

Co-simulation of Cyber-Physical Systems

Using DEVS and Functional Mockup Units

by

Xuanli Lin

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved December 2020 by the
Graduate Supervisory Committee:

Hessam S. Sarjoughian, Chair

Giulia Pedrielli
Guoliang Xue

ARIZONA STATE UNIVERSITY

May 2021

i

ABSTRACT

Cyber-Physical Systems (CPS) are becoming increasingly prevalent around the

world. Co-simulation of cyber and physical components has shown to be an effective way

towards the development of time-sensitive and reliable CPS. Correctly combining

continuous models with discrete models for co-simulation can often be challenging. In

this thesis, the Functional Markup Interface (FMI) is used to develop an adapter called

DEVS-FMI for the DEVS-Suite simulator. The adapter, implemented using JavaFMI 2.0,

allows any Functional Mock-Up Unit (FMU) to be co-simulated with a Discrete Event

System Specification (DEVS) model. This approach enables taking advantage of the

parallel DEVS formalism to model cyber systems and using Modelica to model physical

systems. An FMU serves as a slave simulator while the DEVS-Suite serves as a master

simulator. The Four-Variable model is used as a guide to define the requirements for the

inputs and outputs of actuator and sensor devices used in cyber and physical systems. The

input and output data as non-functional abstractions of the sensor and actuator devices.

Select cyber and physical parts of an electric scooter are chosen, modeled, simulated, and

evaluated using the integrated OpenModelica and the DEVS-Suite simulators. Closely

related research is briefly examined and expanding this work with support for implicit

state-changes for continuous models and distributed co-simulation is noted.

ii

ACKNOWLEDGEMENTS

I would like to thank Dr. Hessam Sarjoughian for his mentorship throughout this

research project. I also would like to thank my family for their emotional and financial

support along the way. Finally, I would like to give thanks to my graduate committee

members, Dr. Giulia Pedrielli and Dr. Guoliang Xue for serving on the thesis committee.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER

1. INTRODUCTION .. 1

2. CONTRIBUTIONS .. 3

3. BACKGROUND .. 4

3.1. Discrete Event Systems .. 4

3.1.1. Atomic Models.. 4

3.1.2. Coupled Models .. 6

3.1.3. Timing ... 7

3.1.4. DEVS-Suite... 7

3.2. Functional Mock-up Interface & Modelica .. 8

3.2.1. Basic Ideas .. 8

3.2.2. Functional Mockup Unit ... 9

3.2.3. Tool Integration .. 10

3.2.4. Modelica and OpenModelica Simulator ... 11

3.2.5. Timing ... 13

3.3. Cyber-Physical Systems.. 13

iv

CHAPTER Page

3.3.1. Challenges with CPS Design and Analysis .. 14

3.3.2. Benefits of Co-simulation ... 15

3.3.3. Considerations for Co-simulation ... 15

3.4. Four-Variable Model .. 16

3.4.1. Analysis of Four-Variable Model. .. 18

3.4.2. Adaption of Four-Variable Model to Generic CPS 18

4. RELATED WORKS ... 21

4.1. Co-simulation of Hardware and Software Using FMI 21

4.2. Hybrid Co-simulation of FMUs in MECSYCO ... 22

4.3. Other Related Research .. 23

5. APPROACH ... 26

5.1. Co-simulation between DEVS and FMUs ... 26

5.1.1. DEVS-Suite and DEVS Model ... 27

5.1.2. DEVS-FMI Interface .. 27

5.1.3. FMUs .. 29

5.2. Timing Consideration ... 29

5.2.1. Synchronization Protocol ... 29

5.2.2. Discussion on Some Possible Exceptions ... 32

5.3. Electric Scooter Example ... 33

v

CHAPTER Page

6. DESIGN .. 35

6.1. DEVS Electric Scooter Model ... 36

6.1.1. DEVS Atomic Model ... 36

6.1.2. Electric Scooter Model - Structure ... 37

6.1.3. Electric Scooter Model - Logic ... 42

6.2. Modelica Electric Scooter Model ... 43

6.3. DEVS-FMI Adapter ... 45

6.3.1. Structure and Functionality of the DEVS-FMI Adapter 45

6.3.2. Electric Scooter Module in the DEVS-FMI Adapter 48

6.3.3. Four-Variable Model Input and Output .. 51

6.3.4. The Big Picture .. 51

7. EXPERIMENTS ... 53

7.1. Physical Components of the Electric Scooter .. 53

7.1.1. Induced Armature Voltage .. 54

7.1.2. Speed of the Motor.. 55

7.1.3. Battery Level ... 56

7.2. Continuity and Accuracy of FMU Simulations.. 57

7.3. Impact of Step Size .. 60

7.4. Interaction between DEVS Models and FMUs .. 62

vi

CHAPTER Page

7.4.1. Experiment 1: A Typical User Input Profile ... 62

7.4.2. Experiment 2: A Profile Showing Possible State Transitions 68

7.5. Impact of the DEVS-FMI Adapter (I/O Devices) .. 71

7.5.1. Performance .. 72

7.5.2. Data Accuracy of Single and Double Precision on DEVS-FMI 74

7.6. Co-simulation Performance.. 75

7.6.1. DEVS-Suite (Cyber Part) .. 76

7.6.2. FMUs (Physical Part) .. 77

7.6.3. Observation ... 79

8. CONCLUSION AND FUTURE WORK ... 80

REFERENCES ... 83

APPENDIX Page

I BASIC ATTRIBUTES OF AN ELECTRIC SCOOTER .. 88

II SETUP OF THE ELECTRIC SCOOTER MODEL IN OPENMODELICA 95

III SIMULATION PLATFORM ... 98

IV RESULT SET 1 – COMPARISON OF SIMULATION ACCURACY ON THREE

 SIMULATION SETUPS .. 100

V RESULT SET 2 – COMPARISON OF SIMULATION ACCURACY ON

 JAVAFMI WITH SIX DIFFERENT STEP SIZES ... 102

vii

APPENDIX Page

VI RESULT SET 3 – INPUTS, OUTPUTS, AND PHASE CHANGES OF THE

 DEVS ELECTRIC SCOOTER MODEL ON A GIVEN INPUT PROFILE 104

VII RESULT SET 4 – EXECUTION TIME OF THREE SIMULATION SETUPS ... 106

viii

LIST OF TABLES

Table Page

1. Select Environment Variables for the Scooter .. 89

2. Input and Output Parameters of the Speed Sensor .. 91

3. Input and Output Parameters of the Battery Sensors .. 91

4. User-Initiated Input Variables... 92

5. Variables in the Software Controller .. 93

6. Input and Output Parameters of the Battery ... 93

7. Input and Output Parameters of the Brake .. 94

8. Select Parameters of dcpmData .. 96

9. Select Parameters for Pulse Signal ... 96

10. Select Parameters in batteryLevel ... 97

11. Select Parameters of loadInertia and loadTorquesetup ... 97

12. Results of dcpm.wMechanical on Three Simulation Setups 101

13. Accuracy of Simulation Vs Execution Time with Different Step Sizes 103

14. Phase Change, Inputs and Outputs of Controller Model over Time 105

15. Execution Time of Various Simulation Setups ... 107

ix

LIST OF FIGURES

Figure Page

1. Possible Uses of FMI in Automotive Industry, Showing Its Versatile Uses across Many

 Disparate Needs and Requirements ... 8

2. Folder Structure Inside a FMU Generated by Modelica ... 9

3. A Linear Capacitor Model in Modelica Showing Some of the Language Features 11

4. Code Generation Process in Modelica Language .. 12

5. The Original Four-Variable Model Proposed by Parnas and Madey 17

6. Four-Variable Model is Used as a Guide Towards More Rigorous and Uniform Design

 for CPS ... 19

7. High-Level Overview of the DEVS-FMI Design for DEVS-Suite Simulator 35

8. Class Diagram of Atomic Model and devs Abstract Class in DEVS-Suite 36

9. Class Diagram for the Electric Scooter Component (Package) 38

10. Electric Scooter Visual Representation in DEV-Suite, with Couplings between Them

 Shown ... 41

11. Advanced State Machine Diagram for Speed Controller ... 43

12. Part of the Electrical Scooter Modeled in Modelica Showing Various Components 44

13. Class Diagram of the DEVS-FMI Adapter along with Related Classes 46

14. Class Diagram of Electric Scooter DEVS-FMI Module ... 48

15. Simplified Class Diagram for DEVS-FMI Interface along with Electric Scooter

 Models and Related Classes.. 52

16. Effective Armature Voltage of the Scooter at 0%, 25%, 50%, 75%, and 100% Duty

 Cycle ... 55

x

Figure Page

17. Speed of the Motor at 0%, 25%, 50%, 75%, and 100% Duty Cycle 56

18. Usage of Battery (Remaining Battery Level) at 0%, 25%, 50%, 75%, and 100% Duty

 Cycle ... 57

19. Results of dcpm.wMechanical on Three Simulation Setups 60

20. Simulation Accuracy of the Electric Scooter Model Vs Execution Time on Different

 Step Sizes .. 61

21. DEVS-Suite Interface While Executing the Electric Scooter Co-simulation Model . 65

22. Part of the Output Trajectory and Phase Changes in the First Experiment 66

23. Trajectory of Inputs and Phase Transitions in the Second Experiment 70

24. Trajectory of Outputs and Phase Transitions in the Second Experiment 71

25. Execution Time of the Three Simulation Scenarios ... 73

26. Error of Different Simulation Lengths in DEVS-FMI .. 75

27. Simulation Time of the DEVS Scooter Model with Six Different Real Time Factors

... 77

28. Average Execution Time on Different Simulation Lengths 78

1

1. Introduction

CPS are transforming the world and revolutionizing people’s lives. CPS can be

small things such as Internet of Things (IoT) devices, or big things as Smart Cities and

Smart Grids. The interleaving of cyber components and physical components can

introduce significant challenges in specifying, designing, prototyping, testing, and

validating the system. These challenges necessitate the co-simulation of physical and

cyber parts of the system [1].

The FMI [2] is a standard that allows exchange and co-simulation of simulation

models produced by different tools that supports the FMI standard. Models produced

according to the FMI standard are called Functional Mock-Up Units (FMU). In essence, a

FMU is a self-contained package that includes standardized APIs, their underlying

implementations, and some metadata of the APIs. FMUs are typically used for modeling

continuous components where underlying relationships can be expressed in mathematical

equations. Each FMU is a fundamental unit that can be combined into a complex system

through partitioning and hierarchy. The FMI standard is widely adopted in various

industries and disciplines, and OpenModelica [3], an open-source Modelica development

environment, provides full support on FMU export and import.

DEVS formalism [4] lays the foundation of modeling and analyzing event-driven

dynamical systems. The fundamental building block in a DEVS model is an atomic

model, where a system’s time-based behavior can be captured. The atomic model is

defined in terms of input and output events, possible states, time, dynamics due to

2

internal and external events, and output event generation. A coupled model is made up of

hierarchically atomic and coupled models with information on how the models are

coupled together. DEVS-Suite [5] is a DEVS simulator environment that supports

development, execution, experimentation, and visualization of parallel DEVS coupled

models.

The goal of DEVS-FMI is to extend upon the existing DEVS-Suite framework to

provide interoperability with FMUs, hence achieving co-simulation for CPS. Widl and

Müller proposed a generic tool coupling scheme [6] that can be used to enable FMI co-

simulation on tools that do not natively support FMI standard (in this case, DEVS-FMI).

In essence, an FMI adapter that expands upon DEVS-Suite and supports FMI standard is

created to be a middle compatibility layer. To achieve this end, JavaFMI library [7] is

used to streamline interactions with FMUs in Java language. Furthermore, the adapter

makes use of the Four-Variable model [8] that guides defining inputs and outputs

between cyber and physical parts. The rest of this thesis focuses on the inner workings of

this adapter and demonstrate its capabilities using a small portion of an electric scooter

example.

3

2. Contributions

Prior research has explored several different approaches to co-simulate cyber and

physical components in CPS, and many were proved to be useful in constructing a

methodological wrapper for CPS co-simulation. In particular, [9] proposed an approach

that extends the DEVS-Suite simulator to support co-simulation using generated FMUs.

However, this approach was developed for FMI 1.0 standard and used for co-simulating a

circular buffer for Network-on-Chip and an untimed script mimicking a firmware for

choosing routing paths.

This thesis presents an improved solution based on the architecture shown in [9],

that would lend to prototype FMI 2.0 wrapper interface for co-simulating Parallel DEVS

models with FMU. A round-robin synchronization protocol is used to extend the DEVS

abstract simulator protocol for co-simulation of the cyber and physical models. The co-

simulation approach is implemented as an extension to the DEVS-Suite simulator. Using

the Four-Variable model, the inputs and outputs of a simplified electric scooter is

identified. The model of the electric scooter is specified and developed using

OpenModelica and DEVS-Suite simulators and evaluated to demonstrate the feasibility

and effectiveness of the solution proposed in this thesis.

4

3. Background

There are a number of specifications and frameworks that are used in the

development of the DEVS-FMI, including DEVS, FMI, CPS, and Four-Variable model

paradigm. The following sections provide a brief overview of these concepts.

3.1. Discrete Event Systems

DEVS formalism provides a modular approach to modeling and analyzing

systems. It is used for modeling discrete-event, discrete-time, and continuous time

models [4] [10]. DEVS is inherently a timed event system, where inputs (events) and

internal timer shape the reactions from the system, ultimately deciding the output. DEVS

is also hierarchical – a complete system can be divided into smaller subsystems, which in

turn be composed of individual components. Likewise, a top-level DEVS model (coupled

model) can be made up of several sub-models (coupled models), which consists of

combination of basic models (atomic models). The combination can be arbitrary to suit

the system in question. Parallel DEVS is an extension to DEVS that allows for more

flexibility when two events (e.g., an external and an internal event) are scheduled to be

taking place at the same time [11]. In DEVS-Suite, parallel DEVS is used, and its basic

constructs are explained below.

3.1.1. Atomic Models

Formally, an atomic model in parallel DEVS is defined as an 8-tuple [11]

𝑀𝑀 =< 𝑋𝑋,𝑌𝑌, 𝑆𝑆, 𝛿𝛿𝑒𝑒𝑒𝑒𝑒𝑒, 𝛿𝛿𝑖𝑖𝑖𝑖𝑒𝑒, δcon,𝜆𝜆, 𝑡𝑡𝑡𝑡 >

5

where,

• 𝑋𝑋 is the set of input events (port-value pairs),

• 𝑌𝑌 is the set of output events (port-value pairs),

• 𝑆𝑆 is the set of sequential states,

• 𝛿𝛿𝑒𝑒𝑒𝑒𝑒𝑒:𝑄𝑄 × 𝑋𝑋𝑏𝑏 → 𝑆𝑆 is the external state transition function, where 𝑄𝑄

corresponds to the current state and time elapsed since last transition,

• 𝛿𝛿𝑖𝑖𝑖𝑖𝑒𝑒: 𝑆𝑆 → 𝑆𝑆 is the internal state transition function,

• 𝛿𝛿𝑐𝑐𝑐𝑐𝑖𝑖:𝑄𝑄 × 𝑋𝑋𝑏𝑏 → 𝑆𝑆 is the confluent function,

• 𝜆𝜆: 𝑆𝑆 → 𝑌𝑌𝑏𝑏 is the output function,

• 𝑡𝑡𝑡𝑡: 𝑆𝑆 → 𝑅𝑅0+ ∪ ∞ is the time advance function (nonnegative real values

and positive infinity are accepted).

A DEVS model is in a state 𝑠𝑠 ∈ 𝑆𝑆 in any given time. It will stay in the state till

𝑡𝑡𝑡𝑡(𝑠𝑠) (that is, the lifetime of the state 𝑠𝑠) expires, unless perturbed by one or more

external events. Once the state expires, it will produce an output prescribed by 𝜆𝜆(𝑠𝑠) and

update the state as specified in 𝛿𝛿𝑖𝑖𝑖𝑖𝑒𝑒(𝑠𝑠). External events can trigger external transitions

defined by 𝛿𝛿𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠, 𝑒𝑒,𝑋𝑋𝑏𝑏), where 𝑠𝑠 is the current state, 𝑒𝑒 is time elapsed since last

transition, and 𝑋𝑋𝑏𝑏 is a bag of input events. In parallel DEVS, instead of single input and

output events, the notion of bags is introduced, which is essentially a set of input or

output events. This way, multiple events can be processed simultaneously. When 𝑡𝑡𝑡𝑡(𝑠𝑠) =

0, state transition is instantaneous and when 𝑡𝑡𝑡𝑡(𝑠𝑠) = ∞, the model will stay in the state 𝑠𝑠

indefinitely, unless perturbed by one or more external events. Another alteration of

6

parallel DEVS is the confluent function, which determines the new state of the model

when internal and external functions occur at the same time.

Input port(s) are the sole channels of interaction for any given model from an

outside perspective, likewise output port(s) are sole channels of response from the model.

This ensures a uniform control and access to the model, while keeping the model well

encapsulated, thus improving the reusability of a model.

3.1.2. Coupled Models

Multiple atomic models and/or coupled sub-models can be coupled together to

form coupled models. It is defined as a 7-tuple [11]

𝐶𝐶𝑀𝑀 =< 𝑋𝑋,𝑌𝑌,𝐷𝐷,𝑀𝑀𝑑𝑑 ,𝐸𝐸𝐸𝐸𝐶𝐶,𝐸𝐸𝐸𝐸𝐶𝐶, 𝐸𝐸𝐶𝐶 >

where,

• 𝑋𝑋 is the set of input events (port-value pairs),

• 𝑌𝑌 is the set of output events (port-value pairs),

• 𝐷𝐷 is the set of components names for each 𝑑𝑑 ∈ 𝐷𝐷,

• 𝑀𝑀𝑑𝑑:𝑑𝑑 ∈ 𝐷𝐷 is a constituent model (atomic or coupled),

• 𝐸𝐸𝐸𝐸𝐶𝐶 is the set of external input couplings, where an input port(s) of the

coupled model is linked with input port(s) of its constituent model(s),

• 𝐸𝐸𝐸𝐸𝐶𝐶 is the set of external output couplings, where an output port(s) of the

coupled model is linked with output port(s) of its constituent model(s),

• 𝐸𝐸𝐶𝐶 is the set of internal couplings.

7

3.1.3. Timing

It is worth noting that the DEVS formalism is not tied to real time (i.e., wall

clock) – even the concept of timing is prevalent in DEVS constructs, it is used to capture

the ordering of the events with infinite accuracy (i.e., logical clock). The speed of the

simulation can vary depending on many factors, such as hardware computing platform as

well as scale and complexity of the model [12]. DEVS simulator would not account for

differences in simulation speed or when input arrives.

3.1.4. DEVS-Suite

The complexity associated with DEVS modeling and experimentation lead to the

creation of the DEVS-Suite simulator [5] [13], a DEVS modeling, simulation, and

tracking environment. Through DEVS-Suite, one can understand a rather complex DEVS

model in an intuitive graphical presentation. It enables observing the model’s

input/output trajectories, state changes over time, and interacting with the model at

runtime.

Currently, DEVS-Suite natively supports parallel DEVS and cellular automata

models. Despite earlier works on enabling co-simulation of FMUs based on FMI 1.0

standard [9], the solution is not compatible with FMI 2.0. The earlier development

includes a design for co-simulation of DEVS with FMU compliant with FMI 1.0. This

approach was demonstrated for Register Transfer Level (RTL) DEVS and a Matlab

FMU. This thesis provides an improved design and uses FMI 2.0 with an OpenModelica

FMU.

8

3.2. Functional Mock-up Interface & Modelica

A common problem that troubled many model designers and developers is that

tools and languages from different vendors are not necessarily compatible with each

other. Creating compatibility layers between every single one of them is unrealistic –

there can be numerous combinations of these tools, and these layers must be kept up to

date at all time. To solve this challenge for simulation tools, FMI [2] was created to

provide a standard for model exchange and co-simulation between different vendors.

Figure 1 shows a use-case of FMI in automotive industry.

Figure 1. Possible uses of FMI in automotive industry, showing its versatile uses across many disparate needs and
requirements [14]

3.2.1. Basic Ideas

There are two types of FMI standard as of now: FMI for model exchange, where

the model is mainly intended to be exchanged (exported/imported) between different

tools; FMI for Co-Simulation, where models from different tools are used to be simulated

together under the master and slave simulators concept. For model exchange, the

exported module contains only the model itself, and the hosting tool would provide the

solver needed to simulate the model. For co-simulation, the module would contain both

9

the model and the solver, so a co-simulating environment can readily interact with the

model without needing to have knowledge of the underlying model.

3.2.2. Functional Mockup Unit

A FMU is simply a component that implements the FMI standard interface. It is a

zipped file that contains metadata, implementation of the interface, and additional data

and functionality. Figure 2 shows folder structure of a FMU generated by Modelica, note

that platform-specific (Windows) binaries were generated, along with the source code

and XML metadata.

Figure 2. Folder structure inside a FMU generated by Modelica

The metadata defined in XML format includes important information regarding

the interface definition, including variable types, variables and their attributes,

dependency information, and many more. The interface is implemented in C, though

users do not necessarily need to know its details, as all functionalities can be accessed

with the interface.

10

The interface contains the following methods

• Instantiation, initialization, termination, and destruction of FMU.

o fmiComponent fmiInstantiate (fmiString instanceName, ...)

• Getter and setter functions for each supported type (real, integer, boolean,

and string).

o fmiStatus fmiSetReal (fmiComponent c, const fmiValueReference vr [],

size_t nvr, const fmiReal value[])

Some parameters, such as fmiValueReference, can be obtained from the XML

descriptor.

3.2.3. Tool Integration

Edmund Widl and Wolfgang Müller proposed a generic architecture for

integrating simulation tools that do not provide co-simulation and FMI support natively

[6]. This is approach is adopted in the FMI++ library. This architecture consists of two

parts: the frontend and the backend components.

• Frontend interfaces with FMI master algorithm. It handles initialization

and mapping of variables of the FMUs it interfaces with.

• Backend interfaces with slave (external) applications via an adapter.

o The adapter is a part of the model loaded in external simulator. It

facilitates data exchange between external tool and frontend.

• Frontend and backend are connected via a dedicated data manager.

o The data manager contains separate interfaces for master and slave.

11

o Contains functions to enable internal communication between two

ends and handles synchronization.

3.2.4. Modelica and OpenModelica Simulator

Modelica is an object-oriented, multi-domain modeling language that is designed

for modeling complex systems. A Modelica class contains mainly equations that are

evaluated throughout the simulation. It may also include algorithmic components,

instances of other classes, parameters, initial conditions, among others. It provides

support for four built-in types: real, integer, boolean, and string. Other user-defined types

may be derived based on the built-ins, specifying its name, unit, range of value, and

more. One can also describe physical connections between two physical ports.

model Capacitor "Ideal linear electrical capacitor"

 extends Interfaces.OnePort(v(start=0));

 parameter SI.Capacitance C(start=1) "Capacitance";

equation

 i = C*der(v);

 annotation (...);

end Capacitor;

Figure 3. A linear capacitor model in Modelica showing some of the language features

Figure 3 above shows a simple linear capacitor model in Modelica, included as

part of the standard library. Here, class Capacitor (designated as a model, a special type of

class) extends OnePort interface, and introduces a custom typed parameter Capacitance. In

12

addition, there is a new equation 𝑖𝑖 = 𝐶𝐶 ∗ 𝑑𝑑𝑒𝑒𝑑𝑑(𝑣𝑣), which simply indicates that current

value is obtained by multiplying the capacitance and derivative of the voltage. Note that

the definition for voltage and current, as well as some basic formulae, is in OnePort

interface.

It is apparent that Modelica models is expressive and hierarchical. However, it is

not meant to be a general-purpose programming language such as Java or Python. As

mentioned above, models are generally defined as ordinary differential equations (ODE),

partial differential equations (PDE), and differential algebraic equations (DAE) that are

evaluated continuously in miniscule time steps. As shown in Figure 4, there is no

“compilation” in the general sense, but the model is parsed, flattened, and undergone

several optimizations and decompositions, before finally translated into C code and

packaged into a FMU [15]. Algorithmic components, such as if-else statements and

loops, can be used. However, they are more often used to generate equations with varying

parameters than to control the execution logic.

Figure 4. Code generation process in Modelica language [15]

13

OpenModelica [3] is a visual environment for modeling, simulating, and

analyzing Modelica models. It contains a Modelica compiler, a connection editor

(graphical development environment for models), and various interfaces targeting other

programming languages. It also includes the Modelica library, which contains thousands

of readymade models for various engineering fields, such as electrical, magnetic,

mechanical, fluid, and thermal systems. Complex models can be either viewed

graphically to get a top-level view of the system and relationships between their

components, or textually understand the model in a fundamental way. OpenModelica also

provides built-in plotter that can show the simulation results in graphs.

3.2.5. Timing

Like DEVS, timing is also crucial to Modelica models. Simulation is based on

continual evaluation of the equations in the model, however the Modelica models are not

necessarily real-time. Simulation is tied to logical clock that are defined in the simulator.

Even though the model is defined in terms of continual time, it is extremely expensive to

have real continuous simulation (i.e., update equations with infinitesimal time interval), a

compromise is to set the time interval between updates (step size) a reasonable number so

that the result would still be acceptably accurate, while still computationally feasible.

3.3. Cyber-Physical Systems

A CPS can be thought of a collection of interrelated computing devices and their

environment interacting via sensors and actuators [16]. CPS make use of their presence in

both cyber and physical worlds to help achieve otherwise difficult tasks by using either

14

cyber or physical means alone. The world today makes extensive use of CPS – in

households, hospitals, roads, electric grids, and much more. The rise of CPS and its

extensive use in many critical areas benefits from robust and streamlined modeling and

simulation approaches.

3.3.1. Challenges with CPS Design and Analysis

A major challenge arises from the nature of CPS. Since cyber and physical parts

of CPS are so closely tied to each other, they must be acting coherently, correctly, and

consistently with each other [17]. Since the physical parts is usually expressed in some

continuous equations and cyber part is described in discrete models, it is difficult to

combine them to form realistic simulations for CPS. In addition, the input can arrive

spontaneously, and the underlying components can exhibit nondeterministic behaviors.

Therefore, traditional mathematical and analytical models can be too expensive to be

used [18].

As CPS are generally complex, designing and testing becomes increasingly

difficult for them. For many large-scale CPS deployments, including smart grid and smart

city, testing on smaller scales can be still difficult yet provides limited insight. Many

devices, such as electrocardiograph (ECG) machines and electrical grid controllers, have

very stringent timing requirements and complex dynamics, and it can be laborious to

ensure that the product adheres the specification during the design phase.

15

3.3.2. Benefits of Co-simulation

In recent years, co-simulation has yielded considerable success in tackling

challenges associated with CPS design and analysis [1] [19]. Simply put, co-simulation

puts models from cyber and physical worlds side by side and simulate them together as

one. With co-simulation, it is possible to construct large and sophisticated dynamic

systems with a modular and hierarchical approach. It also simplifies observing and

controlling the interaction between the cyber and the physical parts, and the system’s

reaction to internal and external stimuli. This facilitates the understanding of the system

in different conditions. Finally, simulation can enable model reuse and rapid prototyping,

improving the design and development process.

3.3.3. Considerations for Co-simulation

It is crucial to ensure that the master simulator is constructed correctly to account

for requirements of co-simulation.

• Time scale. Typically, physical models are continuous and related to real

time. Changes can take place in a very short time span, such as in

milliseconds. In contrast, cyber models are often discrete, and updates can

be irregular or comparably slower compared to physical counterparts.

Therefore, the simulator needs to coordinate between models with two

distinct time resolutions and establish correct causality relationships

between them.

16

• Input/output format. Continuous models expect continual input and would

produce continual output over time. Discrete systems are often driven by

internal and external stimuli (events) that cause some state transitions and

produce outputs [4]. The simulator should be able to provide a reliable

messaging protocol between the two systems to ensure reliable exchange

of information.

• Cyber and discrete components can have different interfaces and operating

environments. Even though some standards such as FMI can alleviate this

problem, many tools do not support FMI yet. Therefore, it may be

necessary to establish some intermediate components to ensure the

compatibility of the two types of the system.

3.4. Four-Variable Model

Four-Variable model [20] (expanded in [8]) is a systematic approach to specify

requirements between hardware and software parts. It can be used to better define the

boundary between cyber and physical components, and to establish a consistent

messaging protocol between the two sides. As shown in Figure 5, there are four variables

of interest in this approach.

• MON, the monitored variables. They are parts of the environment

(physical components) that the system (cyber components) monitors and

may reacts to,

17

• CON, the controlled variables. They are parts of the environment that the

system can influence and control,

• INPUT, the input variables. They are where system accepts input data

from the monitored variables, and

• OUTPUT, the output variables. They are where system produces the

output to change the controlled variables.

Figure 5. The original Four-Variable model proposed by Parnas and Madey [8]

In addition, four relationships are given to portray the way they interact.

• NAT specifies the natural constraints enforced by the environment. They

are usually some physical limits that are not possible to overcome,

• REQ is the system requirements that exhibits how controlled variables

changes in response to changes in monitored variable,

• IN specifies how monitored variable are translated into input, and

• OUT specifies how output variables are translated into controlled

variables.

• SOFT variables are simply the resultant software behavior from the above

four relationships.

18

3.4.1. Analysis of Four-Variable Model.

An interesting feature in the model above is the “overlapping” between NAT and

REQ. This can be understood as that the environment has the tendency to behave in a

natural way in the absence of perturbance. With the system in place however, some

aspects of the environment are no longer dictated by natural forces alone – the system can

also add its influence on the controlled variables. Another distinct feature is that all four

variables are connected though some intermediate means. This makes the model more

rigorous with how variables interact with each other while leaving room for adaption in

specific domains. Finally, controlled variables are not allowed to directly interact with

input variables, and similarly monitored variables are not to directly influence the output

variables. This ensures that data in this system undergoes necessary transformations in

the system and it provides maximum separation between the environmental side and the

system side.

3.4.2. Adaption of Four-Variable Model to Generic CPS

The Four-Variable model provides a rich yet generic approach that allows for

adoption in CPS studies. For example, Figure 6 below (adopted from the study in [21])

shows an application of Four-Variable model in a typical CPS.

19

Figure 6. Four-Variable model is used as a guide towards more rigorous and uniform design for CPS [21]

It is worth noting that instead of focusing on the four variables, this mapping puts

an emphasis on the relationships between the variables. This corresponds to a goal of

CPS design and analysis – to better understand and specify the system in question, as

well as the environment it is in. The input and output devices, in the case of CPS, can be

sensors and actuators. As an example, consider an electric scooter that engages the brake

whenever the speed of the scooter exceeds a certain limit, for example 15 mph.

The following sequence of steps can occur:

• The environment (scooter motor) provides some information of interest

(e.g., motor speed in rpm) to the sensor (speed sensor).

• The sensor translates the information into a digital format (speed in mph)

for the software (speed controller).

• The software then decides an appropriate course of action based on the

input received (triggers brake if speed exceeds 15 mph).

20

• The actuator (brake) acts on the command of the software and possibly

change some aspects of the environment (brake slows down the scooter by

applying force on the wheel).

• The cycle repeats as the environment provides updated data to the sensor,

and software decides on next course of action and may or may not use the

actuator.

It is clear that the four variable is well suited for studying CPS. In the following

sections, the problem and the approach will be defined in terms of the Four-Variable

model input and output data to ensure the material can be well understood and follows

good design principles.

21

4. Related Works

Many approaches have been proposed, developed, and used to co-simulate CPS as

combined continuous and discrete time models. These approaches include providing a

middle layer that translates the interaction between two different kinds of models and the

use of existing standards to accommodate co-simulation to create new frameworks. The

following paragraphs examine a selection of representative works on the use of FMI and

FMU in view of an approach for hybrid modeling and specific applications.

4.1. Co-simulation of Hardware and Software Using FMI

Masudul H. Quraishi, Hessam S. Sarjoughian, and Soroosh Gholami proposed an

approach to enable co-simulation capability for the DEVS-Suite simulator [9]. It focuses

on using FMI 1.0 to coordinate parallel DEVS models exemplified for computer

hardware with MATLAB algorithms. The overarching architecture of this approach is

used in this thesis and shown in Figure 7. This approach is demonstrated for modeling

and simulating a DEVS representation of a circular buffer used in Network-on-Chip

(NoC). This computer hardware model is based on the Register Transfer Level (RTL)

along with its supporting modules. The software for choosing routes in the NoC is a

simple two-dimensional algorithm implemented in MATLAB and exported as an FMU.

This model serves as the embedded firmware for computing routing path when requested.

The two parts are then coupled together with the FMI++ interface [22], which is a C++

wrapper for interfacing with FMUs. This approach shows designing embedded systems

22

such as single-cycle, multi-cycle, and pipeline processor using RTL-DEVS [23] and basic

algorithms.

 In the design for the co-simulation of DEVS and FMU, the time allocated for

computing the algorithm is instantaneous. The execution of finding a route is untimed,

though it is synchronized with each execution time step of the hardware. In other words,

each DEVS simulation step can consume logical time, but the FMU for the software does

not. Thus, to extend this approach to CPS, it is necessary for both the cyber and physical

models to consume time. The interface adapter developed in this approach does not use

the FMI functionality where the operations of FMU consume time. The use of FMI++

also presents a layer of complexity to the simulator, due to the use of JNI.

4.2. Hybrid Co-simulation of FMUs in MECSYCO

Benjamin Camus, Virginie Galtier, and Mathieu Caujolle proposed using Multi-

agent Environment for Complex System CO-simulation (MECSYCO) platform supported

with FMI to co-simulate Cyber-Physical Systems [24]. As a DEVS wrapping platform,

MECSYCO supports integrating models defined according to the hybrid DEVS and

Differential Equation System Specification (DEV&DESS) formalism [4]. This platform

includes a forecasting strategy to look for next event, and an algorithm to locate state

changes in FMUs compliant with FMI 2.0. In this approach, multiple DEVS and DESS

FMU models are embedded in DEVS framework and connected through m-agents and

connecting artifacts to enable parallel execution of DEVS models. This integration

strategy allows for interaction between FMU and DEVS models, and individual

23

component can be managed by the DEVS master simulator. This platform also supports

distributed and parallel co-simulation.

While this approach provides a generic solution to co-simulating DEVS and

DESS models, it requires that FMUs to be connected to the co-simulation by several

artifacts that interface with the FMU. These artifacts attempt to discretize the FMU by

translating some state changes in FMU to discrete events. Thus, an event-detection

function must be implemented to determine if state-events have occurred in the FMU, so

that the FMU can be used with DEVS simulators. As the DEVS formalism requires each

model to know when the next event shall occur, and the FMU operates like a black box

on a time-stepped basis, a bisectional search is needed to determine the time of next state-

event. Basically, the algorithm repeatedly simulates and performs single-state rollback on

the FMU with an ever-decreasing interval, until the state-event is located.

4.3. Other Related Research

Thierry Nouidui et al. proposed a co-simulation platform CyDER that provides an

open standard for co-simulating a wide range of power systems [25]. CyDER is

composed of multiple components, including a number of power grid related FMUs that

can be combined to form a power system, and a utility that exports Python functions as

FMUs to facilitate control of the system. It also supports real-time simulators exported as

FMUs. A master simulator responsible for coordinating the simulation is also proposed.

The master simulator solves dependencies between FMU components, provide inputs to

the FMUs, and step them together. The output from each step is collected and can be used

24

for further processing. CyDER can be seen as an extension of existing FMI 1.0 and 2.0

standards that targets specifically electrical systems. Some tools were developed based on

CyDER to support analysis of a power grid. The CyDER platform also does not account

for DEVS formalism, including its messaging protocol and synchronization, making it

not suitable for co-simulation between DEVS models and FMUs.

Virginie Galtier et al. demonstrated a new efficient framework DACCOSIM for

enabling multi-simulation on FMUs based on FMI 2.0 standard [26]. This framework

enables graphical setup of distributed simulation for many FMUs. The framework

contains utilities for interacting with FMUs as well as communication between FMUs.

The framework can run in distributed environments with parallel simulation of FMUs,

which has yielded significant speedup versus traditional monolithic, sequential

simulations. It features a simple event detection system that, when a change in output

(state-event) is detected in the FMU, it will attempt to localize the time when event takes

place by performing FMU rollback and step through the FMU in smaller, user-defined

step sizes, until the event can be located. It is apparent that this approach is suitable for

managing complex systems that are comprised with FMU modules, but it is not suitable

for co-simulation between DEVS and FMUs as time synchronization and message

exchange protocol is not defined for them. Similar to the CyDER framework, the

DACCOSIM is primarily designed for use between multiple FMUs, as both platforms do

not provide sufficient functionalities to correctly execute models with discrete signals.

25

It is worth noting that none of the works mentioned above uses the four-variable

model for architectural requirement specification, which is one of the main features

incorporated in the DEVS-FMI.

26

5. Approach

There are two main issues with integrating DEVS-Suite and FMUs. First, DEVS-

Suite does not interface with FMU natively, thus a solution is needed to enable co-

simulation while making it as generic as possible. Second, time coordination between

DEVS and FMUs is necessary. Thus, a synchronization protocol that ensures correct

input/output exchanges is crucial to the co-simulation. Modeling physical devices for

simulation in DEVS and Modelica can be also a matter of interest. The following

paragraphs explain the approach in this research to tackle these problems.

5.1. Co-simulation between DEVS and FMUs

Though DEVS-Suite is interoperable with some external simulation tools, such as

Simulink, High Level Architecture (HLA), and Simulation as a Service (SimaaS),

modification is needed to enable its co-simulation with FMUs. Instead of rewriting the

simulation engine and potentially introduce issues into the simulator, Widl and Müller’s

generic FMI-compliant tool coupling scheme [6] is adopted. The main ideas of this

coupling are explained above, and the application of this scheme is fairly straightforward.

In DEVS-FMI, the DEVS-Suite simulator is considered the master simulator that handles

coordination and messaging between DEVS models and associated FMUs. A separate

master simulator is not used as it would be unnecessary and only adds to the complexity

of the problem. FMUs are considered slaves as their simulation and scheduling depends

on the DEVS-FMI and ultimately DEVS-Suite.

27

5.1.1. DEVS-Suite and DEVS Model

DEVS-Suite supports modeling and simulating atomic and coupled parallel

DEVS models. The execution logic is handled by atomic simulator and coupled

simulator. Since all models, including single atomic models, will be eventually simulated

via a coupled simulator, it is sufficient to work on only the coupled simulator to enable

co-simulation logic for all DEVS models. The modification however is kept to minimum,

as additional changes can introduce unintended consequences to the simulator, which is

undesired. To ensure maximum compatibility with the existing DEVS-Suite modeling

structure, no change is introduced to the DEVS model constructs. In other words, existing

models as well as future models can still be used on the simulator without modification.

5.1.2. DEVS-FMI Interface

The DEVS-FMI interface is designed to target FMUs that complies with the FMI

version 2.0 using the generic FMI tool coupling design [6]. The updated DEVS-FMI

interface follows DEVS-FMI 1.0 which uses similar FMI tool coupling design. To

achieve this, three capabilities are required:

• API access (preferably in Java) to FMUs that enables basic interaction

with them, such as starting, stopping, performing input, and gathering

output.

• Input and output communication with DEVS-Suite simulator.

• Co-simulation logic and controls according to the FMI standard.

28

The DEVS-FMI interface is used for the input and output devices as specified in

the Four-Variable model. The DEVS-FMI is used to integrate FMUs with the DEVS-

Suite Simulator. For example, it can obtain outputs from the FMUs and convert them to

different data types for use in DEVS-Suite, and vice versa.

There are a number of existing FMI frameworks and libraries that provides

functionality needed for interacting with FMUs. For example, FMI++ (C++) [22],

JavaFMI (Java) [7], FMPy (Python) [27], the original FMI Library (C) [28], and many

more [29] [30] [31]. JavaFMI is chosen for three reasons. 1) It provides a simple and

intuitive API for interacting with FMUs, 2) it has been in development since 2013 and

still under active development (as of November 2020), and 3) it is written in Java, which

means no additional adapters or interfaces are needed to use the library, which improves

performance and reduce likelihood of problems.

The second capability can be realized with some modification to the coupled

simulator. To enable messaging to the DEVS models, only a reference to the current

model is needed, and DEVS-FMI can perform information exchange with the model

reference.

The third capability is left to the user. Currently, specific co-simulation logic has

to be developed for every combination of DEVS and FMU models. A basic

implementation that contains necessary utility functions and a public interface is

developed. This interface provides basic support for different use scenarios. It offers a

29

starting point for developing custom logic needed for co-simulation. The detailed design

of the DEVS-FMI extension will be described in next chapter.

5.1.3. FMUs

A FMU for co-simulation is a self-contained unit that can be treated like a black

box. Inner workings of FMUs are hidden as the functionality of each FMU is exposed

through an interface established by FMI standard. OpenModelica FMUs are taken as

given are used to be co-simulated with co-s with DEVS models.

5.2. Timing Consideration

An inherent requirement for co-simulating DEVS models and FMUs is correct

coordination of time advance in two different simulators. As explained above, DEVS-

simulator may not necessarily use a real-time clock; FMUs for continuous models may

also be executed in logical time. In this thesis, the DEVS-FMI is restricted to support

logical time co-simulation. The continuous time base is used for DEVS and Modelica

models. DEVS models are simulated in discrete time steps while Modelica models are

simulated using continuous time in miniscule discrete time steps. Given the discrete time

step simulation for the FMU’s, DEVS models can have input and output interactions with

FMU’s at discrete time instances.

5.2.1. Synchronization Protocol

The disparity in timing leads to problems in synchronization. If both parts were

real time or discrete, syncing would be relatively simple as timing scheme would be

30

similar. To enable co-simulation between discrete time and continuous time, the

following protocol is established.

1. Initialize the DEVS models.

2. Perform the simulation steps on DEVS models.

a. If there is an FMU associated with a particular DEVS model:

i. Initialize the FMU.

1. If on the first iteration, initialize with predefined

initial values.

2. Otherwise, initialize with states from the previous

iteration (step iii) and output from the DEVS model

(step vii).

ii. Perform simulation on the FMU for some amount of time

(e.g., 0.5 seconds) and some precision (e.g., 0.2

milliseconds).

iii. Obtain the output from the FMU by reading state variables

from it.

iv. Process the data and inject them to appropriate ports on the

DEVS model.

v. The input from FMU model, along with other input from

the user, is used to perform the step in the DEVS model.

Then, the current FMU session is terminated.

31

vi. DEVS produces some output commands to the FMU,

vii. The output commands are transformed into some input

values to the FMU.

b. If there is no FMU associated with the DEVS model, no additional

action is taken. DEVS model is simulated as normal.

In this protocol, the FMU receives input from the DEVS-FMI and executes for a

prescribed time step. At the end of the time period, the DEVS-FMI sends the FMU’s

output to the DEVS-Suite simulator which are input events to designated DEVS models.

States at the end of the previous simulation are carried to the next simulation step in

DEVS. Therefore, this protocol can correspond to the FMU being simulated for one or

more discrete time steps (i.e., the DEVS-FMI only receive the output generated at the end

of the FMU execution step). Consequently, co-simulation accuracy depends on input and

output frequency between DEVS and FMU. Reducing the time period for FMU requires

more execution time for co-simulation to complete. Therefore, less frequent input and

output can result in inaccurate or wrong simulations.

It is also not feasible to run both the DEVS models and the FMUs concurrently

and produce deterministic results for two reasons. 1) The DEVS models are not

guaranteed to produce results within any particular time, therefore running the FMU

while the DEVS model is producing an output can led to unintended results. 2) Some

FMUs, like the ones generated by Modelica, does not respond to inputs after simulation is

32

started. It is therefore impossible to input commands from the DEVS models to Modelica

FMUs in the DEVS FMI approach defined in this thesis.

5.2.2. Discussion on Some Possible Exceptions

In the DEVS-FMI, the correctness of the simulation relies on the assumption that

1) DEVS simulator and FMUs take turns to receive input and produce output and 2)

neither side fails to produce output or receive input at scheduled time instances.

The order of execution is controlled by the DEVS-Suite master simulator and

defined in the relevant co-simulation module. If programmed correctly, a DEVS model

and a FMU will execute alternatively. However, should the DEVS model or the FMU

executes out of order (e.g., the DEVS model executes twice before the FMU), the

simulation is considered out of sync.

• The DEVS model can execute multiple times during one execution cycle

of the FMU. The behavior of the FMU depends solely on the latest input it

receives from the DEVS model. Conversely, the behavior of the DEVS

model may depend on receiving input from FMU between its internal state

changes. In these situations, the co-simulation of the DEVS and Modelica

models is not as accurate as they need to be.

• The FMU can execute multiple steps during one execution step of the

DEVS model. In this scenario, the accuracy of the DEVS model depends

on the FMU’s latest output. Since the FMU is terminated and re-initialized

with every step of the DEVS model, the FMU uses the latest outputs from

33

the DEVS model during its simulation steps. The FMU is a black box to

the DEVS simulator (i.e., intermediary outputs due to internal execution

steps in the FMU are not available to the DEVS simulator).

• The DEVS-FMI can send DEVS model output only at the start of FMU

execution. Some FMUs, such as the ones produced by OpenModelica, do

not react to the input after the simulation has started. Therefore, the output

can be sent only after the FMU has finished its execution. For time-

sensitive applications, it is possible to reduce the simulation time that

FMU takes each step (e.g., 0.2 seconds) so that the output from the DEVS

model can be effective on the FMU sooner.

5.3. Electric Scooter Example

To showcase the capability of DEVS-FMI 2.0, a simple model for select

components of an electric scooter is created. This model is intended to recreate a typical

rental electric scooter that can be found in major cities. The model is not intended to

capture all aspects and properties of a scooter. This model shows the speed of the scooter

motor being controlled by a rider’s desire to go faster, slower, or stop. The detailed

specification of the scooter can be found in APPENDIX I. Only an electric motor, a

battery, and input/output devices, are considered to represent the physical components. A

basic model imitating a rider making simple changes to the motor speed with braking and

a simple model for commanding speed control represent the cyber components.

34

Therefore, the electric scooter model is divided into two parts. It contains a DEVS

coupled model which corresponds to the software controller, and a Modelica model

which corresponds to a physical part of the scooter. In addition, co-simulation logic for

the electric scooter is provided by extending creating an electric scooter module for

DEVS-FMI 2.0.

35

6. Design

A high-level design of the DEVS-FMI interface with its simulators is shown in

Figure 7. This design makes use of the generic FMI-compliant tool coupling scheme

proposed by Widl and Müller to establish a lightweight and reliable co-simulation and

messaging mechanism between DEVS-Suite and external FMUs.

DEVS-Suite is the simulator responsible for simulating discrete event models,

such as the software component of the scooter. DEVS-FMI interface situates inside the

DEVS-Suite and interfaces with the external FMUs via JavaFMI library. Modelica, on

the other hand, generates ScooterMotor FMU that contains select physical component for

co-simulation. In this architecture, DEVS-Suite is the master simulator that manages the

data flow and synchronizes the execution of the DEVS models and FMUs. The following

paragraphs explains the construct of individual components in more detail.

Figure 7. High-level overview of the DEVS-FMI design for DEVS-Suite simulator

36

6.1. DEVS Electric Scooter Model

The electric scooter coupled model is made up of two constituent atomic models:

SpeedController, which controls the speed of the motor using user input and data from the

motor; UserInput, which simulates user interaction with the scooter using some predefined

input sequence. Together, they can simulate an electric scooter system that is controlled

by a rider.

6.1.1. DEVS Atomic Model

To better understand the design of the electric scooter DEVS model, it is

necessary to look at the basic atomic model construct in DEVS-Suite. Figure 8 shows a

class diagram that contains the atomic class and the devs abstract class it inherits from.

Some less relevant methods and attributes are omitted for clarity of the diagram.

Figure 8. Class diagram of atomic model and devs abstract class in DEVS-Suite. Some methods and attributes are
omitted for clarity

37

Three important groups of functions are outlined above.

• The red box contains functions that implements the basic functions of the

parallel DEVS atomic model, such as internal and external transitions.

Collectively they can specify the generic behavior of any model. deltint(),

deltext(), deltcon(), and out() functions are to be expanded by the model to

define its behavior on internal transition, external transition, confluence,

and output functions, respectively.

• The blue box contains functions for defining variable structure models.

• The green box contains methods to add and remove input and output ports

on the model.

6.1.2. Electric Scooter Model - Structure

Electric scooter model extends upon the basic atomic model and its class diagram

is shown in Figure 9. Note the added attributes and states in both models. It is apparent

that the ElectricScooter is a composition of its constituent models, SpeedController and

UserInput. The ScooterConstruct() function is called when the ElectricScooter coupled

model is created, in which the speed controller and user input models are added and

coupled together. Input and output ports are added as well.

38

Figure 9. Class diagram for the electric scooter component (package)

The corresponding coupled model in DEVS-Suite component view is shown in

Figure 10. This visual representation supports animation of state changes in the atomic

models and sending/receiving of messages. <Controller> corresponds to the

SpeedController class and <Input> corresponds to UserInput class. The ports on the models

and their uses are explained below.

• ElectricScooter

o Input ports

 start: accepts any input and will relay the signal to <Input>.

Doing so will start the execution of the scooter.

39

 stop: accepts any input and will relay the signal to <Input>.

Doing so will stop the execution of the scooter.

o Output ports

 brake: sends a brake message produced by <Controller>.

Possible values are True and False.

 power: sends a power message produced by <Controller>.

Possible values range from 0.0 to 100.0.

• <Input>

o Input ports

 start: accepts any input. Upon receiving an input, it will

start producing outputs (acceleration and/or brake) according

to some predefined pattern.

 stop: accepts any input. Upon receiving an input, it will stop

the production of output.

o Output ports

 acceleration: indicates how much the user has pressed the

acceleration handle. Possible values range from 0 to 100.

 brake: indicates whether the user has pressed the brake

handle. Possible values are True and False.

40

• <Controller>

o Input ports

 accel: accepts input from <Input>, this indicates how much

the user is pressing the acceleration handle and controls

how much the scooter should be accelerating (providing no

other factors are preventing acceleration). Possible values

range from 0 to 100.

 batt_remaining: accepts input from the FMU, this indicates

the percentage of battery remaining in the system. Note the

lack of connection from upstream – this is intended and

will be explained below. Possible values range from 0.0 to

100.0.

 brk_toggle: accepts input from the <Input>, this indicates

whether user is engaging the brake and controls if the brake

should be applied. Possible values are True and False.

 sc_speed: accepts input from the FMU, this indicates the

speed at which the scooter is travelling. Note the lack of

connection from upstream – this is intended and will be

explained below. Possible values range from 0.0 to

(Infinity), though realistically it is unlikely to see numbers

above 25.0.

41

o Output ports

 brk_out: indicates whether the brake should be applied.

Possible values are True and False.

 pwr_out: indicates how much power should be applied to

the motor. Possible values range from 0 to 100.

o The inputs for the batt_remaining and sc_speed are provided by the

ScooterMotor FMU. The co-simulation design requires fetching

these inputs from the FMU and injecting them into their respective

input ports. According to the synchronization protocol in Timing ,

the FMUs associated with the DEVS models are executed first.

Some outputs from these FMUs are used as input to the DEVS

model. In the case of the electric scooter example, these two ports

are getting updated inputs from the electric motor FMU in each

round.

Figure 10. Electric Scooter visual representation in DEV-Suite, with couplings between them shown

42

6.1.3. Electric Scooter Model - Logic

The logic for the speed controller is defined using the following rules, and the rule

higher up takes precedence when multiple rules can be applied at the same time.

1. When user presses the brake handle, the controller enables the brake and

reduce power output to zero.

2. When remaining battery has less than 10% capacity, enter the power-

saving mode and ignore acceleration input.

3. When speed of the scooter is over some predefined limit (e.g., 15 mph),

reduce power output to zero.

4. When user presses the acceleration handle

a. If the speed is already over the predefined limit, not action is taken.

b. If the speed is below the limit, increase the power output

proportional to how much the handle is depressed.

5. When no input is received, take no action, and wait for next input.

More formally, the behavior of the speed controller can be defined in the

advanced state machine diagram, shown in Figure 11. Colors are added to some

transitions for clarity: blue transitions indicate they are transitioning into Idling state,

while red ones indicate they are transitioning out of Idling state.

43

Figure 11. Advanced state machine diagram for speed controller

On the other hand, user input contains predefined sequence of input to simulate a

particular user’s interaction with the scooter. The following sequence depicts one of the

possible profiles.

1. User accelerates at LOW (30) rate.

2. User accelerates at MEDIUM (50) rate.

3. User accelerates at MAX (100) rate.

4. User let the scooter coast (OFF).

5. User brakes.

Other profiles can be easily assembled by rearranging the order of operations or

adding and removing operations.

6.2. Modelica Electric Scooter Model

The Modelica counterpart of the electric scooter model contains a direct current

permanent magnet (DCPM) motor, electrical components around the motor, and a

simplistic battery component. DCPM motors work similar to the ones installed in a real-

life scooter. Figure 12 shows these components and connections between them in

44

OpenModelica. Setup of some important parameters in the model is listed in APPENDIX

II.

Figure 12. Part of the electrical scooter modeled in Modelica showing various components. Adopted and expanded
from the built-in DCPM example

DCPM is the central piece in the Modelica model and its behavior directly

impacts the behavior of the scooter system. The underlying logic in DCPM consists of a

significant number of constituent models and equations, which will not be shown here for

simplicity. In essence, the speed of the motor responds to the input voltage – the higher

the input voltage is, the faster the motor spins, and therefore faster the scooter goes. In

the case of electric scooter, control of the voltage is usually achieved via a technique

known as pulse-width modulation (PWM). Instead of directly controlling the input

voltage directly, it controls how much time the voltage is on high versus the time on low.

The effective voltage is then determined by duty cycle, or the percentage that voltage

45

signal is on high. In the Modelica model, PWM scheme is implemented using the pulse

component, which sends a pulse signal with customizable amplitude, width (duty cycle),

and period.

The battery model (batteryLevel) is trivial – it is a simple integrator that has a start

value and a slope. As the motor draws power to operate, the remaining value of the

battery decreases. The exact slope at any given time is the negative of voltage times the

current, which would be the wattage of the motor. This relationship is not shown in the

diagram above as the linkage in OpenModelica has different meanings. The dcpmData

component contains specific parameters to control the behavior of the electric motor,

such as its nominal voltage, nominal current, nominal speed, nominal resistances, and

many more. The loadInertia and loadTorqueStep parameters provide a load (resistance)

profile on the motor to simulate physical loads on the scooter, such as a rider.

6.3. DEVS-FMI Adapter

The DEVS-FMI adapter is an implementation of the adapter in the generic FMI-

compliance tool coupling scheme. It is an extension to DEVS-Suite simulator that

enables co-simulation between DEVS models and FMUs.

6.3.1. Structure and Functionality of the DEVS-FMI Adapter

Figure 13 depicts the DEVS-FMI adapter (FmiCoSimV2 package) as well as some

related classes, such as the DEVS coupled simulator and the JavaFMI Simulation class.

46

Figure 13. Class diagram of the DEVS-FMI adapter along with related classes

The following functions are implemented in the DEVS-FMI adapter for one or

more FMUs. The SimulationManager and AbstractCoSim classes provide sufficient

coverage for co-simulating DEVS models and FMUs.

47

• Interact with FMUs with SimulationManager class. This class makes use of

JavaFMI library and exposes relevant functions to facilitate co-simulation.

SimulationManager allows for

o Starting, initializing, terminating the simulation,

o Stepping the simulation with user-defined step size,

o Cancelling the step,

o Stepping the simulation till it stops,

o Setting real, integer, string, and boolean values on the FMUs,

o Retrieving real, integer, string, and boolean values from the FMUs.

• Provide a foundation for implementing custom co-simulation layer for any

DEVS models and FMUs. One can simply extend the AbstractCoSim class

and provide additional logic for co-simulation. The newly extended CoSim

modules can be easily integrated with the DEVS models without having to

change core simulator logic or DEVS models. The following features are

supported in the AbstractCoSim:

o Initialize the CoSim module and its integration with DEVS-Suite

simulator,

o Get reference to DEVS atomic model by name (to enable

interacting with it),

o Get output on a specific port of an atomic model,

o Provides input to a specific port of an atomic model.

48

6.3.2. Electric Scooter Module in the DEVS-FMI Adapter

A module specifically designed for the electric scooter is implemented. It consists

of two classes – ScooterCoSim, which extends the AbstractCoSim and includes co-

simulation logic for the electric scooter; FmuParam, which is an enum that facilitates data

exchange between DEVS-FMI and the electric scooter FMU. Figure 14 is the class

diagram for a DEVS-FMI electric scooter module.

Figure 14. Class diagram of electric scooter DEVS-FMI module

ScooterCoSim contains a public function coSimFmu() that is exposed to the outside.

Invoking this function would obtain specific outputs from a given DEVS model, initiate a

new round of simulation in the FMU, pass the output from the DEVS model and saved

states into the FMU, execute the simulation for some length (e.g., 1 second), and inject

the output from the FMU back into the DEVS model for the next step in DEVS.

49

coSimulateFmi() is a helper function that start a new simulation in FMU and initialize it

with a number of variables, including saved states from previous stimulation and output

from the DEVS model.

There are 5 parameters that are passed into and out from the FMU in a simulation

run. These variables are listed below (all of them are double-typed).

• dutyCycle: Duty cycle for next simulation step that determines the

effective voltage to the motor. Ranges from 0.0 to 100.0. This corresponds

to pulse.width variable in FMU.

• prevBattLevel: Battery level at the termination of previous simulation,

used to initialize the battery level on next simulation run. Ranges from 0.0

to 777,600.0. This corresponds to batteryLevel.y variable in FMU.

• dcpmW: Speed of the motor at the termination of previous simulation,

used to initialize the motor speed on next simulation run. Ranges from 0.0

to approximately 2,600.0. This corresponds to dcpm.wMechanical variable

in FMU.

• dcpmIa: Electric current in the motor armature at the termination of

previous simulation, used to initialize the motor armature current on next

simulation run. Ranges from 0.0 to approximately 13.5. This corresponds

to dcpm.ia variable in FMU.

• liPhi: Initial rotation angle of the load inertia at the termination of previous

simulation, used to initialize the initial rotation angle of load inertia on

50

next simulation run. Ranges from 0.0 to (infinity). This corresponds to

loadInertia.phi variable in FMU.

It is apparent that managing the five parameters can be complex and error prone.

Misspelling of the variable name or using a wrong variable can lead to undesired

simulation outcomes. To ensure the consistency of parameters in the implementation and

eliminate possible mistakes, an enum FmuParam is introduced. It has one type that

corresponds to each parameter, and each type also contains a variable varPath that

corresponds to its variable path in FMU. This streamlines the access to the scooter FMU

and makes the implementation easier to understand. It is recommended that similar

enums to be created for other FMUs, along with their co-simulation modules.

The ScooterCoSim performs the following operations for every simulation step.

1. Obtains the pwr_out and brk_state output from the DEVS simulator.

2. Updates the saved dutyCycle state with pwr_out value, and brakeState

with brk_state value.

3. Performs co-simulation.

a. Creates a new FMU simulation instance.

b. Initializes the FMU with the saved states.

c. Performs simulation for the predefined length (e.g., 1.0 seconds).

d. Saves selected state values (prevBattLevel, dcpmW, dcpmIa, and

liPhi) from the FMU and terminates the simulation.

51

4. Convert some outputs from the FMU to a more useful representation.

a. dcpmW in rad/s is converted into mph (assuming 1.5-inch wheel

diameter).

b. prevBattLevel is converted into battery percentage.

5. Sends updated sc_speed, batt_remaining and brk_toggle as input to the

DEVS simulator.

6.3.3. Four-Variable Model Input and Output

As indicated above, the DEVS-FMI adapter is used for the input and output

devices defined in the Four-Variable model. For real-world devices, input and output

devices translate the analog signals to digital signals from the physical part to the cyber

part. Likewise, they also translate digital signals to analog signals from the cyber part to

the physical part. Therefore, the DEVS-FMI adapter can be considered as the input and

output devices in the co-simulation: the FMU’s motor speed and battery level data are

provided as primitive data types converted to entity types that can be accepted as input to

DEVS models. Conversely, the DEVS ElectricScooter model’s power and break outputs

are converted to primitive data types supported in JavaFMI (see Figure 10). These

devices are implemented in the ScooterCoSim module.

6.3.4. The Big Picture

Figure 15 shows a simplified view of the entire DEVS-FMI adapter, electric

scooter models, as well as its related packages and classes. Attributes and operations are

omitted for simplicity. Details of each classifiers can be found in above figures.

52

Figure 15. Simplified class diagram for DEVS-FMI interface along with electric scooter models and related classes

53

7. Experiments

To show the DEVS-FMI is correctly implemented and measure the computation

cost for the co-simulation of DEVS models and FMUs, some experiments are developed.

The computation cost refers to the physical time, measured using the JVM clock, for the

DEVS-FMI to be executed. They show two basic use case scenarios for the integrated

DEVS and Modelica models of the electric scooter. The hardware and software

configuration of the DEVS-Suite simulator is listed in APPENDIX III.

7.1. Physical Components of the Electric Scooter

To better understand the behavior of Modelica electric scooter model and verify it

reflects the characteristics of a real-life scooter well, a series of simulations are performed

for the electric scooter motor and battery models using OpenModelica. These simulations

have identical setup and initial parameters except for dutyCycle parameter, which portraits

the behavior of the scooter model under different user input. Otherwise, the following

simulation parameters are used in OpenModelica.

• Start time: 0 seconds,

• Stop time: 20 seconds,

• Number of pulses: 500 (period for each pulse is 0.04 seconds),

• Integration method: dassl,

• Tolerance: 1.0e-6,

• Jacobian: (None).

54

Figure 16, Figure 17, and Figure 18 show three aspects of interest on the electric

scooter motor in different duty cycles. On the first two figures, results are arranged from

high duty cycle to low duty cycle from top to bottom. On the last figures, results are from

low duty cycle to high duty cycle.

7.1.1. Induced Armature Voltage

Induced armature voltage is the electric potential created by the magnetic field in

the motor when it is energized. It is therefore the effective electric voltage in the motor.

As shown in Figure 16, the effective voltage responds to the duty cycle parameter in

somewhat linear fashion – for example, on 100% duty cycle, the effective voltage

appears to be converging to 24 volts, which is the nominal voltage of the motor. On 50%

duty cycle, the effective voltage is converging to 12 volts, and so on. It may be unusual

that there’s negative voltage under 0% duty cycle, but it reveals an important aspect of

the simulation setup – that the load acts as a constant torque against motor’s direction of

spinning. Therefore, the motor instead of converting electricity to rotation of rotor, it

spins the rotor and generates electricity. This shows the resiliency in the model setup, as

it closely mirrors the behavior of its real-life counterpart. If the load were to be removed,

simulation shows the states of the motor remains constant (0 volts) in 0% duty cycle.

55

Figure 16. Effective armature voltage of the scooter at 0%, 25%, 50%, 75%, and 100% duty cycle

7.1.2. Speed of the Motor

As shown in Figure 17, the speed of the motor follows closely with the effective

armature voltage. This behavior confirms that the speed of motor is directly proportional

to the effective armature voltage. Therefore, it is possible to control the speed of the

motor (hence speed of the scooter) by controlling just the duty cycle parameter.

56

Figure 17. Speed of the motor at 0%, 25%, 50%, 75%, and 100% duty cycle

7.1.3. Battery Level

It is apparent that the remaining battery level also follows closely with voltage

level. At 0% duty cycle, a small baseline electricity usage is incurring, which is reflected

on the diagram below. As duty cycle increases, the rate of consumption increases as well,

resulting in faster decrement of the battery level.

57

Figure 18. Usage of battery (remaining battery level) at 0%, 25%, 50%, 75%, and 100% duty cycle

These experiments show the choice of the Modelica model for the physical part of

the electric scooter shown in Figure 12 is satisfactory.

7.2. Continuity and Accuracy of FMU Simulations

The DEVS-FMI operates on the assumption that FMUs are able to perform

accurately to a limited degree with JavaFMI. In addition, terminating and restarting FMU

simulations may affect the accuracy of the FMU simulation. The following experiment is

conducted to verify these assumptions.

In this experiment, three simulation scenarios based on an identical Modelica

electric scooter model are executed. The first simulation is executed on OpenModelica

58

with the original model construct. Because of this, the output given by OpenModelica

(shown in results in page 100 and 102) is considered as the “reference” for other

simulations. The other two simulations are based on the FMUs exported from

OpenModelica that are simulated in JavaFMI – one that does not stop and restart (similar

to OpenModelica simulation), and the other employs stop and restart strategy (similar to

DEVS-FMI approach). Otherwise, all three simulations follow the same setup:

• Total execution time is 5 seconds (start time = 0, stop time = 5),

• Step size is 0.00001 (1.0e-5) seconds,

• Identical initial values are used to initialize the simulation,

• Output is sampled once per 0.2 seconds.

To achieve this setup with DEVS-FMI approach, the length of each simulation

run is set to 0.2 seconds, and the dutyCycle parameter is to remain constant at 50.0 to

simplify comparison.

The initial parameters are configured as following to initiate simulation:

• dutyCycle: 50.0,

• prevBattLevel: 777,600.0,

• dcpmW: 0.0,

• dcpmIa: 0.0,

• liPhi: 0.0,

59

To track the accuracy of different simulation setups, the outputs of both JavaFMI

simulations are compared against the “reference” output from OpenModelica.

Specifically, the speed of motor, dcpm.wMechanic is used for comparison.

As shown in Figure 19, the results are nearly identical in these setups. Both FMU

simulation methods yields the same results, and they differ from the “reference” values

by an average of 1.04% (detailed test results can be found in APPENDIX IV). Thus, the

JavaFMI library is able to execute FMUs with acceptable accuracy, given a suitable step

size is chosen (more on step size in Impact of Step Size section). The experiment also

proves that, if correct states are used, stopping and restarting simulation does not have an

impact on the results of simulation.

60

Figure 19. Results of dcpm.wMechanical on three simulation setups. The three curves are almost overlapping, showing
that the error of the executions in JavaFMI is minimal

7.3. Impact of Step Size

Step size is a crucial parameter that JavaFMI uses to configure the solver in

FMUs. To further highlight the importance of choosing an adequate step size in JavaFMI

with exported FMUs, a number of simulations with different step sizes are ran on the

electric scooter model and the results are compared. The setup of these simulations is

identical to the experiment above, except that they have different step sizes. Particularly,

the following step sizes are used for comparison.

• 0.000001 seconds (1.0e-6)

• 0.000005 seconds (5.0e-6)

61

• 0.00001 seconds (1.0e-5 / DEVS-FMI default)

• 0.00005 seconds (5.0e-5)

• 0.0001 seconds (1.0e-4)

• 0.0005 seconds (5.0e-4)

The results are sampled every 0.2 seconds, and each simulation is run for 5

seconds. The outputs from these simulation runs are compared against the output of the

“reference” model configuration from OpenModelica. In addition, these simulations are

timed to compare approximate computational cost of the respective step sizes.

Figure 20. Simulation accuracy of the electric scooter model vs execution time on different step sizes

Preliminary results are shown in Figure 20 and they are observed from single

simulation runs. The full results are given in APPENDIX V. It is apparent that as step

size decreases, simulation accuracy improves. As expected, decrease in step size results

in increase in execution time. Further inspection shows that the relationship between step

62

size and average loss (error) is approximately linear, while the relationship between step

size and execution time is approximately linear as well.

For practical purposes, neither extremes are desirable – if execution time is too

long, it can significantly delay the overall co-simulation; if error rate is too high, the

simulation results are meaningless. Therefore, it is important to choose an adequate step

size that provides sufficient accuracy while bearing possible performance impact in mind.

For electric scooter co-simulation, 1.00e-5 seconds is deemed a reasonable time step as it

reaches a good compromise between accuracy and execution time.

7.4. Interaction between DEVS Models and FMUs

7.4.1. Experiment 1: A Typical User Input Profile

It is imperative to confirm that the DEVS Models and FMUs are able to

communicate correctly via the DEVS-FMI adapter. For this purpose, the electric scooter

model described in previous sections is co-simulated as a whole. Specifically,

• The DEVS model is described in the DEVS Electric Scooter Model

section,

• The Modelica model is described in the Modelica Electric Scooter Model

section.

The DEVS model is simulated in DEVS-Suite simulator with the following user

input profile.

Second 1. User accelerates at LOW (30) rate.

Second 2. User accelerates at MEDIUM (50) rate.

63

Second 3. User accelerates at MEDIUM (50) rate.

Second 4. User accelerates at HIGH (80) rate.

Second 5. User accelerates at HIGH (80) rate.

Second 6. User accelerates at MAX (100) rate.

Second 7. User accelerates at MAX (100) rate.

Second 8. User accelerates at MAX (100) rate.

Second 9. User let the scooter coast (OFF).

Second 10. User brakes.

Second 11. User brakes.

Second 12. User exits the scooter (idle).

The Modelica model is exported as a FMU using OpenModelica built-in

converter. The following configurations are used for co-simulation.

• Step size: 0.00001 (1.0e-5) seconds,

• Duration of each simulation: 1 second,

• Start time: 0 second,

• Stop time: 1 second,

• Assumes the diameter of the wheel is 1.5 inches for the purpose of

calculating the speed of the scooter.

The FMU is initialized with the following parameters.

• dutyCycle: 0.0

• prevBattLevel: 777600.0

64

• dcpmW: 0.0

• dcpmIa: 0.0

• liPhi: 0.0

During the simulation, dutyCycle will change according to user input (i.e., how

much user depresses the accelerator). The remaining four parameters are simply carried

over from one simulation run to next.

Figure 21 shows the DEVS-Suite simulator graphical interface at a time instance

during the model execution. Note that DEVS-FMI is enabled, but the graphical interface

is not yet updated to reflect the DEVS-FMI integration nor the input coming from FMU.

65

Figure 21. DEVS-Suite interface while executing the electric scooter co-simulation model

Figure 22 depicts partial (first 10 steps) trajectories of break output and power

output of the controller model. It also shows a trajectory for phase changes as input from

the input module and FMU is received.

66

Figure 22. Part of the output trajectory and phase changes in the first experiment

Graphical integration of DEVS-FMI is not supported. The input received from

FMU in the controller is used and plotted in Figure 23. The full results, including input

received and output sent at each step, are shown in APPENDIX VI. Some observations

can be made about the data.

• The interaction between DEVS controller model and FMU can be

observed and verified within the DEVS-FMI. Every step, the controller

sends outputs based on the inputs arriving from the user input module as

67

well as the FMU. On the next step, DEVS-FMI collects the outputs

produced by the DEVS model and forward them into the FMU. The FMU

then reports updated motor speed as well as other states to the DEVS-FMI,

which is processed and injected into the DEVS model.

• The acceleration and deceleration are not effective instantaneously – for

example, the controller received input to accelerate at 30 duty cycle in step

2, but the scooter’s reaction is “delayed” until the next step. This is

because the output produced by the controller is not processed until the

beginning of the next step.

• Instead of using raw data for motor speed and battery charge (such as

speed of the motor in rad/s and remaining battery in Ws), they are

transformed into other representations to facilitate simulation. For battery,

the number indicates the percentage of the battery remaining (e.g., 0.9906

means 99.06% battery remains), and the motor speed is converted into the

speed of the scooter in mph. This conversion is done in the electric scooter

co-simulation module. As the battery size and the wheel diameter can vary

from one scooter to another, more abstract units mean different types of

electric scooter can use the same DEVS models, with possibly fewer

changes in the electric scooter co-simulation module.

68

7.4.2. Experiment 2: A Profile Showing Possible State Transitions

To verify that the DEVS speed controller model follows the behavior shown in

Figure 11, a separate user input profile is designed and shown below. This input profile is

meant to trigger all the states (except for PowerSaving) and examine if the state transition

works as designed.

Second 1. User accelerates at MAX (100) rate.

Second 2. User accelerates at MAX (100) rate.

Second 3. User let the scooter coast (OFF).

Second 4. User brakes.

Second 5. User let the scooter coast (OFF).

Second 6. User brakes.

Second 7. User accelerates at MAX (100) rate.

Second 8. User breaks.

Second 9. User exits the scooter (idle)

The speed controller model was modified so that it only outputs brk_out when

there is a change. The input trajectories are shown in Figure 23, and the output

trajectories are shown in Figure 24. The following findings can be noted:

• The phases of the model closely follow the state machine diagram in

Figure 11. This indicates that the DEVS formalism is able to capture the

dynamics of the simplified electric scooter system.

69

• The inputs from the motor arrives at regular discrete-time steps with 1

time-unit intervals, despite the FMU takes irregular amount of time to

execute. DEVS-FMI transforms the responses from the FMU into discrete

time-interval messages that DEVS can work with.

• The brk_out output only occurs when its value is changed. Thus, the

outputs of a DEVS model are not tied to regular intervals.

70

Figure 23. Trajectory of inputs and phase transitions in the second experiment

71

Figure 24. Trajectory of outputs and phase transitions in the second experiment

7.5. Impact of the DEVS-FMI Adapter (I/O Devices)

It is necessary to highlight the impact of the DEVS-FMI Adapter on the

performance and accuracy of the overall simulation. Since the DEVS-FMI situates in

between physical and cyber parts and transforms the messages between them, it can be

considered as input and output devices. Therefore, the performance impact of the DEVS-

FMI adapter also represents the impact of the I/O devices in the scooter co-simulation

model. Likewise, the accuracy of the DEVS-FMI adapter represents the accuracy of the

I/O devices in the co-simulation.

72

7.5.1. Performance

The efficiency of the DEVS-FMI adapter is crucial to its usability. To investigate

the performance impact of the DEVS-FMI adapter, the following three simulation

scenarios are devised and evaluated.

1. Normal co-simulation setup (identical to Experiment 1: A Typical User

Input Profile).

2. Identical to (1) but uses a dummy FMU that is compatible with the electric

scooter FMU. It simply returns constant values when queried for state

values and accepts values from the DEVS simulator but does not act upon

them. This way, the DEVS-FMI adapter will still be used but simulation

time of the FMU will be kept to a minimum.

3. Similar to (1) but with DEVS-FMI integration disabled. Instead of having

FMU providing the electric scooter speed and battery level information to

the DEVS model, the UserInput model is altered to send dummy values

for both. Therefore, this scenario involves only communications between

DEVS and DEVS-FMI. This scenario is used as the baseline for the

DEVS-FMI execution time as measured using the computer’s clock.

Each of the three scenarios are simulated for 10 logical-time steps in DEVS-Suite,

and the actual execution time consumed to simulate each step is measured. Each scenario

is repeated five times, and average of these values is taken. In addition, the SimView and

73

tracking visualizations are turned off. The results are shown in Figure 25. (Full results are

available in APPENDIX VII)

Figure 25. Execution time of the three simulation scenarios

According to the simulation results, the following observations can be made.

• For both scenarios with FMU enabled, the first step takes significantly

longer than subsequent steps. This may be caused by initialization of the

associated FMU on the first step. The DEVS-only model also consumes

comparably more time in the first step.

• In scenario 1, the FMU (OpenModelica) uses the majority of overall

simulation (execution) time. This suggests that the performance of the

FMU has a greater impact on the overall performance.

74

• The DEVS-FMI adds little overhead to the computing time used for the

co-simulation. The differences in execution time between the scenario

with dummy FMU and no FMU is negligible.

• These experiments are conducted with 1 second logical-time FMU

simulation length. Further testing is needed to investigate the performance

of the co-simulation in shorter simulation lengths, such as 1 millisecond.

Specifically, 1) if the overhead of DEVS-FMI becomes more prominent,

and 2) how the FMU execution time changes in response to these changes.

Chapter 7.6 provides experiments and preliminary observations regarding

these questions.

7.5.2. Data Accuracy of Single and Double Precision on DEVS-FMI

Apart from the accuracy losses due to step size settings in FMU execution, the

DEVS-FMI can also introduce some inevitable losses due to data conversion between C

(FMU) and Java (DEVS-Suite). To investigate this further, an experiment is set up to

capture the differences of the motor speed between OpenModelica and what received in

the Java-FMI. The step size is fixed at 1.0E-05 seconds for all simulations, and

simulations of various lengths are run. In consideration of other use scenarios, such as

machines with limited memory, the simulation is run with results saved in double and

float types.

Figure 26 shows the error values for five logical-time simulation durations. The

error rate ranges from 0.862% to 1.048%, which is in line with findings in section 7.3. As

75

expected, the use of float data type incurs additional error when compared to the results

using double type, which may be used as a substitute data type in simulators that have

access to limited memory and processing power.

Figure 26. Error of different simulation lengths in DEVS-FMI

7.6. Co-simulation Performance

Apart from the performance of the DEVS-FMI, it is also important to test the

execution performance (i.e., speedup factor) of this co-simulation approach if it were to

be executed as-fast-as-possible. Because there are three parts in the DEVS-FMI co-

simulation approach, it is necessary to discuss the performance of each constituent parts

before analyzing them holistically.

76

7.6.1. DEVS-Suite (Cyber Part)

There is a built-in real-time factor slider on the DEVS-Suite interface (shown at

lower-left corner of Figure 21) that controls the speedup factor of the DEVS logical time

with regards to real time (i.e., JVM clock). This is achieved by introducing a pause in

between each simulation steps. The slider value goes from 1.0E-04 (0.0001x sigma) to

1000. In essence, at smaller values, the speedup is constrained by the actual simulation

time of the DEVS models, which is not affected by the slider configuration.

The third simulation setup described in section 7.5 (i.e., SimView and tracking are

turned off) is used to assess the time used by the DEVS model in different real time

factor settings. The model is executed with six different real-time factors: 1.0E-4 (DEVS-

Suite default), 0.001, 0.01, 0.1, 0.5, and 1.0. For each real-time factor, the model would

execute for five steps, and the average of these five steps is then compared.

As shown in Figure 27, the total execution times (orange blocks) are controlled by

the real-time factor settings. The delay due to the increase in each real-time factor value

(grey blocks) increases the total simulation execution time. (Note that the data is scaled

by 10 times and presented in log scale to aid with visualization).

77

Figure 27. Simulation time of the DEVS scooter model with six different real time factors

7.6.2. FMUs (Physical Part)

It is possible to “speed-up” the FMU simulation by using longer step sizes (see

section 7.3). However, the speed-up gain comes at proportionally higher loss of accuracy.

Changing the length of each FMU simulation segment may change the overall co-

simulation execution speed due to the overheads of the DEVS-FMI and the JavaFMI

library.

To investigate the relationship of execution time and simulation length of the

FMU with the DEVS-FMI, the electric scooter FMU is executed in seven different

logical-time simulation lengths (durations): 1.00E-04, 0.001, 0.01, 0.1, 0.5, 1 (used in

electric scooter study), and 5 seconds. As in the electric scooter study, the step size is set

78

to 1.0E-5 seconds for all seven experiments. Five simulation steps are run for each

simulation length, and the average time consumed for these steps is calculated. Note that

the time for the first segments is not included in the average, because the initialization of

the FMU adds a significant overhead to the simulation that does not show up in

subsequent steps.

Figure 28 shows the result for each of these simulations. As expected, the

execution time increases mostly linearly with the simulation length, as evidenced by the

results for 0.1 – 5 second settings.

Figure 28. Average execution time on different simulation lengths

79

7.6.3. Observation

It is clear that the following configurations can help speed up the logical

simulation.

• Use lower real time factor in DEVS-Suite (however, at lower settings the

time consumption is bounded by the actual Java implementation).

• Use longer simulation lengths for FMU (at the cost of less precise

responses from FMU).

Clearly, the following configuration can cause logical simulations to take longer

than actual time to execute.

• Use higher real-time factor in DEVS-Suite.

• Use shorter simulation lengths for FMU (improves the precision of the

responses).

80

8. Conclusion and Future Work

This project has demonstrated co-simulation for Parallel DEVS models and FMUs

with the benefit of the Four-Variable model. By applying the Four-Variable model, the

FMI 2.0 standard, and a rigorous round-robin synchronization scheme critical to correct

interaction, the DEVS-FMI 2.0 is developed for the DEVS-Suite simulator and used with

the OpenModelica simulator.

The DEVS-FMI augments the existing DEVS-Suite simulator with the improved

FMI 2.0 standard. The DEVS-Suite serves as the master simulator which can control the

operation flow for slave FMUs. The logic for the DEVS to interact with FMUs is

specified in the DEVS-FMI and a corresponding co-simulation module.

DEVS-FMI enables two-way round-robin communication of simulation execution

cycles between DEVS models and individual FMUs. The JavaFMI library is used to

obtain information from and sending information to each FMU, and the DEVS-FMI

provides an abstraction on top of JavaFMI to facilitate input/output message

communication to DEVS models. Synchronization is supported through a “stop-and-go”

routine for an FMU, as the FMU must complete its execution before it can respond to

new inputs. In principle, before each step in a DEVS model is executed, its associated

FMUs are executed for a certain period. Some states are saved from the FMUs and used

to initialize the next FMU execution, and some states are used as output from the FMU.

The output is processed and sent to the DEVS model, and after the step is executed, the

81

output from the DEVS model is processed and sent to the FMUs to initialize the next

round of execution, along with the saved states.

A portion of an electric scooter representing its cyber and physical components is

selected, modeled, simulated, and evaluated. This model demonstrates the feasibility and

effectiveness of the DEVS-FMI adapter interface for use with OpenModelica. It shows

the DEVS-FMI coordinates the discrete-time simulations of the electric scooter’s parallel

DEVS and Modelica models, developed in the DEVS-Suite and OpenModelica tools,

with accuracy (depending, in part, on the FMU step size setting).

Currently, there is no GUI support for the DEVS-FMI interface in the DEVS-

Suite simulator. This can complicate the setup of co-simulation, and visualizing any

FMU’s behavior, except its inputs and outputs accessed in DEVS-FMI and declared as

DEVS inputs and outputs. To solve this usability limitation, research is needed on

extending the DEVS-Suite simulator.

The operation of the DEVS-FMI assumes that implicit state-events in the FMUs

occur on specified time intervals. This assumption would work for some scenarios,

including the electric scooter example, because the state-events for the coupled DEVS

model and the FMU for the motor and battery are defined to occur at the same, regular

time intervals. For realistic cases, some approximation algorithm is needed to localize the

event times for the FMU relative to the event times for the DEVS model.

The DEVS-FMI is not designed to support co-simulation for multiple FMUs.

Each FMU must be tied to a DEVS model for co-simulation (i.e., one-to-one

82

relationship). Some other critical features, such as FMU dependency solving and inter-

FMU message exchange, also needs to be incorporated to support multi-FMU simulation.

From a broad perspective, the Architecture and Analysis Design Language

(AADL) is a text-based modeling language that is particularly tailored towards time and

safety-critical systems [32]. It is standardized by the Society of Automotive Engineers

(SAE) and has seen widespread uses in aerospace and automotive scenes. It has a simple

visual representation for the models, which is based on the text specifications. It supports

a model-based development approach throughout the system lifecycle [33]. An AADL

DEVS Annex [34] is proposed for behavior modeling. The AADL-DEVS language

supports hierarchical, modular discrete event modeling and simulation. The Open Source

AADL Tool Environment (OSATE) [35] is extended to support model code generation

for the DEVS-Suite simulator. The OSATE and the DEVS-Suite supported with DEVS-

FMI can be useful toolchain for analyzing and designing CPS and can be a topic of

interest for further research.

83

References

[1] A. T. Al-Hammouri, M. S. Branicky and V. Liberatore, "Co-Simulation Tools for
Networked Control Systems," in International Conference on Hybrid Systems:
Computation and Control (HSCC 08), St. Louis, 2008.

[2] T. Blockwitz, M. Otter, J. Akesson, M. Arnold, C. Clauß, H. Elmqvist, M.
Friedrich, A. Junghanns, J. Mauss, D. Neumerkel, H. Olsson and A. Viel, "Models,
Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of
Simulation," in 9th International Modelica Conference, München, 2012.

[3] P. Fritzson, P. Aronsson, H. Lundvall, K. Nyström, A. Pop, L. Saldamli and D.
Broman, "The OpenModelica Modeling, Simulation, and Development
Environment," in 46th Conference on Simulation and Modelling of the
Scandinavian Simulation Society (SIMS2005), Trondheim, 2005.

[4] B. P. Zeigler, H. Praehofer and T. G. Kim, Theory of Modeling and Simulation,
London: Academic Press, 2000.

[5] S. Kim, H. S. Sarjoughian and V. Elamvazhuthi, "DEVS-Suite: A Simulator
Supporting Visual Experimentation Design and Behavior Monitoring," in
SpringSim '09: Proceedings of the 2009 Spring Simulation Multiconference, San
Diego, 2009.

[6] E. Widl and W. Müller, "Generic FMI-compliant Simulation Tool Coupling," in
Proceedings of the 12th International Modelica Conference, Prague, 2017.

[7] J. J. Hernández-Cabrera, J. Évora-Gómez and O. Roncal-Andrés, "javaFMI,"
SIANI, University of Las Palmas, 11 August 2020. [Online]. Available:
https://bitbucket.org/siani/javafmi/wiki/Home. [Accessed 23 October 2020].

[8] S. P. Miller and A. C. Tribble, "Extending the four-variable model to bridge the
system-software gap," in 20th DASC. 20th Digital Avionics Systems Conference,
Daytona Beach, 2001.

84

[9] M. H. Quraishi, H. S. Sarjoughian and S. Gholami, "Co-Simulation of Hardware
RTL and Software System Using FMI," in 2018 Winter Simulation Conference
(WSC), Gothenburg, 2018.

[10] E. Kofman and S. Junco, "Quantized-state systems: a DEVS Approach for
continuous system simulation," Transactions of the Society for Computer
Simulation International, vol. 18, no. 3, pp. 123-321, 2001.

[11] A. C. Chow and B. P. Zeigler, "Parallel DEVS: a parallel, hierarchical, modular
modeling formalism," in Proceedings of Winter Simulation Conference, Lake
Buena Vista, 1994.

[12] H. S. Sarjoughian, "Restraining complexity and scale traits for component-based
simulation models," in 2017 Winter Simulation Conference (WSC), Las Vegas,
2017.

[13] ACIMS, "DEVS-Suite," Arizona State University, September 2020. [Online].
Available: https://acims.asu.edu/software/devs-suite/. [Accessed 15 January 2020].

[14] A. Junghanns and T. Blochwitz, "10 Years of FMI: Where are we now? Where do
we go?," FMI Modelica Association Project, 2018.

[15] P. Bunus and P. Fritzson, "Automated Static Analysis of Equation-Based
Components," SIMULATION: Transactions of The Society for Modeling and
Simulation International, vol. 80, no. 7-8, pp. 321-345, 2004.

[16] R. Alur, Principles of Cyber-Physical Systems, Cambridge, MA: The MIT Press,
2015.

[17] H. S. Sarjoughian, C. Zhang and X. Lin, Control and Decision Communication
Across Heterogeneous Model Types, Linköping: Model-Based Cyber-Physical
Product Development Workshop, 2021.

85

[18] H. Szczerbicka, K. S. Trivedi and P. K. Choudhary, "Discrete Event Simulation
with Application to Computer Communication Systems Performance," in
Information Technology, Boston, 2004.

[19] B. Wang and J. S. Baras, "HybridSim: A Modeling and Co-simulation Toolchain
for Cyber-physical Systems," in 2013 IEEE/ACM 17th International Symposium on
Distributed Simulation and Real Time Applications, Deft, 2013.

[20] D. L. Parnas and J. Madey, "Functional Documentation for Computer Systems
Engineering, Vol. 2," McMaster University, Hamilton, 1991.

[21] N. Ulfat-Bunyadi, R. Meis and M. Heisel, "The Six-Variable Model - Context
Modelling Enabling Systematic Reuse of Control Software," in Proceedings of the
11th International Joint Conference on Software Technologies - Volume 2, Lisbon,
2016.

[22] E. Widl, W. Müller, A. Elsheikh, M. Hörtenhuber and P. Palensky, "The FMI++
library: A high-level utility package for FMI for model exchange," in 2013
Workshop on Modeling and Simulation of Cyber-Physical Energy Systems
(MSCPES), Berkeley, 2013.

[23] H. S. Sarjoughian, Y. Chen and K. Burger, "A component-based visual simulator
for MIPS32 processors," in 2008 38th Annual Frontiers in Education Conference,
Saratoga Springs, 2008.

[24] B. Camus, V. Galtier and M. Caujolle, "Hybrid Co-simulation of FMUs using
DEV&DESS in MECSYCO," in 2016 Symposium on Theory of Modeling and
Simulation (TMS-DEVS), Pasadena, 2016.

[25] T. S. Nouidui, J. Coignard, C. Gehbauer, M. Wetter, J.-Y. Joo and E. Vrettos,
"CyDER – an FMI-based co-simulation platform for distributed energy resources,"
Journal of Building Performance Simulation, vol. 12, no. 5, pp. 566-579, 2019.

86

[26] V. Galtier, S. Vialle, C. Dad, J.-P. Tavella, J.-P. Lam-Yee-Mui and G. Plessis,
"FMI-based distributed multi-simulation with DACCOSIM," in DEVS '15:
Proceedings of the Symposium on Theory of Modeling & Simulation: DEVS
Integrative M&S Symposium, Alexandria, 2015.

[27] Dassault Systèmes, "FMPy," 27 10 2020. [Online]. Available:
https://github.com/CATIA-Systems/FMPy. [Accessed 2 11 2020].

[28] Modelon AB, "FMI Library: part of JModelica.org," 6 11 2017. [Online].
Available: https://jmodelica.org/fmil/FMILibrary-2.0.3-htmldoc/index.html.
[Accessed 2 11 2020].

[29] L. I. Hatledal, H. Zhang and A. Styve, "FMI4j: A Software Package for working
with Functional Mock-up Units on the Java Virtual Machine," in Proceedings of
The 59th Conference on Simulation and Modelling (SIMS 59), Oslo, 2018.

[30] J. Hughes, "fmi - crates.io," 28 October 2020. [Online]. Available:
https://crates.io/crates/fmi. [Accessed 19 November 2020].

[31] Modelon AB, "Overview - PyFMI 2.5 Documentation," Modelon AB, [Online].
Available: https://jmodelica.org/pyfmi/. [Accessed 19 November 2020].

[32] SAE International, "AS5506C: Architecture Analysis & Design Language (AADL)
- SAE International," 8 January 2017. [Online]. Available:
https://www.sae.org/standards/content/as5506c/. [Accessed 8 March 2020].

[33] J. Delange, AADL In Practice, Reblochon Development Co, 2017.

[34] E. R. Ahmad, B. C. Larson, S. Barrett, N. Zhan and Y. Dong, "A Behavior Annex
For AADL Using The DEVS Formalism," 2019 Spring Simulation Conference
(SpringSim), 10 June 2019.

87

[35] Carnegie Mellon University, "Welcome to OSATE," 30 October 2020. [Online].
Available: https://osate.org/. [Accessed 24 November 2020].

88

APPENDIX I

BASIC ATTRIBUTES OF AN ELECTRIC SCOOTER

89

The following paragraphs describe some basic parameters and attributes of a

typical electric scooter that is used for study and demonstration purposes. The construct

of these parameters attempts to follow the CPS-specific Four-Variable model established

in the introductory sections, while remaining true to the actual specification of a scooter

as much as possible.

Components Considered

For brevity, only the following components are included in the modeling &

simulation process to demonstrate the DEVS-FMI extension. They are electric motor,

battery, brake handle, acceleration handle, and software controller. Other components,

such as wheels and frame of the scooter, are considered less relevant to the study and will

not be modeled in detail (or not modeled at all).

Environment

Table 1 shows some important variables in the scooter system that is being

observed. These variables are fundamental to the system and are influenced by output

from actuators.

Table 1. Select environment variables for the scooter

Name Range of values Unit Type
motorSpeed {x | 0 <= x <= 2600} rpm real
remainingCapacity {x | 0 <= x <= 777600} Ws real

motorSpeed indicates the speed at which the motor revolves, measured in rpm

(revolutions per minute). Since the motor is attached to a wheel, speed of the motor

directly affects speed at which the wheel turns, which in turn affects speed of the scooter.

90

In this study, the radius of the wheels is assumed to be 1.5 inches, and that only input

voltage is considered for determining the motor speed. Other factors, such as friction and

inertia, are not considered. Specifically, motor would consume the electricity provided by

battery and convert it into mechanical energy (i.e., rotation of the shaft). This rotation

propels the wheel to rotate forward, causing the scooter to accelerate. Even though the

relationship between the motor speed and the voltage is approximately linear, because of

inertia of the scooter and the motor itself, the motor speed does not necessarily follow a

linear relation. Therefore, it is necessary to account for the inertia in the model to yield

more accurate results.

remainingCapacity represents the amount of electricity available in the battery,

expressed in Ws (watt-second). This quantity is derived from the actual capacity of the

battery (9,000 mAh or 9 Ah) multiplied by nominal voltage of the battery (24 V), which

becomes 216 Wh. Multiply that quantity by 3,600 to get the final result of 777,600 Ws.

The measurement in Ws is easier to work with as Modelica models simulates in real time,

and battery capacity changes (derivatives) can be simply expressed in the product of

current and voltage. An integral over the wattage yields watt-hour energy that battery has

used, which can be used to determine the remaining capacity. As electricity is consumed

by the motor, the available capacity of the battery decreases over time.

Note that battery acts as both an actuator and part of the environment. This duality

stems from the way the battery is constructed – battery can act on motor to drive it

forward, while its remaining capacity is also affected by how much electricity it used.

91

Sensors (Input Devices).

Table 2 and Table 3 show how analog data obtained from the environment is

translated into corresponding digital signal for further processing. There are two types of

sensors, namely speed sensor and battery sensor. Note that user-initiated inputs are listed

separately as they are not strictly part of the Four-Variable model.

Table 2. Input and output parameters of the speed sensor

Name Range of values Unit Type Direction
motorSpeed {x | 0 <= x <= 2600} rpm int in
scooterSpeed {x | 0 <= x <= 25} mph real out

Table 3. Input and output parameters of the battery sensors

Name Range of values Unit Type Direction
remainingCapacity {x | 0 <= x <= 777600} Ws real in
batteryRemaining {x | 0 <= x <= 100} percent real out

The speed sensor monitors and reports the speed of the scooter to the controller.

Even though movement of the wheels are continuous, the speed sensor reports the speed

at a fixed rate (as it is impractical to make it continuous). scooterSpeed indicates measured

speed of the scooter, relative to the ground, in any given moment. The speed is measured

in mph (miles per hour). In a realistic setting, the measured speed can be affected by a

number of factors, such as the speed of the motor, whether the brake is engaged, rider

weight (scooter load), ground terrain, friction, and many more. For the purpose of the

study, only three factors are considered: speed of the motor, brake engagement, and

scooter load (static constant). Other factors are ignored (e.g., energy lost due to friction)

or considered “perfect” (e.g., flat terrain without obstacle).

92

The battery sensor is an embedded sensor in the battery that monitors and reports

the remaining battery capacity. As the nominal battery capacity is 777,600 Ws, the

remaining percentage (batteryRemaining) can be simply the remaining capacity divided by

the nominal capacity.

Another class of input variable is initiated by the user and may arrive

spontaneously. These are listed in Table 4.

Table 4. User-initiated input variables

Name Range of values Unit Type Direction
acceleration {x | 0 <= x <= 100} percent int out
brakeToggle {true, false} N/A bool out

The acceleration handle is a device that controls the acceleration of the scooter. It

can be a handle that, when depressed, makes the scooter accelerate. The more user

depresses the handle, the faster the scooter should accelerate.

The brake handle is a handle that is used to control the brake. When the brake

handle is depressed, the scooter will attempt to slow down by engaging the brake and cut

off power to the motor. The braking intensity would be constant regardless of the handle

depression.

Software

The software controller receives and controls the speed of the scooter. When a

user depresses the accelerator, the controller will attempt to increase the speed of the

scooter by increasing power output. When a user depresses the brake handle, it will

engage the brake to slow down the scooter. The speed of the scooter will not exceed a

preset safety limit (such as 15mph). When this limit is exceeded, the controller will

93

attempt to slow down the scooter by cutting off the power to motor and, when necessary,

engaging the brake. Table 5 shows relevant variables in the software system.

Table 5. Variables in the software controller

Name Range of values Unit Type
scooterSpeed {x | 0 <= x <= 25} mph real
batteryRemaining {x | 0 <= x <= 100} percent real
brakeControl {true, false} N/A bool
dutyCycle {x | 0 <= x <= 100} percent real

Note the notion of dutyCycle. The software controls the speed of motor by

changing the voltage output to the motor. It is usually done with a technique called pulse-

width modulation (PWM), where signal (output) can only be high (i.e., 24V) or low (i.e.,

ground) at any time. However, the proportion of time the signal is high relative to low

can be changed, thereby changing the effective voltage that motor receives. For example,

to achieve a desired output of 12 volts, the signal can be set to 50% duty cycle so that the

signal is on high 50% of time in a given period. Therefore, a correspondence of

dutyCycle percentage and effective voltage that motor receives can be established.

Actuators (output devices)

Finally, actuators translate the control signals they receive from the software and

translate them into some changes in the environment. Table 6 and Table 7 show the

relevant input and output parameters of the battery and the brake.

Table 6. Input and output parameters of the battery

Name Range of values Unit Type Direction
dutyCycle {x | 0 <= x <= 100} percent real in
voltageOutput {x | 0 <= x <= 24} volt real out

94

The battery stores electrical energy that can be used to power the motor. The

higher the voltage output, the more torque the motor generates. The motor, in turn,

accelerates the scooter. The voltage is regulated by the software with PWM. To motor,

this should be transparent as it “perceives” the width-modulated signals the same way as

analog signals.

Table 7. Input and output parameters of the brake

Name Range of values Unit Type Direction
brakeControl {true, false} N/A bool in
isBraking {true, false} N/A bool out

The brake can be any physical device that slows and stops the scooter. Usually,

the brake is attached on the wheel and applies friction to one of the wheels when

activated. The friction produced is used to slow down the wheel hence the scooter.

95

APPENDIX II

SETUP OF THE ELECTRIC SCOOTER MODEL IN OPENMODELICA

96

The following tables list some important parameters that is used to set up the

electric scooter model in Modelica, as discussed in Modelica Electric Scooter Model and

Figure 12. These parameters attempt to recreate the real-life electric scooter to the extent

possible.

Table 8 shows some parameters for dcpmData that is used to control some

behavior of the electric motor.

Table 8. Select parameters of dcpmData

Name Value Unit Description
Jr 0.1 kg.m2 Rotor’s moment of inertia
VaNominal 24 V Nominal armature voltage
IaNominal 13.5 A Nominal armature current
wNominal 2600 rev/min Nominal speed of the motor

Table 9 shows some parameters of the pulse signal. This is used as input to

generate PWM-modulated voltage input to the motor. Note the period is set to 2

milliseconds – this corresponds to setup in similar electric scooters.

Table 9. Select parameters for pulse signal

Name Value Unit Description
amplitude 24 V Amplitude of the pulse

(effectively voltage on high)
width dutyCycle percent The width of pulse in % of period

(effectively duty cycle, set by
external parameter dutyCycle)

period 0.002 s Time for one period
Battery related configurations are shown in Table 10. The initial value y is set to

parameter prevBattLevel. This indicates that it is set by this parameter each time the

simulation starts, similar to dutyCycle.

97

Table 10. Select parameters in batteryLevel

Name Value Unit Description
k -1 N/A Integrator gain (i.e., coefficient of

the integration)
y_start prevBattLevel Ws Initial y value (effectively initial

battery level)
Parameters of some other components are shown below in Table 11. Initial phi

value is determined by phi.start, which is passed in as parameter liPhi when simulation

starts.

Table 11. Select parameters of loadInertia and loadTorqueSetup

Name Value Unit Description Component
J 0.5 kg.m2 Moment of inertia loadInertia
phi.start liPhi rad Initial rotation angle of component loadInertia
stepTorque -0.86 N.m Height of torque step loadTorqueSetup

98

APPENDIX III

SIMULATION PLATFORM

99

The following listings show the hardware and software environment used in

experiments.

Hardware

• CPU: AMD Ryzen 9 3900X 12-Core @ 3.79 GHz

• Memory: 64 GB DDR4 3600 MHz

Software

• Operating System
o Windows 10 64-bit (Build 19041.572)

• DEVS simulator
o Java 11.0.8 64-bit
o DEVS-Suite 6.0.0
o fmu-wrapper 2.26.3 (part of JavaFMI)

• FMU
o OpenModelica v1.14.1 64-bit
o OMSimulator v2.1.0-dev-147

100

APPENDIX IV

RESULT SET 1 – COMPARISON OF SIMULATION ACCURACY ON THREE

SIMULATION SETUPS

101

Table 12 shows the results of simulating an identical electric scooter model in

three different setups, as prescribed in Continuity and Accuracy of FMU Simulations

section. Diff indicates the difference between the output of both FMUs and the

“reference” OpenModelica configuration.

Table 12. Results of dcpm.wMechanical on three simulation setups

Time
(s)

OpenModelica JavaFMI
(normal)

JavaFMI (stop
& restart)

Diff

0.0 0.00000 0.00000 0.00000 0.00%
0.2 5.47289 5.53024 5.53024 1.05%
0.4 11.6637 11.7856 11.7856 1.05%
0.6 17.5580 17.7416 17.7416 1.05%
0.8 23.1688 23.4108 23.4108 1.04%
1.0 28.5098 28.8075 28.8075 1.04%
1.2 33.5939 33.9447 33.9447 1.04%
1.4 38.4335 38.8348 38.8348 1.04%
1.6 43.0403 43.4897 43.4897 1.04%
1.8 47.4255 47.9207 47.9207 1.04%
2.0 51.5998 52.1386 52.1386 1.04%
2.2 55.5734 56.1536 56.1536 1.04%
2.4 59.3558 59.9755 59.9755 1.04%
2.6 62.9563 63.6135 63.6135 1.04%
2.8 66.3836 67.0767 67.0767 1.04%
3.0 69.6461 70.3722 70.3722 1.04%
3.2 72.7517 73.5112 73.5112 1.04%
3.4 75.7079 76.4983 76.4983 1.04%
3.6 78.5220 79.3417 79.3417 1.04%
3.8 81.2007 82.0483 82.0483 1.04%
4.0 83.7505 84.6248 84.6248 1.04%
4.2 86.1777 87.0772 87.0772 1.04%
4.4 88.4882 89.4119 89.4119 1.04%
4.6 90.6876 91.6339 91.6339 1.04%
4.8 92.7811 93.7494 93.7494 1.04%
5.0 94.7740 95.7629 95.7629 1.04%

102

APPENDIX V

RESULT SET 2 – COMPARISON OF SIMULATION ACCURACY ON JAVAFMI

WITH SIX DIFFERENT STEP SIZES

103

Table 13 shows results from simulating an identical FMU in JavaFMI with

different step sizes, as well as the corresponding execution time of each setups.

Table 13. Accuracy of simulation vs execution time with different step sizes

Time
(s)

Open
Modelica

1.00E-06 5.00E-06 1.00E-05 5.00E-05 1.00E-04 5.00E-04

0.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.2 5.47289 5.47860 5.50159 5.53024 5.75970 6.04710 8.33840
0.4 11.6637 11.6759 11.7246 11.7856 12.2735 12.8832 17.7599
0.6 17.5580 17.5763 17.6497 17.7416 18.4754 19.3927 26.7275
0.8 23.1688 23.1930 23.2899 23.4108 24.3790 25.2891 35.2654
1.0 28.5098 28.5396 28.6587 28.8075 29.9987 31.4874 43.3937
1.2 33.5939 33.6290 33.7693 33.9447 35.3485 37.1021 51.1309
1.4 38.4335 38.4736 38.6341 38.8348 40.4406 42.4467 58.4960
1.6 43.0403 43.0852 43.2650 43.4897 45.2877 47.5343 65.5069
1.8 47.4255 47.4750 47.6731 47.9207 49.9017 52.3771 72.1805
2.0 51.5998 51.6537 51.8692 52.1386 54.2938 56.9870 78.5331
2.2 55.5734 55.6314 55.8635 56.1536 58.4747 61.3767 84.5802
2.4 59.3558 59.4177 59.6656 59.9755 62.4544 65.5539 90.3364
2.6 62.9563 63.0220 63.2849 63.6135 66.2428 69.5301 95.8270
2.8 66.3836 66.4529 66.7301 67.0767 69.8490 73.3150 101.0430
3.0 69.6461 69.7188 70.0096 70.3722 73.2807 76.9179 106.0075
3.2 72.7517 72.8276 73.1314 73.5112 76.5484 80.3475 110.7330
3.4 75.7079 75.7870 76.1030 76.4983 79.6589 83.6121 115.2312
3.6 78.5220 78.6039 78.9317 79.3417 82.6197 86.7197 119.5132
3.8 81.2007 81.2854 81.6244 82.0483 85.4382 89.6779 123.5892
4.0 83.7505 83.8379 84.1876 84.6248 88.1211 92.4937 127.4691
4.2 86.1777 86.2677 86.6274 87.0772 90.6750 95.1742 131.1624
4.4 88.4882 88.5805 88.9500 89.4119 93.1060 97.7257 134.6870
4.6 90.6876 90.7822 91.1608 91.6339 95.4202 100.1545 138.0245
4.8 92.7811 92.8779 93.2653 93.7494 97.6230 102.4665 141.2101
5.0 94.7740 94.8729 95.2685 95.7629 99.7193 104.6662 144.2180
Avg
Loss

0.00% 0.10% 0.52% 1.04% 5.22% 10.39% 52.21%

Exec
Time
(ms)

N/A 59754 12564 6670 1821 1193 697

104

APPENDIX VI

RESULT SET 3 – INPUTS, OUTPUTS, AND PHASE CHANGES OF THE DEVS

ELECTRIC SCOOTER MODEL ON A GIVEN INPUT PROFILE

105

Table 14 shows various input and output of interest from the controller model. It

also includes the current step (clock) and phase of the controller. Definitions of these

input and output variables are explained in DEVS Electric Scooter Model section.

Table 14. Phase change, inputs, and outputs of controller model over time

Inputs Outputs
Clock Controller

Phase
accel batt_rem

aining
brk_tog
gle

sc_speed brk_out pwr_out

0 off N/A N/A N/A N/A N/A N/A
1 idle 0 0.9999 FALSE 0 N/A N/A
2 accelerating 30 0.9999 FALSE 0 FALSE 30
3 accelerating 50 0.9997 FALSE 1.2359 FALSE 50
4 accelerating 80 0.9994 FALSE 2.4476 FALSE 80
5 accelerating 80 0.9986 FALSE 4.4099 FALSE 80
6 accelerating 100 0.9967 FALSE 7.4935 FALSE 100
7 accelerating 100 0.9943 FALSE 9.9460 FALSE 100
8 accelerating 100 0.9906 FALSE 12.852 FALSE 100
9 idle 0 0.9870 FALSE 15.151 FALSE 0
10 braking 0 0.9837 TRUE 16.948 TRUE 0
11 braking 0 0.9837 TRUE 13.277 TRUE 0
12 braking 0 0.9835 TRUE 10.268 TRUE 0
13 idle 0 0.9834 FALSE 9.1035 FALSE 0

106

APPENDIX VII

RESULT SET 4 – EXECUTION TIME OF THREE SIMULATION SETUPS

107

Table 15 shows the execution times measured using the JVM clock for three

simulation setups to simulate 1 second in logical time, including the times used for

initialization, execution of the associated FMU (if there is one), and execution of the

DEVS model. Each simulation set-up is executed for 10 steps with 5 repetitions, resulting

in 50 measurements for each setup. All measurements are in milliseconds.

Table 15. Execution time of various simulation setups

Actual FMU
Step\Rep 1 2 3 4 5 Avg
1 703 690 692 690 700 695
2 174 170 171 166 173 170.8
3 179 165 164 165 174 169.4
4 167 165 171 165 172 168
5 173 162 165 164 173 167.4
6 168 160 165 163 170 165.2
7 170 163 165 163 167 165.6
8 172 164 164 163 170 166.6
9 170 161 165 160 168 164.8
10 170 163 168 164 167 166.4
 Avg (excl. step 1) 167.13

Min (excl. step 1) 164.8
Max (excl. step 1) 170.8

Dummy FMU
Step\Rep 1 2 3 4 5 Avg
1 499 500 466 479 494 487.6
2 11 9 13 13 15 12.2
3 11 10 9 11 12 10.6
4 8 10 10 9 11 9.6
5 8 8 9 9 9 8.6
6 14 7 7 7 9 8.8
7 9 14 8 6 14 10.2
8 8 7 9 7 8 7.8
9 6 7 6 8 6 6.6
10 6 6 4 5 6 5.4

108

 Avg (excl. step 1) 8.867
Min (excl. step 1) 5.4
Max (excl. step 1) 12.2

No FMU
Step\Rep 1 2 3 4 5 Avg
1 11 15 12 11 13 12.4
2 5 8 4 5 6 5.6
3 3 5 6 5 5 4.8
4 4 4 4 4 4 4
5 3 3 5 4 3 3.6
6 4 2 4 2 4 3.2
7 3 2 4 3 4 3.2
8 2 5 6 3 3 3.8
9 4 3 2 4 3 3.2
10 2 4 7 4 4 4.2
 Avg (excl. step 1) 3.956

Min (excl. step 1) 3.2
Max (excl. step 1) 5.6

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	1. Introduction
	2. Contributions
	3. Background
	3.1. Discrete Event Systems
	3.1.1. Atomic Models
	3.1.2. Coupled Models
	3.1.3. Timing
	3.1.4. DEVS-Suite

	3.2. Functional Mock-up Interface & Modelica
	3.2.1. Basic Ideas
	3.2.2. Functional Mockup Unit
	3.2.3. Tool Integration
	3.2.4. Modelica and OpenModelica Simulator
	3.2.5. Timing

	3.3. Cyber-Physical Systems
	3.3.1. Challenges with CPS Design and Analysis
	3.3.2. Benefits of Co-simulation
	3.3.3. Considerations for Co-simulation

	3.4. Four-Variable Model
	3.4.1. Analysis of Four-Variable Model.
	3.4.2. Adaption of Four-Variable Model to Generic CPS

	4. Related Works
	4.1. Co-simulation of Hardware and Software Using FMI
	4.2. Hybrid Co-simulation of FMUs in MECSYCO
	4.3. Other Related Research

	5. Approach
	5.1. Co-simulation between DEVS and FMUs
	5.1.1. DEVS-Suite and DEVS Model
	5.1.2. DEVS-FMI Interface
	5.1.3. FMUs

	5.2. Timing Consideration
	5.2.1. Synchronization Protocol
	5.2.2. Discussion on Some Possible Exceptions

	5.3. Electric Scooter Example

	6. Design
	6.1. DEVS Electric Scooter Model
	6.1.1. DEVS Atomic Model
	6.1.2. Electric Scooter Model - Structure
	6.1.3. Electric Scooter Model - Logic

	6.2. Modelica Electric Scooter Model
	6.3. DEVS-FMI Adapter
	6.3.1. Structure and Functionality of the DEVS-FMI Adapter
	6.3.2. Electric Scooter Module in the DEVS-FMI Adapter
	6.3.3. Four-Variable Model Input and Output
	6.3.4. The Big Picture

	7. Experiments
	7.1. Physical Components of the Electric Scooter
	7.1.1. Induced Armature Voltage
	7.1.2. Speed of the Motor
	7.1.3. Battery Level

	7.2. Continuity and Accuracy of FMU Simulations
	7.3. Impact of Step Size
	7.4. Interaction between DEVS Models and FMUs
	7.4.1. Experiment 1: A Typical User Input Profile
	7.4.2. Experiment 2: A Profile Showing Possible State Transitions

	7.5. Impact of the DEVS-FMI Adapter (I/O Devices)
	7.5.1. Performance
	7.5.2. Data Accuracy of Single and Double Precision on DEVS-FMI

	7.6. Co-simulation Performance
	7.6.1. DEVS-Suite (Cyber Part)
	7.6.2. FMUs (Physical Part)
	7.6.3. Observation

	8. Conclusion and Future Work
	References
	APPENDIX I BASIC ATTRIBUTES OF AN ELECTRIC SCOOTER
	Components Considered
	Environment
	Sensors (Input Devices).
	Software
	Actuators (output devices)

	APPENDIX II SETUP OF THE ELECTRIC SCOOTER MODEL IN OPENMODELICA
	APPENDIX III SIMULATION PLATFORM
	Hardware
	Software

	APPENDIX IV RESULT SET 1 – COMPARISON OF SIMULATION ACCURACY ON THREE SIMULATION SETUPS
	APPENDIX V RESULT SET 2 – COMPARISON OF SIMULATION ACCURACY ON JAVAFMI WITH SIX DIFFERENT STEP SIZES
	APPENDIX VI RESULT SET 3 – INPUTS, OUTPUTS, AND PHASE CHANGES OF THE DEVS ELECTRIC SCOOTER MODEL ON A GIVEN INPUT PROFILE
	APPENDIX VII RESULT SET 4 – EXECUTION TIME OF THREE SIMULATION SETUPS

