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ABSTRACT

This dissertation consists of two essays. The first, titled “Sweep Order and the

Cost of Market Fragmentation” takes a “revealed-preference” approach towards gaug-

ing the effects of market fragmentation by documenting the implicit costs borne by

traders looking to avoid executing in a fragmented environment. I show that traders

use Intermarket Sweep Orders (ISO) to trade “as-if” markets were single-venued and

pay a premium to do so. Using a sample of over 2,600 securities over the period

January 2019 to April 2021, this premium amounts to 1.3 bps on average (or 40%

of the effective spread), amounting to a total of $3 billion over the sample period. I

find a positive, robust, and significant relationship between the premium and differ-

ent measures of market fragmentation, further supporting the interpretation of the

premium as a cost of market fragmentation. The second essay, titled “The Profitabil-

ity of Liquidity Provision” investigates the relationship between the profits realized

from providing liquidity and the amount of time it takes liquidity providers to reverse

their positions. By tracking the cumulative inventory position of all passive liquidity

providers in the US equity market and matching each aggregate position with its

offsetting trade, I construct a measure of profits to liquidity provision (realized prof-

itability) and assess how profitability varies with the average time to offset. Using a

sample of all common stocks from 2017 to 2020, I show that there is substantial vari-

ation in the horizon at which trades are turned around even for the same stock. As a

mark-to-market profit, the conventional realized spread—measured with a prespeci-

fied horizon—can deviate significantly from the realized profits to liquidity provision

both in the cross-section and in the time-series. I further show that, consistent with

the risk-return tradeoff faced by liquidity providers as a whole, realized profitability

is low for trades that are quickly turned around and high for trades that take longer

to reverse.
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Chapter 1

SWEEP ORDERS AND THE COST OF MARKET FRAGMENTATION

1.1 Introduction

Over the last 20 years the public security markets in the United States have

fragmented. At the turn of the century individual securities were almost exclusively

traded on a single exchange. Today that same secutiry may be traded across as

many as 13 different public exchanges1. For instance Menkveld (2013) reports that

the NYSE’s market share in NYSE-listed stocks fell from 80% in 2005 to 25% in

2010. Whether such fragmentation is a good or bad development is the subject of

open discussion in the theoretical literature. A fragmented market is said to lower

transaction costs through increased cross-exchange competition on factors such as

fees, rules, and access to data. On the other hand, a single-venued market, benefiting

from the reduced complexity of a common order book, allows for a quicker and more

certain trade-fill. To this end the SEC implemented Regulation National Market

System (Reg NMS) in 2007 with the expressed intent of capturing the benefits of

an integrated market while preserving the gains from cross-exchange competition.

Recent discussion regarding a “Reg NMS II”2 demonstrates a continued interest on

the part of both regulators and practitioners in the costs of a fragmented market. I

contribute to this discussion by estimating the costs that traders are willing to bear

in order to avoid the delays and uncertainty of a fragmented environment and trade

as-if there were a single consolidated order-book.

1Not to mention the dozens of off-exchange alternative trading venues also available
2https://www.sec.gov/rules/proposed/2020/34-88216.pdf

https://www.nasdaq.com/docs/2020/05/27/Reg-NMS-II-Comment-Letter.pdf
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In modern markets, a prohibition on trade-throughs has meant that a market order

must execute at a price no worse than the best protected quote3 (i.e. the NBBO)

available on any market.4 It’s execution may therefore be delayed as its routing is

determined, and particularly so if the size of the order is greater than the quantity

initially available at the NBBO quote. In this case the NBBO must be updated

before the remainder of the order can be executed. Further, order cancellations in

the wake of the initial partial execution can cause the new NBBO quote to become

less advantageous to the market order. In contrast, an intermarket sweep order (ISO)

is immediately executed on one or more exchanges, requiring only that the order

submitter simultaneously “sweep” NBBO orders resting on other exchanges at the

time of order submission. As a consequence, the ISO can execute at an average price

worse than the NBBO. An ISO implemented trade is free to “walk to the book”

on one exchange if it also clears out any better-priced protected quotes, meaning

that it only interacts with a subset of the total available liquidity. As a result, it is

possible that some better priced unprotected liquidity on another exchange could be

missed by the ISO. What an ISO offers in return to missing liquidity is the ability

to instantaneously trade against that subset of quotes as would be the case on a

consolidated book with similar liquidity; in other words, ISOs trade as-if markets

were not fragmented. Figure 1 demonstrates this dynamic.

In this study I take a “revealed-preference” approach towards measuring the costs

of market fragmentation by comparing the executions of ISO and non-ISO trades. The

ideal comparison is to compare the costs of each ISO trade to what they would’ve been

had a sequence of MOs been used instead, but this is not possible as the counterfactual

3An exchange’s “protected” quotes correspond to the highest priced Bid and lowest priced Ask

quotes visible on that exchange.
4A trade-through refers to when a marketable order is filled at a price inferior to the prevailing

NBBO,Section §242.611 of the SEC’s Regulation National Market System
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trades are not observable. However, because MOs should execute at the NBBO, which

is observable, it is possible to calculate what each trade’s fill would’ve been had they

interacted with the NBBO first. As an example, suppose that, out of a sequence of

ISOs, we observe a sale order for 100 shares being cleared at a price of $3.5 even

though the updated NBB quotes 50 shares at $4.5. If the trade first interacted with

the NBB, 50 shares would have sold at $4.5 before the next 50 shares being off-loaded

at $3.5. In total, the MO trading could have earned the trader an extra $50 ($400 vs

$350) or $50
100

= $0.50 per share (if the quotes did not change). The presumption here

is that, the trader, by opting for the ISO was willing to pay at least $0.50 per share

to avoid trading with MOs.

I consider a sample of over 2,800 securities traded on US public exchanges for the

time period spanning January 2019 to April 2021. Within this sample, which makes

up 93% of traded dollar volume, ISOs accounted for 48% of on-exchange trade-volume.

ISOs on average executed at prices 1.36 basis points (about 1
5
of the quoted spread)

worse than similar non-ISO trades. My central argument is that, since traders make

use of ISOs to trade as-if markets were not fragmented, the difference in costs reflects

the premium paid by traders to quickly trade in an integrated environment. To put

a dollar value on this premium, over $90 million in ISO premiums were paid by

traders in the SPY market alone. When considering the whole sample of securities,

the premiums amounted to $2.97 billion for this same time period.

I find that the ISO premium is higher in more fragmented markets and lower in

less fragmented ones, this is inline with the interpretation of the premium as the

price of avoiding a fragmented market. In absolute terms, the ISO premium is higher

for stocks traded across 4 or less venues (5.22 bps) than for securities traded on

more than 9 venues (1.51 bps). This difference is largely driven by the fact that

transaction costs, as a whole, are large for small stocks than for large, and large

3



stocks are more likely to be traded across more exchanges. Measured as a fraction of

effective spreads, the premium of 0.42 spreads for securities traded on many exchanges

is greater than the 0.32 for securities traded on few exchanges. This is not to say that

the variation in the premium is caused by the number of trading venues, something

which is highly endogenous Bessembinder (2003). Rather, I am documenting that

the (scaled) premium is larger in environments where one would expect fragmentation

to be a more pronounced issue.

Regression analysis provides further evidence of a statistically and economically

significant positive relationship existing between the size of the premium and the ex-

tent to which markets are fragmented. I find that a 1% increase in trade fragmenta-

tion, as measured by (1−HHI) and the portion of off-exchange trading, is associated

with a 1.2% and 0.26% increase in ISO costs respectively. Considering that these two

fragmentation measures are concerned with how disperse trading volume is, an alter-

native measure, focusing on the degree of inter-exchange disagreement on volatility is

used as a further check. Disagreement in volatility is measured as a volume weighted

standard deviation in volatility measures across exchanges. Using the prices reported

from separate exchanges, each exchange’s volatility is measured as the realized varia-

tion (RV) of its price series. RV is measured as the sum of squared first differences in

log prices, RV =
∑

t(lnPt+1 − lnPt)
2, with corrections for microstructure noise biases

following Zhang et al. (2005). I use RV estimates because the vast amount of price

data available allows for a high level of confidence in the estimates. The motivating

logic behind this measure is the idea that, for a security traded on many exchanges, in

a well integrated market both the NYSE and NASDAQ should agree on how volatile

the stock price is. I found that a 1% rise in RV-dispersion is associated with a 0.18%

rise in the ISO premium. The relationship between fragmentation and ISO premiums

is very robust, it persists across different measures and methodologies, across large

4



and small cap stocks, with and without the COVID-19 episode, and after introducing

Heckman selection bias controls.

Related Papers

In terms of theoretical background, Glosten (1994) found that in the presence of

an open electronic order book, a multi-venued trading environment provides the same

trade executions as-if there were only a single consolidated limit order book (CXLOB).

A corollary to this result holds that any additional competition to the order book is

either unprofitable or redundant. In this context, the recent proliferation of trading

venues is somewhat puzzling. The apparent divergence from theory is due to the

violation of Glosten’s underlying assumptions; as a result of these violations, the

Glosten (1994) result fails to hold and market fragmentation is made costly. Of the

assumptions made by Glosten, two fail to hold in reality: (1) Investors can costlessly

and simultaneously trade against separate order books on different exchanges, and

(2) bid and ask quotes cannot be cancelled while a trade is being executed. As I

previously mentioned, regular market orders can only execute one at a time against

NBBO quotes, this violates the first assumption. The second assumption is violated

because the quotes on other exchanges may be revised while the MO-trader waits

for the NBBO to update. ISOs are split trades that can simultaneously execute on

multiple exchanges at once, and this simultaneity means that resting orders can not

react mid-trade. Glosten’s assumptions hold for sweeps, but only when the scope of

execution is limited to that subset of sweepable quotes the ISO aims to interact with.

The subset of total liquidity an ISO implementation aims to interact with is equal

to the set of protected quotes in addition to the set of protected quotes in addition

to the resting orders on the exchange it’s trading through to. The ISO fill is equal

to that of a similar trade executed in a hypothetical would where the total liquidity
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across venues equalled the ISO subset in our world and Glosten’s assumptions held.

More broadly, there exists a long history of theoretical papers detailing the po-

tential pros and cons of a fragmented market. Madhavan (1995) and Pagano (1989)

highlight the positive network externalities of a single exchange, arguing that “liq-

uidity begets more liquidity” and that splitting liquidity across multiple exchanges

squashes this positive effect. Chowdhry and Nanda (1996) posit that adverse selection

is greater in a multi-venue environment. On the other side Economides (1996) argues

that the monopoly overhang associated with a single trading venue outweighs any

benefits from consolidation. Harris (1993) takes a different tact, saying that different

exchanges with different trading rules may attract different traders, expanding the

total trader base and hence improving liquidity. Along these lines the Boehmer and

Boehmer (2003) empirical study documented an improvement in liquidity in the SPY

once the NYSE started trading it on their exchanges.

This paper also fits along side a series of post Reg NMS empirical studies focusing

on the effects of fragemented markets. O’Hara and Ye (2011) compare the execution

quality of stocks with more and less exchange-dispersed trading volume and find that

more disperse trading either improves or at least has no effect on market quality. In a

more recent paper Haslag and Ringgenberg (2020), similarly find that market quality

improved as markets “fragmented”, although the improvements accrued mostly to

large stocks. As for measuring ISO costs, Chakravarty et al. (2012) find that ISO

trading is more informed and have higher effective spreads than non-ISO trades,

though they do not address the issue of fragmentation.

In this paper I identify the mechanical differences between sweep and non-sweep

orders as a channel through which fragmentation effects modern markets. I show

that traders make use of ISOs in order to avoid the delays and price uncertainty of

the fragmented environment. I contribute to the market fragmentation literature by

6



developing a methodology to measure the premium paid to avoid fragmentation and

putting a dollar value to these costs. Using new and old measures of fragmentation,

I found a positive relationship between ISO premiums and market fragmentation.

Given that ISOs are used to execute nearly half of on-exchange trades, these trad-

ing costs are of real practical importance and deserving of regulatory consideration,

especially if changes to trading rules would substantially effect how sweeps operate.

The rest of the paper is organized as follows: Section 2 describes the current

trading landscape, the regulatory environment and the mechanics of ISOs along with

an illustrative example. Section 3 covers the methodology and data used to measure

ISO costs; section 4 does the same for market fragmentation. Section 5 covers the

empirical design and results while section 6 concludes.

1.2 The Trading Landscape

Regulation National Market System

Modern US markets were largely shaped by the SEC’s Regulation National Market

System (Reg NMS). Reg NMS is a set of SEC rules first introduced in 2005 and

implemented in 2007. Reg NMS had sought to integrate U.S. security exchanges by

setting common rules by which exchanges may carry-out trades and post quotes. The

rules of consequence here are Rules 602, 604, and 611.

Rules 602 and 604

Rules 602 and 604 requires exchanges to immediately post and update their best-

priced visible quotes onto a consolidated tape. These quotes are known as “protected

quotes” and represent firm commitments of price and quantity at which the exchange

will honor incoming trades. Hidden orders are not included in protected quotes,

7



neither are orders for less than 100 shares. Protected quotes change or update in

response to an order cancellation, a new posting, or the fulfilment of a trade. The

consolidated tape association (CTA) and security information processors (SIPs) con-

solidate the updates from different trading venues. The daily millisecond TAQ data

used in this paper provides a record of all protected quote updates put together from

the CTA and SIPs.

Rule 611

Next, Rule 611, colloquially known as “the trade-through rule”, requires that all

trades be executed at the NBBO prices or better. Per the regulation, the NBBO is

defined as the highest priced bid and lowest priced ask from the existing protected

quotes on the tape. This rule requires that orders be routed to the exchanges with the

best protected quotes; exchanges are not allowed to fill any order at a noncompetitive

price. The onus of compliance lies on the trading venue. As a result, an exchange

will either cancel back or reroute a market order to another exchange if they can not

match or beat the NBBO, in order to ensure compliance. The intention of these rules

was to resolve potential conflicts of interest in order-routing and enforce a common

price-priority in trade executions across public trading venues. If resting limit orders

remain in place as the MOs, which make up a trade, execute across exchanges, the

trade would get the best execution possible given the entirety of the posted liquidity.

Intermarket Sweep Orders

Trading against all the displayed liquidity across all exchanges requires a frag-

mented trading strategy with a lot of starts and stops permitting ample time for

the market to move against the trader. The Reg NMS rules have unintentionally

allowed market fragmentation to affect normal trading by depriving traders of the

8



instantaneous book climbing characteristic of a single-venue market structure. There

is however an alternative to trading in this manner.

The way around this is the ISO which is Rule 611 exempt. ISOs have obtained

widespread use, roughly half of all sample trades examined here were executed using

an ISO. Since they are Rule 611 exempt, an exchange is free to fill an ISO even if

they’re not quoting at the NBBO. When sending an ISO to a particular exchange,

the sender commits themselves to sending concurrent ISO orders to clear out any

protected liquidity posted at better prices on other exchanges. To be protected, a

quotation must be the “best bid” or “best offer” of a national securities exchange.5

Since ISO senders commit themselves to clearing out all more competitively priced

protected volume, the ISO exception appears to be aligned with the general spirit of

Rule 611.

Example

Consider the case where a security is traded across the three exchanges A, B, and

C. The prevailing protected and un-protected quotes for the exchanges are displayed

in Figure 3. The bid and ask quotes of each exchange’s order book lie on the top

and bottom respectively with the most competitive quotes at the top. The blue

cells represent that exchange’s protected quotes and the green cells correspond to

unprotected liquidity. Hidden orders are included in the grey font for illustrative

purposes; note that they do not qualify as a protected quote. Across the three pairs

of protected quotes, the best bid (100 @ 5) and best ask (50 @ 6) (in bold) make up

the NBBO.

A trader looking to sell 200 shares in this environment may decide to do so by

5See the April 2015 “Rule 611 of Regulation NMS” memorandum by the Division of Trading and

Markets of the U.S. SEC: https://www.sec.gov/spotlight/emsac/memo-rule-611-regulation-nms.pdf

9



piece-wise submitting smaller market orders submitted sequentially or by the simulta-

neous submission of ISOs. The trade, using ISOs, is made up of three sell ISOs of 100

to exchange A, 50 to exchange B, and 50 to exchange C. Executed at the prevailing

prices, the sale yields proceeds of $950. Assuming that there is no price-movement

in-between market order submissions, a trader would first submit a buy order for 100

to exchange A, wait for the NBB to update to the exchange B before clearing that out

with an order for 50, and finally send another order of 50 to exchange A which would

then be the prevailing NBB at a price of $4.50. Trading in this manner would yield

proceeds of $975. On its face it appears as the ISOs are dominated, since the MOs

had access to better priced unprotected quotes, but it is possible that the market

prices change mid-trade when using MOs. To illustrate this suppose that the orders

across the exchanges are cancelled-back $0.50 to the prices in red after the first mar-

ket order for 100 is filled. Were this to happen the MO-trading would instead yield

$925. Non-ISO trading promises the best prices in a perfect world but an uncertain

fill in an imperfect one whereas ISOs are quicker and more sure, though possibly at

worse prices.

Market Fragmentation

The ISO-MO dichotomy can be expressed in terms of integrated and fragmented

markets. Glosten (1994) shows that there should not be a difference in execution

quality between a single or multi-venued market. His result rests on the assumption

that trades can be costlessly split into multiple orders and simultaneously execute

against multiple exchanges. This is not true for MO implementations, making frag-

mentation costly, but is true for ISOs, and hence trade as-if there were a single LOB.

In terms of the example, you can see this by first considering a hypothetical LOB

constructed from the prevailing quotes (Figure 4). This ISO implemented trade has

10



the same execution as a MO would if the hypothetical book was the only game in

town. In contrast, now imagine a “combined book” which includes all protected and

unprotected quotes in the different exchanges. The sequential MO implementation of

the trade mimics that of a MO against the combined book, though with breaks in time

between orders during which the book can shift mid-trade. Quotes may randomly

move mid-trade, but, more importantly, the changes may be strategic. For example,

a vigilant liquidity provider could rationally expect the arrival of additional sell or-

ders after observing a MO clear out the available NBB liquidity on one exchange. In

response to this first MO, the liquidity provider may revise their resting buy limit

orders on other exchanges down to a more advantageous price to take advantage of

the predicted order flow.

It is worth highlighting that what is missing from the MO implementation is the

instantaneity which is characteristic of an integrated market. Differences between

the executions of ISO and non-ISO trades reflect a sort of “price of immediacy”. I

hasten to emphasize that it is the lack of time precluding quote revisions which is

of first-order importance, and it is not the actual milliseconds saved that matters

here. If quotes could not be revised mid-trade, trades would have the same execution

whether it took 1 second or 0.1 seconds to complete.

Since the MOs trade against a “fuller” book, executing the trade with non-Rule

611 orders is always at least as good as the ISO implementation so long as the book

does not change. If however, the market is such that small changes in the quotes may

have an out-sized impact on execution quality, an ISO may offer a more certain fill.

Simply put, ISOs offer an immediate execution with little price uncertainty whereas

MOs offer a slower fill at a potentially better but uncertain average price. A priori, it is

not clear if ISO traders should be compensated for trading against an incomplete book

or if they should be paying a premium to trade in a pseudo-integrated environment.
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1.3 Measuring ISO Costs

I measure the costs of market fragmentation by comparing the executions of ISO

and non-ISO trades. ISOs trade against a subset of the available liquidity as-if the

markets were integrated whereas non-ISO trades are effected by fragmentation. Being

able to effectively measure differences in ISO and non-ISO trades is paramount. In

this section I outline the data and different methods I use to construct measures of

this difference.

Trade Excess Costs

I define a trade’s excess cost (TEC) as the dollar amount that could’ve been saved

(or lost) had the trade been executed against the prevailing NBBO quote first. For

Rule-611 exempt orders, such as ISOs, the TEC proxies the difference in transaction

costs with a counterfactual MO implementation. Recall the first example of an ISO

purchase for 100 shares clearing at $5 per share even though there were 50 shares

available at the NBO of $4. Under the ideal MO implementation, 50 shares would

first be purchased at $4 and the next 50 shares purchased at $5. By “ideal” I mean

that quotes are assumed to not move mid-trade under the MO counterfactual, so that

the implementation is possible. In the example, the TEC for the trade is $50 or $0.50

per share. It is worth noting that the TEC may be negative if the order received

price improvement and transacted at a price superior to the NBBO. Formally, for an

order of size Q and transaction price P , the TEC is calculated as:

TEC =


Q× (P −NBO)× Coverage(Q;NBO) for buys

Q× (NBB − P )× Coverage(Q;NBB) for sales

(1.1)

Where the trade coverage is the proportion of Q which could be absorbed by the
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NBBO quote of size QNBBO:

Coverage(Q; k) = Min
[
1,

Qk

Q

]
for k ∈ {NBB,NBO} (1.2)

Coverage equals 100% if the liquidity available at the appropriate NBBO quote

is greater than the size of the trade. Taking coverage into consideration is important

so to only count these shares which could’ve plausibly been transacted at the NBBO.

If a trade is for 1,000 shares but only 100 are available at the best quote, treating

the trade as if 100% of it could be traded at the better price (even though only 10%

could be) would overestimate the total costs by a factor of 10.

To frame it somewhat differently, the TEC corresponds to the difference in effective

spreads between two trades scaled by the trade coverage. Typically the effective

spread, the distance from the NBBOmidpoint (P−M), is used as a trade’s transaction

cost. Instead of the midpoint the TEC tracks the distance between the transaction

price and the NBBO quote (P −NBO); this corresponds to the difference in effective

spreads between the actual trade and a trade which executed at the NBBO, i.e.

P −NBO = (P −M)− (NBO−M). The TEC is also measured in basis points after

scaling the per-share TEC by the price, TECbps =
TEC
P ·Q .

The main benefit of the TEC measure is its capacity to proxy the difference

in execution between the ISO and MO alternatives without having to observe the

unprotected quotes. As explained in Section 1.2, the comparison between an ISO and

MO executed amounted to a straight forward comparison between the hypothetical

and combined books. However, since unprotected quotes are not included in the TAQ

data used in this paper, such a direct comparison can not be made. In contrast, only

trades and the prevailing NBBO quotes (which are reported in the TAQ data) are

needed to calculate a trade’s TEC.

Going back to the ISO example of Section 1.2, the prevailing NBBO could be
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derived after observing the first three quote updates in Figure 5. The first trade order

observed is an ISO sale of 100 shares on exchange A; since the order was executed

at the NBB it had a TEC of 0. In response to the first ISO, exchange A updates its

protected quote to 100 shares at $4.5. The second ISO to sell 50 shares on exchange

B also has a TEX of 0; after this trade, the NBB is updated to the quote on exchange

A at $4.5. The last ISO observed in the data is a sale of 50 shares at $4. This last ISO

has a TEC of $25 because 50 shares were sold at $4 despite there being 100 shares

available at $4.5.

Despite the benefits of using the TEC, it is a noisy measure. The source of this

noise is a sensitivity to the order in which the trades are reported in the data. If

instead, the exchange C ISO was reported first, the prevailing NBB would’ve been

$5 rather than $4.5 and the TEC would be calculated as 50 rather than 25. An ISO

can be filled by an exchange without having to wait for the NBBO to update; it is

possible for the execution of one ISO to be reported onto the tape before the quote

from another exchange is updated after filling the other ISO.

Gross and Relative Daily Aggregates

The TEC is a measure of the whole dollar amount of benefit from executing a

single order, at least in part, against the NBBO quote rather than where it actually

transacted. TEC is a “per-order” measure and not necessarily a “per-trade” measure;

an agent implementing a trade via five ISOs produces five TECs and not just one.

All the individual orders would be marked as an ISO, the ones which take out the

protected quotes as well as the trade-through orders. When an ISO-implemented

trade “walks the book” on a given exchange, it is reported as a series of trades at the

different prices.

Measuring the TEC on a per-trade measure requires deciding which orders corre-
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spond to one trade and which ones correspond to another, a difficult task. Instead of

grouping ISOs together into individual trades, I aggregate the ISO TECs up to the

daily level for each security to obtain a gross ISO measure. A daily per-share ISO

cost measure is calculated as the gross measure divided by the total ISO volume for

the day:

ISOgross =
∑
i∈ISO

TECi ; ISOcps =
∑
i∈ISO

TECi

Qi

=
∑
i∈ISO

TECcpsi (1.3)

The aggregated basis point measure is simply a volume weighted average of the

TEC bps for ISOs. Aggregating trades across the span of the entire day has the

additional benefit of dampening the potential noise in the TEC measure coming from

the order sensitivity. If the ISO orderings in the data are random, the resulting

averages would be unbiased.

Relative ISO Costs Per Share

The aggregate TEC measure is a rough proxy for the average difference between an

ISO implementation and the perfect MO implementation. In reality MO implemen-

tations are not perfect and the actual trade-off is between an ISO implementation

and an imperfect MO implementation. Non-ISO trades may carry non-zero TEC

measures if they interact with hidden liquidity, are odd-lot portions (< 100 shares),

is reported out of sequence, or if there are delays/noise in the updating of the NBBO.

To this end, I measure the relative difference in TEC measures between ISO and

non-ISO trades.

RISOcps =
∑
i∈ISO

TECi

Qi

−
∑
i/∈ISO

TECi

Qi

(1.4)
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The setup here is similar to that employed in a difference in differences; the

ISO designated trades comprise the treatment group and the non-ISO trades are the

control group.

Taking the relative difference addresses any bias inherent to the TEC methodology

as well as taking into account the possibilities of actual non-ISO orders realizing price

improvement. The reasoning here is that if the TEC methodology is systematically

biased one way or another it would also manifest in non-ISO trades. If such a bias

exists, subtracting the non-ISO from the ISO costs should wash it out.

Alternative Methods

I compare trades which occur in the same 15 minute time interval as well as trades

which occur right next to each other to minimize the effect of intraday variation

in market conditions. If the choice between an ISO implementation and the MO

alternative is largely driven by intraday market conditions, going up to the daily

level may be too coarse of an aggregation. The concern is that the comparison

of aggregate measures may reflect differences in market conditions rather than a

difference in execution preference. To illustrate, suppose ISOs are more likely to be

used when market depth is high and MOs are preferred if depth is low. If market

depth varies substantially within each trading day, ISOs and MOs will be clustered

at different times, so the ISO premium may just be the difference between deep and

shallow markets.

Comparing Neighbor-Trades

One way of trying to address the aforementioned concern is to directly compare

the ISO and MO trades closest in time proximity. The assumption is that market

conditions are much more likely to be similar for trades which occur right next to

16



each other than for trades throughout the day. In order to do this comparison I

develop a simple algorithm to group individual sweep orders into the same trade.

Consecutive sweep orders are grouped into the some trade if: 1) the orders are in

the same direction, 2) are executed on different exchanges, and 3) is within one

second away from the first order in the sequence. A consequence of this relatively

conservative filter is that not all ISOs will be grouped into trades; ISO trades which

take more than one second to execute or have orders from the other side inter-weaved

in their reporting would be cut short. Additionally, only those ISO trades made up

of multiple ISOs are considered.

After grouping the individual orders into separate ISO and non-ISO trades,I next

group adjacent ISO/non-ISO trades into pairs. In order to not double count any

trade block, only those ISO trades with a non-ISO block immediately preceding it

are counted in the analysis. For each ith trade pairing, the relative ISO costs per

share is simply the difference between the ISO and non-ISO TECs per share:

NRISOcps(i) =
TECiso,i

Qiso,i

− TECniso,i

Qniso,i

(1.5)

A daily measure for the ISO premium is computed as volume-weighted average of

NRISO costs for the day:

NRISO =
∑
i

wiNRISOi ; wi =
Qiso,i∑
j Qiso,j

(1.6)

Figure 8 provides a graphical illustration of how this procedure compares to the

daily aggregation,

15 Minute Slices

One way to avoid the concerns of daily aggregation is to aggregate to a finer interval.

To this end, I also split each trading day into 15 minute slices and instead use the
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15 minute time interval as the unit of time for the analysis. Any concern of varying

market conditions muddying the relative ISO measure is addressed with the finer 15-

minute time interval insofar that market conditions remain relatively constant within

a 15 minute span as compared to the whole day.

Data and Sample Selection

In this study I use high frequency millisecond daily TAQ data and consider a

selection of 2,933 securities for the sample period spanning January 1, 2019 to April

30, 2021. Security selection begins with the set of (CUSIP, Trade Symbol) pairings

which appear in the Daily TAQ Master Files on both the first and last trading day of

the sample period. I only keep those securities which could be matched, on the basis

of their CUSIP, with the CRSP daily stock file December 2018. A subset of 2,346

securities have share codes {10,11}, exchange code {1,2,3}, prices >$1.00 per share,

and a market capitalization greater than $100 million; these securities make up 47%

of traded dollar volume in December 2018. The remaining 647 securities, amounting

to 45% of trade volume, are comprised of 195 foreign securities, 89 REITs, 355 ETFs,

and 13 other common stocks. All together, the complete sample6 makes up 92% of

the total traded volume in December 2018.

The total value of the traded volume is highly concentrated amongst a relatively

small set of securities. The top 50 highest traded securities by dollar volume make

up 39% of the total dollar volume listed in US public markets on December 2018.

The median number of trading venues for these 50 securities is 8, which is greater

than the overall median of 6. Summary statistics for different security sub-samples

are reported in Table 1.

6The final selection is comprised of the union of the smallest set of securities needed to reach

90% of dollar volume and the 2,346 securities resulting from the aforementioned filtration.
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Larger securities are more likely to be traded across more venues; the median

number of public exchanges for the smallest 20% securities by market cap is 2 versus

8 for the largest securities. In absolute terms the relative ISO costs per share is lower

for larger securities but this seems to be driven by the fact that transaction costs as

a whole are smaller for these securities. When scaling the RISO cps by the average

effective spread, the ISO costs are larger for the big securities. This pattern continues

when breaking up securities by the number of trading venues with the scaled RISO

cps monotonically increasing in the number of venues; the size of the securities also

rise with the median number of trading venues. Of interest is that, after controlling

for the size of the typical transaction costs, ISOs carry a larger premium when a

security is traded across more venues.

Throughout the analysis what is counted as NISO volume are those regular trade

orders identifiable in TAQ data as being without any special designation (other than

“I” for odd lots) for it’s sale condition. The logic is that these regular trades represent

standard market orders and are the most suitable substitutes for an ISO trade. Un-

like contingent, acquisition, block, cross, and same-day settlement cash trades ISOs

do not require pre-negotiation with counter-parties. By their nature, the TEC of

late reported or out of sequence trades would be mispecified and are therefore ex-

cluded; similar concerns preclude the inclusion of off-exchange trades. Also excluded

from NISO classification are opening/closing prints, after-hour, and derivatively prices

trades.

It is common practice for exchanges to make available to agents, at a fee, sub-

scriptions to direct feeds to the exchange which makes pertinent market data available

fractions of a second before it’s reflected on the consolidated tape. Feeds such as the

NASDAQ BookViewer, the CBOE BookViewer for the BATS exchanges, Arca Book

for the NYSE, and the IEX’s DEEP are examples of such services. It is for this reason

19



that I use participant timestamps7 are used to order market data.

1.4 Measuring Market Fragmentation

The argument thus far has been that differences in execution costs between ISO

and non-ISO trades reflects the premium paid by traders hoping to trade with the

immediate and certain trade executions characteristic a SLOB whereas MO imple-

mentations are vulnerable to the complications made possible by market fragmen-

tation. Finding evidence of a positive relationship between the ISO premium and

market fragmentation would further my interpretation of the ISO premium; but first,

measures of market fragmentation are needed.

Previous Fragmentation Measures

A natural starting point when trying to measure market fragmentation would be

to co-op the measures which have previously been used in the literature. Here I

borrow extensively from Haslag and Ringgenberg (2020) as well as O’Hara and Ye

(2011). Haslag and Ringgenberg (2020) measure trade fragmentation using one less

a Herfindahl-Hirschman Index of trade volume across reporting venues.

(1−HHI) = 1−
∑
exg

( V olumeexg
TotalV olume

)2

(1.7)

When (1 − HHI) is low, trade executions are concentrated amongst a few number

of venues; when it is high, trading is more disperse. The reasoning behind using the

Haslag and Ringgenberg (2020) measure is that, in a market where fragmentation is

costly, more disperse trading exacerbates the costs of fragmentation. O’Hara and Ye

(2011) primarily measure trade fragmentation using the fraction of off-exchange, or

7The time the participant venue made the message available to the SIP, rather than the time the

message was published by the SIP.
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“dark”, trading DarkV olume
TotalV olume

. Even if the public exchanges were effectively integrated,

if the dark venues are not included in that integration, the market as a whole may

still suffer from fragmentation. Using the fraction of off-exchange trade volume is

akin to how the NASDAQ market share was used in studies like Bennett and Wei

(2006). Over 30 non-public trade venues employ the FINRA Trade Reporting Fa-

cility (FINRA-TRF), identifiable in TAQ data with exchange code “D”, to publish

transaction details. Using these measures, I run log-log panel regressions of different

measures of market quality on a constant and these two measures of fragmentation8.

In line with their previous findings a negative relationship is found between these

measures and the market quality variables, with this relationship being stronger with

being stronger for the most heavily traded securities. The results from these regres-

sions are reported in Table 2. It is worth noting that my sample is different in the

cross-section, I do not restrict my selection to common shares, and include other se-

curity types such as REITs and ETFs. My sample also covers a different time period

than the previous studies. Using the Haslag and Ringgenberg (2020) original measure

(which includes off-exchange trades in the HHI), univariate regressions (unreported)

of the form yi,t = α + βln[(1−HHI)] + ϵi,t yielded coefficients consistent with their

original results. These coefficients were of similar statistical significance, but of 1
4
the

magnitude of those reported in Table 2.

Of relevance here is that a positive relationship between the ISO costs and the

fragmentation measures after controlling for security fixed effects. Gross, relative,

and scaled relative costs all have positive and statistically signifigant relationships

with the (1 −HHI) and DarkV ol
TotalV ol

after controlling for security fixed effects. Broadly

speaking, as market fragmentation increases, the ISO premium, regardless of how it’s

8Haslag and Ringgenberg (2020) included off-exchange trades when computing the HHI whereas

I do not.
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measured, also rises. In line with the idea of ISO costs being driven by fragmentation,

the relationship is much stronger, in terms of magnitude, for those securities which

are tend to be traded across more venues.

Alternative Fragmentation Measure

The previous measures of fragmentation have largely been concerned with the de-

gree to which trading volume is segmented, or split, across multiple trading venues.

While it is doubtlessly true that the segmentation of trade across venues is an im-

portant part of fragmentation, however, unless that split trade results in measurable

differences in trade executions, segmentation alone does not lead to fragmentation

costs.

Having multiple trading venues is a necessary but not sufficient condition for

fragmentation to exist. If the Glosten (1994) assumptions held and the market was

well integrated, there would be no meaningful difference in trading as compared to

a single-venued market. As the Haslag and Ringgenberg (2020) measure goes to

zero, (1 − HHI) → 0, the result is one exchange capturing 100% of trade volume.

(1−HHI) = 0 is a de-facto single venue market, and thus a sufficient condition for

the absence of costless fragmentation but it is not a necessary one. For example,

if Glosten’s assumptions held, a market with a single CLOB would have the same

executions as a market where the total liquidity was split across 20 identical order

books. In the former case (1−HHI) = 0 because there’s a single venue, in the latter

case, (1 − HHI) = 0.95; though both markets have the same executions. A high

level of heterogeneity between dark venues characterize the off-exchange markets.

On some dark venues all liquidity is hidden, while on other venues trading is not

anonymized, these structures violate Glosten’s other assumptions of quote visibility
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and anonymity9. A large fraction of off-exchange trading is likely to be associated with

costly fragmentation, though an absence of off-exchange trading does not preclude it.

In contrast to trade-segmented based fragmentation measures I instead focus on

cross-exchange disagreement. As in Hasbrouck (1995) I assume, for each security, the

existence of a “true” or “fundamental” latent price process. For the sake of math-

ematical completeness, suppose that this latent price process follows a generalized

geometric Brownian Motion:

dPt = µtPtdt+ σtPtdBt (1.8)

Each exchange throughout the trading day generates a series of noisy “observa-

tions” of this latent price, these observations may take the form of trade transaction

prices, quoted prices, etc. With different price series’, one from every exchange, the

mathematical problem here is how to measure the extent to which these time-series

agree/disagree with one another. I measure fragmentation along two dimensions:

disagreements in spread, and disagreement in price volatility across exchanges. My

reasoning for using RV dispersion is that since the RV serves as a measure for how

volatile the latent price process is, then to the degree to which exchanges reflect the

same information there should be no disagreement in their RV estimates. An ex-

change’s over-spread is a rough measure of how much more it would cost to trade in

that particular exchange relative to trading at the NBBO. The average difference in

these spreads, the average over-spread across exchanges, captures the cost of taking

liquidity exclusively from any particular exchange. To put it simply, in an integrated

market the NYSE and the NASDAQ should agree on how volatile the price of AAPL

is, and how much it should cost to trade it.

9The availability of real-time order book data, at a fee, and anonymous trading does not make

this an issue for the public venues.
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RV Dispersion

Why RV: Given the GBM assumption, the variance of the daily log returns would

equate the quadratic variation (QV) of dlnPt over the day. Var[lnPclose − lnPopen] =∫ close

open
σ2
t dt. The realized variation (RV) of a price process is defined as the sum of

squared first-differences in the log-price, RV =
∑

t(lnPt+1− lnPt)
2. Absent any noise

in the price observations, Pt, the QV may be recovered exactly in the limit with the

RV:

lim
n→∞

n∑
i=1

(lnPti − lnPti−1
)2︸ ︷︷ ︸

RV

=

∫ close

open

σ2
t dt︸ ︷︷ ︸

QV

, if lim
n→∞

sup
i
[ti − ti−1] = 0 (1.9)

Given the vast amount of intraday price data available in TAQ, The RVs, and by

extension the volatility of daily returns, are estimated with immense precision. I

employ a modification of the Zhang et al. (2005) methodology to allow for the full

use of available data and correct for any microstructure noise contaminating the price

observations (see Appendix A).

The dispersion in exchange RVs is measured as a trade volume-weighted standard

deviation, formally:

Disp[RVd] =

√∑
E

wE,d(RVE,d −RVd)2 (1.10)

where

RVd =
∑
E

wE,dRVE,d and wE,d =
tradeV olumeE,d∑
K tradeV olumeK,d

(1.11)

I calculated the RVs using transaction prices because prices, as intersections of supply

and demand schedules, are only observed when trade occurs. As a robustness check

I also calculated the RV using midpoint updates and using a five minute frequency

for the subset of the 50 highest traded securities10. This exercise results in a Pearson

10I restricted this robustness exercise to only 50 securities dues to a substantially higher compu-

tational overhead associated with the use of quote rather than trade data.
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correlation coefficient between the trade and midpoint-based RV estimates of 0.91

and a correlation of 0.87 between their first differences. The high correlation between

RV first-differences suggests that estimates are similar throughout the time-series11;

this can be visually checked in Figure 10 which also shows that the two measures are

of similar magnitude.

Average Over-Spread

Another way of capturing a sense of fragmentation is to compare the quoted costs of

trading across multiple exchanges at once with the cast of transacting at the NBBO.

An exchange quoting a spread wider than the NBBO means that turning around a

single share is more costly on that venue than at the NBBO. An exchange’s over-

spread at any point in time is simply how much greater its protected quote spread12

is than the NBBO spread.

OSE,t = SpreadE,t −
(
NBOt −NBBt

)
(1.12)

When the over-spread is equal to zero, that exchanges posted quotes correspond to

the NBBO; the less price competitive the quote is, the more positive the over-spread

and the greater its “distance” is from the NBBO. In order to aggregate this measure

of distance into a per-day quantity, I integrate the over-spread over the trading day.

The average overspread (AOS) for the exchange is a time-weighted average of OSE,t.

11The trade based RV averaged 5.7 bps with a standard deviation of 10 bps; the midpoint based

RV averaged 6.7 bps with a standard deviation of 9.4 bps
12An exchange’s spread is calculated post any taker fees and rebates:

SpreadE,t = (AskE,t −BidE,t) + rE%(AskE,t +BidE,t)

where rE > 0 for exchanges which charge takers of liquidity and rE < 0 for exchanges paying a

rebate to the takers of liquidity.
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As before, the volume weighted AOS measure comprises the final AOS measure to be

used in the analysis.

AOSd =
∑
E

wE,dAOSE,d and wE,d =
tradeV olumeE,d∑
K tradeV olumeK,d

(1.13)

An AOS of zero indicates that the cost of transacting a single share is the same

across all the trading venues and is equal to transacting at the NBBO. A large AOS

measure signifies that multiple exchanges are quoting spreads under than the NBBO

for long periods of time.

Unlike previous measures of fragmentation which are determined by how order-

flow is segmentation, these alternative fragmentation measures are not and provide

an additional robustness test for the relationship between the premium and fragmen-

tation. Using the RV dispersion, average overspread, and the NBBO midpoint RV

instead of DarkV ol
TotalV ol

and (1−HHI) in the same panel regression exercises as before, a

positive relationship is found between RV dispersion and AOS and measures of mar-

ket quality. Unlike the previous measures, this relationship is robust to the inclusion

fixed effects in the sample. The relationship between the dispersion in RVs and the

ISO premium is stronger for securities which are traded across more venues vs secu-

rities traded on fewer venues. The NBBO RV is included to partial out the effect of

volatility on Disp[RV ]. I report these results in Table 3.

1.5 Empirical Design and Results

I employ panel regressions to check if there exists a positive relationship between

ISO trade costs and various measures of market fragmentation.

Panel regressions of ISO trade costs on the various market fragmentation measures

are used to check if there exists a positive relationship between the two. The existence

of such a relationship would provide evidence for the contention that the measured
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ISO costs are reflective of market fragmentation. My main results mainly focus on

the relative ISO costs-per-share as the response as it is the most conservative of my

measures. Specifically the regression specification is as follows:

yi,t = α + β′
1Fi,t + β′

2Xi,t + ϵi,t (1.14)

Where the vector of fragmentation measures is comprised of Fi,t =
[
Disp[RV ]i,t,

AOSi,t, (1−HHIi,t),
DarkV ol
TotalV ol i,t

]
; with i, t indexing security and date.. The control vari-

ables captured in the design vectorX includes {RV nbbo, Spread, sweepProp, ILLIQ}.

The response variable y used in the main analysis is made up of relative ISO costs

per share, though results using the non-relative measure of ISOcps are reported in

Appendix A. Both response and design variables are log-transformed to correct for

skewness in level regression residuals; Figure 11 plots histograms demonstrating the

difference in skewness in residuals. In order to control for economy-wide shocks over

time and any unobserved security-level hetrogeneity month and security fixed effects

are included. Of the control variables, RV nbbo is a control for the securities volatility.

Amihud (2002) ILLIQ measure and the spread are used to as (il)liquidity proxies

and the proportion of sweep volume is used to control for variation in costs due to

any pre-existing proclivities for the preferencing of ISO trading.

The mainline results provide statistically significant evidence of a positive rela-

tionship between fragmentation measures and the sweeping costs. The most im-

portant fragmentation measures, in order of decsending magnitude, are (1 −HHI),

DarkV ol
TradeV ol

, and Disp[RV ]; a one percent rise in each of these fragmentation measures

are associated with a 1.28%, 0.27%, and 0.18% rise in ISO costs respectively. While

the other fragmentation measure carries a positive coefficient absent controls; the

AOS coefficient switches signs and does not appear to be economically significant

in its size. Despite the occasional importance of AOS, I will focus on the variables
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[(1−HHI), DarkV ol
TradeV ol

, Disp[RV ]], hereupon referred as the “main” fragmentation mea-

sures. The positive relationship between sweep costs and the main fragmentation

measures is much more pronounced when looking only at the top 50 traded securities

and stronger still when considering only those securities which are traded on more

than 9 exchanges. The overall R2 of the panel regression is substantially larger for

the subsample of securities with many trade venues compared to the sample with rel-

atively few trade venues. That the explanatory power of the fragmentation measures

is greater for securities with more trade venues is consistent with the idea that the

ISO premium is indeed driven by market fragmentation.

Sub-Sample Analysis

Large and Not-Large Securities

I next check to see if the results are robust to size, because large securities are more

likely to be heavily traded across more exchanges than other securities and the ev-

idence presented in Table 4 shows a particularly strong relationship for securities

traded across more venues. This robustness check addresses the natural concern that

the market dynamics in large/small securities may be substantially different than for

other securities. As a way of investigating this issue, the sample of securities have

been split into size categories of small, middle, and large market cap categories. The

small category is comprised of the smallest 20% companies in the sample, large sized

stocks are the largest 20%, and the remaining middle 60% comprise the mid-sized

category. The positive relationship with the main fragmentation measures remains

both economically and statistically significant across securities of different sizes. I

estimate the panel regression for each size quintile to assess how the relationship be-

tween the cost to sweep and the fragmentation varies across securities of different
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sizes. It does not seem to be the case that the relationship is substantially differ-

ent across securities of different sizes since the main fragmentation measures remain

positive and significant across the smallest to the largest securities. The importance

of RV dispersion and the fraction of off-exchange trading remains relatively constant

as the size of the security rises whilst (1 − HHI) increases in magnitude with size.

Explanatory power, as measured by the overall R2 also increases with security size.

With and Without COVID-19

Given the time-span of the sample period, spanning from 1/1/2019 - 4/30/2021,

the question arises whether the results are attributable to the unprecedented market

conditions introduced with COVID-19. Observing a time-series of market volatility,

a clear structural break is observable sometime in March 2020. It was during this

month that, along with the first evidence of exponential viral spread in the United

States, the first lockdowns and travel restrictions were announced. The data is thus

split into two subsamples, a pre-COVID sample which runs from the beginning of the

sample to 2/1/2019, one month prior to the market reaction, and a COVID-forward

sample comprising of the rest of the sample. The regression results from using these

two subsamples are reported in Table 6. In both subsamples the coefficients on

the main fragmentation measures are positive and remain significant, statistically

indistinguishable from the whole-period coefficients. This hold despite the standard

errors of the coefficients naturally rising do to the lower number of observations.

Addressing Endogeneity

A potential source of bias may come from the fact that the decision of executing

a trade with an ISO rather than using market orders is endogenously determined and

not random. Throughout the trading day there may be periods during which market
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conditions would make ISO trading more or less desirable than utilizing market orders.

That we observe different levels of ISO activity during some periods more than others

could introduce a selection bias. In the previous analysis, the data was aggregated

up to the daily level as a means of mitigating the endogeniety problem; the argument

being that by averaging over periods of more and less desirability, the results wouldn’t

be reflective of any underlying latent decision factors. To this end I under-take two

additional robustness-test in which daily aggregates for the response variable are

calculated using temporally close trades and a 2-stage Heckman analysis to control

for selection bias.

Neighbor Trades

Table 7 reports the regression results for comparing neighboring trades. When com-

pared to the baseline specification the positive relationship between the relative ISO

costs per share and Disp[RV ] and (1 − HHI) is lower when comparing neighbor-

ing trade-blocks. It is higher for the off-exchange trade fraction relationship. That

the relationship is both greater in magnitude and with (marginally) smaller standard

errors along with the notable increase in R2 suggests that aggregating the trades

up to daily level introduces noise rather than induce bias. Once again the positive

relationship with the fraction of off-exchange persists here as well; even though the

magnitude of the coefficients fall when comparing neighboring trades, the estimates

are less volatile.

2-Stage Heckman Correction

Here the sample bias concerns are addressed more directly by implementing the Heck-

man (1979) two-stage estimation procedure which allows us to control for selection

bias. Rather than aggregating up to the daily-level the data is split into fifteen minute
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intervals. The first step is to estimate the propensity towards ISO trading via a probit

model using possible drivers of the ISO decision.

ISOpercenti,t = Φ(Zi,t−1γ + ui,t) (1.15)

By inverting the above equation a linear regression model may be estimated.

Φ−1(ISOpercenti,t) = Zi,tγ + ui,t (1.16)

The design variables Z are lagged by one period inorder to avoid a future bias and

allow for a more causal interpretation. The choice of Z comprised of RV dispersion,

volatility, the average quoted NBBO spread, and (1-HHI). These variables, along with

entity and day effects, achieve overall R2’s greater than 50%. After estimating γ̂i, the

inverse Mills ratio, denoted λ̂i,t is

λ̂i,t =
ϕ(Zi,tγ̂)

Φ(Zi,tγ̂)
(1.17)

Where ϕ(·) is the standard normal probability density and Φ(·) is the standard normal

cumulative density function. In the second stage of the estimation the inverse Mills

ratios are included in the regression of ISO costs on fragmentation measures as a

control for sample selection.

ISOcostsi,t = Xi,tβ + λ̂i,tθ + ϵi,t (1.18)

The test for sample selection boils down to whether or not the coefficients θ on the

inverse Mills ratio are statistically significant or not.

The estimation results for the Heckman correction procedure are presented in

Table 8. As before both response and design variables are log-transform in both

stages of the estimation with the exceptions of Φ−1(ISOpercent) and λ̂. The exercise

was conducted for both ISO costs per share and the relative ISO costs per share. In
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both cases λ̂ fails to rise above the 5% level of statistical significance which allows for

the rejection of a sample selection problem.

The decision for whether or not to employ ISOs could be driven by unconsidered

market conditions or some other third variable. Were this the case then we would

observe more or less intense ISO trading due to variations in market conditions po-

tentially presenting a kind of omitted variable bias in the regression results. Rather

than having a daily sampling frequency, I measured trading over non-overlapping 15

minute intervals to test for selection bias. The first two columns of Table 8 reports

the results of from the first-stage probit regression. Next. Table 8 reports the second-

stage panel regression with the inverse Mills Ratio computed using the fitted values

from the first-stage probit. Solely for the comparison purposes, I reestimate the 2nd-

stage regression while excluding the inverse Mills Ratio and is reported in the final

column. The coefficient on the inverse Mills Ratio is statistically indistinguishable

from zero meaning that I can reject the hypothesis of a selection bias in the data.

1.6 Conclusion

Unlike a market with a single trading venue, a multi-venued market is susceptible

to the effects of being fragmented. I take the view that markets are effectively more

fragmented if outcomes are more sensitive to how trades are routed across venues,

something dictated by the choice of order type. Taking the view that markets are

fragmented in a multi-venued market when the manner/order in which a trade is

executed across venues is of greater importance. Due to the nature of ISO executions,

their trading costs relative to other trades should be reflective of the degree of market

fragmentation. ISOs offer a method through which trades may be executed as-if the

market were integrated. I found that traders are willing to tolerate executions at

prices which are roughly 40% of the average effective spread worse than non-ISO
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transactions. That traders routinely find it in their best interest to use sweeps, an

instrument with a worse average execution price, to exempt their trade from market

rules is informative to the ongoing policy debate regarding fragmentation. In this

study I contend that this apparent premium is indeed driven by market fragmentation.

I present evidence of a economically meaningful and statistically significant robust

positive relationship between the ISO costs and a 1% increase inDisp[RV ], (1−HHI),

or DarkV ol
TotalV ol

are associated with a 1.28%, 0.29%, and 0.18% rise in relative ISO costs-

per-share respectively. This positive relationship is very robust, it persists across

different measures and methodologies, across large and not-large market cap sub-

samples, with and without the COVID-19 episode, and after Heckman selection bias

controls.
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Chapter 2

THE PROFITABILITY OF LIQUIDITY PROVISION

2.1 Introduction

Continuous trading where investors can immediately execute buy or sell orders

is made possible by the presence of counter-parties who stand ready to take on the

opposite side of those trades. These collective counter-parties are said to provide

liquidity to the markets by competitively supplying the quotes at which traders can

buy or sell. Liquidity providers hope to buy low at the bid quotes to then exit the

inventory position by selling at a higher ask price (and vice-versa), profiting from

the spread between the two (Demsetz (1968)); on average liquidity providers do not

realize the prevailing full quoted spread due to subsequent movements in the market

quotes between trades (see, Kraus and Stoll, 1972; Hasbrouck, 1988; Stoll, 1989;

Huang and Stoll, 1994). The provision of liquidity involves taking on risks associated

with temporarily holding inventory such as adverse selection, price volatility, etc. In

this paper, we measure the proceeds from the aggregate provision of liquidity and

investigate the relationship between this aggregate realized profitability and the risk

associated with providing said liquidity.

When measuring the realized profits from providing liquidity one has to match

each inventory exacerbating trade to an off-setting trade where the inventory posi-

tion is reversed, completing a “round-trip” trade. Absent the availability of trade-level

data associated with individual liquidity providers, researchers have traditionally re-

lied on proxies to gauge the returns to liquidity provision, the most important of which

has been the realized spread. The realized spread rs corresponds to the signed differ-
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ence between the transaction price Pt and the midpoint Mt+τ at some pre-specified

horizon τ into the future.(Huang and Stoll, 1996; Bessembinder and Kaufman, 1997):

rst,τ = δt(Pt −Mt+τ ) ; δt =

{
+1 if trade t is buyer-initiated

−1 if trade t is seller-initiated.
(2.1)

The realized-spread formulation is a mark-to-market estimate of profit, taking it as

a literal measurement of the realized proceeds would assume that liquidity providers

exit every trade-induced inventory position at the midpoint τ units of time into the

future. The use of the realized spread measure has been so widespread that it was

formally adopted by the SEC as a measure of market quality—Rule 11Ac1-5 (now

Rule 605) requires market centers to disclose the volume-weighted realized spreads

computed with a τ of 5 minutes. The reported Rule 605 data is often used by scholars

seeking to understand the impact of market structure on trade execution quality.

The arbitrary choice of τ in the realized spread, which is left up to the researcher’s

discretion, represents a potential source of significant misspecification. The realized

spread is a mark-to-market profit measured at a predetermined point in time and

can substantially deviate from the realized proceeds if the price is different at the

time of actual exit.1 Furthermore, the amount of risk associated with each round-

trip trade is directly related to the time it takes to complete the turnover. Longer

waiting times increase the risk that the value of inventory held will decline, either

due to random price changes or having been adversely selected by a better informed

liquidity-demanding trader. In equilibrium, spreads would be competitively set by liq-

uidity providers to compensate for the risk of bearing an inventory position (Glosten

1The importance of choosing the horizon at which to measure realized spreads has long been

recognized by Huang and Stoll (1996): “... If the period is too short, the subsequent price may

reflect not a reversal but another trade in a series of trades pursuant to the same order. If the period

is too long, unnecessary variability will enter into the measure...”
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and Milgrom, 1985). Employing a measure with a uniform τ for every trade can not,

by construction, capture any of the variation in realized profitability due to heteroge-

neous inventory turn-around time. Even if a “sensible” choice of τ is used, if trades

are reversed at various horizons the conventional measure of realized spread—using

a fixed horizon for all trades—can deviate significantly from the true profits. Virtu,

a prolific US market-maker, for example, reported negative average realized spreads

(measured over a five-minute horizon under Rule 605) for 11 consecutive months dur-

ing the calendar year 2019, despite their actual market-making profits being positive.

In contrast to the realized spread, we measure the realized profits to liquidity

provision by directly tracking the round trips completed by passive liquidity providers

in the aggregate. We take the view that each trade has a passive (liquidity providing)

and an aggressive (liquidity demanding) side. Using existing technologies (Holden and

Jacobsen, 2014) to identify the passive side of every trade, we track the aggregate

inventory position as if a single “Aggregate Liquidity Provider” (ALP) supplied the

liquidity to every trade. The ALP represents the aggregate provision of liquidity by

the traders who take the opposite side of every liquidity-taking trade.2 In effect, we

are using limit orders as a proxy for liquidity provision. The realized profits of a

round trip initiated at Pt and completed at Pt+τ is measured as:

rpt,τ = δt(Pt − Pt+τ ) ; δt =

{
+1 if trade t is buyer-initiated

−1 if trade t is seller-initiated.
(2.2)

In our formulation, we do not determine τ ourselves but rather every trade’s τ is

individually determined by an inventory tracking system and the presentation of the

data. Our focus on the aggregate provision does not require the use of trader-labeled

transaction data.

2The ALP takes on a positive inventory position when investors are selling, and a negative

position when there’s a preponderance of buyer-initiated trades.

36



We track the ALP’s inventory position because we do not have data on individual

liquidity providers. This means our measure could be contaminated by the inclusion of

trades resulting from passive limit orders submitted by long-term investors who intend

to acquire or dispose of a position (Foucault et al., 2005). Despite this imperfection,

we show that our measure does a better job at matching market-making revenues

as compared to the five-minute realized spreads reported under the SEC’s Rule 605.

To illustrate, Figure 12 plots the volume-weighted monthly averages of the realized

spreads reported by Virtu under Rule 605, and our measure of realized profitability.

The two measures are plotted against a backdrop of Virtu’s market-making revenue

(from their quarterly and annual SEC filings) from September 2018 to January 2021.

In contrast to the self-reported 5-minute realized spreads, which bear little relation

to the general trend of trading revenues, our realized profitability, despite applying to

liquidity provision in aggregate, much better captures the broad pattern of market-

making revenues of Virtu.

The key feature that distinguishes our realized profitability from the conventional

realized spread measure is the determination of the trade turnaround time τ , which

requires us to match each trade with a subsequent offsetting trade (to form a round

trip). To match offsetting trades we adopt a LIFO (Last-in First-out) inventory

tracking system under which offsetting trades are matched with the most recent po-

sitions of the ALP, consistent with the fact that liquidity providers prefer a quick

turnaround.3 Our reliance on a set inventory tracking system essentially allows the

data to determine τ as opposed to the researchers’ arbitrary choice. Note that under

any inventory tracking system, not all trades will be matched with an offsetting coun-

terpart on the same day; we restrict our analysis to trades that are turned around

3We report results and discuss the methodological differences of using alternative inventory sys-

tems such as FIFO (First-in First-out) in Appendix B.
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within a day. This restriction is based on the rationale that liquidity providers very

often do “go home flat” and that limit order executions not offset on the same day

are more likely to be trades by longer-term investors (Easley et al., 2011). Using a

sample of all common stocks in the US equity market from 2017 to 2020, we are able

to identify a total of 16.8 billion round trips.

Using this data, we document substantial variation in the horizon τ at which

trades are turned around, and show that realized spreads, measured with a fixed τ

for all trades, can deviate significantly from the realized profits to liquidity provision

both in the cross-section and in the time series. To shed light on the causes and

implications of these discrepancies, we first examine how realized profitability varies

with the endogenous market-making horizon τ and compare that to the term structure

of realized spreads documented in Conrad and Wahal (2020). We then show how the

specification of common τ across all trades can cause systematic mismeasurement in

the estimates of profits using realized spread and provide possible solutions.

Since longer inventory turnaround time typically implies a higher risk of market

making—for example, higher probability of adverse information exposure and price

volatility, the relation between τ and realized profits should reflect the risk-return

trade-off faced by an average liquidity provider. We collect round trips into groups

with similar turnaround times τ and compute the dollar-volume weighted average re-

alized profitability for each group to construct a term structure of aggregate realized

profitability similar to that in Conrad and Wahal (2020) to visualize the relationship

between turn-around time and profitability. Conrad and Wahal (2020) measure real-

ized spreads at varying prespecified horizons and document that the average realized

spread decreases sharply with the time horizon τ used for the measurement. Con-

trary to the findings of both Conrad and Wahal (2020) and Hasbrouck and Sofianos
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(1993),4 we find aggregate realized profitability to be increasing in the market-making

horizon. Specifically, it increases from 1.9 bps for quick turn-around round trips

(τ < 1 seconds), up to 6 bps for trips turned around between 9 and 10 minutes. This

upward-sloping term structure is consistent with the risk-return trade-off faced by

liquidity providers in a competitive market-making environment—when the expected

turnaround time τ is large, the duration of inventory risk exposure is longer and, as

a result, a higher return is required (by setting wider spreads).5

To be clear, what we do is calculate the average profitability only for those round-

trip trades with a similar τ (for example, all trips with horizons between 9 and 10

seconds) and repeat for various values of τ to construct our term structure. We use

the average value of the realized spread calculated using the same τ for every trade

regardless as to whether or not the particular trades were actually turned around

at that time when constructing the realized-spread term structure. To reconcile the

differences in our results to those obtained in the prior literature we decomposed out

realized profitability measure into a realized spread component measured with the

endogenous τ and the effective spread at the exit (t+ τ) of the round trip:

rpt,τ = rst,τ + δt(Mt+τ − Pt+τ ), (2.3)

where the τ is the horizon at which the inventory acquired at time t is turned around

under our inventory tracking system. The differences with the constant τ realized

spread term structure may come from heterogeneity in τ in the rst,τ component or

from including the effective spread component δt(Mt+τ − Pt+τ ). We find that the

average effective spreads, δt(Mt+τ −Pt+τ ), are relatively stable across horizons, so the

4Hasbrouck and Sofianos (1993) used spectral analysis on average mark-to-market proceeds of

NYSE specialist inventory changes to infer a downward term structure in realized spread.
5The notion of being compensated for providing “immediacy” and then waiting to connect buyers

and sellers extends back to Demsetz (1968).
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differences in term structure primarily stem from the heterogeneity in τ across trades.

In other words, the differences in term structure come from the selection of trades

assigned to each τ rather than including every trade for every τ . We find that, once

we use an inventory tracking system to determine the τ for each trade and only plot

out the realized spread component the resulting term structure is still upward-sloping

(rising from 0.2 bps for τ < 1 seconds to 3.5 bps for 9 < τ ≤ 10 minutes).

Next, we investigate how the average level and shape of the term structure in

realized profitability differ for stocks that are expected to have a quick turnaround and

stocks in which liquidity providers must hold on to their position for a relatively long

time. This analysis serves two purposes, (1) it helps to understand how the τ -realized

profitability trade-off in the cross-section (when variations in inventory turnaround

time τ are well expected) differs from that in the time series (when variations in τ are

less well expected); (2) it allows to study how the deviation of realized spread from

realized profitability varies across stocks.

We sort stocks into quintile groups based on their average τ and construct the term

structure for each quintile using the round trips of only those stocks in the group.

We find that, in the cross-section, average realized profitability increases sharply

across quintile groups: from 2.45 bps for stocks with the fastest turnaround (average

τ = 56 seconds) to 15.53 bps for stocks with the slowest turnaround (average τ = 213

seconds). This is intuitive because market making in stocks with longer average

inventory turnaround is expectedly riskier; when providing liquidity in a stock with a

historically longer average turn-around time, competitive spreads should be set wider

to compensate for the market-making risk. Consistent with this explanation, we find

the cross-sectional difference is mainly driven by the effective spread component of

the realized profitability in Equation (2.3), which increases from 1.39 bps to 14.36

bps. When looking at groups of stocks with similar turn-around times, the trade-off
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between inventory turnaround time and realized profitability is drastically different

for different stocks. Specifically, the term structure of realized profitability is sharply

increasing only for the fastest group: from 1.2 bps for τ below 1 second to 7 bps for τ

around 10 minutes. As for the slowest group, the term structure exhibits a downward

slope (decreasing from 17.5 bps to 15 bps).

The differences in the shape of the within-group term structures suggest that

the relevant risks/considerations faced by liquidity providers are qualitatively dis-

tinct across different stocks. Liquidity providers in the fastest group face intense

competition in market making at extremely short horizons, they compete for the or-

ders which are quickly turned around by posting quotes at more and more attractive

prices, narrowing spreads. Market making at these horizons is much less risky for

stocks with fast turnaround—competitive forces drive down the profitability com-

mensurate with the level of risk at the fast end of the term structure relative to the

slow end, resulting in the upward-sloping shape. In contrast, in the “slow” markets,

the chances of a quick turnaround are lower because trades are more sparse—more

elapsed time typically implies more volatility—and more likely to be informed. The

downward-sloping term structure for these stocks paints a picture where the spread

is initially set wide because inventory is rationally expected to take a long time to be

turned around; the longer inventory is held, ex-post, the more likely it is that the

market maker fell victim to adverse selection; however, when offsetting orders arrive

unexpectedly quickly (only if simply by chance), a larger portion of the initial spread

is captured.6 We interpret the downward sloping term structure as suggestive that

adverse selection is a greater issue for the competitive outcome in stocks with a slow

6The “unexpectedness” is reflected by the fact that, for stocks with a slow average inventory

turnaround, the dollar volume at the extremely short horizons is very small compared to the total

dollar volume.

41



expected turnaround,7 consistent with Easley et al. (1996).

In contrast to realized profitability, the term structures of the conventional realized

spread are similarly downward sloping for all groups (though for the fastest two

groups, the term structures seem to suggest some reversal for horizons above one

minute). The difference between realized spread and realized profitability decreases

monotonically both in level and in the term structure as we move towards stocks

with a slower expected inventory turnaround. Specifically, for stocks with the fastest

expected turnaround, average realized profitability is 382% larger than realized spread

even for the shortest horizon (within one second); the difference increases with the

horizon—realized profitability is sharply increasing in τ whereas realized spread is

largely decreasing in τ (from 0.40 bps for trades turned around within one second

to 0.165 bps for τ between half and one minute before reverting to 0.23 bps for τ

between 8 and 10 minutes). As for the slowest group, the difference between realized

profitability and realized spread is much smaller: average realized profitability is 84%

larger than realized spread for the shortest horizon; the difference increases with τ at

a much slower rate as both term structures are decreasing in τ .

Because trades are turned around at variously different horizons, the above results

suggest that mismeasurement in the estimates of profits using realized spread (with

a common τ for all trades) can be large and also time-varying, especially for stocks

with fast turnaround, of which the profitability is highly sensitive to the inventory

turnaround τ . Indeed, Figure 13 shows aggregate realized spread (measured with 10s)

is significantly lower than the realized profitability throughout our sample period with

the difference spiking during periods with high market volatility (when variations in

7Note that we are not taking a stand as to whether the profits are too low or too high for any

stock at any horizon because we do not observe the full cost structure of market making across

varying horizons.
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time to exit are likely large). Compared to fast stocks, the realized spread for slow

stocks captures the dynamics of realized profitability relatively better, potentially due

to the lower sensitivity of the profitability to τ . The fact that the realized spreads of

both fast and slow stocks are much smaller than their realized profitability counterpart

is driven by the effective spread on the exit trade which is not captured by realized

spread. We show that adding the effective spread to the conventional realized spread

not only brings it closer to realized profitability in levels but also in dynamics: the

correlation between the two increases from 0.29 to 0.79 for fast stocks and 0.49 to

0.66 for slow stocks. We find that a fixed τ realized spread is less correlated with the

realized spread component of realized profitability (0.59) than the average effective

spread is (0.68); this suggests that the effective spread itself, which does not require

any determinations of τ does a better job at capturing the time-series dynamics of

the realized profitability than a misspecified conventional realized spread measure.

2.2 Realized Spreads and Realized Profitability

The Passive Liquidity Provider

We measure the liquidity provision profitability by tracking the trading profits

of a hypothetical trader we call the passive aggregate liquidity provider (ALP), who

takes the passive side of every trade. Absent the simultaneous arrival of perfectly

off-setting aggressive market orders, every trade must have an aggressive (liquidity-

taking) and passive (liquidity-providing) side. In the modern electronic order book

markets of today, liquidity providers serve the role of market making by submitting

limit orders on both sides of the book. Indeed, any trader who submits a limit order

is, for that moment, helping to make the market. Our concept of the ALP is made

up of all actors who, however temporarily, contribute to the provision of liquidity.
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The ALP takes the passive side to every liquidity-demanding trade and is such the

collective market maker.8 By focusing on the passive liquidity providers as a whole

(the ALP), our study aims to shed light on the profitability of the liquidity provision

business as a whole.

However, as pointed out by Foucault et al. (2005), passive orders are not the ex-

clusive province of dedicated liquidity providers, traders often use limit orders to take

on long-term positions,9 we refer to these traders as unintentional liquidity providers

(ULPs). ULPs contribute to the cumulative inventory of the collective ALP by pas-

sively taking on their positions. If we want to interpret the realized profitability as a

measure of profitability for intraday liquidity providers who go home flat, then ULPs

represent a source of noise in our measure of profits to liquidity provision. In Sec-

tion 2.3 we show how the usage of LIFO and robust tests using alternative inventory

systems can alleviate such concern.

Realized Spreads as a Profitability Measure

Equilibrium bid-ask spread—quoted spread, effective spread—reflects both the

costs of providing immediate trading (e.g., inventory holding, order processing, ad-

verse selection) and competition between liquidity providers (e.g., Glosten and Mil-

grom, 1985; Stoll, 1978; Ho and Stoll, 1981; Ho and Stoll, 1983; Kyle, 1989). The

empirical literature on the relation between bid-ask spreads and trade execution costs

typically features a breakdown of the effective spread into a permanently compo-

nent—price impact, measured as the drift in quote midpoint following a trade—reflecting

8The SEC defines market makers as firms that stand ready to buy and sell stock on a regular

and continuous basis at a publicly quoted price.
9By “long-term” we mean that the trader intends to hold onto their position for more than a

day, longer than the intraday market-making horizons targeted by liquidity providers that we study

here.
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the informativeness of a trade, and a transitory component, realized spread, reflecting

the reversal in transaction price associated with liquidity provision (e.g., Glosten and

Harris, 1988; Hasbrouck, 1988). By and large, realized spreads have been calculated

as the drift of midpoint away from the trade price at some prechosen fixed horizon τ̄

in the future:

rst,τ̄ = δt(Pt −Mt+τ̄ ); δt =

{
+1 if trade t is buyer-initiated

−1 if trade t is seller-initiated.
(2.4)

This measure is typically interpreted as the residual profits captured by the liquidity

providers following the realization of price impact from trades (from the decomposi-

tion of effective spread).

δt(Pt −Mt+τ̄ )︸ ︷︷ ︸
Realized spread (rst,τ̄ )

= δt(Pt −Mt)︸ ︷︷ ︸
Effective spread (est)

− δt(Mt −Mt+τ̄ )︸ ︷︷ ︸
Price impact (pit,τ̄ )

. (2.5)

Under the implicit assumption that the midpoint proxies for the fundamental

value, what this signed difference (between Pt and Mt+τ̄ ) captures is a mark-to-

market profit. A mark-to-market profit measure at one point can be way off as a

measure of round-trip profit if the price subsequently moves before the actual sale.

Realized Profitability

In this paper, we seek to measure the proceeds from the round-trip trades, as

opposed to mark-to-market estimates. We track the prices and quantities at which

the ALP enters and exits inventory positions and compute the realized return of

each round trip—we call this return “realized profitability.” A round trip is a pair

of (partial) trades that comprise a reversal in the ALP’s inventory position. For

instance, the ALP buying 10 shares from a seller in the morning and later selling 5

of those shares to a buyer in the evening would make a round trip for 5 shares. The

proceeds of a round trip initiated by a time t trade at a price Pt and completed by
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an offsetting time t+ τ ∗ trade at Pt+τ∗ , where τ
∗ is the time horizon identified under

LIFO, is defined as:

RoundTripProceedst,t+τ∗ = δt |Qt,t+τ∗| (Pt − Pt+τ∗), (2.6)

where δt = 1 if the initiating trade at time t was an aggressive buy and δt = −1 if it’s

an aggressive sell and |Qt,t+τ∗| is the number of shares reversed by the t + τ ∗ trade.

The realized profitability rpt,t+τ∗ of the round trip is computed as the per-share return

of the proceeds:

rpt,t+τ∗ =
RoundTripProceedst,t+τ∗

|Qt,t+τ∗|
= δt(Pt − Pt+τ∗). (2.7)

In contrast to the realized spread (Equation (2.4)) which measures mark-to-market

profits at a prespecified horizon τ̄ , realized profitability measures the profits of a

trader providing liquidity to both the initiating and reversing trades (using the τ ∗ at

which trades are turned around).10

Similar to the interpretation of realized spread as a residual profit to liquidity

providers in Equation (2.5), our realized profitability can also be interpreted as such

a residual profit. Specifically, it is equal to the sum of the effective spreads at the

initiation and termination of the round-trip trade less the price impact measured over

the duration of the round trip as in Equation (2.8).

δt(Pt − Pt+τ∗)︸ ︷︷ ︸
rpt,τ∗

= δt(Pt −Mt)︸ ︷︷ ︸
est

+ δt(Mt+τ∗ − Pt+τ∗)︸ ︷︷ ︸
est+τ∗

− δt(Mt+τ∗ −Mt)︸ ︷︷ ︸
pit,τ∗

. (2.8)

Here the sum of the effective spreads at time t and t+τ ∗ reflect the full spread quoted

by the liquidity provider for the round trip which is composed of both the entering

and exiting trades.

10For example, if the ALP buys 1 share at the bid Bt and then sells that share later at the ask

At+τ∗ then the realized profitability would be At+τ∗ −Bt.
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Substituting in the realized spread, rst,τ∗ = δt(Pt − Mt) − δt(Mt − Mt+τ∗), into

Equation 2.8 allows us to decompose the rpt,τ∗ into a realized spread component (with

an endogenous τ ∗) and the effective spread at the exit:

rpt,τ∗ = rst,τ∗ − δt(Pt+τ∗ −Mt+τ∗) = rst,τ∗ + δt+τ (Pt+τ∗ −Mt+τ∗) (2.9)

Note that because the trade at time t + τ is an offset to the initial time t trade it’s

therefore the case that δt+τ = −δt.

This decomposition helps illuminate any sources of differences between the realized

profitability measure and the conventional realized spread on average. Starting with

the simplified case where every LIFO determined turn-around horizon τ ∗ happens

to be equal to the same constant τ̄ , then the average realized profitability (
∑

i(wi ·

rpti,τ∗i )) would be equal to the average conventional realized spread with horizon

τ̄ (
∑

i(wi · rsti,τ̄ )) plus the average effective spread. After discounting the average

effective spread (which is not effected by heterogeneity in τ ∗), any difference between

the realized profitability and fixed-τ realized spread in the averages would stem from

heterogeneity in the LIFO determined τ ∗s,
∑

i(wi · (rsti,τ∗i − rsti,τ̄ )).

2.3 Methodology and Sample

Identify Round Trips

The main empirical challenge regarding the calculation of the realized profitabil-

ity is how one decides which trades reverse one another to make a round trip. To

construct round trips, we track the market-making inventory of the LP using trades

of each stock. Specifically, for each stock, we record the LP’s inventory entries start-

ing from the first trade of a day: for example, a seller-initiated trade will count as

the first positive inventory. Any following trades will be either recorded as a new

inventory entry or used to offset the existing inventory entries depending on the sign
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of the trade as compared to that of the existing inventory.

We primarily rely on a “Last In, First Out” (LIFO) inventory tracking system

to decide which pieces of existing inventory are reversed by the incoming trades

for two reasons: one, LIFO is economically appealing because it tends to match

offsetting trades that are temporally closer (more likely from market makers), and

two, everything else equal, an alternative system such as FIFO (“First-In, First-

Out”) introduces a mechanical bias in the estimates of realized profitability when

there is large order imbalance.11 However, for robustness, we also show that first,

estimates of realized profitability are very similar under both LIFO and alternative

tracking systems (FIFO and Weighted-Average-Cost) during days with small or no

order imbalance, and second, for days with order imbalance, the general inferences

from alternative tracking systems are the same as that from LIFO results when we

properly control for the bias introduced by order imbalance.

Sample and Data Description

We use the daily Trade and Quote (TAQ) data from WRDS for the construction

of round trips from January 5, 2017 to December 31, 2020. We use common filters on

the CRSP universe for the selection of our sample stocks: all common shares (share

codes 10 or 11) with exchange codes 1, 2, or 3. We also remove shares with a market

capitalization below $100 million or a share price below $1 at the beginning of each

year in our sample, to make sure micro-caps do not drive results. The CRSP sample is

manually matched with the TAQ Masterfiles using the CUSIP code. We purposefully

exclude trades that are likely to be missigned by the Lee and Ready algorithm, such

as the opening prints (the first trades of the day) and trades reported late or out of

11The implementation of both inventory tracking systems, the comparison between the two, and

the bias of the FIFO estimates during large order imbalance days are detailed in Appendix B.
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sequence. We also drop block trades, orders designated with condition “B,” or large

trades with a size over the 95 percentile for trades for that stock, these kinds of trades

are often prenegotiated and do not reflect the trades with which intraday liquidity

providers typically interact with. Acquisition (A) and Cash Sale (C) designated trades

are also dropped for similar concerns, even though such large trades are interesting

by themselves, they are not the focus of this paper. For the trade signing, we use

the quote and tick test from Lee and Ready (1991) following the implementation for

daily TAQ data of Holden and Jacobsen (2014). A trader-initiated sell corresponds

to an LP buy and a trader-initiated buy corresponds to an LP sale.

2.4 The Realized Profitability

Distribution of τ

We identified a total of 16.8 billion round trips. Figure 14 plots the distribution

(histogram) of the turnaround time τ of all the round trips.

There is wide dispersion in τ across trades: although 79% of the volume has a

turnaround time of fewer than 60 seconds; 8% has a turnaround time of more than

5 minutes. Importantly, when we decompose the dollar-weighted variance of τ into a

cross-stock component and a within-stock component we find that nearly all of the

variation, 97%, comes from the time series within each stock.∑
i,t

wi,t(τi,t − τ)2

TotalV ariation

=
∑
i

wi(τ̄i − τ)2

Across Stock

+
∑
i,t

wi,t(τi,t − τ i)
2

Within Stock

− 2
∑
i,t

wi,t(τi,t − τ i)(τ − τ i),

Covariance

(2.10)

where wi,t is the dollar-volume weight for stock i’s tth trade. The fact that trades are

turned around at variously different horizons even for the same stock suggests that,

unless the profitability to liquidity provision is insensitive to the market-making hori-

zon, selecting any fixed τ to approximate the profits with realized spread is unlikely
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to be accurate. For instance, a τ of 60 seconds may be too short for some trades (e.g.,

large trades or partial trades from a large order)—short in the sense that price has

yet to recover from the transitory drift caused by temporary order imbalance—but

too long for other trades.

The discrepancy with realized spreads measured using a fixed horizon can be

large especially during days with an abnormal amount of large or correlated orders

(typically comes with high volatility in prices). To show this, in Figure 15 we plot the

time series of the aggregate realized profitability together with the aggregate realized

spread (at both 10 seconds and 6 minutes) and compare both time series with the

realized revenue from market making reported by Virtu in their quarterly report. As

one can observe, the realized spreads measured with both 10 seconds and 6-minute

horizons fall far short of matching the time-series variation in Virtu’s market-making

revenue, especially during the highly volatile period in early 2020.

Aggregate Term Structure

To examine how realized profitability varies with the endogenous market-making

horizon, we first sort all round trips into groups based on their turnaround τ (e.g.,

the first group contains round trips with τ between 0 and 1 second, the second group

contains round trips with τ between 1 and 2 second, etc) and then for each group,

we calculate the dollar-volume-weighted realized profitability (rpτ ). Such a structure

allows easy comparison with the conventional realized spread, which is only defined

at pre-specified horizons. Figure 16 plots the term structure of aggregate realized

profitability, along with the corresponding effective spreads and price impacts from

Equation (2.8).

We observe a clearly upward-sloping term structure of realized profitability which

stands in stark contrast to the sharply downward-sloping term structure of realized
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spread (Conrad and Wahal, 2020). The term structure not being flat along with

a large amount of within-stock variation in τ means that any choice of a fixed τ

in the calculation of realized spreads will lead to a misspecified estimate of realized

profitability. We argue such an upward-sloping term structure is consistent with

the risk-return trade-off faced by liquidity providers as a whole—slower inventory

turnaround exposes liquidity providers to greater risk of, say, adverse information or

large price swings; as compensation, they demand a higher return.

The accompanying term structure of effective spread reconfirms the above ar-

gument. As the turnaround time increases, effective spread also increases. This

upward-sloping term structure of effective spread implies two things. First, market

makers have rational expectations concerning the time it takes for a trade to be

turned around. Second, they quote a higher spread for trades that they expect would

take longer to offload—to compensate for the higher risk associated with holding the

temporary inventory.

Sharpe Ratio Term Structure

The upward term structure of aggregate realized spreads provides a useful but im-

precise depiction of the risk-return trade-off market makers face. To better visualize

such a trade-off, we compute the Sharpe ratio (the ratio of dollar-volume-weighted

average to the standard deviation of the realized spread) of all round trips in each τ

group.12 Figure 17 plots the term structure of Sharpe ratio.

In a perfect world absent frictions or costs, Sharpe ratios of liquidity provision

12For robustness, we also estimate the ratios in an alternative way: we first compute the Sharpe

ratio of round trips in each τ group on a daily basis, and then compute a simple average of these

daily estimates. The resulting Sharpe ratio estimates are almost the same using both methods.
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across varying horizons should be equalized. In reality, however, frictions such as a

high barrier to entry (e.g., high-frequency market making requires significant initial

capital investment and operational costs) can limit competition thus causing deviation

from equality. If we interpret the differences in Sharpe ratios across market-making

horizons as reflecting such costs. The term structure in Figure 17 can also be viewed

as the term structure of market-making cost. In Figure 17, market making at shorter

horizons (within 1 second) exhibits a much higher Sharpe ratio at 7.3. This number

declines sharply over the horizons up until 60 seconds and then slowly flattens out.

Such a pattern is not surprising as marketing making at extremely short horizons is

significantly more costly due to, say, data costs or server costs. At longer horizons

above 5 minutes, we still observe an annualized Sharpe ratio as high as 2.8. By

contrast, using the conventional measure of realized spread, the Sharpe ratio falls to

almost zero after 1 minute. The evidence sheds light on the biases the conventional

measure can generate, which we will discuss in more detail in the following section.

2.5 Dissecting the Term Structure

In this section, we break down the aggregate term structure and study both its

cross-sectional and time-series components. To do that, we first compute the average

τ for each stock using all round trips of that stock in our sample. We then sort firms

into decile groups based on their average τ . With the grouping, we can separately

study the time-series dimension of the term structure (within each group) and the

cross-section dimension (across the groups).

Cross-sectional Variations in τ

The top panel of Figure 18 plots the distribution of stocks across varying τs. The

y-axis denotes the percentage of stocks with average τ within the range marked by the
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edges of the bars along the x-axis. The colors denote the decile groupings—the group

with the fastest inventory turnaround is marked dark green whereas the group with

the slowest inventory turnaround is marked dark red. The bottom panel of Figure 18

shows the (simple) average τ of stocks from each decile group.

As in Figure 18, the average inventory turnaround time is less than 200 seconds

for more than 80% of all stocks. This is not surprising as we know the cross-sectional

variation constitutes close to 0% to the aggregate variation in τ . The bottom decile

group of stocks (the active group with the fastest inventory turnaround) has an av-

erage τ of 56 seconds. Whereas the average τ for the top decile group (the inactive

group with the slowest turnaround) is 212 seconds.

Trade-off between τ and Realized Profitability in the Cross-section

Table 9 shows the dollar-volume-weighted average realized profitability for each

decile group using all round trips of the stocks in that group. Realized profitability is

strictly increasing in the average inventory turnaround time of a stock. The average

realized profitability is 2.45 basis points for the stocks with the fastest turnaround

time and increases to 15.53 for the stocks with the slowest inventory turnaround.

Similarly, the term structure of exiting effective spread is also sharply upward slop-

ing—increasing from 1.39 basis points to 14.36 basis points. The slope of this cross-

sectional term structure is much steeper as compared to the aggregate term structure

(raising from 3.2 to 4.6 for the same range in τ), reflecting a sharper risk-return

trade-off in the cross-section: because the daily average turn-around time τ is rel-

atively stable within a stock, liquidity providers should have a relatively good idea

about the risk of market making in each stock and sets their quotes according to this

perceived level of risk (increasing in τ). From Table 9 we see that the ALP is rela-

tively good at pricing liquidity (setting the entering spread) in the cross-section and
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gets compensated accordingly. This is consistent with Comerton-Forde et al. (2010)

who find that market makers widen spreads as trading risks increase.

In terms of other characteristics of the stocks, Panel B of Table 9 shows that stocks

with short turnaround times tend to be larger than those with longer turnaround

times. They also have higher valuations (lower book-to-market ratios) as compared

to slow stocks. This leads to the natural concern that the apparent relationship

between τ and realized profitability is not driven by τ but rather other stock-level

characteristics that just happen to be correlated with τ . To this end, we report in

Table 10 the dollar-volume-weighted average rp for stock subsets sorted first by size

and then average τ and also for stock subsets sorted first by book-to-market and

then average τ . The initial sort serves as a rough means of controlling for size. The

positive relationship between τ and rp remains intact for both small and large stocks.

We repeat the same exercise with book-to-market and find the τ , rp trade-off to be

similarly robust.

Trade-off between τ and Realized Profitability in the Time Series (within stock)

In this section, we investigate how the term structure of realized profitability

differs for stocks whose trades are expected to be turned around quickly and stocks

in which liquidity providers must hold on to their position for relatively longer. To

do that, we construct the within term structure of realized profitability for each

quintile group by estimating the dollar-volume-weighted average realized profitability

at varying horizons using round trips of all stocks in that group. These within-term

structures primarily reflect the τ -realized profitability trade-off in the time series.

For those concerned with the cross-section variation within each group, we show that

using an alternative estimation—compute the term structure for each stock (using

dollar volume weights) and then aggregate all term structures by simple averaging
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across all stocks within each group—yields almost the same results.

In Figure 19 we plot out, for all groups, the realized profitability term structure as

well as the term structure of its components (the alternative realized spread and the

effective spread at the exit). In contrast to the comparison of average realized prof-

itability across the groups themselves, the relation between realized profitability and

τ appears more complicated within each quintile group. Specifically, realized prof-

itability is sharply increasing in τ only for those securities with the fastest inventory

turnaround. The majority of trading, 83% (by dollar-volume), occurs in securities

classified as “fast”; this causes the aggregate term structure to be upward-sloping. As

we move towards the stocks with a slower turnaround time, the term structure begins

to take on a downward slope (e.g., for the slowest two groups). This transformation

from upward to downward sloping is even more pronounced when looking at the term

structure of the realized spread component of the realized profitability. Similar varia-

tion in the term structure across securities does not emerge when looking at realized

spreads. This is evidence of our realized profitability measure capturing aspects of

the different markets which are missed by the conventional measure.

Figure 20 plots out the term structure of the realized spread, by using the same

fixed τ for every trade, across the different groups of fast/slow stocks. We see a

consistent downward-sloping term structure across the different groups with the only

visible variation being in the gradient of the decline. The most important takeaway

is that the fundamental trade-off between holding time τ and profitability is reversed

for fast stocks. There are other implications as well. First, Huang and Stoll (1996)

set forth the intuition that if the choice of τ is too short when computing realized

spreads the observed price may not have reverted back to fundamental value, and

if chosen too long it would be contaminated by the effects of other trades. By this

logic, it should be the case that after a certain τ , the mean realized spreads should
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level out as the additional noise is averaged out. We do not see this, for each group,

we see realized spreads continue to decline even past the average turnaround time

for each group; in fact, we see a (partial) reversal beginning to manifest in the two

fastest groups (which together make up 95% of the whole market).

Figure 21 plots the average entering and exiting effective spread for the round trips

at different turnaround times for the fast/slow groupings. In the graph, effective

spreads are largely increasing in τ across groups, suggesting that the ALP quoted

higher spreads for trades that took longer to turn around. If we take the (realized)

time-to-exit as a reasonable proxy for the (expected) market-making risk, we can see

the effective spreads increase with the expected risk of market making. We interpret

that as evidence of the ALP’s overall capability to evaluate the riskiness of trades in

the time series, quoting a wider spread when trades take longer to turn around.

In terms of realized profitability, we attribute the differences in the term struc-

tures to the varying level of competition intensity across the groups. Specifically,

for the group with the fastest inventory turnaround, market making at extremely

short horizons is relatively less risky. This temptation of “risk-free” profits attracts

intensive competition from market makers with speed advantages, driving down the

profitability at these extremely short horizons. As we move towards stocks with a

slower inventory turnaround time, the prospect of “risk-free” return gets slimmer as

trades are sparser and more likely to be informative. For these stocks, concerns about

information asymmetry and adverse selection discourage competition on quotes from

high-speed market markers. As a result, the realized profitability is larger at the

extremely short horizons and the remaining term structure is mostly dominated by

price impact from adverse selection.

56



Term Structure Steepness and Volatility

Our interpretation of the term structure for both fast and slow stocks centers on a

risk-return trade-off. One way to check this intuition is to see whether or not these

trade-offs are more or less pronounced during periods of elevated price risk. Simply

put, the rp term structure for fast securities should have a steeper upward slope when

volatility is high and the rp for slow securities should be more downward sloping if

during these times adverse selection risks are elevated. To measure the slope of the

term structure we run monthly regressions of round trip realized profitability rp on

the turn-around time τ and use the coefficient on τ as our measure of the slope.

For fast stocks, this coefficient is positive indicating that the longer hold-times are

associated with higher returns to the ALP on average, for slow stocks it is the reverse.

We proxy for the level of risk by computing the realized variation of transaction prices

calculated following the methodology laid out by Zhang et al. (2005). Figure 22 plots

the slope of the term structures against the RV for both groups of stocks. We found

that whenever the RV increases, the slope of the fast term structure becomes more

positive while that of the slow group becomes more negative.

Deviation of Realized Spread From Realized Profitability

The previous section suggests that conventional realized spread measures can de-

viate significantly from our realized profitability. The difference between the two,

however, is monotonically decreasing both in level and in term structure as we move

towards stocks with a slower expected inventory turnaround. Specifically, for stocks

with the fastest expected turnaround, the average realized profitability spread is 382%

larger than realized spread even for the shortest horizon (within one second); the dif-

ference increases with the horizon—realized profitability is sharply increasing in τ
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whereas realized spread is largely decreasing in τ (from 0.40 bps for trades turned

around within one second to 0.165 bps for τ between half and one minute before

reverting to 0.23 bps for τ between 8 and 10 minutes). As for the slowest group, the

difference between realized profitability and realized spread is much smaller: aver-

age realized profitability is 84% larger than realized spread for the shortest horizon;

the difference increases with τ by a much slower rate as both term structures are

decreasing in τ .

Because trades are turned around at variously different horizons, the above results

suggest that the biases in the estimates of profits using realized spread with a common

τ for all trades can be large and also time-varying, especially for fast turnaround

stocks of which the realized profitability is highly sensitive to the τ . Indeed, Figure 23

shows aggregate realized spreads (measured at both 10 seconds and 6 minutes) are

significantly lower than the realized profitability throughout our sample period with

the difference spiking during periods with high market volatility (when variations

in time to exit are likely large). Compared to fast stocks, realized spreads for slow

stocks capture the dynamics of realized profitability much better, potentially due to

the lower sensitivity of the profitability to τ . After detrending both time series by

first differencing, the contemporary correlations between realized profitability and

realized spreads for fast stocks lie at below 0.3 regardless of the horizon chosen for

the estimation. For slow stocks, the correlations are much higher, hovering around

0.5. Still, these numbers suggest there is significant variation in realized profitability

in the time series not captured by the conventional realized spread measure, even for

the slow stocks.
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2.6 Robustness: Alternative Inventory Tracking

When using FIFO, the aggregate term structure for the realized profitability is

downward sloping. The issue is that, as we previously discussed, the downward

slope may be a mechanical artifact of the interaction of the FIFO system with order

imbalance. In Figure 24 we plot out the empirical term structure under FIFO for

different stock-day trade imbalance deciles. Consistent with our result from Section B

we observe a downward-sloping term structure that gets more dramatic as the level

of order imbalance increases. Interestingly is that when restricting ourselves to low-

imbalance stock days, when the influence of the mechanical bias is lower, the term

structure is upward-sloping, consistent with our results using LIFO.

In Figure 25 we perform the slow-fast τ sorts using all stock days (top) and the

25% stock days with the lowest imbalance (bottom). The main difference in the term

structure under FIFO when including high imbalance days seems to be one of level as

they are all downward sloping. Restricting ourselves to low imbalance days, we get

patterns broadly consistent with the LIFO results.

The shape of the LIFO term structure is stable across stock days with low or high

order imbalances whereas the FIFO term structure is not. At first glance, this raises

the concern that FIFO is capturing something LIFO is not on high-imbalance stock

days. This behavior in the FIFO term structure is however perfectly in line with the

mechanical relationship between the FIFO term structure and order imbalance exam-

ined in Section B. In other words, we believe that the drastic change in the FIFO term

structure is due to a statistical artifact inherent to the method itself. Any alterna-

tive explanation would have to argue for the existence of an economically significant

factor affecting liquidity provider inventories on high imbalance stock days that: (1)

reverses the risk-return trade-off observed in low imbalance days, (2) is distinct from
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the FIFO mechanical bias, and (3) is sensitive to measurement methodology, showing

up in FIFO but not LIFO.

2.7 Conclusion

The conventional realized spread estimates a mark-to-market profit at a prespeci-

fied (exogenous) market-making horizon; this profit can deviate significantly from the

profits to liquidity provision if the price subsequently moves at the time of the exit.

By tracking the cumulative inventory positions of all passive liquidity providers in the

US equity market and matching each position with its offsetting trade, we construct

a measure of profits to liquidity provision (realized profitability) that matches the

dynamics of Virtu’s market-making revenue much better than realized spread (at any

reasonably prespecified horizon).

To make sense of the difference between our realized profitability and conven-

tional realized spread, we assess how realized profitability varies with the endogenous

market-making horizon τ and compare that to the term structure of realized spread

in Conrad and Wahal (2020). We find, unlike the conventional realized spread, which

is sharply decreasing in τ , our realized profitability is strictly increasing in τ . Since

longer inventory turnaround typically implies a higher risk of market making, we

interpret our result as consistent with the risk-return trade-off faced by an average

liquidity provider in the competitive market-making business. By decomposing our

realized profitability into an alternative realized spread component (measured with

endogenized τ for each trade) and the effective spread at the exit trade, we show the

bias in the conventional realized spread as a proxy for market-making profit is mainly

caused by the specification of common τ across all trades.
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Figure 1: ISO Single Limit-Order Book (SLOB) Execution

The top two panels reflect the Bid side of the order books on two exchanges, A
(blue) and B (orange), with protected bids in bold. An ISO implemented trade
looking to climb up the exchange A book beyond the first level would have to commit
to clearing out the exchange B protected quote. The ISO exemption only allows
for orders to trade-through better-priced protected quotes if the trader commits to
concurrently clearing out those quotes. An ISO implemented trade looking to climb
up the exchange A book would execute as-if there was a single trade venue with the
liquidity collected in the bottom-left order book. This is in contrast to the bottom-
right book constructed out of all the available liquidity from both exchanges; note
that the ISO-SLOB misses the liquidity available at $4.5. After the protected quotes
are cleared out, the NBB would update to the quote for 50 @ $4.5 on exchange B.
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Table 1: Summary Statistics

Summary statistics for a variety of sub-samples are reported below. The sample is comprised of
2,657 publicly traded securities for the period spanning Jan 2019 - Apr 2021 and covers 93% of the
total traded dollar volume. The top two panels report values for small, medium, and large sized
stocks along with values for foreign securities, REITs, and ETFs. The bottom two panels break out
the sample into sub-samples by the median number of public trade venues for each security.

Small (20%) Mid (60%) Big (20%) ALL

Number of Securities 391 1170 390 2651
Market Cap (Billions $) 0.25 2.93 63.18 14.05
Proportion Sweep Volume 43.84% 40.02% 44.54% 47.78%
Median Number of Exchanges 2 5 8 6
Effective Spread (bps) 15.55 5.46 1.90 3.61
Relative ISO cps (bps) 5.30 2.27 0.76 1.36
RISO cps / Effective Spread 0.34 0.42 0.41 0.41

Common Stock Foreign REIT ETF

Number of Securities 1951 190 89 354
Market Cap (Billions $) 14.43 17.07 11.77 11.34
Proportion Sweep Volume 43.71% 44.63% 42.01% 57.17%
Median Number of Exchanges 5 8 7 5
Effective Spread (bps) 3.82 4.95 3.65 1.36
Relative ISO cps (bps) 1.53 2.11 1.55 0.45
RISO cps / Effective Spread 0.40 0.43 0.44 0.33

≤ 3 venues 4 5 6

Number of Securities 584 1170 390 1951
Market Cap (Billions $) 1.57 3.34 4.38 6.84
Proportion Sweep Volume 52.10% 47.95% 43.88% 44.04%
Effective Spread (bps) 8.97 4.93 5.07 4.02
Relative ISO cps (bps) 2.52 1.81 1.91 1.56
RISO cps / Effective Spread 0.28 0.37 0.38 0.39

7 8 > 9 venues ALL

Number of Securities 190 89 354 2651
Market Cap (Billions $) 13.15 22.32 60.12 14.05
Proportion Sweep Volume 46.90% 46.37% 47.33% 47.78%
Effective Spread (bps) 3.04 2.45 3.56 3.61
Relative ISO cps (bps) 1.23 1.00 1.52 1.36
RISO cps / Effective Spread 0.40 0.41 0.43 0.41
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Figure 2: Non-ISO and ISO Trade Mechanics

MO trade implementations execute in a sequential manner; orders can only execute at venues with
the best prices and must wait for NBBO quotes to update before the next leg of the trade can
execute. When using a sequence of MOs, the trader must (1) route the MO to an exchange quoting
at the NBBO price. After receiving a MO (2) the exchange checks the tape to see if they are able
to fill the order, if it does, it then updates the tape. In order to ensure that subsequent MOs are
routed correctly, the trader waits to observe the updated quotes (3) before repeating the process
until the trade is complete. ISO trade implementations can trade-through the NBBO and execute
across multiple venues simultaneously. ISOs are routed across multiple venues (1) at the same time,
exchanges fill the ISOs and update the tape (2).
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Figure 3: Trading Example

ISO and MO implementations of a sale for 200 shares, starting at time t are compared in an
environment with three exchanges (A, B, and C). Posted quotes are expressed as (# Shares available
@ Price-per-share). Protected quotes are colored with a blue fill, unprotected quotes are colored
with a green fill, and hidden orders are denoted with a light gray font). The ISO implementation
consists of 3 sales simultaneously executed across the three exchanges at time t. The first MO
implementation assumes no change in the posted quotes as the three orders at times t, t + 1, and
t+ 2 execute. MOs can only execute at the best available price, after the liquidity at $5 is cleared
out on exchanges A and B, the NBB updates to the quote at $4.5 on exchange A. The second MO
implementation assumes that the bid quotes are revised down to the prices in red after the first MO
execution of 100 @ 5 is observed.
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Figure 4: ISO and MO Order-Book Executions

Two books are constructed using the posted quotes from the three exchanges from Figure 3. The
pseudo-book is constructed only from the prevailing protected quotes (blue) across the exchanges;
these quotes are level 1 (L1) quotes corresponding to the top of each exchange’s book. A ISO
trades against this pseudo book the same as a market order would, instantaneously climbing the
order-book. The combined book is a hypothetical order book constructed from both protected and
unprotected (green) quotes from the three exchanges. An MO implementation would execute similar
to 3 sequential market orders trading against the combined book, though with pauses between MOs
to allow the NBBO to update. During these pauses the posted liquidity could adversely move against
the investor mid-trade.
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Figure 5: Example Trade And Quote Ordering 1

Below is a possible presentation of the merged quote and trade updates for the ISO implemented sale
of 200 shares from section 1.2. Quotes (blue) on the left and order executions (red) on the right are
sorted by the order reported on the consolidated tape. The first three quote updates establish the
prevailing protected bids, with a NBB of $5, immediately preceding the initiation of the ISO sale.
The first ISO clears out exchange A’s protected bid of 100 @ 5. This leads to the updated protected
quote of 100 @ 4.5 for exchange A, this quote becomes the NBB after exchange B’s protected quote
is cleared out by the second ISO. The first two ISOs have TECs of zero because the sales occurred
at the NBB. By the time the last ISO on exchange C is reported, the prevailing NBB is 4.5, leading
to a TEC of 50 shares ×(4.5− 4) = $25.
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Figure 6: Example Trade And Quote Ordering 2

Below is another possible presentation of the merged quote and trade updates for the ISO imple-
mented sale of 200 shares from section 1.2. Quotes (blue) on the left and order executions (red) on
the right are sorted by the order reported on the consolidated tape. The first three quote updates
establish the prevailing protected bids, with a NBB of $5, immediately preceding the initiation of
the ISO sale. In this scenario, the executions of all three ISO legs of the sale are reported before
the NBB is updated. As in the ordering in Figure 5, the ISOs on exchange A and B have a TEC of
zero as the sales occured at the NBB. The difference here is that because the prevailing NBB was
$5 (instead of $4.5) when the exchange C ISO was reported, that order has a TEC of 50 shares
×(5− 4) = $50, which is an overestimate of the actual excess costs of $25.
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Figure 7: Relative ISO Costs-Per-Share Over Time

The trade dollar volume weighted average of the relative ISO costs per share to average effective
spread ratio using the whole sample is plotted across time in blue. The red line is simply the
time-series average of the blue.

68



Figure 8: Neighbor Trade Comparison vs. Daily Aggregate

Below is a graphical comparison of the daily aggregation and neighbor trade methods of estimating
the ISO premium. Consecutive individual orders are grouped into either a NISO (blue) or ISO
(red) trade block. Trade blocks are chronologically ordered (left to right) for the trade day from the
open to close. The top panel illustrates the daily aggregation method. All ISO trade blocks across
the day are collected together to calculate the ISO costs per share (ISOcps), similarly all NISO
trade blocks throughout the day are collected to calculate the NISO costs per share. The difference,
ISOcps - NISOcps = RISOcps is the day’s relative ISO costs per share and comprises the daily
aggregate measure o the ISO premium. The second half illustrates the neighboring trade method.
Each ISO trade block with an immediately preceding NISO block is paired up with that NISO block
to compute NISOcpsi, the difference in the costs per-share between the two blocks. The volume
weighted NISOCPSi measures are summed up to get, NISOcps, the neighboring trades derived
measure of the ISO premium.
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Table 2: Previous Fragmentation Measures

Regression results for the log-log panel regressions of the form:

lnyi,t = α+ β′lnXi,t + ϵi,t

for three subsamples are reported. The response variable y is either a realized spread, effective
spread, ISO TEC costs-per-share, or relative ISO TEC costs-per-share; all measured in basis-points.
Here the design vector X is comprised of (1 − HHI) and DarkV ol

TotalV ol . Significance is denoted at the
10% ∗, 5% ∗∗, and 1% ∗∗∗ levels which are determined based on the entity-month clustered standard
errors reported in parenthesis below the coefficients. Month-time fixed effects are included in all
specifications.

Panel A: All Securities
Variable Realized Spreads Effective Spreads Gross ISO Costs Relative ISOcps Scaled RISOcps
Constant −0.94∗∗∗ 0.07∗∗∗ 0.55∗∗∗ 0.09∗∗∗ 0.73∗∗∗ 1.20∗∗∗ −0.12∗∗∗ 0.78∗∗∗ −0.69∗∗∗ −0.51∗∗∗

(0.05) (0.01) (0.06) (0.01) (0.06) (0.04) (0.06) (0.02) (0.02) (0.01)
(1−HHI) −3.50∗∗∗ 0.05 −2.62∗∗∗ 0.14∗∗∗ −1.20∗∗∗ 0.65∗∗∗ −2.59∗∗∗ 0.85∗∗∗ −0.19∗∗∗ 0.82∗∗∗

(0.12) (0.04) (0.13) (0.04) (0.14) (0.04) (0.14) (0.04) (0.04) (0.03)
DarkV ol
TotalV ol

−0.09∗∗∗ 1.52∗∗∗ −0.01 0.14∗∗∗ 0.16∗∗∗ 0.15∗∗∗ 0.34∗∗∗ 0.37∗∗∗ 0.32∗∗∗ 0.26∗∗∗

(0.03) (0.01) (0.04) (0.01) (0.04) (0.08) (0.04) (0.01) (0.01) (0.01)
Fixed Effects No Yes No Yes No Yes No Yes No Yes
Panel B: Median Public Venues ≤ 3
Variable Realized Spreads Effective Spreads Gross ISO Costs Relative ISOcps Scaled RISOcps
Constant −0.30∗∗∗ 0.92∗∗∗ 0.65∗∗∗ 2.08∗∗∗ 0.42∗∗∗ 1.66∗∗∗ −0.02∗∗∗ 1.43∗∗∗ −0.56∗∗∗ −0.53

(0.10) (0.02) (0.12) (0.01) (0.12) (0.02) (0.12) (0.02) (0.04) (0.02)
(1−HHI) −1.85∗∗∗ 0.03 −1.56∗∗∗ 0.01 −1.17∗∗∗ 0.34∗∗∗ −1.48∗∗∗ 0.38∗∗∗ 0.05 0.39∗∗∗

(0.14) (0.05) (0.20) (0.03) (0.16) (0.04) (0.17) (0.05) (0.05) (0.04)
DarkV ol
TotalV ol

−0.48∗∗∗ 0.07∗∗∗ −0.75∗∗∗ 0.07∗∗∗ −0.56∗∗∗ 0.10∗∗∗ −0.52∗∗∗ 0.26∗∗∗ 0.26∗∗∗ 0.12∗∗∗

(0.06) (0.01) (0.07) (0.01) (0.07) (0.01) (0.07) (0.01) (0.02) (0.01)
Fixed Effects No Yes No Yes No Yes No Yes No Yes
Panel B: Median Public Venues > 9
Variable Realized Spreads Effective Spreads Gross ISO Costs Relative ISOcps Scaled RISOcps
Constant −0.12 −0.43∗∗∗ 2.09∗∗∗ 1.21∗∗∗ 2.42∗∗∗ 1.41∗∗∗ 1.35∗∗∗ 0.72∗∗∗ −0.75∗∗∗ −0.48∗∗∗

(0.22) (0.07) (0.25) (0.06) (0.26) (0.07) (0.25) (0.02) (0.08) (0.05)
(1−HHI) −1.46∗∗∗ 0.90∗∗∗ 2.41∗∗∗ 0.76∗∗∗ 4.10∗∗∗ 1.68∗∗∗ 3.19∗∗∗ 2.32∗∗∗ 0.63∗∗∗ 1.54∗∗∗

(0.56) (0.27) (0.67) (0.20) (0.70) (0.24) (0.71) (0.24) (0.23) (0.15)
DarkV ol
TotalV ol

0.94∗∗∗ 0.53∗∗∗ 0.73∗∗∗ 0.25∗∗∗ 0.76∗∗∗ 0.31∗∗∗ 0.41∗∗∗ 0.50∗∗∗ 0.18∗∗∗ 0.25∗∗∗

(0.14) (0.05) (0.16) (0.03) (0.16) (0.04) (0.15) (0.04) (0.05) (0.03)
Fixed Effects No Yes No Yes No Yes No Yes No Yes
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Figure 9: RV Dispersion Illustration
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Figure 10: Trade and Midpoint RV Estimates

The log trade dollar volume weighted average RV estimates across time for the subset of 50 heavily
traded securities are plotted across time. The blue line is derived using RV estimates calculated
using transaction values and the orange line is derived using RV estimates calculated using midpoint
shifts. Appendix A describes the RV estimation procedure in depth.
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Table 3: Dispersion-Based Fragmentation Measures

Regression results for the log-log panel regressions of the form:

lnyi,t = α+ β′lnXi,t + ϵi,t

for three subsamples are reported. The response variable y is either a realized spread, effective
spread, ISO TEC costs-per-share, or relative ISO TEC costs-per-share; all measured in basis-points.
Here the design vector X is comprised of Disp[RV ], AOS, and RV NBBO. Significance is denoted
at the 10% ∗, 5% ∗∗, and 1% ∗∗∗ levels which are determined based on the entity-month clustered
standard errors reported in parenthesis below the coefficients. Month-time fixed effects are included
in all specifications.

Panel A: All Securities
Variable Realized Spreads Effective Spreads Gross ISO Costs Relative ISOcps Scaled RISOcps
Constant 1.07∗∗∗ 1.67∗∗∗ 3.72∗∗∗ 3.27∗∗∗ 4.65∗∗∗ 3.31∗∗∗ 2.04∗∗∗ 2.02∗∗∗ −1.53∗∗∗ −1.15∗∗∗

(0.10) (0.07) (0.09) (0.05) (0.08) (0.06) (0.10) (0.06) (0.05) (0.04)
Disp[RV ] 0.25∗∗∗ 0.10∗∗∗ 0.31∗∗∗ 0.12∗∗∗ 0.35∗∗∗ 0.13∗∗∗ 0.33∗∗∗ 0.13∗∗∗ 0.02∗∗∗ 0.02∗∗∗

(0.01) (0.00) (0.01) (0.00) (0.01) (0.01) (0.01) (0.01) (0.00) (0.00)
AOS 0.36∗∗∗ 0.09∗∗∗ 0.30∗∗∗ 0.03∗∗∗ 0.08∗∗∗ 0.01 0.34∗∗∗ 0.05∗∗∗ 0.07∗∗∗ 0.03∗∗∗

(0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)

RV NBBO −0.11∗∗∗ 0.08∗∗∗ −0.08∗∗∗ 0.06∗∗∗ −0.10∗∗∗ 0.07∗∗∗ −0.17∗∗∗ 0.03∗∗∗ −0.06∗∗∗ −0.03∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)
Fixed Effects No Yes No Yes No Yes No Yes No Yes
Panel B: Median Public Venues ≤ 3
Variable Realized Spreads Effective Spreads Gross ISO Costs Relative ISOcps Scaled RISOcps
Constant 1.73∗∗∗ 1.59∗∗∗ 2.99∗∗∗ 3.11∗∗∗ 3.07∗∗∗ 2.88∗∗∗ 1.28∗∗∗ 1.65∗∗∗ −1.60∗∗∗ −1.32∗∗∗

(0.18) (0.12) (0.15) (0.06) (0.15) (0.07) (0.17) (0.09) (0.09) (0.07)
Disp[RV ] 0.08∗∗∗ 0.03∗∗∗ 0.11∗∗∗ 0.03∗∗∗ 0.20∗∗∗ 0.05∗∗∗ 0.17∗∗∗ 0.05∗∗∗ 0.05∗∗∗ 0.02∗∗∗

(0.02) (0.01) (0.01) (0.00) (0.01) (0.01) (0.02) (0.01) (0.01) (0.00)
AOS 0.26∗∗∗ 0.12∗∗∗ 0.44∗∗∗ 0.09∗∗∗ 0.30∗∗∗ 0.05∗∗∗ 0.42∗∗∗ 0.06∗∗∗ 0.04∗∗∗ 0.00

(0.03) (0.02) (0.02) (0.01) (0.02) (0.01) (0.03) (0.01) (0.01) (0.01)

RV NBBO 0.12∗∗∗ 0.11∗∗∗ 0.17∗∗∗ 0.14∗∗∗ 0.04∗∗∗ 0.13∗∗∗ −0.02∗∗∗ 0.04∗∗∗ −0.14∗∗∗ −0.08∗∗∗

(0.02) (0.01) (0.02) (0.01) (0.02) (0.01) (0.02) (0.01) (0.01) (0.01)
Fixed Effects No Yes No Yes No Yes No Yes No Yes
Panel B: Median Public Venues > 9

Variable Realized Spreads Effective Spreads Gross ISO Costs Relative ISOcps Scaled RISOcps
Constant 2.92∗∗∗ 2.74∗∗∗ 5.44∗∗∗ 4.21∗∗∗ 6.15∗∗∗ 4.63∗∗∗ 4.02∗∗∗ 3.22∗∗∗ −1.17∗∗∗ −0.82∗∗∗

(0.22) (0.16) (0.17) (0.15) (0.15) (0.16) (0.20) (0.18) (0.12) (0.11)
Disp[RV ] 0.19∗∗∗ 0.21∗∗∗ 0.41∗∗∗ 0.28∗∗∗ 0.47∗∗∗ 0.32∗∗∗ 0.44∗∗∗ 0.31∗∗∗ 0.03∗∗ 0.05∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.01) (0.01)
AOS 0.10∗∗∗ 0.02∗∗∗ 0.02 0.02∗∗ −0.08∗∗∗ −0.04 0.07∗∗∗ 0.04∗∗∗ 0.03 0.06∗∗∗

(0.02) (0.01) (0.02) (0.01) (0.02) (0.01) (0.02) (0.01) (0.02) (0.01)

RV NBBO 0.14∗∗∗ 0.06∗∗∗ −0.13∗∗∗ 0.08∗∗∗ −0.18∗∗∗ −0.09∗∗∗ −0.21∗∗∗ 0.10∗∗∗ −0.06∗∗ −0.03∗∗

(0.05) (0.02) (0.03) (0.02) (0.03) (0.02) (0.04) (0.02) (0.02) (0.01)
Fixed Effects No Yes No Yes No Yes No Yes No Yes
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Figure 11: Log and Level Regression Residuals

Standardized histograms (with skewness) for the residuals for the panel regressions of the form:

RISOcpsi,t = α+ β′
1lnFi,t + β′

2lnXi,t + ϵi,t

Where the response variable is either log transformed or not. Fragmentation measures are comprised

of Fi,t =
[
Disp[RV ]i,t, AOSi,t, (1 − HHIi,t),

DarkV ol
TotalV ol i,t

]
. Control variables captured in the design

vector X are {RV nbbo, Spread, sweepProp, ILLIQ}. Month-time and security fixed effects are
included in both specifications. The level regression residual histogram is shaded in red and the
one for the log regression is in blue, the black dashed-line denotes a benchmark standard-normal
probability distribution function.
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Table 4: Results Across Subsamples

Regression results for the log-log panel regressions of the form:

lnRISOcpsi,t = α+ β′
1lnFi,t + β′

2lnXi,t + ϵi,t

for all securities, the top 50 securities, and those securities which are traded on 7 or more exchanges.

Fragmentation measures are comprised of Fi,t =
[
Disp[RV ]i,t, AOSi,t, (1 − HHIi,t),

DarkV ol
TotalV ol i,t

]
.

Control variables captured in the design vector X are {RV nbbo, Spread, sweepProp, ILLIQ}.
The first column for each sample reports the regression results excluding the control variable X
from the specification. Significance is denoted at the 10% ∗, 5% ∗∗, and 1% ∗∗∗ levels which are
determined based on the entity-month clustered standard errors reported in parenthesis below the
coefficients. Month-time and security fixed effects are included in all specifications.

Variable Relative ISO Costs Per Share

All ≤ 3 Trade Venues > 9 Trade Venues
Constant 2.637∗∗∗ 5.009∗∗∗ 2.069∗∗∗ 4.224∗∗∗ 3.801∗∗∗ 6.859∗∗∗

(0.067) (0.008) (0.087) (0.118) (0.203) (0.239)
Disp[RV ] 0.143∗∗∗ 0.176∗∗∗ 0.069∗∗∗ 0.073∗∗∗ 0.239∗∗∗ 0.377∗∗∗

(0.004) (0.006) (0.005) (0.007) (0.013) (0.017)
AOS 0.030∗∗∗ −0.014∗∗∗ 0.047∗∗∗ −0.020∗∗ 0.026∗∗∗ 0.003

(0.004) (0.003) (0.009) (0.008) (0.011) (0.009)
(1−HHI) 1.157∗∗∗ 1.277∗∗∗ 0.623∗∗∗ 0.679∗∗∗ 2.252∗∗∗ 2.303∗∗∗

(0.040) (0.036) (0.062) (0.063) (0.189) (0.161)
DarkV ol
TotalV ol

0.291∗∗∗ 0.271∗∗∗ 0.226∗∗∗ 0.198∗∗∗ 0.240∗∗∗ 0.296∗∗∗

(0.008) (0.007) (0.013) (0.014) (0.033) (0.029)

RV NBBO −0.064∗∗∗ −0.074∗∗∗ −0.186∗∗∗

(0.006) (0.010) (0.017)
QuotedSpread 0.545∗∗∗ 0.711∗∗∗ 0.478∗∗∗

(0.010) (0.029) (0.025)
SweepProportion 0.065∗∗∗ 0.084∗∗∗ 0.116∗∗∗

(0.008) (0.013) (0.030)
ILLIQ 0.017∗∗∗ 0.020∗∗∗ 0.018∗∗∗

(0.002) (0.004) (0.003)
Entity-Effects Yes Yes Yes Yes Yes Yes
Month-Effects Yes Yes Yes Yes Yes Yes

R2 21.10 30.03 11.19 11.95 45.35 50.32

Num. Obs 1,10,530 132,266 114,100
Num. Entities 2,637 584 238
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Table 5: Results Across Small/Large Subsamples

Regression results for the log-log panel regressions of the form:

lnRISOcpsi,t = α+ β′
1lnFi,t + β′

2lnXi,t + ϵi,t

for all securities and the market-cap size quintile subsets. Fragmentation measures are comprised of

Fi,t =
[
Disp[RV ]i,t, AOSi,t, (1−HHIi,t),

DarkV ol
TotalV ol i,t

]
. Control variables captured in the design vector

X are {RV nbbo, Spread, sweepProp, ILLIQ}. Significance is denoted at the 10% ∗, 5% ∗∗, and
1% ∗∗∗ levels which are determined based on the entity-month clustered standard errors reported
in parenthesis below the coefficients. Month-time and security fixed effects are included in all
specifications.

Variable Relative ISO Costs Per Share

Smallest 20% Middle 60% Largest 20%
Constant 2.936∗∗∗ 5.964∗∗∗ 2.944∗∗∗ 5.377∗∗∗ 2.763∗∗∗ 4.288∗∗∗

(0.164) (0.178) (0.082) (0.096) (0.161) (0.157)
Disp[RV ] 0.131∗∗∗ 0.236∗∗∗ 0.146∗∗∗ 0.173∗∗∗ 0.179∗∗∗ 0.148∗∗∗

(0.010) (0.015) (0.005) (0.007) (0.010) (0.011)
AOS 0.094∗∗∗ 0.019 0.027∗∗∗ −0.041∗∗∗ 0.059∗∗∗ 0.004

(0.019) (0.015) (0.007) (0.006) (0.009) (0.008)
(1−HHI) 0.738∗∗∗ 0.781∗∗∗ 1.257∗∗∗ 1.384∗∗∗ 1.471∗∗∗ 1.648∗∗∗

(0.096) (0.089) (0.049) (0.045) (0.098) (0.101)
DarkV ol
TotalV ol

0.193∗∗∗ 0.335∗∗∗ 0.247∗∗∗ 0.256∗∗∗ 0.339∗∗∗ 0.308∗∗∗

(0.020) (0.022) (0.008) (0.009) (0.022) (0.019)

RV NBBO −0.194∗∗∗ −0.049∗∗∗ −0.016
(0.014) (0.008) (0.011)

QuotedSpread 0.416∗∗∗ 0.507∗∗∗ 0.546∗∗∗

(0.024) (0.012) (0.022)
SweepProportion 0.212∗∗∗ 0.093∗∗∗ 0.096∗∗∗

(0.021) (0.013) (0.023)
ILLIQ 0.055∗∗∗ 0.021∗∗∗ −0.007∗∗

(0.005) (0.003) (0.003)
Entity-Effects Yes Yes Yes Yes Yes Yes
Month-Effects Yes Yes Yes Yes Yes Yes

R2 9.52 15.08 8.05 19.16 11.76 23.63

Num. Obs 96,963 521,735 185,553
Num. Entities 388 1,163 388
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Table 6: Regression Results With and Without COVID-19

Regression results for the log-log panel regressions of the form:

lnRISOcpsi,t = α+ β′
1lnFi,t + β′

2lnXi,t + ϵi,t

for all securities for the whole sample period, the pre-COVID19, and COVID19-forward sam-
ple periods. Pre-COVID19 period spans from Jan 1, 2019 to Feb 1, 2020; the COVID19-
Forward runs from Feb 1, 2020 to Apr 30, 2021. Fragmentation measures are comprised of

Fi,t =
[
Disp[RV ]i,t, AOSi,t, (1 − HHIi,t),

DarkV ol
TotalV ol i,t

]
. Control variables captured in the design

vector X are {RV nbbo, Spread, sweepProp, ILLIQ}. Significance is denoted at the 10% ∗, 5% ∗∗,
and 1% ∗∗∗ levels which are determined based on the entity-month clustered standard errors re-
ported in parenthesis below the coefficients. Month-time and security fixed effects are included in
all specifications.

Variable Relative ISO Costs Per Share

All Pre-COVID19 Period COVID19 Plus Period
Constant 2.637∗∗∗ 5.009∗∗∗ 1.993∗∗∗ 4.221∗∗∗ 2.799∗∗∗ 4.664∗∗∗

(0.067) (0.008) (0.065) (0.092) (0.098) (0.107)
Disp[RV ] 0.143∗∗∗ 0.176∗∗∗ 0.110∗∗∗ 0.091∗∗∗ 0.147∗∗∗ 0.155∗∗∗

(0.004) (0.006) (0.004) (0.005) (0.006) (0.007)
AOS 0.030∗∗∗ −0.014∗∗∗ 0.026∗∗∗ −0.011∗∗ 0.041∗∗∗ −0.011∗∗

(0.004) (0.003) (0.004) (0.004) (0.006) (0.005)
(1−HHI) 1.157∗∗∗ 1.277∗∗∗ 1.089∗∗∗ 1.201∗∗∗ 1.186∗∗∗ 1.237∗∗∗

(0.040) (0.036) (0.043) (0.042) (0.051) (0.044)
DarkV ol
TotalV ol

0.291∗∗∗ 0.271∗∗∗ 0.252∗∗∗ 0.239∗∗∗ 0.309∗∗∗ 0.269∗∗∗

(0.008) (0.007) (0.008) (0.008) (0.013) (0.012)

RV NBBO −0.064∗∗∗ −0.006 −0.076∗∗∗

(0.006) (0.005) (0.008)
QuotedSpread 0.545∗∗∗ 0.630∗∗∗ 0.602∗∗∗

(0.010) (0.014) (0.014)
SweepProportion 0.065∗∗∗ 0.119∗∗∗ 0.066∗∗∗

(0.008) (0.009) (0.011)
ILLIQ 0.017∗∗∗ 0.001 0.009∗∗∗

(0.002) (0.003) (0.003)
Entity-Effects Yes Yes Yes Yes Yes Yes
Month-Effects Yes Yes Yes Yes Yes Yes

R2 21.10 30.03 13.65 17.70 19.65 22.90

Num. Obs 1,10,530 520,085 442,053
Num. Entities 2,637 2,637 2,637
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Table 7: Neighbor-Trade Comparison Results

Regression results for the log-log panel regressions of the form:

lnyi,t = α+ β′
1lnFi,t + β′

2lnXi,t + ϵi,t

for all securities, where the response variable is a measure of the relative ISO costs per share calcu-
lated using daily means or by comparing neighboring trades . Fragmentation measures are comprised

of Fi,t =
[
Disp[RV ]i,t,MPDi,t, AOSi,t, (1−HHIi,t),

DarkV ol
TotalV ol i,t

]
. Control variables captured in the

design vector X are {RV nbbo, Spread, sweepProp, ILLIQ}. The first column of each method
reports the regression results excluding the control variable X from the specification. Significance
is denoted at the 10% ∗, 5% ∗∗, and 1% ∗∗∗ levels which are determined based on the entity-month
clustered standard errors reported in parenthesis below the coefficients. Month-time and security
fixed effects are included in all specifications.

Variable Relative ISO Costs Per Share

Daily Aggregate Neighboring Trades
Constant 2.721∗∗∗ 5.105∗∗∗ 3.663∗∗∗ 5.789∗∗∗

(0.063) (0.077) (0.060) (0.078)
Disp[RV ] 0.148∗∗∗ 0.183∗∗∗ 0.170∗∗∗ 0.143∗∗∗

(0.004) (0.005) (0.004) (0.005)
AOS 0.013∗ −0.065∗∗∗ −0.003 −0.050∗∗∗

(0.008) (0.006) (0.006) (0.006)
(1−HHI) 1.071∗∗∗ 1.218∗∗∗ 0.474∗∗∗ 0.698∗∗∗

(0.040) (0.035) (0.040) (0.037)
DarkV ol
TotalV ol

0.291∗∗∗ 0.275∗∗∗ 0.210∗∗∗ 0.317∗∗∗

(0.008) (0.007) (0.007) (0.008)

RV NBBO −0.075∗∗∗ 0.022∗∗∗

(0.006) (0.005)
QuotedSpread 0.541∗∗∗ 0.378∗∗∗

(0.009) (0.011)
SweepProportion 0.066∗∗∗ 0.352∗∗∗

(0.008) (0.009)
ILLIQ 0.019∗∗∗ 0.009∗∗∗

(0.002) (0.002)
Entity-Effects Yes Yes Yes Yes
Month-Effects Yes Yes Yes Yes

R2 21.99 30.25 37.52 30.24

Num. Obs 1,069,019 873,098
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Table 8: 2-Stage Heckman Correction

Regression results for the 2-stage Heckman procedure for correcting selection bias are reported below.
The first stage-probit specification follows:

Φ−1(ISOpercenti,t) = Zi,tγ + ui,t

and the second-stage specification:

ISOcostsi,t = Xi,tβ + λ̂i,tθ + ϵi,t

where λ̂i,t =
ϕ(Zi,tγ̂)
Φ(Zi,tγ̂)

denotes the estimated inverse Mills ratio from the first stage. Design variables

included in the first and second stages are
[
Disp[RV ]i,t−1, RV nbbo

i,t−1, Spreadi,t−1, (1 − HHIi,t−1),
]

and
[
Disp[RV ]i,t, (1−HHIi,t),

DarkV ol
TotalV ol i,t

, RV nbbo
i,t , Spreadi,t, λ̂i,t

]
respectively. In this specify time

periods are split into consecutive 15-min trading periods. Significance is denoted at the 10% ∗,
5% ∗∗, and 1% ∗∗∗ levels which are determined based on the entity-month clustered standard errors
reported in parenthesis below the coefficients. Day-time and security fixed effects are included in all
specifications.

Stage 1 Probit Stage 2 OLS
Variables Φ−1(ISOpercent) Variables Relative ISO Costs

Disp[RV ]t−1 -0.003∗∗∗ Constant -1.848∗∗∗ -1.924∗∗∗

(.001) (0.025) (0.021)

RV NBBO
t−1 0.013∗∗∗ Disp[RV ]t 0.010∗∗∗ 0.008∗∗∗

(.001) (0.002) (0.001)
(1−HHIt−1) -0.142∗∗∗ (1−HHIt) 0.656∗∗∗ 0.579∗∗∗

(.008) (0.018) (0.016)

QuoteSpreadt−1 -0.100∗∗∗ DarkV ol
TotalV ol t

0.035∗∗∗ 0.035∗∗∗

(.004) (0.003) (0.003)

RV NBBO
t -0.008∗∗∗ -0.017∗∗∗

(0.003) (0.002)
Quoted Spread 1.044∗∗∗ 1.047∗∗∗

(0.007) (0.005)
Inverse Mills Ratio 0.060

(0.078)
Entity-Effects Yes Yes Yes Yes
Day-Effects Yes Yes Yes Yes

R-squared 55.91 37.70 40.87

Num. Obs 6,490,988 5,559,614 7,106,640
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Figure 12: Rule 605 Reported Spreads and Realized Profitability

Figure plots the monthly average realized spread (green line), monthly average realized prof-
itability, and Virtu’s quarterly market-making revenue (red bar) together with the monthly
interpolation of the revenue (grey bar). Average realized spread is computed monthly by
aggregating reported realized spreads of a group of matched securities (both in Virtu’s
Rule 605 and in our sample) using the executed number of shares as weights. Average
realized profitability is computed for the same group using our realized profitability data
and the same weights. Market-making revenue is the quarterly trading income of Virtu’s
market-making segment (from Virtu’s 10K filings).
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Figure 13: Adding Effective Spread to Conventional Realized Spread

The dollar-volume weighted realized profitability rp (blue) for the sample of “fast” securities
is plotted in the top panel alongside the dollar-volume weighted realized spread computed
with a 10-second horizon with the effective spread (brown) and without (green). The bottom
panel plots a similar time series for the “slow” stocks but with the realized spread computed
with a 6-minute horizon.
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Figure 14: Distribution of τ

Figure plots the histogram of the round trip time τ (restricted to up to 1200 seconds for
visual clarity). The x-axis corresponds to the inventory turnaround time τ , the y-axis the
total number of trips that are turned around at τ (x-axis) from their initiation. Using dollar
volume instead of the number of trips gives similar distribution.
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Figure 15: Deviation of Realized Spreads From Market-making Revenue

Figure shows the time-series of (dollar-volume-weighted) average realized profitability, av-
erage realized spreads under both 10 seconds and 6 minutes, and quarterly market-making
revenue (with monthly interpolation). Monthly measures of realized profitability are com-
puted by taking the dollar-volume-weighted average of the realized profitability of all round
trips in that month. Monthly measures of realized spread are computed by taking the
dollar-volume-weighted average of the realized spread of all trades in that month. Quar-
terly market-making revenue data comes from Virtu’s quarterly financial report: the trading
income under the market-making segment.
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Figure 16: Aggregate Realized Profitability

The figure plots out the term structure of the realized profitability rp over clock-time
horizons. Each bar shows the dollar-volume weighted-average rp (blue bars) of all round
trips with a turnaround time between the specified blocks of time. The first two blocks are
composed of round trips of 0-1 seconds and 1-2 seconds; the last two blocks are composed
of trips that took 480-540 seconds and 540-600 seconds. The top panel decomposes realized
profitability into the sum of effective spreads (red-dashed line) and price-impact (orange
bars). The bottom panel decomposes rp into the exiting half-spread (red bars) and the
alternative realized spread component with endogenous τ (orange bars).
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Figure 17: Sharpe Ratio of Liquidity Provision
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Figure 18: Distribution of τ (Cross-section)

The top panel of this figure plots out the distribution of the average turnaround time τ
of the individual stocks in our sample. The y axis denotes the percentage of stocks with
an average turnaround time between the range marked by the edges of the bars along the
x-axis. The sample is split into quintile grouping based on τ and is color-coated on a fast
(green) to slow (red) spectrum. The bottom panel plots out the dollar-volume weighted
average turnaround time of each quintile grouping in seconds.
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Figure 19: Realized Profitability

The figure plots out the term structure over clock-time horizons of the realized profitability
and its component elements across τ quintile groupings with the fastest securities in the
leftmost column and the slowest in the rightmost. The top row shows the term-structure
of rpt,τ , the middle row shows the realized spread component rst,τ , and the final row the
exiting effective spread δt(Mt+τ − Pt+τ ).
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Figure 20: Realized Spread Term Structures by Groups

The figure plots the term structure over clock-time horizons of conventionally measured
realized spread across τ quintile groupings with the fastest securities in the leftmost column
and the slowest in the rightmost.

Figure 21: Effective Spreads by Groups

Here we plot out the term structure of the dollar-volume weighted effective spreads at
the beginning of the round-trips at different horizons across τ quintile groupings with the
fastest securities in the leftmost column and the slowest in the rightmost. The black solid
line outlines the values of the effective spread at the exit of the trips.

88



Figure 22: Term-Structure Steepness and Volatility

Slope estimates β̂ from monthly regressions of round-trip profitability onto a constant and
turn-around time τ of regression specification: t,τ = α + βτ + ϵt are plotted alongside the
dollar-volume weighted average total realized variation RV for the security subsample over
time. The top panel plots out these values for the full sample, the middle panel repeats the
exercise for the subset of “fast” stocks while the last panel does so for “slow” stocks.
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Figure 23: Realized Profitability Compared with Realized Spreads for Fast Stocks
(left) and Slow Stocks (right)

Figure plots the time series of dollar-volume-weighted average realized profitability and
dollar-volume-weighted average realized spreads measured with both 10 seconds τ and 6
minutes τ .
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Figure 24: Aggregate Realized Profitability (FIFO) across Days Sorted by Order
Imbalance
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Figure 25: Aggregate Realized Profitability (FIFO) across Fast and Slow Stocks

We use all sample days (top) and sample days with low imbalance days (bottom) to generate
the realized profitability term structures for fast/slow stock groupings.
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Table 9: Realized profitability and firm characteristics by groups

We sort stocks into decile groups based on their average inventory turnaround time. In
Panel A we compute the dollar-volume-weighted average realized spread for each group
using round trips of all stocks in that group, similarly, we also compute and report the
average Sharpe ratio of the realized profitability, average inventory turnaround time (in
trade time and clock time) and average effective spreads. In Panel B we describe the
characteristics of stocks in each group. All firm characteristics are measured at the end
of each fiscal year and then averaged across stocks using lag firm size as weights. Mk-
tCap (size) is price times shares outstanding; investment rate is the % change in total
asset; book-to-market is the ratio of book equity to size; gross-profitability is revenues
minus cost of goods sold over total asset; ROE is income before extraordinary items
over lagged book equity; trading turnover is average daily volume over shares outstand-
ing; Market beta is computed annually using daily returns; idiosyncratic volatility is
the standard deviation of the residual from the market model regression.

Panel A: Trade Variables
Fast 2 3 4 Slow

Realized profitability 2.45 4.43 6.31 9.11 15.53
Sharpe ratio 3.04 3.30 3.74 4.56 5.74
Entering Effective Spread 1.44 3.68 5.68 8.50 16.18
Exiting Effective Spread 1.39 3.43 5.23 7.73 14.36
Realized-Spread Component 1.07 1.01 1.08 1.38 1.17
τ (in # of trades) 211 60 40 27 17
τ (in seconds) 46 100 131 165 213
Panel B: Other Characteristics

Fast 2 3 4 Slow
MktCap (Billions) 61.96 5.71 2.25 1.30 0.70
Investment Rate 0.09 0.13 0.14 0.12 0.12
Book-to-Market 0.37 0.44 0.48 0.50 0.62
Gross-Profitabilty 0.28 0.27 0.26 0.26 0.19
ROE 0.25 0.16 0.10 0.12 0.10
Trading Turnover 6.56 9.33 8.16 6.11 4.61
Market Beta 0.98 1.09 1.11 1.09 0.97
Idiosyncratic Vol 0.01 0.02 0.02 0.02 0.02
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Table 10: Average Realized Profitability for Double Sorted Groups

Table reports dollar-volume-weighted average realized profitability for stock groups sorted
first by size and then average τ (left), and dollar-volume-weighted average realized prof-
itability for stock groups sorted first by book-to-market and then average τ (right).
“Small/Large” corresponds to the size grouping and “Low/High” corresponds to the book-
to-market grouping.

Fast 2 3 4 Slow Fast 2 3 4 Slow
Small 16.02 17.61 19.62 28.63 34.07 Low 2.76 4.11 5.59 6.74 10.75
2 10.33 9.68 9.98 11.75 17.49 2 1.85 3.80 5.68 7.51 12.45
3 5.74 6.37 6.57 7.31 10.02 3 1.94 3.90 5.82 8.47 14.46
4 4.05 3.69 4.20 4.75 6.40 4 1.59 4.29 7.38 12.02 23.68

Large 2.22 1.64 2.28 2.45 4.05 High 1.92 4.27 7.26 10.24 20.39
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ISO Ordering

Per the SEC’s description of ISOs:

Simultaneously with the routing of the limit order identified as an intermarket sweep
order, one or more additional limit orders, as necessary, are routed to execute

against the full displayed size of any protected bid, in the case of a limit order to
sell, or the full displayed size of any protected offer, in the case of a limit order to
buy, for the NMS stock with a price that is superior to the limit price of the limit
order identified as an intermarket sweep order. These additional routed orders also

must be marked as intermarket sweep orders.

The language of the rule calls only for the “simultaneous” routing of order. This is
of course impossible in the most literal sense of the word and ISO orders are presented
with different time-stamps in the data. The language concerning the order of ISO
submission remained opaque in a 2008 SEC memorandum for Rule 611 FAQs. One
section reads:

“... whenever an order-router intends to sweep one or more inferior prices, an ISO
must be routed to execute against every better-priced protected quotation...”

One would think that by first sending ISOs to better-priced exchanges they may
assure compliance with the regulation should their trading be interrupted for whatever
reason. Submitting ISOs per this ordering would go a long way towards justifying the
methodology. This, I stress, is just conjecture. In another section the memorandum
reads:

”... To meet this requirement, the broker-dealer will need to utilize an automated
system that is capable of ascertaining current protected quotations and

simultaneously routing the necessary ISOs. ...”

The language calling for simultaneous routing mirrors that found within the letter
of Rule 611, but what is meant by simultaneity remains unclear. Absent clarifica-
tion and no obvious reasoning as to why ISOs shouldn’t be routed best-price-first I
believe it is reasonable to assume a random ordering. The best-price-first ordering
the methodology lines up perfectly with the counterfactual trade measurement, with
random ordering the methodology produces a noisy but not biased estimate, and with
best-price-last ordering the methodology producing an upper bound for these costs.

RV Measurements

For each day d, for each exchange E, I observe a series of price observations,
denoted Pt. These could be either quoted or transaction prices. It is assumed the
series of prices {Pt}d,E are noisy observations of the “true” price Xt in the sense that
the observed log price is equal to the “true” latent log price plus some noise, ηt:

lnPt = lnXt + ηt
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The stochastic microstructure noise ηt is assumed to be centered at zero with a con-
stant within-day volatility but may be heteroskedastic across days. Given the con-
tamination of the observed prices due to microstructure noise, the usual estimator of
the process’s quadratic variation (shown below) would be inappropriate:

[lnP, lnP ]
Π

(all)
E,d

=

nd∑
i=1

(lnPtd,i − lnPtd,i−1
)2 where: nd = |Π(all)

E,d |

Where Π
(all)
E,d = {td,0, td,1, td,2, ..., td,nd

} denotes the whole set of available sampling
points for {Pt}d,E on day d with td,0 < td,1 < ... < td,nd

. Due to the presence of
measurement error it is well known that as the set of sampling points gets large the
expected value of the above estimator diverges, limnd→∞⟨[lnP, lnP ]Π(all)⟩ = ∞. In
order to address this issue I employ the methodology set out in Zhang et al. (2005)
which combines a bias-correction with averaging in order to make use of all available
data. Averaging works to make use of the whole data by sampling at predetermined
frequency across non-intersecting sampling grids Π ⊂ Π(all).

Under the assumption that the microstructure noise is independently identically
distributed and orthogonal to the efficient price process, the expected value of the

realized variation from using a sub-partition Π ⊂ Π
(all)
d,E would be given by:

⟨[lnP, lnP ]Π⟩ = [lnX, lnX]Π + 2nγη(0) (A.1)

Where γη(0) is the variance of the microstructure noise. Note that as the sample size
n grows large, the bias term 2nγη(0) in equation (A.1) dominates in expectation and

⟨[lnP, lnP ]Π⟩ → ∞ as n → ∞. The good news is that if |Π(all)
d,E | = nd is large enough,

then the microstructure noise variance could be proxied by:

[lnP, lnP ]
Π

(all)
d

2nd

≈ γη(0) (A.2)

So subtracting n
nd
[lnP, lnP ]

Π
(all)
d

from [lnP, lnP ]Π would result in a consistent estima-

tor; this is the bias correction.
In order to implement averaging, for a sampling frequency K, define the jth par-

tition ΠK(j) ⊂ Π
(all)
d as

ΠK(j) = {tKi+j|i ∈ {0, 1, 2, ..., ⌊nd − 1− j

K
⌋}}

So for a set integer value K we can define the “averaged” realized variance as:

[lnP, lnP ]K =
1

K

K−1∑
j=0

[lnP, lnP ]ΠK(j)

The averaged bias corrected (ZMA) estimator for the dth day (where n̄k =
1
K

∑K−1
j=0 ⌊nd−1−j

K
⌋ is the average cardinality of the subpartitions) as:

R̂V
E

d,K = [lnP, lnP ]K − n̄K

nd

[lnP, lnP ]
Π

(all)
d

(A.3)
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It is typically assumed that ηt is orthogonal to the true log price and exhibits no
autocorrelation, so ⟨ηsηt⟩ = 0 if s ̸= t and ⟨lnXtηt⟩ = 0. Under these conditions the
ZMA estimator would be consistent, in theory it would not be free of bias in if these
assumptions are not true. However one may show that any bias resulting from the
violation of those assumptions would must lie between ξ and −ξ where ξ > 0 is a
quantity proportional to the level of microstructure noise variance γη(0).

The sampling frequenciesK used for the averaged estimators are chosen so that the
sampling points in each subpartition are approximately 300 seconds (5 minutes) apart.
On average, sampling points were 301.81 seconds apart with a standard deviation of
0.91 seconds, so I feel that my estimates should be consistent with other literature
which follow the standard recommendation for highly liquid assets of Andersen et al.
(2001) to sample every five minutes.

Demonstrative Example:
Consider the case when we have 108,000 price observations within a single day (five

observations per second) and we are interested in sampling every five minutes. Given
that there are 72 non-overlapping five minute intervals for the 6-hour sample period,
and if the observation times are roughly equally spaced, then the 1st and 108,000

72
=

1, 500th observation would be roughly 300 seconds apart. In this case the averaged
RV estimator (K = 1500), [lnP, lnP ]1500 would be the average of the following 1500
individual non-overlapping RVs:

[lnP, lnP ]Π1500(0) =
71∑
i=0

(lnP(i+1)1500+0 − lnP(i)1500+0)
2,

[lnP, lnP ]Π1500(1) =
71∑
i=0

(lnP(i+1)1500+1 − lnP(i)1500+1)
2,

[lnP, lnP ]Π1500(2) =
71∑
i=0

(lnP(i+1)1500+2 − lnP(i)1500+2)
2,

...

With n̄1500 = 71 the bias correction term would be 71
10800

times the total RV
([lnP, lnP ]

Π
(all)
d

) using all 108,000 observations.
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Table A.1: Gross ISO Cost Results Across Subsamples

Regression results for the log-log panel regressions of the form:

lnISOcpsi,t = α+ β′
1lnFi,t + β′

2lnXi,t + ϵi,t

for all securities, the top 50 securities, and those securities which are traded on 7 or more exchanges.

Fragmentation measures are comprised of Fi,t =
[
Disp[RV ]i,t, AOSi,t, (1 − HHIi,t),

DarkV ol
TotalV ol i,t

]
.

Control variables captured in the design vector X are {RV nbbo, Spread, sweepProp, ILLIQ}.
The first column for each sample reports the regression results excluding the control variable X
from the specification. Significance is denoted at the 10% ∗, 5% ∗∗, and 1% ∗∗∗ levels which are
determined based on the entity-month clustered standard errors reported in parenthesis below the
coefficients. Month-time and security fixed effects are included in all specifications.

Variable Gross ISO Costs Per Share

All ≤ 3 Trade Venues > 9 Trade Venues
Constant 3.643∗∗∗ 3.494∗∗∗ 2.913∗∗∗ 4.798∗∗∗ 5.022∗∗∗ 7.009∗∗∗

(0.061) (0.078) (0.078) (0.108) (0.169) (0.198)
Disp[RV ] 0.177∗∗∗ 0.165∗∗∗ 0.114∗∗∗ 0.062∗∗∗ 0.257∗∗∗ 0.362∗∗∗

(0.004) (0.005) (0.005) (0.006) (0.010) (0.014)
AOS −0.003 −0.041∗∗∗ 0.050∗∗∗ −0.010 −0.052∗∗∗ −0.066

(0.004) (0.003) (0.009) (0.007) (0.008) (0.007)
(1−HHI) 0.868∗∗∗ 1.001∗∗∗ 0.482∗∗∗ 0.640∗∗∗ 1.679∗∗∗ 1.676∗∗∗

(0.039) (0.038) (0.048) (0.047) (0.161) (0.150)
DarkV ol
TotalV ol

0.087∗∗∗ 0.088∗∗∗ 0.082∗∗∗ 0.081∗∗∗ 0.084∗∗∗ 0.107∗∗∗

(0.006) (0.006) (0.010) (0.011) (0.020) (0.018)

RV NBBO 0.010∗∗ 0.050∗∗∗ −0.142∗∗∗

(0.005) (0.008) (0.014)
QuotedSpread 0.379∗∗∗ 0.477∗∗∗ 0.316∗∗∗

(0.011) (0.019) (0.023)
SweepProportion 0.089∗∗∗ 0.116∗∗∗ 0.040∗∗

(0.007) (0.010) (0.019)
ILLIQ 0.017∗∗∗ 0.018∗∗∗ 0.012∗∗∗

(0.002) (0.004) (0.002)
Entity-Effects Yes Yes Yes Yes Yes Yes
Month-Effects Yes Yes Yes Yes Yes Yes

R2 41.54 37.52 27.50 27.39 69.93 73.14

Num. Obs 1,10,530 132,266 114,100
Num. Entities 2,637 584 238
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Table A.2: Gross ISO Costs Results Across Small/Large Subsamples

Regression results for the log-log panel regressions of the form:

lnISOcpsi,t = α+ β′
1lnFi,t + β′

2lnXi,t + ϵi,t

for all securities and the market-cap size quintile subsets. Fragmentation measures are comprised of

Fi,t =
[
Disp[RV ]i,t, AOSi,t, (1−HHIi,t),

DarkV ol
TotalV ol i,t

]
. Control variables captured in the design vector

X are {RV nbbo, Spread, sweepProp, ILLIQ}. Significance is denoted at the 10% ∗, 5% ∗∗, and
1% ∗∗∗ levels which are determined based on the entity-month clustered standard errors reported
in parenthesis below the coefficients. Month-time and security fixed effects are included in all
specifications.

Variable Gross ISO Costs Per Share

Smallest 20% Middle 60% Largest 20%
Constant 4.050∗∗∗ 6.261∗∗∗ 3.612∗∗∗ 5.397∗∗∗ 3.465∗∗∗ 4.707∗∗∗

(0.106) (0.122) (0.069) (0.087) (0.123) (0.132)
Disp[RV ] 0.167∗∗∗ 0.201∗∗∗ 0.172∗∗∗ 0.151∗∗∗ 0.193∗∗∗ 0.148∗∗∗

(0.007) (0.010) (0.004) (0.006) (0.007) (0.010)
AOS 0.015 −0.027∗∗∗ −0.008∗ −0.046∗∗∗ −0.001 −0.032∗∗∗

(0.011) (0.001) (0.004) (0.004) (0.005) (0.005)
(1−HHI) 0.655∗∗∗ 0.752∗∗∗ 0.882∗∗∗ 1.023∗∗∗ 0.828∗∗∗ 0.977∗∗∗

(0.062) (0.059) (0.044) (0.042) (0.084) (0.088)
DarkV ol
TotalV ol

0.083∗∗∗ 0.151∗∗∗ 0.081∗∗∗ 0.078∗∗∗ 0.126∗∗∗ 0.061∗∗∗

(0.011) (0.013) (0.006) (0.006) (0.013) (0.012)

RV NBBO −0.070∗∗∗ 0.027∗∗∗ 0.036
(0.010) (0.006) (0.009)

QuotedSpread 0.292∗∗∗ 0.365∗∗∗ 0.467∗∗∗

(0.018) (0.012) (0.022)
SweepProportion 0.126∗∗∗ 0.092∗∗∗ 0.024∗∗

(0.015) (0.008) (0.012)
ILLIQ 0.045∗∗∗ 0.016∗∗∗ −0.001

(0.003) (0.002) (0.002)
Entity-Effects Yes Yes Yes Yes Yes Yes
Month-Effects Yes Yes Yes Yes Yes Yes

R2 33.31 35.91 28.64 26.79 31.26 33.81

Num. Obs 96,963 521,735 185,553
Num. Entities 388 1,163 388
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LIFO and FIFO

Under the LIFO system each inventory reversing trade is matched to the newest
inventory entries in a sequential manner whereas under FIFO the offsetting trade
is matched to the oldest pieces of inventory. The difference between the entry and
exit time of each inventory entry will be the round trip time (τ) for the trade that
initiated that inventory. Figure B.1 illustrates the identification of round trips under
the LIFO and FIFO methods using a simple example.

Over any period of time in which all of the LP’s inventory positions are completely
turned around, the average round trip time τ and dollar-volume-weighted average re-
alized profitability under LIFO would be exactly equal to that under FIFO. However,
whenever the LP does not fully turn around it’s inventory position, LIFO estimates
will deviate from that of FIFO. This discrepancy results from the difference in the
set of matched trades between LIFO and FIFO. To illustrate the difference in the
selection of trades between these two tracking systems during days with order im-
balance, we use an extremely simplified example as shown in Figure B.2. As in the
figure, during days with large order imbalance, LIFO matches offsetting trades that
are temporally closer to each other than FIFO: average turnaround time is 2 hours
under LIFO ((1 + 3)/2) and 5 hours under FIFO ((5 + 5)/2).1 This feature of LIFO
is economically appealing: market makers are more likely to provide liquidity when
trades can be turned around faster; given this preference and rational expectations
(about the expected time to turnaround a trade) it is reasonable to expect that round
trips matched under LIFO were more likely executed by market makers than ULPs.

The advantage of LIFO over FIFO is especially prominent during days when there
is large order imbalance. In Table B.1 we sort our stock days into decile groups
based on the daily order imbalance level and then report the average round trip
time and realized profitability of all round trips from each group. Under LIFO,
the average τ increases from 62 seconds for the days with the lowest level of order
imbalance to 116 for the days with the highest level of order imbalance. Under
FIFO, average turnaround times are much larger and also very sensitive to order
imbalance (it increase from 711 seconds for low imbalance day to 5808 seconds for high
imbalance day). In terms of realized profitability, the estimates are very close—around
2.7bps—under both LIFO and FIFO during days with small order imbalances (the
first two decile groups). However, as we move towards large order imbalance stock
days, realized profitability increases gradually to 4.85 bps for the 9th decile group and
jump to 8.26 for the group with the largest order imbalance. By contrast, it drops
to a dramatic -18.18 bps for the group with the highest order imbalance. Compared
to FIFO, LIFO produces much more reasonable estimates of τ across days with and
without large order imbalances. Consider the fact that market makers—especially
high frequency ones—are extremely averse to holding inventory, we believe the high
sensitivity of FIFO estimates to daily order imbalance results from FIFO’s tendency
to capture trades by ULPs: trades that took extremely long to turnaround were most
likely intermediated by long term investors rather than market makers; during days
with large order imbalance, FIFO disproportionately select these trades because it

1Note that in our analysis we only keep trades that are turned around within a day: during days
with order imbalance, the trades, or circles that are not connected by pink dashed lines are omitted
from our sample.
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Figure B.1: Tracking Round Trips (LIFO and FIFO)

Figure illustrates the identification of round trips (how to match off-setting trades to form a
round trip) under LIFO and FIFO using an example with 5 trades over a 5-minute window.
Light green bars denote market sell orders—or equivalently the LP’s buy orders—with sizes
shown on the y-axis; light red bars denote the LP’s sales similarly. The inventory book
records entries of inventory positions with information on the size, direction as well as
time of the entry. Under LIFO, off-setting trades are matched with the newest inventory
to form a round trip: e.g., at t = 5, part of the market buy order is matched with the
newest inventory, the 2 shares acquired at t = 4, to form the round trip Trip2, which has a
turnaround time of 1 minute (exit time 5 − entry time 4). Under FIFO, off-setting trades
are matched with the oldest inventory: e.g., at t = 5, part of the market buy order is
matched with the oldest inventory, the 1 share acquired at t = 1, to form the round trip
Trip2, which has a turnaround time of 5 minute (exit time 5− entry time 1).

matches offsetting trades with the oldest inventory.
Aside from being economically meaningful, LIFO also produce estimates of real-

ized profitability that are statistically more robust to order imbalances than FIFO. In
the following section we demonstrate how FIFO can introduce mechanical bias in the
estimates of realized profitability across market making horizons when there exists
large order imbalance.

106



Figure B.2: Matched Trades under LIFO (left) and FIFO (right)

Figure compares the set of trades matched to form round trips under LIFO with the set
matched under FIFO in a hypothetical day with 7 trades and order imbalance. The solid
black line tracks the cumulative inventory level of the LP throughout the day as shown on
the y-axis; light green balls denote market sells (the LP’s buys) and light red balls denote
market buys, all of unit size and evenly distributed across time (elapsed time between
consecutive trades is one hour). The dashed black lines with arrows connect trades to form
round trips under LIFO on the left and FIFO on the right. Unmatched trades—the first
trades under LIFO and the 3rd through 5th trades under FIFO—show up in the end-of-day
inventory as order imbalance.

Table B.1: Average Inventory Turnaround Time and Realized Profitability by Order
Imbalance

Table reports average inventory turnaround time τ and realized profitability rp for decile
groups of stock days sorted by order imbalance. The sorting variable order imbalance is
computed for each stock day as the total order imbalance scaled by the total trading volume
|$Buy−$Sell|
|$Buy+$Sell| . For each decile group of stock days, we compute the average τ as the dollar-

volume-weighted average τ of all round trips from that group, and the average rp as the
dollar-volume-weighted average rp using all round trips from the same group. First row
reports average τ using round trips matched under FIFO and second row reports average τ
using round trips matched under LIFO. Similarly, the third and fourth row report average
rp using round trips matched under FIFO and LIFO respectively. The last row reports the
dollar-volume-weighted average value of the sorting variable for each group. Column “All”
reports full sample averages (dollar-volume-weighted).

Decile 1 2 3 4 5 6 7 8 9 10 All

FIFO τ (s) 711 875 1,110 1,436 1,801 2,236 2,740 3,368 4,303 5,808 1,567
LIFO τ (s) 62 62 63 64 65 68 72 78 89 116 66
FIFO rp (bps) 2.64 2.54 1.00 0.06 -1.20 -2.49 -3.62 -5.35 -8.63 -18.18 -0.16
LIFO rp (bps) 2.68 2.78 2.68 2.91 2.91 3.12 3.37 3.91 4.85 8.26 2.99
Imbalance (%) 0.8 2.3 3.8 5.5 7.4 9.5 12.0 15.4 20.5 30.2 4.6

Statistical Sensitivity to Order Imbalance: LIFO vs FIFO

In this section, we use a simplified example to show how FIFO can generate statis-
tical bias—that has no economic meaning—in the estimates of realized profitability
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compared to LIFO. We examine the case where the LP’s inventory is built up over
the first n trades of the day followed by D reversing trades—there are a total of D
round-trip trades during the day. For simplicity we assume each trade is either an
aggressive sale or purchase for 1 share. The LP begins with zero inventory and the
initial price of the security is P0.

To illustrate the statistical bias, we shut down economic sources that can poten-
tially cause differences in the estimates of LIFO and FIFO by assuming that each trade
has same price impact ∆ in the direction of the trade (+∆ for buyer-initiated trades
and −∆ for seller-initiated trades), and the occurrence of order imbalance does not
convey information about future trades. The first n trades are seller-initiated trades
for the security meaning that the LP builds up a cumulative inventory position of +n
at time t = n with the security price falling to Pn = P0−n∆. Following the build up,
all D subsequent trades are assumed to be aggressive purchases which progressively
reverse the LP inventory. In the case when D = n the LP’s inventory is completely
turned around and there’s no trade-imbalance; when D < n the LP ends the day
holding n−D shares in inventory.

Figure B.3: LIFO/FIFO Term-Structure Sensitivity

If one were to use FIFO to track the round-trip trades, the presence of an order-
imbalance, ceteris paribus, would mechanically generate a downward slopping term-
structure. Under FIFO, the trade resulting in the first decrease in inventory at time
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t = n + 1, is matched with the trade which first increased the inventory position at
time t = 1. According to FIFO, the LP entered into the position by buying the share
at P1 and later sold it at Pn+1 to yield a realized profitability of Pt+1 − P1. More
generally FIFO will match the exit trade at time t = n+ d with the entering trade at
time t = d with realized profitability given by Pn+d − Pd; note that every round-trip
has the same turn-around time of n under FIFO. The average proceeds for a trading
day with D round trip trades can be calculated as:

1

D

D∑
d=1

(Pn+d − Pd) = ∆(D + 1− n) (B.1)

Whenever there’s trade imbalance, the average turn around time would be decreas-
ing in the average FIFO turn around time n; for example letting D = λn, λ ∈ (0, 1):

∂n[∆(D + 1− n)] = −(1− λ) < 0

So long as there are trade-imbalance days, the FIFO system would have a mechan-
ically downward-sloping term-structure. For days with no-trade imbalance D = n,
the average turn around time would be n with average proceeds of ∆, regardless of
what n is.

Unlike FIFO, LIFO does not have any variation in the realized profitability term
structure mechanically introduced by trade imbalance. Since every trade is of the
same size, and the inventory reversal begins at time t = n + 1, LIFO would match
the entering trade at t = n − d with the exit at t = n + 1 + d for d = 0, 1, 2, . . . , D.
The round trip times τ for the D trips under LIFO are given by 1, 3, 5, ..., (2D − 1).
When D = n (no imbalance) the average τ would be the same as FIFO, τLIFO = n =
1
D

∑D
d=1(2d − 1). On days where D is much smaller than n (so imbalance is large)

the FIFO τ would be much larger than the LIFO τ , τLIFO = 1
D

∑D
d=1(2d − 1) <<

n = τFIFO. Given that each 1-share trade has a price impact of ±∆, the price at the
entrance and exit may be computed as:

Pn−d = (P0 − n∆− d∆) and Pn+1+d = (P0 − n∆+ d∆) +∆

Meaning that the round trip profits, Pn−d − Pn+1+d = ∆ is constant for every round-
trip, resulting in a flat term-structure. Even when trade imbalance is introduced with
D < n, the realized profitability for every round trip would still remain constant at
D. This is to show that in-contrast to FIFO, the combination of price-impact with
trade-imbalance does not mechanically generate a downward (or upward) sloping
term-structure under LIFO.
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Chapter 2 of this dissertation, titled The Profitability of Liquidity Provision, forms
the core of a paper of the same name, co-authored with Lingyan Yang and included
in this document with her permission.
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