tree may not be fixed and needs to be 

scheduled according to the period of watering activity. A graph transformation strategy 

was first adopted to convert the original problem to a VRP with an ant colony heuristic 

algorithm. Riquelme-Rodríguez et al. (2014) introduced periodic capacitated arc routing 

problem with inventory constraints that models the loss of humidity on each road with an 

inventory consumption function. The quantity of water delivered was considered to be 

fixed or variable. Two mathematical optimization models were proposed and solved by the 

commercial solver CPLEX. 

Street sweeping problem: Street sweeping requires a special vehicle equipped with 

a rotating brush that can move along the roadside and sweep material into a container on 

the vehicle. Early studies (Bodin and Kursh, 1978; Eglese and Murdock, 1991) modeled 

the street sweeping problem as the capacitated Chinese postman problem and developed 

heuristics to find reasonable routes for the road-sweeping vehicles. Blazquez et al. (2012) 

considered two extra “rich” constraints in sweeper route design: the sweepers must visit 

each selected street exactly as many times as its number of street sides; certain types of 
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turns are not allowed to use. The original ARP was transformed into a VRP which was 

further solved by a nearest neighbor heuristic algorithm.  

Waste collection problem: Mourão and Almeida (2000) and Mourão and Amado 

(2005) examined the waste collection problem on randomly generated networks and 

proposed lower bounds and a three-phase heuristic that transforms one of the lower bound 

solutions to a feasible one. Maniezzo, 2004 considered additional bin compatibility, 

forbidden turns and one-way street constraints in the model, which is solved by a local 

search-based heuristic. Ghiani et al. (2005) considered practical constraints in waste 

collection, e.g., large vehicles are not allowed to use some narrow streets, or services at 

some sites have to be scheduled at night to avoid traffic congestion. The problem was 

solved by a cluster-first route-second based heuristic. Many other constraints include traffic 

regulations (Bautista et al., 2008), mobile depots (Del Pia and Filippi, 2006), intermediate 

facilities (Ghiani et al., 2001), and trip length restrictions (Ghiani et al., 2010). Recently, 

Willemse and Joubert (2016a) integrated major problem features of early studies and 

studied the mixed capacitated arc routing problem with time window and intermediate 

facilities (MCARPTWIF). Four constructive heuristics were developed and 

comprehensively evaluated. Given splitting procedures play a key role in giant tour-based 

heuristics and meta-heuristics, the authors further proposed optimal and heuristic splitting 

procedures for the MCARPTWIF (Willemse and Joubert, 2016b). In a follow-up study 

(Willemse and Joubert, 2019), three acceleration mechanisms for local search meta-

heuristics were developed to better cope with large-scale instances. 

In general, there are three categories of approaches for solving RARPs, including 

constructive heuristics, meta-heuristics, and exact approach (Corberán and Laporte, 2015). 
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Constructive heuristics are designed based on problem features and typically provide a 

single final solution, while meta-heuristics are more general and can be applied to any 

problems. Both approaches cannot produce measurable quality of solutions. Exact 

optimization approaches and related model reformulations have not been studied 

extensively for RAPPs, especially with the consideration of time-varying traffic conditions.  

 

ARP with time-dependent travel times 

Several VRP-related studies highlight the significant impact of time-dependent 

travel times on vehicle routing and scheduling. To name a few, Malandraki and Daskin, 

1992; Haghani and Jung, 2005; Chen et al., 2006; Donati et al., 2008; Figliozzi, 2012; 

Dabia et al., 2013; Spliet et al., 2018; and Sun et al., 2018. Specifically, instead of using 

simplified customer-based graphs, some researchers directly solve VRPs on graphs that are 

similar to original road networks to incorporate detailed road-network information in the 

modeling process (Ben Ticha et al., 2021; Huang et al., 2017; Ben Ticha et al., 2019). Ben 

Ticha et al. (2018) offered a comprehensive review on VRP studies using road-network 

information. 

On the other hand, research on ARP with time-dependent travel times is still limited 

in the literature. Vidal et al. (2021) recently offered an extensive study for the time-

dependent capacitated arc routing problem (TDCARP). Based on the piecewise-constant 

speed function proposed by Ichoua et al., (2003), the authors derived a closed-form 

representation for link arrival time functions and developed a continuous preprocessing 

approach for point-to-point quickest path query. A branch-cut-and-price exact algorithm 

and a hybrid genetic search-based metaheuristic were proposed for solving the TDCARP. 
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CHAPTER 3 

LAYERED CAM SYSTEM MODELING ARCHITECTURE 

3.1 Introduction 

One of the most attractive features of CAM systems is the possibility of 

coordinating the activity schedule of participants in the system to a certain degree; adjusted 

participant schedules, in terms of departure time shift, route change, mode switching, or 

trip canceling, can lead to a win-win situation, in which a desirable system-level traffic 

performance is maintained, and essential mobility needs of users are fulfilled. This research 

particularly focuses on the theoretical aspect of “schedulability” in CAM systems. The 

actions included in a schedule may vary from travel mode choice to low-level car-following 

and lane-changing maneuvers depending on the modeling resolution. According to specific 

traffic operation targets, the general utility of a schedule may be defined as a combination 

of travel reliability, travel time, and environmental effects. Different degrees of 

connectivity and automation lead to different levels of “schedulability”. 

In a schedulable transportation system, demand (trip requests) and supply (road 

resources) can be known in advance and various sophisticated scheduling methods are 

applied to seek optimal operation strategies for the system. As a typical example of a fully 

schedulable transportation system, rail management first determines the draft or planning 

timetables for different types of trains, and then dispatches online tasks. Owing to the 

existence of unexpected scenarios, that is, weather conditions, there is also a range of re-

scheduling measures, such as re-time, re-order, re-track, and re-route, departure time 

changes, and trip canceling. Compared to predominately centrally managed and controlled 

railway systems, CAM systems in complex urban settings involve collective driving and 
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trip-making decisions, in which different types of road resource users, such as automobiles, 

transits, bikes, and pedestrians, have their own travel/routing objectives. Moreover, urban 

CAM systems are “partially schedulable” in the sense that “planned” schedules must be 

constantly adjusted to consider a wide range of stochastic and dynamic factors unfolding, 

ranging from microscopic lane changing disturbances to significant pattern changes (e.g., 

weather conditions and traffic work zones) on either demand or supply side. The use of 

available CAM technologies to enable the incorporation of a two-stage scheduling process, 

offline optimization, and online re-scheduling is critically important to study for future 

mobility system operations. In particular, guaranteeing the punctuality and reliability of 

CAM system operations calls for multiresolution approaches, which can simultaneously 

model detailed routes and trajectories of each type of infrastructure user, while 

characterizing high-level inter-correlated demand-supply interactions. 

Based on a novel layered virtual track network representation, this chapter 

introduces new modeling methodologies and open-source computational tools for enabling 

the evaluation of partially schedulable CAM systems with different degrees of system 

schedulability and types of problem decomposition strategies. The main contribution of 

this chapter includes: 

 

(1) Inherently consistent macroscopic, mesoscopic, and microscopic layers of network 

structure is designed to accommodate the modeling needs of CAM systems with 

different resolutions. This framework can better capture hierarchical connections from 

travel to traffic modeling and represent different decisions at strategic and tactical 

levels of driving with different environmental inputs. Each modeling task can be 
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performed on a dedicated network layer to improve the overall system efficiency and 

robustness. In particular, this research introduces a virtual-track-based spatial-discrete 

low-level network representation to jointly model detailed vehicle routing and platoon 

dynamics, with which complex vehicle lane-changing maneuvers and interactions 

between different vehicles can be well captured. 

(2) This research defines space and time discretization schemes to construct an integrated 

traffic simulation and optimization platform for CAM modeling. Within this modeling 

scheme, this research can further adopt and incorporate different layer decomposition 

principles for CAM modeling, particularly from the field of electrical engineering. 

With a special focus on task decomposition and feedback mechanism design, layer 

decomposition methodologies are proposed to effectively manage and optimize large-

scale hierarchical CAM systems.  

(3) In addition, recognizing the partially schedulable nature of CAM systems and new 

research needs for individualized active traffic management, this research introduces 

distributed re-scheduling methodologies to regulate online system operations such that 

the difference between actual system states and optimal offline schedules can be 

minimized. This research attempts to link methods in the existing studies and 

computational methods for rail and public transportation scheduling to emerging CAM 

applications.  

(4) Accurate and easily accessible transportation networks are the foundation of 

multimodal transportation demand-supply modeling. This research develops an open-

source tool with standard data interfaces, osm2gmns, to help the CAM community 

easily obtain and build inherently consistent networks across different scales and enable 
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wide adoption of MRM methodologies. In addition, an open-source prototype for 

integrated CAM simulation and optimization, CAMLite, is developed to facilitate 

future CAM research. 

 

3.2 Virtual-track-based Multiresolution Networks and Associated Modeling Focuses 

3.2.1 The Multiresolution Network Representation 

This subsection introduces a consistent multiresolution network structure, 

including macroscopic, mesoscopic, and microscopic layers, with different modeling 

focuses, as listed in Table 3. The brief description below serves as a foundation for the 

following optimization and simulation sections.  

In the macroscopic layer, each arterial intersection (or freeway merge/diverge 

point) and the road between two adjacent intersections are modeled as a node and directed 

link, respectively. In CAM systems, vehicles pick up passengers from their origins and 

drop them off at their destination. Traffic managers and engineers can better characterize 

and manage the use of limited transportation infrastructure and highway capacity and allow 

a wide range of real-time on-demand trip scheduling and dispatching algorithms to assign 

service vehicles to trip requests with specific origins, destinations, and time windows. 

Many studies on VRP (Psaraftis et al., 2016; Savelsbergh and Van Woensel, 2016; Hyland 

and Mahmassani, 2018; Ulmer et al., 2019; Liu et al., 2020) address the complexity of 

managing and dispatching large fleets of vehicles and platoons in real time. Each vehicle 

communicates with traffic information providers to receive up-to-date network traffic 

conditions and to share traffic data where the vehicle is traversing. The scheduling 
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algorithm assigns multiple trip requests to a shared vehicle. Using coordinated routing 

information, traffic management centers can better utilize or price limited road resources.  

Table 3 Multiresolution Network Representation. 
Network layer Layer attributes 

 
Macroscopic node-link-based layer 

• Layer components: node and link 

• Intersections and roads between two 

adjacent intersections are modeled by 

nodes and links, respectively. 

• Network topology information for high-

level demand managements. 

 
Mesoscopic segment-based layer 

• Layer components: segment 

• Intersections are expanded using 

movement segments; road links are split 

into several segments to ensure each 

segment is homogenous in terms of 

number of lanes, free flow speed, etc. 

• Network resource information for 

medium-level traffic operation. 

 
Microscopic virtual-track-based layer 

• Layer components: virtual track 

• Lane-by-lane virtual tracks, including 

traveling and lane-changing cells, are 

constructed.  

• Lane-specific information for high-

fidelity vehicle motion planning and 

platooning. 

 

In the mesoscopic layer, more network details, such as movement at intersections 

and lane number changes on roads, are included. Each intersection node in the macroscopic 

layer is expanded using movement segments such that movement-associated turning lanes, 

signal timings, and capacity/discharge rates can be exactly modeled. In addition, in this 
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layer, a macroscopic link with different attributes, such as number of lanes and free-flow 

speed, is split into multiple mesoscopic homogenous segments.  Proactive traffic 

management strategies, such as intersection and bottleneck control, can be implemented in 

this layer to take advantage of the finer segment-based representation of transportation 

networks. Typical traffic assignment modules, such as DYNASMART (Mahmassani, 

1992) and Dynameq (Mahut and Florian, 2010), can be applied to this layer to evaluate the 

benefits of active signal control in congested areas.  

In the microscopic layer, to cope with the complexity of scheduling and managing 

vehicles on physical roads, lane-by-lane virtual tracks are constructed to jointly model 

detailed vehicle routing and platoon dynamics. This can be considered as a network-based 

cellular automata (CA) modeling scheme, which was proposed by Von Neumann (1951) 

and popularized by Wolfram (1983). In the work by Daganzo (2006), the equivalence 

between a simplified kinematic wave model and parsimonious car following model CA(M) 

is demonstrated. In the standard CA model of traffic flow (Nagel and Schreckenberg, 

1992), a vehicle typically moves several cells in one time interval. In comparison, the 

CA(M) model is intended to describe vehicle motion involving only one cell at a time; 

thus, the boundary conditions (or potential conflict points) for merges, diverges, and lane 

changes can be seamlessly integrated together with high-level routing decisions. Related 

research surveys and developments can be found in Zheng (2014) and Laval and Daganzo 

(2006). In this study, without loss of generality, virtual track lanes are discretized into 

traveling and lane-changing cells to support the integrated network flow-based 

optimization for following and lane-changing maneuvers using a unified graph structure. 

The length of cells can be flexibly adjusted in each specific application to achieve a balance 
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between modeling accuracy and scalability; a thorough discussion was provided by 

Daganzo (2006) at different degrees of shock wave estimation accuracy.  

 

3.2.2 Illustration of Virtual-track Representation for Vehicle Motion Planning and Overall 

Modeling Framework 

In the microscopic layer, each lane of a freeway or urban street corresponds to a 

car-following track on which multiple vehicles can be coupled through virtual vehicle-

vehicle and vehicle-infrastructure protocols to form a platoon. In the proposed MRM 

network, vehicles change lanes at dedicated specific locations to manage the complexity 

of lane-changing maneuvers such that a sequence of actions, such as gap acceptance, 

acceleration, merging, and position re-adjustment, can be better communicated between 

vehicles.  

The introduction of cyber tracks allows the adaptation of modern automatic block 

signaling technologies (de Rivera and Dick, 2021 and Meng and Zhou, 2014), which are 

widely used in railway systems to control the movement of trains between blocks. In road 

cyber-track systems, vehicle lanes are considered interconnected tracks composed of 

multiple cells. Instead of continuously calculating the safe headways and gaps between 

vehicles, traveling safety is guaranteed by preventing simultaneous entrance of multiple 

vehicles to the same cell using a high-precision timetabling scheme (e.g., at a resolution of 

0.1 s and 1 m). Traveling mobility is guaranteed by actively guiding vehicles and actively 

forming or breaking platoons on different tracks. 

Fig. 2 presents the framework of the layered CAM system modeling on the 

proposed multiresolution network. A three-layer network structure is built as the 
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foundation of the hierarchical decomposition of CAM systems. Thereafter, different levels 

of tasks are cast into corresponding layers to seek a balance between modeling efficiency 

and fidelity in real-life deployments. Integrated simulation and optimization methodologies 

with a special focus on cross-layer modeling consistency and system schedulability are 

developed to provide operational supports for CAM systems. 

 

Fig. 2. Multiresolution CAM System Modeling Framework on Layered Networks. 
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3.3 CAM System Optimization on Layered Multiresolution Networks 

3.3.1 Vehicle Trajectory Optimization on Virtual-track-based Microscopic Networks 

The emergence of CAM provides the possibility of coordinating different groups 

of travelling agents and vehicles to effectively utilize limited infrastructure resources and 

improve the performance of the entire transportation system. In existing studies, extensive 

efforts have been devoted to vehicle motion planning and trajectory control on spatial-

continuous or two-dimensional state lattice networks (Katrakazas et al., 2015) to model 

obstacle avoidance and smooth maneuvers. This section focuses on vehicle trajectory 

optimization on the proposed spatial-discrete virtual-track network. In particular, an 

integrated path planning and lane-changing model with the objective of minimizing total 

travel cost on a single road segment of interest is described, while it can be extended to 

general network applications. 

 

Time-expanded graph construction for mathematical programming 

Fig. 3 shows the commonly used space-continuous and the proposed spatial-

discrete representation for a road segment. The spatial-discrete representation consists of 

intra-connected microscopic nodes and links, which can essentially be viewed as a graph 

for modeling. Use 𝐺 = (𝑁, 𝐿) to denote the network in Fig. 3(b) for further illustrations, 

where sets 𝑁  and 𝐿  represent the set of microscopic nodes and links in graph 𝐺 , 

respectively.  
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representation 

(b) road segment with a spatial-discrete 

representation 

Fig. 3. Mapping Between Spatial-continuous and Spatial-discrete Representations for a 

Two-lane Road Segment. 

 

To model the spatial-temporal trajectory of vehicles on graph 𝐺, a space-time graph 

𝐺𝑠𝑡 = (𝑉,𝐴) is built from 𝐺, where 𝑉 and 𝐴 represent the vertex and arc sets, respectively. 

In 𝐺𝑠𝑡 , vertex (𝑖, 𝑡) is constructed from node 𝑖 ∈ 𝑁 , where 𝑡 represents the time index; 

traveling arc (𝑖, 𝑗, 𝑡, 𝑡′) connecting vertex (𝑖, 𝑡) and vertex (𝑗, 𝑡′) is constructed from link 

(𝑖, 𝑗) ∈ 𝐿, representing a vehicle traveling on link (𝑖, 𝑗) from time 𝑡 to 𝑡′. 𝑡′ − 𝑡 equals the 

travel time on link (𝑖, 𝑗). In addition to traveling arcs, waiting arcs (𝑖, 𝑖, 𝑡, 𝑡 + 1) are built 

for each node 𝑖 ∈ 𝑁, representing a vehicle does not move and wait on node 𝑖 for one time 

interval. Fig. 4 presents the sample network in a one-dimensional space and its 

corresponding space-time graph. In Fig. 4(b), space-time trajectories of three vehicles are 

also provided, where vehicle 𝑎 keeps traveling on the inner lane with odd node numbers, 

vehicle 𝑏 is cruising on the outer lane with even node numbers, and vehicle 𝑐 switches 

from the inner to outer lane on node 7 at time 11. 



  43 

3

4

5

6

7

8

9

10

11

12

2

1

3

4

5

6

7

8

9

10

11

12

2

1
Time

19151175210 22212018171393 104 16141286

Space-time vertex Arc used by vehicle a

Arc used by vehicle b Arc used by vehicle c

(a) physical network (b) expanded space-time network

Lane 
changing arc

 

Fig. 4. A Sample Physical Network and Its Corresponding Space-time Graph 

 

Modeling of obstacle avoiding using dynamic occupancy time lag sets 

With minimum time headway rule, how safe vehicle trajectories are modeled on 

the proposed time-expanded virtual track-based network is illustrated below. The 

minimum time headway rule states that the time difference between two adjacent vehicles 

passing any point should be larger than or equal to a certain value. In the proposed graph, 

it can be expressed as, if a space-time arc (𝑖, 𝑗, 𝑡, 𝑡′) is used by one vehicle, vertices in sets 

𝑆1 = {(𝑖, 𝜏)|𝑡 ≤ 𝜏 ≤ 𝑡 + ℎ − 1} and 𝑆2 = {(𝑗, 𝜏)|𝑡
′ ≤ 𝜏 ≤ 𝑡′ + ℎ − 1} are also considered 

to be occupied by the vehicle, where ℎ is the minimum time headway. Set 𝜑𝑖,𝑗,𝑡,𝑡′ = 𝑆1 ∪

𝑆2 denotes the vertex set of arc (𝑖, 𝑗, 𝑡, 𝑡′) to guarantee a safe time headway, as shown in 

Fig. 5 with the minimum time headway of four time units. 
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Fig. 5. Minimum Time Headway Modeling on the Space-time Network with Time Lags. 

 

In Fig. 5(a), the vertices indicated by a blue cross are considered occupied if a 

vehicle uses the blue arc. In this case, these marked vertices constitute the occupancy time 

lag set 𝜑𝑖,𝑗,𝑡,𝑡′  of the blue arc. Fig. 5(b) and Fig. 5(c) show two scenarios where the 

minimum time headway is violated and satisfied when vehicle 𝑏 follows leading vehicle 

𝑎, respectively. 

 

Integer linear programing formulation 

Based on the introduction of space-time networks and time headway modeling, this 

section presents a concise optimization model for vehicle trajectory optimization. Given 

vehicle-based travel demand, the goal is to coordinate the space-time trajectory of each 

vehicle such that total travel cost is minimized while travel safety is maintained. Travel 

demand input data include the departure time, origin node, and destination node of each 

vehicle. The optimization model (M1) is as follows: 
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Model M1: Single-layer individualized trajectory optimization in general space-time 

networks 

Objective function 

min𝑍 = ∑ ∑ 𝑐𝑖,𝑗,𝑡,𝑡′ × 𝑥𝑖,𝑗,𝑡,𝑡′
𝑘

(𝑖,𝑗,𝑡,𝑡′)∈𝐴𝑘∈𝐾 . (1) 

Subject to: 

Flow balance constraint: 

∑ 𝑥𝑖,𝑗,𝑡,𝑡′
𝑘

(𝑖,𝑡):(𝑖,𝑗,𝑡,𝑡′)∈𝐴 −∑ 𝑥𝑗,𝑖,𝑡′,𝑡
𝑘

(𝑖,𝑡):(𝑗,𝑖,𝑡′,𝑡)∈𝐴 =

{
−1
1
0
 
𝑗 = 𝑂(𝑘), 𝑡′ = 𝐷𝑇(𝑘)

𝑗 = 𝐷(𝑘), 𝑡′ = 𝑇
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, ∀𝑘 ∈ 𝐾, ∀(𝑗, 𝑡′) ∈ 𝑉. 

(2) 

Time headway constraint: 

𝑥𝑖,𝑗,𝑡,𝑠
𝑘 ≤ 𝜃𝑖,𝑡

𝑘 , ∀𝑘 ∈ 𝐾, ∀(𝑖, 𝑗, 𝑡, 𝑡′) ∈ 𝐴, ∀(𝑖, 𝑡) ∈ 𝜑𝑖,𝑗,𝑡,𝑡′ . (3) 

Generic driving obstacle avoiding constraint: 

∑ 𝜃𝑖,𝑡
𝑘

𝑘∈𝐾 ≤ 1,∀(𝑖, 𝑡) ∈ 𝑉. (4) 

Decision variables: 

𝑥𝑖,𝑗,𝑡,𝑡′
𝑘 ∈ {0,1}, ∀𝑘 ∈ 𝐾, (𝑖, 𝑗, 𝑡, 𝑡′) ∈ 𝐴. 

𝜃𝑖,𝑡
𝑘 ∈ {0,1}, ∀𝑘 ∈ 𝐾, (𝑖, 𝑡) ∈ 𝑉. 

(5) 

 

The objective function in Eq. (1) minimizes the total travel cost, where 𝑐𝑖,𝑗,𝑡,𝑡′ is 

the cost of using motion arc (𝑖, 𝑗, 𝑡, 𝑡′); 𝑥𝑖,𝑗,𝑡,𝑡′
𝑘  is a binary variable indicating whether 

vehicle 𝑘 uses arc (𝑖, 𝑗, 𝑡, 𝑡′) or not, and 𝐾 denotes the vehicle set. For the two types of 

most-used travel costs, that is, travel distance and travel time, 𝑐𝑖,𝑗,𝑡,𝑡′ denotes the physical 

length of link (𝑖, 𝑗) and travel time of the corresponding arc (𝑡′ − 𝑡), respectively. Eq. (2) 
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is a set of flow balance constraints in the time-expanded graph, where 𝑂(𝑘), 𝐷(𝑘), and 

𝐷𝑇(𝑘)  represent the origin node, destination node, and departure time of vehicle 𝑘 , 

respectively; 𝑇 is the planning time horizon. Eq. (3) ensures that if arc (𝑖, 𝑗, 𝑡, 𝑡′) is used by 

vehicle 𝑘, all vertices in set 𝜑𝑖,𝑗,𝑡,𝑡′ should also be marked as “occupied” by vehicle 𝑘. 𝜃𝑖,𝑡
𝑘  

is a binary variable. To model generic obstacle avoidance as a result of dynamic occupancy 

time lags, if vertex (𝑖, 𝑡) is “occupied” by vehicle 𝑘, 𝜃𝑖,𝑡
𝑘 = 1; otherwise, 𝜃𝑖,𝑡

𝑘 = 0. Eq. (4) 

states that each vertex (𝑖, 𝑡) can only be occupied by at most one vehicle, which guarantees 

a minimum time headway between different vehicles. Finally, Eq. (5) specifies the decision 

variables and their domains. 

 

3.3.2 Hierarchical Modeling on Multiresolution Networks 

Model M1 is a time-indexed integer programming (IP) model. However, as space-

time networks rely on a discretization of time, the number of binary variables in model M1 

could be extremely large, making it difficult to solve efficiently using existing IP solvers 

in real-life large-scale applications. Boland and Savelsbergh (2019) provided insightful 

discussions on various perspectives on IP for time-dependent models, focusing on a 

dynamic discretization discovery paradigm. On the other hand, the concise form of model 

M1 provides the possibility of solving it under a dual-decomposition framework. Among 

the three sets of constraints, the obstacle avoiding constraint in Eq. (4) is a coupling 

constraint. Relaxing the constraint under a Lagrangian relaxation framework results in 

multiple independent subproblems that can be solved using computationally efficient 

dynamic programming techniques without the need to explicitly create a full time-

expanded network. This approach was used by Mahmoudi and Zhou (2016) to study a class 
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of space-time-state network within a more complex vehicle pick-up and delivery context. 

In addition, Lu et al. (2016), Shang et al. (2019), Yao et al. (2019), and Zhang et al. (2019) 

thoroughly described the application of dual decomposition and ADMM methods to solve 

large-scale transportation problems on time-expanded networks. 

This study further builds an integrated dual-layer optimization model that enables 

a hierarchical decomposition and iterative feedback scheme for solving large-scale vehicle 

path planning and trajectory control problems. In Fig. 6, both mesoscopic and microscopic 

network layers are constructed for a freeway corridor of interest, on which traffic is 

modeled in an aggregated flow and an individual agent manner, respectively. Both 

networks have time-indexed variables, whereas the lower layer is associated with a finer 

discretization.  
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Fig. 6. Vehicle Path Planning and Trajectory Control on Layered Transportation 

Networks with Boundary Consistencies at Two Ends of Each Link. 

 

Model M2 is presented as follows: 

Model M2: Integrated optimization for mesoscopic flow routing and microscopic trajectory 

planning 
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Objective function 

min𝑍 = 𝐶𝐹(𝑥𝑖,𝑗,𝑡,𝑡′
𝑘 , 𝑦𝐼,𝐽,𝜏). (6) 

Subject to: 

Traffic flow dynamics constraint on the microscopic layer: 

𝑀𝐼𝑇𝐷(𝑥𝑖,𝑗,𝑡,𝑡′
𝑘 ) = 0,∀𝑘 ∈ 𝐾, ∀(𝑖, 𝑗, 𝑡, 𝑡′) ∈ 𝐴. (7) 

Traffic flow dynamics constraint on the mesoscopic layer: 

𝑀𝐴𝑇𝐷(𝑦𝐼,𝐽,𝜏) = 0,∀(𝐼, 𝐽) ∈ ℒ, ∀𝜏 ∈ 𝒯. (8) 

Spatial and temporal coupling constraint between mesoscopic and microscopic layers: 

∑ ∑ ∑ 𝑥𝑖,𝑗,𝑡,𝑡′
𝑘

𝑡∈𝛱(𝜏)(𝑖,𝑗)∈𝛤(𝐼,𝐽)𝑘∈𝐾 = 𝑦𝐼,𝐽,𝜏, ∀(𝐼, 𝐽) ∈ ℒ, ∀𝜏 ∈ 𝒯. (9) 

 

The objective function in Eq. (6) minimizes the total travel cost defined by a general 

cost function 𝐶𝐹(𝑥𝑖,𝑗,𝑡,𝑡′
𝑘 , 𝑦𝐼,𝐽,𝑇), where variables 𝑥𝑖,𝑗,𝑡,𝑡′

𝑘  are used to model individualized 

agent movements on the microscopic layer; 𝑦𝐼,𝐽,𝜏 denotes the aggregated traffic flows on 

mesoscopic link (𝐼, 𝐽) at time 𝜏. The traffic flow dynamics constraint in Eq. (7) on the 

microscopic layer corresponds to Eqs. (2)-(5) in the single-layer model. Eq. (8) is a 

generalized constraint for describing mesoscopic traffic flow dynamics, where ℒ and 𝒯 

represent the sets of links and time intervals on the mesoscopic layer, respectively. One 

can choose a specific mesoscopic traffic flow model, such as cell transmission model 

(Daganzo, 1995), or link transmission model (Yperman, 2007, Zhou and Taylor, 2014) to 

offer detailed formulations in Eq. (8). A recent study by Cheng et al. (2022) employed a 

fluid queue model and proposed a parsimonious polynomial function-based scheme for 

modeling time-dependent traffic system states, particularly under oversaturated conditions. 
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A follow-up study by Zhou et al. (2022) further investigated the macro-to-meso connection 

between polynomial queue model and commonly used volume-delay function. Adopting 

traffic flow models with a smaller number of parameters can help reduce the complexity 

of model M2. Eq. (9) is the coupling constraint to maintain consistent flows on space-time 

boundary conditions between the mesoscopic and microscopic layers, where 𝛤(𝐼, 𝐽) 

denotes the boundary microscopic link set of mesoscopic link (𝐼, 𝐽); 𝛱(𝜏) is the set of finer 

time intervals in the microscopic layer of time interval 𝜏 in the mesoscopic layer. It should 

be remarked that, as will be introduced in the following sections, osm2gmns package 

particularly guarantees the consistency in link-to-cell mapping between layers such that 

tightly coupled multiresolution networks are readily available for related cross-layer 

modeling (Chiang et al., 2007).  

The embedded mesoscopic layer in model M2 naturally provides a hierarchical 

representation and task decomposable structure. The aggregated traffic flow representation 

on the mesoscopic layer is more computationally efficient than that on the microscopic 

layer. To model driver behavior in a multi-scale cognitive architecture, useful information 

that microscopic layer receives from the mesoscopic layer as boundary condition on each 

mesoscopic link can be utilized, enabling microscopic trajectory optimization to be 

decomposed into multiple sub-problems. Mathematically, each sub-problem corresponds 

to a mesoscopic link with given boundary conditions, which can be solved independently. 

The independence of sub-problems dramatically reduces the complexity of vehicle 

trajectory optimization on microscopic networks. Trajectory optimization results from the 

microscopic layer should also be able to provide information to the mesoscopic layer in 

terms of the optimality and feasibility of mesoscopic routing results, which can in turn 
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guide re-routings on the mesoscopic layer. This iterative feedback process can be repeated 

until a convergence between the two layers is achieved. A number of important integrated 

model efforts between high-level demand and low-level supply models have been proposed 

(Lin et al., 2008; Mahmoudi et al., 2021). From an algorithmic perspective, the iterative 

process can be performed under a Benders decomposition framework (Benders, 1962), 

which was designed to efficiently solve large-scale problems with a hierarchical structure. 

 

3.4 CAM System Simulation on Layered Networks with Hierarchical Driving Decisions 

This section introduces the CAM simulation framework on layered networks, 

which enables us to capture different levels of actions, namely strategic (trip planning), 

tactical (maneuver planning), and operational (vehicle operation). As discussed in Section 

3.2, in the proposed layered modeling framework, travel request mapping is performed on 

the macroscopic layer, traffic management and operation are conducted on the mesoscopic 

layer, and high-fidelity vehicle motion planning is executed on the microscopic layer. The 

proposed CAM simulation framework has two major features: (1) traffic assignment and 

vehicle trajectory control are performed on two different layers to capture aggregated and 

individual behaviors, and (2) the joint routing and lane-changing decisions of a vehicle are 

performed on the spatial-discrete microscopic layer. Hence, this section mainly focuses on 

the interaction between mesoscopic and microscopic layers, and microscopic vehicle 

motions on spatial-discrete networks. 
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3.4.1 Travel Utility Modeling on the Microscopic Virtual Track Layer 

In general, when a vehicle travels on a road, all maneuvers, such as acceleration, 

deceleration, and lane changing, performed by the driver can be considered as actions to 

maximize the travel utility. Travel utility may be affected by various external 

environmental and human factors, such as travel time, safety, and comfort. For example, a 

driver may switch to a lane with fewer vehicles to increase travel speed and reduce total 

travel time. In this regard, a general modeling framework that can conveniently 

characterize and calculate travel utilities is highly required for understanding and 

reproducing/simulating travel behaviors in real life. On the other hand, in the coming era 

of CAV, one of the most challenging tasks is designing effective policies and operation 

strategies for managing and coordinating large fleets of CAVs to improve system 

performance (utility) under limited infrastructure resources. An open question of meeting 

this requirement is how to systematically measure road resource utilities.  

The lane-changing example in Fig. 3 is used to illustrate the benefits of adopting a 

spatial-discrete network representation for travel utility characterization. (1) Safety utility: 

In a spatial-discrete representation, vehicles are exactly mapped to virtual microscopic 

nodes; only predefined virtual tracks can be used. Therefore, interactions between different 

vehicles can be measured in a simplified manner, and important statistics for characterizing 

lane-changing safety, such as time-to-collision, can be further incorporated as 

enhancements. (2) Travel time utility: determining lane changing or staying in the current 

lane in Fig. 3(b) becomes evaluating the utilities of going to nodes 5 and 6, and their 

associated future utilities. In addition, because of the discrete nature of the road segment 
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representation, exact optimization methods, such as network flow algorithms, can be 

applied for utility calculations.  

Considering the vehicle in Fig. 3(b) as an example, the travel time utility of node 5 

consists of two parts: (1) the time required to move from the current node to node 5 and (2) 

time needed to travel from node 5 to the downstream stop line of the current mesoscopic 

link. Part (1) depends on the state of node 5, that is, whether node 5 is occupied by other 

vehicles. Part (2) can be viewed as predicted or experienced travel time, and it is unknown 

in advance. Therefore, without loss of generality, this recursive value evaluation is 

simplified in the proposed approximation framework by an estimated or expected travel 

time, using reference speed and distance to the stop line. 

Benefitting from the spatial-discrete representation of microscopic networks, 

backward trees that store the shortest distance from each node to the stop line can be built 

in advance on mesoscopic links for quick queries in the simulation process. The root of 

each backward tree is the set of microscopic nodes on the stop line, which are called meso-

to-micro intermediate destination (MID) nodes in this study. It should be noted that, for 

different movements on the same mesoscopic link, the set of MID nodes is different. 

Therefore, a backward tree must be built for each movement in a mesoscopic link. In Fig. 

7, a backward tree with destination node sets of [𝑑1], [𝑑2, 𝑑3], and [𝑑4] should be built for 

left-turn, through, and right-turn movements, respectively. Algorithm 3 presents the 

backward tree construction process for movement 𝑚 on a mesoscopic link. 



  53 

Space-discretized 
microscopic road link 

representation

Right turn movement 
layer

Through movement 
layer

Left turn movement 
layer

Mesoscopic Link

𝑑1 

𝑑2 
𝑑3 

𝑑4 

destination node of each turning layer

 
Fig. 7. Spatial-discrete Microscopic Road Link Representation and Corresponding 

Virtual Turning Layers with Meso-to-micro Intermediate Destination (MID) Nodes. 
 

 

Algorithm 1 Backward tree construction for movement 𝑚 on a mesoscopic link 

Input: microscopic representation 𝐺 = (𝑁, 𝐿)  of the mesoscopic link, where 𝑁  and 𝐿  denote the 

microscopic node and link set, respectively; destination node set 𝐷 of movement 𝑚 on the mesoscopic 

link 

Output: distance from microscopic nodes to the stop line for movement 𝑚 on the mesoscopic link 

1: 𝑑𝑖
𝑚 ← +∞, ∀𝑖 ∈ 𝑁 

2: 𝑑𝑖
𝑚 ← 0, ∀𝑖 ∈ 𝐷 

3: 𝑈 ← 𝐷 

4: while 𝑈 ≠ ∅ do 

4: move one node 𝑖 out of 𝑈 

5: for incoming link 𝑙 = (𝑗, 𝑖) of node 𝑖 do 

6: if 𝑑𝑖
𝑚 + 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑙 < 𝑑𝑗

𝑚 then 

7: 𝑑𝑗
𝑚 = 𝑑𝑖

𝑚 + 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑙 

8: put 𝑗 into 𝑈 

9: return {𝑑𝑖
𝑚|𝑖 ∈ 𝑁} 

 

3.4.2 CA(M)-based Simulation for Joint Path-planning and Lane-changing Decisions 

In this section, CA(M) model is used as a simple example to demonstrate the 

incorporation of a wide range of car-following and lane-changing models into the proposed 

CAM simulation framework. It should be noted that CA(M) model is adopted because of 

its parsimonious form and ability to describe complicated traffic flow phenomena. It has 

been demonstrated that CA(M) model is theoretically consistent with the linear car-

following model CF(L) and kinematic wave model KW (Daganzo, 2005). The consistency 
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between these three models is illustrated in Fig. 8, where the bold red dashed line in each 

sub-plot denotes a backward wave with the same speed. Zhou et al. (2015) provided a 

detailed description of the impact on emission estimates. 

 
Fig. 8. Illustration of the Consistency Between KW, CF(L) ands CA(M).  

 

The car-following rule in the CA(M) model is expressed as  

𝑍𝑡+1
𝑘 = 𝑚𝑖𝑛{𝑍𝑡

𝑘 + 1, 𝑍𝑡−𝛾+1
𝑘−1 − 1}, (10) 

where 𝑍𝑡
𝑘 represents the microscopic node index in the constructed grid network used by 

vehicle 𝑘  at time interval 𝑡 . Eq. (10) can be explained as vehicles can use the next 

microscopic node if it has been vacant for 𝛾 − 1 time intervals; otherwise, they cannot 

move forward and continue to stay at where they are. The safe time headway reservation 

mechanism deserves future empirical and theoretical investigations, as the proposed 
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spatial-discrete microscopic road link representation only serves as a simplified (linear) 

approximation to complex multi-agent games (Yang and Wang, 2020; Huang et al., 2021; 

Di and Shi, 2021). A detailed illustration of the CA(M)-based simulation process is 

presented in Algorithm 2. 

Algorithm 2 CA(M)-based microscopic simulation  
Input: microscopic and mesoscopic network representations of the research area; travel demand 

Output: vehicle trajectory of all travel demands 

1: (Step 1: Traffic Assignment) 

2: 
perform traffic assignment on the mesoscopic network 

get mesoscopic link sequence 𝑃𝑘 for each vehicle 𝑘 ∈ 𝐾 

  

3: (Step 2: Simulation Initialization) 

4: simulation time stamp 𝑡 = simulation starting time 
5: 𝑡𝑎𝑖 = 𝑡, ∀𝑖 ∈ 𝑁 

6: 𝐾𝑢𝑙𝑑 = 𝐾, 𝐾𝑎𝑐𝑡 = ∅ 

  

7: (Step 3: Vehicle Loading) 

8: for 𝑘 ∈ 𝐾𝑢𝑙𝑑  do 

9: if 𝑡𝑘
𝑑 == 𝑡 then 

10: 𝐾𝑎𝑐𝑡 ← 𝐾𝑎𝑐𝑡 ∪ {𝑘}, 𝐾𝑢𝑙𝑑 ← 𝐾𝑢𝑙𝑑 {𝑘}⁄  

11: 𝑛𝑘 = 𝑜𝑘 , 𝑡𝑘
𝑟 = 𝑡, 𝐿𝑘 ← the first link in 𝑃𝑘 

  

12: (Step 4: Vehicle Status Updating) 

13: for 𝑘 ∈ 𝐾𝑎𝑐𝑡  do 

14: if 𝑡𝑘
𝑟 == 𝑡 then 

15: if 𝑛𝑘 == 𝑑𝑘 then 

16: vehicle 𝑘 has finished its trip, remove 𝑘 from 𝐾𝑎𝑐𝑡 
17: Else 

18: if 𝑛𝑘 is the last node on the mesoscopic link 𝐿𝑘  then 

19: 𝐿𝑘 ← the link after 𝐿𝑘  in 𝑃𝑘 
20: reachable node set 𝛺 ← 𝜙 

21: for all microscopic link 𝑙 = (𝑛𝑘 , 𝑖) do 

22: if 𝑡𝑎𝑖 ≤ 𝑡 + 𝑡𝑡𝑛𝑘,𝑖 do 

23: 𝛺 ← 𝛺 ∪ {𝑖} 
24: if 𝛺 == 𝜙 then 

25: 𝑡𝑘
𝑟 = 𝑡 + 1 

26: Else 

27: for 𝑖 ∈ 𝛺 do 

28: 𝑢𝑖 = 𝑡𝑡𝑛𝑘,𝑖 + 𝑑𝑖
𝑚 𝑣𝐿𝑘⁄  

29: choose 𝑖 ∈ 𝛺 as the next node of vehicle 𝑘 based on utilities {𝑢𝑖|𝑖 ∈ 𝛺} 
30: 𝑡𝑘

𝑟 = 𝑡 + 𝑡𝑡𝑛𝑘,𝑖, 𝑡𝑎𝑛𝑘 = 𝑡 + 𝛾, 𝑡𝑎𝑖 = 𝑖𝑛𝑓, 𝑛𝑘 = 𝑖 

31: if 𝑡 == simulation ending time then 

32: simulation finished 

33: Else 

34: 𝑡 = 𝑡 + 1, go back to Step 3 

35: return vehicle trajectories 
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3.5 Partially Schedulable CAM System Operation on Layered Multiresolution Networks 

The optimization-oriented methodologies developed in Section 3.3 consider 

transportation systems that are fully schedulable, and agents in CAVs or multimodal MaaS 

can follow their customized schedules precisely. However, in real life, the evolution and 

operation of transportation systems are partially schedulable because they are affected by 

a range of stochastic and dynamic environmental and human factors, such as random travel 

demand, weather conditions, and traffic incidents. 

This section mainly focuses on the optimization modeling of partially schedulable 

CAM system operations on layered multiresolution networks. In Subsection 3.5.1, a two-

stage optimization paradigm is presented to seek optimal offline scheduling considering 

stochastic online scenarios. In Subsection 3.5.2, a distributed re-scheduling mechanism is 

designed for online vehicle control and conflict resolving. 

 

3.5.1 Stochastic Offline Scheduling of CAM Decisions 

This section presents a two-stage stochastic optimization framework to consider 

separate decision variables under mesoscopic level planning and microscopic level re-

scheduling. The objective is to find optimal pre-trip schedules for agents with the 

maximum expected utilities by considering stochastic online scenarios. The conceptual 

model is presented as model M3, with a similar form of the commonly used two-stage 

stochastic programming model developed by Birge and Louveaux (2011). 

In model M3, the objective function is to maximize the expected travel utilities of 

all agents in the mesoscopic layer by optimizing the aggregated route assignment variable 

𝑦, which includes two parts. The first part, 𝑐(𝑦), is the scenario-independent utility of route 
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assignment 𝑦 ∈ 𝛺 , where 𝛺  is the feasible region of the variable 𝑦 . The second part, 

𝐸𝜔[𝑞(𝑦, 𝜔)], denotes the expected scenario-dependent utility of route assignment 𝑦, where 

𝑞(𝑦, 𝜔)  represent the utility of 𝑦  in scenario 𝜔 . The value of 𝑞(𝑦, 𝜔)  is obtained by 

optimizing the vehicle trajectory variable 𝑥𝜔  on the microscopic layer with a given 

mesoscopic route assignment 𝑦  in scenario 𝜔  (constraints (13)-(14)), whose feasible 

region is 𝛷𝜔(𝑦). 

 

Model M3: Offline scheduling with a two-stage structure  

Objective function 

max
𝑦
𝑍 = 𝑐(𝑦) + 𝐸𝜔[𝑞(𝑦, 𝜔)]. (11) 

Subject to: 

Mesoscopic layer flow modeling constraint: 

𝑦 ∈ 𝛺. (12) 

Meso-micro layer coupling constraint: 

𝑞(𝑦, 𝜔) = min
𝑥𝜔
𝑔(𝑦, 𝑥𝜔) , ∀𝑦, ∀𝜔. (13) 

Microscopic layer agent modeling constraint: 

𝑥𝜔 ∈ 𝛷𝜔(𝑦). (14) 

 

It is important to rigorously describe this two-stage process before tackling more 

complex recursive decisions in a real-world system. The first stage focuses on agent route 

assignment in the mesoscopic layer with a relatively simple representation. In the second 

stage, the system utility of a certain route assignment is evaluated in the microscopic layer 
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for different possible scenarios. Evaluating scenario-based route assignments in the 

microscopic layer provides more profound and accurate information to the first level for 

making route assignment decisions. 

 

3.5.2 Distributed Online Re-scheduling of Trajectories 

With the Recognition of the partial schedulability of CAM systems, this section 

proposes a systematic vehicle coordination scheme for CAM system operation in dynamic 

online environments, with the objective of minimizing deviations between actual system 

operation status and offline system schedules. It is easy to guide the motion of each 

individual vehicle based on offline schedules; while, due to potential conflicts between 

vehicles, it becomes complex when simultaneous coordinating multiple vehicle groups. 

This research introduces a systematic vehicle conflict resolving scheme in dynamic CAM 

environments below. 

Fig. 9 presents an example of conflict resolving between two vehicles, which can 

be easily generalized to scenarios with multiple vehicles. In this example, vehicle 𝑎 is 

going to leave the freeway through the exit ramp, and vehicle 𝑏 keeps traveling on the 

mainline. There is a potential conflict between the two vehicles on point 𝑝 . The 

convenience of modeling interactions between vehicles is one of the advantages of the 

proposed discretized virtual track-based modeling approach compared with the existing 

continuous modeling approaches.  

From the perspective of resource allocation, the potential conflict between vehicles 

𝑎 and 𝑏 can be considered a temporal resource competing at point 𝑝, which is essentially 

an assignment problem. In the bottom right of Fig. 9, a graphic illustration of the resource 
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assignment between vehicles 𝑎 and 𝑏 is presented, where the resource denotes the time 

resource on point 𝑝; 𝑐𝑣,𝑟 denotes the (schedule deviation) cost of vehicle 𝑣 if resource 𝑟 is 

assigned to vehicle 𝑣. This example can easily be extended to complicated scenarios with 

multiple vehicles competing for both space and time resources. The general formulation of 

the resource assignment modeling on the proposed discrete virtual track-based network is 

as follows: 

 

Model M4: Online re-scheduling 

Objective function 

min𝑍 = ∑ ∑ 𝑐𝑣,𝑟𝑥𝑣,𝑟𝑟∈𝑅𝑣∈𝑉 . (15) 

Subject to: 

Demand (vehicle) side constraint: 

∑ 𝑥𝑣,𝑟𝑟∈𝑅 = 1, ∀𝑣 ∈ 𝑉. (16) 

Supply (resource) side constraint: 

∑ 𝑥𝑣,𝑟𝑟∈𝑣 ≤ 1,∀𝑟 ∈ 𝑅. (17) 

Decision variables: 

𝑥𝑣,𝑟 ∈ {0,1}, ∀𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅. (18) 

 

In model M4, the binary decision variable 𝑥𝑣,𝑟 denotes the assignment of resource 

𝑟  to vehicle 𝑣 . As reviewed by Duan and Pettie (2014), many mature and efficient 

algorithms, such as the Hungarian algorithm, for solving model M4 have been developed. 

Due to the variable communication range, stability, and latency between vehicles and 

centralized control centers in real-time conflict-resolving applications, in addition to 
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algorithmic efficiency, the ability to find optimal solutions in a distributed manner is also 

of vital importance. The auction algorithm (Bertsekas, 1990) provides an iterative auction 

scheme for finding optimal solutions of assignment problems. In this scheme, bidders 

(vehicles) dynamically adjust their acceptable prices (dual costs) for preferred items 

(resources) until an equilibrium is reached (optimal solution is found), and an auctioneer 

(control center) is not required. The control-center-exclusive scheme enables the proposed 

conflict resolving methodology to be applicable in highly dynamic and distributed CAM 

operation environments. 
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Fig. 9. Graphic Illustration of Conflict Modeling on the Proposed Virtual-track-based 

Network. 

 

3.6 Open-source Tools for Enabling Cross-resolution Modeling 

This section introduces two open-source tools, osm2gmns and CAMLite. In 

particular, osm2gmns helps users quickly build and manipulate transportation networks. 

CAMLite is a customizable integrated traffic simulation and optimization platform for 

CAM system modeling. 
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3.6.1 osm2gmns 

As part of this research, osm2gmns is offered as an open-source package to enable 

users to conveniently obtain and manipulate networks from OpenStreetMap. With a single 

line of Python code, users can obtain and model drivable, bikeable, walkable, railway, and 

aeroway networks for any region in the world and output networks to CSV files in the 

general modeling network specification (GMNS) format for seamless data sharing and 

research collaboration. Here, some major features of osm2gmns pertaining to 

multiresolution and CAM modeling are introduced. The detailed user guide can be 

accessed at https://osm2gmns.readthedocs.io. 

Standard network specification 

The network specification adopted in osm2gmns is GMNS 

(https://github.com/zephyr-data-specs/GMNS; Smith et al., 2020), which enables 

convenient network data sharing and seamless cooperation in various network modeling 

applications. GMNS defines a common human- and machine-readable format for sharing 

routable road network files. It is designed for multimodal static and dynamic transportation 

planning and operation models.  

 

Ready-to-use MRM network 

The purpose of OpenStreetMap is to provide free and editable geographic map data 

around the world, instead of dedicated transportation modeling. To provide users with 

ready-to-use MRM networks for transportation modeling, osm2gmns features the 

following functionalities: 

https://osm2gmns.readthedocs.io/
https://github.com/zephyr-data-specs/GMNS


  62 

Network topology reconstruction. In OpenStreetMap, road links are typically 

represented by ways. The geometry of a way is defined by a series of reference nodes. A 

way may contain multiple intersections in the middle, making original networks in 

OpenStreetMap not routable. osm2gmns addresses this issue in the network processing 

stage and reconstructs topologies as needed to guarantee the network connectivity across 

all resolutions.  

Intersection consolidation and movement generation. In OpenStreetMap, a large 

intersection, as shown in Fig. 10(a), is typically represented by multiple nodes. This 

representation scheme brings difficulties in some intersection-specific applications, such 

as signal control. osm2gmns automatically identifies such intersections and enables users 

to consolidate intersections when parsing original networks. The resulting intersection, as 

shown in Fig. 10(b), maintains the same geometry as the original one with a reconstructed 

topology. In addition, the movement generation module in osm2gmns helps users quickly 

generate movement information at intersections, as shown in Fig. 10(c), to enable 

movement-based modeling applications.  

node link movement

 

(a) Original representation (b) Consolidated representation  (c) Movement 

generation. 

Fig. 10. Intersection Consolidation and Movement Generation. 
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Multiresolution network generation. As multiresolution routable networks are 

critically needed for CAM modeling, for any macroscopic network that meets the GMNS 

standard or a selected subarea from OpenStreetMap, osm2gmns can be used to build its 

corresponding mesoscopic and microscopic networks with consistent mapping across 

different layers.  As an example, the multiresolution network near Arizona State 

University, Tempe campus, is available on the web-based transportation network 

visualization platform at https://asu-trans-ai-lab.github.io/web/index.html. 

 

Multimodal network construction and activity generation locations for demand 

modeling  

osm2gmns supports five different network types: auto, bike, walk, railway, and 

aeroway. Fig. 11 shows the drivable, bikeable, and walkable network near Arizona State 

University, Tempe Campus.  

       

(a) Drivable network  (b) Bikeable network  (c) Walkable network 

Fig. 11. Drivable, Bikeable, and Walkable Network near Arizona State University, 

Tempe Campus. 

 

Travel demand data preparation, as a key part of multimodal transportation 

demand-supply modeling, requires considerable efforts in practical applications. 

osm2gmns can produce detailed point-of-interest information, including the type, location, 

https://asu-trans-ai-lab.github.io/web/index.html
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shape, and area within the area of interest. This information is essential to build and analyze 

the residential and employment characteristics of traffic zones.  

Road link

Point of interest

Normal node

Boundary node with 
incoming links

Boundary node with 
outgoing links

Boundary node with 
both incoming and 
outgoing links

 
Fig. 12. Points of Interest and Boundary Nodes Identified by osm2gmns on a Sample 

Network near Arizona State University, Tempe Campus. 

Available transportation network datasets  

osm2gmns is used to generate the entire United States driving network using 

research computing facilities at Arizona State University, as shown in Fig. 13. A total of 

1.44 TB RAM was used to generate the network. The resulting network contains 

20,459,306 nodes and 49,608,229 links. State-by-state United States GMNS networks 

(with driving and rail modes) are shared at https://github.com/asu-trans-ai-

lab/Integrated_modeling_GMNS/tree/main/examples/United_States_network to facilitate 

future network modeling studies. 

 
Fig. 13. Entire United States Driving Network Generated by osm2gmns. 

https://github.com/asu-trans-ai-lab/Integrated_modeling_GMNS/tree/main/examples/United_States_network
https://github.com/asu-trans-ai-lab/Integrated_modeling_GMNS/tree/main/examples/United_States_network
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3.6.2 CAMLite 

CAMLite is an open-source platform for integrated CAM system simulation and 

optimization based on the proposed multiresolution network representation. One of the 

major differences between CAMLite and existing traffic modeling tools is the adoption of 

a cell-based spatial-discrete underlying network representation for tracking vehicle motion. 

In the era of CAV, designing and evaluating effective vehicle coordination and 

management strategies is the key to improve the efficiency of current traffic systems with 

limited infrastructure resources. Fig. 14 presents the system architecture of CAMLite, 

which has the following major modules: 

Travel demand: Provides vehicle travel demand input in the form of an origin-

destination matrix to CAMLite. Vehicle travel demand generation is performed using 

vehicle routing or ride-sharing algorithms on a macroscopic network with a specified 

passenger travel demand and service vehicle supply. 

Traffic assignment: According to a specific assignment objective (user equilibrium 

or system optimum), traffic assignment is performed on the mesoscopic network to find a 

mesoscopic path for each vehicle. 

Optimization API: Incorporates user-defined CAM system control algorithms (i.e., 

trip management and vehicle routing) into the simulation module. 

Microscopic simulation: With mesoscopic vehicle paths from the traffic assignment 

module, the motion of human-driven vehicles and CAVs are simulated based on calibrated 

human-driver behaviors and user-defined CAV control algorithms, respectively. 
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The objective of CAMLite is to provide a highly flexible framework for CAM 

system simulations under different control policies and optimization strategies. Users can 

incorporate their own simulation rules and optimization models to simulate and evaluate 

CAM systems under different scenarios. The source code and release of CAMLite can be 

downloaded at https://github.com/jiawlu/CAMLite.  

 

Fig. 14. System Architecture of CAMLite. 

 

3.7 Experiments 

Experiments on a freeway corridor were designed to demonstrate the effectiveness 

of the proposed methodology and open-source tools. As introduced in Subsection 3.7.1, 

the freeway network in the research area of interest was obtained using osm2gmns. In 

Subsections 3.7.2 and 3.7.3, the results of traffic simulation and optimization on the 

selected corridor are reported, respectively.  

 

 

https://github.com/jiawlu/CAMLite
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3.7.1 Network Preparation Using osm2gmns 

The selected freeway corridor is on I10, Arizona, United States, and has a length of 

5.8 mi. With raw map data downloaded from the OpenStreetMap website, osm2gmns was 

first used to produce the transportation network in GMNS format, as shown in Fig. 15. The 

generated network consists of node, link, and movement files. The movement file stores 

the lane connection information at merge and diverge points. The information is 

automatically generated by a built-in module in osm2gmns (generateMovements) 

according to the layout information in the node and link files. The corresponding 

mesoscopic and microscopic networks were generated using osm2gmns for MRM. Table 

4 summarizes sizes of the networks at different resolutions. 

 
Fig. 15. Macroscopic Network of the Research Area of Interest. 

 

Table 4 Network Size in Different Resolutions. 
 Macroscopic network Mesoscopic network Microscopic network 

Number of nodes 203 211 23,475 

Number of links 216 222 53,288 

 

 

3.7.2 Traffic Simulation Using CAMLite 

First, traffic simulations on the selected freeway corridor were performed using 

open-source simulation package CAMLite. In addition to a detailed transportation network, 

another necessary input for traffic simulation is the time-dependent travel demand within 
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the analysis time period. The analysis time period was set from 7 to 9 am, and travel 

demand was obtained using the OD estimation module in DTALite (Zhou and Taylor, 

2014) based on link volumes collected from loop detectors. The total number of trips during 

the analysis period was 62,242.  

Fig. 16 presents the simulation results for the selected corridor. In particular, 

simulated and observed travel times were compared to examine the performance of 

CAMLite in modeling traffic flow evolutions. Time-dependent observed travel time was 

obtained using Google Map API. Fig. 16(a) compares the average simulated and observed 

travel times over the entire analysis period for each OD pair. The average simulated travel 

times satisfactorily matched with the observed values, with 𝑅2 = 0.9703. Fig. 16(b) shows 

a comparison between time-dependent simulated and observed travel times on a major OD 

pair, which demonstrates the effectiveness of the proposed methodology and CAMLite in 

simulating dynamic traffic flows. 

 

  

(a) Comparison between average simulated 

and observed travel times 

(b) Comparison between time-dependent 

simulated and observed travel times on a major 

OD pair 

Fig. 16. Simulation Results. 
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3.7.3 Trajectory Optimization on the Proposed Virtual-track-based Network 

In this subsection, an illustrative experiment on vehicle trajectory optimization 

using model M1 is presented. Due to the high mathematical complexity of the problem, 

only small-size instances were implemented and directly solved using a commercial solver 

for illustration purposes.  

The network used in this experiment is a merging area adopted from the freeway 

corridor, as shown in Fig. 15. The corresponding microscopic network is presented in Fig. 

17, where the gray points and lines represent microscopic nodes and links, respectively. 

Four synthetic scenarios with different travel demand levels are designed. The models were 

solved using Gurobi 8.1 on a Dell Precision 7510 laptop with 2.9 GHz CPU and 32 GB 

RAM. Table 3 presents the statistics of each model. An increase in the instance size 

significantly increases the number of decision variables and model complexity, which 

highlights the need to develop efficient solution methodologies to solve large-scale 

instances in real life, as discussed in Sections 3.3 and 3.5. Fig. 17 presents some sample 

optimized vehicle trajectories in the last scenario on a virtual-track-based space-time 

network.  
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Fig. 17. Sample Optimized Vehicle Trajectories in a Virtual-track-based Space-time 

Network. 

 

Table 5 Model Statistics under Different Demand Levels to Highlight the Need for 

Developing Decomposition Methodologies. 
Number of vehicles Number of variables in model M1 Computational time (second) 

1 181 binary variables 0.02 

6 333 binary variables 0.2 

30 30,514 binary variables 93.16 

48 259,509 binary variables 2077.09 

 

3.8 Conclusions 

This chapter introduced a new layered modeling framework for CAM systems. In 

the proposed layered framework, CAM systems with hierarchical structures are 

decomposed into strategic macroscopic, tactical mesoscopic, and operational microscopic 

layers such that modeling tasks with different computational and resolution requirements 

can be performed on dedicated layers to seek a balance between efficiency and fidelity in 

real-life deployments. Critical aspects including consistency and schedulability in layered 

CAM systems were extensively discussed. As parts of this research, two open-source tools, 

osm2gmns and CAMLite, were introduced to facilitate CAM modeling research and 

deployments. 
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CHAPTER 4 

CROSS-RESOLUTION TRAFFIC STATE ESTIMATION IN CAM SYSTEMS 

4.1 Introduction 

The accurate identification of traffic system states is the foundation for the effective 

design and execution of control strategies. Ubiquitous sensing techniques, which enable 

different types of emerging mobile sensors, location-based services, and participatory 

sensing, can provide more reliable and richer traffic observations. Consequently, there is a 

need to design a system state identification framework to improve the observability of 

traffic systems. This brings a series of theoretically challenging and practically important 

modeling issues for the problem of traffic system state identification (TSSI) when utilizing 

heterogeneous sensor data with different degrees of uncertainty sources. Specifically, the 

TSSI problem under consideration aims to simultaneously estimate three sets of system 

state variables: (1) traffic stream states such as flow rate, density, and speed on road 

segments of interest; (2) fundamental diagram parameters such as free-flow speed and jam 

density of road links; and (3) congestion states represented by the queue profile and delays 

at traffic bottlenecks. In the literature, the aforementioned traffic system states are typically 

estimated separately in different problems. That is, (1) the traffic state estimation (TSE) 

problem is devoted to inferring time-varying traffic state variables; (2) the model parameter 

estimation (MPE) problem is dedicated to calibrating or adjusting system parameters in 

traffic flow models; and (3) queue profile estimation (QPE) or congestion bottleneck 

identification (CBI) is performed with the aim of identifying congestion duration and the 

resulting queue profile at signalized intersections or freeway bottlenecks.  
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With the recognition of their vital importance in real-life traffic management and 

control applications, extensive efforts have been devoted to solving these three problems 

(TSE, MPE, and QPE). States of traffic streams from TSE are able to provide detailed day-

to-day traffic pattern evolutions and are also extremely important for identifying traffic 

incidents in unobservable areas (Wang et al., 2009; Kuwahara et al., 2021); well-calibrated 

traffic flow model parameters, especially under different road or weather conditions, enable 

traffic managers to understand critical attributes of traffic systems in different scenarios, 

contributing to the identification of traffic state regime switches and the designing of 

effective policies based on medium-term prediction and proactive control (Qin and 

Mahmassani, 2004; Geroliminis et al., 2012; Ramezani et al., 2015); and QPEs produce 

intuitive representations of queue evolutions at oversaturated traffic bottlenecks, 

supporting effective traffic managements through balancing travel demand and supply 

during peak hours (Ramezani and Geroliminis, 2015; Yang et al., 2018). In recent years, 

there has been an emerging trend of incorporating TSE and MPE into an integrated 

modeling structure (Wang et al., 2022) to achieve better estimations. Traffic flow models 

in MPE can help regulate state estimations in TSE and by utilizing states in unobserved 

areas produced by TSE, richer state information can be used in MPE. This study makes the 

first attempt to systematically perform TSE, MPE, and QPE under a unified modeling 

framework to take advantage of high-level queue profiles for stabilizing local estimations 

and in turn, improve QPEs using local estimations, which finally contributes to aggregated 

traffic modeling and hierarchical control. Owing to the increase in the solution space and 

complex correlations among different components, performing TSE, MPE, and QPE 

together, that is, TSSI in this study, results in a more complicated model. The challenge 
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was to develop a computationally tractable and mathematically rigorous model as well as 

an efficient solution method for the proposed TSSI problem. 

From the perspective of modeling resolutions, with the tradeoff between modeling 

scales and levels of fidelity, there are three categories of methods for traffic flow modeling: 

macroscopic, mesoscopic, and microscopic modeling. Focusing on the overall system 

performance, macroscopic modeling provides aggregated system-wide measures for 

largescale networks with high computational and modeling efficiencies. On the other hand, 

microscopic modeling tracks the movement of individual vehicles and vehicle-to-vehicle 

interactions based on car-following, gap acceptance, and lane-changing theories. Thus, 

high-resolution modeling results can be produced, while at the same time, the size of 

modeling scales could be restricted owing to demanding computational requirements. As 

an intermediate approach, mesoscopic modeling describes traffic facilities at a higher level 

of resolution than macroscopic models, but the behavior and interactions of vehicles exhibit 

a lower level of fidelity than in microscopic models (Hadi et al., 2022). Cross-resolution 

modeling, as an integrated approach, aims to fully utilize the advantages and avoid the 

potential limitations of each type of modeling approach with a single resolution by 

seamlessly modeling with various resolutions. The benefits of cross-resolution modeling 

have been widely recognized during its applications in traffic planning, simulation, and 

analysis (Zhou et al., 2021). A recent study by Zhou et al. (2022) offers a cross-resolution 

performance approach for connecting mesoscopic polynomial arrival queue model to 

macroscopic volume-delay function. Nevertheless, in the field of TSSI, estimation tasks at 

different levels are typically performed individually or sequentially. Individual estimations 

may result in inconsistencies between the different modeling levels. Under a sequential 
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modeling framework, results from higher modeling levels serve as the input to lower 

modeling levels, which could be suboptimal or even infeasible at lower levels. As a result, 

an iterative feedback process is typically needed for communication between different 

levels, but issues of convergence and long computation times still exist. Recently, 

researchers have started to build integrated models for systematically considering the 

interactions between different components in multistage problems. For example, Schöbel 

(2017) proposed a generic model for integrating line planning, timetabling, and vehicle 

scheduling for public transportation. Zhang et al. (2022) built a new model for integrating 

line planning and train timetabling for railway systems. 

This chapter aims to provide a computationally efficient and inherently consistent 

model-driven cross-resolution modeling framework for TSSI, utilizing multi-source 

heterogeneous traffic data and advanced computational techniques from machine learning 

communities. The main contribution of this chapter includes: 

 

(1) A cross-resolution modeling framework is proposed for the TSSI problem, where the 

critical tasks of TSE, MPE, and QPE can be simultaneously performed. Mapping 

equations for traffic flow models and observations at the macroscopic, mesoscopic, and 

microscopic levels were constructed to produce inherently consistent and numerically 

reliable estimations. 

(2) By modeling the traffic system of interest as a continuous-time fluid queue system, 

based on the assumption of quadratic traffic arrival/discharge rates, a number of 

macroscopic system performance evaluation measures such as time-dependent queue 

length, delay, and travel time, were analytically derived for congestion profile 
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modeling at bottlenecks.  

(3) A new continuous space-time approximation-based traffic state representation scheme 

was introduced to enable a differentiable structure in traffic flow dynamics modeling 

and for stabilizing state estimates, especially under imperfect or limited measurements. 

The resulting TSSI problem was then formulated as an unconstrained nonlinear 

optimization model, in which a set of measurement equations could be incorporated for 

different data sources and traffic flow models to improve the accuracy and reliability 

of the estimations. 

(4) A customized computational graph representation was designed to express and solve 

the nonlinear optimization model, where the gradient information associated with 

PDEs in traffic flow models can be efficiently calculated using automatic 

differentiation techniques. A forward-backward algorithm-based solution method was 

further developed to find the solution of the optimization model implemented on the 

computational graph in both centralized and distributed computing environments. 

(5) Extensive numerical experiments based on real-world and hypothetical datasets were 

designed to evaluate the effectiveness of the proposed framework. Furthermore, the 

proposed framework was implemented in a distributed computing architecture to 

demonstrate scalability and stability in largescale instances.  

 

4.2 Problem Statement and Overall Modeling Framework 

Given a set of road segments with a time period of interest, the proposed TSSI 

problem aims to systematically estimate traffic states and queue profiles, and calibrate 

traffic flow models at various resolutions by utilizing rich observations from different types 
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of traffic detectors while properly handling potential inconsistencies between different 

components and satisfying modeling principles for representing system dynamics. 

As shown in Fig. 18(a), the following four major types of sensors were considered 

to provide observations 𝒀 in this study: 

(1) Loop detectors for providing vehicle volumes aggregated with a certain time interval 

(e.g., 5 min and 15 min) at fixed locations,  

(2) GPS sensors for providing semi-continuous trajectory data with timestamps of probe 

vehicles, 

(3) Bluetooth sensors for providing the travel time of vehicles equipped with Bluetooth 

devices between adjacent sensors, and 

(4) Video detectors for providing high-fidelity vehicle trajectories within the coverage 

area. 

 

Loop detector Bluetooth Video detector coverage areaProbe vehicle

(a) Physical roads with 

traffic detectors

(b) System-wide arrival and 

discharge rate functions

(c) Continuous space-time distribution 

function of each traffic state

(e.g., flow, density, speed, net volume)

virtual arrival rate function

time

fl
o

w
 r

at
e

discharge rate function

time

fl
o

w
 r
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e

value of a specific traffic stateλ(t)

μ(t)

 
Fig. 18. Illustration of the Fluid Queue and Continuous Space-time Modeling on Road 

Segments with Different Types of Traffic Detectors. 
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Three sets of variables are to be estimated or calibrated in the proposed TSSI 

problem: (1) time-dependent traffic states on target road segments, (2) parameters of traffic 

flow models, and (3) queue evolutions in the traffic system of interest. For (2), the specific 

set of parameters depends on the selection of underlying traffic flow models. Traffic flow 

models should be carefully selected to be consistent with other modeling components. 

𝜫(𝝓) is used to denote the selected traffic flow models, where 𝝓 represents the model 

parameters to be calibrated. The variables to be estimated in (1) and (3) are illustrated 

below, with the introduction of the two key traffic state representation schemes adopted in 

this study. 

 

Fluid queue representation at the macroscopic level. At the macroscopic level, the 

set of target road segments is considered as a queuing system where system states and other 

important measures can be modeled or derived from two fundamental states: arrival rate 

and service rate. In the context of traffic systems, the two fundamental states correspond 

to vehicle arrival rates at entrances and discharge rates at exits. As a simplified approach, 

the virtual arrival and discharge rates at the final downstream are also sufficient for 

analyzing the overall performance from a system-wide perspective. In this study, the two 

fundamental states are represented by two continuous functions with respect to time, that 

is, the virtual arrival rate function 𝜆(𝑡)  and the discharge rate function 𝜇(𝑡)  [see Fig. 

18(b)].  

Continuous space-time representation at the mesoscopic level. At the mesoscopic 

level, the focus is on time-dependent traffic states, including the traffic volume, density, 

and speed on road segments. An important feature of the proposed framework is the 
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introduction of a CSTD function representation scheme for traffic states. That is, in the 

context of functional analysis, this research attempts to construct and calibrate a 

distribution function to represent each traffic state of interest over the target space-time 

regime [see Fig. 18(c)]. The input of each CSTD function is a space-time point (𝑥, 𝑡), and 

the output is the value of the corresponding traffic state at that point. As the traffic volume 

equals the product of density and speed, the CSTD functions to be estimated are associated 

with traffic density and speed, denoted by 𝑓(𝑥, 𝑡) and 𝑔(𝑥, 𝑡) respectively.  

 

Table 6 summarizes the parameters and functions to be estimated for the TSSI 

problem. The purpose of the TSSI problem is to calibrate traffic flow models 𝜫(𝝓) and 

construct two flow rate functions [i.e., 𝜆(𝑡)  and 𝜇(𝑡)] and two CSTD functions [i.e., 

𝑓(𝑥, 𝑡)  and 𝑔(𝑥, 𝑡) ] such that the following inconsistencies can be minimized: (1) 

inconsistency between observations 𝒀 and estimated states; (2) inconsistency between 

estimated states and underlying traffic flow models; and (3) inconsistency associated with 

the cross-resolution modeling structure. 

Table 6 Parameters/Functions to Be Estimated in the TSSI Problem. 

Parameters  

𝝓 Parameters of selected traffic flow models 𝜫(𝝓) 
Functions  

𝜆(𝑡) System-wide virtual arrival rate function 

𝜇(𝑡) System-wide discharge rate function 

𝑓(𝑥, 𝑡) Traffic density distribution function  

𝑔(𝑥, 𝑡) Traffic speed distribution function 

 

Fig. 19 presents the cross-resolution framework proposed in this study, with a brief 

introduction to each module. It should be noted that the specific traffic models and 
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observations in Fig. 19 are those used in this study and can be replaced with others as 

needed. 

Traffic Flow Models Observations

Identification Results

Proposed Method

Mesoscopic Traffic States (TSE)

traffic volume, density, speed distribution 

functions

Mesoscopic Model Parameters (MPE)

free-flow speed, jam density, etc.

System-wide traffic arrival and 

discharge patterns on boundaries

Macroscopic

Level

System-wide queue length and travel time information 

from speed profile and trip data

Mesoscopic

Level

Flow = Speed * Density

Fundamental diagram

Flow conservation law

Three-detector theory

Traffic counts at fixed locations from loop detectors

Semi-continuous trajectory of probe vehicles

Aggregated traffic measures from video detectors

Microscopic

Level
High-fidelity vehicle trajectories from video detectorsCar-following model

Macroscopic System Measures (QPE)

queue profile, congestion duration, 

capacity drop, etc.

Microscopic Model Parameters (MPE)

reaction time, minimum spacing, etc.

Inconsistency Handling

    Inconsistencies from traffic flow models

    Inconsistencies from observations

    Inconsistencies between different resolutions

Cross-resolution Modeling

    fluid queue model

    continuous space-time approximation

Reformulation and Solution Algorithm

    unconstrained nonlinear programming

    forward- backward algorithm

    computational graph

Fig. 19. Cross-resolution Framework Proposed in This Research. 

 

4.3 Derivation of Macroscopic Traffic System Dynamics Based on Fluid Queue Models 

In this section, by treating road segments or corridors with a downstream bottleneck 

as a single ‘server’ in the queuing system, this research extends the work by Newell (1982) 

and try to provide a set of analytical equations for describing traffic system dynamics, 

which serve as a major foundation of the subsequent macroscopic modeling.  

Newell (1982) extensively investigated the application of queuing theory in traffic 

system dynamics modeling, analysis, and evaluation, in which useful tools such as 

cumulative arrival and departure diagram were introduced. With the assumption of 
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quadratic arrival rate and constant departure rate, Newell (1982) analytically derived 

critical system state (e.g., queue length, travel time, and travel delay) formulations in a 

closed and concise form, offering a mathematically rigorous and computationally efficient 

tool in real-life applications. However, owing to the simplified assumption of a constant 

departure rate, the derivations proposed by Newell (1982) are not able to capture the 

capacity (discharge rate) drop during congestion periods. This section attempts to extend 

Newell’s work and provide a generalized modeling approach for analyzing traffic system 

dynamics by relaxing the assumption of constant departure rates to quadratic departure 

rates. 

Fig. 20 presents a graphic illustration of the queuing system on road links with a 

downstream bottleneck. In Fig. 20(a), the blue and orange curves represent the arrival rate 

function 𝜆(𝑡) and departure rate function 𝜇(𝑡) at the bottleneck, respectively, where both 

𝜆(𝑡) and 𝜇(𝑡) are approximated by quadratic functions in this study. It should be noted that 

as the derivations below are based on the point queue model (Vickrey, 1963), 𝜆(𝑡) denotes 

the virtual arrival rate at the downstream bottleneck instead of the arrival rate function at 

the road upstream, which can be obtained by shifting the latter with link free-flow travel 

time 𝑡𝑓. 𝑡0, 𝑡2 and 𝑡3 are the times at which the queue starts to form, the queue starts to 

dissipate, and the queue completely dissipates, respectively, while 𝑡1
𝜆 and 𝑡1

𝜇
 are the times 

with the highest arrival rate and lowest departure rate, respectively. Fig. 20(b) depicts the 

time-dependent queue length 𝑄(𝑡), and Fig. 20(c) plots the cumulative arrival counts 𝐴(𝑡) 

(blue curve) and cumulative departure counts 𝐷(𝑡) (orange curve) with respect to time 𝑡. 

As queue starts at 𝑡0, the two curves in Fig. 20(c) are overlapped before 𝑡0. For any 𝑡 ∈

[𝑡0, 𝑡3] , the vertical and horizontal differences between the two curves in Fig. 20(c) 
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correspond to the queue length at time 𝑡  [i.e., 𝑄(𝑡) ] and travel delay encountered by 

vehicles arriving at the downstream bottleneck at time 𝑡 [i.e., 𝑤(𝑡)], respectively. It should 

be noted that the time period of interest for all derivations below is [𝑡0, 𝑡3], that is, 𝑡 ∈

[𝑡0, 𝑡3]. 

t3t0 t2𝑡1
𝜇

 𝑡1
λ  

Flow rate

Queue length
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Time

Time

Time

t3t0 t2𝑡1
𝜇

 𝑡1
λ  

t3t0 t2𝑡1
𝜇

 𝑡1
λ  

(a)

(b)

(c)

μ(t)

λ(t)

Q(t)

A(t)

D(t)Q(t)

w(t)

t

 
Fig. 20. Graphic Illustration of the Queuing System on Road Links with a Downstream 

Bottleneck. 

 

Using the second-order Taylor approximation at time 𝑡1
𝜇

, the departure rate function 

𝜇(𝑡) can be approximated by the following quadratic function: 

𝜇(𝑡) = 𝜇(𝑡1
𝜇
) + 𝜇′(𝑡1

𝜇
)(𝑡 − 𝑡1

𝜇
) +
1

2
𝜇′′(𝑡1

𝜇
)(𝑡 − 𝑡1

𝜇
)
2
. (19) 

As 𝑡1
𝜇

 corresponds to the time at which 𝜇(𝑡) has the lowest value, 𝜇′(𝑡1
𝜇
) is then 

equal to 0, so Eq. (19) can be simplified as 

𝜇(𝑡) = 𝜇(𝑡1
𝜇
) + 𝛾𝜇(𝑡 − 𝑡1

𝜇
)
2
, (20) 

where 𝛾𝜇 =
1

2
𝜇′′(𝑡1

𝜇
). On the other hand, based on the assumption, 𝜆(𝑡) and 𝜇(𝑡) are both 

approximated by quadratic functions, then net flow rate 𝜋(𝑡) = λ(𝑡) − 𝜇(𝑡) can also be 
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represented by a quadratic function. In addition, based on the observation that 𝜋(𝑡) = 0 

when 𝑡 = 𝑡0 or 𝑡2, the net flow function can be expressed by the factored form in Eq. (21). 

𝜋(𝑡) = 𝛾(𝑡 − 𝑡0)(𝑡2 − 𝑡), (21) 

where 𝛾  is the curvature parameter. By adding Eq. (20) and Eq. (21), the arrival rate 

function λ(𝑡) can be derived as follows: 

λ(𝑡) = 𝜇(𝑡) + 𝜋(𝑡) = 𝜇(𝑡1
𝜇
) + 𝛾𝜇(𝑡 − 𝑡1

𝜇
)
2
+ 𝛾(𝑡 − 𝑡0)(𝑡2 − 𝑡). (22) 

By using the factored form of the net flow function in Eq. (21), the time-dependent 

queue length 𝑄(𝑡) can be derived as follows: 

𝑄(𝑡) = ∫ [λ(𝜏) − 𝜇(𝜏)] 𝑑𝜏
𝑡

𝑡0

= 𝛾(𝑡 − 𝑡0)
2 [
𝑡2 − 𝑡0
2
−
𝑡 − 𝑡0
3
]. (23) 

Notice that the queue dissipates at time 𝑡3 [i.e., 𝑄(𝑡3) = 0], and the following relationship 

between critical time points can be further derived: 

𝑡2 =
1

3
𝑡0 +
2

3
𝑡3. (24) 

Integrating Eqs. (23) and (24) yield a simplified expression for 𝑄(𝑡) in Eq. (25). 

𝑄(𝑡) = ∫ [λ(𝜏) − 𝜇(𝜏)] 𝑑𝜏
𝑡

𝑡0

=
𝛾

3
(𝑡 − 𝑡0)

2(𝑡3 − 𝑡). (25) 

Similarly, 𝜋(𝑡) in Eq. (21) and λ(𝑡) in Eq.(22) can be rewritten as Eq. (26) and Eq. (27), 

respectively, to exclude the dependent parameter 𝑡2 from the derivations. 

𝜋(𝑡) = 𝛾(𝑡 − 𝑡0) (
1

3
𝑡0 +
2

3
𝑡3 − 𝑡), (26) 

λ(𝑡) = 𝜇(𝑡1
𝜇
) + 𝛾𝜇(𝑡 − 𝑡1

𝜇
)
2
+ 𝛾(𝑡 − 𝑡0) (

1

3
𝑡0 +
2

3
𝑡3 − 𝑡). (27) 

Next, time-dependent travel delay 𝑤(𝑡) is derived. In Newell (1982) and Cheng et 

al. (2022), the departure rate 𝜇 is a constant; therefore, 𝑤(𝑡) can be easily obtained by 
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dividing 𝑄(𝑡) by 𝜇, that is, 𝑤(𝑡) =
𝑄(𝑡)

𝜇
. To capture the capacity drop phenomenon in real 

life, departure rate 𝜇(𝑡) is time-dependent in this research. As shown in  

Fig. 21(a), using 
𝑄(𝑡)

𝜇(𝑡)
 to calculate 𝑤(𝑡) is problematic. Depending on the departure 

rate at time 𝑡, �̂�(𝑡) =
𝑄(𝑡)

𝜇(𝑡)
 may deviate significantly from the true 𝑤(𝑡). As illustrated in  

Fig. 21(b), this research introduces an iterative method to approximate the true 

𝑤(𝑡). The iterative process is presented in Eq. (28), with the starting point �̂�0(𝑡) = 0. 

�̂�𝑘(𝑡) represents the approximation of the true 𝑤(𝑡)  at iteration 𝑘 ; 𝑅𝑘(𝑡)  denotes the 

residue of 𝑄(𝑡) at iteration 𝑘; and 𝐷(𝑡) = ∫ 𝜇(𝜏) 𝑑𝜏
𝑡

𝑡0
 is the cumulative departure at time 

𝑡. In each iteration, the departure rate used to update �̂�𝑘(𝑡) is the ultimate road capacity 𝑐. 
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Fig. 21. Graphic Illustration of Time-dependent Travel Delay Derivations. 

 

�̂�𝑘+1(𝑡) =
𝑅𝑘(𝑡)

𝑐
+ �̂�𝑘(𝑡) =

𝑄(𝑡) − 𝐷(𝑡 + �̂�𝑘(𝑡)) + 𝐷(𝑡)

𝑐
+ �̂�𝑘(𝑡),   𝑘

= 0,1,2,… 

(28) 

The approximations of 𝑤(𝑡) for iterations 1 and 2 are lisred in Eqs. (29) and (30), 

respectively. It should be noted that each �̂�𝑘(𝑡) is still an analytical formulation with 
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respect to 𝑡, and one can choose an appropriate 𝑘 to satisfy the approximation accuracy 

requirement. 

�̂�1(𝑡) =
𝑄(𝑡)

𝑐
, (29) 

�̂�2(𝑡) =
𝑄(𝑡) − 𝐷 (𝑡 +

𝑄(𝑡)
𝑐 ) + 𝐷

(𝑡)

𝑐
+
𝑄(𝑡)

𝑐
. 

(30) 

�̂�(𝑡)  denotes the final approximation of 𝑤(𝑡)  using Eq. (28). In the 

implementation, 𝑘 = 6, that is, �̂�(𝑡) = �̂�6(𝑡). With free-flow travel time 𝑡𝑓  and travel 

delay �̂�(𝑡), time-dependent travel time 𝑡𝑡(𝑡) can be expressed as 

𝑡𝑡(𝑡) = �̂�(𝑡 + 𝑡𝑓) + 𝑡𝑓. (31) 

Note that 𝑡𝑡(𝑡) derived in Eq. (31) denotes the travel time of the vehicles entering the link 

upstream at time 𝑡. 

Table 7 summarizes the system dynamics derivations presented in this section. 

Table 7 Summary of the System States Based on Fluid Queue Model. 
State Notation Analytical formulation 

Arrival rate 𝜆(𝑡; 𝜼) 
λ(𝑡) = 𝜇(𝑡1

𝜇
) + 𝛾𝜇(𝑡 − 𝑡1

𝜇
)
2
+ 𝛾(𝑡 − 𝑡0) (

1

3
𝑡0 +
2

3
𝑡3 − 𝑡) 

Discharge rate 𝜇(𝑡; 𝜼) 𝜇(𝑡) = 𝜇(𝑡1
𝜇
) + 𝛾𝜇(𝑡 − 𝑡1

𝜇
)
2
 

Net flow rate 𝜋(𝑡; 𝜼) 
𝜋(𝑡) = 𝛾(𝑡 − 𝑡0) (

1

3
𝑡0 +
2

3
𝑡3 − 𝑡) 

Time-dependent queue 

length 
𝑄(𝑡; 𝜼) 𝑄(𝑡) =

𝛾

3
(𝑡 − 𝑡0)

2(𝑡3 − 𝑡) 

Time-dependent travel 

delay 
�̂�(𝑡; 𝜼) 

�̂�(𝑡) =
𝑄(𝑡) − 𝐷 (𝑡 +

𝑄(𝑡)
𝑐 ) + 𝐷

(𝑡)

𝑐
+
𝑄(𝑡)

𝑐
 

Time-dependent travel time 𝑡𝑡(𝑡; 𝜼) 

𝑡𝑡(𝑡) =

𝑄(𝑡 + 𝑡𝑓) − 𝐷 (𝑡 + 𝑡𝑓 +
𝑄(𝑡 + 𝑡𝑓)
𝑐 ) + 𝐷(𝑡 + 𝑡𝑓)

𝑐

+
𝑄(𝑡 + 𝑡𝑓)

𝑐
+ 𝑡𝑓 

Note: 𝑤(𝑡; 𝜼) and 𝑡𝑡(𝑡; 𝜼) in the table are based on approximations of the true 𝑤(𝑡) derived in Eq. (30). For 

clarity of notation, a single parameter vector 𝜼  is used in all the functions in the table, where 𝜼 =

[𝑡1
𝜇 𝜇(𝑡1

𝜇
) 𝛾𝜇 𝛾 𝑡0 𝑡3 𝑡𝑓]

𝑻
.  
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4.4 Formulating Cross-resolution Traffic System State Identification Problem as a 

Nonlinear Programming Model 

Notations used in this section are presented in Table 8. 

Table 8 Notations for Formulating the Traffic System State Identification Problem. 

Parameters  

𝑙(𝛿) Physical distance (time interval) between two adjacent space-time 

sample points 

𝑛𝑥(𝑛𝑡) Number of sample space (time) points 

𝑛𝑥𝑡 Number of sample space-time points 

𝒙(𝒕) Vector of sample space (time) points 

𝒙𝒕 Vector of sample space-time points 

Data  

𝒀 Observations from multi-source traffic detectors. 

Variables  

𝑍 Total inconsistency from cross-resolution traffic flow models and 

observations 

𝜽 Parameters of the density distribution function 𝑓(𝑥, 𝑡; 𝜽) 
𝝋 Parameters of the speed distribution function 𝑔(𝑥, 𝑡;𝝋) 
𝜼 Parameters of system-wide measure functions in Table 7 

𝝓 Estimated parameters of traffic flow models 𝜫(𝝓) 
𝒌 Estimated density on space-time points 𝒙𝒕 
𝒗 Estimated speed on space-time points 𝒙𝒕 
𝒒 Estimated volume on space-time points 𝒙𝒕 

𝜺𝑚
𝑀𝐴(𝜺𝑜

𝑀𝐴) Inconsistency vector from macroscopic traffic flow models 

(observations) 

𝜺𝑚
𝑀𝐸(𝜺𝑜

𝑀𝐸) Inconsistency vector from mesoscopic traffic flow models 

(observations) 

𝜺𝑚
𝑀𝐼(𝜺𝑜
𝑀𝐼) Inconsistency vector from microscopic traffic flow models 

(observations) 

Functions  

λ(𝑡; 𝜼) System-wide arrival rate function with parameter 𝜼 
𝜇(𝑡; 𝜼) System-wide discharge rate function with parameter 𝜼 
𝑓(𝑥, 𝑡; 𝜽) Density distribution function with parameter 𝜽 
𝑔(𝑥, 𝑡; 𝝋) Speed distribution function with parameter 𝝋 

ℎ𝑥(𝑥, 𝑡; 𝜽, 𝝋) Partial differential function of traffic volume with respect to location 

𝑓𝑡(𝑥, 𝑡; 𝜽) Partial differential function of traffic density with respect to time 

 

As introduced in Section 2, the purpose of the TSSI problem is to simultaneously 

perform TSE, MPE, and QPE based on multi-source observations while minimizing the 

total inconsistency among the different components. Compared to existing studies, one of 
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the most important features of the proposed framework is the introduction of CSTD 

functions to represent fundamental traffic states. As a result, before proceeding to model 

construction, it is necessary to clarify the potential challenges and benefits associated with 

the CSTD representation from a modeling perspective. 

 

(1) How to choose a proper form for each CSTD function to be calibrated? 

As will be introduced in Section 4.6, in this study, a widely accepted functional 

form with the universal approximation property is adopted for CSTD functions. However, 

identification of a specific functional form requires a more comprehensive study, which is 

beyond the scope of this study. Without loss of generality, in the following discussions, it 

is assumed that the forms of the CSTD functions are given or have been well calibrated in 

advance. In this case, the parameters associated with the CSTD functions become variables 

to be estimated, that is, 𝜽 in function 𝑓(𝑥, 𝑡; 𝜽) and 𝝋 in function 𝑔(𝑥, 𝑡; 𝝋). 

 

(2) How to measure inconsistencies on CSTD functions? 

Instead of directly describing inconsistencies associated with different functions, a 

set of sample points from the space-time plane of interest is selected and then accordingly, 

measure inconsistencies on sample points. Fig. 22 shows the scheme of the space-time 

point sampling used in this study. In the adopted sampling scheme, points are evenly 

selected from the space-time plane under consideration such that two adjacent points have 

a constant physical distance 𝑙 or time interval 𝛿 in between. For a space-time plane with 

physical length 𝐿 and time duration 𝑆, the set of sample space-time points is expressed as 

𝑋𝑇 = {(𝑥, 𝑡)|𝑥 ∈ 𝑋, 𝑡 ∈ 𝑇} , where 𝑋 = {𝑥|mod(𝑥, 𝑙) = 0, 0 ≤ 𝑥 ≤ 𝐿} , 𝑇 =



  87 

{𝑡|mod(𝑡, 𝛿) = 0, 0 ≤ 𝑡 ≤ 𝑆} , |𝑋𝑇| = 𝑛𝑥𝑡 , |𝑋| = 𝑛𝑥 , and |𝑇| = 𝑛𝑡  ( 𝑛𝑥𝑡 = 𝑛𝑥 × 𝑛𝑡 ). 

Vector 𝒙 , 𝒕 , and 𝒙𝒕 , with the shapes of (𝑛𝑥, 1) , (𝑛𝑡 , 1) , and (𝑛𝑥𝑡 , 2) , denote the 

vectorizations of sets 𝑋, 𝑇, and 𝑋𝑇, respectively. For example, for a space-time plane with 

a shape of 500 m by 30 min, let 𝑙 = 10 m and 𝛿 = 5 s. Then, 𝑋 = {𝑥|mod(𝑥, 10) = 0,0 ≤

𝑥 ≤ 500}, and 𝑇 = {𝑡|mod(𝑡, 5) = 0,0 ≤ 𝑡 ≤ 1800}. Accordingly, 𝒙, 𝒕, and 𝒙𝒕 can be 

written as: 

𝒙 = [0 10 20 ⋯ 490 500]𝑇, 𝒕 = [0 5 10 ⋯ 1795 1800]𝑇, 

𝒙𝒕 = [
0 0 0 ⋯ 0 10 10 ⋯ 500
0 5 10 ⋯ 1800 0 5 ⋯ 1800

]
𝑇

. 

 

Loop detector Bluetooth Video detector coverage areaProbe vehicle

Sample point

t

x

(a) Physical road segments (b) Sample points on the corresponding space-time plane

𝛿 1 

𝑙 1 

 
Fig. 22. Physical Road Segments and Sampling Points on the Corresponding Space-time 

Plane. 

 

(3) How to handle PDEs in traffic flow models? 
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PDEs in traffic flow models are used to describe traffic flow dynamics and measure 

the evolution of traffic states in spatial and temporal domains. Eq. (32) presents the widely 

used first-order flow conservation law:  

𝜕𝑞

𝜕𝑥
+
𝜕𝑘

𝜕𝑡
= 𝑢𝑥,𝑡 , (32) 

where 𝑞 and 𝑘 denote traffic flow and density, respectively, and 𝑢𝑥,𝑡 is the traffic flow 

generation rate at location 𝑥 and time 𝑡. Because analytically solving PDEs is extremely 

difficult or even impossible in most cases, in the literature, most studies adopt a discretized 

scheme and approximate PDEs with a set of linear functions. Benefitting from the 

functional traffic state representation scheme proposed in this research, modeling PDEs is 

very straightforward. Because the functional forms of 𝑓(𝑥, 𝑡; 𝜽) and 𝑔(𝑥, 𝑡; 𝝋) are known 

[see the discussion for Question (1)], ℎ𝑥(𝑥, 𝑡; 𝜽, 𝝋) =
𝜕(𝑓(𝑥,𝑡;𝜽)∙𝑔(𝑥,𝑡;𝝋))

𝜕𝑥
 and 𝑓𝑡(𝑥, 𝑡; 𝜽) =

𝜕(𝑓(𝑥,𝑡;𝜽))

𝜕𝑡
 can also be analytically expressed. Hence, Eq. (32) can be converted to the 

normal equation in Eq. (33) without partial differential terms. 

ℎ𝑥(𝑥, 𝑡; 𝜽, 𝝋) + 𝑓𝑡(𝑥, 𝑡; 𝜽) = 𝑢𝑥,𝑡. (33) 

With the three key questions addressed above, a nonlinear programming model M1 

for the TSSI problem is presented below. 

Model M1: 

Objective function 

min𝑍 = 𝑈(𝜺𝑚
𝑀𝐴, 𝜺𝑜

𝑀𝐴, 𝜺𝑚
𝑀𝐸 , 𝜺𝑜

𝑀𝐸 , 𝜺𝑚
𝑀𝐼, 𝜺𝑜
𝑀𝐼). (34) 

Subject to 

Estimation of the traffic density on sample points 
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𝒌 = 𝑓(𝒙𝒕; 𝜽). (35) 

Estimation of the traffic speed on sample points 

𝒗 = 𝑔(𝒙𝒕;𝝋). (36) 

Estimation of the traffic volume on sample points 

𝒒 = 𝒌 ∙ 𝒗. (37) 

Estimation of the derivative of traffic volume with respective to space on sample points 

𝒒𝑥 = ℎ𝑥(𝒙𝒕; 𝜽,𝝋). (38) 

Estimation of the derivative of traffic density with respective to time on sample points 

𝒌𝑡 = 𝑓𝑡(𝒙𝒕; 𝜽). (39) 

Inconsistency between traffic state estimates and macroscopic traffic flow models 

𝜺𝑚
𝑀𝐴 = 𝐻𝑚

𝑀𝐴(𝒒, 𝒌, 𝒗, 𝜆(𝑡; 𝜼), 𝜇(𝑡; 𝜼)). (40) 

Inconsistency between traffic state estimates and macroscopic observations 

𝜺𝑜
𝑀𝐴 = 𝐻𝑜

𝑀𝐴(𝑄(𝑡; 𝜼), 𝑡𝑡(𝑡; 𝜼), 𝒀). (41) 

Inconsistency between traffic state estimates and mesoscopic traffic flow models 

𝜺𝑚
𝑀𝐸 = 𝐻𝑚

𝑀𝐸(𝒒, 𝒌, 𝒗, 𝒒𝑥, 𝒌𝑡 , 𝜫(𝝓)). (42) 

Inconsistency between traffic state estimates and mesoscopic observations 

𝜺𝑜
𝑀𝐸 = 𝐻𝑜

𝑀𝐸(𝒒, 𝒌, 𝒗, 𝒀). (43) 

Inconsistency between traffic state estimates and microscopic traffic flow models 

𝜺𝑚
𝑀𝐼 = 𝐻𝑚

𝑀𝐼(𝒒, 𝒌, 𝒗,𝜫(𝝓)). (44) 

Inconsistency between traffic state estimates and microscopic observations 

𝜺𝑜
𝑀𝐼 = 𝐻𝑜

𝑀𝐼(𝒒, 𝒌, 𝒗, 𝒀). (45) 

Decision variables 
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𝜽 ∈ 𝑹𝑛𝜽, 𝝋 ∈ 𝑹𝑛𝝋 , 𝜼 ∈ 𝑹𝑛𝜼, 𝝓 ∈ 𝑹𝑛𝝓 . (46) 

 

In model M1, the objective function in Eq. (34) minimizes the overall inconsistency 

from both traffic flow models and observations at the three resolutions. Eqs. (35)-(37) 

derive the traffic state estimations on space-time points 𝒙𝒕. Specifically, 𝒌 = 𝑓(𝒙𝒕; 𝜽) in 

Eq. (35) is a vectorization of 𝑘 = 𝑓(𝑥, 𝑡; 𝜽), where the input 𝒙𝒕 is a set of sample space-

time points (𝑥, 𝑡) in vector form and the output vector 𝒌 represents the density estimations 

on 𝒙𝒕. A similar fashion applies for the speed derivation presented in Eq. (36). Operator ‘∙’ 

in Eq. (37) denotes element-wise multiplication. Eqs. (38) and (39) represent the 

derivatives of the traffic states with respect to space and time on 𝒙𝒕. Eqs. (40)-(45) present 

conceptual mapping functions for calculating the inconsistency terms. It should be noted 

that for simplicity, it is assumed that the inconsistency terms behave well and are mutually 

uncorrelated. Thus, a simplified form of the ordinary least square can be used in the 

function 𝑈 in Eq. (34). Interested readers are referred to Deng et al. (2013) for further 

discussions on the possible error correlation and uncertainty propagation along this line. 

Finally, constraint (46) specifies the independent decision variables of model M1. Model 

M1 is essentially an unconstrained optimization model, leading to potentially efficient 

implementations in largescale real-life applications. 

 

4.5 Modeling Inconsistencies Across Different Resolutions 

Section 4.4 describes the basic structure of nonlinear optimization model M1. This 

section focuses on the modeling of inconsistency terms in model M1 from three different 

resolutions (macroscopic, mesoscopic, and microscopic), yielding a complete and practical 
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mathematical optimization model. For each resolution, inconsistencies from both traffic 

flow models and observations are discussed. 

 

4.5.1 Macroscopic-level Modeling 

At the macroscopic level, modeling the set of road segments of interest as a queuing 

system provides system-wide measures, contributing to easing the impact of detection 

errors and overfitting at local levels. By integrating the methodology proposed in Section 

3, this section demonstrates how to measure the inconsistencies from a macroscopic 

perspective by utilizing information from both models and observations. 

 

Traffic flow models 

At the macroscopic level, the set of road segments of interest is modeled as a fluid 

queue with quadratic arrival/discharge rates. As mentioned previously, the arrival rate is 

the virtual arrival rate at the final downstream, and it is difficult to build physical mappings 

in cases with multiple entrances and exits. Therefore, only the quadratic discharge rate is 

utilized to regulate the volume estimations at downstream, as presented in Eq. (47). 

𝜺𝑚
𝑀𝐴−𝑑𝑟 = 𝜇(𝒕; 𝜼) −𝑾𝑑𝑟𝒒, (47) 

where 𝜇(𝒕; 𝜼) and 𝑾𝑑𝑟𝒒 represent the flow rate estimations at downstream sample points 

from the macroscopic and mesoscopic levels, respectively; 𝑾𝑑𝑟 is a mapping matrix with 

a shape of (𝑛𝑡 , 𝑛𝑥𝑡). Matrix 𝑾𝑑𝑟 is built from an identity matrix with a shape of (𝑛𝑥𝑡 , 𝑛𝑥𝑡); 

then, only rows that correspond to space-time points at the downstream boundary are kept, 

while other rows are removed. 
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Observations 

System-wide travel time data can be collected from Bluetooth devices and probe 

vehicles. Let 𝒕�̃� denote the travel time observations at 𝒕′, where 𝒕�̃� and 𝒕′ are vectors with 

a shape of (𝑛𝑡′ , 1) ; and 𝑛𝑡′  represents the number of travel time records. Then, the 

inconsistency associated with the system-wide time-dependent travel time can be 

expressed as: 

𝜺𝑜
𝑀𝐴−𝑡𝑡 = 𝒕�̃� − 𝑡𝑡(𝒕′; 𝜼), (48) 

where 𝑡𝑡  represents the analytical time-dependent travel time function of the queuing 

system derived in Section 3. The inconsistency associated with the time-dependent queue 

length can also be calculated using the analytical 𝑄(𝑡) in Eq. (25). The observed queue 

length can be calibrated with a set of congestion and bottleneck identification tools, for 

example, the CBI tool (FHWA, 2018), from traffic speed observations. It is noteworthy 

that 𝑄(𝑡) in Eq. (25) is the number of vehicles in the system rather than the physical queue 

length. Interested readers can refer to Lawson et al. (1997) and Cheng et al. (2022) for the 

conversion between these two measures. 

 

4.5.2 Mesoscopic-level Modeling 

This section focuses on the inconsistency modeling of travel flow models and 

observations at the mesoscopic level. Specifically, the travel flow models considered in 

this study consist of fundamental diagram, flow conservation law, and three-detector 

model. One may notice that the first two models together with 𝑞 = 𝑘𝑣 [which has already 

been considered in Eq.(37)] constitutes the LWR model. It should be noted that although 
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the proposed framework has no limitations on traffic flow model selection, theoretically 

compatible models should be carefully selected to avoid inherent inconsistencies. 

 

Traffic flow models 

(1) Fundamental diagram 

A fundamental diagram describes the equilibrium relationship between traffic flow 

volume and density. This study uses the triangular fundamental diagram as an example to 

illustrate how to utilize analytical fundamental diagram models to regulate state 

estimations. Eq. (49) presents the volume-density (𝑞-𝑘) relationship of the triangular 

fundamental diagram, where 𝑣𝑓 , 𝑤𝑏  and 𝑘𝑗  denote the free-flow speed, backward wave 

speed, and jam density, respectively. Accordingly, the inconsistency associated with the 

fundamental diagram can be calculated using Eq. (50). 

𝑞 = min[𝑣𝑓𝑘, −𝑤𝑏(𝑘 − 𝑘𝑗)], (49) 

𝜺𝑚
𝑀𝐸−𝑓𝑑

= min[𝑣𝑓𝒌,−𝑤𝑏(𝒌 − 𝑘𝑗𝟏𝑛𝑥𝑡)] − 𝒒, 
(50) 

where 𝟏𝑛𝑥𝑡 denotes an all-one vector with the shape of (𝑛𝑥𝑡 , 1). 

 

(2) Flow conservation law 

With the discussion of PDEs handling in Section 4.4, the inconsistency associated 

with the flow conservation law is calculated in Eq. (51). Note that 𝒒𝑥 − 𝒌𝑡 denotes the 

traffic flow generation rates at all sample space-time points 𝒙𝒕, while generation rates at 

space-time points that correspond to physical entrances and exits are not necessarily zero. 

𝑾𝐹𝐶  is a mapping matrix built from an identity matrix with a shape of (𝑛𝑥𝑡 , 𝑛𝑥𝑡), with 
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elements in rows that correspond to space-time points having non-zero traffic flow 

generation rates set as zero. 

𝜺𝑚
𝑀𝐸−𝑓𝑐

= 𝑾𝐹𝐶(𝒒𝑥 − 𝒌𝑡). (51) 

 

(3) Three-detector model 

According to Newell’s three-detector model (Newell, 1993), the traffic state on a 

point is governed by one of the two waves, that is, a forward wave with free flow speed 𝑣𝑓 

from the upstream and a backward wave with backward wave speed 𝑤𝑏  from the 

downstream. In the following discussion, traffic density is used as the state of interest to 

illustrate the modeling process, while volume and speed can be modeled in the same 

manner. As shown in Fig. 23, the density at point 𝐴(𝑥, 𝑡) should be the same as the density 

along the forward wave (green line) or the density along the backward wave (red line). 

Choose one point from each wave, say, point 𝐵 from the forward wave and point 𝐶 

from the backward wave. Then, the density at point 𝐴 is either close to the density at point 

𝐵  or the density at point 𝐶 . As a result, Eq. (52) can be adopted to calculate the 

inconsistency associated with the three-detector theory at point 𝐴:  

휀𝑚
𝑀𝐸−𝑡𝑑 = min[(𝑘𝐴 − 𝑘𝐵)

2, (𝑘𝐴 − 𝑘𝐶)
2], (52) 

where 𝑘𝐴, 𝑘𝐵, and 𝑘𝐶  represent the densities at points 𝐴, 𝐵, and 𝐶, respectively. Note that 

points 𝐵 and 𝐶 may not belong to the sample points in 𝒙𝒕, but their states can be linearly 

expressed using interpolation methods. To simplify the calculation process, points 𝐵 and 

𝐶 are selected on the grid in this study. Eqs. (53) and (54) present the formulations for 

calculating 𝑘𝐵 and 𝑘𝐶  from the density vector 𝒌: 
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𝑘𝐵 =
𝑙 𝑣𝑓⁄

𝛿
𝑘𝐵1 +
𝛿 − 𝑙 𝑣𝑓⁄

𝛿
𝑘𝐵2 = 𝒘𝐵

𝑇𝒌, (53) 

𝑘𝐶 =
𝑙 𝑤𝑏⁄

𝛿
𝑘𝐶1 +

𝛿−𝑙 𝑤𝑏⁄

𝛿
𝑘𝐶2 = 𝒘𝐶

𝑇𝒌,  (54) 

where 𝒘𝐵 and 𝒘𝐶 are two weight vectors with the shape of (𝑛𝑥𝑡 , 1). Substituting 𝑘𝐵 and 

𝑘𝐶  into Eq. (52) using Eqs. (53) and (54), Eq. (52) can be rewritten as follows: 

휀𝑚
𝑀𝐸−𝑡𝑑 = min[(𝒘𝐴

𝑇𝒌− 𝒘𝐵
𝑇𝒌)2, (𝒘𝐴

𝑇𝒌 −𝒘𝐶
𝑇𝒌)2], (55) 

where 𝒘𝐴 is a weight vector built from an all-zero vector with a shape of (𝑛𝑥𝑡 , 1) while the 

weight of point 𝐴 is set as 1. 

Eq. (56) represents the inconsistency associated with the three-detector model for 

all the sample points 𝒙𝒕: 

𝜺𝑚
𝑀𝐸−𝑡𝑑 = min[(𝑰𝒌 −𝑾𝑭𝒌)

2, (𝑰𝒌 −𝑾𝑩𝒌)
2], (56) 

where each row is constructed for a specific sample point in 𝒙𝒕 using Eq. (55). 

 
Fig. 23. Illustration of the Three-detector Model. 

 

Observations 

(1) Using loop detector data 

Loop detectors provide aggregated traffic counts within a certain time interval at 

fixed locations. As illustrated in Fig. 24, for each traffic count record �̃�𝑖 collected from time 
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𝑡𝑠 to 𝑡𝑒 at location 𝑥𝑙, its corresponding estimated value can always be expressed in the 

form of 𝒘𝑖
𝑇𝒒, where 𝒘𝑖  is a weight vector with the shape of (𝑛𝑥𝑡 , 1). Accordingly, the 

inconsistency associated with all the records from the loop detector data �̃� can be expressed 

as 

𝜺𝑜
𝑀𝐸−𝑙 = �̃� −𝑾𝐿𝒒, (57) 

where 𝑾𝐿 is a mapping matrix with a shape of (𝑚𝐿 , 𝑛𝑥𝑡), and 𝑚𝐿 is the number of traffic 

count records from the loop detectors. Each row in 𝑾𝐿  is a weight vector for the 

corresponding traffic count record, such as 𝒘𝑖 derived in Fig. 24.  

 
Fig. 24. Illustrations of Using Loop Detector Data. 

 

(2) Using GPS data 

Probe vehicles equipped with GPS report their locations and instant speeds within 

a short time interval (e.g., every 10 s). Tuple (𝑡𝑖 , 𝑥𝑖 , 𝑠𝑖) represents one record from a GPS-

equipped vehicle, where 𝑡𝑖 denotes the timestamp, and 𝑥𝑖 and 𝑠𝑖 represent the location and 

speed of the vehicle at time 𝑡𝑖. As illustrated in Fig. 25, for each record (𝑡𝑖 , 𝑥𝑖 , 𝑠𝑖), the 

corresponding speed estimation can always be expressed in the form of 𝒘𝑖
𝑇𝒗, where 𝒘𝑖 is 
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a weight vector with a shape of (𝑛𝑥𝑡 , 1). Accordingly, the inconsistency associated with all 

the records from the GPS speed data �̃� can be expressed as 

𝜺𝑜
𝑀𝐸−𝑔𝑠

= �̃� −𝑾𝐺𝒗, (58) 

where 𝑾𝐺  is a mapping matrix with the shape of (𝑚𝐺 , 𝑛𝑥𝑡), and 𝑚𝐺  is the number of GPS 

point records. Each row in 𝑾𝐺  is a weight vector for the corresponding GPS point record, 

such as 𝒘𝑖 derived in Fig. 25.  

 
Fig. 25. Illustrations of Using Speed Information from GPS Data. 

 

In addition to speed information, GPS data also provide space-time trajectory 

information of probe vehicles. As shown in Fig. 26, points 𝐴(𝑥𝐴, 𝑡𝐴) and 𝐵(𝑥𝐵, 𝑡𝐵) are two 

adjacent points in a trajectory point sequence, indicating that the probe vehicle entered 

segment [𝑥𝐴, 𝑥𝐵] at time 𝑡𝐴 and left it at time 𝑡𝐵. Under the assumption of first-in-first-out 

(FIFO), vehicles in segment [𝑥𝐴, 𝑥𝐵] at time 𝑡𝐴  all leave the segment within the time 

window [𝑡𝐴, 𝑡𝐵]. In other words, the number of vehicles in segment [𝑥𝐴, 𝑥𝐵] at time 𝑡𝐴 

(denoted by 𝑧𝑘) is equal to the number of vehicles passing location 𝑥𝐵 within time window 

[𝑡𝐴, 𝑡𝐵] (denoted by 𝑧𝑞). Note that the flow conservation approximation is valid only if 

there is no entrance or exit between points 𝐴 and 𝐵. To facilitate the derivation of 𝑧𝑘 and 
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𝑧𝑞 , point 𝐶(𝑥𝐶, 𝑡𝐶)  is constructed, where 𝑥𝐶 = 𝑥𝐵  and 𝑡𝐶 = 𝑡𝐴 . Subsequently, 𝑧𝑘  is 

calculated as follows: 

𝑧𝑘 = �̅�𝐴𝐶 × (𝑥𝐵 − 𝑥𝐴) = 𝒘
′
𝑘
𝑇
𝒌 × (𝑥𝐵 − 𝑥𝐴) = 𝒘𝑘

𝑇𝒌, (59) 

where �̅�𝐴𝐶 denotes the average density of the segment [𝑥𝐴, 𝑥𝐵] at time 𝑡𝐴, which can be 

expressed by a weighted average of densities on 𝒙𝒕 , i.e., 𝒘′𝑘
𝑇
𝒌. Similarly, 𝑧𝑞  can be 

calculated using Eq. (60). 

𝑧𝑞 = �̅�𝐶𝐵 × (𝑡𝐶 − 𝑡𝐵) = 𝒘
′
𝑞
𝑇
𝒒 × (𝑡𝐶 − 𝑡𝐵) = 𝒘𝑞

𝑇𝒒. (60) 

Then, the inconsistency associated with the FIFO assumption on points 𝐴(𝑥𝐴, 𝑡𝐴)  and 

𝐵(𝑥𝐵, 𝑡𝐵) can be expressed as 

휀𝑜
𝑀𝐸−𝑔𝑓

= 𝑧𝑘 − 𝑧𝑞 = 𝒘𝑘
𝑇𝒌 − 𝒘𝑞

𝑇𝒒. (61) 

Finally, the inconsistency associated with the FIFO assumption on all pairs of adjacent 

points from the GPS data can be calculated as: 

𝜺𝑜
𝑀𝐸−𝑔𝑓

= 𝑾𝑮𝒌𝒌 −𝑾𝑮𝒒𝒒, (62) 

where 𝑾𝑮𝒌 and 𝑾𝑮𝒒 are two weight matrices with the shape of (𝑛𝑔𝑓, 𝑛𝑥𝑡), and 𝑛𝑔𝑓 is the 

number of adjacent point pairs in GPS data. Each row in Eq. (62) represents the 

inconsistency measure for a specific pair of points, similar to Eq. (61).  
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Fig. 26. Illustrations of Using Space-time Trajectory Information from GPS Data. 

 

(3) Using video detector data 

With computer vision technologies, high-fidelity vehicle trajectories and 

aggregated traffic measures (e.g., volume, density, and speed) can be obtained from video 

detector data (Coifman and Li, 2022). Aggregated traffic density data is used for illustrating 

inconsistency measurement, while speed and volume data can be processed similarly. As 

shown in Fig. 27, the video detection area is divided into multiple rectangles with evenly 

distributed sample points 𝒙𝒕. In the example of the rectangle with a red boundary, �̃�𝑖 

denotes the observed density in the rectangle. Using a linear interpolation method, the 

corresponding estimated density can be represented as the weighted sum of the density 

estimations at the four corners. Therefore, the inconsistency associated with the traffic 

density in that rectangle can be expressed as 

휀𝑜
𝑀𝐸−𝑣𝑑 = �̃�𝑖 − 𝒘𝑖

𝑇𝒌, (63) 

where 𝒘𝑖  is a weight vector with the shape of (𝑛𝑥𝑡 , 1). Accordingly, the inconsistency 

associated with all the aggregated traffic density records �̃� can be calculated as follows: 

𝜺𝑜
𝑀𝐸−𝑣𝑑 = �̃� −𝑾𝑽𝒌, (64) 
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where 𝑾𝑽  is a mapping matrix with the shape of (𝑚𝑉 , 𝑛𝑥𝑡), and 𝑚𝑉  is the number of 

density data records from the video detectors. Each row in 𝑾𝑉  is a weight vector that 

corresponds to a specific density record.  

 
Fig. 27. Illustrations of Using Aggregated Density Information from Video Detector 

Data. 

 

4.5.3 Microscopic-level Modeling 

This section discusses inconsistency modeling at the microscopic level, with a 

focus on car-following models and observations. The car-following model used in this 

study is Newell’s simplified linear car-following model (Newell, 2002), with a concise 

form presented in Eq. (65). 

𝑥𝑛(𝑡 + 𝜏) = 𝑥𝑛−1(𝑡) − 𝑑, (65) 

where 𝑥𝑛(𝑡) represents the position of vehicle 𝑛 at time 𝑡, 𝜏 denotes the reaction time of 

drivers, and 𝑑 is the minimum safety spacing between two adjacent vehicles. Note that 𝜏 

and 𝑑 in Eq. (65) should be vehicle-dependent, whereas in this study, it is assumed that 

vehicle groups have similar deriving behaviors and share the same set of parameters.  
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Traffic flow models 

Newell’s simplified car-following model used in this study is consistent with the 

triangular fundamental diagram adopted in mesoscopic-level modeling: the minimum 

safety spacing 𝑑 is the inverse of the jam density 𝑘𝑗, and the minimum safety spacing 𝑑 

divided by the reaction time 𝜏 equals the backward wave speed 𝑤𝑏 . Consequently, the 

potential inconsistency associated with these two layers of traffic flow model can be 

expressed as 

𝜺𝑚
𝑀𝐼−𝑐𝑓
= [𝑑 −

1

𝑘𝑗

𝑑

𝜏
− 𝑤𝑏]

𝑇

, (66) 

where 𝜺𝑚
𝑀𝐼−𝑐𝑓

 is the inconsistency vector with a shape of (2,1). 

 

Observations 

Reaction time 𝜏 and minimum safety spacing 𝑑 are the only two parameters of 

Newell’s simplified linear car-following models, and there have been extensive studies on 

parameter calibration in the literature. This study adopts the approach proposed by Taylor 

et al. (2015), in which the dynamic time warping algorithm is utilized to perform a point-

to-point match on two adjacent trajectories, and 𝜏 and 𝑑 are in turn calibrated. Let �̃� and �̃� 

denote the calibrated reaction time and minimum safety spacing from the trajectory dataset. 

The inconsistency associated with the car-following model parameters can be calculated 

as 

𝜺𝑜
𝑀𝐼−𝑐𝑓
= [�̃� − 𝜏 �̃� − 𝑑]

𝑇, (67) 

where 𝜺𝑜
𝑀𝐼−𝑐𝑓

 is the inconsistency vector with a shape of (2,1). 
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4.5.4 The Complete Model 

With the discussion on inconsistency modeling across the three different 

resolutions, the complete model is presented as follows. 

 

Model M2: 

Objective function 

min𝑍 = 𝛼𝑚
𝑀𝐴−𝑑𝑟‖𝜺𝑚

𝑀𝐴−𝑑𝑟‖2 + 𝛼𝑜
𝑀𝐴−𝑡𝑡‖𝜺𝑜

𝑀𝐴−𝑡𝑡‖2 + 𝛼𝑚
𝑀𝐸−𝑓𝑑
‖𝜺𝑚
𝑀𝐸−𝑓𝑑
‖
2

+ 𝛼𝑚
𝑀𝐸−𝑓𝑐
‖𝜺𝑚
𝑀𝐸−𝑓𝑐
‖
2
+ 𝛼𝑚
𝑀𝐸−𝑡𝑑‖𝜺𝑚

𝑀𝐸−𝑡𝑑‖2

+ 𝛼𝑜
𝑀𝐸−𝑙‖𝜺𝑜

𝑀𝐸−𝑙‖2 + 𝛼𝑜
𝑀𝐸−𝑔𝑠
‖𝜺𝑜
𝑀𝐸−𝑔𝑠
‖

+ 𝛼𝑜
𝑀𝐸−𝑔𝑓
‖𝜺𝑜
𝑀𝐸−𝑔𝑓
‖
2
+ 𝛼𝑜
𝑀𝐸−𝑣𝑑‖𝜺𝑜

𝑀𝐸−𝑣𝑑‖2

+ 𝛼𝑚
𝑀𝐼−𝑐𝑓
‖𝜺𝑚
𝑀𝐼−𝑐𝑓
‖
2
+ 𝛼𝑜
𝑀𝐼−𝑐𝑓
‖𝜺𝑜
𝑀𝐼−𝑐𝑓
‖
2
, 

(68) 

Subject to 

State estimations on sample points: (35)-(39), 

Consistency constraints at the macroscopic level: (47) and (48), 

Consistency constraints at the macroscopic level: (50), (51), (56), (57), (58), (62) 

and (64), 

Consistency constraints at the macroscopic level: (66) and (67), 

Decision variables 

𝜽 ∈ 𝑹𝑛𝜽, 𝝋 ∈ 𝑹𝑛𝝋 , 𝜼 ∈ 𝑹𝑛𝜼, 𝝓 ∈ 𝑹𝑛𝝓 . (69) 

 

The objective function in Eq. (68) minimizes the weighted sum of all the 

inconsistency terms. The weight of a specific inconsistency term can be determined based 
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on the reliability of the corresponding traffic flow models or observations. Constraint (69) 

specifies all the independent decision variables, including 𝜽, 𝝋, 𝜼 and 𝝓. Specifically, 

according to the traffic flow models used in this study, 𝝓 = [𝜏 𝑑 𝑣𝑓 𝑘𝑗 𝑤𝑏]𝑇. 

 

4.6 Traffic System State Identification on a Computational Graph 

This section first introduces a customized computational graph constructed to 

represent the nonlinear programming model M2 described in Section 4.5. The second part 

of this section illustrates the process of solving the optimization model on the 

computational graph using the forward-backward algorithm. Furthermore, a distributed 

computing framework of the computational graph is presented to handle largescale 

instances in real-life applications. 

 

4.6.1 Computational Graph Structure 

Model M2 is a standard nonlinear programming model that can be solved using 

existing nonlinear solvers such as Ipopt (Wächter and Biegler, 2006), BARON 

(Tawarmalani and Sahinidis, 2004), and Knitro (Waltz et al., 2006). However, there are 

three challenges in doing so. First, nonlinear solvers can only model scalar variables, 

indicating that gradient calculations and value updating are independently performed for 

each scalar variable in each optimization iteration, whereas the vector-based representation 

in model M2 is not fully utilized to accelerate the optimization process. Second, the partial 

differential functions ℎ𝑥(𝑥, 𝑡; 𝜽, 𝝋) and 𝑓𝑡(𝑥, 𝑡; 𝜽) in Eq. (33) must be manually derived 

each time the form of the traffic state distribution functions (i.e., 𝑓 and 𝑔) changes, which 

may affect the applicability in real-life instances. Third, the functional forms of 𝑓 and 𝑔 
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must be properly determined for each instance, which could be extremely difficult for cases 

with complicated time-varying traffic conditions. 

To address these three challenges, this research casts and solves model M2 on a 

customized computational graph. The computational graph approach has been successfully 

applied to solve complex and largescale traffic problems. For example, Wu et al. (2018) 

cast the four-step method on a computational graph for travel demand estimation, Ma et al. 

(2020) estimated multiclass dynamic origin-destination demand on computational graphs 

using a forward-backward algorithm, and Kim et al. (2021) introduced computational 

graph-based frameworks to integrate the strengths of econometric models and machine 

learning algorithms in discrete choice modeling applications. There is also a new trend of 

integrating traffic flow modeling with machine learning to improve model performance 

while keeping the interpretability (e.g., Yuan et al., 2021 and Thodi et al., 2022). Solving 

model M2 on a computational graph enables the use of various powerful computational 

techniques, such as vectorization, parallel computing, and automatic differentiation, from 

the deep learning field. 

The structure of the computational graph constructed in this study is shown in Fig. 

28 and denoted as graph 𝐺. The dataflow of graph 𝐺 starts with sample space-time points 

𝒙𝒕, and in turn, calculates various state estimations on 𝒙𝒕 (i.e., 𝒌, 𝒗, 𝒒, 𝒒𝒙, and 𝒌𝒕), which 

correspond to Eqs. (35)-(39) in model M2. Next, by comparing the state estimations with 

observations and traffic flow models, the total loss (i.e., inconsistency across different 

layers) can be measured. The objective of training the graph 𝐺 is to minimize the total loss 

by optimizing the value of trainable variables (i.e., 𝜽, 𝝋, 𝜼 and 𝝓). 
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𝒙𝒕 

Speed distribution 
function

𝑔(𝑥, 𝑡;𝝋) 

Density distribution 
function

𝑓(𝑥, 𝑡;𝜽) 

𝒌 

𝒗 

𝒒 

Observations 𝒀 

Traffic flow models 𝜫(𝝓) 

(Total inconsistency in 
Eq. (51))

Forward process

Backward process

𝒒𝑥  

𝒌𝑡  

Fluid queue model 𝜇(𝑡;𝜼), 𝑡𝑡(𝑡;𝜼) 

A B

𝑍 Total Loss

 
Fig. 28. Computational Graph Structure. 

 

How the proposed computational graph can address the above three challenges is 

illustrated below. 

The first two challenges are addressed by the data structure used in the 

computational graphs, that is, the tensor. Tensors are matrices. Consequently, all 

calculations and value updating are performed in a vectorization scheme, resulting in 

significant efficiency improvements. In addition, compared to normal matrices, tensors 

have the ability to remember what operations happen in what order on them, which is the 

core of calculating derivatives using the chain rule. Modern deep learning frameworks such 

as TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019) are capable of 

performing automatic differentiation based on the ability of tensors. Every time data flow 

passes to a tensor, the derivatives of the tensor with respect to all upstream tensors are 

ready to use. In Fig. 28, the values of 𝒒𝒙 and 𝒌𝒕 in rectangle B are available as soon as the 

values of 𝒌  and 𝒒  in rectangle A are updated. With the automatic differentiation 

functionality of computational graphs, partial differential functions ℎ𝑥(𝑥, 𝑡; 𝜽, 𝝋)  and 

𝑓𝑡(𝑥, 𝑡; 𝜽) are readily available when the functions 𝑓 and 𝑔 are differentiable. . 
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In terms of the third challenge, the form of the distribution functions can be 

determined in two ways. The first is to derive analytical forms for distribution functions 

based on prior knowledge, but this is only feasible for simple functional forms. The second 

approach uses form-free functions. For example, a polynomial function can approximate a 

complex function with a certain degree of estimation errors. This research uses a powerful 

tool in the context of computational graphs to represent the state distribution functions 𝑓 

and 𝑔: fully-connected neural networks (FCNNs). Compared with polynomial functions, 

an FCNN can approximate functions using fewer parameters. The ability that an FCNN is 

capable of approximating any function with high accuracy is known as “universal 

approximation” in the field of deep learning. By using FCNNs to represent functions 𝑓 and 

𝑔, the function parameters 𝜽 and 𝝋 are actually the weight matrices and bias matrices of 

FCNNs. 

A three-layer FCNN is used as an illustrative example to show how to calculate the 

density estimation 𝒌 with an input 𝒙𝒕 (see Fig. 29), while the speed estimation 𝒗 can be 

obtained in a similar manner. Assume that layer 𝑖 has 𝑚𝑖 neurons, 𝑖 = 1, 2, 3. The shapes 

of weight matrix 𝑾𝑖 and bias vector 𝒃𝑖 are listed in Table 9. The density estimation 𝒌 can 

be calculated as follows:  

𝒌 = 𝛤{𝛤[𝛤(𝒙𝒕𝑾1 + 𝟏𝑚1𝒃1)𝑾2 + 𝟏𝑚2𝒃2]𝑾3 + 𝟏𝑚3𝒃3}𝑾4 + 𝟏𝑚4𝒃4, (70) 

where 𝟏𝑚  denotes an all-one vector with the shape of (𝑚, 1); and 𝛤  is an activation 

function. The role of the activation function is to add nonlinearity to FCNNs, which can 

significantly improve their approximation ability. This research uses ReLU as the 

activation function, which can be expressed as 
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𝛤(𝜎) = max(0, 𝜎). (71) 

Density distribution function

𝑾1 𝒃1 𝑾2 𝒃2 𝑾3 𝒃3 𝑾4 𝒃4 

𝒙𝒕 𝒌 

 
Fig. 29 Detailed Representation of the fully connected Neural Network (Density 

Function). 

 

Table 9 Shape of the Parameters in the FCNN (Density Distribution Function). 
Parameter 𝑾1 𝒃1 𝑾2 𝒃2 𝑾3 𝒃3 𝑾4 𝒃4 
Shape (2, 𝑚1) (1, 𝑚1) (𝑚1, 𝑚2) (1,𝑚2) (𝑚2, 𝑚3) (1,𝑚3) (𝑚4, 1) (1,1) 

 

4.6.2 Estimation Using Forward-backward Algorithm 

This subsection introduces how to train graph 𝐺  using the forward-backward 

algorithm. The forward-backward algorithm includes two processes: forward and 

backward processes. In the forward process, the value of the total loss 𝑍 is calculated based 

on the forward data flow, shown in Fig. 28. In the backward process, the gradients of the 

total loss 𝑍  with respect to trainable variables 𝜽, 𝝋, 𝜼 and 𝝓  are calculated using the 

automatic differentiation technique. Subsequently, a gradient-based optimization 

algorithm, such as stochastic gradient descent (SGD) (Robbins and Monro, 1951) and 

Adam (Kingma and Ba, 2014), is used to update the value of trainable variables based on 

the gradient information in the backward direction. The pseudocode of the forward-

backward algorithm used in this study is shown in Algorithm 3. 
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Algorithm 3 Forward-backward Algorithm 

Input: graph 𝐺; max number of training iterations 𝑁 

Output: trained graph 𝐺 with minimum loss 

1: set initial values for trainable variables (i.e., 𝜽, 𝝋, 𝜼, and 𝝓) of graph 𝐺 

2: for 𝑖𝑡𝑒𝑟 ≔ 1,2,… ,𝑁 do 

3: (forward process) 

4: state estimations: 𝒌 = 𝑓(𝒙𝒕; 𝜽), 𝒗 = 𝑔(𝒙𝒕; 𝝋), 𝒒 = 𝒌 ∙ 𝒗 
5: partial differential terms: calculate 𝒒𝑥 and 𝒌𝑡 using automatic differentiation 

6: 

Calculate inconsistencies from observations and traffic flow models: 

𝜺𝑚
𝑀𝐴−𝑑𝑟, 𝜺𝑜

𝑀𝐴−𝑡𝑡, 𝜺𝑚
𝑀𝐸−𝑓𝑑

, 𝜺𝑚
𝑀𝐸−𝑓𝑐

, 𝜺𝑚
𝑀𝐸−𝑡𝑑, 𝜺𝑜

𝑀𝐸−𝑙, 𝜺𝑜
𝑀𝐸−𝑔𝑠

, 𝜺𝑜
𝑀𝐸−𝑔𝑓

, 𝜺𝑜
𝑀𝐸−𝑣𝑑, 

𝜺𝑚
𝑀𝐼−𝑐𝑓

 and 𝜺𝑜
𝑀𝐼−𝑐𝑓

 (Eqs. (35)-(39), (47), (48), (50), (51), (56), (57), (58), 

(62), (64), (66) and (67)) 

7: total loss: calculate total loss 𝑍 using Eq. (68) 

8: (backward process) 

9: 
gradient: calculate gradients of 𝑍 with respective to trainable variables (i.e., 
𝜕𝑍

𝜕𝜽
, 
𝜕𝑍

𝜕𝝋
, 
𝜕𝑍

𝜕𝜼
, 
𝜕𝑍

𝜕𝝓
) 

10: 
update variables: 𝜽 = 𝜽 + 𝝀𝜽

𝑻 𝜕𝑍

𝜕𝜽
, 𝝋 = 𝝋+ 𝝀𝝋

𝑻 𝜕𝑍

𝜕𝝋
, 𝜼 = 𝜼 + 𝝀𝜼

𝑻 𝜕𝑍

𝜕𝜼
, 𝝓 = 𝝓+

𝝀𝝓
𝑻 𝜕𝑍

𝜕𝝓
 

11: return graph 𝐺 

 

In line 10, 𝝀𝜽 , 𝝀𝝋 , 𝝀𝜼  and 𝝀𝝓  represent the step sizes used to update the 

corresponding variables. In this study, as suggested by the comprehensive numerical study 

by Ruder (2016), Adam is adopted for the variable updating in line 10, during which the 

step sizes are adaptively determined based on first-order and second-order moments. 

Another improvement made in the forward-backward process is training with small 

batches. Instead of calculating inconsistencies on all sample points, this reseach randomly 

selects parts of the sample points for inconsistency calculation and use the resulting 

derivatives for subsequent variable updating. Compared with training with the entire 

dataset, training with small batches involves more randomness in the process and is 

expected to have more chances to jump out of local minimums and saddle points. This 
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training approach with small batches has been suggested in many other studies (Keskar et 

al., 2016). 

The forward and backward processes are iteratively performed until a preset stop 

criterion has been reached, for example, a maximum number of iterations or a target loss 

value. This research adopts the maximum number of iterations as the stopping criterion. 

 

4.6.3 Distributed Computing 

In addition to the vectorization-based computing introduced above, this section 

presents a distributed training framework for the proposed computational graph to improve 

computational efficiency, which is of vital importance in real-time largescale applications. 

In addition, a distributed implementation does not have privacy concerns and has higher 

reliability than a centralized implementation (Nedić and Liu, 2018). The reason is that 

under a distributed computing framework, computations are performed independently on 

local servers, and only a small amount of necessary information is shared with other 

servers. Therefore, there is no need to upload all the data to a central server, which could 

render the entire system fragile and unsafe. A long corridor 𝐴𝐷 (see Fig. 30) is used as an 

example to illustrate the distributed implementation of the proposed computational graph 

method, while the methodology presented below can be applied to more complicated 

networks. 
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Fig. 30. Illustration of the Distributed Modeling. 

 

In Fig. 30, the long corridor 𝐴𝐷 is split into three parts: Part 1 (𝐴𝐵), Part 2 (𝐵𝐶), 

and Part 3 (𝐶𝐷), with a computational graph built for each part, that is, graphs 𝐺1, 𝐺2 and 

𝐺3. These three computational graphs have the same structure as that introduced in Section 

4.6.1. For each computational graph 𝐺𝑖, in addition to the existing outputs, additional state 

outputs on its boundaries are added. For example, the additional state outputs of graph 𝐺2 

include 𝒌𝐵,2, 𝒗𝐵,2, 𝒌𝑥
𝐵,2, 𝒗𝑥

𝐵,2
 for boundaries 𝐵  and 𝒌𝐶,2, 𝒗𝐶,2, 𝒌𝑥

𝐶,2, 𝒗𝑥
𝐶,2

 for boundary 𝐶 . 

These additional state outputs are used to measure the inconsistencies of the state 

estimations on the boundary from different computational graphs. The state inconsistency 

on boundary 𝐵 is expressed as: 

𝑏𝑖𝐵 = ‖𝒌
𝐵,1 − 𝒌𝐵,2‖2 + ‖𝒗𝐵,1 − 𝒗𝐵,2‖2 + ‖𝒌𝑥

𝐵,1 − 𝒌𝑥
𝐵,2‖
2
+ ‖𝒗𝑥

𝐵,1 −

𝒗𝑥
𝐵,2‖
2
. 

(72) 

The right-hand side of Eq. (72) comprises two groups: (1) ‖𝒌𝐵,1 − 𝒌𝐵,2‖2 + ‖𝒗𝐵,1 −

𝒗𝐵,2‖2  and (2) ‖𝒌𝑥
𝐵,1 − 𝒌𝑥

𝐵,2‖
2
+ ‖𝒗𝑥

𝐵,1 − 𝒗𝑥
𝐵,2‖
2

. The first group measures the 

inconsistency in state values, whereas the second measures the inconsistency in the 
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derivative of the state values. Minimizing 𝑏𝑖𝐵 results in consistent state values from 𝐺1 and 

𝐺2 on boundary 𝐵 and smooth state changes in the area beside boundary 𝐵. Similarly, the 

state inconsistency on boundary 𝐶 can be expressed as 

𝑏𝑖𝐶 = ‖𝒌
𝐶,2 − 𝒌𝐶,3‖2 + ‖𝒗𝐶,2 − 𝒗𝐶,3‖2 + ‖𝒌𝑥

𝐶,2 − 𝒌𝑥
𝐶,3‖
2
+ ‖𝒗𝑥

𝐶,2 −

𝒗𝑥
𝐶,3‖
2
. 

(73) 

The forward-backward algorithm is used to minimize the boundary inconsistencies 

𝑏𝑖𝐵 and 𝑏𝑖𝐶. 

This research uses the forward-backward algorithm to minimize the consistency 

loss 𝑏𝑖𝐵 and 𝑏𝑖𝐶. After obtaining 𝑏𝑖𝐵 and 𝑏𝑖𝐶 through a forward process, the gradients of 

𝑏𝑖𝐵 and 𝑏𝑖𝐶 with respect to trainable variables in the graphs are calculated using automatic 

differentiation. For simplicity, vectors 𝑽𝒊 = [𝜽𝑖
𝑇 , 𝝋𝑖
𝑇 , 𝜼𝑖
𝑇 , 𝝓𝑖
𝑇]𝑇 are used to represent all the 

trainable variables in the graph 𝐺𝑖. Then, 
𝜕𝑏𝑖𝐵

𝜕𝑽1
 and 

𝜕𝑏𝑖𝐵

𝜕𝑽2
 are calculated for 𝑏𝑖𝐵, while 

𝜕𝑏𝑖𝐶

𝜕𝑽2
 

and 
𝜕𝑏𝑖𝐶

𝜕𝑽3
 are calculated for 𝑏𝑖𝐶. Finally, using the gradient descent method, the values of 

the trainable variables are updated using Eqs. (74)-(76), where 𝝀 is the step size vector. 

𝑽1 = 𝑽1 + 𝝀𝑽1
𝑻 𝜕𝑏𝑖𝐵
𝜕𝑽1
, (74) 

𝑽2 = 𝑽𝟐 + 𝝀𝑽𝟐
𝑻 (
𝜕𝑏𝑖𝐵
𝜕𝑽2
+
𝜕𝑏𝑖𝐶
𝜕𝑽2
) 2,⁄  (75) 

𝑽3 = 𝑽3 + 𝝀𝑽3
𝑻 𝜕𝑏𝑖𝐶
𝜕𝑽3
. (76) 

As variable 𝑽𝟐 contributes to both 𝑏𝑖𝐵 and 𝑏𝑖𝐶 in the forward process, the average 

gradient from 𝑏𝑖𝐵 and 𝑏𝑖𝐶 is used to update variable 𝑽𝟐 in Eq. (75). The training process 

of the distributed computational graph is summarized in Algorithm 4. 
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Algorithm 4 Training process of the distributed computational graph 

Input: computational graphs 𝐺𝑖, 𝑖 = 1,2,3; max number of training iterations 𝑁 

Output: trained computational graphs 𝐺𝑖, 𝑖 = 1,2,3 
1: set initial values for trainable variables 𝑽𝑖 of graph 𝐺𝑖, 𝑖 = 1,2,3 
2: for epoch 𝑖𝑡𝑒𝑟 ≔ 1,2,… , 𝑁 do  

3: 
Perform the forward process and backward process in Algorithm 3 for each 

graph 𝐺𝑖, 𝑖 = 1,2,3 
4: Calculate the boundary inconsistency 𝑏𝑖𝑗 for each boundary 𝑗, 𝑗 = 𝐵, 𝐶 

5: 
Calculate the gradients of boundary inconsistency 𝑏𝑖𝑗 for each boundary 𝑗, 𝑗 =

𝐵, 𝐶 
6: Update trainable variables using Eqs. (74)-(76) 

7: return graphs 𝐺𝑖, 𝑖 = 1,2,3 
 

Under the distributed modeling framework, local graph training is performed (line 

3), and only necessary information is shared with the adjacent graphs to reach consistency 

on boundaries (line 4), which makes the resulting model more efficient and robust. 

 

4.7 Numerical Experiments 

This section examines the performance of the proposed TSSI framework by using 

both real-world and hypothetical datasets. In Section 4.7.1, extensive experiments 

performed on six freeway segments under various traffic conditions are presented, and 

Section 4.7.2 applies the proposed framework to a freeway corridor with ramps. In Section 

4.7.3, a hypothetical freeway corridor designed to demonstrate the effectiveness of the 

proposed framework in a distributed computing environment is presented. The 

computational graphs constructed in this study are implemented using the open-source 

machine learning framework TensorFlow (Abadi et al., 2016). The source code and dataset 

used in this study are publicly available at 

https://github.com/jiawlu/Traffic_State_Estimation-Computational_Graph. 

 

https://github.com/jiawlu/Traffic_State_Estimation-Computational_Graph
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4.7.1 Real-world Freeway Segments 

The Highd dataset (Krajewski et al., 2018) is adopted as the first dataset to evaluate 

the performance of the proposed framework. The dataset provides detailed vehicle 

trajectories extracted from high-resolution videos captured by drones at different locations 

on German freeways (each location contains two directions). To investigate the model 

performance under complicated traffic conditions, six segments are selected from the 

Highd dataset, where both light and heavy traffic conditions and transitions between the 

two states are also included. Detailed information regarding the dataset used in this study 

is presented in Table 10. 

Table 10 Summary of the Highd Dataset Used in This Research. 

Dataset Highd ID Direction Month Weekday Start time End time 

1 12 1 201709 Thu 17:21 17:36 

2 25 1 201710 Mon 8:55 9:14 

3 26 1 201710 Mon 9:20 9:38 

4 25 2 201710 Mon 8:55 9:14 

5 26 2 201710 Mon 9:20 9:38 

6 46 2 201711 Wed 8:47 9:06 

 

The adopted freeway segments are approximately 420-meter long, and no ramp is 

involved. To reduce the impacts of vehicle identification errors on segment boundaries, for 

all datasets, data processing and subsequent estimations are performed within the range of 

30 meters to 410 meters. In addition, depending on the battery consumption of drones, the 

time span of each dataset is not constant and varies around 1,000 seconds. The first 900-

seconds vehicle trajectory data is used to maintain the same duration across the six datasets. 

It should be noted that as the time duration of these datasets is relatively short and does not 

cover a complete congestion duration, the components of the macroscopic modeling are 

not included in the estimation model in this subsection. 



  114 

Benefitting from complete vehicle trajectories, the traffic state ground truth can be 

easily obtained using simple aggregation methods. In addition, various virtual detectors 

can be designed, similar to real-world cases, to collect traffic flow data. The configurations 

of the virtual traffic detectors used in the following experiments are summarized in Table 

11.  

Table 11 Configurations of Virtual Traffic Detectors. 

Detector name Configurations 

Loop detector Location: 120 meters and 320 meters from the segment 

upstream 

Aggregation time interval: 1 minute 

GPS Sampling rate: 10% 

Reporting frequency: 5 seconds 

Bluetooth detector Location: 40 meters and 400 meters from the segment upstream 

Sampling rate: 5% 

Video detector Location: 220 meters to 230 meters from the segment upstream 

 

In Section 4.6, density distribution function 𝑓 and speed distribution function 𝑔 are 

modeled by two different and independent FCNNs, while the structure is modified to 

improve the training efficiency of the resulting network. As shown in Fig. 31, a shared 

FCNN (module S) is added before modules A and B. In general, for a neural network, front 

layers are designed to extract features from inputs, whereas subsequent back layers are 

responsible for performing regressions and producing final outputs based on the features 

from the front layers. In the TSSI problem, the front layers in modules A and B actually 

conduct the same task, that is, extracting high-dimension features from a given space-time 

regime 𝒙𝒕. Therefore, instead of constructing and training two feature extracting layers, a 

shared feature extracting network is built for modules A and B to reduce the total number 

of variables to be trained, which will help speed up the training process. The structures of 

the three modules used for the six real-world datasets are as follows: 
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Module S: two fully-connected hidden layers with 125 neurons at each layer; and 

Modules A and B: five fully-connected hidden layers with 125 neurons in each 

layer. 

Other solution algorithm related settings: 

Number of iterations: 30,000 

Learning rate: 0.001 

 
(a) Original representation (b) Modified representation with a shared 

feature extracting layer 

Fig. 31. Changes in the Density and Speed Distribution Function in the Implementations. 

 

Estimation results 

As illustrated in Algorithm 3, the first step in training a computational graph using 

the forward-backward algorithm is to set the initial values for the variables to be optimized. 

Owing to the high complexity and non-convexity of the model built on the proposed 

computational graph, gradient descent-based algorithms may get stuck in local optimal or 

saddle points during the training process. Therefore, different initial values may result in 

different final outputs. To evaluate the average performance and stability of the proposed 

framework, the solution algorithm is executed five times with different starting points for 

each dataset. 
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First, the results of speed estimations are presented. Table 12 lists the accuracy of 

the speed estimations on the six datasets, and Fig. 32 depicts the observed and estimated 

speed profiles for each dataset. The following findings can be observed from Table 12 and 

Fig. 32. 

(1) Accurate speed estimations are obtained for all the datasets. Dataset 3 has the highest 

mean absolute error (MAE) (2.31 m/s), and dataset 5 has the lowest MAE (0.98 m/s), 

while the MAEs of the other datasets vary around 1.23 m/s. In terms of the mean 

absolute percentage error (MAPE), except for datasets 2 and 3, the average MAPEs of 

the other datasets are all less than 6%. Datasets 2 and 3 have relatively high MAPEs 

because the traffic speeds in these two datasets are very low owing to traffic 

congestions, in which case a small absolute error would result in a large percentage 

error. 

(2) Compared to datasets with congested conditions (i.e., datasets 2 and 3), better 

estimation results are observed on datasets with light traffic conditions (i.e., datasets 1, 

4, 5, and 6). A possible reason may be related to the higher randomness of traffic flows 

and frequent stop-and-go waves (Stern et al., 2018) under congested conditions, 

whereas the traffic flow models adopted in this study are based on deterministic 

settings. Researchers also found that the flow-density relationship in the congested 

regime may depend on vehicle length (Coifman, 2015). Integrating traffic flow models 

that consider stochasticity and have great performance under congested traffic 

conditions into the proposed framework is expected to improve the estimation 

performance under congested traffic conditions, which can be investigated in a future 

study. 
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(3) The results of the different runs on each dataset are very close, indicating that the 

proposed model is not sensitive to the initial values of the decision variables and is 

capable of producing reliable and accurate results with different starting points. Owing 

to the adoption of the Adam algorithm (Kingma and Ba, 2014) for updating the 

variables, the current TSSI implementation can help jump out of some local minima 

and saddle points using adaptive estimates of lower-order moments in the training 

process. 

(4) The traffic flow dynamics are captured well under different traffic conditions. As 

shown in Fig. 32, the estimated speed profile is very close to the corresponding 

observed speed profile for each dataset. The propagation of forward waves in non-

congested regimes and backward waves in congested regimes have been precisely 

reproduced. 

(5) It is also observed that compared to the observed speed profiles, the estimated speed 

profiles appear much smoother, and some sharp speed changes cannot be reproduced 

very well. This may be because of the use of CSTD functions. This issue can be 

addressed by using more hidden layers in the FCNNs. More hidden layers in neural 

networks help improve the fitting ability at the expense of a longer computing time. 

Table 12 Accuracy of Speed Estimations on Six Datasets. 

Dataset 1st run 2nd run 3rd run 4th run 5th run Average 

1 1.22/5.95 1.24/6.07 1.18/5.76 1.15/5.60 1.23/6.01 1.20/5.88 

2 1.24/14.09 1.22/13.74 1.27/14.46 1.30/14.61 1.25/14.35 1.26/14.25 

3 2.25/18.15 2.34/18.91 2.33/18.92 2.33/18.69 2.30/18.60 2.31/18.65 

4 1.28/5.26 1.19/4.88 1.21/5.00 1.22/5.05 1.20/4.95 1.22/5.03 

5 1.00/4.65 1.01/4.69 0.94/4.41 0.98/4.59 0.99/4.66 0.98/4.60 

6 1.24/5.94 1.26/5.90 1.21/5.66 1.27/6.14 1.22/5.88 1.24/5.90 

Note: Values in each cell denote MAE/ MAPE.  
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(a1) Speed observations for DS 1                  (a2) Speed estimations for DS 1 

     
(b1) Speed observations for DS 2                  (b2) Speed estimations for DS 2 

     
(c1) Speed observations for DS 3                  (c2) Speed estimations for DS 3 

     
(d1) Speed observations for DS 4                  (d2) Speed estimations for DS 4 

     
(e1) Speed observations for DS 5                  (e2) Speed estimations for DS 5 
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(f1) Speed observations for DS 6                  (f2) Speed estimations for DS 6 

Fig. 32. Comparison Between Speed Observations and Estimations on Six Datasets. 

 

To demonstrate the convergence of the proposed method, Fig. 33 depicts the loss 

convergence curve of the first run for each dataset. As can be seen from the figure, the loss 

decreases very quickly in early iterations (approximately the first 500 iterations), and then 

slowly decreases in later iterations. The right part of Fig. 33 shows that the losses become 

stable after 20,000 iterations on all the datasets, indicating the reasonable stability and good 

convergence characteristics of the proposed method. 

 
Fig. 33. Loss Convergence Curves. 

 

Fixing traffic flow model parameters to show the value of joint estimation  

After evaluating the performance of the proposed TSSI modeling framework, this 

research tries to investigate, compared with using pre-calibrated traffic flow models in 

TSE, how much a joint estimation framework can help improve the accuracy of state 
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estimations. By using the entire dataset from Highd, this research first calibrates the 

parameters of fundamental diagrams offline and then treat them as constants in the state 

estimation model. Table 13 lists the speed estimations with fixed traffic flow model 

parameters. Compared with Table 12, the estimation error increases for all six datasets, 

which means that simply using pre-calibrated traffic flow models in the TSSI could 

significantly affect the state estimation accuracy. 

Table 13 Evaluation of Speed Estimations with Fixed Traffic Flow Model Parameters. 

Case ID 1st run 2nd run 3rd run 4th run 5th run Average 

1 1.22/5.95 1.24/6.07 1.18/5.76 1.15/5.60 1.23/6.01 1.20/5.88 

2 1.24/14.09 1.22/13.74 1.27/14.46 1.30/14.61 1.25/14.35 1.26/14.25 

3 2.25/18.15 2.34/18.91 2.33/18.92 2.33/18.69 2.30/18.60 2.31/18.65 

4 1.28/5.26 1.19/4.88 1.21/5.00 1.22/5.05 1.20/4.95 1.22/5.03 

5 1.00/4.65 1.01/4.69 0.94/4.41 0.98/4.59 0.99/4.66 0.98/4.60 

6 1.24/5.94 1.26/5.90 1.21/5.66 1.27/6.14 1.22/5.88 1.24/5.90 

Note: Values in each cell denote MAE/ MAPE.  

 

Removing flow conservation law 

One of the major advantages of adopting the proposed CSTD representation for 

traffic flow variables is the convenience of modeling PDEs. This experiment attempts to 

identify how the proposed model behaves without considering the flow conservation law 

expressed by a PDE. For dataset 1, the conservation law is removed from the proposed 

model while keeping the other settings and parameters unchanged. Fig. 34 shows the speed 

estimation produced by the modified model. The total loss of the final estimation is 0.0041, 

whereas it’s 0.0045 under the original settings. Although the total loss decreases without 

considering the flow conservation law, the speed estimation is worse than that in Fig. 

32(a2). The traffic flow shown in Fig. 34 is no longer continuous. Forward waves in the 

non-congest regimes and backward waves in the congested regimes cannot be reproduced. 
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This is caused by overfitting, that is, without the regulation of the flow conservation law, 

the optimization model would try to fit the estimations with local observations as much as 

possible while neglecting the reasonableness of state distributions on the space-time plane. 

This experiment demonstrates the necessity of considering the flow conservation law in 

TSSI and the advantages of the proposed CSTD representation for modeling PDEs. 

 
Fig. 34. Speed Estimation on Dataset 1 Without Considering the Flow Conservation Law. 

 

Sensitivity analysis of the value of different types of measurement  

The results reported above are obtained based on the four types of traffic detectors, 

as listed in Table 15; however, in many real-world applications, data availability varies 

from site to site, especially the data availability from automatic vehicle identification 

devices (AVI), for example, loop detectors, Bluetooth detectors, and video detectors. On 

the other hand, massive amounts of GPS data are produced by taxis, map companies, and 

ridesharing companies every day. The coverage of GPS data is significantly larger than 

that of data from AVI devices, and can be collected at almost no expense. Therefore, it is 

necessary to investigate the performance of the proposed framework using only GPS data. 

As an example, Fig. 35 shows the impact of the GPS sampling rate on state 

estimations using dataset 1, where the base case denotes performing estimations using four 

types of detectors, as listed in Table 15. MAPE of the speed estimations is 8.43% after all 
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AVI data were removed from the base case. The speed estimation error decrease with the 

increase in the GPS sampling rate. When the GPS sampling rate reaches 80%, MAPE of 

the speed estimation is 7.26%, which is still higher than that in the base case. Based on 

these results, it can be concluded that the proposed solution framework can produce good 

results even with limited GPS data, and the performance can be further improved by 

utilizing multiple data sources. 

 
Fig. 35. Impact of GPS Sampling Rate on Estimation Quality (Dataset 1). 

 

4.7.2 A Real-world Freeway Corridor with a Downstream Bottleneck 

In this section, examination of the proposed cross-resolution TSSI framework on a 

3-mile long freeway corridor with a downstream bottleneck is presented. As shown in Fig. 

36, the corridor of interest is within the absolute postmile 22 to 25 on freeway I880-N in 

Alameda County, California. The analysis time horizon is 10:00 am – 12:00 pm on 

February 8th, 2008. As illustrated in Table 14, two types of data collected in the Mobile 

Century experiment (Herrera et al., 2010) in 2008 are used, where the loop detector data is 

from the Caltrans Performance Measurement System (PeMS). The travel time of the probe 

vehicles along the entire corridor is also extracted from the GPS data to serve as a system-
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wide macroscopic observation. The estimation model settings in this section are the same 

as those used in Section 7.1, except for the involvement of macroscopic modeling. The 

analytical time-dependent travel time function used in the experiment is based on the fifth 

approximation of the waiting time derived in Eq. (28). 

Postmile 
(Abs) 22 23 24 25

Research area On ramp Off ramp Loop detector
 

Fig. 36. Layout of the Freeway Corridor on I880-N (Postmile 22-25), Adopted from the 

PeMS. 

 

Table 14 Configurations of Traffic Detectors. 

Detector name Configurations 

Loop detector Location (postmile): 22.23, 22.53, 22.78, 23.37, 24.01, 24.48, 

and 24.92 

Aggregation time interval: 5 minutes 

GPS Sampling rate: 1.74% (192 probe vehicles) 

Reporting frequency: 3.5 seconds on average 

 

Fig. 37 shows the estimation results at the macroscopic level. Specifically, Fig. 

37(a) plots the calibrated arrival rate, discharge rate, and queue length curves, with an 

emphasis on the values of the critical time points, that is, 𝑡0 = 10: 35, 𝑡1
𝜇
= 11: 00, 𝑡2 =

11: 12 , and 𝑡3 = 11: 30 . The values of the other essential parameters are 𝜇(𝑡1
𝜇
) =

913 (veh/h), 𝛾𝜇 = 7.0 × 10−7, and 𝛾 = 8.6 × 10−8. From Fig. 37(a), it can be seen that, 

at 𝑡0 = 10: 35, the traffic flow arrival rate equals the discharge rate, and a queue starts to 

form; at 𝑡1
𝜇
= 11: 00, the discharge rate reaches it minimum; at 𝑡2 = 11: 12, the arrival 

rate again equals the discharge rate, at which the maximum queue length is observed and 

the queue starts to dissipate; and at 𝑡3 = 11:30, the queue disappears and the congestion 
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period ends. Fig. 37(b) depicts the corresponding modeled time-dependent travel time 

curve, as well as the observed travel time from probe vehicles. Travel time is relatively 

stable outside the congestion period, whereas it is time-dependent between 𝑡0 and 𝑡3. In 

addition, the modeled travel time curve closely matches the observed data, demonstrating 

the capability of the proposed method in modeling and calibrating the macroscopic system 

dynamics. Calibrated system-wide demand and supply curves are vital for traffic control 

and management. 

 
(a) Estimated arrival rate, discharge rate 

and queue length curves 

(b) Estimated travel time curve and 

observed travel time from probe vehicles 

Fig. 37. Estimation Results of System-wide Measures at the Macroscopic Level. 

 

Fig. 38(a) shows the estimated speed profile at the mesoscopic level. In terms of 

the congestion starting and ending times, one can easily verify the consistency between the 

estimation results at the macroscopic and mesoscopic levels. As for the accuracy of the 

state estimations, owing to the lack of ground truth, the speed estimations obtained by 

smoothing methods from PeMS in Fig. 38(b) is used for comparison. It can be seen that 

the speed estimation produced by the proposed method clearly shows forward waves in 

free-flow regimes and backward waves in congested regimes. Moreover, state changes 

within the congested regime have also been successfully reconstructed. 
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(a) Speed estimations of the proposed 

method 

(b) Speed estimations from PeMS 

Fig. 38. Speed Estimations of the Proposed Method and PeMS. 

 

4.7.3 Applying Distributed Computing on a Hypothetical Freeway Corridor 

This section focuses on the distributed implementation of the proposed framework. 

To compare the estimation results with the ground truth, a 3 km-long hypothetical corridor 

with four ramps (see Fig. 39) was built in a microscopic traffic simulator, SUMO (Lopez 

et al., 2018), and simulated with assumed travel demands to provide complete observations. 

As summarized in Table 15, virtual traffic detectors were created to collect the traffic flow 

data. The traffic simulation is ran for 65 minutes, where the first 5 minutes are used for 

simulation warm up, and data collected in the remaining 60 minutes are used for estimation 

evaluation purposes. 

 

500 m 600 m 800 m 600 m 500 m

 
Fig. 39. Illustration of the Hypothetical Corridor. 
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Table 15 Configurations of Virtual Traffic Detectors. 

Detector name Configurations 

Loop detector Location: 800 meters and 2200 meters from the corridor 

upstream 

Aggregation time interval: 1 minute 

GPS  Sampling rate: 6% 

Reporting frequency: 30 seconds 

Bluetooth detector Location: 1200 meters and 1800 meters from the corridor 

upstream 

Sampling rate: 5% 

Video detector Location: 200 meters to 300 meters and 2700 meters to 2800 

meters from the corridor upstream 

 

To perform distributed computing, the corridor is evenly split into three parts. As 

introduced in Section 4.6.3, a computational graph is built for each part to estimate the 

traffic states on that part, and only the necessary information is shared between two 

adjacent corridor parts to reach state consistencies on the boundary. As a result, each graph 

training can be conducted in parallel and independently, which could help improve the 

training efficiency and system robustness. The three computational graphs used in this 

section have the same settings as those described in Section 4.7.1. 

Fig. 40 shows the speed observation and estimation on the hypothetical corridor. 

Fig. 40(a) shows the observed speed profile, which serves as the ground truth. Fig. 40(b) 

and Fig. 40(c) depict the estimated speed profiles obtained using centralized computing 

and distributed computing, respectively. As shown in Fig. 40(b), the queue formation and 

dissipation have been successfully reproduced. In terms of the overall accuracy of the speed 

estimation, MAE and MAPE of Fig. 40(b) are 0.75 m/s and 13.9%, respectively. The 

following findings can be concluded when comparing Fig. 40(b) and Fig. 40(c). First, the 

overall speed estimation profiles produced using centralized computing and distributed 

computing are very close, indicating the effectiveness of the proposed distributed 
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computing framework. Second, in the bottom left of Fig. 40(b), unsmooth speed evolutions 

can be observed, whereas it is better in Fig. 40(c), especially within the range of 1–2 km. 

Under a centralized computing framework, state distribution functions need to fit traffic 

states on the entire space-time regime of interest, which results in high complexity if the 

target regime is large. On the other hand, under a distributed computing framework, state 

distribution functions will be built and fit on each separate smaller regime, and the 

complexity of the distribution functions can be significantly reduced. Therefore, better state 

estimations on local regimes can be expected from a distributed computing framework than 

from a centralized computing framework. Third, in Fig. 40(c), minor speed discontinuities 

at the boundaries (i.e., 1 and 2 km) can still be observed. This issue can be addressed by 

increasing the weight of consistency loss on the boundaries while training the 

computational graph. However, this may affect the estimation accuracy for each local 

regime. Therefore, there is a tradeoff between local estimation accuracy and state 

consistency on boundaries, and balancing this tradeoff is also a research direction for future 

work. 
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(a) Observed speed profile (b) Estimated speed profile using 

centralized computing 

 

(a) Estimated speed profile using 

distributed computing 

 

Fig. 40. Comparison Between Speed Observations and Estimations on a Hypothetical 

Corridor. 

 

4.8 Conclusions 

Focusing on traffic system state estimation (TSSI), this chapter presented an 

integrated framework for simultaneous traffic state estimation, model parameter 

estimation, and queue profile estimation in connected and automated mobility systems. 

Based on the fluid queue approximation at the macroscopic level and the continuous space-

time distribution function representation scheme at the mesoscopic level, the TSSI problem 

was formulated with a nonlinear optimization model, which was then solved on a layered 

computational graph using the forward-backward algorithm. Numerical experiments based 

on real-world and hypothetical datasets were designed to demonstrate the effectiveness of 

the proposed estimation framework. 
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CHAPTER 5 

INTEGRATED CITY LOGISTICS OPERATION OPTIMIZATION IN CAM 

SYSTEMS 

5.1 Introduction 

In a broader sense, city logistics refers to the management of the flow of goods and 

services from providers to customers in urban areas. The urban management movement 

(UMM) problem (Cattaruzza et al., 2017), as an example, aims to find an optimal set of 

routes for a fleet of vehicles to satisfy requests for the development, public maintenance, 

and other functional needs in a city. An efficient city logistics system helps to reduce 

operation cost, mitigate traffic congestion impact, protect the environment, respond to 

climate change, connect underserved communities, and support economic vitality. 

Considering the traffic congestion experienced in cities, this type of problems needs to be 

formulated as rich arc routing problems (RARPs) under congested traffic conditions.  

The word “rich” is used in RARP because besides normal constraints in the variants 

of the standard ARP (e.g., capacity and time window constraint), some other problem-

specific constraints are also considered. For example, in the winter gritting problem, 

service requests on road links change with time and weather conditions (Eglese and Li, 

1992; Eglese, 1994; Li and Eglese, 1996; Tagmouti et al., 2007; Tagmouti et al., 2010; 

Tagmouti et al., 2011), or in the snow plowing problem, truck routes are specified at the 

lane level (Perrier et al., 2007a; Perrier et al., 2007b; Salazar-Aguilar et al., 2012; Dussault 

et al., 2013; Dussault et al., 2014; Quirion-Blais et al., 2017; Castro Campos et al., 2020). 

Rich constraints considered in RARPs have great practical significance and values while, 

at the same time, they bring additional challenges, especially for large-scale instances. By 



  130 

fully recognizing rich features in transportation networks, this research aims to develop a 

modeling framework and solution approaches for RARPs that can systematically examine 

traffic-oriented characteristics. 

One of the most important “rich” features of transportation networks is time-

varying traffic conditions. Service vehicles may experience time-dependent travel times on 

roads when serving customers (Liu et al., 2020; Yao et al., 2021). In early research on both 

vehicle routing problems (VRPs) and ARPs, travel times on links are treated as constant or 

time-independent; however, in a congested urban environment, solutions obtained with the 

constant travel time assumption may significantly underestimate the delay and could even 

lead to infeasibility under tight schedules in real-life applications. Although many recent 

VRP studies considered piecewise travel time functions to capture time-varying traffic 

conditions in a more realistic fashion, as discussed by Vidal et al. (2021), additional efforts 

are still critically needed to offer more precise approximations/representations of reality. 

On the other hand, in the ARP literature, time-dependent travel times have been largely 

simplified or ignored (Gendreau et al., 2015). Vidal et al. (2021) first conducted extensive 

studies on the ARP with time-dependent travel times at a network level and proposed 

methods for quick travel and service time queries as well as quickest path queries, based 

on the travel speed function definition given by Ichoua et al. (2003). 

Another important goal of RARPs on transportation networks is how to reduce the 

system-wide (societal) congestion impact of service vehicle routings. RARP applications 

in city logistics are typically fulfilled by large trucks, e.g., freight trucks and street 

sweeping trucks. A service truck with a much lower driving speed could affect traffics on 

multiple lanes which leads to another important class of moving bottleneck problems 
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studied in the literature (see e.g., Li et al., 2020). Thus, RARP applications in city logistics 

should minimize not only the total operating cost for meeting customer requests but also 

the potential negative effects to the background transportation system.  

 The main contribution of this chapter includes: 

(1) recognizing the potential negative impacts of service vehicles to background traffics 

when providing services, this research systematically considers service vehicle 

operation cost and system (societal) impact of vehicle routings in city logistics so as to 

reduce the system-wide congestion impact. 

(2) based on the fluid queue model, a novel time-dependent travel time representation with 

the form of nonlinear function is introduced. Compared to the widely adopted 

piecewise linear functions, the proposed nonlinear travel time function has advantages 

on parsimonious form, easy calibration, and differentiability. This also leads to the 

analytical derivations of time-dependent system (societal) impact of service vehicles to 

background traffics. 

(3) three optimization models are developed from different perspectives for modeling 

RARPs in city logistics, in which the impacts of problem-specific rich constraints on 

modeling complexity are comprehensively investigated. 

(4) with a real-life sprinkler truck routing problem (SRP) as the representative example of 

RARP, this research develops two exact solution algorithms, namely a Lagrangian 

relaxation based method and a branch-and-price based method which are embedded 

with an enhanced parallel branch-and-bound algorithm. 
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5.2 Modeling Time-dependent Travel Time and Congestion Impacts Using Fluid Queue 

Models with Polynomial Arrival Rates 

To calculate the travel time of a specific link, one can divide link length by travel 

speed, which is in turn derived from simulated/estimated flow/density based on empirically 

calibrated fundamental diagrams (Greenshields et al., 1935). However, as pointed out by 

Van Woensel et al., (2007), in the context of vehicle routing problems, instantaneous speed 

and density have to be embedded in another set of continuum flow models (Kuhne and 

Michalopoulos, 1997) to characterize congestion evolution. As an alternative method, 

queuing models hold the promise for modeling travel flows with the capability of offering 

analytical evaluation and sensitivity analysis (Heidemann, 1996). However, the queueing-

based approach is mainly based on the stochastic queueing principle with under-saturated 

conditions such as M/M/1 or G/G/1 (Van Woensel et al., 2007). By adapting and extending 

the fluid queue model with quadratic arrival rates proposed by Newell (2013) to represent 

time-dependent travel times at both link and path levels, this section introduces analytical 

forms that satisfy FIFO conditions and offer precise congestion impact measures during a 

period of oversaturation. Compared to the widely used piecewise linear functions, the 

proposed method has the following three advantages: (1) a parsimonious form, (2) an 

analytical expression with FIFO property, and (3) differentiable.  

 

5.2.1 Time-dependent Travel Time 

Based on free-flow speed or cut-off speed, which is more precisely defined in 

congestion bottleneck identification (Hale et al., 2016), traffic states on transportation 

networks can be classified into two distinct classes: uncongested state and congested state. 
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Under uncongested states or non-peak hours, aggregated vehicle speed on each road link 

is relatively stable and is approximated using free-flow speed in this research. This 

assumption is consistent with the constant free-flow speed in the uncongested regime of 

triangular fundamental diagram, which is adopted in the widely used cell transmission 

model (Daganzo, 1994). Under congested states, vehicle travels are constrained by road 

capacity. Queues form when total inflow travel demand exceeds road capacity. In this case, 

travel time of vehicles includes two parts: (1) free-flow travel time, and (2) time spent in 

the queue (travel delay). Due to the dynamics of travel inflow demands, queue length 

evolves for an extended congestion period, resulting in time-dependent travel time of 

vehicle trips. This study mainly focuses on time-dependent vehicle travel time calibration 

during each single congested period and use constant or piecewise-linear travel time 

functions during uncongested periods. 

Without loss of generality, each congested road link on transportation networks is 

modeled as a single queuing system with a constant service rate that equals to the maximum 

link discharge rate. Fig. 41 shows a graphical illustration of queue evolution for a road link 

in the classical work by Newell (2013). 
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Fig. 41. General Graphical Illustration of Queue Evolution for a Road Link, Adapted 

from Newell (2013). 



  134 

In Fig. 41(a), the blue curve and red straight line represent the arrival rate 𝜆(𝑡) and 

departure (discharge) rate 𝜇, respectively. 𝑡0, 𝑡2, and 𝑡3 denote the time at which queue 

starts to form, queue starts to dissipate, and queue disappears; 𝑡1 is the time with the highest 

arrival rate. By using the second-order Taylor approximation at time 𝑡1, arrival rate 𝜆(𝑡) 

can be approximated by the following quadratic function: 

𝜆(𝑡) = 𝜆(𝑡1) + 𝜆
′(𝑡1)(𝑡 − 𝑡1) +

1

2
𝜆′′(𝑡1)(𝑡 − 𝑡1)

2. (77) 

With the observation that 𝜆′(𝑡1) = 0, Eq. (77) can be simplified as  

𝜆(𝑡) = 𝜆(𝑡1) − 𝛾(𝑡 − 𝑡1)
2, (78) 

where 𝛾 = −
1

2
𝜆′′(𝑡1)  (𝛾 > 0 ). Notice that 𝜆(𝑡)  passes two points (𝑡0, 𝜇)  and 

(𝑡2, 𝜇), arrival rate 𝜆(𝑡) can also be expressed by the following factored form: 

𝜆(𝑡) = 𝛾(𝑡 − 𝑡0)(𝑡2 − 𝑡) + 𝜇. (79) 

With Eq. (79), time-dependent queue length 𝑄(𝑡) can be derived as follows: 

𝑄(𝑡) = 𝐴(𝑡) − 𝐷(𝑡) = ∫ [𝜆(𝜏) − 𝜇] 𝑑𝜏
𝑡

𝑡0
= 𝛾(𝑡 − 𝑡0)

2 [
𝑡2−𝑡0

2
−
𝑡−𝑡0

3
], (80) 

where 𝐴(𝑡)  and 𝐷(𝑡)  denote the cumulative arrival and departure at time 𝑡 , 

respectively. By introducing the queue clearance time 𝑡3 (i.e., 𝑄(𝑡3) = 0), the following 

relationship between critical time points can be derived from Eq. (80). The detailed 

derivation process can be found in Newell (2013) for the quadratic arrival rates and cubic 

arrival rates by Cheng et al. (2022). 

𝑡3 = 𝑡0 +
3

2
(𝑡2 − 𝑡0). (81) 

Then, Eq. (80) can also be written as 

𝑄(𝑡) = 𝐴(𝑡) − 𝐷(𝑡) = ∫ [𝜆(𝜏) − 𝜇] 𝑑𝜏
𝑡

𝑡0
=
𝛾

3
(𝑡 − 𝑡0)

2(𝑡3 − 𝑡). (82) 
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The discharge rate 𝜇, queue forming time 𝑡0, and queue clearance 𝑡3 can be directly 

observed from field data. Thus, time-dependent queue length 𝑄(𝑡) in Eq. (82) only has one 

inflow demand curvature parameter 𝛾 that needs to be calibrated from observed spatial 

queue length or link travel times. Interested readers can refer to a recent paper by Cheng et 

al. (2022) for the detailed calibration process that connects the above queuing model with 

the observations from a spatial queue representation. Finally, by integrating 𝑤(𝑡) =

𝑄(𝑡) 𝜇⁄ , time-dependent delay 𝑤(𝑡) can be expressed as 

𝑤(𝑡) =
𝛾

3𝜇
(𝑡 − 𝑡0)

2(𝑡3 − 𝑡). (83) 

In many city logistics applications, only a single data source of observed speed 𝑣𝑡
𝑜𝑏𝑠  

is available, where observation time interval 𝑡  can be 5 minutes or 15 minutes. The 

following paragraphs describe four steps for calibrating the key parameters of 𝜇 and 𝛾 in 

Eq. (83), and the corresponding graphic illustration is provided in Fig. 42. 

 

(1) Even without the flow count observations, an estimate of the ultimate road capacity 

𝑐 can still be obtained according to the facility types and speed limit. The cutoff speed can 

be determined based on the well-established traffic fundamental diagram between flow, 

density and speed, such as Greenshields model (Greenshields et al., 1935). 

(2) One can determine the congestion duration 𝑃, while 𝑡0 and 𝑡3 correspond to the 

timestamps at which speed is dropping from or recovering to the cutoff speed. 

(3) The average discharge rate 𝜇 can be estimated from the volume-speed curve and 

the observed speed during the congestion duration. A default value of 𝜇 for undersaturated 

links can be ultimate road capacity 𝑐.  

(4) The space-mean speed 𝑣𝑡
𝑜𝑏𝑠 can be converted to the virtual waiting time 𝑤(𝑡) in 
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Eq. (83), and one can use nonlinear regression methods to calibrate parameter 𝛾 

accordingly. Alternatively, as 𝑤(𝑡2) =
𝛾

6𝜇
(𝑡2 − 𝑡0)

3 , parameter 𝛾  can also be quickly 

estimated based on the lowest speed and converted highest waiting time.   
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Fig. 42. Graphic Illustration of the Four-step Method for Calibrating the Key Parameters 

in Eq. (83). 

 

It should be noted that, as derivations are based on the point queue model (Vickrey, 

1963), 𝑤(𝑡) in Eq. (83) represents the delay of a link for vehicles arriving the downstream 

node (stop line) of the link at time 𝑡. With link free-flow travel time 𝐹𝐹𝑇𝑇, time-dependent 

travel time of a link during congested periods (denoted by 𝐿𝑇(𝑡)) can be calculated using 

Eq. (84) for vehicle leaving from the upstream node of a link at time 𝑡. 

𝐿𝑇(𝑡) = 𝑤(𝑡 + 𝐹𝐹𝑇𝑇) + 𝐹𝐹𝑇𝑇 =
𝛾

3𝜇
(𝑡 + 𝐹𝐹𝑇𝑇 − 𝑡0)

2(𝑡3 − 𝑡 − 𝐹𝐹𝑇𝑇) + 𝐹𝐹𝑇𝑇. (84) 

The range of feasibility for parameter 𝛾 in Eq. (84) is derived as follows. For a 

queuing system on transportation networks, the arrival and departure rates must be positive. 

As departure rate 𝜇 is a constant parameter, it is also required that arrival rate 𝜆(𝑡) during 

the analysis period be nonnegative for any 𝑡 between 𝑡0 and 𝑡3. The quadratic function 

𝜆(𝑡) has the lowest value at time 𝑡3 in the congestion period. That is, 𝜆(𝑡3) ≥ 0 ensures 

𝜆(𝑡) ≥ 0, ∀𝑡 ∈ [𝑡0, 𝑡3]. Integrating Eq. (79) and Eq. (81) yields Eq. (9): 
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𝜆(𝑡3) = 𝛾(𝑡3 − 𝑡0)(𝑡2 − 𝑡3) + 𝜇 = 𝛾(𝑡3 − 𝑡0) (
2

3
𝑡3 +

1

3
𝑡0 − 𝑡3) + 𝜇 = −

1

3
𝛾𝑃2 +

𝜇 ≥ 0, 

(85) 

where 𝑃 = 𝑡3 − 𝑡0 represents the congestion duration. 

 

Proposition 1. The time-dependent link travel time function 𝐿𝑇(𝑡) in Eq. (84) satisfies the 

FIFO property within the time period of interest [𝑡0, 𝑡3]. 

Proof. The FIFO property can be proved if 𝑡 + 𝐿𝑇(𝑡) ≤ 𝑡′ + 𝐿𝑇(𝑡′) holds for any 𝑡 ≤

𝑡′, 𝑡 ∈ [𝑡0, 𝑡3], 𝑡
′ ∈ [𝑡0, 𝑡3]. Alternatively, it can be proved if 

𝑑𝐿𝑇(𝑡)

𝑑𝑡
≥ −1 holds for any 𝑡 ∈

[𝑡0, 𝑡3] (Carey et al., 2014). Based on the derivation of 𝐿𝑇(𝑡) given in Eq. (84), 
𝑑𝐿𝑇(𝑡)

𝑑𝑡
 can 

be expressed as 

𝑑𝐿𝑇(𝑡)

𝑑𝑡
=
𝑑[
𝛾

3𝜇
(𝑡−𝑡0)

2(𝑡3−𝑡)+𝐹𝐹𝑇𝑇]

𝑑𝑡
=
𝑑[
𝛾

3𝜇
(𝑡−𝑡0)

2(𝑡3−𝑡)]

𝑑𝑡
. (86) 

Let ℎ = 𝑡 − 𝑡0, ℎ ∈ [0, 𝑃], Eq. (86) can be rewritten as 

𝑑𝐿𝑇(𝑡)

𝑑𝑡
=
𝑑𝐿𝑇(ℎ+𝑡0)

𝑑ℎ

𝑑ℎ

𝑑𝑡
=
𝑑[
𝛾

3𝜇
ℎ2(𝑃−ℎ)]

𝑑ℎ
=
𝛾

3𝜇
(2ℎ𝑃 − 3ℎ2). (87) 

It is easy to observe that 
𝛾

3𝜇
(2ℎ𝑃 − 3ℎ2) is a quadratic function of ℎ ∈ [0, 𝑃] and 

reaches its minimum at ℎ = 𝑃. That is, 

𝑑𝐿𝑇(𝑡)

𝑑𝑡
=
𝛾

3𝜇
(2ℎ𝑃 − 3ℎ2) ≥

𝛾

3𝜇
(2𝑃𝑃 − 3𝑃2) = −

𝛾

3𝜇
𝑃2. (88) 

By utilizing the range of feasibility for 𝛾 derived in Eq. (85), it is obvious that 

−
𝛾

3𝜇
𝑃2 ≥ −1, indicating 

𝑑𝐿𝑇(𝑡)

𝑑𝑡
≥ −1,∀𝑡 ∈ [𝑡0, 𝑡3]. Thus, function 𝐿𝑇(𝑡) satisfying the 

FIFO property is proved. 
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On the basis of the time-dependent link travel time function, travel time derivations 

and FIFO property proof are further performed on a path level. Consider two arbitrary 

nodes 𝑖 and 𝑗 on a transportation network, and there are 𝜑 paths from 𝑖 to 𝑗. Take path 𝜌 ∈

{1,2,… ,𝜑} as an example, the travel time of path 𝜌 at time 𝑡 (𝑃𝑇𝜌(𝑡)) can be calculated as 

𝑃𝑇𝜌(𝑡) = ∑ 𝐿𝑇𝑙(𝑎𝑙
𝑡)𝐿

𝑙=1 , (89) 

where 𝑙 ∈ {1,2,… , 𝐿} denotes the index of links in path 𝜌; 𝐿 is the total number of 

links in path 𝜌; 𝐿𝑇𝑙 represents the link travel time function of the 𝑙th link in path 𝜌; 𝑎𝑙
𝑡 is 

the arrival time at the upstream node of the 𝑙th link if departure from node 𝑖 at time 𝑡. 𝑎1
𝑡 =

𝑡, 𝑎𝑙
𝑡 = 𝑎𝑙−1

𝑡 + 𝐿𝑇𝑙−1(𝑎𝑙−1
𝑡 ) when 2 ≤ 𝑙 ≤ 𝐿. 

 

Proposition 2. Path travel time function 𝑃𝑇𝜌(𝑡) in Eq. (89) satisfies the FIFO property. 

Proof. Consider two vehicles, 𝑣1 and 𝑣2, departing along the same path 𝜌 at time 𝑡 and 

time 𝑡′ respectively, and 𝑡 ≤ 𝑡′. That is, 𝑎1
𝑡 ≤ 𝑎1

𝑡′. As the travel time function of link 1 

satisfies the FIFO property, 𝑎2
𝑡 = 𝑎1

𝑡 + 𝐿𝑇1(𝑎1
𝑡) ≤ 𝑎2

𝑡′ = 𝑎1
𝑡′ + 𝐿𝑇1(𝑎1

𝑡′) . Note that all 

links along path 𝜌 satisfy the FIFO property, it means 𝑎3
𝑡 = 𝑎2

𝑡 + 𝐿𝑇2(𝑎2
𝑡 ) ≤ 𝑎3

𝑡′ = 𝑎2
𝑡′ +

𝐿𝑇2(𝑎2
𝑡′) , and apply the process recursively till the last link 𝐿 , i.e., 𝑎𝐿

𝑡 = 𝑎𝐿−1
𝑡 +

𝐿𝑇𝐿−1(𝑎𝐿−1
𝑡 ) ≤ 𝑎𝐿

𝑡′ = 𝑎𝐿−1
𝑡′ + 𝐿𝑇𝐿−1(𝑎𝐿−1

𝑡′ ). Thanks to the FIFO property on link 𝐿, it can 

be easily concluded that vehicle 𝑣1 will arrive at node 𝑗 earlier than vehicle 𝑣2. Thus, path 

travel time 𝑃𝑇𝜌(𝑡) satisfying the FIFO property is proved. 

 

It should be noted that the derived path travel time might still have multiple local 

minima and maxima, but its structurally parsimonious form could balance the tradeoff 
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between computational tractability and the required level of details in representing real-

world traffic congestion. 

 

5.2.2 Analytical Form of Modeling System-wide Congestion Impacts to Background 

Traffic 

As mentioned earlier, service vehicles used in RARP applications are typically 

slow-moving trucks, thus may bring significant impacts to background traffics, especially 

during peak hours. This subsection further utilizes calibrated queuing profile to analytically 

measure the system impact of service vehicles, by following the approach proposed by 

Ghali and Smith (1995). 

In Fig. 43, the blue and red solid lines denote the cumulative arrival and departure 

on a road link, respectively. Let us assume that there is a service truck entering the link at 

time 𝑡. Note that, similar to Section 5.2.1, this subsection still focuses on the congested 

period, i.e., 𝑡0 ≤ 𝑡 ≤ 𝑡3. The marginal delay arising from the service truck is the blue dash 

area, which also equals to the grey area. The marginal delay includes two parts 𝑤(𝑡) and 

𝑆𝐼(𝑡) . 𝑤(𝑡)  is the delay experienced by the service truck, while 𝑆𝐼(𝑡)  denotes the 

additional delay experienced on that link by every vehicle arriving between time 𝑡 and 𝑡3, 

due to the arrival of the service truck at time 𝑡, which is called system-wide (societal) 

congestion impact in this research. Therefore, with the derivation of 𝑤(𝑡) in Section 5.2.1, 

𝑆𝐼(𝑡) can be calculated as follows: 

𝑆𝐼(𝑡) = 𝑡3 − 𝑡 − 𝑤(𝑡) = 𝑡3 − 𝑡 −
𝛾

3𝜇
(𝑡 − 𝑡0)

2(𝑡3 − 𝑡). (90) 

With the consideration that service trucks typically move slower than passenger 

cars and use more road resources, 𝑆𝐼(𝑡) obtained in Eq. (90) further is multiplied by a 



  140 

passenger car equivalent (PCE), i.e., 𝑆𝐼(𝑡) × 𝑃𝐶𝐸, to measure the system impact of a 

service truck entering a road link at time 𝑡. 
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Fig. 43. Illustration of Road Link Marginal Delay Adapted from Ghali and Smith (1995). 

 

With the link-level marginal cost formulation in Eq. (90), system-wide impact 

along a given path can also be recursively derived similar to travel time derivations in 

Section 5.2.1. 

 

5.3 Sprinkler Truck Routing: An Arc Routing Application with Rich Constraints in a 

Congested Traffic Network 

Vehicle travels as well as the action of wind could incur serious airborne particulate 

matters from roads (Li et al., 2008), causing dust emissions that bring substantial negative 

effects to surrounding workers and pedestrians. The dust in the air also reduces the 

visibility of roads and is therefore likely to cause traffic accidents (Bhattachan et al., 2019). 

Street watering constitutes one of the most common and essential services provided by 

municipal departments (Gambatese et al., 2001). In such a service, sprinkler trucks, also 

known as water carts or water trucks, are assembled into a fleet to spray water and wash 
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the road surface alongside streets in urban networks. As a crucial component in street 

watering operation systems, sprinkler truck route design aims to determine a set of optimal 

routes for a fleet of sprinkler trucks such that total cost is minimized while road cleaning 

tasks can be completed as required.  

This study uses the SRP as an example to illustrate the modeling framework and 

solution approaches for RARPs on urban networks. The SRP studied in this work is 

essentially a capacitated arc routing problem with time window (CARPTW), with the 

consideration of following additional rich features: 

(1) time-varying traffic conditions on urban transportation networks, 

(2) turn delays at intersections, 

(3) repeated cleaning services on certain links, and 

(4) water refilling at water refilling stations. 

 

It should be noted that the rich constraints listed above can also be generalized to 

many other city logistics applications. For example, for the emerging electric vehicle 

routing problem in green logistics, the rich constraint (4) can be changed to charging 

vehicles at charging stations, without changing the essence of the resulting problem. 

For a given transportation network 𝐺 = (𝑁, 𝐿), where 𝑁 and 𝐿 denote the set of 

nodes and road links respectively, the SRP studied in this research is to find a set of routes 

for sprinkler trucks such that all cleaning tasks can be fulfilled as required and the total 

cost is minimized. Each link (𝑖, 𝑗) ∈ 𝐿 is associated with a cleaning task. That is, link (𝑖, 𝑗) 

must be cleaned 𝑚𝑖,𝑗 ∈ 𝑍  times within its time window [𝑠𝑖,𝑗 , 𝑒𝑖,𝑗] , where 𝑠𝑖,𝑗  and 𝑒𝑖,𝑗 

denote the earliest and latest service starting time, respectively. To clean link (𝑖, 𝑗) once, a 
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sprinkler truck will consume 𝑤𝑖,𝑗  unit of water. Some nodes belonging to 𝑁 also serve as 

water refilling stations. For simplicity, this research considers the following three 

assumptions on water consumption and refilling: (a) once a sprinkler truck starts to clean 

a road link, it must clean the whole link. In other words, cleaning part of a link then going 

to refill water is not allowed; (b) a sprinkler truck is always refilled to its maximum water 

tank capacity when visiting a water refilling station, and the time used for refilling is fixed, 

e.g., 5 minutes, no matter how much water left before visiting a water refilling station; (c) 

sprinkler trucks are full of water when departing from their origin depot. Due to the 

existence of assumption (a), the water consumption 𝑤𝑖,𝑗  of each link (𝑖, 𝑗) should not 

exceed the maximum water capacity 𝐶 of sprinkler trucks. In the case that 𝑤𝑖,𝑗 is larger 

than 𝐶, link (𝑖, 𝑗) will be split into multiple short links, with each of which meeting the 

requirements mentioned above. 

The total cost to be optimized is calculated by 𝑇𝑂𝐶 + 𝜔 × 𝑇𝑆𝐼𝐶, where 𝑇𝑂𝐶 and 

𝑇𝑆𝐼𝐶  represent total operating cost and total system-wide impact cost respectively; 

parameter 𝜔 is a user-defined weight of 𝑇𝑆𝐼𝐶 to measure the importance of societal cost 

in routing solutions. The societal impact of using a specific link has been derived in Eq. 

(90). The total operation cost 𝑇𝑂𝐶 consists of sprinkler truck acquisition cost and total 

travel time cost. In this reseach, all sprinkler trucks used are identical, and acquisition cost 

ℎ will be applied for each used sprinkler truck. Besides, the number of available sprinkler 

trucks is unlimited. The travel time cost of each sprinkler truck equals to the time difference 

between leaving depot and returning back to the depot, which further consists of four parts: 

cleaning time, deadheading time, waiting time, and water refilling time. Deadheading 

means a sprinkler truck traverses a road link without cleaning the link. It may occur in two 
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situations: (a) the link does not need to clean or has been cleaned; (b) a sprinkler has used 

up water and is heading to a water refilling station. For each road link, its time-dependent 

deadheading time 𝐷𝑇(𝑡) and cleaning time 𝐶𝑇(𝑡) are calculated as follows: 

𝐷𝑇(𝑡) = 𝑤(𝑡) + 𝐿𝐿 𝑣𝑑⁄ , (91) 

𝐶𝑇(𝑡) = max[𝐷𝑇(𝑡), 𝐿𝐿 𝑣𝑐⁄ ], (92) 

where 𝑤(𝑡) is time-dependent link delay derived in Eq. (83); 𝐿𝐿 represent the length of the 

link, 𝑣𝑑 and 𝑣𝑐  denote the maximum speed of sprinkler trucks in the deadheading mode 

and cleaning mode respectively. Waiting time represents the time gap between the arrival 

time and service starting time of a sprinkler on links (due to time window), rather than the 

waiting time at intersections caused by control delay. Note that sprinkler trucks are not 

allowed to wait if they do not have to, e.g., keep staying at a link after cleaning service is 

complete. 

Fig. 44 shows an illustrative example with a simple network and a route of a 

sprinkler truck. The network consists of 17 nodes (intersections) indexed from 0 to 16. The 

depot is located at node 0, and two water refilling stations are located at node 11 and 12 

respectively. The orange line denotes an example route, which is composed of solid lines 

(truck in cleaning mode) and dash lines (truck in deadheading mode). In Fig. 44, the 

sprinkler truck starts from depot node 0, cleans links (0,4), (4,1), (2,5), (5,8), refills water 

at node 11, cleans links (16,15), (15,14), (14,13), (13,7), (7,4), (4,0), and returns back to 

depot node 0. 
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Fig. 44. An Illustrative Network and the Route of a Sprinkler Truck. 

 

5.4 Mathematical Formulations of the Optimization Problem 

In this section, three models are developed for the proposed SRP from different 

perspectives. Specifically, a discretized time-expanded network based arc routing model 

M1 in Section 5.4.1, an arc-based node routing model M2 in Section 5.4.2, and a path-

based node routing model M3 in Section 5.4.3. Section 5.4.4 offers a comprehensive 

comparison. 

 

5.4.1 An Arc Routing Model Based on Time-expanded Network (Model M1-TEN) 

A standard VRP or ARP typically assumes, each customer must be served once and 

exactly once. Benefitting from the assumption, vehicle states (arrival time, cumulative 

loads) can be associated with customers, thus a concise physical network based model can 

be built (Cordeau,2006). However, in the SRP considered in this study, some road links 

may be required to be cleaned multiple times, implying a road link may be serviced 
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multiple times by sprinkler trucks, which makes vehicle states intractable if associating 

them with physical networks. As a result, this research adopts a time-expanded network 

based modeling approach. In the literature, the time-expanded network based modeling 

approach has been successfully applied in solving a wide range of transportation supply-

side optimization problems, e.g., dynamic traffic assignment (Lu et al., 2016), VRP (Yao 

et al., 2019), passenger flow state estimation (Shang et al., 2019), and train timetabling 

problem (Zhang et al., 2019). By extending a physical network to a time-expanded 

network, nodes and road links in the original physical network are extended to vertexes 

and arcs with an extra time dimension. With the extended time dimension, the multiple-

services requirements can be systematically modelled as well as time-dependent travel 

times. To enable model M1 to accommodate the need of turn delay modeling, with the 

intersection expansion process similar to the approach discussed by Kirby and Potts (1969), 

Ziliaskopoulos and Mahmassani (1996), and Pallottino and Scutella (1998), a new network 

𝐺ℐ = (𝑁ℐ , 𝐿ℐ) is first constructed from the network 𝐺 described in Section 5.3. 

For a time-expanded 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝐺𝒮𝒯 from 𝐺ℐ, vertex (𝑖, 𝑡) ∈ 𝑉 is constructed from 

physical node 𝑖 ∈ 𝑁ℐ , where 𝑡 denotes time. Arc (𝑖, 𝑗, 𝑡, 𝑡′) ∈ 𝐴 represents a space-time 

traveling activity from vertex (𝑖, 𝑡) to vertex (𝑗, 𝑡′). As the time dimension is continuous, 

the entire planning horizon [0, 𝑇] is evenly discretized into short time intervals, e.g., 10 

seconds, so that the number of vertexes and arcs is finite. As a result, 𝑡  and 𝑡′  both 

represent the indices of discretized time intervals. 𝜒 = {0,1,2,… , 𝑠} denotes the set of 

indices of discretized time intervals, where 𝑠 is the index of the last time interval. Arcs in 

a time-expanded network consist of two categories: traveling arc (𝑖, 𝑗, 𝑡, 𝑡′) and waiting arc 

(𝑖, 𝑖, 𝑡, 𝑡 + 1). A traveling arc (𝑖, 𝑗, 𝑡, 𝑡′) means a vehicle enters link (𝑖, 𝑗) ∈ 𝐿ℐ at time 𝑡 
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and leaves at time 𝑡′, and 𝑡′ − 𝑡 equals the travel time of the link at time 𝑡. Note that link 

(𝑖, 𝑗)  can either be a road link or a movement link in network 𝐺ℐ . A waiting arc 

(𝑖, 𝑖, 𝑡, 𝑡 + 1) corresponds to the waiting activity of a vehicle at node 𝑖 ∈ 𝑁ℐ for one time 

interval. Waiting arcs are used when a sprinkler truck arrives at a road link earlier than the 

link’s earliest service starting time. Fig. 45 depicts a simple three-node network with its 

corresponding time-expanded network, where the travel time of link (1,2) and link (2,3) 

are 1 and 2, respectively. 

 
Fig. 45. A Simple Network and Its Corresponding Time-expanded Network. 

 

With the basic concepts introduced above, the time-expanded network built for the 

SRP is presented in Fig. 46, with the following problem-specific highlights: 

(1) Cleaning arc and deadheading arc: When a sprinkler moves on a road link, 

it has two possible modes, i.e., cleaning mode and deadheading mode. In the cleaning 

mode, the sprinkler truck cleans the link when traveling on it, but not in the deadheading 

mode. Note that sprinkler trucks typically have different speeds in the cleaning mode and 

deadheading mode. Therefore, it is necessary to build cleaning arcs (Fig. 46(a)) and 

deadheading arcs (Fig. 46(b)) with different travel times for each physical link. For a 

cleaning arc (𝑖, 𝑗, 𝑡, 𝑡′) in Fig. 46(a), 𝑡′ − 𝑡 equals to cleaning time on link (𝑖, 𝑗); for a 
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deadheading arc arc (𝑖, 𝑗, 𝑡, 𝑡′) in Fig. 46(b), 𝑡′ − 𝑡 equals to deadheading time on link 

(𝑖, 𝑗). Another difference between cleaning arcs and deadheading arcs is about water 

consumption. 𝑤𝑖,𝑗,𝑡,𝑠 denotes the water consumption of arc (𝑖, 𝑗, 𝑡, 𝑡′), then 𝑤𝑖,𝑗,𝑡,𝑡′ = 𝑤𝑖,𝑗 

if the arc is a cleaning arc; otherwise, 𝑤𝑖,𝑗,𝑡,𝑡′ = 0. 

(2) Time-dependent travel time: For a deadheading arc (𝑖, 𝑗, 𝑡, 𝑡′), 𝑡′ − 𝑡 equals 

to 𝐷𝑇(𝑡) in Eq. (91); for a cleaning arc (𝑖, 𝑗, 𝑡, 𝑡′), 𝑡′ − 𝑡 equals to 𝐶𝑇(𝑡) in Eq. (92). One 

can observe that each traveling arc (including deadheading arc and cleaning arc) in Fig. 46 

is associated with its own travel time, which can be viewed as a fine discretized 

approximation of continuous functions in Eqs. (91) and (92). 

(3) Service time window: In the SRP, each link is associated with a service time 

window, within which cleaning services must be started. In other words, for a specific link, 

cleaning arcs outside its service time window are not allowed to use. This constraint can 

be easily imposed by deleting cleaning arcs outside service time windows when building a 

time-expanded network. For example, in Fig. 46(a), the service time window of link (1,2) 

is [2,6], then the arcs with a red cross will be deleted. 

(4) Waiting arc: According to the problem description in Section 3, waiting is 

only allowed when a sprinkler truck arrives earlier than link service starting time. 

Therefore, compared with the illustrative example in Fig. 45, tighter restrictions are 

considered in building waiting arcs for the SRP to avoid invalid waiting. First, waiting arcs 

are only built for inbound nodes of road links that need cleaning services. Second, waiting 

arcs with entering time later than the corresponding link’s service starting time will not be 

generated. For road link (1,2)  with time window [2,6]  in Fig. 46, waiting arcs 

(1,1, 𝑡, 𝑡 + 1) are only constructed for 𝑡 = 0,1.  
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(5) Water refilling arc: Water refilling arcs (𝑖, 𝑖, 𝑡, 𝑡 + 𝑟) are built on each water 

refilling station 𝑖, where 𝑟 denotes the time required to refill a sprinkler truck. 

(6) Origin and destination: In the newly generated time-expanded network, 

vertex 𝑜𝒮𝒯(𝑜, 0) and 𝑑𝒮𝒯(𝑑, 𝑠) will serve as the origin and destination vertex of sprinkler 

trucks, where 𝑜 and 𝑑 denote the origin node and destination node in network 𝐺ℐ; 𝑠 is the 

index of the last discretized time interval in the whole planning horizon. Waiting arcs on 

destination 𝑑 are constructed to ensure that sprinkler trucks are able to return back to and 

keep staying at the destination depot after finishing cleaning tasks. 

 
(a) Physical network and its corresponding time-expanded network (with cleaning arcs) 

 
(b) Physical network and its corresponding time-expanded network (with deadheading 

arcs) 

Fig. 46. A Simple Network and Its Corresponding Time-expanded Networks in SRP. 

 

To reduce the size of time-expanded networks and simplify the subsequent 

optimization model, vertexes and arcs outside the space-time prism between the origin 

vertex 𝑜𝒮𝒯 and destination vertex 𝑑𝒮𝒯 can be future removed. A space-time prism is an 
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envelope that covers all possible paths between two space-time vertexes. Interested readers 

are referred to Miller (2005) and Tong et al. (2015). 

With the preparation of intersection expansion and time-expanded network 

construction, the arc routing formulation on time-expanded network (model M1-TEN) for 

the proposed SRP is presented below. Notations are summarized in Table 16. 

Table 16 Notations Used in Model M1-TEN. 

Symbols Definition 

Indices  

𝑖, 𝑗 Index of nodes in graph 𝐺ℐ 
𝑡, 𝑡′ Index of time intervals 

𝑓 Index of sprinkler trucks 

Sets  

𝐿ℐ Set of links in graph 𝐺ℐ 
𝐹 Set of sprinkler trucks 

𝑉 Set of vertexes in graph 𝐺𝒮𝒯 
𝐴 Set of arcs in graph 𝐺𝒮𝒯 
𝐶𝐴𝑖,𝑗 Cleaning arc set associated with link (𝑖, 𝑗) ∈ 𝐿ℐ 
𝑅𝐴 Set of water refilling arcs in graph 𝐺𝒮𝒯 
Parameters  

𝑜𝒮𝒯(𝑑𝒮𝒯) Origin (destination) vertex of sprinkler trucks in graph 𝐺𝒮𝒯 
𝑐𝑡𝑖,𝑗,𝑡,𝑡′ Travel time cost of arc (𝑖, 𝑗, 𝑡, 𝑡′) ∈ 𝐴 

𝑐𝑔𝑖,𝑗,𝑡,𝑡′  System impact cost of arc (𝑖, 𝑗, 𝑡, 𝑡′) ∈ 𝐴 

𝑐𝑖,𝑗,𝑡,𝑡′ General cost of arc (𝑖, 𝑗, 𝑡, 𝑡′) ∈ 𝐴 

𝑚𝑖,𝑗 Number of cleaning requests of link (𝑖, 𝑗) in graph 𝐺ℐ 
𝑤𝑖,𝑗,𝑡,𝑡′  Water consumption of arc (𝑖, 𝑗, 𝑡, 𝑡′) ∈ 𝐴 

𝐶 Water tank capacity of sprinkler trucks 

𝑟 Water refilling time 

ℎ Sprinkler truck acquisition cost 

Variables  

𝑥
𝑖,𝑗,𝑡,𝑡′
𝑓

 
Binary variable. 𝑥

𝑖,𝑗,𝑡,𝑡′
𝑓
= 1 if sprinkler 𝑓 uses arc (𝑖, 𝑗, 𝑡, 𝑡′); otherwise, 

𝑥
𝑖,𝑗,𝑡,𝑡′
𝑓
= 0 

𝑞𝑖,𝑡
𝑓

 Water level of sprinkler 𝑓 at vertex (𝑖, 𝑡) 

 

Model M1-TEN: 

Objective function 
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min𝑍1 =  𝑐𝑡𝑖,𝑗,𝑡,𝑡′𝑥𝑖,𝑗,𝑡,𝑡′
𝑓

(𝑖,𝑗,𝑡,𝑡′)∈𝐴𝑓∈𝐹

+ ℎ  𝑥
𝑜,𝑗,0,𝑡′
𝑓

(𝑗,𝑡′):(𝑜,𝑗,0,𝑡′)∈𝐴𝑓∈𝐹

+𝜔  𝑐𝑔𝑖,𝑗,𝑡,𝑡′𝑥𝑖,𝑗,𝑡,𝑡′
𝑓

(𝑖,𝑗,𝑡,𝑡′)∈𝐴𝑓∈𝐹

 

(93) 

Subject to: 

Flow balance constraint: 

 𝑥
𝑖,𝑗,𝑡,𝑡′
𝑓

(𝑗,𝑡′):(𝑖,𝑗,𝑡,𝑡′)∈𝐴

=  𝑥
𝑗,𝑖,𝑡′,𝑡

𝑓

(𝑗,𝑡′):(𝑗,𝑖,𝑡′,𝑡)∈𝐴

,

∀𝑓 ∈ 𝐹, (𝑖, 𝑡) ∈ 𝑉 {𝑜𝒮𝒯 , 𝑑𝒮𝒯}⁄  

(94) 

Cleaning request satisfaction constraint: 

  𝑥
𝑖,𝑗,𝑡,𝑡′
𝑓

(𝑖,𝑗,𝑡,𝑡′)∈𝐶𝐴𝑖,𝑗𝑓∈𝐹

= 𝑚𝑖,𝑗 , ∀(𝑖, 𝑗) ∈ 𝐿ℐ (95) 

Sprinkler truck water level updating constraint: 

𝑞
𝑗,𝑡′
𝑓
≤ 𝑞𝑖,𝑡
𝑓
− 𝑤𝑖,𝑗,𝑡,𝑡′𝑥𝑖,𝑗,𝑡,𝑡′

𝑓
+ 𝐶 (1− 𝑥

𝑖,𝑗,𝑡,𝑡′
𝑓
) ,

∀𝑓 ∈ 𝐹, (𝑖, 𝑗, 𝑡, 𝑡′) ∈ 𝐴 𝑅𝐴⁄  

(96) 

Decision variables: 

𝑥
𝑖,𝑗,𝑡,𝑡′
𝑓
∈ {0,1}, ∀𝑓 ∈ 𝐹, (𝑖, 𝑗, 𝑡, 𝑡′) ∈ 𝐴 

0 ≤ 𝑞𝑖,𝑡
𝑓
≤ 𝐶, ∀𝑓 ∈ 𝐹, (𝑖, 𝑡) ∈ 𝑉 

(97) 

 

The objective function in Eq. (93) minimizes the total cost to complete cleaning 

tasks, which includes three parts: travel time cost ∑ ∑ 𝑐𝑡𝑖,𝑗,𝑡,𝑡′𝑥𝑖,𝑗,𝑡,𝑡′
𝑓

(𝑖,𝑗,𝑡,𝑡′)∈𝐴𝑓∈𝐹 , vehicle 

acquisition cost ℎ∑ ∑ 𝑥
𝑖,𝑗,𝑡,𝑡′
𝑓

(𝑗,𝑡′):(𝑜,𝑗,0,𝑡′)∈𝐴𝑓∈𝐹 , and system impact cost 

𝜔∑ ∑ 𝑐𝑔𝑖,𝑗,𝑡,𝑡′𝑥𝑖,𝑗,𝑡,𝑡′
𝑓

(𝑖,𝑗,𝑡,𝑡′)∈𝐴𝑓∈𝐹 . The travel time cost 𝑐𝑡𝑖,𝑗,𝑡,𝑡′ of arc (𝑖, 𝑗, 𝑡, 𝑡′) equals to 
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𝑡′ − 𝑡 for all arcs in set 𝐴, except waiting arcs built at sprinkler destination node 𝑑. The 

cost of waiting arcs at node 𝑑  is set as 0 (i.e., 𝑐𝑖,𝑖,𝑡,𝑡+1 = 0  if 𝑖 = 𝑑 ). Expression 

∑ ∑ 𝑥
𝑖,𝑗,𝑡,𝑡′
𝑓

(𝑗,𝑡′):(𝑜,𝑗,0,𝑡′)∈𝐴𝑓∈𝐹  denotes the number of sprinkler trucks used. By integrating 

three types of coefficient of each 𝑥𝑖,𝑗,𝑡,𝑡′
𝑓

, Eq. (93) can be simplified as 

min𝑍1 = ∑ ∑ 𝑐𝑖,𝑗,𝑡,𝑡′𝑥𝑖,𝑗,𝑡,𝑡′
𝑓

(𝑖,𝑗,𝑡,𝑡′)∈𝐴𝑓∈𝐹 , (98) 

where 𝑐𝑖,𝑗,𝑡,𝑡′ represents the general cost of arc (𝑖, 𝑗, 𝑡, 𝑡′), consisting of travel time cost, 

vehicle acquisition cost, and system impact cost. Constraint (94) guarantees that the 

incoming flow equals to outgoing flow on vertexes. Note that this constraint is not imposed 

on the origin vertex 𝑜𝒮𝒯 and destination vertex 𝑑𝒮𝒯. Constraint (95) makes sure that links 

are cleaned as requested, while constraint (96) is used to update the water level of sprinkler 

trucks. Finally, constraint (97) specifies decision variables with their domains. Specifically,  

𝑥
𝑖,𝑗,𝑡,𝑡′
𝑓

 are binary variables, and 𝑞𝑖,𝑡
𝑓

 are positive continuous variables with an upper bound 

of 𝐶, where 𝐶 represents the water tank capacity of sprinkler trucks. 

 

5.4.2 Graph Transformation and a Slot-based Time Discretization Node Routing Model 

(Model M2-STD) 

The adoption of intersection expansion and time-expanded networks can allow the 

consideration of various rich constraints into the generated network, contributing to a 

concise form of model M1-TEN. Yet, additional movement links created at intersections 

and high-dimension time-expanded networks significantly increase the size of model M1-

TEN, making it extremely challenging to solve on large-scale instances. This section 

further proposes a node routing model by converting the original ARP to a node routing 
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problem (NRP). Solving an ARP by converting it to an NRP was first proposed by Pearn 

et al. (1987) and was adopted and improved by Longo et al., (2006). The core idea behind 

the conversion process is treating arcs to be served as activity nodes in the NRP and 

building virtual edges to connect each pair of the resulting nodes based on the shortest 

paths in the original network. 

In the proposed SRP, due to the consideration of additional rich features, there are 

three major challenges during the conversion process. First, on a congested urban 

transportation network with time-varying traffic conditions, the shortest path (in terms of 

travel time) between two nodes changes during the day. Second, cost of a path consists of 

travel time cost and system impact cost, therefore a shortest path with the least travel time 

between two activity nodes does not necessarily correspond to the best path with the least 

total cost. Third, due to the existence of service time window, even the best path with the 

least total cost does not guarantee an optimal solution. Consider two paths (e.g., path 1 and 

path 2) between a pair of activity nodes, where path 1 has a lower total cost than path 2. 

However, path 1 takes longer travel time, causing some future service nodes not to be 

served from path 1 due to time windows. Adopting path 1 with a lower total cost may need 

additional vehicles to visit these unserved service nodes, which could result in a suboptimal 

routing solution. To address this issue, 𝜑 paths are kept between each pair of activity nodes 

in the resulting NRP. 

Due to the adoption of nonlinear functions for representing time-varying traffic 

conditions in the converted graph 𝐺𝒩, i.e., 𝜏𝑖(𝑡), 𝜏𝑖,𝑗,𝜌(𝑡), 𝑐𝑔𝑖(𝑡), and 𝑐𝑔𝑖,𝑗,𝜌(𝑡), one can 

expect that an optimization model built on 𝐺𝒩 is highly nonconvex and extremely hard to 

solve. Therefore, in model M2-STD, nonlinear functions are approximated by piecewise-
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constant functions. That is, the entire planning time horizon [0, 𝑇] is split into multiple time 

slots with the same duration, e.g., 10 minutes, and nonlinear functions are approximated 

by constants within each slot. Model M2-STD as well as additional notations is presented 

as follows. 

Table 17 Additional Notations Used in the Node Routing Model. 

Symbols Definition 

Indices  

𝑖, 𝑗 Index of nodes in graph 𝐺𝒩 

𝜌 Index of edges between each pair of nodes in graph 𝐺𝒩 

𝑝 Index of time slots 

Sets  

𝑁𝒩 Set of nodes in graph 𝐺𝒩 

𝑁𝒩
𝑠  Set of service nodes in graph 𝐺𝒩 

𝑁𝒩
𝑤 Set of water refilling stations in graph 𝐺𝒩 

𝐸𝒩  Set of edges in graph 𝐺𝒩 

𝑃𝒩 Set of time slots 

Parameters  

𝜑 Number of edges between each pair of nodes in graph 𝐺𝒩 

𝜏𝑖,𝑝 Service time of node 𝑖 ∈ 𝑁𝒩  in slot 𝑝 
𝜏𝑖,𝑗,𝜌,𝑝 Travel time of edge (𝑖, 𝑗, 𝜌) ∈ 𝐸𝒩 in slot 𝑝 
𝑐𝑔𝑖,𝑝 Congestion impact of serving node 𝑖 ∈ 𝑁𝒩  in slot 𝑝 

𝑐𝑔𝑖,𝑗,𝜌,𝑝 Congestion impact of using edge (𝑖, 𝑗, 𝜌) ∈ 𝐸𝒩  in slot 𝑝 
𝑤𝑖  Water consumption of node 𝑖 ∈ 𝑁𝒩  

𝑠𝑖(𝑒𝑖) The earliest (latest) service starting time of node 𝑖 ∈ 𝑁𝒩  

𝑇𝑖,𝑝 Ending time of slot 𝑝 for node 𝑖 
Variables  

𝑥𝑖,𝑗,𝜌,𝑝 
Binary variable. 𝑥𝑖,𝑗,𝜌,𝑝 = 1 if a sprinkler uses edge (𝑖, 𝑗, 𝜌) in slot 𝑝; 

otherwise, 𝑥𝑖,𝑗,𝜌,𝑝 = 0 

𝑦𝑖,𝑝 
Binary variable. 𝑦𝑖,𝑝 = 1 if cleaning service starts on node 𝑖 in slot 𝑝; 

otherwise, 𝑦𝑖,𝑝 = 0 

𝑞𝑖 Water level of a sprinkler at node 𝑖 
𝑡𝑖
𝑑 Departure time of a sprinkler from node 𝑖 
𝑡𝑖
𝑠 Service starting time of node 𝑖 

 

Model M2-STD: 

Objective function 
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min𝑍2 = 𝑡𝑑𝒩
𝑓
𝑑

𝑓∈𝐹

+ ℎ  𝑥𝑜𝒩,𝑗,𝜌,𝑝
(𝑗,𝜌):(𝑜𝒩 ,𝑗,𝜌)∈𝐸𝒩,𝑝∈𝑃𝒩

+ω(  𝑐𝑔𝑖,𝑗,𝜌,𝑝𝑥𝑖,𝑗,𝜌,𝑝
(𝑖,𝑗,𝜌)∈𝐸𝒩,𝑝∈𝑃𝒩

+  𝑐𝑔𝑖,𝑝𝑦𝑖,𝑝
𝑖∈𝑁𝒩,𝑝∈𝑃𝒩

) 

(99) 

Subject to: 

Cleaning request satisfaction constraint: 

  𝑥𝑗,𝑖,𝜌,𝑝
𝑝∈𝑃𝒩(𝑗,𝜌):(𝑗,𝑖,𝜌)∈𝐸𝒩

= 1, ∀𝑖 ∈ 𝑁𝒩
𝑠  (100) 

Sprinkler truck spatial route constraint: 

  𝑥𝑗,𝑖,𝜌,𝑝
𝑝∈𝑃𝒩(𝑗,𝜌):(𝑗,𝑖,𝜌)∈𝐸𝒩

=   𝑥𝑖,𝑗,𝜌,𝑝
𝑝∈𝑃𝒩(𝑗,𝜌):(𝑖,𝑗,𝜌)∈𝐸𝒩

, ∀𝑖 ∈ 𝑁𝒩
𝑠 ∪ 𝑁𝒩

𝑤  (101) 

  𝑥𝑗,𝑖,𝜌,𝑝
𝑝∈𝑃𝒩(𝑗,𝜌):(𝑗,𝑖,𝜌)∈𝐸𝒩

≤ 1, ∀𝑖 ∈ 𝑁𝒩
𝑤 ∪ {𝑑𝒩

𝑓
|𝑓 ∈ 𝐹} (102) 

Sprinkler truck temporal route constraint: 

𝑡𝑜𝒩
𝑑 = 0 (103) 

𝑡𝑗
𝑠 ≥ 𝑡𝑖

𝑑 + 𝜏𝑖,𝑗,𝜌,𝑝 +𝑀(𝑥𝑖,𝑗,𝜌,𝑝 − 1), ∀(𝑖, 𝑗, 𝜌) ∈ 𝐸𝒩 , ∀𝑝 ∈ 𝑃𝒩 (104) 

𝑡𝑖
𝑑 ≥ 𝑡𝑖

𝑠 + 𝜏𝑖,𝑝𝑦𝑖,𝑝, ∀𝑖 ∈ 𝑁𝒩 , ∀𝑝 ∈ 𝑃𝒩 (105) 

 𝑦𝑖,𝑝
𝑝∈𝑃𝒩

= 1, ∀𝑖 ∈ 𝑁𝒩  (106) 

𝑇𝑝−1𝑥𝑖,𝑗,𝜌,𝑝 ≤ 𝑡𝑖
𝑑 < 𝑇𝑝 +𝑀(1− 𝑥𝑖,𝑗,𝜌,𝑝), ∀(𝑖, 𝑗, 𝜌) ∈ 𝐸𝒩 , ∀𝑝 ∈ 𝑃𝒩 (107) 

𝑇𝑝−1𝑦𝑖,𝑝 ≤ 𝑡𝑖
𝑠 < 𝑇𝑝 +𝑀(1− 𝑦𝑖,𝑝), ∀𝑖 ∈ 𝑁𝒩 , ∀𝑝 ∈ 𝑃𝒩 (108) 

Time window constraint: 

𝑠𝑖 ≤ 𝑡𝑖
𝑠 ≤ 𝑒𝑖 , ∀𝑖 ∈ 𝑁𝒩 (109) 

Sprinkler truck water level updating constraint: 
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𝑞𝑜𝒩 = 𝐶 (110) 

𝑞𝑗 ≤ 𝑞𝑖 − 𝑥𝑖,𝑗,𝜌,𝑝𝑤𝑗 + 𝐶(1 − 𝑥𝑖,𝑗,𝜌,𝑝),

∀(𝑖, 𝑗, 𝜌) ∈ {𝐸𝒩|𝑖 ∈ 𝑁𝒩
𝑠 }, ∀𝑝 ∈ 𝑃𝒩 

(111) 

𝑞𝑗 ≤ 𝐶 − 𝑥𝑖,𝑗,𝜌,𝑝𝑤𝑗 , ∀(𝑖, 𝑗, 𝜌) ∈ {𝐸𝒩|𝑖 ∈ 𝑁𝒩
𝑤 ∪ {𝑜𝒩}}, ∀𝑝 ∈ 𝑃𝒩 (112) 

Decision variables: 

𝑥𝑖,𝑗,𝜌,𝑝 ∈ {0,1}, ∀(𝑖, 𝑗, 𝜌) ∈ 𝐸𝒩 , ∀𝑝 ∈ 𝑃𝒩 

𝑦𝑖,𝑝 ∈ {0,1}, ∀𝑖 ∈ 𝑁𝒩 , ∀𝑝 ∈ 𝑃𝒩 

0 ≤ 𝑞𝑖 ≤ 𝐶, 𝑡𝑖
𝑑 ≥ 0, 𝑡𝑖

𝑠 ≥ 0, ∀𝑖 ∈ 𝑁𝒩 

(113) 

 

The objective function in Eq. (99) aims to minimize the total cost, where 𝑜𝒩 

represents the origin node of sprinkler trucks in graph 𝐺𝒩, and 𝑑𝒩
𝑓

 denotes the copy of 

destination node 𝑑𝒩 for sprinkler 𝑓 in graph 𝐺𝒩. By creating a dummy copy 𝑑𝒩
𝑓

 of the 

destination depot for each sprinkler truck 𝑓, the arrival time of sprinkler truck 𝑓 at the 

destination depot 𝑑𝒩
𝑓

 is the time used by sprinkler truck 𝑓. Note that since service time at 

destination depots is zero, arrival times and departure times at destination depots are the 

same, thus departure time 𝑡𝑑𝒩
𝑓
𝑑

 can be used in the objective function to avoid defining extra 

variables. Constraint (100) ensures that each service node is serviced exactly once. 

Constraints (101)-(102) and (103)-(108) formulate the spatial and temporal route 

constraints of sprinkler trucks, respectively. In constraint (105), 𝜏𝑖,𝑝 denotes the service 

time of node 𝑖 if service starts in time slot 𝑝. For service nodes, 𝜏𝑖,𝑝 equals to the cleaning 

time of corresponding road links in slot 𝑝. For water refilling stations and depot nodes, 𝜏𝑖,𝑝 



  156 

equals to the water refilling time and zero, respectively. Constraint (109) makes sure that 

cleaning services start within preset time windows. Constraints (110)-(112) are used to 

track the water level updating of sprinkler trucks. Finally, constraint (113) specifies 

decision variables and their domains used in model M2-STD. 

In addition to the essential constraints (100)-(113), two sets of constraints are 

further constructed below to tighten the linear relaxation of model M2-STD. Specifically, 

constraint (114) ensures that at least one sprinkler is needed to complete cleaning tasks. 

Note that, as sprinkler trucks are allowed to refill water during their trips, the minimum 

number of sprinkler trucks cannot be calculated using total water needed divided by water 

tank capacity of sprinkler trucks. Although constraint (114) seems to be very loose, it does 

serve as the lower bound of many instances in the numerical experiment section. Constraint 

(115) is used to break the symmetry of model M2-STD.  

 

 𝑥𝑜𝒩,𝑗,𝜌,𝑝
(𝑗,𝜌):(𝑜𝒩,𝑗,𝜌)∈𝐸𝒩,𝑝∈𝑃𝒩

≥ 1 (114) 

𝑡𝑑𝒩1
𝑑 ≤ 𝑡

𝑑𝒩
2
𝑑 ≤ ⋯ ≤ 𝑡

𝑑𝒩
|𝐹|−1
𝑑 ≤ 𝑡

𝑑𝒩
|𝐹|
𝑑  (115) 

 

5.4.3 Path-based Set Partition Formulation with Continuous-time Representation (Model 

M3-CTR) 

This section further proposes a path-based model (set partition formulation) on the 

graph 𝐺𝒩 . Instead of time discretization, the original continuous polynomial form of 

service time function and travel time function is adopted. As pointed by out Boland et al. 

(2017), the granularity of the discretization has an impact on both candidate solutions and 
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the computational tractability. Let 𝑟 ∈ 𝛺 denote a feasible sprinkler truck route, where 𝛺 

represents the set of all feasible routes. The set partition formulation can be expressed as 

follows: 

 

Model M3-CTR: 

Objective function 

min𝑍3 = 𝑐𝑟𝜃𝑟
𝑟∈𝛺

 (116) 

Subject to: 

Cleaning request satisfaction constraint: 

 𝛼𝑖,𝑟𝜃𝑟
𝑟∈𝛺

= 1, ∀𝑖 ∈ 𝑁𝒩
𝑠  (117) 

Decision variables: 

𝜃𝑟 ∈ {0,1}, ∀𝑟 ∈ 𝛺 (118) 

 

The objective function (116) minimizes the cost of all selected routes, where 𝜃𝑟 is 

a binary variable indicating whether route 𝑟 is chosen in a solution or not; 𝑐𝑟 is the cost of 

route 𝑟, including operation cost and system impact. Constraint (117) states that all service 

nodes are serviced once, where 𝛼𝑖,𝑟 is a mapping coefficient between service node 𝑖 and 

route 𝑟 (number of times that route 𝑟 passes activity node 𝑖).  

 

5.4.4 Model Comparison in Terms of Time-varying Travel Time Representation and Model 

Formulation 



  158 

An illustrative example with two consecutive links is first used to show the 

difference in time-dependent travel time modeling among the three models. Table 18 

presents the sample values for the parameters of polynomial travel time functions proposed 

in Section 2. The time unit in this example is minute. 

Table 18 Parameters of Polynomial Travel Time Functions. 

Link 𝑡0 𝑡3 𝛾 𝜇 𝐹𝐹𝑇𝑇 Link travel time function 

1-2 3 16 15 1200 1.36 
𝐿𝑇(𝑡) =

15

3 × 1200
(𝑡 − 3)2(16 − 𝑡) + 1.36 

2-3 4 18 12 1000 1.54 
𝐿𝑇(𝑡) =

12

3 × 1000
(𝑡 − 4)2(18 − 𝑡) + 1.54 

 

Fig. 47 shows the travel time functions (blue lines) used in the three models, among 

which piecewise-constant functions depicted in Fig. 47(b) correspond to the first method 

in Table 2, while functions in Fig. 47(a) and Fig. 47(c) are the two proposed approaches in 

this study. For model M1-TEN, the time dimension is discretized into 0.2-minute time 

intervals. Therefore, both link travel times and node arrival (departure) times are 

approximated with a 0.2-minute resolution. For model M2-STD, the entire time horizon is 

split into four 5-minute slots, and travel times remain constant in each slot. For model M3-

CTR, the original polynomial form of travel time functions is used. 

 
(a) Model M1-TEN           (b) Model M2-STD           (c) Model M3-CTR 

Fig. 47. An Illustrative Example of Time-dependent Travel Time Modeling in Three 

Models, Ranging from High-fidelity Discretization M1-TEN, Semi-dynamic Slot-based 

Discretization M2-STD and Continuous-time Representation M3-CTR. 
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5.5 Exact Solution Methods 

The models developed in Section 5.4 are all (mixed) integrated linear programming 

models and theoretically solvable using existing solvers such as Gurobi and Cplex. While, 

in real-life applications, the size of resulting models could be extremely large, making it 

hard to obtain desirable solutions from solvers within a reasonable time. In this section, 

with the recognition of the mathematical characteristics of each proposed model, two exact 

solution methods are developed for efficiently solving these models. Specifically, a 

Lagrangian relaxation (LR) based method is proposed for solving model M1-TEN, while 

a branch-and-price (BnP) based approach is proposed for solving model M3-CTR. 

 

5.5.1 Lagrangian Relaxation 

The concise form of model M1-TEN provides the possibility of using 

decomposition techniques to obtain good solutions quickly. Model M1-TEN consists of 

three sets of side constraints, among which only cleaning request satisfaction constraint 

(95) couples different sprinkler trucks. If constraint (95) is relaxed, model M1 can be 

decomposed into multiple easier sprinkler-specific sub-problems, which can be solved 

independently. In this research, a LR-based method is proposed for solving model M1-

TEN. 

Under the LR framework, coupling constraint (95) is relaxed, and the violation is 

penalized in objective function (93) using Lagrangian multipliers 𝜆𝑖,𝑗. The relaxed problem 

is 
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Objective function 

min𝑍4 = 𝑍1 +  𝜆𝑖,𝑗 (  𝑥
𝑖,𝑗,𝑡,𝑡′
𝑓

(𝑖,𝑗,𝑡,𝑡′)∈𝐶𝐴𝑖,𝑗𝑓∈𝐹

−𝑚𝑖,𝑗)
(𝑖,𝑗)∈𝐿ℐ

 (119) 

Subject to: 

(94), (96), (97).  

 

By reorganizing the coefficients of decision variable 𝑥
𝑖,𝑗,𝑡,𝑡′
𝑓

, the objective function 

(119) can be further simplified to Eq. (120). Given the value of 𝜆𝑖,𝑗, the relaxed problem 

needs to find the least cost shortest path on the discretized time-expanded network with 

modified arc cost 𝑐𝑖,𝑗,𝑡,𝑡′
′  for each sprinkler truck, which can be exactly solved by the 

dynamic programming approach (Mahmoudi and Zhou, 2016; Yao et al., 2019).  

min𝑍4 =  𝑐𝑖,𝑗,𝑡,𝑡′
′ 𝑥

𝑖,𝑗,𝑡,𝑡′
𝑓

(𝑖,𝑗,𝑡,𝑡′)∈𝐴𝑓∈𝐹

−  𝜆𝑖,𝑗𝑚𝑖,𝑗
(𝑖,𝑗)∈𝐿ℐ

 (120) 

This research adopts the classical sub-gradient method to update the values of 

Lagrangian multipliers 𝜆𝑖,𝑗  using Eq. (121) and Eq. (122), where 𝜆𝑖,𝑗
𝑘  and 𝛼𝑘  denote the 

value of 𝜆𝑖,𝑗  and step length at iteration 𝑘 , respectively. It should be noted that, as 

constraint (95) is an equality constraint, Lagrangian multipliers can be positive, negative, 

or 0. A positive Lagrangian multiplier means an additional penalty when serving the 

corresponding arc, while a negative value means an additional bonus. Lagrangian iteration 

stops when constraint (95) is satisfied on all links, i.e., no Lagrangian multipliers updating 

in Eq. (121). 
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𝜆𝑖,𝑗
𝑘+1 = 𝜆𝑖,𝑗

𝑘 + 𝛼𝑘 (  𝑥
𝑖,𝑗,𝑡,𝑡′
𝑓

(𝑖,𝑗,𝑡,𝑡′)∈𝐶𝐴𝑖,𝑗𝑓∈𝐹

−𝑚𝑖,𝑗) (121) 

𝛼𝑘 = 1 (𝑘 + 1)⁄  (122) 

 

5.5.2 Branch and Price Algorithm 

For model M3-CTR, the number of feasible routes in set 𝛺 can be extremely large 

in large-scale problems, making it nearly impossible to enumerate all routes and solve the 

resulting model using existing solvers. This section further proposes a Branch and Price 

(BnP)-based exact solution approach to solve model M3-CTR. The proposed BnP 

algorithm consists of two modules, i.e., column generation (CG) and bound-and-bound 

(BnB). Model M3-CTR is denoted as the master problem (MP), then CG module is used 

to solve the linear master problem (LMP), while the BnB module is needed to obtain integer 

solutions based on the results from the CG module. The LMP is the same as MP except the 

domain of decision variables. In LMP, the integer requirement of decision variable 𝜃𝑟, i.e., 

0 ≤ 𝜃𝑟 ≤ 1, is relaxed. Due to the existence of constraint (117), the domain constraint 0 ≤

𝜃𝑟 ≤ 1 can be further simplified to 𝜃𝑟 ≥ 0. 

 

Column generation 

The LMP is still hard to solve due to the large size of route set 𝛺. Therefore, instead 

of directly solving the LMP, its corresponding restricted linear master problem (RLMP) is 

iteratively solved, whose route set 𝛺′ only contains part of feasible routes and is extended 

with new routes as needed. The RLMP is presented as follows: 
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Objective function 

min𝑍5 =  𝑐𝑟𝜃𝑟
𝑟∈𝛺′

 (123) 

Subject to: 

Cleaning request satisfaction constraint: 

 𝛼𝑖,𝑟𝜃𝑟
𝑟∈𝛺′

= 1, ∀𝑖 ∈ 𝑁𝒩
𝑠  (124) 

Decision variables: 

𝜃𝑟 ≥ 0, ∀𝑟 ∈ 𝛺′ (125) 

 

In this research, the initial routes in set 𝛺′ are generated by assigning one sprinkler 

for each service node. Note that, when generating initial routes, if a node cannot be serviced 

due to the violation of time window constraint or water consumption constraint, the original 

problem is then infeasible. The route set 𝛺′ in RLMP is extended by solving the so-called 

pricing problem, during which routes with negative reduced cost are added into set 𝛺′. 

The pricing problem is formulated as follows: 

 

Objective function 

min𝑍5 = ℎ + 𝑡𝑑𝒩
𝑑 +𝜔(  𝑐𝑔𝑖,𝑗,𝜌(𝑡𝑖

𝑑)𝑥𝑖,𝑗,𝜌
(𝑖,𝑗,𝜌)∈𝐸𝒩

+  𝑐𝑔𝑗(𝑡𝑗
𝑠)𝑥𝑖,𝑗,𝜌

(𝑖,𝑗,𝜌)∈𝐸𝒩

)

−  𝑥𝑖,𝑗,𝜌𝜋𝑗
(𝑖,𝑗,𝜌)∈𝐸𝒩:𝑗∈𝑁𝒩

𝑠

 

(126) 

Subject to: 

Feasible route constraints. 
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Objective function (126) minimizes the reduced cost of a feasible route, where 𝜋𝑗 

is the reduced cost associated with node 𝑗. Essentially, the optimization problem presented 

above is an elementary shortest path problem with resource constraint (ESPPRC). 

Finding an elementary shortest path with resource constraint in a network is an NP-

hard problem. Therefore, finding the exact solution for the aforementioned pricing problem 

may be extremely time-consuming in large-scale instances. In the literature, to reduce the 

computational complexity of the pricing problem, following the pioneering work by 

Christofides et al. (1981), researchers started to develop efficient algorithms for finding 

non-elementary shortest paths with resource constraint through relaxing the elementary 

requirement, i.e., allowing visiting a node multiple times (Irnich and Villeneuve, 2006; 

Baldacci et al., 2011; Martinelli et al., 2014). The use of non-elementary shortest paths will 

not affect finding the optimal solution of the original problem but will weaken its linear 

relaxations. This research adopts the dynamic programming ng-route algorithm proposed 

by Martinelli et al. (2014) with some modifications. Specifically, in Martinelli et al. (2014), 

a vehicle only needs to collect goods during its trip, therefore the load of a vehicle keeps 

increasing along with its trip. As a result, a two-dimension matrix with vehicle load as one 

axis can be created, and the dynamic programming process can be performed in the order 

of vehicle load increasing. However, in the SRP considered in this work, sprinkler trucks 

are allowed to refill water during their trips, hence the water level changes on sprinkler 

trucks are not monotonous anymore. Another challenge is that demands are assumed to be 

discrete in Martinelli et al. (2014), while it is continuous in the proposed SRP, thus creating 

a matrix with sprinkler water level as an axis is impossible. 
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The three key components of a dynamic programming algorithm, including state 

(label) definition, extension rule, and dominance rule, are introduced below, followed by 

the modified ng-route algorithm developed in this research. 

Label definition. Labels used in the pricing problem have the following form: 𝑙 =

{𝑛𝑜𝑑𝑒, 𝑅𝑐, 𝑅𝑡 , 𝑅𝑤 , 𝑝𝑟𝑒𝑣, 𝛷} , where 𝑛𝑜𝑑𝑒  means current node label 𝑙  is on; 𝑅𝑐 , 𝑅𝑡 , 𝑅𝑤 

denotes the reduced cost, the actual service starting time, and the water level of the 

sprinkler at current node, respectively; 𝑝𝑟𝑒𝑣 stands for the previous label of label 𝑙; 𝛷 

represents the set of forbidden nodes that are not allowed to extend from label 𝑙, which will 

be introduced in the extension rule below. 

Extension rule. The process of extending current label 𝑙  to node 𝑗 via edge 𝜌 is 

presented in Algorithm 5. In Algorithm 5, line 2-4 check if node 𝑗 is reachable from current 

node 𝑖; line 7 checks if the destination depot is reachable after visiting node 𝑗. Line 12 

creates a new label 𝑙′ on node 𝑗 from label 𝑙 via edge 𝜌. Specifically, the ng-set 𝒱𝑗 of node 

𝑗 is used when updating forbidden set 𝛷′. For each node 𝑖, a ng-set 𝒱𝑖 is predefined which 

includes a certain number of nearest nodes of 𝑖 (including itself). A label on node 𝑖 only 

includes the intersection of visited nodes and 𝒱𝑖 into its forbidden set 𝛷, resulting in the 

possibility of forming cycles. Generally, the larger the ng-sets are, the less likely to contain 

cycles in routes, and also closer to the original ESPPRC (harder to solve). Water refilling 

stations will also not be put into forbidden sets as they are always allowed to revisit in the 

SRP settings.  
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Algorithm 5 Label Extension Procedure. 

Input: label 𝑙 = {𝑛𝑜𝑑𝑒,𝑅𝑐, 𝑅𝑡 , 𝑅𝑤 , 𝑝𝑟𝑒𝑣, 𝛷} , node service time function 𝜏𝑖(𝑡) , edge 

travel time function 𝜏𝑖,𝑗,𝜌(𝑡), system impact functions 𝑐𝑔𝑖(𝑡) and 𝑐𝑔𝑖,𝑗,𝜌(𝑡) 

Output: new label 𝑙′ on node 𝑗 
1: label 𝑙′ = 𝑛𝑢𝑙𝑙 
2: if 𝑗 ∉ 𝛷 and 𝑅𝑤 −𝑤𝑗 ≥ 0 then 

3: arrival time at node 𝑗: 𝑎𝑡𝑗 = 𝑅𝑡 + 𝜏𝑖(𝑅𝑡) + 𝜏𝑖,𝑗,𝜌(𝑅𝑡 + 𝜏𝑖(𝑅𝑡)) 

4: if 𝑎𝑡𝑗 ≤ 𝑒𝑗 then 

5: the earliest service starting time at node 𝑗: 𝑅𝑡
′ = max(𝑎𝑡𝑗 , 𝑠𝑗) 

6: the earliest time to return back to the depot after visiting node 𝑗: 

𝑎𝑡𝑑𝑁 = 𝑅𝑡
′ + 𝜏𝑗(𝑅𝑡

′) + min
𝜌′
{𝜏𝑗,𝑑𝑁,𝜌′ (𝑅𝑡

′ + 𝜏𝑗(𝑅𝑡
′))}  

7: if 𝑎𝑡𝑑𝑁 ≤ 𝑒𝑑𝑁 then 

8: 
𝑅𝑐
′ = {
𝑅𝑐 + 𝑅𝑡

′ − 𝑅𝑡 + 𝑐𝑔𝑖,𝑗,𝜌(𝑅𝑡 + 𝜏𝑖(𝑅𝑡)) + 𝑐𝑔𝑖(𝑅𝑡) − 𝜋𝑗

𝑅𝑐 + 𝑅𝑡
′ − 𝑅𝑡 + 𝑐𝑔𝑖,𝑗,𝜌(𝑅𝑡 + 𝜏𝑖(𝑅𝑡)) + 𝑐𝑔𝑖(𝑅𝑡)

       

if 𝑗 ∈ 𝑁𝒩
𝑠

if 𝑗 ∉ 𝑁𝒩
𝑠  

9: 
𝑅𝑤
′ = {

𝐶
𝑅𝑤 −𝑤𝑗

           
if 𝑗 ∈ 𝑁𝒩

𝑤

if 𝑗 ∉ 𝑁𝒩
𝑤 

10: 𝑝𝑟𝑒𝑣′ = 𝑙  
11: 

𝛷′ = {
𝛷 ∩ 𝒱𝑗
𝛷 ∩ 𝒱𝑗 ∪ {𝑗}

         
if 𝑗 ∈ 𝑁𝒩

𝑤

if 𝑗 ∉ 𝑁𝒩
𝑤 

12: label 𝑙′ = {𝑗, 𝑅𝑐
′ , 𝑅𝑡
′ , 𝑅𝑤
′ , 𝑝𝑟𝑒𝑣′, 𝛷′} 

13: return label 𝑙′ 
 

Dominance rule. For two labels 𝑙 and 𝑙′ on the same node, label 𝑙′ is dominated by 

label 𝑙 if the following conditions are satisfied and at least one of them is not equal:  

(i) 𝑙. 𝑅𝑐 ≤ 𝑙
′. 𝑅𝑐 − (𝑙

′. 𝑅𝑡 − 𝑙. 𝑅𝑡),  

(ii) 𝑙. 𝑅𝑡 ≤ 𝑙
′. 𝑅𝑡,  

(iii) 𝑙. 𝑅𝑤 ≤ 𝑙
′. 𝑅𝑤,  

(iv) 𝑙. 𝛷 ⊆ 𝑙′. 𝛷.  

 

It should be noted that condition (i) is much tighter than the condition that is 

commonly used in VRPs with the objective of minimizing total travel distance, i.e., 𝑙. 𝑅𝑐 ≤
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𝑙′. 𝑅𝑐. A stricter dominance rule means less labels can be dominated, thus there are more 

labels to be processed (the pricing problem is harder to solve). If label 𝑙′ is dominated by 

other labels, label 𝑙′ can then be safely discarded without affecting the final optimal results. 

The dynamic programming ng-route algorithm is presented in Algorithm 6. 

Algorithm 6 finds the best route with given graph 𝐺𝒩 and ng-sets 𝒱𝑖, which may be very 

time-consuming in large instances. When used under CG, to save computing time, 

Algorithm 6 can be terminated as soon as a certain number of paths with negative reduced 

cost have been found. 

Algorithm 6 Dynamic Programming ng-route Algorithm. 

Input: node-based graph 𝐺𝒩, ng-set 𝒱𝑖 for each node 𝑖 ∈ 𝑁𝒩 

Output: the best ng-route 

1: create a root label 𝑙0 = {𝑜𝒩 , ℎ, 0, 𝐶, 𝑛𝑢𝑙𝑙, {𝑜𝒩}} 

2: 𝒰 ← {𝑙0}  
3: while 𝒰 ≠ ∅ do 

4: choose a label 𝑙 with the minimum service starting time from 𝒰, and delete 𝑙 
from 𝒰 

5: for 𝑗 ∈ 𝑁𝒩 do 

6: for 𝜌 ≔ 1,2,… ,𝜑 do 

7: if label 𝑙 can be extended to node 𝑗 via edge 𝜌 (feasibility checking 

in Algorithm 5) then 

8: create a new label 𝑙′ on node 𝑗 from label 𝑙 
9: 𝑖𝑛𝑠𝑒𝑟𝑡𝐿𝑎𝑏𝑒𝑙 ← 𝐭𝐫𝐮𝐞  
10: for label 𝑙′′ ∈ 𝒰 on node 𝑗 do 

11: if label 𝑙′′ dominates 𝑙′ then 

12: 𝑖𝑛𝑠𝑒𝑟𝑡𝐿𝑎𝑏𝑒𝑙 ← 𝐟𝐚𝐥𝐬𝐞 
13: break 

14: else if label 𝑙′ dominates 𝑙′′ then 

15: delete 𝑙′′ 
16: if 𝑖𝑛𝑠𝑒𝑟𝑡𝐿𝑎𝑏𝑒𝑙 then 

17: 𝒰 ← 𝒰 ∪ {𝑙′} 
18: best label 𝑙∗ ← the label with the least reduced cost on the destination depot node 

19: retrieving the best route from label 𝑙∗ 
20: return the best route 
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Although finding non-elementary shortest paths using Algorithm 6 is faster than 

finding the exact solution for elementary shortest path problem, the pricing problem is still 

hard to solve, especially in large-scale instances. This research further utilizes the 

following three techniques to speed up Algorithm 6. 

Decremental state-space relaxation. It is observed that the larger ng-set of nodes 

are, the harder it is to solve the pricing problem. Therefore, instead of directly using the 

complete ng-set 𝒱𝑖, Algorithm 6 can start with a subset of ng-set 𝒱𝑖, i.e., 𝒱𝑖
′, for each node 

𝑖 and iteratively add nodes from 𝒱𝑖 to 𝒱𝑖
′ until a valid ng-route is found. A node to be added 

to 𝒱𝑖
′ should satisfy the following requirement: the absence of that node in 𝒱𝑖

′ leads to a 

cycle in the final route that prevents the route from being an ng-route. 

Heuristic domination. The first condition in the dominance rule presented above is 

by far stricter than the condition used in VRPs with the objective of minimizing total travel 

distance, which is 𝑙. 𝑅𝑐 ≤ 𝑙
′. 𝑅𝑐 . Using the condition 𝑙. 𝑅𝑐 ≤ 𝑙

′. 𝑅𝑐 is of course helpful to 

dominate more labels, then accelerates the pricing process. However, some valid labels 

will also be discarded, which may affect the final solution. In preliminary experiments, it 

is found that only a small portion of valid labels are discarded due to the use of the loose 

domination condition. In other words, a relatively good solution can still be obtained with 

condition 𝑙. 𝑅𝑐 ≤ 𝑙
′. 𝑅𝑐  in a much shorter time. Therefore, before using the exact 

dominance condition, i.e., 𝑙. 𝑅𝑐 ≤ 𝑙
′. 𝑅𝑐 − (𝑙

′. 𝑅𝑡 − 𝑙.𝑅𝑡), the loose condition will be used 

until no valid route can be found. 

Truncated labels. As in Yao et al. (2021), a truncated version of dynamic 

programming is used before calling the exact dynamic programming presented in 

Algorithm 6. In the truncated version, each node only maintains a limited number of 
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promising labels, e.g., 100 labels with the least reduced cost. Note that, as the number of 

labels in the truncated version is limited, running one iteration of the truncated version is 

very fast, therefore node revisiting is not allowed and heuristic domination is not used so 

that routes with higher quality can be obtained. 

 

Branch and bound 

An optimal solution obtained from the CG module may contain fractional path 

usages, making it infeasible for the MP (model M3-CTR). Therefore, BnB module is 

further utilized to produce an integer optimal solution based on results from the CG 

module. 

If an optimal solution obtained from the CG module is fractional, the BnB module 

will perform branching on an edge with a fractional usage. The branching process is 

presented in Algorithm 7. 

Algorithm 7 Edge-based Branching Procedure. 

Input: path usages from a CG solution 

Output: two child nodes of the current node 

1: Calculate edge usages based on path usages from a CG solution. 

2: Select multiple candidate edges (10 edges in this study) with their usages closed to 

0.5. Evaluate the impact of performing branching on these candidate edges as in 

Dabia et al. (2013). The quick pricing heuristic used in this study is the dynamic 

programming algorithm using heuristic domination and truncated labels introduced 

in the aforementioned acceleration techniques. Select an edge, say (𝑖, 𝑗, 𝜌), from 

all candidate edges such that branching on it results in the tightest estimated lower 

bound. 

3: (Child node one) remove edge (𝑖, 𝑗, 𝜌) from the graph used in the pricing problem. 

4: (Child node two) remove edge set {(𝑖′, 𝑗′ , 𝜌′)|(𝑖′, 𝑗′, 𝜌′) ∈ 𝐸𝑁 , 𝑖
′ = 𝑖} , edge set 

{(𝑖′, 𝑗′, 𝜌′)|(𝑖′, 𝑗′, 𝜌′) ∈ 𝐸𝑁 , 𝑗
′ = 𝑗} , and edge set {(𝑖′, 𝑗′, 𝜌′)|(𝑖′, 𝑗′, 𝜌′) ∈ 𝐸𝑁 , 𝑖

′ =
𝑗, 𝑗′ = 𝑖} from the graph used in the pricing problem, but keep edge (𝑖, 𝑗, 𝜌). 

5: return child node one, child node two 
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Child node one forces sprinkler trucks not to use edge (𝑖, 𝑗, 𝜌), while child node 

two forces sprinkler trucks to use edge (𝑖, 𝑗, 𝜌) if service node 𝑖 is in their routes. 

A searching strategy determines the sequence of solving active BnB nodes, and 

different strategies may affect the performance of the BnB module for a specific problem. 

Breadth-first search (BFS) and depth-first search (DFS) are the two widely used searching 

strategies. Generally, BFS is helpful to improve the global lower bound (GLB) of a 

problem, while DFS is useful to quickly find a feasible solution thus contributes to 

improving the global upper bound (GUB) of the problem. Benefitting from mature parallel 

computing technologies, both BFS and DFS are implemented and run in parallel in this 

work. Moreover, as nodes in the same layer in BnB-BFS are independent from each other, 

solving nodes in Step 2b.1 is also conducted in a parallel manner. The overall framework 

of the BnB module designed in this research is presented in Fig. 48. 
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start

Step 1 Initialization

1. Initialize the global lower bound (GLB) and upper bound (GUB)

2. Create a root node

Step 2a BnB-DFS loop Step 2b BnB-BFS loop

Step 2a.2 Get a node from ANL and solve

1. If time limit is reached or BnB-BFS loop

    has finished, jump to step 3

2. get the last node from ANL

3. solve the node using CG module

Step 2a.3 Update BnB tree

if obj < GUB

    if ns is integer

        GUB = obj

    else

        create two child nodes and put them to

        the end of ANL

    endif

endif

Step 2a.1 Create an active node list ANL, 

and put root node into ANL

Step 2b.1 Create a layer node list LNL, 

and put root node into LNL

Is ANL empty

Step 2b.2 Solve nodes in LNL in parallel

1. If time limit is reached or BnB-DFS loop

    has finished, jump to step 3

2. solve each node in LNL using CG module

Is LNL empty

Step 2b.3 Update BnB tree

1. let LB = GUB

2. create a new layer node list NLNL

3. for each solved node in LNL

        if obj < GUB

            if ns is integer

                GUB = obj

            else

                if obj < LB: LB = obj

                create two child nodes and put

                them into NLNL

            endif

        endif

3. Update GLB with LB, LNL=NLNL

Step 2 BnB loop (do step 2a and 2b in parallel)

Step 3 Results

Output the final global lower bound GLB and global upper bound GUB

Output the final best feasible solution

No

Step 3
Step 3

No
Yes

Yes

Note: obj means the objective value of a BnB node; ns represents the solution state of a BnB node, it can be integer or fractional

 
Fig. 48. The Overall Framework of the BnB Module. 

 

5.6 Computational Experiments 

In this section, extensive numerical experiments are conducted to evaluate the 

methods developed in this research. Specifically, 12 corridors in the Washington DC 

metropolitan area are first selected to demonstrate the suitability of the proposed time-

dependent travel time modeling method. Based on calibrated travel time functions, three 

sets of SRP instances with different sizes are designed to examine the performance of the 
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three models, followed by an analysis on the system impact of vehicle routings. Finally, 

sensitivity analysis of solution methods is performed. 

 

5.6.1 Modeling of Time-dependent Travel Time  

Fig. 49 presents the 12 corridors selected for evaluating the proposed time-

dependent travel time modeling method, including 1 expressway corridor, 3 freeway 

corridors, and 8 arterial corridors that experience different levels of traffic congestion. 

Table 19 summarizes the characteristics of the selected corridors. The time horizon of 

interest is set as 6:00 – 20:00. Note that transportation networks typically experience two 

or three congestion periods across a day (morning peak hours, afternoon peak hours, and 

possibly midday hours), while the method proposed in Section 5.2 is suitable for a single 

congestion period analysis. Hence, the analysis time horizon is split into three periods, 

including am (6:00-10:00), md (10:00-14:00), and pm (14:00-20:00), then sequentially 

apply the method for each period. The dataset used for method evaluation was collected 

from the Regional Integrated Transportation Information System (RITIS). The raw dataset 

contains 5-minute space-mean traffic speed data from loop detectors and probe vehicles 

for a majority of links along each corridor. Congestion duration 𝑃, average discharge rate 

𝜇, and inflow demand curvature parameter 𝛾 are first calibrated using the four-step method 

proposed in Section 5.2. Then smoothed time-dependent travel times are estimated based 

on Eq. (84) for each link along corridors. 



  172 

US15 South_S

VA267 West_W

RT7 North_W

I66 outside Beltway_W

VA659_S

VA28 North_N

US29 West_W

US29 Middle_W

VA234_N

I395_E

US1 South_N

VA286 South_N

US1 Middle_N

US50 West_W

 
Fig. 49 Corridors Used for Time-dependent Travel Time Modeling Evaluation. 

 

Table 19 Characteristics of the 12 Corridors. 
Corridor name Type # of 

links 

Corridor length 

(mile) 

LLS 

(mph) 

HLS 

(mph) 

ALS 

(mph) 

ALCD 

(hour) 

US15 South_S Arterial 39 28.6 8.5 60.8 39.41 2.73 

VA267 West_W Freeway 20 13.0 16.6 74.7 63.80 0.49 

VA659_S Arterial 17 10.3 8.9 45.1 31.18 2.39 

RT7 North_W Arterial 36 19.7 14.0 62.1 44.76 3.68 

VA28 North_N Expressway 28 13.8 19.2 68.1 60.59 1.10 

I66 outside 

Beltway_W 

Freeway 50 27.9 15.0 74.7 58.47 2.93 

US29 West_W Arterial 27 13.1 14.0 55.9 42.19 2.82 

US29 Middle_W Arterial 17 11.8 11.5 51.2 26.45 6.76 

VA234_N Arterial 25 21.8 20.1 57.2 43.40 2.60 

VA286 South_N Arterial 27 19.1 14.4 58.1 47.15 1.40 

I395_E Freeway 28 9.7 6.1 65.8 43.26 5.63 

US1 Middle_N Arterial 14 13.7 8.8 52.7 36.88 4.74 

Notes: HLS – highest link speed, LLS – lowest link speed, ALS – average link speed, ALCD – average link congestion 

duration for an entire day 

 

Table 20 compares the observed speed and modelled speed calibrated from the 

fluid-queue model with polynomial arrival rates. The measure in terms of travel speed is 

selected as it is more intuitive than link travel time depending on a specific link length. 

First, reasonable modeling accuracy was achieved on all corridors with varied degrees of 
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congestion. The heavily congested corridor I395_E has the highest mean link MAE (7.55 

mph) and mean link MAPE (27.27%), as it has a relatively long congestion duration (5.63 

hours for all three congestion periods during the entire day in Table 19). It should be 

remarked that, under a low average traffic speed associated with a heavy congestion, a 

typical deviation in absolute speed values could still result in a relatively large percentage 

difference, due to the smaller value in the denominator. In this regard, the mean link-based 

MAPE of corridor I395_E is still explainable. Second, for each corridor, max link MAE 

are not significantly worse than corresponding mean link MAE, indicating that the 

approximation error is reasonably bounded along each corridor. In short, better calibration 

results are observed on the corridors with a shorter congestion duration, whereas the 

corridors with severer congestion have larger modeling errors (e.g., corridor US29 

Middle_W and I395_E). 

Table 20 Comparison Between Observed and Modeled Speed Across All Links and 15-

min Interval Resolution on 12 Selected Corridors. 

Corridor name Mean link MAE 

(mph) 

Mean link MAPE 

(%) 

Max link MAE 

(mph) 

US15 South_S 2.77 8.83 4.77 

VA267 West_W 2.86 4.52 3.22 

VA659_S 2.38 8.48 3.62 

RT7 North_W 4.09 11.04 5.91 

VA28 North_N 2.47 4.55 5.03 

I66 outside 

Beltway_W 

4.35 9.10 7.52 

US29 West_W 2.91 7.75 6.34 

US29 Middle_W 4.02 16.92 7.64 

VA234_N 3.20 8.14 7.53 

VA286 South_N 3.05 7.47 5.94 

I395_E 7.55 27.27 12.50 

US1 Middle_N 3.41 11.08 6.99 

Notes: MAE – mean absolute error, MAPE – mean absolute percentage error 
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To further examine the travel time modeling accuracy, Fig. 50 and Fig. 51 present 

the heatmap comparison between the observed and modeled travel speed on two corridors 

with a relatively poor modeling accuracy in Table 20, i.e., corridor US29 Middle_W and 

I395_E. On both corridors, the overall modeled speed pattern is closed to the corresponding 

observed one. Specifically, areas affected by congestion propagation (grey dash rectangles) 

have been realistically captured. 
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(a) Observed speed                           (b) Modeled speed 

Fig. 50. Heatmap Comparison Between Observed and Modeled Speed on Corridor US29 

Middle_W. 
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(a) Observed speed                           (b) Modeled speed 

Fig. 51. Heatmap Comparison Between Observed and Modeled Speed on Corridor 

I395_E. 

 

Focusing on two links with different traffic congestion patterns from corridor 

I395_E and corridor US1 Middle_N, Fig. 52 provides the time-dependent observed and 

modeled speed across the analysis time horizon. The congestion occurs in the periods of 

am and md on link 32609, whereas only am experiences significant delay on link 31948. 

One can observe that, for the link with a single congestion period (link 31948), the modeled 

speed closely matches the observed speed. However, for the link with multiple congestion 
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periods (link 32609), there are still obvious deviations between two lines, which highlights 

the challenges in modeling complex and heavy traffic congestion.  

 
(a) Link 32609 on corridor I395_E          (b) Link 31948 on corridor US1 Middle_N 

Fig. 52. Modeled Speed and Observed Speed Comparison on Two Links. 

 

5.6.2 Performance Evaluation of the Solution Methods 

As summarized in Table 21, three sets of instances with different sizes are designed 

to evaluate the three optimization models developed in this research. Instance networks 

consist of expressway, freeway and arterial link. Travel time functions calibrated on the 12 

representative corridors are applied to links in benchmark instances according to their road 

types. 

The first instance set includes 15 small-size instances. The average number of road 

links to be cleaned is 16. The length of links in the first set ranges from 0.07 to 0.74 mile. 

The second set contains 15 medium-size instances, where the number of road links ranges 

from 28 to 38. The last set includes 13 large-size instances, with 62 links to be cleaned on 

average for each instance network. For all of the instances, the planning horizon is 3 hours. 

The vehicle capacity is 1200 gallons of water, and it is assumed that cleaning 1 mile of 

road consumes 400 gallons of water. The speed limit of sprinkler trucks in the cleaning 

mode and deadheading mode is set as 5 mph and 14 mph, respectively. This research 

assumes that there is no limit on sprinkler fleet size, but each sprinkler has an acquisition 
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cost of equivalent 10 units of travel time. Note that, as this subsection mainly focuses on 

efficiency evaluation on the three proposed models, the weight of system impact cost 𝜔 is 

set as 0. The tradeoff between societal impact and private operating cost will be performed 

in Section 5.6.3. 

Table 21 Characteristics of Three Benchmark Instance Sets. 

Small-size benchmark instance set 
 

Medium-size benchmark instance set 
 

Large-size benchmark instance set 

Instance Links MinLL MaxLL Instance Links MinLL MaxLL Instance Links MinLL MaxLL 

S1 16 0.19 0.53 

 

M1 28 0.14 0.68 

 

L1 72 0.04 0.68 

S2 14 0.22 0.28 M2 36 0.11 0.65 L2 66 0.11 0.65 

S3 16 0.09 0.29 M3 28 0.09 0.31 L3 60 0.09 0.54 

S4 16 0.07 0.24 M4 30 0.14 0.42 L4 54 0.08 0.42 

S5 16 0.13 0.50 M5 30 0.15 0.5 L5 60 0.13 0.5 

S6 14 0.10 0.46 M6 38 0.13 0.44 L6 74 0.13 0.54 

S7 18 0.18 0.50 M7 32 0.18 0.5 L7 62 0.18 0.63 

S8 14 0.07 0.18 M8 34 0.07 0.49 L8 62 0.07 0.49 

S9 16 0.13 0.37 M9 30 0.13 0.56 L9 50 0.13 0.56 

S10 16 0.08 0.31 M10 28 0.15 0.33 L10 62 0.09 0.62 

S11 15 0.09 0.68 M11 32 0.07 0.23 L11 60 0.07 0.7 

S12 14 0.10 0.44 M12 30 0.09 0.41 L12 60 0.09 0.38 

S13 18 0.09 0.23 M13 28 0.07 0.7 L13 58 0.07 1.43 

S14 18 0.09 0.27 M14 32 0.09 0.37     

S15 16 0.15 0.74 M15 28 0.1 0.74     

Average 16 0.12 0.40  Average 31 0.11 0.49  Average 62 0.10 0.63 

Notes: MinLL and MaxLL represent minimum link length and maximum link length respectively, with the unit of mile 

 

In the results presented below, model M1-TEN is solved by the LR method 

presented in Section 5.5.1, M2-STD is directly solved by a commercial MILP solver 

(CPLEX), M3-CTR is solved by the BnP algorithm presented in Section 5.5.2. Both LR 

method and BnP algorithm proposed in this research are coded in C++. The RMLP in BnP 

is solved with CPLEX by calling its built-in C++ API. CPLEX solver version 12.10 is used 

throughout the experiments. All numerical experiments conducted in this study are 

evaluated on a 64-bit Linux server with Intel Xeon Gold 6230R processor @ 2.10 GHz and 

180 GB RAM.  
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The results of the proposed models on the three sets of real-life instances (small-

size, medium-size, large-size) are shown in Table 22, Table 23, and Table 24, respectively. 

For each instance, Table 22 - Table 24 provide lower bound (LB), upper bound (UB), Gap, 

solution time (ST), and memory usage (MU) of results obtained from the proposed models 

on the three sets of instances, respectively. The Gaps in tables are relative gaps, which are 

calculated by Gap = (UB − LB) UB⁄ × 100. The solution time limit is set as 15 minutes 

for small-size instances, 30 minutes for medium-size instances, 60 minutes for large-size 

instances. The time discretization resolution of model M1-TEN is set as 0.2 min. For model 

M3-CTR, the size of ng-set is set as 2. 

 

Table 22 Performance Comparisons of Three Proposed Models on Small-size Instances. 

Instance 

M1-TEN (LR) 

 

M2-STD (MILP Solver) 

 

M3-CTR (BnP) 

LB UB 
Gap 

(%) 

ST 

(s) 

MU 

(GB) 
LB UB 

Gap 

(%) 

ST 

(s) 

MU 

(GB) 
LB UB 

Gap 

(%) 

ST 

(s) 

MU 

(GB) 

S1 108.01 112.6 4.08 136 0.14 

 

23.34 112.38 79.23 900 22.33 

 

112.38 112.38 0.0 1 0.0 

S2 70.73 76.0 6.94 135 0.17 15.15 78.07 80.59 900 21.74 75.65 75.65 0.0 3 0.0 

S3 65.96 73.4 10.13 540 0.54 10.0 73.03 86.31 900 22.46 73.03 73.03 0.0 20 0.0 

S4 48.16 51.6 6.66 591 0.55 11.28 51.87 78.25 900 26.97 51.85 51.85 0.0 212 1.15 

S5 77.64 82.6 6.01 315 0.28 12.59 83.24 84.87 900 22.68 82.36 82.36 0.0 5 0.0 

S6 71.91 77.0 6.61 274 0.37 21.09 77.05 72.63 900 20.71 77.05 77.05 0.0 4 0.0 

S7 120.59 132.0 8.64 284 0.29 15.32 131.87 88.38 900 21.72 131.87 131.87 0.0 6 0.0 

S8 39.31 45.6 13.8 899 1.18 11.76 45.84 74.35 900 17.79 45.84 45.84 0.0 264 3.65 

S9 74.91 82.6 9.31 293 0.24 13.24 80.28 83.5 900 13.67 80.02 80.02 0.0 4 0.0 

S10 63.25 71.4 11.42 333 0.33 12.44 71.12 82.5 900 20.15 71.12 71.12 0.0 16 0.0 

S11 121.22 130.8 7.32 900 0.94 62.99 130.69 51.8 900 19.88 130.69 130.69 0.0 1 0.0 

S12 59.30 59.4 0.16 143 0.17 15.4 72.27 78.69 900 19.02 59.48 59.48 0.0 1 0.0 

S13 68.94 78.0 11.62 227 0.26 11.32 78.9 85.65 900 27.19 78.53 78.53 0.0 62 6.83 

S14 53.81 56.0 3.91 434 0.64 10.0 56.35 82.25 900 4.1 54.49 56.29 3.2 900 0.47 

S15 109.57 111.4 1.65 273 0.37 26.66 113.35 76.48 900 26.75 111.4 111.4 0.0 1 0.0 

Average   7.22 385 0.43    79.03 900 20.48    0.21 100 0.81 
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Table 23 Performance Comparisons of Three Proposed Models on Medium-size Instances. 

Instance 

M1-TEN (LR) 

 

M2-STD (MILP Solver) 

 

M3-CTR (BnP) 

LB 
 

UB 
 

Gap 
(%) 

ST 
(s) 

MU 
(GB) 

LB 
 

UB 
 

Gap 
(%) 

ST 
(s) 

MU 
(GB) 

LB 
 

UB 
 

Gap 
(%) 

ST 
(s) 

MU 
(GB) 

M1 199.29 226.2 11.9 1265 0.98 

 

151.12 212.76 28.97 1800 77.36 

 

211.4 211.4 0.0 758 106.24 

M2 215.73 245.8 12.23 1800 1.58 38.14 - - 1800 17.23 221.28 221.28 0.0 27 0.0 

M3 125.77 147.4 14.68 1182 1.08 10.0 146.64 93.18 1800 62.52 134.04 146.64 8.59 1800 156.71 

M4 185.04 193.2 4.22 1800 1.11 53.32 193.07 72.39 1800 24.98 190.07 190.07 0.0 14 0.0 

M5 217.37 232.4 6.47 1800 1.25 232.48 232.48 0.0 1186 9.19 232.48 232.48 0.0 4 0.0 

M6 198.56 227.2 12.61 1800 1.35 10.0 253.17 96.05 1800 11.4 202.72 215.2 5.8 1800 169.99 

M7 215.99 237.6 9.1 1800 1.09 15.2 - - 1800 14.71 225.52 225.52 0.0 20 0.0 

M8 132.51 160.4 17.39 1800 1.6 10.03 153.4 93.46 1800 28.81 136.06 150.12 9.37 1800 1.45 

M9 185.2 201.2 7.95 1800 1.11 22.0 194.04 88.66 1800 35.02 189.89 192.76 1.49 1800 179.87 

M10 148.68 156.0 4.69 1223 0.79 25.78 155.64 83.44 1800 24.82 153.03 153.03 0.0 22 0.0 

M11 98.67 116.4 15.23 1800 1.7 10.0 112.2 91.09 1800 93.41 106.22 112.92 5.93 1800 4.62 

M12 199.69 218.6 8.65 1245 0.92 13.29 222.67 94.03 1800 23.09 205.63 215.16 4.43 1800 132.7 

M13 167.8 189.0 11.22 1800 1.27 10.02 186.37 94.62 1800 118.91 173.61 184.68 5.99 1800 175.27 

M14 192.94 225.6 14.48 1800 1.1 10.0 197.49 94.94 1800 74.56 197.49 197.49 0.0 14 0.0 

M15 198.52 225.0 11.77 1800 0.8 31.31 222.55 85.93 1800 30.59 204.3 222.55 8.2 1800 132.2 

Average   10.84 1648 1.18    81.12 1759 43.11    3.32 1017 70.6 

 

Table 24 Performance Comparisons of Three Proposed Models on Large-size Instances. 

Instance 

M1-TEN (LR) 

 

M2-STD (MILP Solver) 

 

M3-CTR (BnP) 

LB 

 

UB 

 

Gap 

(%) 

ST 

(s) 

MU 

(GB) 

LB 

 

UB 

 

Gap 

(%) 

ST 

(s) 

MU 

(GB) 

LB 

 

UB 

 

Gap 

(%) 

ST 

(s) 

MU 

(GB) 

L1 203.71 632.0 67.77 3600 9.61 

 

10.0 - - 3600 25.26 

 

531.0 543.87 2.37 3600 8.39 

L2 159.6 540.4 70.47 3600 8.59 10.0 - - 3600 21.36 450.57 467.53 3.63 3600 22.02 

L3 112.4 629.6 82.15 3600 6.15 10.0 - - 3600 13.5 553.44 558.19 0.85 3600 3.39 

L4 10.0 346.8 97.12 3600 9.27 10.0 431.64 97.68 3600 19.71 330.26 341.46 3.28 3600 12.14 

L5 10.0 789.8 98.73 3600 10.08 10.0 - - 3600 15.8 371.99 403.93 7.91 3600 4.19 

L6 10.0 647.0 98.45 3600 9.86 10.0 - - 3600 17.99 465.71 504.8 7.74 3600 10.46 

L7 69.64 1111.2 93.73 3600 8.29 186.99 - - 3600 14.08 503.75 519.44 3.02 3600 19.36 

L8 10.0 625.8 98.40 3600 9.50 10.0 - - 3600 22.12 303.62 320.1 5.15 3600 7.55 

L9 396.03 772.4 48.73 3600 5.32 105.18 - - 3600 13.59 602.83 602.83 0.0 12 0.71 

L10 27.06 637.4 95.76 3600 8.36 10.0 - - 3600 16.8 382.14 399.41 4.32 3600 4.24 

L11 10.0 694.0 98.56 3600 8.45 10.0 - - 3600 17.55 320.05 338.0 5.31 3600 4.57 

L12 162.28 1022.2 84.12 3600 7.55 10.0 - - 3600 15.8 514.32 545.44 5.7 3600 23.17 

L13 313.87 935.8 66.46 3600 5.32 10.0 - - 3600 15.32 639.36 678.18 5.72 3600 15.72 

Average   84.65 3600 8.18    99.82 3600 -    4.23 3324 10.45 

 

Overall, the two models (M1-TEN and M3-CTR) solved by customized solution 

algorithms outperform the model (M2-STD) solved by a MILP solver in the three sets of 
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instances; model M3-CTR has the best performance in terms of solution quality and 

solution time among the three proposed models. 

For small-size instances, the average relative gaps of models M1-TEN, M2-STD, 

and M3-CTR are 7.22%, 79.03%, and 0.21%, respectively. Specifically, among the 15 

small-size instances, model M3-CTR is able to produce optimal solutions on 14 instances 

within the time limit, while solution optimality cannot be proven on all 15 instances for 

models M1-TEN and M2-STD. On the other hand, although the relative gaps of model M1-

TEN and M2-STD are higher than that of model M3-CTR, the upper bounds provided by 

the first two models are always closed to optimal solutions, indicating that these two 

models are still able to produce acceptable routing solutions for practical use in small-size 

instances. In terms of the computational speed, the average solution times of the three 

models on small-size instances are 385s, 900s, and 100s, respectively. 

For medium-size instances, due to the increase of instance complexity, larger 

relative gaps and longer solution times are observed on three models. In terms of solution 

quality, similar to the results on small-size instances, model M3-CTR still has the best 

performance, with an average relative gap of 3.32%. For model M1-TEN, the average 

relative gap is 10.84%, while it is over 80% for model M2-STD. The large gap of model 

M2-STD is mainly due to its weak lower bounds. The model M2-STD is directly solved 

by CPLEX with built-in linear relaxation and branch-and-bound capability. Compared to 

model M3-CTR, it can be found that linearly relaxing a path-based model (M3-CTR) 

provides tighter lower bounds than simply relaxing an arc-based model (M2-STD). 

For large-size instances, model M2-STD is only able to produce feasible solutions 

on one instance (L4), and weak lower bounds are provided on all instances, resulting in an 
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average relative gap of 99.82%. This highlights the need of designing customized solution 

algorithms for solving large-scale RAPPs in real life. Compared with model M3-CTR with 

an average gap of 4.23%, model M1-TEN provides relatively poor lower and upper bounds, 

resulting in an average gap of 84.65%. Its weak bounds are mainly due to the symmetry 

issue, as discussed by Niu et al., (2018) and Yao et al., (2019). As all sprinkler trucks are 

assumed to be identical, trucks tend to select the same least-cost path when serving 

customers, resulting in weaker lower bounds and additional efforts for generating feasible 

solutions for upper bounds. 

In Table 25, both Gap and BestGap are further provided to comprehensively 

measure the quality of solutions obtained from model M1-TEN and M3-CTR. BestGap 

represents the relative difference between upper bound and the best lower bound of the two 

models. The Gaps and BestGaps of model M3-CTR are exactly the same on all instances, 

while, for model M1-TEN, BestGaps are significantly smaller than the corresponding 

Gaps. The average BestGap of model M1 is 33.37%. This means that although the solution 

gaps of model M1-TEN are relatively large, the upper bounds can actually serve as good 

feasible solutions in practice.  

Another important finding from this comparison is the memory usage of each 

model, especially for real-time applications. Overall, model M1-TEN consumes much less 

memory than models M2-STD and M3-CTR. Even for large-size instances, the average 

memory usage of model M1-TEN is 8.18 GB, which highlight the applicability of model 

M1-TEN in on-line computing. Model M3-CTR consumes more memory than model M1-

TEN. This is due to the use of parallel computing in the branch and bound module, which 

involves a large number of branch and bound nodes being processed simultaneously. For 
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model M2-STD, the average memory usage on medium-size instances is 43.11 GB. Note 

that the memory statistics for model M2-STD was not reported for large-size instances, as 

it is still in the pre-solving stage when reaching the time limit. Another interesting finding 

is that the average memory usage of model M3-CTR on large-scale instances is less than 

that on medium-scale instances. This is due to the high complexity of large-scale instances, 

and only a few number of branch-and-bound nodes are explored within the pre-set time 

limit. 

Table 25 Optimality Gaps of Models M1-TEN and M3-CTR on Large-size Instances. 

Instance 

M1-TEN (LR) 

 

M3-CTR (BnP) 

LB UB Gap (%) BestGap (%) LB UB 
Gap 

(%) 
BestGap (%) 

L1 203.71 632.0 67.77 15.98 

 

531.0 543.87 2.37 2.37 

L2 159.6 540.4 70.47 16.62 450.57 467.53 3.63 3.63 

L3 112.4 629.6 82.15 12.10 553.44 558.19 0.85 0.85 

L4 10.0 346.8 97.12 4.77 330.26 341.46 3.28 3.28 

L5 10.0 789.8 98.73 52.90 371.99 403.93 7.91 7.91 

L6 10.0 647.0 98.45 28.02 465.71 504.8 7.74 7.74 

L7 69.64 1111.2 93.73 54.67 503.75 519.44 3.02 3.02 

L8 10.0 625.8 98.40 51.48 303.62 320.1 5.15 5.15 

L9 396.03 772.4 48.73 21.95 602.83 602.83 0.0 0.0 

L10 27.06 637.4 95.76 40.05 382.14 399.41 4.32 4.32 

L11 10.0 694.0 98.56 53.88 320.05 338.0 5.31 5.31 

L12 162.28 1022.2 84.12 49.68 514.32 545.44 5.7 5.7 

L13 313.87 935.8 66.46 31.68 639.36 678.18 5.72 5.72 

Average   84.65 33.37    4.23 4.23 

 

5.6.3 System Impact and Private Cost of Vehicle Routing 

Table 26 presents the optimal solution costs of small-size instances for 𝜔 = 0.0 

and 1.0. Note that, to exactly measure the changes of optimal operation cost and system 

impact under different weights of system impact, only instances that can be solved to 

optimality are selected, thus instance S14 is not included in Table 26. Overall, after putting 

more priorities on the marginal cost of vehicle routing, the system impact obviously 
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decreases while the private operation cost increases. For each instance, OCPI (SIPD) 

denotes the percentage increase (decrease) of the instance’s optimal operation cost (system 

impact) when varying 𝜔 from 0.0 to 1.0. Due to the diversity of selected instances, OCPI 

and SIPD may vary from one instance to another. Specifically, for instance S1, its operation 

cost increases by 4.23% when changing 𝜔 = 0.0 from 0.0 to 1.0, while it increases by 

69.35% in instance S4.  

Table 26 Optimal Routing Costs of Small Instances under Different Weights of System 

Impact 𝜔. 

Instance 
Weight of system impact 𝜔 = 0.0  Weight of system impact 𝜔 = 1.0 OCPI 

(%) 

SIPD 

(%) Total cost Operation cost System impact  Total cost Operation cost System impact 

S1 112.38 112.38 297.55  391.51 117.13 274.38 4.23 7.79 

S2 75.65 75.65 320.44  335.83 88.63 247.20 17.16 22.85 

S3 73.03 73.03 350.95  348.17 88.26 259.91 20.85 25.94 

S4 51.85 51.85 328.06  328.10 87.81 240.29 69.35 26.76 

S5 82.36 82.36 347.14  350.75 118.10 232.65 43.43 32.98 

S6 77.05 77.05 289.92  318.01 89.25 228.76 15.83 21.09 

S7 131.87 131.87 396.73  449.78 148.25 301.53 12.42 24.00 

S8 45.84 45.84 318.53  292.49 58.60 233.89 27.84 26.57 

S9 80.02 80.02 339.51  362.46 89.43 273.03 11.76 19.58 

S10 71.12 71.12 343.32  339.80 88.73 251.07 24.76 26.87 

S11 130.69 130.69 259.40  360.36 146.78 213.58 12.31 17.66 

S12 59.48 59.48 278.47  297.54 89.42 208.12 50.34 25.26 

S13 78.53 78.53 385.28  389.30 89.67 299.63 14.19 22.23 

S14 - - -  - - - - - 

S15 111.40 111.40 343.32  396.13 147.65 248.48 32.54 27.63 

Notes: OCPI – operation cost percentage increase, SIPD – system impact percentage 

decrease 

 

As an example, Fig. 53 presents the Pareto frontier of operation cost and system 

impact on instance S5 with ω ranging from 0.0 to 1.0. Thus, a pareto-optimal solution 

should be systematically selected by decision makers and planners to balance these two 

important criteria. 
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𝜔 = 1.0 

𝜔 = 0.0 

 
Fig. 53. Pareto Curve of Operation Cost and System Impact on Instance S5 with 𝜔 

Ranging from 0.0 to 1.0. 

 

5.7 Conclusions 

This chapter focuses on formulating and solving RARPs in city logistics with a 

congested urban environment. Based on the fluid queuing model with a polynomial 

functional assumption for arrival flow rates, time-dependent link travel time as well as 

system-wide (societal) congestion impact was analytically derived. With the sprinkler 

truck routing problem as an example, there different mixed integer linear programming 

models were constructed. Two solution methods including Lagrangian relaxation and 

branch-and-price algorithm were developed for efficiently solving the models. Numerical 

experiments based on real-world traffic flow data were designed to investigate the 

effectiveness of the proposed models and solution methods. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH 

6.1 Summary of the Dissertation 

This dissertation investigates the modeling of CAM systems on layered 

transportation networks, with a special focus on the following three research thrusts. 

Research thrust 1: Layered CAM system modeling architecture. In Chapter 3, a new 

modeling framework with preliminary experiments for modeling CAM systems from a 

layered decomposition perspective was introduced. CAM systems with hierarchical 

structures are decomposed into strategic macroscopic, tactical mesoscopic, and operational 

microscopic layers. System modeling tasks with different computational and resolution 

requirements were performed on dedicated layers to seek a balance between the efficiency 

and fidelity in real-life deployments. The methodologies for CAM system simulation, 

optimization, and integrated simulation and optimization were comprehensively 

investigated based on the layered decomposition structure. Two open-source tools were 

developed to support CAM system modeling. osm2gmns aims to help users quickly prepare 

multiresolution transportation networks. CAMLite is intended to provide an integrated 

traffic simulation and optimization platform for modeling CAM systems. Numerical 

experiments were designed to illustrate the effectiveness of the proposed methodologies 

and open-source tools. 

Research thrust 2: Cross-resolution traffic state estimation in CAM systems. In 

Chapter 4, the traffic system state estimation (TSSI) problem was introduced to 

systematically consider traffic state estimation, model parameter estimation, and queue 

profile estimation problems under a unified framework. Based on the fluid queue 
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approximation at the macroscopic level and the continuous space-time distribution function 

representation scheme at the mesoscopic level, the TSSI problem was formulated with a 

nonlinear optimization model in which traffic flow models and observations from different 

levels of resolution are systematically considered. The optimization model was cast in a 

customized computational graph and solved by a forward-backward algorithmic method, 

which take advantage of the computational efficiency and automatic differentiation 

techniques offered by the deep learning community for complex nonlinear but 

differentiable programming problems. Numerical experiments based on real-world and 

hypothetical datasets were designed to demonstrate the effectiveness of the proposed 

framework. Specifically, traffic states on road segments can be well reproduced using 

partially observed traffic data; the integrated modeling framework can help increase the 

accuracy of estimations; the analytically derived macroscopic system dynamic measures 

fit well with field observations; reliable traffic system state identification results can be 

obtained using the proposed joint estimation framework in real-life applications with 

limited observations; and the proposed modeling framework can be easily extended to a 

distributed version in largescale applications. 

Research thrust 3: Integrated city logistics operation optimization in CAM systems. 

In Chapter 5, focusing on formulating and solving RARPs in city logistics with a congested 

urban environment, this research introduced a comprehensive modeling framework and 

exact solution algorithms. Specifically, based on the fluid queuing model with a 

polynomial functional assumption for arrival flow rates, time-dependent link travel time as 

well as system-wide (societal) congestion impact was analytically derived. Two new time-

dependent travel time representation schemes were investigated. With the SRP as an 
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example, three optimization models, including a time-expanded network-based arc routing 

formulation, an arc-based node routing formulation, and a path-based node routing 

formulation, were constructed from different perspectives of capturing time-dependent 

travel time and formulating problem-specific constraints. In addition, two exact solution 

methods, i.e., Lagrangian relaxation and branch-and-price algorithm, were developed for 

efficiently solving the proposed models. Numerical experiments based on real-world traffic 

flow data were designed to demonstrate the effectiveness of the proposed models and 

solution methods. 

 

6.2 Theoretical Contributions and Broader Impacts 

The proposed research addresses several fundamental research issues in traffic 

monitoring and control systems. (1) This research offers a set of novel techniques on 

holistic traveler mobility optimization, agent-based sensoring and control under the new 

environment of shared CAM networks. (2) A new class of differentiable computing-based 

algorithms on space-time traffic networks, including routing and scheduling problems for 

operations, is studied. The proposed algorithms could overcome the typical computational 

difficulties with a single-core CPU platform. (3) This study provides an innovative virtual-

track resource management mechanism for dynamically scheduling a large number of 

SDVs.  (4) A multi-resolution network system will allow next-generation traffic system 

operators to utilize internally consistent views to manage potential hotspots of traffic 

congestions. (5) This research has provided a set of open-source software packages for 

improving both research and education effectiveness on agent-based system optimization.   
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The theoretical methodologies, insights and open-source tools developed from this 

dissertation will be invaluable for modeling and optimizing new autonomous vehicle 

operation and control methods for metropolitan regions. This research will help 

transportation agencies to efficiently satisfy increasing transportation demand with a 

limited road expansion budget and constrained road capacity. Education-oriented software 

tools, and real-world case studies that can contribute to the training of future computer 

scientists, operations researchers and transportation engineers. 

 

6.3 Future Research 

Future studies on the CAM system architecture design include (1) integrating the 

proposed methodologies with a differentiable programming framework (Hu et al., 2019, 

Lu et al., 2022), and (2) comprehensive computational experiments on large-scale 

instances. In addition, for trajectory controls with a higher fidelity, the extension of the 

space-time approach for modeling high-dimensional vehicle dynamics (e.g., acceleration) 

without introducing nonlinearity for solving differential equations of motion is briefly 

discussed below. Fig. 54 demonstrates the addition of another velocity axis to the basic 

space-time network, where vehicle dynamics can be exactly represented by used space-

time-velocity (STV) vertices. The green and gray vertices in the left part of Fig. 54 

represent feasible STV vertices and infeasible vertices due to speed limits on links or 

acceleration restrictions of vehicles, respectively. In the right part of Fig. 54, the projection 

of a vehicle’s STV path on the velocity-space coordinate plane shows the speed profile of 

the vehicle, and the projection on the space-time coordinate plane indicates the spatial 

trajectory. This STV network framework clearly demonstrates the location- and time-
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dependent vehicle dynamics, such as the speed, acceleration, and deceleration. Additional 

constraints, including speed limits and acceleration restrictions associated with different 

types of vehicles, can be easily added to this representation.  

 
Fig. 54. Vehicle Dynamics Modeling on a Space-time-velocity Network (Adopted from 

Zhou et al., 2017). 

 

The future studies on CAM system state estimation include (1) incorporating 

stochastic traffic flow models in the proposed framework to improve its performance under 

congested traffic conditions with high randomness and (2) extending the current framework 

to an online version to support real-time traffic management and control. 

In terms of system optimization, this study can be extended along the following 

directions in the future. First, this research considers fixed departure time of service 

vehicles at the origin depot. Future studies could relax this restriction to allow the selection 

of proper departure times/schedules so as to minimize the overall cost. One interesting yet 

challenging topic along this line is how to produce optimal continuous-time path solutions 

without explicitly performing time discretization. This theoretically important and 

practically useful question was discussed in a recent paper by Boland et al., (2017) for the 

service network design problem. Second, with simplified fluid queue models, the system-

wide (societal) congestion impact of routing solutions is considered in this research. The 

tradeoff among additional costs such as energy use, emissions reduction, and location 
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congestion reduction (Lam and Hentenryck, 2016) could be further systematically 

investigated under more realistic traffic flow modeling frameworks to accommodate 

different practical needs in real-life applications.  
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