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ABSTRACT  

The fast pace of global urbanization makes cities the hotspots of population 

density and anthropogenic activities, leading to intensive emissions of heat and carbon 

dioxide (CO2), a primary greenhouse gas. Urban climate scientists have been actively 

seeking effective mitigation strategies over the past decades, aiming to improve the 

environmental quality for urban dwellers. Prior studies have identified the role of urban 

green spaces in the relief of urban heat stress. Yet little effort was devoted to quantifying 

their contribution to local and regional CO2 budget. In fact, urban biogenic CO2 fluxes 

from photosynthesis and respiration are influenced by the microclimate in the built 

environment and are sensitive to anthropogenic disturbance. The high complexity of the 

urban ecosystem leads to an outstanding challenge for numerical urban models to 

disentangling and quantifying the interplay between heat and carbon dynamics. 

This dissertation aims to advance the simulation of thermal and carbon dynamics 

in urban land surface models, and to investigate the role of urban greening practices and 

urban system design in mitigating heat and CO2 emissions. The biogenic CO2 exchange 

in cities is parameterized by incorporating plant physiological functions into an advanced 

single-layer urban canopy model in the built environment. The simulation result 

replicates the microclimate and CO2 flux patterns measured from an eddy covariance 

system over a residential neighborhood in Phoenix, Arizona with satisfactory accuracy. 

Moreover, the model decomposes the total CO2 flux from observation and identifies the 

significant CO2 efflux from soil respiration. The model is then applied to quantify the 

impact of urban greening practices on heat and biogenic CO2 exchange over designed 

scenarios. The result shows the use of urban greenery is effective in mitigating both 
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urban heat and carbon emissions, providing environmental co-benefit in cities. 

Furthermore, to seek the optimal urban system design in terms of thermal comfort and 

CO2 reduction, a multi-objective optimization algorithm is applied to the machine 

learning surrogates of the physical urban land surface model. The dissertation finds there 

are manifest trade-offs among ameliorating diverse urban environmental indicators 

despite the co-benefit from urban greening. The findings of this dissertation, along with 

its implications on urban planning and landscaping management, would promote 

sustainable urban development strategies for achieving optimal environmental quality for 

policy makers, urban residents, and practitioners.    
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CHAPTER 1 

INTRODUCTION 

1.1 Literature Review 

1.1.1  Background 

Urban areas cover about 3% of the global land surface but accommodate more 

than half of the global population today; the latter figure will escalate to 67% by the mid-

century (UN 2019). The growth in urban population significantly intensifies 

anthropogenic stressors and greenhouse gas (GHG) emissions from traffic, heating, 

power generation, cement production, etc., leading to a continuous rising of thermal 

discomfort and CO2 level in cities (L.E. Mitchell et al. 2018). The effect of urbanization 

on elevated ambient temperature is commonly known as the urban heat island (UHI) 

effect (T.R. Oke 1973; 1982). Seeking for countermeasures to mitigate the UHI effect has 

emerged as an active research area in past decades through modeling the energetic 

exchange in the built environment using urban land surface models (LSMs).  

Over past decades, urban LSMs have undergone continuous development from 

simple urban energetic models (H. Kusaka et al. 2001; V. Masson 2000) to incorporate 

momentum transport (A. Martilli 2002), urban hydrological processes (N. Meili et al. 

2020; X. Stavropulos-Laffaille et al. 2018; Z.-H. Wang et al. 2013), and anthropogenic 

emissions (D.J. Sailor 2011; D.J. Sailor & L. Lu 2004). In particular, urban LSMs have 

gradually evolved to incorporate parameterization schemes of urban vegetation with 

increasing complexity, such as green roofs (A. Lemonsu et al. 2012; J. Yang & Z.-H. 

Wang 2014), urban trees (S.-H. Lee et al. 2016; S.-H. Lee & S.-U. Park 2008; Y.-H. Ryu 

et al. 2015; R. Upreti et al. 2017; Z.-H. Wang 2014), and urban irrigation (C. Wang et al. 
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2019c; J. Yang & Z.-H. Wang 2015). These new schemes significantly enhanced the 

model predictive skill over realistic built terrains, furnishing further improvement of 

urban LSMs for capturing biogenic and anthropogenic carbon emission in urban areas (J. 

Song et al. 2017).  

In addition to the pronounced UHI effect, cities are also hotspots of GHG 

emission, especially CO2, with concentrated sources and human activities (C.S.B. 

Grimmond et al. 2002; L.R. Hutyra et al. 2014). In particular, anthropogenic CO2 

(AnCO2), primarily emitted from the fossil fuel combustion, constitutes the largest flux of 

CO2 to the atmosphere and represents the dominant source of GHG forcing to emergent 

climate patterns (K.R. Gurney 2014). AnCO2 emissions are often used as a near-certain 

boundary conditions for solving total carbon budget, which is essential to improve our 

fundamental understanding of the feedback mechanisms between the carbon cycle and 

climate changes (R.C. Balling Jr et al. 2001; M. Vetter et al. 2008). Accurate 

quantification of the urban CO2 emission, either biogenic or anthropogenic in source, 

requires the integration of observational, mechanistic, and modeling methods at fine 

resolutions (K.R. Gurney 2014; K.R. Gurney et al. 2012).  

By combining the advantages of “bottom-up” inventory data by sectors and the 

“top-down” spatial distributed dataset from remote sensing imagery (D.J. Sailor 2007; 

D.J. Sailor & L. Lu 2004), the CO2 mapping technology today can represent the efflux 

estimation over space and time with wide coverage (global or continental scale), high 

spatial resolution (1~10km) (C. Gately et al. 2019; K.R. Gurney et al. 2019; A.R. 

Jacobson et al. 2020; T. Oda et al. 2018), and reliable with cross validations. The finest 

grid currently available, with resolution of 1 km2 in space and 1 hour in time, can be used 
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to resolve footprints and disentangle different sources of carbon emission of eddy-

covariance (EC) measurements. The gridded datasets are also capable of distinguishing 

carbon fluxes from different sectors, albeit mostly focused on fossil fuel emission from 

moving vehicles (C. Gately et al. 2019; A.R. Jacobson et al. 2020). The mapping of 

biogenic CO2 release or uptake is usually missing in the built environment, mainly due to 

the complex flow field and dynamics of transport in the built environment (H.J.S. 

Fernando 2010). Up to date, the biogenic sources of CO2 emission is largely under 

explored as compared to its AnCO2 counterpart, especially in residential areas with 

substantial fraction of vegetation cover. This inadequacy of capturing CO2 emission by 

plant physiological functions in urban areas, in turn, surfaces in the net ecosystem 

exchange (NEE) gridded data, leading to large uncertainties and degraded data quality (J. 

Macknick 2011).  

The representation of urban vegetation in current urban LSMs is, on the other 

hand, almost exclusively focused on the cooling effect and hydrological processes. The 

quantification of urban CO2, up to date, remains largely based on observational data 

(C.S.B. Grimmond et al. 2002; L.E. Mitchell et al. 2018; D.E. Pataki et al. 2003; D.E. 

Pataki et al. 2006). Recently, a pioneering work has been conducted for numerical CO2 

flux modeling at the street scale (M. Goret et al. 2019). The model was tested over a 

heavily urbanized city center (90% impervious surface), and showed urban vegetation 

played a minimum role in CO2 exchange (less than 3%) due to the small vegetation 

fraction in city core. While the model performance is good, the limited representation of 

biogenic CO2 emission constrains its applications to highly impervious areas. In contrast, 

nearly half of the urban land in the U.S. attributes to residential use, where the vegetation 
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fraction is significantly higher than it in urban cores (F. Pozzi & C. Small 2001), with the 

presence of urban vegetation in the forms of urban parks, golf courses, and most 

importantly, maintained urban gardens. It is therefore critical for urban LSMs to capture 

plant responses to elevated temperature, CO2 level, irrigation, and active lawn 

management. 

 

1.1.2  Interplay between Thermal and Carbon Environment in Cites  

It is noteworthy that most anthropogenic heat sources, such as vehicular emission 

and heating, ventilation, and air conditioning (HVAC) systems, are also significant 

contributors to greenhouse gases, especially carbon dioxide (CO2). The elevated CO2 

concentration and deteriorated air quality in cities, in turn, tend to intensify the local UHI 

effect and further contribute to climate change at a global scale (G. Churkina 2016; L.R. 

Hutyra et al. 2014). In searching for the effective carbon reduction strategies, much effort 

in previous years has been devoted to quantifying the anthropogenic releases of CO2 via 

direct measurement, modeling, and inventory approaches (B. Crawford et al. 2011; C.K. 

Gately & L.R. Hutyra 2017; C.K. Gately et al. 2015; M. Goret et al. 2019; L. Järvi et al. 

2019; M. Sargent et al. 2018). While it is well recognized that the anthropogenic CO2 

(AnCO2) releases from fossil fuel consumption dominate the overall carbon efflux in 

cities, many studies also pointed out that the biogenic CO2 from urban greening spaces 

cannot be neglected (O. Bergeron & I.B. Strachan 2011; L.R. Hutyra et al. 2014; T. 

Vesala et al. 2008). The carbon sequestration by urban vegetation (lawns, parks, golf 

courses, and residential gardens) can partially offset, e.g., the vehicular CO2 emission. 



    5 

Some densely vegetated areas can achieve carbon neutral during warm months due to 

active plant CO2 uptake (O. Bergeron & I.B. Strachan 2011). 

Urban vegetation behaves distinctively from plants in the natural environment, 

primarily due to their peculiar growing conditions in the built environment. It is 

noteworthy that urban areas usually furnish favorable conditions for plant growth and 

physiological functions, because in cities: 1) warmer ambient temperatures, e.g. those due 

to the prominent urban heat island effect, allow urban plants to maintain a higher 

photosynthesis rate and a longer growing period (E.C. Lahr et al. 2018; L. Meng et al. 

2020; S. Zhao et al. 2016); 2) regular maintenance practices, such as irrigation and 

fertilization, relieve much of environmental stresses for plant growth (A.M. Luketich et 

al. 2019); and 3) the elevated CO2 level forms a natural CO2 pump, promoting the carbon 

assimilation rate (H. Wang et al. 2017; S. Wang et al. 2019).  

Among urban vegetation, urban trees have the most sophisticated biophysical 

functions, partially due to the complexity of their geometry (three dimensional as 

compared the planar distribution of grasses). Previous studies have found that the 

presence of street trees significantly alter the microclimate and the heat and moisture re-

distribution in the urban canyon, including the change of surface energy balance (C.S.B. 

Grimmond et al. 2009), the reduction of thermal discomfort (E. Redon et al. 2020; C. 

Wang et al. 2018c), and weakening the passive pollutant dispersion (C. Wang et al. 

2018a), to name a few. In particular, urban trees influence CO2 dynamics in counteracting 

ways: they are effective carbon sinks via photosynthesis, but meanwhile can also create 

unfavorable growing conditions for shaded ground vegetation (e.g. lawns). The shading 

effect tends to intercept solar radiation for photosynthesis and lower the ground level 
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temperature (C.S.B. Grimmond et al. 2002; S.-H. Lee & S.-U. Park 2008; A. Lemonsu et 

al. 2012; R. Upreti et al. 2017), hence reduces the carbon uptake via ground vegetation by 

impeding their physiological functions.  

Meanwhile, being the growing media of vegetation and an indispensable part of 

urban green spaces, soil surface is a net CO2 source in most cases (B. Koerner & J. 

Klopatek 2002; X. Tao et al. 2016). With urban warming and landscaping management, 

soil respiration rate is expected to be higher in cities than in the natural environment 

(A.R. Contosta et al. 2020; S.M. Decina et al. 2016; E.A. Dyukarev 2017; T. Vesala et al. 

2008). Bare soil patches in degraded lawns due to inappropriate management release 

more CO2 than bare soil land because of the continuing root and microbial respiration (J. 

Bae & Y. Ryu 2017; B.J.L. Ng et al. 2015). Even with vegetation cover, S.M. Decina et 

al. (2016) found the annual soil respiration in a residential area with active landscaping 

management is comparable to the local traffic emissions in hot months, causing undesired 

effects on carbon reduction.  

To achieve the optimal environmental co-benefit for mitigating both heat and 

carbon emissions by urban greening, holistic understanding of the physiological functions 

of urban vegetation is of pivotal importance. Theoretically, the rate of carbon release 

(respiration) and uptake (photosynthesis) from urban vegetation will be influenced by 

environmental temperature and soil water. Cooling provided by urban greening inhibits 

soil respiration and photosynthetic activities, working towards opposite directions in 

carbon budget. Similarly, urban irrigation provides water for plant growth and microbial 

respiration, influencing photosynthesis and respiration simultaneously. Whether urban 

greening (i.e. the expansion of vegetation fraction and irrigation) promotes or impedes 
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CO2 sequestration depends on the expansion rate and cooling efficiency, leading to 

possible trade-offs or co-benefits between thermal and carbon mitigation. Based on in-

situ observation or simple empirical models at neighborhood scale, previous studies 

pointed out the importance of the complex interactions and feedbacks between urban 

green spaces and the built environment (A. Christen et al. 2011; B. Crawford et al. 2011; 

E. Velasco & M. Roth 2010; E. Velasco et al. 2013). Yet, the discussions in prior studies 

were largely focused the singular impact on either thermal or carbon environment 

separately. Those focused on carbon exchange usually quantify the contribution of urban 

vegetation to the total CO2 flux over the built terrain with fixed vegetation fraction and 

irrigation scheme, thus have limited abilities to examine the environmental response in 

terms of the alternation in land use and landscaping management strategies, as well as to 

guide future planning and decision making.  

On the other hand, numerical models have the advantage over observational 

measurements by avoiding the limited timespans or footprints of measuring instruments, 

and number of sites, thus providing a versatile alternative approach to study the urban 

environment. Past decades have seen the development of numerous urban LSMs to 

simulate the dynamics and transport of heat and CO2 emissions in the built environment 

(A.J. Arnfield 2003; T.R. Oke et al. 2017). In particular, numerical simulations at multi-

scales, ranging from neighborhood to regional scales, were conducted to evaluate urban 

greening for cooling and energy saving, subjected to future trend of urbanization and 

global changes (e.g., J. Song & Z.-H. Wang 2016; Z.-H. Wang & R. Upreti 2019). From 

CO2 exchange perspective, modeling technique has usually been applied to decompose 

the total CO2 flux measured by eddy covariance system to identify the individual sector 
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of the carbon source, but rarely discussed in the context of environmental co-benefit of 

heat and CO2 mitigation, or the evaluation of overall environmental quality under 

specific urban design. For the sustainable development of future cities amid the global 

climate change, it is of vital necessity to view the compound (multiple) environmental 

measures rather than on a singular (especially cooling) effect alone (Z.-H. Wang 2021). 

This emerging research interest calls for the advancement in urban land surface models to 

disentangle the complex interplay between thermal and carbon environment in cities.  

 

1.1.3  Urban Canopy Modeling 

Physics of flow and transport in the urban canopy layer (UCL) involve complex 

interplay of land surface processes, atmospheric turbulence, and anthropogenic activities. 

The numerical modeling of urban microclimate hence focus on two broad compartments: 

(1) the atmospheric transport using parameterization (e.g. Reynolds-averaged Navier-

Stokes or RANS equations), computational fluid dynamics (e.g. large-eddy simulations), 

or stochastic dispersion (Y. Toparlar et al. 2017; C. Wang et al. 2018a), that relies heavily 

on wind-tunnel tests as the “ground truth”, and (2) urban LSMs that resolve the surface 

transport of energy, water/moisture, momentum, and scalars, especially those arising 

from built terrains. Among existing urban LSMs, the single-layer urban canopy models 

(UCMs) are probably the most widely used. They are particularly attractive to researchers 

for maintaining a fine balance between the numerical simplicity (i.e. urban canyon 

representation) and the comprehensiveness of land surface dynamics. Despite its 

comparative simplicity to more sophisticated LSMs, single-layer UCMs have tractable 

parameter sensitivity (T. Loridan et al. 2010; Z.-H. Wang et al. 2011) and often give 
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satisfactory performance with the same level of model calibration (C.S.B. Grimmond et 

al. 2011; C.S.B. Grimmond et al. 2010). These UCMs have been incorporated into the 

popular meso-scale Weather Research and Forecasting (WRF) model (F. Chen et al. 

2011; H. Kusaka et al. 2001; J. Yang et al. 2014) and extensively applied for local and 

regional urban hydrometeorological modeling for cities all over the world.  

In this dissertation, we adopt a state-of-the-art single-layer UCM as the numerical 

stratum for capturing the dynamic transport in urban energy and hydrological cycles (Z.-

H. Wang et al. 2013; J. Yang & Z.-H. Wang 2014; J. Yang et al. 2014). This UCM 

represents the built terrain as a generic unit of two-dimensional (2D) street canyon, 

consisting of two arrays of buildings separated by a road, with infinite longitudinal 

dimension. Inside the street canyon, the heterogeneity of the ground facet is represented 

using sub-facets of paved surfaces (road), bare soil, and vegetated areas (lawns and trees). 

Furthermore, the morphological representation of urban trees in the UCM is made 

configurable to accommodate flexible location and number of rows of trees. The model 

resolves explicitly the radiative heat exchange between shade trees and built facets (Z.-H. 

Wang 2014) and transpiration by tall vegetation, in addition to the ground level 

vegetation (lawns). The physical representation of plants in the built environment makes 

the UCM a versatile platform to incorporating photosynthesis and respiration models. 

Figure 1.1 shows a schematic of the single-layer UCM incorporating urban carbon 

exchange processes, where the dimensional parameters w, r and h are the canyon width, 

roof width and building height respectively; za, zR and zT are the reference height of the 

atmospheric layer, building, and street canyon, respectively; Rb, Rh, Rt, Rs, and Re denote 

the CO2 release from building, human, traffic, soil, and plants, respectively; An is the 
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CO2 assimilation rate; and P, ET, E and I are the hydrological components in the model, 

denoting the precipitation on the ground, evapotranspiration over natural surfaces, 

evaporation over paved surfaces and infiltration, respectively. The in-canyon transport of 

energy, water, and scalar fluxes are resolved separately for each sub-facet (walls, 

impervious and vegetated roads, shade trees, etc.); and aggregated by areal means to 

compute the total urban fluxes. In this study, we programed the coupled UCM-carbon 

model using MATLAB® (version R2020a). It is noteworthy that all the proposed 

algorithms are sufficiently generic and can be coded using other programming tools. 

 

Figure 1.1 Schematic of the single-layer urban canopy model incorporating urban carbon 

exchange processes from biogenic, anthropogenic, and abiotic sources and sinks. 
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The in-canyon meteorological variables (radiation, temperature, humidity, and 

aerodynamic resistance) resolved by UCM are used to drive the plant physiological 

model for the estimation of the biogenic CO2 fluxes in street canyon. Depending on the 

height of plants, those variables at prescribed elevation in the street canyon are applied 

for different types of plant separately. In particular, CO2 release from soil respiration is 

assessed from the simulated soil temperature and moisture of the vegetated surface. 

Anthropogenic heat emission from the buildings is calculated by the heat conduction 

module of UCM, which is in turn utilized in building CO2 release estimation in 

combination of the local heating profile (i.e. types of fuels and their relative 

contributions).  

 

1.2 Research Objectives and Dissertation Structure 

Based on the literature and identified research and knowledge gaps of urban trees 

identified in Section 1.1, this dissertation aims to evaluate the biogenic impact of urban 

vegetation on heat and carbon dynamics in the built environment and to provide decision 

making support for sustainable urban development amid the global climate change. In 

particular, the three major objectives of this dissertation area are (i) to quantify CO2 

exchange from biogenic sectors specifically in urban areas; (ii) to evaluate the impact of 

urban greening practices on heat and carbon dynamics; (iii) to aid the urban system 

design towards a more sustainable environment.  

The dissertation is organized into five chapters. Chapter 2 describes the 

parameterization of the biogenic CO2 exchange in cities by coupling an advanced single-

layer urban canopy model with plant photosynthesis and respiration models and the 
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evaluation of the proposed modeling framework against the field measurements. In 

Chapter 3, we utilize the proposed model to investigate the impact of four common urban 

greening practices on thermal and carbon environment on designed scenarios and 

examine the potential of environmental co-benefits from urban greening. Based on the 

experimental results in Chapter 3, Chapter 4 presents a practical and versatile approach to 

use the proposed model for urban system design. Materials in Chapter 2 and 3 have been 

published in P. Li & Z.-H. Wang 2020a and 2021b, respectively. Chapter 5 summarizes 

the key findings and environmental implications of this dissertation and provides 

recommendations for the design of urban green spaces. In the end, Chapter 5 also outlines 

a few potential future studies based upon the proposed algorithms and major findings of 

this dissertation. 
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CHAPTER 2 

MODELING CARBON DIOXIDE EXCHANGE IN A SINGLE-LAYER URBAN 

CANOPY MODEL 

In this Chapter, a new modeling algorithm to quantify urban biogenic CO2 

exchange (hereafter referred to as the UCM-CO2 model) is proposed. The new model 

coupled an advanced UCM with photosynthesis and respiration models and is designated 

specifically to the developed urban land. The proposed modeling framework is tested 

against the field measurements from EC system over a residential area in Phoenix, 

Arizona. In addition, the CO2 emission portfolio of the neighborhood is examined to 

illustrate the potential of CO2 reduction from biogenic sectors in the built environment.  

 

2.1 Model Description 

2.1.1  Biogenic CO2 Fluxes from Plant Physiological Functions 

The physiological functions of plant CO2 exchange, primarily the stomatal 

control, have been extensively studied in natural environment (G.J. Collatz et al. 1991; 

G.J. Collatz et al. 1992; C.B. Field et al. 1995; C.M.J. Jacobs 1994; R. Leuning 1995). 

One approach to quantify the NEE is to calculate the photosynthesis assimilation rate at 

canopy level using An-gc method (estimate the carbon assimilation rate An based on 

stomatal conductance at the canopy level gc), then deduct soil or ecosystem respiration 

based on their dependency on environmental conditions (M.U.F. Kirschbaum 1995; J. 

Lloyd & J.A. Taylor 1994). Here we adopt a typical physiological plant model (A.F.G. 

Jacobs et al. 2003; R.J. Ronda et al. 2001) and integrate it with the UCM model.   
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Given micrometeorological conditions, the gross primary productivity (GPP) at 

leaf level, Ag, is given by, 

 , (2.1) 

where PAR is the photosynthetic active radiation, representing the amount of radiation 

that is able to drive photosynthesis; Tleaf is the leaf temperature; and Ci is CO2 

concentration inside of leaves. The first two inputs can be obtained from the UCM 

output: PAR is predicted as fraction of the irradiance incipient on leaves (either at the tree 

or ground vegetation sub-facet in the street canyon for plants being shade trees or urban 

lawns, respectively), and Tleaf the skin temperature of the vegetated sub-facet. The ratio of 

PAR to the total solar irradiance is roughly a constant at a prescribed location, ranging 

from 0.39 to 0.53, with a median value of 0.46 (R.T. Pinker & I. Laszlo 1992). In 

addition, Ci can be estimated as a fraction of external CO2 level (Cs); the ratio between Ci 

and Cs is critical for plant functions (H. Wang et al. 2017). The plant regulates the ratio 

via stomatal opening and closure as a function of water vapor pressure deficit (C.M.J. 

Jacobs 1994): 

 , (2.2) 

where Γ is the CO2 compensation point; Ds is the vapor pressure deficit at leaf level; Do is 

the Ds at stomatal closure; and c max and c min are the maximum and minimum value of 

the ratio (Ci – Γ) to (Cs – Γ). The values of Do, c max, c min, and Γ are parameterized for 

given types of plants analytically or empirically (R.J. Ronda et al. 2001). It is noteworthy 

that Γ is temperature-dependent and can be estimated using Q10 method as 
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 , (2.3) 

where V is a generic temperature-dependent variable (in this case, Γ); V25 is the value of 

the variable at 25 oC; and Q10 is the rate of increase per 10 oC change in temperature.  

Specifically, we adopt the formulas of A.F.G. Jacobs et al. (2003), R.J. Ronda et 

al. (2001), and C.M.J. Jacobs (1994) to determine the plant function in Eq. (2.1) as 

 , (2.4) 

where Rd is the plant dark respiration and usually calculated as a fraction of Am; Am is the 

primary productivity, given by 

 , (2.5) 

with Am,max the maximum primary productivity under high CO2 concentration and 

sufficient light condition, and gm the stomatal conductance. Here Am,max and gm are 

temperature-dependent, and can be estimated using the Q10-type method as 

 , (2.6) 

where Vk is again the temperature-dependent variable (in this case, Am,max and gm); V(Tleaf) 

is the function in Eq. (2.3); and  T1 and T2 are empirical parameters for given types of 

plants.  

To find the gross primary production at canopy level, CO2 uptake at leaf level 

needs to be integrated over entire leaf surface area, as 

 , (2.7) 
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where Ag,c is the assimilation rate at canopy level; = Am + Rd ; LAI is the leaf area 

index; Kx is the extinction coefficient; and Eint represents the overall leaf density from top 

to bottom of the canopy, calculated as 

 , (2.8) 

with Ei [•] the exponential integral. 

Plants that have different photosynthesis pathways will respond distinctively in 

the same meteorological condition. According to the number of carbons in the 

intermediate compounds during photosynthesis, the major plant types on the earth are C3 

and C4. C3 plants are the dominant plant types worldwide, including rice, wheat, 

soybeans, and all trees. C4 plants are less common and usually present in hot and arid 

climate regions for its adaptation to water stress (M.V. Lara & C.S. Andreo 2011). Due to 

the distinctive plant physiological functions, the contribution from C3 and C4 plants needs 

to be quantified separately. The total carbon assimilation from plants (Antot) is given by: 

 , (2.9) 

where Fv,3 and Fv,4 are the vegetation fraction for C3 and C4 plant to the total study area, 

respectively; and Ag,c,3 and Ag,c,4 are the assimilation rate calculated from Eq. (2.7) for C3 

and C4 plant, respectively. Typical values of the empirical parameters for GPP estimate 

for C3 and C4 plants are listed in Table 2.1. For the built environment, the accurate 

estimation of vegetation cover is rather difficult, not to mention the relative fraction of 

plant types. We therefore need to resort to remote sensing dataset on vegetation indices to 

identify the variation of vegetation fraction in total. In this case, we proposed an 
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algorithm to estimate the total vegetation fraction based on the readily available remote 

sensing LAI and vegetation fraction dataset with the more commonly used dataset with 

moderate resolution (300 m ~ 1 km). In general, the peak of LAI reflects the rapid 

biomass accumulation in the previous growing stage, indicating the activeness of plants 

in photosynthesis and CO2 absorption. Therefore, in this study, we estimate the plant 

phenology from the observed vegetation coverage and the time derivative of LAI. We 

calculate the effective fraction as the total vegetation fraction in the plant physiological 

model, given by: 

 , (2.10) 

where EFv is the effective fraction for vegetation cover; Fv is the observed vegetation 

from remote sensing dataset;  is the time derivative of LAI; and the 

overhead bar denotes the time average.  

Furthermore, individual fractions for C3 and C4 plant need to be estimated based 

on the knowledge of local species and lawn management strategies. For example, C4 

plants will first become active in the early spring, growing fast through the summer and 

stop functioning by the late fall, while C3 plants could be active all year round without an 

apparent peak (C.J. Still et al. 2003). For practical lawn management, grasses are often 

mowed before the dormant season to promote the growth in the next spring, leading to 

the reduction of carbon assimilation during winter months.  
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Table 2.1 Parameters for Plant Physiological Model 

C3            
  χmax 0.89       
  ad (k Pa-1)* 0.07       
  α0 (mg J-1)* 0.036       
    V25 Q10 T1 (K) T2 (K) 
  Г (mg m-3) 68.5 ρa 1.0     
  gm (mm s-1) 7.0 2.0 278 301 
  Am,max (mg m-2 s-1) 2.2 2.0 281 311 

C4           
  χmax 0.85       
  ad (k Pa-1) 0.015       
  α0 (mg J-1) 0.029       
    V25 Q10 T1 (K) T2 (K) 
  Г (mg m-3) 4.3 ρa 1.0     
  gm (mm s-1) 17.5 2.0 286 309 
  Am,max (mg m-2 s-1) 1.7 2.0 286 311 

*a0 is the light use efficiency under low light condition; ad is a fitted parameter defined 

in R.J. Ronda et al. (2001). 

 

2.1.2  Soil and Plant Respiration 

The carbon release from bare soils in urban areas is often neglected due to the 

perception that soils constitute a minor source of CO2 as compared to anthropogenic 

emissions. In fact, soil respiration is a major contribution to atmospheric CO2 in 

manmade landscapes with irrigation and fertilization. Specific urban garden soils with 

enriched organic matter and nitrogen are often used in cities to promote plant growth. 

S.M. Decina et al. (2016) reported that the soil respiration in residential areas with active 

landscaping management is 2.2 times higher than that of urban forests. The total CO2 flux 

from soils is comparable with fossil fuel emission in summer months.  
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Bare soil respiration is primarily regulated by soil temperature (Ts) and soil water 

content (θ). Though other factors such as the elevation of organic matters or nitrogen 

levels, air pressure changes, etc. will also influence the respiration rate, their contribution 

is considered minor or implicitly embedded into changes of Ts and θ (Y. Luo & X. Zhou 

2006). Like plant physiology, Q10-type methods are often used for temperature-dependent 

relation in soil respiration. The default range of T in conventional Q10 method (Eq. (2.3)) 

is capped below 45 oC, which is applicable for air temperature in most climate regions. 

However, in arid environment, surface temperature in hot summers can be as high as 55 

oC, in which case the soil respiration will be suppressed because the major contributors of 

respiration, i.e. microbial activities and plant root respiration, are no longer at the 

optimum functional temperature (Y. Luo & X. Zhou 2006). Using a monotonic function, 

like the one in Eq. (2.3), will lead to a large bias under extreme temperatures. 

Alternatively, M.U.F. Kirschbaum (1995) proposed a temperature dependency model to 

estimate soil respiration due to biotic and abiotic processes, by admitting an optimum 

temperature as an additional variable. Instead of using a fixed value for Q10, this model 

accounts for the change of Q10 with temperature, as  

 , (2.11) 

where β and Topt are empirically fitted parameters. Combined with Eq. (2.3) and the 

dependency on soil moisture, the soil respiration rate can be obtained as 

 , (2.12) 
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where Rs and R25 are the soil respiration rate under Ts and 25 oC; and f(θ) is the 

respiration reduction function due to water stress. Different forms of f(θ) can be found in 

literature for urban evapotranspiration (P. Li & Z.-H. Wang 2019; Z.-H. Wang et al. 

2013) and soil respiration (M.U.F. Kirschbaum 1995). Typical linear and non-linear 

reduction curves for estimating the evapotranspiration and respiration rates are 

 , (2.13) 

 , (2.14) 

 . (2.15) 

Figure 2.1 shows the variation of Q10 and soil respiration rate with ambient temperatures. 

It is clear that the soil respiration rate decreases when the temperature exceeds the 

optimum value.  

 

Figure 2.1 Temperature dependency of Q10 and soil respiration rate (plotted using Topt = 

36.9 oC, Β = 0.204, R25 = 1.0). 
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Plant respiration is usually evaluated empirically using statistical regressions of 

field measurements. In the long run, the relation between the ecosystem respiration and 

its GPP is usually linear across various types of land cover (D. Qun & L. Huizhi 2013; 

W. Yuan et al. 2011), which is conventionally used in the assessment of ecosystem 

services. An alternative approach considers that the instantaneous respiration rate is 

controlled by plant physiological and micrometeorological conditions, which can be 

explicitly formulated (J.M. Norman et al. 1992; Y. Qi et al. 2010). Both approaches 

require the measurement of plant respiration at night when the photosynthesis in 

inactivate. However, in practice, it is difficult to exclude soil respiration from the 

measured plant respiration. Therefore, ecosystem respiration is usually used to represent 

the total CO2 efflux from vegetated surface, including both soil and plant respiration. 

Here we adopt the formula derived over a grassland to represent the ecosystem 

respiration Re, for low vegetation surfaces (J.M. Norman et al. 1992), 

 , (2.16) 

where a = 0.159, b = 0.064, c = 0.054, and Ts,ref  = 27.7 oC are empirical coefficients 

fitted from 900 on-site observations over grassland and θ10 is the soil moisture at 10 cm 

below the surface.  

 

2.1.3  Abiotic CO2 Flux 

The abiotic CO2 fluxes in urban areas are generated from burning of fossil fuels 

from two major sources including (1) the transportation sector (vehicular emission) and 

(2) the building sector (heating and/or cooking). Conventionally, the abiotic AnCO2 

( ) ( ),ref
10LAI s sc T T
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emissions were estimated from the energy consumption inventories. For example, the on-

road traffic release can be calculated from the local traffic volume, vehicle types, 

combustion efficient, and the fuel economy. We can then make a crude estimate of the 

carbon release due to heating and cooking using the purchasing record of the fuels (wood, 

gas, oil, etc.). This method is heavily labor- and cost-consuming for locality-based data 

collection and results in limited data availability across different regions with constant 

spatiotemporal discontinuity.  

The last two decades have seen much effort devoted to the mapping of global or 

regional CO2 level or efflux. The current advances in mapping technology combine the 

bottom-up (inventory by sectors) and top-down (spatial distributed dataset from remote 

sensing imagery) method, which enables the mapping of CO2 efflux variability over time 

and space at high resolution. For example, Vulcan Project version 2 (Vulcan v2, K.R. 

Gurney et al. 2009) provides CO2 release from traffic over the contiguous U.S. with 10 

km spatial and hourly temporal resolution. However, Vulcan v2 only covers the year of 

2002, and the spatial resolution is still too coarse to match the footprint of EC 

measurements. To resolve this issue, we normalize the hourly release to its annual total to 

obtain the hourly release factor through the year of 2002 and assumed no interannual 

variation of the factor. The carbon emission is then estimated using the derived release 

factor multiplied the total annual release of the year of the interest. To validate the 

assumption, the diurnal variation is compared to the Carbon Tracker 2019 (A.R. Jacobson 

et al. 2020) with hourly temporal resolution. The seasonal and annual total release are 

retrieved from Open Data Inventory for Anthropogenic CO2 (ODIAC, T. Oda et al. 2018) 

and Database of Road Transportation Emissions (DARTE, C. Gately et al. 2019). Table 
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2.2 summaries the spatiotemporal resolution and coverage of the available gridded 

dataset of CO2 emission used in this study. 

The CO2 emission from buildings can be estimated from the inventory data of 

building heat release or from the UCM output of the heat exchange via the building sub-

facets. We assess the equivalent CO2 emission based on the emission factor, defined as 

the amount of fossil fuel required for a unit of heat. For example, with the building 

interior temperature known, the UCM can quantify the heat exchange between the 

building envelop and its ambient environment. The equivalent CO2 emission can be 

obtained using the building-environment heat exchange multiplied the emission factor, 

according to the type of fuel and heating efficiency. A summary table of the emission 

factors for commonly used fuel can be found in M. Goret et al. (2019).  

Table 2.2 Summary of Gridded Dataset for CO2 Release 

 Resolution  Coverage 
Product Temporal Spatial Temporal Spatial 
ODIAC Monthly 1/120o 2000-2018 Global 
DARTE Annual 1/80o 1980-2018 U.S. 
Vulcan v2 Hourly 10 km 2000-2018 U.S. 
Vulcan v3 Annual 1 km 2010-2015 U.S. 
Carbon Tracker 2019 3-hour 1o 2000-2017 Global 
Hestia Hourly 1 km 2010-2015 LA basin 

 

2.1.4  Human Respiration 

In densely populated areas, human activities can be a significant source of CO2 

emission. Here we give a simple estimation of the respiration rate from a single person. 

At normal activity level, the average tidal volume (volume of air per breath) is 500 ml to 

750 ml, with CO2 concentration level around 3.8% to 4% per breath (K.E. Barrett et al. 
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2009). A person regularly breathes 12 to 15 times per minutes. Following these 

assumptions, the respiration rate will be [7.52, 14.85] mg CO2 s-1 per person. The 

estimation is in a reasonable range compared to the values used in the other studies 

(16.04 in B. Koerner and J. Klopatek (2002), 2.19 in Q. Cai et al. (2018), 8.87 in M. 

Goret et al. (2019)). Total CO2 flux from human respiration will be calculated using the 

mean level per person times the population density retrieved from Gridded Population of 

the World (GPWv4). The hourly variation of respiration factors is used to represent 

changes in the population density in different built environments during a day (Figure 

2.2). For example, during working hours, the pollution density (hence the factor of 

human respiration) is expected to reduce in residential areas, whereas it increases at urban 

cores where most office buildings locate. No seasonal variation of population is 

considered. 

 

Figure 2.2 The diurnal variation of hourly factors of human Respiration at city core 

(dashed line) and residential area (solid line) 
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2.2 Results and Discussion  

2.2.1  Model Test and Evaluation 

The proposed model was first tested against field measurements by an EC located 

in west Phoenix, Arizona, USA (33.483847 oN, 112.142609 oW). The EC tower recorded 

four-component net radiation, 3D wind field, air temperature, humidity, CO2 

concentration, and pressure at 10 Hz frequency. Both soil temperature and moisture were 

recorded at three depths (5 cm, 15 cm, 30 cm) below the ground. Additional soil 

temperature measurement was also made at 2 cm below the ground. The original 10 Hz 

atmospheric measurements were processed, quality-controlled, and integrated at 30 min 

intervals with no gap filling. In this study, we used the measurements recorded from 

January 1, 2012 to May 28, 2013 (513 days) for subsequent analysis (available at 

https://sustainability.asu.edu/caplter/data/view/knb-lter-cap.649/). 

The source area of the flux tower covered a typical residential area of single-

family houses (J. Song et al. 2017). Most lots in the study area have small front and 

backyard spaces with automated irrigation system. The overall land cover within 1 km2 of 

the EC tower were 48.4% impervious surfaces (26.4% building and 22.0% road), 36.8% 

bare soil, 14.6% vegetation, and 0.1% water pool (W.T.L. Chow et al. 2014). 

A comprehensive list of input parameters used in the UCM model is shown in 

Table 2.3. The street and building aspect ratios are estimated from Quickbird remote 

sensing imagery of the study site (W.T.L. Chow et al. 2014). Aerodynamic roughness and 

hydrothermal properties of buildings, soils, and pavements are adopted from previous 

studies at the study site or similar residential areas in Phoenix metropolitans (J. Song & 

Z.-H. Wang 2015; 2016; J. Yang & Z.-H. Wang 2014) with detailed parameter sensitivity 
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study. We first calibrated the UCM by comparing the model predictions and 

meteorological measurements of net radiation Rn, sensible heat H, and latent heat LE, 

during the period of May 13, 2012 00:00 to May 27, 2012 23:30 (15 days). The results 

are shown in Figure 2.3, with the root mean squared error (RMSE) of 24.5 Wm-2, 28.3 

Wm-2, 21.6 Wm-2 for Rn, H, LE, respectively.   

 

Figure 2.3 Results of model calibration (May 13 2012 00:00 to May 27 2012 23:30). (a) 

Timeseries of energy fluxes, and the comparison of simulation to observation at half-hour 

interval for (b) Net radiation Rn, (c) Sensible heat H, and (d) Latent heat LE. 
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Table 2.3 Physical Properties of the Study Site 

Site Properties   
  Roof level (m) 4.5 
  Reference height (m) 22.1 
  Normalized roof height (-) 0.13 
  Normalized roof width (-) 0.4 
  Normalized road width (-) 0.6 
  Thickness of roof (m) 0.3 
  Thickness of wall (m) 0.2 
  Roughness length for momentum for roof (m) 0.01 
  Roughness length for momentum for canyon (m) 0.05 
  Roughness length for heat for roof (m) 0.001 
  Roughness length for heat for canyon (m) 0.005 
  Street canyon orientation (rad) 3/8 π 
  Latitude (rad) 0.5844 
  Longitude (rad) 1.9573 
      
Soil Properties   
  Saturation hydraulic conductivity (m s-1) 3.4 x 10-5 
  Residual soil water content (m3 m-3) 0.08 
  Saturated soil water content (m3 m-3) 0.35 
  Slope of soil water retention curve, b 4.50 
  Soil layer thickness (m) 0.15 
      
Surface Properties   
Roof (gravel)   
  Albedo 0.17 
  Emissivity 0.95 
  Thermal conductivity (W K-1 m-1) 0.60 
  Heat capacity (MJ K-1 m-3) 1.00 
Wall (wood, glass)   
  Fractions 0.90, 0.10 
  Albedo 0.17, 0.50 
  Emissivity 0.90, 0.95 
  Thermal conductivity (W K-1 m-1) 1.30, 1.30 
  Heat capacity (MJ K-1 m-3) 0.80, 1.20 
Road (soil, paved, vegetation)   
  Fractions 0.35, 0.50, 0.15 
  Albedo 0.15, 0.40, 0.20 
  Emissivity 0.76, 0.90, 0.95 
  Thermal conductivity (W K-1 m-1) 2.20, 2.20, 1.50 
  Heat capacity (MJ K-1 m-3) 0.80, 0.45, 1.20 



    28 

Once calibrated, the parameter space of the UCM is fixed and applied to the 

consequent study period. We then compared the model results against field measurements 

for the entire study period (513 days). Figure 2.4 shows the results of comparison for all 

available 30-min data points in scattered plots. The mean bias error (MBE) for Rn, H, and 

LE are 0.3 Wm-2, 5.1 Wm-2, and 5.2 Wm-2, respectively, and RMSE values of 24.7 Wm-

2, 20.8 Wm-2, and 24.6 Wm-2, respectively. The model performance on Rn, H, and LE 

predictions is comparable to those reported in a prior study at the same site (N. Meili et 

al. 2020). It is also noteworthy that the surface energy balance needs to be strictly 

observed in the UCM algorithm, whereas in measurements energy imbalance is the norm 

(P. Li & Z.-H. Wang 2020b). Thus it is not surprising that in general the model tends to 

overestimate sensible and latent heat to account for the surface energy residual.  

 

Figure 2.4 The comparison of model simulation to EC observation of (a) Net radiation 

Rn, (b) Sensible heat H, and (c) Latent heat LE, from January 01, 2012 to May 28, 2013 

 

In addition, we compared predicted and observed diurnal variations of Rn, H, and 

LE fluxes averaged over individual months to illustrate their temporal variability. The 
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results are shown in Figure 2.5; it is clear that the model captures the temporal evolutions 

of these heat fluxes well. Note that in general the peaks of sensible heat slightly lag 

behind those of net radiation. This hysteresis effect is physical, as being observed 

experimentally and proved analytically (J. Song et al. 2017; T. Sun et al. 2013), and in 

turn, influences plant function as the optimum temperature encountered with reduced 

PAR. Moreover, we also presented the model results of the canyon air temperature, 

humidity, ground temperatures, and solar irradiance at roof and ground level (Figure 2.6). 

Note that the solar irradiance at ground level is cut off by 40% as compared to the one at 

roof level. These results will be used to predict the biogenic CO2 flux generated by plant 

physiological functions. No evaluation against observation was conducted due to the 

absence of field measurements of these variables. 
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Figure 2.5 The diurnal variation of Rn, H, and LE (calculated from monthly mean). 



    31 

 

Figure 2.6 Results of model simulations of (a) Temperature and humidity at canyon 

level, and (b) Solar irradiance at roof and ground level from January 01, 2012 to May 28, 

2013 at the study site 

 

2.2.2  Biogenic CO2 Exchange of Urban Plants 

Plants in Phoenix area have distinct photosynthesis patterns, mainly consisting of 

C3 trees and C4 bushes or grasses. The fraction of C4 plants in Phoenix area is generally 

estimated to be 0.4 to 0.5 of total vegetation area (C.J. Still et al. 2003), making C4 plants 

a non-negligible contributor of carbon uptake. Specifically, many residential lots in the 

study area use a C4 plant, Bermuda grass (Cynodon dactylon) as the yard lawn (W.T.L. 

Chow et al. 2014). Considering the difference in vegetation types and their typical 
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locations in urban canopies, irradiance, temperature, and humidity at different levels are 

used in the proposed plant physiological model. The physiological function of C3 trees is 

simulated under the meteorological conditions at the roof level, while the ground level 

meteorological conditions are used for C4 grass. In particular, the solar irradiance is the 

primary source of PAR, and the ratio of 0.46 (PAR to total irradiance) is used in this 

study. Temperatures and humidity in street canyons are obtained from the UCM 

predictions and used to drive the plant physiological model and estimate the soil 

respiration.  

To aggregate the leaf level CO2 uptake to the canopy level, we obtain the 

vegetation fraction and its seasonal dynamics from remote sensing datasets. At the study 

site, the urban vegetation fraction (14.6 %) was estimated from a single frame of 

QuickBird satellite image based on local land cover classification at 2.4 m resolution 

(W.T.L. Chow et al. 2014). Despite of its high spatial resolution, the temporal dynamics 

is underrepresented. In this case, we use the Copernicus Global Land Services (CGLS, 

https://land.copernicus.eu) 10-day, 1 km2 resolution data to find the seasonal variation of 

vegetation coverage and LAI. We used the observed LAI value divide the fraction of 

green vegetation cover (CGLS-FCOVER) to calculate the apparent LAI value over the 

study area. The annual mean apparent LAI in 2012 is 3.4. Figure 2.7 shows the seasonal 

variation of LAI and vegetation coverage from CGLS over the study area. The LAI is 

bimodal and peaks in April and between August to September, corresponding to the 

optimum growing condition in warm spring and late water-rich monsoon season, 

respectively. The latter peak in August and September is contributed by the phenology 

and biomass accumulation of Bermuda grass during summer, as its optimum growing 



    33 

temperature is [24, 37] oC. The fractions of C3 and C4 plants used in plant physiological 

model (Figure 2.7) are first set based on the derived total fraction and characteristics in 

phenology, and then fine-tuned for the best model performance in the prediction of total 

CO2 exchange. Other model parameters used in plants physiological model are listed in 

Table 2.1. The extinction coefficient, Kx in Eq. (2.7) is set to 0.5 for both C3 and C4 

plants, according to (L. Zhang et al. 2014).  

The diurnal cycle of total plant uptake for each month is shown in Figure 2.8. The 

CO2 uptake only occurs during daytime when photosynthesis is active to assimilate 

carbon. During hot months, the peak of canyon temperature lags several hours behind the 

peak of the irradiance, depending on the ET rate (Z.-H. Wang 2014). While the out-

phased irradiance-temperature evolution tends to reduce the optimum rate of CO2 uptake, 

the active synthesis, driven by both PAR and heat, will be prolonged due to the hysteresis 

so to achieve overall greater daily carbon assimilation. Also note that the CO2 uptake in 

November shows a sharp peak at noon and decreases rapidly in the afternoon, because 

the narrowed phase lag between radiation and canyon temperature. On the other hand, 

plants are barely functional in December and January, leading to flat CO2 uptake; the 

inactiveness matches the low ET rate measured in the same period. Within the total CO2 

uptake, 74% comes from C3 plant primarily due to its consistent photosynthesis rate 

throughout a year and the higher carbon assimilation rate at its optimum condition for 

growth. In contrast, C4 plants account for 26% of annual uptake with the maximum 

contribution at July and August for its adaptation to high temperature (Figure 2.9). 
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Figure 2.7 Seasonal variation of LAI (black solid line) and vegetation fraction (blue dash 

line) obtained from CGLS at the study site in 2012. Shaded green area show the total 

vegetation fraction used in plant physiological model. 
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Figure 2.8 Diurnal variation of average modeled CO2 release (black) and uptake (blue) 

for each month over the study period. The shaded area shows one standard deviation 

(±1.0s) from the monthly mean (solid lines).  
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Figure 2.9 Seasonal Variation of the net CO2 Flux from the observation (Fcobs, solid line) 

and model simulations (Fcsim, dash line) over the study area. C3 and C4 denote the CO2 

uptake by C3 and C4 plant, respectively. The filled bars represent the composition of 

release and uptake in each month. The values on the bars show the percentage of release 

or uptake from each source.  
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The CO2 release from vegetated area is quantified by Eq. (2.16). It is noteworthy 

that the monthly ecosystem respiration to monthly GPP at the study site followed the 

linear relation reported from W. Yuan et al. (2011) and D. Qun and L. Huizhi (2013). The 

correlation coefficient is 0.53 ± 0.11 at monthly scale and 0.56 as the annual average, 

meaning 56% of CO2 absorbed by vegetation released back to the atmosphere. The 

annual net CO2 exchange from plants is -668.8 gCO2 m-2, negative sign indicating the 

net uptake.  

 

2.2.3  Soil Respiration 

Using variable Q10 method in Eqs. (2.11) & (2.12), soil respiration is calculated 

using soil temperature and water content. The factor f3(θ) is selected from Eq. (2.14) as it 

gives the best performance at the study site. The annual total soil respiration is 1147.0 

gCO2 m-2. This value is very close to the observational value 1112.5 gCO2 m-2 reported 

in B. Koerner and J. Klopatek (2002) as the annual mean soil respiration in Phoenix 

residential area. However, the value is significantly lower than soil respiration obtained 

from low density residential area near Boston (7395.8 gCO2 m-2 S.M. Decina et al. 

(2016)). The difference can be possibly attributed to the dry environment in Phoenix. 

Most houses in arid environment used xeric landscape design to save water from 

irrigation. Gravels, sometimes bare soils, take a large portion of xeriscaping, leading to 

the reduction of subsurface root uptake. Less irrigation and fast evaporation can also 

cause water deficit in soil and lower the biotic activeness. Hence, from the modeling 
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perspective, R25 needs to be adjusted to account for changes in land covers and climate 

regions.  

The seasonal variation in soil respiration is primarily determined by temperature. 

Though the soil respiration is suppressed via reduced Q10 during hot months, greater rate 

of soil respiration occurs during June to August (Figure 2.9). Soil respiration accounts for 

over 30% of total CO2 release during May to October, comparable to traffic emissions in 

the residential area. During winter months, only ~12% of CO2 release is from soil, 

making it the smallest source of CO2. Despite of the significant seasonal variation, the 

soil respiration comprises 27% of total annual release at the study site, greater than the 

total CO2 release from the vegetated surface (20%). In addition, shading and evaporative 

cooling provided by urban plants (especially tall trees) reduce the soil temperature, 

leading to unfavorable conditions for respiration. Considering the CO2 uptake capability 

of urban plants, urban greening, viz. converting bare soils to vegetated landscapes, is an 

effective means to provide the environmental co-benefits of mitigating both heat and CO2 

emissions in the built environment.  

 

2.2.4  Anthropogenic CO2 Release 

The anthropogenic CO2 release is primarily determined by human activities and 

their working schedules. The modeling results are shown in Figure 2.10, where the 

weekly factor is defined as the ratio of hourly release to the total release of the week, and 

the annual factor is the ratio of the total weekly release to annual release. The variation is 

more related to the time of a day (diurnal cycle) rather than to the day of the year 

(seasonal variation) (Figure 2.10a). The diurnal variation of traffic release at the study 
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site during workdays is apparently bimodal, corresponding to rush hours in the morning 

and evening traffic. The bimodal trend becomes less manifest in weekends and holidays 

(Figure 2.10b). The seasonal variability of traffic carbon emission is small, as shown in 

Figure 2.10c), where the monthly average value is 142.5 ± 11.0 gCO2 m-2 with the 

maximum in August (160.9 gCO2 m-2) and the minimum in July (119.2 gCO2 m-2), 

respectively. It is noticeable that overall, the traffic emissions constitute the largest 

contributor to the annual total release in the study area.  

 

Figure 2.10 Traffic release factors. (a) Weekly factor derived from Vulcan v2 hourly 

data at the study area; (b) the average release factors for workday (red) and weekend 

(blue); (c) the intra-annual variation of the release Factor. Shade area in (b) represents 

one standard deviation (±1.0s) from the mean value.  
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According to GPWv4 statistics, the population density of the study area is 1578 

person per km2 in 2010 and 1758 person per km2 in 2015. We used linear interpolation to 

estimate the population density in 2012 and 2013. The residential curve (Figure 2.3) 

enhanced the bimodal shape in the diurnal cycle of the CO2 release from the 

anthropogenic sources. The average annual release from human respiration is 552.7 gCO2 

m-2 and accounts 12.3% of total CO2 release. Note that here the human respiration rate is 

estimated based on an average adult at the normal activity level. In general, the level of 

human respiration varies with different activities, ages, and genders, but its variability is 

comparatively lower than that of other contributors (e.g. plant functions). For more 

accurate estimation of human respiration, the population pyramid (age and gender 

distribution) of the study area is needed; the availability of such statistics, however, is 

often very scarce at high spatial resolution. 

For the specific study site, CO2 release from homes is considered insignificant for 

two reasons. First, the primary power source of air conditioning (both heating and 

cooling) and cooking is electricity in Phoenix area, thus has no direct CO2 release; 

electric space heating is becoming more common in U.S. homes, especially in south 

states (USEIA 2015). Secondly, heating is occasionally needed in the mild winter in 

Phoenix due to its warm and semi-arid climate. Figure 2.8 shows the diurnal patterns of 

the CO2 release, summing up the modeled traffic emission and respiration from plants, 

soil, and human. Comparing with the CO2 fixed by plants, the total release overweighs 

the total uptake in every month of the year, making the study area a net source of CO2.  
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2.2.5  CO2 Exchange Decomposition 

With all the individual sources and sinks quantified above, the modeled total CO2 

flux (Fcsim) is compared to the measurement (Fcobs) by EC tower. The net CO2 exchange 

at the study site shows a bimodal shape within the diurnal cycle in both modeling and 

observation (Figure 2.11), primarily due to the bimodal characteristics of the 

anthropogenic releases. In addition, the sharp peak in CO2 assimilation rate in mid-day 

offsets the soil and plant respiration, where the release curve around the noon is most 

significantly reduced due to the narrow window of active photosynthesis. This further 

contributes to the bimodal pattern of variation.  

The model error (RMSE) over the study period is 0.21 mg m-2 s-1 (or equivalently 

4.68 µmol m-2 s-1), calculated from 18530 half-hour data points. Better performance is 

observed during warm and hot months from May to October (RMSE = 0.13 mg m-2 s-1 or 

2.68 µmol m-2 s-1). The relatively large error in winter and spring (RMSE = 0.25 mg m-2 

s-1 or 5.63 µmol m-2 s-1) may resulted from various reasons. Note that we did not 

consider any fossil fuel burning other than the traffic release, leading to the 

underestimation of CO2 flux from the occasional use of gas for indoor heating during 

cold months. Other possible sources of urban CO2 releases not included in the model, 

such as the outdoor grills or campfires in holiday season, can also contribute to the model 

discrepancy. The vegetation fraction used in the model is based on the estimation from 

the change of LAI, which may have more uncertainties in dormant season than in the 

summer. Lastly, the uncertainties related to CO2 storage term in EC measurement will 

influence the model performance (B. Crawford & A. Christen 2014) as the diurnal trend 
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showed in Figure 2.11 has the large variance in observation. Nevertheless, the overall 

performance is statistically better than the recently developed urban CO2 model by M. 

Grote et al. (2016), in which the model RMSE is 15.3 µmol m-2s-1. 

 

Figure 2.11 Diurnal variation of measured (black) and modeled (blue) CO2 flux at the 

study site. The shaded area shows one standard deviation (±1.0s) from the observed or 

modeled monthly means. 
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The overall decomposition of modeled CO2 fluxes is shown in Figure 2.9. The 

largest contributor to annual emission is traffic release (40.2%), followed by soil 

respiration (27.0%). Respiration over vegetated surface and human respiration accounts 

for 20.4% and 12.3% of annual emission, respectively (Figure 2.9). The composition of 

CO2 flux displayed a moderate seasonal variation. During May and June, soil respiration 

slightly outweighed traffic emission because the rising temperature and ample solar 

radiation provide the optimum condition for soil respiration. Plants function actively 

during the growing season, which greatly reduce the net CO2 efflux over the urban 

canopy despite of the minor vegetation fraction in the study area. It is noteworthy that 

30.0% of the anthropogenic release can be offset by plant net photosynthesis on the 

annual basis. Nevertheless, in this specific case, the residential area is a net source of 

CO2, the decomposition implies a possible carbon balance (“net zero” carbon) of the built 

environment if adequate area of bare soil is vegetated.  

 

2.3 Concluding Remarks 

In this study, we developed a modeling framework to resolve the CO2 exchange in 

cities and evaluated its performance in a typical residential area in Phoenix, Arizona. The 

proposed model integrates the available urban land surface schemes, plant physiological 

model, and spatially gridded emission datasets. The model results are found to be in good 

agreement with in-situ measurements of CO2 flux by an EC flux tower. We also 

decompose the total carbon flux into individual sources of emission and the sink of plant 

uptake. In particular, we quantified the enhanced CO2 absorption and release in the study 

area, owing to the modified in-canyon temperature, elevated CO2 level, and maintained 
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irrigation schedules in the built environment. Due to the lawn management, respiration 

from soil releases a significant amount of CO2 into the surface layer.  

Given the paucity of the available observational dataset for urban vegetation, 

much of the parameter space of the plant physiological functions in the current model 

was determined empirically from field experiments in agricultural lands. Nevertheless, 

the proposed model is scalable and versatile in simulating urban carbon exchange at wide 

spatio-temporal scales, ranging from the sub-urban scale emission driven by local 

meteorology, to city and regional scale CO2 simulations when combined with mesoscale 

models. In offline simulations, the use of gridded dataset is preferred to match the 

footprints of EC systems with high spatio-temporal resolutions. When coupling with 

global climate models, the wide coverage of the spatial gridded dataset on urban 

geometry, vegetation-related metrics, and anthropogenic CO2 emission provides a high 

versatility in data acquisition. It is caveated that, however, modeling of urban carbon 

exchange is hitherto generally subjected to large uncertainties, with their sources 

inherited from measurement datasets or numerical parameterization schemes, or both. 

Therefore, future development of urban CO2 modeling and the improvement of the model 

predictive skills call for quantitative characterization of model uncertainties and intricate 

sensitivity analysis. The endeavor on observational measurements, albeit at their infancy, 

is progressing rapidly and shedding more and more lights to guide the model 

development and applications in quantifying the urban carbon exchange in the built 

environment.  
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CHAPTER 3 

ENVIRONMENTAL CO-BENEFITS OF URBAN GREENING FOR 

MITIGATING HEAT AND CARBON EMISSIONS 

In this Chapter, the UCM-CO2 model described in Chapter 2 is applied to 

simulate the impact of the change in urban greening actions, i.e. lawn expansion and 

degradation, tree plantation, and irrigation, on the thermal and carbon environment in a 

typical residential neighborhood. We conduct a series of numerical experiments aiming to 

identify whether the urban greening led to the mitigation effect on both heat and carbon 

emissions and which action is the most efficient in improving the overall environmental 

quality.   

 

3.1 Methods 

3.1.1  The Study Area 

In this study, we use the field measurements by an EC system located in west 

Phoenix, Arizona, USA (33.483847oN, 112.142609oW) to setup the base scenario as well 

as for the model calibration. The source area of the flux tower covers a typical residential 

area of single-family houses. The average roof height is 4.5 m, with a mean aspect 

(building-height-to-road-width, or H/W) ratio. Most lots in the study area have small front 

and backyard spaces with xeric landscaping and irrigated with garden hoses or automated 

irrigation system. The overall land cover within 1 km2 of the EC tower were 48.4% 

impervious surfaces (26.4% building and 22.0% road), 36.8% bare soil, 14.6% vegetation 

(10.1% grassland and 4.5% tree), and 0.1% water pool (W.T.L. Chow et al. 2014). The 
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dominant vegetation species is Bermuda grass (a warm season C4 grass), while the 

common tree species are listed in W.T.L. Chow and A.J. Brazel (2012). 

At the study site, the 23-m EC tower recorded four-components radiative fluxes, 

3D wind field, air temperature, humidity, CO2 flux and concentration, and pressure at 10 

Hz frequency since 2011. The high frequency atmospheric measurements were then 

processed, quality-controlled, and integrated at 30 min intervals with no gap filling. To 

ensure sufficient mixing of CO2 efflux, data points with the friction velocity u* smaller 

than 0.1 m/s were removed from the observation. For numerical simulations, we used the 

measurements recorded from May 1 2012 to May 31 2012 (31 days).  

 

3.1.2  The UCM-CO2 Model 

As detailed in Chapter 2, the UCM-CO2 model integrates the urban thermal and 

hydrological processes using a single-layer UCM with the carbon exchange in the built 

environment (P. Li & Z.-H. Wang 2020a; 2021b). The geometry of the built environment 

is represented in the UCM as a two-dimensional (2D) street canyon, consisting of two 

arrays of buildings separated by a road, with infinite longitudinal dimension. Inside the 

street canyon, the heterogeneity of the ground facet is represented using sub-facets of 

paved surfaces (road), bare soil, and vegetated areas (lawns and trees). Furthermore, the 

morphological representation of urban trees in the UCM is made configurable to 

accommodate flexible location and number of rows of trees. The model resolves 

explicitly the radiative heat exchange between shade trees and built facets (Z.-H. Wang 

2014) and transpiration by tall vegetation, in addition to the ground level vegetation 

(lawns).  
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In addition, the new model is capable of resolving a holistic set of urban CO2 

uptake and emission arising from various sources, including human, building, and 

vehicular AnCO2 emissions, plant biogenic CO2 fluxes, and abiotic soil respiration, via a 

data fusion approach. The plant physiological functions parameterized in the UCM-CO2 

model resolves the dynamics of plants CO2 exchange, including the carbon assimilation 

and respiration. Moreover, instead of using one set of plant parameters for all types of 

vegetations, UCM-CO2 model distinguishes C3 and C4 plants to accommodate the 

simulation of urban lawns in arid/semi-arid area where warm season grassland is a norm 

in cities (C.J. Still et al. 2003; T.L.E. Trammell et al. 2019). The urban total energy and 

CO2 fluxes are computed from the areal means of the sub-facets in the urban canyon.  

For subsequent numerical simulations, we first configure the UCM-CO2 model 

according to the landscape characteristics covering the source area of the EC flux 

measurements described in Section 3.1.1. The biogenic CO2 exchange is captured by 

physiological functions of both C3 and C4 plants detailed in Chapter 1 or P. Li and Z.-H. 

Wang (2020a). For example, the gross primary production at canopy level is calculated 

by integrating CO2 uptake at leaf over the entire leaf surface area, as show in Eqs. (2.7) 

and (2.8). 

The CO2 releases from anthropogenic sources are derived from the spatial gridded 

data. We use traffic on-road emission estimates from Vulcan v2.0 (10km, hourly, K.R. 

Gurney et al. 2009) and ODIAC (1 km, monthly, T. Oda et al. 2018), and further correct 

the daily traffic pattern using the local traffic count data in a nearby residential area from 

Arizona Department of Transportation (ADOT). Human respiration is calculated from 

population density while assuming normal level respiration rate per capita. Traffic release 
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and human respiration from external data source are obtained from independent 

inventories and evaluated separately. The simulated hourly CO2 along with the exchanges 

in each sector have been compared and calibrated against the EC measurement (P. Li & 

Z.-H. Wang 2020a), and can be readily used by subsequent numerical experiments.  

Based on the information of the morphology, land use, and EC measurement from 

the study site, the model is configured as shown in Table 3.1. It is noteworthy that the soil 

moisture was measured beneath the tower without irrigation, which did not accurately 

represent the soil moisture status in the source area of the EC measurements. In the 

neighboring residential area, the City of Phoenix recommends irrigating lawn at night or 

early morning every three days during summer and reduce to bi-weekly irrigation in 

winter (Landscape Watering by Numbers 2017). Since no information of actual soil 

moisture or irrigation in the study site is available, we derived the irrigation scheme from 

the municipal guidance of local residential irrigation and calibrated it against the 

measured latent heat from the EC tower. In this study, we use soil water content 

multiplier (SWCx) to represent the overall irrigation scheme, which is defined as the ratio 

of target soil moisture after irrigation to the monthly mean soil moisture from 

measurement.  
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Table 3.1 Summary of the Parameter Space Used in UCM-CO2 for the Study Site in 

Phoenix, Arizona. 
Site Properties   
  Roof level (m) 4.5 
  Reference height (m) 22.1 
  Normalized roof height (-) 0.1 
  Normalized roof width (-) 0.4 
  Normalized road width (-) 0.6 
  Thickness of roof (m) 0.3 
  Thickness of wall (m) 0.2 
  Roughness length for momentum for roof (m) 0.01 
  Roughness length for momentum for canyon (m) 0.05 
  Roughness length for heat for roof (m) 0.001 
  Roughness length for heat for canyon (m) 0.005 
  Street canyon orientation (rad) 3/8 π 
  Latitude (rad) 0.5844 
  Longitude (rad) 1.9573 
Soil Properties   
  Saturation hydraulic conductivity (m s-1) 3.4 x 10-5 
  Residual soil water content (m3m-3) 0.08 
  Saturated soil water content (m3m-3) 0.35 
  Slope of soil water retention curve, b 4.50 
  Soil layer thickness (m) 0.15 
Surface Properties   
Roof   
  Albedo 0.13 
  Emissivity 0.95 
  Thermal conductivity (W K-1m-1) 0.90 
  Heat capacity (MJ K-1m-3) 1.00 
Wall   
  Albedo 0.40 
  Emissivity 0.95 
  Thermal conductivity (W K-1m-1) 0.10 
  Heat capacity (MJ K-1m-3) 1.40 
Road (soil, paved, vegetation)   
  Fractions 0.37, 0.53, 0.10 
  Albedo 0.30, 0.25, 0.30 
  Emissivity 0.95, 0.95, 0.95 
  Thermal conductivity (W K-1m-1) 1.50, 1.80, 1.00 
  Heat capacity (MJ K-1m-3) 1.80, 1.80, 1.70 
Tree   
  Coverage 0.05 

  Normalized tree height (-) 0.80 
  Normalized tree location (-) 0.10 

  LAI (m2 m-2) 4.5 
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3.2 Results and Discussion  

3.2.1  Model Validation 

The UMC-CO2 model was first calibrated and evaluated against the EC 

measurements from May 1st 2012 to May 31st 2012. The results of comparison of the net 

radiation (Rn), sensible heat (H), latent heat (LE), and total carbon flux (Fc) are shown in 

Figure 3.1a and 3.1b. The model performance on Rn, H, and LE predictions is comparable 

to those reported in previous UCM studies (e.g. C.S.B. Grimmond et al. 2011; N. Meili et 

al. 2020). As for the performance of CO2 modeling against EC measurement, there is a 

paucity of reported results in the literature. For example, M. Goret et al. (2019) combined 

UCM and on-site campaign data to model Fc at a city core and reported a root-mean 

square error (RMSE) of 0.67 mg m-2s-1 between model simulations and field 

measurements. The Surface Urban Energy and Water Balance Scheme (SUEWS) 

proposed in L. Järvi et al. (2019) has the RMSE between 0.02 and 0.25 mg m-2s-1 when 

evaluating the diurnal pattern of Fc in different seasons. In comparison, the RMSE of 

CO2 flux predicted by the UCM-CO2 model is 0.04 mg m-2s-1 for the mean diurnal cycle 

(Figure 3.1b).  
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Figure 3.1 Comparison of model results with field measurements by the EC tower: (a) 

Surface energy fluxes; (b) total CO2 flux. Shades represent one standard deviation from 

the model and observation mean. (c) Decomposition of total CO2 flux from UCM-CO2 
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model. Rh, Rs, and Rf represent respiration from human activity, soil, fossil fuel 

combustion, respectively. NEEG and NEET represent NEE from urban lawn and tree, 

respectively. 

The total CO2 flux at the study site is the composition of CO2 release from fossil 

fuel burning, human respiration, soil respiration, and NEE from urban tree and lawns. At 

the study site, traffic release is the major contributor to CO2 efflux, followed by soil 

respiration due to the large bare soil fraction (Figure 3.1c). Soil respiration rate is 

validated using the observation data reported in B. Koerner and J. Klopatek (2002) at 

Phoenix residential area. Human respiration typically contributes 10% of total CO2 efflux 

with limited uncertainty caused by population change of the study area (Figure 3.1c). 

Direct validation of plant NEE is technically difficult due to the lack of useable 

observational data at the study site. With the validation of total CO2 flux and other major 

sources, plant NEE is validated indirectly by the residual of the CO2 budget. The current 

study is focused on the biogenic CO2 exchange, i.e., the variation of CO2 exchange 

caused by urban greening.   

 

3.2.2  Results of Case Study 

For the subsequent case study to explore the impact of urban greening on urban 

cooling and biogenic CO2 exchange, we keep the parameter space of the UCM-CO2 

model described in Section 3.2.1 (Table 3.1) intact, except four parameters viz. the 

ground vegetation fraction (fV), tree crown coverage (fT), bare soil fraction (fS), and 

irrigation schedule (SWCx). The variation of these four parameters corresponds to the 
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changes in four components of urban greening, viz. (1) lawns, (2) urban trees, (3) bare 

soil, and (4) soil moisture statues reflective of urban irrigation.  

The change of tree coverage is achieved by adjusting the crown size of the tree, 

ramping from 5 to 25% of the road width. The irrigation is scheduled at midnight, with 

SWCx changing from 0.9 to 3.5, which is equivalent to 3% and 87% in normalized 

saturation degree, respectively. Since the ET arising from bare soil and grassland in the 

semi-arid environment is highly nonlinear with respect to the soil moisture state (Li and 

Wang 2019), the irrigation schedule supports the plant to meet 28% to 100% of the 

evaporation demand in the field. Figure 3.2 shows the relations between SWCx, 

normalized saturation degree, and evaporation reduction factor.  

 

Figure 3.2 Relation between SWCx to evaporation reduction factor (b, black dot line), 

normalized saturation degree (Snorm, red dash line), and surface soil moisture (qSurface, blue 

solid line). b is defined as the actual ET rate to the potential ET. Snorm = (surface soil 

moisture – wilting point) / (field capacity – wilting point). In this case, the field capacity 

and wilting point are 0.35 and 0.08, respectively. 
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3.2.2.1 Average Heat and Carbon Mitigation by Urban Greening 

We first assess the impact of urban greening on the mean air temperature and 

mean net biogenic ecosystem exchange (NEE) in the street canyon, viz. Tcan and NEEcan, 

averaged over the entire simulation period; the results are shown in Figure 3.3. By 

changing the fraction of urban green space, the increase of tree coverage leads to much 

more effective cooling of canyon air temperature than the increase of lawn coverage 

(colormap in Figure 3.3a). This is consistent to the result reported in an earlier study and 

can be attributed to the radiative shading by the 3D urban trees being more effective than 

evapotranspirative cooling by the 2D (planar) lawn (Z.-H. Wang et al. 2016). C.D. Ziter 

et al. (2019) also found the substantial temperature decrease when tree coverage is greater 

than 40%. As for the net carbon exchange inside the street canyon, we found that the 

urban green space, both trees and lawns, function as a net CO2 sink even with the 

minimum coverage of fV and fT (5%) (contour in Figure 3.3a). In general, the magnitude 

of NEEcan (with negative sign denoting carbon sink) further decreases with the urban tree 

and lawn fractions roughly linearly, signaling that the strength of urban green space as 

carbon sink increases. It is noteworthy that when fT is large (> 0.15), the rate of NEEcan 

change with lawn fraction decays, indicating that lawns become weaker carbon sink in 

the presence of dense tree coverage. This can be physically interpreted as those tall/dense 

urban trees cast larger shaded areas on the ground and suppress the CO2 uptake strength 

of the ground vegetation, by intercepting radiation (especially PAR) and lowering the 

canyon air temperature.  
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Figure 3.3 Simulation results of the mean canyon air temperature (Tcan in oC,  filled 

colormap) and net biogenic CO2 exchange (NEEcan in mg m-2s-1, contours) by changing 

(a) Tree coverage, fT and grassland fraction, fV, and (b) bare soil fraction, fS and irrigation 

schedule, SWCx, independently. Subplots (c) and (d) are the same as (a) and (b) but 

keeping the total fraction of fV + fS  as constant of 0.3. The star indicates the reference 

scenario with fV = 0.15, fT = 0.15, fS = 0.15, SWCx = 2.0. 

 

As shown in Figure 3.3b, the change in bare soil fraction (fS) has marginal cooling 

effect. In contrast, the cooling efficiency from irrigation is significant, especially for 

cities in hot and dry climate (A.J. Crawford et al. 2012; C. Wang et al. 2019b). The 
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impact of irrigation on carbon exchange, on the other hand, is highly nonlinear. Two 

distinct regions can be identified in Figure 3.3b: the contour lines are steep at the low soil 

moisture regime (SWCx < 1.3) but plateaued when amply irrigated, indicating the sharp 

change of sensitivity of carbon uptake to irrigation. As approaching the limiting case 

where irrigation is turned off, the high water stress suppresses the carbon uptake from 

plants, leaving bare soil respiration the primary source of CO2 exchange. The rate of soil 

respiration is positively correlated with a wide range of soil temperature (J. Lloyd & J.A. 

Taylor 1994). When urban plants are irrigated, it clearly provides the co-benefit of 

cooling the ambient air temperature (Figure 3.3a), and meanwhile reducing the CO2 

emission by (1) reducing soil respiration via cooling effect and (2) promoting plant 

carbon absorption via reducing the water stress. When adequately irrigated (SWCx > 2.0), 

the CO2 uptake becomes insensitive to further increase in irrigation amount, and the net 

carbon flux is in turn dominated by the change of bare soil fraction (c.f. flat contour lines 

in Figure 3.3b).  

For results shown in Figure 3.3a and 3.3b, we keep the land cover changing 

independently, meaning that the increase of fS and fV leads to the decrease of total 

impervious surface area (ISA). In practical urban planning, however, the ISA is unlikely 

to change, at least significantly, in a developed built environment. To capture the more 

realistic urban greening strategies, we then devise an alternative set of scenarios by fixing 

the total fraction of urban greening at 30% (i.e. fS + fV = 0.3). The changes of lawn and 

bare soil fractions are therefore dependent and limited to the availability of open ground 

space in the street canyon. Urban greening at the road level physically represents the 

conversion of bare soil into vegetated surface, or reversely as the degradation of urban 
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lawns. The simulation results of the effect of this new (and more realistic) set of urban 

greening scenarios on urban cooling and carbon mitigation are shown in Figure 3.3c&d, 

and can be seen as qualitatively consistent with the results of their counterpart scenarios 

in Figure 3.3a&b. Nevertheless, some differences are noted: first, the increase of fV in 

Figure 3.3c leads to faster carbon mitigation rate by increasing vegetation cover than that 

in Figure 3.3a. This is due to that urban greening, by converting bare soil to vegetated 

(with a constant availability of open space in the street canyon), is doubly beneficial by 

providing additional CO2 uptake capability as well as evaporative cooling (F. Aram et al. 

2019; J. Song & Z.-H. Wang 2015), both contributing to CO2 reduction. Similar trend of 

strengthened carbon mitigation capacity can be found, by comparing Figure 3.3d and 

3.3b, via enhanced irrigation of urban lawns.  

It is noteworthy that from reported observation dataset, soil respiration from 

vegetated area is higher than that arising from purely bare soils, primarily because of 

active root respiration and high soil organic carbon from the grassland (J. Bae & Y. Ryu 

2017; B.J.L. Ng et al. 2015; X. Tao et al. 2016). Nevertheless, well-maintained urban 

lawns act net CO2 sinks, despite that the elevated soil respiration rate weakens the plant 

carbon uptake. This effect will be further amplified if an urban lawn degrades into brown 

turf grassland with large bare soil portion due to extreme heat or drought, as the 

vegetation fraction for active CO2 uptake shrinks while respiration from underground 

biomass continues.  

Furthermore, the results of predicted sensible and latent heat fluxes aggregated 

over the street canyon are shown in Figure 3.4. The response of sensible heat to varying 

components of urban greening is similar to that of the canyon air temperature, and the 
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latent heat to the carbon likewise. It is noteworthy that in Figure 3.4b, the latent heat 

exhibits a bi-modal pattern with respect to the bare soil fraction in the regime where the 

soil moisture is high (SWCx > 2.2). This bimodal pattern of latent heat can be attributed to 

two mechanisms regulating plant transpiration and soil evaporation separately. When the 

bare soil fraction is low (fS < 0.05), the presence of large impervious surface warms the 

canyon air (Figure 3.3b), which can, in turn, enhances plant evapotranspiration with 

ample irrigation. On the other extremity, when the large bare soil fraction is large (fS > 

0.15), urban irrigation leads to large soil evaporation.  

 

Figure 3.4 Same as Figure 3.3 but for mean canyon sensible heat flux (Hcan, Wm-2, filled 

colormap) and latent heat flux (LEcan, Wm-2, contours) 
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3.2.2.2 Diurnal Variation of Changes in Temperature and Carbon Flux 

In addition to the mean heat and carbon mitigation, here we look into the diurnal 

variation of Tcan and NEEcan due to urban greening by presenting the results of a portfolio 

of selected scenarios listed in Table 3.2, as shown in Figure 3.5. From Figure 3.5a, it can 

be seen that the increase of ground vegetation fraction can enhance the strength of CO2 

sink, but has insignificant impact on environmental cooling. Furthermore the use of lawns 

for mitigating carbon emissions is subject to additional constraints: (1) irrigation of urban 

lawns, or more generally the maintenance of mesic landscaping, in the semi-arid or arid 

cities can be demanding due to water scarcity (E. Litvak et al. 2017), and (2) lawns are 

susceptible to degradation from exposure to high thermal and water stresses. In contrast, 

urban trees provide an attractive means as they provide more significant cooling effect 

(Figure 3.5b), especially during nighttime (recall that UHI is predominantly a nocturnal 

effect), owing to the synergistic radiative and evapotranspirative cooling (J. Konarska et 

al. 2016; R. Upreti et al. 2017; C. Wang et al. 2019a; C. Wang et al. 2018b). Increasing 

tree fraction also promotes CO2 sequestration significantly during daytime. The 

significant carbon sink strength of trees is primarily attributable to greater leaf areas in 

multiple layers of tree canopy and wide adaptation to heat and water stress (R. Teskey et 

al. 2015). For cities in arid environment, shade trees (especially native species) are 

particularly recommendable for better environmental co-benefit of thermal and carbon 

mitigation and more economic water-heat trade-off. 
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Table 3.2 Configurations of Urban Greening for the Study Site and Numerical 

Experimental Scenarios 

Scenario fV fT fS SWCx 

PHX 0.10 0.05 0.37 1.5 

Ref 0.15 0.15 0.15 2.0 

Grass- 0.05 0.15 0.15 2.0 

Grass+ 0.25 0.15 0.15 2.0 

Tree- 0.15 0.05 0.15 2.0 

Tree+ 0.15 0.25 0.15 2.0 

Soil- 0.15 0.15 0.05 2.0 

Soil+ 0.15 0.15 0.25 2.0 

Irr- 0.15 0.15 0.15 1.0 

Irr+ 0.15 0.15 0.15 3.0 
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Figure 3.5 Mean diurnal variation of the net biogenic CO2 exchange NEEcan and the 

canyon temperature Tcan: (a) Grass±, (b) Tree±, (c) Soil±, and (d) Irr±. Blue and red lines 

stand for the “+” and “-” scenarios in each category, respectively (detailed in Table 2). 

Shaded areas represent one standard deviation. The solid black line indicates the 

reference scenario with fV = 0.15, fT = 0.15, fS = 0.15, SWCx = 2.0. 

 

As comparing to the reference case, increased irrigation does not intend to 

significantly reduce Tcan or NEEcan. But less irrigation will lead to apparent temperature 

increase and loss of CO2 sequestration (Figure 3.5d). The normalized saturation degree 
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(Snorm) for Irr-, Ref, and Irr+ cases are about 5%, 30% and 70%, respectively. The 

asymmetric phenomenon is likely caused by the non-linear relationship of 

evapotranspiration as a function of soil moisture (ET-q relation) (P. Li & Z.-H. Wang 

2019). When soil moisture becoming the limiting factor for plant growth, evaporative 

cooling and CO2 uptake will be largely suppressed. On the contrary, when soil moisture 

is adequate to support healthy growth for plants, Tcan becomes insensitive to irrigation, so 

does NEEcan. The diurnal variation echoes the mean effect discussed in the previous 

section: Adequate irrigation is necessary to effectuate the environmental co-benefit of 

urban greening for heat and carbon mitigation, whereas excessive soil water only has but 

marginal effect on further improving the urban environmental quality. 

 

3.3 Environmental Implications 

Based on results derived from the designed scenarios, urban greening leads to the 

general improvement in thermal and carbon environment in cities. Though theoretically, 

wide coverage of green space and irrigation cool the environment and strengthen natural 

carbon sinks to a significant degree, cost-benefit trade-offs should be considered in 

management practices. It is noteworthy that the benefit evaluation should take the value 

of carbon sinks into account. From this perspective, the cost of irrigation will be offset by 

the added value it creates in CO2 emission reduction, as it 1) helps vegetation maintain a 

healthy status for active CO2 uptake; 2) mitigates the degradation risk of urban lawns; 3) 

cools the soil thus suppress soil respiration. Similarly, it is recommended to adopt street 

trees, instead of lawns, for better heat and CO2 emission mitigation effects in cities, as 
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tree 1) has denser leaves thus greater CO2 sink power; 2) cools the environment thus 

suppress respiration; 3) requires less maintenance. Nonetheless, for some specific regions 

or tree species, trees might be exposed to other risks such as wildfire (P. Dass et al. 2018) 

and mortality (D. Hilbert et al. 2018; I.A. Smith et al. 2019).  

Quantitatively, the interplays between thermal and carbon environment need to be 

disentangled using advanced numerical models. For example, both temperature and 

moisture control the microbial activity in the soil, thus irrigation amount determines 

whether co-benefits or advisory effects happen in practice. Though irrigation cools the 

soil, extra soil moisture might promote soil respiration. Meanwhile, insufficient irrigation 

affects the growth of vegetation and limits the photosynthesis rate. Best environmental 

co-benefits will be achieved when the fine balance between these mechanisms is found. 

The critical thresholds will vary from different cities, local tree species, and management 

practices. For cities in arid climate regions where urban thermal stress and water scarcity 

co-exist, results from precise modeling might refresh the perspectives on cost-benefit 

trade-offs, therefore unveil more feasible strategies to a low carbon city. Urban planners 

and city designers should also adopt the modeling tools from urban climate research 

communities in decision-making progresses.   

 

3.4 Concluding Remarks 

In this study, we utilized the newly developed UCM-CO2 model to quantify the 

relative contribution arising from specific components of urban greening, viz. grassland, 

tree, soil, and irrigation, to the total environmental co-benefit for improving both thermal 

and air quality. It should be caveated that parameterizations of urban heat and carbon 
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exchange processes in the UCM-CO2 model and the results of simulation are constrained 

by the limited availability of observational datasets and the difficulty of controlling urban 

variables in real urban planning. Nevertheless, the results of numerical experiments are 

informative as to reveal the mean and diurnal pattern of variations of air temperature and 

NEE in the street canyon with changes of individual urban greening component. The 

interactions between the dynamics of heat and CO2 exchange were also manifest, where 

the relative coverage of lawns, shade trees, and bare soils plays a dominant role.  

More specifically, for different urban landscaping strategies, we found that tall 

shades trees have the highest efficacy for achieving the desired environmental co-benefit. 

In contrast, the effect of mesic landscape using urban lawns is conditioned on the 

adequate water supply and good maintenance practices to prevent degradation, whereas 

xeriscaping has limited capacity for reducing carbon emissions despite its water-saving 

potential. In addition, we identified the nonlinear transition in the response of ambient 

temperature and total carbon flux, and the bi-modal variability of the latent heat, to 

different irrigation schemes. The finding of these intriguing patterns has the potential to 

help urban planners and practitioners to optimize urban irrigation strategies in terms of 

the water-energy trade-off. These findings, along with its implications on urban planning 

and management, improve our holistic understanding of urban environmental quality and 

help the endeavor to the sustainable urban development. 
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CHAPTER 4 

MULTI-OBJECTIVE OPTIMIZATION OF URBAN ENVIRONMENTAL 

SYSTEM DESIGN USING MACHINE LEARNING 

In this Chapter, a machine learning (ML) algorithm, Gaussian Process regression 

is used to emulate the physical-based UCM-CO2 model to assess the daily mean in-

canyon temperature and net ecosystem exchange. ML surrogates are trained and validated 

on the simulation results generated by UCM-CO2 over a wide range of urban 

characteristics, showing high accuracy in capturing heat and carbon emissions. Using the 

validated surrogate models, we then conduct multi-objective optimization using the 

genetic algorithm to optimize urban design scenarios for desirable urban mitigation 

effects.  

 

4.1 Method 

4.1.1  Single Layer Urban Canopy Model 

In this study, we adopt the newest version of Arizona State University Urban 

Canopy Model (ASLUM version 4.1, P. Li & Z.-H. Wang 2020a; 2021b). ASLUM v4.1 

features the coupling of urban energy and water dynamics with photosynthesis and 

respiration from urban vegetation, which enables us to quantify the compound 

environmental impact of urban mitigation strategies, urban greening in particular, for 

both urban heat and CO2 mitigation.  

To characterize the urban environment, the in-canyon air temperature (Tcan) is 

calculated from the energy balance closure in street canyon (i.e., building walls and 

grounds) by (Wang et al., 2013), 
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 , (4.1) 

where T and f represent the temperature and fraction of the sub-facets; RES is the 

aerodynamic resistance on each sub-facets; subscripts w, p, v, s, a, can denote walls, 

paved surfaces, vegetation, bare soil, atmosphere, and canyon respectively. In addition, 

the biogenic net ecosystem exchange (NEE) is given as 

 , (4.2) 

where R is the total respiration from soil and vegetation; GPP is the total gross primary 

production from trees and lawns. The value of NEE follows the convention in ecology 

with both R and GPP positive numbers, and negative NEE means net carbon sink. 

 

4.1.2  Dataset 

A simulated dataset generated by ASLUM v4.1 are used for the subsequent ML 

emulations. To improve the robustness of ML models over a wide range of urban 

configurations, we conduct a large number of numerical simulations (N = 55388) by 

ASLUM v4.1 using a variety of critical system design parameters. Training ML models 

only requires a small portion of the dataset, while the majority of the dataset will be used 

in model testing and evaluation (see Section 4.2.1). Each simulation is driven by in-situ 

observation from an eddy covariance (EC) system in west Phoenix, Arizona 

(33.483847oN,112.142609oW) as the meteorological forcing. The EC system measured 

basic meteorological variables and energy fluxes at 22 m above the ground (>15 m above 

average roof level). Data retrieved from this EC tower (W.T.L. Chow 2017) has been 

can
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used in previous urban studies ranging from surface energy dynamics, urban environment 

modeling, and boundary layer physics (W.T.L. Chow et al. 2014; N. Meili et al. 2020; J. 

Song et al. 2017). The meteorological forcing used in subsequent simulations includes the 

downwelling shortwave and longwave radiation, atmospheric temperature, pressure, 

humidity, and wind speed (Figure 4.1). We selected 24 hours of measurement during a 

typical clear day in early summer (May 11th, 2012) to drive the physical model, with air 

temperature of 35 oC at the maximum and 23 oC at the minimum. Meanwhile, the time 

selection of meteorological forcing avoids the influence from random weather events like 

the presence of cloud, precipitation, and cold/heat waves. During the simulation period, 

ALSUM v4.1 predicts the evolution of upwelling radiation, surface temperatures and heat 

fluxes, and biogenic CO2 at an interval of 5 minutes, and aggerates these variables into to 

30-minutes average as the outputs.  

The scenarios of urban system design in ASLUM v4.1 are represented by several 

groups of parameters, including the street morphology, thermodynamic properties of 

urban fabric, urban greenery properties, overall land use types, and landscaping 

management schemes. Previous studies have shown that certain parameters of the 

ASLUM v4.1 possess higher sensitivity especially in prediction of extreme events and 

design optimization. These parameters are hereafter referred to as the critical design 

parameters (P. Li & Z.-H. Wang 2021b; J. Yang & Z.-H. Wang 2014; J. Yang et al. 

2016). In the light of previous studies, here we select 24 urban system critical design 

parameters in four groups that are most impactful to the urban thermal environment and 

carbon exchange dynamics (Table 4.1). In subsequent simulations, values of each critical 

parameter are stochastically sampled from its prescribed probability density functions 
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(PDFs). Those PDFs are primarily derived from field or laboratory measurements, 

reported values from literature, or best estimates within the physical ranges (P. Li & Z.-

H. Wang 2021b). In each simulation, we monitor the mean air temperature at the 

pedestrian level inside of street canyon (Tcan), and the mean net ecosystem exchange 

(NEE) over the street canyon. Finally, all simulations are randomly split into two sets 

(training and test) for the subsequent ML regression and optimization. 

 

 

Figure 4.1 Meteorological forcing used in the simulation (a) Downwelling shortwave 

(S↓) and longwave (L↓) radiations; (b) air temperature (Ta) and windspeed (U); (c) 

background CO2 concentration ([CO2]) and air density (ra). Mean Tcan and NEE are 

calculated during the shaded period (24 hours). Results from non-shaded period are used 

for quality control in ASLUM and are not used in ML training and test. 
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Table 4.1 Variables Used as Training Features for Gaussian Process Regression Models.  

    Name Unit Mean Std.  Min. Max.       Name Unit Mean Std.  Min. Max. 

Canyon geometry   Material properties 
  Normalized road width     Albedo - Wall 
    W - 0.60 0.19 0.05 0.80       aW1 - 0.17 0.04 0.06 0.28 
  Normalized building height     Albedo - Paved 
    H - 0.78 0.40 0.10 1.50       aG1 - 0.13 0.03 0.05 0.20 
Soil properties     Albedo - Lawn 
  Bare soil fraction       aG2 - 0.20 0.04 0.08 0.33 
    fs - 0.21 0.11 0.05 0.50     Albedo - Bare soil 
  Saturation soil moisture       aG3 - 0.20 0.04 0.08 0.33 
    Ws - 0.35 0.07 0.15 0.55     Thermal conductivity - Wall 

  Residual soil moisture       kW1 
Wm-1K-

1 0.12 0.03 0.05 0.20 
    Wr - 0.06 0.01 0.02 0.10     Thermal conductivity - Paved 

  Initial soil moisture       kG1 
Wm-1K-

1 1.49 0.33 0.56 2.44 
    SWCi - 0.20 0.06 0.08 0.30     Thermal conductivity - Lawn 

Plant properties       kG2 
Wm-1K-

1 0.65 0.14 0.24 1.06 
  Lawn fraction     Thermal conductivity - Bare soil 

    fv - 0.33 0.11 0.05 0.50       kG3 
Wm-1K-

1 0.23 0.05 0.08 0.36 
  Tree - Leaf area index     Heat capacity - Wall 

    LAIT m2/m2 4.15 0.87 1.50 6.50       cW1 
MJm-3 

K-1 2.31 0.51 0.86 3.74 
  Grass - Leaf area index     Heat capacity - Paved 

    LAIG m2/m2 2.68 0.79 1.00 5.00       cG1 
MJm-3 

K-1 0.90 0.20 0.34 1.46 
  Tree crown size     Heat capacity - Lawn 

    rT - 0.07 0.03 0.02 0.12       cG2 
MJm-3 

K-1 1.70 0.37 0.64 2.76 
  Tree height     Heat capacity - Bare soil 

    hT - 0.70 0.21 0.25 1.00       cG3 
MJm-3 

K-1 1.02 0.21 0.38 1.63 
  Tree location                   
    cT - 0.48 0.27 0.00 1.00                   
                                  

  



    70 

4.1.3  Gaussian Process Regression 

GPR is a Bayesian kernel regression method that uses a Gaussian Process (GP) to 

describe the distribution of the quantity of interest and the Bayes’ theorem to infer the 

posterior distribution (C.E. Rasmussen & C.K.I. Williams 2006). A GP refers to a set of 

random variables,  (often indexed by inputs), that jointly follow a 

multivariate Gaussian distribution. GPR starts by specifying the prior (i.e., before seeing 

any data) mean and covariance of the joint Gaussian distribution using the mean function 

 and a covariance function , 

respectively. Here, x is a 𝑑-dimensional vector and may include space coordinates, time, 

or controlling variables of Y. The mean and covariance functions should reflect the prior 

knowledge of the general trend and level of smoothness of the target function, 

respectively. The covariance implicitly maps the inputs to features ϕ(x). By doing so, 

GPR can approximate complex, nonlinear relationships between the target (Y = Tcan or 

NEE) and inputs (sampled from the ASLUM v4.1 parameter space).  

Once training data are introduced, GPR uses the Bayes’ Theorem to infer the 

posterior distribution of the target. Let  denote training 

data, the posterior distribution of the target variable at an unseen data point,  

is given by:  

 . (4.3) 

The posterior mean and variance are given below: 

 , (4.4) 
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 . (4.5) 

In the above equations, , σε2 is noise variance, σ02 is signal variance, a 

hyperparameter of the covariance function, Σ denotes the prior covariance matrix of the 

training data with its ij-th entry as , and Σ* is a vector denoting the 

covariance between training and test data, i.e., .  

In this study, we use GPR to construct surrogate models for NEE and Tcan, 

respectively. Both surrogate models use the critical design parameters of the ASLUM as 

input variables after scaling to [0, 1]. We note that this is a high dimensional problem 

with 24 input variables (p=24), which would pose challenges for some commonly used 

surrogate modeling techniques such as polynomial chaos expansion (W. He et al. 2020). 

For both surrogate models, we specify a linear prior mean and the commonly used 

squared exponential covariance function. The models are trained using simulation results 

of ASLUM v4.1 described in Section 4.1.2. The two hyperparameters of the covariance 

function (signal variance and range) are tuned by maximizing log likelihood; the other 

hyperparameters (noise variance and coefficients of the linear mean function) are 

estimated once the best signal variance and range are determined. The model trained 

using the selected hyperparameters is then used for optimization (Section 4.1.4). In this 

study, we use the posterior mean to emulate temporally aggregated NEE and 

Tcan	simulated by ALSUM. However, whenever needed it is possible to use the posterior 

variance with stochastic/robust optimization techniques (e.g., U.M. Diwekar 2003; A.A. 

Mishra et al. 2020).  

* 2 * 2 1 *
0( ) ( )T
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Besides GPR, we also use the radial basis function (RBF) interpolation technique 

(D.B. McDonald et al. 2007) to construct the surrogates. RBF interpolation constructs an 

exact emulator; in other words, the fitted function is exactly equal to the target variable at 

training data points. Because of this appealing feature and satisfactory performance of 

RBF in previous studies (T. Akhtar & C.A. Shoemaker 2016), we include RFB 

interpolation in this study to construct surrogates for Tcan and NEE, respectively. The 

Gaussian basis is used, and its decay rate hyperparameter was selected by maximizing 

coefficient of determination on a validation set separate from training data.  

 

4.1.4  Metrics of Environmental Quality and Multi-objective Optimization 

As mentioned, we use daily mean in-canyon temperature (Tcan) and biogenic NEE 

to represent thermal and carbon environment in this study. During summertime, both 

lower Tcan and NEE are preferred for better heat mitigation and CO2 reduction purposes. 

It is noteworthy that urban mitigation strategies will affect the behavior of CO2 exchange 

over vegetated surfaces, primarily by affecting the atmospheric temperature and radiation 

redistribution. Specifically, the shading effect of tall urban trees (R. Upreti et al. 2017; 

Z.-H. Wang 2014) reduces photosynthetic active radiation on understory lawns, lowering 

CO2 uptake rate. Meanwhile, the cooling effect caused by shading and evapotranspiration 

from green spaces reduces enzyme activities in photosynthesis and respiration processes, 

weakening CO2 uptake and release at the same time. The complex interactions between 

heat and biogenic carbon dynamics make it difficult to disentangle the effect of 

mitigating heat and CO2 emissions separately.  
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To account for the compound mitigation effect to heat and carbon emissions, we 

perform multi-objective optimization to minimize Tcan and NEE simultaneously. The 

decision variables (24 ASLUM v4.1 parameters) are constrained by their physically 

feasible ranges (Table 4.1). The optimization problem is solved by an elitist genetic 

algorithm (K. Deb 2001) in MatLab®. A population size of 500 is used in each 

generation with the maximum of 500 generations when searching for the Pareto 

solutions. Mathematically, Pareto solutions are defined as a compromise to “no other 

solution that can improve at least one of the objectives without degradation any other 

objective” (P. Ngatchou et al. 2005). The optimization process stops when the movement 

of the points on the Pareto front between the final two iterations is small.  

To facilitate the assessment of optimization results and to enable direct 

comparison among designed scenarios, we introduce a compound heat-carbon index 

(CHCI): 

 , (4.6) 

where 0 < a < 1 is the weight of multiple environmental indicators (for simplicity, we use 

a = 0.5 for subsequent analysis), and the overhead bar denotes the normalization by 

 , (4.7) 

with X being Tcan or NEE. Qualitatively, lower CHCI represents lower temperature and 

stronger carbon sink, thus indicates better overall environmental quality.  

 

 

( )canCHCI 1 NEETa a= + -

min

max min

X XX
X X

-
=

-



    74 

4.2 Results and Discussion 

4.2.1  Machine Learning Surrogates 

In this study, we train two GPR models to emulate Tcan and NEE, respectively, 

using 5% of the simulated dataset (Ntrain = 0.05N = 2769), as described in Section 4.1.2. 

We then evaluate the emulation accuracy of the two surrogates on the test data (Ntest = 

0.95N = 52619). Figure 4.2a&b shows the comparison between Tcan and NEE simulated 

by the physical model ASLUM v4.1 and ML surrogates on the test data. For each 

scenario, CHCI is calculated by Eq.(4.6) using normalized Tcan and NEE from ASLUM 

and GPR models respectively (Figure 4.2c). The result shows GPR models reproduce the 

environmental metrics with satisfactory accuracy, with coefficient of determination (R2) 

above 0.96 for Tcan, NEE, and CHCI. Figure 4.2d shows the change of R2 and normalized 

root mean square errors (RMSEn) of the comparisons when varying the training sample 

size from 0.5% to 10% with 0.5% increment (0.005N = 277). R2 and RMSEn shown in 

Figure 5.3d are the ensemble means from 20 runs with different random seeds to reduce 

the influence of data heterogeneity and randomness in training sample selection. The 

variations among 20 runs are insignificant with the coefficient of variance (standard 

deviation / mean) smaller than 0.002 for R2 and 0.02 for RMSEn. Generally, the model 

performance improves with the increase of training sample size, but the change becomes 

marginal when sample size is greater than 3% (0.03N = 1662). The GPR surrogate 

models retain reasonable accuracy (R2 > 0.90 for Tcan and NEE on test data) when trained 

by only 0.5% (277) of the dataset while tested on the rest. Small training sample size can 

potentially cause over-fitting, especially for models fitting on a large number of input 

features due to the “curse of dimensionality” (M.A. Bessa et al. 2017). In this study, the 
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minimum training sample size required to avoid over-fitting issue is around 0.3% 

(0.003N = 166), but the model performance and stability degrade significantly on test 

samples when training sample size is smaller than 0.5% of the dataset. Users with a 

limited amount of data points from observations should be cautious about the over-fitting 

issue and employ strategies such as reducing the input dimension and model averaging 

(G.C. Cawley & N.L.C. Talbot 2007; 2010). To the extent allowed by computational 

budget, we suggest increasing training sample size to ensure better and more robust 

model performance. 

The emulation accuracy of RBF interpolant is substantially lower than GPR (R2 = 

0.77 and 0.88 for Tcan and NEE, respectively, evaluated on test data). Therefore, we did 

not use the RBF surrogates for optimization. A possible cause of the inferior performance 

is that RBF may be subject to numerical stability and robustness issues with large 

datasets (V. Skala 2017). However, RBF may be an attractive candidate for surrogate 

modeling when only a small amount of training data is available (T. Akhtar & C.A. 

Shoemaker 2016; S. Razavi et al. 2012).  

In addition to the satisfactory accuracy, our performance benchmark shows that 

the GPR surrogate models only take 3.6, 17.6, and 35.0 seconds to simulate a group of 

10, 50, and 100 different scenarios respectively, which is eight times faster on average 

than ASLUM v4.1 (tested on Intel Xeon E-2186G 3.8GHz with 12 logic cores and 40GB 

RAM). The high efficiency reduces the time cost of calculation, facilitating decision 

making processes and enabling fast comparison between a large amount of scenarios, 

especially when exhaustive search for best case is desired. The improvement in 

calculation efficiency also promotes fast assessment of variable sensitivity for high-
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dimensional physical-based ASLUM v4.1, in comparison with the previous sensitivity 

analysis (P. Li & Z.-H. Wang 2021b). 

 
Figure 4.2 Performance of ML training and tests using the GPR surrogate for (a) Tcan, (b) 

NEE, (c) CHCI when trained using 5% of the simulated dataset, and (d) the ensemble 

mean of R2 and normalized RMSE (RMSEn) of Tcan and NEE when trained using 

different training sample sizes. For each sample size, model performance is evaluated as 

the average of 20 replicate runs. 
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4.2.2  Multi-objective Optimization  

Once the GPR emulations of ASLUM v4.1 is trained and tested, we use a multi-

objective genetic algorithm (GA) optimization process to find the desirable urban system 

design within the physically feasible range of the critical design parameters in Table 4.1. 

The multi-objective GA finds urban configurations that minimize Tcan and NEE 

simultaneously, leading to Pareto solutions. The Pareto solutions characterize the trade-

off among multiple objectives in a constrained optimization. In this study, a tradeoff 

exists between the two urban environmental measures, viz., Tcan and NEE, because 

photosynthesis shrinks with temperature decrease, though the underlying mechanisms are 

much more complex. Figure 4.3 shows the comparison of results of ASLUM v4.1 

simulations and the Pareto front formed by multiple Pareto solutions (n = 134) identified 

by GA with similar CHCI but different combinations of Tcan and NEE. The Pareto 

solutions are located lower left corner, within the range of CHCI from -0.05 to 0.10. 

Overall, the CHCI values of the Pareto solutions are significantly lower than the training 

and test dataset, indicating the potential further improvement of environmental quality via 

optimized urban design.  

Furthermore, the Pareto front roughly consists of two segments: the upper left 

wing running parallel with the equi-CHCI contours and the lower right tail with 

increasing CHCI. The segment of Pareto front with (roughly) constant CHCI can be 

physically interpretated as that the optimal urban designs for mitigating carbon emission 

can be obtained with the trade-off of compromising heat mitigation. Yet, the total 

efficacy of the combined benefit of carbon-heat mitigation is achieved with constant 

CHCI. The lower right tail, in contrast, signals that if urban system design put more 
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weight on the cooling effect, as a consequence, the objective of carbon emissions will be 

strongly degraded. This is manifested in that the right tail extends in the direction where 

CHCI increases, meaning the combined benefit of carbon-heat mitigation will be severely 

hampered: only marginal cooling effect can be obtained at the expense of significant 

increases in carbon emission.  

 

Figure 4.3 Scatter plots of the original dataset and the Pareto solutions found via GA 

multi-objective optimization. The red dashed line indicates the Pareto front formed by 

Pareto solutions. The dotted lines in the background indicate the contours of CHCI. 

 

Note that here we only consider two essential measures of urban environmental 

quality. If more environmental metrics are to be included (e.g., health risks of urban 
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residents due to degraded thermal/air quality), the multi-objective optimization will likely 

produce smaller (due to more optimization constraints) solution domain with lowest 

CHCI as the candidate for urban system design. But the trade-offs among diverse 

environmental indicators will remain the guiding principles for researchers and policy 

makers to design and assess more livable cities using multi-objective optimization.  

 

4.2.3  Implications to Urban System Design 

For optimal urban system design, one would seek for the urban characteristics that 

lead to Pareto solutions. The deviations of these parameters from their status quo values 

indicate the potential urban system design for planners to ammolite the thermal and 

carbon environments in cities. Figure 4.4a shows the histograms of initial and optimized 

(Pareto solutions) distributions of the 24 critical design parameters. Among the Pareto 

solutions (n = 134), we found that the key parameters shared similar values skewed to the 

edge of prescribed boundaries from Table 4.1. Overall, wide street (W), low-rise building 

(H), high vegetation coverage (fv), dense lawns (LAIG), and small bare soil fraction (fs) 

are most likely to furnish Pareto solutions for thermal and carbon mitigations. To achieve 

desirable environmental benefits, these urban features need to fall within a small range 

(Figure 4.4b). Good environmental performance is also associated with high trees (hT) 

with large crown (rT) and dense canopy (LAIT). Environmental responses (i.e., Tcan and 

NEE) are not sensitive to parameters related to trees than those related to urban street 

morphology and land use, yet tree parameters play important roles affecting both heat and 

CO2 exchanges in urban environment (P. Li & Z.-H. Wang 2021a). As a result of heat 

mitigation, urban greenery saves building energy consumption during summertime, 
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indirectly reducing CO2 emissions induced by fossil fuel power generation (H. Akbari 

2002). This study only considers biogenic CO2 exchange. The importance of greenery-

related urban features (i.e., fv, fs, LAIG, LAIT, hT, rT, etc.) might be more substantial if 

point source emissions from fossil fuel power plants are included.  

Unlike the parameters of street canyon geometry and plant properties, no 

significant skewness of material properties of pavement and building materials are 

observed, except for the albedo of vegetated ground (aG3) and heat capacity (cW1) and 

thermal conductivity (kW1) of building walls. Albedo of vegetated ground (aG3) directly 

affects the energy flux and the skin temperature of ground vegetation (i.e., urban lawns) 

and controls the rates of evapotranspiration, photosynthesis, and respiration. Active 

evapotranspiration dissipates surface energy via latent heat (F. Aram et al. 2019; J. Yang 

& Z.-H. Wang 2017), triggering changes in the ambient temperature and further altering 

biogenic CO2 exchanges through physiological processes. In addition, thermal properties 

of building walls regulate the energy exchange rate between building and canyon 

atmosphere, more effectively than roofs, especially if the building interior thermal 

environment is regulated by the operation of heating, ventilation, and air conditioning 

(HVAC) systems or effective (green) building energy designs (C. Wang et al. 2021a). 
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Figure 4.4 Distributions of the urban features used in GPR surrogate and GA 

optimization. (a) Histograms (Normalized to Probability) of 24 urban features in original 

dataset (blue) and pareto solutions (orange), and (b) Boxplot of the parameters that lead 

to Pareto solutions. Values are normalized by Eq. (4.7).  Max. Mean and Min. represent 

the numerical range of urban features in Table 4.1. 
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It is noteworthy that initial soil moisture (SWCi) shows limited sensitivity with 

the optimal mean nearly identical to its initial value (Figure 4.4b). In urban environment, 

scheduled irrigation controls soil moisture, therefore the optimal irrigation amount exists 

corresponding to the optimal soil moisture. The finding is consistence with P. Li and Z.-

H. Wang (2021a), where it is found that excessive irrigation may not help to mitigate 

carbon emission. This is due to the fact that the extra moisture can promote soil 

respiration (hence increase carbon emission), whereas the marginal cooling due to extra 

irrigation is not significant. This effect has been corroborated by E.R. Vivoni et al. 

(2020), based on a year-long in-situ measurement at a desert urban park, and was referred 

to as an “oasis effect” of urban irrigation that enhances evapotranspiration and CO2 

exchanges. It is also noteworthy that the tail observed in the Pareto front in Figure 4.3 

with degraded co-benefit of heat and carbon mitigation can be largely attributed to this 

effect as well.   

Overall, the good agreement between the results of the GA multi-objective 

optimization and previous physically-based simulations (P. Li & Z.-H. Wang 2021a) 

underlines the reliability and fidelity of the ML surrogates in the current study. Results 

show that specific urban system design strategies for effective mitigation of heat and 

carbon emissions include more urban green spaces, choices of urban vegetation types, 

meticulous management of irrigation schedule, and adoption of smart building and 

pavement materials. The ML-based surrogates and optimization algorithms can be used 

in the place of physical models with significantly reduced complexity and computational 

cost, and furnish excellent operative models for fast decision making. Nevertheless, as 

revealed by this study, it is of critical importance to re-iterate here that multi-objective 
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optimizations are intrinsically constrained by the competing interest among diverse 

objectives. Furthermore, the GA optimization method in this study helps to inform policy 

makers and practitioners at the onset of planning stage, and to gauge their preference of 

specific or compound design objectives, e.g., improvement of thermal comfort, air 

quality, building energy efficiency, or reduction of health risks, etc. 

 

4.3 Future Development 

This study aims to provide a practical toolkit to design and evaluate the impact of 

urban characteristics on improving the livability of urban environment, based on ML 

surrogates trained on a simulated dataset. We adopt GPR in our applications to showcase 

the performance of ML emulation in terms of model accuracy and stability. However, 

many other popular ML or deep learning algorithms, such as Random Forest, support 

vector machine, or deep neural networks, can be adopted for urban system design 

depending on specific applications or the user preference. For example, support vector 

machine with RBF kernel is expected to outperform GPR when training data is scarce (T. 

Akhtar & C.A. Shoemaker 2016; S. Razavi et al. 2012). 

The design optimization in this study is primarily based on ML models without 

the aid from physically-based UCM. Theoretically, ML emulations are expected to be 

more accurate within the range of training data than when it is used for extrapolation. 

This caveat will be relaxed by adaptive learning with dataset continuously retrieved from 

observation or numerical modeling to retrain the ML models during optimization. 

Adaptive learning could further improve the model accuracy and optimization 
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performance but might sacrifice model simplicity and practicality for non-machine 

learners (i.e., urban planner/designers and decision makers).  

 In this study, we focus on heat and carbon emissions as the indicator of the urban 

environmental quality. Through they are the major concerns amid the global climate 

change, many other factors affect the comfort and health of urban dwellers that should be 

considered in sustainable urban development. For example, relative humidity and thermal 

radiation (i.e., ultraviolet, UV) play important roles in human thermal comfort and their 

influence varies among climate regions (A.M. Abdel-Ghany et al. 2013; M.M. Baruti et 

al. 2019). Thermal discomfort caused by undesired relative humidity and excessive UV 

exposure can be mitigated by proper urban designs of urban geometry, building and 

pavement materials, green and blue spaces (D. Lai et al. 2019). Moreover, air pollutions 

such as high levels of ozone and particulate matters (PM) concentration can be alleviated 

by street trees, though the mitigation effect is highly dependent on tree location and 

species (Y. Barwise & P. Kumar 2020) and requires dedicated tree models to quantify (E. 

Riondato et al. 2020). As shown by the Pareto solutions in Figure 5.4, exclusive urban 

planning objectives, such as UHI mitigation by reflective pavements, often lead to severe 

compromise of other environmental qualities (e.g., carbon emissions). Such one-

sidedness in urban planning strategies has practically gained upper hand in policies of 

some local municipalities, which leads to many unintended physical consequences in the 

real world (J. Yang et al. 2015). It is important that urban practitioners bear in mind the 

potential trade-offs of multi-objective designs, and more sustainable urban planning 

strategies should account for the interactions of total urban system dynamics, instead of 

trying to “optimize” for singular environmental indicators (in particular, heat mitigation). 
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Furthermore, the high computational efficiency of ML emulation can enhance the 

performance and predictive capacity of regional urban hydroclimate modeling by serving 

as surrogates of multi-scale numerical platforms such as the widely-used Weather 

Research and Forecast (WRF) model (W.C. Skamarock et al. 2021). Currently, WRF 

resolves urban land surface using WRF-UCM coupling framework, which allows simple 

configuration of urban characteristics with limited urban types. Comparing to the 

simplified UCM in WRF model, ML models learned from full version of UCM will 

produce more detailed and accurate results with much improved computational economy. 

As cities are more vulnerable in climate change than other nature areas, the improvement 

in computation speed and accuracy are not trivial in terms of the sustainable development 

of the human society.  

 

4.4 Concluding Remarks 

This study presents a method emulating a complex urban land surface model 

using machine learning, aiding the direct interpretation of modeling results for urban 

planners and policymakers who might have less knowledge on urban land surface models 

and computing coding. The machine learning surrogate models inherit the advantages the 

physical-based ASLUM v4.1 model in terms of core dynamics, accuracy, and high 

resolution, with enhanced computational efficiency and user-friendliness to practitioners. 

Based on scenario comparison and optimization under constraints, specific mitigation 

strategies can be derived for both existing and developing urban areas. The versatility of 

the proposed method and its further improvement (e.g., web-based and graphic user 

interface development) will help to foster decision making processes and enable policy 
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makers and urban planners to gain deeper and more holistic insight into sustainable 

solutions that promotes the overall livability of cities.  

The transition from complex process-based modeling to ML-based protocols, 

albeit at its infancy, is transformative and has the potential to furnish a new paradigm in 

urban system modeling using advanced computer techniques, and further our 

fundamental understanding of the complex urban ecosystem and the interactions among 

its diverse components. Future work is planned to take the full advantage of data-driven 

techniques to form comprehensive and systematic views of compound urban 

environmental assessment including UHI, building energy efficiency, ecosystem services, 

air quality, anthropogenic CO2 emission, etc. 
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CHAPTER 5 

CONCLUSIONS AND PERSPECTIVES 

5.1 Conclusions and Implications 

The dissertation presents the development of a new algorithm to quantify the CO2 

exchange in urban area as well as the effort of model implementation from urban design 

and management perspectives. Based on the existing urban land surface modeling 

platform, the new algorithm proposed in this dissertation assesses the CO2 exchange from 

biogenic sectors by coupling photosynthesis and respiration models, and from 

anthropogenic sectors by applying the spatially gridded data derived from inventory 

information, remote sensing imagery, and statistically learning techniques. The offline 

simulation (i.e. without the coupling to regional climate models) is tested against in-situ 

measurement over a typical single family residential neighborhood and achieves 

satisfactory accuracy. The total CO2 flux measured from the eddy covariance system is 

decomposed into the release from traffic, human respiration, soil respiration, and plant 

respiration and photosynthesis. The traffic emission dominates the carbon efflux of the 

neighborhood, followed by soil respiration over the degraded turf in the front and back 

yards. It is noteworthy that though the vegetation fraction of the study area is very limit, 

they can offset 30% of the total emission from anthropogenic sectors annually. Evidence 

shows that residential lots have potential to achieve carbon neutrality via proper 

landscaping management, thus can further contribute to the city reduction goal against 

the global climate change.  

To assess the impact of urban greening practices on heat and carbon dynamics, we 

set up a series of numerical experiments to mimic the change of land use and irrigation 
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scheme in a residential neighborhood. Both increasing grassland fraction and tree 

coverage will lead to environmental co-benefits regarding the mitigation of heat and CO2 

emissions. Comparing to the linear relation between cooling and tree coverage, the 

change in NEE is non-linear mainly due to the combined mechanisms in which additional 

tree coverage provides extra biomass for photosynthesis, suppresses soil respiration from 

cooling, but intercepts PAR for low level grassland. We also find insufficient irrigation 

significantly inhibits the plant photosynthesis rate, whereas benefit from excessive 

irrigation is marginal. When the land use is dominated by bare soil (often as a 

consequence of degraded turf), increasing irrigation will sometimes promote soil 

respiration and offset the CO2 uptake from plants. The optimum irrigation amount is 

highly landscape-dependent and needs to be estimated carefully to improve the overall 

environmental quality.  

Furthermore, we emulate the physical based urban canopy model by adopting 

Gaussian Process regression, a widely use machine learning algorithm, to improve the 

computational efficiency and practicality of the modeling framework. In addition, the 

machine learning surrogate models are used for multi-objective optimization to 

investigate the optimum configuration of an urban neighborhood to achieve the best 

cooling and carbon reduction purpose. Within a wide range of urban settings, we find the 

overall environmental quality will be mostly affected by street canyon aspect ratio and 

land use, followed by the design and management of green spaces such as vegetation 

density, tree location, tree height, irrigation, etc. Building and pavement materials play a 

minor role comparing to the parameters related to urban morphology and urban greening. 

The machine learning surrogate models and the subsequent optimization algorithm 
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largely improve the versatility and practicality of urban land surface simulation, thus 

enable the urban practitioners who might not be familiar with modeling and computer 

coding to operate the simulation and interpret the results.  

In summary, the key findings of this dissertation highlight the interplay between 

thermal and carbon environment in cities and imply the potential of co-benefit of heat and 

carbon mitigation by utilizing the biogenic functions of urban vegetation and urban 

greening. The numerical experiments also unveil the possible trade-offs between thermal 

and carbon environment from certain urban greening actions. The entangled dynamics 

and considerations will be even more complex from environmental, financial, and 

societal perspectives, therefore are reserved for future exploration.  

 

5.2 Future Work 

The modeling framework developed in this dissertation (Chapter 2) presents a 

unique land surface model for urban ecosystem service. The current effort implements 

the model at a neighborhood scale over real-world and pre-designed scenarios (Chapter 

3). Simulations over a broader spatial scale (i.e. a city, city clusters, or regional scale) are 

of high research interests, especially for assessing cities’ impact on global climate. The 

versatility of the coupled UCM-CO2 framework allows users to apply the model in a 

spatially distributed mode, with the information of urban morphology derived from 

inventory or remote sensing data. The regional surface energy and CO2 flux can be 

aggregated from each unit cell within the modeling domain. For the regional scale 

simulation, one can adopt WRF-UCM framework to provide meteorological forcing for 

the subsequent photosynthesis and soil respiration models. Previously, R. Ahmadov et al. 
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(2007) coupled WRF with Vegetation Photosynthesis and Respiration Model (VPRM, P. 

Mahadevan et al. 2008) as the first attempt to quantify the weather-informed land surface 

dynamics on the spatiotemporal variability of atmospheric CO2 fluxes and 

concentrations. It is noteworthy that WRF-VPRM is designed to quantify CO2 exchange 

from natural land. Its main objective is to estimate CO2 concentration over a large scale 

by resolving the turbulent transport in the atmosphere. In contrast, WRF-UCM focuses on 

the accurate representation of the urban environment, thus users can estimate vegetation 

behaviors and test the influence of urban greening strategies in a broader spatial context. 

As an example, Figure 5.1 shows the irrigation-induced change of NEE during the 

summer months (May to August) of 2013 to 2015 in urban areas over the contiguous 

United States (CONUS). The preliminary result illustrates the apparent spatial variation, 

with the manifest decrease of NEE in the Great Lakes region and increase of NEE in west 

coast cities, due to the same irrigation strategy. When relating the irrigation-induced 

cooling to the change of NEE, we observe either environmental co-benefits (Great Lakes 

region) or trade-offs (west coast) caused by urban irrigation. The regional scale 

simulation implies the carbon reduction strategies need to be city or climate dependent, 

thus a holistic understating and accurate quantification to the heat and carbon dynamics 

in urban area is necessary in sustainable urban planning and landscaping management.  
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Figure 5.1 Irrigation-induced Ecosystem Service Change over CONUS. 

 

The implementation of the machine learning methods to urban land surface 

modeling greatly improves the computational efficiency and the practicality of UCM-

CO2. Nevertheless, it still requires the users to have basic coding skills to operate. To 

better inform urban practitioners, such as city officials, policymakers, urban planners, and 

landscape designers, a user-friendly decision support system is necessary. For example, 

coding UCM-CO2 using a universal and open-source programming language like Python 

and R will allow users from different platforms sharing the same workflow from data 

preprocessing to result interpretation and visualization (T. Sun & C.S.B. Grimmond 

2019).  

In this dissertation, we select in-canyon temperature and net ecosystem exchange 

as the two major measures to evaluate the environmental quality in cities. For the carbon 
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reduction purpose, it is meaningful to consider CO2 emission associated with energy 

consumption in buildings. Aside from the linkages between thermal and carbon 

environment within the biogenic sectors, cooling from urban greening could lower 

building energy cost from air conditioning and possibly reduce the total carbon footprint 

of a city. Similarly, the optimal urban design will require a holistic view from the 

consideration of the restriction of water resources, financial cost of irrigation and 

landscaping, local power mix, etc., although not all factors will be affected by 

meteorological conditions. In addition to the “compound carbon and heat index” 

introduced in Chapter 4, a more comprehensive index is desired in the future 

development of UCM-CO2, especially in the offline simulation where modeling of fine 

details is possible. The future work of including more and practical urban environmental 

measures in physical modeling as well as ML-driven multi-objective optimization 

schemes, challenging as it will be, will enable us to extend the knowledge gained in this 

dissertation work to broader context such as to meet the goal of Paris Climate Agreement 

and/or th global carbon neutrality.  
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