
Physical System Knowledge Extraction and Transfer Using Machine Learning

by

Haoran Li

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved July 2022 by the
Graduate Supervisory Committee:

Yang Weng, Chair
Hanghang Tong

Gautam Dasarathy
Lalitha Sankar

ARIZONA STATE UNIVERSITY

August 2022

ABSTRACT

Modern physical systems are experiencing tremendous evolutions with growing size,

more and more complex structures, and the incorporation of new devices. This calls for

better planning, monitoring, and control. However, achieving these goals is challenging

since the system knowledge (e.g., system structures and edge parameters) may be

unavailable for a normal system, let alone some dynamic changes like maintenance,

reconfigurations, and events, etc.

Therefore, extracting system knowledge becomes a central topic. Luckily, advanced

metering techniques bring numerous data, leading to the emergence of Machine

Learning (ML) methods with efficient learning and fast inference. This work tries

to propose a systematic framework of ML-based methods to learn system knowledge

under three what-if scenarios: (i) What if the system is normally operated? (ii) What

if the system suffers dynamic interventions? (iii) What if the system is new with

limited data? For each case, this thesis proposes principled solutions with extensive

experiments.

Chapter 2 tackles scenario (i) and the golden rule is to learn an ML model that

maintains physical consistency, bringing high extrapolation capacity for changing

operational conditions. The key finding is that physical consistency can be linked to

convexity, a central concept in optimization. Therefore, convexified ML designs are

proposed and the global optimality implies faithfulness to the underlying physics.

Chapter 3 handles scenario (ii) and the goal is to identify the event time, type,

and locations. The problem is formalized as multi-class classification with special

attention to accuracy and speed. Subsequently, Chapter 3 builds an ensemble learning

framework to aggregate different ML models for better prediction. Next, to tackle

high-volume data quickly, a tensor as the multi-dimensional array is used to store and

i

process data, yielding compact and informative vectors for fast inference. Finally, if

no labels exist, Chapter 3 uses physical properties to generate labels for learning.

Chapter 4 deals with scenario (iii) and a doable process is to transfer knowledge

from similar systems, under the framework of Transfer Learning (TL). Chapter 4

proposes cutting-edge system-level TL by considering the network structure, complex

spatial-temporal correlations, and different physical information.

ii

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my advisor,

Dr. Yang Weng, for providing me the opportunity to work with him on exploring

the cutting edge Machine Learning techniques in physical systems. I sincerely thank

him for his invaluable guidance and constant encouragement. His critical insights and

enthusiasm about research have been most helpful in the completion of this work.

I want to thank my committee members, Dr. Hanghang Tong, Dr. Gautam

Dasarathy, and Dr. Lalitha Sankar. Their valuable feedback and guidance in directing

me to helpful resources helped me complete this work successfully. Also, I like to

thank my co-authors Dr. Yizheng Liao, Dr. Evangelos Farantatos, and Dr. Erik

Blasch, for their support and critical validation of the research work. I would also

like to thank all the faculty members in Arizona State University and University of

Illinois at Urbana-Champaign for teaching me and equipping me with the skill set

needed to research.

I would like to thank my family for faltering love and support. I would especially

like to thank my parents Mr. Xianbin Li and Mrs. Yanxia Chen for their unwavering

supporting and encouragement, despite being far away. Finally, I would like to thank

my cat, Dandan, for her continuous love and loyalty to me.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 GENERAL INTRODUCTION . 1

1.1 Model A Normal System . 2

1.2 Identify System Dynamic Events . 3

1.3 Transfer Knowledge across Systems . 5

1.4 Research Objectives . 6

1.5 Organization . 7

2 LEARNING PHYSICAL EQUATIONS OF A NORMAL SYSTEM 9

2.1 Introduction . 9

2.2 Problem Formulation . 12

2.3 Learn Physical Equations for A Fully-observable System via CoN-

SoLe: Convex Neural Symbolic Learning . 14

2.3.1 Problem Scopes and Examples . 14

2.3.2 Construct A Neural Network to Represent Physical Equations 15

2.3.3 Search LoCaL Structures with Double Convex Deep Q-

Learning . 16

2.3.4 Theoretical Analysis for CoNSoLe to Learn Physical Equa-

tions . 21

2.3.5 Experimental Result . 24

2.3.5.0.1 Settings . 24

iv

CHAPTER Page

2.3.5.0.2 Verification and 3-D Visualization of Convex

Mechanisms . 27

2.3.5.0.3 Convexity Guarantees of CoNSoLe to Learn

Correct Equations . 28

2.3.5.0.4 Ablation Study: Exploration and Convex

Search are Essential . 30

2.3.5.0.5 CoNSoLe is Robust with Changing Noise Lev-

els and Data Volume . 32

2.4 Learn A Physics-Consistent Model for A Partially-observable Sys-

tem via PCNN: Physics-Consistent Neural Network 33

2.4.1 Problem Scopes and Examples . 33

2.4.2 Graph Decomposition to Investigate the Fine-grained Ca-

pacity of Learning Physics . 34

2.4.3 PCNN Structure: Deep-Shallow Hierarchy 36

2.4.4 Theoretical Analysis for Convexity-based PCNN Initialization 39

2.4.5 Experimental Result . 42

2.4.5.0.1 Settings . 42

2.4.5.0.2 Results for Model Generalizability 46

2.4.5.0.3 Results for Network Parameter Estimation 46

2.4.5.0.4 Results for Model Interpretability 49

3 IDENTIFYING SYSTEM EVENT INFORMATION 51

3.1 Introduction . 51

3.2 Problem Formulation . 53

3.3 Supervised Event Identification with Unbiased Learning 54

v

CHAPTER Page

3.3.0.1 Numerical Result . 55

3.3.0.1.1 Settings . 55

3.3.0.1.2 Results of Test Accuracy for Event Identification 56

3.4 Unsupervised Event Identification with Physics-guided Labeling . . 57

3.4.1 Event Type Identification via Clustering and Compactness . 58

3.4.1.1 Principal Component-Based Data Pre-Processing 58

3.4.1.2 Stage 1: Clustering According to Dynamic Modes 60

3.4.1.3 Stage 2: Compactness Classification via Severity Levels 62

3.4.2 Event Localization . 63

3.4.2.1 Change-Point-based Localization. 63

3.4.2.2 Increase Robustness Via Grouping sensors 64

3.4.3 Numerical Result . 66

3.4.3.0.1 Settings . 66

3.4.3.0.2 Results of Event Type Differentiation 66

3.4.3.0.3 Results of Event Location . 68

3.5 Semi-supervised Event Identification with Fast Tensor Computation 69

3.5.1 Tensor Notations and Preliminaries . 69

3.5.2 Proposed Model KTDC-Se: Kernelized Tensor Decomposi-

tion and Classification with Semi-supervision 72

3.5.3 Learning Algorithm of KTDC-Se . 76

3.5.4 Training and Testing on Mini-batches . 80

3.5.5 Numerical Result . 82

3.5.5.0.1 Settings . 82

vi

CHAPTER Page

3.5.5.0.2 Joint Optimization of KTDC-Se is Better Than

Two-stage Models . 85

3.5.5.0.3 Semi-supervised Learning Boosts KTDC-Se

Model Performance . 87

3.5.5.0.4 Tensor-based Framework Enables Fast Inference 89

3.5.5.0.5 Non-linear Kernelization Largely Increases the

Accuracy . 90

4 TRANSFER SYSTEM KNOWLEDGE ACROSS DIFFERENT SYS-

TEMS . 92

4.1 Introduction . 92

4.2 Problem Formulation . 94

4.3 Improve the Speed of Knowledge Transfer via Graph Coarsening . . 96

4.4 Conduct Cross-system Knowledge Transfer Using GNA: Graph

Kernel-based Domain Adaptation . 99

4.5 Theoretical Analysis . 104

4.6 Numerical Results . 106

4.6.1 Settings . 106

4.6.1.0.1 Dataset . 106

4.6.1.0.2 Benchmark Methods and Evaluations 107

4.6.2 Result of Test Accuracy . 109

4.6.3 Ablation Study . 111

4.6.4 Sensitivity Analysis . 112

5 CONCLUSION AND FUTURE WORK . 114

5.1 Conclusion . 114

vii

CHAPTER Page

5.2 Future Work . 115

REFERENCES . 117

APPENDIX

A PROOFS OF PROPOSED THEOREMS . 126

viii

LIST OF TABLES

Table Page

1. The Learned Equations for Syn1 and Syn2, Table 1. 29

2. The Learned Equations for Syn1 and Syn2, Table 2. 30

3. nTV E(%) Error of Parameter Estimation for PCNN and SINDy Methods,

Table 1. 48

4. nTV E(%) Error of Parameter Estimation for PCNN and SINDy Methods,

Table 2. 49

5. The h(%) Value for Different Methods in Different Systems. 50

6. The Average Number of Clusters after Clustering. 67

7. Overview of Tensor Notations and Operators. 70

8. Testing Accuracy (%) (Mean ± Standard Deviation) for Real-World PMU

Data. 87

9. The Average Predicting Time (S) of the Testing Dataset for Different Methods. 89

10. The Testing Accuracy (%) (Mean ± Standard Deviation) for Different Kernels. 91

11. Average Test Accuracy (%) of Cross-System DA for Different Methods,

Table 1. 109

12. Average Test Accuracy (%) of Cross-System DA for Different Methods,

Table 2. 110

ix

LIST OF FIGURES

Figure Page

1. An Example of LoCaL Structure and the State Transition Calculation. 15

2. Illustrations of Convex Mechanisms Using a Toy Example. 28

3. Results of Equation Learning for Different Methods and Datasets. 30

4. Ec(%) of Ablation Study. 31

5. Ec(%) of Sensitivity Analysis. 32

6. Physical System Unit Graph Decomposition. 35

7. The Design of the PCNN. 39

8. The MSE Value for Different Testing Systems. 47

9. An Illustration of the Flow Chart on the Proposed Ensemble Learning for

Event Identification. 54

10. The Comparison of Individual SL Mehtods and the Proposed Ensemble

Method. 56

11. PSLF Simulations for Different Events. 59

12. PCA and Rescaling for Event Type Differentiation. 60

13. The Results of Change Point Detection. 65

14. I Display the Topology of Illinois 200-Bus System for PSLF. 66

15. Distances between 5 New Events and the Cluster Centers. 67

16. 200 Buses’ Voltage Magnitude Change before and after a Change Point. 68

17. Heat Map of Distance Matrix between New Points and Cluster Centers. 69

18. The Motivation of the KTDC-Se Model. 72

19. Performances of Event Identification Using Different Methods. 86

20. Results of the Sensitivity Analysis with Respect to Labeled Data Ratios. . . . 88

x

Figure Page

21. The Procedure of Graph Coarsening. Different Colors of Nodes Represent

Different Labels. Different Shape of Lines Represent Different Labels. 97

22. The Ablation Study for GNA and Coarsening. 111

23. Results of the Sensitivity Analysis with Respect to Different Hyper-Parameters.112

xi

Chapter 1

GENERAL INTRODUCTION

Modern physical system is extending its territory to better serve the society. For

example, Internet of Everything (IoE) connects new devices into an intelligent web at

an unprecedented speed (Miraz et al. 2015). If utilized efficiently and systematically,

IoE has the potential to create much more efficient productivity via coordinated

efforts across humans, processes, data, and things. However, the prerequisite is to

own enough system knowledge, e.g., system connectivity and the line parameters.

Such a requirement is often not met in real-world applications. The reasons can be

summarized as follows. (1) Sensors usually can not cover the complete system due to

the sensor cost and low investment interest for some system regions (Bhela, Kekatos,

and Veeramachaneni 2018). (2) Some devices, such as plug-and-play components, are

private, and the system operators do not have the accessibility (Bordel, De Rivera, and

Alcarria 2016). (3) Many dynamic changes like disturbances, events, reconfiguration,

or maintenance may not be timely reported to the system operator (Li et al. 2021).

Therefore, it’s highly demanded to develop a systematic framework to obtain the

system knowledge.

To seek this goal, one cheap and efficient approach is to analyze data and recognize

the underlying patterns and knowledge. Such a data-driven solution is significantly

boosted with the growing techniques in Machine Learning (ML) and Data Mining (DM),

equipped with the efficient learning and fast inference (Salih, Ahmed, and Saeed 2021).

Therefore, this thesis develops advanced learning-based models to distill knowledge

from system data. In particular, the roadmap provides systematic and principled

1

designs for normal systems, systems with dynamic interventions, and new systems

with few measurements because they cover most scenes in real-world applications. In

this chapter, a brief summary is given for each scenario. To cope with key problems,

the following chapters will present more specific reviews, insightful frameworks with

high performances, and the potential future work for further investigations.

1.1 Model A Normal System

With the era of the IoE coming to physical systems, there is an increasing need

to extend monitoring and control to system edges, where traditional monitoring and

control are unavailable. For example, power engineers nowadays try to provide a similar

level of monitoring in its distribution grid when compared to the legendary transmission

system (J. Yu, Y. Weng, and R. Rajagopal 2017). However, the parameters and

connectivity of edge systems are often missing. Thus, ML tools are recognized as

a viable way to conduct cost-efficient inferences to model a normal system as its

operational knowledge. Essentially, the goal is to reconstruct the map between system

variables, e.g., mapping from voltage phasor to power injections like power flow

equations in electrical distribution systems (Li et al. 2021).

In ML perspectives, the system modeling can be interpreted as a regression problem

whose target is to predict the outcome given input data. In general, existing work

can be categorized into the following groups. First, some pioneer studies utilize ML

models as a black box to take place of system physical equations, including linear

regression with Least Absolute Shrinkage and Selection Operator (LASSO) (Y. Liao

et al. 2018), Support Vector Regression (SVR) (J. Yu, Y. Weng, and R. Rajagopal

2017), and Deep Neural Network (DNN) (Wang et al. 2020), etc. However, for physical

2

systems with an evolving operating point, this black box can’t guarantee the model

extrapolation capacity.

To tackle this issues, the second group of researchers considers a grey box by

enforcing some physical constraints to the ML model. For instance, (Hu et al. 2020)

encodes Kirchhoff’s laws to the DNN model to represent power system operations.

(Pan et al. 2020) also embed the equality and inequality constraints to a DNN model.

Despite the improvement, it’s hard to theoretically guarantee that the learned ML

model can maintain consistency and faithfulness to the system. Thus, the third

approach is to directly learn the symbolic equations from data, which brings a white

box and lies in the domain of Symbolic Regression (SR) (Udrescu and Tegmark

2020). SR frameworks typically include a search process to find the symbols and

symbol operators and an estimation process to estimate the symbol coefficients,

bringing explicit mathematical expressions to depict data (Petersen et al. 2019).

Notwithstanding, the cutting-edge SR methods still can not guarantee that the search

results are faithful to the true physical equations.

In conclusion, the key unsolved question is how we can guarantee that the learned

ML model is consistent to the underlying physical equations. Such a goal is even

tougher if the system lacks full observability. This is because hidden quantities with

randomness in the system can create bias terms for a specific data set. Therefore, this

thesis directly tackles this question for consistent physical knowledge extractions.

1.2 Identify System Dynamic Events

Physical system complexity is increasing with new technologies. For example, for

power systems, intermittent renewable generation and new types of loads such as

3

electrical vehicles (EVs) (Lopes, Soares, and Almeida 2010) keep being integrated

to the system. With the booming business, the transportation systems are also

extending and may easily face the traffic congestion (Iqbal et al. 2018). To achieve

grid reliability, new methods and tools for enhanced situational awareness are needed,

with advanced functions including fast and accurate event identification. Luckily, the

growing installation of system sensors like Phasor Measurement Units (PMUs) can

enable the development of applications to find the knowledge of system event time,

type, and locations.

To identify events, one idea is to use expert information. For example, one can

use signal transformation or filtering to map the time series data into some physically

meaningful domain for comparing with some predefined thresholds. These methods

use wavelet transformation (Kim et al. 2015), Kalman filtering (Pérez and Barros

2008), and Swing Door Trending (SDT) (Cui et al. 2018), etc. For example, (Cui

et al. 2018) utilizes a swing door to compress data with a pre-defined door width,

and the detectable events must have a certain level of slope rate. However, as these

methods need to pre-define some measures or thresholds, the usage may be biased

because of the specific design and test cases. Therefore, can we have a general model?

For obtaining a general form, ML-based methods are extensively introduced. For

example, previous work proposes to use existing events and their labels (time, type,

and location information) to train a multi-class classification model. For instance,

Decision Tree (DT) (Li et al. 2019a) treats each measurement as a factor to determine

the final decision. Although transparent, such a method is inefficient to make use of

complex measurement correlations. Therefore, (De Yong, Bhowmik, and Magnago

2015) proposes Support Vector Machine (SVM) to assign each input measurement a

weight to form the final feature. There are also more complex and powerful models such

4

as Convolutional Neural Network (CNN) (Yuan et al. 2021), Graph Neural Network

(GNN) (Yuan, Wang, and Wang 2020), and Long Short-Term Memory (LSTM) units

(Zhang et al. 2018).

Despite great advances, the following problems remain challenging to some extent.

(1) The learning models are biased with specific assumptions. (2) There are often

insufficient labels for learning. (3) Advanced sensing technologies may bring a large

volume of samples with high resolutions. In face of these challenges, how can we

develop efficient models for fast learning and inference? This thesis tries to provide

an answer by intellectually combing the physical properties with the powerful feature

extraction ability in ML models.

1.3 Transfer Knowledge across Systems

The above knowledge-extraction ML models require a certain amount of training

data. If the data are limited, the model training is likely to fail due to the curse of

dimensionality. Unfortunately, data-limited scenarios often occur for a completely new

grid or an old grid with increased metering, not to mention the common expansion

process with new nodes/lines. Thus, it is urgent to employ new methods to transfer

knowledge from the source grid with rich data to the target grid with limited data

(Li, Weng, and Tong 2020; Li, Ma, and Weng 2022).

For this goal, Transfer Learning (TL) is defined conceptually as an efficient

procedure to extract common knowledge from two different domains and boost the

performance of the data-limited domain. Specifically, an efficient approach is Domain

Adaptation (DA) (Pan, Kwok, Yang, et al. 2008; Long et al. 2013; Long et al. 2016)

which minimizes the data distribution discrepancy of two domains, usually in a low-

5

dimensional space for domain invariant features. Therefore, DA promises that joint

training using common knowledge can significantly boost the learning process. While

many efficient DA models have been applied to computer vision (Long et al. 2013;

Ganin et al. 2016a) and natural language process (Wu and Huang 2016), relatively

few work has been done for graph data (Shen et al. 2021).

For physical systems, the widely placed sensors bring numerous networked mea-

surements for nodes and edges with complex spatial-temporal correlations. Can we

fully explore the correlations to improve DA methods? Further, nodes or edges can

have different physical characteristics. Is this information beneficial to the distribution

adaptation? This thesis answers above questions and provide accurate and scalable

DA models between different systems.

1.4 Research Objectives

1. Develop novel ML models to learn physical equations for a normal system.

Explore in-depth mathematical guarantees of learning physics-consistent model.

Then, develop efficient and guaranteed learning models. Moreover, investigate

how to maintain the consistency for partially-observable systems.

2. Construct fast and cost-efficient ML models to identify system event information.

For real-world applications, the scenarios of limited labels and high volume

measurements are considered. To tackle data challenges, leverage physical

properties to boost the ML models.

3. Study the knowledge transfer between physical systems and propose cutting-

edge solutions. In particular, utilize the graph data structure, complex spatial-

6

temporal correlations, and physical characters of different components to signifi-

cantly enhance the knowledge migration.

1.5 Organization

The organization of this report is as follows:

1. Chapter 1 presents the general introduction, motivation, objectives, and organi-

zations of the research.

2. Chapter 2 presents a literature review of equation learning. Then, this chapter

investigates how to maintain the physics consistency for the learning model

with mathematical guarantees. The key step is to link the physical consistency

to the convexity of the optimization model to learn ML parameters. Such

convex ML designs are significantly explored for both the fully-observable and

partially-observable systems. Finally, this chapter also develops comprehensive

experiments on diversified systems to illustrate the outstanding performance of

proposed models.

3. Chapter 3 provides a literature summary of the physical system event identifica-

tion. Then, two frameworks are designed, covering supervised and unsupervised

learning. The first framework proposes an ensemble model to aggregate different

supervised learning models with different biases. When no label information is

available, the second framework leverages physical properties to provide labels.

In addition, to specifically process high volume data due to recent sensing tech-

nologies, a tensor-learning model is proposed to convert large-scale tensors to

compact and informative feature vectors for fast event identification. Finally, the

7

chapter presents extensive numerical validations to report the high performance

of developed methods.

4. Chapter 4 conducts a survey of the transfer learning for networked data. Subse-

quently, the chapter studies how the network structure, complex spatial-temporal

correlations, and physical characteristic information can be embedded to yield

highly-efficient knowledge transfer processes.

5. Chapter 5 presents the conclusions and contributions of the research. Then,

Chapter 5 discusses the future directions of the research work.

8

Chapter 2

LEARNING PHYSICAL EQUATIONS OF A NORMAL SYSTEM

2.1 Introduction

Modern physical systems like Internet of Everything (IoE) serves as a game-changer

to network different devices and products and boost the economy. While IoE brings

new opportunities for improving new inference and productivity, it remains an open

question about how to efficiently monitor various grids with often limited sensors

and system information. Such a problem is essential to maintain the grid stability.

For example, the rooftop PhotoVoltaic (PV) panels can gather solar power but often

generate the so-called inverse power flow (Weng, Liao, and Rajagopal 2017). If not

timely monitored, the inverse flow may hurt the instant system power balancing (Lew

et al. 2017). Thus, utilities and grid operators need new tools to monitor, control, and

operate the systems under these profound changes.

As the foundation of the intelligent monitoring and control, the system knowledge,

including the system connectivity and the parameters for system components, are not

always available due to limited instrumentation and low investment interest (Bhela,

Kekatos, and Veeramachaneni 2018). Further, the topology of the network may change

frequently and cause the parameter matrix to have different structures and values.

For example, the frequency of a topology change with PV panels (Jabr 2014) ranges

from eight hours to once a month for medium-voltage grids (Fajardo and Vargas 2008).

In addition, the unpredictable events (e.g., power outages) and regular maintenance

could result in a topology reconfiguration, which may not be well synchronized with

9

all stakeholders. Finally, many devices, such as plug-and-play components, are not

operated by the utilities and therefore, their connectives and status are not always

observed by the distribution grid operators.

To obtain the system knowledge, Machine Learning (ML) techniques are widely

utilized in the ear of big data. In general, this is a regression problem to find the

best model to represent the physical relationship (i.e., physical equations) between

system variables. Existing work can be categorized into the following groups. The first

group (1) utilizes black-box ML models to capture the physical equations. Specifically,

the employed ML models cover a wide range, including linear regression with Least

Absolute Shrinkage and Selection Operator (LASSO) (Y. Liao et al. 2018), Support

Vector Regression (SVR) (J. Yu, Y. Weng, and R. Rajagopal 2017), and Deep Neural

Network (DNN) (Wang et al. 2020), etc. Although the representational power increases

with more and more complex ML models, the low generalizability to unseen conditions

significantly prevents the application of black-box ML models in physical systems.

For instance, if the system operating point changes, the ML model can easily generate

inaccurate output values.

To tackle this issues, the second group (2) considers a grey box by enforcing

some physical constraints to the ML model. For instance, (Hu et al. 2020) encodes

Kirchhoff’s laws to the DNN model to represent power system operations. (Pan

et al. 2020) also embed the equality and inequality constraints to a DNN model. These

constraints can guarantee that some parameters and variables in the ML model should

contain certain physical behaviors. Despite the improvement, therse models require

physical prior to formalize constraints.

In addition, the above learning process focuses on learning the power flow equation

in power systems. However, there are many other equations in power systems or

10

symbolic expressions in other physical systems. To learn these equations, we may

not have as clear knowledge as power flow equations. Thus, our general goal is to

understand the system connections, system symbols, and the parameters over these

connections, which are hard and non-convex.

Thus, the third approach (3) makes the ML model a white box and directly

learns the symbolic equations from data, which lies in the domain of Symbolic

Regression (SR) (Udrescu and Tegmark 2020). Promising as it might be, SR is

NP-hard (Petersen et al. 2019; Lu, Ren, and Wang 2016). Mathematically, one can

cast SR as an optimization problem over both discrete variables to select symbols and

continuous variables to represent the symbol coefficients. Traditional solutions employ

evolutionary algorithms like Genetic Programming (GP) (Orzechowski, La Cava, and

Moore 2018). These methods start from an initial set of expressions and continue

evolving via operations like crossover or mutation. With fitness measures, GP-based

algorithms can evaluate and select the best equations. However, these methods have

poor scalability and limited theoretical guarantees (Petersen et al. 2019).

More recent SR studies leverage Neural Networks (NNs) with high representational

power. For the NN-based SR, I mainly categorize them into two approaches based on

the roles of the NNs. The first approach employs NNs to directly model the equations,

where sparsity of the NN weights is enforced to select symbols (Sahoo, Lampert,

and Martius 2018; Martius and Lampert 2016; Werner et al. 2021; Li and Weng

2021; Chen, Liu, and Sun 2021). Thus, the problem is transformed into training the

designed NN with sparsity regularization. However, due to the non-convexity of NNs,

the weight selection and updating can be easily stuck in local optima, failing to find

the exact equations.

The second approach employs NNs to search the symbol connections, and non-

11

linear optimizations like BFGS (Fletcher 2013) can be employed to estimate symbol

coefficients. For the searching procedure, (Petersen et al. 2019; Mundhenk et al. 2021)

leverage a Recursive Neural Network (RNN) as a policy network to iteratively generate

optimal actions that can select and connect symbols. (Biggio et al. 2021) employs

large-scale pre-training to directly map from data to the symbolic equations. While

these methods restrict the utilization of NNs in the search phase, the non-convexity of

NNs can still suffer the risk of sub-optimal decisions to formulate equations. Finally,

all above SR methods can hardly tackle the case when only partial variables are

measurable in a system.

To summarize, it remains to be a problem to develop efficient equation learning

models with provable performances to find the true physics. Next, when the system is

partially measurable, the learning model should maintain certain physics consistency

to the underlying equations. To fulfill these two requirements, I propose novel designs

with cost-efficient learning processes and strict theoretical supports.

2.2 Problem Formulation

Many physical networks are graphs, which can be denoted as G = {V , E} with V to

be the vertex set and E ⊆ V×V to be the edge set. For some scenarios, limited sensors

in the system pose challenges for the system knowledge extraction. Therefore, I define

V = {O ∪ H}, where O represents the set of observable nodes (nodes with meters)

and H represents the set of hidden nodes (nodes without meters). To represent the

physical quantities in the system, I denote x ∈ R|V| and y ∈ R|V| as the random

variables of the input and output of physical equations, respectively, where | · | for a

set is the cardinality of the set. Then, the physical equation can be formally defined

12

as y = g(x). Note that the dimension of x and y implies that there is one input and

output variable for each node for the sake of convenience. However, this can be easily

generalized into multiple variables.

Subsequently, I consider two cases in the thesis. First, if the system is fully-

observable and O = V , I denote {xn,yn}Nn=1 as the N samples obtained from meters.

Then, the goal is to completely figure out the underlying physical equations y = g(x).

Thus, the problem is:

• Problem 1: learn physical equations of a fully-observable system.

• Input: N measurements {xn,yn}Nn=1 for system inputs and outputs.

• Output: a symbolic function f such that y = f(x). Further, after proper

simplification, f(·) should approximately equal to g(·). Namely, f(·) should

have the same physical symbols, connections, and parameters of the connections

as g(·).

For the second case, the system is partially observable and O ⊂ V . Then, I denote

{xn
O,y

n
O}Nn=1 as the N samples obtained from meters in observable nodes. With data,

the target is to learn a model that maintains certain physics consistency to g(·). Thus,

the problem is:

• Problem 2: learn a physics-consistent model of a partially-observable system.

• Input: N measurements {xn
O,y

n
O}Nn=1 for system inputs and outputs of observable

nodes.

• Output: a function h such that yO = h(xO). Further, h(·) should maintain

certain consistency to g(·) with (1) high extrapolation capacity when system

operational conditions change and (2) accurate parameter estimation for a subset

of parameters in g(·).

13

As illustrated in Section 2.1, the above problems are combinatorial optimizations

as one needs to search correct symbols, estimate symbol coefficients (i.e., system

parameters), and approximate unobservable quantities (in Problem 2). The problem is

in general non-convex and can hardly produce global optimal solution that corresponds

the true physics. Thus, this chapter tries to solve both problems with convexified

relaxations and strict mathematical supports. Moreover, extensive experiments are

implemented to show the superiority of proposed solutions.

2.3 Learn Physical Equations for A Fully-observable System via CoNSoLe: Convex

Neural Symbolic Learning

2.3.1 Problem Scopes and Examples

In this section, I tackle Problem 1 in Section 2.2 to learn the complete physical

equations. I assume the underlying equation y = g(x) follows compositionality and

smoothness assumptions in (Udrescu and Tegmark 2020), which are often the case

in physics and many other scientific applications. Namely, the system equations can

be explicitly written by simple symbols and basic mathematical operators (i.e., plus,

minus, multiply, and divide). For example, for a 2-node system, I can write down the

equations as follows:

y1 = 3x21 cos(2.5x2),

y2 = 2
(
cos(3x1) + 1.5x22

)2
.

(2.1)

Given data from input x = [x1, x2]
⊤ and output y = [y1, y2]

⊤ variables, where ⊤

represents the transpose operator, the target is to find correct symbols like cos(x) and

x2 and estimate corresponding parameters like 3, 2.5, 2, and 1.5 in Equation (2.1).

14

Figure 1. An example of LoCaL structure and the state transition calculation.

2.3.2 Construct A Neural Network to Represent Physical Equations

To tackle the above problem, the first step is to represent the multi-input multi-

output symbolic equations. Specifically, I utilize a neural network due to the efficiency

(Sahoo, Lampert, and Martius 2018). For example, Fig. 1 demonstrates how an NN

can represent Equation (2.1). Although Section 2.1 presents that common NN models

will lead to local-optimal solutions, I will prove that the the proposed NN in Fig. 1 has

local convexity. Thus, I name the NN as Locally Convex Equation Learner (LoCaL).

Specifically, each input entry first goes through the activation functions from

a symbol library Φ. For example, in Fig. 1, I denote Φ = {x, x2, cos(wx)} to

correspond with three neurons from top to bottom in the dotted black box, where w

is a learnable weight. As for weights of x and x2, they only need to appear in the later

summation layer. Then, some activation outputs will be selected as multipliers for the

multiplication. Subsequently, the multiplied outputs are selected and summed together.

15

The repetition of symbolic activation, multiplication, and summation formulates final

equations.

Mathematically, I denote Zk ∈ {0, 1}nk×nk+1 and W k ∈ Rnk×nk+1 as the indicator

and weight matrix between the kth and the (k+ 1)th layer of the LoCaL, respectively.

nk is the number of neurons for the kth layers. Zk[i, j] = 1 indicates that the connection

exists between the ith neuron in the kth layer and the jth neuron in the (k+ 1)th layer,

where Zk[i, j] is the (i, j)th entry of Zk. I assume there are (K + 1) layers in LoCaL

and denote hk ∈ Rnk to be the output of the kth layer. Naturally, I have h0 = x and

hK = y. For the symbolic activation or summation layer, I have hk+1 = Z⊤
k ◦W⊤

k hk,

where ◦ represents the Hadamard product and helps to zero out some connections.

For the multiplication layer, I have hk+1[j] =
∏

Zk[i,j]=1 hk[i]. In general, I denote

LoCaL as f(x; {Zk}K−1
k=0 , {W k}K−1

k=0). The search algorithm identifies the locations of

the entry 1 in {Zk}K−1
k=0 and the estimation process learns the corresponding weights

in {W k}K−1
k=0 using {xn,yn}Nn=1.

2.3.3 Search LoCaL Structures with Double Convex Deep Q-Learning

The high dimensionality of the search space is a general problem for LoCaL and

other SR models. For an efficient search, NN-based RL methods are often utilized,

e.g., deep Q-learning (Fan et al. 2020). In this subsection, I show how to design a

convexified deep Q learning to identify the true physics. The key for convexification

is to employ the cutting-edge Input Convex Neural Network (ICNN) (Amos, Xu, and

Kolter 2017) to approximate a convex function.

Markov Decision Process (MDP) to search the structure of LoCaL. The

search procedure is an MDP where each layer of LoCaL can be treated as a state

16

and the connections between layers are actions. At each state, the deep Q-learning

agent aims to find the optimal policy to decide the next action (Baker et al. 2016).

Therefore, I denote ak ∈ {0, 1}na as the kth action vector where ak[(i− 1)nk + j] = 1

implies that the connection ij exists for the ith neuron in the kth layer and the jth

neuron in the (k + 1)th layer. na = max{nknk+1}K−1
k=0 is the dimensionality of the

action space. Also, I denote sk ∈ Zns as the state vector to represent the current state

for the kth layers, where ns = max{nk}Kk=0 is the dimensionality of the state space.

For a known state and a fixed action, the next state is exactly known due to the exact

neuron connections, which implies a deterministic state transition. Thus, I utilize a

linear transformation to represent the state transition process. ∀0 ≤ k ≤ K − 1, I

define

s0 = [1,0]⊤, sk+1 = (Z
′

k)
⊤sk = [Mat(ak);0]

⊤sk, (2.2)

where Mat(·) is the operation to convert a vector to a matrix and I fill 0s to some sk,

ak, and Z
′

k to maintain the fixed size. [·; ·] is the row concatenation process. I show

this linear state transition is essential to guarantee the convexity of negative optimal

Q-function in Theorem 1. For the calculation example of state transition, one can

refer to Fig. 1. Finally, I can obtain Zk from Mat(ak) by deleting the filled 0s. By

the designed states and actions, the search will always start at s0 and end at sK in

one episode, thus formulating the LoCaL function f(x; {Zk}K−1
k=0 , {W k}K−1

k=0).

Double convexity for the negative reward and Q-function in the search

model. Training LoCaL can bring a terminal reward (Petersen et al. 2019) to

evaluate the episode. However, this reward is insufficient to enable a convex evaluation

for instant state-action pairs. Thus, I propose to restrict the negative reward function

to be convex. Based on Bellman equations (Bertsekas 2015), this design will ensure

17

the convexity of the negative optimal Q-function. More proof details can be referred

to Theorem 1.

Specifically, I utilize an ICNN to model the reward function −R(sk,ak) such that

−R(sk,ak) is convex in states and actions in continuous spaces. −R(sk,ak) requires

proper training to do the correct evaluation. In the tth episode, I collect the training

input of state-action pairs {stk,at
k}K−1

k=0 . Then, the output can be defined as the

terminal reward to evaluate the obtained LoCaL which is denoted as ft(·). Basically,

I calculate the Normalized Root-Mean-Square Error (NRMSE) (Petersen et al. 2019)

of the trained ft(·) function such that NRMSEt =
1
σy

√
1
N

∑N
i=1(yi − ft

(
xi)

)2, where

σy is the standard deviation of the outputs. Then, the output of the reward can be

calculated as Rt =
1

1+NRMSEt
. Therefore, I can train −R(·) using {{stk,at

k}K−1
k=0 ,−Rt}.

It’s important to note that building this convex function −R(·) is better than

directly leveraging the terminal reward for evaluations. The reason is that the former

process not only provides theoretical guarantees in Theorem 1 but also evaluates the

actions in a continuous space with convexity. Namely, one can utilize R(sk, ãk) to

evaluate a continuous action ãk, given that there is a much higher probability to

obtain ãk rather than the discrete action ak in the deep Q-learning. Then, to update

Q values, I have the following iterative computations based on the temporal difference

(Baker et al. 2016):

Qt+1(sk, ãk) = Qt(sk, ãk) + α
(
R(sk, ãk) + γmax

a
Qt(sk+1, ã)−Qt(sk, ãk)

)
, (2.3)

where Qt(sk, ãk) is the Q value at the tth episode for state sk and action ãk. α and

γ are pre-defined learning rate and discount factor, respectively. Similarly, I utilize

another ICNN to represent −Q(sk, ãk) such that −Q(sk, ãk) is convex in ãk given

fixed sk. Therefore, one can solve a convex optimization problem maxaQt(sk+1, ã) to

obtain the (approximately) global optimal action for Equation (2.3) in each iteration.

18

By definitions of the discrete actions, I can restrict the continuous action space in

a hypercube conv({0, 1}na), i.e., a convex hull of the discrete actions. Thus, the

optimization problem is:

ã∗ = argmin
ã

−Q(s, ã), ã ∈ conv({0, 1}na). (2.4)

Based on (Amos, Xu, and Kolter 2017), this convex optimization problem can

be solved via a bundle entropy method. After obtaining a continuous solution ã∗, I

discretize it to a discrete vector a∗ to build LoCaL. One simple method is to enforce

a∗[i] = 1 if ã∗[i] ≥ 0.5, and otherwise a∗[i] = 0. Thus, both Q(sk, ãk) and Q(sk,ak)

can be trained using Equation (2.3). Practically, I introduce ϵ-greedy strategy (Hester

et al. 2018), experience replay (Mnih et al. 2015) and a target Q-network (Fan

et al. 2020) to update Q-function, thus boosting the convergence to the optimal

Q-function. The specific algorithm can be seen in Algorithm 1. Finally, based on

Theorems 1-2, if the optimal Q-function is found, solving the convex optimization

via the optimal Q-function can generate the correct structures of LoCaL and exact

equations.

Symbolic static and dynamic constraints. Constraints can be added to

accelerate the search process (Petersen et al. 2019; Udrescu and Tegmark 2020).

For example, in Algorithm 1, I propose a constraint checking program for the state-

action pairs to avoid the invalid search, suitable for arbitrary restrictions. Then,

I emphasize a general type of constraint, symbolic constraint, for the SR problem.

The symbolic static constraint requires that each equation contains only a subset

of symbols. For example, the equation y1 = x1x2 · · ·x100 shouldn’t exist since it is

too complicated for real-world systems. This constraint eliminates part of the action

space and can be checked by counting the number of 1s in the action vector. The

symbolic dynamic constraint can gradually reduce the search space based on symbol

19

Algorithm 1 CoNSoLe: Convex Neural Symbolic Learning
Input: training dataset {xi,yi}Ni=1.
Hyper-parameters: LoCaL layer number K, initial state s0 = [1,0]⊤, discount
factor γ ∈ (0, 1), ϵ for ϵ-greedy strategy, λ as a threshold to stop searching, ICNN
for reward function −R(s,a), ICNN for Q-function −Q(s,a), replay buffer B = ∅,
maximum episode T , target network Q

′
(·) = Q(·), and target network update

interval T0.
while t ≤ T do

while k ≤ K do
Solve Optimization in Equation (2.4) with −Q(stk,a) to obtain ã∗

k.
Use ϵ-greedy to select ãt

k from ã∗
k and a random action. ▷ ϵ-greedy strategy.

Discretize ãt
k to obtain at

k.
Execute at

k and use Equation (2.2) to obtain skk+1.
Check if at

k and skk+1 satisfy certain constraints. Otherwise, delete this state
transition and restart the iteration from stk. ▷ Constraint checking.

Formulate LoCaL, train LoCaL with {xi,yi}Ni=1, and calculate Rt.
Train the reward function −R(·) using training data {{stk,at

k}K−1
k=0 ,−Rt}.

∀0 ≤ k ≤ K, insert (stk,a
t
k, s

t
k+1, Rt) and (stk, ã

t
k, s

t
k+1, R(s

t
k, ã

t
k)) to B0.

Sample a minibatch B0 ⊂ B
for (sm,am, sm+1, Rm) ∈ B do ▷ Experience replay.

Solve Optimization in Equation (2.4) with −Q′
(sm+1,a) to obtain ãm+1.

ym = Rm + γQ
′
(sm,am)

Train Q(·) using training data {sm+1,am+1, ym}m
if t mod T0 = 0 then

Q
′
(·) = Q(·) ▷ Update target Q-network.

if |Rt − 1| ≤ λ then
End the search process.

Output: LoCaL with the best performance and the corresponding equations.

20

correlations. Specifically, I investigate the (K − 1)th layer’s neurons that are linearly

summed to form the equation. If some of these neurons have strong linear correlations

to the output neuron (e.g., Pearson correlation coefficient larger than 0.99), they

should be kept subsequently. Namely, I can maintain the path from input neurons to

the neurons to be kept and reduce the search space.

2.3.4 Theoretical Analysis for CoNSoLe to Learn Physical Equations

I employ explorations, experience replay, and a target Q-network to boost the

convergence to the optimal Q function. However, the extra requirement of the convex

shape for the negative Q-function may deteriorate the convergence performance. Thus,

I first prove that in CoNSoLe, the negative optimal Q-function is also convex so that

the convex design doesn’t affect the convergence. Then, I prove that the convexity of

the negative optimal Q-function eventually yields the exact equations.

Theorem 1. ∀0 ≤ k ≤ K − 1, the negative optimal Q-function −Q∗(sk, ãk) in the

proposed CoNSoLe framework is convex in sk and ãk, where sk is the discrete state

and ãk is the continuous action at the kth stage.

The proof can be seen in Appendix A.1. Based on the convexity of negative

optimal Q-function, the optimal sequence of states (s0, s
∗
1, · · · , s∗K) and actions

(a∗
0,a

∗
1, · · · ,a∗

K−1) can be found via solving the convex optimization problem. Then,

I have the following theorem.

Theorem 2. Let f ∗(·;W) denote the LoCaL constructed by the optimal sequences of

states (s0, s
∗
1, · · · , s∗K) and actions (a∗

0,a
∗
1, · · · ,a∗

K−1) from −Q∗(·), where W is the

set of weights of f ∗(·;W). If f ∗(·;W) can be trained with noiseless datasets and the

21

training can achieve the global optimal weights W ∗, f ∗(·;W ∗) represents the exact

equations.

The proof can be seen in Appendix A.2. Theorem 2 requires that LoCaL can

learn the global optimal weights. The requirement is generally hard to achieve due

to the non-linearity and non-convexity of LoCaL. However, I show that with mild

assumptions, there are local regions in the LoCaL loss surface with strict convexity.

Then, if I have proper initializations, the gradient-based weight updating can find the

global optimum. Specifically, I have the following theorem.

Theorem 3. Assume the following conditions hold: (1) the equation g(x) is C2

smooth and has bounded second derivatives with respect to weights, (2) ∃x in the

input measurement space, g(x) has non-zero gradients with respect to weights, (3) the

structure of LoCaL is correctly searched to exactly represent symbols and symbol

connections in g(x), and (4) the training dataset of LoCaL is noiseless. Then, for

the MSE loss surface of LoCaL, each global optimal point has a strictly convex local

region.

The proofs can be seen in Appendix A.3. Note that Assumptions 1-2 easily hold

for common physical equations in nature (Udrescu and Tegmark 2020). Assumption 3

relies on the search algorithm, and I show, both theoretically and numerically, that

the double convex deep Q-learning has good performances. Assumption 4 relies on the

quality of data and I focus on the noiseless data in this paper. What’s more, Equation

(A.3) in the proof suggests that if the absolute noise values are small, the locally

convex region still exists. I also numerically prove CoNSoLe is robust under certain

noise levels in Section 2.3.5.0.5. To summarize, these assumptions are acceptable. To

22

quantify the range of the local region for a LoCaL with a certain complexity, I have

the following theorem.

Theorem 4. Suppose Assumptions 1-4 in Theorem 3 hold. For a LoCaL with

one symbolic activation, multiplication, and summation layer, the set of local convex

regions with global optima is U = {W
∣∣∣ ∣∣ d

dt

∣∣
t=0

ŷ(xi,W+tX)

∣∣2
η

∣∣ d
dt

∣∣
t=0

ŷ(xj ,W+tX)

∣∣ > |ŷ(xk,W) − yk|}, where

notations are defined in the proof.

The proofs can be seen in Appendix A.4. I explain the region range is large for a

stable system that satisfies all assumptions in Theorem 4.

Physical interpretations of the convex region size. Physical systems in

scientific and engineering domains have certain stability that can withstand parameter

changes to some extent. Further, this ability should hold for arbitrary x and y.

Thus, I can assume d
dt

∣∣
t=0
ŷ(xi,W + tX) ≈ d

dt

∣∣
t=0
ŷ(xj,W + tX) ≈ d

dt

∣∣
t=0
ŷ(xk,W + tX)

for xi,xj,xk. Then, the inequality in set U can be approximately rewritten as

1
η
> ||w−w∗||2, where w and w∗ are the vectorized W and W ∗, respectively. Namely,

the distance between any point W in the region to the global optimal point W ∗ in

the region is bounded by 1
η
. Based on Equation (A.16), η is the bound of the ratio

of second derivative to the first derivative. For a stable system, this ratio should be

small. Otherwise, the system can easily crash with a small parameter disturbance.

Thus, 1
η

is relatively large and so is the region of U . An example of the range is

displayed in Section 2.3.5.0.2. Finally, the above analysis also holds when the LoCaL

of the system equation has more than one symbolic activation, multiplication, and

summation layers. This is because Equations (A.17) always hold as long as I can find

a η to bound the ratio of second derivative to the first derivative, which is irrelevant

to the structure of LoCaL.

23

2.3.5 Experimental Result

2.3.5.0.1 Settings

Datasets. I use the following datasets for testing. (1) Synthetic datasets. I

create two datasets, Syn1 and Syn2, for testing. Syn1 has the following equations:

y1 = 3x21 cos(2.5x2), y2 = 4x1x3, and y3 = 3x23. Syn2 is more complex with the

following equations y1 =
√
2.2x1x2 + x1x

2
2, y2 = sin(1.8x1)

(
log(3x2) +

√
x3
)
, y3 =

√
3.7x3 log(1.6x1)+x

2
1. For the training data, each input variable is randomly sampled

from a uniform distribution of U(1, 2) to avoid invalid values like log(0). Totally, I

create 2, 000 samples for training. Then, in the test phase, I utilize another 2, 000

samples whose input variables are sampled from U(3, 4). The symbolic activation pools

are {x, x2, cos(x)} and {
√
x, x, x2, log(x), sin(x)} for Syn1 and Syn2, respectively.

(2) Power system dataset. Power flow equation determines the operations of

electric systems (Jiafan Yu, Yang Weng, and Ram Rajagopal 2017). For node i in

an M -node system, the equation can be written as pi =
∑|M |

m=1Gim(uium + vivm) +

Bim(vium − uivm) and qi =
∑M

m=1Gim(vium − uivm) − Bim(vium − uivm), where ui

and vi are the real and imaginary components of the voltage phasor at node i. pi and

qi are the active and reactive power at node i. Gim and Bim represent the physical

parameters of line im. If line im does not exist, Gim = Bim = 0. Therefore, I can

treat x = [u1, v1, · · · , uM , vM]T and y = [p1, q1, · · · , pM , qM]T . The target is to learn

the underlying system topology and parameters, which has broad impacts on the

power domains (Li et al. 2021). In this experiment, I implement simulation from a

5-node system using MATPOWER (MATPOWER community 2020) and two year’s

hourly data. The first 8, 760 points are used for training while the remaining samples

24

are used for testing. The symbolic activation pool is {x}. I denote this dataset as

Pow.

(3) Mass-damper system dataset. Equations of the mass-damper system can

be approximately written as: q̇ = −DRD⊤M−1q, where q̇ is a vector of momenta,

D is the incidence matrix of the system, R is the diagonal matrix of the damping

coefficients for each line of the system, and M is the diagonal matrix of each node

mass of the system. Thus, I can set y = q̇ and x = q and the goal is to learn

the parameter matrix −DRD⊤M−1. I conduct the simulation via MATLAB for a

10-node system and obtain 6, 000 points for 1min simulation with a step size to be

0.01s. The first 3, 000 samples are used for training while the rest samples are used

for testing. The symbolic activation pool is {x}. Then, I denote the dataset as Mas.

Benchmark methods. The following benchmark methods are utilized. (1) Deep

Symbolic Regression (DSR) (Petersen et al. 2019). DSR develops an RNN-based

framework to search the expression tree. Especially, the risk-seeking policy gradient is

utilized to seek the best performance. Then, BFGS (Fletcher 2013) can solve the non-

linear optimization and estimate the symbol coefficients. (2) Vanilla Policy Gradient

(VPG) (Petersen et al. 2019). VPG is a vanilla version of DSR with a normal policy

gradient rather than the risk-seeking method. (3) Equation Learner (EQL) (Sahoo,

Lampert, and Martius 2018; Martius and Lampert 2016). EQL creates an end-to-end

NN to select symbols and estimate the coefficients. The sparse regularization is

enforced for the NN weights to search symbols. (4) Multilayer Perceptron (MLP). I

also employ a standard MLP to learn the regression from x to y. I only evaluate the

extrapolation capacity of MLP in the test dataset.

For DSR, VPG, and EQL methods, based on the input datasets, I adjust the

symbol and operator library to enable the same searching space as CoNSoLe for

25

fair comparisons. I run the benchmark methods 5 times with different random seeds

and present their best results. As for my method, I only run 1 time and obtain good

results due to the convex design and the ϵ-greedy strategy.

Metrics for evaluation. I employ the following metrics. (1) Average coefficient

estimation percentage error Ec. For an equation with H symbols, I calculate the error

as Ec =
1
H

∑
h PE(wh, ŵh), where wh and ŵh represents the true and the estimated

coefficients for the hth symbol, respectively. PE is the operation to calculate the

percentage error. If there is no matched symbol for the hth true symbol, I denote

PE(wh, ŵh) = 100%. Note that when calculating Ec, proper simplifications may be

needed. For example, cos(2.5(
√
x)2) = cos(2.5x). (2) NRMSE in the test dataset. I

measure the extrapolation capacity in the test dataset and utilize NRMSE employed

in Section 2.3.3.

Implementing details of CoNSoLe. Hyper-parameters of CoNSoLe exist

for both the double convex deep Q-learning and the LoCaL. In the deep Q-learning,

I set γ = 0.2, ϵ = 0.4, T = 600, λ = 10−2, T0 = 10 for Algorithm 1. Furthermore, to

train the negative Q-function and the reward function, I set the learning rate to be

5× 10−3 and the number of epochs for training to be 50. Then, I set the batch size

for the negative Q-function to be 100. If the number of data in the replay buffer is

less than 100, no training happens for the negative Q-function. Additionally, all the

data gathered in one episode are used to train the negative reward function. As for

the LoCaL, I set K = 3, the learning rate to be 1× 10−2 and the number of training

epochs to be 8. I make these training epochs to be small since training the LoCaL is

the most time-consuming part of CoNSoLe. Furthermore, if the structure of LoCaL

is correctly searched, a small number of iterations can help LoCaL to gain the global

optimal weights. Finally, I initialize all trainable weights in LoCaL to be 1. The

26

following results show that a relatively large area is suitable for an initial guess of

LoCaL.

2.3.5.0.2 Verification and 3-D Visualization of Convex Mechanisms

I first utilize a toy example to verify the benefits of convex designs for two sub

problems. Specifically, I consider to learn y1 = 3x21 cos(2.5x2) with the loss function

L =
∑N

i (y
i[1]−w1x

i[1]2 cos(w2x
i[2])2, where the data sample notations are defined in

above. As shown in Fig. 2a, I design a 4-layer LoCaL with two learnable parameters

w1 and w2 to represent the coefficients. Thus, in the search phase, the goal is to

identify the action a1. I plot −Qt(·) when t = 1, 5, 10 in Fig. 2b. The convexity always

exists so that the algorithm can quickly find the global optimal solutions in red dots.

Next, as the agent update Q values with true rewards, the Q-function converges to the

optimal function within 10 episodes. Finally, the convex −Q∗(·) remains unchanged

and can bring the optimal action and the true equation, which supports Theorem 2.

Subsequently, I plot the loss surface of L in Fig. 2c. I find that around the two

global optima (3, 2.5) and (3,−2.5), there are convex regions that have an approximate

quadratic shape. To further quantify the range for proper initialization, I vary the

initial weight w0 ∈ {−10,−9, · · · , 10} for w1 and w2 in LoCaL. Fig. 2 reports the

final training loss with respect to different w0, and I find the safe range for initialization

is [−3, 7] \ {0}. This range is relatively large when compared to the optimal values.

These observations support the Theorems 3 and 4. Finally, w0 = 0 does not work

since ∂L
∂w2

∣∣
w2=0

= 0 always holds, which prevents the weight updating using gradient

methods.

27

Figure 2. Illustrations of convex mechanisms using a toy example.

2.3.5.0.3 Convexity Guarantees of CoNSoLe to Learn Correct Equations

In this subsection, I report the results of the equation learning. First, I list

the learned equations for Syn1 and Syn2 in Tables 1 and 2. They present that

CoNSoLe has the best performance in most of the equations while DSR ranks

second. In particular, CoNSoLe can accurately learn all equations in Syn1 and Syn2.

The superior performance is mostly due to the convex design of the search and the

coefficient estimation process with provable guarantees. In addition, I observe that for

the result of CoNSoLe in learning y3 of Syn1, I have 3x23 cos(0.005x1) ≈ 3x23. This

shows that there is a possibility that the search result of CoNSoLe might not be

optimal (i.e., an extra consine term exists but is close to 1), but the learned equation

is still highly accurate. Such an observation nonetheless guides further study of the

coupling relationship between the search and the estimation procedures.

DSR doesn’t perform well when the underlying equation is relatively complex,

28

Table 1. The learned equations for Syn1 and Syn2, table 1.

CoNSoLe

Syn1

y1 = 3x21 cos(2.5x2)
y2 = 3.999x1x3

y3 = 3x23 cos(0.005x1)

Syn2

y1 = 1.47
√
x1x2 + 1.001x1x

2
2

y2 = sin(1.8x1)
(
log(2.998x2) + 0.998

√
x3

)
y3 = 1.931

√
x3 log(1.594x1) + 1.007x21

VPG

Syn1

y1 = −0.364x21 cos(1.56x3)
+4.707x2 + 0.854x22 cos(1.98x1)
y2 = 3.293x2 + 0.554 cos(2.82x2)

y3 = 3x33

Syn2

y1 = 1.462 log(x1)x2 + 0.830x1x
2
2

y2 = sin(1.220x1) log(3.024x2)
+0.248 sin(1.454x1)x

2
2 + 0.567 sin(1.56x3)

y3 = 2.081
√
x3x2 + 1.045x21

e.g., y1 in Syn1 and y1 and y2 in Syn2. This is because DSR may still fall into a local

optimal solution despite risk-seeking policy design. VPG method performs worse

than DSR since VPG considers an expected reward (Petersen et al. 2019). Finally,

EQL performs the worst as it merges the symbol search and the coefficient estimation

in one NN model, which provides few guarantees of accurate learning. The above

observations and analyses are consistent with the result of coefficient estimation errors

and prediction errors in Fig. 3a and 3b. For the Pow and Mas, CoNSoLe doesn’t

learn completely exact equations within T = 600 episodes. This is because they have

a large number of variables to be considered. However, CoNSoLe is still better than

other methods.

29

Table 2. The learned equations for Syn1 and Syn2, table 2.

DSR

Syn1

y1 = 0.905x2 + 3.88 cos(2.48x2) + 1.74x21 cos(1.98x1)
y2 = 4.02x1x3

y3 = 3x23

Syn2

y1 = 1.223
√
x1x2 + 0.181x1 log(x3) + 0.925x1x

2
2

y2 = sin(1.633x1) log(2.965x2)
+0.874 sin(1.723x1)

√
x3

y3 = 2.081
√
x3x2 + 1.045x21

EQL

Syn1

y1 = 0.23x1 + 0.021x23 + 0.283x3
y2 = 0.03x1x3 + 0.488x1

+0.045x23 + 0.6x3
y3 = 0.366x1 + 0.03x23 + 0.45x3

Syn2

y1 = 0.44x2 + 0.2x21 + 0.14x1x
2
2 + 0.45x1x2

+0.51x1 + 0.24x22 + 0.55x2 + 0.705
y2 = 0.018x21 + 0.012x1x

2
2 + 0.0636

y3 = 0.383x2 + 0.357x3 + 0.31x1x2 + 0.487

(a) The average error Ec(%) of coefficients. (b) NRMSE of test datasets.

Figure 3. Results of equation learning for different methods and datasets.

2.3.5.0.4 Ablation Study: Exploration and Convex Search are Essential

I conduct an ablation study to further understand what factors are important in

the CoNSoLe. I test the result with Syn1 and Syn1 and report the Ec(%) values.

Specifically, I investigate the following cases. (1) No ablation. (2) Drop exploration

30

in deep Q-learning. I delete the ϵ-greedy strategy. (3) Drop double-convex deep-Q

learning. I replace this design with a traditional deep-Q learning. (4) Drop coefficient

estimation using LoCaL. After learning the structure of LoCaL, I reformulate a

non-linear optimization and utilize BFGS (Fletcher 2013) in DSR, instead of gradient

descent in LoCaL, to estimate the coefficient. (5) Drop static symbolic constraint.

(6) Drop dynamic symbolic constraint. These two constraints are mentioned in the

constraints of the search process.

Figure 4. Ec(%) of ablation study.

Then, Fig. 4 shows that cases (2) and (3) cause large errors. For case (2), if no

exploration strategy is added, the updating of the Q-function and the reward function

is slow. For case (3), the non-convex search induces many sub-optimal actions in

the search process. Thus, these two cases cause a slow search process and significant

errors after T = 600 episodes. For symbolic constraints in (5) and (6), removing them

slightly increases the error for Syn1. This shows these constraints are beneficial to the

search process. Finally, I find that utilizing BFGS in (4) can bring good results with

initialization in the locally convex region. Since the non-linear optimization has the

31

same loss surface as LoCaL, the locally convex region in Theorems 3 and 4 can prove

the good performance of BFGS.

(a) Ec(%) w.r.t. SNRs. (b) Ec(%) w.r.t. volumes.

Figure 5. Ec(%) of sensitivity analysis.

2.3.5.0.5 CoNSoLe is Robust with Changing Noise Levels and Data Volume

I utilize Syn1 and Syn2 to examine the robustness of the framework with changing

noise levels and data volumes. For the noise level, I consider the Signal-to-Noise Ratio

(SNR) such that SNR ∈ {80, 90, 100, 110, 120}. For the data volume, I fix SNR = 100

and vary N ∈ {500, 1000, 1500, 2000, 2500}. Fig. 5a and 5b demonstrate the results.

I find that when SNR ≥ 100, the error can be less than 1%. This noise level is

suitable to real-word systems. For example, SNR = 125 for electric measurements (Li

et al. 2021). For the data volume, the overall error is less than 2% when N ≥ 500,

which shows a robust performance of CoNSoLe.

32

2.4 Learn A Physics-Consistent Model for A Partially-observable System via PCNN:

Physics-Consistent Neural Network

2.4.1 Problem Scopes and Examples

In this section, I tackle Problem 2 in Section 2.2 to learn a physics-consistent

model h(·) using measurements obtained from limited sensors in the system. The

problem can still be generally decomposed into searching correct physical symbols and

estimating the symbol coefficients. However, the existence of hidden quantities brings

extra complexity to the problem. To simplify the problem, I assume the symbols for

each quantity is known and focus on how to properly represent the hidden quantities

and construct a physics-consistent model. Thus, in this section, I utilize x to represent

the variable transformed from input measurements and known physical symbols for

the convenience of later derivations. Consequently, the underlying physical equations

y = g(x) can be written in a linear format:

yH

yO

 =

LHH LHO

LOH LOO

 ·

xH

xO

 , (2.5)

where I utilize the subscripts H and O as partitions of the hidden and observed

variables, respectively. L is the parameter matrix of the system to be figured out.

However, the existence of xH makes it difficult to directly identify the non-zero values

in L, i.e., discover correct connections and edge parameters in the systems.

To guarantee the correct learning and maintain certain physics consistency, I

borrow the idea of Network Reduction (NR) (Shi 2012) and propose to learn physical

equations of reduced grids where virtual nodes are placed to represent the impacts

of hidden nodes. In this thesis, I restrict the study scope: reduced grids should

33

maintain the inner connections and parameters the same as the true grids. The

existence of hidden nodes only affects the connections and parameters to the boundary

nodes. To mostly achieve this restriction, I propose in the next subsection that graph

decomposition can help to model the reduced grid.

Thus, I propose to investigate the ability of estimating connections and parameters

for small regions of the system. Specifically, I decompose the whole graph G into

|O| unit-graphs {Gi = {Vi, Ei}}|O|
i=1 with the graph center to be one observable node

and the graph radius to be 1, where I define that the distance between every two

connected nodes is 1. The concrete process is illustrated in the following subsection.

2.4.2 Graph Decomposition to Investigate the Fine-grained Capacity of Learning

Physics

In this subsection, I show different types of unit graphs based on the observability,

illustrated in Fig. 6.

Fully-observable unit-graph (F-Graph): This type of unit graph contains

an observed node with all its 1-distance neighboring nodes observable. I denote the

set of the central nodes in these unit graphs as F . Therefore, any nodes i ∈ F with

all of its 1-distance neighboring nodes, Neigh(i), construct a fully-observable unit

graph (F-Graph) Gi = {i ∪ Neigh(i), Ei}. Then, the node i is isloated from H. Based

on equation (2.5), the topology and parameters of this sub graph can be accurately

recovered via a linear layer of a neural network, i.e., a linear regression.

Partially-observable unit-graph (P-Graph): this type of area includes an

observed node with at least one of its 1-distance neighboring nodes hidden. I denote

the set of the central node set of these unit graphs as P. Therefore, any node

34

Figure 6. Physical system unit graph decomposition.

j ∈ P with nodes in Neigh(j) construct a partially-observable sub graph (P-Graph)

Gj = {j ∪ Neigh(j), Ej}. Clearly, j has hidden boundary nodes H∩ Neigh(j). Thus, I

need more layers instead of a linear layer to tackle the randomness from xH∩Neigh(j),

which requires multiple deep layers. Since the unknown |H ∩ Neigh(j)| prevents the

learning model construction, I aggregate |H∩Neigh(j)| boundary nodes into K virtual

nodes for Gi,∀i ∈ P, where K is a hyper parameter. I show how to obtain a doable

K value in Section 2.4.4. For Gj, I denote the virtual node set to be Nj = {jk}Kk=1.

With above categorization, I observe that the different types of uni-graphs require

different NN layers to represent the corresponding physical equations. Therefore, I

propose to represent h(·) as a Physics-Consistent Neural Network (PCNN) with a

structural design of the deep NN and the shallow NN.

35

2.4.3 PCNN Structure: Deep-Shallow Hierarchy

F-Graph Layer: I utilize a linear layer to recover the topology and parameter of

F-Graphs.

hF (xO) = θFxO, (2.6)

where θF is the weights for the F-Graph layer. As discussed in Section 2.4.2, the

equation of the center node in F can be completely represented via the linear layer.

Thus, F-Graph layer can be pre-trained to identify the node set F . As the input is

all the data in O, the pre-training should include a Least Absolute Shrinkage and

Selection Operator (LASSO) regularization term λ1||θF ||1 to guarantee the sparsity,

where λ1 is the hyper parameter for the penalty and || · ||p is the lp norm. Namely,

the pre-training tries to minimize:

1

N

N∑
n=1

||yn
O − hF (x

n
O)||22 + λ1||θF ||1, (2.7)

After the pre-training, I obtain h0F (xO) = θ0
FxO as the pre-trained linear layer.

This helps to identify the F-Graphs. Specifically, ∀i ∈ O, the identification criteria is:

1

N

N∑
n=1

||yn
O[i]− h0F (x

n
O)[i]||2 ≤ ϵ1, (2.8)

where yn
O[i] and h0F (x

n
O)[i] are the ith elements in yn

O and hF (x
n
O), respectively. ϵ1

is a threshold. If equation (2.8) is satisfied, then i ∈ F since a linear equation can

accurately represent yO[i]. Based on the obtained F , I can further compute P = O\F .

The pre-trained results can further bring the initialization of the F-Graph layers.

Specifically, I have the following sequential F-Graph initialization rule:

1. ∀i ∈ F , initialize θF [i, :], i.e., the ith row of θF , as the corresponding trained

values θ0
F [i, :].

36

2. ∀j ∈ P ,∀i ∈ F , initialize θF [j, i] as the trained value θ0
F [i, j].

3. ∀j ∈ P ,∀i ∈ P , initialize θF [j, i] as 0 if i ̸= j and −
∑

k ̸=j θF [j, k] if i = j.

Rule 2 and 3 in the F-Graph initialization rule helps to fix some parameters

for the P-Graph due the symmetry of the system. Namely, if ij ∈ E , i ∈ F and j ∈ P ,

the edge parameter of ij obtained from the F-Graph pre-training is fixed for both Gi

and Gj.

N-Approximation Layers: The initialization of F-Graph gives an accurate

approximation of edge weights among nodes in the F-Graph. However, some edge

parameters in the P-Graph Gj require further estimation due to the hidden quantities.

Thus, for Gj, I model the contributions of hidden quantities via K virtual nodes Nj

as mentioned before. Though the input samples of the virtual nodes are unknown, I

can approximate them using the observed nodes’ input and a deep neural network

(N-Approximation Layers) hN :

xN = hN(xO), (2.9)

where N =
⋃|P|

j=1Nj represents the total set of virtual nodes.

P-Graph Layer: For a P-Graph Gj , the contributions to the equation from nodes

F ∩ Neigh(j) are identified in the F-Graph Layer. Thus, I only need to consider the

contributions from Nj ∪ Neigh(j). Since I approximate the measurements from Nj

using hN(xO), I can build another linear layer (P-Graph Layer) such that:

yO − hF (xO) = hP (xN∪O) = θPxN∪O, (2.10)

where hF (xO) represents the output from the F-Graph Layer, xN∪O = [xN ;xO] is

the concatenation of xN and xO, and θP ∈ R|O|×|N∪O| is the weight matrix of the

P-Graph Layer.

37

In general, the above structural design utilize a DNN to approximate the hidden

quantities. Despite the high approximation power, DNN models may bring sub-

optimal results. To mitigate this issue, I propose in this Section that a convexity-based

initialization can happen for the P-Graph layers. Specifically, I develop the following

sequential P-Graph initialization rule:

1. ∀j ∈ P ,∀k ∈ N , if k ∈ Nj initializes θP [j, k] from the optimal solution of a

set of convex optimizations proposed in the next section. If k /∈ Nj, initialize

θP [j, k] to be 0.

2. ∀j ∈ P ,∀k ∈ N ,∀i ∈ O, if j = i initialize θP [j, i] to be −
∑

k∈N θP [j, k]. If

j ̸= i, initialize θP [j, i] to be 0.

3. ∀i ∈ F ,∀k ∈ N ∪O, initialize θP [i, k] to be 0.

For rule 1, ∀j ∈ P ,∀k ∈ N , if k ∈ Nj, the initial guess represents a good

approximation for the weight of edge jk. In the next section, I propose a set of convex

optimizations to obtain the optimal solution that both minimizes the squared loss

and satisfies physical parameter constraints. I will theoretically prove that within

these constraints, a globally optimal solution with zero loss for the noiseless data

can be achieved due to convexity. Then, the global optimality represents the physics

consistency. If k /∈ Nj, edge jk does not exist so that the initial value of θP [j, k] is 0.

Additionally, rules 2 and 3 are based on the symmetry and connectivity of the system.

The optimization also brings good estimation values for xN , thus inducing the

N-Approximation initialization rule:

1. Initialize parameters in fN(xO) via pre-training the network of fN using input

data from xO and estimated data of xN from the proposed convex optimizations

in the next section.

38

Figure 7. The design of the PCNN.

In conclusion, I show the proposed PCNN model in Fig. 7. The formulation is as

follows:

yO = h(xO) = hF (xO) + hP ([fN(xO);xO]). (2.11)

Though I have good initial parameters for the PCNN, the retraining of the PCNN

as a whole is still required for an end-to-end optimization to minimize the total loss.

Finally, the complete algorithm for the pre-training and the retraining process can be

summarized in Algorithm 2.

2.4.4 Theoretical Analysis for Convexity-based PCNN Initialization

The proposed PCNN embraces the deep-shallow structure where the deep NNs

approximate the hidden variable, and the shallow NN formalizes all the variables

into the physical-equation representation. Specifically, each output entry represents a

39

Algorithm 2 Training Algorithm for PCNN
Input: Measurements {xn}Nn=1 and {yn}Nn=1 from observed nodes.
Hyper-parameters: penalty term λ1 for the pre-training of the F-Graph layer
and threshold ϵ1 for the identification of F .
Pre-train the F-Graph Layer using Equation (2.7).
Obtain F set using Equation (2.8).
Compute P = O \ F .
Initialize θF using F-Graph initialization rule.
Solve the proposed optimization in equation (2.12) using Algorithm 3.
Initialize θP using P-Graph initialization rule.
Initialize parameters in the deep layers fN(xO) using N-Approximation initial-
ization rule.
Retrain PCNN using Stochastic Gradient Descent (SGD) algorithm.
Output: PCNN model.

nodal balance equation. In this section, I verify that the initialization rules for the

F-Graph and P-Graph Layers can provide a physics-consistent solution. I first define

this solution as follows.

Definition 1 (Physics-consistent solution). A physics-consistent solution (PCS) for

the parameters of F-Graph and P-Graph Layers and the output of the N-Approximation

Layer brings 0 loss for the noiseless data and satisfy all the physical parameter

constraints. PCS is the solution of the optimization in Equation (2.7) and Equation

(2.12).

Based on the definition, the solutions for the F-Graph Layer can be obtained via

optimizing Equation (2.7), which is a convex optimization. Next, I show the solutions

for the P-Graph Layer and the output of the N-Approximation Layer can be obtained

via the following optimization.

Specifically, I consider one P-Graph Gj,∀j ∈ P as an example. Based on the

initialization rules, the parameter of ji, ∀i ∈ F ∩ Neigh(j) has been quantified in the

F-Graph Layer. Thus, I only need to discuss the parameter of jk,∀k ∈ Nj ∩Neigh(j).

40

I denote wk as the parameter of line jk, and wk is one element in the parameter matrix

θP in the P-Graph Layer. Further, I let pn = yn
O[j] − f 0

F (x
n
O)[j] as the nth sample

net flow from Nj, where the estimation of the net flow is guaranteed via accurate

parameter estimation of the F-Graph Layer. Similarly, I let xn = xn
O[j] as the nth

input measurement of node j. Finally, I denote xnk as the nth approximated nodal

measurements for the kth virtual node in Nj. Thus, xnk is a realization of one element

in xn
N . Here I eliminate the index j in wk, pn, xn and xkn for simplicity. To find a

good physics-consistent initialization, I propose to treat wk and xkn as variables and

formalize the following optimization Pj
K .

min
wk,x

n
k

L =
N∑

n=1

(pn −
K∑
k=1

wk(x
n − xnk))

2

s.t. {wk, {xnk}Nn=1}Kk=1 ∈ CK ,

(2.12)

where L is the loss and I eliminate the index j,K for simplicity. CK represents for K

virtual nodes, the feasible region under a set of physical constraints. For example, the

tolerance of the nodal devices requires xnk to have positive minimum and maximum

values. Further, the capacity of the line jk limits the maximum values of the flow on

that line, i.e., |wk(x
n − xnk)| has an upper bound. It can be easily proven that under

the above constraints, C is convex. I assume this convexity holds in general for all the

proposed physical constraints.

To prove the PCS exists with global optimality and under physical constraints, I

propose the following theorem.

Theorem 5. Physics-Consistent Solutions (PCS) defined in Definition 1 exist for the

proposed PCNN.

The proof can be seen in Section A.5. Further, to comupte the PCS, I propose the

following theorem.

41

Theorem 6. If the data number N is sufficiently large, Physics-Consistent Solutions

(PCS) defined in Definition 1 can be obtained via solving convex optimizations.

The proof can be seen in Section A.6. The process above presents for a P-Graph

Gj,∀j ∈ P, the existence of the PCS for some Ks and the convexity of Pj
K for any

K. Thus, I propose to iteratively solve Pj
K and evaluate if the solution is a PCS.

Since the real-world data is not noiseless, I employ a threshold ϵ2 for the evaluation.

Then, the algorithm is shown in Algorithm 3 for the PCS for P-Graph Layer and

N-Approximation Layer.

Algorithm 3 Training Algorithm for {Pj
K},∀j ∈ P

Input: Measurements {xn}Nn=1 and {yn}Nn=1 from observed nodes, and node set P .
Hyper-parameters: threshold ϵ2.
Initialize K = 1.
for j=1 to |P| do

while Lj
K > ϵ2 do

Use Gradient Descent (GD) to solve Pj
K .

Evaluate Lj
K , i.e., the loss of Pj

K .
K = K + 1.

Obtain the PCS as the optimal solutions of the above optimizations.
Output: A PCS for parameters in the P-Graph Layer and outputs of the N-
Approximation Layer.

2.4.5 Experimental Result

2.4.5.0.1 Settings

Dataset Description. In the experiment, I introduce power systems, mass-

damper systems, hydraulic networks, and the graph of large systems from the University

of Florida (UF) sparse matrix collection (Davis and Hu 2011) as the underlying physical

42

system for model training and comparison. Specifically, the dataset descriptions are

as follows.

(1) IEEE Power Systems and PJM Load Data. IEEE provides standard

power system models, including the grid topology, parameters, and generation models,

etc., for accurate simulations on the power domain. The model files and the simulation

platform, MATPOWER (MATPOWER community 2020), are based on MATLAB. In

this experiment, I incorporate IEEE 19-, 30-, 57-, 69-, and 85-systems for testing. To

conduct the simulation, the load files are required as the input to the systems. Thus,

I introduce real-world power consumptions in PJM Interconnection LLC (PJM) data

(PJM Interconnection LLC 2018). The load files contain hourly power consumption

in 2017 for the PJM RTO regions. With the above data, MATPOWER produces the

system states of voltage angle ϕ and system input active power flow p, indicating

the linearized power flow equations p = LAϕ, which can be formulated like Equation

(2.5), and LA is the weighted Laplacian matrix (i.e., the susceptance matrix) of the

electric system.

(2) Mass-damper system data. The mass-damper systems can be represented

with the physical equation q̇ = −DRD⊤M−1q, where q is the vector of momenta

of the masses, D is the incidence matrix of the graph, R is the diagonal matrix of

the damping coefficients of the damper attached to the edges, and M is the diagonal

mass matrix (Schaft 2017). Using MATLAB, I simulate the dynamic process of the

mass-damper system with 10 buses and obtain q and q̇.

(3) UF sparse matrix-based system. The UF sparse matrix collection provides

a lot of large sparse matrix-based networks. In this experiment, I utilize the 2003-bus

system to test.

Therefore, I have three different systems, providing testing on 10-, 19-, 57-, 69-, 85-,

43

and 2003-node networks. To consider different system observability, I change the ratio

of the number of the observed nodes to that of the total nodes γ ∈ {0.1, · · · , 0.9}.

Benchmark Models. To fully investigate the strong interpretability and gener-

alizability of the PCNN, I compare the proposed PCNN with other advanced DNN

models. Specifically, I have the following benchmark models for comparison.

• Resnet (K. He et al. 2016). Deep Residual Network creates a shortcut connection

to pass the deep information directly to the shallow layers. Such a skip-connection

effect not only helps to avoid gradient vanishing issues in the training phase,

but also contributes to the model generalization ability since the low-complexity

features are connected to the output, thus decreasing the model complexity (Liu

and Chen 2018).

• SINDYs (Brunton, Proctor, and Kutz 2016; Champion et al. 2019). The

sparse identification of nonlinear dynamics (SINDy) utilizes the sparse regression

technique to recover the parameters of the physical systems, while the base of

the regression can be selected via DNNs. In the experiments, I consider systems

with a fixed symbolic base due to the prior knowledge, and I eliminate the DNN

part for simplicity.

• DNNs with Dropout Method (Srivastava et al. 2014). Dropout method

randomly disables neurons in training, thus preventing the neurons from over

co-adapting and increasing the model generalizability.

• DeepLIFT (Shrikumar, Greenside, and Kundaje 2017; Lundberg and Lee 2017).

DeepLIFT is an advanced model to select important features of a well-trained

DNN via calculating the importance signals from output to the input features.

In this experiment, I calculate the SHAP (SHapley Additive exPlanations) values

44

of features in the trained DNN via DeepLIFT (Lundberg and Lee 2017). Thus,

I can select the important features and evaluate the model interpretability.

Model Evaluations. I propose the following metrics to evaluate the generaliz-

ability and interpretability of PCNN and benchmark models.

(1) Generalizability. I conduct 5-fold cross-validation to evaluate the model

generalizability. Mean square error (MSE) of the testing set is used to evaluate the

model performance of predicting yO.

(2) Parameter estimation. I utilize all the data to estimate the system parame-

ters. To evaluate the model performance, I consider the following aspect: for lines

among node set O, both the line weight estimation error and the connectivity should

be evaluated. Since the connectivity can be converted to the sparsity of the Laplacian

matrix, I utilize the so-called normalized Total Vector Error (nTV E) (Li et al. 2021)

to evaluate the difference between the estimated L̂ and the true Laplacian matrix L:

nTV E = 100× ||L̂−L||2
||L||2

. (2.13)

(3) Interpretability. The model interpretability determines the critical input

features with respect to each output channel. For Resnet and DNNs with Dropout

method, I utilize DeepLIFT (Lundberg and Lee 2017) for important feature selection.

For the proposed PCNN, the sparsity of θF illustrates the estimated topology within

O. Thus, for each i ∈ O, the inputs in the neighboring nodes in the estimated unit

graph are the important features. For the SINDy method, I denote input features

with non-zero coefficients for one output feature as its important features.

In general, I denote the indices of the estimated important features as Import(i)

for the ith output and the ground true indices are Neigh(i) ∪ {i}. Thus, I introduce

45

the measure h(%):

h =
∑
j∈O

J(Import(j), Neigh(j) ∪ {j})
|O|

× 100%, J(X, Y) =
|X ∩ Y |
X ∪ Y

,

where J(·, ·) is the so-called Jaccard index.

2.4.5.0.2 Results for Model Generalizability

In the experiments, I test different systems with changing γ to comprehensively

compare the model generalizability among different methods. 5-fold cross-validation

is conducted. The results are shown in Fig. 19a to 8g. I find that for each trial,

the PCNN always achieves the lowest MSE value in the validation dataset.

Further, the MSE of the PCNN decreases as γ increases, while for other methods,

the MSE increases. The lowest generalization error comes from (1) the well-extracted

local governing equations that are generalizable to different datasets and (2) the

physical constraints that enable the physical variables to be within the physical range.

Secondly, the increasing of sensor penetration (γ) leads to more physical parameters

to be captured, thus decreasing the MSE further. However, for other methods without

physical consistency, MSE will increase due to the growth of the output dimensionality.

2.4.5.0.3 Results for Network Parameter Estimation

For the line parameters and connectivity among observed nodes O, I calculate the

nTV E(%) for evaluation. The comparison is between the PCNN and the SINDy since

other DNNs can’t estimate the physical equation parameters. The result is shown

in Table 3 and 4. Generally, the PCNN far outperforms the SINDy method for all

46

(a) MSE for different methods in the 10-bus system.

(b) MSE for different methods in the 19-
bus system.

(c) MSE for different methods in the 30-bus
system.

(d) MSE for different methods in the 57-
bus system.

(e) MSE for different methods in the 69-
bus system.

(f) MSE for different methods in the 85-
bus system.

(g) MSE for different methods in the 2003-
bus system.

Figure 8. The MSE value for different testing systems.

47

systems when γ < 0.5. Empirically, the PCNN’s nTV E is around 10% ∼ 25% of

the SINDy’s nTV E. When γ increases, the performance of the PCNN and SINDy

will become closer. However, PCNN’s nTV E still only covers around 40% ∼ 60% of

SINDy’s nTV E. The reasons are as follows. (1) PCNN employs a testing criterion

in equation (2.8) to decompose O into F and P. Then, the initialization rule of

the PCNN can enable the shared weights between F and P to always be accurately

estimated in the pre-training of the F-Graph. For the SINDy method, however, the

shared weight estimation incurs errors due to hidden quantities. (2) when γ < 0.5,

the hidden nodes are dominant so that PCNN performs much better than SINDy. (3)

when γ is increasing, the number of hidden nodes decreases so that the inaccurate

estimation of the shared weights in SINDy decreases, forcing PCNN and SINDy to

have closer performance. Secondly, I observe in Table 3 that for 19-bus system, PCNN

and SINDy have relatively small nTV E compared to other systems. This is because

19-bus system is radial so that a hidden node will only cause errors within one line for

line parameter estimation.

Table 3. nTV E(%) error of parameter estimation for PCNN and SINDy methods,
table 1.

10-bus 19-bus 30-bus 57-bus

γ PCNN SINDy PCNN SINDy PCNN SINDy PCNN SINDy

0.1 69 381 4.5 23 32 89 73 169
0.2 51 317 3.6 21 33 83 65 198
0.3 56 265 6.3 24 30 81 78 156
0.4 43 198 3.3 18 27 78 71 153
0.5 45 118 2.9 15 27 72 72 145
0.6 62 97 4.4 12 23 61 64 132
0.7 41 65 0.95 7.3 12 55 52 122
0.8 37 72 0.89 5.1 8.8 29 47 98
0.9 18 32 0.73 4.8 9.5 21 34 94

48

Table 4. nTV E(%) error of parameter estimation for PCNN and SINDy methods,
table 2.

69-bus 85-bus 2003-bus

γ PCNN SINDy PCNN SINDy PCNN SINDy

0.1 65 648 31 139 89 399
0.2 68 723 34 121 74 421
0.3 68 614 24 118 61 406
0.4 54 598 19 123 59 385
0.5 79 470 16 121 78 335
0.6 76 423 13 104 66 299
0.7 69 327 9.8 96 64 301
0.8 43 211 10 93 59 276
0.9 22 108 10 71 57 283

2.4.5.0.4 Results for Model Interpretability

To test the model interpretability, I set γ = 0.5 and calculate the measure h in

Equation (2.4.5.0.1) under different scenarios, as is shown in Table 5. The PCNN can

always obtain 100% interpretable features, which show that the estimated topology

within O is correct. The perfect performance essentially comes from the sparsity

control when pre-training the F-Graph Layer. For SINDy method, the sparsity control

also exists, thus yielding high h values. However, the hidden quantities bring some

incorrect connectivity and prevent the h to be 100%. For the other two DNNs, h will

decrease about 30% ∼ 80% due to the complex correlations in the NN model.

49

Table 5. The h(%) value for different methods in different systems.

PCNN SINDy Resnet Dropout

10-bus 100 100 74.0 52.4
19-bus 100 93.2 69.0 36.7
30-bus 100 92.9 71.9 31.3
57-bus 100 85.3 57.4 12.8
85-bus 100 85.7 73.8 23.8
2003-bus 100 75.4 73.8 23.8

50

Chapter 3

IDENTIFYING SYSTEM EVENT INFORMATION

3.1 Introduction

Modern physical systems significantly incorporate highly uncertain components to

facilitate clean and low-cost productions and consumptions. To better accommodate

the growing uncertainty and maintain the system stability, the physical system

requires advanced tools for system event identification. To capture the event dynamics,

some advanced measuring techniques Phasor Measurement Units (PMUs) provide

synchronized phasor measurements with high-granularity (e.g., 30 or 60 samples per

second) (Yuan, Wang, and Wang 2020). Therefore, the data-driven event identification

is one of the central topics to improve the system reliability. Many efforts are developed

to analyze measurement patterns and identify when, where, and what type of events

are. To find the event initialization time, methods like change point detection (Li

et al. 2019b) can detect abnormal intervals that imply events. However, to know more

information about event types and locations, how to analyze data streams in the best

way becomes challenging.

One idea to find event types and locations is to use expert information. For

example, one can use signal transformation or filtering to map the time series data into

some physically meaningful domain for comparing with some predefined thresholds.

These methods use wavelet transformation (Kim et al. 2015), Kalman filtering (Pérez

and Barros 2008), and Swing Door Trending (SDT) (Cui et al. 2018), etc. For example,

(Cui et al. 2018) utilizes a swing door to compress data with a pre-defined door width,

51

and the detectable events must have a certain level of slope rate. However, as these

methods need to pre-define some measures or thresholds, the usage may be biased

because of the specific design and test cases. Therefore, can I have a general model?

For obtaining a general form, previous work proposes to use existing events and

their labels to train in a Supervised Learning (SL) manner. Such Machine Learning

(ML) models typically extract features for minimizing the loss function. For instance,

Decision Tree (DT) (Li et al. 2019a) treats each measurement as a factor to determine

the final decision. Although transparent, such a method is inefficient to make use of

complex measurement correlations. Therefore, (De Yong, Bhowmik, and Magnago

2015) proposes Support Vector Machine (SVM) to assign each input measurement a

weight to form the final feature. There are also more complex and powerful models

such as Convolutional Neural Network (CNN) (Yuan et al. 2021) and Graph Neural

Network (GNN) (Yuan, Wang, and Wang 2020). They consider the spatial correlations

with square and graph convolutions, respectively.

One can also couple the temporal information in Long Short-Term Memory (LSTM)

units. For example, (Zhang et al. 2018) uses LSTM to extract periodic patterns and

data inertia in time. However, for physical data, it’s desirable to simultaneously

consider correlations among spatial, temporal, and measurement type dimensions.

So, one can keep on increasing the model complexity. But, some physical measure-

ment streams accumulate quickly into terabyte (TB) level for training due to high

volumes, large dimensionality, and complex correlations among the space, time, and

measurement type (e.g., voltage magnitude, angle, frequency, etc.) dimensions.

In general, the above models generally face the challenges of (1) limited inter-

pretability, (2) biased learning models, (3) large computational cost, and (4) insufficient

labeled data for learning. For example, many event records are missing in utility logs.

52

For example, (Brahma et al. 2017) claims 1, 013 events could be identified based on a

power utility’s data records from 2001 to 2010, but only 84 events were reported in the

utility log files. Therefore, this chapter tries to tackle above challenges by proposing (i)

efficient and unbiased Supervised Learning framework based on ensemble techniques,

(ii) Physics-guided Unsupervised Learning to tackle the scenario without labels, and

(iii) Tensor-based Semi-supervised Learning to handle large data volumes.

3.2 Problem Formulation

In order to formulate the learning methods for event identification, I need to

describe the time series data set provided by system sensors and the associated label

data set. In this thesis, I consider two cases. The first case is when the data volume

is not large, and I can utilize a matrix X ∈ RN×A to represent the system event data,

where N is the number of time slots and A represent all the number of measurement

columns for the data. The second case is when the data volume is large, and I utilize a

tensor X ′ ∈ RT×L×M to represent a time slot’s system measurement, where T denotes

the number of time slots for each window, L denotes the number of sensors, and M

denotes the number of measurement types (e.g., Voltage Magnitude (VM), Voltage

Angle (VA), Frequency (F), etc.). Further, the total N tensors are denoted as the

total event tensor X ∈ RN×T×L×M .

As for the labels, I utilize a vector y ∈ ZH×1 to represent the label vector (i.e., the

event type and location). If H = 0, it’s the Unsupervised Learning setting. If H < N ,

it’s the Semi-supervised Learning setting. Finally, if H = N , it’s the supervised

learning setting. With above definitions, I propose the following problem formulations.

• Problem 1: supervised event identification.

53

• Given: an event matrix X and a label vector y.

• Find: an abstract mapping f(X) = y.

• Problem 2: unsupervised event identification.

• Given: an event matrix X.

• Find: an abstract mapping f(X) to identify event types and locations.

• Problem 3: semi-supervised event identification using tensor data.

• Given: a total event tensor X and a label vector y.

• Find: an abstract mapping f(X) = y to compress the information in X and use

the compressed information to identify event labels in y.

3.3 Supervised Event Identification with Unbiased Learning

Figure 9. An illustration of the flow chart on the proposed ensemble learning for event
identification.

In this section, I tackle Problem 1 in Section 3.2. Specifically, I employ different

learning methods as candidates for making event decisions based on incoming sensor

data. As shown in Fig. 9, each machine learning model trains its classifier separately.

To avoid biases from different learning models, the process not only combines the

result of different models for event identification, but also provides an entropy-based

54

index to measure the confidence of the voted label. The index E is shown below:

E = 1 +
1

N

N∑
n=1

K∑
k=1

p(n,k) log p(n,k)/ log(M), (3.1)

where M is the number of classifiers, N is the total number of testing samples, K

is the number of voting types and p(n,k) is the percentage of votes for label k in the nth

testing samples. For each testing example, if different machine learning methods vote

the same, I will obtain an entropy of 0. So, the index is 1, giving 100% confidence.

If each classifier vote for a different label, I will obtain an entropy of log(M). With

normalization and subtraction in (3.1), the index is 0 or 0%, showing that I do not

have confidence in this estimate.

One big advantage of the proposed framework is the use of different ML models

to obtain an improved prediction. Therefore, more advanced ML models can be

embedded to the framework to improve the final performance, including the proposed

Unsupervised Learning model and Semi-supervised Learning model in the following

sections.

3.3.0.1 Numerical Result

3.3.0.1.1 Settings

To validate the results, I use the simulation tool of Positive Sequence Load Flow

(PSLF) (General Electric Energy Consulting 2018) software with high-grade dynamic

simulations. When running PSLF, I consider faults such as line trip, three-phase short

circuit, and single-line to ground fault, etc. The Illinois 200-bus system (Engineering

Texas A&M University 2016a), known as ACTIVSg200 case, is utilized to demonstrate

the result.

55

With simulated data, I conduct 5-fold cross validation and utilize the test accuracy

to evaluate the results. Finally, Support Vector Machine (SVM), K-Nearest Neighbors

(KNN), Logistic Regression (LR), Naive Bayes (NB), Decision Tree (DT), and the

ensemble method (Hybrid) are conducted for comparisons.

3.3.0.1.2 Results of Test Accuracy for Event Identification

In this subsection, I show the benchmark of supervised learning with the hybrid

machine learning process. Specifically, I build the learning model as a multi-label

classification model. In one case, 6 line trips are conducted, namely the lines (25,

64), (42, 44), (44, 200), (172, 180) and (172, 199). All the experiments are conducted

under multiple loading conditions to mimic the reality.

Figure 10. The comparison of individual SL mehtods and the proposed ensemble
method.

56

To test the robustness of the supervised learning method against PMU number,

I consider different PMU penetration levels of the grid. For example, 50% on the

x-coordinate of Fig. 10 means that half of the buses are equipped with PMUs. For

each penetration level, I randomly select the PMUs and use the selected PMU variables

to create a feature pool. Such pool is then used to conduct the feature selection.

After the feature extraction, the final features are vectorized into one sample vector. I

collect 100 vectors for each event and train them through 5 machine learning methods

and the hybrid method.

I plot the average accuracy of 5 machine learning methods and the hybrid machine

learning method with respect to the penetration level of PMUs. The result is shown in

Fig. 10. I can find that the accuracy varies among different machine learning methods

and the penetration level of PMUs does not affect too much on different machine

learning methods. Furthermore, the proposed hybrid machine learning method (i.e.,

the ensemble method) outperforms other supervised learning methods and its entropy

based variance is relatively small under different PMU penetration levels. This result

shows that the hybrid machine learning method successfully reduces the biases from

different leaner and provides a confidence index for system operators.

3.4 Unsupervised Event Identification with Physics-guided Labeling

In this section, I tackle Problem 2 in Section 3.2. Specifically, I carefully study

the different physical behaviors of the system under different events. Then, I propose

physics-guided labeling for unlabeled data by linking the event severity to the cluster

number and compactness in the feature space.

57

3.4.1 Event Type Identification via Clustering and Compactness

Since there are no labels indicating the event types, the unsupervised learning

methods use two stages to narrow down the possible event type with physical under-

standing. In the first stage, I conduct Principal Component Analysis (PCA) to form

clusters and focus on the most important features. By counting the cluster numbers, I

can roughly classify the possible event types. For example, in power systems, line trip

and generator trip have 2 clusters and the line faults have 3 clusters. In the second

stage, I evaluate the compactness of normal and event data distribution as different

events have different levels of severity. Such a two-stage quantification helps us obtain

the event type estimation.

3.4.1.1 Principal Component-Based Data Pre-Processing

The event severity depend on the dynamic process of an event. Therefore, different

events will have different dynamic deviations due to different grid parameters in the

dynamic process. For example, Fig. 11 presents the dynamic voltage magnitude

signals in one node. To capture this dynamic deviation, the event data matrix X

defined in Section 3.2 should capture the pre-event, during-event, and post-event

intervals together.

For extracting the most important features for the two-stage event type identifica-

tion, I utilize PCA to find the major-variance directions. Without loss of generality,

I assume X is centralized, leading to the direct application of the singular value

58

Figure 11. PSLF simulations for different events.

decomposition (SVD) for PCA:

X = USV ⊤,Y = XV . (3.2)

The columns of V represent principal components and I can project the original

matrix into the PCA-based space to obtain data matrix Y . For example, Fig. 12

visualizes the top three principals’ data points in Y , which correspond with the first

three columns in Y . Green nodes represent the pre-event mode data; orange nodes

represent the dynamic data and blue nodes represent the post-event mode data. The

events include line trip, generator trip, single-phase-to-ground fault, phase-to-phase

fault, and three-phase fault. From the figure, I observe the following patterns.

• Pattern 1: line trip and generator trip have 2 clusters and other line faults have

3 clusters, where the 3rd cluster lies far away from the 1st and 2nd clusters in

the horizontal plane, spanned by the 1st and 2nd components.

59

Figure 12. PCA and rescaling for event type differentiation.

• Pattern 2: the data distribution has different compactness, including the dis-

tances between different clusters and the density of each cluster.

3.4.1.2 Stage 1: Clustering According to Dynamic Modes

Pattern 1 suggests that the dynamic deviation for line faults and the post-event

mode deviation for line trip or generator trip account for the maximum variance of

X, i.e., the deviation in the horizontal plane. Since line trip and generator trip come

from switching off a breaker, they have relatively small transient processes in Fig.

11. Therefore, the 3rd cluster does not exist in Fig. 12. Furthermore, since different

events have different deviations, the compactness of data is different with respect to

the deviation, leading to pattern 2.

60

To obtain clusters in the PCA-based space, I measure the distance between data

points. However, the weights for different principals are different in terms of distance

calculation. For example, in Fig. 12, the cluster under normal operation in the line

faults stretches mostly in the 3rd component, but this disturbs the aim to capture the

dynamic deviation that mainly lies in the 1st component. In this sense, the length in

the horizontal plane should have a bigger weight, since horizontal plane represents the

most data variance due to the first and second principles. Therefore, a rescaling is

introduced to weight points in Y matrix:

Φ(Y)(a) = λaY (a), 1 ≤ a ≤ A, (3.3)

where Y (a) and Φ(Y)(a) are the ath column of Y and Φ(Y) matrices, respectively.

λa is the corresponding eigenvalue for the ath feature. The mapped data is shown in

Fig. 12, I find that the cluster extension in the 1st component is emphasized.

Subsequently, the stage 1 clustering is introduced to find the number of clusters

in PCA-based space. Specifically, I utilize a fixed benchmark XB that contains

normal states (e.g., voltage magnitude measurements in PMUs) under various loading

conditions. Then, I combine XB with the dynamic segment and post-event segment

of an event XE (obtained via change point detection) into the training data matrix

X = [XB,XE]T . The rescaling mapping transforms the X matrix into Φ(Y) =

[Φ(Y B),Φ(Y E)]T matrix. Since Φ(Y B) represents the normal cluster, I only need to

do clustering for Φ(Y E). Thus, a top-down hierarchical clustering is introduced to

find the number of clusters and divide the event type.

Basically, the algorithm views initial points in Φ(Y E) as one big cluster and

recursively splits the cluster(s) via a k-means clustering where k = 2. For the ith

iteration, I obtain N i ≤ 2i clusters (some clusters may stop division in the previous

iterations). For the jth (1 ≤ j ≤ N i) cluster that can be further divided into 2

61

sub-clusters with centers cj1 and cj2 , I introduce the stopping criterion:

max{||cj1 − cb||, ||cj2 − cb||}
min{||cj1 − cb||, ||cj2 − cb||}

≥ ϵ1, (3.4)

where || · || represents the Euclidean distance, cb is a vector representing the cluster

center under normal operations and ϵ1 is a constant threshold. (3.4) illustrates that

if the distances from jth1 and jth2 cluster centers to the normal centers are close (i.e.,

these 2 clusters have similar severity from the normal operation), the algorithm will

stop dividing the jth cluster. With this criterion, all the clusters are grouped via the

severity level: the generator and line trip have only 1 severity level (post-event mode)

I will obtain 2 clusters (with the normal cluster). However, the line faults have 2

severity level (dynamic mode and post-event mode) and I will obtain 3 clusters.

3.4.1.3 Stage 2: Compactness Classification via Severity Levels

From Fig. 11, I learn that the three-phase fault has the severest signal changes

relatively. So, such information can be used to refine the event type further. Such a

severity can be interpreted as compactness of data distribution in Fig. 12. Quantifying

the compactness of Φ(Y), I implement a weighted-vectorization approach. Specifically,

top 3 columns, in Φ(Y), are vectorized into one vector z = [zB, zE]T . Since the

dynamic process is short, the number of points in the 3rd cluster in Stage 2 is small

(e.g., 4 points in Fig. 12). Thus, points in the 3rd cluster should account for more

weights to emphasize the dynamic deviation and avoid being treated as insignificant

outliers. Therefore, I reweight the components in z based on the number of points

in the same cluster: ϕ(z)(j) = z(j)/Ni, i ∈ {1, 2, 3}. If the jth component z(j) in z

belongs to the ith cluster, I divide z(j) by the number of points in the ith cluster, i.e.,

Ni. Finally, I do normalization to ϕ(z) to limit the range in [0, 1].

62

The above process from X to ϕ(z) can be viewed as a physical knowledge guided

mapping, in which the event is projected differently according to different severity

levels. Thus, I utilize ϕ(zi) to denote the projection for the ith event.

With these projections, I denote S = {S1, S2, · · · , SL} as the event type set, where

L is the number of event types. Then, an off-line k-means (k = L) clustering can be

employed to find the event centers: argminS

L∑
l=1

∑
ϕ(zl)∈Sl

||ϕ(zl)− µl||2, where µj is the

centroid of event Sj. This optimization can be solved via Lloyd’s algorithm.

The following observations can be utilized in the training and validation process:

1) the value of k can be denoted as a fixed number according to the number of

common events in the grid, and 2) the number of points in the cluster represents the

event frequency. For example, line trip is the most common event in this paper, and

therefore, the cluster that contains the most points should be the line trip.

Finally, online testing is implemented in real time. For L event types, I calculate

the distance between the new data ϕ(zi) to the event cluster center µj, d(i, j) =

||ϕ(zi)−µj||, 1 ≤ j ≤ L. Thus, the new event will be classified into the event cluster

that has the minimal distance.

3.4.2 Event Localization

3.4.2.1 Change-Point-based Localization

For event localization, one idea is to see which sensor has the most significant

change. Then, such a sensor can infer the area that an event is likely to happen. For

example, I can use the result from change-point detection to rank the relative change

at different sensors. Let t̂1 represent the event changes from normal mode. Thus, I

63

use the criterion below to select the sensors with large changes at t̂1:

N∑
n=1

∣∣∣∣X(t̂1 + n, a)−X(t̂1 − n, a)

N ·X(t̂1 − n, a)

∣∣∣∣ ≥ ϵ2, ∀1 ≤ a ≤ A, (3.5)

where N points before and after t̂1 are used to calculate the percentage change and ϵ2

is a constant. In a A×1 index vector ind, if ath variable is selected, the ath component

is 1, and otherwise 0. I denote indi as the index vector of the ith event. Thus, the

event location is linked to the sensor locations.

3.4.2.2 Increase Robustness Via Grouping sensors

While the change-point-based localization is a good starting point for studying

the localization problem, it is non-robust due to factors such as imbalanced system

setup and increasing intermittent renewables in the power grid. This makes sensor

measurements with large variance unnecessary locate near the event location. For

example, if generators are far away from the load area in a loopy structure, the

measurement at the far away generator may change significantly during a line trip

event at the load area. This makes change-point-based method prone to error, calling

for robustness.

For this purpose, I combine the event vector ϕ(zi) with the sensor-index vector indi

to obtain ψ(zi) = [ϕ(zi), λindi]
T , where λ is a penalty constant. ϕ(zi) is employed to

avoid the case when two events are close to each other so that they share the same

index vector ind. Hierarchical clustering can be used to group sensors in the same

area with similar behaviors. This means that there could be some relative far location

with large change, however more sensors at the fixed event location will join the vote

according to the hierarchy of overall system behavior.

64

Figure 13. The results of change point detection.

In such a clustering method, one needs to choose linkage criterion. For example,

Euclidean distance d(i, k) = ||ψ(zi)−ψ(zk)|| can be used among the ith and kth points.

Such grouping individual members, one can start to connect groups, e.g., group F and

group C: d(F,C) = 1
NF ·NC

∑
f∈F

∑
c∈C d(f, c), where NF and NC are the numbers of

points in F and C. I utilize the following stopping criterion in hierarchical clustering:

d(F,C) > ϵ3, where ϵ3 is a constant. If the linkage criterion between F and C is large,

the compactness helps to distinguish two groups.

Notably, the change-point detection and hierarchical clustering should be used

even for historical sensor data. So, when a new event comes, I detect it and calculate

the distance between this event to each cluster centers and label the new event via the

minimal distance. If several distances have similar value, the new event is regarded as

an unknown event location that needs further query from the utility.

65

Figure 14. I display the topology of Illinois 200-bus system for PSLF.

3.4.3 Numerical Result

3.4.3.0.1 Settings

Numerical experiments are conducted using Positive Sequence Load Flow (PSLF)

tool to generate synthetic measurements. The Illinois 200-bus system (Fig. 14),

known as ACTIVSg200 case (Engineering Texas A&M University 2016a), is utilized

to demonstrate the results. In the following experiments, I test 5 events: 1) line trip,

2) single-phase-to-ground fault, 3) phase-to-phase fault, 4) three-phase fault, and 5)

generator trip.

3.4.3.0.2 Results of Event Type Differentiation

In this subsection, I conduct line trip, line faults and generator trip at 80 lines and

20 generators. Then, I test voltage magnitude data in stage 1 clustering to find the

number of clusters. For each event type, I average the number of clusters with respect

to different locations. Different PMU penetrations are considered and the average

66

Figure 15. Distances between 5 new events and the cluster centers.

number of clusters is shown in Table 6. I find the proposed top-down clustering is

robust for different PMU penetrations as well as different locations.

PMU penetration(%) 10 20 40 60 80 100

Line trip 2 2 2 2 2 2
Generator trip 2 2 2 2 2 2
Single-phase-to-ground fault 3 3 3 3 3 3
Phase-to-phase fault 3 3 3 3 3 3
Three-phase fault 3 3 3 3 3 3

Table 6. The average number of clusters after clustering.

Subsequently, I input the normalized event data to k-means clustering where k = 5

and obtain 5 clustering centers c1, · · · , c5. Then, I randomly conduct 5 new events (1

for each event type) for 10 times, the general performance shows that I can classify

each event type correctly. A typical case is shown in a bar graph in Fig. 15. The

distance in the dotted red block is the smallest distance between new events and

cluster centers. Thus, the 5 new events are correctly classified.

67

Figure 16. 200 buses’ voltage magnitude change before and after a change point.

3.4.3.0.3 Results of Event Location

In this subsection, I first study the PMU measurement change (voltage magnitude)

in (3.5). I consider single-phase-to-ground fault at line (5, 64), (44, 200) and (85, 120).

200 buses’ voltage magnitude change before and after a change point is calculated

and normalized in Fig. 16. For these 3 events, they share different peaks representing

selected PMUs.

Then, I utilize different PMU penetrations and voltage magnitude data of events

in 80 lines to do the third phase bottom-up clustering. 80 clusters are correctly

found. Then, I test 20 new data points that share the same location and type of the

80 clusters but have different loading conditions. Fig. 17 illustrates an example of

the distance matrix. It is the heat map of the distance matrix. The gray sub-block

represent values that are close to 0 and I can find that each new event is correctly

classified into the corresponding cluster.

68

Figure 17. Heat map of distance matrix between new points and cluster centers.

3.5 Semi-supervised Event Identification with Fast Tensor Computation

In this section, I tackle Problem 3 in Section 3.2. To integrate event data compres-

sion and machine learning in one tensorized framework, I first introduce basics of tensor

algebra (Kolda and Bader 2009) and the corresponding notations. To summarize,

Table 7 presents the basic notations for different types of variables and operations.

3.5.1 Tensor Notations and Preliminaries

Multi-mode data can be stored in the so-called tensor (Lock 2018), the multi-

dimensional arrays. The number of dimensions for a tensor is referred to as order. For

example, scalar (0-order tensor), vector (1-order tensor) and matrix (2-order tensor).

Then, for a D-order tensor X , I1 × I2 × · · · × ID are denoted as the dimensions, i.e.,

X ∈ RI1×I2×···×ID or X I1×I2×···×ID , where Ii (∀1 ≤ i ≤ D) is the dimensionality of

69

Table 7. Overview of tensor notations and operators.

Notation Interpretation
α scalar
a vector
A matrix
X tensor, set, or space
X(n) unfolding of tensor X along mode n
◦ outer product
×n mode-n product
⊗ Kronecker product
∥·∥2 l2 norm of a vector
∥·∥F l2 Frobenius norm of a matrix or a high-order tensor

the ith dimension of X . There are many types of operations for a tensor like folding,

unfolding, product, etc. This subsection provides some operations used in the proposed

method.

mode-n unfolding of a tensor. A tensor can be unfolded to a matrix, a process

that is also known as matrization. Specifically, for X I1×I2×···×ID , one can unfold it

along the n-dimension (mode) to obtain X(n) ∈ RIn×
∏

i=1,i ̸=n Ii . Mathematically, the

result is:
X (i1, i2, · · · , iD) = X(n)(in, j),

j = 1 +
D∑

k=1,k ̸=n

(ik − 1)Jk, Jk =
k−1∏

m−1,m ̸=n

Im,

where X (i1, · · · , in) is denoted as the (i1, · · · , in)th entry of tensor X .

n-mode product. For a tensor X ∈ RI1×I2×···×ID and a matrix U ∈ RK×In , the

n-mode product is denoted as:

(X ×n U)(i1, · · · , in−1, k, in+1, · · · , iD)

=
In∑

in=1

X (i1, i2, · · · , iD)U(k, in),

where X ×n U ∈ RI1×···In−1×K×In+1···×IN is a tensor.

70

Tensor Tucker Decomposition. For a D-order tensor X ∈ RI1×···×ID , one

key research topic is to find the approximation using a set of small tensors. For

example, PMU data is of high volume and low rank (M. Liao et al. 2018). Thus, the

low-rank approximation is preferred to efficiently represent the PMU data and remove

the redundant information. The target can be achieved via tensor decomposition.

Specifically, the so-called Tucker decomposition is (Kolda and Bader 2009):

X ≈ G ×1 U 1 ×2 U 2 · · · ×D UD

≈
R1∑

r1=1

· · ·
RD∑
rJ=1

G(r1, · · · , rD)ur1
1 ◦ · · · ◦ urD

D ,

where G ∈ RR1×···×RD is a core tensor in the factorization, and U i ∈ RIi×Ri is a base

matrix along mode i. uri
i is the rthi column of U i and ◦ is the outer product. Note G

is different from the definitions in Chapter 2 with a slight abuse of notation.

Finally, the Tucker decomposition can be rewritten in a matrix format:

X(n) = UnG(n)(UD ⊗ · · · ⊗Un+1 ⊗Un−1 ⊗ · · · ⊗U 1)
⊤,

where ⊗ is the so-called Kronecker product and ⊤ represents the matrix transpose. In

summary, the introduced tensor operations lay foundations for our integrated model

with certain physical interpretations. Specifically, tensor decomposition provides

efficient feature extraction while maintaining certain physical structures in the core

tensor G. Further, tensor unfolding converts G to vectors that can be input to a

classifier, which enables an end-to-end model of decomposition and classification.

71

3.5.2 Proposed Model KTDC-Se: Kernelized Tensor Decomposition and Classifica-

tion with Semi-supervision

The design of the classification model can be diversified. However, existing work

suffers a key challenge of biased selections of data compression and event identification

without proper integration. In this section, I design an end-to-end model that makes

full use of tensor structure to achieve fast computations, physical interpretations, high

capacity with non-linear feature extractions, and high accuracy under semi-supervision.

Figure 18. The motivation of the KTDC-Se model.

For an efficient model, I need to remove the redundancy in sensor measurements.

Section 3.5.1 illustrates that tensor is a natural container of high-dimensional data and

tensor Tucker decomposition is an excellent approach to uncover the cross-dimension

correlations. However, it is still unclear how I can design an efficient model to remove

redundancy and capture event information for different event tensors, and how I can

guarantee the model robustness by tackling some labeled and rich unlabeled tensors.

For a detailed design, I start with the tensor decomposition. For each tensor X ′ ,

the left part of Fig. 18 visualizes the process of a Tucker decomposition into base

matrices B, C, and D and a core tensor G. G can maintain the structure as the tensor

X ′ , leading to specific physical interpretations. Specifically, the base matrices can be

viewed as the bases along different dimensions, and the core tensor G represents the

72

interactions among these bases (Sidiropoulos et al. 2017). Thus, I can assume bases

for different tensors are similar as long as the number of bases is sufficiently enough.

In contrast, the interaction tensor G contains discriminative event information.

Then, to maximally remove the redundancy, I directly keep the same bases B,

C, and D for different tensors during the decomposition, shown in the middle part

of Fig. 18. Namely, I utilize a direct Tucker decomposition for a 4-D total event

tensor X . Then, B, C, and D are naturally kept to be the same. Further, I want

the core tensor G to contain distinguished event information. Therefore, I employ

the event labels to conduct a supervised learning-based classification for dissimilarity

maximization. The above procedure is for labeled tensors. For unlabeled tensors,

only the decomposition procedure is implemented to increase the model robustness to

different loading conditions. The concrete mathematical model of joint optimization

is formulated in the following description.

In the semi-supervised learning setting, the 4-D total event tensor X in Section

3.2 contains all labeled and unlabeled data. Mathematically, I implement the Tucker

decomposition for X as follows:

X ≈ G ×1 A×2 B ×3 C ×4 D

≈
N∑

r1=1

R2∑
r2=1

R3∑
r3=1

R4∑
r4=1

G(r1, r2, r3, r4)ar1 ◦ br2 ◦ cr3 ◦ dr4 ,
(3.6)

where G ∈ RN×R2×R3×R4 is the core tensor, i.e., the compressed tensor with small

information redundancy. The matrices to scale the core tensors are A ∈ RN×N ,

B ∈ RT×R2 , C ∈ RL×R3 , and D ∈ RM×R4 . ar1 , br2 , cr3 , and dr4 are the rth1 , rth2 , rth3 ,

and rth4 columns of A, B, C, and D, respectively. R2 < T , R3 < L, and R4 < M

are the pre-defined dimensions of the reduced tensors to achieve the information

compression.

73

In the decomposition of Equation (3.6), the first dimension is fixed of the core

tensor G to be N so that the decomposition can still bring N features to represent

different tensors. Furthermore, the decomposition can be rewritten as:

X(1) ≈ AG(1)(D ⊗C ⊗B)⊤, (3.7)

where X(1) ∈ RN×(T ·L·M) and G(1) ∈ RN×(R2·R3·R4) represent the mode-1 unfolding

matrix of tensors X and G, respectively. Clearly, columns in G(1) represent the

compressed features that can be utilized for the classifier training. Under semi-

supervision, I utilize the labeled tensors with labels for the classification. Then, I

propose a joint decomposition-classification model.

min
G(1),A,B,C,D,w,b

J = ||X − G ×1 A×2 B ×3 C ×4 D||2F︸ ︷︷ ︸
J1, Reconstruction Loss

+ γ1 l(EG(1) ·w + b,y)︸ ︷︷ ︸
J2, Classification Loss

+γ2 ||w||22︸ ︷︷ ︸
J3, l2 Norm

,

(3.8)

where J , J1, J2, and J3 denote the total loss, reconstruction loss, classification loss

and regularization terms, respectively. E = [IH×H ,0H×(N−H)] ∈ RH×N denotes a

selection matrix to select the first H feature instances (i.e., the instances with labels)

in G(1) for the classification. || · ||F and || · ||2 denote the Frobenius norm and the l2

norm, respectively. l(·, ·) represents the classification loss function. The hinge loss of

Support Vector Machine (SVM) is considered in this paper, i.e., l(EG(1) ·w,y) =∑H
i=1[1−yi(f

⊤
i w+b)]+, where f i ∈ R(R2·R3·R4)×1 is the ith instance of the transformed

features and yi is the ith label in y. Namely, F = [f 1,f 2, · · · ,fH]
⊤ = EG(1). Further,

the hinge loss is defined as [1 − t]+ = max(0, 1 − t)p. Usually, one can treat p = 1

or p = 2 for l1- or l2-SVM (L. He et al. 2017), respectively. γ1 and γ2 are positive

hyper-parameters to reweight the three terms in Equation (3.8).

74

In above descriptions, I successfully merge the data reduction and machine learning

model into one optimization under semi-supervision. However, many measurements

have non-linear correlations. It is challenging to add non-linearity due to the computa-

tional cost. For example, adding sigmoid or polynomial functions to the loss function

l in Equation (3.8) significantly increases the computations. Thus, I propose to utilize

kernel function to lift the data to high-dimensional or even infinite-dimensional feature

space, and the kernel trick can enable the calculation to happen in the original data

space, which easily maintains efficient calculations (Kung 2014).

Specifically, due to the Representer theorem (Schölkopf, Herbrich, and Smola

2001), the inner product of the classification model can be rewritten as f⊤w =∑H
i=1 αik(f ,f i), where k(·, ·) is the kernel function and f ∈ R(R2·R3·R4)×1 is a variable

in the feature space. Based on this equation, the kernelized learning process is:

min
G(1),A,B,C,D,α,b

J = ||X − G ×1 A×2 B ×3 C ×4 D||2F︸ ︷︷ ︸
J1, Reconstruction Loss

+ γ1

H∑
i=1

[
1− yi(

H∑
j=1

αjk(f i,f j) + b)
]
+︸ ︷︷ ︸

J2, Classification Loss

+ γ2

H∑
i=1

H∑
j=1

αiαjk(f i,f j)︸ ︷︷ ︸
J3, Regularization

,

(3.9)

where α is the vector of all αis. Eventually, I re-emphasize the nice properties of

KTDC-Se by (1) using tensors to capture multi-dimensional correlations, (2) proposing

a joint model for decomposition and classification, (3) introducing kernels for non-linear

features, and (4) conveniently tackling both labeled and unlabeled data.

75

3.5.3 Learning Algorithm of KTDC-Se

The optimization in Equation (3.9) is non-convex. Thus, an alternative optimiza-

tion algorithm is proposed to update the individual variable in the optimization while

fixing other variables, i.e., the so-called coordinate descent method. This method is

prevailing in the domain of tensor learning due to its efficiency and good convergence

property (Kolda and Bader 2009; L. He et al. 2017). Further, to calculate the gradient

and avoid the non-differentiable scenario, the l2 SVM (L. He et al. 2017) is utilized,

i.e., p = 2 in the loss function l(·, ·). Then, to update each variable, KTDC-Se only

needs to calculate the gradients with respect to every single variable and utilize the

gradient descent for updating. Thus, the calculation of the gradients is shown as

follows.

Gradient of A. Based on matrix format of Tucker decomposition and for the

convenience of later derivations, I define H1 = G(1)(D⊗C⊗B)⊤. Then, the gradient

of the loss function in Equation (3.9) is calculated with respect to A. Mathematically,

the gradient is:

∇AJ = ∇AJ1 = ∇Atr
(
(X(1) −AH1)

⊤ · (X(1) −AH1)
)

= 2(AH1H
⊤
1 −X(1)H

⊤
1),

(3.10)

where tr(·) represents the operation to obtain the matrix trace.

Gradients of B, C, and D. By symmetry, H2 = G(2)(D ⊗C ⊗A)⊤, H3 =

G(3)(D⊗B⊗A)⊤, and H4 = G(4)(C⊗B⊗A)⊤ can be defined. Then, ∇BJ , ∇CJ ,

and ∇DJ are calculated as follows:

∇BJ = 2(BH2H
⊤
2 −X(2)H

⊤
2),

∇CJ = 2(CH3H
⊤
3 −X(3)H

⊤
3),

∇DJ = 2(DH4H
⊤
4 −X(4)H

⊤
4).

(3.11)

76

To update G(1), the following gradients are separately derived. For the reconstruc-

tion loss, H̃ = (D ⊗C ⊗B)⊤ is denoted. Then, the gradient is:

∇G(1)
J1 = ∇G(1)

tr
(
(X(1) −AG(1)H̃)⊤ · (X(1) −AG(1)H̃)

)
= 2(A⊤AG(1)H̃H̃

⊤ −A⊤X(1)H̃
⊤
).

(3.12)

For the classification loss, ŷi =
∑H

j=1 αjk(f i,f j) + b is denoted for simplification.

Based on the chain rule, the gradient is:

∇f i
J2 =

2(ŷi − yi)
∑H

j=1 αj
∂k(f i,fj)

∂f i

+2αi

∑H
j ̸=i(ŷj − yj)

∂k(f i,fj)

∂f i
, if yiŷi < 1 ,

0, if yiŷi ≥ 1 .

(3.13)

To elaborate on the above equation, polynomial and Radial Basis Function (RBF)

kernels are utilized as examples. For the polynomial kernel k(f i,f j) = (f⊤
i f j + c)d,

where c is a constant and d is the degree of the polynomial function, then

∂k(f i,f j)

∂f i

=

d(f⊤

i f j + c)d−1f j, if i ̸= j ,

2d(f⊤
i f j + c)d−1f i, if i = j .

(3.14)

For the RBF kernel k(f i,f j) = exp(−λ||f i−f j||22), where λ is a positive constant:

∂k(f i,f j)

∂f i

= 2λk(f i,f j)(f j − f i). (3.15)

Recall that F = [f 1,f 2, · · · ,fH]
⊤ = EG(1), ∇FJ2 = [∇f1

J2,∇f2
J2, · · · ,∇fH

J2]
⊤

can be obtained. Thus, ∇G(1)
J2 = [∇f1

J2,∇f2
J2, · · · ,∇fH

J2,0, · · · ,0]⊤.

77

For the Regularization term, the result is:

∇f i
J3 = α2

i

∂k(f i,f i)

∂f i

+ 2αi

∑
j ̸=i

αj

∂k(f i,f j)

∂f i

. (3.16)

Similarly, ∇G(1)
J3 = [∇f1

J3,∇f2
J3, · · · ,∇fH

J3,0, · · · ,0]⊤ can be obtained. Sum-

ming the gradients of the three loss functions can bring the total gradient, i.e.,

∇G(1)
J = ∇G(1)

J1 + γ1∇G(1)
J2 + γ2∇G(1)

J3.

Gradient of α. The learning weight α is coupled with the classification loss and

the regularization. For the classification loss, then

∇αi
J2 =

∑H
j=1 2(ŷj − yj)k(f i,f j), if yiŷi < 1 ,

0, if yiŷi ≥ 1 .

(3.17)

Note that ŷj can be explicitly expressed by α, i.e., ŷj = k⊤
j α + b, where ki is

the ith column vector of the kernel matrix K, and the kernel matrix is defined as

K(i, j) = k(f i,f j). Thus, the above equation can be written to a matrix format.

Specifically, if yiŷi < 1, ∇αi
J2 = 2k⊤

i ·Kα+ 2k⊤
i · (b− yi)1 can be written, where 1

is an all-one column vector. Further, one can obtain a general format:

∇αJ2 = 2KI0(Kα+ b1− y), (3.18)

where I0 satisfies

I0(i, j) =

1, if i = j and yiŷi < 1 ,

0, otherwise.

(3.19)

Further, for the regularization, it’s easy to find that

∇αJ3 = 2Kα. (3.20)

78

Finally, the total gradient is ∇αJ = γ1∇αJ2 + γ2∇αJ3.

Gradient of b. Similarly, I calculate the gradient with respect to b:

∇bJ = 1⊤I0(ŷ − y), (3.21)

where ŷ is the vector of all ŷis. With the above derivations, the final learning algorithm

is presented in Algorithm 4.

Algorithm 4 Train-KTDC-Se(X ,y).
Input: Training tensor X and labels y.
Hyper-parameters: number of labeled data H, core tensor dimensions R2, R3,
and R4, regularization parameters γ1 and γ2, polynomial kernel parameters d and c,
RBF kernel parameters λ, and learning rate lr.
Initialize G(1),A,B,C,D,α, and b.
while Not converge do

Calculate ∇AJ , ∇BJ , ∇CJ , and ∇DJ by Equations (3.10) and (3.11).
A = A− lr · ∇AJ .
B = B − lr · ∇BJ .
C = C − lr · ∇CJ .
D = D − lr · ∇DJ .
Calculate ∇G(1)

J1 by Equation (3.12).
for i = 1 to H do

Calculate ∇f i
J2 and ∇f i

J3 by Equations (3.13) and (3.16) while fixing other
parameters.

Formalize ∇G(1)
J2 and ∇G(1)

J3. Then, obtain ∇G(1)
J .

G(1) = G(1) − lr · ∇G(1)
J .

Build matrix I0 by Equation (3.19).
Calculate ∇αJ2 and ∇αJ3 by Equations (3.18) and (3.20). Then, obtain ∇αJ .
α = α− lr · ∇αJ .
Calculate ∇bJ by Equation (3.21).
b = b− lr · ∇bJ .

Output: Parameters Gk
(1),A,B,C,D,α, and b.

79

3.5.4 Training and Testing on Mini-batches

The above learning process may suffer storage issues when the number of training

data N is large. Specifically, when updating B, C, and D in Equations (3.11), the

Kronecker product to calculate H2, H3, and H4 requires a large cost of storage as

A ∈ RN×N for a large N . To mitigate this issue, I modify Algorithm 4 to train on

mini-batches to save the memory (Zhao et al. 2014).

Mathematically, I divide the training tensor X and labels y into K mini-batches

{X i}Ki=1 and {yi}Ki=1, respectively. Each X i contains some labeled data with labels

to be yi and many unlabeled data. Then, in each iteration, I update the mini-batch-

independent weights Ã,B,C,D and b. Ã ∈ RÑ×Ñ is the matrix along the first

dimension of each mini-batch tensor, where Ñ = ⌊N/K⌋ and ⌊·⌋ represents the floor

function. Notably, keeping Ã the same for different mini-batches is an additional

restriction to maintain similarity of A, which doesn’t appear in the direct training

of Algorithm 4. However, this restriction further guarantees that the discriminative

information is contained in core tensors.

Further, KTDC-Se uses mini-batch-dependent parameters Gi
(1) ∈ RÑ×(R2·R3·R4)

and αi for the ith mini-batch, where αi ∈ RH̃×1 and H̃ = ⌊H/K⌋. Especially,

Gi
(1) is a sub-block of G(1), i.e., G(1) = [(G1

(1))
⊤, · · · , (GK

(1))
⊤]⊤. Correspondingly, I

have F = [(F 1)⊤, · · · , (FK)⊤]⊤, where F i = EiGi
(1) and Ei = [IH̃×H̃ ,0H̃×(Ñ−H̃)].

Essentially, αi is a sub vector of the final weight vector α = [(α1)⊤, · · · , (αK)⊤]⊤.

Then, for the ith mini-batch, the training algorithm should obtain features Gi
(1),

check the support vectors in these features, and update their corresponding weights

in αi. To maintain the coupling between Gi
(1)(or αi) and the rest Gj

(1)s (or αjs),

where j ̸= i, all the information in F , y and α should be utilized to obtain ∇Gi
(1)
J2,

80

∇Gi
(1)
J3, ∇αiJ2, and ∇αiJ3 by Equations (3.13), (3.16), (3.18), and (3.20), respectively.

Then, I can fix the correspondingly gradients with respect to support vectors in other

mini-batches to 0s. Consequently, the complete algorithm can be seen in Algorithm 5.

Algorithm 5 Train-mini-batch-KTDC-Se(X ,y).
Input: Training tensor X = {X i}Ki=1 and labels y = {yi}Ki=1.
while Not converge do

for i = 1 to K do
Utilize the complete information in G, y, and α and the mini-batch data to

obtain: Gi
(1), Ã,B,C,D,αi, b = Train-KTDC-Se(X i,yi|F ,y,α).

F = [(F 1)⊤, · · · , (FK)⊤]⊤.
α = [(α1)⊤, · · · , (αK)⊤]⊤.

Output: Parameters {Gi
(1)}Ki=1, Ã,B,C,D,α, and b.

For the cross-validation process or online testing, I have another total test tensor

X̃ ∈ RÑ×T×L×M that needs to experience the decomposition and classification to

obtain the label ỹ ∈ ZÑ×1, where I fix Ñ to be the number of tensors in one mini-batch.

The reason of fixing Ñ is that the mini-batch training yields a parameter matrix

Ã ∈ RÑ×Ñ that must be utilized for the test tensor decomposition. Therefore, there

should be Ñ tensors in the total test tensor. For real-time testing, if the testing tensor

number is not sufficient, I can repeat the testing tensor or utilize some data from the

historical dataset to complete the testing mini-batch. Thus the testing procedures are

as follows.

Obtain Test Feature Matrix G̃(1). To obtain G̃(1), I utilize the learned

parameters Ã,B,C and D. By setting the gradient in Equation (3.12) to 0, I can

obtain

G̃(1) = (Ã
⊤
Ã)−1 · (Ã⊤

X̃(1)H̃
⊤
) · (H̃H̃

⊤
)−1, (3.22)

where X̃(1) represents mode-1 unfolding of tensor X̃ .

81

Predict label vector ỹ. Based on the Representer theorem, I need the

learned weights α and b, historical features in F = G(1), and test features in

G̃(1) = [f̃
⊤
1 , · · · , f̃

⊤
Ñ]

⊤ to predict labels. Specifically, I can first calculate a test

kernel matrix K̃(i, j) = k(f̃ i,f j), where f̃ i ∈ G̃(1) and f j ∈ F . Then, the predicted

label can be obtained by:

ỹ = K̃α+ b. (3.23)

3.5.5 Numerical Result

3.5.5.0.1 Settings

Dataset. I utilize Illinois 200-bus system South Carolina 500-bus system (Engi-

neering Texas A&M University 2016b) to generate event data. Five event types are

considered, including line trip, generator trip, single-phase-to-ground fault, phase-to-

phase fault, and three-phase fault. For each event type, I consider 2 different event

locations. Thus, there are 10 unique combinations of event types and locations, i.e.,

10 event labels.

Then, I vary the loading conditions for the simulation to generate diversified event

files. Totally, I have 80 event files each of which has 10s event data. Further, I consider

the data resolution to be 60 samples per second, yielding 600 samples for each event

file. To extract tensors from these streams, I utilize the moving window with the

length to be 0.5s (i.e., 30 samples) and the moving gap to be 0.083s (i.e., 5 samples)

to cut the PMU streams. Therefore, I have 5840 PMU tensors in total. For each PMU

tensor, I have T = 30 for the time dimension, L = 200η1 or L = 500η1 for the 200-bus

and the 500-bus system, respectively, where η1 ∈ {0.05, 0.1, 0.15, 0.2} represents the

82

PMU penetrations for the grid. For each fixed η1, PMU locations are randomly

chosen for 5 times. Then, I set M = 3 for the measurement types, i.e., voltage

magnitude, voltage angle, and frequency. To summarize, I have X ∈ R5840×30×200η1×3

or X ∈ R5840×30×500η1×3 for training and testing. To mimic a semi-supervised setting,

I consider labeled data with the ratio of η2 = {0.1, 0.2, 0.3, 0.4, 0.5}, leading to a label

vector y ∈ Z5840η2×1.

Finally, I also test our proposed method using real-world PMU data from our

partner in Arizona, USA. These files totally have 5 labels covering 3 types of line faults

at 2 locations. After tensorization of data in 35 PMUs, I can obtain X ∈ R511×30×35×3

and y ∈ Z511×1.

Benchmark Methods. First, I train our KTDC-Se within the labeled data as

a benchmark to demonstrate the impacts of the unlabeled data. Further, I employ

state-of-the-art Semi-Supervised Learning (SSL) methods as benchmarks. The details

of these methods are shown as follows.

• Deep Residual Network (Resnet) (K. He et al. 2016): Resnet is an efficient deep

learning model for classification. For this supervised learning model, I utilize

only labeled data as comparison. As PMU data have high dimensionality (e.g.,

9000 for the 500-bus system with η1 = 0.2), Principal Component Analysis

(PCA) is utilized to pre-process data before training the Resnet.

• KTDC-Se-L: KTDC-Se-L is to train a KTDC-Se model with only labeled data by

setting N = H in the model, which demonstrates the effectiveness of employing

unlabeled data for training a classifier.

• MixMatch (Berthelot et al. 2019): MixMatch can guess low-entropy labels

for unlabeled instances with data augmentation. Then, MixMatch develops a

probabilistic procedure to mix the labeled and unlabeled data to train a deep

83

learning classifier. Similarly, I employ PCA to reduce the dimensionality of the

mixed dataset from MixMatch and input them to a Resnet (K. He et al. 2016) as

the final classifier. For a fair comparison, the Resnet has the same architecture

as the first benchmark.

• FixMatch (Sohn et al. 2020): FixMatch first generates pseudo labels for data

with weak data augmentation. Then, FixMatch develops a criterion to decide

the pseudo label is retained or not. Finally, data with retained pseudo labels

experience a strong data augmentation for the classifier training. Similar to

MixMatch, I utilize PCA and Resnet as the final classifier. For fair comparison,

the Resnet has the same architecture as the first benchmark.

• Semi-supervised Ladder Network (SSLN) (Rasmus et al. 2015): SSLN combines

supervised and unsupervised learning in deep neural networks with a joint loss

function in a ladder network with an auto-encoder model structure. Similarly, I

pre-process the data with the PCA method.

During the testing, the hyper-parameters for all models are fine-tuned in the 3-fold

cross-validation to achieve the best accuracy. In general, by comparing the testing

accuracy of KTDC-Se with Resnet, and KTDC-Se-L, I can illustrate the effectiveness

of using unlabeled data. By comparing the testing accuracy of KTDC-Se and other

methods, I can evaluate the performance of using an integrated model and two-stage

models. Especially, Resnet, MixMatch, FixMatch, and SSLN have two separate steps

of data pre-processing and learning, which have their biased selections. By comparing

the label predicting time of KTDC-Se and other methods, I can evaluate the efficiency

of the methods for real-time inference. Finally, by comparing the choice of kernel

selection, I can understand how the non-linear kernels boost the performance.

84

3.5.5.0.2 Joint Optimization of KTDC-Se is Better Than Two-stage Models

In this subsection, we evaluate the integration design by comparing our KTDC-Se

and other two-stage models. Thanks to the integration without biased selection for

the two-stage compression and classification, our model performs much better than

benchmarks. Specifically, we report the results of simulated and real-world data as

follows.

For the simulated data, we first fix η2 = 0.3 to divide the labeled and unlabeled

datasets for training and testing. Fig. 19a and 19b demonstrate the results for the

two systems. Since for each η1 of one system, we conduct 5 times randomization and

3-fold cross validation of the PMU location selection, there can be multiple different

values of the testing accuracy for each testing scenario. Thus, we present the box plot

in Fig. 19a and 19b to show the average and the variance.

We find that our KTDC-Se has an average accuracy promotion of 13.3%, 13.6%,

and 9.3%, compared to MixMatch, FixMatch, and SSLN, respectively. Notably, the

latter 3 benchmark models utilize PCA to pre-process data so that they can be

trained with a reasonable cost. Even though these 4 methods utilize the same labeled

and unlabeled data for training, the better performance of KTDC-Se shows that an

integrated model can be better than the two-stage models. This is because that the

integrated model avoids the biased selection of the two separate models. Further, the

joint model enables the identification of discriminative core tensors that are sensitive

to the event labels.

For the real-world data, we report the testing accuracy in Table 8. We observe

that the average accuracy promotions of KTDC-Se are 9.7%, 9%, and 8.8%, compared

85

(a) Testing accuracy (%) for the 200-bus system.

(b) Testing accuracy (%) for the 500-bus system.

Figure 19. Performances of event identification using different methods.

86

Table 8. Testing accuracy (%) (mean ± standard deviation) for real-world PMU data.

KTDC-Se Resnet KTDC-Se-l MixMatch FixMatch SSLN
Accuracy 92.3 ± 0.8 77.1± 0.6 80.5± 1.1 82.6± 0.8 83.3± 1.6 83.5± 2.1

to MixMatch, FixMatch, and SSLN, respectively. This still supports the advantage of

using an integrated model.

3.5.5.0.3 Semi-supervised Learning Boosts KTDC-Se Model Performance

In this subsection, we compare KTDC-Se, Resnet, and KTDC-Se-L to illustrate

the effectiveness of semi-supervised learning. Specifically, for synthetic data, the

average accuracy promotions are 18% and 13.3%, compared to Resnet and KTDC-

Se-L, respectively. For real-world data, the corresponding accuracy promotions are

15.2% and 11.8%. These results show that there is a significant improvement when

using unlabeled data.

The performance can be explained as follows. First, we can compare KTDC-Se

and KTDC-Se-L. When doing the tensor decomposition of the PMU tensors, the

unlabeled tensors in KDTC-Se enable the core tensors to understand different loading

conditions and maintain similarity for different conditions as long as the event label

is the same. Then, the trained classifier can successfully tackle different operational

scenarios. Second, we can compare KTDC-Se-L and Resnet. We find that Resnet

has an even worse performance as Resnet also employs PCA to pre-process data. As

illustrated in Section 3.5.5.0.2, the two-stage model performs worse.

To further understand how many labeled data are needed for a good performance

of KTDC-Se, we utilize the simulated data to test and fix η1 = 0.1 and vary η2 ∈

87

(a) Sensitivity analysis for the 200-bus system.

(b) Sensitivity analysis for the 500-bus system.

Figure 20. Results of the sensitivity analysis with respect to labeled data ratios.

88

{0.1, 0.2, 0.3, 0.4, 0.5} for the number of labeled data. As a comparison, we also

implement KTDC-Se-L for the labeled data. Further, we also present the optimal

testing accuracy via employing labels for all the PMU tensors to train the model, i.e.,

η2 = 1. The results of average testing accuracy are shown in Fig. 20a and 20b.

Based on the plots, we have the following observations. (1) Training with extra

unlabeled data significantly improves the accuracy, which has been explained before.

(2) KTDC-Se can efficiently utilize the limited labels. For example, when η2 = 0.1,

the testing accuracy is still higher than 94%. This implies that KTDC-Se can filter

information and group data by event labels in the feature space. Such a good result

comes from the joint learning process to generate compact and discriminative features.

(3) As η2 increases, the testing accuracy of KTDC-Se gradually increases up to the

optimal accuracy. Further, with only 30% of the labeled data, KTDC-Se can bring an

accuracy almost close to the optimal one. This again indicates the high efficiency of

KTDC-Se to utilize limited labels.

3.5.5.0.4 Tensor-based Framework Enables Fast Inference

Table 9. The average predicting time (s) of the testing dataset for different methods.

KTDC-Se Resnet KTDC-Se-l MixMatch FixMatch SSLN
Time 1.3 3.8 0.4 3.8 3.7 6.4

The model efficiency can be evaluated via the predicting time of methods on

testing datasets. We utilize the simulated data in Section 3.5.5.0.2 and report the

computational time of all methods on the testing dataset in Table 9. We find that

KTDC-Se has the second lower computational time, which demonstrates its efficiency.

89

Further, KTDC-Se-L has the lowest time because it uses less data (i.e., only labeled

data) for training. Thus, the test kernel matrix has a much smaller size compared to

that in KTDC-Se. According to the prediction function in Equation (3.23), KTDC-

Se-L has a lower computational time compared to KTDC-Se.

However, if we utilize both labeled and unlabeled data, KTDC-Se is much more

efficient than other methods. The reason is that KTDC-Se employs tensor decomposi-

tion to explore cross-dimension correlations and obtain a very compact core tensor for

training, but other methods utilize PCA to compress data, which needs more features

to achieve the best accuracy. Secondly, other methods utilize a deep model to extract

non-linear features, requiring more computational time. Thirdly, Resnet, FixMatch,

and MixMatch share the same DNN architecture and consume close time for testing.

On the other hand, the ladder network in SSLN has a larger size and needs more time

to compute.

3.5.5.0.5 Non-linear Kernelization Largely Increases the Accuracy

In this subsection, we study the effectiveness of kernelization to the capacity of

the classifier. Specifically, we report the testing accuracy for the 200-bus system when

η1 = 0.1 and η2 = 0.3. Other results are similar and ignored due to the space limit.

Then, we study the case with a constant kernel (e.g., d = 1 for the polynomial kernel)

and cases with different non-linear kernels. When kernel is a polynomial function, we

vary d ∈ {1, 2, 3}. When kernel is a RBF function, we vary λ ∈ {0.05, 0.1, 0.15}.

The results are shown in Table 10. First, if we compare the constant kernels with

other kernels, we find that adding non-linear kernels can significantly increase the

accuracy. This is because the PMU measurements have high non-linear correlations.

90

Secondly, the polynomial kernel can lead to an accuracy 95.5% when d ≥ 2. For

the RBF kernel, the accuracy is around 94.7% when λ ≥ 0.1. This shows that the

polynomial kernel, especially when d = 2, is better than others. The partial reason is

that the quadratic correlations largely lie in the power flow equations.

Table 10. The testing accuracy (%) (mean ± standard deviation) for different kernels.

Kernel name d or λ Accuracy
Polynomial 1 89.22± 0.6
Polynomial 2 95.7 ± 0.3
Polynomial 3 95.4± 0.2
RBF 0.05 93.3± 0.6
RBF 0.1 94.7± 0.3
RBF 0.15 94.6± 0.5

91

Chapter 4

TRANSFER SYSTEM KNOWLEDGE ACROSS DIFFERENT SYSTEMS

4.1 Introduction

Modern physical systems are experiencing tremendous changes. First, The system

territory is expanding to better serve society. Second, to increase the efficiency and

decrease the cost of the system, new components are continuously introduced. Some

of them bring a lot of uncertainties due to intrinsic uncertain sources, imperfect

component monitoring ability, etc. For example, power systems integrate a large

portion of renewable energies like PhotoVoltaic (PV) power and wind power, the

output of which depends on dynamic weather conditions. In general, modern physical

systems have become more complex.

While conventional system analysis may fail for large-scale edge areas with high

uncertainties, Data Mining (DM) and Machine Learning (ML) methods could play

a game-changing role with accurate and cost-efficient implementations for new tech-

nologies of system monitoring, control, and protection. Especially, DM/ML models

have been developed for physical system state estimation, cyber-attack detection, and

event identification (Li et al. 2019a, 2019b), etc. Such wide applications are due to

DM/ML’s flexible modeling capability, robust performance, and high inference speed

for real-time operations.

However, most of the existing DM/ML models on physical systems require a certain

amount of training data. If the data are limited, the model training is likely to fail

due to the curse of dimensionality. Unfortunately, data-limited scenarios often occur

92

for a completely new grid or an old grid with increased metering, not to mention the

common upgrading process with new nodes/lines. Thus, it is urgent to employ new

methods to transfer knowledge from the source grid with rich data to the target grid

with limited data.

For this goal, Transfer Learning (TL) is defined conceptually as an efficient

procedure to extract common knowledge from two different domains and boost the

performance of the data-limited domain. Specifically, an efficient approach is Domain

Adaptation (DA) (Pan, Kwok, Yang, et al. 2008; Long et al. 2013; Long et al. 2016)

which minimizes the data distribution discrepancy of two domains, usually in a low-

dimensional space for domain invariant features. Therefore, DA promises that joint

training using common knowledge can significantly boost the learning process. While

many efficient DA models have been applied to computer vision (Long et al. 2013;

Ganin et al. 2016a) and natural language process (Wu and Huang 2016), relatively

few work has been done for graph data (Shen et al. 2021).

For physical systems, the widely placed sensors bring numerous networked mea-

surements for nodes and edges with complex spatial-temporal correlations. Can I

fully explore the correlations to improve DA methods? Further, nodes or edges can

have different physical characteristics, i.e., different labels. Is the label information

beneficial to the distribution adaptation? Intuitively, the answer shall be yes for both

questions as the above information represents different levels of graph similarity that

further guides the extraction of common knowledge in DA.

However, limited work exists in this topic (Dai et al. 2022; Fang, Yin, and Zhu 2013;

Lee et al. 2017; Fu et al. 2019; Shen et al. 2021). Specifically, (Fang, Yin, and Zhu 2013)

projects networked data into a latent space that captures the common sub-structure.

However, finding common sub-structures will cause the non-ignorable loss by removing

93

non-common parts. (Fu et al. 2019) can measure the similarity of different graphs

with an index based on the node degree similarity. However, the index is not sufficient

to tackle physical systems with measurements and labels for nodes and edges. In this

paper, I propose a graph kernel to make use of all data to measure the graph similarity

for two different graphs. (Dai et al. 2022; Lee et al. 2017; Shen et al. 2021) build

CNNs and GNNs to process networked data to learn transferable features. However,

their projected feature space, though containing network information, is restricted

with the same dimensionality and causes information losses for systems of different

sizes. Further, they generally suffer high computational costs for large-scale physical

systems and lack theoretical guarantees. I tackle these issues by proposing an efficient

optimization using graph kernels and MMD measures with rigorous proofs.

4.2 Problem Formulation

Physical systems can be modeled as spatial-temporal graphs (Wu et al. 2020).

Specifically, I denote {Gn = {V , E ,Dn}}Nn=1 as the source graph, where V and E are

the node and edge sets, respectively. Dn is the corresponding data at the time slot

n and N is the number of time slots for the graphs. Similarly, the target graph is

denoted as {G̃n = {Ṽ , Ẽ , D̃n}}Ñn=1. In the following derivations, if there are no special

notices, quantities with tilde are by default linked to the target graph.

The physical graph contains data of different modality, which together can boosts

the knowledge transfer and feature extraction for the final machine learning model. In

this paper, I assume the source graph contains node measurements X ∈ R|V|×N , node

labels L ∈ Z|V|×N , edge measurements Y ∈ R|E|×N , and edge labels M ∈ Z|E|×N , where

| · | for a set represents the operation to obtain the set cardinality. Secondly, I focus

94

on the graph-level classification and assume the task label vector is h ∈ ZN . Thirdly,

I assume the node/edge/task label lies in the range of {0, 1, · · · , K1}, {0, 1, · · · , K2},

and {0, 1, · · · , K3}, respectively. Finally, the adjacency matrix A ∈ R|V|×|V| is assumed

to be known. Similarly, I denote the corresponding quantities for the target graph as

X̃ ∈ R|Ṽ|×Ñ , L̃ ∈ Z|Ṽ|×Ñ , Ỹ ∈ R|Ẽ|×Ñ , M̃ ∈ Z|Ẽ|×Ñ , h̃ ∈ ZÑ , and Ã ∈ R|Ṽ|×|Ṽ|.

Then, I can find that {Dn}Nn=1 = {X,L,Y ,M ,h} and {D̃n}Ñn=1 =

{X̃, L̃, Ỹ ,M̃ , h̃}. For some realistic scenarios when there is no label informa-

tion, one can utilize matrices with all ones to indicate that nodes (edges) share the

same label. Further, the model can be easily generalized to the case when there exist

multiple measurements/labels for one node/edge at each time slot.

In the transfer learning setting, I address the problem when distributions of

{Dn}Nn=1 and {D̃n}Ñn=1 have a certain distance, which causes troubles for utilizing

knowledge from both graphs for ML model training. Secondly, I assume there are

much more data in the source graph, i.e., N ≫ Ñ . Therefore, it is essential to convert

data or features from the source graph to the target graph to enhance the ML models.

Therefore, the problem is defined as follows.

• Problem: Transfer Learning between physical systems.

• Given: a source system {Gn = {V , E ,Dn}}Nn=1 and a target system {G̃n =

{Ṽ , Ẽ , D̃n}}Ñn=1. Next, I assume N ≫ Ñ .

• Find: an ML model f(·) that takes in features learned from {Gn =

{V , E ,Dn}}Nn=1 and {G̃n = {Ṽ , Ẽ , D̃n}}Ñn=1 to perform tasks in the target system.

95

4.3 Improve the Speed of Knowledge Transfer via Graph Coarsening

In this section, I propose a pre-processing method to obtain coarser graphs which

are much smaller than source and target graphs, thus improving the model efficiency

for the following computations. Mathematically, I aim to find spatial-temporal coarser

graphs {Gn
C = {VC , EC ,Dn

C}}Nn=1 and {G̃n
C = {ṼC , ẼC , D̃n

C}}Ñn=1 such that |VC | < |V|

and |ṼC | < |Ṽ|. To obtain coarser graphs, I have the following objectives.

• Propose surjective maps π̃ : V → VC and π̃ : Ṽ → ṼC to aggregate nodes. Then,

design the corresponding maps that can project nodal measurements/labels

from the source/target graphs to the coarser graphs. Namely, I need to find

πM : R|V| → R|VC |, πL : Z|V| → Z|VC |, π̃M : R|Ṽ| → R|ṼC |, and π̃L : Z|Ṽ| → Z|ṼC |.

• Figure out the connections EC and ẼC with the corresponding maps ω : E → EC

and ω̃ : Ẽ → ẼC . Then, find the maps of the edge measurements/labels from

source/target graphs to the coarser graphs. Namely, I need to find ωM : R|E| →

R|EC |, ωL : Z|E| → Z|EC |, ω̃M : R|Ẽ| → R|ẼC |, and ω̃L : Z|Ẽ| → Z|ẼC |.

There is much prior work on calculating VC and ṼC and the related maps according

to different measures and targets (Cai, Wang, and Wang 2021; Loukas 2019). In this

paper, I focus on utilizing the structural information and the knowledge of node/edge

labels to maintain data structure and distribution similarity.

Structural Node Aggregation with Label Information. The neighborhood

of nodes for a physical system usually indicates a group with similar physical behaviors.

Thus, I can utilize one node to represent them in the coarser graph. Secondly, the

label information of nodes can further improve the node grouping for the local areas.

Thus, node maps π and π̃ should take in both factors for a reasonable coarsening

96

Figure 21. The procedure of graph coarsening. Different colors of nodes represent
different labels. Different shape of lines represent different labels.

process. For the convenience of derivations, I only consider the coarsening of the

source graph. Subsequently, I first initialize a set of neighborhoods based on the

connectivity. Each neighborhood contains a center i ∈ V and the neighbouring nodes

Neigh(i) such that j ∈ Neigh(i) if and only if d(i, j) ≤ dmax, where d(i, j) represent

the pre-defined distance between node i and j, and dmax represents the maximum

threshold. For example, I can define d(i, j) to be the number of edges along the

shortest path between i and j. As shown in Fig. 21, I consider dmax = 1 to aggregate

nodes that are 1-hop away from the center nodes marked with a red star. Further, if

there is no path between i and j, I define d(i, j) = ∞.

Subsequently, based on the previous discussion, the grouping of nodes in a neigh-

borhood is too coarse and needs to be divided by the node labels. Thus, I divide

Neigh(i) = {Neighk(i)}K1
k such that ∀j1, j2 ∈ Neighk(i), L(j1, n) = L(j2, n) = k

(recall that n is the index for the time slot for the discussed graph and data). For

example, in Fig. 21, the blue and purple nodes have different labels. Thus, even

though they share one neighborhood, they should be divided into two groups. Then, I

have

π
(
Neighk(i)

)
= h ∈ VC . (4.1)

97

Based on the above node aggregation rules, since nodes in Neighk(i) share one

label k, the projected node h ∈ VC also has a label k. Namely,

πL
(
L
(
Neighk(i), n

))
= k. (4.2)

For the measurements, as I assume there is no prior on the importance of nodes, I

directly average the measurements in the related nodes. Specifically, I have

πM
(
X

(
Neighk(i), n

))
=

1

|Neighk(i)|

|Neighk(i)|∑
j=1

X(j, n). (4.3)

Edge Identification with Label Information. After obtaining VC , I identify EC

with a simple and popular VC-induced approach (Cai, Wang, and Wang 2021). Namely,

(h1, h2) ∈ EC if and only if there is an edge (i1, i2) ∈ E and labels 1 ≤ k1, k2 ≤ K2 such

that π
(
Neighk1(i1)

)
= h1 and π

(
Neighk2(i2)

)
= h2. In other words, the connection

between two neighborhoods in the original graph implies a connection in the coarser

graph.

However, the identified edge may have multiple labels as in the original graph,

there may be many connections with multiple labels between two neighborhoods. This

causes issues when formalizing edge measurement and label maps. For example, in

the left and middle part of Fig. 21, the connections between yellow and pink nodes

have multiple labels (i.e., different shapes of lines). To tackle this problem, for nodes

in the coarser graph with multi-labeled edges, I propose to copy them according to

the number of labels and assign each copied pair a uni-labeled edge. In the meantime,

the outer connections to other nodes remain unchanged for each copied pair, shown in

the right part of Fig. 21. Finally, the coarser graph only contains uni-labeled edges.

For simplicity of later derivations, I denote Connek(h1, h2) ⊂ E to be the set of edges

in the original graph that has a label k (1 ≤ k ≤ K2) and connects nodes in π−1(h1)

98

and π−1(h2), where π−1 represents the inverse map of π. Then, the edge map is

ω
(
Connek(h1, h2)

)
= h ∈ EC . (4.4)

Further, the edge label map can be defined as

ωL
(
M

(
Connek(h1, h2), n

))
= k. (4.5)

Similarly, I can average the edge measurements in Connek(h1, h2) to obtain the

edge measurement in the coarser graph:

ωM
(
Y
(
Connek(h1, h2), n

))
=

1

|Connek(h1, h2)|

|Connek(h1,h2)|∑
j=1

Y (j, n). (4.6)

Finally, I can follow the above procedures and generate the coarser graph for the

target grid. For the two coarser graphs, the number of nodes can vary due to different

numbers of neighborhoods and the node copy process in this subsection. Further, the

connectivity can be different due to the varying topology of the two original graphs.

Thus, the obtained spatial-temporal coarser graphs {Gn
C}Nn=1 and {G̃n

C}Ñn=1 are usually

different.

4.4 Conduct Cross-system Knowledge Transfer Using GNA: Graph Kernel-based

Domain Adaptation

Distribution Adaptation for Two Sample Test. The two coarser graphs bring

two sets {Dn
C}Nn=1 and {D̃n

C}Ñn=1 of samples (measurements and labels) converted from

source and target physical systems, which are generated via Equations (4.2), (4.3),

(4.5), and (4.6). Thus, I target measuring and minimizing the distribution difference

from the two sample sets and propose the Graph kerNel-based distribution Adaptation

(GNA).

99

A prevalent measure for the distribution difference with two sample sets is the

so-called Maximum Mean Discrepancy (MMD) (Long et al. 2013; Pan, Kwok, Yang,

et al. 2008). MMD can compare distributions based on reproducing Hilbert Space

(RKHS). Then, MMD-based domain adaptation finds a low-dimensional latent space

via a linear transformation of the kernels of data samples, where the linear transfor-

mation is learnable to achieve minimal MMD measure. Specifically, the Joint Domain

Adaptation (JDA) in (Long et al. 2013) tries to minimize:

min
W⊤KHK⊤W=I

MMD({Dn
C}Nn=1, {D̃n

C}Ñn=1)

=

K3∑
k=0

tr(W⊤KN kK
⊤W) + λ||W ||2F ,

(4.7)

where H = I − 1

N+Ñ
1, I is the identity matrix, 1 ∈ R(N+Ñ)×(N+Ñ) is a matrix of

ones, and W ∈ R(N+Ñ)×n0 (n0 < N + Ñ) is the learnable linear transformation to

project kernel features to a low-dimensional space. K is the kernel matrix obtained

from samples in sets {Dn
C}Nn=1 and {D̃n

C}Ñn=1. λ is a positive penalty term and || · ||F

is the Frobenius norm. N k is a weight matrix. When k = 0, I have:

N 0(i, j) =

1
N2 , if 1 ≤ i, j ≤ N ,

1

Ñ2
, if N + 1 ≤ i, j ≤ N + Ñ ,

−1

NÑ
, otherwise,

(4.8)

When k ≥ 1, I have:

N k(i, j) =

1
N2

k
, if 1 ≤ i, j ≤ N and h(i) = h(j) = k ,

1

Ñ2
k

, if N + 1 ≤ i, j ≤ N + Ñ and h̃(i) = h̃(j) = k ,

−1

NkÑk
, if 1 ≤ i ≤ N,N + 1 ≤ j ≤ N + Ñ , h(i) = h̃(j) = k

−1

NkÑk
, if 1 ≤ j ≤ N,N + 1 ≤ i ≤ N + Ñ , h(j) = h̃(i) = k

0, otherwise,

(4.9)

100

where Nk and Ñk represent the samples with task label k for the source and the target

coarser graph, respectively.

To calculate the kernel matrix, traditional kernels like the polynomial kernel

(kpoly) or the Radial Basis Function (RBF) kernel (krbf) are largely utilized for image,

WiFi, and text datasets. However, they are not suitable for datasets from physical

systems, i.e., {Dn
C}Nn=1 and {D̃n

C}Ñn=1, with structural knowledge, label information,

and measurements with temporal correlations. To tackle this issue, I propose to

leverage the graph kernel to incorporate all the above information.

The designed kernel is a modified version of the random walk kernel (Borgwardt

et al. 2005; Vishwanathan et al. 2010) to process both the measurements and labels

from nodes and edges. Further, the design can consider complex spatial-temporal

correlations for better feature extractions. Random walk kernels (Vishwanathan et

al. 2010) perform random walks on two graphs and calculate the number of matching

walks to describe the graph similarity. The random walk within two graphs can be

counted under a direct product graph. The reason to utilize random walk kernel is

that (1) the computation is efficient and (2) the kernel can incorporate both label and

measurement information.

Spatial-Temporal Graph Kernel with Measurements and Labels. In this

subsection, I propose a graph kernel design for {Gn
C}Nn=1 and {G̃n

C}Ñn=1 to formalize

Equation (4.7).

To propose the graph kernel, I consider two graphs Gn1
C and G̃n2

C . For simplifi-

cation, I eliminate the unnecessary time slot index n1 and n2 in the later deriva-

tions. Subsequently, the direct product graph, denoted as GC × G̃C , contains

the node, edge set, and the adjacency matrix: V× = {(i, j) : i ∈ VC , j ∈ ṼC},

E× = {
(
(i1, j1), (i2, j2)

)
: (i1, i2) ∈ EC ∩ (j1, j2) ∈ ẼC}, and A× = AC ⊗ ÃC , where

101

AC and ÃC are the adjacency matrices of the GC and G̃C , respectively. ⊗ is the

kronecker product. Then, the classical random walk kernel considers the weighted

sum of random walks on the direct product graph:

K(n1, n2) =

|V×|∑
i,j=1

∞∑
l=0

α(A×)
l(i, j), (4.10)

where α is a positive weight factor to guarantee convergence.

To better process nodal/edge measurement and label data, (Borgwardt et al. 2005)

proposes to develop a modified random walk by replacing A× in Equation (4.10) with

a new weighted adjacency matrix B× such that:

B×(i1 + |ṼC | × (j1 − 1), i2 + |ṼC | × (j2 − 1))

=

kstep

(
(i1, j1), (i2, j2)

)
, if (i1, j1), (i2, j2) ∈ E× ,

0, otherwise,

(4.11)

where kstep
(
(i1, j1), (i2, j2)

)
is the step kernel to measure the similarity between steps

(i1, i2) ∈ EC and (j1, j2) ∈ ẼC . However, the defined step kernel in (Borgwardt et

al. 2005) can hardly capture the temporal correlations. To include the temporal

correlations, I denote l1 = [n1 − δn, n1 − δn + 1, · · · , n1, n1 + 1, · · · , n1 + δn]
⊤ and

l2 = [n2 − δn, n2 − δn + 1, · · · , n2, n2 + 1, · · · , n2 + δn]
⊤ to be index vectors for the

neighbors of time slot n1 and n2 in the temporal dimension, respectively. Then, I

102

propose a new step kernel definition:

kstep
(
(i1, j1), (i2, j2)

)
= kL

(
(i1, j1), (i2, j2)

)
× kM

(
(i1, j1), (i2, j2)

)
,

kL
(
(i1, j1), (i2, j2)

)
= 1

(
πL

(
L
(
π−1(i1), n1

))
= π̃L

(
L̃
(
π̃−1(j1), n2

)))
× 1

(
πL

(
L
(
π−1(i2), n1

))
= π̃L

(
L̃
(
π̃−1(j2), n2

)))
× 1

(
ωL

(
M

(
ω−1(i1, i2), n1

))
= ω̃L

(
M̃

(
ω̃−1(j1, j2), n2

)))
,

kM
(
(i1, j1), (i2, j2)

)
= krbf

(
πM

(
X

(
π−1(i1), l1

))
, π̃M

(
X̃

(
π̃−1(j1), l2

)))
× krbf

(
πM

(
X

(
π−1(i2), l1

))
, π̃M

(
X̃

(
π̃−1(j2), l2

)))
× krbf

(
ωM

(
Y
(
ω−1(i1, i2), l1

))
, ω̃M

(
Ỹ
(
ω̃−1(j1, j2), l2)

)))
,

(4.12)

where 1(·) is the indicator function that takes 1 if the condition inside is true and 0

otherwise. One can replace the RBF kernel krbf with other kernels to evaluate the mea-

surement similarity. Notably, to calculate the measurement kernel kM
(
(i1, j1), (i2, j2)

)
,

I include the neighboring time slots in l1 and l2 to extract features with temporal

correlations. Then, I can use above equations to calculate K. Specifically, (Vish-

wanathan et al. 2010) provides an equivalent equation to convert Equations (4.10)

to:

K(n1, n2) = q⊤
×(I − αB×)

−1q×, (4.13)

where ∀1 ≤ i ≤ |VC |, q×(i) =
1

|VC | and ∀|VC |+ 1 ≤ i ≤ |VC |+ |ṼC |, q×(i) =
1

|ṼC |
. To

calculate the inverse matrix in Equation (4.13), (Vishwanathan et al. 2010) provides

an efficient way by solving Sylvester equations. One can refer to (Vishwanathan

et al. 2010) for the procedure and Section 4.5 provides the time complexity of the

calculation. Notice that the kernel calculation can be directly implemented on the

source and the target graphs. However, the large size in the original graphs causes

inefficiency for the computation, which prevents the realistic prediction for the classifier

103

trained with kernel features. Thus, graph coarsening in Section 4.3 is essential to

guarantee model efficiency.

Finally, after the calculation of K, I can construct the optimization in Equation

(4.7), which can be efficiently solved as a generalized eigendecomposition problem

(Long et al. 2013; Pan, Kwok, Yang, et al. 2008). Then, I summarize the complete

learning algorithm in Algorithm 6.

Algorithm 6 Cross-Graph Domain Adaptation

Input: Spatial-temporal graphs {Gn}Nn=1 and {G̃n}Ñn=1

Hyper-parameters: Distance threshold dmax for node aggregation, temporal
interval δn for temporal correlation integration, parameters of RBF kernel krbf (or
polynomial kernel kpoly), and penalty term λ for the Frobenius norm in Equation
(4.7).
Graph coarsening: Utilize Equations (4.1) to (4.6) to conduct graph coarsening
with dmax. Then, obtain the coarser graphs {Gn

C}Nn=1 and {G̃n
C}Ñn=1.

Compute graph kernels: Utilize data of {Gn
C}Nn=1 and {G̃n

C}Ñn=1 to calculate
weighted adjacency matrix B× under Equations (4.11) and (4.12). Then, solve
Sylvester equations to compute kernel matrix for Equation (4.13).
Solve GNA: Construct GNA model in Equation (4.7) and solve the model as a
generalized eigendecomposition problem.
Train classifier: Train a classifier f based on the obtained common features W⊤K
in Equation (4.7) and graph labels h and h̃.
Output: Kernel matrix K, linear transformation matrix W , and classifier f .

4.5 Theoretical Analysis

According to (Pan, Kwok, Yang, et al. 2008; Gretton et al. 2012), a universal

kernel is required to guarantee MMD to be a correct statistic to measure distribution

distance. Further, theorems in (Song 2008; Pan, Kwok, Yang, et al. 2008) show that

the positive definite kernel matrix can guarantee the kernel is universal. Thus, I have

the following theorem.

104

Theorem 7. The proposed random walk kernel from Equations (4.10) to (4.12) is

positive definite and universal.

The proof can be seen in Section A.7. Next, I evaluate the computational cost of the

proposed graph kernel. (Vishwanathan et al. 2010) obtain results of Equation (4.13)

by solving Sylvester equations. Due to the space limit, I eliminate the derivations, and

one can refer to (Vishwanathan et al. 2010) for more details. Based on the Sylvester

equation methods, I propose the following theorem.

Theorem 8. If |V |C ≈ |ṼC | ≈ M , the computational complexity to calculate the

proposed graph kernel matrix K is O
(
(N + Ñ)2(M3 + δnM

4)
)

for Sylvester equation-

based method.

The proof can be seen in Section A.8. Finally, for the complete training algorithm,

I follow the evaluation methods in (Long et al. 2013) to report the time complexity.

Specifically, I have the following theorem.

Theorem 9. If |V|C ≈ |ṼC | ≈ M , the computational complexity of the training

algorithm for Optimization (4.7) is O
(
(n0 +K3 + 1)(N + Ñ)2

)
.

I note that it is possible to further reduce this complexity, by leveraging recent

advance on scalable Sylvester equation solvers, such as (Du and Tong 2018).

105

4.6 Numerical Results

4.6.1 Settings

4.6.1.0.1 Dataset

In this experiment, I utilize power systems, mass-damper systems, and human

activity sensing systems for testing. They are described as follows.

Power Systems. Power systems transmit electric power from generation sides to

load sides. In this paper, I conduct a business-level simulation using Positive Sequence

Load Flow (PSLF) (General Electric Energy Consulting 2018) from General Electric

(GE) company. For system profiles, I employ data from Illinois 200-node system and

South Carolina 500-node system (Engineering Texas A&M University 2016b). The

profiles provide the label information for nodes and edges. Specifically, nodes can

be categorized into generators, loads, and the slack bus. Edges can be divided into

transformers and lines. After simulation, I can obtain nodal measurements of voltage

magnitude, angle, and frequency and edge measurements of current magnitude and

angle. Finally, the system labels include line trip, generator trip, single-phase fault,

phase-to-phase fault, three-phase fault, load shedding, and transformer failure. For

simplification, I denote the two systems as P200 and P500.

Mass-damper Systems. Mass damper systems study the mechanical functions

of a structure to reduce the dynamic responses. Using MATLAB, I simulate the

dynamic process of two mass-damper systems with 5 nodes and 10 nodes for transfer

learning. Then, the force and the speed measurements of nodes are utilized for DA.

106

The labels of the system include edge trip and node trip. For simplification, I denote

the two systems as M5 and M10.

Human Activity Sensing Systems. They are action measuring systems to

measure the acceleration and the angular acceleration when a person is conducting an

action (Zhang and Sawchuk 2012). In general, the researchers employ 14 subjects with

6 nodes for measuring. The node measurements include 3-axis acceleration and 3-axis

angular acceleration data measurements for each time slot, with a total of around 10s

to 30s. The labels include acceleration and angular acceleration. The system labels

include 12 actions. I study the knowledge transfer between sensing systems of two

subjects. For simplification, I denote the two systems as H16 and H26.

For power systems, graph coarsening is utilized to reduce the system size and

increase the model efficiency. For other systems, I directly utilize the raw system data.

4.6.1.0.2 Benchmark Methods and Evaluations

GNA model can learn features in the kernelized feature space. Then, I utilize a

deep Residual network (Resnet) (K. He et al. 2016) to conduct the classification task.

Further, I use the following benchmark methods for comparison.

• Resnet + Principal Component Analysis (PCA): I utilize PCA to project data

into a low-dimensional feature space that has the same dimensionality as features

of GNA. Then, the features are input to Resnet without transfer learning as a

benchmark method. The same Resnet is used for the classification.

• Transfer Component Analysis (TCA) (Pan, Kwok, Yang, et al. 2008) + Resnet:

TCA minimizes the MMD of marginal distributions. The same Resnet is used

for the classification.

107

• Joint Distribution Adaptation (JDA) (Long et al. 2013) + Resnet: JDA jointly

minimizes the MMD of the marginal and conditional distributions. The same

Resnet is used for the classification.

• Domain Adversarial Neural Network (DANN) (Ganin et al. 2016b): DANN

employs adversarial training with Deep Neural Networks (DNNs) to learn

domain-invariant features and do classification.

• Cross-network Deep Network Embedding (CDNE) (Shen et al. 2021): CDNE

utilizes DNNs to learn label-discriminative and network-invariant representations.

The network structure and networked data are employed.

• Graph Convolutional Adversarial Network (GCAN) (Ma, Zhang, and Xu 2019):

GCAN employs Data Structure Analyzer to project source and target samples

into instance graph. The graph captures the similarity between different samples.

Then, GNN-based adversarial training is employed to learn invariant features

over the graphs.

These methods are inclusive and representative according to the major DA catego-

rizations, covering distribution metric-based (TCA, JDA, and CDNE) and adversarial

learning-based (DANN, GCAN) methods. Further, traditional optimizations (TCA

and JDA) and deep learning models (DANN, CDNE, and GCAN) are considered. In

addition, CDNE considers networked data with structure information and GCAN

considers graph structures between samples.

Note that for TCA, JDA, and DANN models, the dimensionality of the source

and the target datasets should be the same. Thus, I copy some nodal measurements

of the smaller system to align the dimensionality. For model evaluations, I conduct

5-fold cross-validation for the physical datasets and report the average test accuracy

as the final score for each method.

108

4.6.2 Result of Test Accuracy

In this subsection, I evaluate the average test accuracy for different methods. I

utilize the arrow to show the transferring process. For example, P500 → P200 shows

that 500-node power system is the source grid and 200-node power system is the

target grid. Then, Tables 11 and 12 demonstrate the results. In general, the proposed

GNA performs the best over other methods, with improvements of 7.24%, 10.63%,

6.99%, 6.58%, 7.78%, and 12.74% compared to JDA, TCA, DANN, CDNE, GCAN,

and Resnet without transfer learning. This demonstrates that the proposed design

can obtain better common knowledge over graphs to help train the classifier.

Table 11. Average test accuracy (%) of cross-system DA for different methods, table 1.

P500 → P200 P200 → P500 M10 → M5 M5 → M10

GNA + RESNET 93.28 94.34 95.53 98.87
JDA + RESNET 86.71 86.19 91.15 90.24
TCA + RESNET 81.25 73.37 89.64 90.08
DANN 86.65 86.53 91.13 89.35
CDNE 88.25 87.93 90.34 91.02
GCAN 83.19 85.57 89.08 90.36
PCA + RESNET 78.75 75.21 87.85 88.96

Second, by comparing GNA, JDA, and TCA, I find that the graph label information

can help improve DA. Specifically, TCA does not include the graph label information,

thus inducing over-compressed features with different classes. On the other hand,

graph labels re-weight the feature space and encourage adapting distributions within

one class, leading to better performances of GNA and JDA. Third, GNA has an even

better improvement since the node/edge labels enable a second layer of re-weighting

109

Table 12. Average test accuracy (%) of cross-system DA for different methods, table 2.

H16 → H26 H26 → H16 AVERAGE

GNA + RESNET 90.41 91.23 93.93
JDA + RESNET 84.82 81.03 86.69
TCA + RESNET 82.32 83.15 83.30
DANN 84.51 83.47 86.94
CDNE 84.33 82.25 87.35
GCAN 83.46 85.25 86.15
PCA + RESNET 78.79 77.56 81.19

using graph kernels. Namely, GNA can encourage the minimization over nodes/edges

from two graphs with the same label.

Fourth, GNA also has a stable improvement compared to deep learning models

DANN, CDNE, and GCAN. Though the deep models have a high capacity of extracting

domain-invariant features with discriminability, they may not include the structural,

temporal, and node/edge label information properly. For example, DANN uses a

convolutional kernel to integrate spatial correlations, which can not sufficiently process

graph structures. Further, DANN can not incorporate the label information. Thus,

DANN lacks the graph information as regularization, and the learned common feature

representation could suffer from overfitting. GCAN considers the graph structure

over instances. In this setting, it studies the temporal correlations between samples.

However, the continuous change of system states encourage us to consider an interval

of samples rather than the structures among samples. Thus, GCAN does not perform

well. CDNE projects networked data into a common feature space under network

embedding, but the embedding vector space is restricted to be the same for minimizing

the distribution discrepancy. Thus, there is an information loss for DA between

110

systems of different sizes. In contrast, I design graph kernels to maximally preserve

the original information and achieve better performances.

4.6.3 Ablation Study

In Section 4.6.2, for power systems, I utilize GNA with graph coarsening to process

datasets of node/edge measurements and labels. In this subsection, I conduct an

ablation study to understand the effects of different factors. Specifically, I test the

proposed models by independently removing the following factors as comparisons: (1)

graph coarsening, (2) node measurements, (3) node labels, (4) edge measurements,

and (5) edge labels.

Figure 22. The ablation study for GNA and coarsening.

The result is shown in Fig. 22. I have the following observations. Firstly, if I

compare the model with and without coarsening, I find the accuracy does not have

a significant change. This is because the proposed coarsening process can correctly

concentrate graphs based on the local structures and the label information, largely

111

saving the graph properties. For the scenario of P200 → P500, the coarsening even

helps to refine the raw data and improves the performance slightly. However, the

running time of computing the complete kernel matrix for the original graphs and the

coarser graphs is 19.98min and 0.23min, respectively. This implies that the coarsening

process significantly reduces the computational time.

4.6.4 Sensitivity Analysis

(a) Accuracy w.r.t. dmax. (b) Accuracy w.r.t. δn. (c) Accuracy w.r.t. krbf .

Figure 23. Results of the sensitivity analysis with respect to different hyper-parameters.

In this subsection, I study the model sensitivity with respect to different hyper-

parameters. In particular, I investigate the threshold dmax ∈ {1, 2, 3, 4, 5, 6} for spatial

correlations, the interval range δn ∈ {2, 4, 6, 8, 10, 12} for temporal correlations, and

the parameter of the RBF kernel krbf in the range of {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. It is

noteworthy that the polynomial kernel generally performs worse than the RBF kernel.

Thus, I only report the results of RBF kernel to save space. Fig. 23 demonstrates

the final results. Specifically, Fig. 23a shows that when dmax ≤ 3, the accuracy has a

small oscillation. Under this distance, nodes can be well grouped. Especially, the node

112

label information can effectively avoid over-grouping and keep the node separate by

similarity. When dmax ≥ 4, the accuracy decreases as dmax increases. This is because

when dmax is too large, many non-similar and non-local nodes are aggregated together,

which deteriorates the coarsening process.

Fig. 23b shows that when 6 ≤ δn ≤ 10, the temporal correlations are well-captured,

and GNA model can achieves the best performance. However, when δn < 6, the

calculated RBF kernels can not consider the correct system changes to identify system

labels. Further, they may be non-robust with respect to measurement noises or

anomalies. When δn > 10, the incorporation of state change may be too long and

prevent the model from understanding system dynamics. Thus, δn should be set in

a proper range to obtain high performances. Fig. 23c implies that GNA is robust

to the change of the RBF kernel parameter: a wide range of parameter values (e.g.,

0.1 ∼ 0.25) can lead to a relatively good performance.

113

Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis, I propose a systematic framework to extract system knowledge for a

normal system, a system with dynamic events, and a new system with limited data.

For each of the scenario, I provide novel and principled solutions with theoretical

proofs and numerical validations. The results demonstrates that my proposed models

gain better performances than cutting-edge methods. More specifically, the solution

for each scenario is summarized as follows.

In Chapter 2, I develop new approaches to learn system equations of a normal

system for fully or partially observable grids. The general goal is to learn a model that

has certain physical consistency to the system. To achieve the consistency, I find that

the convexification of the original NP-hard problem is a possible way. To learn the

ground-truth physical equation in fully-observable systems, I show how to convexify

two sub problems and yield global optimal results that correspond to the true physics.

To gain a physics-consistent Machine Learning (ML) model in partially-observable

systems, I show how to enforce convexified initialization to encourage consistency.

In Chapter 3, I investigate the problem of identify system event information under

different data settings. Correspondingly, frameworks based on Supervised Learning,

Semi-Supervised Learning, and Unsupervised Learning are proposed. The essential

points lie in (1) the ensemble idea to employ benefits of advanced ML models for a

better prediction, (2) physics-guided labeling processes for unlabeled data, and (3)

114

tensor-based framework to enable fast computations and inference for high-volume

datasets.

In Chapter 4, I develop Transfer Learning (TL) techniques to transfer knowledge

across different physical grids. Particularly, I find 3 key properties of physical systems

prevent the efficiency of traditional TL methods: network structure, complex spatial-

temporal correlations, and physical characters of different components. Thus, I build a

unified model to incorporate above information and achieve significant improvements.

5.2 Future Work

In the future, the following aspects should be further investigated to make more

contributions to the engineering and academic domains.

1. To learn symbolic equations of physical systems, the coherency of input data

may cause the issue of not able to identify the system theoretically. Thus, further

investigations must be made to study the identifiability of the physical system.

2. For partially-observable systems, current work assumes the connections and

parameters within observed nodes are unchanged for a reduced grid. More studies

should be made to investigate the performance when the inner connections and

parameters can change.

3. Obtaining the inverse of the physics-consistent ML model is a promising direction

with various engineering applications.

4. With the learned physics-consistent ML model, the next step is to achieve better

planning, economic dispatch, and control of the system.

5. The proposed ensemble framework for event identification requires more theo-

retical validations.

115

6. More types of tensor decomposition techniques should be investigated to improve

the tensor-based event identification.

7. The knowledge transfer in the proposed GNA model is currently based on an

optimization model. However, Deep Learning techniques like Graph Neural

Network (GNN) may bring more capacities to find better domain-invariant

features. Thus, the next step is to combine GNN and our GNA model for the

next generation’s graph-level knowledge transfer.

116

REFERENCES

Amos, Brandon, Lei Xu, and J Zico Kolter. 2017. “Input convex neural networks.” In
International Conference on Machine Learning, 146–155. PMLR.

Baker, Bowen, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. 2016. “Design-
ing neural network architectures using reinforcement learning.” arXiv preprint
arXiv:1611.02167.

Berthelot, David, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver,
and Colin A Raffel. 2019. “Mixmatch: A holistic approach to semi-supervised
learning.” Advances in Neural Information Processing Systems.

Bertsekas, Dimitri. 2015. Convex optimization algorithms. Athena Scientific.

Bhela, S., V. Kekatos, and S. Veeramachaneni. 2018. “Enhancing Observability in
Distribution Grids Using Smart Meter Data.” IEEE Transactions on Smart Grid
9, no. 6 (November): 5953–5961. https://doi.org/10.1109/TSG.2017.2699939.

Biggio, Luca, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista
Parascandolo. 2021. “Neural Symbolic Regression that Scales.” In International
Conference on Machine Learning, 936–945. PMLR.

Bordel, Borja, Diego Sánchez De Rivera, and Ramón Alcarria. 2016. “Plug-and-play
transducers in cyber-physical systems for device-driven applications.” In 2016
10th International Conference on Innovative Mobile and Internet Services in
Ubiquitous Computing (IMIS), 316–321. IEEE.

Borgwardt, Karsten M, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan,
Alex J Smola, and Hans-Peter Kriegel. 2005. “Protein function prediction via
graph kernels.” Bioinformatics 21 (suppl_1): i47–i56.

Brahma, S., R. Kavasseri, H. Cao, N. R. Chaudhuri, T. Alexopoulos, and Y. Cui. 2017.
“Real-Time Identification of Dynamic Events in Power Systems Using PMU Data,
and Potential Applications, Models, Promises, and Challenges.” IEEE Trans. on
Power Delivery 32, no. 1 (February): 294–301. https://doi.org/10.1109/TPWRD.
2016.2590961.

Brunton, Steven L, Joshua L Proctor, and J Nathan Kutz. 2016. “Discovering governing
equations from data by sparse identification of nonlinear dynamical systems.”
Proceedings of the national academy of sciences 113 (15): 3932–3937.

117

https://doi.org/10.1109/TSG.2017.2699939
https://doi.org/10.1109/TPWRD.2016.2590961
https://doi.org/10.1109/TPWRD.2016.2590961

Cai, Chen, Dingkang Wang, and Yusu Wang. 2021. “Graph Coarsening with Neural
Networks.” arXiv preprint arXiv:2102.01350.

Champion, Kathleen, Bethany Lusch, J Nathan Kutz, and Steven L Brunton. 2019.
“Data-driven discovery of coordinates and governing equations.” Proceedings of
the National Academy of Sciences 116 (45): 22445–22451.

Chen, Zhao, Yang Liu, and Hao Sun. 2021. “Physics-informed learning of governing
equations from scarce data.” Nature communications 12 (1): 1–13.

Cui, M., J. Wang, J. Tan, A. Florita, and Y. Zhang. 2018. “A Novel Event Detection
Method Using PMU Data with High Precision.” IEEE Trans. on Power Systems,
https://doi.org/10.1109/TPWRS.2018.2859323.

Dai, Quanyu, Xiao-Ming Wu, Jiaren Xiao, Xiao Shen, and Dan Wang. 2022. “Graph
Transfer Learning via Adversarial Domain Adaptation with Graph Convolution.”
IEEE Transactions on Knowledge and Data Engineering.

Davis, Timothy A, and Yifan Hu. 2011. “The University of Florida sparse matrix
collection.” ACM Transactions on Mathematical Software (TOMS) 38 (1): 1–25.

De Yong, David, Sudipto Bhowmik, and Fernando Magnago. 2015. “An effective power
quality classifier using wavelet transform and support vector machines.” Expert
Systems with Applications.

Du, Boxin, and Hanghang Tong. 2018. “Fasten: Fast sylvester equation solver for graph
mining.” In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 1339–1347.

Engineering Texas A&M University. 2016a. “Illinois 200-Bus System: ACTIVSg200,”
https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg200/.

. 2016b. “SouthCarolina 500-Bus System: ACTIVSg500,” https://electricgrids.
engr.tamu.edu/electric-grid-test-cases/activsg500/.

Fajardo, O. F., and A. Vargas. 2008. “Reconfiguration of MV Distribution Networks
With Multicost and Multipoint Alternative Supply, Part II: Reconfiguration
Plan.” IEEE Transactions on Power Systems 23, no. 3 (August): 1401–1407.
https://doi.org/10.1109/TPWRS.2008.926702.

Fan, Jianqing, Zhaoran Wang, Yuchen Xie, and Zhuoran Yang. 2020. “A theoretical
analysis of deep Q-learning.” In Learning for Dynamics and Control, 486–489.
PMLR.

118

https://doi.org/10.1109/TPWRS.2018.2859323
https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg200/
https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg500/
https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg500/
https://doi.org/10.1109/TPWRS.2008.926702

Fang, Meng, Jie Yin, and Xingquan Zhu. 2013. “Transfer learning across networks for
collective classification.” In 2013 IEEE 13th International Conference on Data
Mining, 161–170. IEEE.

Fletcher, Roger. 2013. Practical methods of optimization. John Wiley & Sons.

Fu, Chenbo, Yongli Zheng, Yi Liu, Qi Xuan, and Guanrong Chen. 2019. “Nes-tl:
Network embedding similarity-based transfer learning.” IEEE Transactions on
Network Science and Engineering 7 (3): 1607–1618.

Ganin, Yaroslav, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,
François Laviolette, Mario Marchand, and Victor Lempitsky. 2016a. “Domain-
adversarial training of neural networks.” The journal of machine learning research
17 (1): 2096–2030.

. 2016b. “Domain-adversarial training of neural networks.” The journal of
machine learning research 17 (1): 2096–2030.

General Electric Energy Consulting. 2018. “General Electric Concorda PSLF,” https:
//www.geenergyconsulting.com/practice-area/software-products/pslf.

Gretton, Arthur, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and
Alexander Smola. 2012. “A kernel two-sample test.” Journal of Machine Learning
Research.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. “Deep residual
learning for image recognition.” In Proceedings of the IEEE conference on computer
vision and pattern recognition, 770–778.

He, Lifang, Chun-Ta Lu, Guixiang Ma, Shen Wang, Linlin Shen, S Yu Philip, and Ann
B Ragin. 2017. “Kernelized support tensor machines.” In International Conference
on Machine Learning.

Hester, Todd, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot,
Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, et al. 2018. “Deep
q-learning from demonstrations.” In Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 32. 1.

Hu, Xinyue, Haoji Hu, Saurabh Verma, and Zhi-Li Zhang. 2020. “Physics-Guided Deep
Neural Networks for PowerFlow Analysis.” arXiv preprint arXiv:2002.00097.

Iqbal, Kashif, Muhammad Adnan Khan, Sagheer Abbas, Zahid Hasan, and Areej
Fatima. 2018. “Intelligent transportation system (ITS) for smart-cities using

119

https://www.geenergyconsulting.com/practice-area/software-products/pslf
https://www.geenergyconsulting.com/practice-area/software-products/pslf

Mamdani fuzzy inference system.” International journal of advanced computer
science and applications 9 (2).

Jabr, R. A. 2014. “Minimum loss operation of distribution networks with photovoltaic
generation.” IET Renewable Power Generation 8, no. 1 (January): 33–44. https:
//doi.org/10.1049/iet-rpg.2012.0213.

Kim, Do-In, Tae Yoon Chun, Sung-Hwa Yoon, Gyul Lee, and Yong-June Shin. 2015.
“Wavelet-based event detection method using PMU data.” IEEE Transactions on
Smart Grid.

Kolda, T., and B. Bader. 2009. “Tensor Decompositions and Applications.” Journal
of Applied Mathematics.

Kung, Sun Yuan. 2014. Kernel methods and machine learning. Cambridge University
Press.

Lee, Jaekoo, Hyunjae Kim, Jongsun Lee, and Sungroh Yoon. 2017. “Transfer learn-
ing for deep learning on graph-structured data.” In Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 31. 1.

Lew, D., M. Asano, J. Boemer, C. Ching, U. Focken, R. Hydzik, M. Lange, and A.
Motley. 2017. “The Power of Small: The Effects of Distributed Energy Resources
on System Reliability.” IEEE Power and Energy Magazine 15, no. 6 (November):
50–60. https://doi.org/10.1109/MPE.2017.2729104.

Li, Haoran, Zhihao Ma, and Yang Weng. 2022. “A Transfer Learning Framework for
Power System Event Identification.” IEEE Transactions on Power Systems, 1–1.
https://doi.org/10.1109/TPWRS.2022.3153445.

Li, Haoran, and Yang Weng. 2021. “Physical Equation Discovery Using Physics-
Consistent Neural Network (PCNN) Under Incomplete Observability.” In Pro-
ceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, 925–933.

Li, Haoran, Yang Weng, Evangelos Farantatos, and Mahendra Patel. 2019a. “A hybrid
machine learning framework for enhancing PMU-based event identification with
limited labels.” In IEEE International Conference on Smart Grid Synchronized
Measurements and Analytics.

. 2019b. “An unsupervised learning framework for event detection, type iden-
tification and localization using PMUs without any historical labels.” In IEEE
Power & Energy Society General Meeting.

120

https://doi.org/10.1049/iet-rpg.2012.0213
https://doi.org/10.1049/iet-rpg.2012.0213
https://doi.org/10.1109/MPE.2017.2729104
https://doi.org/10.1109/TPWRS.2022.3153445

Li, Haoran, Yang Weng, Yizheng Liao, Brian Keel, and Kenneth E Brown. 2021.
“Distribution grid impedance & topology estimation with limited or no micro-
PMUs.” International Journal of Electrical Power & Energy Systems 129:106794.

Li, Haoran, Yang Weng, and Hanghang Tong. 2020. “Heterogeneous Transfer Learning
on Power Systems: A Merged Multi-modal Gaussian Graphical Model.” In 2020
IEEE International Conference on Data Mining (ICDM), 1088–1093. https :
//doi.org/10.1109/ICDM50108.2020.00130.

Liao, Mang, Di Shi, Zhe Yu, Zhehan Yi, Zhiwei Wang, and Yingmeng Xiang. 2018.
“An alternating direction method of multipliers based approach for PMU data
recovery.” IEEE Transactions on Smart Grid.

Liao, Yizheng, Yang Weng, Guangyi Liu, and Ram Rajagopal. 2018. “Urban mv and
lv distribution grid topology estimation via group lasso.” IEEE Transactions on
Power Systems 34 (1): 12–27. https://doi.org/10.1109/TPWRS.2018.2868877.

Liu, Yin, and Vincent Chen. 2018. “On the Generalization Effects of DenseNet Model
Structures.”

Lock, Eric F. 2018. “Tensor-on-Tensor Regression.” Journal of Computational and
Graphical Statistics.

Long, Mingsheng, Jianmin Wang, Guiguang Ding, Jiaguang Sun, and Philip S Yu.
2013. “Transfer feature learning with joint distribution adaptation.” In Proceedings
of the IEEE international conference on computer vision, 2200–2207.

Long, Mingsheng, Han Zhu, Jianmin Wang, and Michael I Jordan. 2016. “Unsupervised
Domain Adaptation with Residual Transfer Networks.” In NIPS.

Lopes, João A Peças, Filipe Joel Soares, and Pedro M Rocha Almeida. 2010. “Integra-
tion of electric vehicles in the electric power system.” Proceedings of the IEEE 99
(1): 168–183.

Loukas, Andreas. 2019. “Graph Reduction with Spectral and Cut Guarantees.” J.
Mach. Learn. Res. 20 (116): 1–42.

Lu, Qiang, Jun Ren, and Zhiguang Wang. 2016. “Using genetic programming with
prior formula knowledge to solve symbolic regression problem.” Computational
intelligence and neuroscience 2016.

Lundberg, Scott M, and Su-In Lee. 2017. “A unified approach to interpreting model
predictions.” In Advances in neural information processing systems, 4765–4774.

121

https://doi.org/10.1109/ICDM50108.2020.00130
https://doi.org/10.1109/ICDM50108.2020.00130
https://doi.org/10.1109/TPWRS.2018.2868877

Ma, Xinhong, Tianzhu Zhang, and Changsheng Xu. 2019. “Gcan: Graph convolutional
adversarial network for unsupervised domain adaptation.” In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8266–8276.

Martius, Georg, and Christoph H Lampert. 2016. “Extrapolation and learning equa-
tions.” arXiv preprint arXiv:1610.02995.

MATPOWER community. 2020. “MATPOWER.” Https://matpower.org/.

Milne, Tristan. 2019. “Piecewise Strong Convexity of Neural Networks.” In Advances
in Neural Information Processing Systems, edited by H. Wallach, H. Larochelle, A.
Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, vol. 32. Curran Associates,
Inc. https://proceedings.neurips.cc/paper/2019/file/b33128cb0089003ddfb5199e
1b679652-Paper.pdf.

Miraz, Mahdi H, Maaruf Ali, Peter S Excell, and Rich Picking. 2015. “A review on
Internet of Things (IoT), Internet of everything (IoE) and Internet of nano things
(IoNT).” 2015 Internet Technologies and Applications (ITA), 219–224.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. “Human-level control through deep reinforcement learning.”
nature 518 (7540): 529–533.

Mundhenk, T Nathan, Mikel Landajuela, Ruben Glatt, Claudio P Santiago, Daniel M
Faissol, and Brenden K Petersen. 2021. “Symbolic Regression via Neural-Guided
Genetic Programming Population Seeding.” arXiv preprint arXiv:2111.00053.

Orzechowski, Patryk, William La Cava, and Jason H Moore. 2018. “Where are we now?
A large benchmark study of recent symbolic regression methods.” In Proceedings
of the Genetic and Evolutionary Computation Conference, 1183–1190.

Pan, Sinno Jialin, James T Kwok, Qiang Yang, et al. 2008. “Transfer learning via
dimensionality reduction.” In AAAI, 8:677–682.

Pan, Xiang, Minghua Chen, Tianyu Zhao, and Steven H Low. 2020. “Deepopf: A
feasibility-optimized deep neural network approach for ac optimal power flow
problems.” arXiv preprint arXiv:2007.01002.

Pérez, Enrique, and Julio Barros. 2008. “A proposal for on-line detection and clas-
sification of voltage events in power systems.” IEEE Transactions on Power
Delivery.

122

Https://matpower.org/
https://proceedings.neurips.cc/paper/2019/file/b33128cb0089003ddfb5199e1b679652-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/b33128cb0089003ddfb5199e1b679652-Paper.pdf

Petersen, Brenden K, Mikel Landajuela Larma, T Nathan Mundhenk, Claudio P
Santiago, Soo K Kim, and Joanne T Kim. 2019. “Deep symbolic regression:
Recovering mathematical expressions from data via risk-seeking policy gradients.”
arXiv preprint arXiv:1912.04871.

PJM Interconnection LLC. 2018. “Metered Load Data.” Https://dataminer2.pjm.
com/feed/hrl_load_metered/definition.

Rasmus, Antti, Harri Valpola, Mikko Honkala, Mathias Berglund, and Tapani Raiko.
2015. “Semi-supervised learning with ladder networks.” arXiv.

Sahoo, Subham, Christoph Lampert, and Georg Martius. 2018. “Learning Equations for
Extrapolation and Control.” In Proceedings of the 35th International Conference
on Machine Learning, edited by Jennifer Dy and Andreas Krause, 80:4442–4450.
Proceedings of Machine Learning Research. PMLR, October. https://proceedings.
mlr.press/v80/sahoo18a.html.

Salih, Rania, Elmustafa Sayed Ali Ahmed, and Rashid A Saeed. 2021. “Machine
learning in cyber-physical systems in industry 4.0.” In Artificial Intelligence
Paradigms for Smart Cyber-Physical Systems, 20–41. IGI Global.

Schaft, Arjan van der. 2017. “Modeling of physical network systems.” Systems &
Control Letters 101:21–27.

Schölkopf, Bernhard, Ralf Herbrich, and Alex J Smola. 2001. “A generalized representer
theorem.” In International conference on computational learning theory. Springer.

Shen, Xiao, Quanyu Dai, Sitong Mao, Fu-Lai Chung, and Kup-Sze Choi. 2021. “Network
Together: Node Classification via Cross-Network Deep Network Embedding.”
IEEE Transactions on Neural Networks and Learning Systems 32 (5): 1935–1948.
https://doi.org/10.1109/TNNLS.2020.2995483.

Shi, Di. 2012. Power system network reduction for engineering and economic analysis.
Arizona State University.

Shrikumar, Avanti, Peyton Greenside, and Anshul Kundaje. 2017. “Learning im-
portant features through propagating activation differences.” arXiv preprint
arXiv:1704.02685.

Sidiropoulos, Nicholas D, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos
E Papalexakis, and Christos Faloutsos. 2017. “Tensor decomposition for signal
processing and machine learning.” IEEE Transactions on Signal Processing.

123

Https://dataminer2.pjm.com/feed/hrl_load_metered/definition
Https://dataminer2.pjm.com/feed/hrl_load_metered/definition
https://proceedings.mlr.press/v80/sahoo18a.html
https://proceedings.mlr.press/v80/sahoo18a.html
https://doi.org/10.1109/TNNLS.2020.2995483

Smola, Alex J, and Bernhard Schölkopf. 1998. Learning with kernels. Vol. 4. Citeseer.

Sohn, Kihyuk, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A
Raffel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. 2020. “Fixmatch:
Simplifying semi-supervised learning with consistency and confidence.” Advances
in Neural Information Processing Systems.

Song, Le. 2008. “Learning via Hilbert space embedding of distributions.”

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. “Dropout: a simple way to prevent neural networks from
overfitting.” The journal of machine learning research 15 (1): 1929–1958.

Udrescu, Silviu-Marian, and Max Tegmark. 2020. “AI Feynman: A physics-inspired
method for symbolic regression.” Science Advances 6 (16): eaay2631.

Vishwanathan, S Vichy N, Nicol N Schraudolph, Risi Kondor, and Karsten M Borg-
wardt. 2010. “Graph kernels.” Journal of Machine Learning Research 11:1201–
1242.

Wang, Dawei, Kedi Zheng, Qixin Chen, Xuan Zhang, and Gang Luo. 2020. “A data-
driven probabilistic power flow method based on convolutional neural networks.”
International Transactions on Electrical Energy Systems 30 (7): e12367.

Weng, Y., Y. Liao, and R. Rajagopal. 2017. “Distributed Energy Resources Topology
Identification via Graphical Modeling.” IEEE Transactions on Power Systems
32, no. 4 (July): 2682–2694. https://doi.org/10.1109/TPWRS.2016.2628876.

Werner, Matthias, Andrej Junginger, Philipp Hennig, and Georg Martius. 2021.
“Informed Equation Learning.” arXiv preprint arXiv:2105.06331.

Wu, Fangzhao, and Yongfeng Huang. 2016. “Sentiment domain adaptation with
multiple sources.” In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), 301–310.

Wu, Zonghan, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S
Yu Philip. 2020. “A comprehensive survey on graph neural networks.” IEEE
transactions on neural networks and learning systems 32 (1): 4–24.

Yu, J., Y. Weng, and R. Rajagopal. 2017. “Robust mapping rule estimation for power
flow analysis in distribution grids.” In 2017 North American Power Symposium
(NAPS), 1–6.

124

https://doi.org/10.1109/TPWRS.2016.2628876

Yu, Jiafan, Yang Weng, and Ram Rajagopal. 2017. “Mapping rule estimation for
power flow analysis in distribution grids.” arXiv preprint arXiv:1702.07948.

Yuan, Yuxuan, Yifei Guo, Kaveh Dehghanpour, Zhaoyu Wang, and Yanchao Wang.
2021. “Learning-Based real-time event identification using rich real PMU data.”
IEEE Transactions on Power Systems.

Yuan, Yuxuan, Zhaoyu Wang, and Yanchao Wang. 2020. “Learning Latent Interactions
for Event Identification via Graph Neural Networks and PMU Data.” arXiv
preprint arXiv:2010.01616.

Zhang, Mi, and Alexander A. Sawchuk. 2012. “USC-HAD: A Daily Activity Dataset for
Ubiquitous Activity Recognition Using Wearable Sensors.” In ACM International
Conference on Ubiquitous Computing (Ubicomp) Workshop on Situation, Activity
and Goal Awareness (SAGAware). Pittsburgh, Pennsylvania, USA, September.

Zhang, S., Y. Wang, M. Liu, and Z. Bao. 2018. “Data-Based Line Trip Fault Prediction
in Power Systems Using LSTM Networks and SVM.” IEEE Access 6:7675–7686.
https://doi.org/10.1109/ACCESS.2017.2785763.

Zhao, Tuo, Mo Yu, Yiming Wang, Raman Arora, and Han Liu. 2014. “Accelerated
mini-batch randomized block coordinate descent method.” Advances in Neural
Information Processing Systems.

125

https://doi.org/10.1109/ACCESS.2017.2785763

APPENDIX A

PROOFS OF PROPOSED THEOREMS

126

A.1 Proofs of Theorem 1

Proof. The Bellman Equation of Q∗(·) is:

−Q∗(sk, ãk) = −E[R(sk, ãk)+γmax
a

Q∗(sk+1, ã)] = −R(sk, ãk)−γmax
ã

Q∗(sk+1, ã),

(A.1)
where the second equality holds since our state transitions are deterministic by
Equation (2.2). I prove the convexity from the induction method. When k = K − 1,
the (k + 1)th state is the terminal state without action selections. Thus, I have

−Q∗(sK−1, ãK−1) = −R(sK−1, ãK−1).

Since −R(·) is an ICNN and is convex in input, −Q∗(sK−1, ãK−1) is convex in
sK−1 and ãK−1.

When 0 ≤ k < K − 1 and assume −Q∗(sk+1, ãk+1) is convex in sk+1 and ãk+1,
I have −maxãQ

∗(sk+1, ã) = minã−Q∗(sk+1, ã) is convex in sk+1 given the fixed
optimal action. Let H denote the Hessian matrix of minã −Q∗(sk+1, ã) with respect
to sk+1. Due to the convexity, H is positive semi-definite. Thus, by Equation (2.2)
and the chain rule, the Hessian matrix of minã −Q∗(sk+1, ã) with respect to sk can
be written as:

H
′
= (Z

′

k)
⊤HZ

′

k.

H
′
is also positive semi-definite. Therefore, minã −Q∗(sk+1, ã) is convex in sk.

Since −R(sk, ãk) is convex in sk, −Q∗(sk, ãk) is convex in sk.
Similarly, vectorizing the state transition equation can give:

sk+1 = (s⊤k
⊗

Ins)a
′

k,

where Ins is the ns × ns identity matrix and
⊗

is the Kronecker product. a
′

k =
[(ak)

⊤,0]⊤ is the concatenation of the discrete action ak and a zero vector to maintain
the fixed dimensionality of action vectors. With similar proofs based on the Hessian
matrix and the fact that −Q∗(sk+1, ãk) is convex in sk+1, I have minã −Q∗(sk+1, ã) is
convex in a

′

k and also ak. Subsequently, arbitrary ãk ∈ conv({0, 1}na) can be written
as a convex combination of the discrete actions ak. Thus, minã −Q∗(sk+1, ã) is convex
in ãk. Since −R(sk, ãk) is convex in ãk, −Q∗(sk, ãk) is convex in ãk. Eventually,
−Q∗(sk, ãk) is convex in sk and ãk, which concludes the proof.

A.2 Proofs of Theorem 2

Proof. If f ∗(·;W) can’t represent the exact equations, there are two cases: (1) the
structure of f ∗(·;W) is correct to represent the equations, but the learned weights

127

W ∗ don’t represent the symbol coefficients, and (2) the structure of f ∗(·;W) can’t
represent the equations. Case (1) doesn’t hold since I assume W ∗ is the global optimal
weights for noiseless data. If case (2) holds, ∃0 ≤ j ≤ K − 1, b∗j = minãj

−Q∗(sj, ãj)
and b∗j doesn’t represent the symbol connections in the underlying equations. Further,
I assume ∀0 ≤ i < j, a∗

i = minãi
−Q(si, ãi) and a∗

i represents the true connections.
If j = K − 1, Equation (A.1) implies that ã∗

j = minãj
−Q∗(sj, ãj) =

argminã −R(sj, ã). Since −R(sj, ã) is convex in ã, I know the discrete version
of ã∗

j , namely a∗
j , represents the true connection of the last layer for the underlying

equations. Otherwise, the reward is not maximized. However, by definition of b∗j ,
b∗j ̸= a∗

j .
If j < K − 1, Equation (A.1) implies:

min
ãj

−Q∗(sj, ãj) = min
ãj

−R(sj, ãj) + γmin
ãj

min
ãj+1

−R
(
sj+1(ãj), ãj+1

)
+ · · ·+ γK−1−j min

ãj

· · · min
ãK−1

−R(sK−1(ãj, · · · , ãK−2), ãK−1).
(A.2)

By definition of b∗j , b
∗
j is not the solution of Equation (A.2). This is because b∗j

can’t achieve the minimum value for each summation term on the right hand side
of Equation (A.2), according to the convexity of the reward function. In general,
b∗j ̸= minãj

−Q∗(sj, ãj), which contradicts the definition of b∗j . Thus, b∗j doesn’t exist.
Therefore, case (2) doesn’t hold and f ∗(·;W ∗) represents the exact equations.

A.3 Proofs of Theorem 3

Proof. To simplify the proof, I consider scalar output of the LoCaL, i.e., one equation,
and the proof can be easily extended to the multi-output case. I follow the idea
of (Milne 2019) to study the second derivative of LoCaL with perturbations. Let
ŷ(x,W) denote the LoCaL with input to be x and the weight set to be W . Let X be
a perturbation direction of W and t be a small step size. For the ith noiseless instance
(xi, yi), I denote e(xi,W + tX) = ŷ(xi,W + tX) − yi. Obviously, the loss function
can be written as L(W + tX) = 1

2N

∑N
i=1(e(x

i,W + tX))2. Then, I can calculate the
second-order derivative based on the chain rule:

d2

dt2
∣∣
t=0
L(W + tX) =

1

N

d

dt

∣∣
t=0

N∑
i=1

e(xi,W + tX)
d

dt
ŷ(xi,W + tX),

=
1

N

N∑
i=1

(d
dt

∣∣
t=0
ŷ(xi,W + tX)

)2
+ e(xi,W)

d2

dt2
∣∣
t=0
ŷ(xi,W + tX).

(A.3)

Next, I denote the global optimal solution to be W ∗. Based on the Assumptions
(3) and (4), ∀i, ŷ(xi,W ∗) = g(xi) = yi. Therefore, I have d2

dt2

∣∣
t=0
L(W ∗ + tX) =

128

1
N

∑N
i=1

(
d
dt

∣∣
t=0
ŷ(xi,W ∗)

)2
> 0, where the inequality strictly holds. This is because

by Assumptions (3), ŷ(x,W ∗) can be mathematically simplified to obtain g(x). Then,
by Assumption (2), 1

N

∑N
i=1

(
d
dt

∣∣
t=0
ŷ(xi,W ∗)

)2
> 0. Finally, by Assumption (1) and

(3), d2

dt2

∣∣
t=0
ŷ(xi,W + tX) is bounded and there is a local region around W ∗ such that

d2

dt2

∣∣
t=0
L(W + tX) > 0, which concludes the proof.

A.4 Proofs of Theorem 4

Proof. For the target LoCaL, I similarly consider the scalar output and write the
function analytically:

ŷ(x,W) = W⊤
1 Ψ

(
Φ(W⊤

0 x)
)
, (A.4)

where W 0 ∈ Rn0×n1 is the weight matrix for activation, Φ : Rn1 → Rn1 represents the
activation with symbol functions like x2, cos(x), and log(x), etc. Ψ : Rn1 → Rn2 is
the function to select some activated neurons for multiplications, and W 1 ∈ Rn2×n3

(n3 = 1) represents the weight for summation. I rewrite Equation (A.4) with the help
of exponential and logarithm mappings.

ŷ(x,W) = W⊤
1 exp

(
S⊤ log(Φ(W⊤

0 x))

)
, (A.5)

where S ∈ Rn1×n2 represents a selection matrix such that S[i, j] = 1 if and only if the
ith neuron is selected as the multiplicative factor for the jth neuron in the multiplication
layer. Given the fixed structure of ŷ(·) from the deep Q-learning, S is a known matrix.
log(·) and exp(·) represent the element-wise logarithm and exponential functions.
Notably, the corresponding element in Φ(W⊤

0 x) should be positive in Equation (A.5).

If there are negative entries, one can utilize W⊤
1 s ◦ exp

(
S⊤ log(|Φ(W⊤

0 x)|)
)

to

take place of the right hand side term in Equation (A.5), where s[i] = (−1)n
i
− and

0 ≤ ni
− ≤ n1 represents the number of negative entries selected for the ith neuron

of the multiplication layer. ◦ represents the Hadamard product. However, both
expressions have the same values and gradients. Thus, I utilize Equation (A.5) in
later derivations.

Then, let X be a perturbation direction such that X = {X0,X1}. Thus, for a
small step t, I have:

ŷ(x,W + tX) = (W 1 + tX1)
⊤ exp

(
S⊤ log(Φ((W 0 + tX0)

⊤x))

)
. (A.6)

129

Based on Equation (A.6), I can compute:

d

dt
ŷ(xi,W + tX) = X⊤

1 exp

(
S⊤ log(Φ((W 0 + tX0)

⊤xi))

)
+ (W 1 + tX1)

⊤
[
exp

(
S⊤ log(Φ((W 0 + tX0)

⊤xi))

)
◦ S⊤ 1

Φ((W 0 + tX0)⊤xi)
◦ Φ′

((W 0 + tX0)
⊤xi) ◦X⊤

0 x
i

]
,

(A.7)

where 1
Φ((W 0+tX0)⊤xi)

∈ Rn1 is the element-wise division and Φ
′ is the element-wise

first derivative of Φ′ . Without special notifications, I assume all the division for vectors
is element-wise in the following derivations. Then, I denote

u(xi,W + tX) = exp

(
S⊤ log(Φ((W 0 + tX0)

⊤xi))

)
,

v(xi,W + tX) = S⊤ 1

Φ((W 0 + tX0)⊤xi)
◦ Φ′

((W 0 + tX0)
⊤xi) ◦X⊤

0 x
i,

w(xi,W + tX) = S⊤ 1

Φ′((W 0 + tX0)⊤xi)
◦ Φ′′

((W 0 + tX0)
⊤xi) ◦X⊤

0 x
i.

(A.8)

With above definitions, I can calculate:

d

dt

∣∣
t=0
ŷ(xi,W + tX) = X⊤

1 u(x
i,W) +W⊤

1

[
u(xi,W) ◦ v(xi,W)

]
. (A.9)

Further, I calculate the second derivative based on Equation (A.7) and the fact
that element-wise operations for vectors are commutative:

d

dt2
ŷ(xi,W + tX) = X⊤

1

[
u(xi,W + tX) ◦ v(xi,W + tX)

]
+X⊤

1

[
u(xi,W + tX) ◦ v(xi,W + tX)

]
+ (W 1 + tX1)

⊤[u(xi,W + tX) ◦ v(xi,W + tX) ◦ v(xi,W + tX)
]

− (W 1 + tX1)
⊤[u(xi,W + tX) ◦ v(xi,W + tX) ◦ v(xi,W + tX)

]
+ (W 1 + tX1)

⊤[u(xi,W + tX) ◦ v(xi,W + tX) ◦w(xi,W + tX)
]
,

(A.10)

When t→ 0, I have:

d

dt2
∣∣
t=0
ŷ(xi,W + tX) = 2X⊤

1

[
u(xi,W) ◦ v(xi,W)

]
+

W⊤
1

[
u(xi,W) ◦ v(xi,W) ◦w(xi,W)

] (A.11)

The above equation can reflect the relationship between the second and the first
derivative. However, I first identify the inequality between these two derivatives to
enable a strictly convex region.

130

Let ŷ
′
= [d

dt

∣∣
t=0
ŷ(x1,W + tX), · · · , d

dt

∣∣
t=0
ŷ(xN ,W + tX)]⊤, ŷ

′′
= [d

dt2

∣∣
t=0
ŷ(x1,W +

tX), · · · , d
dt2

∣∣
t=0
ŷ(xN ,W+tX)]⊤, and e = [e(x1,W), · · · , e(xN ,W)]⊤. Equation (A.3)

implies that:
d2

dt2
∣∣
t=0
L(W + tX) =

1

N
(||ŷ′ ||22 + e⊤ŷ

′′
)

≥ 1

N
(||ŷ′||22 − ||e||2||ŷ

′′ ||2)
(A.12)

To find a region to restrict the convexity, I restrict the lower bound of the second
derivative to be positive and compute:

||e||2 <
||ŷ′||22
||ŷ′′||2

(A.13)

The right hand side of Equation (A.13) can be easily bounded by:

||ŷ′ ||22
||ŷ′′ ||2

≥
√
N min(|ŷ′|)2

max(|ŷ′′ |)
=

√
N
∣∣ d
dt

∣∣
t=0
ŷ(xi,W + tX)

∣∣2∣∣ d
dt2

∣∣
t=0
ŷ(xj,W + tX)

∣∣ , (A.14)

where | · | for a vector is to calculate the absolute value for each element of the vector,
i = argmin(|ŷ′|) and j = argmax(|ŷ′′ |). Namely, I consider a sufficient condition for
convexity. √

N
∣∣ d
dt

∣∣
t=0
ŷ(xi,W + tX)

∣∣2∣∣ d
dt2

∣∣
t=0
ŷ(xj,W + tX)

∣∣ > ||e||2 (A.15)

Next, Equation (A.11) indicates that:

∣∣ d
dt2

∣∣
t=0
ŷ(xj,W + tX)

∣∣ =∣∣∣∣X⊤
1

[
u(xj,W) ◦ 2v(xj,W)

]
+W⊤

1

[
u(xj,W) ◦ v(xj,W) ◦w(xj,W)

]∣∣∣∣
≤η

(∣∣∣∣X⊤
1 u(x

j,W) +W⊤
1

[
u(xj,W) ◦ v(xj,W)

]∣∣∣∣)
=η

∣∣ d
dt

∣∣
t=0
ŷ(xj,W + tX)

∣∣,
(A.16)

where η is a positive constant. Note that η <∞ by Assumptions (1) and (2) in Theorem
3. Therefore, I have the following sufficient condition to make d2

dt2

∣∣
t=0
L(W + tX) > 0

always hold.
√
N
∣∣ d
dt

∣∣
t=0
ŷ(xi,W + tX)

∣∣2
η
∣∣ d
dt

∣∣
t=0
ŷ(xj,W + tX)

∣∣ >
√
N |ŷ(xk,W)− yk| ≥ ||e||2, (A.17)

131

where k = argmax(|e|). The above equation leads to a set U of local regions that
have strong convexity. Namely,

U = {W
∣∣∣ ∣∣ d

dt

∣∣
t=0
ŷ(xi,W + tX)

∣∣2
η
∣∣ d
dt

∣∣
t=0
ŷ(xj,W + tX)

∣∣ > |ŷ(xk,W)− yk|}. (A.18)

Clearly, the global optimal solution W ∗ ∈ U since ŷ(xk,W ∗)− yk = 0. Note that
there may be multiple global optimal solutions of the loss minimization in LoCaL.
Thus, U is the set of local convex regions that contain global optima. This implies that
for each W ∗ ∈ U , I can find a locally and strictly convex region U∗ = U ∩B(r), where
B(r) = ||w−w∗||2 ≤ r is a norm ball and I vectorize W and W ∗ to obtain w and w∗,
respectively. Subsequently, range r can be set relatively large such that U∗ ⊂ B(r)
and U∗∗ ∩ B(r) = ∅, where U∗∗ is the local region for another global optimal point
W ∗∗ if it exists. Then, the range for U∗ still depends on the inequality in Equation
(A.18).

A.5 Proofs of Theorem 5

Proof. F-Graph Layer has the feasible solution of the ground-truth physical grid
parameters.

As for P-Graph Layer and N-Approximation Layer, I denote the PCS as
{w̄k, {x̄nk}Nn=1}Kk=1 in equation (2.12). For node j, I assume there are M number
of true hidden nodes connecting j with line jm parameter as bm, 1 ≤ m ≤ M and
true input nodal measurements as xnm, ∀1 ≤ n ≤ N for the nth sampling time. Since I
assume the PCS produces 0 loss, I have the following equations:

K∑
k=1

w̄k(x
n − x̄nk) =

M∑
m=1

bm(x
n − xnm),∀1 ≤ n ≤ N

s.t. {w̄k, {x̄nk}Nn=1}Kk=1 ∈ CK .

(A.19)

It’s obvious that when M = K, {bm, {xnm}Nn=1}Mm=1 is a PCS. However, since
equation (A.19) is under-determined, multiple PCSs exist within CK , even when
K ̸=M . To find one of these solutions, I show in the next subsection that the problem
Pj
K is convex under certain assumptions, and I can iteratively increase K and solve

Pj
K to obtain one PCS.

132

A.6 Proofs of Theorem 6

Proof. For F-Graph Layer, the pre-training in Equation (2.7) is an LASSO-based
regression, which is convex.

For P-Graph Layer, the optimization Pj
K is in Equation (2.12). Since CK is convex,

I only need to consider the convexity of the loss function. Thus, I construct the
Hessian matrix of the loss function with the following elements:

∂L

∂2wk

=
N∑

n=1

2(xnk − xn)2,
∂L

∂wk∂wh

=
N∑

n=1

2(xnh − xn)(xnk − xn),

∂L

∂wk∂xnk
= 2(pn −

K∑
l=1

wl(x
n − xnl)− wk(x

n − xnk)),
∂L

∂2xnk
= 2w2

k,

∂L

∂wk∂xnh
= 2(xnk − xn)wh,

∂L

∂xnkx
n
h

= 2wkwh,
∂L

∂xnkx
m
h

= 0.

I study the positive-definiteness of the Hessian matrix H0 with respect to the
variable vector [w1, · · · , wK , x

1
1, x

1
2 · · · , x1K , x21, · · · , xNK]⊤. It’s clear that H0[1 : K, 1 :

K] is positive semi-definite, since this Hessian matrix H0[1 : K, 1 : K] represents a
linear least square loss. On the other hand, if I conduct a Gaussian elimination process
to iteratively prove the positive semi-definiteness, I need to iteratively prove the first
entry of each eliminated matrix is positive. Due to the positive semi-definiteness of
H0[1 : K, 1 : K], it’s obvious that during the first K − 1 eliminations, all the first
entries of the eliminated matrices are positive, i.e., H1(1, 1), · · · ,HK−1(1, 1) > 0.
Thus, I focus on the impacts of eliminations on diagonal entries after the previous K
numbers.

Specifically, for the ith Gaussian elimination, I can evaluate the diagonal element
of the eliminated matrix as:

H i(l, h) = H i−1(l + 1, h+ 1)−
(H i−1(1, h+ 1)

)
(H i−1(1, l + 1)

)
H i−1(1, 1)

, (A.20)

where 1 ≤ l ≤ (N + 1)K − i.
If I assume N is sufficiently large, H0(k, k) =

∑N
n=1 2(x

n
k − xn)2,∀1 ≤ k ≤ K. The

non-zero flow of line jk (recall j is the index of the center node of Gj) implies xnk−xn ̸= 0.
Namely, H0(k, k) is a sufficiently large positive number. More specifically, equation
(A.6) implies that ∀b ≥ K,H0(1, 1+b) ≪ H0(1, 1). Therefore, the elimination process
in equation (A.20) indicates that H1(b, b) > 0. However, I need to consider the values
of H1(1, b) and H1(1, 1) to continue the iteration. Due to the triangle inequality, I
know that H1(1, 1) > 0 given xn1 ̸= xn2 for any 1 ≤ n ≤ N . If N is sufficiently large, I
can claim that H1(1, 1) has a sufficiently large positive accumulation value, compared
to a fixed value of H1(1, b). Thus, I have H1(1, 1) ≫ H1(1, b). Repeating the above
eliminations for K times and I have HK(b+ 1−K, b+ 1−K) > 0.

133

Then, for the rest of b−K eliminations, the diagonal element HK+a(1, 1),∀1 ≤
a ≤ b−K is not sufficiently large. However, since the off-diagonal HK+a(1, b+ 1−
(K + a)) = 0 always hold during the Gaussian eliminations, I can still guarantee
HK+a(b+1− (K + a), b+1− (K + a)) > 0. Finally, the elimination will end up with
Hb(1, 1) > 0.

In general, the above iteration process proves the positivity of each first entry
of the eliminated matrices, indicating the positive semi-definiteness of the Hessian
matrix and the convexity of our problem Pj

K .

A.7 Proofs of Theorem 7

Proof. First, I prove the matrix of step kernel kstep is positive definite. Equation (4.12)
shows that the step kernel is a multiplication of Dirac kernels and RBF kernels. Since
the Dirac and RBF kernels are positive definite (Smola and Schölkopf 1998), and the
multiplication preserves the positive definiteness, the step kernel matrix is positive
definite. Second, according to (Borgwardt et al. 2005), the positive definiteness of
step kernels leads to the positive definiteness of the proposed random walk kernel,
which further implies that the proposed random walk kernel is universal.

A.8 Proofs of Theorem 8

Proof. Equation (4.12) shows that the calculation of the step kernel has a compu-
tational time complexity O(δn). Then, it takes O(δnM4) to construct M2 × M2

weighted adjacency matrix B×. Further, (Vishwanathan et al. 2010) shows that it
takes O(M3) for the Sylvester equation-based method to calculate one entry of K
using the obtained matrix B×. Thus, for (N + Ñ)× (N + Ñ) kernel matrix K, the
total time complexity is O

(
(N + Ñ)2(M3 + δnM

4)
)
.

134

	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 General Introduction
	2 Learning Physical Equations of A Normal System
	3 Identifying System Event Information
	4 Transfer System Knowledge across Different Systems
	5 Conclusion and Future Work

	References
	Appendix
	A Proofs of Proposed Theorems

