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ABSTRACT

Embedded software is different in many aspects to traditional software; as such, a soft-

ware developer may face issues when attempting to transition from traditional to embedded

software development. This thesis explores providing feedback and applying optimizations

at the source code level of embedded software. The aim is to measure the impact of these

optimizations on teaching embedded software design principles, as well as assessing the

relative success of each optimization in terms of a variety of metrics.

There are many considerations when altering code and is a known limitation imposed

by most software optimization schemes. By applying optimizations at the source level,

the aim is to demonstrate what the optimizations do and how they provide value to the

resulting software. In order to fulfill these goals, the Embedded C Source Optimizer has

been developed, which is used to import and export code, select which optimizations are

applied, and provide feedback to the end user.

This utility abstracts away the lower level operations performed by each optimization,

while conveying the resulting changes to the end user. Since embedded systems are gener-

ally quite limited compared to modern computers, someone transitioning from traditional

software design to embedded software may find it challenging to understand how to over-

come these limitations. Clearly conveying means to improve a naive implementation of an

embedded program aids through demonstrating what changes need to be made to satisfy

embedded design rules.

The optimizations which the utility can apply range from simple replacement operations

to more complex applications of implicit utilization of built-in hardware peripherals on sup-

ported microcontrollers. Each optimization comes with its own set of considerations, risks,

and potential level of improvement to the resulting code. These optimization options are

evaluated by comparing embedded software before and after each option is applied through

a variety of metrics, allowing the relative success of each to be determined as effectively as
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possible.

The end goal for this utility is to aid in crossing the hurdle from traditional software to

embedded software in a comprehensive and educational manner, with the provided opti-

mization options acting as an avenue for teaching embedded concepts.
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Chapter 1

INTRODUCTION

Embedded software design is different in many aspects to more traditional software;

as such, an entry-level software developer may face a variety of issues when attempting

to transition from traditional software projects to embedded ones. Aspects such as: code

size, memory usage, hardware support, utilization of peripherals, are all critical facets of

embedded software design which tend to have minimal to no consideration in traditional

software. This required shift in mindset can be a daunting task for such a novice embedded

developer to overcome, and has the propensity to discourage or even turn them off from

embedded software development entirely.

With such a steep learning curve and a general lack of rudimentary information (outside

of courses provided at formal educational institutions), there is a prominent gap in aiding

developers in learning not just how to write embedded code, but why embedded code must

be written in a certain way and the concepts / design patterns that come with it. It should

be noted that there are many online sources for learning embedded concepts, but due to the

fragmented nature of embedded hardware (and therefore how software is written for a given

platform), it is not always straightforward to search for and find information which is ap-

propriate for the task at hand. There is an opportunity to aid in filling this gap by providing

a self-contained solution which aids the end user in not only becoming familiar with embed-

ded concepts, but to explicitly demonstrate how their existing code can be altered to more

effectively utilize embedded hardware while maintaining the same provided functionality.

This thesis explores the process of designing, creating, and analyzing a tool which attempts

to accomplish the goal defined previously.
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Chapter 2

BACKGROUND

There are a variety of aspects which differ between traditional and embedded software

design (which will be detailed in Section 2.1). Understanding these differences is critical to

not only realizing what the primary issues are with this transition, but how the demonstrated

EmbeddedCSourceOptimizer utility is useful in easing the transition to embedded software

design. There are a variety of existing solutions for automatically applying optimizations

to existing embedded software, as well as documented methods of manually optimizing

code. Furthermore, there are tools which allow for building programs at a higher level than

traditional source code (some of which are provided in Subsection 2.2.1). While these are

valid solutions for their intended use cases, there remains a potential gap between such so-

lutions and easing the aforementioned transition to embedded software design. Discussion

concerning filling this gap will be detailed in Subsection 2.2.2.
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2.1. FUNDAMENTALS

2.1 Fundamentals

Embedded software (depending on the hardware being used) is generally very compact

and low-level in an effort to minimize the resources used andmaximize performance, taking

into consideration the limitations imposed by the hardware. Many introductory embedded

development platforms utilize an 8-bit Microcontroller Unit (MCU) [3] which, in compari-

son to traditional computers, can be limited in Instructions Per Clock (IPC), Static Random

Access Memory (SRAM) capacity, Input / Output (I/O) throughput, and connectivity [29].

As such, it is critical to write software which is appropriate for the hardware being used to

achieve the intended result.

2.1.1 Embedded Code & Fixed-Function Hardware

Embedded hardware in the form of MCUs exists as a means of integrating relatively

simple and low-cost logic into a given design/product. These MCUs are intentionally sim-

plistic in nature in order to facilitate the creation of products requiring specialized logic to

handle some portion of its functionality. Since the desired functionality is often so special-

ized for the product in question, the hardware itself is built to provide exactly the required

amount of performance per cost for the product in which it is being integrated into [29].

The limitations imposed on software developers by this restrictive hardware set requires a

significant paradigm shift from traditional software development, where many specific con-

siderations must be made to accomplish any end goal in terms of: functionality, efficiency,

power consumption, etc.

Modern MCUs contain a variety of specialized hardware units, referred to as ”periph-

erals,” which can be configured to perform tasks with minimal to no impact on the core of

the MCU. These peripherals require specific registers to be configured correctly in order

to obtain the intended functionality. This has the potential to be lost on novice embedded
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developers due to the differences in peripherals included between MCU architectures and

families, as well as the specificities of configuring each peripheral. Such a developer may

not even know about the existence of a given peripheral, further compounding the issue. It

is expected that any required information needed to set up these peripherals can be found in

the corresponding datasheet/documentation for the hardware being used, but without know-

ing exactly what to look for this can become quite an arduous task.

Having a simple utility to not only provide background on these peripherals, how they

work, and how to configure them properly, but also attempt to apply changes to a piece of

source code in order to utilize them implicitly is one of the primary focuses of the Embedded

C Source Optimizer. Such an all-encompassing tool could improve understanding in novice

embedded developers through demonstrating what changes should be made for a given

peripheral without digging through documentation.

Despite the variations between families and architectures, there are many hardware pe-

ripherals which have become standard on most embedded hardware. For the sake of ex-

ample, some of these peripherals found on the ATmegaXX8 family of MCUs include [6,

13]:

• Counter/Timer

– Using the primary clock source on the MCU, this is used to count a number of

cycles over a duration of time. A given timer instance need only be configured

once, and from then on it will continue counting with no intervention from the

MCU core. A prescaler value may be set to reduce the frequency which the

counter increments, and in combination with the known primary clock source,

can be used to calculate when a certain duration of time has passed. There are

interrupts which can be enabled to execute an Interrupt Service Routine (ISR)

when the counter reaches a specified value, or when the counter overflows.
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The ATmegaXX8 line of MCUs contain multiple separate timer instances [6],

allowing for more complex operations to be controlled, and many independent

operations to be performed at different time intervals and frequencies.

• Pulse Width Modulation (PWM)

– Generally included as a specific utilization of an existing counter/timer instance,

PWM channels can be configured to output a fixed or variable frequency square

wave. The output depends on two factors: duty cycle and switching frequency.

Duty cycle defines how long the signal is held high relative to the total pulse.

If a pulse lasts 10 ms and the signal is held high for 7 ms (with the remaining 3

ms being held low) then the duty cycle is represented as 7 / 10, or 70% (refer to

Figure 2.1 for other examples of how duty cycle influences the resulting signal).

Switching frequency corresponds to how long a pulse lasts, which is defined by

the time between rising or falling edges. From the previous example, a pulse

that lasts 10mswould have a switching frequency of 10ms / 1000ms, or 100Hz

(meaning there are 100 pulses per second). Combining these two attributes al-

lows for virtually any digital 1 wave to be generated. If the switching frequency

is high enough, the output can be used as a direct replacement for analog volt-

age control since the average voltage which is generated is proportional to the

input voltage times the duty cycle [14].

1A digital signal corresponds to a signal comprised of only two states (being on or off), whereas an analog
signal is a continuous wave made up of infinitely-many states. Analog signals cannot be generated directly
by PWM since the PWM output can only be on or off; however an analog signal can be approximated by
continuously varying the duty cycle over time (thus varying the average output voltage over time), and using
external components (such as capacitors) / circuits to ”smooth” the output signal to more closely match the
intended analog wave.
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Figure 2.1: Visual example of PWM output with varying duty cycles [41]. These square
wave signals with a fixed duty cycle over time will produce a constant average output volt-
age which is proportional to the high level voltage times the duty cycle. The dashed red
lines running vertically correspond to the start of a signal’s period, where the duty cycle is
a proportion of the time the signal is on versus off for the duration of the period.

• Interrupt Handler Unit

– In the context of embedded hardware, interrupts are a means to alter the flow

of a program at runtime depending on the state of the system. There are two

categories of interrupts in this case: internal and external. Internal interrupts

are triggered by the MCU based on the result of some internal operation. An

example of an internal interrupt would be a counter/timer instance overflowing

(assuming it is configured to do so), and jumping to a separate subroutine. On

the other hand, external interrupts are triggered outside of theMCU.An instance

of an external interrupt might be a sensor or button setup to hold a pin high

when active/pressed. Again, assuming the hardware is configured to do so, this

signal can interrupt the flow of the program while it is executing and jump to

a separate subroutine. The subroutine the interrupt causes the MCU to jump to
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is known as an ISR, and may contain code to handle or respond to the action

which triggered the interrupt. To achieve this functionality, a separate piece of

hardware is used on the MCU to update the program counter and store the state

of the remaining registers on the stack. All of this comes together to enable

out-of-order execution which allows for better control over dynamic program

execution [6].

• Analog Comparator

– A relatively simple piece of hardware, this peripheral allows for comparing two

analog inputs, and based on a variety of cases (one signal is higher than the other,

the two signals are the same voltage, etc.) can interact with other peripherals

to alter the flow of execution or modify the state of the MCU. For instance, the

comparator can be set up to ”trigger the Timer/Counter1 input capture function”

[6] or trigger an interrupt, causing the MCU to jump to a defined ISR. This

peripheral may be used in a variety of cases from monitoring other components

of an electrical circuit, to detecting when analog sensors exceed or drop below

a specified voltage level [6].

• Watchdog Timer (WDT)

– This specialized timer is used to ensure that the execution time of a program does

not exceed a certain limit before reseting the timer. The ATmegaXX8 allows

for a wide range of timeout values to be selected and includes a corresponding

instruction to reset the timer. The use cases for the WDT include setting time

limits for tasks within a program, reseting the MCU in the case that execution

was halted due to a bug or other external factor, and/or safely shutting down the

system in the case of a critical failure [6].
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• Analog-to-Digital Converter (ADC)

– The ADC peripheral is used primarily to measure analog values from an exter-

nal source (such as an analog temperature sensor). The ADC internally uses

an analog comparator to measure the external analog signal against a known

reference voltage generated by the MCU. By repeatedly comparing the external

signal to a known reference, a digital representation of that signal can be stored.

The ATmegaXX8 has a 10-bit ADC, meaning each time an analog signal is

measured, the process of comparing the external signal to a known reference

voltage and determining which is greater is repeated 10 times in total. 10 bits of

resolution yields 210 possible analog values which can be interpreted and stored

as a digital representation.

These peripherals represent fixed-function hardware which can be utilized to greatly

expand the functionality of a given MCU. Choosing to perform tasks in software rather

than using these peripherals has the potential to negatively impact a variety of aspects of

the resulting program. This becomes somewhat of a double-edged sword however due to

the relative complexity involved in configuring these peripherals. This gap may be filled

through being able to take an existing software-based approach and having a utility attempt

to configure the appropriate peripherals with little to no intervention from the programmer.

2.1.2 Embedded Optimization Methods

Software optimization has become a standard for many use-cases, especially in the em-

bedded space. While not provided by default, compiling an embedded program under GNU

Compiler Collection (GCC) [25] with the included size optimization is standard for embed-

ded programs. This size optimization applied by the compiler is extremely useful in shrink-

ing the final size of the resulting firmware to more effectively fit on the likely limited flash
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storage of a given MCU. As with any kind of software optimization, there is a chance for

alterations to the firmware which impact the functionality and introduce unexpected behav-

ior. This issue becomes more prominent when considering these compiler optimizations

are applied at such a low level. Investigating why the functionality of a program changed

after compiling with optimizations involves attempting to read and debug assembly level

code, which is far less intuitive to do than working with source code. By applying opti-

mizations at the source code level, it not only makes debugging potential issues with the

optimization much more straightforward, but it also opens an avenue to better demonstrate

to the end-user why changes were made in the first place.

Fundamentally, software optimizations are simply a means to improve various aspects

of a program without changing the intended functionality. ”Optimization” is a term which

covers many aspects in computing; it may refer to changes made by a software developer

to improve their code, by the compiler to indicate it altered the generated assembly code

to account for the hardware being used, or even at the hardware level for increasing the

number or frequency of instructions being executed over a fixed period of time. Within the

scope of this thesis, optimization is associated with the changes made at the source code

level (the level of code which the end-user writes/modifies) which improve the software

in terms of size, efficiency, and performance [21]. By altering source code directly, it is

possible to affect the functionality of the resulting program independent of any compiler-

level optimizations performed. Furthermore, the Embedded C Source Optimizer utility

aims to make the process of automatically applying optimizations at the source code more

streamlined through implicit utilization of fixed-function hardware (peripherals) included

in the majority of AVR MCUs.
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2.2 State of the Art

Embedded software optimization is included as a standard option within GCC, offering

a range of optimization options when compiling a program. That being said, there are not

many alternative options when it comes to tools which aim to optimize embedded code,

especially at the source code level. Some high-level methods which can be used to opti-

mize programs include: selecting what compiler is used, how the compiler is configured,

manually optimizing code through how it is implemented, and avoiding the compilation

step entirely by writing code at the assembly or machine level [21]. Aside from relying on

a compiler (such as GCC) to perform any optimizations at the assembly level, most of the

means used to optimize source code must be done manually [21, 23, 30].

2.2.1 Existing Optimization Solutions

One example of an existing optimization tool which can be used with embedded hard-

ware (such as AVR) is LLVM, which is a compiler infrastructure containing various opti-

mization options and techniques [40]. Despite its name, the LLVM Foundation claims that

the tools it supports ”[have] little to do with traditional virtual machines” [40] (thus not to

be confused with Low Level Virtual Machine (LLVM)). Rather, LLVM uses an interme-

diate representation for source code, where any optimizations which are applied exist at

this intermediate level. Despite the wide range of options the LLVM Core supports in the

way of optimizations [32], applying optimizations to the intermediate form of code obfus-

cates any changes made and potentially makes it difficult to map them to the original source

code. Furthermore, the optimizations provided by the LLVM core are ”target-independent”

[40], and therefore may not be able to take full advantage of embedded hardware due to

the differences between embedded hardware, even within the same architecture or product

family.
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An example of a source-level tool which aids in implicitly generating embedded code

and setting up hardware peripherals is included in Microchip’s MPLAB X IDE [35]. This

framework can be setup with MPLAB X Code Configurator (MCC) [34] to obtain a graph-

ical means of configuring hardware while having to write a minimal amount of source code

manually. This high-level development tool is useful for configuring hardware peripherals

without the need to cross-reference data sheets, as well as abstracting away the lower level

operations associated with configuring hardware peripherals. That being said, MCC itself is

not intended to be an optimization tool, rather a high-level means of developing embedded

code [34]. Any optimization would still be done by the user and/or compiler.

Beyond automated tools, there are countless ways to optimize embedded code manually

which have been used some time; some of which include: loop unrolling, function inlining,

reducing padding in data structures, direct insertion of assembly code, and general algorith-

mic optimization through choosing to use algorithm implementations with more favorable

time and/or space complexity. The specificities of each of these optimization methods are

outside the scope of this thesis; however, the notable observation from these is that software

optimization both on embedded systems and in general is not a novel idea, and has been a

topic of research and discussion for decades [46]. The primary concern with these manual

optimization methods lies in the level of research and prior knowledge needed to implement

them.

2.2.2 Gaps in Existing Solutions

Despite the previously mentioned tools being useful in their own right, they all tend to

lack the level of explanation and clarity for understanding how any applied optimizations

work. Furthermore, it may not be immediately obvious which fundamental components

must be utilized in the first place to achieve a certain result. For instance, MCC can be

utilized to set up a PWM output to control a Light-Emitting Diode (LED) or other actuator;
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however, a novice embedded developer may not intuitively realize that they need to use

PWM to accomplish this since the same functionality can be more readily achieved with

a loop and software delay functions. This disconnect may manifest into bad practices as

there is generally no single source of information, beyond the respective datasheet or other

provided documentation, which conveys this concept.
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Chapter 3

RESEARCH TOPIC

One primary concern a beginner embedded software developer may have is a lack of

clarity of fundamental key concepts used in embedded software that remain absent in tra-

ditional software. The variety of hardware, compilers, and other software tools in the em-

bedded space can lead to a significant amount of overhead in determining how to most

effectively utilize hardware for a given task. This is a challenging problem for a variety

reasons. Different MCU architectures (and even within families of MCUs) require differ-

ent compilers [22], and contain different hardware peripherals, memory / flash capacity, etc.

[13], potentially requiring the developer to delve deep into datasheets and other supplemen-

tal information regarding exactly what hardware they are using. Even performing simple

tasks often require sorting through hardware documentation, and even then the programmer

must have some requisite knowledge of what they need to look for in the first place. This is

also why other implicit code-generating tools are not always simple for a novice embedded

programmer to properly utilize.

The proposed solution described in this thesis differs from other tools in that it does

not make assumptions about the end-user beyond what hardware they are using. Instead of

attempting to provide a different, potentially more intuitive method of performing the same

coding tasks, this solution instead focuses on analyzing a given interpretation of an embed-

ded program, and from that making judgments on what the provided code is attempting to

do. By taking a more retroactive approach to code generation, it has the potential to become

more clear to the end-user how to best utilize a given piece of hardware.

13



3.1. FILLING THE GAP

3.1 Filling the Gap

Tools such as Microchip’s MCC excel at obfuscating how a given piece of hardware

must be configured to perform an intended task. For a novice embedded software devel-

oper, a solution like MCC may be a powerful tool in quickly building embedded programs.

Furthermore, the optimization options provided in the GCC and LLVM compilers perform

exceptionally well at applying low-level optimizations to compiled code which improve

the resulting program in many ways. That being said, these various tools do not necessarily

provide the needed background to aid the end-user in understanding how and why things are

done in a certain way. It is assumed that a beginner embedded software developer likely has

other coding experience and a certain level of competency in software development (even if

they have little experience with embedded code). For instance, a beginner embedded soft-

ware developer may be able to easily write a simple program which performs its intended

task; however the way it is accomplished may be less than ideal without first understand-

ing the limitations imposed by the hardware. In the same vein, utilizing MCC to create an

embedded program may not be intuitive to an individual without background knowledge of

how functions or peripherals provided by a given piece of hardware work on a fundamental

level.

Continuing the example previously mentioned in Subsection 2.2.2, simply writing an

infinite loop containing the code to change the state of an output pin and a software delay to

flash a LED on and off should provide the intended result, but is objectively a poor solution

considering these delay functions will block execution on the core until they are complete

[19]. The same result can be obtained through utilizing a built-in PWM channel with es-

sentially no impact on the MCU core, leaving it open to perform other tasks. Such a basic

example does not necessarily show the full picture, as it is not complex enough to warrant

setting up the hardware appropriately, especially when a “quick and dirty” solution will

14



3.1. FILLING THE GAP

suffice. That being said, as soon as the programmer wishes to add additional functionality

to their code, suddenly the inefficiencies caused by such a solution will undoubtedly result

in a multitude of other problems.

Naive or otherwise inefficient solutions are the use case which the Embedded C Source

Optimizer presented in this thesis intends to aid in. A programmer can take their working

program and pass it through the utility in order to determine if there are changes they should

consider making, especially if they intended to add additional functionality later. Such a

utility which can interpret program code and provide feedback to a new coming embedded

programmer is potentially valuable to their learning experience. An individual who has

come from a traditional software development background likely will not find it intuitive

to pick up on the specificities of embedded software. Having an all-in-one solution for

providing feedback on programs is an useful tool for being able to make the necessary

connections to embedded concepts. The Embedded C Source Optimizer discussed here

can act as the essential first step to making these connections. Furthermore, the ability to

improve various aspects of a piece of software withminimal intervention from the developer

has the potential to speed up development time while simultaneously not compromising on

efficiency or performance.
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3.2 Research Questions

The primary interests for the proposed optimization utility have to do with the aspects

of the source code after any selected optimizations are applied, and how these changes are

presented to the end-user to aid in their understanding of embedded concepts. Investigating

the effectiveness of these will become paramount in the outcome of this project as far as

determining whether or not the utility can make the transition from traditional to embedded

software design more streamlined. Furthermore, the breadth and depth of the supported

optimizations and corresponding documentation will influence the usefulness of the tool,

taking it beyond just a simple educational exercise.

The research questions this thesis will attempt to answer include:

1. How can embedded code be automatically altered/modified by a utility at the source

code level in order to improve its resulting size, efficiency, and performance, while

also preserving the originally-intended functionality?

2. How can existing software be mapped to fixed-function hardware in order to improve

embedded programs?

3. How could automatically applied source-level optimizations aid a user’s ability to

comprehend and extend upon the resulting program, as well as be conveyed in a way

which illustrates how the optimizations work?
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Chapter 4

EMBEDDED C SOURCE OPTIMIZER

This chapter details the Embedded C Source Optimizer’s design and architecture, met-

rics for analyzing embedded code, supported optimization options, as well as further consid-

erations concerning educational aspects of the utility. Section 4.1 discusses the implementation-

specific details of the Embedded C Source Optimizer and its use cases. Section 4.2 breaks

down metrics for measuring and conveying various aspects of embedded software, as well

how the Embedded C Source Optimizer applies optimizations at the source code level. Fi-

nally, Section 4.3 briefly introduces how the utility may be used to teach embedded pro-

gramming principles.
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4.1 Software Design

The Embedded C Source Optimizer utility is designed with the end-user at the forefront

of its operation, and does not make assumptions about the state of the provided embedded

program. This implies that the utility is not intended to make a program which otherwise

does not compile or run suddenly work. Rather the intended use case for this utility is

taking a working, but suboptimal solution to a problem, and improving on it by enforcing

embedded design principles, as well as taking the hardware peripherals provided by the

target MCU into consideration. These aspects aim to improve the program in a variety of

ways, as well as demonstrate to the end-user how and why any changes were made.

The Embedded C Source Optimizer is built using Java, utilizing the Swing library for

all Graphical User Interface (GUI)-related aspects. Java was chosen due to its availability

of GUI libraries and tools, accessibility of lower-level operations such as process manage-

ment and file I/O, as well as its wide adoption across computing applications [47]. This

application was built using only natively-included Java libraries and toolkits in an effort to

limit its dependence on external tools/applications, as well as allow for greater control over

the organization and functionality used to implement the various components used by the

utility. The GUI of the Embedded C Source Optimizer is shown in Figure 4.1.

4.1.1 Fundamental Operation

Given the scope and schedule of this project, there are some limitations to what the

Embedded C Source Optimizer is capable of in its current form. That being said, the pri-

mary use case of demonstrating to a novice embedded programmer how to improve their

code is not lost on this. One of the most popular families of MCUs among beginners, the

ATmegaXX8, is the primary target for this utility. Despite the Programmable Intelligent

Computer (PIC) MCU architecture cumulatively selling more units [2], more hobbyists
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tend to start with AVR [24, 28, 42]. The initial testing for the utility was done targeting an

ATmega168 [4]. The continuity of hardware support between different AVR MCUs means

that the vast majority of MCUs in the same product stack will work with this utility to some

degree [13].

At the most basic level, the Embedded C Source Optimizer searches through an em-

bedded program written in C, attempting to match what is provided to determine if a better

solution exists. In the case that the provided code is suboptimal and there is a known, better

solution, the utility will attempt to add, remove, and/or modify the existing code depending

on which optimization options the user has chosen to apply. The end-user is given control

over which optimizations are applied, providing them the opportunity to better identify how

each optimization works and which might best suit their needs. There are many considera-

tions when it comes to altering source code, and as such it looks for very specific cases to

ensure that the basic functionality of the provided program is not altered.

When a C source file is imported, the Embedded C SourceOptimizer parses and displays

the original code. The process of parsing the input program consists of matching keywords

found in the C programming language to determine the general flow of execution. The

code is broken up into a tree structure of “code elements,” which themselves represent a

basic structure which may or may not be able to store other elements inside. To put this in

perspective, a function would be considered a code element with other code elements nested

within. A for loop in said function would be a child code element in relation to the function,

and it itself can have other code elements nested within. As such, each code element can

be observed as being either a branch or a leaf. Breaking up the source code in this manner

allows for entire pieces of the program to be added, changed, or removed without affecting

the other elements. More detail on the implementation of this structure will be provided in

Subsection 4.1.3.
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4.1.2 Intended use cases

Figure 4.1: The Embedded C Source Optimizer GUI, showing the original user’s code on
the top left and the optimized code which was generated on the right. The optimization
options are displayed as a list of check-boxes in the bottom left, and all the output from the
utility on the bottom right.

As is shown in Figure 4.2, there is a list of optimization options which the user may

select for their program. Upon selecting an option, a flag is set to attempt to apply that

optimization on the imported code. Each option corresponds to a class with the necessary

functionality contained within, which attempts to modify the existing code to implement

that optimization. These options range from more complex functions which attempt to

replace sections of code with implementations utilizing the built-in hardware peripherals

on the selected MCU, to simple replacements attempting to save on code-size or cycle-time

for certain instructions.
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Figure 4.2: The Embedded C Source Optimizer provides a variety of ”optimization op-
tions” which may be applied to an embedded program. These optimizations can be selected
in any combination by the end-user to best fit their use case. Supplemental information
is provided for each optimization option to increase the user’s understanding of what each
optimization does and what they should expect in terms of changes it will make to their
program. Furthermore, options are provided for importing C source code, applying the se-
lected optimizations, exporting the resulting code, and compiling/performing a size analysis
which compares the unoptimized and optimized version of the imported code.

As demonstrated in Figure 4.3, a selected set of optimization options (which will be dis-

cussed in greater detail in Subsection 4.2.3) can be applied and validated by compiling both

versions of the program, and directly comparing the size of each section used by the final

firmware. The standard output (shown in the Berkeley format by default [1]) gives indica-

tions of how the flash and Random Access Memory (RAM) are utilized by the firmware.
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The output lists three distinct sections: ”text”, ”data”, and ”bss”, with the total of those dis-

played under the ”dec” and ”Total” labels. Additional information concerning what these

sections of memory are used for will be provided in Subsection 4.2.1.

Figure 4.3: After selecting and running the desired optimization options, choosing the
”Compile/Analyze” option within the Embedded C Source Optimizer will compile the
source code from both before and after the optimizations are applied. The ”avr-size” utility
(included with the GNU AVR-GCC toolchain) is then called from the utility to display the
measured difference in code size between both versions.

Figure 4.4 shows an example of the output generated by the Embedded C Source Op-

timizer when a set of selected optimizations are applied to a program. This GUI element

allows filtering the log output to: general statements concerning how the selected opti-

mizations are applied, errors which kept any selected optimizations from being applied,

and suggestions for potential improvements that any given optimization option does not

directly target.
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Figure 4.4: The Embedded C Source Optimizer gives the end-user written output corre-
sponding to: the actions taken by the utility to apply the selected optimization(s), any errors
which kept the selected optimization(s) from being applied, and additional suggestions for
the user-provided program which the utility does not directly target. This output can be
filtered down to any one of these categories for improved readability.

4.1.3 Architectural Design

The architecture of the Embedded C Source Optimizer is reminiscent to the Model-

View-Controller (MVC) pattern, in that there are highly cohesive classes (making up sepa-

rate modules) for defining how the source code is modeled and stored, UI interactions, and

functionality to control and manipulate the provided source code. The high-level modules

are loosely coupled with one another, allowing for each to be expanded or changed with
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minimal impact to the rest of the system. Figure 4.5 shows how these modules and classes

interact in greater detail.

Figure 4.5: This class diagram details the high-level design of the Embedded C Source
Optimizer, showing the organization of modules pertaining to the UI, optimization options,
source code parsing, file and process I/O, etc.

A variety of Gang of Four (GoF) design patterns are used across the implementation

of the Embedded C Source Optimizer [17]. These design patterns were implemented in

an effort to both speed up development time and aid in an outside individual’s ability to

comprehend the software. The implemented patterns include:

• Singleton (found in the Logger, SourceHandler, and ProcessManager classes)

• Strategy (used by the different ”Optimizer” classes, inheriting from OptimizerBase)
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• Observer (allowing the OptimizationGUI class to observe the Logger and Source-

Handler class and update as necessary)

• Builder (implemented by the SourceOptimizerBuilder class which calls methods in

the ”Optimizer” classes to build the optimized source file)

• Composite (used by the CodeElement class to recursively store a tree-like represen-

tation of C source code)

• Decorator (found in the CheckBoxNode class which is used to build the nested list

of check boxes for the optimization options, as well as the UI classes which inherit

and decorate various Java Swing components)

TheModel module of the Embedded C Source Optimizer is responsible for handling all

functionality pertaining to working with and manipulating C source code (Figure 4.6 shows

the class structure of the model in greater detail). When a user imports a C source file, the

SourceHandler class reads and parses it, storing the result in a SourceFile object, which can

then be used by the Control module to apply various optimizations. Having a single entry

point to this module (being the SourceHandler class) allows for the inner workings of its

other classes to be abstracted away, enabling easier refactoring and improving its extensibil-

ity. The attributes which make up a SourceFile object are CodeElements. A CodeElement

is defined here as being any structure found in embedded C code. At the most basic level, it

may either be a block or a single line. For instance, functions, loops, and if statements would

all be classified as blocks since they contain a nested body, whereas function calls, variable

declarations/instantiations, macros, and single-line comments are not blocks since they do

not have a body. This distinction allows a SourceFile object to be searched recursively for

any type of element by simply iterating through every nested element and checking its type.

From there, modifications can be made without disturbing the tree structure which it makes
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up. The CodeElement class provides all the necessary methods to add, remove, and modify

any aspect of the element and (if it is a block) any of its nested elements. This module

comes together to create a robust solution for storing and updating code as necessary, while

providing encapsulated access to the data stored within.

The View module (shown in greater detail in Figure 4.7) is responsible for initializing

the UI which is viewed and interacted with by the end-user. Decoration of classes imple-

mented in the Swing library allows for amodular approach to user interface design, enabling

individual components to be updated without affecting the rest of the UI. At the fundamen-

tal level, the base UI frame contains four panels: two for previewing code (one of which

shows the original code and the other shows the resulting code after optimizations have

been applied), one for selecting optimization options, and one for log output which details

errors, warnings, suggestions, etc. Making up the two top panels, the CodePreviewPanel

class contains functionality for displaying source code, as well as applying effects such as

colored highlighting showing changes made after optimizations are applied and displaying

line numbers for improved readability. The ConsoleOutputPanel stores log output from the

Logger class (shown previously in Figure 4.4), and the OptimizationOptionsPanel provides

options to select combinations of optimizations to be applied to the source code. These com-

ponents are controlled by the OptimizationGUI class, being the entry point to the program.

These classes come together to create the UI shown previously in Figure 4.1.

The Control module (shown in Figure 4.8) contains all the necessary functionality to

apply the optimization options listed within the GUI to the imported C source code. The

SourceOptimizerBuilder class is the entry point for this module, providing methods to se-

lectively apply optimizations to a SourceFile depending on the state of the user-selected

optimization options. The various ”Optimizer” classes (i.e. DelayOptimizer, InterruptOp-

timizer, etc.) contain functionality to search through and apply specific source-level opti-

mizations (provided the original source file enables such optimizations to be applied in the
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Figure 4.6: The Model module contains classes pertaining to: importing, storing, manag-
ing, manipulating, and exporting source code.
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Figure 4.7: The View module contains classes inheriting from various Swing components
which are used by the OptimizationGUI class to create the UI which the end-user interacts
with.

Figure 4.8: The Control module contains classes which analyze and apply optimizations
to the source code stored within theModel module.

first place). All the ”Optimizer” classes inherit from a single class OptimizerBase, defining

the basic attributes/methods each ”Optimizer” class must have. This enables polymorphic

behavior by the SourceOptimizerBuilder, decoupling the implementation of each class from

its definition. As a result, other ”Optimizer” classes can be added or existing ones changed

with minimal modifications needed to the other classes within the module.
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Figure 4.9: The utility module provides extraneous functionality to both theView and Con-
trol modules, pertaining to: executing commands and process management on the host sys-
tem, keeping track of the state of selected optimization options, logging messages to be
displayed to the end-user, and enabling observer functionality across other classes.

While not specified by the MVC pattern, the Utility module is included as a separate

entry due to multiple other modules using the classes contained within. Furthermore, these

classes (shown in detail in Figure 4.9) do not necessarily fit into any of the other mod-

ules, and as such are kept separate. The SubjectBase class is simply used to implement

the observer pattern, acting as the ”observable” component. SubjectBase is used by classes

within other modules to communicate and indicate when changes are made, allowing any

observers of that class to update accordingly. The Logger class, which inherits from Sub-

jectBase, contains functionality to store and retrieve detailed messages pertaining to oper-

ations performed by other areas of the system. These messages are then displayed to the

end-user in an effort to clearly communicate success/failure and other extraneous changes

made by the system. The Logger stores messages as Message objects, which have a type

to indicate whether the message was an error, suggestion, or just a general statement. Pro-

cessManager is used to execute commands and keep track of the state of running processes

created by the utility. Finally, OptimizationState is used to keep track of the state of which

optimization options have been selected. Overall, this module acts as a intermediate step

for other modules to carry out tasks, while enabling the reuse of the provided functionality

across many different classes/modules.
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4.2 Optimization Methods & Classification

Embedded optimizations tend to focus on code size and memory usage, given the con-

straints imposed by the hardware. The size optimization provided by GCC generally does

an excellent job in this regard [36]; however, there is still room for improvement in other

key areas which this optimization option may not account for. Furthermore, there can be

edge cases where this optimization option may not be able to reduce the size of the re-

sulting firmware. To better illustrate the effects of each optimization option, Subsection

4.2.1 will introduce metrics which attempt to convey how the changes made by the Em-

bedded C Source Optimizer impact the resulting code. Some of these metrics can easily

be demonstrated as being better or worse through quantitative measurements, while others

are more subjective and require a diverse range of perspectives to address with any level of

confidence.

4.2.1 Relevant Metrics for Assessing Embedded Software

There are a variety of metrics and aspects which can be analyzed in order to determine

the level of success of each optimization option. A set of metrics was narrowed down which

are both widely used and accepted for use in embedded software [39, 18, 27, 45]. These

metrics include:

I - Latency

II - Utilization & Execution Capacity

III - Extensibility

IV - Code Size

V - Cyclomatic Complexity
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These will be described in detail as far as why they must be considered, what impact

they have on embedded software, and how they are measured in order to compare different

iterations of software. The results of addressing the effects of each of these aspects in

regard to each optimization option provided by the Embedded C Source Optimizer will be

discussed in Chapter 5.

I Latency

Latency in the case of software systems refers to the incurred delay caused by the time

taken for a system to execute a series of instructions before generating some form of output

or sending a response [43]. Latency directly affects the response time of a given task,

meaning that reducing latency will improve the end-to-end time taken between sending an

input to a system and receiving a corresponding output. Considering the real-time nature

and generally lower levels of performance found in embedded systems, reducing software

latency can be beneficial when attempting to create programs that are both efficient (in

terms of the number of instructions executed) and responsive.

When measuring latency on any system, there are some special considerations which

must be made for determining how much of the total response time is due to software exe-

cution rather than extraneous hardware/signaling delays. Take for instance a system which

includes a MCU which interfaces with an external device over a serial connection. The

external device can send a request to the MCU, to which the MCU will perform some set

of tasks. This might include: interfacing with sensors, performing calculations, activating

actuators, reading or writing to external storage, etc. The MCU then sends a response to

the external device corresponding to the actions it performed. Measuring the delay between

sending the request and receiving a response indicates the total response time of the system,

of which software latency is only one factor. Figure 4.10 shows the potential aspects of a

system other than software which contribute to the overall response time.
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Figure 4.10: A flow diagram of a hypothetical pipeline for handling interrupts within a
system, including the various stages which contribute to the over end-to-end response time.
While many of the stages cannot be altered (such as the interrupt hardware), the primary
concern within the scope of this metric concerns the latency introduced by the ”ISR” stage,
being the software which runs when an interrupt is triggered. This example includes certain
aspects which do not apply to most systems based on 8-bit MCUs, but the general idea of
mapping end-to-end latency still holds [45].

In order to account for extraneous delay when measuring software latency, a control

test may be performed to measure the end-to-end response time while attempting to min-

imize any incurred software latency as much as possible. The measured response time in

such a case can be used as a baseline to then measure the impact of software latency rel-

ative to the total. While this method of measuring latency is not necessarily perfect, it is

sufficient for comparing various implementations of programs without needing specialized

external hardware, especially when accounting for as much of the extraneous delay (other

than software latency) as possible.

II Utilization & Execution Capacity

Utilization within the scope of this thesis refers to the extent to which theMCU hardware

is being used relative to its full potential. This both refers to what fixed-function hardware
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is utilized, as well as what proportion of time the MCU spends idle. 1 Both of these aspects

of utilization are significant due to the restrictive nature of embedded hardware, and should

be considered when attempting to maximize the potential of the software being developed.

Measuring the usage of hardware peripherals is a straightforward task, and gives a rough

idea of what extent the provided fixed-function hardware is being utilized. On the other

hand, measuring utilization as a proportion of time the hardware spends idle requires more

setup, but yields potentially more granular data which is effectively hardware agnostic. In

the same vein as attempting to measure latency on embedded systems, obtaining highly ac-

curate utilization measurements for idle time likely would require external debug hardware,

or some form of cycle-accurate hardware emulation. Within the scope of this thesis, the ac-

curacy of measuring utilization must be compromised slightly in order to avoid the cost and

other potential hidden factors of using external hardware or emulation. With simple tools

and slight modifications to an existing program, it is possible to get an effective estimate of

how the software is utilizing hardware in terms of the time the MCU spends idle versus its

potential capacity to execute instructions.

Utilization can be represented as a percentage, which itself represents the ”headroom”

leftover for additional functionality to be added. 0% utilization would indicate that the

MCU is spending 100% of its time idle, and 100% utilization means the MCU is never idle

at runtime and has no remaining capacity for additional functionality to be executed within

an equal period of time. Idle in the traditional sense is defined as time the core spends

executing No Operation (NOP) instructions; however within the scope of this thesis, idle

time will refer to the remaining capacity for executing instructions regardless of what each

instruction is. To better clarify execution capacity and utilization, there are some constraints

which must be made - it is expected that a task takes a certain amount of time to execute,
1Idle as referred to in this thesis differs from the traditional definition, and will be discussed further in the

following paragraphs.
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and that task has a timing deadline it must meet. Furthermore, the scale of utilization will

be skewed towards higher values as testing utilization in software inherently takes a certain

number of instructions to measure; as such, utilization measurements must be taken relative

to the smallest amount of instructions needed to track utilization.

Utilization = 100%− (% time spent idle)

% time spent idle =
(average period of an iteration with no load) ∗ 100%

(average period of an iteration with some load)

average period of an iteration =
(total execution time)

(number of iterations)

Figure 4.11: Calculating utilization as a proportion of the average period taken to complete
a task with some load versus the average period taken for a task which is idle (no load) [27].

In order to obtain a baseline measurement for an ”idle” state, the simplest way of mea-

suring this utilization is to increment a counter every iteration of the main control loop of

a program. Assuming the control loop does nothing else other than increment the counter,

then the result of the counter over a fixed unit of time represents the lowest utilization which

can possibly be measured in this manner. By adding functionality to the control loop, addi-

tional instructions will be executed every iteration of the loop, thus reducing the frequency

which the counter is incremented. The relative difference between the final state of the

counter over a known number of clock cycles represents the utilization of the measured

program. As the number of clock cycles spent each iteration of the control loop increases,

this relative difference will approach, but never actually reach 100%. See Figure 4.11 for

exactly how utilization is calculated manner.

In order to accomplish this measurement process, a simple library has been developed

(which is shown in Figure B.5) to track and output the measured utilization and execution

capacity of a program. The premise of this library is to add as little overhead to themeasured

program as possible. This is done through utilizing a counter/timer instance which runs
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externally to the main MCU core, as well as a single 8 bit global variable which should be

incremented at the end of every control loop iteration of the measured program. The header

file shown in Figure B.4 provides preprocessor directives which affect the measurement

period to account for the potentially variable execution period of the control loop from one

program to another. A baseline test attempting to minimize work done in the main loop was

developedwhich other programs can be compared against (which is provided in Figure B.6).

One potential issue with this method of measuring utilization is not accounting for what

instructions are being executed, and as such the idle time (traditionally being any time the

MCU is executing NOP instructions) cannot be fully represented by this metric. Rather,

measurements derived in this manner relate more closely to the capacity for execution in-

stead of the proportion of time the MCU spends idle. There is overlap between these met-

rics; however, it is not a one to one comparison. As stated previously, to accurately measure

idle time on an embedded system would require additional tools which are unrealistic to ob-

tain, setup, and use given the scope of this thesis. This discrepancy should be kept in mind

when considering utilization measurements taken in this manner, but so long as a baseline

for utilization is provided and all other factors are controlled, the relative measurements

should relate closely to the measurement of actual idle time in most cases. 2

III Extensibility

Extensibility refers to the extent which software can be expanded upon in terms of

adding functionality in its current form [44]. Assuming embedded design patterns and gen-

eral clean coding principles are used, a piece of software should take minimal refactoring
2A notable exception to this case is when software delay functions are used, as they are blocking calls

which inflate the measurement for execution capacity (since the iteration period of the control loop is directly
affected by these delays), but contribute towards what is traditionally referred to as idle time (executing NOP
instructions) during execution. This added idle time will decrease utilization as it is traditionally defined, but
thementionedmethod ofmeasuring utilization in software cannot account for this, thus inflating the utilization
measurement. This distinction will become relevant in the evaluation provided in Chapter 5.
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to modify, add, or remove functionality. This is the case for both traditional and embedded

software, although embedded systems require additional forethought in their design due to

their limited hardware.

Due to extensibility being an empirically derived metric, measuring how extensible a

given program is can be challenging to represent. There do not appear to be any widely-

accepted quantitative metrics for measuring extensibility; however, one potential method of

demonstrating this metric is to track the difficulty of adding features to an existing program

relative to its size. As such, extensibility can be defined by decomposing and measuring

the relative size of each program segment, where these segments are the set of states the

program may exist in during execution. The larger any given program segment is, the more

refactoring would likely be required in order to add or modify its functionality. This is a

result of program segments with a larger size taking longer to execute, thus reducing the

execution frequency of any added functionality without implementing additional logic to

split or otherwise change the existing program segments.

1 #include <avr/io.h>
2 #include <util/delay.h>
3
4 int main() {
5 DDRB |= (1 << PB1); // set PB1 as an output (for LED)
6 // control loop
7 while (1) {
8 PORTB ^= (1 << PB1); // toggle the state of PB1
9 _delay_ms(500);
10 }
11 return 0;
12 }

Figure 4.12: A simple program which toggles the state of an output pin (shown on line 8)
with a delay inserted (on line 9) for half a second (or 500 ms), with the intended use case
being flashing an LED on and off with a period of 1 second.

Consider the simple embedded program provided in Figure 4.12 which toggles an LED

by inverting the output of a I/O pin, with a 500 ms delay placed afterwards. Once the
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program is tested and working, now another task is added which checks for a button press

on another I/O pin. Figure 4.13 shows how can be done by simply checking the state of the

pin which the button is connected to, and using an if statement to evaluate to true in such a

case. Ideally, the check for the button press should be done quickly to ensure the response

is fast and a single press of the button is always detected. In this scenario, since the main

loop is constantly changing the state of the LED and then calling a blocking delay function

every iteration for 500 ms, simply adding the check for the button press to the main loop

will mean that the MCU core can only perform the check every 500 ms at a minimum. This

means there could be up to a half second delay between pressing the button and performing

the task, and if the button is pressed too quickly (held down for less than 500 ms) then there

is a chance it will not be detected at all. In order to check for a button press more frequently,

additional logic would need to be added to split the single delay function intomultiple which

add up to 500 ms. An example of how this might be done is shown in Figure 4.14. The

primary issue with this example is it adds additional complexity to the program and has the

potential to throw off the timing of the LED blink, since the contents of the for loop will now

be executed 50 times for every state change on the LED. This introduces extra overhead in

the form of instructions which take additional time that the delay function cannot account

for.

The code shown in Figures: 4.12, 4.13, and 4.14 are a simple demonstration of how

extensibility impacts embedded code, but due to their simplicity may not fully demonstrate

how extensibility scales with more complex programs. A program with many different

tasks will likely take significantly more refactoring to add functionality, especially when

embedded design patterns/rules are not implemented appropriately. By designing embed-

ded software with the proper design patterns and using hardware peripherals as needed,

much of this refactoring can be mitigated as software grows and becomes more complex.

An example of how the program demonstrated in Figure 4.13 can be improved by the Em-
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bedded C Source Optimizer is shown in Figure 4.15. The ”Counter/Timer” and ”Interrupts”

optimization options (which will be discussed in greater detail in Subsection 4.2.3) were se-

lected and the resulting code contains additional logic for performing the same operations in

hardware rather than software. Expanding on the optimized program becomes much more

straightforward, as now adding a second task to the control loop is as simple as defining a

second counter/limit instance and adding another conditional statement to the control loop

which checks for that counter instance reaching its limit. Furthermore, any possible tim-

ing issues as a result of using software delay functions are resolved since the counter/timer

peripheral operates independent of the MCU core.

1 #include <avr/io.h>
2 #include <util/delay.h>
3
4 int count = 0;
5
6 int main() {
7 DDRB |= (1 << PB1); // set PB1 as an output (for LED)
8 DDRB &= ~(1 << PB2); // set PB2 as an input (for button)
9 while (1) { // control loop
10 PORTB ^= (1 << PB1); // toggle the state of PB1
11 _delay_ms(500);
12 // check for falling edge (button press)
13 if (PINB & (1 << PB2)) {
14 count++; // iterate count on button press
15 }
16 }
17 return 0;
18 }

Figure 4.13: An extension of the program shown in Figure 4.12 which attempts to add a
second task which checks for a button press and increments a counter ”count” in the case
that it was. This added task can be seen on lines 13-15, where the conditional checks if
pin PB2 is high (in the case of a button press or another event) and increments the count
variable in the case that condition evaluates to true.

IV Code Size

Code size is a relatively simple metric, representing the total amount of memory a pro-

gram takes up after being compiled, assembled, and linked into a binary file containing
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1 #include <avr/io.h>
2 #include <util/delay.h>
3
4 int count = 0;
5
6 int main() {
7 DDRB |= (1 << PB1); // set PB1 as an output (for LED)
8 DDRB &= ~(1 << PB2); // set PB2 as an input (for button)
9 while (1) { // control loop
10 PORTB ^= (1 << PB1); // toggle the state of PB1
11 int i;
12 for (i = 0; i < 50; i++) {
13 // check for falling edge (button press)
14 if (PINB & (1 << PB2)) {
15 count++; // iterate count on button press
16 }
17 _delay_ms(10);
18 }
19 }
20 return 0;
21 }

Figure 4.14: A further modification of the program shown in Figure 4.13 which adds logic
to poll the input pin connected to a button faster using a for loop and a shorter delay value.
Lines 12 and 18 were added, corresponding to the for loop, and line 17 shows the delay
function which was shortened to 10 ms from 500 ms.

machine code. In general, programs with a smaller final code size are favorable due to

both the restrictive nature of embedded hardware, as well as indicating that there may be

fewer instructions to execute overall, potentially providing a relative speedup to the pro-

gram. GCC includes a compiler optimization which attempts to reduce the final code size,

demonstrating the importance of improving this aspect of embedded software.3

As shown in Figure 4.3, there are different sections of memory which are considered

when measuring code size, as not all memory is treated equally. The three different sections

of memory which are considered in this case are: ”text”, ”data”, and ”bss”. ”Text” corre-

sponds to the machine-level instructions which are generated after compiling a program,
3The performance of the program using theGCC size optimization option (-Os) will depend on the program

itself; however in general should provide a speed up for a general case as it ”enables all -O2 optimizations
except those that often increase code size,” where ”-O2” refers to the moderate speed optimization option
[36].
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1 #define F_CPU 1000000
2 #include <avr/io.h>
3 #include <util/delay.h>
4
5 int count = 0;
6
7 volatile unsigned int count[1]; // Timer instances for each of the blocks of code
8 volatile unsigned int limit[1]; // Timer limit instances to compare against 'count'
9 int main() {
10 OCR0A = 0x7c; // Sets an output compare value for a 1ms tick
11 TCCR0A = 0x02; // Clear compare register on compare match
12 TCCR0B = 0x82; // Force output compare A, and sets a 1ms tick
13 TIMSK0 = 0x03; // Enables timer interrupts for compare match A
14 count[0] = 500;
15 limit[0] = 500;
16 __builtin_avr_sei(); // Enable global interrupts
17 PCICR = 0x01; // Sets the appropriate pin bank for the pin being used
18 PCMSK0 = 0x4; // Set the pin being used for external interrupt
19 DDRB |= (1 << PB1); // set PB1 as an output (for LED)
20 DDRB &= ~(1 << PB2); // set PB2 as an input (for button)
21 // control loop
22 while (1) {
23 if (count[0] == limit[0]) {
24 unsigned char state = SREG; // Retrieve SREG state
25 __builtin_avr_cli(); // Disable global interrupts
26 PORTB ^= (1 << PB1); // toggle the state of PB1
27 count[0] = 0; // Reset counter instance
28 SREG = state; // Restore previous state of SREG
29 }
30 // Removed: _delay_ms(500);
31 // check for falling edge (button press)
32 }
33 return 0;
34 }
35 // Declare external interrupt vector as being called by the internal interrupt
36 void __vector_3(void) __attribute__ ((signal, used, externally_visible));
37 void __vector_3(void) { // Interrupt vector for external pin change
38 if (PINB & (1 << PB2)) {
39 // iterate count on button press
40 count++;
41 }
42 }
43 // Declare timer interrupt vector as being called by the internal interrupt
44 void __vector_14(void) __attribute__ ((signal, used, externally_visible));
45 // Timer interrupt vector which will be called by the timer hardware on compare match
46 void __vector_14(void) {
47 if (count[0] < limit[0]) {
48 count[0]++; // add 'tick' to count, indicating a 1ms increase
49 }
50 }

Figure 4.15: An optimized version of the program shown in Figure 4.13 with the ”Coun-
ter/Timer” and ”Interrupts” optimization options in the Embedded C Source Optimizer se-
lected. The existing logic was updated to utilize one of the 8-bit counters on the ATmega168
to set the delay of the LED blink, as well as enable hardware interrupts for triggering an
ISR which increments the counter on a button press. Lines 7 and 8 keep track of the delay
value and check if the delay has reached its limit. 10-13 correspond to configuring the timer
by setting the appropriate registers which enable a 1ms tick. 17 and 18 configure hardware
interrupts for a state change on pin PB2. 23 mimics the functionality provided by a delay
function, only evaluating to true when the counter instance has reached its limit. 36-42
correspond to the ISR which handles the button press, and 44-50 are the ISR used by the
timer to increment the count instance every 1 ms.
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and are stored in the non-volatile flash memory included on most MCUs. This data can be

persistent as the instructions generated by the compiler will never need to change during ex-

ecution. The ”data” section shows how much memory is used for initialized data in a given

program. Initialized in this case simply means the initial value associated with a memory

address or variable is known at compile-time, and can therefore be stored in flash memory

alongside the program code. If the initialized variable is not defined as constant (meaning

the value of that variable can be altered at runtime) then an equal amount of SRAM must

be reserved to account for this. This overlaps with ”BSS”, which refers to any uninitialized

data in a program. Uninitialized data is any variable or memory address which is defined

at runtime versus compile-time, and therefore must be stored in SRAM as well. All three

of these sections are added together to get the total program size (which is listed under the

”dec” and ”hex” labels in the Berkley format [1]).

V Cyclomatic Complexity

Credited with its development to Thomas J. McCabe, cyclomatic complexity is a metric

used to indicate the complexity of a given piece of software, where complexity refers to the

number of different paths the program may take during execution. The original intent for

such a metric came as a result of McCabe attempting to find a better alternative to Source

Lines of Code (SLOC) as a metric, as ”McCabe could see no obvious relationship between

length and module complexity” [38]. Despite McCabe’s original intentions, cyclomatic

complexity as a software metric has been scrutinized over time, with critics arguing that the

metric itself is flawed at the fundamental level. Some of the issues which have been cited

with the metric include: not recognizing data or functional complexity, being overly sensi-

tive to the number of subroutines included in the measured program, not considering ”else”

blocks within conditional statements, and the lack of any means to measure the complexity

of a linear (non-branching) series of statements [38].
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While the validity and use cases for this metric are mixed, it can still be used as a thought

experiment and may give some insight into the complexity of simple embedded programs.

Furthermore, it may be possible to draw correlations between cyclomatic complexity and

other metrics to better determine how changes made to embedded software improve or

detract from the program itself. An extension of measuring cyclomatic complexity would

be generating a Control-Flow Graph (CFG) which can be analyzed more granularly in an

effort to better understand how changes made to software impact the resulting execution,

and therefore get an idea of how the functionality may differ.

To measure the cyclomatic complexity of embedded C code, the C and C++ Code

Counter (CCCC) utility may be used. This tool performs static analysis on C code, and pro-

vides measurements for a variety of metrics, including cyclomatic complexity [31]. Larger

cyclomatic complexity values indicate higher levels of complexity in terms of the number

of paths which can be taken during execution. McCabe claims that higher measurements

indicate less maintainable modules which are more difficult to test [38].

4.2.2 Optimization Categories

The optimization options which will be discussed in Subsection 4.2.3 can be broken

down into two general categories: direct replacement of code, and implicit generation of

code which configures and utilizes on-board peripherals. The former option is simpler to

configure and generally more reliable as these cases are very specific, while the latter has

the potential to introduce issues since there is some level of interpretation which must be

done in order to preserve the intended functionality of the software. That being said, there

is more potential to be unlocked through utilizing peripherals than the otherwise simple

replacement steps.
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I Direct Replacement

Direct replacement in this situation is defined as taking an existing line or section of

code, and modifying it in a way which better utilizes the hardware for the given task with-

out changing the actual functionality of the code. These optimizations are applied to very

specific cases such that unwanted changes to the program’s behavior are minimized. The

”Built-In Function Substitution” and ”Arithmetic Substitution” optimization options (which

will be detailed in Subsection 4.2.3) included in the Embedded C Source Optimizer are con-

sidered to be direct replacement.

II Implicit Utilization of Hardware Peripherals

Hardware peripherals, such as those mentioned in Chapter 2, must be configured man-

ually at the source code level in order to use them for a given task. This is one of the fun-

damental aspects of embedded software which the Embedded C Source Optimizer aims to

improve. Since these specialized hardware blocks are associated with embedded systems,

a software engineer without much experience in embedded may go through a substantial

amount of trial and error to not only get them configured properly, but also research and

determine what peripheral(s) they need to use in the first place. The optimization options:

”Counter/Timer,” ”Interrupts,” and ”Pulse-Width Modulation” (which will be introduced

in Subsection 4.2.3) aim to take a naive software implementation and determine if said

implementation can benefit from using these peripherals. The utility will then add all the

necessary code to configure the peripheral(s) and rework the existing implementation to

support the added functionality.
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4.2.3 Supported Optimization Options

All of the optimizations supported by the Embedded C Source Optimizer are listed in

this subsection. Implementation specific details will be provided for each as far as: what

they target, how they apply changes to an existing program, and what potential benefits they

provide to the end-user. While not mutually exclusive, some of the optimizations generally

are intended to be used independent of one another (both due to the overlapping of hardware

utilization and the code they target for refactoring). That being said, various use cases will

often have one optimization or the other applied more effectively as a result. This leaves

room for the end-user to experiment with each option on their code to determine which

optimization more effectively improves their existing software.

I Built-in Function Substitution

There is a set of functions recognized by the AVR-GCC compiler which allow specific

assembly-level instructions to be specified at the source code level. It is generally advan-

tageous (or in certain cases required to achieve the desired functionality) to utilize these

functions as relying on the compiler to perform these operations will generally result in a

different set of instructions. Certain cases require specific sets of instructions to be executed

within a strict time window, which is why relying on the compiler to determine the appro-

priate instructions may lead to unexpected behavior. Other cases are simply a matter of

attempting to reduce the number of instructions in the firmware after compilation, reducing

code size and possibly improving the performance of the program.

The Embedded C Source Optimizer identifies and replaces two specific cases where

built-in functions can perform the exact same task. These include setting and clearing global

interrupts, where the corresponding built-in functions are ”__builtin_avr_sei()” and

”__builtin_avr_cli()” respectively [7]. A naive approach to setting or clearing the
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flag which corresponds to whether interrupts are enabled or disabled often could be to do

so directly by performing a bitwise operation on the register where the flag is stored. This

register (SREG) is the status register in the ATmegaXX8 line of MCUs, where various

flags are stored by the MCU core concerning the result of arithmetic operations, as well

as the global interrupt enable flag [6]. This flag is generally the only bit that would be

changed in software as the rest are dependent on the state of the MCU. As such, in the

case that the global interrupt enable bit is being set by directly accessing SREG, the built-

in functions can be used to ensure that the state of the remaining flags in the register are

not changed, while simultaneously reducing the number of instructions needed to do so.

Examples of how the Embedded C Source Optimizer handles these cases when the ”Built-

In Function Substitution” optimization option is selected are shown in Figures 4.16 and

4.17, with the naive approach to setting and clearing global interrupts on the left, and the

optimized solution using built-in functions on the right.

Figure 4.16: An example of the ”Built-In Substitution” option modifying an existing line of
code which directly modifies the Status Register (SREG) to use the built-in function which
performs the same function (enabling global interrupts)

Figure 4.17: An example of the ”Built-In Substitution” option modifying an existing line of
code which directly modifies the Status Register (SREG) to use the built-in function which
performs the same function (disabling global interrupts)

The savings in code size and performance uplift (through reducing the number of ex-

ecuted instructions) may vary between different programs. In the case of the replacement

shown in Figures 4.16 and 4.17, the original code containing a direct assignment to SREG

will generate four instructions when compiled; however, the optimized code which replaces

the assignments with their corresponding built-in functions generate only one instruction.

45



4.2. OPTIMIZATION METHODS & CLASSIFICATION

Since some programs may not rely on interrupts at all, this optimization would not yield

any benefit in such a case. Other programs which do rely on interrupts may see an uplift in

the two areas mentioned previously, depending on how often they are being executed.

II Arithmetic Substitution

Due to the lack of hardware support on some embedded hardware for various arithmetic

operations, attempting to perform even simple combinations of arithmetic functions can end

up generating less-than-ideal machine code. The primary issue with addressing this issue

becomes the variations in hardware support for specific instructions. As such, attempting

to target a broad range of MCUs yields varying levels of improvement depending on the

capability of the hardware being used.

One potential optimization which can improve the number of instructions generated

by the compiler would be to target slightly more complex arithmetic operations which the

MCU may not support at the hardware level. For instance, some MCUs lack hardware

multiplier units [13], and as such would need to perform any multiplication defined in code

as repeated addition [20]. Depending on how the compiler handles these situations, it may

be worthwhile to better define such an instance in terms of addition in the first place. This

”multiply unrolling” has the potential to save on generated instructions depending on how

the compiler is set up to handle multiplication [15]. An example use case of this operation

is provided in Figure 4.18. In this instance, running the ”Compile/Analyze” option within

the Embedded C Source Optimizer on both the unoptimized and optimized program shows

no change to the final code size. This is likely due to the target MCU containing a hardware

multiplier.

Another potential (and more universally applicable) application of arithmetic substitu-

tion comes in the form ofmultiplication and division by powers of two. Embedded hardware

is less likely to support division at the hardware level, and therefore is applicable to a wider
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Figure 4.18: An example of the ”Arithmetic Substitution” optimization which ”unrolls”
a multiplication operation to use addition at the source code level. This specific example
shows no difference in final code size after the optimization is applied, which is likely due
to the inclusion of a hardware multiplier on the ATmega168.

range of hardware. By replacing multiplication and division operations when the multipli-

cand or divisor is a power of 2 with shift operations, fewer instructions may be generated

as a result. This works as multiplying/dividing by a power of 2 is the same as shifting the

binary representation of that number to the left or right respectively. Such operations are

significantly less expensive in terms of clock cycles used, and by explicitly using them at

the source code level may yield fewer instructions overall [16]. An example of such a case

is shown in Figure 4.19, where the optimized code generates a binary file that is six bytes

less than the original (an overall reduction of approximately three percent in terms of the

final code size). This difference in size is a direct result of a fewer number of instructions

generated by the compiler due to the lack of a hardware divider.

Figure 4.19: An example of the ”Arithmetic Substitution” optimization replacing a division
operation where the divisor is a power of two with a right shift operation which yields the
same result. Since the divisor is 32 in this case, shifting the binary representation of the
value stored in variable ’n’ to the right 5 times will yield the same value (since 25=32).
The final code size was reduced from 206 bytes to 200 bytes (an approximate 3 percent
reduction) when targeting an ATmega168.
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III Counter/Timer

The counter/timer peripheral is one of the most common groups of fixed-function hard-

ware included on MCUs and has the potential to provide a great amount of additional func-

tionality to embedded software. While the ”Built-in Function” and ”Arithmetic Substitu-

tion” optimizations match and replace very specific cases, the ”Counter/Timer” optimiza-

tion (and those that follow) implement implicit utilization of hardware peripherals and must

make certain inferences about the existing software. In the case of the ”Counter/Timer” op-

timization, it attempts to find an instance where blocks of code are executed with calls

to software delay functions placed in-between. An example case might be as simple as

toggling the state of an output on and off using these delay functions to slow down how

often the output is toggled. Another instance could be interfacing with a digital sensor and

waiting a specific amount of time before reading the output (assuming the sensor has some

delay between the request, measurement, and response). There are countless other combi-

nations of cases where delays can be used, which means the ”Counter/Timer” optimization

is potentially applicable to many different use cases.

The simplest method of executing a delay within an embedded program is by using a

software delay function. These functions take a delay value (generally in milliseconds or

microseconds) and when called will wait for the specified amount of time before exiting.

The clock frequency of the MCU and the specified delay value can be used to calculate the

number of clock cycles the MCU must wait to achieve the desired amount of delay [19].

Since the delay function is only used to insert a set amount of delay within a program, the

actual instructions which the MCU will execute are NOP instructions. These instructions

explicitly perform no work, and generally take one clock cycle to execute [11].

For simple programs, the use of software delay functions may be fine, but there are two

primary issues which may become apparent when expanding upon or building more com-
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plex embedded software. One issue is that software delays cannot account for processing

time taken by other instructions used within the program. For instance, if a 50 ms delay

is inserted into the main control loop (being a loop which iterates indefinitely) containing

other code, the only thing that can be known for sure is that 50 ms will be added to the total

execution time of a single iteration of the loop. This does not account for other instructions,

so a loop containing many other complex operations/subroutine calls could add up to mul-

tiple milliseconds. For the sake of example, say the sum of the incurred delay due to these

instructions is 5 ms. With a 50 ms delay included in the control loop, the total execution

time of a single iteration will be 50 + 5, or 55 ms (a 10% increase). If the program is at all

time sensitive or needs to synchronize with another piece of hardware at specific intervals,

then this timing error will rapidly propagate and likely cause extraneous issues (or in the

worst case make the program nonfunctional). Not all programs which use software delay

functions will suffer from this as it depends on the length of the delay and the number of

instructions executed outside of the delay, but regardless should be considered.

A second issue with software delay functions is how they impact the extensibility of

the code, and how effectively the embedded hardware can be utilized to carry out useful

instructions. Since a software delay function will sit executing NOP instructions for the

length of the delay, the core of the MCU cannot be used for anything else until the delay

function exits. This means the core will essentially be sitting idle for that entire period of

time, which may impact any timing requirements of the system. Attempting to add func-

tionality to the program after the fact will only continue to add to the total incurred delay

from the software delay functions, and potentially throw off the timing of other code within

the control loop.

A better alternative to software delay functions would be to utilize the fixed-function

hardware included in the MCU, rather than relying on software to achieve the intended de-

lay. By configuring an instance the counter/timer peripheral to trigger interrupts at specific
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periods, both of the previously mentioned issues can be addressed. Since the counter is an

independent piece of hardware, it does not need any intervention by the core of the MCU

to operate (other than the initial configuration and handling of ISRs). Due to this lack of

dependence, the timing will not be affected by any instructions carried out on the core, re-

sulting in a more accurate delay. Furthermore, since the core is not sitting idle during the

delay, it becomes much more straightforward to expand an existing piece of software to

include additional functionality without compromising how and when each timing-specific

task is executed.

In order to convert existing embedded code which contains software delays to a func-

tionally equivalent program which utilizes the counter/timer peripheral, the Embedded C

Source Optimizer searches through the control loop of the provided source code, finds any

calls to software delay functions, and remaps the other code into conditional statements

which execute after the specified delay value is met (for a more detailed breakdown of

this optimization option’s behavior, see Figure 4.20). An example use case for the ”Coun-

ter/Timer” optimization is provided in Figure 4.21. Depending on if the software delay

function being used was in terms of milliseconds or microseconds, the timer will be con-

figured to either a 1 ms or 1 us ”tick” (meaning the timer will trigger an interrupt every 1

ms or 1 us). In the case of the program shown in Figure 4.21, the counter is setup for a 1

ms tick since the original software delay function was provided in terms of ms. The ISR

(”__vector_14(void)”) which is executed will increment variables corresponding to the

amount of time passed, and check whether they have reached the delay limit (which can

be seen in the main control loop as ”if (count[0] == limit[0])”). Due to the limited

number of counter instances available, storing and incrementing the delay and limit values

in software allows a single timer instance to handle any number of delays in the original

software.

50



4.2. OPTIMIZATION METHODS & CLASSIFICATION

One limitation imposed by the ”Counter/Timer” optimization is not preserving the orig-

inal timing requirements imposed by the original program. This is a result of the ”Counter/-

Timer” optimization not accounting for any additional code contained within the program

after any included calls to existing software delay functions relying on the delay included by

any previous calls to these software delay functions. In certain cases, the ”Counter/Timer”

optimization may actually improve the functionality of the existing software (cases of this

will be provided in Section 5.2), but in others can impact the functionality of the resulting

program. To combat this, a secondary option of the ”Counter/Timer” optimization is in-

cluded - the ”Time Sensitive Order of Execution” (or ”TSOoE”) option. This secondary

option which can be selected eliminates this issue by assuming any tasks included after

the final delay function call within the control loop of a program contains the same timing

requirements imposed by the previous tasks. As such, the final task is provided a sepa-

rate counter/limit instance which behaves in the same manner as any previous counter/limit

instances added to a given program.
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Figure 4.20: Demonstrates the behavior of the ”Counter/Timer” optimization and how it
is applied to source code. The main path (indicating the optimization was successfully
applied) is marked in red, with green showing loops, purple being optional paths, and black
indicating the optimization could not be applied.
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Figure 4.21: An example of the ”Counter/Timer” optimization which eliminates usages
of software delay functions (_delay_ms(...) and _delay_us(...) provided by the
util/delay.h library [19]). Lines 28-31 configure the 8-bit timer instance 0, lines 32 and 33
initialize the count and limit variables used to track the current delay value, lines 37-39 and
41-43 are added to check and execute the existing code (line 40) in the case the delay expires,
and lines 52-58 are the ISR added to track and increment the variables corresponding to the
delay value. The count and limit variables are declared globally at the beginning of the
program.
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IV Interrupts

To properly take advantage of the Interrupt Handler Unit, scenarios where a state change

on a pin is checked and used to perform a task must be identified. For this optimization

option, only external interrupts are considered. This would include changes on input pins

on the MCU, such as a button press or other signal from a sensor or actuator. The simplest

way of obtaining this functionality in software is to simply check the state of the connected

pin every iteration of the control loop, and if there is a change (whether it be high to low

or low to high) then execute some task. Such an implementation is potentially wasteful as

most of the clock cycles are spent checking for the change, rather than performing more

meaningful work. By utilizing hardware interrupts, no software is needed to check for

changes; if/when a state change occurs, the interrupt handler unit will automatically execute

code defined within the corresponding ISR.

Within the Embedded C Source Optimizer, the ”Interrupt” optimization option attempts

to match a condition where a pin on a given bank is being checked within the control loop

through a conditional statement, where a certain task is executed if the condition evaluates

to true. Such a scenario might be checking for a pin going low (in the case of a button

press) and performing a task such as: setting an output signal high, writing to the Electri-

cally Erasable Programmable Read-Only Memory (EEPROM) (or other external device),

or changing the state of an internal flag used by theMCU. To better demonstrate the changes

made by the ”Interrupts” optimization option, an example case is provided in Figure 4.22.

There are a variety of other use cases for interrupts, and as such are another potentially

wide-reaching use case which the Embedded C Source Optimizer can handle.

Since the ATmegaXX8 line of MCUs supports hardware interrupts on all of the general-

purpose I/O registers, the mapping which needs to be done is universal among all of the

possible cases of input pins. Any instance where such a state change occurs, the Embed-
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Figure 4.22: An example of the ”Interrupts” optimization which attempts to replace any
conditional statement checking for a change on an input pin for a corresponding ISR which
performs the same function. In the case of the imported program, lines 41-43 were moved
from the main control loop to the ISR corresponding to the pin which was being checked
originally. The interrupt is configured to trigger on a state change of the checked input pin
(done in lines 27 and 28), so the original conditional statement is preserved to ensure the
included functionality only happens on the intended edge (being the falling edge in this
case).

ded C Source Optimizer attempts to place any code within the body of a corresponding

conditional statement into an ISR (”__vector_4(void)”) corresponding to the external

interrupt, as well as configuring the specified pin to trigger an interrupt on a state change

(seen on lines 27 and 28 in Figure 4.22). The result of these changes is the rising or falling
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edge (depending on the initial state of the condition from the imported code) on the input

pin will be redirected to an ISR rather than manually checking the state of the pin each itera-

tion of the control loop. This increases the potential throughput of the MCU and eliminates

any latency imposed by software for executing tasks based on state changes on inputs of

the MCU (it should be noted that the Interrupt Handler Unit does introduce some latency

into the embedded system; however, the degree to which this affects the overall end-to-end

latency as compared to software-driven approaches are negligible) [33].

V Pulse-Width Modulation

PWM is commonly used on embedded platforms for a variety of reasons (for additional

information concerning PWM, refer to subsection 2.1.1). In hardware, PWM is imple-

mented as a specific utilization of the counter/timer peripheral, and can generally provide

PWM output on pins across multiple different banks. With the use case of PWM being to

control the average amplitude and frequency of an output, there are a variety of cases where

such functionality can be utilized within embedded software. These include: outputting a

fixed-frequency signal (used by an actuator or other device), generating an approximated

Direct Current (DC) wave, and controlling actuators which require pulse trains with specific

timing requirements (such as servo motors).

Since the PWM outputs on MCUs are generally limited to the same counter/timer hard-

ware, there is some overlap between use cases requiring either of these functionalities. The

Embedded C Source Optimizer makes the distinction between these two optimizations at

both the scope and depth of the use cases they target. The ”PWM” optimization is more

narrow in what it attempts to modify, only matching cases where software delay function

calls are nested between assignments to change the state of a given output pin. An exam-

ple case is provided in Figure 4.23 with further explanation of the implementation. On the

other hand, the counter/timer optimization targets a more broad range of use cases, where
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the only strict requirement is the use of software delay functions within the main control

loop of the program. This distinction is made for two reasons: to setup the counter/timer

hardware appropriately for either PWM functionality or for triggering interrupts, and to

setup the resulting optimized code in a manner which bodes well for each respective opti-

mization and what it is attempting to accomplish. The ”PWM” optimization can be thought

of as a more specific application of the counter/timer optimization, where the resulting code

is more hardware driven as a result (rather than managing delay and limit values in software

to support many different points of execution).

The ”PWM” optimization supports two additional options to modify the underlying be-

havior of the optimization. The ”Invert Duty Cycle” (or ”IDC”) option will purposefully in-

vert the duty cycle of the PWM signal. This is necessary as there are certain cases where the

”PWM” optimization is unable to determine the duty cycle of the software-generated PWM

signal due to not accounting for the initial state of the pin. In the event that the ”PWM”

optimization is applied and the duty cycle is not the intended value, this option may help

mitigate the root issue. The ”Preserve Frequency” (or ”PF”) option is another secondary

option implemented by the ”PWM” optimization and is used to ensure the frequency of

the original, software-driven PWM signal is maintained in the optimized implementation.

Since the PWM channels may only be used on specific pins, this option is not enabled by

default in order to support the maximum number of use cases (since only the PWM chan-

nels associated with the 16-bit counter/timer instance 1 support this use case in the case of

the ATmega168). In the event that the program relies on the PWM having a set frequency

and duty cycle, this option may be selected to ensure the functionality is maintained. In

the event that the pin used for the software-driven PWM signal cannot be used with the

counter/timer instance which supports the ”PF” option, an error message will be displayed

to the user.
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Figure 4.23: An example of the ”Pulse-Width Modulation” optimization which attempts
to use a counter/timer instance on the MCU to output a fixed duty-cycle signal based on
software-based PWM. The original program outputs a software-driven PWM signal by in-
verting the state of the output pin (which can be seen on the ”removed” lines 37 and 39),
with calls to a software delay function, ”_delay_ms(...) (seen on the ”removed” lines 38
and 40) setting the duty cycle of the signal. This code shows the optimized output after se-
lecting the ”Pulse-Width Modulation” optimization with the option ”Preserve Frequency”
which will initialize the timer to output a PWM signal with the same period and duty cycle
as the original (with the timer configuration shown on lines 27-32).

4.3 Educational Considerations

Alongside attempting to objectively improve embedded code by a number of metrics,

the Embedded C Source Optimizer also relays how and why certain operations are per-
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formed in an effort to teach the end-user how and when they should make similar changes

to their code in the future. Some of the ways the utility attempts to do this is: providing de-

tailed comments in the optimized code output (examples of which were shown previously in

Figures: 4.21, 4.22, and 4.23), conveying the steps each optimization option takes to apply

any changes, and giving suggestions to the user in the form of log output (shown previ-

ously as log output in Figure 4.4) which indicate aspects of their code they should consider

changing to get the most out of provided optimization options. These are an attempt to make

learning embedded concepts more clear, while taking away some of the guess work and the

need to review datasheets or other documentation. Further examples of these attempts at

aiding the end-user are detailed in Figures 4.24 and 4.25. Furthermore, the information

provided for each optimization option which explains what the optimizations do and what

considerations should be made are shown in Figures 4.26 and 4.27.

Figure 4.24: An example of suggestions provided to the end-user based on the optimizations
they selected to be run on their code.

Figure 4.25: An example of errors messages concerning why selected optimization options
could not be applied to the end-user’s code.
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Figure 4.26: The optimization info provided by the Embedded C Source Optimizer for the
”Counter/Timer,” ”Time Sensitive Order of Execution” (or ”TSOoE”), ”Arithmetic Substi-
tution,” and ”Built-in Function Substitution” options to aid in the user’s understanding of
each.
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Figure 4.27: The optimization info provided by the Embedded C Source Optimizer for the
”Interrupts,” ”Pulse Width Modulation” (or ”PWM”), ”Preserve Frequency,” and ”Inverted
Duty Cycle” options to aid in the user’s understanding of each.
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Chapter 5

EVALUATION

This chapter introduces the findings for each of the aspects and metrics (defined in Sec-

tion 4.2) as applied to examples of embedded software, and how these findings indicate the

relative success of each optimization option. The combination of quantitative and qualita-

tivemetrics will be assessed individually, and then considered together in order to determine

what value each optimization adds to the utility.
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5.1 Experimental Design

A number of tests were designed which attempt to provide an evaluation of each metric

discussed in Section 4.2 and run on various embedded programs to assess their effective-

ness on a variety of use cases. The programs tested are comprised of multiple purpose-built

programs designed to loosely target the optimizations applied by the Embedded C Source

Optimizer (see Figures B.1, B.2, and B.3). These programs were designed to represent em-

bedded code that a novice embedded developer may create, and therefore are likely appli-

cable to the provided optimization options. Furthermore, a selection of externally sourced

embedded programs (provided in Figures B.10 - B.21) were tested to increase the overall

sample size and otherwise confirm the general nature of the optimizations provided by the

Embedded C Source Optimizer.

5.1.1 Latency Results

Latency was tested using a Raspberry Pi 3 Model B [37] which was used to simulate

signals and track the time between sending and receiving responses to and from the AT-

mega168. The Raspberry Pi 3 Model B was connected to the ATmega168’s input and out-

put pins through two of its General Purpose Input/Output (GPIO) pins, and the program

provided in Figure 5.1 was executed on the Raspberry Pi to record and export a set of mea-

sured time values corresponding to the delay between the falling edge of the ATmega168’s

input and the output becoming high. Results for latency testing will be provided in Section

5.2, with the raw data provided in Table B.1.

The script shown in Figure 5.2 simulates an external signal by setting the output pin of

the Raspberry Pi low, which is equivalent to the state change the ATmega168 expects. The

ATmega168 ”responds” to this low signal by setting a separate external pin high, which

the Raspberry Pi then reads. In between these two events, the Raspberry Pi tracks the
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1 #include <iostream>
2 #include <fstream>
3 #include <cstdio>
4 #include <ctime>
5 #include <wiringPi.h>
6
7 #define ITERATIONS 1000
8 #define MAX_DELAY_MS 100
9 #define MIN_DELAY_MS 1
10 #define RANDOM
11
12 int main(int argc, char **argv) {
13 if (argc != 2) {
14 std::cout << "No file name argument provided\n";
15 return 1;
16 }
17 std::ofstream file;
18 file.open(argv[1]);
19 wiringPiSetup();
20 pinMode(0, OUTPUT);
21 pinMode(1, INPUT);
22 // initialize pin as high held high
23 digitalWrite(0, HIGH);
24 delay(MAX_DELAY_MS);
25 std::clock_t timer;
26 for (int i = 0; i < ITERATIONS; i++) {
27 #ifdef RANDOM
28 // random time delay
29 delay((rand() % (MAX_DELAY_MS - MIN_DELAY_MS)) + MIN_DELAY_MS);
30 #endif
31 // set input pin high
32 digitalWrite(0, LOW);
33 // start timer
34 timer = std::clock();
35 // wait for output pin to go high
36 while (!digitalRead(1));
37 // calculate latency based on start time
38 file << ((std::clock() - timer) / (double) CLOCKS_PER_SEC)
39 << ((i == (ITERATIONS - 1)) ? "" : ",");
40 std::cout << i << '/' << ITERATIONS << '\r';
41 // reset input pin
42 digitalWrite(0, HIGH);
43 }
44 file.close();
45 return 0;
46 }

Figure 5.1: A simple program developed in C++ which simulates a button press and tracks
the time between sending and receiving a response, allowing the end-to-end latency to be
measured for a given embedded system. Macros have been defined which allow for chang-
ing the number of iterations, the amount of delay included between ”button presses,” and
whether or not the delay values should be randomized to better represent the asynchronous
nature of external interrupts.
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time taken for the ATmega168 to respond, which represents the latency imposed by the

ATmega168 system. An additional randomized delay is included within the Raspberry Pi

script to ensure no synchronization occurs between the two systems which would otherwise

impact themeasured results. This ensures asynchronous operation between the two systems,

which is amicable to external events which are generally independent of the system state.

Figure 5.2: The testing configuration used to measure latency across the tested programs.
The setup consists of a Raspberry Pi 3 Model B connected to an ATmega168, where two of
the GPIO pins of the Raspberry Pi (GPIO 0 assigned to output, GPIO 1 assigned to input)
are connected to two pins of the ATmega168 (PC1 assigned to input and PD1 assigned to
output).

5.1.2 Utilization Results

Utilization and execution capacitywas tested by including the ”utilization” library shown

in Figure B.4 and Figure B.5. A Universal Synchronous/Asynchronous Receiver/Transmit-
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ter (USART) to Universal Serial Bus (USB) adapter was connected to the serial RX and TX

pins of the ATmega168 and a host computer to read the serial data sent by the MCU. Fig-

ure 5.3 shows the testing configuration for collecting the utilization data across the various

example programs. In combination with the ”utilization” library, it allows for the total cy-

cles passed and the number of times the control loop was iterated to be measured, and as

such the cycles per iteration and utilization to be calculated.

Figure 5.3: The testing configuration used tomeasure utilization across the tested programs.
The setup consists of a USART to USB cable which converts the serial USART connection
provided by the ATmega168 to an interface which can be read using a computer with a USB
connection. The cycles per iteration measurement can then be read on the host computer,
and used to calculate the utilization of the provided firmware.
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5.1.3 Extensibility Results

In order to represent extensibility in a quantifiable manner, a program may be analyzed

in terms of how many instructions are executed at runtime, and based on that figure project

how feasible it would be to add functionality to a given portion of the program. Since

extensibility primarily considers adding functionality, a program which executes fewer in-

structions within a given block of code will be more amicable to adding functionality, while

maintaining any requisite deadlines or timing requirements imposed by the existing code.

Table 5.1 provides approximate values for how many instructions may be generated by a

given piece of code, and will be used to provide a rough idea of how various implementa-

tions of a program may be extended upon in their current form.

Table 5.1

This table shows the approximate instructions per source-level construct. This data was
gathered through analyzing listing files and comparing the relative number of instructions
generated for each of the mentioned source element. These values are not accurate for all
possible cases, but they provide a general case for each which makes it straightforward to
convert lines of code to assembly-level instructions.

Category Source Lines Approx. Instructions Instructions/line
Load/Store 1 1 1
Declaration 1 3 3
Assignment 1 4 4
Bitwise 1 1 1
Subroutine 1 8 8
If Statement 1 4 4
If Else 2 5 2.5
Loop 2 5 2.5

By utilizing the approximate instructions versus source lines of code (provided in Ta-

ble 5.1) a program may be evaluated in terms of the number of instructions it executes at

runtime. For a given program, the source code constructs (e.g. conditional statements,

loops, assignments) are converted into an approximate number of instructions based on the
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flow of the program. For example, a for loop containing a single assignment which iter-

ates 10 times would execute 5 instructions for the loop, and 10 times 4 instructions for the

assignments. Such a program would yield 45 instructions executed. This calculation may

provide insight into both the states (referred to here as ”program segments”) which the pro-

gram may occupy at runtime, and as such the relative difficulty of adding/modifying any

given program segment to be determined.

5.1.4 Code Size Results

As discussed previously in Subsection 4.2.1, code size is measured by running the ”avr-

size” executable (included in the AVR-GCC toolchain) on compiled embedded programs.

The total size (in bytes) is recorded for each example programwith each optimization option

applied, such that the resulting differences between each can be compared. This is done

automatically by the Embedded C Source Optimizer by selecting the ”Compare/Analyze”

option after applying any selected optimizations, or by manually exporting each optimized

implementation of a program from the Embedded C Source Optimizer, compiling all of the

iterations of the program in question, and running ”avr-size” on each compiled program.

5.1.5 Cyclomatic Complexity Results

The cyclomatic complexity of each implementation across the supported optimization

options was measuring using CCCC [31]. This is done by running the executable provided

by CCCC on each implementation of a program in question and recording the cyclomatic

complexity value for each. Each example program provided was tested individually, such

that any changes to the cyclomatic complexity can be determined. The optimized imple-

mentations of each program were exported from the Embedded C Source Optimizer and

tested in the same manner, allowing for a relative comparison between the cyclomatic com-

plexity before and after each optimization option was applied.
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5.2 Findings

The resulting measurements taken for each metric discussed previously in Section 4.2.1

are provided in this section. Each example program had optimization options applied in-

dividually, and measurements were taken for each implementation with all other factors

controlled.

5.2.1 Example Program 1

The following measurements are based on the program provided in Figure B.1.

Latency

Example Program 1 was modified to accommodate testing latency on a controlled hard-

ware setup which would be reused across testing all three programs and their optimized

variants. These modifications include updating the pin configuration (in order to support

the same set of pins across all tested programs), as well as modifying the conditional branch

to ”respond” when detecting a falling edge on the input pin by briefly toggling the state of

the output pin. One thousand samples were collected using the testing methodology de-

scribed previously in Subsection 5.1.1, and the aggregate values for mean, minimum, max-

imum, and standard deviation for each optimized implementation of Example Program 1

were calculated. Figure 5.4 shows both the average latency and standard deviation for each

applicable optimization. In the case of Example Program 1, these optimizations include:

”Counter/Timer”, ”Counter/Timer with Time-Sensitive Order of Execution (TSOoE)”, and

”Interrupts” respectively (additional information concerning the functionality provided by

each option was previously detailed in Subsection 4.2.3).

Based on the results shown in Figure 5.4, the ”Counter/Timer” optimization option re-

duced the average latency between sending and receiving a response to and from the AT-
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mega168 by nearly three orders of magnitude (approximately 1/850). Enabling ”TSOoE”

on the ”Counter/Timer” optimization does not have a significant impact on the average

latency, although this is to be expected as this option attempts to preserve the original tim-

ing of the program. The ”Interrupts” option, similar to the ”Counter/Timer,” provides an

average latency of approximately 1/440 of the original. The results demonstrated by the

”Counter/Timer” and ”Interrupts” optimization options contribute positively to the latency

of the final program considering the substantial reduction in end-to-end response time. The

result is a functionally equivalent programwhich is muchmore responsive to external input.

Figure 5.4: A comparison of average latency of Example Program 1 for each applicable
optimization across 1000 samples. The standard deviation of each test is shown following
the average value data label as ”plus-minus” the average.

To compare the standard deviation of each iteration of the program, the Coefficient of

Variation (CV) was calculated by dividing the standard deviation by the mean, providing

a normalized representation of latency variance. Figure 5.5 demonstrates the difference in

CV between the applicable optimizations for Example Program 1.
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Relative to the original (unoptimized) iteration of the program, the ”Counter/Timer” op-

timization reduced the CV by approximately a factor of 2.4, which indicates that the stan-

dard deviation relative to the mean is approximately 2.4 times less than the unoptimized

version. This is a positive change, as lower CV in this case correlates to more consistent

and reliable response times. The ”Counter/Timer+TSOoE” optimization has an equivalent

CV to the unoptimized version, which is expected as the ”TSOoE” option intends to make

the original program function exactly the same as it did before, but with improved exten-

sibility and utilization. The ”Interrupts” optimization shows the best result of the tested

optimization options, with the CV being reduced by a factor of approximately 16. This

low CV indicates the response times are notably consistent, and a worst case scenario for

latency will be only slightly above the mean latency.

Figure 5.5: A comparison of the CV for each optimization option applied to Example Pro-
gram 1 using the same data which was collected and aggregated for Figure 5.4.
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Utilization & Execution Capacity

Similar to the process for measuring latency, utilization requires the existing program

to be modified slightly in order to perform the measurements. The changes made to Ex-

ample Program 1 in order to perform this test include: including ”latency.h” (shown in

Figure B.4), adding a call to ”util_init()” during the initialization of the target program,

and incrementing ”iterationCount” at the end of each iteration of the control loop. The

timer instance configured in ”util_init()” (with the implementation being provided in

Figure B.5) handles calculating the cycles taken by the control loop over a known amount

of time, and sends that over USART to the host computer to be recorded.

Figure 5.6 shows the results of running Example Program 1 with each of the optimiza-

tion options applied, and the corresponding cycles taken by the control loop per iteration.

Optimization options which could not be applied are grayed out as they have no effect on the

final utilization. Due to the significant disparity between some of the values, the horizontal

axis (showing cycles per control loop) is plotted on a log scale. The ”Counter/Timer” opti-

mization improved the measured cycles per iteration by a factor of approximately 32,000,

meaning the control loop of the optimized program executes approximately 32,000 times as

fast as the unoptimized program. This massive difference is the result of included software

delay functions within the main loop, having relatively large delay values (in this case, one

second). Since the ”Counter/Timer” optimization eliminates these delay function calls in

favor of using the dedicated counter/timer hardware, the added overhead of blocking for the

duration of a delay is removed. The ”TSOoE” option improves the utilization in a similar

manner, although introduces a bit more overhead through adding checks for an additional

count/limit instance (which is used to preserve the original timing of the program). The re-

maining optimization options do not have any affect on the utilization as they do not remove

calls to software delay functions, and therefore the cycles per iteration is left unchanged.
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Figure 5.6: A comparison of cycles per iteration for Example Program 1 tested against
each optimization option, which indicate the programs ”execution capacity.” Optimizations
which could not be applied are grayed out.

Figure 5.7: A comparison of utilization represented as a percentage for Example Program
1 tested against each optimization option. Optimizations which could not be applied are
grayed out.
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Figure 5.7 shows utilization as a percentage, where the value is expressed based on the

calculation shown previously in Figure 4.11. The same improvements made by the ”Coun-

ter/Timer” optimization with and without the ”TSOoE” option can be seen as a reduction

in overall utilization. The scale provided by this metric differs from cycles per iteration in

that the percentage asymptotically approaches 100%, with greater cycles per iteration con-

tributing less and less to increasing the utilization. Yet, the unoptimized program (and those

where the optimization could not be applied) still show a significant increase in utilization

over the ”Counter/Timer” optimization.

Extensibility

In the case of Example Program 1, the applicable optimization options and their affect

on the extensibility of the program are shown in Figure 5.8. The values included for in-

structions executed per program segment are derived from extrapolating the approximate

number of instructions generated for a given code construct (which can be seen in Table 5.1)

from the target program. These values are plotted in order to better understand how the var-

ious implementations of the same program contribute to the total instructions executed. As

it relates to extensibility, the number of instructions executed can be considered a rough

indication of how feasible it is to add functionality to the program in its current form.

Figure 5.8 shows the results of measuring the extensibility of Example Program 1 with

each applicable optimization option applied. The ”Delay Function” segment contributes

the most amount of instructions executed to the implementations which contain a call to

”_delay_ms().” Since the ”Counter/Timer” optimization (with and without the ”TSOoE”

option) attempt to remove any calls to software delay functions, the most significant pro-

gram segment in terms of instructions executed can be eliminated. Due to the ”Delay Func-

tion” segment contributing directly to the iteration period of the control loop (since the

subroutine call is nested inside the loop), this program segment sets an upper bound for
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Figure 5.8: A comparison of the approximate number of instructions executed per program
segment for Example Program 1 against all applicable optimization options.

how often an additional (added) task can be performed without adding additional logic to

split the delay into increments.

In the case of Example Program 1, the difference between the unoptimized and ”Coun-

ter/Timer” versions show a difference of approximately 1/10,000 the executed instructions

for the optimized iterations. This reduction manifests as making it objectively less complex

to add additional functionality when any timing/execution requirements of the functionality

do not align with the existing implementation. Due to the reduced execution period by such

a substantial factor, a task can be added to the control loop and will be executed approxi-

mately 10,000 times as often, reducing the need to add additional logic/overhead to account

for different timing requirements. As for the ”Interrupts” optimization option, the number

of instruction executed overall is essentially unchanged as it does not target software delay

functions. That being said, this representation of instructions executed cannot account for

the out-of-order execution provided by the interrupt handler configured by the ”Interrupts”

optimization. In the event that the task being added is triggered by an external event, the
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generated ISR can be used to bypass the iteration period of the control loop entirely.

Figure 5.9: A scaled representation of Figure 5.8 to better show the differences between
all program segments. The ”Delay Function” segment is largely underrepresented in this
figure as a result.

To better understand the relative differences between program segments other than ”De-

lay Function,” Figure 5.9 shows the same data as Figure 5.8 but with the ”Delay Function”

segment heavily underrepresented. This representation is useful as the impact of each op-

timization option can be analyzed more granularly. For instance, the ”Counter/Timer” op-

timization increases the initialization segment by a factor of ~2.5, and the control loop

segment by ~1.5. With the ”TSOoE” option enabled, these program segments increase to

~3 and ~2 respectively. Furthermore, a new program segment ”Timer ISR” is introduced

to check and increment the count/limit variables corresponding to each instance. The in-

creases to the initialization and control loop segments are a result of the additional decla-

rations, assignments, and logic to setup and utilize the counter/timer hardware; however,

this additional overhead is vastly outweighed by the elimination of the ”Delay Function”

segment. As for the ”Interrupts” optimization, the initialization segment increases for the
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same reason as the ”Counter/Timer” optimization, but the control loop segment decreases

by a factor of one half. The reduction to the control loop comes as a result of moving the

logic to check for a state change on a pin to a separate ISR which is called by the interrupt

handler.

Code Size

Since code size is a significant factor for embedded systems, attempting to reduce the

size of a compiled embedded program is generally considered ideal. The impact on code

size of each optimization option as applied to Example Program 1 is represented in Fig-

ure 5.10. The ”Counter/Timer” optimization reduces the final code size of the program by

roughly one half (the optimized program’s code size is ~45% of the original). This sub-

stantial decrease in code size is likely the result of not needing to include the compiled

delay function within the final firmware. This difference includes the addition of extra

overhead for initialization and handling the counter/limit instances in software, so the net

result of removing the delay function calls is likely even greater than what is shown by this

representation. The ”TSOoE” option for the ”Counter/Timer” optimization increases code

size slightly, as it adds additional logic to ensure any timing requirements of the original

program are preserved. The ”Interrupts” optimization increases the final code size over

the unoptimized version by about 6% due to the additional overhead added to configure

external interrupts. Since this optimization does not do anything to remove calls to delay

functions, any overhead added by these calls is still included in the final size.

The other combinations of optimization options were tested but ultimately did not im-

pact the resulting code size due to not being applicable to Example Program 1.
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Figure 5.10: A comparison of the size of Example Program 1 after being compiled with
each optimization option applied. Optimizations which are not applicable to the program
are grayed out.

Cyclomatic Complexity

Cyclomatic complexity is represented as a value, where higher measurements indicate

higher levels of complexity (where complexity refers to the total number of paths through

a program). Figure 5.11 shows the measured cyclomatic complexity for each optimization

option as applied to Example Program 1. The Counter/Timer optimization increases the

cyclomatic complexity over the unoptimized implementation by ~1.6, and ~2.6 with the

”TSOoE” option applied. These increases are a direct result of the logic added to increment

and check the counter/limit instances which control the delay. Since cyclomatic complexity

is relative to the number of paths and this optimization adds as many if statements as are

needed to eliminate all the delay function calls, the complexity inevitably scales with this

added logic. While not ideal, the benefits as shown by the recorded measurements for

previously introduced metrics outweigh this added complexity.

The ”Interrupts” optimization option, while applicable to Example Program 1, does not
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Figure 5.11: A comparison of cyclomatic complexity of Example Program 1 with each
optimization option applied. Optimizations which are not applicable to the program are
grayed out.

affect the cyclomatic complexity of the resulting implementation. All further optimization

options listed in Figure 5.11 do not apply to this program, and are therefore grayed out.

5.2.2 Example Program 2

Example Program 2 (shown in Figure B.2) is another instance of a simple, beginner-

level embedded program which can be improved upon in a variety of ways.

Latency

Figure 5.12 shows the average latency for Example Program 2 with the applicable op-

timization options applied, and shows similar improvements to that of Example Program 1

(previously discussed in Subsection 5.2.1), in that the ”Counter/Timer” and ”Interrupts” op-

timizations show a substantial decrease in average latency. The ”TSOoE” option performs

similarly as well, with no significant difference between the optimized and unoptimized
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versions (which is to be expected due to ”TSOoE” attempting to preserve the original tim-

ing).

Figure 5.12: A comparison of average latency of Example Program 2 for each applicable
optimization across 1000 samples. The standard deviation of each test is shown following
the average value data label as ”plus-minus” the average.

The CV for Example Program 2 (shown in Figure 5.13) is also similar to Example

Program 1, with the ”Counter/Timer” optimization showing improved consistency across

all samples collected for latency. The ”Interrupts” option also shows substantially lower CV

than any of the other options. Once again, the ”TSOoE” option does not have a significant

impact in this regard.
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Figure 5.13: A comparison of the CV for each optimization option applied to Example
Program 2 using the same data which was collected and aggregated for Figure 5.12.

Utilization & Execution Capacity

Utilization and cycles per iteration for Example Program 2 was decreased substantially

by the ”Counter/Timer” optimization both with and without ”TSOoE” enabled (shown in

Figure 5.14). The reduction is on the level of five orders of magnitude due to the blocking

nature of software delay functions. The ”Interrupts” optimization does not influence the

measured cycles per iteration as it does not attempt to remove calls to delay functions.

The remaining optimization options are not applicable to Example Program 2, and thus are

grayed out.

Figure 5.15 shows utilization for Example Program 2 as a percentage, and shows similar

results to Example Program 1, where the unoptimized program (and those where the opti-

mization option could not be applied) approaches 100%. An interesting distinction between

Program 1 and 2 is how the ”TSOoE” option affects the utilization. In the case of Program 2,

the utilization decreases when enabling this option, where the opposite is true for Program

81



5.2. FINDINGS

Figure 5.14: A comparison of cycles per iteration for Example Program 2 tested against
each optimization option, which indicate the programs ”execution capacity.” Optimizations
which could not be applied are grayed out.

Figure 5.15: A comparison of utilization represented as a percentage for Example Program
2 tested against each optimization option. Optimizations which could not be applied are
grayed out.
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1. This is likely due to the size of the task (in both instructions and lines of code) following

the call to the software delay function. Since the conditional statement which is added by

the ”TSOoE” option is more or less constant across various programs, the utilization will

be affected more as the size of the code executed after such a delay increases.

Extensibility

The extensibility of Example Program 2 with applicable optimizations applied shows

a similar result to that of Example Program 1, in that the ”Counter/Timer” optimization

significantly reduces the overall instructions executed due to eliminating calls to software

delay functions. The results shown in Figure 5.16 show the relative difference between

these optimizations. This representation does not show a meaningful improvement made

by the ”Interrupts” optimization, although still arguably improves the extensibility of the

program due to allowing out-of-order execution.

Figure 5.16: Acomparison of the approximate number of instructions executed per program
segment for Example Program 2 against all applicable optimization options.
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Figure 5.17: A scaled representation of Figure 5.16 to better show the differences between
all program segments. The ”Delay Function” segment is largely underrepresented in this
figure as a result.

A scaled representation of Figure 5.16 is provided in Figure 5.17, where the size of the

Delay Function segment is massively underrepresented in an effort to better display the dif-

ferences between the other segments. Similarly to the results from Program 1, this program

behaves similarly when applying each applicable optimization option. In general, the opti-

mizations all increase the initialization segment due to adding code to set up/initialize the

hardware peripherals. Also the control loop after applying the ”Counter/Timer” optimiza-

tion with and without ”TSOoE” increases in terms of the number of instructions executed

due to checking for any given counter instance expiring each iteration. The ”Interrupts”

optimization reduces the size of the control loop as it moves the logic for checking the state

of a pin from the control loop to a separate ISR.
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Code Size

The code size for Example Program 2 (shown in Figure 5.18) shows similar results to that

of Program 1, in that the ”Counter/Timer” optimization greatly reduces the final code size

as compared to the unoptimized implementation, and the ”Interrupts” optimization slightly

increases the final code size. These results are promising as even in the case where code

size increases, it only does so by about 7%. By combining various optimization options,

more ideal results could potentially be achieved.

Figure 5.18: A comparison of the size of Example Program 2 after being compiled with
each optimization option applied. Optimizations which are not applicable to the program
are grayed out.
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Cyclomatic Complexity

The ”Counter/Timer” optimization with and without ”TSOoE” shows an increase in

cyclomatic complexity by a factor of 1.5 and 2.25 respectively due to the additional logic

added to control the timer instances. The only other applicable optimization option (”Inter-

rupts”) shows no change to the final complexity. While not desirable, this level of increase

to the complexity after applying these optimizations is outweighed by the other potential

benefits they introduce.

Figure 5.19: A comparison of cyclomatic complexity of Example Program 2 with each
optimization option applied. Optimizations which are not applicable to the program are
grayed out.
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5.2.3 Example Program 3

Example Program 3 (shown in Figure B.3) is of a similar level of complexity (in terms

of functionality) to both previous example programs, but the function of the program is

designed to take advantage of some optimization options which the others do not.

Latency

Average latency for Example Program 3 is shown in Figure 5.20 with all applicable

optimization options listed. The ”Counter/Timer” optimization shows a substantial im-

provement in average latency over the unoptimized version (having about 1/80 the average

latency), although with ”TSOoE” enabled the results align more closely to the original.

While previous tests showed the ”TSOoE” option having nearly identical latency to the un-

optimized version of the same program, Program 3 shows approximately a 13% reduction

in average latency versus the original. It is not immediately obvious why this difference

exists between both versions, and may be the result of outlier data points (considering the

standard deviation is notably similar between both). The ”Interrupts” optimization shows

a similar decrease to average latency as the ”Counter/Timer” optimization, having roughly

1/70 the average latency as the unoptimized version. The ”PWM” optimization option is

applicable to this program, and as such when applied shows even lower average latency

(having roughly 1/120 the average latency versus the unoptimized version, both with and

without the ”Inverted Duty Cycle [IDC]” option applied). The ”Built-In Function Substitu-

tion” option shows no change to average latency, as the only change it makes is performed

to the initialization phase of the program.

As for the CV of each optimization option (shown in Figure 5.21), the ”Counter/Timer”

optimization shows little improvement in consistency over the unoptimized version, despite

the average latency being much lower. To further argue that there may be outliers included
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Figure 5.20: A comparison of average latency of Example Program 3 for each applicable
optimization across 1000 samples. The standard deviation of each test is shown following
the average value data label as ”plus-minus” the average.

in the ”TSOoE” data, the CV is notably higher than the unoptimized version (by about

12%), indicating there was more variance in the data relative to the mean. The ”Interrupts”

optimization shows the best CV of any optimization applied to Program 3, suggesting the

maximum expected latency is very close to the mean. The ”PWM” optimization both with

and without ”IDC” applied show similar levels of improvement to the CV over the unopti-

mized implementation, although are not quite as effective as the ”Interrupts” optimization

in this regard (despite having lower average latency). Once again, the ”Built-in” optimiza-

tion shows the same result as the unoptimized version of Program 3 due to not modifying

anything in the control loop. For additional information concerning each of the introduced

optimization options, refer to Subsection 4.2.3.
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Figure 5.21: A comparison of the CV for each optimization option applied to Example
Program 3 using the same data which was collected and aggregated for Figure 5.20.

Utilization & Execution Capacity

The cycles per iteration measurements for Program 3 (shown in Figure 5.22) show simi-

lar results to the previous two programs. The ”Counter/Timer” optimization shows a signif-

icant reduction in cycles per iteration over the unoptimized version both with and without

”TSOoE” applied. The ”Interrupts” optimization does not significantly change the cycles

per iteration due to the software delay function calls still being included. The ”PWM” op-

timization with and without both options (”IDC” and ”Preserve Frequency [PF]”) demon-

strate the best result for utilization of any optimization tested, with a reduction in cycles

per iteration by a factor of approximately 1/270. Another way to convey this measurement

would be that with the ”PWM” optimization applied, the control loop executes 270 times as

fast as the unoptimized version does. This is primarily due to the removal of software delay

function calls, as well as having less overhead than the ”Counter/Timer” optimization (as

the ”PWM” optimization does not need to track counter/limit instances in software). Both
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the ”Built-in” and ”Arithmetic Substitution” optimizations had no affect on the cycles per

iteration or utilization.

Figure 5.22: A comparison of cycles per iteration for Example Program 3 tested against
each optimization option, which indicate the programs ”execution capacity.” Optimizations
which could not be applied are grayed out.

Figure 5.23 shows utilization as a percentage, with the effective optimization options

substantially reducing the corresponding value. As these measurements are relative to those

taken of the control program (which is shown in Figure B.6), the resulting utilization values

do not scale linearly with the cycles per iteration.
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Figure 5.23: A comparison of utilization represented as a percentage for Example Program
3 tested against each optimization option. Optimizations which could not be applied are
grayed out.

Extensibility

Figure 5.24 shows the approximate number of instructions executed per program seg-

ment of Example Program 3 as it relates to extensibility. The ”Counter/Timer” optimization

both with and without ”TSOoE” enabled show similar levels of improvement, allowing ad-

ditional functionality to be added and have it execute much more frequently than what the

unoptimized version would be capable of in its existing form. The ”Interrupts” optimiza-

tion had negligible impact on the instructions executed as most of its total is still taken up

by the delay function segment. The ”PWM” optimization (and its variants with the ”IDC”

and ”PF” options applied) shows a substantial decrease in the total number of instructions

executed for the same reason as the ”Counter/Timer” optimization. Finally, the ”Built-in”

optimization has marginal impact on the total number of instructions executed.

Figure 5.25 shows a scaled version of the data represented in Figure 5.24 to better see

the differences between the smaller program segments. The same behavior from the ”Coun-
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Figure 5.24: Acomparison of the approximate number of instructions executed per program
segment for Example Program 3 against all applicable optimization options.

ter/Timer” and ”Interrupts” optimizations as was shown in Program 1 and 2, with additional

overhead needing to be added to the initialization segment, and increased instructions exe-

cuted within the control loop in the case of ”Counter/Timer.” The ”Interrupts” optimization

reduces the size of the control loop substantially due to most of the functionality being

moved to a separate ISR. The ”PWM” optimization inflates the initialization section of the

program somewhat, but in every case it reduces the number of instructions executed within

the control loop by about 30% over the unoptimized version. Both with and without the

”IDC” option, the ”PWM” optimization shows the same control loop segment size, and

the ”PF” option adds slightly to the initialization segment due to the additional constraint of

preserving the frequency from the original version. The ”Built-in” optimization reduces the

number of instructions executed during the initialization segment slightly due to replacing

explicit assignments of SREGwith a function call corresponding to a single instruction. The

remaining sections remain unchanged as this optimization only applies to the initialization

segment in this case.
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Figure 5.25: A scaled representation of Figure 5.24 to better show the differences between
all program segments. The ”Delay Function” segment is largely underrepresented in this
figure as a result.

Code Size

The code size of Example Program 3 as it relates to the optimization options can be seen

in Figure 5.26. The ”Counter/Timer” optimization reduces the code size by about one half,

and the ”Interrupts” optimization increases the final size slightly. Both of these results are

consistent with the previous two programs. The ”PWM” optimization shows the best case

code size for Program 3, shrinking the final size by approximately 75%. The ”IDC” option

does not affect the size significantly, and the ”PF” option increases the size slightly over

the default due to the additional logic added for preserving the original signal’s frequency.

The ”Built-in” optimization reduces the size slightly as all the applicable assignments of

SREG are replaced with a single instruction. The ”Arithmetic” optimization did not impact

the program in this instance, and is therefore grayed out.
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Figure 5.26: A comparison of the size of Example Program 3 after being compiled with
each optimization option applied. Optimizations which are not applicable to the program
are grayed out.

Cyclomatic Complexity

Similar to the previous programs, the cyclomatic complexity of Example Program 3with

various optimization options applied (shown in Figure 5.27) follows a similar pattern. The

”Counter/Timer” optimization increases the cyclomatic complexity over the unoptimized

version by a factor of ~2.3, and the ”TSOoE” option increases that to ~3 times that of the

original. The remaining optimization options do not impact the cyclomatic complexity. The

only optimization option which could not be applied is ”Arithmetic” and is therefore grayed

out.
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Figure 5.27: A comparison of cyclomatic complexity of Example Program 3 with each
optimization option applied. Optimizations which are not applicable to the program are
grayed out.

5.2.4 Alternate Example Programs

The following section details findings from performing the same testing as with the

initial three programs on externally sourced programs. This is done in an effort to increase

the sample size and further validate the results shown by the previous three examples. Three

of the externally sourced programs (which are shown in Figures: B.10, B.11, and B.12.) will

be tested at the same level of detail as the previous three example programs, and a further

nine externally sourced programs (shown in Figures B.10 - B.21) will be tested at a higher

level to further evaluate how applicable and generalizable the optimization options provided

by the Embedded C Source Optimizer are.

These programs were sourced from various forums, tutorials, and repositories. Each

program is relatively simple in nature, and represent real-world examples of programs writ-

ten both by and for novice embedded software developers.
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Latency

Figure 5.28: Results for average latency tested against each applicable optimization option
for Alternate Example Program 1.

Figure 5.29: Results for the coefficient of variation of the collected latency data for Alter-
nate Example Program 1.
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Figures 5.28 and 5.29 show the resulting latency and CV data across the applicable op-

timization options for Alternate Example Program 1. The ”Counter/Timer” optimization,

both with and without ”TSOoE” enabled, shows similar behavior to the results from Exam-

ple Programs 1-3, where the latency is significantly reduced in the former case, and mostly

unchanged in the latter. The CV increased for both optimized implementations of Alternate

Example Program 1, indicating slightly less consistent latency over the samples collected.

Figure 5.30: Results for average latency tested against each applicable optimization option
for Alternate Example Program 2.

Figures 5.30 and 5.31 show both a significant reduction in average latency and CV

for the interrupts optimization as applied to Alternate Example Program 2, which is also

consistent with the results from earlier tests.

Figures 5.32 and 5.33 (corresponding to Alternate Example Program 3) yields similar

results for the ”Counter/Timer” optimization in terms of average latency, although produces

significantly higher CV. The relative difference in CV for the ”Counter/Timer” optimization

is not immediately obvious, considering the resulting CVwith the ”TSOoE” option enabled

is in line with the unoptimized implementation. The ”Arithmetic Substitution” optimization
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Figure 5.31: Results for the coefficient of variation of the collected latency data for Alter-
nate Example Program 2.

Figure 5.32: Results for average latency tested against each applicable optimization option
for Alternate Example Program 3.

was applicable to Alternate Example Program 3, and demonstrated a marginal reduction in

average latency (approximately one percent) and no significant difference in terms of CV.
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Figure 5.33: Results for the coefficient of variation of the collected latency data for Alter-
nate Example Program 3.

The slight reduction in latency can be associated with fewer instructions generated due to

the ”Arithmetic Substitution” optimization replacing the division operation with a right shift

operation.

This particular program indicates a limitation with the ”Arithmetic Substitution” op-

timization, where the data type of any variable being used in the target statement is not

considered, and therefore floating point values cause the optimization to introduce a corre-

sponding error into the program. In order to continue testing with this optimization enabled,

the programwas slightly modified to change the floating point variable to be an integer with

the same data width (32 bit). This change must be considered when evaluating this opti-

mization, as changing the data type may have unforeseen influence on the results.
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Utilization & Execution Capacity

Figure 5.34: The measured cycles per iteration for each applicable optimization option for
Alternate Example Program 1.

Figure 5.35: The measured utilization for each applicable optimization option for Alternate
Example Program 1.
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Figures 5.34 and 5.35 demonstrate the expected results for both cycles per iteration and

utilization for the applicable optimization options as applied to Alternate Example Program

1. The ”Counter/Timer” optimization significantly reduced the cycles per iteration over the

unoptimized implementation, and similarly reduced utilization.

Figure 5.36: The measured cycles per iteration for each applicable optimization option for
Alternate Example Program 2.
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Figure 5.37: The measured utilization for each applicable optimization option for Alternate
Example Program 2.

Figures 5.36 and 5.37 also show the expected results for cycles per iteration and uti-

lization when applied to Alternate Example Program 2 for the ”Interrupts” optimization. In

this instance, the contents of the control loop was entirely moved to a separate ISR, and as

such the cycles per iteration was reduced to the minimum value which can be measured by

this test. This results in a utilization of zero percent.
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Figure 5.38: The measured cycles per iteration for each applicable optimization option for
Alternate Example Program 3.

Figure 5.39: The measured utilization for each applicable optimization option for Alternate
Example Program 3.
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Figures 5.38 and 5.39 show expected results for the ”Counter/Timer” optimization, hav-

ing reduced the cycles per iteration and utilization of Alternate Example Program 3 by

about four orders of magnitude over the unoptimized implementation (both with and with-

out ”TSOoE” enabled). The ”Arithmetic Substitution” optimization had no significant im-

pact on utilization in this case, indicating any difference in utilization is outside of the range

of precision provided by this test.

Extensibility

Figure 5.40: The measured extensibility (based on the number of instructions executed per
program segment) for each applicable optimization option for Alternate Example Program
1.

Figure 5.40 shows a significant reduction in the total number of instructions executed

for the ”Counter/Timer” optimization (both with and without ”TSOoE” enabled) as com-

pared to the unoptimized implementation of Alternate Example Program 1. Similar to the

earlier example programs, the Initialization and Control Loop segments increase as a result

of the optimization, but eliminate the Delay Function segment, thus reducing the overall
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instructions executed by the control loop.

Figure 5.41: The measured extensibility (based on the number of instructions executed per
program segment) for each applicable optimization option for Alternate Example Program
2.

Figure 5.41 shows an overall increase in the number of instructions executed by the ”In-

terrupts” optimization as applied to Alternate Example Program 2. Even though the overall

instructions increases (due to the overhead added by configuring hardware interrupts on the

pin being checked) it reduces the size of the Control Loop segment from approximately 23

instructions to zero. This is due to the entire contents of the control loop being moved to

a separate ISR (which is shown by the External ISR segment). In return, it becomes more

straightforward to add functionality to the control loop, as there is no concern of interfering

with the check to the external pin as it can be controlled directly by the interrupt handler.
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Figure 5.42: The measured extensibility (based on the number of instructions executed per
program segment) for each applicable optimization option for Alternate Example Program
3.

Figure 5.42 shows the impact of each applicable optimization option onAlternate Exam-

ple Program 3 as it relates to altering the size of each of its program segments. The ”Coun-

ter/Timer” optimization (with and without ”TSOoE”) show similar results to all previous

example programs, having greatly reduced the overall number of instructions executed by

the program. The ”Arithmetic Substitution” optimization shows no difference from the un-

optimized program, as this testing only approximates the number of instructions generated

by the source code and does not account for different arithmetic operations.
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Code Size

Figure 5.43: The measured code size for each applicable optimization option for Alternate
Example Program 1.

Figure 5.43 demonstrates the results of applicable optimizations to Alternate Exam-

ple Program 1 in terms of code size. The ”Counter/Timer” optimization with and without

”TSOoE” enabled shows the expected results, shrinking the final code size by about half.

This again is likely a result of not including the delay function library in the compiled

firmware.
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Figure 5.44: The measured code size for each applicable optimization option for Alternate
Example Program 2.

Figure 5.44 shows similar results to previous programs with the ”Interrupts” optimiza-

tion applied, increasing the final code size of Alternate Example Program 2 by seven percent

over the unoptimized implementation. This is consistent with other examples of this opti-

mization being applied, and is due to the overhead added to configure the interrupt handler.
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Figure 5.45: The measured code size for each applicable optimization option for Alternate
Example Program 3.

Figure 5.45 shows a marginal decrease in the final code size of Alternate Example Pro-

gram 3 for the ”Counter/Timer” optimization both with and without ”TSOoE” enabled. The

”Arithmetic Substitution” optimization also reduces the final code size of the program, but

by a negligible amount. The small relative difference in code size of the optimized imple-

mentations of Alternate Example Program 3 is partially a result of the significantly larger

initial size of the program as compared to previous example programs. It must also be

considered that the program had to be modified slightly to apply the ”Arithmetic Substitu-

tion” optimization, which may have an impact on the final code size other than that of the

transformation applied by the optimization.
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Cyclomatic Complexity

Figure 5.46: The measured cyclomatic complexity for each applicable optimization option
for Alternate Example Program 1.

Figure 5.46 shows an increase in cyclomatic complexity when the ”Counter/Timer” opti-

mization is applied to Alternate Example Program 1, and a further increase when ”TSOoE”

is enabled. This is again a result of the ”Counter/Timer” adding additional logic to the pro-

gram to utilize the counter/timer peripheral, thus increasing the number of paths through

the program.
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Figure 5.47: The measured cyclomatic complexity for each applicable optimization option
for Alternate Example Program 2.

Figure 5.47 shows a decrease in the final cyclomatic complexity of Alternate Example

Program 2when the ”Interrupts” optimization is applied. This may be a result of eliminating

the contents of the control loop, and since the added ISR executes asynchronously from the

main code is not counted as a path through the program.
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Figure 5.48: The measured cyclomatic complexity for each applicable optimization option
for Alternate Example Program 3.

Figure 5.48 shows a similar increase to cyclomatic complexity when the ”Counter/-

Timer” optimization is applied to Alternate Example Program 3, and a further increase

when the ”TSOoE” option is enabled. The ”Arithmetic Substitution” optimization had no

impact on the cyclomatic complexity of this program, which is due to this optimization not

influencing the number of paths through the program.

Additional High-Level Tests

An additional nine externally sourced programs were tested at a high level to better

determine whether the optimization options provided by the Embedded C Source Optimizer

are general enough to apply to a wide range of use cases. This testing was performed by

importing each program into the Embedded C Source Optimizer, selecting and applying all

optimization options, and exporting the resulting code. The optimized iterations of each

program were then evaluated in terms of code size and cyclomatic complexity to better
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correlate the results with the previous example programs.

Of these nine programs, seven had at least one optimization option successfully applied.

The two programs which did not have any optimization applied were not altered by the

optimizations in any way. All nine of the programs still compiled and were functionally

equivalent after being passed through the Embedded C Source Optimizer.

Figure 5.49: Resulting code size for the original and optimized variants (by selecting and
applying all optimization options), showing the difference between both implementations.

Figure 5.49 shows the code size of the additional alternate example programs both be-

fore and after having any optimizations applied. The seven programs which had at least one

optimization applied are shown as Alt. Example 4 - 10. In every instance, the optimizations

which were applied reduced the final code size of the program.
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Figure 5.50: Relative percent difference in code size between the unoptimized and opti-
mized variants of each of the additional tested programs.

Figure 5.50 shows the relative difference in code size between the original and optimized

versions of Alternate Examples 4 - 10. The differences in code size are relatively consistent,

producing a reduction in code size of between 41% and 62%, with one outlier case having

only reduced the final size by 19%.
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Figure 5.51: Resulting cyclomatic complexity for the original and optimized variants (by
selecting and applying all optimization options), showing the difference between both im-
plementations.

Figure 5.51 shows the cyclomatic complexity for the unoptimized and optimized version

of alternate example programs 4 - 10. The cyclomatic complexity increased in each case,

which is a result of the ”Counter/Timer” optimization being applicable to each of these

cases. The results of previously tested programs show the ”Counter/Timer” optimization

consistently increasing the cyclomatic complexity of a program due to the additional logic

and conditional statements it adds. The differences in cyclomatic complexity between the

unoptimized and optimized implementations vary substantially, as the more delay functions

which the target program contains, the more conditional statements will be added to control

counter/limit instances for each task.
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5.3 Experimental Results

The resultingmeasurements presented in Section 5.2 demonstratemostly positive changes

to the tested embedded programs. While each optimization option has varying levels of ap-

plicability to programs and can have both positive and negative effects on the resulting code,

there is evidence to support that these optimizations have a positive overall impact. With

one of the main goals of the Embedded C Source Optimizer being to improve embedded

code in a variety of ways, the measurements presented in this chapter more or less satisfy

this with little downside. Being a voluntary option to apply optimizations by the end-user

means that they retain the choice to accept any potential downsides for each optimization

option. Furthermore, while not tested directly, applying combinations of optimizations may

yield overall better results, producing code which may have the best attributes of each op-

timization.

Figure 5.52 shows the applicability of each optimization option provided by the Embed-

ded C Source Optimizer to each of the fifteen tested programs based on the evaluation pre-

viously provided Section 5.2. The twelve alternate example programs (which are sourced

from various online forums, tutorials, and repositories) show similar levels of applicability

to the purposefully designed solutions in terms of how each optimization option was ap-

plied. Of all fifteen programs, thirteen had at least one optimization applied. Furthermore,

there was only a single case (Alternate Example Program 3) where the final result of run-

ning the program through the Embedded C Source Optimizer resulted in a non functional

program. The ”Arithmetic Substitution” optimization does not take into account the data

type of the values being used in an arithmetic operation, and as such has the capability to

render a statement nonfunctional if floating point values are used. Since the ATmega168

does not have a hardware Floating Point Unit (FPU) [6], it is not necessarily expected that

this problem will be common.
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As can be seen in Figure 5.52, there were two cases in which none of the optimization

options could be applied to the target program. These include Alternate Example Program

11 and 12 (which can be seen in Figures B.20 and B.21 respectively). The output from

the Embedded C Source Optimizer when attempting to apply all optimizations to these

programs is shown in Figures 5.53 and 5.54. The utility indicates to the user how and

why any selected optimization options that are not conducive to the program could not be

applied.

Builtin Arithmetic Counter/Timer Counter+TSOoE Interrupts PWM PWM+IDC PWM+PF At Least One
Example Program 1 No No Yes Yes Yes No No No Yes
Example Program 2 No No Yes Yes Yes No No No Yes
Example Program 3 Yes No Yes Yes Yes Yes Yes Yes Yes
Alt. Example Program 1 No No Yes Yes No No No No Yes
Alt. Example Program 2 No No No No Yes No No No Yes
Alt. Example Program 3 No Partially Yes Yes No No No No Yes
Alt. Example Program 4 No No Yes Yes No No No No Yes
Alt. Example Program 5 No No Yes Yes No No No No Yes
Alt. Example Program 6 No No Yes Yes No No No No Yes
Alt. Example Program 7 No No Yes Yes No No No No Yes
Alt. Example Program 8 No No Yes Yes No No No No Yes
Alt. Example Program 9 No No Yes Yes No No No No Yes
Alt. Example Program 10 No No Yes Yes No No No No Yes
Alt. Example Program 11 No No No No No No No No No
Alt. Example Program 12 No No No No No No No No No

Figure 5.52: The results of applying each optimization option to each of the fifteen tested
programs. Thirteen of the fifteen programs had at least one optimization applied (shown in
the right-most column).
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Figure 5.53: The output generated when optimized alternate example program 11, show-
ing the selected optimization options indicating (through log output) the reasons which the
optimization could not be applied to the target program.

Figure 5.54: The output generated when optimized alternate example program 12, show-
ing the selected optimization options indicating (through log output) the reasons which the
optimization could not be applied to the target program.

It should be noted that each optimization option targets a different use case, and therefore

has varying levels of usefulness. For instance, the ”Counter/Timer” optimization intends

to target a wider range of use cases, but in doing so may not always provide the most

optimal results as compared to other options. In the case of Example Program 3 (which was

discussed in detail in Subsection 5.2.3) the ”PWM” optimization option was more effective

than the ”Counter/Timer” optimization in nearly every metric that was tested. That being

said, the ”PWM” optimization targets a more specific use case, and was not applicable

to Example Program 1 or 2, whereas the ”Counter/Timer” optimization was successfully
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applied to all three programs. These trade offs are intentional, as they each fulfill a different

purpose and attempt to convey a different concept to the end-user. It is therefore up to the

user to determine which optimization are most applicable to their program.
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Chapter 6

CONCLUSION

A summary of the the research topic and how it is addressed is provided in Section 6.1

and the research questions (previously introduced in Section 3.2) will be answered in Sec-

tion 6.2. Furthermore, the outlook of the Embedded C Source Optimizer will be addressed

in Section 6.3, taking into consideration external constraints on the development of the Em-

bedded C Source Optimizer and what potential it may have given additional development

time.
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6.1 Summary

The proposed Embedded C Source Optimizer is intended to act both as an educational

tool in teaching embedded design principles to novice embedded software developers, as

well as a more general utility which can improve a variety of aspects associated with em-

bedded code. Provided the differences in considerations between developing traditional and

embedded software, having access to such a tool may be beneficial to novice embedded soft-

ware developers. As demonstrated by the results provided in Chapter 5, the Embedded C

Source Optimizer is capable of improving many aspects of embedded code, as well as con-

veying how each improvement was made through documentation included in the generated

code and log output of the utility.
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6.2 Answering Research Questions

1. How can embedded code be automatically altered/modified by a utility at the source

code level in order to improve its resulting size, efficiency, and performance, while

also preserving the originally-intended functionality?

One of the primary ways in which software can be automatically transformed

to improve its size, performance, and efficiency (in terms of utilization) is through

the removal of blocking functions which would otherwise reduce the throughput and

increase the latency of a program. The results provided in Section 5.2 show mul-

tiple cases where removing blocking calls (specifically the blocking delay function

calls included in most of the example programs) significantly reduces the average

latency, utilization, and resulting code size while maintaining the same functionality

as the original program. Another way which embedded programs can be improved

is through the utilization of included hardware peripherals. The ”Counter/Timer,”

”Interrupts,” and ”PWM” optimization options provided by the Embedded C Source

Optimizer apply transformations to software which utilize each respective peripheral

they target. For the sake of example, programs where the ”Interrupts” optimization

could be applied (shown previously in Section 5.2) show a significant decrease in

average latency without affecting the functionality of the program. Furthermore, the

”Counter/Timer” and ”PWM” optimizations both target the counter/timer peripheral,

which is ultimately how the blocking delay function calls can be eliminated from the

program.
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2. How can existing software be mapped to fixed-function hardware in order to improve

embedded programs?

Structures in existing software may be mapped/transformed to utilize hardware

peripherals through matching source code constructs (e.g. conditional statements and

function calls) and substituting them for functionally-equivalent code which maps to

a given peripheral. In the case of the ”Counter/Timer” optimization, this is accom-

plished by searching for calls to blocking software delay functions within the control

loop of a program, and from there the delay value passed to that function can be ex-

tracted and mapped to configure a series of counter/limit instances which ultimately

control the execution of the code surrounding those delay function calls. These block-

ing delay function calls inflate the utilization and decrease the throughput of a given

program, and removing them generally provides an uplift in this regard (shown pre-

viously in Section 5.2). An extension of utilizing the counter/timer peripheral is im-

plemented by the ”PWM” optimization, where only cases in which an external pin

is toggled with delays placed in between will be mapped to a PWM channel. This

optimization provides a performance uplift through the same method as the ”Coun-

ter/Timer” optimization as it also removes calls to blocking software delay functions.

The ”Interrupts” optimization targets conditional statements which check the state of

an external pin; since every pin on the ATmega168 can be configured to trigger in-

terrupts on a state change, then by configuring and mapping the existing code to only

be executed on a state change, the final functionality may be preserved. By moving

the conditional statement to an ISR and relying on the interrupt handler to control

the execution of the program, the overhead of performing the check in software is re-

moved, both increasing throughput and decreasing latency. The improvements made

by each optimization option were demonstrated previously in Section 5.2.
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The various conditions which must be met to apply optimizations are made to

be quite specific, such that the final functionality of the program may be maintained

with a high level of confidence. In the case of the ”direct replacement” optimiza-

tions (mentioned previously in Subsection 4.2.2), code can be mapped more sim-

ply by checking for specific cases of register assignments and arithmetic operations.

For instance, the ”Built-in Function Substitution” optimization is applied only when

SREG is being assigned directly, and only when the state of the ”Global Interrupt En-

able” bit is being toggled. Furthermore, the ”Arithmetic Substitution” optimization

matches cases where multiplication and division are used in a specific way, where

functionally equivalent code can be inserted. Both the ”Built-in Function Substitu-

tion” and ”Arithmetic Substitution” optimizations attempt to improve performance

through generating fewer instructions, which in turn decreases code size and may

increase the throughput of the target program (refer to Chapter 5 for details).
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3. How could automatically applied source-level optimizations aid a user’s ability to

comprehend and extend upon the resulting program, as well as be conveyed in a way

which illustrates how the optimizations work?

As previously demonstrated in Section 4.3, the Embedded C Source Optimizer

supports multiple methods of conveying how each optimization works, any consider-

ations which should be made when using a given optimization, and comments in the

generated output which indicate what actions any added code performs. Furthermore,

the Embedded C Source Optimizer log output provides additional suggestions to the

user for operations which a given optimization option does not directly target. All

of these attributes may improve the end-user’s ability to work with and understand

the optimizations provided by the utility. It should be noted the extent to which these

attributes aid the end-user’s understanding were not directly evaluated.
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6.3 Outlook

The Embedded C Source Optimizer, while considered feature complete for the current

iteration, is intended to have the capacity for expansion and further iteration thanks to its

modular architecture and use of well-documented design patterns (which were discussed

previously in Subsection 4.1.3). Some high-level improvements which could be made in-

clude: new optimization options, new features, wider hardware support, more granular

source code analysis, and UI improvements.

Assuming additional development time, some of the highest priority additions/changes

which would be made include:

• Updating the syntax handling for imported code to enforce that the format of the

original code is preserved, as well as ensuring that code formatted in a variety of

ways may be properly parsed.

• Updating existing optimization options to target a wider range of use cases.

– The ”Counter/Timer” optimization requires delay functions to occur within the

control loop of a program and have immediate values for arguments. Ideally it

would work when delay function calls are nested in other functions/constructs,

and when the delay argument is a non-immediate value.

– The ”Interrupts” optimization ideally should be able to recognize a wider range

of cases when checking for an external pin change; more specifically: when

user-defined macros are used which map to registers/pins, identifying different

formats for bit masks which target the checked pin, and checking for target

conditional statements outside of the control loop of the program.

– The ”Arithmetic Substitution” and ”Built-in Function Substitution” optimiza-

tions could be expanded to include additional targets (more built-in functions
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and additional arithmetic operations) which would further broaden the use-case

for each optimization, as well as potentially making each more effective.

• Widening hardware support for more MCU families and architectures in order to

broaden the set of potential use cases.

• Adding new optimization options which target different peripherals to increase the

likelihood that at least one optimization is applicable to the majority of embedded C

programs.

• Adding support for importing multiple C source and header files so larger projects

may be optimized.

• Including additional automated testing (besides code size) to better convey the changes

made by each optimization option, as well as potentially selecting the optimal set of

optimization options for a given program based on said testing.

Being an open source project, anyone is able to use, modify, and/or distribute the source

code of the Embedded C Source Optimizer. This decision was made to facilitate the goal

of providing an all-encompassing tool to novice embedded software developers to learn

about and experiment with embedded code, and to improve existing implementations of

embedded programs with minimal forethought or prerequisite knowledge.
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EMBEDDED C SOURCE OPTIMIZER CODE
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The source code to the Embedded C Source Optimizer is hosted on GitHub
(https://github.com/tblisonb/source-optimizer), and uses the open-sourceGNUGeneral Pub-
lic License v3.0 (GPLv3) [26].
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1 /**
2 * Program toggles an LED and also waits for a button press which
3 * increments a counter.
4 */
5
6 #define F_CPU 8000000
7
8 #include <avr/io.h>
9 #include <util/delay.h>
10
11 /**
12 * Initialize data direction registers and enable global interrupts
13 */
14 void init() {
15 // setup LED and Button pins as output and input respectively
16 DDRD |= 0xFF; // set all pins on bank D to output (for counter)
17 DDRB |= 0xFF; // set all pins on bank B to output (for LED blink)
18 DDRC &= ~(1 << PC6); // set PB7 as an input (for button)
19 PORTC |= (1 << PC6); // enable pull-up resistor on input pin
20 }
21
22 /**
23 * Entry point
24 */
25 int main() {
26 init();
27 // main loop
28 while(1) {
29 PORTB ^= (1 << PB0); // toggle LED pin
30 _delay_ms(1000); // 1 second delay between blinks
31 // check if button pin is low (pressed)
32 if (!(PINC & (1 << PC6))) {
33 PORTD++; // increment counter
34 }
35 }
36 return 0;
37 }

Figure B.1: Program 1 - A simple program which toggles an LED while simultaneously
checking for a button press on an input pin which increments a counter (where a pin bank
is used as the counter so it can be visualized).
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1 /**
2 * Program keeps track of two separate counters; one of which sets
3 * a unique control signal on output bank D, and another counts the
4 * number of button presses.
5 */
6
7 #include <avr/io.h>
8 #include <util/delay.h>
9
10 void init() {
11 // setup LED and Button pins as output and input respectively
12 DDRD |= 0xFF; // set all pins on bank D to output (for counter)
13 DDRB |= 0xFF; // set all pins on bank B to output (for LED blink)
14 DDRC &= ~(1 << PC6); // set PB7 as an input (for button)
15 PORTC |= (1 << PC6); // enable pull-up resistor on input pin
16 }
17
18 int main() {
19 init();
20 uint8_t n = 1;
21 // main loop
22 while(1) {
23 _delay_ms(1000); // 1 second delay between blinks
24 // check if button pin is low (pressed)
25 if (!(PINC & (1 << PC6))) {
26 PORTB++; // increment counter
27 }
28 PORTD = n;
29 n = n << 1;
30 if (n == 0) {
31 n = 1;
32 }
33 }
34 return 0;
35 }

Figure B.2: Program 2 - A program which modifies the state of two different bin banks,
one of which increments on a button press, and the other left-shifts the state of the register
every 1 second.
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1 /**
2 * Program sets software PWM output for 60% duty cycle on PB1 and
3 * on button press calculates an iteration of the fibonacci sequence
4 * starting at 1.
5 */
6
7 #include <avr/io.h>
8 #include <util/delay.h>
9
10 uint8_t n = 0, m = 1, o;
11
12 /**
13 * Initialize data direction registers and enable global interrupts
14 */
15 void init() {
16 // setup LED and Button pins as output and input respectively
17 DDRD |= 0xFF; // set all pins on bank D to output (for counter)
18 DDRB |= 0xFF; // set all pins on bank B to output (for LED blink)
19 DDRB &= ~(1 << PB7); // set PB7 as an input (for button)
20 PORTB |= (1 << PB7); // enable pull-up resistor on input pin
21 SREG = 0x80; // enable global interrupts
22 }
23
24 /**
25 * Entry point
26 */
27 int main() {
28 init();
29 // main loop
30 while(1) {
31 // set PWM output for a 60% duty cycle with a frequency of 100 Hz
32 PORTB ^= (1 << PB1); // toggle LED pin
33 _delay_ms(6);
34 PORTB ^= (1 << PB1); // toggle LED pin
35 _delay_ms(4);
36 // check for button press
37 if (!(PINB & (1 << PB5))) {
38 o = n + m;
39 n = m;
40 m = o;
41 PORTD = o;
42 }
43 }
44 return 0;
45 }

Figure B.3: Program 3 - A program which outputs a software-driven PWM signal with a
60%duty cycle and frequency of 100Hz on a single pin, while also calculating and outputing
a binary representation of the fibonacci sequence on a pin bank set to output.
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1 /**
2 * Definitions for adjusting parameters related to the measured utilization.
3 *
4 * Details:
5 * iterationCount keeps track of the number of iterations of the main
6 * control loop while timer instance 2 is counting. Timer instance 2 is
7 * configured to trigger an interrupt on overflow , incrementing
8 * overflowCount , and will output the contents of iteration counter over
9 * USART if the max number of overflows defined has been reached.
10 *
11 * Usage:
12 * The MAX_OVERFLOW_COUNT macro should be set according to how long
13 * execution is expected to take in the main control loop relative to the
14 * timer prescaler. The PRESCALER_DIVISOR macro can also be changed to affect
15 * the frequency which the timer ISR is called. The serial output shows the
16 * number of clock cycles passed over the duration and the iteration count,
17 * where the average period of an iteration is simply
18 * [(cycleCount/iterationCount)/F_CPU].
19 */
20
21 #ifndef UTILIZATION_H
22 #define UTILIZATION_H
23
24 #include <stdint.h>
25
26 #define MAX_OVERFLOW_COUNT 8
27 #define PRESCALER_DIVISOR 1 // Values: 1, 8, 32, 64, 128, 256, 1024
28
29 volatile uint8_t iterationCount;
30 volatile uint8_t overflowCount;
31
32 void util_init();
33
34 #endif

Figure B.4: Header file included to add utilization measurement output to a given program.
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1 #include "utilization.h"
2 #include <avr/io.h>
3 #include "USART.h"
4
5 #define PD PRESCALER_DIVISOR
6 #define PRESCALER_VALUE (PD == 1 ? 1 : PD == 8 ? 2 : PD == 32 ? 3 : PD == 64 ? 4 : PD == 128 ? 5 : PD == 256 ? 6 : PD == 1024 ? 7 : 0)
7
8 void util_init() {
9 iterationCount = 0;
10 overflowCount = 0;
11 __builtin_avr_sei();
12 initUSART();
13 // enable timer instance 2
14 TCCR2A = 0x00; // set normal mode operation
15 TCCR2B = PRESCALER_VALUE; // set prescaler of clk/PRESCALER_DIVISOR
16 TIMSK2 = 0x01; // set overflow interrupt flag
17 TIFR2 = 0x01; // enable overflow interrupt
18 TCNT2 = 0x00; // initialize timer to 0
19 }
20
21 void __vector_9(void) __attribute__ ((signal, used, externally_visible));
22 void __vector_9(void) { // Timer interrupt vector which will be called by the timer hardware on overflow
23 overflowCount++;
24 if (overflowCount >= MAX_OVERFLOW_COUNT) {
25 printString("Clock cycles passed: ");
26 uint32_t cycles = PRESCALER_DIVISOR * 256UL * ((uint32_t) overflowCount);
27 // print number of clock cycles as a 4 digit hex value
28 printHexByte((uint8_t) (cycles >> 24));
29 printHexByte((uint8_t) (cycles >> 16));
30 printHexByte((uint8_t) (cycles >> 8));
31 printHexByte((uint8_t) cycles);
32 // print carriage return + line feed
33 printString("\r\n");
34 printString("Control loop iterations: ");
35 printHexByte(iterationCount);
36 // print carriage return + line feed
37 printString("\r\n\r\n");
38 overflowCount = 0;
39 iterationCount = 0;
40 }
41 TIFR2 = 0x01; // clear overflow flag
42 TCNT2 = 0x00; // reset timer to 0
43 }

Figure B.5: Source file which sets up a timer instance and adds an ISR for tracking the
number of clock cycles passed and providing serial output [48] including cycle count and
the number of iterations passed (stored in ’iterationCount’).

1 # inc lude ” u t i l i z a t i o n . h”
2
3 /**
4 * Con t r o l program f o r measur ing u t i l i z a t i o n .
5 * /
6 i n t main ( ) {
7 u t i l _ i n i t ( ) ;
8 / / main loop
9 whi le ( 1 ) {
10 i t e r a t i o n C o u n t ++;
11 }
12 re turn 0 ;
13 }

Figure B.6: Control program used as a baseline for measuring latency using the library in
Figure B.4 and B.5.
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1 #define F_CPU 1000000
2
3 #include <avr/io.h>
4 #include <util/delay.h>
5
6 void init() {
7 DDRD |= (1 << PD1); // set PD1 as output to indicate response
8 DDRB |= 0xFF; // set all pins on bank B to output (for LED blink)
9 DDRC &= ~(1 << PC1); // set as an input (for button press)
10 PORTC |= (1 << PC1); // enable pull-up resistor on input pin
11 }
12
13 int main() {
14 init();
15 // main loop
16 while(1) {
17 PORTB ^= (1 << PB0); // toggle LED pin
18 _delay_ms(50); // delay to make LED blinks visible
19 // check if button pin is low (pressed)
20 if (!(PINC & (1 << PC1))) {
21 // toggle output pin indicating response
22 PORTD |= (1 << PD1);
23 PORTD &= ~(1 << PD1);
24 }
25 }
26 return 0;
27 }

Figure B.7: A modified version of Example Program 1 which supports measuring latency
according to the testing described in Section 5.1.1.
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1 #define F_CPU 1000000
2
3 #include <avr/io.h>
4 #include <util/delay.h>
5
6 void init() {
7 // setup LED and Button pins as output and input respectively
8 DDRD |= (1 << PD1); // set pin as output for response to button
9 DDRB |= 0xFF; // set all pins on bank B to output (for counter)
10 DDRC &= ~(1 << PC1); // set PB7 as an input (for button)
11 PORTC |= (1 << PC1); // enable pull-up resistor on input pin
12 }
13
14 int main() {
15 init();
16 uint8_t n = 1;
17 // main loop
18 while(1) {
19 PORTB = n;
20 n = n << 1;
21 if (n == 0) {
22 n = 1;
23 }
24 _delay_ms(25); // delay for LED counter
25 // check if button pin is low (pressed)
26 if (!(PINC & (1 << PC1))) {
27 // toggle output pin indicating response
28 PORTD |= (1 << PD1);
29 PORTD &= ~(1 << PD1);
30 }
31 }
32 return 0;
33 }

Figure B.8: A modified version of Example Program 2 which supports measuring latency
according to the testing described in Section 5.1.1.
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1 #define F_CPU 1000000
2
3 #include <avr/io.h>
4 #include <util/delay.h>
5
6 uint8_t n = 0, m = 1, o;
7
8 void init() {
9 // setup LED and Button pins as output and input respectively
10 DDRD |= (1 << PD1); // set pin as output for response
11 DDRD |= (1 << PD6); // set pin as output for PWM signal
12 DDRB |= 0xFF; // set all pins on bank B to output
13 DDRC &= ~(1 << PC1); // set pin as input for button press
14 PORTC |= (1 << PC1); // enable pull-up resistor on input pin
15 SREG = 0x80; // enable global interrupts
16 }
17
18 int main() {
19 init();
20 // main loop
21 while(1) {
22 // set PWM output for a 60% duty cycle with a frequency of 100 Hz
23 PORTD ^= (1 << PD6); // toggle LED pin
24 _delay_ms(6);
25 PORTD ^= (1 << PD6); // toggle LED pin
26 _delay_ms(4);
27 // check for button press
28 if (!(PINC & (1 << PC1))) {
29 // calculate next fibonacci number and display on PORTB
30 o = n + m;
31 n = m;
32 m = o;
33 PORTB = o;
34 // toggle output pin indicating response
35 PORTD |= (1 << PD1);
36 PORTD &= ~(1 << PD1);
37 }
38 }
39 return 0;
40 }

Figure B.9: A modified version of Example Program 3 which supports measuring latency
according to the testing described in Section 5.1.1.
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1 /* REF: https://github.com/hexagon5un/AVR-Programming/blob/
2 master/Chapter02_Programming -AVRs/blinkLED/blinkLED.c */
3
4 /* Blinker Demo */
5
6 // ------- Preamble -------- //
7 #include <avr/io.h> /* Defines pins, ports, etc */
8 #include <util/delay.h> /* Functions to waste time */
9
10
11 int main(void) {
12
13 // -------- Inits --------- //
14 DDRB |= 0b00000001; /* Data Direction Register B:
15 writing a one to the bit
16 enables output. */
17
18 // ------ Event loop ------ //
19 while (1) {
20
21 PORTB = 0b00000001; /* Turn on first LED bit/pin in PORTB */
22 _delay_ms(1000); /* wait */
23
24 PORTB = 0b00000000; /* Turn off all B pins, including LED */
25 _delay_ms(1000); /* wait */
26
27 } /* End event loop */
28 return 0; /* This line is never reached */
29 }

Figure B.10: Alternate example program 1 [48].
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1 /* REF: https://stackoverflow.com/questions/26325687/
2 avr-c-programming -two-functions -on-button-press-with-delay */
3
4 #include <avr/io.h> // added
5 #include <util/delay.h> // added
6
7 int i;
8 void led(void) {
9 for (i = 0; i < 10; i++) {
10 PORTB |= (1 << PB0); //LED on
11 _delay_ms(250); //wait 250ms
12
13 PORTB &= ~(1 << PB0); //LED off
14 _delay_ms(250); //wait 250ms
15 }
16 }
17
18 int main() { // added
19 while (1) {
20 if (!(PINB & (1<<PB7)) ) {
21 PORTB |= (1 << PB1); // Piezo on
22 led();
23 }
24 else {
25 PORTB &= ~(1 << PB1); // Piezo off
26 }
27 }
28 } // added

Figure B.11: Alternate example program 2 [10].
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1 /* REF: https://github.com/hexagon5un/AVR-Programming/blob/master/
2 Chapter12_Analog -to-Digital-Conversion -II/voltmeter/voltmeter.c */
3
4 // ------- Preamble -------- //
5 #include <avr/io.h>
6 #include <util/delay.h>
7 #include <avr/interrupt.h>
8 #include <avr/sleep.h> /* for ADC sleep mode */
9 #include <math.h> /* for round() and floor() */
10
11 #include "pinDefines.h"
12 #include "USART.h"
13
14 #define REF_VCC 5.053
15 /* measured division by voltage divider */
16 #define VOLTAGE_DIV_FACTOR 3.114
17
18
19 // -------- Functions --------- //
20 void initADC(void) {
21 ADMUX |= (0b00001111 & PC5); /* set mux to ADC5 */
22 ADMUX |= (1 << REFS0); /* reference voltage on AVCC */
23 ADCSRA |= (1 << ADPS1) | (1 << ADPS2); /* ADC clock prescaler /64 */
24 ADCSRA |= (1 << ADEN); /* enable ADC */
25 }
26
27 void setupADCSleepmode(void) {
28 set_sleep_mode(SLEEP_MODE_ADC); /* defined in avr/sleep.h */
29 ADCSRA |= (1 << ADIE); /* enable ADC interrupt */
30 sei(); /* enable global interrupts */
31 }
32
33 EMPTY_INTERRUPT(ADC_vect);
34
35 uint16_t oversample16x(void) {
36 uint16_t oversampledValue = 0;
37 uint8_t i;
38 for (i = 0; i < 16; i++) {
39 sleep_mode(); /* chip to sleep, takes ADC sample */
40 oversampledValue += ADC; /* add them up 16x */
41 }
42 return (oversampledValue >> 2); /* divide back down by four */
43 }
44
45 void printFloat(float number) {
46 number = round(number * 100) / 100; /* round off to 2 decimal places */
47 transmitByte('0' + number / 10); /* tens place */
48 transmitByte('0' + number - 10 * floor(number / 10)); /* ones */
49 transmitByte('.');
50 transmitByte('0' + (number * 10) - floor(number) * 10); /* tenths */
51 /* hundredths place */
52 transmitByte('0' + (number * 100) - floor(number * 10) * 10);
53 printString("\r\n");
54 }
55
56 int main(void) {
57
58 float voltage;
59
60 initUSART();
61 printString("\r\nDigital Voltmeter\r\n\r\n");
62 initADC();
63 setupADCSleepmode();
64
65 while (1) {
66
67 voltage = oversample16x() * VOLTAGE_DIV_FACTOR * REF_VCC / 4096;
68 printFloat(voltage);
69 _delay_ms(500);
70
71 } /* End event loop */
72 return 0; /* This line is never reached */
73 }

Figure B.12: Alternate example program 3 [48].
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1 // Ref: https://www.micahcarrick.com/getting-started.html
2
3 #define F_CPU 1000000UL
4
5 #include <avr/io.h>
6 #include <util/delay.h>
7
8 int main (void) {
9 DDRB |= _BV(DDB0);
10
11 while(1) {
12 PORTB ^= _BV(PB0);
13 _delay_ms(500);
14 }
15 }

Figure B.13: Alternate example program 4 [12].

1 /* REF: https://electronics.stackexchange.com/questions/136482/
2 atmega8-led-blinking -project-not-working-properly?rq=1 */
3
4 #include <avr/io.h>
5 #include <util/delay.h>
6
7 int main(void) {
8 DDRD = 0b10000000;
9 DDRD = 0b01000000;
10
11 while(1) {
12 PORTD = 0b10000000;
13 _delay_ms(100);
14 PORTD = 0b00000000;
15 PORTD = 0b01000000;
16 _delay_ms(100);
17 PORTD = 0b00000000;
18 }
19 return 1;
20 }

Figure B.14: Alternate example program 5 [5].
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1 /* REF: https://github.com/hexagon5un/AVR-Programming/blob/master/Chapter04
2 _Bit-Twiddling/cylonEyes_quasiRandomToggle/quasiRandomToggle.c */
3
4 /* Cylon Eyes */
5
6 // ------- Preamble -------- //
7 #include <avr/io.h> /* Defines pins, ports, etc */
8 #include <util/delay.h> /* Functions to waste time */
9
10 #define DELAYTIME 45 /* milliseconds */
11 #define LED_PORT PORTB
12 #define LED_PIN PINB
13 #define LED_DDR DDRB
14
15 int main(void) {
16
17 // -------- Inits --------- //
18 uint16_t x = 0x1234;
19 uint8_t y;
20 LED_DDR = 0xff; /* Data Direction Register B:
21 all set up for output */
22
23 // ------ Event loop ------ //
24 while (1) {
25
26 x = 2053 * x + 13849; /* "random" number generator */
27 y = (x >> 8) & 0b00000111; /* pick three bits from high byte */
28 LED_PORT ^= (1 << y); /* toggle one bit */
29 _delay_ms(100);
30
31 } /* End event loop */
32 return 0;
33 }

Figure B.15: Alternate example program 6 [48].
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1 /* REF: https://github.com/hexagon5un/AVR-Programming/blob/master/Chapter15
2 _Advanced -Motors/hBridgeWorkout/hBridgeWorkout.c */
3
4 // Simple demo of an h-bridge
5
6 // ------- Preamble -------- //
7 #include <avr/io.h>
8 #include <util/delay.h>
9 #include <avr/interrupt.h>
10 #include "pinDefines.h"
11
12 static inline void setBridgeState(uint8_t bridgeA, uint8_t bridgeB) {
13 /* Utility function that lights LEDs when it energizes a bridge side */
14 if (bridgeA) {
15 PORTD |= (1 << PD6);
16 LED_PORT |= (1 << LED0);
17 }
18 else {
19 PORTD &= ~(1 << PD6);
20 LED_PORT &= ~(1 << LED0);
21 }
22 if (bridgeB) {
23 PORTD |= (1 << PD5);
24 LED_PORT |= (1 << LED1);
25 }
26 else {
27 PORTD &= ~(1 << PD5);
28 LED_PORT &= ~(1 << LED1);
29 }
30 }
31
32
33 int main(void) {
34 // -------- Inits --------- //
35
36 DDRD |= (1 << PD6); /* now hooked up to bridge, input1 */
37 DDRD |= (1 << PD5); /* now hooked up to bridge, input2 */
38 LED_DDR |= (1 << LED0);
39 LED_DDR |= (1 << LED1);
40
41 // ------ Event loop ------ //
42 while (1) {
43
44 setBridgeState(1, 0); /* "forward" */
45 _delay_ms(2000);
46
47 setBridgeState(0, 0); /* both low stops motor */
48 _delay_ms(2000);
49
50 setBridgeState(0, 1); /* "reverse" */
51 _delay_ms(2000);
52
53 setBridgeState(1, 1); /* both high also stops motor */
54 _delay_ms(2000);
55
56 // For extra-quick braking, energize the motor backwards
57 setBridgeState(1, 0);
58 _delay_ms(2000);
59 setBridgeState(0, 1);
60 _delay_ms(75); /* tune this time to match your system */
61 setBridgeState(0, 0);
62 _delay_ms(2000);
63
64 } /* End event loop */
65 return 0;
66 }

Figure B.16: Alternate example program 7 [48].
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1 /* REF: https://github.com/hexagon5un/AVR-Programming/blob/master/Chapter07_
2 Analog-to-Digital-Conversion -I/lightSensor/lightSensor.c */
3
4 // Quick Demo of light sensor
5
6 // ------- Preamble -------- //
7 #include <avr/io.h>
8 #include <util/delay.h>
9 #include "pinDefines.h"
10
11 // -------- Functions --------- //
12 static inline void initADC0(void) {
13 ADMUX |= (1 << REFS0); /* reference voltage on AVCC */
14 ADCSRA |= (1 << ADPS2); /* ADC clock prescaler /16 */
15 ADCSRA |= (1 << ADEN); /* enable ADC */
16 }
17
18 int main(void) {
19
20 // -------- Inits --------- //
21 uint8_t ledValue;
22 uint16_t adcValue;
23 uint8_t i;
24
25 initADC0();
26 LED_DDR = 0xff;
27
28 // ------ Event loop ------ //
29 while (1) {
30
31 ADCSRA |= (1 << ADSC); /* start ADC conversion */
32 loop_until_bit_is_clear(ADCSRA, ADSC); /* wait until done */
33 adcValue = ADC; /* read ADC in */
34 /* Have 10 bits, want 3 (eight LEDs after all) */
35 ledValue = (adcValue >> 7);
36 /* Light up all LEDs up to ledValue */
37 LED_PORT = 0;
38 for (i = 0; i <= ledValue; i++) {
39 LED_PORT |= (1 << i);
40 }
41 _delay_ms(50);
42 } /* End event loop */
43 return 0; /* This line is never reached */
44 }

Figure B.17: Alternate example program 8 [48].
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1 /* REF: https://github.com/hexagon5un/AVR-Programming/blob/master/Chapter17
2 _I2C/i2cThermometer/i2cThermometer.c */
3
4 /* Reads LM75 Thermometer and Prints Value over Serial */
5
6 // ------- Preamble -------- //
7 #include <avr/io.h>
8 #include <util/delay.h>
9 #include <avr/power.h>
10
11 #include "pinDefines.h"
12 #include "USART.h"
13 #include "i2c.h"
14
15 // -------- Defines -------- //
16
17 #define LM75_ADDRESS_W 0b10010000
18 #define LM75_ADDRESS_R 0b10010001
19 #define LM75_TEMP_REGISTER 0b00000000
20 #define LM75_CONFIG_REGISTER 0b00000001
21 #define LM75_THYST_REGISTER 0b00000010
22 #define LM75_TOS_REGISTER 0b00000011
23 // -------- Functions --------- //
24
25 int main(void) {
26
27 uint8_t tempHighByte, tempLowByte;
28
29 // -------- Inits --------- //
30 clock_prescale_set(clock_div_1); /* 8MHz */
31 initUSART();
32 printString("\r\n====  i2c Thermometer  ====\r\n");
33 initI2C();
34
35 // ------ Event loop ------ //
36 while (1) {
37 /* To set register, address LM75 in write mode */
38 i2cStart();
39 i2cSend(LM75_ADDRESS_W);
40 i2cSend(LM75_TEMP_REGISTER);
41 i2cStart(); /* restart, just send start again */
42 /* Setup and send address, with read bit */
43 i2cSend(LM75_ADDRESS_R);
44 /* Now receive two bytes of temperature */
45 tempHighByte = i2cReadAck();
46 tempLowByte = i2cReadNoAck();
47 i2cStop();
48
49 // Print it out nicely over serial for now...
50 printByte(tempHighByte);
51 if (tempLowByte & _BV(7)) {
52 printString(".5\r\n");
53 }
54 else {
55 printString(".0\r\n");
56 }
57
58 /* Once per second */
59 _delay_ms(1000);
60
61 } /* End event loop */
62 return 0; /* This line is never reached */
63 }

Figure B.18: Alternate example program 9 [48].
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1 /* REF: https://stackoverflow.com/questions/42336207/
2 avr-c-8-bit-counter-using-button */
3
4 #include <avr/io.h>
5 #define F_CPU 16000000UL
6 #include <util/delay.h>
7
8 /*
9 Board digital I/O pin to atmega328 registers for LEDS
10 | d2 | d3 | d4 | d5 | d6 | d7 | d8 | d9 |
11 | pd2 | pd3 | pd4 | pd5 | pd6 | pd7 | pb0 | pd1 |
12
13 Input Button
14 | d9 |
15 | pb2 |
16 */
17
18
19 int main(void) {
20
21 uint8_t x = 0;
22
23 DDRD = 0b11111100;
24 PORTD = 0b00000000;
25
26 DDRB = 0b00000011;
27 PORTB = 0b00000100;
28
29 while(1) {
30
31 if((PINB & 0b00000100) == 0) {
32
33 ++x;
34
35 PORTD = x << 2;
36 PORTB = (PORTB & 0b11111100) | ((x >> 6) & 0b00000011);
37 }
38
39 _delay_ms(80);
40 }
41 return 0;
42 }

Figure B.19: Alternate example program 10 [8].
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1 /* REF: https://github.com/hexagon5un/AVR-Programming/blob/master/Chapter04
2 _Bit-Twiddling/showingOffBits/showingOffBits.c */
3
4 /* Showing off some patterns to practice our bit-twiddling */
5
6 // ------- Preamble -------- //
7 #include <avr/io.h>
8 #include <avr/power.h>
9 #include <util/delay.h> /* Functions to waste time */
10
11 #define DELAYTIME 85 /* milliseconds */
12 #define LED_PORT PORTB
13 #define LED_DDR DDRB
14
15 int main(void) {
16
17 uint8_t i;
18 uint8_t repetitions;
19 uint8_t whichLED;
20 uint16_t randomNumber = 0x1234;
21
22 // -------- Inits --------- //
23 LED_DDR = 0xff; /* all LEDs configured for output */
24 // ------ Event loop ------ //
25 while (1) {
26 /* Go Left */
27 for (i = 0; i < 8; i++) {
28 LED_PORT |= (1 << i); /* turn on the i'th pin */
29 _delay_ms(DELAYTIME); /* wait */
30 }
31 for (i = 0; i < 8; i++) {
32 LED_PORT &= ~(1 << i); /* turn off the i'th pin */
33 _delay_ms(DELAYTIME); /* wait */
34 }
35 _delay_ms(5 * DELAYTIME); /* pause */
36
37 /* Go Right */
38 for (i = 7; i < 255; i--) {
39 LED_PORT |= (1 << i); /* turn on the i'th pin */
40 _delay_ms(DELAYTIME); /* wait */
41 }
42 for (i = 7; i < 255; i--) {
43 LED_PORT &= ~(1 << i); /* turn off the i'th pin */
44 _delay_ms(DELAYTIME); /* wait */
45 }
46 _delay_ms(5 * DELAYTIME); /* pause */
47
48 /* Toggle "random" bits for a while */
49 for (repetitions = 0; repetitions < 75; repetitions++) {
50 /* "random" number generator */
51 randomNumber = 2053 * randomNumber + 13849;
52 /* low three bits from high byte */
53 whichLED = (randomNumber >> 8) & 0b00000111;
54 LED_PORT ^= (1 << whichLED); /* toggle our LED */
55 _delay_ms(DELAYTIME);
56 }
57 LED_PORT = 0; /* all LEDs off */
58 _delay_ms(5 * DELAYTIME); /* pause */
59
60 } /* End event loop */
61 return 0; /* This line is never reached */
62 }

Figure B.20: Alternate example program 11 [48].
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1 // Ref: https://kartikmohta.com/tech/avr/tutorial/
2
3 /* port_test4.c
4 * This program checks the 0th pin of port D for input and if it is ON (Logic 1), keeps writing 1 to
5 * 0th pin of port B else if it is OFF (Logic 0), it toggles pin 0 of port B
6 */
7
8 #include <inttypes.h> // short forms for various integer types
9
10 #include <avr/io.h> // Standard include for AVR
11
12 #define F_CPU 16000000UL // Crystal frequency required for delay functions
13
14 #include <util/delay.h> // Delay functions
15
16 #define sbi(x, y) x |= _BV(y) // set bit
17 #define cbi(x, y) x &= ~(_BV(y)) // clear bit
18 #define tbi(x, y) x ^= _BV(y) // toggle bit
19 #define is_high(x, y) ((x & _BV(y)) == _BV(y)) // check if the input pin is high
20 #define is_low(x, y) ((x & _BV(y)) == 0) // check if the input pin is low
21
22 int main() {
23 DDRB = 0xff; // PORTB as OUTPUT
24 PORTB = 0x00;
25 DDRD = 0x00; // PORTD as INPUT
26 PORTD = 0xff; // Enable Pull-up on the input port
27
28 while(1) { // Infinite loop
29 uint8_t i;
30
31 for(i = 0; i < 2; i++) {
32 if(i == 0) {
33 sbi(PORTB, PB0);
34 }
35 else if(i == 1) {
36 if(is_low(PIND, PD0)) {
37 cbi(PORTB, PB0);
38 }
39 else {
40 sbi(PORTB, PB0);
41 }
42 }
43 _delay_ms(100);
44 }
45 }
46 return 0;
47 }

Figure B.21: Alternate example program 12 [9].
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Table B.1

Results of latency testing, where each optimization option was applied independently across
three example programs. Measurements for: mean, minimum, maximum, and standard
deviation are provided (in microseconds) for each optimization option, with a sample size
of one thousand. Optimization options which could not be applied to the example programs
were not tested, and therefore not included in this table.

Optimization Mean Min Max Std Dev.

Example 1 None 24847.8 365.0 48480.0 14437.7
Counter/Timer 29.1 17.0 99.0 7.0
Counter+TSOoE 24770.1 294.0 48290.0 14390.9
Interrupts 56.5 12.0 65.0 2.0

Example 2 None 12073.1 65.0 24170.0 7183.4
Counter/Timer 29.0 14.0 81.0 6.3
Counter+TSOoE 11940.1 28.0 25252.0 7169.7
Interrupts 56.6 24.0 63.0 1.5

Example 3 None 5477.7 402.0 14748.0 2831.7
Counter/Timer 69.2 21.0 197.0 30.9
Counter+TSOoE 4757.4 108.0 10902.0 2755.0
Interrupts 77.8 50.0 86.0 1.2
PWM 45.0 38.0 102.0 3.8
PWM+IDC 44.6 29.0 56.0 3.3
Built-in 5465.6 328.0 20395.0 2854.2
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