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ABSTRACT

Uncertainty Quantification (UQ) is crucial in assessing the reliability of predictive

models that make decisions for human experts in a data-rich world. The Bayesian

approach to UQ for inverse problems has gained popularity. However, addressing UQ in

high-dimensional inverse problems is challenging due to the intensity and inefficiency of

Markov Chain Monte Carlo (MCMC) based Bayesian inference methods. Consequently,

the first primary focus of this thesis is enhancing efficiency and scalability for UQ in

inverse problems.

On the other hand, the omnipresence of spatiotemporal data, particularly in areas

like traffic analysis, underscores the need for effectively addressing inverse problems

with spatiotemporal observations. Conventional solutions often overlook spatial or

temporal correlations, resulting in underutilization of spatiotemporal interactions for

parameter learning. Appropriately modeling spatiotemporal observations in inverse

problems thus forms another pivotal research avenue.

In terms of UQ methodologies, the calibration-emulation-sampling (CES) scheme

has emerged as effective for large-dimensional problems. I introduce a novel CES

approach by employing deep neural network (DNN) models during the emulation

and sampling phase. This approach not only enhances computational efficiency but

also diminishes sensitivity to training set variations. The newly devised “Dimension-

Reduced Emulative Autoencoder Monte Carlo (DREAM)” algorithm scales Bayesian

UQ up to thousands of dimensions in physics-constrained inverse problems. The

algorithm’s effectiveness is exemplified through elliptic and advection-diffusion inverse

problems.

In the realm of spatiotemporal modeling, I propose to use Spatiotemporal Gaussian

processes (STGP) in likelihood modeling and Spatiotemporal Besov processes (STBP)
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in prior modeling separately. These approaches highlight the efficacy of incorporat-

ing spatial and temporal information for enhanced parameter estimation and UQ.

Additionally, the superiority of STGP is demonstrated compared to static and time-

averaged methods in time-dependent advection-diffusion partial differential equation

(PDE) and three chaotic ordinary differential equations (ODE). Expanding upon

Besov Process (BP), a method known for sparsity-promotion and edge-preservation,

STBP is introduced to capture spatial data features and model temporal correlations

by replacing the random coefficients in the series expansion with stochastic time

functions following Q-exponential process(Q-EP). This advantage is showcased in

dynamic computerized tomography (CT) reconstructions through comparison with

classic STGP and a time-uncorrelated approach.
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Chapter 1

INTRODUCTION

Living in an era of data explosion, spatiotemporal data like traffic data and climate

forecasting are ubiquitous and have been a trending topic in research. Traditional

solutions for these problems often ignore the spatial or temporal correlations in the data

(static model) or simply model the data summarized over time (time-averaged model).

In either case, the data information that contains the spatiotemporal interactions is

not fully utilized for parameter learning, which leads to insufficient modeling in these

problems.

Inverse problems involving spatiotemporal observations are pervasive in scientific

research and engineering applications. These problems necessitate spatiotemporal

modeling due to the reliance on observed multivariate time series for inferring pa-

rameters of physical or biological significance. This work applies Bayesian models

with spatiotemporal likelihood and prior to various inverse problems. Specifically,

I utilize Spatiotemporal Gaussian processes (STGP) as a likelihood function for in-

verse problems, showcasing the effectiveness of spatial and temporal information in

parameter estimation and uncertainty quantification. The superiority of Bayesian

spatiotemporal likelihood modeling is demonstrated compared to traditional static

and time-averaged methods, using a time-dependent advection-diffusion partial differ-

ential equation (PDE) and three chaotic ordinary differential equations (ODE). The

theoretical justification for the efficacy of spatiotemporal modeling, even in complex

scenarios like chaotic dynamics, is also provided. Regarding spatiotemporal prior

modeling, the Spatiotemporal Besov Process (STBP) is employed as a regularization
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method to address ill-posedness and model constraints. Two limited-angle CT re-

construction examples showcase the advantage of the proposed STBP in preserving

spatial features while accounting for temporal changes compared with classic STGP

and a time-uncorrelated approach.

There is a burgeoning interest in UQ within applied mathematics, physics, and

engineering. This interest is driven by the necessity to calibrate model inadequacies,

conduct sensitivity analyses, and engage in optimal control under conditions of

uncertainty. The Bayesian methodology has garnered substantial attention for its

dual capacity to facilitate parameter estimation and address the pivotal facet of UQ

by deriving insights from the standard deviation of posterior samples.

In pursuing high-dimensional UQ, the Calibration-Emulation-Sampling (CES)

scheme, as elaborated in [28], emerges as a promising framework due to its inherent

structure. However, its practical implementation necessitates substantial computa-

tional resources to manage the expansive dimensions effectively. I propose incorporat-

ing deep neural networks (DNNs) during the emulation phase to enhance the CES

framework. This substitution arises from the DNNs’ computational efficiency and

reduced susceptibility to training set variations. Additionally, using an autoencoder

(AE) during the sampling stage helps by mapping to a lower dimension, reducing

complexities from high dimensions.

1.1 Background

Uncertainty Quantification(UQ)

UQ is essential for assessing and managing uncertainties in predictions and decisions,

ensuring informed choices and strategies in complex systems. It enhances reliability by
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acknowledging potential variations and risks, contributing to effective decision-making.

As a result, Bayesian methods for inverse problems, such as reservoir modeling [39, 40,

167, 161] and weather forecasting [155, 61], have become increasingly popular. Models

in these application domains are usually constrained to physical laws and are typically

represented as ODE/PDE systems, which involve expensive numerical simulations.

Therefore, Bayesian UQ for such physics-constrained inverse problems is quite difficult

because they involve 1) computationally intensive simulations for solving ODE/PDE

systems and 2) sampling from the resulting high dimensional posterior distributions.

To address these issues, we follow the work of [29] and propose a scalable framework

for Bayesian UQ that combines ensemble Kalman methods and Markov Chain Monte

Carlo (MCMC) algorithms.

Ensemble Kalman methods, originated from geophysics [49], have achieved signifi-

cant success in state estimation for complex dynamical systems with noisy observations

[50, 70, 1, 48, 46, 80, 86, 71]. More recently, these methods have been used to solve

inverse problems to estimate the model parameters instead of the states [119, 27, 44,

74, 73, 47, 55]. As a gradient-free optimization algorithm based on a few ensembles,

these methods gained popularity for solving inverse problems since they can be im-

plemented non-intrusively and in parallel. However, due to the collapse of ensembles

[135, 136, 159, 24], they tend to underestimate the posterior variances and thus fail

to provide a rigorous basis for systematic UQ. Combining Kalman methods with

MCMC can alleviate this issue. This approach consists of three stages: (i) calibrating

models with ensemble Kalman methods, (ii) emulating the parameter-to-data map

using evaluations of forward models, and (iii) sampling posteriors with MCMC based

on cheaper emulators. We refer to this approach as Calibration-Emulation-Sampling

(CES) [29]. Two immediate benefits of such framework are 1) the reuse of expensive
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forward evaluations, and 2) the computationally cheap surrogates in the MCMC

procedure.

Spatiotemporal Modeling for Inverse Problems

Spatiotemporal data are ubiquitous in inverse problems, typically recorded as

multivariate time series. There are examples in fluid dynamics that describe the

flow of liquid (e.g., petroleum) or gas (e.g., flame jet) [79]. Other examples include

dynamical systems with chaotic behavior prevalent in weather prediction [106], biology

[104], economics [15] etc., where small perturbation of the initial condition could lead

to a significant deviation from what is observed/calculated in time. Such inverse

problems aim to recover the parameters from given observations and knowledge of the

underlying physics. The spatiotemporal information is crucial and should be respected

when considering proper statistical models for parameter learning. This is not only

of interest in statistics but also beneficial for practical applications of physics and

biology to obtain inverse solutions and UQ more effectively.

Traditional methods for these spatiotemporal inverse problems often ignore the

time dependence in the data for a simplified solution [154, 29, 94]. They either

treat the observed time series statically as independent identically distributed (i.i.d.)

observations across times [154, 94] (hence refer to it as “static” model), or summarize

them by taking time average or higher order moments [114, 29, 72] (referred as

“time-averaged” approach). The former is prevalent in Bayesian inverse problems with

time series observations [94]. The latter is especially common in parameter learning

of chaotic dynamics, e.g., Lorenz systems [106, 29], due to their sensitivity to the

initial conditions and the system parameters, which in turn causes a rough landscape
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of the objective function. In both scenarios, the spatiotemporal information is not

fully integrated into the statistical modeling.

Regularization on Function Spaces

Regularization on function spaces is one of the fundamental questions in statistics

and machine learning. High-dimensional objects such as images can be viewed as

evaluation of proper functions. Statistical models for these objects on function spaces

demand regularization to induce sparsity, prevent over-fitting, produce meaningful

reconstruction, etc. The Gaussian process has been a popular choice for the L2 penalty

or function space prior. However, this approach can result in over-smoothed candidate

functions when modeling objects with sharp edges, such as images. To address this

issue, researchers have proposed a class of L1 penalty based priors including Laplace

random field [125, 108, 88] and Besov process(BP) [98, 36, 38]. Particularly, BP

defined by wavelet expansions with random coefficients has been proposed as a more

appropriate prior due to its discretization-invariant property for this type of Bayesian

inverse problems. They have been extensively applied in spatial modeling [125], signal

processing [88] and imaging analysis [152, 108].

1.2 Inverse Problem

1.2.1 Introduction

’Inverse problem’ refers to using the results of actual observations to infer the

values of the parameters characterizing the system under investigation. In detail, the

inverse problem is composed of 3 elements. We call objects of interest “parameters”,
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information collected about these objects like actual observations “measurements”

or “data” and the mapping(forward problem) “measurement operator(MO)”. Taking

Computed Tomography(CT) scan1 as example, MO refers to a rotating X-ray tube and

a row of detectors which are placed in a gantry, then the tomographic (cross-sectional)

images(virtual “slices”) of a body would be measurements processed on a computer

using tomographic reconstruction algorithms from those multiple X-ray operator taken

from different angles. Finally, parameters refer to varying tissues inside the body that

could interact with X-ray detectors and record X-ray attenuations.

Inverse problems are typically challenging to solve for at least two different reasons:

(1) different values of the model parameters may be consistent with the data (knowing

the height of the main-mast is not sufficient for calculating the age of the captain),

and (2) discovering the values of the model parameters may require the exploration of

a vast parameter space (finding a needle in a 100-dimensional haystack is difficult).

The Bayesian framework has been introduced to solve challenges in inverse problems

like reservoir modeling and weather forecasting. This framework utilizes previous

knowledge of unknown parameters to optimize the entire process and account for

uncertainty through posterior distribution.

1.2.2 Bayesian Inverse Problem

In many physics-constrained inverse problems, we are interested in finding an

unknown parameter function u based on observations y. A forward mapping G : X 7→ Y

from a separable Hilbert space X to the data space Y (e.g. Y = Rm for m ≥ 1) connects

1CT scan, also known as X-ray scan, a medical imaging technique used to obtain detailed internal
images of the body.
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u to y as follows:

y = G(u) + η (1.1)

where η ∈ Y is assumed to be Gaussian noise η ∼ N (0,Γ). We can define the potential

function (negative log-likelihood), Φ : X× Y→ R as:

Φ(u; y) =
1

2
∥y − G(u)∥2Γ =

1

2
⟨y − G(u),Γ−1(y − G(u))⟩ (1.2)

The solution could be computationally demanding due to non-linearity. Conse-

quently, repeated forward evaluations of G(u) could be expensive for different u’s,

which could appear as coefficients or boundary conditions in these systems.

In the Bayesian setting, a prior measure µ0 is imposed on u, independent of η.

For example, we could assume a Gaussian prior µ0 = N (0, C) with the covariance C

being a positive, self-adjoint, and trace-class operator on X. Then we can obtain the

posterior of u, denoted as µy, using Bayes’ theorem [147, 37]:

Theorem 1.2.1. (Bayes’ theorem) Assume that

0 < Z :=

∫
X
exp(−Φ(u; y))µ0(du) < +∞

Then µ|y is a random variable with Lebesgue density µy given by

dµy

dµ0

(u) =
1

Z
exp(−Φ(u; y)) (1.3)

Notice that the posterior µy can exhibit strongly non-Gaussian behavior, posing

considerable challenges for efficiently sampling the distribution. For simplicity, I drop

y from terms involved, so we denote the posterior as µ(du) and the potential function

as Φ(u).
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1.3 Outline

This dissertation is organized as follows. Chapter 1.2 introduces inverse problems

and how to incorporate Bayesian ideas. Chapter 2 discusses UQ with a proposed class of

hybrid MCMC algorithms named Dimension-Reduced Emulative Autoencoder Monte

Carlo (DREAM) to improve the computational efficiency and also demonstrates

advantage via simulation and two high-dimensional inverse problems. Chapter 3

provides an overview of Bayesian spatiotemporal likelihood modeling and its application

in Advection-diffusion inverse problems and chaotic dynamic inverse problems such as

Lorenz, Rossler, and Chen dynamics. Chapter 4 extends BP to the spatiotemporal

domain (STBP) by substituting the random coefficients in the series expansion with

stochastic time functions following the Q-exponential process which governs the

temporal correlation strength, which could better preserve edges and capture sharp

changes. Two limited-angle CT reconstruction examples are used to demonstrate

the advantage of the proposed STBP. The last chapter 5 provides conclusions and

discusses future research directions.
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Chapter 2

UNCERTAINTY QUANTIFICATION(UQ)

This chapter is adapted from: “Lan, S., Li, S., &Shahbaba, B. (2022). Scal-

ing Up Bayesian Uncertainty Quantification for Inverse Problems Using Deep Neu-

ral Networks. In SIAM/ASA Journal on Uncertainty Quantification (Vol. 10,

Issue 4, pp. 1684–1713). Society for Industrial &Applied Mathematics (SIAM).

https://doi.org/10.1137/21m1439456”.

In this chapter, I will implement a novel UQ method to the inverse problems.

First, I will introduce the details of this method. Afterwards, I will demonstrate how

my innovative implementation of deep neural networks could scale up thousands of

dimensions in subsections 2.3.1 and 2.3.2. Section 2.4 will showcase a comparison be-

tween my innovative approach, DREAM, and the conventional Calibration-Emulation-

Sampling (CES) scheme in numerical experiments on elliptic inverse problem and

advection-diffusion problem. This will undoubtedly highlight the superior efficiency

and advantages of my approach.

2.1 Introduction

There is a growing interest in UQ to calibrate models and have a perception of to

what extent we could trust the model. Furthermore, in the inference stage I could

recover the distribution of parameters or make prediction with mean estimate and

variance(uncertainty).

Bayesian approach has recently gained popularity for UQ in applied mathematics,
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physics, and engineering, especially in ordinary and partial differential equation

(ODE/PDE) systems, which involve expensive numerical simulation, since it makes

it possible to obtain samples following desired posterior distribution and afterwards

people would take variance as the uncertainty of those samples.

2.2 Calibration-Emulation-Sampling(CES)

From section 1.2.2, we knew the two major challenges(expensive forward evaluation

and sampling high dimensional non-Gaussian posterior) when trying to work on UQ for

inverse problems. Moreover, the high dimensionality of the discretized parameter of u

makes the forward evaluation computationally intensive and challenges the robustness

of sampling algorithms.

To address all these issues, [29] proposes CES as a favorable framework for high

dimensional UQ and approximate Bayesian parameter learning since it combines

Kalman methods with MCMC to alleviate the long-standing issue of underestimating

posterior variances due to the collapse of ensemble in Kalman-based methods. The

CES framework consists of the following three stages [29]:

1. Calibration: using optimization-based algorithms (ensemble Kalman) to obtain

parameter estimation and collect expensive forward evaluations for the emulation

step;

2. Emulation: recycling forward evaluations in the calibration stage to build an

emulator for sampling;

3. Sampling: sampling the posterior approximately based on the emulator, which

is much cheaper than the original forward mapping.

The CES scheme is promising for high-dimensional Bayesian UQ in inverse problems.
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Emulation bypasses the expensive evaluation of original forward models (dominated

by the cost of repeated forward solving of ODE/PDE systems) and reduces the cost

of sampling to a small computational overhead. The sampling also benefits from

the calibration, which provides MCMC algorithms with a good initial point in the

high-density region to reduce the burning time.

2.2.1 Calibration: Ensemble Kalman Methods

Initializing J ensemble particles {u(j)}Jj=1 with, for example, prior samples, the

basic ensemble Kalman inversion (EKI) method uses the following iterative equation

to estimate the unknown function u:

u
(j)
n+1 = u(j)n + Cup

n (Cpp
n + h−1Γ)−1(y

(j)
n+1 − G(u(j)n )), j = 1, · · · , J, n = 1, · · · , N − 1

(2.1)

where h = 1/N , y(j)n+1 = y + ξ
(j)
n+1 with ξ

(j)
n+1 ∼ N (0, h−1Σ), un := 1

J

∑J
j=1 u

(j)
n ,

Gn := 1
J

∑J
j=1 G(u

(j)
n ), and

Cpp
n =

1

J

J∑
j=1

(G(u(j)n )− Gn)⊗ (G(u(j)n )− Gn),

Cup
n =

1

J

J∑
j=1

(u(j)n − un)⊗ (G(u(j)n )− Gn)

It can be shown [135] that Equation (2.1) has the following time-continuous limit as

h→ 0:

du(j)

dt
=

1

J

J∑
k=1

〈
G(u(k))− G, y − G(u(j)) +

√
Σ
dW (j)

dt

〉
Γ

(u(k) − u) (2.2)

where {W (j)} are independent cylindrical Brownian motions on Y. I can set Σ = 0 to

remove noise for an optimization algorithm or set Σ = Γ to add noise for a dynamics
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that transforms the prior to the posterior in one-time unit for linear forward maps

[135, 55].

A variant of EKI to approximate sample from the posterior is the ensemble Kalman

sampler (EKS) [55]. This is obtained by adding a prior-related damping term as in

[24] and modifying the position-dependent noise in Equation (2.2):

du(j)

dt
=

1

J

J∑
k=1

〈
G(u(k))− G, y − G(u(j))

〉
Γ
(u(k) − u)− C(u)C−1u(j) +

√
2C(u)

dW (j)

dt

(2.3)

where C(u) := 1
J

∑J
j=1(u

(j) − u)⊗ (u(j) − u). The time discretization using a linearly

implicit split-step scheme is given by [55] with an adaptive time scheme ∆tn as in [87].

u
(∗,j)
n+1 = u(j)n +∆tn

1

J

J∑
k=1

〈
G(u(k)n )− G, y − G(u(j)n )

〉
Γ
u(k)n −∆tnC(un)C−1u

(∗,j)
n+1

u
(j)
n+1 = u

(∗,j)
n+1 +

√
2∆tnC(un)ξ

(j)
n

(2.4)

However, due to the collapse of ensembles [135, 136, 159, 24], sample variance

estimated by ensembles tends to underestimate the true uncertainty. Therefore, these

methods do not provide a rigorous basis for systematic UQ. Figure 1 illustrates that

both EKI and EKS severely underestimate the posterior standard deviation (plot in

the 2d domain) of the parameter function in an elliptic inverse problem (see more

details in Section 2.4.1). In what follows, we discuss scalable (dimension robust)

inference methods and propose using them in the CES sampling step.

2.2.2 Emulation

After calibration, input-output pairs ({u,G(u)}) are given from calibration step

EKI or EKS, then GP is a preferred way to emulate the forward mapping G(u) in
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Figure 1. Comparing the estimation of standard deviation by MCMC (left) and
ensemble Kalman methods (right two) in an elliptic inverse problem (Section 2.4.1).

equation (1.1) of inverse problems, avoiding the repeated computationally expensive

forward evaluation. More importantly, from [28] GP leads to a more practical Bayesian

inference during Markov Chain Monte Carlo (MCMC) sampling since it serves to

remove the noise. Check subsection 3.2.1 for a detailed review of GP.

2.2.3 Sampling

Traditional Metropolis-Hastings algorithms are characterized by deteriorating

mixing times upon mesh-refinement or with increasing dimensions. In contrast, a

new class of dimension-robust algorithms, including preconditioned Crank-Nicolson

(pCN) [31], infinite-dimensional MALA (∞-MALA) [13], infinite-dimensional HMC

(∞-HMC) [10] and infinite-dimensional manifold MALA (∞-mMALA) [11], are

well-defined on the infinite-dimensional Hilbert space, and thus yield the important

computational benefit of dimension-independent mixing times for finite but high-

dimensional problems in practice.
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Consider the following continuous-time Hamiltonian dynamics:

d2u

dt2
+K

{
C−1u+DΦ(u)

}
= 0,

(
v :=

du

dt

)∣∣∣∣
t=0

∼ N (0,K) . (2.5)

If we let K ≡ C, Equation (2.5) preserves the total energy H(u, v) = Φ(u) + 1
2
∥v∥2K.

HMC algorithm [115] solves the dynamics (2.5)

using the following Störmer-Verlet symplectic integrator [153]:

v− = v0 − αε
2
CDΦ(u0) ;uε

v+

 =

 cos ε sin ε

− sin ε cos ε


u0
v−

 ;

vε = v+ − αε
2
CDΦ(uε) .

(2.6)

Equation (2.6) gives rise to the leapfrog map Ψε : (u0, v0) 7→ (uε, vε). Given a time

horizon τ and current position u, the MCMC mechanism proceeds by concatenating

I = ⌊τ/ε⌋ steps of leapfrog map consecutively,

u′ = Pu

{
ΨI

ε(u, v)
}
, v ∼ N (0,K) .

where Pu denotes the projection onto the u-argument. Then, the proposal u′ is

accepted with probability a(u, u′) = 1 ∧ exp(−∆H(u, v)), where

∆H(u, v) =H(ΨI
ε(u, v))−H(u, v)

=Φ(uI)− Φ(u0)−
α2ε2

8

{
∥C

1
2DΦ(uI)∥2 − ∥C

1
2DΦ(u0)∥2

}
− αε

2

I−1∑
i=0

(⟨vi, DΦ(ui)⟩+ ⟨vi+1, DΦ(ui+1)⟩)

This yields ∞-HMC [10]. We can use different step-sizes in (2.6): ε1 for the first

and third equations, and ε2 for the second equation and let I = 1, ε21 = h, cos ε2 =

1−h/4
1+h/4

, sin ε2 =
√
h

1+h/4
. Then, ∞-HMC reduces to ∞-MALA, which can also be derived
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from Langevin dynamics [13, 12]. When α = 0,∞-MALA further reduces to pCN [12],

which does not use gradient information and can be viewed as an infinite-dimensional

analogy of random walk Metropolis.

After exhaustive summarization of the CES scheme, let me highlight multiple

contributions as follows, which apply deep neural networks in emulation and sampling

stage:

1. apply CNN to train emulators for Bayesian inverse problems,

2. embed AE in CES to significantly improve its computational efficiency,

3. scale Bayesian UQ for physics-constrained inverse problems up to thousands of

dimensions with DREAM.

2.3 Dimension Reduced Emulative Autoencoder MCMC(DREAM)

Combining CNN and AE, I propose a class of hybrid MCMC algorithms named

Dimension-Reduced Emulative Autoencoder Monte Carlo (DREAM) that can improve

and scale up the application of the CES framework for Bayesian UQ from hundreds of

dimensions (with GP emulation) [29] to thousands of dimensions. Details of emulating

functions, extracting gradients, and reducing dimensions will be discussed in subsection

2.3.1 and 2.3.2.

2.3.1 Scaling Up Bayesian UQ with CNNs-Emulation

There are two main challenges that limit the scalability of Bayesian UQ for inverse

problems: the intensive computation required for repeated evaluations of likelihood

(potential), Φ(u), and the large dimensionality of the discretized space. When using
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Figure 2. A Typical Architecture of Convolutional Neural Network (CNN)

∞-MALA or ∞-HMC, the gradient DΦ(u) is required but often unavailable. To

effectively tackle the issues at hand, I plan to employ the use of neural networks. More

specifically, training CNN to emulate the forward evaluation and AE to reduce the

parameter dimensionality. In the following, I discretize the parameter function u and

denote its dimension as d. I still denote the discretized parameter as u when there is

no confusion. Usually, d≫ 1.

The ensemble-based algorithms in the calibration phase produce parameters and

forward solutions {u(j)n ,G(u(j)n )}Jj=1 for n = 0, · · · , N . These input-output pairs can

be used to train a DNN as an emulator Ge of the forward mapping G [58]:

Ge(u; θ) = FK−1 ◦ · · · ◦ F0(u), Fk(·) = gk(Wk ·+bk) ∈ C(Rdk ,Rdk+1) (2.7)

where d0 = d, dK = m; Wk ∈ Rdk+1×dk , bk ∈ Rdk+1 , θk = (Wk, bk), θ = (θ0, · · · , θK−1);

and gk’s are activation functions. There are multiple choices of activation functions, e.g.

gk(x) = (σ(x1), · · · , σ(xdk+1
)) with σ ∈ C(R,R) including rectified linear unit (ReLU,

σ(xi) = 0 ∨ xi), leaky ReLU (σ(xi;α) = xiI(xi ≥ 0) + αxiI(xi < 0)), tanh (σ(xi) =

(e2xi − 1)/(e2xi + 1)); or alternatively, gk(x) = (σ1(x), · · · , σdk+1
(x)) ∈ C(Rdk+1 ,Rdk+1)

such as softmax (σi(x) = exi/
∑dk+1

i′=1 e
xi′ ).
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In many physics-constrained inverse problems, the parameter function u is defined

over a 2-d or 3-d field, which possesses unique spatial features resembling an image.

This has motivated the choice of CNN for emulators. Inspired by biological processes,

where the connectivity pattern between neurons resembles the organization of the visual

cortex [54], CNN has become a powerful tool in image recognition and classification

[89]. As a regularized neural network with varying depth and width, CNN has fewer

connections and thus fewer training parameters than standard fully connected DNNs

of similar size. Therefore, CNN is preferred to DNN in the CES framework due to its

flexibility and computational efficiency.

In general, CNN consists of a series of convolution layers with filters (kernels),

pooling layers to extract features, and fully connected layers to connect to outputs.

The convolutional layer is introduced for sparse interaction, parameter sharing, and

equivalent representations [58]. Therefore, instead of full matrix multiplication, I

consider the following discrete convolution [100]

Fk(·) = gk(wk ∗ ·+ bk) ∈ C(Rdk ,Rdk+1) (2.8)

where wk is a kernel function with discrete format defined by (multiplying) a circulant

matrix W ∗
k . Convolution is the first layer to extract spatial features (corresponding to

filters) from an input image. Each image could be seen as a c× h× w array of pixels

(c = 3 for RGB images and c = 1 for grayscale images; h,w are image size in height

and width respectively). For convolution of the image with the kernel, CNN slides a

pre-specified size (kernel size) window with certain stride (step size) over the image.

The resulting operation typically reduces dimension.

After the convolutional layer, a pooling layer is added to reduce the number of

parameters by generating summary statistics of the nearby outputs. Such operation

is a form of non-linear down-sampling that sparsifies the neural network but retains
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Figure 3. Comparing the emulation Ge : R1681 → R25 in an elliptic inverse prob-
lem(Section 2.4.1) by GP, DNN and CNN in terms of error (left) and time (right).

the essential input image information. Spatial pooling can be different, such as max-

pooling, average-pooling, and sum-pooling. Finally, we use a dense layer to generate

forward outputs {G(u)}. Figure 2 illustrates the structure of a CNN used in the

elliptic inverse problem (Section 2.4.1).

CES [29] uses GP for the emulation step. However, CNN has several advantages

over GP for building the emulator: 1) it is computationally more efficient for large

training sets, 2) it is less sensitive to the locations of training samples, and 3) we

could take advantage of all the ensemble samples collected by EKI or EKS to train

CNN without the need to carefully “design” a training set of controlled size as it is

common in GP. After the emulator is trained, we could approximate the potential

function using the prediction of CNN:

Φ(u∗) ≈ Φe(u∗) =
1

2
∥y − Ge(u∗)∥2Γ (2.9)

In the sampling stage, significant computation will be saved if we use Φe instead of Φ

in the accept/reject step of MCMC. If the emulator is a good representation of the

forward mapping, then the difference between Φe and Φ is small. Thus the samples
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by such emulative MCMC have the stationary distribution with a slight discrepancy

compared to the true posterior µ(du).

In gradient-based MCMC algorithms, we need to calculate DΦ(u) – the derivatives

of (log) density function Φ(u) with respective to parameter function u. However, it

can be obtained by using the network emulator:

DΦe(u∗) = −⟨y − Ge(u∗), DGe(u∗)⟩Γ (2.10)

where DGe(u∗) can be the output from CNN’s back-propagation, e.g., implemented in

GradientTape of TensorFlow. We can see that DΦ(u∗) ≈ DΦe(u∗) if DΦ(u∗) exists.

The following theorem generalizes [169] and gives the error bound of the CNN

emulator in approximating the true potential Φ and its gradient DΦ.

Theorem 2.3.1. Let 2 ≤ s ≤ d and Ω ⊂ [−1, 1]d. Assume Gj ∈ Hr(Rd) for

r > 2+ d/2, j = 1, · · · ,m. If K ≥ 2d/(s− 1), then there exist Ge by CNN with ReLU

activation function such that

∥Φ− Φe∥H1(Ω) ≤ c∥G∥
√

logKK− 1
2
− 1

2d (2.11)

where we have ∥Φ∥H1(Ω) =
(
∥Φ∥2L2(Ω) + ∥DΦ∥2L2(Ω)

) 1
2 , c is an absolute constant and

∥G∥ = max1≤j≤m ∥Gj∥Hr(Rd) with ∥Gj∥Hr(Rd) := ∥(1 + |ω|2)r/2Ĝj(ω)∥L2(Rd).

Proof. See Appendix A.1.

Remark 1. Based on Theorem 3 of [109], we have a weaker bound with sup-norm:

∥Φ− Φe∥W 1,∞(Ω) ≤ c̃∥G∥K− 1
2 (2.12)

where ∥Φ∥W 1,∞(Ω) = max0≤i≤d ∥DiΦ∥L∞(Ω) (D0Φ = Φ). Since Hr(Ω) ↪→ W 1,∞(Ω) ↪→

C(Ω), we can show that:
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• For any continuous forward mapping G, a CNN emulator, Ge, with depth K can

be built such that ∥Φ− Φe∥L∞(Ω) → 0 as K →∞.

• If G is further continuously differentiable, a CNN, Ge, with depth K exists such

that ∥Φ− Φe∥W 1,∞(Ω) → 0 as K →∞.

Even if DΦ(u∗) does not exist, such gradient information DΦe(u∗) can still be

extracted from the emulator Ge to inform the landscape of Φ in the vicinity of u∗.

Note that we train CNN only on {u(j)n ,G(u(j)n )} as opposed to {u(j)n , DG(u(j)n )}. That

is, no gradient information is used for training. This is similar to extracting geometric

information from GP emulator [146, 96]. Figure 3 compares GP, DNN, and CNN in

emulating a forward map that takes a 1681(41×41) dimensional discretized parameter

function with 25 observations taken from the solution of an elliptic PDE as the output

(see more details in Section 2.4.1). Given limited training data, CNN outperforms

both GP and DNN in rendering smaller approximation errors with less time for

consumption.

2.3.2 Scaling Up Bayesian UQ with AE-Sampling

Although emulation can reduce computation, the MCMC algorithms used for

Bayesian inference are still defined in high-dimensional spaces. In this section, I use

AE to reduce the dimensions and further speed up the UQ process [140]. AE is a

special type of feed-forward neural network for latent representation learning. The

input is encoded into a low-dimensional latent representation (code). The code is then

decoded into a reconstruction of the original input (see Figure 4 for the structure of

an AE). The model is trained to minimize the difference between the input and the
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Figure 4. A Typical Architecture of Autoencoder (AE) Neural Network

reconstruction. The AE could learn complicated nonlinear dimensionality reduction

and thus is widely used in many challenging tasks such as image recognition and

artificial data generation [66].

While AE is commonly used to reduce the dimensionality of the data, here we use

it to reduce the dimensionality of the parameter space. Denote the latent space as XL

with dimensionality dL ≪ d. Let uL ∈ XL be the latent representation of parameter

u. Then the encoder ϕ and the decoder ψ are defined respectively as follows

ϕ : X→ XL, u 7→ uL

ψ : XL → X, uL 7→ uR

(2.13)

where uR ∈ X is a reconstruction of u; ϕ and ψ can be chosen as multilayer neural

networks as in Equation (2.7). Depending on the layers and structures, we could have

convolutional AE (CAE) [59, 131], variational AE (VAE) [84, 83], etc.

According to the universal approximation theorem [34, 124, 107], a feed-forward

artificial neural network can approximate any continuous function given some mild

assumptions about the activation functions. Theoretically, an AE with suitable

activation functions could represent an identity map, i.e., ψ ◦ ϕ = id. An accurate

reconstruction of the input implies a good low-dimensional representation encoded in
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ϕ. In practice, the algorithm’s success heavily relies on the quality of the trained AE.

Note that we train the AE with ensembles {u(j)n , j = 1, · · · J, n = 0, · · · , N} from the

calibration stage. Even though there is a difference between ψ◦ϕ and the identity map

id, AE could provide a reconstruction ψ ◦ ϕ(u) very close to the original parameter u.

See Figure 7b (Section 2.4.1) and Figure 12b (Section 2.4.2) for examples.

The potential function Φ(u) and its derivative DΦ(u) can be projected to the

latent space XL – denoted as Φr(uL) and DΦr(uL) respectively – as follows:

Φr(uL) = Φ(u) = Φ(ψ(uL))

DΦr(uL) =

(
∂u

∂uL

)T
∂Φ(u)

∂u
= (dψ(uL))

TDΦ(ψ(uL))

(2.14)

where dψ = ∂u
∂uL

is the Jacobian matrix of size d×dL for the decoder ψ. The derivative

information DΦr(uL) needed in the gradient-based MCMC, ∞-MALA and ∞-HMC

will be discussed in Section 2.3.

In practice, I avoid explicit computation of the Jacobian matrix dψ by calculating

the Jacobian-vector action altogether:

DΦr(uL) =
∂

∂uL
[ψ(uL)

TDΦ(ψ(uL))] (2.15)

which is the output by AE’s back-propagation.

The implementation of emulation merging is a critical strategy for minimizing the

computational workload necessary for optimal performance. The resulting approximate

MCMC algorithms in the latent space involve potential function and its derivative,

denoted as Φe
r(uL) and DΦe

r(uL) respectively, which are defined by replacing Φ with

Φe in Equation (2.14).
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uL Φe
r(uL) DΦe

r(uL) DREAM

u Φe(u) DΦe(u) e-MCMC

AE ϕ ψ
change
of vari-
able

(dψ)T ·

Φ(u) DΦ(u) MCMC

Ge

CNN

DGe

CNN
predic-
tion

CNN
predic-
tion

Figure 5. Relationship among quantities in various MCMC algorithms: node sizes
indicate relative dimensions of these quantities. Thick solid arrows mean training
neural networks. Dashed arrows with colors represent mappings that are not directly
calculated but have equivalent compositions indicated by the same color, e.g., u 7→
Φe(u) (dashed red arrow) obtained by training CNN (thick solid red arrow) followed
by network prediction (solid red arrow); or by color mixing, e.g., uL 7→ Φe

r(uL)
(dashed orange arrow) as a result of combing the decoder ψ (thick solid yellow arrow),
u 7→ Φe(u) (dashed red arrow), and the change of variable (solid red arrow).

2.3.3 DREAM

Next, I combine all the abovementioned techniques to speed up Bayesian UQ for

inverse problems. More specifically, the method is composed of the following three

stages:

1. Calibration: collect JN samples {u(j)n ,G(u(j)n )}j,n from EKI or EKS procedure;

2. Emulation: build an emulator of the forward mapping Ge based on

{u(j)n ,G(u(j)n )}j,n (and extract DGe) using CNN; train an AE (ϕ, ψ) based on

{u(j)n }j,n;

3. Sampling: run approximate MCMC based on emulation to propose u′ from u:

i) obtain the projection of u by uL = ϕ(u);
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ii) propose u′L from uL by ∞-MCMC (with Φe
r and DΦe

r) in the latent space

XL;

iii) obtain the sample u′ = ψ(u′L)

In the class of ∞-MCMC, I can use the emulated potential and its derivative instead

of the faithful evaluations. Refer to the resulting algorithms as emulative ∞-MCMC

(e-MCMC). Further, AE is adopted to project these approximate MCMC into low-

dimensional latent space. I denote these algorithms as dimension-reduced emulative

autoencoder ∞-MCMC (DREAM). Figure 5 illustrates the relationship among the

quantities involved in these MCMC algorithms. For example, the mapping uL 7→

DΦe
r(uL) (dashed brown arrow) is not directly calculated. Still, I could combine the

decoder ψ (thick solid yellow arrow), emulated gradient u 7→ DΦe(u) (dashed violet

arrow), and left multiplying Jacobian matrix (dψ)T (solid violet arrow).

Note that if we accept/reject proposals u′L in the latent space with Φe
r, there is no

need to constantly traverse between the original and the latent space. The chain can

mainly stay in the latent space XL to collect samples {uL}, as shown in the bottom

level of Figure 5, and only needs to go back to the original space X when relevant

emulated quantities are required. In the following, the details of DREAM algorithms

would be described.

For the convenience of following disposition, I first whiten the coordinates by the

transformation u 7→ ũ := C− 1
2u. The whitened variable ũ has the prior µ̃0 = N (0, I),

where the identity covariance operator is not a trace-class on X. However, random

draws from µ̃0 are square-integrable in the weighted space Im(C− 1
2 ). It is important

to note that even after the implementation of the transformation, I am still capable

of generating an exceedingly accurate proposal for the function space of parameter u

through the inversion technique mentioned in [33, 90].In the whitened coordinates ũ,
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the Langevin and Hamiltonian (2.5) dynamics (with algorithmic parameter α ≡ 1)

become the following respectively

dũ

dt
= −1

2

{
Iũ+ αDΦ(ũ)

}
+
dW

dt
(2.16)

d2ũ

dt2
+
{
Iũ+ αDΦ(ũ)

}
= 0,

(
ṽ :=

dũ

dt

)∣∣∣∣
t=0

∼ N (0, I) . (2.17)

where DΦ(ũ) = C 1
2DΦ(u). Then I can train CNN based on {ũ(j)n ,G(ũ(j)n )}j,n and AE

based on {ũ(j)n }j,n.

On the other hand, since the AE does not preserve the volume (ψ ◦ ϕ ≈ id but

ψ ◦ ϕ ̸= id), the acceptance of proposals in the latent space needs to be adjusted with

a volume correction term V ′

V
to maintain the ergodicity [97, 140]. Note, the volume

adjustment term V ′

V
breaks into the product of Jacobian determinants of the encoder

ϕ and the decoder ψ that can be calculated with Gramian function as follows [140]:

V ′

V
= det(dψ(ũ′L)) det(dϕ(ũ)) =

√√√√det

[(
∂ũ′

∂ũ′L

)T (
∂ũ′

∂ũ′L

)]√√√√det

[(
∂ũL
∂ũ

)(
∂ũL
∂ũ

)T
]

(2.18)

where terms under square root are determinants of matrices with small size dL ×

dL, which can be obtained by the Jacobian matrices’ singular value decomposition,

respectively. In practice, we can exclude V ′

V
from the acceptance probability and use

it as a resampling weight as in importance sampling [95]. Alternatively, we can ignore

the accept/reject step for an approximate Bayesian UQ [158, 140].

2.3.3.1 DREAM-pCN

In the whitened latent space, pCN proposal becomes

ũ′L = ρ ũL +
√

1− ρ2 ξ̃L , ξ̃L ∼ N (0, IdL) (2.19)

25



If using emulated potential energy, then the acceptance probability with volume

adjustment (2.18) of the resulting DREAM-pCN algorithm is

a(ũL, ũ
′
L) = 1 ∧ exp{−Φe

r(ũ
′
L) + Φe

r(ũL) + log det(dψ(ũ′L)) + log det(dϕ(ũ))}

2.3.3.2 DREAM-∞-MALA

Based on the Langevin dynamics in the whitened coordinates, ∞-MALA proposal

in the latent space with emulated gradient becomes

ũ′L = ρ ũL +
√

1− ρ2 ṽL , ṽL = ξ̃L − α
√
h

2
DΦe

r(ũL) , ρ = (1− h
4
)/(1 + h

4
) . (2.20)

The resulting DREAM-∞-MALA has adjusted acceptance probability a(ũL, ũ
′
L) =

1 ∧ κ(ũ′
L,ũL)

κ(ũL,ũ
′
L)

V ′

V
with V ′

V
as in (2.18) and

κ(ũL, ũ
′
L) = exp(−Φe

r(ũL)) · exp

{
−α

2h

8
∥DΦe

r(ũL)∥2 −
α
√
h

2
⟨DΦe

r(ũL), ṽL(ũL, ũ
′
L)⟩

}

2.3.3.3 DREAM-∞-HMC

To derive ∞-HMC in the latent space based on the Hamiltonian dynamics in the

whitened coordinates (2.17), I also need to project ṽ ∼ N (0, Id) into dL-dimensional

latent space. I could have used the same encoder ϕ as in [140]; however, since

ṽi
iid∼ N (0, 1) for i = 1, · · · , d, I just set ṽL ∼ N (0, IdL) for simplicity. Then, the

∞-HMC proposal Ψε : (ũL,0, ṽL,0) 7→ (ũL,ε, ṽL,ε) in the whitened augmented latent
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Algorithm 1 Dimension Reduced Emulative Autoencoder ∞-dimensional HMC
(DREAM-∞-HMC)

Require: Collect NJ samples {u(j)n ,G(u(j)n )}j,n from EKI or EKS procedure; whiten
coordinates {ũ(j)n = C− 1

2u
(j)
n }j,n.

Require: Build an emulator of the forward mapping Ge based on {ũ(j)n ,G(j)}j,n (and
extract DGe) using CNN; train an AE (ϕ, ψ) based on {ũ(j)n }j,n;

1: Initialize current state ũ(0) and project it to the latent space by ũ(0)L = ϕ(ũ(0))

2: Sample velocity ṽ(0)L ∼ N (0, IdL)

3: Calculate current energy E0 = Φe
r(ũ

(0)
L )− α2ε2

8
∥DΦe

r(ũ
(0)
L )∥2 + log det(dϕ(ũ(0)))

4: for i = 0 to I − 1 do
5: Run Ψε : (ũ

(i)
L , ṽ

(i)
L ) 7→ (ũ

(i+1)
L , ṽ

(i+1)
L ) according to (2.21).

6: Update the energy E0 ← E0 +
αε
2
(⟨ṽL,i, DΦe

r(ũL,i)⟩+ ⟨ṽL,i+1, DΦe
r(ũL,i+1)⟩)

7: end for
8: Calculate new energy E1 = Φe

r(ũ
(I)
L )− α2ε2

8
∥DΦe

r(ũ
(I)
L )∥2 − log det(dψ(ũ

(I)
L ))

9: Calculate acceptance probability a = exp(−E1 + E0)

10: Accept ũ(I)L with probability a for the next state ũ′L or set ũ′L = ũ
(0)
L in the latent

space.
11: Record the next state u′ = C 1

2ψ(ũ′L) in the original space.

space with emulated gradient becomes

ṽ−L = ṽL,0 − αε
2
DΦe

r(ũL,0) ;ũL,ε
ṽ+L

 =

 cos ε sin ε

− sin ε cos ε


ũL,0
ṽ−L

 ;

ṽL,ε = ṽ+L − αε
2
DΦe

r(ũL,ε) .

(2.21)

The acceptance probability for the resulting DREAM-∞-HMC algorithm involves

H(ũL, ṽL) = Φe
r(ũL)+

1
2
∥ṽL∥2 and becomes a(ũL, ũ′L) = 1∧ exp(−∆H(ũL, ṽL))

V ′

V
with

V ′

V
as in (2.18) and

∆H(ũL, ṽL) =H(ΨI
ε(ũL, ṽL))−H(ũL, ṽL)

=Φ(ũL,I)− Φ(ũL,0)−
α2ε2

8

{
∥DΦe

r(ũL,I)∥2 − ∥DΦe
r(ũL,0)∥2

}
− αε

2

I−1∑
i=0

(⟨ṽL,i, DΦe
r(ũL,i)⟩+ ⟨ṽL,i+1, DΦe

r(ũL,i+1)⟩)

(2.22)
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I summarize DREAM-∞-HMC in Algorithm 1, which includes DREAM-∞-MALA

with I = 1 and DREAM-pCN with α = 0.

2.4 Numerical Experiments

This section considers two high-dimensional inverse problems involving elliptic

PDE and advection-diffusion equation. In both problems, the forward parameter-to-

observation mappings are nonlinear, and the posterior distributions are non-Gaussian.

The high dimensionality of the discretized parameter imposes a big challenge on

Bayesian UQ. The second inverse problem involving advection-diffusion equation is

even more difficult because it is based on spatiotemporal observations. I demonstrate

substantial numerical advantages of proposed methods and show that they indeed

can scale up the Bayesian UQ for PDE-constrained inverse problems to thousands of

dimensions. Python codes are publicly available at https://github.com/lanzithinking/

DREAM-BUQ.

2.4.1 Elliptic Inverse Problem

The following elliptic PDE [33, 90] is defined on the unit square domain Ω = [0, 1]2:

−∇ · (k(s)∇p(s)) = f(s), s ∈ Ω

⟨k(s)∇p(s), n⃗(s)⟩ = 0, s ∈ ∂Ω∫
∂Ω

p(s)dl(s) = 0

(2.23)

where k(s) is the transmissivity field, p(s) is the potential function, f(s) is the forcing

term, and n⃗(s) is the outward normal to the boundary. The source/sink term f(s) is
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(a) Forcing field f(s) (left), and the solution p(s) with true transmissivity field k0(s) (right).

(b) True log-transmissivity field u†(s) (left), and 25 observations on selected locations
indicated by circles (right), with color indicating their values.

Figure 6. Elliptic Inverse Problem

defined by the superposition of four weighted Gaussian plumes with standard deviation

0.05, centered at [0.3, 0.3], [0.7, 0.3], [0.7, 0.7], [0.3, 0.7], with weights {2,−3, 3,−2}

respectively, as shown in the left panel of Figure 6a.

The transmissivity field is endowed with a log-Gaussian prior, i.e.

k(s) = exp(u(s)), u(s) ∼ N (0, C)

where the covariance operator C is defined through an exponential kernel function

C : X→ X, u(s) 7→
∫
c(s, s′)u(s′)ds′, c(s, s′) = σ2

u exp

(
−∥s− s

′∥
2s0

)
, for s, s′ ∈ Ω

with the prior standard deviation σu = 1.25 and the correlation length s0 = 0.0625. To

make the inverse problem more challenging, I follow [33] to use a true log transmissivity
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(a) CNN (middle) and DNN (right) emulation (Ge : R1681 → R25) extracting gradients
DΦe(uMAP) compared with the true gradient DΦ(uMAP) (left).

(b) AE compressing the original function uMAP (left) into latent space uMAP
r (middle) and

reconstructing it in the original space uMAP′
(right).

Figure 7. Elliptic Inverse Problem: Outputs by Neural Networks Viewed as 2d Images

field u†(s) that is not drawn from the prior, as shown on the left panel of Figure 6b.

The right panel of Figure 6a shows the potential function, p(s), solved with u†(s),

which is also used for generating noisy observations. Partial observations are obtained

by solving p(s) on an 81× 81 mesh and then collecting at 25 measurement sensors as

shown by the circles on the right panel of Figure 6b. The corresponding observation

operator O yields the data

y = Op(s) + η, η ∼ N (0, σ2
ηI25)

where considering the signal-to-noise ratio SNR = maxs{u(s)}/ση = 50 in this

example.

The inverse problem involves sampling from the posterior of the log-transmissivity

field u(s), which becomes a vector with a dimension of 1681 after being discretized on
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41 × 41 mesh (with Lagrange degree 1). Implement the CES framework described

in Section 2.3. In the calibration stage, I collect {u(j)n ,G(u(j)n )}N,J
n=1,j=1 from N = 10

iterations of EKS runs with ensemble size J = 500. For the emulation, DNN and

CNN are trained with 75% of these 5000 ensembles and test/validate them with the

remaining 25%. The DNN has three layers with ‘softplus’ activation function for the

hidden layers and ‘linear’ activation for the output layer, and 40% nodes dropped

out. The structure of CNN is illustrated in Figure 2 with ‘softplus’ activation for

the convolution layers, ‘softmax’ activation for the latent layer (dimension 256), and

‘linear’ activation for the output layer. The trained CNN has a dropout rate of 50%

on all its nodes. Figure 7a compares the true gradient function DΦ(uMAP) (left) and

its emulations DΦe(uMAP) (right two) as in Equation (2.10) extracted from two types

of neural networks. These gradient functions are plotted on the 2d domain [0, 1]2. We

can see that even trained on forward outputs without any gradient information, these

extracted gradients from the neural network model provide decent approximations to

the true gradient that captures its main graphical feature viewed as a 2d image. The

result by CNN is qualitatively better than DNN, which is supported by the numeric

evidence of error comparison illustrated in the left panel of Figure 3.

In the sampling stage, I train AE with the structure illustrated in Figure 4. The

latent dimension is dL = 121 (11×11) and the node sizes of hidden layers between input

and latent, between latent and output, are linearly interpolated. All the activation

functions are chosen as ‘LeakyReLU(α = 2)’. Figure 7b plots the original uMAP

(left), the latent representation uMAP
r = ϕ(uMAP) (middle) and the reconstruction

uMAP′
= ψ(uMAP

r ) (right). Even though the latent representation is not intuitive, the

output function (image) decoded from the latent space can be viewed as a ‘faithful’

reconstruction of the original function (image), indicating a sufficiently good AE that
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Figure 8. Elliptic inverse problem: Bayesian posterior mean estimates of the log-
transmissivity field estimate u(s) based on 5000 samples by various MCMC algorithms.

compresses and restores information. Therefore, the proposed MCMC algorithms,

defined on the latent space, generate samples that can be projected back to the original

space without losing too much accuracy in representing the posterior distribution.

I compare the performance of algorithms including vanilla pCN, ∞-MALA, ∞-

HMC, their emulative versions and corresponding DREAM algorithms. Run 6000

iterations for each algorithm and burn in the first 1000. For HMC algorithms, set

I = 5. I tune the step sizes for each algorithm so that they have similar acceptance

rates around 60 ∼ 70%. Figure 8 compares their posterior mean estimates and Figure

9 compares their estimates of posterior standard deviation. We can see that emulative

MCMC algorithms generate results very close to those by the original MCMC methods.

DREAM algorithms introduce more errors due to the information loss in AE but still

provide estimates that reasonably resemble those generated by the original MCMC

algorithms.
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Figure 9. Elliptic inverse problem: Bayesian posterior standard deviation estimates of
the log-transmissivity field u(s) based on 5000 samples by various MCMC algorithms.

Method h a AP b s/iter c ESS(min,med,max) d minESS/s e spdup f PDEsolns g

pCN 0.03 0.65 0.49 (7.8,28.93,73.19) 0.0032 1.00 6001
∞-MALA 0.15 0.61 0.56 (29.21,120.79,214.85) 0.0105 3.30 12002
∞-HMC 0.10 0.70 1.65 (547.62,950.63,1411.6) 0.0663 20.82 36210
e-pCN 0.05 0.60 0.02 (10.07,43.9,93.62) 0.0879 27.60 0
e-∞-MALA 0.15 0.67 0.03 (33.23,133.54,227.71) 0.2037 63.95 0
e-∞-HMC 0.10 0.77 0.07 (652.54,1118.08,1455.56) 1.9283 605.47 0
DREAM-pCN 0.10 0.67 0.02 (36.78,88.36,141.48) 0.3027 95.03 0
DREAM-∞-MALA 1.00 0.66 0.04 (391.53,782.06,927.08) 2.0988 659.01 0
DREAM-∞-HMC 0.60 0.64 0.11 (2289.86,3167.03,3702.4) 4.1720 1309.97 0

a step size b acceptance probability c seconds per iteration d (minimum, median, maximum) effective
sample size e minimal ESS per second f comparison of minESS/s with pCN as benchmark g number of

PDE solutions

Table 1. Elliptic Inverse Problem: Sampling Efficiency of Various MCMC Algorithms.

Table 1 summarizes the sampling efficiency of various MCMC algorithms measured

by minimum effective sample size (ESS) normalized by the total time consumption,

i.e., minESS/s. With this standard, emulative ∞-HMC and DREAM ∞-MALA

achieve more than 600 times speed-up in sampling efficiency, and DREAM ∞-HMC

attains three orders of magnitude improvement compared to the benchmark pCN.

Such comparison focuses on the cost of obtaining uncertainty estimates. It does not
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(a) The trace plots of data-misfit function evaluated with each sample (left, values have been
offset to be better compared with) and the auto-correlation of data-misfits as a function of
lag (right).

(b) The KL divergence between the posterior and the prior as a function of iteration (upper)
and time (lower).

Figure 10. Elliptic Inverse Problem: Analysis of Posterior Samples

include the time for training CNN and AE, which is relatively much smaller compared

with the overall sampling time.

Figure 10a shows the traceplots of the potential function (data-misfit) on the left

panel and autocorrelation functions on the right panel. HMC algorithms make distant

proposals with the least autocorrelation, followed by MALA algorithms and then

pCN algorithms with the highest autocorrelation. This is also supported numerically
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by ESS of parameters (the lower autocorrelation, the higher ESS) in Table 1. Note

DREAM ∞-MALA has similar autocorrelation as HMC algorithms.

Finally, I plot the Kullback–Leibler (KL) divergence between the posterior and

the prior in terms of iteration (upper) and time (lower) in Figure 10b. Among all the

MCMC algorithms, emulative MCMC algorithms stabilize such measurements the

fastest and attain smaller values for given iterations and time.

2.4.2 Advection-Diffusion Inverse Problem

In the following example, I quantify the uncertainty in solving an inverse problem

governed by a parabolic PDE via the Bayesian inference framework. The underlying

PDE is a time-dependent advection-diffusion equation in which I seek to infer an

unknown initial condition from spatiotemporal point measurements.

The parameter-to-observable forward mapping G : u0 → Ou maps an initial

condition u0 ∈ L2(Ω) to pointwise spatiotemporal observations of the concentration

field u(x, t) through the solution of the following advection-diffusion equation [123,

154]:

ut − κ∆u+ v · ∇u = 0 in Ω× (0, T )

u(·, 0) = u0 in Ω

κ∇u · n⃗ = 0, on ∂Ω× (0, T )

(2.24)

where Ω ⊂ [0, 1]2 is a bounded domain shown in Figure 11a, κ > 0 is the diffusion

coefficient (set to 10−3), and T > 0 is the final time. The velocity field v is computed

by solving the following steady-state Navier-Stokes equation with the side walls driving
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(a) True initial condition (top left), and the solutions u(s) at different time points.

(b) Spatiotemporal observations at 80 selected locations indicated by circles across different
time points, with color indicating their values.

Figure 11. Advection-diffusion Inverse Problem

the flow [123]:

− 1

Re
∆v +∇q + v · ∇v = 0 in Ω

∇ · v = 0 in Ω

v = g, on ∂Ω

(2.25)

Here, q is the pressure, Re is the Reynolds number, which is set to 100 in this example.

The Dirichlet boundary data g ∈ Rd is given by g = e2 = (0, 1) on the left wall of the

domain, g = −e2 on the right wall, and g = 0 everywhere else.

Set the true initial condition u†0 = 0.5 ∧ exp{−100[(x1 − 0.35)2 + (x2 − 0.7)2]},
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(a) CNN (middle) and DNN (right) emulation (Ge : R3413 → R1280) extracting gradients
DΦe(uMAP) compared with the true gradient DΦ(uMAP) (left).

(b) AE compressing the original function uMAP (left) into latent space uMAP
r (middle) and

reconstructing it in the original space uMAP′
(right).

Figure 12. Advection-diffusion Inverse Problem: Outputs by Neural Networks Viewed
as 2d Images

illustrated in the top left panel of Figure 11a, which also shows a few snapshots of

solutions u at other time points on a regular grid mesh of size 61 × 61. To obtain

spatiotemporal observations, I collect solutions u(x, t) solved on a refined mesh at 80

selected locations across 16 time points evenly distributed between 1 and 3 seconds

(thus denoted as Ou) and inject some Gaussian noise N (0, σ2
η) such that the relative

noise standard deviation is 0.5 (ση/maxOu = 0.5); that is,

y = Ou(x, t) + η, η ∼ N (0, σ2
ηI1280)

Figure 11b plots four snapshots of these observations at 80 locations along the inner

boundary. In the Bayesian setting, I adopt the following Gaussian process prior with

the covariance kernel C defined through the Laplace operator ∆:

u ∼ µ0 = N (0, C), C = (δI − γ∆)−2
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Figure 13. Advection-diffusion inverse problem: Bayesian posterior mean estimates
of the initial concentration field u(x) based on 5000 samples by various MCMC
algorithms.

where δ governs the variance of the prior and γ/δ controls the correlation length. We

set γ = 2 and δ = 10 in this example.

The Bayesian inverse problem estimates the initial condition u0 and quantifies its

uncertainty based on the 80 × 16 spatiotemporal observations. For the notational

convenience, I still denote u0(x) as u(x) when it is not confused with the general

concentration field u(x, t). The Bayesian UQ in this example is incredibly challeng-

ing not only because of its large dimensionality (3413) of spatially discretized u

(Lagrange degree 1) at each time t but also due to the spatiotemporal interactions

in these observations. Following the CES framework as in Section 2.3, we collect

{u(j)n ,G(u(j)n )}N,J
n=1,j=1 by running EKS runs with ensemble size J = 500 for N = 10

iterations in the calibration stage. For the emulation, I train DNN and CNN with

the same 3 : 1 splitting of these 5000 ensembles for training/testing data. The DNN
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has five layers with the activation function ‘LeakyReLU(α = 0.01)’ for the hidden

layers and ‘linear’ activation for the output layer, and 25% nodes dropped out. The

structure of CNN is illustrated in Figure 2 with four filters in the last convolution

layer, activation ‘LeakyReLU(α = 0.2)’ for the convolution layers, ‘PReLU’ activation

for the latent layer (dimension 1024) and ‘linear’ activation for the output layer. The

trained CNN has a dropout rate of 50% on all its nodes. Figure 12a compares the

true gradient function DΦ(uMAP) (left) and its emulations DΦe(uMAP) (right two)

as in Equation (2.10) extracted from two types of neural networks. As before, we

can see better-extracted gradient output by CNN as an approximation to the true

gradient compared with DNN. Due to the large dimensionality of inputs and outputs

(Ge : R3413 → R1280) and memory requirement, GP failed to fit and output gradient

extraction.

In the sampling stage, I adopt AE with the same structure as in Figure 4, the

latent dimension dL = 417, and the activation functions chosen as ‘elu’. Figure 12b

plots the original uMAP (left), the latent representation uMAP
r = ϕ(uMAP) (middle) and

the reconstruction uMAP′
= ψ(uMAP

r ) (right). Again the autoencoder has successfully

reconstructed the original image despite the latent representation being less intuitive.

I compare the performance of ∞-MCMC algorithms (pCN, ∞-MALA, ∞-HMC),

their emulative versions and corresponding DREAM algorithms. Run 6000 iterations

for each algorithm and burn in the first 1000. For HMC algorithms, set I = 5. I

tune the step sizes for each algorithm so that they have similar acceptance rates

around 60 ∼ 70%. Figure 13 compares their posterior mean estimates, and Figure 14

compares their estimates of posterior standard deviation. It is evident that emulative

MCMC algorithms produce outcomes comparable to those of the original MCMC

techniques. DREAM algorithms yield estimates close enough to those by the original
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Figure 14. Advection-diffusion inverse problem: Bayesian posterior standard deviation
estimates of the initial concentration field u(x) based on 5000 samples by various
MCMC algorithms.

MCMC. Although there are some deviations in the uncertainty estimates, the results by

DREAM algorithms are significantly better than those by ensemble Kalman methods,

which severely underestimate the posterior standard deviations.

Method h a AP b s/iter c ESS(min,med,max) d minESS/s e spdup f PDEsolns g

pCN 0.00 0.69 0.03 (3.16,6.37,40.7) 0.0222 1.00 6001
∞-MALA 0.01 0.68 0.06 (3.78,11.6,51.5) 0.0122 0.55 12002
∞-HMC 0.01 0.78 0.12 (31.55,83.54,240.34) 0.0507 2.29 35872
e-pCN 0.00 0.69 0.02 (3.33,7.19,58.2) 0.0324 1.46 0
e-∞-MALA 0.01 0.72 0.05 (4.28,14.3,62) 0.0157 0.71 0
e-∞-HMC 0.01 0.72 0.11 (25.41,113.11,270.79) 0.0475 2.14 0
DREAM-pCN 0.02 0.68 0.02 (8.88,16.99,53.35) 0.0727 3.28 0
DREAM-∞-MALA 0.10 0.83 0.06 (37.65,66.58,157.09) 0.1310 5.91 0
DREAM-∞-HMC 0.10 0.72 0.17 (564.12,866.72,1292.11) 0.6791 30.64 0

a step size b acceptance probability c seconds per iteration d (minimum, median, maximum) effective
sample size e minimal ESS per second f comparison of minESS/s with pCN as benchmark g number of

PDE solutions

Table 2. Advection-diffusion Inverse Problem: Sampling Efficiency of MCMC Algo-
rithms

Table 2 compares the sampling efficiency of various MCMC algorithms measured by

minESS/s. The three most efficient sampling algorithms are all DREAM algorithms.
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DREAM ∞-HMC attains up to 30 times faster than the benchmark pCN. This is

a significant achievement considering the complexity of this inverse problem with

spatiotemporal observations. Again, the training time of CNN and AE is excluded

since it is relatively negligible compared with the overall sampling time.

Figure B.1a verifies DREAM ∞-HMC is the most efficient MCMC algorithm with

the smallest autocorrelation shown on the right panel. It follows by other HMC

algorithms and DREAM ∞-MAMA, which is even better than ∞-HMC. Figure B.1b

plots the KL divergence between the posterior and the prior in terms of iteration

(upper) and time (lower). From the figure, it appears that ∞-HMC has the fastest

convergence.
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Chapter 3

SPATIOTEMPORAL LIKELIHOOD MODELING

This chapter is adapted from: “Lan, S., Li, S., &Pasha, M. (2023). Bayesian

spatiotemporal modeling for inverse problems. In Statistics and Computing (Vol. 33,

Issue 4). Springer Science and Business Media LLC. https://doi.org/10.1007/s11222-

023-10253-z”.

Spatiotemporal data are ubiquitous nowadays in our daily life. They can be

viewed as either multiple time series observed across various locations or geographic

data recorded at different time points[91]. Emerging research area arises due to

the development and application of novel computational techniques allowing for

the analysis of large spatiotemporal databases. Researchers are interested in the

intricate relationship between space and time in this data type, e.g., the dynamic

brain connectivity study in neuroscience and shipping movements across a geographic

area over time.

Statistical models have been popular when dealing with spatiotemporal data due

to their flexibility and adaptability. The following section briefly introduces several

wildly used statistical models.

3.1 Introduction

From [17], Generalized Linear Model(GLM), Generalized Additive Model(GAM)

are two basic models that expand Linear Model(LM) with an additional dimension

assuming the independence between observations in space and time. The GLM’s
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systematic component involves selecting a link function to change the average re-

sponse, which is then expressed as a linear function of the time and space-related

covariates. Based on GLM, GAM assumes a more flexible function which could be

parametric(polynomial), semi-parametric, or non-parametric of the covariates rather

than identity map in the GLM and keep other properties the same. When assuming

independence, it becomes challenging to factor in important information about space

and time dependency. This can lead to predictions that are unreliable when dealing

with spatiotemporal data that has a high correlation at the same spatial position

during adjacent times or between neighboring locations at the same time. To erase the

limitation and allow the dependence structure involved, the Hierarchical Spatiotempo-

ral model and STGP are proposed to perform parameter inference when there are

dependent errors. The Hierarchical Spatiotemporal model includes at least two stages,

while the first stage decomposes the observation into a true (latent) spatiotemporal

process and independent error term. What’s more, the true process could be modeled

in flexible ways:

1. Spatiotemporal fixed effects as a consequence of covariates plus a spatiotem-

porally dependent random process which is the key part to account for the

dependence.

2. A single Spatiotemporal Gaussian Process(STGP) and the covariance of which

includes spatiotemporal information.

3.2 Spatiotemporal Gaussian Process(STGP)

My research focuses on STGP to model spatiotemporal data in the inverse problem

due to its rich choices of covariance kernel which could be fully parameterized by the
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Bayesian approach when selecting hyperparameters in the kernel. Furthermore, it

allows uncertainty quantification when performing parameter inference. Therefore, I

would like to discuss GP and then move on to STGP.

3.2.1 Gaussian Process(GP)

From [128], GP describes a distribution over functions and inference taking place

directly in the functions space, enabling us to work in infinite dimensions.

Definition 1. A Gaussian process is a collection of random variables, any finite

number of which have a joint Gaussian distribution [128].

GP is specified by 2 components: mean function m(x) and covariance function Cx,

I define them as

m(x) = E[f(x)]

Cx = E[(f(x)−m(x))(f(x′)−m(x′))]

and could write GP as

f(x) ∼ GP(m(x), Cx) (3.1)

where x refers to a random variable. For the notational simplicity, I will take the

mean function to be zero, Cx then could be modeled in many ways depending on how

to formulate f(x). Many covariance function candidates like squared exponential(SE)

and Matern could be applied in any scenario to obtain the covariance element γ(x,x′),

taking SE as an example:

Cx = cov(x,x′) = exp(−1

2
|x− x′|2)
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3.2.2 STGP

After understanding how to construct GP, STGP could be easily obtained by

adding another dimension. Suppose t is another time variable and our observation

would be y(x, t) = f(x, t), then our observations could be modelled with STGP:

y(x, t) ∼ GP(m(x, t),Γ(x, t)) = GP(m(x, t), Cx ⊗ Ct) (3.2)

where Cx and Ct are spatial and temporal kernel respectively.

STGP could be applied in any spatiotemporal data like economics, biologic, etc.,

whereas there is no previous work on implementing STGP on Bayesian inverse problems.

Thus, I’d like to introduce how to extend it to Bayesian inverse problem in the following

section 3.3 and compare it with the previously used traditional methods like static

models(subsection 3.3.1) and time-averaged model(subsection 3.3.2).

3.3 Spatiotemporal Inverse Problems (STIP)

Spatiotemporal modeling was introduced to inverse problems. However, it was

either qualitatively applied to specific domains such as functional magnetic resonance

imaging (fMRI) [160], electroencephalography (EEG) [143] and electrocardiography

(ECG) [141], or to a simplified Gauss-linear problem [105, 117, 30, 163]. Spatiotemporal

information was also used to construct prior [168] and regularization [164, 122], or to

reduce the number of parameters [42]. However, none formulates the spatiotemporal

modeling in the general framework of Bayesian inverse problems with spatiotemporal

observations.

When the observations are taken from a spatiotemporal process, y(x, t), simple
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Gaussian likelihood function as (1.2) with Γ = σ2I, for example, may not be sufficient

to describe the space-time interactions. To address this issue, I propose to rewrite the

data model (1.1) in terms of a GP with spatiotemporal kernel Γ(x, t):

y(x, t) = G(u)(x, t) + η(x, t), η(x, t) ∼ GP(0,Γ(x, t)) (3.3)

Before delving into the STGP structure for Γ(x, t), I would like to first discuss

the traditional methods of the static model (subsection 3.3.1) and the time-averaged

model (subsection 3.3.2). These methods are commonly used by researchers when

dealing with Bayesian inverse problems.

3.3.1 Static Model

In the literature of Bayesian inverse problems, the noise η is often assumed i.i.d.

over time in (3.3), i.e. η(x, tj)
iid∼ N (0, Cx). This leads to the following static model

where the temporal correlation is ignored:

y(x, t)|u,Γ ∼ GP(G(u)(x, t),Γ(x, t))

static : Γ(x, t) = Cx ⊗ It
(3.4)

where It is the Dirac operator such that It(t, t′) = 1 only if t = t′. When the spatial

dependence is also suppressed (as in the advection-diffusion example of Section 3.5.1

and in [154, 94]), it becomes Cx = σ2
εIx.

Temporal correlation is disregarded in the static model (3.4). When there is

(spatio-)temporal effect in the residual η, the static model (3.4) may be insufficient to

account for the spatiotemporal relationships in the data. For illustration, I consider

an inverse problem involving advection-diffusion (Section 3.5.1) equation [154, 94] of

an evolving concentration field u(x, t) and seek the solution to the initial condition,
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Figure 15. Advection-diffusion inverse problem: comparing maximum a posteriori
(MAP) estimates of parameter u0 = u(x, 0) by the static model (middle) and the
STGP model (right) with the truth u†0 (left).

u0 = u(x, 0), based on spatiotemporal solutions observed (through an observation

operator O) on the boundaries of two boxes (Figure 15, left panel) for a given time

period, i.e. y = Ou(x, t) + η, η ∼ N(0, σ2
η). As shown in Figure 15, the simple static

model (3.4) used in [94] does not account for space-time interactions hence yields the

result underestimating the true function u†0 (left panel). On the contrary, the estimate

by the spatiotemporal model (3.13) (right panel) is much closer to the truth.

3.3.2 Time-averaged model

In many chaotic dynamics, people observe the trajectories as multivariate time

series that are very sensitive to the initial condition and the parameters. This usually

results in a complex objective function with multiple local minima [2]. They, in turn,

form a rough landscape of the objective and pose extreme difficulties on parameter

learning [29] (See also Figure 19). The time-averaged approach is commonly used to

extract sufficient statistics from the raw data [53].

Consider the same data model as in (3.3) with G(u) being the observed solution

x(t;u,x0) of the following chaotic dynamics (r-th order ODE) for a given parameter
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u ∈ Rp:

ẋ :=
dx
dt

= f(t,x,x(1), · · · ,x(r);u), x(0) = x0 ∈ RI (3.5)

That is, G(u) = Ox(t;u,x0) with an observation operator O. At each time t, the

observed vector could include components of x and up to their k-th order interactions

for k ≥ 1. For example, if x = [x1, · · · , xI ], after including all the first and second-

order terms in the observation vector, Ox = [x1, · · · , xI , x21, x1x2, · · · , xixj, · · · , x2I ].

Because the trajectories of G(u) are usually complex, it is often to average them over

time and consider the following forward mapping instead:

GT (u;x0) :=
1

T

∫ t0+T

t0

Ox(t;u,x0)dt (3.6)

where t0 is the spin-up time, and T is the window length for averaging the observed

trajectories of the dynamics.

Following [29], I make the same assumption regarding the dynamical system (3.5):

Assumption 1. 1. For u ∈ X, (3.5) has a compact attractor A, supporting an

invariant measure µ(dx;u). The system is ergodic, and the following limit of the

Law of Large Numbers (LLN) is satisfied: for x0 ∼ µ(·;u) fixed, with probability

one,

lim
T→∞

GT (u; x0) = G∞(u) :=

∫
A
Ox(t;u, x0)µ(dx;u) (3.7)

2. The Central Limit Theorem (CLT) holds quantifying the ergodicity: for x0 ∼

µ(·;u),

GT (u; x0)
·∼ N

(
G∞(u), T−1Σ(u)

)
(3.8)

The limit G∞(u) becomes independent of the initial condition x0. However, the

finite-time truncation in GT (u;x0), with different random initializations x0, generates

random errors from the limit G∞(u), which are assumed approximately Gaussian.
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Assume the data y can be observed with a true parameter u†, i.e. y = GT (u†;x0). The

following time-averaged model is usually adopted for the inverse problems involving

chaotic dynamics [29]:

y|u,Σ(u) ∼ N (G∞(u), T−1Σ(u))

time-average : T−1Σ(u) ≈ Γobs

(3.9)

where the empirical covariance Γobs can be estimated with Gτ (u;x0) for τ ≫ T .

In practice, I replace G∞(u) with GT (u;x0) in (3.9) and define the potential ΦT(u)

of parameter u for the time-averaged model (3.9) as follows:

ΦT(u) =
1

2
∥y − GT (u;x0)∥2Γobs

(3.10)

If observing the trajectories (without component interaction terms, i.e., Ox = x) at

discrete time points t with tJ−1 = t0+T , then Ox(t;u) yields multivariate time series,

denoted as X(u)I×J = x(t;u) = [x(t0;u), · · · ,x(tJ−1;u)]. Then we have

GT (u;x0) = X(u) := X(u)
1J

J
, y = X(u†)

1J

J
, Γobs = X(u†)

[
IJ −

1J1
T
J

J

]
X(u†)

T

(3.11)

Denote X0 = X(u)−X(u†). Therefore the potential ΦT becomes

ΦT(u) =
1

2

1T
J

J
XT

0Γ
−1
obsX0

1J

J
=

1

2
tr

[
1J1

T
J

J2
XT

0Γ
−1
obsX0

]
(3.12)

Note averaging the trajectories over time does not ease the difficulty of rough

landscapes; refer to Figure 19 for a visual representation. However, the potential

function for the following STGP model (3.13) is more convex around the true values

u† compared with the time-averaged approach (3.9).

The aforementioned two approaches, the static model (3.4) and the time-averaged

model (3.9), can be recognized as special cases of a more general framework of

spatiotemporal modeling based on STGP, to be discussed in the following section.
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3.3.3 Spatiotemporal GP model

For the spatiotemporal data y(x, t) in the inverse problems, I consider the following

likelihood model based on STGP:

y(x, t)|u,Γ ∼ GP(G(u)(x, t),Γ(x, t))

STGP : Γ(x, t) = Cx ⊗ Ct
(3.13)

where Cx and Ct are spatial and temporal kernel respectively.

If observing the process y(x, t) according to (3.13), the resulted data matrix

Y = G(u)(X, t) follows the matrix normal distribution (denoted as ‘MN ’) [60] for

which I can also specify the above-mentioned three models

Y|M,U,V ∼MN (M,U,V), M = G(u†)(X, t)

static : US = σ2
εIx, VS = It (3.14a)

time-average : UT = Γobs, VT = J2(1J1
T
J )

− (3.14b)

STGP : UST = Cx, VST = Ct (3.14c)

where Y = Ox(t;u) = X(u) for the static model and M− is the pseudo-inverse of M .

In all of the three models mentioned above (3.14), I assume Y i.i.d. over u’s.

Denote Φ∗ and I∗ as potential function and Fisher information matrix with ∗ being ‘S’

for the static model (3.14a), “T” for the time-averaged model (3.14b) and “ST” for the

STGP model (3.14c) respectively. The following theorem compares the convexity of

their likelihoods and indicates that the STGP model (3.14c) with proper configuration

has the advantage of parameter learning with the most convex likelihood among the

three models.

Theorem 3.3.1. If we set the maximal eigenvalues of Cx and Ct such that

λmax(Cx)λmax(Ct) ≤ σ2
ε , then the following inequality holds regarding the Fisher
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information matrices, IS and IST, of the static model and the STGP model respec-

tively:

IST(u) ≥ IS(u) (3.15)

If we control the maximal eigenvalues of Cx and Ct such that λmax(Cx)λmax(Ct) ≤

Jλmin(Γobs), then the following inequality holds regarding the Fisher information

matrices, IT and IST, of the time-averaged model and the STGP model respectively:

IST(u) ≥ IT(u) (3.16)

Proof. See Appendix A.2.1.

The following theorem considers a special case, Cx = Γobs, under milder condition

in comparing the likelihood convexity of the time-averaged model and the STGP

model.

Theorem 3.3.2. If we choose Cx = Γobs and require the maximal eigenvalue of Ct,

λmax(Ct) ≤ J , then the following inequality holds regarding the Fisher information

matrices, IT and IST, of the time-averaged model and the STGP model respectively:

IST(u) ≥ IT(u) (3.17)

Proof. See Appendix A.2.2.

Remark 2. In general, Φ∗(u) is not the potential of a Gaussian distribution because

of the possible non-linearity of G(u). Theorems 3.3.1 and 3.3.2 indicate that for each

u ∈ X, the STGP model can have a more convex Gaussian proxy in the Laplace

approximation.

Remark 3. If we view Fisher information as a measurement of (statistical) convexity,

the above theorems 3.3.1 and 3.3.2 indicate that the STGP model can have a likelihood
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more convex around the true parameter value than either the static model or the

time-averaged model does. This implies that the parameter learning method based on

the STGP model could be more effective in the sense that it converges faster.

3.4 Inference

Often our attention is directed towards predicting the underlying process y(x, t) at

future time t∗ given the spatiotemporal observations Y. Based on the STGP model

(3.13), the following posterior predictive distribution could be used:

p(y(x, t∗)|Y) =

∫
p(y(x, t∗)|u,Y)p(u|Y)du (3.18)

Denote the conditional prediction E[y(x, t∗)|u,Y] as

G∗(u)(x, t∗) = G(u)(x, t∗)︸ ︷︷ ︸
Physical

+Γt∗tΓ
−1
tt (Y− G(u)(X, t))︸ ︷︷ ︸

Statistical

(3.19)

Then I predict y(x, t∗) with the following predicative mean

E[y(x, t∗)|Y] = Eu|Y[Ey∗|u,Y[y(x, t∗)]]

= Eu|Y[G∗(u)(x, t∗)]

≈ G(x, t∗) + Γt∗tΓ
−1
tt (Y− G(X, t))

(3.20)

where G(x, t∗) := 1
S

∑S
s=1 G(u(s))(x, t∗) with u(s) ∼ p(u|Y). The uncertainty can be

measured through the law of total conditional variance.

Var[y(x, t∗)|Y] = Eu|Y[Vary∗|u,Y[y(x, t∗)]] + Varu|Y[Ey∗|u,Y[y(x, t∗)]]

= Γt∗t∗ − Γt∗tΓ
−1
tt Γtt∗ +Varu|Y[G∗(u)(x, t∗)]

≈ Γt∗t∗ − Γt∗tΓ
−1
tt Γtt∗ + s2G∗(x, t∗)

(3.21)
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where s2G∗(x, t∗) := 1
S

∑S
s=1[G∗(u(s))(x, t∗)− G∗(x, t∗)]2 with u(s) ∼ p(u|Y).

Assume t∗ /∈ t. In the static model (3.4), when Γt∗t = 0, It is evident that

G∗(u)(x, t∗) = G(u)(x, t∗). This leads to simplified results.

E[y(x, t∗)|Y] ≈ G(x, t∗), Var[y(x, t∗)|Y] ≈ σ2
ε + s2G(x, t∗) (3.22)

This may underestimate the uncertainty compared with the more general STGP model

(3.13). If only interested in predicting the forward map G(u) to new time t = t∗,

similar results would be obtained:

E[G(u)(x, t∗)|Y] ≈ G(x, t∗), Var[G(u)(x, t∗)|Y] ≈ s2G(x, t∗) (3.23)

Note all the above prediction is feasible only if we can solve ODE/PDE systems to

time t∗, i.e., the ability to evaluate G(u(s))(x, t) at t = t∗. If the necessary computer

codes are not available, another GP GP(0,ΓG) can be utilized to model G(u)(x, t) and

make predictions about the forward mapping.

G(u)(x, t∗)|G(u)(X, t) ∼ N (ΓG
t∗t(Γ

G
tt)

−1G(u)(X, t),ΓG
t∗t∗ − ΓG

t∗t(Γ
G
tt)

−1ΓG
tt∗) (3.24)

3.5 Numerical Experiments

In this section, I demonstrate the numerical advantage of spatiotemporal modeling

in parameter estimation and UQ. More specifically, I compare the STGP model (3.13)

with the static model (3.4) using an advection-diffusion inverse problem (Section

3.5.1) previously considered in [154, 94] with the static method. Then I compare

the STGP model (3.13) with the time-averaged model (3.9) using three chaotic

dynamical inverse problems (Section 3.5.2) of which the Lorenz problem (Section

3.5.2.1) was studied by [29] with the time-averaged approach. Numerical evidence is
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presented to support that the STGP model (3.13) is preferable to the other two models.

All the computer codes are publicly available at https://github.com/lanzithinking/

Spatiotemporal-inverse-problem.

3.5.1 Advection-diffusion inverse problem

In addition, I work on the Advection-diffusion inverse problem, which was previously

discussed in subsection 2.4.2. Also I use the same setup with equation (2.24) and the

same initial condition u†0 = 0.5 ∧ exp{−100[(x− 0.35)2 + (y − 0.7)2]}, illustrated in

the top left panel of Figure 11a, which also shows a few snapshots of solutions u(x, t)

at other time points on a regular grid mesh of size 61× 61.

In the Bayesian setting, I adopt a GP prior for u0 ∼ µ0 = GP(0, C) with the

covariance kernel C = (δI − γ∆)−2 defined through the Laplace operator ∆,

where δ governs the variance of the prior and γ/δ controls the correlation length.

We set γ = 2 and δ = 10 in this example.

The Bayesian inverse problem estimates the initial condition u0 and quantifies its

uncertainty based on the 80× 16 spatiotemporal observations. The Bayesian UQ in

this example is incredibly challenging not only because of its large dimensionality

(3413) of spatially discretized u (Lagrange degree 1) at each time t but also due to

the spatiotemporal correlations in these observations.

I compare two likelihood models (3.4) and (3.13). The static model (3.4) is

commonly used in the literature of Bayesian inverse problems [90, 154, 94]. Here the

STGP model (3.13) is considered to better account for the spatiotemporal relationships

in the data. I estimate the variance parameter of the joint kernel from data. The
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(a) Posterior mean estimates of the initial concentration field u0(x).

(b) Posterior standard deviation estimates of the initial concentration field u0(x).

Figure 16. Advection-diffusion inverse problem: comparing posterior estimates of
parameter u0 in the static model (upper row) and the STGP model (lower row) based
on 5000 samples by various MCMC algorithms.
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Estimation Prediction

Models pCN ∞-MALA ∞-HMC pCN ∞-MALA ∞-HMC

static 0.83 (0.023) 0.81 (0.011) 0.79 (0.005) 0.43 (0.013) 0.4 (0.006) 0.4 (0.003)
STGP 0.74 (0.021) 0.73 (0.012) 0.73 (0.003) 0.44 (0.068) 0.32 (0.016) 0.31 (0.005)

Table 3. Advection-diffusion inverse problem: comparing (i) posterior estimates of
parameter u0 in terms of relative error of mean REM =

∥û0−u†
0∥

∥u†
0∥

and (ii) the forward

predictions G(u)(x, t∗) in terms of relative error ∥G(x,t∗)−G(u†
0)(x,t∗)∥

∥G(u†
0)(x,t∗)∥

by two likelihood
models (static and STGP). Each experiment is repeated for 10 runs of MCMC (pCN,
∞-MALA, and ∞-HMC), and the numbers in the bracket are standard deviations of
these repeated experiments.

correlation length parameters are determined (ℓx = 0.5 and ℓt = 0.2) by investigating

their autocorrelations as in Figure B.4. Figure 15 compares the maximum a posterior

(MAP) of the parameter u0 by the two likelihood models (right two panels) with the

true parameter u†0 (left panel). The STGP model yields a better MAP estimate closer

to the truth than the static model.

I also run MCMC algorithms (pCN, ∞-MALA, and ∞-HMC) to estimate u0. I

run 6000 iterations for each algorithm and burn in the first 1000. The remaining 5000

samples are used to obtain the posterior estimate û0 (Figure 16a) and posterior stan-

dard deviation (Figure 16b). The STGP model (3.13) consistently generates estimates

closer to the true values (refer to Figure 15) with smaller posterior standard deviation

than the static model (3.4) using various MCMC algorithms. Such improvement of

parameter estimation by the STGP model (3.13) is also verified by smaller relative

error of mean estimates REM =
∥û0−u†

0∥
∥u†

0∥
reported in Table 3, which summarizes the

results of 10 repeated experiments with their standard deviations in the brackets.

Finally, I consider the forward prediction (3.23) over the time interval [0, 5]. I

substitute each of the 5000 samples {u(s)}5000s=1 generated by∞-HMC into G(u(s))(x, t∗)

56



Figure 17. Advection-diffusion inverse problem: comparing forward predictions,
G(x, t∗), based on the static model and the STGP model. The left panel plots the
curves representing the percentage of 80 (corresponding to the selected locations)
credible bands that cover the true solution G(u†0)(x, t∗) at each time t∗ ∈ [0, 5]. The
right two panels show the predicted time series (blue dashed and orange dot-dashed
lines) along with the credible bands (shaded regions) by the two models compared
with the truth (red solid line) at two selective locations x = (0.375, 0.401) and
x = (0.249, 0.250). Blue dots are observations.

to solve the advection-diffusion equation (2.24) for t∗ ∈ [0, 5]. We observe each of

these 5000 solutions at the 80 locations (Figure 11b) for 50 points equally spaced in

[0, 5]. Then I obtain the prediction by G(x, t∗)80×50 = 1
5000

∑5000
s=1 G(u(s))(x, t∗), and

compute the relative errors in terms of the Frobenius norm of the difference between

the prediction and the true solution G(u†0)(x, t∗):
∥G(x,t∗)−G(u†

0)(x,t∗)∥
∥G(u†

0)(x,t∗)∥
. Table 3 shows the

STGP model (3.13) provides more accurate predictions with smaller errors compared

with the static model (3.4). Figure 17 depicts the predicted time series G(x, t∗) at

two selective locations based on the static (blue dashed line) and the STGP (orange

dot-dashed line) models along with their credible bands (shaded regions) compared

with the truth (red solid lines) in the two right panels. Note that with smaller credible

bands, the static model is more certain about its prediction, which is far from the

truth. The STGP model provides wider credible bands that cover more of the true

trajectories, indicating a more appropriate uncertainty being quantified. Therefore,

on the left panel of Figure 17, the STGP model has a higher truth covering rate for its
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Figure 18. Lorenz63 Dynamics: Two-lobe Orbits (Left), Chaotic Solutions (Middle),
and Coordinates’ Distributions (Right)

credible intervals among these 80 locations on most of t∗ ∈ [0, 5]. Note these models

are trained on t ∈ [1, 4], so the STGP model does not show much advantage initially

but quickly outperforms the static model after t∗ = 1.

3.5.2 Chaotic dynamical inverse problems

Chaos refers to the behavior of a dynamical system that appears to be random in

the long term, even if the initial condition entirely determines its evolution. Many

physical systems are characterized by the presence of chaos that has been extensively

demonstrated [106, 76, 14]. The main challenges of analyzing chaotic dynamical

systems include the stability, the transitivity, and the sensitivity to the initial conditions

(which contributes to the seeming randomness) [43]. One of the interests in the study

of chaotic dynamical systems is determining the essential system parameters given

the observed data. In this section, I will investigate three chaotic dynamical systems,

Lorenz63 [106], Rössler [4], and Chen [165], that can be summarized as the first-order

ODE: ẋ = f(x;u). I will apply the CES framework (Section 2.2) to learn the system
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parameter u and quantify its associated uncertainty based on the observed trajectories.

I find the spatiotemporal models numerically more advantageous by fitting the whole

trajectories than the common approach by averaging the trajectories over time [137,

29, 72].

3.5.2.1 Lorenz system

The most popular example of chaotic dynamics is the Lorenz63 system [106], which

represents a simplified model of atmospheric convection for the chaotic behavior of

the weather. The following ODE gives the governing equations of the Lorenz system
ẋ = σ(y − x),

ẏ = x(ρ− z)− y,

ż = xy − βz,

(3.25)

where x, y, and z denote variables proportional to convective intensity, horizontal and

vertical temperature differences and u := (σ, ρ, β) represents the model parameters

known as Prandtl number (σ), Rayleigh number (ρ), and an unnamed parameter (β)

used for physical proportions of the regions [120].

The behavior of Lorenz63 system (3.25) strongly relies on the parameters. In

many studies, the parameter ρ varies in (0,∞) and the other parameters σ and

β are held constant. In particular, (3.25) has a stable equilibrium point at the

origin for ρ ∈ (0, 1). For ρ ∈ (1, γ) with γ = σ σ+β+3
σ−β−1

, (3.25) has three equilibrium

points, one unstable equilibrium point at the origin and two stable equilibrium points

at (
√
β(ρ− 1),

√
β(ρ− 1), ρ− 1)

T
and (−

√
β(ρ− 1),−

√
β(ρ− 1), ρ− 1)

T
. When

ρ > γ, the equilibrium points become unstable, resulting in erratic spiral-shaped
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Figure 19. Lorenz inverse problem: marginal (diagonal) and pairwise (lower triangle)
sections of the joint density p(u) by the time-averaged model (left) and the STGP
model (right) respectively.

trajectories. One classical configuration for the parameter in (3.25) is σ = 10,

β = 8
3
, ρ = 28 when the system exhibits two-lobe orbits, also known as the butterfly

effect [162] (See the left panel of Figure 18). In this example, I seek to infer such

parameter u† = (σ†, β†, ρ†) = (10, 8/3, 28) based on the observed chaotic trajectories

demonstrated in the middle panel of Figure 18. Note the solutions (x(t), y(t), z(t))

highly depend on the initial conditions (x(0), y(0), z(0)), we hence fix (x(0), y(0), z(0))

in the following.

Due to the chaotic nature of the states {(x(t), y(t), z(t)) : t ∈ [0, τ ]}, I can treat

these coordinates as random variables. In the right panel of Figure 18, I demonstrate

their marginal and pairwise distributions (diagonal and lower triangle) estimated by a

collection of states (upper triangle) along a long-time trajectory solved with u†. For

a given parameter u = (σ, β, ρ), The trajectory G(u) is represented by the following

map.:

G(u) : R+ → R3, t 7→ (x(t;u), y(t;u), z(t;u)) (3.26)

where (x(t;u), y(t;u), z(t;u)) is the solution of (3.25) for given parameter u. I generate
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Figure 20. Lorenz inverse problem: comparing posterior estimates of parameter u for
two models (time-average and STGP) in terms of relative error of mean REM = ∥û−u†∥

∥u†∥ .
The upper row shows the results by varying the spin-up t0 and fixing T = 10. The
lower row shows the results by varying the observation window size T and fixing
t0 = 100. Each experiment is repeated for 10 runs of EnK (EKI and EKS) with
J = 500 ensembles, and the shaded regions indicate standard deviations of such
repeated experiments.

spatiotemporal data from the chaotic dynamics (3.25) with u† = (σ†, β†, ρ†) by

observing its trajectory on J = 100 equally spaced time points tj ∈ [t0, t0 + T ]:

X(u†)3×100 := {G(u†)(tj) = (x(tj;u
†), y(tj;u

†), z(tj;u
†))}Jj=1. These observations can

be viewed as a 3-dimensional time series that estimates the empirical covariance

Γobs as in [29]. The inverse problem involves learning the parameter u given these

observations, also known as parameter identification [116].

Following [29], a log-Normal prior is endow on u: log u ∼ N (µ0, σ
2
0) with µ0 =

(2.0, 1.2, 3.3) and σ0 = (0.2, 0.5, 0.15). I compare the two likelihood models (3.9) and

(3.13) for this dynamical inverse problem. For the time-averaged model (3.9), instead

of the 3-dimensional time series from the trajectory (3.26), I substitute X(u)3×1 with
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X⋆(u)9×1 = OG⋆(u)(t) by averaging the following augmented trajectory G⋆(u)(t) in

time [29]:

G⋆(u)(t) = (x(t), y(t), z(t), x2(t), y2(t), z2(t), x(t)y(t), x(z)z(t), y(t)z(t))

For the spatiotemporal likelihood model STGP (3.13), set the correlation length

ℓx = 0.4 and ℓt = 0.1 for the spatial kernel Cx and the temporal kernel Ct respectively.

They are chosen to reflect the spatial and temporal resolutions.

It is important to note that spatiotemporal modeling can help in learning the true

parameter, denoted as u†. As illustrated in Figure 19, despite of the rough landscape,

the marginal (e.g. p(σ, β†, ρ†)) and pairwise (e.g. p(σ, β, ρ†)) sections of the joint

density p(u) by the STGP model (3.13) are more convex in the neighbourhood of

u† compared with the time-averaged model (3.9). This verifies the implication of

Theorem 3.3.2 on their difference in convexity. Therefore, particle-based algorithms

such as EnK methods have a higher chance of concentrating their ensemble particles

around the true parameter value u†, leading to better estimates. Here, the roughness

of the posterior creates a barrier to the direct application of MCMC algorithms.

Therefore, I apply more robust EnK methods for parameter estimation.

I run each EnK algorithm for N = 50 iterations and choose the ensembles (of size

J) when its ensemble mean attains the minimal error in estimating the parameter

u with reference to its true value u†. In practice, EnK algorithms usually converge

quickly within a few iterations, so N = 50 suffices the need for most applications.

To investigate the roles of spin-up length t0 and observation window size T , I run

EnK multiple times while varying each of the two quantities one at a time. Seen from

Figure 20, observations indicate a noticeable reduction in errors when utilizing the

STGP model (3.13) as opposed to the time-averaged model (3.9). More specifically,

the upper row indicates that the estimation errors, measured by REM = ∥û−u†∥
∥u†∥ , are
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Figure 21. Lorenz inverse problem: marginal (diagonal) and pairwise (lower triangle)
distributions estimated with 10000 samples (upper triangle) by the pCN algorithm
based on NN emulators for the time-averaged model (left) and the STGP model (right)
respectively. Red dots (lower triangle) are selective 10000 ensemble particles from
running the EKS algorithm.

not very sensitive to the spin-up t0 given sufficient window size T = 10. On the other

hand, for fixed spin-up t0 = 100, both models decrease errors with increasing window

size T as they aggregate more information. However, the STGP model requires only

about 1
4

time length as the time-averaged model to attain accuracy at the same level

(T = 1 vs T = 4). This supports that the STGP is preferable to the time-average

approach as the former may add a small overhead for the statistical inference but

could save much more in resolving the physics (solving ODE/PDE), which is usually

more expensive.

Set spin-up t0 = 100 long enough to ignore the effect of the initial condition

in the dynamics and choose the observation window size T = 10. Compare the

two models (3.9) (3.13) using EnK algorithms with different ensemble sizes (J) to

obtain an estimate û of the parameter u. Figure B.5 shows that the STGP model

performs better than the time-averaged model in generating more minor errors (REM)
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Model-Algorithms J=50 J=100 J=200 J=500 J=1000

Tavg-EKI 0.06 (0.03) 0.09 (0.03) 0.09 (0.01) 0.06 (0.04) 0.07 (0.02)
Tavg-EKS 0.10 (0.02) 0.07 (4.62e-03) 0.05 (2.60e-03) 0.03 (3.04e-03) 0.03 (8.56e-04)
STGP-EKI 0.07 (0.03) 0.04 (0.03) 0.03 (0.02) 0.02 (0.03) 0.02 (0.01)
STGP-EKS 0.09 (0.03) 0.05 (0.03) 0.03 (0.02) 3.97e-04 (1.06e-03) 5.52e-04 (6.37e-04)

Table 4. Lorenz inverse problem: comparing posterior estimates of parameter u for
two models, time-average (Tavg) and STGP, in terms of relative error of median
REM = ∥û−u†∥

∥u†∥ . Each experiment is repeated for 10 runs of EnK (EKI and EKS), and
the numbers in the bracket are standard deviations of such repeated experiments.

Figure 22. Lorenz Inverse Problem: Comparing Forward Predictions G(x, t∗) Based
on the Time-averaged Model and the STGP Model

for almost all cases. In general, more ensembles help reduce errors, except for the

time-averaged model using the EKI algorithm. Note the STGP model with the EKS

algorithm yields parameter estimates with the lowest errors. Table 4 summarizes the

REM’s by different combinations of the two likelihood models (time-averaged and

STGP) and two EnK algorithms (EKI and EKS). Once again, it is apparent that the

spatiotemporal likelihood model STGP (as shown in equation (3.13)) outperforms the

basic time-averaged model (as shown in equation (3.9)) when it comes to achieving

precise parameter estimation.

Next, I apply CES (Section 2.2) [29, 94] to quantify the uncertainty of the estimate

û. Direct application of MCMC suffers from an extremely low acceptance rate because

of the rough density landscape (Figure 19). Ensemble particles from the EnK algorithm
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cannot provide rigorous systematic UQ due to the ensemble collapse [135, 136, 159,

24] (See red dots in Figure 21). Therefore, I run approximate MCMC based on NN

emulators built from EnK outputs {u(j)n ,G(u(j)n )}J,Nj=1,n=0. Note, structures are different

for the observed data in the two models (3.9) (3.13): 9-dimensional summary of time

series for the time-averaged model (3.9) and 3× 100 time series for the STGP model

(3.13). Therefore I build densely connected NN (DNN) Ge : R3 → R9 for the former

and DNN-RNN (recurrent NN) type of network Ge : R3 → R3×100 for the latter to

account for their different data structures in the forward output. Figure 21 compares

the marginal (diagonal) and pairwise (lower triangle) posterior densities of u estimated

by 10000 samples (upper triangle) of the pCN algorithm based on the corresponding

NN emulators for the two models. The spatiotemporal model STGP (3.13) yields

more reasonable UQ results than the time-averaged model (3.9).

Finally, I consider the forward prediction G(x, t∗) (3.23) for t∗ ∈ [t0, t0+1.5T ] with

J = 500 EKS ensembles corresponding to the lowest error. Figure 22 compares the

prediction results of these two models. The result by the STGP model is very close

to the truth till t = 113, while the prediction by the time-averaged model quickly

departs from the truth only after t = 102. The STGP model predicts the future of

the challenging chaotic dynamics significantly better than the time-averaged model.
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Figure 23. Rössler dynamics: single-lobe orbits (left), chaotic solutions (middle) and
coordinates’ distributions (right).

Figure 24. Rössler inverse problem: marginal (diagonal) and pairwise (lower triangle)
sections of the joint density p(u) by the time-averaged model (left) and the STGP
model (right) respectively.
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3.5.2.2 Rössler system

Next, I consider the following Rössler system [64] governed by the system of

autonomous differential equations:
ẋ = −y − z,

ẏ = x+ ay,

ż = b+ z(x− c).

(3.27)

where a, b, c > 0 are parameters determining the system’s behavior. The Rössler

attractor was initially discovered by German biochemist Otto Eberhard Rössler

[133, 132]. When c2 > 4ab, the system (3.27) exhibits continuous-time chaos

and has two unstable equilibrium points (aγ−,−γ−, γ−) and (aγ+,−γ+, γ+) with

γ+ = c+
√
c2−4ab
2a

, γ− = c−
√
c2−4ab
2a

. Note that the Rössler attractor has similarities to the

Lorenz attractor. Nevertheless, it has a single lobe and offers more flexibility in quali-

tative analysis. The true parameter trying to infer is u† = (a†, b†, c†) = (0.2, 0.2, 5.7).

Figure 23 illustrates the single-lobe orbits (left), the chaotic solutions (middle), and

their marginal and pairwise distributions (right) of their coordinates viewed as random

variables.

Note, the Rössler dynamics evolve at a lower rate compared with the Lorenz63

dynamics (compare the middle panels of Figure 23 and Figure 18). Therefore, I

adopt a longer spin-up length (t0 = 1000) and a larger window size (T = 100).

For the STGP model (3.13), spatiotemporal data are generated by observing the

trajectory (3.26) of the chaotic dynamics (3.27) with u† = (a†, b†, c†) for J = 100

time points in [t0, t0 + T ]. I also augment the time-averaged data with second-order

moments for the time-averaged model (3.9). In this Bayesian inverse problem, a
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Figure 25. Rössler inverse problem: comparing posterior estimates of parameter u for
two models (time-average and STGP) in terms of relative error of mean REM = ∥û−u†∥

∥u†∥ .
The upper row shows the results by varying the spin-up t0 and fixing T = 100. The
lower row shows the results by varying the window size T and fixing t0 = 100. Each
experiment is repeated for 10 runs of EnK (EKI and EKS) with J = 500 ensembles,
and the shaded regions indicate standard deviations of such repeated experiments.

log-Normal prior is adopted on u: log u ∼ N (µ0, σ
2
0) with µ0 = (−1.5,−1.5, 2.0) and

σ0 = (0.15, 0.15, 0.2). Once again, with spatiotemporal likelihood model STGP (3.13),

learning the true parameter value u† becomes more accessible because the posterior

density p(u) concentrates more on u† compared with the time-averaged model (3.9), as

indicated by Theorem 3.3.2. See Figure 24 for comparing their marginal and pairwise

sections of the joint density p(u).

I also compare the two models (3.9) (3.13) when investigating the roles of spin-up

length t0 and observation window size T in Figure 25. Despite the consistently smaller

errors (expressed in terms of REM) by the STGP model, REM is not very sensitive

to the spin-up t0 given sufficient window size T = 100. However, for fixed spin-up

t0 = 100, the STGP model (3.13) is superior to the time-averaged approach (3.9) in
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Figure 26. Rössler inverse problem: marginal (diagonal) and pairwise (lower triangle)
distributions estimated with 10000 samples (upper triangle) by the pCN algorithm
based on NN emulators for the time-averaged model (left) and the STGP model (right)
respectively. Red dots (lower triangle) are selective 10000 ensemble particles from
running the EKS algorithm.

reducing the estimation error using smaller observation time window T : the former

requires only half time length as the latter to attain the same level of accuracy (T = 30

vs. T = 60 with EKI and T = 20 vs T = 40 with EKS).

Model-Algo J=50 J=100 J=200 J=500 J=1000

Tavg-EKI 0.16 (0.09) 0.11 (0.06) 0.10 (0.07) 0.07 (0.04) 0.11 (0.07)
Tavg-EKS 0.06 (0.02) 0.06 (7.61e-03) 0.06 (6.20e-03) 0.06 (5.37e-03) 0.06 (2.53e-03)
STGP-EKI 0.02 (0.02) 0.01 (0.01) 0.02 (0.02) 0.01 (9.09e-03) 0.01 (0.02)
STGP-EKS 0.02 (0.01) 2.47e-03 (0.02) 7.63e-04 (2.86e-03) 4.23e-04 (2.45e-04) 3.62e-04 (1.19e-04)

Table 5. Rössler inverse problem: comparing posterior estimates of parameter u for two
models (time-average and STGP) in terms of relative error of median REM = ∥û−u†∥

∥u†∥ .
Each experiment is repeated for 10 runs of EnK (EKI and EKS), and the numbers in
the bracket are standard deviations of such repeated experiments.

Now fix t0 = 1000 and T = 100. Figure B.6 compares these two models (3.9) (3.13)

in terms of REM’s of the parameter estimation by EnK algorithms with different

ensemble sizes (J). The STGP model (3.13) shows a universal advantage over the
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Figure 27. Rössler Inverse Problem: Comparing Forward Predictions G(x, t∗) Based
on the Time-averaged Model and the STGP Model

time-averaged model (3.9) in generating smaller REM’s. Note, the time-averaged

model becomes over-fitting if running EKS more than 10 iterations, a phenomenon

also reported in [74, 73]. Table 5 summarizes the REM’s by different combinations

of likelihood models and EnK algorithms and confirms the consistent advantage of

the STGP model over the time-averaged model in rendering more accurate parameter

estimation.

CES (Section 2.2) is applied for the UQ. Based on the EKS (J = 500) outputs,

I build DNN Ge : R3 → R9 for the time-averaged model (3.9) and DNN-RNN Ge :

R3 → R3×100 for the STGP model (3.13) to account for their different data structures.

Figure 26 compares the marginal and pairwise posterior densities of u estimated by

10000 samples of the pCN algorithm based on the corresponding NN emulators for

the two models. The STGP model (3.13) generates more appropriate UQ results

than the time-averaged model (3.9) does. Finally, consider the forward prediction

G(x, t∗) (3.23) for t∗ ∈ [t0, t0 + 1.5T ] with J = 500 EKS ensembles corresponding to

the lowest error. Figure 27 shows that the STGP model provides better prediction

consistent with the truth throughout the whole time window while the result by the

time-averaged model deviates from the truth quickly after t = 1020.
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Figure 28. Chen dynamics: double-scroll attractor (left), chaotic solutions (middle),
and coordinates’ distributions (right).

3.5.2.3 Chen system

Yet another chaotic dynamical system I consider is the Chen system [25] described

by the following ODE: 
ẋ = a(y − x),

ẏ = (c− a)x− xz + cy,

ż = xy − bz.

(3.28)

where a, b, c > 0 are parameters. When a = 35, b = 3, c = 28, the system (3.28) has

a double-scroll chaotic attractor often observed from a physical, electronic chaotic

circuit. The true parameter that I will infer is u† = (a†, b†, c†) = (35, 3, 28). With

u†, the system has three unstable equilibrium states given by (0, 0, 0), (γ, γ, 2c− a),

and (−γ,−γ, 2c− a) where γ =
√
b(2c− a) [165]. Figure 28 illustrates the two-scroll

attractor (left), the chaotic trajectories (middle), and their marginal and pairwise

distributions (right) of their coordinates viewed as random variables.

The Chen dynamics has trajectories changing rapidly as the Lorenz63 dynamics

(compare the middle panels of Figure 28 and Figure 18). Therefore I adopt the
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Figure 29. Chen inverse problem: comparing posterior estimates of parameter u for
two models (time-average and STGP) in terms of relative error of mean REM = ∥û−u†∥

∥u†∥ .
The upper row shows the results by varying the spin-up t0 and fixing T = 10. The
lower row shows the results by varying the observation window size T and fixing
t0 = 100. Each experiment is repeated for 10 runs of EnK (EKI and EKS) with
J = 500 ensembles, and the shaded regions indicate standard deviations of such
repeated experiments.

same spin-up length (t0 = 100) and observation window size (T = 10) as in the

Lorenz inverse problem (Section 3.5.2.1). I generate the spatiotemporal data and the

augmented time-averaged summary data by observing the trajectory of (3.28) over

[t0, t0 + T ] solved with u† similarly as in the previous sections. A log-Nomral prior

is adopted for u: log u ∼ N (µ0, σ
2
0) with µ0 = (3.5, 1.2, 3.3) and σ0 = (0.35, 0.5, 0.15).

The STGP model (3.13) still posses more convex posterior density p(u) than the

time-averaged model (3.9) as illustrated by its marginal and pairwise sections plotted

in Figure B.7.

Varying the spin-up length t0 and the observation window size T one at a time

in Figure 29, despite the insensitivity of errors concerning t0, it is evident that the
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STGP model offers comparable benefits to the time-averaged model. Similarly, the

STGP model demands a smaller observation window than the time-averaged model

(T = 2 vs. T = 6 with EKI and T = 2 vs T = 3 with EKS) to reach the same level of

accuracy.

Model-Algo J=50 J=100 J=200 J=500 J=1000

Tavg-EKI 0.07 (0.03) 0.04 (0.04) 0.04 (0.04) 0.05 (0.04) 0.04 (0.04)
Tavg-EKS 0.12 (0.03) 0.10 (0.02) 0.09 (0.02) 0.09 (0.01) 0.09 (0.01)
STGP-EKI 0.14 (0.09) 0.09 (0.08) 0.09 (0.08) 0.03 (0.03) 0.01 (9.87e-03)
STGP-EKS 0.07 (0.04) 0.05 (0.04) 0.01 (0.01) 2.89e-03 (6.07e-03) 3.32e-04 (4.66e-04)

Table 6. Chen inverse problem: comparing posterior estimates of parameter u for two
models (time-average and STGP) in terms of relative error of median REM = ∥û−u†∥

∥u†∥ .
Each experiment is repeated for 10 runs of EnK (EKI and EKS), and the numbers in
the bracket are standard deviations of such repeated experiments.

Figure 30. Chen inverse problem: marginal (diagonal) and pairwise (lower triangle)
distributions estimated with 10000 samples (upper triangle) by the pCN algorithm
based on NN emulators for the time-averaged model (left) and the STGP model (right)
respectively. Red dots (lower triangle) are selective 10000 ensemble particles from
running the EKS algorithm.

Again it’s clear to see the merit of the STGP model (3.13) in reducing the

error (REM) of parameter estimation compared with the time-averaged model (3.9) in
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various combinations of EnK algorithms with different ensemble sizes (J) in Figure B.8

and Table 6. As in the previous problem (Section 3.5.2.2), similar over-fitting (bottom

left of Figure B.8) by the time-averaged model occurs if running EKS algorithms more

than 5 iterations (or earlier).

UQ results (Figure 30) by CES show the STGP model estimates the uncertainty

of parameter u more appropriately than the time-averaged model. Finally, though the

prediction is challenging to the Chen dynamics (3.28), the STGP model still performs

much better than the time-averaged model by predicting a more accurate trajectory

for a longer time (t = 111 vs t = 101) as shown in Figure 31.

Figure 31. Chen Inverse Problem: Comparing Forward Predictions G(x, t∗) Based on
the Time-averaged Model and the STGP Model

3.6 Conclusion

Traditional models often fail to incorporate spatiotemporal information. In con-

trast, the STGP model fits the observed data trajectories more accurately, resulting

in improved parameter estimation and more appropriate UQ. The STGP model’s

superiority is supported by theorems that demonstrate its ability to provide a more

convex likelihood, making parameter learning easier. Ultimately, I showcase the
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benefits of spatiotemporal modeling through an inverse problem that is limited by an

advection-diffusion PDE and three inverse problems that involve chaotic dynamics.

Furthermore, theorems 3.3.1 and 3.3.2 compare the STGP model with the static

and time-averaged models regarding their statistical convexity. These novel qualitative

results imply that the parameter learning (based on EnK methods) with the STGP

model converges faster than the other two traditional methods. In future work, I

will explore a quantitative characterization of their convergence rates, particularly in

terms of covariance properties.
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Chapter 4

SPATIOTEMPORAL PRIOR MODELING

4.1 Introduction

Recovering model parameters from observed data is the main goal of inverse

problems. There are three emerging challenges in solving large-scale and data-intensive

inverse problems: i) ill-posedness of the problem, ii) high dimensionality of the

parameter space, and iii) complexity of the model constraints. To overcome the

ill-posedness and the model constraints, regularization methods are developed to find

meaningful solutions to inverse problems [63].

In the literature of optimization, deterministic regularization methods for inverse

problems date back to 1943 with the seminal work by Tikhonov [148], followed by

Ivanov [77] and [6]. A regularization term reflecting the properties of the target

solution is typically added to a pre-determined energy function that depends on the

forward model and the statistical assumptions of the observational noise. More recent

methods and algorithms in this class have been developed for solving large-scale

ill-posed problems [45, 56, 82] in signal and image processing [82, 56, 18], geophysics

and seismic monitoring [144], satellite imaging [145], etc.

Compared with the optimization-based methods, the Bayesian approach to these

inverse problems has the added benefit of quantifying the uncertainty of model

parameters and evaluating the adequacy of model itself [38]. For more information on

the background of the Bayesian inverse problem, please see Section 1.2.2.

In statistics, there is also a long history of developing models with penalty based
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on the prior knowledge of unknown parameters. If we consider the Bayesian regression

model as an inverse problem, we can draw a parallel between the likelihood (prior)

and the energy (regularization) function. Within this context, it is imperative to offer

a comprehensive outline of widely-used priors that researchers commonly incorporate

as a form of penalty.

4.1.1 Gaussian Prior

GP [127, 9] has been introduced in chapter 3.2.1 and widely used as an L2 penalty

or a prior on the function space. Despite the flexibility, sometimes random candidate

functions drawn from GP are over-smooth for modeling certain objects, such as images

with sharp edges.

To address this issue and promote sparsity, an extensive list of classic shrinkage

priors are adopted in Bayesian statistics, including Bayesian Lasso [121] and bridge

[126], elastic net [103], group Lasso [23], and horseshoe priors [22, 150]. For non-

parametric modeling, there are many heavy-tailed priors based on Markov random

fields, including Laplace [69], Cauchy [110], and total variation (TV) [101]. There

has also been a class of data-informed priors based on level set functions [21, 41,

75, 129] recently proposed for solving Bayesian inverse problems while retaining

important spatial/graphical features (e.g., shape, edges) of the solution. All these

sparsity-promoting and edge-preserving priors find remarkable applications, especially

in imaging analysis, such as image deblurring, X-ray CT reconstruction, and image

classification.

Among those edge-preserving priors, I particularly focus on the Besov prior, which

corresponds to the Lq (usually set q = 1) type regularization [35, 16, 102]. [99]
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discovered that the TV prior degenerates to Gaussian prior as the discretization

mesh becomes denser, thus losing the edge-preserving properties in high dimensional

applications. Therefore, [98] proposed the Besov prior defined particularly in terms of

wavelet basis and random coefficients and proved its discretization-invariant property.

4.1.2 Besov Prior

Let the spatial domain be d-dimensional torus, i.e. X = Td = (0, 1]d for d ≤ 3.

Consider the Hilbert space L̇2(X ) := {u : Td → R|
∫
Td |u(x)|2dx <∞,

∫
X u(x)dx = 0}

of real valued periodic functions X with inner product ⟨·|·⟩ and norm ∥ · ∥. Given an

orthonormal basis {ϕℓ}∞ℓ=1 for L̇2(X ), any function u ∈ L̇2(X ) can be written as

u(x) =
∞∑
ℓ=1

uℓϕℓ(x), uℓ = ⟨u, ϕℓ⟩ (4.1)

Based on the above series (4.1), for s > 0 and q ≥ 1, define the Bananch space

Xs,q := {u =
∑∞

ℓ=1 uℓϕℓ : X → R|∥u∥s,q < ∞,
∫
X u(x)dx = 0} with the norm ∥ · ∥s,q

specified as

∥u∥s,q =

(
∞∑
ℓ=1

ℓ(
sq
d
+ q

2
−1)|uℓ|q

) 1
q

(4.2)

Note, if q = 2 and {ϕℓ}∞ℓ=1 form the Fourier basis, then Xs,2 reduces to the Sobolev space

Ḣ(Td) of mean-zero periodic functions with s-regularity; in particular, X0,2 = L̇2(Td).

If {ϕℓ}∞ℓ=1 is an r-regular wavelet basis for r > s, then Xs,q becomes the Besov space

Bs
qq [149, 170].

Now construct a probability measure on functions by randomizing the coefficients

{uℓ}∞ℓ=1 of the series expansion (4.1) in the basis {ϕℓ}∞ℓ=1. More specifically, from (4.1)

uℓ := γℓξℓ, γℓ = κ−
1
q ℓ−( s

d
+ 1

2
− 1

q
), ξℓ

iid∼ πξ(·) ∝ exp (−1

2
|ξ|q). (4.3)
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where s > 0, 1 ≤ q < ∞, κ > 0 are fixed, and πξ denotes the probability density

function of the q-exponential distribution.

Denote infinite sequences γ = {γℓ}∞ℓ=1 and ξ = {ξℓ}∞ℓ=1. Then ξ is a random

element of the probability space (Ω,B(Ω),P) with Ω = R∞, product σ-algebra B(Ω)

and probability measure P defined by extending the finite product of πξ to infinite

product by the Kolmogorov extension theorem [c.f. Theorem 29 in section A.2.1 of

38]. Then define the Besov measure as the pushforward of P as follows.

Definition 2 (Besov Measure). Let P be the measure of random sequences ξ. Suppose

we have the following map

f : Ω→ Xs,q, ξ 7→ u =
∞∑
ℓ=1

uℓϕℓ =
∞∑
ℓ=1

γℓξℓϕℓ, where ξℓ
iid∼ πξ (4.4)

Then the pushforward f ♯P is Besov measure on Xs,q, denoted as B(κ,Xs,q).

To make sense of (4.1) and (4.3) for u ∼ B(κ,Xs,q), we need the following function

space

Lq
P(Ω;X

t,q) = {u : D × Ω→ R|E(∥u∥qt,q) <∞} (4.5)

This is a Banach space equipped with the norm E(∥u∥qt,q)
1
q . Then one can show that

the random series (4.4) exists as an Lq
P-limit in Xt,q for t < s− d

q
[Thorem 4 of 38].

Remark 4. If q = 2 and {ϕℓ}∞ℓ=1 is either a wavelet or Fourier basis, we obtain a

Gaussian measure with the Cameron-Martin space Bs
22 [20], which is the Hilbert space

Hs = Hs(Td). Indeed, we have (4.4) reduced to

u(x) = κ−
1
2

∞∑
ℓ=1

ℓ−
s
d ξℓϕℓ(x), ξℓ

iid∼ N (0, 1) (4.6)

After providing a review on BP (Section 4.1.2) with a flexible edge-preserving prior,

the rest of the chapter is organized as follows. Section 4.2 introduces Q-exponential
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process as random coefficient functions on the time domain. I then formally define

STBP and study its theoretic properties in Section 4.3. In Section 4.4 I describe a

white-noise representation of STBP that facilitates the inference for models with STBP

prior. Section 4.5 covers experiments on Q-EP (Subsection 4.5.1) and STBP (4.5.2).

In Subsection 4.5.1, I have shown that Q-EP outperforms GP and Besov in both

time series modeling and image reconstruction. In Subsection 4.5.2, I demonstrate

the advantage of the proposed STBP in retaining spatial features and capturing

temporal correlations for the spatiotemporal inverse problems, including two dynamic

CT reconstruction Finally, I discuss future research in Section 4.6.

4.2 Q-Exponential Process(Q-EP)

This section is adapted from: “Li, S., O’Connor, M., &Lan, S.

(2022). Bayesian Learning via Q-Exponential Process (Version 2). arXiv.

https://doi.org/10.48550/ARXIV.2210.07987”.

Before generalizing the series representation of Besov random function (4.4) to a

representation for spatiotemporal Besov process by replacing the random variable ξℓ

with a stochastic process ξℓ(t) on the temporal domain T ⊂ R+, I will first propose a

properly defined q-exponential process which generalizes the q-exponential distribution

to capture the temporal dependence in the data.

4.2.1 The Q-Exponential Distribution and its Multivariate Generalizations

Start with the q-exponential distribution for a scalar random variable u ∈ R. It

is named in [36] and defined with the following density, not in an exact form (as a
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probability density normalized to 1):

πq(u) ∝ exp (−1

2
|u|q). (4.7)

This q-exponential distribution (4.7) is actually a special case of the following expo-

nential power (EP) distribution EP(µ, σ, q) with µ = 0, σ = 1:

p(u|µ, σ, q) = q

21+1/qσΓ(1/q)
exp

{
−1

2

∣∣∣∣u− µσ
∣∣∣∣q} (4.8)

where Γ denotes the gamma function. Note the parameter q > 0 in (4.8) controls the

tail behavior of the distribution: the smaller q, the heavier tail, and vice versa. This

distribution also includes many commonly used ones, such as the normal distribution

N (µ, σ2) for q = 2 and the Laplace distribution L(µ, b) with σ = 2−1/qb when q = 1.

The question now arises: How can I generalize it to a multivariate distribution and,

further, to a stochastic process? Gomez [57] provided one possibility of a multivariate

EP distribution, denoted as EPd(µ,C, q), with the following density:

p(u|µ,C, q) =
qΓ(d

2
)

2Γ(d
q
)
2−

d
q π− d

2 |C|−
1
2 exp

{
−1

2

[
(u− µ)TC−1(u− µ)

] q
2

}
(4.9)

When q = 2, it reduces to the familiar multivariate normal (MVN) distribution

Nd(µ,C).

Unfortunately, unlike MVN being the foundation of GP, the Gomez’s EP distribu-

tion EPd(µ,C, q) fails to generalize to a valid stochastic process because it does not

satisfy the marginalization consistency as MVN does (See Subsection 4.2.2 for more

details). It turns out we need to seek candidates in an even larger family of elliptic

(contour) distributions ECd(µ,C, g):

Definition 3 (Elliptic distribution). A multivariate elliptic distribution ECd(µ,C, g)

has the following density [78]

p(u) = kd|C|−
1
2 g(r), r(u) = (u− µ)TC−1(u− µ) (4.10)
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where kd > 0 is the normalizing constant and g(·), a one-dimensional real-valued

function independent of d and kd, is named density generating function [51].

Every elliptic (contour) distributed random vector u ∼ ECd(µ,C, g) has a stochas-

tic representation mainly due to Schoenberg [138, 19, 78], as stated in the following

theorem.

Theorem 4.2.1. u ∼ ECd(µ,C, g) if and only if

u d
= µ+RLS (4.11)

where S ∼ Unif(Sd+1) uniformly distributed on the unit-sphere Sd+1, L is the Cholesky

factor of C such that C = LLT, R ⊥ S and R2 d
= r(u) ∼ f(r) = π

d
2

Γ( d
2
)
kdr

d
2
−1g(r).

The Gomez’s EP distribution EPd(µ,C, q) is a special elliptic distribution

ECd(µ,C, g) with g(r) = exp{−1
2
r

q
2} and Rq ∼ Γ(α = d

q
, β = 1

2
) [57]. Not all

elliptical distributions can be used to create a valid process [7].

In the following, I will carefully choose the density generator g in ECd(µ,C, g) to

define a consistent multivariate q-exponential distribution generalizable to a process

appropriately.

4.2.2 The Q-Exponential Process

To generalize ECd(µ,C, g) to a valid stochastic process, I need to choose proper g

such that the resulting distribution satisfies two conditions of Kolmogorov extension

theorem [118]:
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Figure 32. Inconsistent (Gomez’s) EP distribution EPd(µ,C, q) (left) vs. consistent
Q-exponential distribution q−EDd(µ,C) (right). Both can be sampled using (4.11)
with Rq ∼ Γ(α = d

q
, β = 1

2
) and Rq ∼ Γ

(
α = d

2
, β = 1

2

)
respectively. Note there is

significant discrepancy between the marginalization of EP3(µ,C, q) and EP2(µ,C, q).
However, the marginalization of q−ED3(µ,C) coincides with q−ED2(µ,C). Empirical
densities are estimated based on 10000 samples (shown as dots).

Theorem 4.2.2 (Kolmogorov’s Extension). For all t1, · · · , tk ∈ T , k ∈ N let νt1,··· ,tk

be probability measures on Rnk satisfying

(K1) : νtσ(1),··· ,tσ(k)
(F1 × · · · × Fk)

= νt1,··· ,tk(Fσ−1(1) × · · · × Fσ−1(k)) for all permutations σ ∈ S(k)

(K2) : νt1,··· ,tk(F1 × · · · × Fk)

= νt1,··· ,tk,tk+1,··· ,tk+m
(F1 × · · · × Fk × Rk × · · · × Rn) for all m ∈ N

(4.12)

Then there exists a probability space (Ω,F , P ) and a stochastic process {Xt} on Ω,

Xt : Ω→ Rn such that

νt1,··· ,tk(F1 × · · · × Fk) = P [Xt1 ∈ F1, · · · , Xtk ∈ Fk] (4.13)

for all ti ∈ T , k ∈ N and all Borel sets Fi ∈ F . (K1) and (K2) are referred to as

exchangeability and consistency conditions respectively.
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As pointed out by Kano [81], the elliptic distribution ECd(µ,C, g) in the format of

Gomez’s EP distribution (4.9) with g(r) = exp{−1
2
r

q
2} does not satisfy the consistency

condition [also c.f. Proposition 5.1 of 57]. Figure 32 (left panel) also illustrates

such inconsistency numerically. However, Kano’s consistency theorem [81] suggests

a different viable choice of g to make a valid generalization of ECd(µ,C, g) to a

stochastic process [7]:

Theorem 4.2.3 (Kano’s Consistency). An elliptic distribution is consistent if and

only if its density generator function, g(·), has the following form

g(r) =

∫ ∞

0

( s

2π

) d
2
exp

{
−rs

2

}
p(s)ds (4.14)

where p(s) is a strictly positive mixing distribution independent of d and p(s = 0) = 0.

4.2.2.1 Consistent Multivariate Q-exponential Distribution

In the above theorem 4.2.3, if choosing p(s) = δ
r
q
2−1(s), then g(r) =

r(
q
2
−1) d

2 exp
{
− r

q
2

2

}
, which leads to the following consistent multivariate q-exponential

distribution q−EDd(µ,C).

Definition 4. A multivariate q-exponential distribution, denoted as q−EDd(µ,C),

has the following density

p(u|µ,C, q) = q

2
(2π)−

d
2 |C|−

1
2 r(

q
2
−1) d

2 exp

{
−r

q
2

2

}
, r(u) = (u− µ)TC−1(u− µ)

(4.15)

Remark 5. When q = 2, q−EDd(µ,C) reduces to MVN Nd(µ,C). When d = 1, if we

let C = 1, then we have the density for u as p(u) ∝ |u| q2−1 exp
{
−1

2
|u|q
}
, differing from

the original un-normalized density πq in (4.7) by a term |u| q2−1. This is needed for the
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consistency of process generalization. Numerically, it has a similar “edge-preserving

property” as the Besov prior.

Regardless of the normalizing constant, the proposed multivariate q-exponential

distribution q−EDd(µ,C) differs from the Gomez’s EP distribution EPd(µ,C, q) by

a boxed term r(
q
2
−1) d

2 . As stated in the following theorem, q−EDd satisfies the two

conditions of the Kolmogorov extension theorem and thus is ready to generalize to a

stochastic process (See the right panel of Figure 32 for the consistency).

Theorem 4.2.4. The multivariate q-exponential distribution is both exchangeable

and consistent.

Proof. See Appendix A.3.1.

Like student-t distribution [139] and other elliptic distributions [7], it can be

demonstrated (refer to Appendix A.3.2) that the representation of q−EDd is a scale

mixture of Gaussian distributions [81, 5].

Numerically, thanks to the choice of density generator g(r) = r(
q
2
−1) d

2 exp
{
− r

q
2

2

}
,

one can show that Rq ∼ χ2
d (as in Appendix A.3.3) thus R in Theorem 4.2.1 can be

sampled as q-root of a χ2 random variable, which completes the recipe for generating

random vector u ∼ q−EDd(0,C) based on the stochastic representation (4.11). This

is important for the Bayesian inference as detailed in Section 4.4. Note the matrix

C in the definition (4.15) characterizes the covariance between the components, as

shown in the following proposition.

Proposition 4.2.1. If u ∼ q−EDd(µ,C), then we have

E[u] = µ, Cov(u) =
2

2
qΓ(d

2
+ 2

q
)

dΓ(d
2
)

C ·∼ d
2
q
−1C, as d→∞ (4.16)

Proof. See Appendix A.3.4.
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4.2.2.2 Q-exponential Process as Probabilistic Definition of Besov Process

To generalize u ∼ q−EDd(0,C) to a stochastic process, I want to scale it to

u∗ = d
1
2
− 1

q u so that its covariance is asymptotically finite. If u ∼ q−EDd(0,C),

then denote u∗ ∼ q−ED∗
d(0,C) following a scaled q-exponential distribution. At this

juncture, the task at hand is to establish the q-exponential process (Q-EP) with the

scaled q-exponential distribution.

Definition 5 (Q-EP). A (centered) q-exponential process u(x) with kernel C,

q−EP(0, C), is a collection of random variables such that any finite set, u =

(u(x1), · · ·u(xd)), follows a scaled multivariate q-exponential distribution, i.e. u ∼

q−ED∗
d(0,C).

Both Besov and Q-EP are valid stochastic processes stemming from the q-

exponential distribution πq. They are both designed to generalize GP to have sharper

regularization (through q), but Q-EP has advantages in 1) the capability of specifying

correlation structure directly and 2) the tractable prediction formula.

It follows from (4.1) immediately that the covariance of the Besov process u(·) at

two points x, x′ ∈ Rd⋆ :

Cov(u(x), u(x′)) =
∞∑
ℓ=1

γ2ℓϕℓ(x)⊗ ϕℓ(x
′) (4.17)

Compared with (4.16), we have less control over the correlation strength once the

orthonormal basis {ϕℓ} is chosen. On the other hand, Q-EP has more freedom on the

correlation structure through (4.16) with flexible choices from a large class of kernels,

such as powered exponential and Matérn, that allow us to specify the correlation

length directly.
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While Q-EP can be viewed as a probabilistic definition of Besov, the following the-

orem further establishes their connection in sharing equivalent series representations.

Theorem 4.2.5 (Karhunen-Loéve). If u(x) ∼ q−EP(0, C) with C having eigen-pairs

{λℓ, ϕℓ(x)}∞ℓ=1 such that Cϕℓ(x) = ϕℓ(x)λℓ, ∥ϕℓ∥2 = 1 for all ℓ ∈ N and
∑∞

ℓ=1 λℓ <∞,

then we have the following series representation for u(x):

u(x) =
∞∑
ℓ=1

uℓϕℓ(x), uℓ :=

∫
D

u(x)ϕℓ(x)
ind∼ q−ED∗(0, λℓ) (4.18)

where E[uℓ] = 0 and Cov(uℓ, uℓ′) = λℓδℓℓ′ with Dirac function δℓℓ′ = 1 if ℓ = ℓ′ and 0

otherwise.

Proof. See Appendix A.3.5.

Remark 6. If we factor
√
λℓ out of uℓ, we have the following expansion for Q-EP

more comparable to (4.1) for Besov:

u(x) =
∞∑
ℓ=1

√
λℓuℓϕℓ(x), uℓ

iid∼ q−ED(0, 1) ∝ πq(·) (4.19)

4.3 Spatiotemporal Besov Process

While BP outperforms GP in producing high-quality image reconstructions or

solutions to general inverse problems that preserve spatial features(see subsection 4.5.1),

it does not account for the temporal correlations existing in a series of dynamically

changing images. Thus I generalize BP to the spatiotemporal domain by taking

advantage of Q-EP in capturing temporal changes. More specifically, I replace the

random coefficients (following univariate q-exponential distribution) in the series

representation of BP with stochastic time functions following Q-EP.

Generalize the Banach space Xs,q to include the temporal domain T ⊂ R+. Let the

coefficients in (4.1) be Lp(T ) functions over some finite temporal domain T . Denote
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Z = X ×T . Then a spatiotemporal function u(x, t) on Z is obtained by the following

series expansion with an infinite sequence of Lp(T ) functions:

u(x, t) =
∞∑
ℓ=1

uℓ(t)ϕℓ(x), uℓ(·) ∈ Lp(T ), ∀ℓ ∈ N (4.20)

Denote uT := {uℓ(·)}∞ℓ=1. Define the following (r, q, p) norm for such sequence uT with

spatial (Besov) index q and temporal (Q-EP) index p:

∥u∥r,q,p =

(
∞∑
ℓ=1

ℓrq∥uℓ(·)∥qp

) 1
q

(4.21)

where we can choose r = r0 :=
s
d
+ 1

2
− 1

q
. Denote the space of such infinite sequences

ℓr,q(Lp(T )) := {uT = {uℓ(·)}∞ℓ=1|∥u∥r,q,p <∞}. For a fixed orthonormal spatial basis

{ϕℓ(x)}∞ℓ=1, the Banach space of spatiotemporal functions can be defined based on

the series representation (4.20), i.e., Xr,q,p := {u(x, t) =
∑∞

ℓ=1 uℓ(t)ϕℓ(x) : X × T →

R|uT ∈ ℓr,q(Lp(T ))}, with (r, q, p) norm as specified in (4.21) for the associated

sequence uT .

Next I generalize Besov process u(x) ∼ B(κ,Xs,q) as in (4.4) to be spatiotemporal

by letting random coefficients {ξℓ} vary in time according to a q−EP process. In

(4.20) set

uℓ(t) = γℓξℓ(t), γℓ = κ−
1
q ℓ−r0 , ξℓ(·)

iid∼ q−EP(0, C) (4.22)

Denote the resulting stochastic process as spatiotemporal Besov process

ST BP(κ, C,Xr,q,p). Similarly as above, the infinite random sequence ξT := {ξℓ(·)}∞ℓ=1

is a random element of the probability space (Ω,B(Ω),P) with Ω = ℓr,q(Lp(T )),

product σ-algebra B(Ω) and probability measure P defined by extending the finite

product of q−EP(0, C) to infinite product by the Kolmogorov extension theorem [c.f.

Theorem 29 in section A.2.1 of 38]. Then ST BP also defines a spatiotemporal Besov

measure on Xr,q,p as follows.
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Definition 6 (Spatiotemporal Besov Measure). Let P be the measure of random

sequences ξT . Suppose we have the following map

f : Ω→ Xr,q,p

ξT 7→ u(x, t) =
∞∑
ℓ=1

uℓ(t)ϕℓ(x) =
∞∑
ℓ=1

γℓξℓ(t)ϕℓ(x), where ξℓ(·)
iid∼ q−EP(0, C)

(4.23)

Then the pushforward f ♯P is spatiotemporal Besov measure Π on Xr,q,p.

For a given random draw u ∼ ST BP(κ, C,Xr,q,p), its norm can be computed as

∥u∥r,q,p =

(
∞∑
ℓ=1

ℓrq∥uℓ∥qp

) 1
q

= κ−
1
q

(
∞∑
ℓ=1

ℓ(r−r0)q∥ξℓ∥qp

) 1
q

(4.24)

4.3.1 STBP as A Prior

The following theorem states the conditions such that a random function u ∼

ST BP(κ, C,Xr,q,p) in (4.23) is well-defined in the context of almost sure convergence.

Theorem 4.3.1. Let u ∼ ST BP(κ, C,Xr0,q,p) be a random draw as in (4.23). We

have the following equivalent:

(i) u ∈ Xr,q,p P-a.s.

(ii) E[exp(α∥u∥qr,q,p)] <∞ for any α ∈ (0, κ/2).

(iii) r < r0 − 1
q
.

Similarly as in [93], one can prove that an STBP u(x, t) defined in (4.23) can be

represented completely in a series of spatial ({ϕℓ}∞ℓ=1) and temporal {ψℓ′}∞ℓ′=1 bases.

Theorem 4.3.2. If u ∼ ST BP(κ, C,Xr0,q,p) with C having eigen-pairs {λℓ, ψℓ(t)}∞ℓ=1

such that Cψℓ(t) = ψℓ(t)λℓ, ∥ψℓ∥2 = 1 for all ℓ ∈ N and
∑∞

ℓ=1 λℓ <∞, then we have
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the following series representation for u(x, t):

u(x, t) =
∞∑
ℓ=1

∞∑
ℓ′=1

uℓℓ′ϕℓ(x)ψℓ′(t), uℓℓ′ :=

∫
T
uℓ(t)ψℓ′(t)dt

ind∼ q−ED∗(0, γ2ℓλℓ′) (4.25)

Let {ϕℓ}∞ℓ=1 be an r-regular wavelet basis of the Besov space Bs
qq. Then there exists

the following Fernique-type theorem regarding the regularity of a random function

from STBP.

Theorem 4.3.3. Let u be a random function defined as in (4.23) with q ≥ 1 and

r0 >
1
q
. Then for any r < r0 − 1

q
,

E[exp(α∥u∥Ct(Z))] <∞ (4.26)

for all α ∈ (0, κ/(2r∗)), with r∗ a constant depend on q, d, s and t := d
(
r + 1

q
− 1

2

)
.

Based on the construction (4.23), one can show that the spatiotemporal covariance

of STBP bears a separable structure, i.e.,
∑∞

ℓ=1 γ
2
ℓϕℓ(·)ϕℓ(·) ⊗ C, as stated in the

following proposition.

Proposition 4.3.1. If u ∼ ST BP(κ, C,Xr0,q,p), then we have

Cov(u(x, t), u(x′, t′)) =
∞∑
ℓ=1

γ2ℓϕℓ(x)ϕℓ(x′)C(t, t′) (4.27)

Proof. See Appendix A.4.

The resulted spatiotemporla Besov process (STBP) can be flexible in modeling

functional data with spatial features while explicitly controlling the temporal corre-

lations through a covariance kernel. To the best of my knowledge, this is by far the

first spatiotemporal generalization of BP. The proposed work on STBP has multiple

contributions to the literature:

1. It generalizes BP to the spatiotemporal domain to capture spatial features and

model the temporal correlations.
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2. It provides a theoretical characterization of the posterior contraction in the data

limit, justifying its validity as a nonparametric learning tool.

3. It demonstrates utility in CT reconstruction and indicates the potential impact

on medical imaging analysis.

4.4 Bayesian Inference

In this section, I describe the inference of the Bayesian inverse problem with

spatiotemporal data using a spatiotemporal Besov prior. Assume the unknown

function u is evaluated at I locations X := {xi}Ii=1 and J time points t := {tj}Jj=1,

which is u(X, t) := {u(xi, tj)}I,Ji,j=1. In the dynamic tomography imaging problems,

u(xi, tj) refers to the image pixel value of point xi at time tj with resolution I = nx×ny.

The data Y = {yj}Jj=1 with yj ∈ Rm is observed through the forward operator G,

which could be a linear (Radon) transform or governed by a PDE. In this work, I

consider Gaussian noise and recap the model as follows.

yj = G(u)(X, tj) + εj, εj
iid∼ NI(0,Γnoise), j = 1, 2, . . . , J,

u ∼ ST BP(κ, C,Xr,q,p)

(4.28)

In applications of inverse problems, the spatial dimension I is usually tremendously

higher than the temporal dimension (I ≫ J). Therefore I truncate u in (4.23)

for the first L > 0 terms: u(x, t) ≈ uL(x, t) =
∑L

ℓ=1 γℓξℓ(t)ϕℓ(x), Denote uj =

u(X, tj) ∈ RI , and U = [u1, · · · ,uJ ]I×J = uL(X, t) = Φ diag(γ)ΞT where Φ =

[ϕ1(X), · · · , ϕL(X)]I×L, γ = (γ1, · · · , γL), and Ξ = [ξ1(t), · · · , ξL(t)]J×L. Instead

of the large dimensional matrix U, I can work with Ξ of much smaller size. Let
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rℓ = ξℓ(t)
TC−1

J ξℓ(t). Then (log) posterior for Ξ can be computed directly as

log p(Ξ, θ|Y) =− J

2
log |Γnoise| −

1

2

J∑
j=1

∥yj − G(uj)∥2Γnoise

− L

2
log |CJ |+

J

2
(
q

2
− 1)

L∑
ℓ=1

log rℓ −
1

2

L∑
ℓ=1

r
q
2
ℓ

(4.29)

To obtain the MAP estimate, one needs to optimize log p(Ξ, θ|Y). In order to

accurately measure uncertainty, I require sampling techniques that are independent of

dimensions for models that are non-Gaussian. Refer to the work of dimension-robust

MCMC by [26] based on the pushforward of Gaussian white noise, I would introduce

a particular white noise representation for STBP different from the one by [26] in the

following.

4.4.1 White Noise Representation

Recall from theorem 4.2.1 we have the stochastic representation which states

ξ ∼ q−EDJ(0,C): ξ = RLS with Rq ∼ χ2(J) and S ∼ Unif(SJ+1). Write

S =
z
∥z∥2

, Rq = ∥z∥22, for z ∼ NJ(0, IJ) (4.30)

Therefore, ξ can be represented in terms of white noise z by a mapping Λ:

ξ = Λ(z) = Lz∥z∥
2
q
−1 (4.31)

and its inverse can be solved as follows

z = Λ−1(ξ) = L−1ξ∥L−1ξ∥
q
2
−1 (4.32)

Therefore, I propose the following representation of u(x, t) in terms of infinite sequence

of white noises, i.e. z := {zℓ(·)}∞ℓ=1:

u(x, t) = T (z) =
∞∑
ℓ=1

γℓΛ(zℓ(t))ϕℓ(x), zℓ(·)
iid∼ GP(0, I) (4.33)
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Denote Z = [z1(t), · · · , zL(t)]J×L. Currently, the solution for ZMAP = T−1(UMAP)

needs to be determined. Let’s identify the appropriate approach to achieve this

objective. From (4.33), U = T (Z) = Φ diag(γ)Λ(Z)T. When L ≤ I, solve Λ(Z) =

UTΦ diag(γ−1) which can be further solved column by column with (4.32):

ZMAP = T−1(UMAP) = [Λ−1(UT
MAPϕ1γ

−1
1 ), · · · ,Λ−1(UT

MAPϕLγ
−1
L )] (4.34)

where ϕℓ = ϕℓ(X).

4.4.2 White Noise MCMC

Denote the measure formed by the infinite product of GP(0, I) as ν. Then the

STBP prior measure Π can be regained by the pushforward using T , i.e. Π = T ♯ν. A

class of dimension-independent MCMC algorithms for Gaussian prior based models

including preconditioned Crank-Nicolson (pCN) [31], infinite-dimensional Metropolis

adjusted Langevin algorithm (∞-MALA) [13], infinite-dimensional Hamiltonian Monte

Carlo (∞-HMC) [10], and infinite-dimensional manifold MALA (∞-mMALA) [11]

and HMC (∞-mHMC) [12] can be reintroduced to posterior sampling with STBP

prior.

Let u = T (z) with z ∼ ν. Recall we have continuous-time Hamiltonian dynamics

from (2.5). More generally, set K(z)−1 = I + βH(z) where H(z) can be chosen as

Hessian, Gauss-Newton Hessian, or Fisher information operator [90]. For example,

choose the Gauss-Newton Hessian computed as H(z) = dT ∗H(u)dT with dT being

the Jacobian. Let g(z) := −K(z){α∇Φ(z)− βH(z)z} where ∇zΦ(z) = dT ∗∇uΦ(u)−

∇z log |dT (z)|. Equation (2.6) gives rise to the leapfrog map Ψε : (z0, ζ0) 7→ (zε, ζε).

Given a time horizon τ and current position z, the MCMC mechanism proceeds by
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concatenating I = ⌊τ/ε⌋ steps of leapfrog map consecutively,

z′ = Pz

{
ΨI

ε(z, ζ)
}
, ζ ∼ N (0,K(z)) .

where Pz denotes the projection onto the z-argument. Then, the proposal z′ is

accepted with probability a(z, z′) = 1 ∧ exp(−∆E(z, ζ)), where

∆E(z, ζ) =E(ΨI
ε(z, ζ))− E(z, ζ)

=Φ(zI)− Φ(z0) +
β

2
⟨ζI ,H(zI)ζI⟩ −

β

2
⟨ζ0,H(z0)ζ0⟩

− log |K− 1
2 (zI)|+ log |K− 1

2 (z0)| −
ε2

8

{
∥g(zI)∥2 − ∥g(z0)∥2

}
− ε

2

I−1∑
i=0

(⟨g(ui), ζi⟩+ ⟨g(ui+1), ζi+1⟩)

(4.35)

At last, I convert the sample z back to u = T (z). This yields ∞-mHMC [12] which

reduces to ∞-HMC [10] when β = 0. Different step-sizes could be used in (2.6):

ε1 for the first and third equations, and ε2 for the second equation and let I = 1,

ε21 = h, cos ε2 =
1−h/4
1+h/4

, sin ε2 =
√
h

1+h/4
. Then, ∞-HMC reduces to ∞-MALA, which can

also be derived from Langevin dynamics [13, 12]. When α = 0, ∞-MALA further

reduces to pCN [12]. Summarize all the above methods in Algorithm 2 and name

them as white-noise dimension-independent MCMC (wn-∞-MCMC).

4.5 Numerical Experiments

This section intends to showcase the advantages of the suggested Q-EP(Subsection

4.5.1) and STBP(Subsection 4.5.2) algorithms through their implementation in various

problem-solving scenarios.
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Algorithm 2 White-noise dimension-independent MCMC (wn-∞-MCMC)

1: Initialize current state u(0) and transform it into the whitened space z(0) = T−1(u(0))

2: Sample velocity ζ(0) ∼ N (0, I)
3: Calculate current energy E0 = Φ(z(0))− ε2

8
∥g(z(0))∥2 + 1

2
log |K(z(0))|

4: for i = 0 to I − 1 do
5: Run Ψε : (z

(i), ζ(i)) 7→ (z(i+1), ζ(i+1)) according to (2.6).
6: Update the energy E0 ← E0 +

ε
2
(⟨g(u(i)), ζ(i)⟩+ ⟨g(u(i+1)), ζ(i+1)⟩)

7: end for
8: Calculate new energy E1 = Φ(z(I))− ε2

8
∥g(z(I))∥2 + 1

2
log |K(z(I))|

9: Calculate acceptance probability a = exp(−E1 + E0)
10: Accept z(I) with probability a for the next state z′ or set z′ = z(0).
11: Record the next state u′ = T (z′) in the original space.

4.5.1 Experiments with Q-EP

In this subsection, I compare GP, Besov and Q-EP by modeling time series

(temporal) and reconstructing images (spatial) from computed tomography. These

numerical experiments demonstrate that the proposed Q-EP enables faster convergence

in obtaining a better MAP estimate. Moreover, white-noise MCMC-based inference

provides appropriate uncertainty quantification (UQ) (by the posterior standard

deviation). All the computer codes will be publicly available at https://github.com/

lanzithinking/Q-EXP.
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(a) Time series with sharp turnings(model fitting). (b) Time series with turnings(prediction).

(c) 2022 Tesla stock prices(model fitting). (d) 2022 Tesla stock prices(prediction).

Figure 33. (a)(c) MAP estimates by GP (left), Besov (middle) and Q-EP (right)
models. (b)(d) Predictions by GP (left) and Q-EP (right) models. Orange dots
are actual realizations (data points). Blue solid lines are true trajectories. Black
ticks indicate the training data points. Red dashed lines are MAP estimates. Red
dot-dashed lines are predictions with shaded region being credible bands.

4.5.1.1 Time Series Modeling

I first consider two simulated time series, one with step jumps and the other with

sharp turnings, whose true trajectories are as follows:

uJ(t) = 1, t ∈ [0, 1]; 0.5, t ∈ (1, 1.5]; 2, t ∈ (1.5, 2]; 0, otherwise

uT(t) = 1.5t, t ∈ [0, 1]; 3.5− 2t, t ∈ (1, 1.5]; 3t− 4, t ∈ (1.5, 2]; 0, otherwise

Generate the time series {yi} by adding Gaussian noises to the true trajectories

evaluated at N = 200 evenly spaced points {ti} in [0, 2], that is, y∗i = u∗(ti)+ εi, εi
ind∼

N(0, σ2
∗(ti)), i = 1, · · · , N, ∗ = J,T. Let σJ/∥uJ∥ = 0.015 for ti ∈ [0, 2] and

σT/∥uT∥ = 0.01 if ti ∈ [0, 1]; 0.07 if ti ∈ (1, 2]. In addition, I also consider two real

data sets of Tesla and Google stock prices in 2022. See Figures 33 (and Figures B.11)

for the true trajectories (blue lines) and realizations (orange dots) respectively.

Use the above likelihood and test three priors: GP, Besov and Q-EP. For Besov,
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choose the Fourier basis ϕ0(t) =
√
2, ϕℓ(t) = cos(πℓt), ℓ ∈ N. For both GP and

Q-EP, adopt the Matérn kernel with ν = 1
2
, σ2 = 1, ρ = 0.5 and s = 1: C(t, t′) =

σ2 21−ν

Γ(ν)
wνKν(w), w =

√
2ν(∥t− t′∥/ρ)s. In both Besov and Q-EP, set q = 1. Figures

33a and 33c (and Figures B.11a and B.11c) compare the MAP estimates (red dashed

lines). It’s clear that Q-EP yields the best estimates closest to the true trajectories in

the simulation and the best fit to the Tesla/Google stock prices. I also investigate

the negative posterior densities and relative errors, ∥û∗ − u∗∥/∥u∗∥, as functions of

iterations in Figure B.10. Though incomparable in the absolute values, the negative

posterior densities indicate faster convergence in both GP and Q-EP models than in

Besov model. The error reducing plots on the right panels of subplots in Figure B.10

indicate that the Q-EP prior model can achieve the smallest errors. Table 7 compares

them in terms of root mean of squared error (RMSE) and log-likelihood (LL).

Table 7. Time series modeling: root mean of squared errors (RMSE) and log-likelihood
(LL) values at MAP estimates by GP, Besov and Q-EP prior models.

RMSE log-likelihood (LL)

Data Sets GP Besov Q-EP GP Besov Q-EP

simulation(jumps) 1.2702 2.1603 1.1083 -31.4582 -89.8549 -74.0590
simulation(turnings) 1.4270 2.4556 0.9987 -39.8234 -56.7874 -87.3124

Tesla stocks 180.3769 136.8769 51.2236 -488.6458 -281.3796 -39.4070
Google stocks 44.4236 39.4809 36.8686 -386.1546 -305.0058 -265.9790

Next, let’s examine the prediction problem. In the simulations, the last 1/8 portion

and every other of the last but 3/8 part of the data points are selected for testing.

The models with GP and Q-EP priors are trained on the rest of the data, as indicated

by short “ticks” in Figures 33b and 33d (and Figures B.11b and B.11d). For the

Tesla/google stocks, select every other day in the first half year, every 4 days in the

3rd quarter and every 8 days in the last quarter for training and test on the rest.
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Figure 34. Shepp-Logan phantom: true image, observation (sinogram), and MAP
estimates by GP, Besov and Q-EP models with relative errors 68.10%, 70.27% and
40.87% respectively.

They pose challenges on both interpolation (among observations) and extrapolation

(at no-observation region) tasks. As we can see in those figures, uncertainty grows as

the data becomes scarce. Nevertheless, the Q-EP yields smaller errors than GP. Note

such prediction is not immediately available for models with Besov prior.

4.5.1.2 Computed Tomography Imaging

CT is a medical imaging technique used to obtain detailed internal images of the

human body. CT scanners use a rotating X-ray tube and a row of detectors to measure

X-ray attenuations by different tissues inside the body from different angles. Denote

the true imaging as a function u(x) on the square unit D = [0, 1]2 taking values as the

pixels. The observed data, y, (a.k.a. sinogram) are results of Radon transformation

(A) of the discretized n× n field u with nθ angles and ns sensors, contaminated by

noise ε [8]:

y = Au + ε, ε ∼ N (0, σ2
εI), y ∈ Rnθns , A ∈ Rn2×nθns , u ∈ Rn2

In general, nθns ≪ d = n2, so the linear inverse problem is under-determined. The

Bayesian approach could fill useful prior information (e.g., edges) in the sparse data.

Consider the Shepp–Logan phantom, a standard test image created by Shepp and
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Logan in [142] to model a human head and to test image reconstruction algorithms.

In this simulation, I create the true image u† for a resolution of n2 = 128× 128 and

project it at nθ = 90 angles with ns = 100 equally spaced sensors. The generated

sinogram is then added by noise with signal noise ratio SNR = ∥Au†∥/∥ε∥ = 100.

The first two panels of Figure 34 show the truth and the observation.

Table 8. Posterior estimates of Shepp–Logan phantom by GP, Besov and Q-EP prior
models: relative error, RLE := ∥û− u†∥/∥u†∥, of MAP (û = u∗) and posterior mean
(û = u) respectively, log-likelihood (LL), PSNR, SSIM and HarrPSI. Numbers in the
bracket are standard deviations obtained by repeating the experiments 10 times with
different random seeds.

MAP Posterior Mean

GP Besov Q-EP GP Besov Q-EP

RLE 0.6810 0.7027 0.4087 0.4917(6.16e-7) 0.4894(3.53e-5) 0.4890(4.79e-5)
LL -1.55e+6 -1.54e+6 -1.57e+5 -5.21e+5(8.47) -4.80e+5(196.34) -4.56e+5(307.97)
PSNR 15.5531 15.2806 19.9887 18.3826(1.09e-5) 18.4226(6.27e-4) 18.4303(8.51e-4)
SSIM 0.4028 0.3703 0.5967 0.5561(3.92e-7) 0.5535(2.38e-4) 0.5403(5.26e-4)
HaarPSI 0.0961 0.0870 0.3105 0.3126(1.52e-8) 0.3126(3.36e-4) 0.3122(3.06e-4)

Note the computation involving a full-sized (d× d) kernel matrix C for GP and Q-

EP is prohibitive. Therefore, I consider Mercer’s expansion (4.17) for a truncation with

the first L = 2000 items. Figure 34 shows that while GP and Besov models reconstruct

very blurry phantom images, the Q-EP prior model produces the highest quality

MAP estimate. For each of the three models, I also apply wn-pCN to generate 10000

posterior samples (after discarding 5000) and use them to reconstruct u (posterior

mean or median) and quantify uncertainty (posterior standard deviation).

Table 8 summarizes the errors relative to MAP (u∗) and posterior mean (u) respec-

tively, ∥û− u†∥/∥u†∥ (with û being u∗ or u), log-likelihood (LL), and several quality

metrics in imaging analysis, including the peak signal-to-noise ratio (PSNR) [52],

the structured similarity index (SSIM) [157], and the Haar wavelet-based perceptual
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Figure 35. CT of human head (upper) and torso (lower): true image, observation
(sinogram), and MAP estimates by GP, Besov and Q-EP models with relative errors
29.99%, 22.41% and 22.24% (for head) and 26.11%, 21.77% and 21.53% (for torso)
respectively.

similarity index (HaarPSI) [130]. Q-EP attains the lowest error and highest quality

scores in most cases. In Figure B.12, I compare the uncertainty of these models. It

seems that GP has uncertainty field with a more recognizable shape than the other

two. However, the posterior standard deviation by GP is much smaller (about 1% of

that with Q-EP) compared with the other two. Therefore, this raises a red flag that

GP could be over-confident about a less accurate estimate.

Finally, I apply these methods to CT scans of a human cadaver and torso from

the Visible Human Project [3]. These images contain n2 = 512 × 512 pixels, and

the sinograms are obtained with nθ = 200 angles and ns = 512 sensors. The first

two panels of each row in Figure 35 show a highly calibrated CT reconstruction

(treated as “truth”) and the observed sinogram. The rest three panels illustrate that

both Besov and Q-EP models outperform GP in reconstructions, as verified in the

quantitative summaries in Table B.2. Figure B.13 indicates that GP underestimates

the uncertainty.
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4.5.2 Spatiotemporal Experiments with STBP

In this subsection, I compare the proposed STBP with STGP and a time-

uncorrelated approach (for which we set C = I in STBP) using two dynamic to-

mography imaging examples and one inverse problem of recovering a spatiotemporal

function. The numerical results demonstrate the advantage of Besov-type priors over

Gaussian-type priors in reconstructing images with edges. Moreover, these examples

highlight the importance of temporal correlations in dynamic imaging analysis and

spatiotemporal inverse problems.

To assess the quality of image reconstruction (view the inverse solutions defined

on 2d space as images), I refer to several quantitative measures such as the relative

error (RLE), RLE = ∥u∗−u†∥2
∥u†∥2 , where u† denotes the reference/true image and u∗

its reconstruction. Additionally, I adopt the peak signal-to-noise ratio (PSNR),

PSNR = 10 ∗ log10(
∥u†∥2∞

∥u∗−u†∥22
), by using the maximum possible pixel value(MAX2

I) as a

reference point to normalise the MSE. Another option to consider is the structured

similarity index (SSIM) [157], SSIM(u∗, u†) = (2u∗u†+c1)(2su∗u†+c2)

(u∗2+u†2+c1)(s2u∗+s2
u†

+c2)
, where u, s2u and

su1u2 denote the sample mean, sample variance, and sample covariance respectively,

ci = (kiL)
2 for i = 1, 2, k1 = 0.01, k2 = 0.03 and L is the dynamic range of

the pixel values of the reference images. Lastly, I report the Haar wavelet-based

perceptual similarity index (HaarPSI) proposed in [130]. It is an innovative and

computationally affordable image quality assessment method that uses Haar wavelet-

based decomposition to measure local similarities and the relative importance of image

areas. The validation on four extensive benchmark databases confirms its alignment

with human perception, ensuring greater consistency.

101



j = 0 j = 6 j = 13 j = 19

Figure 36. Test 1: STEMPO test problem. True images (first row) and sinograms
(second row) from left to right at time instances j = 0, 6, 13, 19, respectively.

4.5.2.1 STEMPO Tomography Reconstruction

I investigate STBP, STGP and time-uncorrelated prior models on a simulated

dynamic tomography reconstruction problem in this example. In particular, consider

the Spatio-TEmporal Motor-POwered (STEMPO) ground truth phantom from [65],

stempo_ground_truth_2d_b4.mat that contains 360 images. From the dataset, ob-

tain J = 20 images of size 560× 560 chosen uniformly from 1 to 360 with a factor of

8, i.e., I choose the 1st, the 8th, the 16th up to the 360th image that represents the

truth at 20 time instances. Using the ASTRA toolbox [151] I generate the forward

operators Gj , j = 1, 2, . . . , J by considering J vectors of length 11 containing projection

angles. Each angles vector is generated by choosing 11 equispaced degree angles from

(5 ∗ (j − 1), 5 ∗ (j − 1) + 140), for j = 1, 2, . . . , J that are then converted to radian.
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j = 0 j = 6 j = 13 j = 19

Figure 37. Reconstruction results of dynamic STEMPO test problem in the whitened
space. Row from top to bottom: MAP for STBP (q = 1, p = 1), STGP (q = 2, p = 2)
and time-uncorrelated model. Left to right: time step j = 0, 6, 13, 19.

Throughout the thesis, I denote the number of angles used to generate the forward

problem with na. For this example, set na = 20.

To generate the forward operators using ASTRA, we provide the additional

parameters listed below. Choose origin to detector distance (detector_origin) to

be 3 ∗ nx, the source to origin distance (source_origin) to be nx, and the detector

pixel size to be computed as (source_origin+detector_origin)
source_origin . Each forward operator Gj ∈

R8701×313600 and the large operator can be represented by a block-diagonal matrix

G = diag(G1, · · · Gj) ∈ R174020×6272000. Apply the forward operators Gj, to the j − th
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Figure 38. Dynamic STEMPO tomography: negative posterior densities and relative
errors for the optimization in the original space (left) and in the whitened space (right)
as functions of iterations in the BFGS algorithm used to obtain MAP estimates. Early
termination is implemented if the error falls below some threshold or the maximal
iteration (1000) is reached.

true images utrue(X, tj)), to obtain J sinograms yj ∈ R8701, with Yj ∈ R791×11, for

j = 1, 2, . . . , J . Assume that the noise vector follows a multivariate normal Gaussian

distribution with mean zero and covariance Γnoise, i.e., e ∼ N (0,Γnoise). I perturb

each measured vectorized sinogram ytrue
j with white Gaussian noise, i.e., the noise

vector εj has mean zero and a rescaled identity covariance matrix (i.e., Γnoise = I,

where I ∈ R313600×313600). Refer to the ratio σj = ∥εj∥2/∥Gj (utrue(X, tj))) ∥2 as the

noise level. The true images utrue(X, tj)) at time steps j = 0, 6, 13, 19 are shown in

the first rows of Figure 36. Observed noisy sinograms are shown in the second row of

Figure 36.

To obtain the MAP estimates, I minimize negative log-posterior densities for the

three models with STBP, STGP, and time-uncorrelated priors. Figure 37 compares

these MAP estimates obtained in the whitened space and mapped to the original

space. With STBP, it is evident that the first-row reconstruction is the most precisely

aligned with the truth. Nevertheless, the results of the other two models are either

blurry (by STGP on the second row) or noisy (by the time-uncorrelated model on the
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Table 9. MAP estimates of STEMPO by STBP, STGP and time-uncorrelated prior
models. Relative error of MAP (u∗), RLE, log-likelihood, PSNR, SSIM, and HaarPSi
measures. Standard deviations are obtained by repeating the experiments 10 times
with different random seeds.

time-uncorrelated STGP STBP

RLE 0.4354 (2.91e-5) 0.3512(1.42e-4) 0.3217 (2.72e-5)
log-likelihood -39190.72 (0.65) -39085.37 (5.49) -39697.93 (0.71)

PSNR 15.8250 18.7639 19.5753
SSIM 0.9916 0.9968 0.9977

HaarPSI 0.2751 0.4088 0.4983

last row). Table 9 confirms that the STBP model yields higher reconstruction quality

with the lowest relative error. Though their log-likelihood values are not comparable

in the regularized optimization, STBP achieves the lowest RLE = 32.17% on average

in 10 experiments repeated with different random seeds. Other reconstruction quality

measures such as PSNR, SSIM, and HaarPSI are shown in Table 9, rows 3-5. The

other measures also reflect higher reconstruction quality observed in RLE.

On the other hand, the MAP estimates generated by these three models in the

original space are illustrated in Figure B.14. They are more than 40% RLE’s and

are generally more blurry than those obtained in the whitened space. Such difference

can also be seen in Figure 38 where the objective functions and RLE’s are compared

between the whiten space optimization (left two panels) and the original space

optimization (right two panels) for these three models: optimization in the whitened

space outputs better results with lower errors and fewer iterations. STBP generally

converges faster to the lowest error state among the three models.

Lastly, I apply the white-noise manifold infinite-dimensional MALA (wn-

minfMALA) algorithm to sample the posterior samples for the two models with

STBP and STGP priors (the result for time-uncorrelated prior is far worse and hence
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j = 0 j = 6 j = 13 j = 19

Figure 39. MCMC results of dynamic STEMPO test problem in the whitened space.
Row from top to bottom: posterior mean for STBP (q = 1, p = 1), posterior standard
deviation for STBP (q = 1, p = 1), posterior mean for STGP (q = 2, p = 2), and
posterior standard deviation for STGP (q = 2, p = 2). Left to right: time step
t = 0, 6, 13, 19.
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omitted) and compare their posterior estimates in Figure 39. Generate 3000 samples

and discard the first 1000 samples. The remaining 2000 samples are used to estimate

the posterior means (the first and third rows) and posterior standard deviations (the

second and the last rows). Due to the large dimensionality (560× 560× 20) and the

limited number of samples, these posterior estimates tend to be noisy. The posterior

mean estimates are not good reconstructions as their MAP estimates. Yet the poste-

rior standard deviations by STBP (the second row) provide more clear uncertainty

information compared with those by the STGP model (the last row).

4.5.2.2 Emoji Tomography Reconstruction

In this example, test our methods on real data of an “emoji” phantom measured at

the University of Helsinki [112]. The forward operator and the data can be obtained

from the file DataDynamic_128x30.mat. The available data represents J = 33 time

steps of a series of the X-ray sinogram of emojis made of small ceramic stones obtained

by shining 217 projections from na = 10 angles.

The goal is to reconstruct a sequence of images u(X, tj), j = 0, 1, . . . , 32, of size

nx × ny, where nx = nx = 128, from low-dose observations measured from a limited

number of angles na. Hence, the unknown images are collected in u ∈ R540,672, with

u =
[
(u(X, t0)T , u(X, t1)T , . . . , u(X, t32)T

]T representing the dynamic sequence of the

emoji changing from an expressionless face with closed eyes and a straight mouth

to a face with smiling eyes and mouth, where the outmost circular shape does not

change. Refer to Figure 40 for a sample of 4 setup images (first row) and sinograms

(second row) at time steps j = 6, 14, 22, 30. The low-dose available observations can

be modeled by the measurement matrix G, which describes the forward model of the
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j = 6 j = 14 j = 22 j = 30

Figure 40. Test 2: Emoji test problem. Setup images (first row) and sinograms
(second row) from left to right at time instances j = 6, 14, 22, 30, respectively.

Radon transform that represents line integrals. In this case, I have a block-diagonal

matrix with 33 blocks. Although the ground truth is unavailable, I can qualitatively

compare the visual results.

Figure 41 compares the MAP estimates by STBP (the first row), STBP (the second

row), and the time-uncorrelated (the last row) prior models in the whitened space.

Again I observe a similar advantage in reconstructing a sequence of sharper tomography

images by STBP compared with those more blurry results by STGP. By ignoring the

temporal correlation, the time-uncorrelated prior model yields reconstruction images

that are difficult to recognize.

I also compare the UQ results generated by white-noise manifold MALA for STBP

and STGP two models in Figure B.16. Again the noisy posterior mean estimates are

observed for both models. However, the posterior standard deviation estimates by
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j = 6 j = 14 j = 22 j = 30

Figure 41. Reconstruction results for the emoji problem with na = 10 in the whitened
space. Row from top to bottom: MAP for STBP (q = 1, p = 1), MAP for STGP
(q = 2, p = 2), and MAP for time-uncorrelated model. Left to right: time step
t = 6, 14, 22, 30.

STBP are slightly more precise than STGP’s in characterizing the uncertainty field

representing the changing smiling faces.

4.6 Conclusion

To summarize, I propose a computational framework for Bayesian inverse problems

to construct spatiotemporal solutions. I generalize series-based Besov measure for

spatial functions to a nonparametric prior for spatiotemporal functions, hence named

spatiotemporal Besov process (STBP). I firstly propose the Q-EP as a prior on Lq
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functions. This approach allows for a customizable parameter q > 0, which provides

a higher degree of control over the regularization level. To capture the temporal

correlations of multiple images, the STBP can be created by using Q-EP to replace the

univariate q-exponential random variables in the series-defining Besov process. The

proposed STBP simultaneously models the inhomogeneity in space and correlation in

time in the spatiotemporal target of Bayesian inverse problems.

To address the challenges in high-dimensional posterior sampling with non-Gaussian

priors, I take advantage of the existing literature on dimension-independent MCMC

algorithms for Gaussian priors and propose a white-noise representation of the STBP.

The derived white-noise MCMC provides robust and efficient inference for Bayesian

models with Q-EP and STBP priors.

Extensive experiments have been investigated to show the advantage of Q-EP and

STBP. Regarding Q-EP, it possesses the ability to enforce more stringent regulation

through q in contrast to GP. Furthermore, Q-EP offers an explicit formula that affords

greater control over the correlation structure, similar to GP. The numerical experiments

in time series modeling and image reconstruction demonstrate the proposed Q-EP is

superior in Bayesian functional data modeling.

I show that spatiotemporal Besov priors with a properly chosen covariance kernel

outperform the priors with uncorrelated time and yield higher quality reconstructions

with edges well-preserved compared to the spatiotemporal Gaussian priors while

reducing the posterior uncertainty by conducting numerous numerical experiments

using computed tomography with both simulated and real data. Such promising

results from real computerized tomography and limited angle data suggest potential

applications in medical imaging analysis.
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Chapter 5

CONCLUSION AND FUTURE DIRECTIONS

In the contemporary age of abundant data availability, a thorough understanding,

accurate modeling, and reliable forecasting of data are essential for conducting com-

prehensive research. Among various aspects, UQ holds paramount importance as it

offers a systematic approach to assess decision-making, predictions, and simulations

from various perspectives. Within the realm of scientific studies and engineering

applications, the presence of spatiotemporal observations in inverse problems is a

common occurrence. However, the process of solving inverse problems linked to these

observations can be challenging due to the high dimensionality and nonlinearity of

the system. Therefore, two crucial aspects of my thesis involve accurately modeling

spatiotemporal data and obtaining UQ for inverse problems in high-dimensional space.

In Chapter 1.2, I begin by giving an overview of the inverse problem and then

discuss how to integrate Bayesian methods into it. After learning the architecture of

the Bayesian inverse problem, UQ is covered in Chapter 2. The calibration-emulation-

sampling (CES) scheme has been proven to be successful in large dimensional UQ

problems to solve the issue of traditional Bayesian inference methods based on Markov

Chain Monte Carlo (MCMC), which is computationally intensive and inefficient.

Therefore I proposed a new framework to scale up Bayesian UQ for physics-constrained

inverse problems based on CES. More specifically, I utilize deep neural networks in

the emulation and sampling step. CNN is adopted in emulation space to be capable of

learning spatial features. In addition, the resulting algorithm has low computational

complexity and is robust across different training sizes. Furthermore, I implement AE
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to reduce the dimension of the parameter space and speed up the sampling process.

Overall, the resulting DREAM algorithm helps to scale Bayesian UQ up to thousands

of dimensions. Currently, I use a regular grid mesh to aid in the training of CNN.

This involves converting a discretized function over a 2D mesh into a matrix of image

pixels. An effective method for addressing the limitations of irregular mesh, like

the triangular mesh commonly used for solving PDEs, is through the utilization of

mesh CNN [62]. This approach enables direct training of CNN on the irregular mesh,

thereby providing a comprehensive solution. An avenue for advancing the methodology

entails investigating the potential direction mentioned. Another promising approach

involves replacing the use of AE with CAE, which is capable of producing a more

discernible latent representation. Figure B.3 serves as evidence of this. In this case,

the latent parameter can be interpreted as a representation of the original function

on a coarser mesh. Lastly, there are spatiotemporal data in some inverse problems

(e.g., advection-diffusion equation). In such cases, I could model the temporal pattern

of observations in the emulation using some recurrent neural networks (RNN) [134],

e.g., long short-term memory (LSTM) [67]. I can then build a ‘CNN-RNN’ emulator

with the convolutional layer for function (image) inputs and the recurrent layer for

multivariate time series outputs. Although I have achieved encouraging preliminary

outcomes, I plan to continue exploring this concept in my future endeavors.

Spatiotemporal modeling is discussed in Chapter 3(spatiotemporal likelihood

modeling) and in Chapter 4(spatiotemporal prior modeling). In Chapter 3, I implement

STGP on the spatiotemporal inverse problem to fully utilize data information that

contains the spatiotemporal interactions and show that the spatial and temporal

information provides more effective parameter estimation and UQ. In conducting my

research, I undertook a comparative analysis of Bayesian spatiotemporal likelihood
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modeling for inverse problems, as contrasted with static and time-averaged methods.

Specifically, I utilized a time-dependent advection-diffusion PDE in conjunction with

three chaotic ODEs to demonstrate the effectiveness of this approach. Moreover, I

furnished theoretical support to establish the superiority of STGP in the context of

fitting trajectories, even when confronted with chaotic dynamics. Nevertheless, the

STGP model (3.13) discussed in this chapter features a classical separation structure

in its joint kernel, which may not be adequate to capture complex spatiotemporal

relationships, such as the temporal evolution of spatial dependence (TESD) [92]. To

address this, I intend to explore non-stationary non-separable STGP models, [32, 166,

156] which have been recommended by previous research as a means of addressing

more intricate space-time interactions in spatiotemporal inverse problems.

Chapter 4 generalizes series-based Besov measure for spatial functions to a nonpara-

metric prior for spatiotemporal functions — STBP. I have developed a probabilistic

formulation called Q-EP, which is an extension of the q-exponential distribution. This

formulation allows for control over the correlation length. The Q-EP method has

been shown to be superior in obtaining faster and better reconstruction in numerical

experiments for time series modeling and image reconstruction. The Q-EP is employed

to replace the univariate q-exponential random variables present in the series which

defines the Besov process. This technique enables the capture of temporal correlations

of multiple images, and consequently, leads to the formulation of the STBP. The

proposed STBP simultaneously models the inhomogeneity in space and correlation

in time. To address the challenges in high-dimensional posterior sampling with non-

Gaussian priors, I take advantage of the existing literature on dimension-independent

MCMC algorithms for Gaussian priors and propose a white-noise representation of

the STBP. The derived white-noise MCMC provides robust and efficient inference for
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Bayesian models with STBP priors. Through a series of rigorous numerical experi-

ments involving computerized tomography utilizing both simulated and real data, I

have made a noteworthy discovery. Specifically, I have found that the implementation

of STBP featuring a carefully selected covariance kernel produces superior results

compared to priors which lack temporal correlation. This approach yields high-quality

reconstructions that effectively preserve edges while simultaneously reducing the level

of posterior uncertainty. In contrast, spatiotemporal Gaussian priors deliver compara-

tively inferior results. The outcomes obtained from authentic CT scans and a restricted

angle data set exhibit the viability of this methodology in the analysis of medical

imagery. After conducting an in-depth analysis of various numerical examples, it has

become evident that implementing the STBP approach offers significant advantages.

In order to strengthen our argument, it would be necessary to explore the theory of

posterior contraction more deeply. For instance, I could investigate whether STBP

provides a superior posterior contraction rate in non-parametric problems and function

spaces when compared to a Gaussian prior.
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A.1 UQ

Proof of Theorem 2.3.1

Theorem (2.3.1). Let 2 ≤ s ≤ d and Ω ⊂ [−1, 1]d. Assume Gj ∈ Hr(Rd) for
r > 2+ d/2, j = 1, · · · ,m. If K ≥ 2d/(s− 1), then there exist Ge by CNN with ReLU
activation function such that

∥Φ− Φe∥H1(Ω) ≤ c∥G∥
√

logKK− 1
2
− 1

2d (A.1)

where we have ∥Φ∥H1(Ω) =
(
∥Φ∥2L2(Ω) + ∥DΦ∥2L2(Ω)

) 1
2 , c is an absolute constant and

∥G∥ = max1≤j≤m ∥Gj∥Hr(Rd) with ∥Gj∥Hr(Rd) := ∥(1 + |ω|2)r/2Ĝj(ω)∥L2(Rd).

Proof. Note because we have

|Φ(u)− Φe(u)| ≤ |⟨G(u)− Ge(u), y − G(u)⟩Γ|+ |⟨y − Ge(u),G(u)− Ge(u)⟩Γ|
|DΦ(u)−DΦe(u)| ≤ |⟨G(u)− Ge(u), DG(u)⟩Γ|+ |⟨y − Ge(u), DG(u)−DGe(u)⟩Γ|

it suffices to prove

∥Gj − Gej∥H1(Ω) ≤ cj∥Gj∥
√

logKK− 1
2
− 1

2d , j = 1, · · · ,m (A.2)

Let K∗ be the integer part of (s−1)K
d
− 1, i.e. K∗ =

[
(s−1)K

d

]
− 1 ≥ 1. For each

j = 1, · · · ,m, there exists a linear combination of ramp ridge functions of the following
form by Theorem 2 of [85]:

Gej (u) = Gj(0) +DGj(0) · u+
v

K∗

K∗∑
k=1

βk(αk · u− tk)+ (A.3)

with βk ∈ [−1, 1], ∥αk∥1 = 1, tk ∈ [0, 1] and |v| ≤ 2vGj ,2 :=
∫
Rd ∥ω∥21|Ĝj(ω)|dω ≤

cd,r∥Gj∥ such that

∥Gj − Gej∥L∞([−1,1]d) ≤ c0vGj ,2(
√
logK∗ ∨

√
d )(K∗)−

1
2
− 1

d (A.4)

[169, Theorem B] constructs weights W and biases b of a CNN that has output of the
form in Equation (A.3). Therefore,

∥Gj − Gej∥L2(Ω) ≤ C∥Gj − Gej∥L∞(Ω) ≤ cj∥Gj∥
√

logKK− 1
2
− 1

d , j = 1, · · · ,m (A.5)

Now we take derivative on both sides of (A.3) to get

DGej (u) = DGj(0) +
v

K

K∑
k=1

αkβkH(αk · u− tk) (A.6)
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where H(x) = I(x ≥ 0) is the Heaviside function. For any i = 1, · · · , d, we have
vDiGj ,1 :=

∫
Rd ∥ω∥1|D̂iGj(ω)|dω ≤ C

∫
Rd ∥ω∥1|ωi||Ĝj(ω)|dω ≤ CvGj ,2. Therefore, by

Theorem 3 of [109] we have

∥DiGj −DiGej∥L2([−1,1]d) ≤ c′0vGj ,2K
− 1

2
− 1

2d (A.7)

Inequality (A.5) and inequality (A.7) yield error bound (A.2) thus complete the
proof.

A.2 STIP

A.2.1 Proof of Theorem 3.3.1

Theorem (3.3.1). If we set the maximal eigenvalues of Cx and Ct such that
λmax(Cx)λmax(Ct) ≤ σ2

ε , then the following inequality holds regarding the Fisher
information matrices, IS and IST, of the static model and the STGP model respec-
tively:

IST(u) ≥ IS(u) (A.8)
If we control the maximal eigenvalues of Cx and Ct such that λmax(Cx)λmax(Ct) ≤
Jλmin(Γobs), then the following inequality holds regarding the Fisher information
matrices, IT and IST, of the time-averaged model and the STGP model respectively:

IST(u) ≥ IT(u) (A.9)

Proof. Denote Y0 = Y−M. We have Φ∗(u) =
1
2
tr
[
V−1

∗ YT
0U

−1
∗ Y0

]
with ∗ being S

or ST. US, VS, UST and VST are specified in (3.14). We notice that both U∗ and V∗
are symmetric, then we have

∂Φ∗

∂ui
=

1

2

{
tr

[
V−1

∗
∂YT

0

∂ui
U−1

∗ Y0

]
+ tr

[
V−1

∗ YT
0U

−1
∗

∂Y0

∂ui

]}

= tr

[
V−1

∗ YT
0U

−1
∗

∂Y0

∂ui

]
∂2Φ∗

∂ui∂uj
= tr

[
V−1

∗ YT
0U

−1
∗

∂2Y0

∂ui∂uj

]
+ tr

[
V−1

∗
∂YT

0

∂ui
U−1

∗
∂Y0

∂uj

]

Due to the i.i.d. assumption in both models, Y0 is independent of either ∂Y0

∂ui
or

∂2Y0

∂ui∂uj
. Therefore

(I∗)ij = E

[
∂2Φ∗

∂ui∂uj

]
= E

[
tr

(
V−1

∗
∂YT

0

∂ui
U−1

∗
∂Y0

∂uj

)]
= E

[
vec

(
∂Y0

∂ui

)T

(V−1
∗ ⊗U−1

∗ )vec

(
∂Y0

∂uj

)] (A.10)
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For any w = (w1, · · · , wp) ∈ Rp and w ̸= 0, denote w̃ :=
∑p

i=1wivec
(

∂Y0

∂ui

)
. To prove

IST(u) ≥ IS(u), it suffices to show w̃T(VST ⊗UST)
−1w̃ ≥ w̃T(VS ⊗US)

−1w̃.
By [Theorem 4.2.12 in 68], we know that any eigenvalue of V∗⊗U∗ has the format as

a product of eigenvalues of V∗ and U∗ respectively, i.e. λk(V∗⊗U∗) = λi(V∗)λj(U∗),
where where {λj(M)} are the ordered eigenvalues of M , i.e. λ1(M) ≥ · · · ≥ λd(M).
By the given condition we have

λIJ((VST ⊗UST)
−1) = λ−1

1 (VST ⊗UST)

= λ−1
1 (Ct)λ

−1
1 (Cx) ≥ σ−2

ε = λ1((VS ⊗US)
−1)

(A.11)

Thus it completes the proof of the first inequality.
Similarly by the second condition, we have

λIJ((VST ⊗UST)
−1) = λ−1

1 (Ct)λ
−1
1 (Cx)

≥ J−1λ−1
min(Γobs) = λ1(V−

S ⊗U−1
S )

(A.12)

and complete the proof of the second inequality.

A.2.2 Proof of Theorem 3.3.2

Theorem (3.3.2). If we choose Cx = Γobs and require the maximal eigenvalue of Ct,
λmax(Ct) ≤ J , then the following inequality holds regarding the Fisher information
matrices, IT and IST, of the time-averaged model and the STGP model respectively:

IST(u) ≥ IT(u) (A.13)

Proof. Denote Y0 = Y−M. We have Φ∗(u) =
1
2
tr
[
V−1

∗ YT
0U

−1
∗ Y0

]
with ∗ being T

or ST. UT, VT, UST and VST are specified in (3.14).
By the similar argument of the proof in Theorem 3.3.1, we have

(I∗)ij = E

[
∂2Φ∗

∂ui∂uj

]
= tr

[
V−1

∗ E

(
∂YT

0

∂ui
U−1

∗
∂Y0

∂uj

)]
(A.14)

For any w = (w1, · · · , wp) ∈ Rp and w ̸= 0, denote W :=
∑p

i,j=1wiE
(

∂YT
0

∂ui
U−1

∗
∂Y0

∂uj

)
wj .

We know W ≥ 0J×J . It suffices to show tr[V−1
STW] ≥ tr[V−1

T W].
By the corollary [111] of Von Neumann’s trace inequality [113], we have

J∑
j=1

λj(V−1
∗ )λJ−j+1(W) ≤ tr(V−1

∗ W)

≤
J∑

j=1

λj(V−1
∗ )λj(W)

(A.15)
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where {λj(M)} are the ordered eigenvalues of M , i.e. λ1(M) ≥ · · · ≥ λd(M). The
only non-zero eigenvalue of V−

T = J−2(1J1
T
J ) is λ1(V−

T ) = J−1. Therefore, we have

tr[V−
T W] ≤ J−1λ1(W) ≤ λJ(V−1

ST)λ1(W)+

J−1∑
j=1

λj(V−1
ST)λJ−j+1(W) ≤ tr[V−1

STW]
(A.16)

where λJ(V−1
ST) = λ−1

1 (Ct) ≥ J−1 and λj(V−1
ST), λj(W) ≥ 0.

A.3 Q-EP

A.3.1 Proof of Theorem 4.2.4

Proof. First we prove the exchangeability of q−EDd(µ,C) with general (non-identity)
covariance matrix C = [C(ti, tj)]d×d for some kernel function C. It actually holds for
all elliptic distributions including MVN. Their densities contain the essential quadratic
form r(u) = uTC−1u which is invariant under any permutation of coordinates.

Denote u = [ut1 , · · · , uti , · · · , utj , · · · , utd ]T . Without loss of generality, we only
need to show r(u) is invariant by switching two coordinates, say, ti ↔ tj. Denote
u′ = [ut1 , · · · , utj , · · · , uti , · · · , utd ]T . Switching ti and tj leads to a different covariance
matrix C′ obtained by switching both i-th and j-th rows and columns simultaneously
in C. If we denote the elementary matrix Eij as derived from switching i-th and j-th
rows of the identity matrix I. Then we have

u′ = Eiju, C′ = EijCEij

Note Eij is idempotent, i.e. Eij = E−1
ij . Therefore

(u′)
T
(C′)−1u′ = uTEijEijC−1EijEiju = uTC−1u

Next, the consistency directly follows from Kano’s consistency Theorem 3.2 with our
choice of g(r). The proof is hence completed.

A.3.2 Theorem of Q-EP as a mixture of Gaussians

Theorem A.3.1. Suppose u ∼ q−EDd(0,C) for 0 < q < 2, then there exist an random
variable V > 0 and a standard normal random vector Z ∼ Nd(0, I) independent of
each other such that u d

= Z/V .
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Proof. Based on [5], it suffices to show (− d
dr
)kg(r) ≥ 0 for all k ∈ N. Observe

that g′(r) =
[
( q
2
− 1)d

2
r(

q
2
−1) d

2
−1 − q

4
r(

q
2
−1)( d

2
+1)
]
exp{− r

q
2

2
} ≤ 0 when q ≤ 2. Denote

(− d
dr
)kg(r) := pk(r

( q
2
−1)/2, r−1) exp{− r

q
2

2
} where the coefficients of polynomial pk are

all non-negative. Then we have(
− d

dr

)k+1

g(r) =

[
− d

dr
pk(r

( q
2
−1)/2, r−1) +

q

4
r(

q
2
−1)pk(r

( q
2
−1)/2, r−1)

]
exp{−r

q
2

2
}

where pk+1(r
( q
2
−1)/2, r−1) being the term in the square bracket has all positive coeffi-

cients because the powers ( q
2
−1)/2 and −1 appear as coefficients in d

dr
pk(r

( q
2
−1)/2, r−1)

and are both negative. The proof is completed by induction.

A.3.3 Proposition of distribution of r(u)

The following proposition determines the distribution of R =
√
r(u) as q-root of

a gamma (also chi-squared) distribution thus gives a complete recipe for generating
random vector u ∼ q−EDd(0,C) based on the stochastic representation (4.11).

Proposition A.3.1. If u ∼ q−EDd(0,C), then we have

Rq = r
q
2 ∼ Γ

(
α =

d

2
, β =

1

2

)
= χ2

d, and

E[Rk] = 2
k
q

Γ(d
2
+ k

q
)

Γ(d
2
)

·∼ d
k
q , as d→∞, ∀k ∈ N

(A.17)

Proof. With out chosen g(r), the density of r becomes

f(r) ∝ r
d
2
−1r(

q
2
−1) d

2 exp

{
−r

q
2

2

}
= r

q
2
· d
2
−1 exp

{
−r

q
2

2

}
A change of variable r → r

q
2 yields the density of Rq = r

q
2 that can be recognized as

the density of χ2
d.

On the other hand, since v := Rq ∼ Γ
(
α = d

2
, β = 1

2

)
, we have:

E[Rk] =

∫ ∞

0

v
k
q f(v)dv =

1

Γ(d
2
)

(
1

2

) d
2
∫ ∞

0

v
k
q
+ d

2
−1 exp

{
−1

2
v

}
dv

= 2
k
q

Γ(d
2
+ k

q
)

Γ(d
2
)

·∼ 2
k
q

(
d

2

) k
q

= d
k
q

where we use Γ(x+ α)
·∼ Γ(x)xα as x→∞ with x = d

2
and α = k

q
when d→∞.
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A.3.4 Proof of Proposition 4.2.1

Proof. By Theorem 2.6.4 in [51] for q−EDd(µ,C) = ECd(µ,C, g) with our chosen g,
we know E[u] = µ and Cov(u) = (E[R2]/rank(C))C. It follows by letting k = 2 in
Proposition 3.1 and using a similar asymptotic analysis.

A.3.5 Proof of Theorem 4.2.5

Proof. Note we can approximate ϕℓ(x) ∈ L2(D) with simple functions ϕ̃ℓ(x) =∑d
i=1 kiχDi

(x) where Di’s are measurable subsets of D and χDi
(x) = 1 if x ∈ Di and

0 otherwise. By the linear combination property of elliptic distributions [c.f. Theorem
2.6.3 in 51], ũℓ =

∫
D
u(x)ϕ̃ℓ(x)dx ∼ q−ED(0, c) with c = α−1

d E[ũ2ℓ ] to be determined.

Note αd =
2
2
q Γ( d

2
+ 2

q
)

dΓ( d
2
)
d1−

2
q comes from Proposition 3.2 and the scaling u∗ = d

1
2
− 1

q u in

Definition 3.2. We have αd =
Γ( d

2
+ 2

q
)

Γ( d
2
)

(
2
d

) 2
q → 1 as d→∞. Taking the limit d→∞,

we have uℓ =
∫
D
u(x)ϕℓ(x)dx ∼ q−ED(0, c). In general, by the similar argument we

have

Cov(uℓ, uℓ′) = E[uℓuℓ′ ] =

∫
D

∫
D

E[u(x)u(x′)]ϕℓ(x)ϕℓ′(x
′)dxdx′

=

∫
D

∫
D

C(x, x′)ϕℓ(x)ϕℓ′(x
′)dxdx′ =

∫
D

λℓϕℓ(x
′)ϕℓ′(x

′)dx′ = λℓδℓℓ′

Thus it completes the proof.

A.3.6 Proof of Posterior Prediction Theorem

Consider the generic Bayesian regression model:
y = u(x) + ε, ε ∼ L(·; 0, Σ)

u ∼ µ0(du)
(A.18)

where L(·; 0, Σ) denotes some likelihood model with zero mean and covariance Σ, and
the mean function u can be given a prior either Besov or Q-EP.

Theorem A.3.2 (Posterior Prediction). Given covariates x = {xi}Ni=1 and observa-
tions y = {yi}Ni=1 following q−ED in the model (A.18) with q−EP prior for the same
q > 0, we have the following posterior predictive distribution for u(x∗) at (a) new
point(s) x∗:

u(x∗)|y, x, x∗ ∼ q−ED(µ∗,C∗), µ∗ = CT
∗ (C+Σ)−1y, C∗ = C∗∗ −CT

∗ (C+Σ)−1C∗
(A.19)
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where C = C(x, x), C∗ = C(x, x∗), and C∗∗ = C(x∗, x∗).

Before proving Theorem A.3.2, we first prove the following lemma based on the
conditional of elliptic distribution [19, 51].

Lemma A.3.1. If u = (u1,u2) ∼ q−EDd(µ,C) with µ =

[
µ1

µ2

]
and C =

[
C11 C12

C21 C22

]
,

u ∈ Rd, ui ∈ Rdi for i = 1, 2 and d1 + d2 = d, then we have the following conditional
distribution

u1|u2 ∼ q−EDd1(µ1·2,C11·2),

µ1·2 = µ1 +C12C−1
22 (u2 − µ2), C11·2 = C11 −C12C−1

22 C21

Proof. This directly follows from [Corollary 5 of Theorem 5 in 19] or [Corollary 3 of
Theorem 2.6.6 in 51] for q−EDd(µ,C) = ECd(µ,C, g) with our chosen g.

Now we prove the Theorem 3.5.

Proof. By the linear combination property of the elliptic distributions [78, 51], we have
y ∼ q−ED(0,C +Σ). Then based on the consistency, we have the joint distribution[

y
u(x∗)

]
∼ q−ED

(
0,
[
C +Σ C∗

CT
∗ C∗∗

])
Therefore, the conclusion follows from Lemma A.3.1.

A.3.7 Proposition of Conditional Conjugacy for Variance Magnitude (σ2)

Proposition A.3.2. If we assume a proper inverse-gamma prior for the variance
magnitude such that u|σ2 ∼ q−EDd(µ,C = σ2C0), and σq ∼ Γ−1(α, β), then we have

σq|u ∼ Γ−1(α′, β′), α′ = α +
d

2
, β′ = β +

(u− µ)TC−1
0 (u− µ)

2
(A.20)

Proof. Denote r0 = (u− µ)TC−1
0 (u−µ). We can compute the joint density of u and

σ2

p(u, σ2) =p(u|σ2)p(σq)

=
q

2
(2π)−

d
2 |C0|−

1
2 r

( q
2
−1) d

2
0 σ− qd

2 exp

{
−σ−q r

q
2
0

2

}
βα

Γ(α)
(σq)−(α+1) exp(−βσ−q)

∝(σq)−(α+ d
2
+1) exp

{
−σ−q

(
β +

rq0
2

)}
By identifying the parameters for σq we recognize that σq|u is another inverse-gamma
with parameters α′ and β′ as given.
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A.4 STBP

Proof of Proposition 4.3.1

Proposition (4.3.1). If u ∼ ST BP(κ, C,Xr0,q,p), then we have

Cov(u(x, t), u(x′, t′)) =
∞∑
ℓ=1

γ2ℓϕℓ(x)ϕℓ(x′)C(t, t′) (A.21)

Proof. We can directly compute

Cov(u(x, t), u(x′, t′))

= E(u(x, t)u(x′, t′)) = E

[
∞∑
ℓ=1

γℓξℓ(t)ϕℓ(x)
∞∑

ℓ′=1

γℓ′ξℓ′(t
′)ϕℓ′(x′)

]

=
∞∑

ℓ,ℓ′=1

γℓγℓ′ϕℓ(x)ϕℓ′(x′)E[ξℓ(t)ξℓ′(t
′)] =

∞∑
ℓ=1

γ2ℓϕℓ(x)ϕℓ(x′)E[ξℓ(t)ξℓ(t
′)]

=
∞∑
ℓ=1

γ2ℓϕℓ(x)ϕℓ(x′)C(t, t′)

(A.22)

where we use the assumption that E[ξℓ(t)ξℓ′(t
′)] = E[ξℓ(t)ξℓ(t

′)]δℓℓ′
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APPENDIX B

MORE NUMERICAL RESULTS

141



B.1 UQ

Here I provide more analysis results(misfit, KL divergence, auto-correlation, etc.)
for the Elliptic inverse problem and Advection-diffusion inverse problem.

(a) The trace plots of data-misfit function evaluated with each sample (left, values have been
offset to be better compared with) and the auto-correlation of data-misfits as a function of
lag (right).

(b) The KL divergence between the posterior and the prior as a function of iteration (upper)
and time (lower) respectively.

Figure B.1. Advection-diffusion Inverse Problem: Analysis of Posterior Samples

For the advection-diffusion inverse problem (Section 2.4.2), figure B.1a verifies
DREAMC ∞-HMC is the most efficient MCMC algorithm that has the smallest
autocorrelation as shown in the right panel. It is followed by other HMC algorithms
and DREAMC ∞-MALA, which is even better than ∞-HMC. Figure B.1b plots the
KL divergence between the posterior and the prior in terms of iteration (top panel)
and time (panel) respectively. As we can see, ∞-HMC converges the fastest.
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Figure B.2. Comparing the emulation Ge : R3413 → R1280 in an advection-diffusion
inverse problem (Section 2.4.2) by DNN, CNN and CNN-RNN in terms of error (left)
and time (right). Time is also compared with exact calculation of gradients (labeled
‘FE’) using adjoint codes in testing.

Figure B.3. Elliptic inverse problem: CAE compressing the original function (left)
into latent space (middle) and reconstructing it in the original space (right).

Since advection-diffusion (Section 2.4.2) is a spatiotemporal problem, Figure B.2
suggests a combination of CNN (for spatial inputs) and RNN (temporal outputs)
might perform better than CNN alone because RNN fits the time series better. The
left two panels show CNN-RNN yields the smallest function and gradient errors across
different training sets. The right two panels show the computational cost is about
the same as other NNs in training. Though it is less efficient in prediction in this
example, CNN-RNN seems promising for efficient emulation in inverse problems with
spatiotemporal data.

The framework I propose posits that the use of a standard AE and its corresponding
latent projection created by dense layers may not be the most effective approach.
Instead, implementing a CAE may be a better choice for images. I tested this in the
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Elliptic inverse problem as depicted in Figure B.3. This way, the latent parameter
can be construed as a portrayal of the original function on a less intricate mesh.

B.2 STIP

Here I provide more results on chaotic dynamic systems Lorenz, Rössler and Chen
inverse problems.

Figure B.4. Advection-diffusion inverse problem: auto-correlations of observations in
space (left) and time (right) respectively.

Figure B.5. Lorenz inverse problem: comparing posterior estimates of parameter
u for two models (time-average and STGP) in terms of relative error of median
REM = ∥û−u†∥

∥u†∥ . Each experiment is repeated for 10 runs of EnK (EKI and EKS
respectively), and shaded regions indicate 5 ∼ 95% quantiles of such repeated results.
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Figure B.6. Rössler inverse problem: comparing posterior estimates of parameter
u for two models (time-average and STGP) in terms of relative error of median
REM = ∥û−u†∥

∥u†∥ . Each experiment is repeated for 10 runs of EnK (EKI and EKS
respectively), and shaded regions indicate 5 ∼ 95% quantiles of such repeated results.

Figure B.7. Chen inverse problem: marginal (diagonal) and pairwise (lower triangle)
sections of the joint density p(u) by the time-averaged model (left) and the STGP
model (right) respectively. Red dashed lines indicate the true parameter values.
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Figure B.8. Chen inverse problem: comparing posterior estimates of parameter
u for two models (time-average and STGP) in terms of relative error of median
REM = ∥û−u†∥

∥u†∥ . Each experiment is repeated for 10 runs of EnK (EKI and EKS
respectively) and shaded regions indicate 5 ∼ 95% quantiles of such repeated results.

Figure B.9. Comparison in sampling q−EDd using the stochastic representation (4.11)
(organge) and the white-noise representation (4.31) (blue). Numerical results show
their sampling distributions are indistinguishable. Empirical densities are estimated
based on 10000 samples (shown as dots).

146



B.3 QEP

In this section, I present some additional numerical experimental results that
cannot be included in the main text due to the page limit.

First, I numerically verify the equivalence between the stochastic representation
(4.11) and the white-noise representation (4.31) of q−EDd random variable in Figure
B.9. More specifically, I generate 10000 samples using each of these two representations
and illustrate in Figure B.9 that the two samples yield empirical marginal distributions
(1d and 2d) close enough to each other.

B.3.1 Time Series Modeling

For modeling the simulated time series and stock prices, I include the optimization
trace of negative (log)-posterior densities and relative errors for the two simulations
and two stock prices in Figure B.10. As commented in the main text, these plots show
that Q-EP model can converge faster to lower errors compared with GP and Besov
models.

(a) Time series with step jumps. (b) Time series with sharp turnings.

(c) Tesla stock prices in 2022. (d) Google stock prices in 2022.

Figure B.10. Negative posterior densities (left) and errors (right) as functions of
iterations in the BFGS algorithm used to obtain MAP estimates. Early termination is
implemented if the error falls below some threshold or the maximal iteration (1000) is
reached. Relative errors are compared against truth in the simulation and the actual
data in the Tesla stock.
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(a) Time series(TS) with step jumps(model fitting). (b) TS with jumps(prediction).

(c) 2022 Google stock prices(model fitting). (d) Google stock prices(prediction).

Figure B.11. (a)(c) MAP estimates by GP (left), Besov (middle) and Q-EP (right)
models. (b)(d) Predictions by GP (left) and Q-EP (right) models. Orange dots
are actual realizations (data points). Blue solid lines are true trajectories. Black
ticks indicate the training data points. Red dashed lines are MAP estimates. Red
dot-dashed lines are predictions with shaded region being credible bands.

Table B.1. Posterior estimates of Tesla and Google stock prices by GP, Besov and
Q-EP prior models: RMSE := ∥u− u∥2. Results are repeated 10 times with different
random seeds.

Tesla Google

GP Besov Q-EP GP Besov Q-EP

RMSE 171.8515 90.3086 83.8130 20.4095 25.2012 18.3597
std(RMSE) 1.8018 1.1478 2.6949 0.7115 0.1698 0.9617

Next, I compare MAP estimates by GP, Besov and Q-EP models in Figure B.11a
for simulated time series with step jumps and in Figure B.11c for the Google stock
prices in 2022. I also investigate the prediction results by GP and Q-EP in these
two examples in Figures B.11b and B.11d. Table B.1 summarizes the RMSE of
estimated stock prices by the three models and its standard deviation for repeating
the experiments 10 times independently.
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Figure B.12. Shepp–Logan phantom: uncertainty field (posterior standard deviation)
given by GP, Besov and Q-EP models. GP tends to underestimate the uncertainty
values (about 1% of that with Q-EP).

B.3.2 Computed Tomography Imaging

Figure B.13. CT of human head (upper) and torso (lower): uncertainty field (posterior
standard deviation) given by GP, Besov and Q-EP models. Note GP tends to
underestimate the uncertainty values (about 1% of that with Q-EP).

In the problem of reconstructing human head and torso CT images, Table B.2
compares GP, Besov and Q-EP models in terms of relative error (RLE), log-likelihood
(LL), and imaging quality metrics including PSNR, SSIM and HarrPSI. In most cases,
Q-EP outperforms or achieves comparable scores with the other two methods.

Lastly, Figures B.12 and B.13 show that the posterior standard deviations esti-

149



Table B.2. MAP estimates for CT of human head and torso by GP, Besov and Q-EP
prior models: relative error, RLE := ∥û− u†∥/∥u†∥ of MAP (û = u∗), log-likelihood
(LL), PSNR, SSIM and HarrPSI.

Head Torso

GP Besov Q-EP GP Besov Q-EP

RLE 0.2999 0.2241 0.2224 0.2611 0.2177 0.2153
LL -4.05e+5 -1.12e+4 -1.17e+4 -3.30e+5 -3.86e+3 -4.37e+3
PSNR 24.2321 26.7633 26.8281 23.6450 25.2231 25.3190
SSIM 0.7010 0.7914 0.8096 0.5852 0.6983 0.6982
HaarPSI 0.0525 0.0593 0.0587 0.0666 0.0732 0.07190

mated by wn-pCN using GP model could be misleading because the seemingly more
recognizable shape deludes the fact that they are about two orders of magnitude
smaller in value compared with the other two models. This implies that GP might
underestimate the uncertainty present in the observed sinograms in the CT imaging
analysis.

B.4 STBP

In this section, I provide more numerical results on STEMPO and Emoji problem,
including MAP estimates in the original space and posterior sample.
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j = 0 j = 6 j = 13 j = 19

Figure B.14. Reconstruction results of dynamic STEMPO test problem in original
space. Row from top to bottom: MAP for q = 1, p = 1, MAP for q = 2, p = 2 and
MAP q = 1, p = 1 without time correlation. Left to right: time step t = 0, 6, 13, 19.
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j = 6 j = 14 j = 22 j = 30

Figure B.15. Reconstruction results for the emoji problem with na = 10 in the
original space. Row from top to bottom: MAP for STBP (q = 1, p = 1), MAP for
STGP (q = 2, p = 2) and MAP for time-uncorrelated model. Left to right: time step
t = 6, 14, 22, 30.
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j = 6 j = 14 j = 22 j = 30

Figure B.16. MCMC results of the emoji problem with na = 10 in the whitened
space. Row from top to bottom: posterior mean for STBP (q = 1, p = 1), posterior
standard deviation for STBP (q = 1, p = 1), posterior mean for STGP (q = 2, p = 2),
and posterior standard deviation for STGP (q = 2, p = 2). Left to right: time step
t = 6, 14, 22, 30.
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