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ABSTRACT

Drinking water quality violations are widespread in the United States and else-

where in the world. More than half of Americans are not confident in the safety of

their tap water, especially after the 2014 Flint, Michigan water crisis. Other than

accidental contamination events, stagnation is a major cause of water quality degra-

dation. Thus, there is a pressing need to build a real-time control system that can

make control decisions quickly and proactively so that the quality of water can be

maintained at all times. However, towards this end, modeling the dynamics of wa-

ter distribution systems are very challenging due to the complex fluid dynamics and

chemical reactions in the system. This challenge needs to be addressed before mov-

ing on to modeling the optimal control problem. The research in this dissertation

leverages statistical machine learning approaches in approximating the complex wa-

ter system dynamics and then develops different optimization models for proactive

and real-time water quality control. This research focuses on two effective ways to

maintain water quality, flushing of taps and injection of chlorine or other disinfec-

tants; both of these actions decrease the equivalent “water age”, a useful proxy for

water quality related to bacteria growth. This research first develops linear predictive

models for water quality and subsequently linear programming optimization models

for proactive water age control via flushing. The second part of the research considers

both flushing and disinfectant injections in the control problem and develops mixed

integer quadratically constrained optimization models for controlling water age. Dif-

ferent control strategies for disinfectant injections are also evaluated: binary on-off

injections and continuous injections. In the third part of the research, water demand

is assumed to be uncertain and stochastic. The developed approach to control the sys-

tem relates to learning the optimal real-time flushing decisions by combing reinforced

temporal-difference learning approaches with linear value function approximation for
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solving approximately the underlying Markov decision processes. Computational re-

sults on widely used simulation models demonstrates the developed control systems

were indeed effective for water quality control with known demands as well as when

demands are uncertain and stochastic.
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Chapter 1

INTRODUCTION

1.1 Motivation

“Only about half of Americans are very confident in the safety of their tap water,

and a majority think lead contamination of the tap water in Flint, Michigan, indi-

cates a more widespread problem, rather than an isolated problem”(Swanson, 2016).

Indeed, Allaire et al. (2018) pointed out that drinking water quality violations are

widespread in the United States, and 21 million people used water from water distri-

bution systems that violated health-based quality standards in 2015. Benedict et al.

(2017) reported that 42 drinking water associated outbreaks occurred and caused over

1000 cases of illness and 13 deaths from 2013 to 2014. Rhoads et al. (2016) found

out increased water age and degraded water quality occur very often even in green

buildings.

Among many other factors causing water quality to violate the standards, stag-

nation plays a key contributing role. During long periods of stagnation, lead, copper

or other metals can leach from pipes, microbial growth will also increase (Proctor

et al., 2020; Ley et al., 2020; Ling et al., 2018; Wang et al., 2014). Lautenschlager

et al. (2010) found out that microbial growth can increase dramatically after overnight

stagnation in household buildings, while Bédard et al. (2018) investigated the impact

of stagnation on water quality in large buildings. They both observed that bacteria

level could increase even after a short period of stagnation (1 hour). The microbial

growth can be very concerning because one of the bacteria, Legionella, can cause

Legionnaires’ disease. During Covid-19 shutdown, many people had to work from

1



home, thus resulting numerous low-occupancy or even empty buildings. Researchers’

attentions have since been drawn to water quality in those buildings. And Cassell

et al. (2021) showed that the reported cases of Legionnaires’ disease in US have in-

creased more than five times from 2000 to 2018, according to data from the Center

for Disease Control and Prevention (CDC). CDC also created a toolkit in 2017 for

developing a water management program to reduce Legionella Growth and spread in

buildings (CDC, 2017). However, it involves complicated decision makings through-

out the monitoring and control process, for example, what quality measurements to

be collected, where and how often they are to be collected, what kind of control ac-

tions to be implemented, where and when to trigger the control actions, what is the

magnitude of the control, etc.

CDC also noted in their 2017 toolkit that flushing and adding disinfectants (e.g.,

chlorine) can be effective in improving water quality. Lautenschlager et al. (2010) and

Bédard et al. (2018) both showed that flushing of taps is an effective way to improve

the water quality after stagnation. Proctor et al. (2020) also developed guidelines that

suggest flushing and adding disinfectants for building water management. Hozalski

et al. (2020) showed that flushing can rapidly restore the chlorine residual (which

prohibits the bacteria growth) by analyzing water samples collected before, during

and after flushing showers in 5 unoccupied university buildings. Although flushing of

taps has been shown effective in improving water quality after stagnation, it also ends

up with a significant amount of water being wasted, while 2 billion people globally

still lack access to safe drinking water, according to a paper recently published in

Nature by Everard (2019). The U.S. Environmental Protection Agency (EPA), U.S.

Green Building Council (USGBC), and others have recognized the benefits of water

conservation. For example, the EPA created “WaterSense at Work”, which is a

detailed guide to water efficiency in commercial and institutional (CI) buildings (US

2



Environmental Protection Agency, 2012). One of the most visible signs of water

efficiency is the certification by Leadership in Energy and Environmental Design

(LEED) or “green” CI buildings, which are designed to use significantly less energy

and water than conventional CI buildings (e.g., water use reduced by 60%). The

dilemma is how to achieve a good balance between maintaining water quality and

wasting less water.

This dissertation aims to address key decision making and water quality control

problems by leveraging statistical machine learning in the optimal control of water

quality for different water distribution systems. Specifically it will focus on how to

derive the optimal control policy for water quality under two different scenarios, under

known deterministic water demand and under uncertain stochastic water demand. It

will start with different statistical machine learning approaches in approximating the

system dynamics; because the water distribution system involves complicated fluid

dynamics and chemical reactions, it is very difficult to derive an accurate mathemati-

cal model to describe the system dynamics. Then the research focuses on the optimal

control of water age (a water quality indicator) via flushing using the approximate

model for system dynamics. The problem is then extended by including both flush-

ing and chlorine injection as controls. In the scenario of uncertain stochastic water

demand, the dissertation discusses how to develop the optimal control policy in an

online fashion using the reinforcement learning framework.

The dissertation chapters are arranged as follows. Chapter 2 focuses on approxi-

mating the system dynamics via different statistical machine learning approaches, and

the optimal control of water age through flushing. A building water distribution net-

work and a city water distribution network are used as case studies. Chapter 3 then

extends the problem by including both flushing and chlorine as controls. Different

chlorine injection strategies (binary and continuous) are considered in the problem
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formulation. In Chapter 4, water demand is assumed be to stochastic and future

demand is unknown. A problem formulation for deriving the optimal control pol-

icy based on reinforcement learning is developed. The problem is then solved with

temporal difference learning combined with function approximation in an online fash-

ion. Final Chapter 5 summarizes the contributions of this dissertation and discusses

potential further research directions.

Background overviews of each of the relevant topics are given in the subsections.

1.2 The General Optimal Control Problem

Optimal control theory is an extension of the calculus of variations, and Sargent

(2000) noted that it has a long history dating back to the 17th century when Galileo

worked on two shape problems, the catenary and the brachistochrone. Sargent also

gives a more detailed history of the optimal control theory in that paper. Since the

seminal works Lev Pontryajin and Richard Bellman in the 1950s, usage of optimal

control methods in various applications have dramatically increased.

A typical optimal control problem is to find a control policy for a dynamical

system over a period of time such that the objective function (usually the total cost)

is optimized. A very abstract framework for an optimal control problem is as follows.

Minimize the continuous-time cost functional (the discrete-time case is similar,

just substitute the integral with summation)

J = Φ[x(t0), t0, tf ] +

∫ tf

t0

L[x(t),u(t), t]dt (1.1)

subject to

˙x(t) = f [x(t),u(t), t] (1.2)

g[x(t),u(t), t] ≤ 0 (1.3)

φ[x(t0), t0,x(tf ), tf ] = 0 (1.4)
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where x(t) is the state variable, ˙x(t) is the first order derivative of x(t), u(t) is

the control variable, t0 is the initial time, tf is the terminal time. The Φ term in

objective function (1.1) is the endpoint cost, and the L term is called Lagrangian,

which represents the cost per unit time.

Constraint (1.2) is the first-order system dynamics (called the state equation),

constraint (1.3) is the algebraic path requirement, and constraint (1.4) models the

boundary conditions requirements.

In general, this is a nonlinear optimization problem due to the nonlinearity of

function f , and the global optimal solution is hard to achieve. But in some special

cases, for example, when the state equation (1.2) is linear and functions Φ and L

are quadratic, then the problem becomes the linear quadratic (LQ) optimal control

problem, to which there exist analytical solutions (Kalman et al., 1960).

Constraint (1.2) may not be as straightforward as it looks. In some cases, the

state equation (1.2) can be derived from physics laws, for example, based on the

balance of mass and energy (Cembrano et al., 2000; Sakarya and Mays, 2000) when

the system is not too complex. Then the effort is mainly spent on how to solve the

resulting nonlinear optimization problem. In some other cases, the state equation

(1.2) is almost impossible to be derived from physics laws due to the high complexity

of the system dynamics, then the resulting optimal control problem is much harder.

In such cases, some kind of approximation of (1.2) is necessary to develop a solu-

tion approach. One straightforward solution approach is to come up with a way to

approximate the system dynamics. Since basically the system dynamics model (1.2)

is to predict the state at next time step given current state and control, statistical

machine learning allows researchers to take advantage of its prediction power. Be-

cause the approximation of system dynamics is to predict the system state at next

time step using current system state information and other available current and
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past data, approximating system dynamics perfectly fits into the scope of machine

learning. Shin et al. (2010) applied support vector regression (SVR) in their work

of model predictive flight control, they implemented an adaptive version of SVR to

predict the state of a fixed-wing unmanned aerial vehicle, including slideslip angle,

roll rate, rudder angle, roll angel, etc. They considered the prediction from SVR

model as the real plane state in their model predictive control module. Recently,

Jain et al. (2018) made use of regression tree to predict the power consumption of an

office building given historical data, and later incorporated the built regression trees

into their formulation of the minimal peak power consumption. Sondermeijer et al.

(2019) used step-wise regression to approximate the complex inverter output solely

based on local measurements, which is included in their formulation of optimal power

flow control problem. These are just a few examples of machine learning applications

in approximating system dynamics in the areas of flight control and building energy

management. In fact the idea is so powerful that it can be applied in almost all kinds

of optimal control problems. To give another example, consider the freeway ramp

metering problem, the ramp metering rates must depend on total traffic on freeway,

the speed of vehicles, and the density of traffic flow, etc. However, in order to for-

mulate the problem properly, a model of the traffic system dynamics, either accurate

or approximate, must be built. Statistical machine learning can be used to achieve

that goal. Given historic data, a model can be built to approximate the dynamics

of freeway traffic. Then the model can be used as the state equation constraint to

determine optimal ramp metering rates.

Another approach to optimal control is to model the problem using a dynamic

programming (DP) formulation (Bertsekas et al., 2000; Sundström et al., 2010). Be-

cause of computing complexity of solving DP exactly, optimization researchers use

approximate dynamic programming (ADP) (Bertsekas, 2011; Powell, 2007). This ap-
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proach is often called reinforcement learning in computer science (Sutton and Barto,

2018). ADP is very widely used in robotics to control the robots. ADP is becoming

increasingly popular in many other complicated control problems, such as the control

of autonomous vehicles (Sallab et al., 2017; Shalev-Shwartz et al., 2016; Kiran et al.,

2021), the operation of water resources systems (Castelletti et al., 2013; Madani and

Hooshyar, 2014), etc. Basically, there are two types of ADP approaches, model-based

approaches and model-free ones. The model-based methods normally address mod-

els for underlying Markov decision processes and use dynamic programming to solve

the problem albeit using approximate value-iteration or policy iteration approaches.

Model-free methods include Monte Carlo, temporal difference learning (Q-learning

and SARSA), deep Q-learning, etc. They are based on samples from previous his-

tory, and do not require a Markov process model of the system. The value function

of a state, which is the total expected reward (or cost) over the future starting from

that state, is estimated using an iterative approach on historic samples. And the op-

timal policy can be derived from the estimated value function. More details of such

approaches can be found in Sutton and Barto (2018).

1.3 The Approximation of Water Distribution System Dynamics

As mentioned in section 1.2, the approximation of system dynamics, or the state

equation (1.2), is necessary when the system dynamics are complex, as they are in

water distribution systems where the fluid dynamics and chemical reactions are very

complicated to model. What is needed is system transition model that gives the

relationship between current system state and system state after a time step. Since

continuous data collection is not a major issue nowadays thanks to the advancement in

sensors and cyber connectivity, an approximate state transition model is possible to be

built by using statistical machine learning. And even if we cannot collect enough data
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from the real system, we can make use of simulation modeling. A calibrated simulation

model functions like the real system, and we can run the simulation multiple times

to gather data for the machine learning model. Then the constraint (1.2) can be

replaced by the simpler approximate system transition model in the determination of

the optimal control, which now becomes easier to compute.

The approximate system transition model does not only make the optimal control

problem solvable, but it also makes proactive control possible that uses prediction

of future states. In water distribution systems, it is essential to maintain the water

quality at satisfactory level all the times. Currently, the water quality is controlled in

a passive way by frequently taking readings from sensors installed in the system, and

alerting when the readings are abnormal (Storey et al., 2011). By the time alerts are

generated and noticed, the water quality could already be unacceptable and possibly

has affected people’s water usage and their health. In order to avoid such incidents,

a proactive control strategy is necessary. This is where the prediction can play an

important role. With the development of machine learning, one can easily build a

prediction model of water quality. As long as the predictions are accurate and early

enough, control actions can be taken much earlier to avoid water quality incident.

With the prediction model, not only the actions can be taken much earlier, but the

control system can be cost effective.

As one of the most popular approaches in machine learning, neural network models

are often the first choice of many researchers in their work of water quality prediction.

Even before the current popularity of artificial intelligence, neural network models

have been used by water resources researchers. Maier and Dandy (1996) used neural

networks in their prediction of salinity in a river 14 days in advance. They also wrote a

review paper in 2000 to discuss the application of neural network models in forecasting

water resources variables (Maier and Dandy, 2000). Since 2000, the application of
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neural networks in water quality prediction has only become more widely used (Najah

et al., 2013; Palani et al., 2008; Singh et al., 2009). In recent years, researchers also

explored the application of Long Short-Term Memory (LSTM) neural networks in

water quality prediction. Wang et al. (2017) used LSTM neural network to predict

water quality indicators and showed an improved accuracy over traditional neural

networks. Jia et al. (2018) constructed a hybrid model of physics and data including

LSTM neural network to monitor water temperature and quality in lakes. The high

accuracy of neural network models makes it very popular in applications. However,

the problem with neural network is that they are usually black-box models, and do

not have much interpretability in terms of why they make specific predictions. The

training of an accurate neural network model also requires much more data than other

machine learning predictive models, and the training time increases rapidly with more

data.

Lasso regression was first proposed by Tibshirani (1996), and it has since been

used in many predictive modeling (both regression and classification), because of

its advantage of selecting the most significant predictor variables. Liu et al. (2016)

incorporated the lasso penalty term in their prediction model of residual chlorine in

urban water distribution system to automatically identify important water quality

predictor variables. Brooks et al. (2016) compared 14 regression methods in their

beach water quality prediction and showed adaptive lasso model can achieve the

second best accuracy. Trueman et al. (2016) applied lasso regression, linear regression,

boosted regression tree ensembles etc. in the prediction of disinfection by-product in

drinking water and showed lasso model can achieve the lowest mean absolute error

in some of their data sets.

Biology inspired algorithms have long been an important subject of artificial intel-

ligence. One such popular technique is genetic programming based symbolic regres-
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sion (Koza, 1992). It is a stochastic evolutionary approach that builds mathematical

expressions by iteratively fitting a set of data. Singh and Gupta (2012) applied gene

expression programming, which is an extension to genetic programming, in the pre-

diction of disinfection by-products in water. They showed the genetic-programming-

based algorithm can achieve similar accuracy as support vector machine and neural

network models. Savic (2009) discussed the application of evolutionary polynomial

regression in modeling the pipe burst rates in their book. Berardi et al. (2008) also

made used of evolutionary polynomial regression to build prediction models of pipe

bursts in water distribution systems. Genetic programming based algorithms are easy

to use, and requires no assumption on the form of the model. Therefore, it becomes a

very flexible approach to explore the input-output relationship, although it may take

longer to find fitting parameters in the models in the corresponding larger feasible

search space.

Chapter 2 covers the application of lasso regression, neural network models and

symbolic regression on water quality prediction. Their performance is evaluated on

the same data set collected from a simple waste water distribution system. The pros

and cons of each approach are also summarized in that Chapter. Three case studies

are presented to show the idea of approximating water system dynamics using machine

learning.

1.4 Water Quality Control with Deterministic Demand

The optimal control of water distribution system can be divided into two cate-

gories, depending on whether the system dynamics can be represented with a set of

physics-based equations, as mentioned earlier, or data-based models. For the former

category, Cembrano et al. (2000) formulated the optimal operation of pumps and

valves as a nonlinear optimization problem, and solved it using a gradient descent
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approach. In their formulation, the dynamic model of the system is derived from

the mass and energy balance in the water network. Sakarya and Mays (2000) also

formulated the operation of pumps as a nonlinear optimization problem, but they

included constraints for substance concentration limits in their model. They used

a simulation tool EPANET (Rossman, 1999) combined with GRG2 (a FORTRAN

nonlinear program solver, see Lasdon and Waren (1986)) in their solution approach.

Their dynamic model of the system was also based on the conservation of mass and

energy. In latter cases where the system dynamic model cannot be derived based

on physics laws but rather on empirical data, many researchers have used genetic

algorithms to help solve the associated optimal control problem for water quality

management (Chen and Ni-Bin, 1998; Cho et al., 2004; Dhar and Datta, 2008; Kuo

et al., 2006; Kurek and Ostfeld, 2012; Tu et al., 2005), which are usually integrated

with some simulation models. There are also researchers who use machine learning

to build an approximation model of the system dynamics, instead of using simulation

models. Kuo et al. (2006) built a neural network model to approximate water quality,

and they used a genetic algorithm to solve the optimal control of nutrient loads from

the watershed. Qiao et al. (2013) also used a neural network model to approximate

the wastewater treatment plant, but then used another neural network model to learn

the optimal control. Zhou et al. (2015) proposed a method called convex piece-wise

linear machine for the optimal control problems. Although the purpose of their clas-

sifier is not to approximate the system dynamics, it is actually used to generate a set

of linear inequalities to approximate the feasible control region. They showed their

method is promising in a case study of HVAC energy consumption.

Flushing and disinfectant injections are two common water quality control actions

(Lautenschlager et al., 2010; Bédard et al., 2018; Proctor et al., 2020; Hozalski et al.,

2020; Islam et al., 2017). Flushing is effective because it quickly brings in fresher
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water directly from water treatment plant via a main pipe, however, it could cause

large amounts of water to be wasted. Adding disinfectants, for example, chlorine, is

also an effective control action since it could significantly decrease or stop bacteria

growth and kills most bacteria, parasites and viruses. But it is difficult to control the

amount of disinfectants to be added, too much of them is also harmful. For example,

when chlorine residual exceeds 2.0 mg/L, it will cause water to taste bad, according

to WHO guidelines for drinking water quality (WHO, 2003). Higher concentration of

disinfectants will also lead to more disinfection by-products, some of which can lead

to cancer, according to CDC guidelines (CDC, 2016) and Islam et al. (2017).

When water demand is deterministic, then it is possible to exactly predict the

demand in future time steps from historic data and current quality information by a

machine learning approach, hence a proactive control policy can be achieved. Islam

et al. (2017) used simulation to predict chlorine residual and solved the problem of

location chlorine boost injection points using a maximum covering heuristic. Kang

and Lansey (2010) assumed demand forecast and modeled the operations of valves

and chlorine injections as an unconstrained problem with penalty costs, the problem is

then solved using a genetic algorithm. Wu et al. (2015a) developed a model predictive

control system, in which they used artificial neural networks to predict total chlorine

and free ammonia levels, and used the predictions in a genetic algorithm to solve for

the optimal ammonia dosing rates at the pump station in order to maintain chlorine

and ammonia at desired levels.

It is not straightforward to include multiple control measures in formulating the

problem of optimal control of water quality, since all of them affect water quality.

Proper assumptions need to be made in terms how they are related. Chapter 2 covers

the optimal control of water age via flushing using linear models to predict water age,

the idea is tested on two different water distribution networks (one for a multi-story
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building, one for a city). Chapter 3 addresses the optimal control of effective water age

through both flushing and chlorine injection, where chlorine injection is assumed to

decrease effective water age. Now water age prediction model becomes a nonlinear one

because both flushing and chlorine reduce effective water age nonlinearly. Chapter 3

also studies different chlorine injection controls - binary vs continuous. The modeling

of flushing and chlorine injection is applied on a city water distribution network.

1.5 Water Quality Control with Stochastic Demand

When water demand is stochastic, it is difficult to predict the demand in future

time steps. A different perspective has been used in this research for prediction and

modeling the water quality control.

The aforementioned approximate dynamic programming (ADP) is a promising

approach that can help solve such decision-making problems under uncertainty. Be-

cause the demand comes from an unknown distribution at every time step, developing

exact optimal control actions in advance is not realistic. A more appropriate policy

consists of a strategy that learns from the past realized demand and its interaction

with the water distribution system. Here the water distribution and quality control

systems can be modeled as a Markov decision process, since the system state (e.g.,

water quality) at next time step only depends on the current demand, system state,

and the performed control actions (e.g., flushing). In the ADP approach, the optimal

policy is derived by iteratively updating the value function, which is the total ex-

pected reward (or cost) over future time steps (till the end of decision time horizon)

starting from current state, until the value function converges. However, since the

”water quality state” of a parcel of water is usually of continuous value in time and

space, it is impossible to store a specific value for every value of the state. Therefore,

the approach to be developed must be able to make some predictions for the states it
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has not observed, and the value function should be approximated as a parameterized

function of the state.

Castelletti et al. (2010) formulated the optimal reservoir operation as a standard

ADP problem, and used a tree-based algorithm to estimate the value function for grid-

discretized states. The policy maps lake storage level to release decision. Lee and

Labadie (2007) studied the operations of two river systems and applied Q-learning

in ADP to derive the optimal control policy after discretizing the state into grids.

Castelletti et al. (2014) adopted a batch-mode reinforcement learning algorithm (fitted

Q-iteration) in designing the operation of a water reservoir in Japan with water

quality targets. Bhattacharya et al. (2003) presented a study of controlling the pump

operations of a complex water system in Netherlands using artificial neural network

based Q-learning.

As mentioned above, continuous water quality state poses a major computational

challenge. Discretization is possible, but when the state vector is high dimensional,

the state space after discretization may be too large to be handled, even by today’s

high performance computers. A parameterized function approximation could also

be useful in handling continuous state, but it is nontrivial to develop such a model.

There are difficulties like how to encode the state, what base model to choose, etc.

that need to be addressed. Besides the continuous state issue, there are also different

approaches to update the value function, each with its own pros and cons.

Chapter 4 covers the optimal control of water age via flushing when water demand

is stochastic. It presents the problem formulation with water age limit restrictions.

The action value functions are estimated using a linear model with approximate

kernels. Multiple experiments are run with different hyper-parameters and different

learning algorithms using the case of a city water distribution network. Chapter 4

essentially presents a framework and an approach for developing the optimal control
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policy for any given water distribution systems that uses a learned policy for real time

decision making on control actions (e.g., flushing) based on past and current controls

and observed sensor data.
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Chapter 2

LINEAR PROGRAMMING BASED OPTIMAL CONTROL OF WATER

QUALITY

The schematic relationship of proactive and real-time control of water quality

in water distribution systems can be illustrated using Figure 2.1. The state of the

system x(z, t) over space and time is generated from the real-world or simulated

system. The associated data can be observed and collected through measurement

sensors. The collected data can then be used to build data-driven estimation model

for the system dynamics (since exact mathematical representation is not available).

The built estimation models can predict the system state (e.g., water quality, and

x̃(z, t) represents the predicted value) when used in the optimal control model. The

proactive and real-time control module contains the optimization model for deriving

the optimal control actions. We will first present linear programming based proactive

optimal control models in this chapter, and develop nonlinear programming based

optimal control models in Chapter 3. A real-time optimal control model will be

presented in Chapter 4.

This chapter is divided into two main sections. Section 2.1 is focused on how to

approximate the water system dynamics using different machine learning approaches.

The approach of approximating system dynamics has long been adopted in the re-

search of water distribution systems, as discussed in Section 1.3. However, the chal-

lenge is that there are so many different approximation approaches that can be used,

and there is no single one that can be applied to all scenarios. On top of that chal-

lenge, it is also a difficult decision to select what states of the system to be used in

the approximation model. We will cover three different machine learning approaches
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Figure 2.1: The Schematic Diagram of Proactive and Real-time Control of Water

Quality in Water Distribution Systems

in Section 2.1, and present three case studies to explain how the system dynamics

approximation can be done using such approaches. Section 2.2 addresses the prob-

lem of optimal water age control through flushing of taps. Water age is an indicator

of water stagnation, and, as aforementioned, stagnation can cause significant water

quality degradation. Flushing can quickly restore water quality to the safe level,

but it also causes significant water waste. In Section 2.2, we develop a semi-closed

loop cost-aware control model for water quality, in which linear prediction models

are incorporated in the formulation of min-cost flushing control. The semi-closed

loop control model will be evaluated using two different water distribution networks,
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where the flushing control actions are applied to the simulation model to evaluate

their effectiveness.

2.1 Water Quality Prediction in Water Distribution Systems

When we consider discrete time steps, the state equation (1.2) in the general

optimal control problem ((1.1) ∼ (1.4)) is equivalent to

x(t+ 1)− x(t) = f [x(t),u(t)] (2.1)

This indicates that x(t + 1) can be expressed as a function of x(t) and u(t).

This relationship between x(t + 1) and x(t) hints that statistical machine learning

approaches can be used to approximate equation (2.1) since the exact mathematical

expression for f [x(t),u(t)] cannot be derived.

2.1.1 Prediction Methods

Different machine learning approaches have been applied successfully by researchers

in predicting water system states (including water quality), as discussed in Section 1.3.

In this section, we briefly explain each of the machine learning approaches we have

explored in predicting water quality, and present three cases studies in which they

were successfully applied in the prediction of water quality with satisfactory accuracy.

2.1.1.1 Lasso/Ridge Regression

Lasso regression (Tibshirani, 1996) is an approach similar to linear regression, but

its advantage is that it can select significant variables by adding the L1 norm of

coefficients in the objective function,

min
1

n
‖Xw − y‖22 + α‖w‖1 (2.2)
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whereX, y are the independent and dependent variables, respectively, n is the number

of samples, w is the vector of estimated coefficients, and α is a predefined constant

(usually called regularization parameter). If α is set zero, then Lasso regression

becomes ordinary least square regression. A list of α values can be provided for

iterative fitting, and the best model can be selected via cross-validation. With the

L1 norm term, the coefficients of insignificant variables will be pushed to zero thus

leaving w a sparse vector. This characteristic of Lasso regression makes it useful

when a relatively simple model with only significant variables is preferred.

Ridge regression is similar to Lasso regression, its objective function includes the

L2 norm of coefficients:

min
1

n
‖Xw − y‖22 + α‖w‖22 (2.3)

The L2 norm term makes Ridge regression useful to handle multicollinearity that

causes problem for linear regression.

Both Lasso regression and Ridge regression have an extra term in their objective

function, this extra term is actually a penalty on the coefficients. It is this penalty

term that gives them extra functionality and enables them to generate better models

than linear regression.

2.1.1.2 Neural Networks

Feed-forward neural network models can approximate any continuous functions ac-

cording to the universal approximation theorem (Hornik, 1991). They can also handle

multiple outputs very easily using only one network. It can be useful when multiple

predictions (e.g., predictions at multiple time steps in the future) are needed. One

issue that often arises in machine learning is overfitting. To prevent overfitting in neu-

ral network models, the L2 norm of the weights W (parameters of neural networks)
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is added in the cost function (objective function),

Loss(ŷ,y,W ) =
1

2
‖ŷ − y‖+

α

2
‖W‖22 (2.4)

where y is the actual independent variable to predict, and ŷ is the prediction. This

is similar to Lasso regression and Ridge regression, as they all have a penalty of

the coefficients/weights in the objective function. With this penalty term, neural

network models tend to generalize well. Note that there is also a parameter α (called

regularization parameter) in the cost function, the best value of α can be set via

grid search (an exhaustive search and cross-validation method). Back-propagation

(LeCun et al., 1989) is usually used the calculate the optimal weights.

2.1.1.3 Symbolic Regression

Symbolic regression is a regression approach that can find the best fit model with-

out the need of specifying the model structure. It is a stochastic evolutionary ap-

proach that generates initial expressions by randomly combining mathematical build-

ing blocks (independent variables, constants, mathematical operators, analytical func-

tions, etc.). From iteration to iteration (the evolution process), genetic programming

is used to generate new expressions via various genetic operators such as crossover

and mutation.

The mathematical expression is encoded as a tree structure and can be evaluated

easily in a recursive manner. An example of the encoding is shown in Figure 2.2.

Each internal node represents an operator function, and each leaf node represents an

operand.

A set of functions is main input to symbolic regression (other than independent

variables), the functions are used to build a mathematical expression. And the model

complexity can be controlled by restricting the tree depth and the function set.
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Figure 2.2: An Example of Encoding Mathematical Expression as a Tree (from

Wikipedia)

Symbolic regression is useful when not much information about the potential

model is known; it is a powerful approach that can build a variety of models. The

biggest advantage of symbolic regression is it does not rely on assumptions on the

form of the underlying model. However, the advantage comes at the cost of more

searching time as it searches in a much larger feasible space for the best fit model(s).

And manual tuning is necessary in order to achieve a model with high accuracy and

relatively simple form.

2.1.2 Case Study I: pH Prediction in a Wastewater System

A physical wastewater piping system was built by collaborators for real experi-

ments in this case study (Saetta et al., 2019). The physical wastewater piping system

contains three identical urinals, with sensors installed in each of them sampling the

pH values and conductivity every 15 seconds. The layout for one urinal in the pip-

ing system is shown in Figure 2.3. The artificial urination events are set to occur

randomly. Two experiments that lasted over four hours with different urination fre-

quency were implemented. In the first experiment, the time between two consecutive
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Figure 2.3: The Wastewater Piping System Layout (Only One Urinal Is Displayed,

from Saetta et al. (2019))

urination events is generated from a continuous uniform distribution from 1 to 10

minutes. In the second experiment, the uniform distribution ranges from 10 to 20

minutes. The frequency of artificial urination events was set up this way to simulate a

busy and a not-so-busy restroom, respectively. The trigger time of artificial urination

events and the amount of (artificial) urine in each urination event are also recorded.

More details about the experiments and data can be found in Saetta et al. (2019).

The goal of these experiments is to control the wastewater quality within the pipe

system, where the pH is an indicator of the system acidity and bacteria growth relies

on a proper range of pH values. The control action is to pump acid into the system

based on sensor measurements of pH, or based on the predicted values of pH. Thus,

we need models that can predict pH values ahead of time so that the control action

(adding acid) can be done proactively.
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Sensor data is read every 15 seconds, and we want to predict pH values in the

near future (four time-steps ahead, equivalent to 1 minute), using historic pH and

conductivity data (collected from sensor readings) and the recorded urination infor-

mation from both experiments. Twenty historic data points (equivalent to 5-minute

history) of both pH and conductivity, plus the time lag from last urination event and

the amount of urine in last urination event are used as the input to the model. The

mathematical expression of the model was y = f(x), where y is the predicted pH

value vector of dimension 4, and x is the input variable vector of dimension 42, with

x0 - x19 denoting the historic pH, x20 - x39 denoting the historic conductivity, x40 -

x41 denoting the time lag from last urination event and the amount of urine in last

urination event, respectively. The actual form of function f depends on the machine

learning approach, it could be either linear or nonlinear in terms of the input variable

vector x.

Each experiment was run for about four hours in the lab. In total, 6,700 data

records were collected from these two experiments. They were randomly split into

training and testing sets with 70/30 ratio. The data was also standardized to center

around zero with unit variance in the pre-processing step; this was to avoid the

prediction to be dominated by conductivity since conductivity has a much higher

magnitude than other variables.

The scikit-learn Python package (Pedregosa et al., 2011) was used to build Lasso

regression and neural network models for the prediction. The symbolic regression

models were built using MATLAB code (Searson, 2009).

Four Lasso regression models were built to predict pH values in the next minute,

one prediction for one time step, since each Lasso regression model makes only one

prediction. The accuracy of Lasso regression models in terms of R2 and root mean

squared error (RMSE) on training and testing data are shown in Figure 2.4. Overall,
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Figure 2.4: Performance of the Lasso Models

the accuracy is decreasing in as the time step increases, and RMSE is increasing.

However, even for the fourth-step prediction, the R2 is close to 0.93, which is consid-

ered quite good. The associated RMSE is only 0.06 for pH values ranging from 3.8

to 8.5. The coefficients of Lasso regression models are shown in Table 2.1. Notice

that the coefficients of many variables are zero, and this is the advantage of Lasso

regression explained earlier. After data standardization, the coefficient can be view

as the importance of the corresponding variable. During the fitting process, Lasso

regression automatically pushes the coefficients of variables with less prediction power

to be zero. In fact, the coefficients for all conductivity variables (bold blue colored in-

dices in the table) are zero, indicating they are not helpful in pH predictions. Another

important finding can be noted from the coefficients table is that variable x19 (the

most recent pH value) has the largest absolute value in all four models, indicating it

has the largest impact on future pH predictions. This observation makes sense and

tells us to rely on most recent information to make predictions for the future.

For neural networks, since it can predict multiple values using one network struc-
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Table 2.1: Coefficients for the Lasso Models

ture, single model is enough to make predictions for four pH values. The network

structure we used contains one input layer, one hidden layer with 10 hidden nodes and

one output layer. The rectified linear unit function, f(x) = max(0, x), was used as

the activation function for the hidden layer. There are four output nodes in the out-

put layer since four pH values in future need to be predicted. The identity activation

function for the output layer is used because this is a regression problem. A quasi-

Newton type optimizer (L-BFGS) is used to numerically optimize the weights with

constant learning rate 0.001 and maximum number of iterations 200. The grid search

method is used to find the best regularization parameter α in the loss function (2.4)

from [10−1, 10−2, 10−3, 10−4, 10−5, 10−6]. The performance is shown in Figure 2.5. The
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Figure 2.5: Performance of the Neural Network Model

accuracy (both R2 and RMSE) is very similar to that of Lasso models.

For symbolic regression (SR), only the basic function set {+,−,×,÷} (other than

the input variables) was provided for the model development, and the underlying

genetic programming procedure was run for 100 iterations with 50 individuals (math-

ematical expressions) in each iteration. At the end of the algorithm, a set of candidate

expressions (prediction models) are drawn in one Pareto plot. We selected models

with relative low complexity and high accuracy that are not dominated by others.

The final selected models are shown in Table 2.2 and their performances are shown in

Figure 2.6. The performance is comparable with that of Lasso regression and neural

network models. Notice that most recent pH values (x18, x19 ) are used in all four

models. This confirms our previous observation that future pH values rely on most

recent pH values.

In summary, all three approaches can achieve comparable prediction accuracy.

Models from all three approaches were evaluated on the same data set, the perfor-

mance is shown in Figure 2.7. However, the training time differs quite a bit. Symbolic
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Table 2.2: Selected Models from Symbolic Regression

Step Number Selected Model

1 6.655− 0.1130x18 + 0.3409x19

2 6.655− 0.1377x18 + 0.3647x19

3 6.655− 0.1469x18 + 0.3710x19

4 6.656− 0.1582x18 + 0.3793x19

Figure 2.6: Performance of the Symbolic Regression Models

regression took the most time (∼60s), Lasso regression took the least computational

time (∼1s), training time for the neural network model was in between (∼20s). This

training time difference was observed from a data set that is not too large, the dif-

ference will be more with larger data sets. As for model complexity, both Lasso

regression and symbolic regression generate linear models, where manual tuning is

necessary to obtain linear models from symbolic regression. Both Lasso regression

and symbolic regression can be useful in the optimal control of water quality, because

the linearity of prediction models makes the solution method for the optimal control
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Figure 2.7: The Accuracy of Models from Different Approaches on the Same Test

Data

problem simpler. Although the neural network model is more complex, it is still pos-

sible to incorporate it in the optimal control method. Actually, such approaches have

led a large research area called neuro-dynamic programming (Bertsekas and Tsitsiklis,

1996), where neural network models are built to approximate DP’s value functions

and gradually learn the optimal control policy.

2.1.3 Case Study II: Water Age Prediction in a Building Water System

In this section, a set of linear models are developed to approximate the water age

dynamics in a building water distribution system. If the linear models can approx-

imate the water age transition with high accuracy, then state equation (1.2) can be

replaced approximately by a set of linear constraints. This approximation does not

introduce extra complexity in solving the optimal control problem. Furthermore, if

the objective function can be formulated with a linear expression, then the whole

control problem becomes a linear program, which will be shown section 2.2.
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In this case study, a simulation model for a five-story university building was

first built using water distribution systems modeling software EPANET (Rossman,

1999). The water distribution network is shown in Figure 2.8. There are two demand

locations on each floor, labeled as Kitchen and Fountain. The demand at different

locations can be different, and they may also have different patterns over time. The

demand patterns were assumed to be estimated from historic data which are known

to the model. In the simulations used in the experiments, for simplicity, demands at

the Kitchen and the Fountain on the same floor were assumed to be same, although

any arbitrary patterns could be assumed. The demand pattern used for different

floors is shown in Figure 2.9.

Our ultimate goal is to model and solve the optimal water age control problem for

a water distribution system, and the challenge is how to derive a constraint to describe

the system dynamics (equation (1.2), or its discrete time version (2.1)). Inspired by

the state space representation of a physical system from control theory

ẋ(t) = Ax(t) +Bu(t) (2.5)

where x(t) represents system state, u(t) is the control input to the system, A,B are

called state matrix and input matrix respectively; we assume the water age transition

in the building water network (Figure 2.8) can be approximated as follows (using

discrete one-hour time step):

x(t+ 1) = Ax(t) +Bu(t) + c (2.6)

where x(t) is the state variable representing water age at hour t, u(t) is the control

variable representing the amount of water to be flushed at hour t. Both water age

and flushing amount are measured at all 10 demand locations, so x(t) and u(t) are

vectors of dimension 10. A,B, c are parameters that we need to estimate, A,B are

matrices of dimension 10×10, c is a vector of dimension 10.
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Figure 2.8: EPANET Simulation Model for a 5-story University Building

The simulation was run 1000 times with random flushing (to emulate random

water demand) at all locations, to generate some training data. For each simulation,

the random amount of water to be flushed is set as β times demand at that location,

where β is generated from a discrete uniform distribution of {0, 0.5, 1}. In total,

there are 310 = 59049 random scenarios, and the 1000 simulations are just a small

percentage of them, so we are not enumerating every single scenario. Figure 2.10

shows water age (in hours) at all locations at different times from one of the 1000

simulations. The red vertical dotted line indicates the end of warm-up period for the
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Figure 2.9: The Assumed Demand Patterns on Different Floors

Figure 2.10: Water Age at All Locations from One of 1000 Simulations
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Figure 2.11: The Accuracy of Ridge Regression Models in Training and Testing Data

simulation model, and the red horizontal dotted line shows the constraint on water

age limit.

After data was generated from simulation, it was randomly split into training

and testing data sets with 70/30 ratio. Then ridge regression was used to estimate

parameters A,B, c. These are actually coefficients coming from 10 linear models

(each location need one model for its water age prediction); that is,

xi(t+ 1) = Σ9
j=0aijxj(t) + Σ9

j=0bijuj(t) + ci,∀i ∈ {0, 1, ..., 9} (2.7)

where xi(t) is water age at location i at time t, uj(t) is the flushing control at location

j at time t, and ai,·, bi,·, ci are the coefficients of ridge regression model for location i.

The accuracy (R2 and RMSE) of ridge regression models on training and testing

data is shown in Figure 2.11. Models are consistently accurate at all locations; all

R2’s are above 96%. Meanwhile, the accuracy in testing data is very close to that in

training data, indicating models are not overfitting.
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Figure 2.12: The Overall Accuracy (R2 and RMSE) of Ridge Regression Models on

Training and Testing Data

The overall R2 for training and testing data is 97.84% and 97.82% respectively.

The predicted water age and the actual water age are drawn in Figure 2.12. This

indicates the linear models derived using ridge regression can approximate the system

dynamics very well. The models will be used in the optimal control of water age in

this building water distribution system in Section 2.2.

2.1.4 Case Study III: Water Age Prediction in a City Water System

In Section 2.1.3, we presented a case study where the system dynamics can be

approximated well with linear models. Although we achieved very high accuracy

in the approximation with linear models, it is not guaranteed that linear models

always predict well, especially when the system becomes larger and more complex.

In Case Study II, only current water age and control action are used as input to the

model, but for more complex water distribution systems, this may not be enough to

achieve accurate predictions, and more data from past may be needed to improve the

prediction accuracy. To extend what we have done in Section 2.1.3, in this case study,

we tried to predict water age on the larger water distribution network as shown in
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Figure 2.13: EPANET Simulation Model for a City Water Distribution Network

Figure 2.13.

This water distribution network consists of 1 reservoir, 1 pump, 35 junctions and

38 pipe segments in the network. There are 32 (out of 35) junctions with nonzero

demand. The simulated duration assumed in this case study was 55 hours.

Similar to previous two case studies, our goal was to build models that can predict

future system state using current and past state and control data. Same as Case Study

II, water age is used as the indicator of water quality in the distribution system. The

controls are amount of water to be flushed at different locations and times.

Again, EPANET (Rossman, 1999) was used to simulate water flow and water

age in this city network. The simulation model was run 10,000 times with different
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amounts of water in each random flushing to generate data for building the prediction

model. The amount of water in each random flushing at each location was set to be

β times of its largest demand, where β ∈ {0, 0.1, 0.2, 0.3, 0.4}, where β = 0 means

no flushing. Each simulation represents a 55-hour operation of the water distribution

system. And each location also has its own time-varying demand. After 10,000

simulations, the data was split into training and testing data sets with 70/30 ratio.

After trying different sets of input variables for the model, the models using water

age, flushing controls and water demands from most recent two time steps as input

achieved satisfactory accuracy:

x(t+ 1) = f(x(t),x(t− 1),u(t),u(t− 1),d(t),d(t− 1)) (2.8)

where x(t),u(t),d(t) represent water age, magnitude of flushing control (amount of

water flushed) and demand at current time step t, and t− 1 in parentheses indicates

the same set of data from previous time step. State x(t+ 1) represents water age at

next time step. All of them are denoted in bold font, indicating they are all vectors,

and each of them is a vector with measurements from all junctions except nodes 2 - 6

(closer to the reservoir, water age is low).

Cross-validation based Lasso models are built for all 27 locations, with one model

predicting water age at next time step for each location. The R2’s for all 27 models

are plotted in Figure 2.14. Note that R2 is above 75% for all 27 models. The predicted

water age vs actual water age is plotted in Figure 2.15. These Lasso regression models

will be used as the approximate water age transition models in the optimal control

of water age in the next section.

35



Figure 2.14: The R2 of Lasso Regression Models for Water Age Prediction at 27

Different Locations

2.2 Optimal Water Age Control with Linear Prediction Models

In water distribution systems, water quality should be maintained at satisfactory

level all the times. Water age of a parcel of water indicates how long the water parcel

has been stagnant. The longer water stays stagnant, the larger water age, and the

more likely bacteria start to grow. Therefore, water age was used as the indicator

for water quality. Flushing has been shown effective in improving water quality, as

discussed in Chapter 1. But how to quantify the relationship between flushing and

water quality improvement is an open research area. In this section, we aim to provide

a solution to quantify such relationship and solve for the min-cost flushing schedule

using predictions from linear models. We will first present the linear programming

based problem formulation, and then show some results by extending two previous

case studies.

2.2.1 A Prediction-aided Linear Program Formulation of Optimal Control

Given the approximate water age transition models from previous sections, we

are able to model and solve the whole water age optimal control problem as a linear
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Figure 2.15: The Predicted Age vs Actual Water Age at the First 9 (Out of 27)

Locations
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Figure 2.15: The Predicted Age vs Actual Water Age at the Second 9 (Out of 27)

Locations
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Figure 2.15: The Predicted Age vs Actual Water Age at the Third 9 (Out of 27)

Locations
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Table 2.3: Definition of Parameters, Indexes and Variables in the Prediction-aided

Linear Program Formulation

Parameters/Indexes Definition

T the duration of system operation, i.e., final time step

t index for time step, t ∈ {0, 1, 2, ...T}

al the limit of water age

ul the limit of flushing control

Ns the set of locations to measure water age

Nu the set of locations for flushing controls

dt the demand at time t

Variables Definition

xt water age at time t for all locations in Ns, xt ∈ R+

ut the flushing control (amount of water to be flushed) at

time t for all controlled locations in Na, ut ∈ R+

program (LP). The parameters and variables used in this LP formulation are defined

in Table 2.3.

The optimal flushing schedule problem can be formulated as:

min Σt‖u(t)‖1 = Σi∈NuΣT
t=0ui(t) (2.9)

subject to

xi(t+ 1) = f(x,u,d) ∀i ∈ Ns,∀t 6= T (2.10)

xi(t) ≤ al ∀i ∈ Ns,∀t (2.11)

ui(t) ≤ ul ∀i ∈ Nu,∀t (2.12)

x(0) = a0 (2.13)
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where f(x,u,d) in constraint (2.10) represents a linear expression relating x and u,

where the time index t is omitted for convenience because the linear expression could

include historic values of water and flushing control. Constraint (2.10) is the ap-

proximate water age dynamics model resulting from the water age prediction models

in previous case studies. Constraints (2.11) and (2.12) represent the required limits

of water age and flushing controls, respectively. Constraint (2.13) fixes the initial

conditions.

When a linear prediction model can approximate the system state transition ac-

curately enough, the whole control problem becomes a LP, and the optimal flushing

schedule problem can be easily solved using off-the-shelf software. However, con-

straint (2.10) is an approximate relationship of the water age transition. So, as long

as the prediction accuracy is not 100% (which is almost always the case for prediction

models), the prediction error from these models should not be neglected in the con-

trol problem formulation. Therefore, we present an improved LP model with chance

constraint to account for prediction errors.

2.2.2 Improved LP Model with Chance Constraint

Use of chance constraints is a typical method for dealing with uncertainties in

solving optimization problems. In the formulation of optimal flushing schedule prob-

lem, true water age is unknown, but the prediction has a high probability to be close

to the true water age, and this is the uncertainty that needs to be addressed.

In the improved LP model, constraint (2.10) is replaced with

P (xi(t) ≤ al) ≥ 1− α ∀i ∈ Ns, ∀t (2.14)

Chance constraint (2.14) restricts that the probability of water age xi(t) is lower

than the limit has to be at least 1 − α, where α is a parameter used to specify the
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level of confidence of the water age prediction.

In regression problems, the error term in prediction is usually assumed to be

normally distributed with zero mean (Reid et al., 2016). In constraint (2.10), water

age prediction f(x,u,d) is use to estimate xi(t+ 1), and therefore xi(t+ 1) also has

a normal distribution. Then constraint (2.14) can be transformed as following:

P (xi(t) ≤ al) ≥ 1− α ⇐⇒ (2.15)

P (
xi(t)− µxi(t)

σxi(t)
≤
al − µxi(t)
σxi(t)

) ≥ 1− α ⇐⇒ (2.16)

al − µxi(t)
σxi(t)

≥ zα/2 ⇐⇒ (2.17)

al − x̂i(t)
σxi(t)

≥ zα/2 (2.18)

where µxi(t), σxi(t) are the mean and standard deviation of a normally distributed

random variable xi(t), and z is a unit normal random variable with zα/2 denoting the

(1−α/2) percentile for unit normal distribution. Thus constraint (2.14) simplifies to

(2.18) or equivalently

x̂i(t) ≤ al − zα/2σxi(t) (2.19)

The true value of the standard deviation of the error term can only be estimated

from observed data. For Lasso regression models, Reid et al. (2016) gave a com-

prehensive comparison of different error variance estimators, and recommended the

cross-validation based Lasso residual sum of square estimator as a good variance

estimator. The mathematical expression of their recommended estimator is

σ̂2
L,λ =

1

n− ŝL,λ
Σn
i=1(yi −X ′iβ̂λ)2 (2.20)

where β̂λ is the Lasso coefficient vector estimate, and ŝL,λ is the number of nonzero

elements of this vector, λ is the “regularization parameter” used in the Lasso models.

This estimator is what we used for estimate σxi(t). The results of the optimal flushing
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schedule for water age control, now considering prediction errors in case studies II

and III, are extended in Section 2.2.3 and Section 2.2.4.

2.2.3 Case Study II Extension: Optimal Flushing Schedule for Water Age Control

of a Building Water System Considering Prediction Errors

The system state (water age) transition model comes from Case Study II in Sec-

tion 2.1. Replacing constraint (2.10) with the ridge regression models from 2.1.3, we

get the following optimization problem

min Σt‖u(t)‖1 = Σi∈NuΣT
t=0ui(t) (2.21)

subject to

xi(t+ 1) = Σ9
j=0aijxj(t) + Σ9

j=0bijuj(t) + ci, ∀i (2.22)

xi(t) ≤ al ∀i, t (2.23)

ui(t) ≤ ul ∀i, t (2.24)

x(0) = a0 (2.25)

Using water age limit al = 1.5h, the above linear program is solved to obtain

the optimal flushing schedule. Now constraint (2.23) is replaced with a transformed

chance constraint (2.19), and the linear program is solved again. After the opti-

mal flushing schedule is obtained, it is applied to the EPANET simulation model to

evaluate how effective it is in improving water quality (water age).

With 1.5h water age limit, the percentage of time (over 24 hours simulation time)

when water age is above the limit is significantly reduced by flushing, especially when

the original demand is low in early morning and late night (comparing Figure 2.16

and Figure 2.17). This metric comparison is summarized in Table 2.4. The optimal

flushing schedule from the improved LP model with chance constraint is shown in
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Table 2.4: The Comparison of Water Age Constraints Violations (Above 1.5h) Before

and After Applying Optimal Flushing Controls

No Control Flushing with LP

Model

Flushing with Im-

proved LP Model

% Time Water

Age Constraint

Violated

50.9% 20.0% 13.9%

Figure 2.18. Note that there’s no flushing at locations 20 - 24, which are located on

the first three floors with higher water demand, it means that the demand at those

locations is high enough to keep water fresh.

2.2.4 Case Study III Extension: Optimal Flushing Schedule for Water Age Control

of a City Water System Considering Prediction Errors

In the extension to Case Study III, the Lasso regression models from Section 2.1.4

were adopted as the approximate system state (water age) transition model. The

model of finding the optimal flushing schedule for water age control in the city water

network is formally stated as below. Chance constraint for water age limit is used

directly, similarly as was with the building water system in Section 2.2.3.

min Σt‖u(t)‖1 = Σi∈NuΣT
t=0ui(t) (2.26)
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Figure 2.16: Water Age at 10 Different Locations (Five Shown in Each Plot) When

No Controls Are Applied

Figure 2.17: Water Age at 10 Different Locations (Five Shown in Each Plot) After

Applying Optimal Flushing Control Using Lp Model with Chance Constraints
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Figure 2.18: The Optimal Flushing Schedules Using LP Model with Chance Con-

straints

subject to

xi(t+ 1) = f(x(t),x(t− 1),u(t),u(t− 1),d(t),d(t− 1)) ∀i ∈ Ns,∀t 6= T

(2.27)

P (xi(t) ≤ al) ≥ 1− α ⇐⇒ x̂i(t) ≤ al − zα/2σxi(t) ∀i ∈ Ns,∀t

(2.28)

ui(t) ≤ ul ∀i ∈ Nu,∀t

(2.29)

x(0) = a0

(2.30)

Water age limit al is a key parameter in the formulation, it controls the magnitude

of flushing. The solution of the above LP gives optimal flushing schedule which was

applied to the EPANET model for the city water network. The whole process was
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repeated for different values of al. Then water age before and after applying the

flushing controls were then compared.

The maximum water age over 55h duration before and after applying the optimal

flushing controls, and the decrease percentage of maximum water age at different

locations are shown in Figure 2.19 for al = 10. The actual locations that are assigned

flushing for al = 10 are shown in Figure 2.20 (circled in red dotted color). The optimal

flushing schedule for al = 10 is shown in Figure 2.21. (See Appendix A for the same

plots for al =11 - 15)

The average percentage decrease of maximum water age and the total cost for

flushing are summarized in Table 2.5. Note that with lower value of al, the average

percentage decrease of maximum water age is larger, but total cost is also larger.

Comparing locations that has flushing (Figure 2.20 and Appendix B), we can notice

that with decreasing value of al, the number of locations that triggered flushing are

expanding. The set of flushing locations increased from {9, 11, 14, 24} for al = 15

to {7, 9, 11, 12, 14, 15, 16, 17, 19, 24, 27, 31} for al = 10. The results show that we can

identify the key locations for flushing in the water age control.

2.3 Conclusions

Water quality can degrade quickly after a short period of stagnation. Water age

is a direct indicator of water stagnation. Flushing as one of the main and effective

control actions can improve water quality by bringing in fresher water from the water

treatment plant. However, quantifying the relationship between flushing controls and

water quality improvement to achieve a cost-effective flushing control policy remains

as an open research question. The challenge is that water distribution systems involve

complicated fluid dynamics and complex chemical reactions that make them very

difficult to model. The research work in this chapter addresses this challenge and
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Table 2.5: The Average Percentage Decrease of Maximum Water Age

Value of al (h) Average Percentage

Decrease

Total Cost of Flushing

15 4.7% 1717.2

14 6.5% 2385.8

13 9.1% 3455.7

12 11.5% 4622.6

11 14.7% 5990.2

10 21.6% 8655.0

developed a linear predictor of water quality and a corresponding LP-based optimal

flushing control model with water age limit constraints.

Different machine learning approaches were explored in approximating the dy-

namics of water distribution systems to predict water quality from observed data.

Depending on the actual system and what system states are measured, different ap-

proaches could generate very different approximate models. Three case studies on

water quality prediction were presented to show how each approach can be applied in

specific scenarios. The approximation of water distribution system dynamics makes

controlling water quality in networks possible. Integrating the approximate models of

water system dynamics within an optimal control framework that uses a LP solution

approach, we developed a proactive optimal flushing schedule. This formulation quan-

tifies the relationship between flushing and water quality (water age) improvement.

The problem formulation was applied and solved for two different water distribution

networks. The optimal flushing solution was evaluated using the EPANET simulation

models and the results demonstrated that our flushing control is effective.
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Figure 2.19: The Maximum Water Age over 55h Duration at Different Locations

Before and After Applying the Optimal Flushing Controls (Figure above) and the

Decrease Percentage of Maximum Water Age at Different Locations (Figure below)

for al = 10

Potential future work could be on fine tuning the approximate models to improve

the accuracy, and developing new methods to estimate variance of the predictions.

This will improve the associated optimal control policies. Another future direction

of research is to consider different water quality indicators that can be measured

with high accuracy. Water age is a good indicator of water stagnation, but may

not be measured as easily as other water quality indicators. It will be an interesting

research direction to combine different water quality indicators into one metric. Multi-

objective optimization can be helpful in such problems.
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Figure 2.20: The Actual Locations (Circled in Red Color) with Flushing for al = 10

50



Figure 2.21: The Actual Flushing over Time at Different Locations for al = 10
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Figure 2.21: The Actual Flushing over Time at Different Locations for al = 10

(continued)
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Chapter 3

NONLINEAR PROGRAMMING BASED OPTIMAL CONTROL OF WATER

QUALITY

In Chapter 1, we discussed that flushing and adding disinfectants are two common

and effective water quality control actions. In Chapter 2, we showed how to model

the optimal control of water quality via flushing. In this chapter, we will consider

both control actions (flushing and chlorine injection) in the optimal control of water

quality.

Mala-Jetmarova et al. (2017) provided a comprehensive review on optimization

models and solution approaches for the operation of water distribution systems. After

reviewing over 100 papers in total, they categorized water quality related optimization

models into three types: the first one included models having objective functions

with different costs subject to water quality constraints, the second one included

models that minimize the cost of disinfectant mass dose, and the third one had

models that minimize disinfectant concentration deviations from desired values at the

demand nodes. These models were mainly linear programs or mixed integer nonlinear

programs. Also, some researchers had used metaheuristic algorithms combined with

EPANET simulations models to solve the control problem.

Flushing is an effective way to improve water quality as it removes bad-quality

water out of the system and quickly brings fresh water with satisfactory quality

from the source (water treatment plants). Adding disinfectants is also effective as

disinfectants strongly prohibit the bacteria growth and kill parasites, bacteria and

viruses in water. Chlorine and chloramine are major disinfectants used in public water

systems, according to CDC. However, given the complex fluid dynamics and chemical
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reactions, the relationship between water quality and different control actions are

very likely to be nonlinear. The challenge lies in how to model such relationship in

the formulation of the optimal control problem. When more than one control action

is being considered, the synergistic effect of different control actions on water quality

should be accommodated. This chapter addresses the optimal control problem of

water age through both flushing and chlorine injection. A mixed integer quadratically

constrained program (MIQCP) formulation is developed in this chapter, and different

instances of the formulated problem with different cost ratio parameters are solved.

Various chlorine injection controls are also considered in different formulations.

The remaining of this chapter is organized as follows: Section 3.1 explains in more

details how flushing and chlorine injection can improve water quality as well as their

synergistic effect in water age given certain assumptions. Section 3.2 presents two

problem formulations with different chlorine control strategies. In Section 3.3, we

explain the solution methods used for solving multiple problem instances. Section 3.4

presents and discusses the numerical examples for problems instances with different

cost ratio parameters. Lastly, Section 3.5 concludes this chapter with a summary of

contributions and future research directions.

3.1 Water Quality Control via Flushing and Chlorine Injection

We have shown flushing control can be effective in improving water quality and

developed proactive optimal flushing schedule for water age control in Chapter 2. In

this section, we explain how to model the synergistic impact of flushing and chlorine

injection on water age in the problem of water age control.

Flushing is suggested by many researchers for water quality improvement (Laut-

enschlager et al., 2010; Bédard et al., 2018; Proctor et al., 2020; Hozalski et al., 2020;

Islam et al., 2017). The relationship between flushing and water age can be approxi-
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Figure 3.1: A City Water Distribution Network for Flushing and Chlorine Injection

Controls

mated using methods mentioned in Section 2.1. In this chapter, we continue to use the

city water distribution network (Figure 3.1) for the case study to modeling, analysis

and evaluation of our developed approaches. Now we model the relationship between

flushing and water age with the Lasso regression approach studied in Section 2.1.4.

We end up with a set of linear models that use current and past water demands,

flushing controls and water ages as inputs and outputs “water age” quality at next

time step.

Mala-Jetmarova et al. (2017) summarized that 74% of their reviewed optimiza-

tion models uses one or two types of decision variables (for control actions). It is a
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challenge to include multiple different control actions in the problem formulation due

to their synergistic effects on water quality, and the resulting constraints are usually

nonlinear. In our formulation of both flushing and chlorine injection controls, we

made a reasonable assumption on the relationship of water age and chlorine injec-

tion: when certain amount of chlorine is injected to the system, the water age at that

location will become zero after a delay of one time step. With this assumption, the

relationship between water age, flushing control and chlorine injection control can be

modeled approximately as:

xi,t+1 = f(x·,t, x·,t−1, u·,t, u·,t−1, d·,t, d·,t−1)× (1− yi,t) 1 ≤ t ≤ T − 1, i ∈ S (3.1)

where xi,t+1 represents water age at location i at time step t+ 1,

f(x·,t, x·,t−1, u·,t, u·,t−1, d·,t, d·,t−1) represents the fitted Lasso regression models with

current time’s (i.e., using variables indexed with t) and previous time’s (i.e., using

variables indexed with t − 1) water age x·,·, flushing control u·,· and water demand

d·,·, yi,t represents the chlorine injection at location i at time step t.

Variable yi,t in equation (3.1) can be binary or continuous depending on the actual

chlorine injection control. If chlorine injection is an on/off control, then yi,t will be

binary. Then according to our assumption, Equation (3.1) becomes xi,t+1 = 0, which

makes water age at time step t+1 to be zero, when yi,t = 1. On the other hand, when

yi,t = 0, equation (3.1) becomes xi,t+1 = f(x·,t, x·,t−1, u·,t, u·,t−1, d·,t, d·,t−1), meaning

water age at location i at time step t+ 1 will use the prediction value from the Lasso

model. If chlorine injection is continuous between zero and a maximum amount, then

variable yi,t will be continuous between 0 and 1, i.e., yi,t ∈ [0, 1]. In such case, water

age at location i at time step t+ 1 will be a fraction (1− yi,t) of the prediction value

from the Lasso model represented by function f(·) in equation (3.1).

Considering chlorine injection is not very common at consumer demand locations,
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we also included a fixed cost for the installation of required devices (e.g., chlorine

booster equipment). This will generate extra constraints, i.e., chlorine injection is

only allowed after the required device has been installed at a specific location.

3.2 Model Formulation for Two Different Control Strategies

Two different model formulations based on two different control strategies are

developed in this section. Both control strategies apply both flushing and chlorine

injection as the control actions. The difference is how chlorine is injected. The first

control strategy contains continuous flushing and binary chlorine injection, while the

second one consists of continuous flushing combined and continuous chlorine injection.

3.2.1 Continuous Flushing and Binary Chlorine Injection

The control strategy in this section is continuous flushing and binary chlorine

injection. We assume there is a fixed cost associated with installing the chlorine

booster equipment at the demand location, and there is also an operational cost of

chlorine injection. We use two ratios γ and β to model the equipment installation cost

and injection cost relative to flushing. We also assume there is some delay for chlorine

to be effective after injection; we set such delay to be one time step (one hour) in our

example formulation although it is simple to use another time. The set of chlorine

injection locations may not necessarily be the same as flushing locations. As the

overall goal is to achieve the optimal control of water age through both flushing and

chlorine injection, we can identify some locations with very high water age (meaning

stagnating water) and consider only those locations for potential chlorine injection.

Same as in Chapter 2, we use ui,t to denote the amount of water to be flushed

at location i at time t, and xi,t to denote the water age at location i at time t. The

full definition of all parameters, indexes and decision variables are summarized in

57



Table 3.1.

The objective function is the total cost, which includes cost of flushing, operational

cost of chlorine injection and fixed cost of chlorine booster installation. The full

formulation for binary chlorine injection is given below.

min Σn
i=1Σ

T
t=1ui,t + βΣi∈SΣT

t=1yi,t + γΣi∈Szi (3.2)

subject to

xi,t+1 = f(x·,t, x·,t−1, u·,t, u·,t−1, d·,t, d·,t−1)× (1− yi,t) 1 ≤ t ≤ T − 1, i ∈ S (3.3)

xi,t+1 = f(x·,t, x·,t−1, u·,t, u·,t−1, d·,t, d·,t−1) 1 ≤ t ≤ T − 1, i /∈ S (3.4)

yi,t ≤ zi t ≥ 1, i ∈ S (3.5)

P (xi,t ≤ al) ≥ 1− α t ≥ 2,∀i (3.6)

ui,t ≤ ul t ≥ 1,∀i (3.7)

xi,t = a0 t = 0, 1,∀i (3.8)

ui,t ∈ R+, xi,t ∈ R+ ∀i,∀t (3.9)

yi,t ∈ {0, 1}, zi ∈ {0, 1} i ∈ S,∀t (3.10)

where x·,t in constraints (3.3) and (3.4) represents all x1,t, x2,t, ..., xn,t, and the same

logic applies to notations u·,t and d·,t. Function f(·) is the set of Lasso regression

models for water age prediction developed in Section 2.1.4.

Constraints (3.3) model water age transition at locations where chlorine booster

could be potentially installed, where S denotes the set of potential locations for

chlorine booster installations; S could be the whole set of demand location or just a

subset of them. If chlorine is injected at location i at time step t (i.e., yi,t = 1), then

xi,t+1 = 0 meaning water age at the same location at time step t+1 becomes zero due

to chlorine injection. Otherwise, water age is restricted to follow the prediction from
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Table 3.1: Definition of Parameters, Indexes and Variables for the Optimal Water

Age Control Formulation with Continuous Flushing and Binary Chlorine Injection

Parameters/Indexes Definition

n total number of demand locations

T duration of simulation

i index for location, i ∈ {1, 2, ..., n}

t index for time, t ∈ {0, 1, 2, ...T}

S set of chlorine injection locations

α the parameter used in the chance constraint to control the

confidence level

β cost of chlorine injection relative to flushing

γ cost of chlorine booster installation relative to flushing

di,t water demand at location i at time step t

al universal water age limit for al times and locations

a0 initial water age for time steps 0 and 1 (using one parameter

for simplicity)

ul flushing limit (can vary for different times and locations)

Variables Definition

ui,t amount of water to be flushed at location i at time t, ui,t ∈

R+

xi,t water age at location i at time t, xi,t ∈ R+

yi,t indicator variable, whether to inject chlorine at location i

at time step t, i ∈ S, t ≥ 1, yi,t ∈ {0, 1}

zi indicator variable, whether to install a chlorine booster at

location i, i ∈ S, zi ∈ {0, 1}
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the Lasso model, same as what is indicated in constraint (3.4) for locations where

there are no chlorine boosters. Constraint (3.5) indicates chlorine injection is only

allowed when the booster equipment is installed at that location. Constraint (3.6)

is the same chance constraint for water age limit as in Section 2.2.2. In solving the

problem instances, we will use the equivalent constrain (2.19). Constraint (3.7) limits

the maximum flushing. Constraint (3.8) is the initial condition for water age at time

steps 0 and 1. Constraints (3.9) and (3.10) define the domain for possible values of

decision/control variables.

Note that functions f(·) represent the Lasso models from Section 2.1.4 and each

one is a linear function of xi,t, ui,t and di,t, and therefore constraint (3.3) is quadratic.

Thus, objective function (3.2) along with constraints (3.3) - (3.10) forms a mixed

integer quadratically constrained program (MIQCP).

3.2.2 Continuous Flushing and Continuous Chlorine Injection

In this section, a different chlorine injection strategy is addressed. Unlike in

Section 3.2.1, the chlorine injection in this section can be continuous between zero to

a maximum amount. Thus variable yi,t becomes a continuous value between 0 and

1. Objective function and all constraints except the possible values for yi,t stay the

same. For completeness and better reading experience, the full problem formulation

with this change is presented again.

Firstly Table 3.2 summarizes the parameters, indexes and variables used in the

model formulation.
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Table 3.2: Definition of Parameters, Indexes and Variables for the Optimal Water Age

Control Formulation with Continuous Flushing and Continuous Chlorine Injection

Parameters/Indexes Definition

n total number of demand locations

T duration of simulation

i index for location, i ∈ {1, 2, ..., n}

t index for time, t ∈ {0, 1, 2, ...T}

S set of chlorine injection locations

α the parameter used in the chance constraint to control the

confidence level

β cost of chlorine injection relative to flushing

γ cost of chlorine booster installation relative to flushing

di,t water demand at location i at time step t

al universal water age limit for al times and locations

a0 initial water age for time steps 0 and 1 (using one parameter

for simplicity)

ul flushing limit (can vary for different times and locations)

Variables Definition

ui,t amount of water to be flushed at location i at time t, ui,t ∈

R+

xi,t water age at location i at time t, xi,t ∈ R+

yi,t chlorine injection variable, as a fraction of the maximum

amount at location i at time step t, i ∈ S, t ≥ 1, yi,t ∈ [0, 1]

zi indicator variable, whether to install a chlorine booster at

location i, i ∈ S, zi ∈ {0, 1}
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Now the full problem formulation for continuous flushing and continuous chlorine

injection is:

min Σn
i=1Σ

T
t=1ui,t + βΣi∈SΣT

t=1yi,t + γΣi∈Szi (3.11)

subject to

xi,t+1 = f(x·,t, x·,t−1, u·,t, u·,t−1, d·,t, d·,t−1)× (1− yi,t) 1 ≤ t ≤ T − 1, i ∈ S (3.12)

xi,t+1 = f(x·,t, x·,t−1, u·,t, u·,t−1, d·,t, d·,t−1) 1 ≤ t ≤ T − 1, i /∈ S (3.13)

yi,t ≤ zi t ≥ 1, i ∈ S (3.14)

P (xi,t ≤ al) ≥ 1− α t ≥ 2,∀i (3.15)

ui,t ≤ ul t ≥ 1,∀i (3.16)

xi,t = a0 t = 0, 1,∀i (3.17)

ui,t ∈ R+, xi,t ∈ R+ ∀i,∀t (3.18)

yi,t ∈ [0, 1], zi ∈ {0, 1} i ∈ S,∀t (3.19)

The meaning of all constraints are same as those explained in Section 3.2.1.

3.3 Solution Methods

Mixed integer quadratically constrained programs are usually handled by cutting

planes and other integer programming methods. When solving problem instances

with different cost ratios parameters in next section, we used the Gurobi solver. The

solution process by Gurobi in solving our problem instances is a branch-and-bound

algorithm combined with various cutting planes methods including mixed integer

rounding (MIR) cuts, flow cover cuts, relaxation linearization technique (RLT) cuts,

lift-and-relax cuts, etc.

The branch-and-bound algorithm iteratively relaxes the restriction on integer vari-

ables, and solved the relaxed problem with all continuous variables. The solution of
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the relaxed problem serves as lower or upper bound to the original problem. The

process repeats the branch-and-bound logic until the solution gap reaches zero (the

solution is optimal), or early stops when reaching the time limit. Within the branch-

and-bound process, the branch can be pruned when the solution is inferior than the

best known solution, or when the branch becomes infeasible.

The quadratic constraint can be temporally replaced with appropriate cuts, i.e., a

set of linear equations representing hyper-planes in high dimensional space (thus the

name cutting plane methods).

The MIR cuts are based on the simple principle that if a ≤ b and a is an integer,

then a ≤ bbc, where bbc represents the largest integer less than or equal to b (Osiadacz,

1990). The MIR cuts generates new valid inequalities by rounding the coefficients

according to this principle.

The RLT cuts generate new valid inequalities by using relaxation variables to

linearize intermediate nonlinear constraints. Many of the cutting plane methods

implemented by Gurobi combine simple principals to be more efficient.

3.4 Numerical Experiments

Problem instances of the formulations in Section 3.2 with different cost ratios γ

and β were solved using the Gurobi solver on the ASU research computing cluster.

The evaluation metrics of all addressed problem instances are shown in Table 3.3.

From Table 3.3, we can notice that in Scenario 1 when chlorine control (installation

and injection) costs (1000 and 200) are very large, the total cost is exactly same as

that of flushing only control (Table 2.5, al = 10), and the solution is also the same,

meaning chlorine controls (installation and injection) are not triggered at all due to

their large cost. The chlorine cost for Scenario 2 is probably still too large to trigger

the chlorine controls, given that the total cost is still same as that of flushing only
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Table 3.3: Numerical Experiments with Different Cost Ratio Parameters

Scenario Installation

Cost γ

Injection

Cost β

Chlorine

Injection

Run

Time

Total

Cost

Optimality

Gap

1 1000 200 Binary 412s 8655.0 0%

2 1000 100 Binary 10h 8655.0 11.1%

3 1000 20 Binary 10h 5180.8 16.6%

4 1000 10 Binary 10h 4120.8 6.12%

5 100 2 Binary 10h 905.6 19.6%

6 100 2 Binary 20h 905.6 16.0%

7 100 2 Binary 30h 905.6 15.4%

8 1000 10 Continuous 20h 3411.0 2.67%

control after 10 hours (CPU time) solving. As the cost of chlorine control is reduced

in Scenarios 3 to 5, near optimal solution where chlorine injections are triggered starts

to appear. In the solution of Scenario 4, the controls are a mix of flushing and chlorine

injection. More details are provided below. Scenarios 5 to 7 represent the case when

the chlorine control cost is relatively low compared with flushing cost; in this case,

most chlorine injections are triggered. From Scenario 5 to Scenario 7 we can notice

that the total cost stays the same even when the time limit for the solution process

is increased from 10 hours to 30 hours, and we expect the bound will keep increasing

and thus reducing the optimality gap if it is given more run time. We will show later

that the control in this solution is mainly chlorine injections. Scenario 8 is a problem

instance for continuous flushing and continuous chlorine injection. The comparison

of Scenario 4 and Scenario 8 is discussed later.

Figure 3.2 shows the chlorine booster installation decisions, and Figure 3.3 shows
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Figure 3.2: Scenario 4: Decisions on Chlorine Booster Installations

the chlorine injection decisions for Scenario 4. Chlorine booster is installed only at

location 34 and 36 (out of 5 potential locations), and chlorine is injected at both

locations for all times except the first hour. Figure 3.4 shows the flushing schedule

at all locations. Note that flushing has been significantly reduced due to chlorine

injections (comparing Figure 3.4 with Figure 2.21), flushing is mainly triggered at

location 7, location 12 and location 15.

The chlorine controls (chlorine booster installations and chlorine injections) in

Scenario 5 are shown in Figure 3.5 and Figure 3.6. The flushing schedules at different

locations for Scenario 5 are shown in Figure 3.7, respectively. And we can notice that

only a small amount of flushing is triggered at location 14 (Figure 3.7), one of the

key locations identified in Section 2.2.4. And chlorine booster is installed at 4 out of

5 potential locations (Figure 3.5). Chlorine injection is triggered at almost all times

once the chlorine booster is installed (Figure 3.6).

In Scenario 8, the chlorine injection is continuous between zero and a maximum

amount. Compared with Scenario 4, all other parameters are the same. We can

notice that continuous chlorine injection has a lower cost, and a smaller solution

gap. This result makes sense because with continuous chlorine injection, the problem

has a larger feasible region, therefore a better solution can possibly be found. The
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Figure 3.3: Scenario 4: Decisions on Chlorine Injections over Time

chlorine booster locations are same as Scenario 4, only location 34 and location 36 are

selected. Another observation is that chlorine injection amount is saved by about half

(comparing Figure 3.9 with Figure 3.3), and the amount of flushed water is slightly

saved (comparing Figure 3.10 with Figure 3.4).

3.5 Conclusions

Flushing and adding disinfectants are two common and effective water quality

control actions. However, their synergistic impacts on water quality makes the opti-

mal control of water quality from these coupled control actions challenging. We have

developed two MIQCP-based optimal control models that includes both flushing and

chlorine injections. The first model assumes continuous flushing and binary chlorine

injections; the second model assumes continuous flushing and continuous chlorine in-
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Figure 3.4: Scenario 4: Flushing Controls over Time at Different Locations
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Figure 3.4: Scenario 4: Flushing Controls over Time at Different Locations (Contin-

ued)
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Figure 3.5: Scenario 5: Decisions on Chlorine Booster Installations

jections. Problem instances with different cost ratio parameters are solved using the

Gurobi solver for mathematical programming. We obtained meaningful insights from

the computational results. The inclusion of chlorine injection control can reduce the

total control cost when compared with flushing-only control, and continuous chlorine

injections can further reduce the total cost, saving about half of the chlorine control

cost, when compared with binary chlorine injection controls.

In this chapter, a set of potential chlorine control locations were identified by

observing locations with high water age due to local stagnation. A future research

direction could be to develop a systematic method for identifying candidate loca-

tions for chlorine injection controls. In our formulations, the injected chlorine at one

location only affects “water age” at other locations later in time by the water age pre-

diction model. Another future research direction could be on setting up a coverage

range of instantaneous impact for the injected chlorine, and explicitly incorporating

a chlorine decay model in formulating the optimal control problem.
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Figure 3.6: Scenario 5: Decisions on Chlorine Injections over Time
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Figure 3.7: Scenario 5: Flushing Controls over Time at Different Locations
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Figure 3.7: Scenario 5: Flushing Controls over Time at Different Locations (Contin-

ued)

72



Figure 3.8: Scenario 8: Decisions on Chlorine Booster Installations

Figure 3.9: Scenario 8: Decisions on Chlorine Injections over Time

73



Figure 3.10: Scenario 8: Flushing Controls over Time at Different Locations

74



Figure 3.10: Scenario 8: Flushing Controls over Time at Different Locations (Con-

tinued)
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Chapter 4

OPTIMAL CONTROL OF WATER QUALITY WITH STOCHASTIC DEMAND

In the previous chapters, future water demand is assumed to be known and deter-

ministic. This assumption is reasonable when there is a long history data for water

demand that is quite steady with little or no fluctuations. However, realistically, in

many scenarios, fluctuations in water demand over space and time may need it to be

modeled as being stochastic.

Water demand in a water distribution system varies throughout the day, it also

varies from day to day, as people do not perform water-consuming activities at the

same time of every day, nor do they perform the same activities from day to day. For

example, water usage in university buildings is generally higher during weekdays than

during weekends. Also, water usage in office buildings in the daytime is significantly

higher than in the nighttime. In fact, Alcocer-Yamanaka et al. (2012) have pointed

out that residential water demand is sporadic and characterized by sudden demand

pulses. For water distribution systems with such varying demand, it is necessary

to model the demand as stochastic and develop a robust control policy to maintain

water quality throughout the system and at all times. Although methods in previous

chapters still apply with demand prediction models, they highly depend on the quality

of the prediction, and would be less effective for such water distribution systems with

highly fluctuating water demand. A more robust and systematic control method is

needed for better water quality control under stochastic for uncertain demand.

This chapter focuses on the optimal control of water quality (water age) with

uncertain and stochastic demand. The research work in this chapter takes a differ-

ent perspective than previous chapters in terms of the prediction and modeling the
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optimal control. The optimal control problem is modeled using the reinforcement

learning based framework, and an optimal policy that is generated through learning

from data can recommend real-time control decisions.

The structure of this chapter is organized as follows. Section 4.1 gives more details

about the research problem. In Section 4.2, related work in the literature is summa-

rized. The complete problem formulation for optimal water age control via flushing is

developed in Section 4.3. In Section 4.4, main solution methodologies are discussed.

A complete algorithm combining SARSA temporal-difference learning (SARSA is fur-

ther explained in Section 4.4.1) with linear function approximation for deriving the

optimal control policy is presented in that section. Then, Section 4.5 presents the

results of different experiments with different hyper-parameters and different update

rules in learning. Lastly, Section 4.6 summarizes the research contributions of this

Chapter and provides potential future research directions.

4.1 Dynamic Optimal Control Problem Description

In Chapter 2 and Chapter 3, we discussed the formulation and optimal control of

water quality in water distribution systems with assumed deterministic and known

demand. We will relax this assumption on water demand in this chapter and focus

on the modeling of optimal control of water quality with uncertain stochastic water

demand.

As in previous chapters, water age is used as water quality indicator, and flushing

is the primary control action. The difference is that water demand is no longer

deterministic, it is stochastic and future demand is uncertain. The goal is to model

the optimal control of water age with such demand, and then derives the optimal

control policy that can help real-time decision making for the flushing control.

Water distribution systems with stochastic water demand can be modeled as finite
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Markov Decision Processes (MDP) with states representing the water quality (e.g.,

water age) at different locations. Standard MDP problems require a probability

function,

p(s′, r|s, a) = Pr(St = s′, Rt = r|St−1 = s, At−1 = a) ∀s′, s ∈ S, a ∈ A(s) (4.1)

to describe the dynamics of the MDP. Equation (4.1) defines the probability of system

reaching state s′ generating reward r when taking action a in state s. However, the

states (water age, chlorine concentration, etc.) of water distribution systems are usu-

ally of continuous values, it is almost impossible to derive a probability function like

(4.1). The challenge is how to model the MDP dynamics if such probability functions

cannot be derived. Model-free methods like Q-learning in reinforcement learning do

not require complete knowledge of the probability function representing the MDP

dynamics, and can be potentially helpful in modeling and solving the optimal control

problem.

Another challenge we are faced with in controlling water distribution systems

is that the system states are usually described with continuous values. The prob-

lem can be converted to one with discrete states after discretization (Yoo and Kim,

2016; Castelletti et al., 2010; Lee and Labadie, 2007). However, the resolution of

discretization is hard to determine. Also, when the state vector is high dimensional,

discretization will generate an enormous amount of states which makes the optimal

control problem intractable. In order to avoid the dilemma of using discretization,

parameterized methods that can deal with continuous state directly are considered

in Section 4.4.3.
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4.2 Related Work

The optimal control of water distribution systems has been studied by many re-

searchers. Many of them have focused on the controlling of reservoir/pump operations

of complex water distribution systems (Castelletti et al., 2010; Lee and Labadie, 2007;

Castelletti et al., 2014; Bhattacharya et al., 2003). Wang and Hong (2020) reported

that 12% of the 77 studies on building controls they have reviewed are on domestic

hot water control (Ruelens et al., 2014; De Somer et al., 2017). Many of the rein-

forcement learning approaches use deep neural networks in approximating the value

function (Wu et al., 2015b; Mocanu et al., 2018; Zhang et al., 2018). Deep neural

networks can achieve high accuracy in the value function approximation in these op-

timal control problems, but the complicated network structure makes it different to

interpret their predictions.

When water distribution systems are modeled as MDPs, if the probability function

of the underlying MDP dynamics can be derived, then dynamic programming (DP)

can be used to solve the optimal control problem. In cases where the MDP dynamics

cannot be derived, especially in systems with uncertain demand, the optimization

problem is usually solved using approximation methods. Here we will use the method

called approximate dynamic programming (ADP). In ADP approaches, any supervised

learning methods can be used to approximate the value function (Sutton and Barto,

2018), for example, regression tree based approach (Castelletti et al., 2010), support

vector regression (Shin et al., 2010), and linear models with Fourier basis (Konidaris

et al., 2011).

ADP approaches, or reinforcement learning are becoming increasingly utilized in

the stochastic optimal control, and various implementations have been established by

different researchers in solving such optimization problems. This is also true in the
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control of water distribution systems. However, to our knowledge, there is not yet

much literature on modeling the optimal control of water age in water distribution

systems, especially with flushing controls. Our main contribution in this chapter is the

development of a complete optimal flushing control model using ADP. Computational

results from our successful implementation of our solution algorithm show that the

learned policy for flushing is very effective.

4.3 Water Quality Control Model Based on Reinforcement Learning

4.3.1 Key Concepts

Reinforcement learning methods are suitable for the optimal control of systems

that can be modeled as Markov decision processes. They iteratively learn what to

do in different situations and derive the optimal control policy (see Sutton and Barto

(2018) for a more comprehensive introduction). Some of the key concepts are briefly

explained below.

Markov decision processes (MDP) are discrete time stochastic control processes.

A MDP is usually represented by a four-tuple (S,A, P,R), where

� S is the state space (a set of possible states),

� A is the action space (a set of possible actions),

� P : S ×A× S → [0, 1] is the state transition probability map, and P (s, a, s′) =

Pr(st+1 = s′|st = s, at = a) is the probability of ending in state s′ at t+ 1 when

taking action at at time t,

� R : S × A × S → R is the reward map, and R(s, a, s′) represents the reward

generated after taking action a at time t and reaching state s′.
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If a MDP has a finite number of forward time steps, it is called a finite horizon

MDP. The water quality control problem we consider in this chapter is based on a

finite horizon MDP.

A policy π is a mapping function of the state-action pair (s, a); it defines the

probability of taking action a given state s, that is,

π(a|s) = P (at = a|st = s) (4.2)

In our water age control problem, the policy gives us the probability of taking each

action (flushing control) given a state (water age) of the water distribution system.

The reward Rt comes from the goal of the control task, and reinforcement learning

methods usually try to maximize the expected total reward Gt,

Gt = ΣT
i=1Rt+i (4.3)

There could be a discounting factor for rewards in future time steps, but we did not

consider discounting in our problem since our finite horizon was not long. Our goal

is to control the water distribution system with minimum cost over the given finite

horizon; in our case, the reward is the negative cost (maximizing the expected total

reward is equivalent to minimizing the expected total cost).

Value function vπ(s) associated with a policy π for a state s is defined as the ex-

pected total reward over all future time steps when starting from state s and following

policy π afterwards, that is,

vπ(s) = Eπ(Gt|St = s) (4.4)

Similarly, the action-value function qπ(s, a) is the value function for state-action pair

(s, a), and is defined as the expected total reward over all future time steps when

taking action a in state s and following policy π afterwards,

qπ(s, a) = Eπ(Gt|St = s, At = a) (4.5)
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Figure 4.1: The Water Distribution Network for a City

Value functions are key to solve the stochastic optimal control problem, but they

cannot be solved exactly using DP methods due to computation complexity. Instead,

they are often approximated with different approaches.

4.3.2 Complete Formulation of the Optimal Control Problem

We will continue to use the city water distribution network (Figure 4.1) case for

the model evaluation in this section.

This city water distribution network contains one reservoir node (labeled as Sta-

tion in the network). The reservoir node supplies water to the system, connected to

other nodes with a pump to provide enough pressure. The model assumes a finite
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(a) The Mode of Random Water Demand at

Node 12 Over Time

(b) The Probability Density Function of

Water Demand at Node 12 at Hour 20

Figure 4.2: Modeling the Random Water Demand at Node 12

horizon of 55 hours. There are 32 nodes in the system representing different locations

for consuming water, plus nodes 1, 28 and 35 which are just connection nodes with

no water consumption (i.e., the demand is zero). All the consumption locations have

a stochastic demand, and the demand distribution could be different for every hour.

To model the demand at each location at each hour, the demand distribution in our

case study is assumed to have a triangular distribution, where the minimum is 50%

of its mode value and the maximum is 120% of its mode value (the users of this

method could have any distribution for their problem). Figure 4.2 uses node 12 as

an example to show what the random demand looks like. The mode of the stochastic

demand at node 12 for all 55 hours are shown in Figure 4.2a, and Figure 4.2b shows

the (simulated) probability density function of demand at node 12 at hour 20. Same

as previous chapters, water quality is measured in terms of water age in hours. The

water age at all locations with consumption demand are used as system states. The

potential flushing control locations are identified using results from previous chapters,

and are circled in red color in Figure 4.1. The associated EPANET simulation model

is used to simulate the real water distribution system.
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The parameters and variables used in the model formulation are summarized in

Table 4.1.

Then the goal is to find a solution to the below optimization problem:

max
π
{qπ(s, a) = Eπ[Gt|St = s, At = a]} (4.6)

subject to

St ≤ Sl ∀1 ≤ t ≤ T (4.7)

St+1 = f(St, At) ∀0 ≤ t < T (4.8)

where Gt = Rt+1 + Rt+2 + ... + RT , Rt is the reward (negative cost) at time step t.

The system starts from S0 and follows the sequence A0, R1, S1, A1, R2, S2, A2, S3, ...

under a policy π, and f(·) represents the unknown system dynamics, the expectation

Eπ(·) is performed over the state distribution generated by the stochastic demand

and control action (from using policy π).

The water age limit constraint (4.7) is eventually relaxed and added to the objec-

tive function with a Lagrangian penalty multiplier β, i.e.,

Rt = −Cf
t − C

p
t = −Σi∈NaAi,t − βΣi∈Ns max(Sl − Si,t, 0) (4.9)

where Cf
t denotes the flushing cost, Cp

t denotes the penalty cost, β is the penalty cost

ratio.

4.4 Solution Methods

Reinforcement learning problems are typically solved in an iterative way by inter-

acting with the system in an online fashion. There are two main steps, value function

evaluation and policy improvement. The value function evaluation step tries to ap-

proximate the value function of a policy, then the policy improvement step greedily

84



Table 4.1: Definition of Parameters and Variables in the Formulation of Optimal

Flushing Control with Stochastic Demand

Parameters Definition

T the duration of system operation, i.e., final time step

t index for time step, t ∈ {0, 1, 2, ...T}

Sl the limit of system state (water age)

Ns the set of locations to measure system states

Na the set of locations for flushing controls

β penalty cost ratio for water age limit violation

Variables Definition

St the system state vector at time t for all locations in Ns, St ∈ R+

At the control action vector at time t for all controlled locations in Na,

i.e., whether to trigger flushing for each controlled location at time

t, At ∈ B

Rt the reward (negative cost) at time t

Gt total reward starting from time t till the end of operation T

π a control policy, it maps the state-action pair to a probability, i.e.,

π(a|s) ∈ [0, 1]

qπ(s, a) the action-value function associated with a policy π, defined as the

total expected reward Gt starting from state s and taking action a at

time t and following policy π afterwards, i.e., qπ(s, a) = Eπ(Gt|St =

s, At = a), and t is any time step
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Figure 4.3: The General Process for Reinforcement Learning Approaches

selects the best action associated with each state. These two steps are performed

iteratively, the process stops when the convergence is achieved, as illustrated by Fig-

ure 4.3.

The Bellman optimality equation is the foundation for reinforcement learning

methods, and the iterative methods for solving the optimal control policy is based

on Bellman’s optimality equation. The Bellman optimality equation for the optimal

action-value function q∗(s, a) is

q∗(s, a) = E(Rt+1 + max
a′

q∗(St+1, a
′)) ∀s, a ∈ A(s) (4.10)

where s denotes current system state at time t, A(s) is the set of possible actions that

can be taken given current system state s at time t, a ∈ A(s) is the actual action

that may be taken at time t, St+1 is the system state (that has a stochastic property

due to uncertain input to the system) at time t + 1 after taking action a, Rt+1 is

the reward generated at time t + 1, the expectation E is performed over all possible

values of state St+1.
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Note that in equation (4.10), the action-value function is specified for each state-

action pair (s, a). However, water age and other water quality metrics in the water

distribution system have continuous values. Enumerating all its values and storing

the expected total reward for each possible value of the state-action is not realistic. A

more efficient way to estimate the action-value function is needed, so that the value

function for unseen states can be predicted. We will develop a weighted iterative

online learning approach combined with value function approximation in Section 4.4.3.

We first explain two fundamental weighted iterative methods based on equa-

tion (4.10) in the following sections, then explain the value function approximation

we have used in the case study.

4.4.1 SARSA: On-policy Temporal-Difference Learning Control

Temporal-difference (TD) learning combines the ideas of Monte Carlo and dy-

namic programming (DP). It uses previous experiences like Monte Carlo methods,

and updates estimates using other learned estimates like DP (Sutton and Barto,

2018). Each experience is a sequence of St, At, Rt+1, St+1, At+1, ..., generated when

control actions are applied at different time steps. SARSA algorithm updates Q(s, a)

at every time step t using this tuple (St, At, Rt+1, St+1, At+1) (and hence the name

SARSA). The action-value function Q(s, a) is updated in SARSA as follows:

Q(St, At)← (1− α)Q(St, At) + α[Rt+1 +Q(St+1, At+1)] (4.11)

where Rt+1+Q(St+1, At+1) is the new estimated value for Q(St, At). That is, Q(St, At)

is updated by a weighted average of its old estimate (with weight 1−α) and the new

estimate (with weigh α). The process generally converges faster when the weight α

(often called step size) decreases over time.

SARSA is called “on-policy” TD learning because the policy it is optimizing is
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also used to make explorations and learning. When the method does not concurrently

update the policy and learn using the policy, then it is called an “off-policy” method.

Q-learning is an off-policy TD learning control which we will discuss next.

4.4.2 Q-learning: Off-policy Temporal-Difference Learning Control

Q-learning (Watkins, 1989) algorithm is similar to SARSA, but unlike SARSA

using all elements of the tuple (St, At, Rt+1, St+1, At+1) in the update, it does not

need the second action At+1. Instead, it selects the best value of state St+1, and

uses Rt+1 + maxaQ(St+1, a) as the new estimate. The complete update rule is shown

below.

Q(St, At)← (1− α)Q(St, At) + α[Rt+1 + max
a
Q(St+1, a)] (4.12)

Note the similarity and difference between (4.11) and (4.12). The difference lies

in the new estimate, one is using Q(St+1, At+1), the other is using maxaQ(St+1, a).

4.4.3 Value Function Approximation

In TD learning methods, when the state space is discrete, SARSA and Q-learning

can be applied directly. But for continuous state, saving the expected total reward

for every state-action pair after discretization in large tables is not computationally

efficient, especially with high dimensional states. Parameterized methods are more

promising in approximating the value function, as they do not have to save the numer-

ical value of the value function for each state-action pair (s, a). Instead the method

builds a parameterized model to fit the value function for all (s, a). Another advan-

tage with parameterized methods is they can make predictions for the needed value

function in the update (4.11) or (4.12) when the state has not been experienced.

We eventually used weighted linear models with approximate radial basis function
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(RBF) kernels to estimate the action-value function qπ(s, a).

A kernel is a transformation function that calculates the similarity of two states

in the transformed space using original attributes. The RBF kernel is defined as

K(x,x′) = e−
‖x−x′‖2

2σ2 (4.13)

We did not use the RBF kernel directly in the value function approximation,

instead, a kernel approximation method called RBFSampler from the Python scikit-

learn package (Pedregosa et al., 2011) was used to build features. RBFSampler ap-

proximates the feature map of an RBF kernel by Monte Carlo approximation of its

Fourier transform. The RBFSampler in the scikit-learn package implements a variant

of Random Kitchen Sinks by Rahimi and Recht (2008).

The linear models with approximate radial basis function (RBF) kernels for action-

value function approximation can be abstractly expresses as:

q̂(s, a,w) = wTΦ(s, a) = Σd
i=1wiΦi(s, a) (4.14)

where Φ(s, a) represents the approximate RBF kernels coming from the RBFSampler

method, d is total approximate RBF kernels used, w is the coefficients of the linear

model (linear in terms of Φ(s, a)).

Because an approximation for the action-value function is used, and it is charac-

terized by its coefficients w, updating q̂(s, a,w) is equivalent to updating w. The

update of w in the SARSA TD learning control using stochastic gradient descent

approach is as follows,

wt+1 ← wt + α[Rt+1 + wT
t Φ(St+1, At+1)−wT

t Φ(St, At)]Φ(St, At) (4.15)

The framework of learning based control process is presented in the schematic

diagram of Figure 4.4. The whole process is repeated in a loop, by continuously
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Figure 4.4: The Diagram for Real-time Learning-based Optimal Control Process with

Value Function Approximation

observing new states from the system, approximating their value functions using

a linear model, updating existing value function estimates using new data, taking

action, and observing states... until reaching the end of the operation horizon.

The complete SARSA TD learning control algorithm with linear value function

approximation using approximate RBF kernels is given in Figure 4.5.

4.5 Experiments and Results

The complete method was successfully implemented with Python code, and was

run for different experiments with different parameters. The settings for all experi-

ments are summarized in Table 4.2.

The total reward (negative cost) over episodes/simulations for Experiments 2 to
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Figure 4.5: The SARSA TD Learning Control Algorithm with Linearly Weighted

Value Function Approximation Using Approximate RBF Kernels
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Table 4.2: Parameter Settings for Different Reinforcement Learning Experiments

Experiment

#

Update

Rule

# of Approx

RBF Kernels

Penalty

Cost β

Total

Episodes

1 Q-learning 5 100 1000

2 Q-learning 5 100 2000

3 SARSA 5 100 2000

4 SARSA 5 20 2000

5 SARSA 5 10 2000

6 SARSA 5 2 2000

7 SARSA 5 10 1000

8 SARSA 4 10 1000

8 are shown in Figures 4.6 to 4.12.

The trend of total reward over episodes in Experiment 2 (Figure 4.6) is not re-

ally converging. This experiment applied value function approximation, bootstraping

(updating value function estimates using existing estimates) and off-policy training.

Sutton and Barto (2018) have pointed out that these three elements (which they re-

ferred to as the deadly triad) could cause divergence when used together. This might

explain why the result of Experiment 2 did not converge after 2000 episodes.

Comparing Experiment 2 and Experiment 3 (Figure 4.6 vs Figure 4.7), we can

notice the result is improved a lot by replacing Q-learning update rule (4.12) with

SARSA update rule (4.11). This comparison once again verifies the statement about

the deadly triad by Sutton and Barto (2018).

In Experiments 3 to 6, different penalty cost β was used to see how it affects

the learning result. By comparing Figure 4.7 to Figure 4.10, we can find that the
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Figure 4.6: Experiment 2: Total Reward (Negative Cost) over Episodes (Simulations)

convergence is reached earlier in the latter cases. In Figure 4.7 with β = 100, the

convergence trend is still not very obvious. In Figure 4.8 with β = 20, it is starting

to fluctuate in a much smaller range after about 1000 episodes. In Figure 4.9 with

β = 10, the convergence is reached after about 600 episodes. In Figure 4.10 with

β = 2, the total reward quickly converges after about 500 episodes.

Experiment 7 and Experiment 8 are implemented to see the impact of number of

RBFSamplers used in the linear model. The results (Figure 4.11 vs Figure 4.12) are

very similar, with Figure 4.12 showing slightly better convergence. We can conclude

that in our problem setting, 4 or 5 RBFSamplers do not make a difference. But

the features used in the linear models to approximate the value function are surely

important, and they affect the prediction accuracy directly.

After these experiments were done, the policy derived through learning using

the algorithm in Figure 4.5 from Experiment 5 is compared with two other policies, a

rule-based policy (to trigger flushing at all controlled locations whenever the observed
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Figure 4.7: Experiment 3: Total Reward (Negative Cost) over Episodes (Simulations)

Figure 4.8: Experiment 4: Total Reward (Negative Cost) over Episodes (Simulations)

94



Figure 4.9: Experiment 5: Total Reward (Negative Cost) over Episodes (Simulations)

Figure 4.10: Experiment 6: Total Reward (Negative Cost) over Episodes (Simula-

tions)
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Figure 4.11: Experiment 7: Total Reward (Negative Cost) over Episodes (Simula-

tions)

Figure 4.12: Experiment 8: Total Reward (Negative Cost) over Episodes (Simula-

tions)
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Figure 4.13: The Comparison of Total Reward (Negative Cost) for Three Flushing

Control Policies

water age is above the limit), and the optimal flushing schedule policy from LP model

in Section 2.2.4. All three policies are used for flushing control in 100 simulation runs

with stochastic demand (triangular distribution, Figure 4.2). The total reward in all

100 runs from these three policies are plotted in Figure 4.13. The average cost of

each control policy is given in Table 4.3.

We can observe that the learned flushing control policy performs consistently

better than the other two policies. Note that the optimal flushing schedule from

the LP model performs very badly in these 100 simulation runs, because (1) the

flushing schedule is solved for a problem with deterministic water demand; and (2) the

somewhat poor accuracy of water age prediction models used in the LP formulation

(although the R2 for all used models is above 75%, it may not be good enough for

controlling the water distribution system when demand is stochastic).

The actual binary flushing decisions from the learned policy (from Experiment

5) and from the rule-based policy for one simulation are shown in Figure 4.14a and

Figure 4.14b, respectively. The horizontal dimension shows different locations, the
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Table 4.3: The Average Cost of Three Flushing Control Policies over 100 Simulations

Learned Policy Rule-based Policy Policy from LP

Average Cost 116,033 177,634 553,418

corresponding node IDs are (9, 11, 14, 15, 16, 17, 19, 24, 27, 31). The vertical

dimension shows different hours, from 0 to 55. We can observe that the flushing

decisions from the learned policy varies for different hours, while the rule-based policy

triggers flushing controls after hour 9 and remains flushing at all locations till hour

55.

4.6 Conclusions

The water demand in water distribution systems could indeed be stochastic due

to people’s uncertain water-consuming activities. Thus, water quality control in such

systems involves sequential decision making under stochastic uncertain demand pat-

terns. Reinforcement learning (RL) based approaches generally can deal with the

stochastic uncertainty fairly well, because they iteratively learn the demand patterns

and system dynamics from past system behaviors with various demands. RL meth-

ods are essentially computational methods approximate dynamic programs (ADP).

In ADP approaches, the value function can be estimated through interactive learning.

However, for systems with continuous high dimensional states, it is difficult to apply

the dynamic programming logic without further approximation.

The research in this chapter is focused on the problem of water quality (water

age) control through flushing, in presence of stochastic and uncertain demand. We

developed a real-time control system that is based on SARSA temporal-difference

learning combined with linear value function approximation for controlling water
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(a) The Binary Flushing Control Actions

over Time at Different Locations from

Learned Policy

(b) The Binary Flushing Control Actions

over Time at Different Locations from Rule-

based Policy

Figure 4.14: The Actual Flushing Decisions for One Simulation
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quality via flushing controls. The policy for flushing control actions derived from the

approximated action-value functions is shown to perform better than a rule-based

policy and the control policy derived from a linear programming optimization model.

The water quality control for water distribution systems through flushing of taps

is a control problem with continuous states and continuous control actions. In this

chapter, the high dimensional states are handled by linear approximate models for

value functions, and we assumed binary flushing control action for each location.

A future research direction is to relax this binary flushing control assumption, and

replace it with multiple discrete values for the control action. Even further, to model

the flushing as a continuous value between zero and a maximum amount. Neural

network models, especially deep neural networks (having multiple hidden layers) can

be helpful in this research direction.

Flushing through taps is effective in improving water quality, but it is not the

only method. We also modeled the water quality control problem by including both

flushing and disinfectant (chlorine) injection in Chapter 3, but only flushing is used

as the control action in this chapter. Another future research direction is to include

both flushing and disinfectant injections as the control actions in optimal water quality

control problem with stochastic demand.
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Chapter 5

CONCLUSIONS AND FUTURE RESEARCH

5.1 Conclusions and Dissertation Contributions

This dissertation addresses the optimal control problem of water quality in water

distribution networks. Different proactive and real-time optimal control models with

water quality constraints were developed for water distribution networks in various

scenarios, (1) when water demands are deterministic, when predictions of water age

are linear, and objective for flushing control can be approximated as linear, (2) when

demands are deterministic but now controls include both flushing and chlorine in-

jections that lead to non-linear control methods, and (3) when water demands are

stochastic and uncertain where the control method resulted in learning both the de-

mand and the dynamics of the water distribution system in an online fashion. The

last control method used reinforcement learning with temporal difference learning and

linear value function approximation.

Modeling the dynamics of water distribution systems is challenging due to the

complex fluid dynamics and chemical reactions. In Chapter 2, different statistical

machine learning approaches were explored to build approximate models for water

system dynamics. Three case studies were performed to evaluate the efficacy of

different approaches. Then these approximate models for water system dynamics were

integrated in a linear programming (LP) based optimization model for the flushing

control. Flushing was selected as the control action because it is effective in improving

water quality as it quickly brings fresher water from the water treatment plant. The

LP based optimization model for flushing control was solved using LP solver, and
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the derived flushing control was applied to EPANET simulation models for a 5-story

building and a city water distribution network. The simulation results demonstrated

that the flushing control from the solution of the LP model was very effective.

In Chapter 3, two control actions were considered in the control of water age:

flushing and disinfectant injections. Adding chlorine as a disinfectant is recommended

by CDC to control water quality. With regard to the coupled control actions in this

part of the research, their synergistic impacts on water quality makes the optimal

control of water quality challenging. Two mixed integer quadratically constrained

optimization models were developed for controlling water age through flushing and

chlorine injections. The first model assumes continuous flushing and binary chlorine

injections; the second model assumes continuous flushing and continuous chlorine

injections. Problem instances with different cost ratio parameters were solved using

the Gurobi solver for mathematical programming. The computational results from

problem instances of these models gave us meaningful insights about the relationship

of flushing control and chlorine injection control. The inclusion of chlorine injection

control can significantly reduce the total control cost when compared with flushing-

only control. Continuous chlorine injections can further reduce the total cost, saving

about half of the chlorine control cost, when compared with binary chlorine injection

controls.

In Chapter 2 and Chapter 3, water demands were assumed to be deterministic

and known. However, the water demand in water distribution systems could indeed

be stochastic due to people’s fluctuating water-consuming activities. Chapter 4 ad-

dresses the problem of optimal water quality control for water systems with stochastic

and uncertain demand. Based on approximate dynamic programming and reinforce-

ment learning, this research developed a real-time control system that is based on

SARSA temporal-difference learning combined with linear value function approxima-
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tion for controlling water quality (water age) via flushing controls. The policy for

flushing control actions derived from the approximate value functions is shown to

perform better than a rule-based policy and the control policy derived from LP-based

optimization.

5.2 Directions for Future Research

In Chapter 2, different machine learning models were used to approximate the

water system dynamics. But the accuracy of some of the developed models can be

further improved. Potential future work is to fine tune these models to improve their

accuracy, so that their improved accuracy can help improve the proactive control

actions obtained from any associated optimization model utilized. Another future

direction of research is to consider different water quality indicators that can be

measured with high accuracy. Water age is a good proxy indicator of water stagnation,

but may not be measured as easily as other water quality indicators. It will be

an interesting research direction to combine different water quality indicators into

one metric. Multi-objective optimization models and approaches can be helpful in

corresponding problems.

In Chapter 3, a set of potential chlorine control locations were identified by observ-

ing locations with high water age due to local stagnation. A future research direction

could be to develop a systematic method for identifying candidate locations for chlo-

rine injection controls. One implicit assumption in developing our formulations was

that the injected chlorine at one location only affects water quality (water age) at

that location while later in time at other locations due to water dynamics and water

age prediction models. This assumption can be modified by an appropriate one that

considers chlorine decay and the effective coverage of injected chlorine. Therefore,

another future research direction could be on setting up a coverage range of instanta-
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neous impact for the injected chlorine, and explicitly incorporating a chlorine decay

model in formulating the optimal control problem.

The water quality control for water distribution systems through flushing of taps

is a control problem with continuous states and continuous control actions. In Chap-

ter 4, the high dimensional states were handled by linear approximate models for

value functions, and binary flushing control action was assumed at each location. A

future research direction is to relax this binary flushing control assumption, and re-

place it with multiple discrete values for the control action. Even further, to model

the flushing as a continuous value between zero and a maximum amount. Neural

network models, especially deep neural networks (having multiple hidden layers) can

be helpful in this research direction (see Bertsekas and Tsitsiklis (1996)).

Flushing through taps is effective in improving water quality, but it is not the only

method. In Chapter 3, the water quality control model is formulated by including

both flushing and disinfectant (chlorine) injections, but only flushing is used as the

control action in the scenario with stochastic and uncertain demand. Another future

research direction is to include both flushing and disinfectant injections as the control

actions in the optimal water quality control problem with stochastic demand.
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Sundström, O., D. Ambühl and L. Guzzella, “On implementation of dynamic pro-
gramming for optimal control problems with final state constraints”, Oil & Gas
Science and Technology–Revue de l’Institut Français du Pétrole 65, 1, 91–102
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APPENDIX A

THE OPTIMAL FLUSHING SCHEDULES FOR DIFFERENT WATER AGE
LIMIT FOR CASE III EXTENSION
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Figure A.1: The Actual Flushing over Time at Different Locations for al = 11
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Figure A.1: The Actual Flushing over Time at Different Locations for al = 11 (con-
tinued)
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Figure A.2: The Actual Flushing over Time at Different Locations for al = 12

115



Figure A.2: The Actual Flushing over Time at Different Locations for al = 12 (con-
tinued)
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Figure A.3: The Actual Flushing over Time at Different Locations for al = 13
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Figure A.3: The Actual Flushing over Time at Different Locations for al = 13 (con-
tinued)
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Figure A.4: The Actual Flushing over Time at Different Locations for al = 14
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Figure A.4: The Actual Flushing over Time at Different Locations for al = 14 (con-
tinued)
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Figure A.5: The Actual Flushing over Time at Different Locations for al = 15
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Figure A.5: The Actual Flushing over Time at Different Locations for al = 15 (con-
tinued)
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APPENDIX B

THE ACTUAL LOCATIONS WITH FLUSHING FOR DIFFERENT WATER
AGE LIMIT FOR CASE III EXTENSION
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Figure B.1: The Actual Locations (Circled in Red Color) with Flushing for al = 11
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Figure B.2: The Actual Locations (Circled in Red Color) with Flushing for al = 12
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Figure B.3: The Actual Locations (Circled in Red Color) with Flushing for al = 13
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Figure B.4: The Actual Locations (Circled in Red Color) with Flushing for al = 14
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Figure B.5: The Actual Locations (Circled in Red Color) with Flushing for al = 15

128


	LIST OF TABLES
	LIST OF FIGURES
	1 
	1.1 Motivation
	1.2 The General Optimal Control Problem
	1.3 The Approximation of Water Distribution System Dynamics
	1.4 Water Quality Control with Deterministic Demand
	1.5 Water Quality Control with Stochastic Demand

	2 
	2.1 Water Quality Prediction in Water Distribution Systems
	2.1.1 Prediction Methods
	2.1.1.1 Lasso/Ridge Regression
	2.1.1.2 Neural Networks
	2.1.1.3 Symbolic Regression

	2.1.2 Case Study I: pH Prediction in a Wastewater System
	2.1.3 Case Study II: Water Age Prediction in a Building Water System
	2.1.4 Case Study III: Water Age Prediction in a City Water System

	2.2 Optimal Water Age Control with Linear Prediction Models
	2.2.1 A Prediction-aided Linear Program Formulation of Optimal Control
	2.2.2 Improved LP Model with Chance Constraint
	2.2.3 Case Study II Extension: Optimal Flushing Schedule for Water Age Control of a Building Water System Considering Prediction Errors
	2.2.4 Case Study III Extension: Optimal Flushing Schedule for Water Age Control of a City Water System Considering Prediction Errors

	2.3 Conclusions

	3 
	3.1 Water Quality Control via Flushing and Chlorine Injection
	3.2 Model Formulation for Two Different Control Strategies
	3.2.1 Continuous Flushing and Binary Chlorine Injection
	3.2.2 Continuous Flushing and Continuous Chlorine Injection

	3.3 Solution Methods
	3.4 Numerical Experiments
	3.5 Conclusions

	4 
	4.1 Dynamic Optimal Control Problem Description
	4.2 Related Work
	4.3 Water Quality Control Model Based on Reinforcement Learning
	4.3.1 Key Concepts
	4.3.2 Complete Formulation of the Optimal Control Problem

	4.4 Solution Methods
	4.4.1 SARSA: On-policy Temporal-Difference Learning Control
	4.4.2 Q-learning: Off-policy Temporal-Difference Learning Control
	4.4.3 Value Function Approximation

	4.5 Experiments and Results
	4.6 Conclusions

	5 
	5.1 Conclusions and Dissertation Contributions
	5.2 Directions for Future Research
	REFERENCES
	A 
	B 






