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ABSTRACT  
   

I studied the evolution and cell biology of Paramecium tetraurelia—a model ciliate with 

over 40,000 distinct protein-coding genes resulting from as many as three ancient whole-genome 

duplication events. I was interested in the functional diversification of these gene duplicates at the 

level of protein localization, but the commonly used tools to study this were tedious. I instead 

applied a protein-correlation profiling approach to this system by way of generating a dozen sub-

cellular fractions with different protein constituents due to the density of their resident organelle 

and then assayed these fractions using quantitative mass spectrometry. Each protein’s unique 

abundance profile provided evidence for its subcellular localization, and I used both supervised 

and unsupervised classification algorithms to cluster proteins together based on the similarity of 

these profiles to several hundred “marker proteins” which I manually curated. After expanding the 

protein inventory for numerous organelles by as many as a thousand proteins, I determined many 

features not previously understood or appreciated such as mosaic biochemical pathways, 

evidence for differential sorting mechanisms, and the abnormal evolutionary patterns of the 

mitochondrial proteome of ciliates. I developed a simple bioinformatic tool to probe spatial 

proteomics datasets more easily for proteins of interest. I demonstrate its applicability using a 

handful of well-characterized proteins in the budding yeast Saccharomyces cerevisiae as well as 

interesting proteins in less well-studied model systems like P. tetraurelia and the apicomplexan 

Toxoplasma gondii to both recapitulate known interactions and discover new ones. Finally, I look 

for large-scale evidence of gene duplicates relocalizing to new cellular compartments in P. 

tetraurelia and S. cerevisiae using this new dataset and a previously generated one, respectively. 

I find thousands of pairs of duplicates which are differentially identified and display evidence for 

subcellular divergence, and this seems to be largely decoupled from large changes in protein 

sequence but are instead associated with indels in their N-terminal peptide. These findings 

support the use of high-throughput proteomic techniques to determine evidence of functional 

divergence of gene duplicates. Taken together, this works provides a deep characterization of 

one of the largest unicellular proteomes in nature. 
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CHAPTER 1 

INTRODUCTION 

 

The History and Evolution of the Paramecium aurelia spp. Complex and its Whole-Genome 

Duplications 

 

Ciliated protozoa represent one of the most diverse eukaryotic lineages in nature whose 

numerous model organisms have played center stage to some of the most important discoveries 

in biology. Although obscured through the foggy lens of the early history of science, a 

representative of the genus Paramecium was likely amongst the first microbes to be observed by 

Antonie van Leeuwenhoek in one of the world’s first microscopes in the late 17th century. 

Paramecia reappear in the scientific limelight when Herbert Spencer Jennings recognized their 

utility in modeling both Mendelian and non-Mendelian patterns of genetic inheritance (Jennings 

1906), the latter being taken up with a healthy spirit by his student Tracey Sonneborn who 

established the germ of the field of transgenerational epigenetic inheritance (Beisson and 

Sonneborn 1965). Many forget that the success of H.S. Jennings’s pioneering work of ciliates 

allowed him to win the coveted job as the Director of the Zoological Laboratory at Johns Hopkins 

University over the likes of the scientific giant Thomas Hunt Morgan (Kingsland 1987). Although 

Tracey Sonneborn would establish a long academic legacy of researchers interested in 

Paramecium cell biology and genetics through his work at Indiana University, the middle of the 

20th century saw a decreased interest in Paramecium relative to its relative Tetrahymena. 

Amongst the numerous discoveries facilitated through Tetrahymena were Nobel-prize winning 

experiments done in regard to catalytic RNA (Cech, Zaug, and Grabowski 1981; Kruger et al. 

1982) and the characterization of the telomerase enzyme (Greider and Blackburn 1985). 

Relevant to this dissertation, Tetrahymena played a critical role in the discovery and 

characterization of the peroxisome by Christian De Duve (C de Duve 1969). Paramecium 

continued to enjoy some interest in biology, being the first organism to demonstrate a deviation 

from the “universal” genetic code (Caron and Meyer 1985), but it has lagged far behind more 
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favored model systems in almost all areas of study. A “Renaissance” in Paramecium genetics has 

brought new interest in not only its cell biology but evolutionary biology as well (Beisson et al. 

2010). As investigators continue to build from preexisting models of how Paramecium are 

structured and how they function, the development of new cellular and molecular tools must 

proliferate into this system to better catch it up to that of more commonly studied microbes like 

Saccharomyces cerevisiae and Chlamydomonas reinhardtii. This dissertation outlines steps 

taken towards further developing Paramecium tetraurelia as a model organism in both 

evolutionary and cellular biology through the application of the emerging toolkit of spatial 

proteomics to better provide a comprehensive understanding of the structure and history of P. 

tetraurelia in particular and ciliates in general. 

The ciliate phylum contains a remarkable diversity of unicellular eukaryotes who range 

from spherical cells of less than a dozen microns in diameter to elongated cells of more than 

4mm (Lynn 2008). Ciliates are cosmopolitan, meaning that some representative can be found in 

almost every major body of water in the world. From marine nanociliates (Sherr et al. 1986) to 

larger, freshwater “macro” ciliates (Beaver and Crisman 1989), these organisms occupy a variety 

of ecological niches. A few cell biological features make ciliates distinct from other lineages. First, 

they contain cilia— from which they get their name— which are modified flagella that extend 

through the plasma membrane and are either evenly or unevenly distributed across the cell 

surface for the purpose of motility. These cilia are often called “somatic” to distinguish them from 

the “oral” cilia concentrated near the oral groove which facilitates the filtration of prey organisms 

into their intricate digestive system. Adjacent to the cilia are an intricate cortical network whose 

organization is central to ciliary function (Aubusson-Fleury et al. 2013). One component of the cell 

cortex are the flattened, alveolar sacs which are the distinguishing feature of the Alveolate 

superphylum (Stelly et al. 1991).  

Another key ciliate innovation is the existence of two types of nuclei: a larger, 

transcriptionally active macronucleus (MAC) and smaller, largely silent micronucleus (MIC) which 

hosts the germline genome to be passed on after sexual reproduction (Hausmann, Bradbury, and 

others 1996). While other lineages physically separate their germline and soma in entirely 



  3 

different cells (e.g., sperm/eggs), ciliates manage to do this within the confines of a single cell. 

The MAC performs all the gene expression needed for growth and maintenance of the cell during 

its vegetative life cycle, while the MIC only becomes active when meiosis is initiated. MAC 

chromosomes are highly developmentally regulated, as they all form from some version of a MIC 

chromosome subject to an extensive splicing-like process in which internally eliminated 

sequences (IESs) are developmentally excised from interspersed MAC-destined sequences 

(MDSs) which go onto form the entirety of the MAC genome (Duharcourt, Lepère, and Meyer 

2009). The degree to which IES removal and MSD ligation is efficient varies across organisms 

and between genomic regions of the same organism (Vitali, Hagen, and Catania 2019; Catania et 

al. 2013). The somatic MAC genome is often highly polyploid due to a complex series of genome 

amplification events coinciding with the IES elimination and MDS ligation. Tetrahymena 

thermophila contains ~45 copies of each MAC chromosome with substantial variation in smaller, 

mini chromosomes (Eisen et al. 2006), while the massive Stentor coeruleus has ~50,000 copies 

of each MAC chromosome, possibly related to its scrambled MIC genome (Slabodnick et al. 

2017). Ploidy does not scale directly with size, as can be seen in Paramecium caudatum (~400x; 

(McGrath et al. 2014)) and P. tetraurelia (~800x; (Aury et al. 2006)), but it is thought to be 

functionally related to the above IES genome structure and unusual feature of MAC amitosis in 

which MAC chromosomes do not align along the metaphase plate which results in noisier 

chromosome inheritance patterns (Vitali, Hagen, and Catania 2019; Catania et al. 2013). This has 

been linked to accelerated protein evolution (Zufall et al. 2006).  

P. tetraurelia is a member of the P. aurelia spp. complex containing at least 14 unique 

species (Sonneborn 1975) all having experienced two whole-genome duplication (WGD) events 

preceding their speciation (Gout et al. 2019) and at least one more ancient event preceding the 

split between the Paramecium and Tetrahymena genuses. While small-scale duplications (SSDs) 

can occur for a variety of reasons, WGDs typically occur by polyploidy events during 

chromosome segregation in which one daughter cell inherits two copies of its parental genome. 

WGDs are quite common across the tree of eukaryotes, with the most famous events occurring at 

the root of vertebrates (Dehal and Boore 2005). Paralogous genes resulting from WGD events 
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are often called “ohnologs” as an homage to the late Susumu Ohno. Gene retention from SSD 

events are quite low, as is the case in the budding yeast Saccharomyces cerevisiae who retain 

only ~10% of ohnologs generated 100+mya (Guan, Dunham, and Troyanskaya 2007). 

Comparably, P. aurelia spp. have still retained a large proportion of them ancient ohnologs 

(McGrath et al. 2014). 40+% were retained in the various P. aurelia spp. from its most recent 

event ~300-350mya: ~50% for P. tetraurelia. This timing is comparable to the WGDs experienced 

by the flowering plant Arabidopsis thaliana in which roughly 29% of ohnologs have been retained 

(Thomas, Pedersen, and Freeling 2006).  

A number of features dictate whether a gene will be retained, but the strongest is likely its 

mRNA expression level (Gout et al. 2010). More highly expressed genes are under stronger 

purifying selection which prevents their accumulation of mutations affecting their function. Dosage 

of gene duplicates must be optimized to maintain proper functioning of the cell, especially when 

that protein is involved in some pathway or protein complex with stoichiometric constraints (Veitia, 

Bottani, and Birchler 2008). This is thought to play a major role in repressing SSDs in 

Paramecium aurelia spp. which have only a few hundred instances of post-WGD SSD events 

(Gout et al. 2019). Freed of these constraints, ohnologs have many paths for functional 

diversification. One path is neofunctionalization (Ohno 1970), a classic view in which one copy is 

free to adopt a wholly new function while its ohnolog retains the ancestral function. Another path 

is subfunctionalization in which each copy retains part of its ancestral function (Force et al. 1999). 

This typically occurs through the accumulation of complementary mutations in each ohnolog 

which degrades a different ancestral function such that the combination of the two genes fulfills 

the role of the single-copy ancestor. Subfunctionalization can be either qualitative or quantitative, 

the former exemplified by differential expression of one copy in one tissue and the other copy in 

another, and the latter represented by the sum of each gene’s mRNA expression being relatively 

equal to the pre-duplicate state (Gout and Lynch 2015). This can occur entirely in the absence of 

equivalent, functional changes to the duplicates, although this has only been assessed at the 

level of protein sequence.  
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Cell Biology of Paramecium 

 

Though gene duplication plays no major role in the organization of the Paramecium cell, it 

certainly plays a role in the proteomic composition of Paramecium’s numerous organelles. 

Indeed, one of the many attractive features of P. tetraurelia is its numerous families of paralogs, 

some of which display evidence for functional diversification. Here, I’ll explore what we know 

about protein localization in Paramecium in general and focus on duplicates in P. tetraurelia when 

appropriate. 

Paramecium hosts a fairly standard suite of eukaryotic organelles as well as some unique 

ones. A “standard” eukaryotic cell is characterized by its compartmentalization of numerous 

biochemical pathways into distinct membrane-bound organelles and specialized cellular 

compartments. These organelles typically include one double-membrane nucleus, numerous 

double-membrane mitochondria, and single membrane peroxisomes, lysosomes (sometimes 

called vacuoles), and endosomes which interactively make-up its membrane trafficking system in 

conjunction with the endoplasmic reticulum (ER) and Golgi apparatus. Numerous smaller vesicles 

dynamically interact with these organelles and play key roles in shuttling proteins to both the 

endomembrane system and to the plasma membrane and extracellular space via constitutive 

secretion. Ribosome complexes can be seen in both the cytoplasm and rough-ER actively 

translating proteins as well as in the nucleolus in which they are assembled.  

The nuclear dimorphism of ciliates accompanies a continuous endoplasmic reticulum 

(ER) which is directly adjacent Golgi stacks (Allen and Fok 2000) containing a well-developed 

trans-Golgi network observed to have clathrin-coated vesicles being released into a network of 

filaments. Paramecium contains both mitochondria and peroxisomes with roles in metabolic 

functioning, the former being concentrated near the cell cortex. Mitochondria are the site of 

oxidative phosphorylation which ends in a divergent ATP synthase whose conformation likely 

dictates the distinctly tubular, not lamellar, cristae; a synapomorphy of the ciliate phylum 

(Balabaskaran Nina et al. 2010). The TCA cycle and possibly glycolysis occur in ciliate 

mitochondria, but the latter needs more investigation (Smith et al. 2007). The two organelles are 
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thought to interactively regulate lipid metabolism in Tetrahymena (Krueger et al. 2022), but this is 

unknown in Paramecium. Constitutive, or so-called receptor-mediated, endocytosis occurs at 

coated pits in the plasma membrane characterized by the presence of parasomal sacs (Allen, 

Schroeder, and Fok 1992) which results in the formation of early endosomes, although the direct 

connection with lysosomes is more tenuous than that of “higher” eukaryotes (Reuter, Stuermer, 

and Plattner 2013). Indeed, endosomes certainly share protein machinery with lysosomes, but 

the latter is more commonly studied in the context of their fusion with large phagosomes (Fok and 

Allen 1990). The interplay between these two pathways has motivated its joint terminology as the 

phagolysosomal pathway. Phagosomes form at the oral groove of Paramecium and are rapidly 

bound by non-lysosomal acidosomes (Allen and Fok 1983), which lowers the pH substantially, 

and then by lysosomes which kill and digest prey as the phagosome contracts and expands (Fok, 

Lee, and Allen 1982).  

Perhaps the most striking feature of Paramecium is its large contractile vacuole complex 

(CVC) made up of a large, pulsating central vacuole and surrounding radial arms which act to 

relentlessly expel water and cellular material out of a small pore in the plasma membrane 

(Plattner 2013). This organelle is a unique solution to the problem of maintaining water balance 

and homeostasis of ions like calcium (Plattner 2020). As Paramecium ingests water from the 

environment at both its oral groove, when filtering prey, and across its large surface area, water 

dilutes intracellular materials and must be removed. Anterior and posterior CVCs periodically 

pulsate as they fill with water and expels it. Many protists have some version of a CVC, but none 

is quite as impressive structurally as that of Paramecium due to its radial arms (Allen and Naitoh 

2002). The relationship between these morphologically different but functionally related CVCs in 

diverse lineages has not been subject to deep investigation.  

In addition to the constitutive exocytosis in which proteinous material is shuttled out of the 

cell (e.g., surface antigen proteins) (Preer Jr 1986), Paramecium hosts large trichocysts with 

spear-like shapes used primarily for defense (Plattner 2017). Again, many protists have some 

type of extruding organelle (called extrusomes) (Rosati and Modeo 2003), but that of 

Paramecium is remarkable for being perhaps the fastest secretion process in nature. While 
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impossible to measure due to its speed being faster than the shutter rate of most cameras, H. 

Plattner estimates that trichocysts are discharged at a rate faster than 24um per millisecond 

(Plattner 2017). This is achieved by their protein contents forming a metastable crystalline 

structure which rapidly decondenses and elongates when stimulated by calcium. Adjacent to 

trichocysts are the numerous cortical organelles which define the complexity of the plasma 

membrane of alveolates such as alveolar sacs (Stelly et al. 1991), basal bodies (Tassin, 

Lemullois, and Aubusson-Fleury 2015), and cilia (Dute and Kung 1978). Alveolar sacs are a 

synapomorphy of the alveolate superphylum, from which they get their name, and act mainly as 

calcium stores regulating various cortical activities in different lineages (Gould et al. 2011). Cilia 

are the defining morphological feature of the ciliate phylum, also from which they get their name, 

whose role in motility is critical. Different ciliate lineages achieve this through very different 

orientations—Paramecium being a holitrich ciliate are uniformly covered in somatic cilia (Lynn 

2008), while other ciliate lineages contain bundles of cilia called cirri. This former organization is 

the case for hypotrich ciliates like Oxytricha. “Oral” cilia exist near the oral groove and act to pull 

in prey for phagocytosis. All cilia in this lineage are structurally constituted of a microtubular 

axoneme in a classic 9+2 orientation which can be observed in organisms as diverse as humans 

and algae (Ishikawa 2017). Cilia are anchored to cortical basal bodies which connect them to a 

vast cytoskeletal network (Tassin, Lemullois, and Aubusson-Fleury 2015). Basal bodies have 

been of particular interest due to their central role in ciliary function and numerous protein 

constituents conserved across eukaryotes implicated in human disease (Valentine and van 

Houten 2021).   

The major tools for studying protein localization in Paramecium have been GFP-fusion 

and antibody staining (Hauser, Haynes, et al. 2000b). While the sophisticated genetic 

manipulations available in other systems are not amenable in Paramecium, gene knockdowns 

can be performed using RNAi introduced by feeding (Galvani and Sperling 2002). GFP-fusion 

proteins were first introduced in P. tetraurelia in two studies, the first demonstrating GFPs ability 

to be expressed (Hauser, Haynes, et al. 2000b), and the second using the ER-residents 

ptSERCA1 and ptSERCA2 which highlighted immediately some issues with this technique 
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(Hauser, Pavlovic, et al. 2000). The two proteins displayed dual localization to the ER and 

alveolar sacs only when the GFP molecule was inserted into the C-terminus, but alveolar 

localization was abolished when moved to a cytoplasmic loop containing a preserved KKIQ motif. 

While this finding was important for establishing the role of both organelles as major calcium 

stores in Paramecium, it also highlighted the problems with GFP-fusion proteins well-known in all 

model systems. Despite this early warning, very little effort has been made to systematically study 

differential localization in Paramecium due to GFP placement, as has been done in S. cerevisiae 

(Weill et al. 2018; Huh et al. 2003). These findings from yeast suggest that as many as ~40% of 

localization assignments from GFP fusion proteins differ between N- and C-terminal proteins, with 

11% being entirely different. Despite this, orthogonal approaches like RNAi provide ways to probe 

the removal of a protein of interest on the structure and function of some organelle in which it 

localizes, and these results provide independent support for the findings hereafter.  

There is a certain survivorship bias in the literature with respect to which proteins are 

chosen for direct assaying of protein localization. This bias comes from the types of proteins in 

which investigators are interested, and thus many ‘classic’ residents of organelles are never 

studied due to the assumption that their localization is conserved across species. Sometimes, 

these proteins are assayed as indirect expectations for what protein localization in that region 

looks like. One example is the ubiquitous ER chaperone protein disulfide-isomerase (PDI) which 

acts to synthesize disulfide bonds at cysteine residues in developing proteins (Wilkinson and 

Gilbert 2004). PDI is often used as a standard for the ER, as was the case in a study of a large 

family of calcium-release channels (Ladenburger and Plattner 2011). The authors described 34 

CRC genes and raised polyclonal antibodies specific for some of the six major families which 

each contained two to five individual genes (ohnologs). CRC-I stained the ER, as was evidenced 

by its complete overlap with both PDI (anti-mouse) signal and the ER-stain DiOC6. The other 

families localized to diverse structures like the phagosome, recycling vesicles, contractile 

vacuole, both nuclei, trichocyst tip, and various areas of the cortex. Many more proteins were 

localized to the ER in Paramecium, but none of them were ubiquitous ER markers as was PDI. 

Another example is the syntaxin PtSyx8-2, a member of a large family of at least 26 genes with a 
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similarly abundant number of ohnologs (Kissmehl et al. 2007). While this gene localized to the 

ER, its sister gene, PtSyx9-1, localizes to small acidic vesicles in the cytoplasm, and the large 

syntaxin family spanned structures like the plasma membrane, contractile vacuole, cortical 

vesicles, Golgi, discoidal vesicles, “streaming” vesicles, and patches on phagosomes. The 

synaptobrevin PtSyb1-1 had a similar ER localization while its diverse family members stained 

equally diverse sites (Schilde et al. 2006). It is interesting to note that syntaxin and synaptobrevin 

genes, specific types of SNAREs, are named in accordance with their role in neurons, but in 

Paramecium they serve similar intracellular functions, i.e., the regulation of vesicular binding 

(Plattner 2010). Many more examples of diversified protein families in P. tetraurelia have been 

investigated in proteins as diverse as actin (Sehring, Reiner, and Plattner 2010), Rab GTPase 

(Bright, Gout, and Lynch 2017), stomatin (Reuter, Stuermer, and Plattner 2013), V-ATPase 

(Wassmer et al. 2006), and calcineurin (Fraga et al. 2010).  

These results, taken together, have aided in building a model of the Paramecium cell: its 

major systems, and the protein families spanning those systems. One such system is the 

phagolysosome system introduced previously as the means by which Paramecium breaks down 

prey into usable building blocks (Fok and Allen 1990; 1998). This process can generally be 

summarized as such: phagosomes form at the cytostome (oral groove) before binding with first 

acidosomes then lysosomes before being ejected from the cytoproct as “spent” vacuoles and 

forming discoidal vesicles which then provide recycled membrane for the next phagosome. This 

process involves a few major protein families: H+-ATPases, SNAREs, Rab GTPases, and CRCs 

(Plattner 2022). Proton pumps have been localized to coated pits from which early endosomes 

form and are thought to precede acidosomes (Wassmer et al. 2006). The fusion of acidisomes 

with phaogosomes is an important step in acidifying the vacuolar environment for the proper 

functioning of lysosomal enzymes which will subsequently break down various macromolecules 

within the phagolysosome. These “true” lysosomes contain inactive enzymes coated with 

traditional lysosome membrane proteins like LAMP (Huynh et al. 2007), and these enzymes are 

recycled after digestion is complete so as to not eject them from the cell. Phagolysosomes are 
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propelled through parts of the cytoplasm via specific actin isoforms which appear as a “steam” 

behind the vacuole (Sehring, Mansfeld, et al. 2007).  

Another system is the osmoregulatory system centered around the CVC and its 

numerous ion-mediated processes (Plattner 2013). Remarkably, the CVC contains much of the 

same vesicle trafficking machinery as phagosomes minus actin in exchange for tubulin. While 

protein localization in the phagosome is typically uniform, CVC localization is typically more 

specific due to its multi-component structure. For example, the synaptobrevin Syb2 and many 

NSF genes stain both the central vacuole and radial arms (Schilde et al. 2010; Kissmehl et al. 

2002), while the F-subunit of the V1 proton pump stains only the decorated spongiome of the 

radial arms (Wassmer et al. 2006). Vesicle binding through a variety of t- and v-SNAREs is 

suggested along both the distal, decorated and proximal, sooth spongiomes which may regulate 

CVC contraction (Plattner 2022). The pumping of protons modulates, in some way, how water 

and ions are brought into the CVC through various types of ion channels observed in other 

species (Plattner 2013). In P. multimicronucleatum, a specialized aquaporin protein aids in the 

influx of water to the CVC (Ishida et al. 2021).  

The final system I will discuss is the dense core-secretory exocytic pathway centered 

around the biogenesis of the Paramecium trichocyst (Plattner 2017). Trichocysts are a type of 

extrusome found in various ciliates and other lineages like dinoflagellates (Rosati and Modeo 

2003). It is homologous to the better-studied Tetrahymena mucocyst, although the two structures 

are morphologically and functionally quite different. As mentioned previously, trichocyst discharge 

is thought to be the faster secretion process in nature, and it is achieved through the coordinated 

elongation of its protein constituents called trichocyst matrix proteins (TMPs). TMPs are so 

concentrated that they form crystals tenuously held together with repulsive negative charges— 

essentially loading a ”thermodynamic trap” from which trichocyst discharge gets its energy 

(Vayssié 2000). This process is modulated by positively charged calcium ions which either comes 

from the external environment or alveolar sacs (Plattner 2022) and can be stimulated in the 

laboratory by dextran and its derivatives. Ca2+ binds to these negative charges and causes an 

immediate relaxation of the proteins to a lower energy state. Trichocyst maturation is multi-
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stepped and involves both the ER and Golgi. TMPs are synthesized as ~40KDa precursor 

proteins subjected to translocation to the ER through putative signal peptides (SPs) on their N-

terminus (Arnaiz, Meyer, and Sperling 2020). After translocation to the ER, the inactive protein 

undergoes proteolytic cleavage into a smaller ~20KDa active protein capable of crystallizing 

outside of the Ca2+-rich environment of the ER (Adoutte, de Loubresse, and Beisson 1984). 

TMPs are then passed to the Golgi apparatus and often subjected to heavy glycosylation before 

moving into smaller vesicles in which crystallization occurs (Richard D Allen 1988). These 

vesicles are often called pre-trichocysts and mature at the cell cortex into functioning trichocysts. 

This is the route of travel for TMPs, but non-TMP trichocyst proteins are not well-understood. 

However, the delivery of pre-trichocysts is mediated by actin similar to phagolysosomes (Plattner 

2022). The synaptobrevin ptSyb5 localized to these vesicles and may bind to the syntaxin Syx1 

(Schilde et al. 2010; Kissmehl et al. 2007). Again, these examples highlight the overlapping 

protein machinery of many of these distinct important cellular systems.  

 

The Development of Spatial Proteomics as a Tool in Cell Biology 

 

A burgeoning toolkit in the field of spatial proteomics offers the potential to localize thousands of 

proteins to organelles and subcellular compartments with a single experiment (Christopher et al. 

2021). This would certainly aid the understanding of ciliate complexity, and I will outline the 

history of this field and the details of these techniques. 

The development of spatial proteomics coincides largely with the development of the field 

of cell biology as a whole. The 1974 Nobel Prize in Medicine and Physiology went to three 

researchers credited largely with laying the groundwork for the field of cell biology to become a 

recognized field of biology: George Palade, Albert Claude, and Christian De Duve. Palade’s 

discoveries are not of direct importance in terms of background, but his work on the discovery of 

ribosomes and the structural organization of cells cannot be understated. However, it was Claude 

that pioneered the “pulverization” of cells and structural assaying of subsequent subcellular 

fractions to better understand their spatial organization inside the cell (Claude 1975). And then it 
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was De Duve who ‘perfected’ these techniques and introduced biochemical assays that aided in 

the discovery of a number of organelles like the lysosome and peroxisome, the former of which 

was the main cause of his Nobel Prize (Sabatini and Adesnik 2013). De Duve’s group made use 

of enzyme activity assays of different fractions to determine the differential protein constituents of 

those fractions that correspond to some subcellular structure. After much experimenting, De Duve 

et al. (1955) found that a non-mitochondrial “L; Light” fraction contained a number of acid 

hydrolases with the ability to break down a number of different macromolecules, and he named 

this ‘lytic microsome’ the lysosome (Holtzman 2013). These findings were crucial for establishing 

what has sometimes been called “De Duve’s principle” in which the subsequent centrifugation of 

a cell lysate will result in organelles adopting a distribution of abundances across those fractions. 

Intact organelles should contain the entirety of their protein constituents under certain conditions, 

especially those absent of harsh detergents.  

The development of cell biology by ultracentrifugation has coincided with the 

development of a number of techniques for probing macromolecular structure and composition. 

One of these techniques is mass spectrometry, and it is the central method of spatial proteomics. 

Mass spectrometry comes in many flavors, but in studying proteomics, a workflow typically 

involves the digestion of proteins into peptides, the ionization of those peptides into precursor 

ions, the measurement of retention time, intensity, and mass to charge ratio (m/z) of those ions, 

and then the optional step to fragment those precursors into smaller ions for one to two more 

rounds of intensity and m/z measurements (Aebersold and Mann 2003). A number of Nobel 

prizes were awarded for methods underlying mass spectrometry, most recently in 2002 for the 

development of the wildly popular electrospray method of peptide ionization (Fenn et al. 1989). 

Modern mass spectrometers can easily identify thousands of proteins from a complex mixture 

regardless of its source. 

The combination of cell fractionation and quantitative mass spectrometry was first 

performed by the group of Matias Mann, who sought to study the human centrosome using 

classical affinity purification methods but found this method to pick-up too much background 

(Mann 2020). Instead, the protein correlation profiling was developed in which numerous 
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subcellular fractions were subjected to LC-MS/MS with label-free quantification (LFQ). Using 

previously known centrosomal proteins, they could predict a number of new components which 

expanded that amembranous organelle’s known proteome (Andersen et al. 2003). LFQ has its 

disadvantages due to the requirement that each fraction be assayed separated in the mass 

spectrometer. Kathryn Lilley’s group modified this method using peptide labeling, called 

Localization of Organellar Proteins by Isotopic Tagging (LOPIT), and showed in the flowering 

plant Arabidopsis thaliana that four subcellular fractions could provide clear localization profiles 

for hundreds of proteins simultaneously (Dunkley et al. 2004). Labeled quantification has the 

advantage of comparing peptide abundances in the same exact run (i.e., head-to-head) which 

reduces noise from missing values. In the past ~20 years, these methods have been applied to a 

number of different cell/tissue types, organisms, and cell states (Borner 2020). LOPIT has 

undergone a few iterations, including hyperLOPIT, which utilizes ten (and now 16) isobaric TMT 

labels, and LOPIT-DC, which fractionates with differential centrifugation instead of density 

gradient centrifugation (Geladaki et al. 2019). Density-gradient centrifugation provides slightly 

better resolution to organellar maps but requires a greater degree of technical expertise and 

equipment, while differential centrifugation is far simpler and quicker. TMT-isobaric tags have 

enabled a higher degree of quantitative accuracy through the ability to multiplex different fractions 

into the same mass spectrometry run without the need for post-hoc retention time alignment (Ong 

2003). TMT-labeling can cause ‘ion stacking’ in which MS2 profiles cannot resolve different 

isobaric tags, and MS3-based quantification is required. However, this is still highly accurate, 

while label-free methods provide modestly noisier quantification of a deeper proteomics 

characterization for a lower cost. Metabolic labeling of cell cultures using the SILAC method 

provides an alternative approach that is very powerful for comparing two or few conditions. The 

modularity of this approach has aided in its adoption in numerous systems. 

Regardless of the methodology being used, spatial proteomics techniques involve the 

generation of unique profile of protein abundance that should be more similar for proteins of the 

same cellular compartment than biophysically unrelated proteins. Simply, a protein found in X 

organelle should be relatively more abundant in a fraction enriched in X organelle. Across many 
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diverse fractions, a number of relative abundance profiles should be present for a whole manner 

of organelles and non-organellar compartments. For example, the large and dense mitochondria 

should pellet early in a differential centrifugation experiment or segregate further along a density 

gradient relative to some lighter organelle like the lysosome or peroxisome. Thus, one expects 

true mitochondrial residents (like the F1 ATP synthase subunits) to display their highest relative 

abundance in the fraction in which mitochondria are enriched. In addition to the normalization 

methods inherent in all mass spectrometry-based proteomics (i.e., normalizing a peptide 

abundance relative to all other peptide abundances), spatial proteomics analyses typically involve 

some protein-level normalization to get all proteins onto the same scale, for e.g., by summing all 

protein abundances and making each a ratio of that sum (Callister et al. 2006). The de novo 

clustering of abundance profiles should group proteins residing in the same or similar regions of 

the cell with respect to their steady-state protein localization (Barylyuk et al. 2020). The 

application of a priori biological knowledge onto this data structure allows for the use of 

supervised classification algorithms that can use labeled data (i.e., marker proteins) to make 

predictions about the localization pattern of unlabeled data (i.e., unknown proteins). This was first 

done using the so-called “chi-square” measurement which was calculated using the sum of 

squared differences between peptide abundance values in each fraction (Andersen et al. 2003). 

Using numerous peptides unique to centrosomal proteins, an empirical cut-off value was set after 

which peptides did not clearly correspond to centrosomal proteins. Since this classic approach, a 

number of machine learning techniques have been used, perhaps the most popular being support 

vector machines (SVMs) (Boser, Guyon, and Vapnik 1992)and recently Bayesian mixture 

modeling (Gatto, Breckels, Wieczorek, et al. 2014; Crook et al. 2019; 2018; Gatto, Breckels, 

Burger, et al. 2014). These classification methods are often called “hard” and “soft”, respectively 

(Liu, Zhang, and Wu 2011). Simply, hard classifiers like SVMs involve the generation of a 

decision boundary (e.g., a line in 2D space) which is iteratively trained on labeled data in order to 

maximize the number of true positives and minimize the number of false negatives on each side 

of the boundary. For spatial proteomics, the training set is made up of marker protein abundance 

profiles, and dimensionality is determined by the number of subcellular fractions generated. The 
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closer a protein is to a given decision boundary, the weaker its classification score is. For 

example, a protein on the mitochondrial side of a decision boundary will have a higher 

membership likelihood (i.e., larger SVM score) the further it is from its decision boundary with 

non-mitochondrial marker proteins. In contrast, soft classifiers like Bayesian mixture modeling 

measure conditional (or posterior) probabilities for each protein profile belonging to each marker 

class to measure global uncertainty in classification to all compartments (Crook et al. 2018). A 

protein with high probabilities for multiple compartments is more uncertain than one matching 

only a single compartment. Both approaches have value in this domain and provide similar levels 

of organellar resolution (Crook et al. 2018). Irrespective of the analytical method, the output is 

that each protein in the dataset gets classified to a single compartment, and the distribution of 

either classification scores or global uncertainty can be used to filter out lower-confidence 

classifications to make predictions with fewer false positives.  

Recent years have seen these methods applied to a number of diverse organisms 

necessitating high-throughput techniques of this kind. This has been done in unicellular and 

multicellular organisms in many different conditions and can likely be applied to any organism 

capable of basic cell biological manipulations. Within a single organism, one can probe changes 

to global protein localization before and after some treatment. The simplest application is the 

global determination of steady-state protein localization patterns in a single organism in a 

constant environment. Applications to mouse (Christoforou et al. 2016; Foster et al. 2006), rat 

(Jadot et al. 2017), yeast (Nightingale, Oliver, and Lilley 2019), and human (Geladaki et al. 2019; 

Thul et al. 2017) have yielded a massive expansion to their known organellar proteomes. 

Assayed as well were the cyanobacteria Synechocystis (Baers et al. 2019) and apicomplexan 

Toxoplasma gondii (Barylyuk et al. 2020) with cell biologies unique from classic model systems.  

Additionally, a few experiments were done in different conditions to highlight dynamic 

changes to protein localization within the same species. For example, human HeLa cells treated 

with epidermal growth factor were shown to exhibit large changes to protein localization including 

the translocation of numerous transcription factors to the nucleus (Itzhak et al. 2016). Mouse liver 

cells from individuals with alcohol-induced hepatic disease were shown to exhibit large changes 
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to protein localization within and around the Golgi apparatus and involving lipid metabolism 

(Krahmer et al. 2018). Human cell lines exposed to proinflammatory lipid polysaccharides 

displayed stark differences in both protein abundance and localization in immune and signaling 

proteins (Mulvey et al. 2021). Human HaCaT skin cells exposed to UV light displayed a 

disproportionate number of mitochondria to secretory translocations (Valerio et al. 2022). One 

experiment managed to relocalize proteins to the mitochondria by modifying a key Golgin protein 

which directs cargo from the trans-Golgi (Shin et al. 2020).  

Taken together, the experimental and bioinformatic toolkit of spatial proteomics-based 

organellar mapping provides a powerful way to study protein localization and cell biology. The 

ability to apply this toolkit to any organism capable of basic cell biological manipulations opens up 

a number of avenues for studying the evolution of protein localization and cellular organization 

across diverse lineages.  

 

Dissertation Structure 

 

This dissertation will take steps towards the establishment of a spatial proteomics toolkit in the 

ciliate Paramecium with its numerous gene duplicates. To facilitate more discoveries in non-

model systems, I developed a simple bioinformatic infrastructure to empower researchers in the 

future to make more discoveries and provide more insight into the nascent field of evolutionary 

cell biology. This introductory chapter provided important background information necessary for 

framing the context of the remainder which can be summarized simply as: P. tetraurelia is a large, 

complex cell with a unique evolutionary history in a poorly studied lineage of unicellular 

eukaryotes. The second chapter will outline my contribution to the study of the evolution and cell 

biology of P. tetraurelia through the generation of a novel spatial proteomics dataset in which over 

9,000 unique proteins are predicted to a subcellular localization. The third chapter will be my 

contribution of a new bioinformatic tool which provides a simple way for researchers to make use 

of these types of datasets without the need for high-level programming expertise. The fourth 

chapter will be a thorough dive into the subject of gene duplication via the identification of 
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hundreds of pairs of ohnologs both differentially identified in this deep proteomic survey and 

differentially abundant in subcellular fractions. These findings broadly support the use of spatial 

proteomics data as a high-throughput assay for protein relocalization. A final conclusion chapter 

will wrap up the dissertation, outline its shortcomings, and highlight take-home messages. 
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CHAPTER 2 

SPATIAL PROTEOMICS OF PARAMECIUM TETRAURELIA REVEALS THE PERVADING 

NATURE OF MEMBRANE TRAFFICKING 
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Highlights: 

- Spatial proteomics generates multi-dimensional protein abundance profiles for over 9,000 

unique proteins in Paramecium tetraurelia 

- The known protein inventories for dozens of organelles and compartments are expanded by as 

many as a thousand new proteins 

- Some metabolic pathways, like glycolysis, are spatially distributed between membrane-bound 

organelles and the cytoplasm 

- Membranous trafficking proteins predicted to different compartments show evidence for different 

sorting mechanisms 

 

Summary: 

Paramecium tetraurelia is a model ciliate with over 40,000 distinct protein-coding genes resulting 

from as many as three ancient whole-genome duplication events. This had led to the expansion 

of many gene families and their subsequent, functional diversification, but we know virtually 

nothing about most of these genes – whether they actually produce proteins, and if so, where 

those proteins localize after synthesis. When protein localization is assayed, the results are often 

ambiguous due to the immeasurable complexity of membrane trafficking systems and observed 

promiscuity of many labeled proteins. Here, we take a protein-correlation profiling approach to 

cluster proteins based on their relative abundance in biochemically distinct fractions after gentle 

cell lysis. We use supervised and unsupervised learning models to leverage known biological 

information and make predictions about the localization patterns of thousands of unknown 

proteins. Our findings largely recapitulate the expected properties of organellar proteomes and 

allow us to expand their protein inventory. In some cases, biochemical pathways contain 

enzymes differentially localized to more than one organelle, and we highlight the case of 

upstream glycolytic enzymes displaying a cytoplasmic pattern and downstream enzymes 

appearing mitochondrial. We also describe new biological properties like targeting sequences, 

regulatory elements and protein sorting pathways. With 901 proteins containing a predicted signal 

peptide, we discover a hydrophobic motif found in ~95% of proteins differentially positioned in 
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proteins predicted to different organellar compartments and associated with transmembrane 

domain presence. We did not resolve the macronucleus and micronucleus of P. tetraurelia but 

show that the nuclear proteins we do predict represent many core nuclear protein complexes and 

cover important functions like transcription and DNA replication. We end by identifying high 

confidence orthologs across eukaryotic diversity to determine the evolutionary pattern underlying 

each compartment and carefully compare our dataset to a similar one from the apicomplexan 

parasite Toxoplasma gondii. Taken together, this work provides the deep characterization of one 

of the largest microbial proteomes in nature as well as a resource for community-driven 

discoveries resulting from these data.  

 

Introduction: 

The hallmark of eukaryogenesis is the evolution of new organelles and the accompanying 

expansion of their protein repertoire. The ciliate phylum is one lineage with a plethora of unique 

organelles whilst also containing some of the largest cell sizes and largest gene families of all 

extant eukaryotes (Maurer-Alcalá and Nowacki 2019; Lynch et al. 2022a). The Paramecium 

aurelia species complex takes this to a new extreme with roughly 40,000 protein coding genes 

produced as a result of as many as three ancient, whole-genome duplication (WGD) events (Aury 

et al. 2006; Gout et al. 2019). Paramecium tetraurelia is the best-studied species in this complex, 

having served as a historical model system in genetics and cell biology and an emerging system 

in genomics and evolutionary biology (Beisson et al. 2010). Despite this, relatively few protein-

coding genes have been functionally investigated or localized within the cell. Investigations into P. 

tetraurelia using RNAi knockdown or GFP-fusion proteins have revealed some of the molecular 

mechanisms underlying ciliate cell biology (Hauser, Haynes, et al. 2000a; Plattner 2018), but 

direct cell biological analysis of all these proteins is unrealistic, and novel approaches must be 

used to better understand P. tetraurelia’s macromolecular composition.  

In addition to their gene expansions, ciliates host a number of unique organelles and 

pathways alongside their suite of standard eukaryotic features (Lynch et al. 2022b). Perhaps 

most conspicuous is the phenomenon of nuclear dimorphism whereby ciliates have two types of 
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nuclei: a large transcriptionally active macronucleus (MAC) and a smaller, silent micronucleus 

(MIC) acting analogously to its germline (Hausmann, Bradbury, and others 1996). A complex 

series of RNA-mediated genome rearrangement events accompanies meiosis, and each sexual 

generation sees the destruction of the old MAC and the creation of a new nuclei (Nowacki, 

Shetty, and Landweber 2011). Continuous with these nuclei is a vast endoplasmic reticulum (ER) 

accompanying Golgi stacks through which protein trafficking is conducted (Guerrier et al. 2017). 

Perhaps the most striking features of their endomembrane system are the osmoregulatory 

contractile vacuole complexes (CVC), phagosomes, and cortical organelles like alveolar and 

parasomal sacs (Plattner 2020; 2013; 2010; Plattner and Kissmehl 2003; Stelly et al. 1991). As a 

holotrich ciliate, Paramecium are uniformly covered in cilia anchored to the cell via cortical basal 

bodies and their vast cytoskeletal network (Lynn 2008; Tassin et al. 2015). The sheer complexity 

of this system requires the development of novel approaches to understand it as a whole. 

Recent developments in spatial proteomics offer a solution to the problem of studying ciliate cell 

biology, bringing the potential to localize thousands of proteins to organelles and subcellular 

compartments simultaneously (Christopher et al. 2021). Briefly, all experiments under the 

umbrella of spatial proteomics utilize cell lysis, fractionation, and quantitative proteomics to 

identify proteins with similar abundances due to their shared organellar environment. High 

confidence “marker proteins” are used to indicate the expected pattern of all proteins within an 

organelle, and various statistical and machine-learning techniques then classify unknown proteins 

based on how they compare to distributions of the marker proteins themselves. So far, these 

methods have only been applied to a limited number of model systems (Gatto, Breckels, 

Wieczorek, et al. 2014), but their design is applicable to any organism capable of basic cell 

biological manipulations. 

Here, we combine cell lysis and fractionation with label-free quantitative (LFQ) 

proteomics to produce a multi-dimensional dataset of protein abundance across biochemically 

distinct fractions in P. tetraurelia. We first predict the localization pattern of thousands of unknown 

proteins using a supervised classification algorithm trained on hundreds of manually curated 

marker proteins and found good overlap between them and proteins grouped through 
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unsupervised clustering. We then use the shared cell biological properties of these subcellular 

compartments to predict new features like regulatory motifs and biochemical modules. 

Surprisingly, we discover metabolic pathways with mosaic organellar composition such as 

glycolytic enzymes with either cytosolic or mitochondrial localizations. We demonstrate the 

pervading nature of the ER-Golgi system in influencing the steady-state protein abundance 

behavior of many proteins acting at the cell cortex and secreted to the cell surface and discover a 

hydrophobic peptide motif whose position may influence protein trafficking. We then discuss the 

irreducible complexity of the MAC and MIC proteomes whose localization patterns could not be 

resolved in this study. Taken together, we provide a deep characterization of one of the largest 

unicellular eukaryotic proteomes in nature. 
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Table 1. Summary of Protein Predictions and their Various Properties  
Unknown proteins were predicted to one of 17 organellar compartments using an SVM algorithm trained on 
291 high-confidence marker proteins. The names of these compartments are displayed here with a brief 
description of the marker proteins descriptions from which they were created. The number of marker 
proteins and of unknown proteins classified to each respective compartment are then displayed as well as 
the median SVM scores which informed that classification. The global, median SVM score was used as a 
cut-off for ‘predicting’ proteins to a certain compartment, and the number of each compartment’s predicted 
proteins are then shown. We then determine the percentage of proteins with each of the follow protein 
properties: transmembrane domains (TMD), signal peptides (SP), nuclear localization signal (NLS), and 
mitochondrial targeting sequence (mTS). Two functional genomic datasets were then used to determine the 
percentage of genes differentially expressed (DE) after trichocyst discharge and during reciliation (Arnaiz, 
Meyer, and Sperling 2020). The mTS peptides were predicted using TargetP 2.0 (Armenteros et al. 2019), 
NLS using NLStradamus with a prediction cutoff of posterior prediction cutoff of 0.6 (Nguyen Ba et al. 2009), 
and the remainder of features were downloaded from the ParameciumDB and were previously described 
(Arnaiz, Meyer, and Sperling 2020). Statistical significance was assessed using a chi-square test corrected 
for multiple testing (p < 0.003), and boldened values are those which are significantly larger than expected. 
The first column’s order will serve as that of all subsequent figures unless specified otherwise.  
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Figure 2.1. Experimental overview and the Generation of Protein Abundance Profiles 
Well-fed batch cultures of P. tetraurelia cells were lysed and fractionated in two different ways to generate 
twelve biochemically distinct, subcellular fractions (top). After quantitative proteomics on three biological 
replicates, we observe unique distribution profiles for proteins corresponding to their steady-state 
localization pattern within the cell (bottom). The Y-axis of distribution profiles are intensity (normalized from 0 
to 1), and the X-axis contains the triplicate centrifugal fraction names described in the Results section (i.e., 
MAC-1, 300g-1, … Sup-3). Using these profiles, we predicted localizations for almost 9,000 unique proteins 
covering a wide range of cellular structures. Our work greatly expands a growing model of the membrane-
trafficking and organellar composition of Paramecium first illustrated by Allen and Fok (2000) by describing 
its cell biology in the light of that and subsequent knowledge. Created with BioRender.com. 
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Results: 

 

Thousands of unnamed or ambiguously annotated proteins are confidently predicted to specific 

organelles in P. tetraurelia  

 

To define the spatial proteome of P. tetraurelia, we used a protein correlation profiling (PCP) 

approach modified from the LOPIT-DC protocol described previously (Geladaki et al. 2019) with 

label-free quantification (LFQ). After optimizing cell culturing, lysis, and fractionation conditions, 

we performed LFQ analysis using an Orbitrap Fusion Lumos Tribrid Mass Spectrometer analyzed 

in ProteomeDiscoverer (Thermo) and then using the proloc package in the R programming 

language(Team and others 2013; Breckels et al. 2016). We detected over 11,000 total proteins 

whose coverage and peptide evidence were comparable to similar studies (Supp Text). We ran 

BUSCO and found these represented ~62% of core eukaryotic proteins and ~94% of core 

alveolate proteins, while the entire assembly of 40,460 proteins represented ~71% and ~99% of 

core eukaryotic and alveolate proteins, respectively. After processing and filtering, our proteomics 

dataset contained 9,026 proteins (Table 1). 

Proteins that localize to a particular organelle or intracellular compartment are expected 

to have similar relative abundance profiles across subcellular fractions (Figure 2.1). We manually 

curated a set of 291 marker proteins to predict the localization of the remaining 8,735 proteins 

based on their shared protein abundance profiles representing seventeen diverse cellular 

compartments (Figure 2.2; Figure 2.10). Marker proteins are either experimentally validated to 

localize to their respective compartment or share homology with genes known to do so in other 

systems. We trained a support-vector machine (SVM) classifier with these marker protein profiles 

and classified all 9,026 proteins to one of the seventeen compartments before filtering low-

scoring classifications to end up with 4,513 predictions (Supplement). To confirm that our 

application of biological information onto the data structure was appropriate, we compared SVM 

predictions with an equal number of clusters generated by the k-Means (KM) clustering algorithm 

(Likas, Vlassis, and Verbeek 2003). Qualitatively, KM clusters overlapped well with organellar 
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predictions (Figure 2.2; Figure 2.12). While only the cytosol, proteasome, and ribosome 

compartments were made up of a single KM cluster, most were overrepresented by one or few 

clusters. This was more so the case for compartments characterized by a single peak of 

abundance (Figure 2.10) as opposed to multiple, disconnected peaks. Indeed, the nuclear and 

membrane trafficking compartments were spready across three to seven KM clusters likely due to 

the heterogeneous nature of their abundance profile.  

Proteins predicted to the same compartment were characteristic of that compartment 

(Table 1). Both nuclear compartments and the ribosomal predictions were enriched with nuclear 

localization signals (NLSs), as were mitochondrial proteins for mitochondrial targeting sequences 

(MTSs). Transmembrane domains (TMDs) were present in ~38% of predicted mitochondrial outer 

membrane (MOM) proteins, 66% of ER proteins, and ~62% of the insoluble membrane trafficking 

compartment. Proteins of the lysosome, ER, trichocyst matrix, or cell surface (i.e., surface 

antigens) were enriched with signal peptides (SPs) supporting their need to be translocated to the 

ER for processing and sorting. Since the range of expression values was often quite small for 

genes of the same predicted compartment, we performed de novo motif prediction on their 

putative promoter region using MEME (Bailey et al. 2009). We identified nineteen significantly 

enriched motifs, six of which were highly enriched near the annotated start codon (Figure 2.13). 

Of these six, two were specific for the trichocyst matrix, two for the proteasome, one for the ER, 

and one for the lysosome. These findings suggest coregulation between some components of the 

same organellar compartment as has been demonstrated in other contexts (Tsypin and Turkewitz 

2017). 
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Figure 2.2. Organellar Maps of P. tetraurelia Overlap De Novo Clusters  
The multidimensional protein abundance data were visualized using the t-SNE algorithm and overlayed with 
291 manually curated marker proteins representing 17 organellar compartments (top left). An SVM algorithm 
was trained on these marker protein profiles and used to predict the localization status of >9,000 unknown 
proteins. Each classification was associated with an SVM score, and the median score across the entire 
dataset was used as a cut-off to determine the predicted protein constituents of each organellar 
compartment (top right). Predicted proteins were compared to de novo clusters generated using the k-
means algorithm with an equal number of clusters as compartments. Most compartments correspond to one 
or a few clusters, while others were dispersed amongst many clusters (bottom). In no cases did a de novo 
cluster contain proteins not represented in one of the 17 organellar compartments. 
Color code: Axoneme (red), Basal Body Association (navy blue), Basal Body Core (dark green), Cytosol 
(orange), ER (yellow), Lysosome (sky blue), Membrane Trafficking Insoluble (brown), Membrane Trafficking 
Soluble (pink), Mitochondria (violet), Mitochondrial Outer Membrane (light green), Nuclei Insoluble 
(blue/gray), Nuclei Soluble (dark blue), Peroxisome (tan), Proteasome (light pink), Ribosome (teal), Surface 
Antigen (gold), Trichocyst Matrix (indigo). 
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The cellular degradation machinery formed tight clusters around the lysosome and proteasome  

 

Lysosomes are specialized organelles which play a variety of roles in breaking down cellular 

materials and defending against pathogens (Holtzman 2013). The methods underlying their 

discovery were key to the development of cell biology and served as the direct precursor to all 

spatial proteomics experiments (Christian de Duve et al. 1955; Mann 2020). Our lysosomal 

markers were a combination of peptidases, glycosidases, and annotated lysosomal membrane 

proteins which had a simple abundance profile characterized by high abundance in the 3K/5K 

fractions exclusively (Figure 2.10). We predicted 146 proteins to this organelle with enriched 

terms relating to digestive processes like protein and sugar degradation with a significantly lower 

isoelectric point (pI) than expected by chance (Figure 2.14). All 300 classified proteins share 

these same properties and are thus likely lysosomal. By contrast, the proteasome operates in a 

more targeted way to degrade individual proteins via a ubiquitin-dependent process (Tanaka 

2009). In our study, the homologous components of the proteasome had more complex 

abundance profiles whose peak was always in the 120K fraction with a smaller peak in the 30K 

fraction (Figure 2.10). We predicted 66 proteins to this complex and found the singular 

representation of the “Proteasome” KEGG pathway with every 20S proteasome subunit and 

numerous components of the lid and base. The inclusion of all 175 predicted proteins did not 

expand any component of this complex but did include two modules of the “Ubiquitin mediated 

proteolysis” pathway (APC8: PTET.51.1.P1060100; UBLE1B: PTET.51.1.P0480203), however 

the remainder included spliceosomal and ribosomal subunits which raises doubts that all 

classified proteins are relevant in this context.  
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Figure 2.3. Differential Localization of Glycoytic/Gluconeogenic Enzymes in P. tetraurelia is 
Indicative of Substrate Channeling 
Based on work from Tetrahymena thermophila (Smith et al. 2007), the glycolytic pathway of ciliates is 
thought take place in the mitochondria, despite most model eukaryotes performing cytosolic glycolysis and 
importing pyruvate and electron carriers to mitochondria.  
(Left) Here, we show the glycolytic pathway and its associated enzymes, numbered one through ten, as well 
as the enzymes of the reverse reactions. In our study, we identified nine of ten enzymes and confirmed the 
sole mitochondrial location of enzymes 7-9. Enzyme 2 conflicts with T. thermophila, while the two copies of 
enzyme 3 were surprisingly predicted to the MOM. Enzymes 5 and 10 were present in multiple copies which 
were predicted to different locations. The first gluconeogenic enzyme, Pyruvate Carboxylase, has both 
mitochondrial and cytosolic variants while the next step is entirely mitochondrial.  
Adapted from “Glycolysis and Glycolytic Enzymes” by BioRender.com (2020). Retrieved from 
https://app.biorender.com/biorender-templates.  
(Right) The distribution profiles associated with these predictions are shown, numbered in accordance with 
their position in the pathway with gluconeogenic enzyme counts beginning after glycolytic enzymes. The 
former is also colored red. In cases where multiple paralogs were present, all were plotted simultaneously. 
The x-axis is fraction name as is the case in Figure 2.1, and the y-axis is normalized abundance.  
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Metabolic enzymes in the mitochondria, cytosol, peroxisome is indicative of mosaic biochemical 

pathways 

 

Mitochondria in ciliates are large, double-membrane organelles with tubular cristae concentrated 

at the cell cortex and dispersed throughout the cell containing the machinery for oxidative 

phosphorylation and ATP synthesis (Powers, Ehret, and Roth 1955). The mitochondrial outer 

membrane (MOM) is the site of contact with other cellular organelles like the ER, and porin 

proteins act to translocate cytoplasmic proteins to the mitochondrial matrix, inner membrane 

(MIM), and intermembrane space (IMS) proteins in the presence of a signaling tag like the 

mitochondrial targeting sequence; mTS (Hartl et al. 1989). While most mitochondrial proteins are 

encoded by the nuclear genome, many are retained on its own genome and are universally 

functional within the mitochondria— making these mitochondrial ORFs ideal marker proteins. We 

observed a singular of abundance profiles characterized by high abundance in the 300g and 1K 

fractions (Figure 2.10) which was shared with a variety of annotated mitochondrial proteins. We 

saw another separate cluster of porins identified previously (Wideman et al. 2013) and used 

those as the basis for the mitochondrial outer membrane (MOM). The MOM compartment 

proteins had similar high abundance in the 300g/1K fractions but an additional 30K peak (Figure 

2.10), and the marker TOM40 (PTET.51.1.P0280026) was orthologous to TOM40 in T. gondii and 

S. cerevisiae whose pattern was similar in their respective hyperLOPIT datasets (Barylyuk et al. 

2020; Nightingale, Oliver, and Lilley 2019) (Figure 2.15). Only 40 proteins were predicted to the 

MOM, and most with detectable orthologs were either peptidases (e.g., pepN: 

PTET.51.1.P0240282; LTA4H: PTET.51.1.P0970095) or Rab GTPases (e.g., TBC1D20: 

PTET.51.1.P0090350) – the latter of which may regulate mitophagy (Sidjanin et al. 2016). The 

MOM compartment had an altogether different composition because the membrane-bound porin 

markers led to several probable-ER proteins and mitochondrial biogenesis factors being predicted 

here. These included the GTPase RHOT1/GEM1 (PTET.51.1.P0870070), DNAJC11 chaperone 

(PTET.51.1.P0320066) and two copies of the acyl-Coa reductase HSD17B12 

(PTET.51.1.P0760003 and PTET.51.1.P0520130). GEM1 is a component of the ER-
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mitochondrial encounter structure (ERMES) which physically links the two organelles and may 

explain other ER proteins (Kornmann, Osman, and Walter 2011). 

The predicted mitochondrial proteome contains over 1,000 proteins and hosts the highest 

SVM scores of any compartment in this study (Table 1). This suggests the mitochondria are well 

resolved in this study, and indeed most genes fall within the large “Metabolism” pathway. All but 

one component of the TCA cycle (2-oxoglutarate dehydrogenase E2 component) was identified 

as were numerous components of the pyruvate and glyoxylate metabolic pathways (Figure 2.16). 

Each component of the electron transport chain had multiple predicted proteins represented 

except Complex III. These results support a massive expansion of the known protein inventory of 

mitochondria in P. tetraurelia and highlight the relationship between the MOM and ER.  

Two mitochondrial pathways show clear mosaicism with other cellular compartments. 

The first is glycolysis (Figure 2.3), which typically occurs in the cytoplasm of model eukaryotes, 

but in the ciliate T. thermophila is thought to be mitochondrial due to the identification of six of ten 

glycolytic enzymes in purified mitochondria subjected to mass spectrometry (Smith et al. 2007). 

Our study confirms the mitochondrial localization of all these enzymes; however, many are 

paralogs with diverse localizations. Three of four phosphoglucose isomerase paralogs are 

mitochondrial while the other is cytosolic, and both paralogs of phosphofructokinase were 

predicted to the MOM compartment. Association with the MOM/IMS was observed in four 

glycolytic enzymes of Arabidopsis thaliana (Giegé et al. 2003), however this enzyme was not 

amongst them. From these data, we see evidence for substrate channeling, which describes the 

biased spatial distribution of enzymes for the purpose of directing its final product, e.g., 

preventing pyruvate from being used for non-respiratory processes (Sweetlove and Fernie 2018). 

The unambiguous mitochondrial localization for four of the last five glycolytic enzymes is 

contrasted with cytosolic and noisy nature of four of the first five. Why pyruvate kinase did not 

follow this pattern is unclear, but the enzyme was not detected in T. thermophila mitochondria 

and was found in our study in at least five copies with two cytosolic copies and three more 

ambiguously assigned copies.  
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The second compartment which biochemically overlaps with the mitochondria is the 

peroxisome. Despite the importance of ciliates in the early characterization of the peroxisome, 

very little work has been done on its proteomic composition in this lineage, and no proteins have 

been localized here in Paramecium (Müller, Hogg, and de Duve 1968; C de Duve 1969). Using 

marker proteins like the enzymes thiolase, isocitrate lyase, and many PEX and PMP membrane 

proteins (Supp Table), we predicted 89 proteins to this organelle including a handful of orthologs 

of P. caudatum genes described previously (Richardson and Dacks 2022) as having a putative 

peroxisomal targeting signal (PTS): PTET.51.1.P1610060, PTET.51.1.P0250064, and 

PTET.51.1.P0150057. The entirety of putative peroxisomal membrane proteins were predicted to 

be peroxisomal, but many enzymes traditionally of the peroxisomal matrix were predicted to the 

mitochondria. Enzymes traditionally mediated by the PTS1 import pathway into the peroxisome 

included many predicted mitochondrial proteins in this study. Others, like isocitrate 

dehydrogenase, had paralogs with mitochondrial, peroxisomal, and cytosolic predictions; as seen 

in plants (Corpas et al. 1999). The antioxidant system displays this pattern as well, such as the 

mitochondrial superoxide dismutase (SOD2: PTET.51.1.P1060137) and cytosolic PRDX1 

(Peroxiredoxin: PTET.51.1.P3140006). While the overlapping roles of the peroxisome and 

mitochondria is known in ciliates in the context of lipid metabolism (Krueger et al. 2022), these 

data suggest many shared biochemical modules linking the two organelles.  
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Figure 2.4. A Hydrophobic Motif Found in Nearly All Signal-Peptide Containing Proteins is 
Associated with Organellar Compartments and Transmembrane Domain Presence  
De novo motif discovery of all signal peptide (SP) containing proteins yielded a highly hydrophobic motif 
present ~95% of the time. The sequence logo shows a high-information content methionine corresponding 
to the universal first position of all proteins (top left), however, the distribution of the motif across SP-
containing proteins showed many C-terminal variants (example; top right).  

We plotted the distribution of N- vs C-terminal variants (bottom left) and found stark differences 
between numerous compartments like the trichocyst matrix and insoluble membrane trafficking 
compartments. The trichocyst matrix had a similar pattern to that of the lysosome in that nearly all motif 
variants were N-terminal, but the membrane trafficking and ER compartments appeared to have a wider 
spread of motif positions. From left to right, the compartments read: ER, Lysosome, Membrane Trafficking 
Insoluble, Membrane Trafficking Soluble, Surface Antigen, Trichocyst Matrix. The surface antigens were 
intermediate to these patterns.  

We then compared the TMD-presence with motif position and saw clear differences between TMD-
absent proteins with N-terminal variants and TMD-containing proteins with more diverse positions. Since 
SP-containing proteins are likely to be translocated to the ER and processed before being shuttled to their 
cellular destination, these patterns support a different sorting mechanism for those proteins destined for 
membranes and those not. 
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Cortical and membrane trafficking proteins exhibit different abundance profiles based on their 

relationship with the endoplasmic reticulum and Golgi apparatus 

 

The traditional view of membrane trafficking involves the processing and shuttling of proteins from 

their origin of synthesis to their cellular and extracellular destinations (Schekman 1985). These 

general activities are common across all eukaryotes, but some protists perform highly regulated 

versions of these processes (Plattner and Kissmehl 2003).  

Many ciliates contain subcortical organelles broadly called extrusomes (Rosati and 

Modeo 2003) which in Paramecium are the spear-shaped trichocysts used primarily for defense 

(Plattner 2017). The body of trichocysts are made up of trichocyst matrix proteins (TMPs), which 

are highly abundant and post-translationally processed through the Golgi apparatus. In our study, 

TMPs formed a tight cluster due to their singular abundance only in the 300g fraction (Figure 

2.10). Using fourteen annotated TMPs, we predicted 220 proteins to the trichocyst matrix 

compartment, most of which were annotated TMPs which were both highly expressed and highly 

acidic (Figure 2.14). Adjacent to trichocysts are basal bodies which physically anchor cilia to the 

rest of the cell. Basal bodies are themselves embedded in several networks of cytoskeletal 

proteins like the infraciliary lattice (Aubusson-Fleury et al. 2013; Garreau DE Loubresse et al. 

1988). In our study, we constructed core and peripheral basal body compartments built around 

epiplasmins of the epiplasm and SF-assemblins of the striated rootlet, respectively (Supplement). 

The basal body core contained 387 proteins, many of which have known roles in basal body and 

ciliary function (Jerka-Dziadosz et al. 2010; Gogendeau et al. 2020) like SAS6 

(PTET.51.1.P0200220) and NPH4 (PTET.51.1.P0220034). While not directly a part of the basal 

body, alveolar sacs are intracellular calcium stores conserved across alveolata and contain a 

family of conserved alveolins (Gould et al. 2008) (PTET.51.1.P0130289, PTET.51.1.P0190258, 

and PTET.51.1.P0660154) predicted here as well. The basal body associated compartment had 

only 30 predictions, and these were mainly the additional centrins and SF-assemblins related to 

the marker proteins as well as a handful of signaling enzymes like the bi-functional DHFR-TS 

(PTET.51.1.P0620252). The final of these cortical organelles is the axoneme itself which makes 
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up the structural components of the cilia-proper grounded in numerous dynein and tubulin marker 

proteins. The abundance profile of this and the basal body associated compartment were highly 

similar in the position of their ‘peaks’ of abundance but differed starkly in the ‘valleys’ (Figure 

2.10). Using numerous axonemal dynein and tubulin marker proteins, we predicted 59 proteins 

here, and roughly half were differentially expressed (DE) after reciliation (Arnaiz et al. 2010) 

(Table 1). In addition to the structural proteins, we also see many signaling enzymes like 

adenylate kinase (e.g., PTET.51.1.P0730129) and calcyphosin (e.g., PTET.51.1.P0100152) 

predicted here as well as the golgin PTET.51.1.P1260140. These non-structural proteins suggest 

a tight association between the structural components of the cilia and the signaling molecules 

modulating its activity.  

The ER compartment in this study was constructed around three experimentally validated 

proteins (PDI1-1: PTET.51.1.P0980088; ptSERCA: PTET.51.1.P0640022; HSP70Pt08: 

PTET.51.1.P1020045) as well as a number of putative chaperone and ER membrane proteins. 

ER proteins peak in abundance between the 9K and 30K fractions with little signal elsewhere 

(Figure 2.10). We then predicted 342 proteins highly enriched in SPs and overwhelmingly 

represented the KEGG pathway “Protein processing in endoplasmic reticulum” (Figure 2.17) 

including the signal peptidases SPCS3 (PTET.51.1.P0880138) and SEC11 

(PTET.51.1.P1080019). The predicted ER proteins contained the highest proportion of genes 

differential expressed after trichocyst discharge, further supporting previous observations that 

trichocyst maturation is regulated by ER-to-Golgi transport (Arnaiz et al. 2010). A compartment 

spatially distinct but similar in its abundance profile was that of the surface antigen proteins 

(sAGs) whose processing and secretion is well-understood (Baranasic et al. 2014). These large 

proteins coat the cell surface and play important roles in signaling, and both traditional sAGs and 

mini “mAGs” formed a tight cluster containing 57 predicted proteins. Most of these were 

annotated ‘Paramecium surface, but others included the glycosyl carrier protein DOLPP1 

(PTET.51.1.P0100142 and PTET.51.1.P0590073), and the glycoproteins LRP2 

(PTET.51.1.P0120163) and MPDU1 (PTET.51.1.P0790038). Only the MPDU1 ortholog 

(PTET.51.1.P0790038), had both an SP and TMD, and in humans, this is an ER-resident 
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responsible for glycosylating many target proteins (Kranz et al. 2001). These associations 

suggest a deep connection between the ER’s glycosylating machinery and secretion system 

facilitating sAG transport to the cell surface (Fiedler and Simons 1995).  

We created two abstract ‘Membrane Trafficking’ compartments using membrane 

trafficking proteins identified computationally (Richardson and Dacks 2022), ciliary proteins 

identified experimentally by mass spectrometry (Yano et al. 2013), and experimentally validated 

endomembrane proteins. These proteins shared the ER’s high abundance between 9K to 30K but 

differed in one or two other fractions (Figure 2.10). One compartment was ‘insoluble’ in that it had 

high abundance in the 300g and none whatsoever in the Sup fraction. This contained ciliary 

membrane proteins (e.g., PMCAs), rabs, coatomers, and known residents of the contractile 

vacuole and Golgi. Of the 540 proteins predicted here, ~62% had predicted TMDs (Table 1). 

“Membrane Trafficking” and “Exosome” were the best represented KEGG BRITE classes, while 

the pathway “Protein processing in endoplasmic reticulum” was well represented with different 

components than the ER proper (Figure 2.18). Two markers localized to the osmoregulatory 

contractile vacuole complex (CVC), PtSTO1c (PTET.51.1.P1670084) and NSF2 

(PTET.51.1.P0410185) aided in predicting other CVC proteins, e.g., VATA2_1 

(PTET.51.1.P0380139), Rab11c (PTET.51.1.P0430208), and PtSYB2-2 (PTET.51.1.P0670153). 

We also see the phagosome proteins VATA6 and VATA9 (both ohnologs) predicted here 

alongside the ortholog of TtVPS13A (PTET.51.1.P0160355) localized to the phagosome 

membrane in T. thermophila (Samaranayake, Cowan, and Klobutcher 2011). The prediction of 

the ER-localized VATA7_1 (PTET.51.1.P0580140) and Golgi-localized VATA8_2 

(PTET.51.1.P0080391) further supports a broad, membrane-associated trafficking compartment.  

The soluble membrane trafficking compartment had a similar profile to the insoluble 

compartment but exhibited high abundance in the Sup fraction. We included different membrane 

trafficking proteins (Richardson and Dacks 2022), SNAREs (Kaur et al. 2022), and intraciliary 

transport proteins (IFTs). Of the 625 proteins predicted here, only ~2.3% had TMDs. Notable in 

these predictions are many components of endocytosis such as AP2M1 (PTET.51.1.P0260049), 

EEA1 (PTET.51.1.P1650038), and HSPA1 (also called HSP70Pt01: PTET.51.1.P0330220). Of 
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the cytoplasmic or phagosome-associated actins described previously (Sehring, Mansfeld, et al. 

2007), we found ACT1_1 (PTET.51.1.P0130204), ACT1_5 (PTET.51.1.P0850133), and ACT5_1 

(PTET.51.1.P1560086). Again, the pathway “Protein processing in the endoplasmic reticulum” 

was highly represented, but we see largely different modules than either the insoluble membrane 

trafficking compartment or ER (Figure 2.17). Taken together, the differences in abundance 

profiles allow us to spatially resolve the ER proper from the membranous and cytoskeletal 

components of the ER-Golgi related trafficking systems.  

We performed de novo motif discovery on all 901 SP-containing proteins and found the 

highly hydrophobic motif MKKJJJJLLJ present ~95% of the time (Figure 2.4). In about 80% of 

cases, this motif began with the N-terminal Methionine residue immediately upstream of the 

predicted SP, but many were C-terminal. The trichocyst matrix and lysosomal predicted proteins 

had mostly N-terminal variants while the ER and both membrane trafficking compartments had a 

wider spread of motif positions, and surface antigens were either N- or C-terminal with no 

intermediate position. This raises the possibility of multiple sorting pathways present in 

Paramecium. Indeed, protein sorting in model eukaryotes is done through both signal recognition 

particle (SRP)-dependent or independent mechanisms depending on the presence of a 

hydrophobic N-terminal sequence and C-terminal TMD (Gemmer and Förster 2020). SRP directly 

facilitates the translocation of proteins with N-terminal hydrophobic stretches, while “tail-

anchored” proteins are processed via their C-terminal TMDs (Borgese, Colombo, and Pedrazzini 

2003). While only ~27% of proteins with an N-terminal MKKJJJJLLJ had TMDs, ~84% with the C-

terminal variant did (Figure 2.4). This pattern was far stronger for the trichocyst matrix and 

lysosome compartments, which may highlight the former’s role as a lysosome-related organelle 

(Kuppannan et al. 2022). These findings suggest that the predominant sorting mechanism for 

non-membranous proteins in Paramecium involves a hydrophobic N-terminus upstream of a 

hydrophobic SP. TMD-containing proteins with SPs do not require a hydrophobic N-terminus but 

instead are processed through a different mechanism. This former may represent the ‘cargo’ 

proteins being trafficked, while the latter represents the proteins responsible for trafficking.  
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Supervised classification can distinguish between the ribosomes and nucleoli, chromatin and 

nucleoplasm, but not the MAC and MIC proteomes 

 

A unique feature of ciliates is their nuclear dimorphism in which a large MAC performs nearly all 

the gene expression from a highly polyploid and developmentally excised genome, while a 

transcriptionally silent MIC acts analogously to the germline genome (Prescott 1994). To ensure a 

consistent pelleting behavior of the MIC and MAC, we used standard culturing methods to 

maintain our cells in vegetative (VEG) growth after initiating the culture with starvation-induced 

autogamy (Sonneborn 1970). In optimizing our lysis and fractionation protocol, we used an 

antibody raised against a conserved region of Histone H3 and demonstrated that no histone 

proteins were present in the Sup fraction (Figure 2.7), but DAPI staining confirmed no intact 

MACs in any fractions except the MAC fraction itself. After proteomic analysis, we saw a variety 

of distribution profiles for annotated nuclear proteins such as histones, transcription factors, RNA 

polymerase subunits, and nucleoporins, but none which clearly distinguished the MAC and MIC 

proteomes. We used these profiles and a handful of MAC-localized proteins to build insoluble and 

soluble nuclear compartments based on high abundance in the 300g or Sup fractions. A total of 

293 proteins (42 insoluble, 251 soluble) were predicted to be nuclear after filtering low SVM 

scores (Table 1). This is almost certainly an underestimate, but the complexity of this 

compartment necessitated a conservation approach to characterizing it. 

The soluble nuclear compartment included the transcriptional and DNA replication 

machinery, while the insoluble compartment included histones and components of chromosome 

segregation machinery. In contrast to the membrane trafficking compartments, insoluble here 

does not necessarily mean TMD-containing but instead is more deeply connected with chromatin 

and large macromolecular complexes. Despite only 42 predictions, this compartment contains 

four of five condensin components necessary for cell division SMC2 (PTET.51.1.P0330075), 

SMC4 (PTET.51.1.P0410063), YCS4 (PTET.51.1.P0050262), and BM1 (PTET.51.1.P0480269). 

The 251 soluble nuclear proteins have excellent representation of the spliceosome, RNA 

polymerase I/II/III, nuclear exosome, and 5 of 7 mini-chromosome maintenance complex 
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members; MCM2 (PTET.51.1.P1180147), MCM3 (PTET.51.1.P0380097), MCM4 

(PTET.51.1.P0330339), MCM5 (PTET.51.1.P0880073), and MCM6 (PTET.51.1.P0570197).  

We noticed that distribution profiles of different components of the same nuclear 

complexes were often quite different. For example, the core helicase of the basal transcription 

factor TFIIH (ERCC2: PTET.51.1.P0110310 and ERCC3: PTET.51.1.P1610014) were both 

predicted to the insoluble nuclear compartment, while the TFIID proteins TAF5 

(PTET.51.1.P0020465) was a soluble marker and aided in predicting its paralog TAF1 

(PTET.51.1.P0390139). We identified three of four paralogs of the TATA-binding protein TBP but 

saw that PTET.51.1.P0250306 was predicted to the soluble nuclear compartment while 

PTET.51.1.P0210036 and PTET.51.1.P0360255 were classified to the insoluble nuclear 

compartment with low SVM scores. These conflicts arise through differential abundance in the 

Sup fraction which reflects its decoupling from the insoluble chromatin. The basal transcription 

machinery contains proteins with many roles, such as ERCC’s dual role in DNA repair (Wood et 

al. 2001), and this diversity may obscure a more consistent profile as seen in RNA Pol subunits. 

We also used putative nucleolar proteins as soluble nuclear markers and predicted many new 

rRNA maturation/biogenesis factors such as RRP5 (PTET.51.1.P0080157), UTP14 

(PTET.51.1.P0470044) and NOM1 (PTET.51.1.P0450089), RNA Pol I subunits like RPA2 

(PTET.51.1.P1360088) and RPC2 (PTET.51.1.P0370108), and others with ribosomal 

descriptions. Our cytoplasmic ribosome contained 14 ribosomal S. cerevisiae orthologs as 

markers and predicted 181 proteins in total representing almost every eukaryotic, ribosomal 

subunit (Table 1). Combined with our identification of mitochondrial ribosomes, this study 

confidently aides in the resolution of annotated ribosomal subunits between the cytoplasm, 

mitochondria, and nucleolus.  

The nuclear membrane separates the nucleoplasm from the cytoplasm in a double-layer 

structure containing nuclear pore complexes (NPCs) made up of cytoplasmic and transmembrane 

components, a disordered FG NUP basket, inner and outer ring, and linker proteins (Strambio-

De-Castillia, Niepel, and Rout 2010). In T. thermophila, the cytoplasmic fibril protein NUP98 has 

MAC- and MIC-specific variants with GLFG and NIFN repeats, respectively, thought to 
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differentially regulate export/import between each nuclei and the cytoplasm (Iwamoto et al. 2009). 

We did not detect the T. thermophila MAC-Nup98 (TTHERM_00071070 ) ortholog 

(PTET.51.1.P0490206) in this study, but we did detect three of the five copies of the MIC-Nup98 

(TTHERM_00530720): Mic-NUP98A (PTET.51.1.P0010578), Mic-NUP98C 

(PTET.51.1.P0950099) and Mic-NUP98D (PTET.51.1.P0750016). Mic-NUP98B had a noisy 

profile likely caused by its low number of PSMs, but both Mic-NUP98A/C were classified to the 

soluble nuclear compartments with low SVM scores. Only the transmembrane NUP210 had 

identifiable copies in P. tetraurelia (PTET.51.1.P1240016 and PTET.51.1.P0880039), but its 

abundance profile was different than NUP98. The other identifiable NUP proteins in P. tetraurelia 

(NUP37: PTET.51.1.P1740028; NUP42: PTET.51.1.P0780138; NUP43: PTET.51.1.P0110417) 

are homologous to coatomers and were predicted nuclear, axonemal, and membrane trafficking 

proteins, while the putative nuclear membrane lamin receptor (LBR: PTET.51.1.P0020334) was 

ER-like. It is tempting to speculate that the nuclear membrane is pelleting differentially from other 

nuclear components due to its physical association with the ER, but the relationship between 

ciliary and nuclear trafficking may explain the overlapping protein machinery seen here (Kee and 

Verhey 2013). Indeed, cortical proteins like IFT57 often display dual localization with the cilia and 

MAC (Shi et al. 2018).  
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Figure 2.5. The Evolution of Organellar Compartments and Comparison with Toxoplasma gondii 
We compared organellar predictions in our study to those made in Barylyuk et al. (2019) of Toxoplasma 
gondii using many-to-one orthologs present in both datasets (top). Many compartments are only described 
in one or another study due to the lack of the existence of that cellular structure in the organism or the lack 
of resolution in compiling that structure’s marker proteins. However, those compartments present in both 
studies have a high degree of overlap. This comparison highlights the cellular regions underrepresented in 
each study, such as our nuclear compartments and their membrane trafficking compartments.  

We determined orthology relationships across the tree of eukaryotes using the EukProt 3.0 
database (Richter et al. 2022). We search iteratively beginning within the Paramecium genus (which was 
100% represented in all protein prediction) followed by all ciliates except for Paramecium, then all alveolates 
except ciliates, all of TSAR except alveolates, and all other eukaryotes except TSAR. We observed a large 
number of ciliate-specific mitochondrial proteins which are entirely absent from the rest of eukaryotic 
diversity. This finding suggests either a number of highly divergent mitochondrial genes or the emergence of 
de novo genes private to ciliates and functional within the mitochondria. 
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Poorly localized P. tetraurelia proteins are orthologous to poorly localized proteins in the 

apicomplexan Toxoplasma gondii  

 

We compared our PCP dataset to a T. gondii hyperLOPIT dataset (Barylyuk et al. 2020). We 

generated many-to-one relationships between 3,851 P. tetraurelia orthologous to 1,377 T. gondii 

proteins and immediately noticed strong overlap between the same compartments in both 

organisms (e.g., ribosomal and proteasomal). The consolidation of many types of cytoplasmic 

proteins (e.g., cytoskeleton) into the cytosol compartment of T. gondii explains their spreading 

across the cytosol, soluble membrane trafficking, mitochondrial, and unknown compartments in 

our study. The three nuclear T. gondii compartments were large, while our two nuclear 

compartments were smaller, but they overlapped well. The relationship between T. gondii nuclear 

compartments and our soluble membrane trafficking compartment may be caused by the 

behavior of the nuclear membrane in our study, but chromatin components remain unclear. 

Strikingly, most unknown T. gondii proteins are orthologous to unknown proteins in our study, and 

these represent a unique class of genes with ambiguous functions in both organisms. These may 

be enriched in dynamically localizing proteins, like nuclear import gene (TNPO1: 

PTET.51.1.P0010163) and nuclear export gene (PCID2: PTET.51.1.P0030147), but functional 

investigation will be needed to illuminate their role in alveolate biology. 

 

A quarter of P. tetraurelia’s mitochondrial proteins have no orthologs beyond ciliates 

 

We then determined the evolutionary history of the proteins predicted to each organellar 

compartment using the EukProtv3 database (Richter et al. 2022). Briefly, this approach 

determines high confidence orthologs in species of various phylogenetic lineages using both fully 

assembled genomes and incomplete transcriptomic data to better characterize the representation 

of sequences across eukaryotic diversity. We confined our query to only the proteins in our 

organelle dataset and used all 9,026 classified proteins and then iteratively searched the TSAR 

supergroup (telonemids, stramenopiles, alveolates, and Rhizaria) first within the Paramecium 
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genus (excluding P. tetraurelia), then across ciliates (excluding Paramecium), alveolates 

(excluding ciliates), all TSR (excluding alveolates), and all other eukaryotic lineages for which we 

have data (excluding TSR) (Figure 2.5). Our null expectation was that each compartment would 

be similarly depleted of orthologs the more diverged from P. tetraurelia the lineage was. This 

seemed to be the case for most compartments, however the classified mitochondrial proteins 

displayed the starkest deviation from this pattern due to the significant underrepresentation 

outside of the ciliate phylum. While ~92% of mitochondria-predicted proteins had ciliate orthologs, 

only 75% had alveolate orthologs compared with ~89% and ~85% of all proteins in this study, 

respectively. This is noteworthy because of the previously discussed biochemical peculiarities of 

ciliate mitochondria, but differentially localized proteins alone cannot explain entirely new 

mitochondrial genes private to ciliates. This may be due to a combination of ciliate-specific or 

highly divergent mitochondrial genes as is seen in ATP synthase (Balabaskaran Nina et al. 2010; 

Dudkina et al. 2010).  

 

Discussion 

Our study is the first to examine global patterns of protein localization in any ciliated protozoa– a 

highly diverse lineage of eukaryotes whose complexity rivals that of multicellular organisms but 

within the confines of a single cell. So much is known about protein localization in a small handful 

of model organisms while most eukaryotic lineages remain poorly explored. Spatial proteomics 

offers the ability to leverage a priori knowledge to produce bursts of understanding using robust 

experimental and bioinformatic procedures (Breckels et al. 2016; Arslan et al. 2022). Central to 

this effort is the careful curation of marker proteins whose distribution profiles would provide the 

expectation for their resident organelle, protein complex, or broad cellular compartment. After 

many rounds of assembly, we continued the analysis with 291 marker proteins spanning 17 

compartments each capturing some unique element of ciliate biology. However, as our 

knowledge of Paramecium grows, and more proteins are subject to cell biological interrogation, 

this dataset will provide a deep resource for reanalysis and new interpretation in that light. We 
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expect the nuclear and membrane trafficking compartments to contain numerous sub-

compartments whose cell biological role is not currently clear from our work.  

These steady-state protein abundance measurements provide a unique perspective on 

the highly dynamic nature of membrane trafficking, which we show pervades all but a few 

components of the plasma/ciliary membrane. It is interesting to speculate as to why the TMPs of 

the trichocyst matrix and epiplasmins of the core basal body appear as singular spikes in 

abundance while the SF-assemblins and centrins of the associated basal body compartment 

appear as a heterogeneous mixture of peaks and valleys with experiment-to-experiment 

inconsistencies (Figure 2.10). In the former case, post-Golgi vesicles containing immature TMPs 

have been shown to exist during trichocyst biogenesis (Laurence Vayssié, de Loubresse, and 

Sperling 2001), but we see no signs of that dynamic behavior even though our cells are actively 

growing and dividing and presumably rebuilding their trichocysts. In comparison, large sAG 

proteins display two to three peaks in abundance (depending on the experiment) which indicates 

discrete populations of proteins present in different fractions, possibly before and after proteolytic 

processing. Both are enriched in SPs, depleted of TMDs, glycosylated, and present at the cell 

cortex; but their patterns are highly dissimilar. This raises interesting questions about the 

mechanisms behind protein sorting underlying diverse compartments in Paramecium, and here 

we provide clues as to the nature of that sorting (Figure 2.4).  

An unexpected finding from this work was the mosaic glycolytic pathway (Figure 3). We 

highlight the mitochondrial nature of six of ten of these enzymes, but many systems perform 

mitochondrial glycolysis, and this may be ancestral state for the pathway in the TSAR supergroup 

(Rio Bártulos et al. 2018). Even in classic model systems, glycolytic enzymes may be spatially 

arranged in a way to better direct pyruvate (and tRNAs) to the mitochondria even if the enzymes 

are not localized there per se, as seems to be the case with the MOM-associated late glycolytic 

enzymes in S. cerevisiae (Brandina et al. 2006). An example of so-called “substrate channeling” 

is thought to prevent pyruvate from being used for non-respiratory processes like amino acid 

biosynthesis (Sweetlove and Fernie 2018), however no such phenomenon has been observed in 
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a ciliate to our knowledge. While we provide a few key examples of these processes, further 

interrogation of our dataset will surely yield more discoveries of this kind. 

 

Supplemental Text:   

 

Protein Search Database:  

 

The protein database from which predicted peptide spectra were searched against observed 

spectra came from three sources. First, the most recent genome annotation for Paramecium 

tetraurelia strain 51 (https://paramecium.i2bc.paris-saclay.fr) formed the base with 40,460 protein-

coding genes. We used clustering software CdHit (Li and Godzik 2006) to combine proteins that 

were greater than 99% similar at the sequence level and were either identical in length or differed 

by 1 amino acid. This process resulted in 318 protein clusters which contained 735 proteins with 

each cluster made up of 2-9 proteins per cluster as well as 39,725 individual proteins, summing to 

40,043 proteins representing the nuclear-encoded proteome. The predicted mitochondrial 

proteome for P. tetraurelia contains 46 annotated proteins, however none of these were identified 

in preliminary surveys of the mass spectrometry data, motivating us to generate 283 ORFs using 

ORFinder (Rombel et al. 2002). Of these ORFs, we identified 31 in nine subcellular fractions 

(three technical replicates of three experiments) enriched with mitochondria (1K) using both 

ProteomeDiscoverer and MaxQuant (Figure 2.6). These 31 were appended to the nuclear-

encoded proteins. Our cell culture is monoxenic between P. tetraurelia and its prey bacterium 

Klebsiella pneumoniae (also called Enterobacter aerogenes), and we included its Uniprot 

database as well. Finally, to remove common laboratory contaminants, we included the cRaP 

database (http://www.theGPM.org/crap).   

 

Data Structure and Summary  

 

https://paramecium.i2bc.paris-saclay.fr/
https://paramecium.i2bc.paris-saclay.fr/
https://paramecium.i2bc.paris-saclay.fr/
https://paramecium.i2bc.paris-saclay.fr/
http://www.thegpm.org/crap
http://www.thegpm.org/crap
http://www.thegpm.org/crap
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We identified 12,579 proteins in our dataset, of which 11,856 were P. tetraurelia, 659 were K. 

pneumoniae, 34 were cRaP, and 31 were mitochondrial-ORFs. Confidence for each protein was 

determined using a decoy-based FDR measurement performed in ProteomeDiscoverer (Orsburn 

2021). We removed low confidence (333 proteins) as well as those with fewer than 10 PSMs 

(2317 proteins) determined after iterative visualization of the data structure. Despite originally 

hoping that K. pneumoniae proteins could serve as markers of phagosomes, we found a wide 

spread of distribution patterns and thus removed them from the analysis (659 proteins). Many K. 

pneumoniae proteins had abundance profiles that were either high only in the MAC and 300g 

fractions (contamination) or spread across fractions 9K-30K (possible digested proteins), but the 

former prevented our use of the latter for identifying phagosomal proteins. We finally removed the 

only protein lacking a unique peptide underlying its identification. The median protein in our 

dataset ~388 amino acids long and was identified by ~7 peptides (4 of which were unique) 

covering ~27% of the protein and supported by ~90 PSMs. We compared this to recent 

hyperLOPIT experiment (Barylyuk et al. 2020) and saw similar or better values based on the 

range of values from their three experiments: 16-23% coverage, 8-10 peptides per protein, 10-20 

PSMs per peptide.  

The data structure was assessed using principal component analysis (PCA) (Figure 2.8) 

and the t-stochastic neighbor embedding (t-SNE) algorithm (Figure 2.9). The data were well 

structured allowing the visualization of these 36th dimensional data across a few PCs wherein 

more than half of the variation was explained by PC1 and PC2. The t-SNE projection is purely for 

visualization, and we used this to assess the extent to which imputation affected our data 

structure.   

 

Data Imputation  

 

Clustering and classification algorithms require each observation (i.e., protein) to have a value for 

each measured variable (i.e., abundance in centrifugal fractions) or else that observation is 

removed from the analysis. Our decision to produce twelve fractions for each of three 
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experiments likely led to a higher number of missing values than had we generated fewer 

fractions per experiment. The general pattern was that missing values were influenced by the 

number of PSMs from which each protein was identified, but many proteins had both high PSMs 

and were missing quantification values. We noticed that many highly important proteins across 

diverse cellular functions had at least one missing value. The most extreme of this group were the 

epiplasmins and of the basal body which were highly abundant in only the MAC and 300g 

fractions (discussed below) only and typically had missing values for most other fractions. To 

include these proteins and other proteins, we performed two types of data imputation. The first 

step involved the averaging of neighboring fractions to recover observations with one or few 

missing values in between fractions of higher abundance which may be caused by randomness. 

We kept the three experimental datasets separate before imputing to prevent a Sup fraction from 

informing the imputation of the MAC fraction and vice versa. This was implemented in the proloc 

R package (Breckels et al. 2016) which also imputes the global minimum into fractions adjacent 

to either the MAC or Sup fractions if they are the only fractions with abundant proteins measured. 

This step increased the number of ‘complete’ proteins from 2345 to 4353. The next step simply 

imputed zeros to remaining fractions assuming that these zeros were caused by non-random bias 

(i.e., the protein was lowly abundant in those fractions) which increased our dataset to 9026 

proteins.  

 

Marker Protein Curation  

 

Marker proteins serve a pivotal role in spatial proteomics experiments due to their behavior (i.e., 

relative abundance profile) being used as the expectation for all proteins with which it colocalizes. 

Incorrectly assigning marker proteins will result in the inappropriate interpretation of the resulting 

data, and this problem is amplified in non-model systems in which few (if any) proteins have been 

directly studied in vivo for their subcellular localization. P. tetraurelia has had many dozens 

(perhaps hundreds) of proteins studied using a variety of molecular methods like GFP-tagging, 

immunostaining, and western blotting of enriched cellular fractions. We thus had a core of 



  48 

experimentally validated proteins around which we could build robust compartments of at least 13 

proteins in accordance with previous guidelines (Breckels et al. 2016). This core was combined 

with proteins of similar distribution profiles and properties such as GO terms, PFAM/INTERPRO 

domains, and homology to proteins of known functions. In order to negate the artificial clustering 

observed for many pairs of highly similar gene duplicates, we did not include WGD1 ohnologs in 

the same compartment except for the mitochondrial outer membrane (MOM) compartment 

discussed below. When possible, compartments were built with unrelated marker proteins. We 

will go organelle-by-organelle justifying the creation of each compartment and the inclusion of its 

constituent marker proteins. Most qualitative descriptions of profiles will focus on that of 

experiment 1 with mention to experiment 2 and 3 when they differ in key ways.   

First, the cilia are responsible for motility and feeding in Paramecium which has long 

served as an important model system in understanding its structure and function across 

eukaryota. Cilia have a membranous and non-membranous component, the former consisting 

largely of mainly ion pumps/channels and signaling enzymes, and the latter consisting of more 

structural components of the axoneme and its associated motor proteins (Yano et al. 2013). Our 

first ciliary compartment was dubbed the axoneme due to the clustering BUG22p and DHC-6 both 

localized directly to the cilium in P. tetraurelia (Laligné et al. 2010; Asai et al. 1994; Kandl, 

Forney, and Asai 1995). We also included the calmodulin binding protein PCM1 localized to small 

cortical vesicles (Chan, Saimi, and Kung 1999) suggesting that this compartment does have 

some degree of feedback between trafficked proteins and the structural constituents of ciliary 

axoneme. We included seven unrelated dynein genes with the INTERPRO IDs IPR026983 

(Dynein heavy chain) or IPR026975 (Dynein heavy chain 1, axonemal) as well as three tubulins 

with GO:0005874 (microtubule). Two more genes were orthologs of the Chlamydomonas 

reinhardtii flagellar radial spokes proteins each playing important roles in the flagellar beating and 

axoneme assembly (Yang et al. 2006). The distribution profiles generally had high abundance in 

the 300g fraction with subsequent drops and rises of abundance peaking in fractions 3K, 9K, and 

15K with dips in 1K, 5K, 12K, and 30K with virtually no abundance in fractions. This pattern was 

strongest in experiment 1, but in experiment 2, much higher abundance in the 300g fraction 
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depleted some abundance in the subsequent rises and falls, and in experiment 3 the pattern is 

significantly noisier with higher peaks of abundance in the 3K fractions.   

Anchoring cilia to the cytoskeleton and regulating its activity are the subcortical basal 

bodies. The basal body is embedded in a superficial cytoskeletal network called the epiplasm 

which is delineated from the core basal body by the transition zone (Tassin, Lemullois, and 

Aubusson-Fleury 2015). The core basal body and its associated appendages form the 

kinetid(Lynn 1981). We built the core basal body compartment from proteins exclusively directly 

localized to the basal body or had a paralog which was. This included SAS6 (Jerka-Dziadosz et 

al. 2010), PtCen2a (Ruiz et al. 2005), FOR20a (Aubusson-Fleury et al. 2013), and several 

epiplasmins (Aubusson-Fleury et al. 2013). The epiplasmins all stained the basal body directly 

and ranged across sub-structures like the ring, rim, terminal plate and plasma membrane. A 

recent review (Valentine and van Houten 2021) described the NPHP module of the cilium 

associated with the transition zone with the basal body, and we included NPHP4 as a marker as 

well. Finally, two more C. reinhardtii orthologs of the centriole proteins FAP45 and POC1 were 

included due to their role in regulating microtubule structure and centriole duplication (Owa et al. 

2019; Keller et al. 2009). All of these proteins had abundance profiles consisting of a single peak 

in abundance in the MAC/300g fractions with higher abundance in 300g and then no abundance 

elsewhere. Associated with the basal body is a network of numerous cytoskeletal proteins, two of 

which we combined here: SF-assemblins (SFAs) of the striated rootlet and centrins of the 

infraciliary lattice (ICL). The striated rootlet (also called the kinetodesmal fibre) forms a physically 

connection between the basal body and the anterior pole of the cell (Tassin, Lemullois, and 

Aubusson-Fleury 2015), while the ICL is a mesh-like network spanning the entire cell surface 

contacting the proximal end of basal bodies (Garreau De Loubresse et al. 1988). The abundance 

profile of this compartment was similar to the axoneme in that it had high abundance in 300g, 3K 

and 9K fractions, but the intermediate fractions were far lower in abundance than those of the 

axoneme which were smoother and less extreme. We included eight SFAs localized directly to 

the striated rootlet (Nabi et al. 2019) as well as paralogs of three others which were. We included 

two centrins localized to the ICL (Gogendeau et al. 2008).  
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Another cortical compartment was built from a tight cluster of trichocyst matrix proteins 

(TMPs), a few dozen of which were localized directly (Madeddu et al. 1995). We included three 

from this study and eleven annotated TMPs found via direct search on the ParameciumDB 

(Arnaiz, Meyer, and Sperling 2020). All TMPs in this compartment were characterized by high 

abundance in the 300g fraction only, but there were considerably few missing values contrasting 

it with the core basal body compartment with a similar profile.   

Many ciliary proteins identified by mass spectrometry (Yano et al. 2013) had a distribution 

profile that appeared as a mixture of our ER compartment and the cortical compartments which 

motivated the creation of two ‘membrane trafficking’ compartments. First, the ER in this study was 

formed around two of the only proteins to be directly localized to the ER in P. tetraurelia: PDI1_1 

and ptSERCA1 (Ladenburger and Plattner 2011; Hauser, Pavlovic, et al. 2000). PDI is a 

ubiquitous ER chaperone, while ptSERCA displayed dual localization to the ER and alveoli; 

interpreted as overlapping protein machinery in two calcium-storage compartments. Despite this, 

a large number of annotated ER chaperones clustered with these two and supported this was the 

ER in particular. Two chaperones are orthologs of the S. cerevisiae ER markers: DNAJC25 and 

ALG11. Six more chaperones had either the GO term GO:0005783 or PFAM domains PF00012 

(HSP70) or PF00226 (DnaJ), while six orthologs of the S. cerevisiae ER membrane proteins were 

included to make this compartment more so the ER proper. However, we did see the syntaxin 

PtSYX1-1, localized to exocytic vesicles (Kissmehl et al. 2007), with this same profile making the 

ER compartment partially involved in membrane trafficking outside of the ER proper. The 

distribution profiles of these proteins had key differences between experiment 1 and experiments 

2 and 3 wherein the former contained a double peak in the 9K and 15K fractions with a marked 

drop in the 12K fraction and in the latter 9K abundance was lower than 12K. This was true of all 

ER chaperones we investigated. ptSyx1-1 also peaked in the 15K fraction, but its profile lacked 

the double-peak with the 9K fraction and instead was lower in 9K than 12K making it similar to 

that of the ER chaperone’s experiment 3 pattern. This inclusion of ptSyx1-1 makes this 

compartment a combination of the ER proper with some inclusion of trafficking machinery.  
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The two membrane trafficking compartments shared the ER’s high abundance between 

fractions 9K and 30K but contain high abundance elsewhere depending on the membranous 

nature of the protein. The soluble membrane trafficking compartment shifted abundance towards 

the 300g and Sup fractions with a modest drop in abundance in fractions 1K -5K. Three well-

studied proteins formed the core of this compartment: the cytoplasmic dynein DHC-8 (Asai et al. 

1994), the parasomal sac protein CaNA4a (Momayezi et al. 1986), and the ciliary/basal body 

protein IFT57a (Shi et al. 2018). IFT57a is also thought to localize to VEG MACs, but its 

clustering with cortical proteins here suggests that its role in ciliary signaling predominates that 

function. This combination suggested to us a compartment responsible for shuttling proteins to 

the cell cortex, and the combination of high abundance in the 300g fraction (heavy) and Sup 

(soluble) supported this. We also included the endosomal dynamin DRPD (Wiejak, Surmacz, and 

Wyroba 2003). This combination of endosomal and parasomal sac proteins again supports a 

generalized trafficking compartment. Nine other ciliary IFT proteins (Yano et al. 2013) were 

included as were 13 key trafficking proteins (Richardson and Dacks 2022) which made up core 

components of the COPI/II and AP Complex. Taken together, this combination of trafficking 

proteins suggests this compartment is responsible for endocytosis and shuttling proteins to the 

cell cortex through ER/Golgi-mediated processes.   

The insoluble membrane trafficking compartment originated from two contractile vacuole 

proteins: NSF2 and PtSo1c (Kissmehl et al. 2002; Reuter, Stuermer, and Plattner 2013). The 

former has promiscuous localization across the ER, lysosome, and small vesicles, while the latter 

also localizes to small microdomains beneath the plasma membrane. Both had high abundance 

in 300g and 9K-30K fractions but lacked any abundance in the Sup and had a small peak of 

abundance in experiment 3’s 120K fraction. Clustering with these two is the SNARE PtSec22 

which localizes directly to the Golgi (Kissmehl et al. 2007). The overlap between the ER, Golgi, 

and endomembrane systems here suggested a generalized membrane trafficking compartment 

that is distinct from the first due to its lack of Sup abundance. Eight ciliary membrane proteins 

(Yano et al. 2013) shared this pattern and as did three PMCAs not identified. Four Rab GTPases 
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with PF00071 (Ras) were combined with a handful of components of the COPII and TRAPPI 

complexes (Richardson and Dacks 2022) and Q-SNARES (Kaur et al. 2022).  

Surface antigens (sAGs) are large, heavily glycosylated proteins at the cell surface 

responsible for a variety of signaling pathways between the cell and environment (Preer Jr 1986). 

Despite their localization to the cortex, we observed here another ER-like pattern in most 

annotated sAGs and “mini” mAGs had higher peaks of abundance in 5K and 12K/15K in 

Experiment 3 but variable behavior in Experiment 1 and 2 which sometimes matches this pattern 

and sometimes appears more like the ER compartment. Three of these markers were described 

previously (Breuer et al. 1996) and the remainder had the PFAM domain PF01508 (‘Paramecium 

Surface Antigen’).   

The final of the so-called “membrane trafficking” compartments was the well-resolved 

organelle: the lysosome. In P. tetraurelia, no protein has been clearly localized to the lysosome, 

however many were localized to ‘phagolysosomes’, but there was no consensus pattern from 

these. Instead, we saw the same abundance profile for 14 S. cerevisiae orthologs of lysosomal 

transporters, peptidases, phosphatases, RNases and glycosidases. All lysosomal proteins had 

high abundance in the 3K/5K fraction, but interestingly in Experiment 3 there was an additional 

‘12K’ peak. Some matrix proteins had an additional bump of abundance in the Sup fractions. This 

combination of matrix and membrane proteins supports a clear lysosome-proper in this 

experiment.   

Two types of metabolic compartments were described in this study. The first was the 

peroxisome, constituted of proteins with high abundance in 1K-5K with peaks often in either 1K or 

3K. We used 15 S. cerevisiae orthologs of various peroxisomal membrane/importer proteins as 

well as enzymes like thiolase, isocitrate lyase, and acyl-CoA Reductase. Only a PEX11 homolog 

was included without bona fide orthology. This again supports a combined membranous and 

matrix component to the peroxisome compartment.   

The second metabolic organelle was the mitochondria—which to our knowledge—no 

protein has ever been localized experimentally in P. tetraurelia. We used the mitochondrial ORFs 

described above as marker proteins as well as a four S. cerevisiae orthologs of TCA Cycle 
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enzymes. These ORFs covered the mitochondrial matrix, inner membrane space (IMS) and inner 

membrane (MIM). All these had high abundance in the 300g/1K fractions with some having 

moderate bumps of abundance in either the 5K or Sup fractions; the latter being typical of 

matrix/IMS proteins. A tight cluster of porins putatively of the mitochondrial outer membrane 

(MOM) described previously (Wideman et al. 2013) formed the based of the MOM compartment 

with seven S. cerevisiae orthologs of the MOM proteins: HFD1, FAAH, TOM22, and RHOT1. The 

abundance distribution of this compartment was similar to the mitochondria proper with high 

300g/1K abundance but also had a peak in the 30K fraction possibly corresponding to its 

association with the ER.   

A less well-resolved organelle in this study was the macronucleus (MAC) and 

micronucleus (MIC) collectively combined in the nuclear compartments based on their pelleting 

behavior. The soluble nuclear compartment was based around the experimentally localized RNA 

Pol II subunits RPB1 and RPB2 (Owsian et al. 2022; Drews et al. 2022) another twenty S. 

cerevisiae orthologs of RNA pol subunits, spliceosome subunits, transcription factors, DNA 

replication/repair factors, and nucleolar proteins. The abundance distribution of these proteins 

was characterized by high relative abundance in the MAC fraction which was often higher than 

the 300g and Sup fractions but was highly heterogeneous between the 12K-30K fractions. The 

insoluble nuclear compartment was very similar to this but more often had higher abundance in 

the 300g fractions than the MAC fraction and rarely had any abundance in the Sup fraction. Two 

experimentally studied proteins formed the base of this compartment: the histone H3P3 and 

actin-like protein ALP1-1, although it was their closely related paralogs which were studied 

directly (Lhuillier-Akakpo et al. 2016; Sehring, Reiner, et al. 2007). Accompanying these are ten 

S. cerevisiae orthologs of genes involved in chromatin structure, chromosome segregation, and 

DNA replication as well as an unannotated PADR1 gene with the GO term GO:0005634 

(nucleus).   

Finally, we created three types of cytoplasmic compartments based on high abundance 

in either the 79K and 120K, 120K and Sup, or just the Sup fractions. In the first category are the 

ribosomes made up of 14 S. cerevisiae orthologs of both the 40S and 60S ribosomal subunits 
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which formed a tight cluster due to low abundance in MAC-5K followed by a steady increase 

peaking in the 120K fraction. In experiment 3, both the 79K and 120K abundance values with 

approximately the same. The proteasome, by contrast, had high abundance in the 30K, 120K, 

and Sup fractions peaking in the 120K for most proteins. The markers included 15 S. cerevisiae 

orthologs of proteins of both the 20S and 26S subunits as well as one homolog with the GO term 

GO:0005839 (proteasome core complex). Finally, the cytosol proper was constituted of 16 S. 

cerevisiae orthologs of numerous enzymes involved in processes like metabolism, tRNA 

processing, and glycolysis. These proteins had uniquely high abundance in the Sup fractions with 

a small bump in the 300g and variable low abundance between 9K and 120K.    

 

Marker Protein Resolution  

 

Our marker protein resolution was compared with those from the T. gondii hyperLOPIT 

experiment (Barylyuk et al. 2020). The Qsep metric (Gatto, Breckels, and Lilley 2019) to quantify 

marker resolution by measuring the average Euclidean distance between marker proteins of 

different compartments and normalizes by the within-compartment average Euclidean distance 

such that large values are associated with marker proteins whose spatial distance is further from 

the other marker proteins in the dataset. The median Qsep score in our experiment was ~3.1, 

while that of T. gondii was ~3.4. On the low end, our insoluble membrane trafficking compartment 

had a mean Qsep score of ~1.96 while our highest was the trichocyst matrix compartment of 

~7.34. Comparably, the dense granules (analogous to granules observed during trichocyst 

maturation) had a mean Qsep score of ~2.17 on the low end and the 20S proteasome was ~7.89 

on the high end. These observations support that our marker protein resolution is comparable to 

a similar study of this kind.   

 

Supplemental Methods: 

Resource availability 

Lead contact 
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Further information and requests for resources, data, and code should be directed to and will be 

fulfilled by the lead contact, Timothy J. Licknack: licknacktim (at) gmail (dot) com. 

Materials availability 

This study did not generate new unique reagents. 

Experimental model and subject details 

Cell lines 

Cultures of Paramecium tetraurelia strain 51 were a generous gift from Sascha Krenek (German 

Federal Institute of Hydrology).  

Cell husbandry 

Cells were cultured using standard husbandry techniques described in Sonneborn (1975). Briefly, 

three flasks containing ~1000 cells each were subjected to multiple days of starvation before 

being inoculated with fresh wheat-grass medium (Cerophyl, yeast extract, stigmasterol) 

bacterialized with stationary phase Klebsiella pneumoniae in order to induce autogamy. DAPI 

staining was used to assess the macronuclear (MAC) state of each population, such that 

autogamous cells had fragmented MACs, while vegetative (VEG) cells had intact macronuclei. 

When a flask reach ~100% VEG cells, their culture volume was doubled in this fashion until 4L of 

culture was obtained at a cell concentration of ~1000 cells/ml. Culture volume never exceeded 

one half of the vessel volume in order to ensure adequate aeration.  

Method details 

Cell lysis and fractionation- VEG P. tetraurelia cells were harvested using a 10μm diameter, nylon 

mesh sieve after removing bacterial biofilm and debris using cheesecloth. Cells were washed on 

the nylon mesh with Dryl’s Solution before being decanted into multiple 50ml tubes. Cells were 

gently spun (1000g x 10min) three times to replace Dryl’s Solution (2mM Na Citrate, 1mM 

NaH2PO4, 1mM Na2HPO4, 1mM CaCl2) with either detergent-present (DP: 0.25 M sucrose, 

10 mM HEPES pH 7.4, 2 mM EDTA, 2 mM magnesium acetate, Halt™ Protease and 

Phosphatase Inhibitor Cocktail) or detergent-free (DF: 1% Triton-X, 10mM Tris, 0.25M Sucrose, 

3mM CaCl2, 8mM MgCl2, Halt™ Protease and Phosphatase Inhibitor Cocktail) lysis Buffer. Cells 

in DP Buffer were lysed using a Dounce homogenizer to 100% efficiency (20-30 strokes) before 
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being washed thrice with DP Buffer and thrice with DF Buffer (300g X 5min each wash). This 

pellet was then stored at -80C. Cells in DF Buffer were lysed using a nitrogen cavitation bomb 

pressurized to 250psi and incubated for 10min before slowly releasing the lysate, mixing the foam 

and liquid with a pipet, and incubating at 250psi for 5min before slowly releasing (Simpson 2010). 

This lysate was then differentially centrifuged in accordance with Geladaki et al. (2019): 300g x 

5min, 1000g x 10min, 3000g x 10min, 5000g x 10min, 9000g x 15min, 12000g x 15min, 15000g x 

15min, 30000g x 20min,  79000g x 43min, 120000g x 45min. Each dry pellet was stored at -80C 

as was the remaining supernatant.  

Sample preparation and LC-MS Analysis- Twelve fractions were resultant from three 

separate experiments, each named in accordance with its centrifugation speed and experiment 

number (i.e., 300g-1, 1K-1, 3K-1, … Sup-3), while the DP lysis pellet was called the MAC fraction 

(i.e., MAC-1, MAC-2, MAC-3) due to its enrichment of intact MACs. All pellets were resuspended 

in 100μl Resuspension Buffer before being vortexed, boiled at 95C for 10min, and then 

centrifuged at 15000g x 10min. If a large pellet remained, then an additional 100μl of 

Resuspension Buffer was added, boiled, and centrifuged again as many as four additional times. 

The liquid Sup fractions were diluted in 2X Resuspension Buffer and subjected to the same 

procedure as the pellets.  

  Solubilized, reduced and heat-treated samples were quantified using EZQ Protein 

Quantitation Kit (https://www.thermofisher.com/order/catalog/product/R33200). Samples were 

then alkylated by addition of iodoacetamide (Pierce) to 40mM final concentration for 30 minutes in 

the dark at room temperature. 5.0ug total protein across the 12 samples were then processed 

using the Protifi S-trap Micro Columns and instructions provided in the S-trap Ultra High Recovery 

Protocol (https://protifi.com/pages/s-trap). Briefly, samples were acidified by addition of 12% 

phosphoric acid to a final concentration of ~1.2% phosphoric acid. Proteins were digested by 

addition of 2.0 µg of porcine trypsin (MS grade, Pierce) and incubated at 30ºC for 2 hours. S-trap 

buffer (90% methanol, 100 mM TEAB final) was also added in volumes 7X our total sample 

volume. Acidified sample and the S-trap buffer was filtered through columns. Columns were 

washed 3X with S-trap buffer. An additional 0.5 µg of trypsin and 25 µL of 50 mM TEAB was 

https://www.thermofisher.com/order/catalog/product/R33200
https://protifi.com/pages/s-trap
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added to the top of each column and incubated for 1 hour at 47ºC. Samples were eluted off the 

S-trap columns using three elution buffers: 50 mM TEAB, 0.2% formic acid in water, and 50% 

acetonitrile/50% water + 0.2% formic acid. Samples were dried down via speed vac and 

resuspended in 20-30 µL of 0.1% formic acid.   

Liquid-chromatography tandem mass spectrometry- All LC-MS analyses were performed 

at the Biosciences Mass Spectrometry Core Facility (https://cores.research.asu.edu/mass-spec/) 

at Arizona State University. All data-dependent mass spectra were collected in positive mode 

using an Orbitrap Fusion Lumos mass spectrometer (Thermo Scientific) coupled with an UltiMate 

3000 UHPLC (Thermo Scientific). One µL of peptides were fractionated using an Easy-Spray LC 

column (50 cm × 75 µm ID, PepMap C18, 2 µm particles, 100 Å pore size, Thermo Scientific) 

equipped with an upstream 300um x 5mm trap column. Electrospray potential was set to 1.6 kV 

and the ion transfer tube temperature to 300ºC. The mass spectra were collected using the 

“Universal” method optimized for peptide analysis provided by Thermo Scientific. Full MS scans 

(375–1500 m/z range) were acquired in profile mode with the Orbitrap set to a resolution of 

120,000 (at 200 m/z), cycle time set to 3 seconds and mass range set to “Normal”. The RF lens 

was set to 30% and the AGC set to “Standard”. Maximum ion accumulation time was set to 

“Auto”. Monoisotopic peak determination (MIPS) was set to “peptide” and included charge states 

2-7. Dynamic exclusion was set to 60s with a mass tolerance of 10ppm and the intensity 

threshold set to 5.0e3. MS/MS spectra were acquired in a centroid mode using quadrupole 

isolation window set to 1.6 (m/z). Collision-induced fragmentation (CID) energy was set to 35% 

with an activation time of 10 milliseconds. Peptides were eluted during a 240-minute gradient at a 

flow rate of 0.250 uL/min containing 2-80% acetonitrile/water as follows: 0-3 minutes at 2%, 3-75 

minutes 2-15%, 75-180 minutes at 15-30%, 180-220 minutes at 30-35%, 220-225 minutes at 35-

80% 225-230 at 80% and 230-240 at 80-5%. 

 

Label-free quantification (LFQ)- Four protein databases were used for the search: P. 

tetraurelia strain 51’s predicted proteome (downloaded from https://paramecium.i2bc.paris-

saclay.fr/), 31 mitochondrial ORFs described in the Supp Text, K. aerogenes’s predicted 

https://cores.research.asu.edu/mass-spec/
https://paramecium.i2bc.paris-saclay.fr/
https://paramecium.i2bc.paris-saclay.fr/
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proteome (https://www.uniprot.org/), and common laboratory contaminants (cRAP; common 

Repository of Adventitious Proteins: https://www.thegpm.org/crap/). Protein identification was 

performed using all combined fractions, while normalized abundance values were calculated for 

each protein within each replicate fraction.  

LFQ was performed using Proteome Discover 2.4 (Thermo Scientific). Raw files were 

searched using SequestHT that included Trypsin as enzyme, maximum missed cleavage site 3, 

min/max peptide length 6/144, precursor ion (MS1) mass tolerance set to 20 ppm, fragment mass 

tolerance set to 0.5 Da and a minimum of 1 peptide identified. Carbamidomethyl (C) was 

specified as fixed modification, and dynamic modifications set to Acetyl and Met-loss at the N-

terminus, and oxidation of Met. A concatenated target/decoy strategy and a false-discovery rate 

(FDR) set to 1.0% was calculated using Percolator. The data was imported into Proteome 

Discoverer 2.4, and accurate mass and retention time of detected ions (features) using Minora 

Feature Detector algorithm. The identified Minora features were then used to determine area-

under-the-curve (AUC) of the selected ion chromatograms of the aligned features across all runs 

and relative abundances calculated.  

Data analysis was performed using the R Bioconductor packages MSnbase (v 2.20.1) 

and pRoloc (v 1.34.0) as described in Breckels et al. (2016). Briefly, a protein-level csv file 

containing 12,579 proteins was filtered such that proteins were removed under the following 

criteria: they were from cRAP or K. aerogenes, had low FDR confidence, had fewer than ten total 

PSMs, had no unique peptides, or were identified in only the MAC or Sup fractions. Technical 

triplicates (e.g., three replicates of 12K-1) were averaged to generate a 36th dimensional dataset 

of relative protein abundance. The datasets were split into their respective experiments (i.e., 1-12. 

13-24, 25-36) to perform hybrid imputation described in Supp Text and sum-normalization across 

rows. The 36 fractions were concatenated together and used for downstream analyses. 

Supervised and Unsupervised Classification 

291 manually curated marker proteins (whose curation is described in Supp Text) were used to 

classify all 9,026 proteins to one of seventeen cellular compartments. Supervised classification 

was done using a support vector machine (SVM) model using the svmOptimization and 

https://www.uniprot.org/
https://www.thegpm.org/crap/
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svmClassification functions in pRoloc. Briefly, 100 rounds of five-fold cross-validation were 

performed to optimize the SVM parameters, sigma and cost, using the marker protein profiles. 

Each fold is stratified 80/20 for training/testing, respectively, wherein parameter values 

determined in the training set are ‘tested’ with the test set. Macro F1 scores were used to assess 

the classifier accuracy, and this is the harmonic mean of precision (True Positive / True Positive + 

False Positive) and recall (True Positive / True Positive + False Negative). The optimal 

parameters for the SVM classifier were then applied to all proteins in the dataset with a 

corresponding SVM score whose range is 0-1 with 1 being the score of marker proteins. The 

SVM classifier was then applied to unlabeled data (i.e., non-marker proteins) with corresponding 

weights applied to each marker class on the basis of its size. Each protein was thus classified to 

one compartment, and any protein whose classification fell below the global median SVM score 

was reset to ‘unknown’ while the other half of the dataset was considered “predicted” to its 

corresponding compartment due to their higher SVM scores.  

Unsupervised clustering was performed using the K-means (KM) algorithm implemented 

in the MLearn function from the MLInterfaces package in R (). Briefly, KM generated k random 

centroids and includes surrounding datapoints iteratively such that all data points are included in 

one of the k clusters and the size of each centroid is minimized. We generated 17 KM clusters 

and compared them to the 17 SVM-predicted compartments.  

Characterization of Organellar Compartments - Properties for predicted proteins were 

obtained through several sources. First, all protein IDs were submitted to the Sherlock tool 

(formerly BioMart) from https://paramecium.i2bc.paris-saclay.fr/ for the following characteristics: 

protein size, isoelectric point, INTERPRO/PFAM domains, GO terms, mRNA expression level 

VEG growth (Arnaiz et al. 2017), differential expression after trichocyst discharge and ciliary 

shedding (Arnaiz et al. 2017), transmembrane domain presence (via TMHMM; Möller et al. 2001), 

and signal peptide presence (via SignalP 3.0; Bendtsen et al. 2004). Target peptides were 

predicted using the TargetP tool (Armenteros et al. 2019). Orthology relationships were 

determined in one of two ways: 1) using GhostKOALA (Kanehisa et al, 2016) to identify KEGG 

Ortholog (KO)-based gene names, 2) using EukProt v3 (Richter et al. 2022) to determine 

https://paramecium.i2bc.paris-saclay.fr/
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evolutionary relationships across the tree of eukaryotes. Instances of specific orthologs for named 

species are validated using reciprocal best BLASTp hits. KEGG pathways were visualized using 

the KEGG Mapper- Reconstruct tool (https://www.kegg.jp/kegg/). Motif discovery for promoter 

regions was done using the MEME algorithm implemented in the MEME software suite (Bailey et 

al. 2009). Five motifs of size 6-12nts were searched within a single fasta file containing 200nt 

upstream of all protein-coding genes predicted to the same compartment.  

 

Data and code availability 

Raw mass spectrometry data will be deposited to the ProteomeXchange Consortium 

(http://www.proteomexchange.org/) and intermediate files can be assessed by request to the 

corresponding author. All code is available on GitHub 

(https://github.com/Tlicknack/Paramecium_Spatial-Proteomics).  

 

 

 

 

 

 

 

 

 

 

 

 

https://www.kegg.jp/kegg/
http://www.proteomexchange.org/
https://github.com/Tlicknack/Paramecium_Spatial-Proteomics
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Figure 2.6. Mitochondrial Genome Annotation 
The mitochondrial genome of Paramecium tetraurelia was reanalyzed using mass spectra from 
an enriched mitochondrial fraction (three technical replicates of three biological replicates of 1K). 
We generated 283 mitochondrial ORFs and found protein evidence 42 of these, but 31 were 
identified confidently using both ProteomeDiscoverer (Thermo) and MaxQuant (Tyanova et al. 
2016). Mito-ORFs (yellow) overlapped with many annotated proteins (blue) except in regions of 
predicted rRNA genes.  
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Figure 2.7. Cell Lysis and Fractionation  
Our experimental design was undertaken as a modification of the fractionation scheme from Geladaki et al. 
(2019) described in the SI Methods (Top left). The MAC fraction was assayed with the nuclear stain DAPI to 
confirm the existence of enriched macronuclei. Protein yields were plotted with their standard error (top 
right) which are similar to that observed in Geladaki et al. (2019) with most proteins in the Sup fraction; in 
their study, the 300g (or 200g) fraction was discarded. Protein fractions were assayed with an anti-Histone 
antibody which reacted strongly with many fractions—importantly not the Sup fraction. The highest band is 
private to the late spins, MAC fraction, and 300g fraction, while the middle band is present in most fractions 
between 300g and 30K, and the lowest band is private to 3K/5K. This fractionation pattern suggested a clear 
biochemical difference between fractions, especially with respect to the nuclear proteomes. 
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Figure 2.8. Principal Component Analysis (PCA) Reveals Data Structure 
PCA was done to project our non-imputed multidimensional dataset across a smaller number of principal 
components (PCs) which each explain some percentage of the variance present in the dataset. PC1 and 
PC2 explain more than half of the variance while the next three PCs explain ~10% each (top). Clusters are 
apparent in plots of PC1 vs PC2, PC1 vs PC3, and PC1 vs PC4. This analysis supports that the data are 
non-randomly structured and can be visualized in a few PCs despite containing 36 dimensions. 
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Figure 2.9. t-distributed stochastic neighbor embedding (t-SNE) and Data Imputation 
We used the t-SNE algorithm to better visualize our data on two dimensions than PCA could achieve. Here, 
we show the effects of imputation on our data structure, first imputing neighboring fractions (left to middle) 
then imputing zeros to the remaining fractions (middle to right). In general, we see that as more proteins are 
imputed and therefore included in each plot, the data structure “collapses” towards the center of the plot. 
Since the data structure is determined by the relationship between unique values across each dimension, 
this loss of structure via the imputation of the same value is greatest when zeros are included (middle to 
right). However, the maintenance of large clusters in the hybrid imputed dataset supported its use in 
downstream organelle-prediction analyses. The x- and y-axes are t-SNE dimensions and contain arbitrary 
coordinates purely for the purpose of data visualization.  
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Figure 2.10. Marker Protein Abundance Distribution Profiles 
After manually curating a list a of 291 marker proteins, we plotted their abundance distribution profile across 
all 36 fractions (three experiments each containing 12 fractions, concatenated). The proteins are arranged 
roughly according to their spatial distribution in the cell as seen in Figure 2.1. The top-most row are the four 
cortical compartments, the next row is the membrane trafficking (ER and ER-like) compartments, the next 
row are the lysosome and nuclear compartments, the second-to-last row are the mitochondrial and 
peroxisomal compartments, and the bottom row are cytoplasmic compartments. The color code is shown in 
Figure 2.2., and all x- and y-axes are consistent for those in Figure 1.1. 
 
 
 
 
 
 
 
 
 



  66 

 

Figure 2.11. Marker Protein Resolution 
Marker protein resolution was assessed using the Qsep metric introduced by Gatto et al. (2019). Large 
Qsep values translate to better resolved marker classes. We computed this for all marker proteins in our 
dataset (left) before computing it for the marker proteins used in a hyperLOPT study of Toxoplasma gondii 
from Barylyuk et al. (2020). We see a similar range of values in both experiments with median values all 
greater than two meaning that each marker class is twice as distant from another marker class as it is from a 
given protein within the same marker class. 
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Figure 2.12. K-Means (KM) Clusters versus Organellar Classifications 
We generated 17 de novo clusters using the KM algorithm to compare with our biologically relevant SVM 
classifications. Here, we projected KM clusters and organellar classifications for all 9,026 proteins onto a t-
SNE plot to visually inspect the overlap quantitatively assessed in Figure 2.2 with the same color scheme 
corresponding to the rightmost plot. The KM cluster names for each protein can be found in Supp Table. In 
general, we see a high degree of spatial overlap between both methods. In some cases, additional structure 
within each organellar compartment can be seen when KM clusters split them as is the case for the soluble 
(right, pink)  and insoluble (left: brown) membrane trafficking compartments known to consistent of many 
discrete components.   
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Figure 2.13. Promoter Motifs with Conserved Positions 
We performed de novo motif discovery within 200nt upstream of each predicted protein-coding gene’s 
annotated start codon to assess the presence of putative regulatory elements enriched within each 
organellar class. In addition to the six shown here with relatively conserved motif positions, 13 more were 
found to be significantly enriched using a hypergeometric test implemented with MEME (Bailey and Elkan 
1994). The trichocyst matrix motifs are palindromic and found upstream of ~53% (left) and ~19% (right) of all 
its predicted genes but in only four of 154 instances are they found in the same promoter. Similarly, the two 
proteasomal motifs were upstream of ~27% (left) and ~40% (right) of predicted proteasomal genes and were 
found together only once. The other two motifs were found upstream of ~36% and ~8% of all predicted 
lysosomal and ER predicted genes, respectively. In all cases, motif variants were found within ~50nts of the 
start codon. 
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Figure 2.14. Protein and Genic Properties of Predicted Compartments 
We computed the protein size (top left), isoelectric point (top right), mRNA expression level (bottom left), and 
number of peptide spectral matches (bottom right) for each protein/gene of each predicted class and 
compared them using ANOVA, denoting those significantly different from the unknown with a star after 
correcting for multiple tests (ρ < 0.0029). Protein size, isoelectric point, and mRNA expression values were 
obtained from the ParameciumDB (Arnaiz et al. 2019), while the peptide spectral matches were computed in 
this study. 
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Figure 2.15. TOM40 Distribution Profiles in Paramecium tetraurelia, Saccharomyces cerevisiae, and 
Toxoplasma gondii 
We compared the protein abundance profiles for TOM40 in P. tetraurelia (left: PTET.51.1.P0280026), S. 
cerevisiae (middle: P23644), and T. gondii (right: TGME49_218280) using their respective hyperLOPIT 
datasets (Barylyuk et al. 2019; Nightingale et al. 2019). The x-axes correspond to each experiment’s 
fractions. Our dataset contains sum-normalized data plotted across three experiments with 12 fractions per 
experiment in accordance with the fraction names in Figure 2.1 and Figure S2. In S. cerevisiae, there are 
four experiments with ten fractions per experiment, sum normalized and log transformed. These fractions 
were generated from a density gradient centrifugation fractionation (compared with differential centrifugation 
in our study) and thus lighter cellular material will be present in ‘early’ fractions (i.e., 1-5) while heavier 
material will be in ‘later fractions’ (i.e., 6-10). The same is true of T. gondii as is S. cerevisiae, except in the 
former there being three experiments. Dotted lines denote the end of each experiment to better visualize 
their shared pattern. In all three organisms from each study, there is a shared ‘heavy’ and ‘light’ peak 
presumably associated with the mitochondria proper and the MOM specifically, respectively. The relative 
heights of these peaks do vary between experiments, and in our case, the existence of a third peak, 
associated with membrane trafficking, is seen in the 120K fraction (Figure S5). 
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Figure 2.16. Functional Categories and the TCA Cycle for Mitochondrial Predictions 
Of the 1,056 predicted mitochondrial proteins, 484 were given KO terms via the ghostKOALA software 
(Kanehisa et al. 2016) and mapped in the KEGG database. Most of these proteins have putative roles in 
metabolism or genetic information processing (left) with the latter relating to the presence of mitochondrial 
ribosomes. The metabolic TCA cycle (right) contains the vast majority of its expected enzymatic components 
in these mitochondrial predictions. 
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Figure 2.17. The Mosaic Glycolytic and Gluconeogenic Pathway 
We plotted the distribution profile for each glycolytic enzyme described in Figure 3. Hexokinase is thought to 
be lost in ciliates, but we did identify the other nine enzymes. Six were localized to either the cytosol (GPI: 
PTET.51.1.P0300257; ALDO: PTET.51.1.P0770173, PTET.51.1.P0940159, PTET.51.1.P0810050, 
PTET.51.1.P0900034), MOM (PFK: PTET.51.1.P0480063, PTET.51.1.P0670026) or mitochondria (GAP: 
PTET.51.1.P0380195, PTET.51.1.P0500184; PGK: PTET.51.1.P0700046, PTET.51.1.P1180061; PGM: 
PTET.51.1.P0890070, PTET.51.1.P1190051). The other three enzymes contained multiple copies whose 
paralogs were predicted to different compartments: TPI (PTET.51.1.P1550028, PTET.51.1.P1070138, 
PTET.51.1.P1550027, PTET.51.1.P1370031) with three mitochondrial and one cytosolic copy; ENO 
(PTET.51.1.P0870049, PTET.51.1.P0100278, PTET.51.1.P0590214, PTET.51.1.P0040146) with two 
mitochondrial and two unknown copies; and PK (PTET.51.1.P0360217, PTET.51.1.P0110153, 
PTET.51.1.P0210069, PTET.51.1.P0070160, PTET.51.1.P0100415) with one cytosolic, one soluble 
membrane trafficking, and three unknown copies. The gluconeogenic enzymes catalyzing the reverse of the 
final reaction are shown in the final row with a dark-red color. FBP1 (PTET.51.1.P0730140) catalyzes the 
reverse of PFK’s and is cytosolic. PC (PTET.51.1.P0530213) is orthologous to H. sapiens MCCA, however it 
is a strong BLASTp hit from H. sapiens PC and clearly mitochondrial. PEPC (PTET.51.1.P0180052, 
PTET.51.1.P1010170, PTET.51.1.P0460194, PTET.51.1.P0360202, PTET.51.1.P1250149, 
PTET.51.1.P0440244) has six copies, five of which are mitochondrial, and one is cytosolic. 
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Figure 2.18. Partitioning of the Endoplasmic Reticulum and Membrane Trafficking 
The processing proteins of the endoplasmic reticulum (ER) contain proteins with diverse organellar 
predictions: ER proper (yellow), insoluble membrane trafficking (red), soluble membrane trafficking (pink) or 
cytosol (orange). Only the ER predicted proteins represent the luminal chaperones, translocation machinery, 
and protein targeting pathways while the two membrane trafficking compartments play a role in ER-
associated degradation (ERAD), transport to the Golgi, and ubiquitination; all of which involve the removal of 
material from the ER instead of import and retention. Two cytosol predicted proteins are also involved in 
ERAD. 
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CHAPTER 3 

PCPULLDOWN: A SIMPLE TOOL TO PROBE HIGH-DIMENSIONAL PROTEOMICS 

EXPERIMENTS FOR A PROTEIN OF INTEREST 
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Abstract: 

Background: Spatial proteomics allows researchers to map global patterns of protein localization 

simultaneously by grouping proteins based on their shared abundance profiles across diverse 

subcellular fractions. While these techniques employ complex mathematical algorithms which 

directly make use of the higher-dimensional distance between pairs of proteins, this information is 

largely ignored after classification is performed. Here, I introduce a computational pipeline whose 

sole purpose is to simply identify the most spatially similar proteins in the dataset. I show how this 

method recapitulates known biological interactions and predicts new ones. Indirectly, I discover 

that proteins predicted to the same organellar compartment have shared relationship to all other 

proteins in the proteome likely a product of their intraorganellar or cytosolic nature. Taken 

together, this study provides a simple framework for studying the complex problem of protein 

localization. 

Methods: Using both published and unpublished spatial proteomics datasets, I measure all 

Protein Profile Similarity Scores (PPSSs) using a modified Euclidean distance metric. This is 

stored as an S3 object in R which can easily be assessed by a number of custom functions all 

available for download on: https://github.com/Tlicknack/Paramecium_Spatial-Proteomics.  

Results: I demonstrated the efficacy of this approach using a handful of well-studied proteins from 

Saccharomyces cerevisiae, Toxoplasma gondii, and Paramecium tetraurelia; three very different 

unicellular eukaryotes. Nearly all proteins which are members of well-known large protein 

complexes identify most other members of their shared complex as well as proteins with close 

association to that complex (e.g., nucleolar proteins with RNA Pol. I). Cytosolic proteins— not a 

part of larger complex—have seemingly random combinations of closely related proteins, 

although those involved in biochemical pathways associated with some organelle are spatially 

closer to proteins of that organelle (e.g., glycolysis in yeast). Finally, I show how global PPSS 

distributions for individual proteins may represent well its entire spatial interactome. This is 

https://github.com/Tlicknack/Paramecium_Spatial-Proteomics
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demonstrated using mitochondrial and cytosolic compartments in numerous model organisms 

including Homo sapiens and Mus musculus.  

Conclusions: My functions are immediately impactful in providing an orthologonal approach to 

analyzing spatial proteomics data. Additionally, I show hints of new cell biological phenomena 

illuminated by the metrics underlying this technique. The ability to identify candidate protein-

protein interactions from already existent datasets should provide a valuable resource to cell 

biologists working in those model systems.  

Introduction: 

Knowledge of where a protein localizes and with whom it interacts is paramount to understanding 

cell biology. A burgeoning toolkit has developed under the umbrella of ‘spatial proteomics’ whose 

experimental designs all share a few key properties: gentle cell lysis, fractionation, and 

quantitative proteomic analysis (Lundberg and Borner 2019). The modularity of this approach has 

aided its success, allowing researching to use a variety of lysis and fractionation methods 

(Geladaki et al. 2019) as well as either labeled (Dunkley et al. 2004) or label-free (Foster et al. 

2006) quantification of proteins— the former called Localization of Organellar Proteins by Isotopic 

Tagging (LOPIT) and the latter called protein correlation profiling (PCP). Resulting from all of 

these is a higher dimensional dataset in which each protein has a unique abundance profile 

which reflects its steady-state abundance within the cell.  

The analysis of these data is non-trivial, and interpretation requires a broad expertise of both 

computational and cell biology. A few groups have provided robust workflows and tools for this 

(Gatto and Lilley 2012; Breckels et al. 2016; Gatto, Breckels, Wieczorek, et al. 2014; Gatto, 

Breckels, Burger, et al. 2014), but these focus mainly on uncovering broad patterns of protein 

localization without an easy way of querying proteins of interest. While other experimental 

methods exist for the sole purpose of understanding the cell biological environment of individual 

proteins, such as affinity purification (Dunham, Mullin, and Gingras 2012) and proximity 

biotinylation (Roux et al. 2012), both PCP and LOPIT produce spatial maps in which this 
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information is preserved in the form of ‘microclusters’ within larger organellar clusters (Lundberg 

and Borner 2019). These microclusters reflect the nonuniform distance between proteins within 

the same organelle due to their physical association. Despite this qualitative observation, little 

work has gone towards investigating whether these patterns hold bona fide cell biological 

information. 

In this article, I introduce a simple, new R (Team and others 2013) package called PCpulldown 

whose main purpose is to query individual proteins and uncover their relationship to all other 

proteins within diverse spatial proteomics datasets. Through a modified Euclidean distance 

measurement, I am able to recapitulate known biological interactions for a handful of well-studied 

proteins as well as make predictions about new putative interactions. I also describe how proteins 

residing in the same organelle have highly similar patterns to their relationship to all other 

proteins in the dataset. Taken together, this package provides a simple way of accessing spatial 

proteomics datasets without the need for high levels of expertise in the R programming language.  
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Figure 3.1. PCpulldown Overview 

An MSnbase object is converted into an S3 list using the makePPSS function which quickly measures all 
pairwise Elucidean distances and converts them into normalized Protein Profile Similarity Scores (PPSSs). 
An S3 object stores these PPSSs and is easily queried using base R indexing, i.e., lPPSS[[“protein”]]. The 
PCpulldown function uses base R functions to produce three types of outputs: 1) the protein abundance 
profile for the protein of interest (red) and highly similar proteins (black), 2) the distribution of all PPSSs for 
that protein, and 3) a csv file with proteins and their associated properties ranked by PPSS. This set-up 
allows for easy and quick access to higher-dimensional proteomics datasets acting akin to an in silico 
“pulldown” of a protein of interest. Created with BioRender.com. 
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Results: 

PCpulldown: A simple way to probe spatial proteomics datasets 

To easily access spatial proteomics datasets, I made use of the preexisting infrastructure 

developed in the MSnbase and pRoloc R packages available through Bioconductor (Gatto and 

Lilley 2012; Gatto, Breckels, Wieczorek, et al. 2014; Crook et al. 2019). Briefly, MSnbase serves 

to process and store mass spectrometry data irrespective of its source and application through 

the generation of an S4 object in which both expression and feature data are stored. These 

objects can be generated through csv files produced by popular mass spectrometry library 

searching software like MaxQuant or ProteomeDiscoverer (Tyanova, Temu, and Cox 2016; 

Orsburn 2021). MSnbase is also capable of handling raw xml-based file formats directly from the 

Mass Spectrometer, but I assume most users will obtain protein or peptide-level csv files from 

some intermediate program. The pRoloc package makes use of MSnbase but for the specific 

application of subcellular/organellar proteomics. The utility and value of these packages are 

immense to any researcher in the field, and I only introduce this tool as a complement to these. 

An interactive application implemented in the pRolocGUI package, built on the 

shinydashboardPlus infrastructure, provides the best way to directly interact with these data 

(Gatto et al. 2015). PCpulldown provides an intermediate to the purely programmatic and purely 

UI-based methods of data analysis. 

The PCpulldown workflow is simple: 1) make protein profile similar score database using 

the makePPSS function, and 2) query using the PCpulldown function with a protein of interest 

(Figure 3.1). The query can be loaded with a file containing diverse properties of all proteins in 

the dataset, e.g., by pulling information from the organism’s genome browser, but by default, the 

feature data stored in the MSnbase object is returned. The makePPSS function takes as an input 

the MSnbase object and performs three tasks: 1) measures all pairwise Euclidean distances with 

a custom C++ function, 2) normalizes all Euclidean distances to the largest and smallest global 

values, and 3) subtracts this from one. The resulting S3 object contains all protein names in their 
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first layer, followed by a second layer with all protein names (excluding themselves) with a 

corresponding PPSS. The PCpulldown function takes five potential inputs: 1) the protein of 

interest, 2) the original MSN object, 3) the S3 PPSS database, 4) the output directory, and 5) an 

option to provide properties of all proteins in the dataset. This function returns three files: 1) a csv 

file containing proteins listed from the most similar (i.e., highest PPSS) to least similar with their 

corresponding properties or feature data, 2) the distribution profile of the protein of interest with 

the highest 95th percentile of similar proteins, and 3) a histogram of all PPSSs for that protein of 

interest. The workflow is accessible here: https://github.com/Tlicknack/Paramecium_Spatial-

Proteomics.  

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/Tlicknack/Paramecium_Spatial-Proteomics
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Figure 3.2. PCpulldown of S. cerevisiae Proteins Demonstrate Strengths and Weaknesses of 
Approach 

I selected two S. cerevisiae proteins which were members of an intraorganellar protein complex and one 
cytosolic protein to demonstrate when this approach is appropriate. The ATP synthase subunit ATP1 
(P07251) has two of its five most similar proteins as fellow ATP synthase subunits (left). The RNA 
Polymerase A subunit RPA49 (Q01080) similarly had two of its five most similar proteins as fellow RPA 
genes (middle). In contrast to these two, the cytosolic FBP26 regulates glycolysis and contains a semi-
random mixture of other cytosolic proteins with which it is similar, however many in its top five play some 
role in the mitochondria or glycolysis. 
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Protein Profile Similarity Scores Provide Useful Information about the Breadth of Cell Biological 

Interactions for Individual Proteins 

PPSSs range from zero to one such that proteins with lower PPSSs are more dissimilar from the 

query. We first benchmarked this approach using several different types of proteins from diverse 

organisms.  

A hyperLOPIT experiment in the budding yeast Saccharomyces cerevisiae yielded 

protein abundance profiles for 2,847 proteins (Nightingale, Oliver, and Lilley 2019). PCpulldown 

of the F1 ATP synthase subunit ATP1 (P07251) recovers 5 ATP synthase subunits within the top 

99th percentile range: ATP5, ATP3, ATP7, ATP2. The remainder of annotated ATP synthase 

subunits appeared as positions: 68th (ATP4), 76th (ATP16), 99th (ATP20), 192nd (ATP15). 

Intermixed with these complex members are additional mitochondrial proteins, and it is not until 

185th most similar protein that a non-mitochondrial prediction appears, but that is ER-predicted 

gene HMG1 which does function in the mitochondria as well (Diffley and Stillman 1991). 

PCpulldown of the nucleolar, Pol I subunit RPA49 recovers several subunit A complex members 

in the 2nd (RPA190), 4th (RPA135), and 7th (RPA34) positions with five other non-specific RNA 

pol subunits appearing intermediate to these and the last subunit A member in the dataset at the 

155th position (RPA43). RPA49’s most similar protein was the pre-rRNA processing protein 

PWP2 (Dosil and Bustelo 2004). The first non-nuclear protein is the mitochondrial biotin synthase 

enzyme BIO2 at the 73rd position and may serve as an empirical cut-off for biological relevance. 

These two show examples of when this approach is useful: for intraorganellar protein complexes. 

Cytosolic proteins represent a different class with more ambiguous results. The glycolysis 

mediating FBP26 pulls down the purely cytosolic decapping protein DCS2 with no relationship 

whatsoever to glycolysis. Interestingly though, the 2nd nearest neighbor was the glycolytic PYK2, 

the third a mitochondrial splicing factor (MRS6), and the 12th was the glycolytic ENO2. This does 

suggest a tighter association between protein components of the same cytoplasmic pathways, 
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but the intermixing proteins are not as contained as those of proteins within the same organellar 

environment.  

We previously mapped the spatial proteome of the ciliate Paramecium tetraurelia. I used 

the same method as above using a database of 2,345 proteins that did not require imputation. 

ATP1 BLASTs to a large family of proteins, the best hit in our data being PTET.51.1.P0330225. 

This was confidently predicted to be mitochondrial, and it is not until the 333rd position that a non-

mitochondrial prediction– the peroxisomal thiolase enzyme– appears. The two most similar 

proteins are the inner membrane (MIM) proteins NNT (PTET.51.1.P0060269) and SDHB 

(PTET.51.1.P1270083). However, the next handful of similar proteins are mitochondrial 

ribosomes, and there is no clear demarcation between the MIM and other mitochondrial 

components. The 15th most similar protein is another ATP synthase subunit ATPeF1B 

(PTET.51.1.P0230128). RPA49’s ortholog (PTET.51.1.P0540090) pulled down, as its most 

similar proteins, the ribosome biogenesis factor BRX1 (PTET.51.1.P0070153), and nucleolar 

proteins make up the vast majority of similar proteins with the first non-nuclear protein appearing 

as a ribosomal subunit at the 102nd position. These results support the utility of PCpulldown in 

describing the immediate proteomic neighborhood of a protein of interest.  

PCpulldown Identifies New Interactions in Non-Model Eukaryotes 

The apicomplexan parasite T. gondii was subjected to a hyperLOPIT experiment which revealed 

the localization pattern for 3,832 proteins (Barylyuk et al. 2020). The specialized cell invasion 

machinery of Apicomplexa is centered around the cortical microneme and rhoptry; organelles 

which perform regulated exocytosis and share numerous properties with other exocytotic 

structures across Alveolates (Gubbels and Duraisingh 2012). In one study, a group of 

Paramecium “non-discharge” mutants, TgND6 (TGME49_248640) and TgND9 

(TGME49_249730), were shown to be conserved across Alveolata and important for regulated 

exocytosis in T. gondii (Aquilini et al. 2021). They performed immunoprecipitation-MS/MS to 

identify binding partners for these proteins and identified three candidates significantly 
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overrepresented in abundance: TgNdP1 (TGGT1_222660), TgNdP2 (TGGT1_316730, 

TGME49_249730), and TgFER2 (TGGT1_260470, TGME49_260470). Both TgND6 and TgND9 

were identified in hyperLOPIT, although the former was classified to the Golgi and the latter to the 

peripheral plasma membrane compartments. Encouragingly though, PCpulldown of TgND6 

identifies TgNdP2 as its 4th nearest neighbor and TgFER2 as its 46th. Conversely, TgND9 

identifies TgNdP1 as its 1st nearest neighbor. Two named calcium dependent protein kinases are 

tightly associated with each ND gene: CDPK4 (11th: TGME49_237890) and CDPK7 (5th: 

TGME49_228750) for TgND9. These types of signaling genes are thought to play a major role in 

microneme function, and the plethora of other proteins identified here may aid in better 

elucidating this mechanism.  
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Figure 3.3. Calmodulin in P. tetraurelia Has a Complex Role in the Cell Cortex 

The P. tetraurelia CAM1 protein abundance profile is shown in red with its five most similar proteins (right), 
6-10 (bottom), 11-15 (left), and five randomly chosen proteins (top) from the non-imputed dataset. This 
approach recapitulates previously known interactions (e.g., between CAM and tubulin) and identifies a 
number of previously unknown interactions worthy of follow-up. Some of these have little to no annotation, 
although nearly all with annotated domains suggest some functional role in calcium signaling. Created with 
BioRender.com. 
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I then followed this up by studying the calcium signaling protein calmodulin (CAM) found 

promiscuously in the cell cortex as well as numerous membranous structures like food vacuoles 

and the contractile vacuole (Plattner 2013). CAM is highly conserved across eukaryotes, and in 

humans it binds directly to several hundred targets (Yap et al. 2000). In Paramecium, no gene 

has been subject to more biological scrutiny with dozens of well-characterized mutants. In our 

dataset, CAM1 (PTET.51.1.P0460139) was discretely classified to the axoneme and had its two 

most similar protein neighbors as the tubulins: alphaPT2 and betaPT3 (Figure 3.3). This 

relationship has never been observed in Paramecium, however the interplay between calmodulin-

dependent processes and tubulin phosphorylation has been long known(Means and Dedman 

1980). Several homologous components of the membrane trafficking system appeared as well, 

such as VPS33A (PTET.51.1.P0030390) at the 16th position. Both CAM and various VPSs are 

well-known to regulate endosome formation (Colombo, Beron, and Stahl 1997; Babst et al. 1998), 

and this link connects the complex membrane trafficking machinery to the regulatory and 

structural components of the cell cortex. The ciliate-specific gene PTET.51.1.P0060450 is the first 

with a TMD at the 31st position, and it is annotated with the GO CC term “metal ion binding”. 

Nearly all of CAM’s most similar proteins have some expected role in the functioning in the 

cortex, and many are likely involved in calcium signaling. This pattern likely reflects the underlying 

and broad role that CAM plays in regulating calcium signaling in order to modulate the activity of 

these diverse cellular membranes. Those unnamed genes are excellent candidates for follow-up, 

and this approach can easily be applied to any protein of interest.  
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Figure 3.4. Differential Resolution of the Cytosol and Mitochondria Across LOPIT Datasets 

PPSS distributions display a wide range of shapes, although some are constant for the same 
organelle in different types of experimental set-up. The mitochondrial shapes (left) are typically 
multimodal, with a far-right peak of highly similar proteins followed by a broader, left peak. This 
behavior supports the hypothesis that membrane bound organelles constrain their proteins from 
being highly similar to proteins not in their organelle. In contrast, cytosolic proteins (right) are not 
bound by these constraints and adopt often broader PPSS distributions depending on the 
organism and experimental design. For example, the LOPIT-DC data for U-2 OS cells has a far 
different pattern than hyperLOPIT data from the same sample, the former being multimodal and 
the latter having a long right tail. The left versus right skewness of these distributions reflects 
whether the mean organellar protein profile is less or more similar, respectively, to all other 
protein in the dataset. 
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The Topology of Protein Profile Similarity Scores Differs Across Organelles, Organisms, and 

Experiments 

I noticed that proteins predicted to the same subcellular compartment often had similar PPSS 

distributions, and I wondered if this was a general feature which reflected their global associations 

in the cell. Many organellar proteins had PPSS distributions with multiple peaks, and it is tempting 

to imagine this is caused by gradients of decoupling between proteins of the same 

pathway/complex, within the same organelle, and those associated purely by chance. Cytosolic 

proteins, however, should not be as clearly demarcated in this manner due to the lack of a 

membrane-bound barrier between them and other proteins.  

To determine the generality of this phenomenon, I created a mean PPSS distribution for 

each compartment in both S. cerevisiae and T. gondii hyperLOPT data (Nightingale, Oliver, and 

Lilley 2019; Barylyuk et al. 2020) as well as both hyperLOPIT and LOPIT-DC data from human 

U2O2 cell lines (Geladaki et al. 2019). One constant across these datasets was the mitochondria, 

which represented a singular compartment characterized by a tight cluster when projected onto 

principal components 1 and 2 (Figure 3.4). The three hyperLOPIT PPSS distributions appeared 

more similar in that the rightmost peak (most similar protein profiles) and middle peak 

(moderately similar profiles) had a large gap between them, while the gap in the LOPIT-DC data 

was smaller, but the right peak was higher. In general, the mitochondria are well-resolved in any 

study of this kind, but the higher relative proportion of points in the rightmost peak from the 

LOPIT-DC data suggests a possibly better resolution than in hyperLOPIT. In contrast, cytosolic 

proteins adopted many shapes to their distributions, with huge differences observed within the 

same U2-OS cell line depending on whether the data came from hyperLOPIT or LOPIT-DC 

design (Figure 3.4). LOPIT-DC was already known to better resolve the cytosol and proteosome 

(Geladaki et al. 2019). These observations give hints into the topological organization of proteins 

in terms of their global interaction profiles as reflected in spatial proteomics data. 
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Discussion: 

PCpulldown is a useful tool when querying spatial proteomics data for individual proteins. The 

data produced from these studies are massive, but the analyses performed in the articles 

producing them are typically superficial and focus on expanding the protein inventory for a 

handful of cellular compartments. To make these data more useful for a broad community, there 

must be an easy way to access them. This is particularly true on non-model systems in which 

these techniques are finding new life such as the alveolates P. tetraurelia and T. gondii (Barylyuk 

et al. 2020). I show an example in P. tetraurelia using the promiscuous but critically important 

calcium-signaling protein, CAM1, and reveal new properties about its cell biological context which 

may aide researchers attempting to better understand its role in the cortex. A molecular biologist 

with any level of R coding background should be able to source and execute the two functions 

described in this study, although more will be produced.  
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CHAPTER 4 

THE SUBCELLULAR FATE OF DUPLICATE GENES IN PARAMECIUM TETRAURELIA 
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Abstract:  

Gene duplications are thought to underly much of the observed phenotypic diversity in eukaryotes 

by providing the raw materials for the functional diversification of resulting paralogous genes. 

Despite this, the ciliate lineage Paramecium aurelia has experienced two whole genome 

duplication (WGD) events preceding its speciation into 14 species that are morphologically 

identical. Much work has gone towards understanding the parallel patterns of gene loss in 

different P. aurelia spp. and the functional diversification of retained paralogs (called ohnologs) 

using tools like mRNA sequencing. However, little is known about the expression and localization 

of the protein products of these duplications. Recently, we mapped the spatial proteome of P. 

tetraurelia using a combination of cell fractionation and quantitative proteomics (Licknack et al. in 

prep). The protein abundance data underlying protein localization prediction hold clues as to 

changes in protein function due to reallocation of protein material to different regions of the cell. 

Of all possible pairs of ohnologs from the three most recent WGD events, we discovered ~4,500 

instances where just a single protein was identified and another ~4,200 instance where both 

protein pairs were identified. Protein pairs in which only one copy was identified were significantly 

more divergent at the sequence level than those pairs in which both copies were. Protein pairs 

with significantly dissimilar abundance profiles tended to have N-terminal indels relative to their 

ancestral state, but there was a weak relationship between sequence divergence as a whole and 

quantitative, subcellular divergence. We observed a plethora of enriched gene duplicates 

predicted to be either ribosomal, proteasomal, or of the trichocyst matrix of P. tetraurelia, possibly 

providing a cell biological explanation for the previously reported relationship between mRNA 

expression and ohnolog retention. Taken together, we provide a novel approach to studying the 

functional diversification of gene duplicates at the level of cell biology.  
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Introduction:  

 

Gene duplication has played an undeniable role in the evolutionary process by providing the raw 

material for the expansion of the protein repertoire for the lineage in which it occurs (Ohno 1970). 

There has now been a deep literature produced which describes both how evolutionary forces act 

to determine if a gene duplicate is retained as well as how functional consequence of that 

retention at the level of mRNA expression, protein sequence, and organismal fitness (Force et al. 

1999; McGrath et al. 2014; Innan and Kondrashov 2010; Gout and Lynch 2015; Ohno 1970; 

Lynch and Force 2000). Although the most common fate for a duplicate gene is loss, retention 

can occur if both copies are fixed and preserved over evolutionary time. While fixation simply 

describes the state in which the entire population contains both duplicated gene copies, 

perseveration of those duplicates then describes their symmetric or asymmetric rate of sequence 

evolution. Fate-determining mutations can arise before the fixation of the post-duplicate state in 

the population, and these events can seed more mutations leading to the divergence between the 

two copies. The extent to which these mutations alter gene function is constrained by the cell-

biological environment in which those gene products must act. 

The constraints on the evolutionary fate of duplicate genes are alleviated somewhat 

when whole-genome duplication (WGD) events result in the systematic duplication of every gene 

in the genome alongside its entire suite of regulatory elements and genomic contexts(Birchler et 

al. 2001). Paralogs resulting from such events are called ohnologs. Evidence of their occurrence 

can be found across the tree of eukaryotic life from animals, plants, fungi, and a variety of 

protists. In this ciliate lineage Paramecium aurelia, a cryptic species complex has evolved after 

two subsequent WGD events with a possible ancient duplication preceding the split between 

Paramecium and Tetrahymena (Aury et al. 2006). While much effort has gone towards 

characterizing the patterns of gene loss in each P. aurelia spp. (Gout et al. 2019), less effort has 

been made on the functional impacts of WGD events at the cell biological level. One clear trend 

to emerge is the relationship between mRNA expression level and ohnolog retention such that 

more highly expressed genes are more likely to be retained (McGrath et al. 2014). Investigations 
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into protein expression and function are lacking a similar high-throughput nature and typically 

resort to manually tagging and assaying individual proteins and observing their localization via 

microscopy (Hauser, Pavlovic, et al. 2000). The emergent techniques of spatial proteomics have 

been applied to a handful of microbes (Nightingale, Oliver, and Lilley 2019; Barylyuk et al. 2020) 

and illuminated the broad localization patterns for thousands of proteins simultaneously. This is 

achieved through the gentle lysis and fractionation of a cell culture followed by quantitative mass 

spectrometry in order to generate unique profiles for each identified protein corresponding to its 

subcellular localization. In a recent study, we applied this technique to the model ciliate 

Paramecium tetraurelia and determined protein localization for over 9,000 proteins. We predicted 

protein localization to one of seventeen compartments spanning diverse cell biological structures 

like the cortex (two basal body, one trichocyst matrix, one axoneme, one surface antigen cluster), 

nuclei (soluble and insoluble), mitochondria (outer membrane and remainder), peroxisome, 

lysosome, membrane trafficking (soluble and insoluble), ER, cytosol, and the ribosome and 

proteasome complexes. The strict cut-offs used in that study largely ignored any differentially 

identified ohnologs which may be functionally divergent, so here we pay special attention to the 

thousands of pairs of duplicates and at multiple levels of phylogenetic divergence.  
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Figure 4.1. Changes in Protein Sequence Affect the Differential Identification of Ohnologs but Do Not 
Determine the Extent of their Functional Diversification  
We used quantitative proteomics data to identify WGD ohnologs differentially present in biochemically 
distinct, subcellular fractions. Proteins without any peptide evidence in any fraction were considered absent 
(0), and present proteins were coded as either lowly (1) or highly (2) abundant based on the presence of one 
or many peptide peaks corresponding to that protein.  
Left: Ohnolog pairs in which both copies were present were compared to those in which only one was 
present based on the pairwise evolutionary distance between their amino acid sequence calculated using 
MEGAX; Poisson Correction (Kumar, Tamura, and Nei 1994). Pairs in which both proteins were present 
were significantly more similar to each other at the sequence-level than pairs in which only a single copy 
was identified and the other was absent (ρ ~= 0).   
Right: Pairwise Euclidean distances were computed between coded abundance profiles of all ohnolog pairs 
and regressed against their evolutionary distance in a log-log plot. Heteroscedasticity was observed with a 
narrowing of points as protein pairs became more dissimilar at the protein sequence level. This weak trend 
suggests a weak relationship between sequence and subcellular divergence as seen in a spatial proteomics 
experiment. 
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Results:  

 

Thousands of gene duplicates are differentially detected in a deep proteomic survey of 

Paramecium tetraurelia 

 

In a previous study, we reported the protein localization patterns for over 9,000 proteins of P. 

tetraurelia using a combination of cell fractionation and quantitative proteomics (Licknack et al. in 

prep). While we identified 11,856 P. tetraurelia proteins in total, we excluded many whose low 

number of peptide spectral matches (PSMs) resulted in noisy data not reflective of their 

localization pattern. This indirectly resulted in the systematic removal of several hundred proteins 

which may contain clues corresponding to the diversification of gene duplicates which are 

differentially present or absent from different fractions. Due to a positive relationship between the 

number of PSMs identified in the proteomics data and mRNA expression data from the underlying 

gene (Arnaiz et al. 2010), this biased our coverage towards more highly expressed genes (Figure 

4.4). We thus included all proteins with any level of proteomic support. Of all possible pairs of 

WGD1 (young), WGD2 (intermediate), and WGD3 (ancient) ohnologs, 4,490 pairs had only one 

copy identified in the proteomics data while another 4,214 pairs were both. Across all 

phylogenetic levels, ohnolog pairs with smaller evolutionary distances were more likely to both be 

identified than more distant pairs (Figure 4.1). This is expected due to the nature of proteomics 

experiments in which shared peptides aide in the identification of proteins despite unique 

peptides being a prerequisite (Zhang et al. 2010). But the possibility that one ohnolog is not 

identified due to its lack of expression opens a potential avenue for studying changes in gene 

function. In all but a single case, both gene copies are expressed at the mRNA level. 

For those ohnolog pairs in which both copies were present, we measured the Euclidean 

distance (i.e., the “norm”) between protein abundance values measured across 108 fractions 

(three technical triplicates of three biological triplicates across twelve subcellular fractions) using 

coded values of zero for absent, one for detectable, and two for highly abundant based on 

standard protein identification techniques implemented in ProteomeDiscoverer (Orsburn 2021). 
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This coding system removes the need to impute missing values while capturing large-scale 

trends in differential protein abundance across subcellular fractions. A protein entirely missing 

from all fractions compared with a protein highly abundant in all fractions would yield the largest 

Euclidean distances and thus would be the most dissimilar from each other at the level of protein 

localization. The scaling relationship between pairwise Euclidean distances (i.e., localization 

divergence) and evolutionary distances (i.e., sequence divergence) was very weak and exhibited 

heteroscedasticity (Figure 4.1). In lieu of an alternative metric to measure quantitative changes to 

protein localization, these data suggest a decoupling between sequence evolution and protein 

localization. 
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Figure 4.2. Functionally Divergent Proteins Often have N-terminal Changes 
Left: The pairwise Euclidean distances between ohnolog pairs (purple) was compared with randomly chosen 
proteins (red) to determine which ohnologs were statistically dissimilar from one another. The dotted red line 
denotes the bottom 5th percentile of the random pairs and a possible cut off between divergent and non-
divergent ohnolog pairs. Circled points denotes those whose Z-scores indicated with 99% confidence (17.9-
20.6) were identical to randomly chosen protein pairs.  
Right: Protein alignments for the four most divergent ohnolog pairs were made with ClustalW and are shown 
in ascending order of their Euclidean distance. Three of four of these proteins have large, N-terminal 
extensions or deletions when compared to their single-copy P. caudatum ortholog. The only pair without a 
large-scale N-terminal change does contain two smaller N-terminal insertions and deletions. These 
observations support the importance of N-terminal peptides in the evolution of protein localization.   
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We then wished to determine highly divergent ohnolog pairs by comparing their pairwise 

Euclidean distances to randomly chosen proteins from the same dataset (Figure 4.2). This latter 

dataset should serve as a null expectation under the assumption that only a minority of unrelated 

proteins should have similar patterns (Figure 4.1). Only 1,552 ohnolog pairs had a Euclidean 

distance within the highest 95th percentile of random proteins, while the other 2,662 were less 

than this cut-off. These 1,552 pairs constitute ohnologs which are as different from one another 

as most randomly chosen pairs of proteins. We then calculated a Z-score using this random 

expectation to identify 18 ohnolog pairs that are significantly different in their differential 

abundance profile with 99% confidence. Of the four highest Euclidean distances, all contain some 

either a large indel or many small indels in their N-terminal peptide (NTP); one being a large 

extension of the NTP, two large deletions, and one with many smaller changes. These results 

validate expectations that NTPs play a predominant role in driving protein relocalization (Byun 

and Singh 2013).  
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Figure 4.3. Ohnolog Retention and Relocalization is Associated with Predicted Subcellular 
Compartments  
Top: Using predictions from Licknack et al. (in prep) across over 9,000 protein-coding genes, ohnolog 
presence was compared across three levels of phylogenetic divergence: young- WGD1 (red), intermediate- 
WGD2 (blue), old- WGD3 (green). Means for the dataset plotted as dotted lines with the following values: 
~70% (WGD1), ~31% (WGD2), and ~6% (WGD3). Stars indicate statistically significant enrichment or 
depletion of ohnolog presence relative to the uknown category which contains a semi-random mixture of 
proteins across the proteome with weak support for their predicted localization to any compartment. 
Ribosomal and trichocyst matrix predictions were disproportionately enriched in all three types of ohnologs 
possibly owing to their high mRNA expression levels (Supp Figure). Proteasomal predictions were enriched 
in both WGD1 and WGD2 ohnologs but notably contained no proteins with WGD3 still retained. Conversely, 
the associated basal body predictions were only significantly enriched at the WGD3 level.  
Bottom: Organellar predictions were compared between all WGD1/2/3 ohnolog pairs such that larger, lighter 
dots are indicative of more proteins in that class. Most protein pairs were either both ‘unknown’ or contained 
one unknown copy and another predicted to some compartment like the ribosome or mitochondria. The 
latter case implies that one pair is more ambiguously assigned than the other which may reflect meaningful 
subcellular divergence, but a few other cases appear to be more straightforward changes to new subcellular 
locations. The broad class of soluble membrane trafficking proteins was often involved in relocalization 
events between confidently predicted protein pairs. This was a similar trend to that seen in hyperLOPT data 
in S. cerevisiae (Figure 4.5). 
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Numerous gene duplicates have entirely different predicted protein localizations in both P. 

tetraurelia and S. cerevisiae 

 

We reanalyzed the previously discussed P. tetraurelia spatial proteomics dataset to determine the 

relationship between ohnolog retention and discrete changes in protein localization. We first 

determined the rate of retention for WGD1, WGD2, and WGD3 ohnologs and compared them by 

their predicted subcellular compartment (Figure 4.3). WGD1 ohnologs were present in ~70% of 

proteins in our dataset, but several compartments were either significantly enriched or depleted. 

In the former category were the basal-body core proteins, proteasomal, ribosomal, and trichocyst 

matrix compartments. In the latter are the ER, lysosomal, surface antigen, and insoluble 

membrane trafficking compartments. WGD2 ohnologs were present in far fewer proteins– 

averaging ~31% across the dataset and only being significantly enriched in proteasomal, 

ribosomal, and trichocyst matrix compartments while being depleted in cytosolic and soluble 

nuclear predictions. A minority of genes still retained ancient duplicates (~6%), but there were a 

handful of compartments highly enriched with WGD3 ohnologs: basal body associated, ribosome, 

and trichocyst matrix. Conversely, the mitochondrial and soluble nuclear compartment were 

significantly depleted, and the proteasome compartment contained no genes with retained WGD3 

copies. This leaves both the trichocyst matrix and ribosomal compartments containing the largest 

numbers of young, intermediate, and ancient duplicates. These two compartments have the 

highest mRNA expression, as does the basal body network, so this observation tracks well with 

the positive relationship between gene expression and gene duplicate retention (Gout et al. 

2010).  

Most WGD ohnologs in this study were classified to the same compartment, either both 

being ribosomal, mitochondrial, or in one of the membrane trafficking compartments (Figure 4.3). 

In total, 96 pairs of ohnologs were classified to a different compartment and may be true 

relocalization events. This commonly occurred between the cytosol and soluble membrane 
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trafficking compartment, the former being made up of most cytoskeletal elements and protein 

complexes involved in protein transport. These changes could occur simply through modest 

changes in relative abundance away from the Sup (supernatant) fraction and towards the protein 

processing (12K-30K) fractions overlapping with ER chaperones. More surprisingly are cases 

involving relocalization to entirely different compartments, although there are very few of these. 

One example is the WGD1 pair, PTET.51.1.P0480068 and PTET.51.1.P0340227, the former of 

which is confidently ribosomal, and the latter is confidently predicted to the soluble membrane 

trafficking compartment. Both are putative nucleosome assembly factors (NAP1L1) with 

homologs across eukaryotes acting as chaperones of histone proteins. However, the NAP1L1 

gene in Arabidopsis thaliana has been shown to directly interact with ribosomes (Son et al. 2015), 

so this may be the case in other species. When we aligned and built a tree of both P. tetraurelia 

protein sequences with that of P. caudatum, we found much longer branch lengths in the 

ribosomal copy (Figure 4.6). Upon inspection of the alignment, this copy contains a 5 bp deletion 

immediately after the position 140 glutamine (Q), which appears to be substituted from an 

ancestral lysine (K) overlapping its expected dimerization domain (Zhou et al. 2015). How the 

abolition of its ancestral chaperone roles could occur from such changes is unknown, as is the 

true ancestral state of the Paramecium NAP1 genes. A similar study conducted on a pre-

duplicate outgroup, like P. caudatum, would aid in clarifying this and other examples.  

We then reanalyzed a hyperLOPIT dataset that reported protein localization predictions 

for 2847 proteins in S. cerevisiae (Nightingale, Oliver, and Lilley 2019) using the prolocdata R 

package (Gatto, Breckels, Wieczorek, et al. 2014). While a small fraction of its ancient WGD 

duplicates have been retained, 546 pairs were, and of these, 175 pairs had both copies identified 

and predicted in this proteomics dataset. The clearest observation was that most ohnologs were 

classified to the same compartment (Figure 4.5). Of those with different classifications, 

relocalizations between the cytosol and nucleus made up the largest class, possibly owing to their 

classifications making up roughly 61% of the assayed proteome. Eight ohnolog pairs contained a 

nuclear and cytosolic copy. Changes between the cytosol and nucleus can be achieved easily 

through the loss of a nuclear localization signal (NLS), although not all the nucleus-cytosol pairs 
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contained a predicted NLS via NLStradamus (Nguyen Ba et al. 2009). One pair that did were the 

cytosol-predicted TCD1/YHR003C and nucleus-predicted TCD2/YKL027W, the latter containing 

the putative NLS: 240-RRKLKKR-246. The role of tRNA threonylcarbamoyladenosine 

dehydratases in the cytoplasm, nucleus, and mitochondria has been of considerable interest, and 

this observation may shine light into one possible mechanism of splitting bidirectional pathways 

with specialized ohnologs (Chatterjee et al. 2018). Another pair was the cytosolic FKS1 and 

nuclear GSC2, wherein both contained roughly the same putative NLS: 244-

GKLSRKARKAKKKNKK-259 in the former and 261-KLGKLSRKARKAKKKNKK-278 in the latter. 

Another ohnolog pair was the ER-classified CPR5/CYPD and cytosol-classified CPR3/CYPB 

(both cydophilins), the former containing the classical ER-retention signal HDEL (Pelham 1990) 

and the latter missing that region of its C-terminus (Figure 4.7). A simple string search identified 

that non-Saccharomyces yeast orthologs had some version of a C-terminal DEL motif, and this is 

likely the ancestral state. These and other findings support the use of high-throughput protein-

localization techniques to discover widescale evidence of protein relocalization in diverse 

eukaryotes.  

 

Discussion: 

 

Here, we provide a preliminary survey into the use of spatial proteomics to detect large-scale 

changes in protein localization between gene duplicates. The value of this approach to cell 

biology is undeniable— the ability to survey protein localization of nearly every expressed protein 

in the proteome with high resolution (Christopher et al. 2021; Gatto, Breckels, Wieczorek, et al. 

2014; Lundberg and Borner 2019). However, little to no effort has been made into the ability of 

this technique to detect divergent paralogous genes, despite the development of the original 

LOPIT technique in the polyploid Arabidopsis thaliana (Dunkley et al. 2004). By using only four 

subcellular fractions, this study was able to spatially resolve hundreds of proteins and assign 

them to specific subcellular niches. Now, TMT16-plex (Thermo) offers the possibility of assaying 

dozens of subcellular fractions simultaneously, and the continued development of label-free 
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methods of protein quantification provides additional flexibility to these workflows. As more 

subcellular fractions are included, the better resolution can be attained between gene duplicates 

for subtle changes in steady-state protein localization behavior.  

In our study, we used two approaches to identify divergent paralogs/ohnologs. One 

somewhat clear-cut method involved the determination of duplicate copies predicted to different 

compartments (Figure 4.3; Figure 4.5). Here, we rely on the ‘traditional’ techniques of spatial 

proteomics to make use of supervised classification algorithms in order to determine copies that 

are more similar to a pre-defined class of marker proteins chosen a priori as residents of a 

particular organelle or compartment. The benefit of this approach is the simplicity in its output: 

copies are either both predicted to the same compartment or each to a different compartment. An 

additional level of complexity can be added by including some cut-off value under which proteins 

are predicted as ‘unknown’, as is commonly done using SVM scores or Bayesian measures of 

uncertainty (Breckels et al. 2016; Crook et al. 2018; Gatto, Breckels, Burger, et al. 2014). One 

concern with this approach is its reliance on a prior knowledge of the system which motivates the 

choice of one or another marker protein to serve as the expected behavior of the organelle. This 

is even more important in non-model systems in which few— if any— proteins have been 

subjected to direct assays of protein localization. An alternative approach is to simply measure 

the higher-dimensional distance between two proteins agnostic of the true localization of either 

copy (Figure 4.2). In this study, we measured the Euclidean Distance between ohnologs in P. 

tetraurelia using their coded absence, presence, or high abundance and found many divergent 

pairs with clear changes to the NTP. Interestingly though, large-scale changes in sequence alone 

could not explain the observed divergence in changes to the pair’s spatial pattern (Figure 4.1). 

Since NTPs are typically quite small (roughly a dozen amino acids), we do not expect major 

structural changes to a protein to be a prerequisite for changing localization patterns. However, 

one may expect that such changes should institute a selective regime in which subsequent 

changes are more likely. An alteration to an NTP regulating protein sorting may relax selection on 

functional domains only active within the originally destined location, and vice versa. Since NTPs 
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evolve more rapidly than the rest of the protein (Williams, Pal, and Hurst 2000), one may expect 

the former scenario to happen quite quickly.  
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Figure 4.4. More Highly Expressed Genes at the mRNA level Produce Proteins with a Higher Number 
of Peptide Spectral Matches 
Proteins identified and quantified in Licknack et al. (in prep) were done using peptide spectral matching 
implemented in ProteomeDiscoverer. Each match (PSM) reflects the number of events in which the mass 
spectrometer encounters the peptide underlying the protein of interest. The summed PSMs per protein were 
regressed against the mRNA expression level of the corresponding gene, pulled from the ParameciumDB, 
on a log-log plot. The adjusted R-squared of this fit was ~0.32 and the p-value was highly significant (p < 
2.2e-16), meaning that this relationship is quite strong. 
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Figure 4.5. Ohnolog Relocalization in S. cerevisiae 
We detected 175 instances in which both copies of ohnologs were classified in S. cerevisiae hyperLOPIT 
data and plotted the localization of both copies. In most cases, both copies were classified to the same 
compartment, the most common fate being two cytosolic ohnologs, but there are many instances of 
differences in one copy, the most common being between the nucleus and cytosol. Mitochondrial, vacuolar, 
and— to a less degree— proteasomal ohnologs never had both copies classified to them. 
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Figure 4.6. A NAP1 Homolog in P. tetraurelia May Relocalize to the Ribosome After the 
Deletion of its Putative Dimerization Domain 
Ohnologs with different classifications are candidates for bona fide protein relocation events, and 
here we show an example of one such case. The pair PTET.51.1.P0480068 and 
PTET.51.1.P0340227 are both homologous to the nucleosome assembly factor NAP1. This 
protein’s probable ancestral state is cytoplasmic— which is partially explained by the soluble 
membrane trafficking compartment. However, one copy appeared clearly ribosomal (bottom 
right). The x-axis represents each subcellular fraction across three biological replicates (i.e., 
different experiments), while the y-axis is the protein’s normalized, relative abundance in that 
fraction. This copy had longer branch lengths than its ohnolog when aligned with its orthologous 
P. caudatum copy (left) and contained a small deletion which overlaps with its putative 
dimerization domain (top). This example shows how spatial proteomics data can identify 
relocalized ohnologs in a non-model system. 
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Figure 4.7. A S. cerevisiae Relocalization Event Associated with the Loss of HDEL  
We identified CYPB and CYPD as ohnologs classified to different compartments in S. cerevisiae.  CYPB 
(bottom, black) is cytosolic, while CYPD (bottom, red) localizes to the ER. Their abundance profiles 
displayed stark differences driven by differential abundance in different subcellular compartments (bottom). 
The axes are the same as that of Figure 4.6, but here four biological replicate experiments were done 
resulting in 40 fractions. The ancestral state of this gene is likely of the ER due to the persistence of the 
HDEL motif on the C-terminus associated with retention in the ER, however CYPB contains a large deletion 
of this region (top) which might have caused its lack of ER-association. 
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CONCLUSION 

Protein localization is a key step in gene expression and is particularly important in the context of 

large, compartmentalized eukaryotic cells with numerous membrane-bound and amembranous 

organelles. Emergent tools in spatial proteomics have enabled the simultaneous assaying of 

protein localization patterns for thousands of proteins without the need for sophisticated 

molecular manipulation (Borner 2020). This is particularly useful for non-model systems. However 

the reliance on a priori knowledge may limit the generality of each predicted organellar 

compartment—not so much that predictions are erroneous but more so that they are biased. To 

this end, I not only generated and analyzed a deep spatial proteomics dataset in the ciliate P. 

tetraurelia, but I also developed a simple tool to allow researchers to glean cell biological 

knowledge from this and other datasets without the need to rely entirely on the marker-protein 

based predictions. I described only a small handful of the numerous cell biological stories one 

could extract from these data, but I hope the interpretation and tools provided will find a useful 

place within the Paramecium community (Arnaiz, Meyer, and Sperling 2020) as well as the 

broader fields of cell and evolutionary biology.  

While I consider this work to be rich, there are a handful of regrets and disappointments 

that have persisted. The first is the lack of resolution between the MAC and MIC of P. tetraurelia, 

which one may expect to be simple to resolve due to their massive size difference (Cummings 

1977). I took numerous steps to increase the likelihood that these nuclei pellet in different 

fractions, such as retaining the first differential centrifugation fraction (300g) which is normally 

discarded and including an enriched MAC fractions generated through an entirely separate 

lysis/fractionation scheme (Figure 2.7). Western Blotting data confirmed the existence of 

numerous Histone protein isoforms in different fractions, and Histone H3 is known to have MAC- 

and MIC-specific isoforms due to the absence and presence of centromeres, respectively 

(Lhuillier-Akakpo et al. 2016). Despite this, those centromeric, MIC-specific Histone H3 proteins 

were absent from the data, and other MIC-specific proteins like NUP98 (Iwamoto et al. 2009) did 

not differ from other nuclear proteins. While it is unclear why MIC-H3 proteins were absent, the 

stochastic nature of mass spectrometry-based proteomics results leads to many false negative 
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protein identifications. The takeaway from this finding was that the resolution of organelles 

requires not only an appropriate fractionation scheme but also the identification of “diagnostic” 

proteins to serve as a differentiator of those organelles. Without those proteins, differential 

pelleting is irrelevant.  

Similarly, the contractile vacuole complex (CVC) of P. tetraurelia is large and distinct and 

should be amenable to these techniques, but there was no unique pattern corresponding to its 

known protein inventory (Plattner 2013). This is likely due to the overlap between most 

components of the ciliate membrane trafficking system such as phagolysosome and post-Golgi 

vesicles (Plattner 2022). Most proteins that decorate the CVC are a part of large gene families 

with members localizing numerous components of the endomembrane system. The shared 

peptides between members of these gene families will undoubtably affect mass spectrometry-

based proteomics identification despite the universality of unique peptides underlying all protein 

identifications. For example, calmodulin (CAM1) strongly stains the CVC as well as 

phagolysosomes and components of the cell cortex (Momayezi et al. 1986). Despite this, I show 

that CAM1’s abundance profile is indicative of a strong cortical role predominating its cell 

biological functioning due to similarities with axonemal dyneins and tubulins (Figure 3.3). The 

dynamic nature of GFP-tagging allows for less prominent localizations to be determined, while 

this approach is weighed towards the localization patterns adopted by most proteins at steady 

state. As new analytical methods are introduced, these problems around multi-localization will be 

better resolved (Crook et al. 2018). However, the use of PCpulldown, or some equivalent nearest-

neighbor sorting tool, will provide immediate assistance to understanding these promiscuous or 

otherwise unclear proteins.   

Despite the above concerns, these data broadly support the expansion of numerous 

membrane-bound organelles and protein complexes in P. tetruarelia, in particular the 

mitochondria whose ~1,000 proteins are close to the expectation set by mitochondrial proteomes 

in other species. Remarkably, many genes predicted here had no orthologs outside of ciliates, 

which is a finding reminiscent of the rapid mitochondrial divergence of the apicomplexan T. gondii 

after the split between its common ancestor and that of Dinoflagellates (Barylyuk et al. 2020). The 



  111 

emergence of novel genes in these two Alveolate lineages suggests a broader diversification 

ongoing in the superphylum as a whole, and more investigation will illuminate the extent to which 

this is occurring broadly. The verification of mitochondrial glycolysis, suggested previously for the 

ciliate T. thermophila, further opens up new questions about how the metabolic machinery of 

ciliates— needed to power large, motile cells— is being remodeled through both the relocalization 

of existing gene products and the emergence of novel genes.  
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