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ABSTRACT

This dissertation consists of three papers about opinion dynamics. The first paper is in collaboration

with Prof. Lanchier while the other two papers are individual works. Two models are introduced

and studied analytically: the Deffuant model and the Hegselmann-Krause (HK) model. The main

difference between the two models is that the Deffuant dynamics consists of pairwise interactions

whereas the HK dynamics consists of group interactions. Translated into graph, each vertex stands

for an agent in both models.

In the Deffuant model, two graphs are combined: the social graph and the opinion graph. The

social graph is assumed to be a general finite connected graph where each edge is interpreted as

a social link, such as a friendship relationship, between two agents. At each time step, two social

neighbors are randomly selected and interact if and only if their opinion distance does not exceed

some confidence threshold, which results in the neighbors’ opinions getting closer to each other. The

main result about the Deffuant model is the derivation of a positive lower bound for the probability

of consensus that is independent of the size and topology of the social graph but depends on the

confidence threshold, the choice of the opinion space and the initial distribution.

For the HK model, agent i updates its opinion xi by taking the average opinion of its neighbors,

defined as the set of agents with opinion at most ε apart from xi. Here, ε > 0 is a confidence

threshold. There are two types of HK models: the synchronous and the asynchronous HK models.

In the former, all the agents update their opinion simultaneously at each time step, whereas in the

latter, only one agent is selected uniformly at random to update its opinion at each time step. The

mixed model is a variant of the HK model in which each agent can choose its degree of stubbornness

and mix its opinion with the average opinion of its neighbors. The main results of this dissertation

about HK models show conditions under which the asymptotic stability holds or a consensus can be

achieved, and give a positive lower bound for the probability of consensus and, in the one-dimensional

case, an upper bound for the probability of consensus. I demonstrate the bounds for the probability

of consensus on a unit cube and a unit interval.
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Chapter 1

INTRODUCTION

This dissertation consists of three papers on the common topic of opinion dynamics. The first paper

is about the Deffuant model:

Nicolas Lanchier and Hsin-Lun Li. Probability of consensus in the multivariate Deffuant model on

finite connected graphs. Electron. Commun. Probab. 25 (2020) no. 79, 12 pp.

The other two papers are concerned with the Hegselmann-Krause (HK) model:

Hsin-Lun Li. Mixed Hegselmann-Krause Dynamics. To appear in Discrete Continuous Dyn Syst

Ser B.

Hsin-Lun Li. Probability of Consensus of Hegselmann-Krause Dynamics. Submitted to ALEA Lat.

Am. J. Probab. Math. Stat.

Both models consist of a finite set of interacting agents that are characterized by their opinion, and

the dynamics depends on a confidence threshold ε > 0. The main difference between the two models

is that agents in the Deffuant model interact by pairs, whereas agents in the HK model interact in

groups. Translated into graph, each vertex stands for an agent in both models.

For the Deffuant model, two graphs are combined: the social graph and the opinion graph. The

social graph is assumed to be a general finite connected graph where each edge is interpreted as a

social link, such as a friendship relationship, between two agents. Individuals are characterized by

their opinion, where the opinion space is a bounded convex subset ∆ of a normed vector space. At

each time step, two social neighbors are randomly selected and interact if and only if their opinion

distance does not exceed some confidence threshold, which results in the neighbors’ opinions getting

closer to each other. More precisely, given that vertices/agents x and y are selected, the mechanism

is as follows:

ξt+1(x) = ξt(x) + µ(ξt(y)− ξt(x))1{||ξt(x)− ξt(y)|| ≤ τ}

ξt+1(y) = ξt(y) + µ(ξt(x)− ξt(y))1{||ξt(x)− ξt(y)|| ≤ τ}

where

τ > 0 is a confidence threshold,

µ ∈ [0, 1/2] is a convergence parameter,

ξt(x) = opinion of vertex x at time t.
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Namely, if the interaction happens, the two neighbors’ opinions get closer to each other equally.

We first show that the opinion limits exist and that, in the limit, the opinion distance between any

neighbors is either zero or larger than τ . In particular, limt→∞maxx,y∈V ||ξt(x)− ξt(y)|| exists and

we are interested in the event

C =

{
lim
t→∞

max
x,y∈V

||ξt(x)− ξt(y)|| = 0

}
,

the collection of all sample points that lead to a consensus. Assume that all initial opinions are

independent and identically distributed random variables. Let X stands for the random variable.

Let

r = inf{r > 0 : ∆ ⊂ B(c, r) for some c ∈ ∆}

where B(c, r) = {a ∈ Rn : ||a− c|| ≤ r} and fix c ∈ ∆ such that ∆ ⊂ B(c, r). Our main result gives

the following lower bound for the probability of consensus.

Theorem 1.1 (probability of consensus). For all τ > r,

P (C ) ≥ 1− E ||X − c||
τ − r

.

The steps of the proof are as follows:

1. find a bounded supermartingale,

2. define a stopping time,

3. find a subset A ⊂ C .

From the above, we can apply the optional stopping theorem to get an upper bound for a certain

expected value, whereas restricting the expectation to the complement of A produces a lower bound.

In particular, we obtain a nontrivial lower bound for the probability of consensus.

In the second paper, I consider a variant of the HK model called the mixed HK model. There

are two types of HK models: the synchronous HK model and the asynchronous HK model. In the

former, all the agents update their opinion simultaneously at each time step, whereas in the latter,

only one agent is selected uniformly at random to update its opinion at each time step. In the

mixed model, each agent can choose its degree of stubbornness and mix its opinion with the average

opinion of its neighbors, defined as the set of agents whose opinion is “close” to the opinion of the

agent under consideration. The degree of the stubbornness of agents can be different and/or vary
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over time. The mechanism is as follows:

xi(t+ 1) = αi(t)xi(t) +
1− αi(t)
|Ni(t)|

∑
j∈Ni(t)

xj(t) (1.1)

where

xi(t) = opinion of vertex i at time t,

αi(t) ∈ [0, 1] is the degree of stubbornness of agent i,

Ni(t) = {j ∈ [n] : ||xi(t)− xj(t)|| ≤ ε} is the collection of all neighbors of agent i.

The larger αi is, the more stubborn agent i is. Note that (1.1) reduces to

• the synchronous HK model if αi(t) = 0 for all i ∈ [n] and t ≥ 0,

• the asynchronous HK model if exactly one αi(t) = 0 for all t ≥ 0 and for some i ∈ [n].

In particular, (1.1) covers both the synchronous and the asynchronous HK models. The goal is to

find conditions under which the asymptotic stability holds or a consensus can be achieved. The

synchronous model has some properties, such as finite-time convergence, that do not hold for the

mixed model. The steps of the proof are:

1. study properties of the mixed model,

2. find a monotone bounded function,

3. utilize lemmas such as the Cheeger’s inequality.

Define

βt := max
i,j∈[n],αi(t)≥αj(t)

(
αi(t)−

αi(t)− αj(t)
n

)
.

A Profile at time t is an undirected graph G (t) with vertex set and edge set

V (t) = [n] and E (t) = {ij : i 6= j and ‖xi(t)− xj(t)‖ ≤ ε}.

A profile G (t) is δ-trivial if any two of its vertices are at distance at most δ apart. The main results

of the second paper are:

Theorem 1.2. Assume that lim supt→∞ βt < 1 and that G (t) is ε-trivial. Then,

lim
t→∞

max
i,j∈[n]

‖xi(t)− xj(t)‖ = 0.
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Theorem 1.3. Define dit = maxj∈Ni(t) ‖xi(t)− xj(t)‖. If

∞∑
t=0

(1− αi(t))
(

1− 1

|Ni(t)|

)
dit <∞, then xi(t)→ xi ∈ Rd as t→∞.

Theorem 1.4. Assume that lim supt→∞maxi∈[n] αi(t) < 1. Then, for any δ > 0, every component

of a profile is δ-trivial in finite time, i.e.,

τα,δ := inf{t ≥ 0 : every component of G (t) is δ-trivial} <∞.

Corollary 1.1. Assume that supt∈N maxi∈[n] αi(t) < 1. Then, τα,δ is bounded from above. Also,

letting τm = τα,ε/m for m ≥ 4, there is no interactions between any two components of G (t) at the

next time step for some M ≥ 4 and for all t ≥ τM , i.e.,

G (t) = G (τM ) for some M ≥ 4 and for all t ≥ τM .

Hence, x is asymptotically stable.

The main objective of the third paper is to study the probability of consensus of the synchronous

HK model. Because it is difficult to keep track of the entire dynamics’ trajectory, I focus on the

initial opinions. Assume that all initial opinions are independent and identically distributed random

variables with a convex support of positive Lebesgue measure and a probability density function f .

Because the Lebesgue measure m has some properties such as completion, one can prove that a

convex set is measurable. The main results are separated into two parts: the general case and the

one dimensional case. In general, the probability of consensus has a positive lower bound that only

depends on the initial conditions. In the one-dimensional case, the probability of consensus has an

upper bound that only depends on the initial conditions. I respectively prove the bounds for the

probability of consensus on a unit cube and a unit interval. The main results of the third paper are:

Theorem 1.5.

P (C ) ≥ P (G (0) is connected) for 1 ≤ n ≤ 4.

In general,

P (C ) ≥ P (G (0) is ε-trivial)

≥ P (xi(0) ∈ B(x1(0), ε/2) for all i ∈ [n])

=

∫
Rd

f(x1)

(∫
B(x1,ε/2)

f(x)dm(x)

)n−1

dm(x1) > 0 for n ≥ 1.

In particular, the probability of consensus is positive.
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Corollary 1.2. Assume that S = [0, 1]d and that xi(0) = Uniform ([0, 1]d). Then,

P (C ) ≥
(( ε

2

)d
m(B(0, 1))

)n−1

(1− ε)d =

(( ε
2

)d π
d
2

Γ(d2 + 1)

)n−1

(1− ε)d

for all i ∈ [n] and ε ∈ (0, 1).

x(i) is the i-th smallest number among (xk)nk=1. For n ≥ 4, let m = bn−4
3 c and k = n −m − 1.

Say G (t) satisfies (∗) if

((m+ 2), (k)) ∈ E (t) and (x(n) − x(k) + x(m+2) − x(1))(t) ≤ ε.

Say G (t) satisfies (∗∗) if

max
(
(x(n) − x(n−i−1))(t), (x(n−i−1) − x(i+2))(t), (x(i+2) − x(1))(t)

)
≤ ε

2
for some 0 ≤ i ≤ m.

Theorem 1.6 (d = 1).

P (C ) = P (G (0) is connected) for 1 ≤ n ≤ 4.

P (C ) ≥ P (G (0) satisfies (∗)) for 5 ≤ n ≤ 7.

In general,

P (G (0) is connected) ≥ P (C ) ≥ P (G (0) is ε-trivial or satisfies (∗∗)) for n ≥ 1.

Corollary 1.3. Let S = [0, 1], d = 1, ε ∈ (0, 1) and xi(0) = Uniform ([0, 1]) for all i ∈ [n]. Then,

for n = 2,

P (C ) = ε(2− ε)

for n = 3,

P (C ) =

 6ε2(1− ε) ε ∈ (0, 1
2 )

1− 2(1− ε)3 ε ∈ [ 1
2 , 1)

for n = 4,

P (C ) =



24ε3(1− 3ε) + 36ε4 ε ∈ (0, 1
3 )

19ε4 − 4ε3(1− 2ε) + (1− 2ε)4 − 6ε2(3ε− 1)2

−4ε(1− 2ε)3 + 12ε3(1− 2ε) + 12ε2(1− 2ε)2 ε ∈ [ 1
3 ,

1
2 )

ε4 + 4ε3(1− ε) + 6ε2(1− ε)2 + 4ε(1− ε)3 − 2(1− ε)4 ε ∈ [ 1
2 , 1)
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for n ≥ 1,

P (G (0) is ε-trivial) = εn−1[n− (n− 1)ε]

P (xi(0) ∈ B(x1(0), ε/2) for all i ∈ [n]) =
2

n
εn(1− 1

2n
) + εn−1(1− ε)

In general, P (C ) ≥ P (G (0) is ε-trivial) = εn−1[n− (n− 1)ε] for n ≥ 1.
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Chapter 2

PROBABILITY OF CONSENSUS IN THE MULTIVARIATE DEFFUANT MODEL ON FINITE

CONNECTED GRAPHS

Nicolas Lanchier and Hsin-Lun Li

Abstract. The Deffuant model is a spatial stochastic model for the dynamics of opinions in which

individuals are located on a connected graph representing a social network and characterized by a

number in the unit interval representing their opinion. The system evolves according to the following

averaging procedure: at each time step, two neighbors are randomly chosen and interact if and only

if the distance between their opinions does not exceed a certain confidence threshold, with each

interaction resulting in the neighbors’ opinions getting closer to each other. Most of the analytical

results established so far about this model assume that the individuals are located on the integers.

In contrast, we study the more realistic case where the social network can be any finite connected

graph. In addition, we extend the opinion space to any bounded convex subset of a normed vector

space where the norm is used to measure the level of disagreement or distance between the opinions.

Our main result gives a lower bound for the probability of consensus. Our proof leads to a universal

lower bound that depends on the confidence threshold, the opinion space (convex subset and norm)

and the initial distribution, but not on the size or the topology of the social network.

2.1 Introduction

This paper is concerned with opinion dynamics on connected graphs. The first and most popular

stochastic model in this topic is the voter model, introduced independently in [9, 22]. The main

mechanism in the voter model is social influence, the tendency of individuals to become more similar

when they interact. More precisely, individuals located on the vertex set of a connected graph (tra-

ditionally the d-dimensional integer lattice) are characterized by one of two competing opinions, and

update their opinion at rate one by simply mimicking one of their neighbors chosen uniformly at

random. Using a duality relationship between the voter model and a system of coalescing random

walks, it can be proved that the process on the infinite square lattice clusters in one and two di-

mensions whereas opinions coexist at equilibrium in higher dimensions [22]. While mathematicians

studied analytically various aspects of the model such as the asymptotics for the cluster size in one
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and two dimensions [6, 11], the spatial correlations at equilibrium in higher dimensions [5], and the

occupation time of the process [10], social scientists and statistical physicists developed and studied

numerically more realistic models of opinion dynamics. We refer to [26, 34] for reviews of the main

results about the voter model, and to [7] for a review of more recent stochastic models of opinion

dynamics introduced by applied scientists.

Apart from social influence, an important component of opinion dynamics is homophily, the

tendency to interact more frequently with individuals who are more similar. The most popular

spatial model that includes social influence and homophily is probably the Axelrod model [1] where

individuals are now characterized by a vector of cultural features, and interact with their neighbors

at a rate proportional to the number of features they share (homophily), which results in the two

neighbors having one more feature in common (social influence). For a mathematical treatment

of the Axelrod model, we refer to [24, 27, 28, 31, 33]. Other spatial stochastic models of opinion

dynamics include homophily in the form of a confidence threshold: individuals interact with their

neighbors on the graph if and only if the level of disagreement between the two individuals before

the interaction does not exceed a certain threshold. The simplest such model is the constrained

voter model [37], the voter model with three opinions (leftist, centrist and rightist) where leftists

and rightists do not interact. Extensions of this model where the opinion space takes the form of

a finite connected graph and the level of disagreement is measured using the geodesic distance on

this graph were introduced and studied analytically in [30, 36]. The Deffuant model [12] and the

Hegselmann-Krause model [18] are two other important spatial stochastic models that include social

influence and homophily in the form of a confidence threshold.

In the original version of the Deffuant model [12], individuals are located on a general finite con-

nected graph representing a social network and characterized by opinions that are initially chosen

independently and uniformly at random in the unit interval. At each time step, an edge is chosen at

random and the two neighbors connected by this edge interact if and only if the distance between

their opinions before the interaction does not exceed a confidence threshold τ (homophily), which

results in the two neighbors’ opinions getting closer to each other after the interaction (social influ-

ence). Because [12] is purely based on numerical simulations, the authors only considered specific

graphs: the complete graph and the two-dimensional torus. Their simulations on large graphs sug-

gest the following conjecture for the infinite system obtained by assuming that pairs of neighbors

are now chosen in continuous time at rate one: the process exhibits a phase transition at the critical
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threshold one-half in that a consensus is reached when τ > 1/2 whereas disagreements persist in the

long run when τ < 1/2. This conjecture was first established for the process on the integers in [25]

using probabilistic and geometric techniques while a slightly stronger result was proved shortly after

in [15] using a different approach. The existence of a phase transition along with lower and upper

bounds for the critical threshold were also proved for variants of the model: a multivariate version

where the opinion space is a (subset of a) finite-dimensional vector space and certain metrics are

used to quantify the disagreement between individuals [14, 20, 21], and a discrete version called the

vectorial Deffuant model also introduced in [12] where the opinion space is the hypercube and the

disagreement between individuals is quantified using the Hamming distance [29].

In this paper, we study a version of the model where both the opinion space and the social

network are fairly general. The opinion space is a bounded convex subset of a finite-dimensional

normed vector space (where the norm is used to measure the disagreements). Under the averaging

procedure [12], convexity is a necessary assumption because future opinions must be on the segment

connecting past opinions, but we also point out that an extension of the model has been introduced

in [14] where the opinion space is a general path-connected set, the opinion distance is measured

by the length of some geodesics connecting the opinions and each update displaces the opinions

along these geodesics. More importantly, while all the previous analytical results assume that the

inviduals are located on the integers, with the notable exception of [16] where the process is also

studied on the d-dimensional lattice and even the infinite bond percolation cluster, we assume more

realistically that the individuals are located on a general finite connected graph, meaning any pos-

sible real-world social networks. But unlike [12] that relies on simulations for specific graphs, our

results apply to all possible finite connected graphs. Due to the finiteness of the graph, the existence

of a phase transition at a specific critical threshold no longer holds, and we instead derive a general

lower bound for the probability of consensus. While our bound depends on the choice of the opinion

space (convex subset and norm), it is uniform in all possible choices of the social network.

2.2 Model description and main results

The two key components of the model studied in this paper are the social network on which the

individuals are located and the opinion space. To define these two components,

• we let G = (V ,E ) be a finite connected graph and

• we let ∆ ⊂ Rn be a bounded convex subset and || · || be a norm on Rn.

9



The multivariate Deffuant model is a discrete-time Markov chain whose state at time t is a config-

uration of opinions on the graph:

ξt : V → ∆ where ξt(x) = opinion at vertex x at time t.

Following all the previous works in this topic, we assume that the process starts from a constant

product measure, meaning that the initial opinions ξ0(x), x ∈ V , are independent and identically

distributed, and we let X be the random variable with distribution

P (X ∈ B) = P (ξ0(x) ∈ B) for all x ∈ V and all Borel subsets B ⊂ ∆.

The evolution rules are based on two parameters: the confidence threshold τ > 0 and the convergence

parameter µ ∈ (0, 1/2]. At each time step, an edge is chosen uniformly at random, which results in a

potential update of the system at the two vertices connected by this edge. More precisely, assuming

that edge (x, y) ∈ E is selected at time t, we let

ξt(x) = ξt−1(x) + µ (ξt−1(y)− ξt−1(x)) 1{||ξt−1(x)− ξt−1(y)|| ≤ τ}

ξt(y) = ξt−1(y) + µ (ξt−1(x)− ξt−1(y)) 1{||ξt−1(x)− ξt−1(y)|| ≤ τ}

while the opinions at the other vertices remain unchanged. In words, the two neighbors that are

selected interact if and only if their opinion distance or level of disagreement before the interaction

does not exceed the confidence threshold τ , which results in a partial averaging of their opinions by

a factor µ, called the convergence parameter.

Our main result gives a lower bound for the probability of consensus that applies to any finite

connected graph, any opinion space (convex set and norm), and any initial distribution with value

in the opinion space. To state this result, we let

r = inf{r > 0 : ∆ ⊂ B(c, r) for some c ∈ ∆} where B(c, r) = {a ∈ Rn : ||a− c|| ≤ r}

and fix c ∈ ∆ such that ∆ ⊂ B(c, r). Note that, by definition of r, which we call the radius of the

opinion space, and because the opinion space is convex, such a point c indeed exists.

Theorem 2.1 (probability of consensus). – For all τ > r,

P (C ) ≥ 1− E ||X − c||
τ − r

where C =

{
lim
t→∞

max
x,y∈V

||ξt(x)− ξt(y)|| = 0

}
.

Recall that the simulations in [12] suggest that, when the individuals are located on an infinite

connected graph and the initial opinions are chosen uniformly at random in the unit interval, the

10



Figure 2.1: Simulation results for the probability of consensus as a function of τ for the process on the

complete graph (black dots), the ring (grey dots) and the star (white dots) with six vertices depicted

on the right. The convergence parameter µ = 1/4 while the opinion space is the unit Euclidean

ball equipped with the Euclidean norm in two dimensions. Each simulation point is obtained from

the average of 100,000 realizations of the process with confidence threshold ranging from the radius

to the diameter of the opinion space. The grey dots at the bottom right show the universal lower

bound (valid for all finite connected graphs) derived from Theorem 2.1.

process exhibits a phase transition from coexistence to consensus at the critical threshold τ = 1/2, a

result that was proved rigorously in some particular cases. In view of this conjecture, it is reasonable

to believe that, again for infinite connected graphs and uniformly distributed initial opinions but a

more general opinion space, there is now a phase transition at the critical value τ = the radius of the

opinion space. In particular, we conjecture that, for infinite connected graphs, we have almost sure

consensus under the assumption of our theorem: τ > r. The reason why the probability of consensus

when τ > r is strictly less than one when switching to finite graphs is simply due to the presence

of strong random fluctuations on finite graphs. The law of large numbers used in [15] no longer

operates. For the same reasons, while the condition τ < r should lead to coexistence for infinite
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graphs, the probability of consensus on finite graphs is strictly positive. Indeed, it follows from the

argument of convexity in the proof of Lemma 2.5 below that, when all the opinions are initially

in the same ball with radius τ/2, which occurs with probability at least the ratio of the Lebesgue

measure of this ball to the Lebesgue measure of the opinion space raised at the power the number

of vertices, consensus occurs. Note however that, in contrast with the lower bound in our theorem,

the lower bound above strongly depends on the size of the graph.

The key to proving the theorem is to study a collection of auxiliary processes (see (2.1) below)

that keep track of the cumulative disagreement between a fixed opinion c ∈ ∆ and the opinions at

each of the vertices at time t. Using a triangle-type inequality (Lemma 2.1), we first prove that

all these auxiliary processes are almost surely nonincreasing, meaning that, for all c, the averaging

procedure can only decrease the overall level of disagreement between an observer with fixed opinion c

and the population (Lemma 2.2). Almost sure monotonicity implies two important results:

1. The opinion model converges almost surely to a (random) limiting configuration.

In addition, due to the evolution rules, each limiting configuration is characterized by a parti-

tion of the graph into connected components such that all the individuals in the same compo-

nent share the same opinion and the distance between opinions in two adjacent components

exceeds the confidence threshold τ (Lemma 2.5).

2. All the auxiliary processes are bounded supermartingales.

In particular, one may apply the optional stopping theorem to these supermartingales and

a certain stopping time (Lemma 2.6) to obtain a lower bound for the probability that the

random partition above consists of only one set, meaning that all the individuals in the limiting

configuration share the same opinion and consensus occurs.

Our proof leads to a lower bound that depends on the confidence threshold, the opinion space (convex

set and norm) and the initial distribution, but not on the size and/or the topology of the social

network. In particular, our lower bound is universal in the sense that it is uniform over all possible

choices of the network, but we point out that, as shown in Figure 2.1, the (exact) probability of

consensus should depend on the network. Indeed, our simulations suggest for instance that the

complete graph promotes consensus more than the star graph.

The rest of the paper is devoted to proofs. In the next section, we show that the opinion model
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converges almost surely to a (random) limiting configuration in which neighbors either share the

same opinion or disagree too much to interact. Then, we use the optional stopping theorem for

supermartingales to derive the universal lower bound for the probability of consensus.

2.3 Limiting configurations

The objective of this section is to prove that, regardless of the initial configuration, the process

converges almost surely to a limiting configuration in which any two neighbors either share the same

opinion or disagree too much to interact, i.e.,

(P1) limt→∞ ξt(x) = ξ∞(x) exists for all x ∈ V

(P2) ||ξ∞(x)− ξ∞(y)|| /∈ (0, τ ] for all edges (x, y) ∈ E .

From now on, we let (Xt(c)) be the process defined by

Xt(c) =
∑
x∈V

||ξt(x)− c|| for all c ∈ Rn. (2.1)

That is, the process keeps track of the cumulative disagreement between a fixed opinion c possibly

outside ∆ and the opinions at each of the vertices. In particular, this collection of processes is

somewhat reminiscent of the concept of energy in [15] in the sense that both can be viewed as

measures of the overall disorder in the process that is expected to decrease under the influence of

the averaging procedure. To shorten the notation, we let

φ : ∆×∆→ ∆ defined as φ(a, b) = (1− µ)a+ µb = a+ µ(b− a).

In particular, whenever a vertex x that has opinion a interacts with a vertex y that has a compatible

opinion b ∈ B(a, τ), the opinion at x becomes φ(a, b) and the opinion at y becomes φ(b, a). Although

the details are somewhat more complicated, the basic idea to prove the two properties above is to

show that the processes (Xt(c)) converge almost surely. To begin with, we prove the following lemma

which is illustrated in Figure 2.2 and gives two variants of the triangle inequality.

Lemma 2.1 (triangle inequalities). – For all a, b ∈ ∆ and all c ∈ Rn,

||φ(a, b)− c||+ ||φ(b, a)− c|| ≤ ||a− c||+ ||b− c||

||φ(a, b)− c||+ ||φ(b, a)− c|| ≤ ||a− c||+ ||b− c|| − 2||φ(a, b)− a||+ ||a+ b− 2c||.

Proof. Using the triangle inequality and absolute homogeneity, we get

13



Figure 2.2: Illustration of Lemma 2.1. The lemma simply states that the sum of the norms of the

vectors in solid lines is larger for the pictures at the bottom than for the pictures at the top, where

the median in thick line in the bottom right picture is counted twice.

||φ(a, b)− c||+ ||φ(b, a)− c|| = ||(1− µ)a+ µb− c||+ ||(1− µ)b+ µa− c||

= ||(1− µ)(a− c) + µ(b− c)||+ ||(1− µ)(b− c) + µ(a− c)||

≤ ||(1− µ)(a− c)||+ ||µ(b− c)||+ ||(1− µ)(b− c)||+ ||µ(a− c)||

= ||a− c||+ ||b− c||

which proves the first inequality. Now, because 0 < µ ≤ 1/2, the opinions

a, φ(a, b), c0 = (a+ b)/2, φ(b, a), b

all lie on the segment line [a, b] in this specific order going from point a to point b, therefore using

again the triangle inequality and absolute homogeneity, we obtain

||φ(a, b)− c||+ ||φ(b, a)− c|| ≤ ||φ(a, b)− c0||+ ||c0 − c||+ ||φ(b, a)− c0||+ ||c0 − c||

= ||φ(a, b)− φ(b, a)||+ 2||c0 − c||

= ||a− b|| − ||φ(a, b)− a|| − ||φ(b, a)− b||+ ||2(c0 − c)||

≤ ||a− c||+ ||b− c|| − 2||φ(a, b)− a||+ ||a+ b− 2c||
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which proves the second inequality. This completes the proof.

In the next lemma, we use the first inequality in Lemma 2.1 to prove that, for all c ∈ ∆, the

processes (Xt(c)) are almost surely nonincreasing.

Lemma 2.2 (monotonicity). – For all c ∈ ∆,

0 ≤ Xt(c) ≤ Xs(c) ≤ 2r · card(V ) for all s ≤ t.

Proof. At each update of the processes, say at time s,

ξs(x) = φ(ξs−1(x), ξs−1(y)) and ξs(y) = φ(ξs−1(y), ξs−1(x)) for some (x, y) ∈ E .

In particular, applying Lemma 2.1 with a = ξs−1(x) and b = ξs−1(y), we get

Xs(c)−Xs−1(c) = ||ξs(x)− c||+ ||ξs(y)− c|| − ||ξs−1(x)− c|| − ||ξs−1(y)− c||

= ||φ(a, b)− c||+ ||φ(b, a)− c|| − ||a− c|| − ||b− c|| ≤ 0.

In addition, because c ∈ ∆ and ∆ ⊂ B(c, r), we have

0 ≤ Xt(c) =
∑
x∈V

||ξt(x)− c|| ≤
∑
x∈V

(
||ξt(x)− c||+ ||c− c||

)
≤
∑
x∈V

2r = 2r · card(V ) <∞.

This completes the proof.

Note that Lemma 2.2 implies that the processes (Xt(c)) are bounded supermartingales, which will be

used later with the optional stopping theorem to derive our universal lower bound for the probability

of consensus. By the martingale convergence theorem, each of these processes converges almost

surely to a finite random variable, which suggests almost sure convergence of the interacting particle

system. The main difficulty to prove this result is that whenever two vertices with compatible

opinions a and b interact, the process (Xt(c)) does not “see the update” when a, b, c are aligned in

this order. For some norms, the lack of alignment is not even a sufficient condition for the process

to see the change of opinions so it is not clear how to deduce convergence of the system. To prove

this result, we now use Lemma 2.2 and the second inequality in Lemma 2.1 to show that the process

keeps slowing down in the sense that the jumps at each vertex get smaller and smaller.

Lemma 2.3 (slow-down). – For all ε > 0, there is S = S(ε) almost surely finite such that

||ξs(x)− ξs−1(x)|| < ε for all s ≥ S and x ∈ V .
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Proof. Assume by contradiction that, for some ε > 0 and x ∈ V , the opinion at x jumps by more

than ε infinitely often with positive probability, and let (si) be the times of these updates:

||ξsi(x)− ξsi−1(x)|| ≥ ε for all i > 0.

Letting yi ∈ V be the vertex that interacts with x at time si, setting

ai = ξsi−1(x), bi = ξsi−1(y) and ci = (ai + bi)/2,

and applying the second inequality in Lemma 2.1 with a = ai and b = bi, we get

Xsi(c)−Xsi−1(c) = ||ξsi(x)− c||+ ||ξsi(y)− c|| − ||ξsi−1(x)− c|| − ||ξsi−1(y)− c||

= ||φ(ai, bi)− c||+ ||φ(bi, ai)− c|| − ||ai − c|| − ||bi − c||

≤ −2||φ(ai, bi)− ai||+ ||ai + bi − 2c|| = −2||ξsi(x)− ξsi−1(x)||+ 2||ci − c||

≤ −2ε+ 2||ci − c|| ≤ −ε

(2.2)

for all c ∈ B(ci, ε/2). Now, observe that there exists ε′ > 0 such that

B(c, ε/2) ∩∆(ε′) 6= ∅ for all c ∈ ∆ where ∆(ε′) = ∆ ∩ (ε′Z)n (2.3)

and where (ε′Z)n is a grid with mesh size ε′ in n dimensions. It follows from the Pythagorean

theorem that the Euclidean distance from c to the grid is bounded by√
(ε′/2)2 + · · ·+ (ε′/2)2 =

√
n(ε′/2)2 =

√
n (ε′/2)

which implies that (2.3) holds for ε′ < ε/
√
n. This and the equivalence of the norms in finite

dimensions imply that, for each norm, there indeed exists ε′ > 0 such that (2.3) holds. In addition,

because the opinion space ∆ is bounded, and again the dimension is finite,

card(∆(ε′)) <∞ for all ε′ > 0. (2.4)

Combining (2.3) and (2.4), we deduce that

∆′(ε′) = {c ∈ ∆(ε′) : card{i : c ∈ B(ci, ε/2)} =∞} 6= ∅.

In particular, there exists

c′ ∈ ∆′(ε′) such that I = {i ∈ N : c ∈ B(ci, ε/2)} is infinite.

This, together with (2.2) and Lemma 2.2, implies that

lim
t→∞

Xt(c
′) ≤ X0(c′) +

∑
i∈I

(Xsi(c
′)−Xsi−1(c′)) = X0(c′) +

∑
i∈I

(−ε) = −∞,

which contradicts the fact that (Xt(c
′)) is positive.
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The next lemma shows that the jumps getting smaller and smaller implies that, for large times,

neighbors must either be incompatible or have almost the same opinion.

Lemma 2.4 (clustering). – For all 0 < ε < τ , there is T = T (ε) almost surely finite such that

||ξs(x)− ξs(y)|| /∈ [ε, τ ] for all s ≥ T and (x, y) ∈ E .

Proof. Assume by contradiction that there exist ε > 0 and (x, y) ∈ E such that the opinion distance

along the edge belongs to [ε, τ ] infinitely often, meaning that

ξsi(x)− ξsi(y) ∈ [ε, τ ] for an increasing sequence (si) ⊂ N.

Letting Ai be the event that edge (x, y) is selected at time si + 1, because the edge selected at each

time step is chosen uniformly at random and independently of everything else,

∞∑
i=1

P (Ai) =

∞∑
i=1

1

card(E )
=∞ and the events (Ai) are independent.

In particular, it follows from the second Borel-Cantelli lemma that

P
(

lim sup
i→∞

Ai

)
= P (card{i ≥ 1 : Ai occurs} =∞) = 1. (2.5)

In addition, on the event Ai,

||ξsi+1(x)− ξsi(x)|| = ||φ(ξsi(x), ξsi(y))− ξsi(x)|| = ||µ(ξsi(x)− ξsi(y))|| ≥ µε. (2.6)

Combining (2.5) and (2.6), we deduce that, with probability one, the opinion at x jumps by more

than µε infinitely often, which contradicts Lemma 2.3. This completes the proof.

To deduce almost sure convergence of the particle system from the previous lemma, the last step is

to prove that neighbors who almost totally agree cannot randomly oscillate together, which follows

from an argument of convexity. The proof of the next lemma shows in fact a little bit more: there is

a partition of the graph into connected components such that all the opinions in the same component

are eventually trapped in a fixed ball with arbitrarily small radius while opinions in two adjacent

components are incompatible, which implies in particular (P1) and (P2).

Lemma 2.5 (convergence). – Properties (P1) and (P2) hold.

Proof. Let N = card(V ) and 0 < ε < τ/N . According to Lemma 2.4, there exists a random but

almost surely finite time T such that

||ξs(x)− ξs(y)|| /∈ [ε/N, τ ] for all s ≥ T and (x, y) ∈ E
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and we write x↔ y if there exist x0 = x, x1, . . . , xj = y all distinct such that

(xi, xi+1) ∈ E and ||ξs(xi)− ξs(xi+1)|| < ε/N for all 0 ≤ i < j and s ≥ T.

In particular, by the triangle inequality,

||ξT (x)− ξT (y)|| ≤
j−1∑
i=0

||ξT (xi)− ξT (xi+1)|| < jε

N
≤ ε. (2.7)

The relationship ↔ defines an equivalence relationship so it induces a partition of the vertex set

into equivalence classes V1,V2, . . . ,Vk that correspond to connected components of the graph. In

addition, by (2.7) and the definition of ↔, there exist c1, c2, . . . , ck ∈ ∆ such that

(a) for all i = 1, 2, . . . , k, we have ξT (x) ∈ B(ci, ε) for all x ∈ Vi and

(b) whenever Vi and Vj are connected by (x, y) ∈ E , we have ||ξT (x)− ξT (y)|| > τ .

Assume that properties (a) and (b) hold from time T to time s > T and that edge (x, y) is selected

at time s+ 1. Then, either x↔ y, say x, y ∈ Vi, in which case

[ξs+1(x), ξs+1(y)] = [(1− µ) ξs(x) + µ ξs(y), (1− µ) ξs(y) + µ ξs(x)] ⊂ [ξs(x), ξs(y)] ⊂ B(ci, ε)

by convexity of B(ci, ε), or edge (x, y) connects two different classes in which case

||ξs(x)− ξs(y)|| > τ therefore ξs+1(x) = ξs(x) and ξs+1(y) = ξs(y).

In either case, properties (a) and (b) remain true after the interaction. Because ε > 0 can be chosen

arbitrarily small, this proves that properties (P1) and (P2) hold.

2.4 Stopping time and consensus event

This section is devoted to the proof of Theorem 2.1. As mentioned after the proof of Lemma 2.2,

the processes (Xt(c)) are bounded supermartingales so the idea is to apply the optional stopping

theorem. Before proving the theorem, we define a suitable stopping time and show how the consensus

event relates to the configuration of the system at this stopping time. Let

T∗ = inf{t : ||ξt(x)− ξt(y)|| /∈ [τ/2, τ ] for all x, y ∈ V }.

Note that time T∗ is a stopping time for the natural filtration of the process. Time T∗ is also almost

surely finite according to Lemma 2.4, so we have the following result.
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Lemma 2.6. – Time T∗ is an almost surely finite stopping time.

We now identify a collection of configurations at the stopping time T∗ that always lead the

population to consensus eventually. More precisely, we let

A =
⋃
x∈V

{
sup
c∈∆
||ξT∗(x)− c|| < τ

}

be the event that, at the stopping time, there is (at least) one “centrist” individual whose opinion is

within distance τ of all other possible opinions. Then, we have the following inclusion showing that

the event A plays the role of an attractor in the sense that, whenever this event occurs, the process

will almost surely evolve to a consensus.

Lemma 2.7 (attractor). – We have the inclusion A ⊂ C .

Proof. The definition of T∗ implies that

ξT∗(y) ∈ B(ξT∗(x), τ) ⇒ ξT∗(y) ∈ B(ξT∗(x), τ/2). (2.8)

In addition, by the proof of Lemma 2.5 (convexity argument),

ξT∗(y) ∈ B(c, τ/2) for all y ∈ V ⇒ ξs(y) ∈ B(c, τ/2) for all y ∈ V and s > T∗. (2.9)

This, together with Lemma 2.5 itself, gives the implications

supc∈∆ ||ξT∗(x)− c|| < τ for some x ∈ V

⇒ (ξT∗(y) ∈ B(ξT∗(x), τ) for all y ∈ V ) for some x ∈ V

⇒ (ξT∗(y) ∈ B(ξT∗(x), τ/2) for all y ∈ V ) for some x ∈ V (by (2.8))

⇒ (ξs(y) ∈ B(c, τ/2) for all y ∈ V and s > T∗) for some c ∈ ∆ (by (2.9))

⇒ lims→∞ ||ξs(y)− ξs(z)|| = 0 for all y, z ∈ V (by (P2) and choice of τ/2).

This completes the proof.

Proof of Theorem 2.1. According to Lemma 2.2, for all c ∈ ∆, the processes (Xt(c)) is bounded

and almost surely nonincreasing. In particular, the process is a bounded supermartingale with

respect to the natural filtration of the opinion model. According to Lemma 2.6, we also have that

the random time T∗ is an almost surely finite stopping time with respect to the same filtration. In

particular, it follows from the optional stopping theorem that, for all c ∈ ∆,

E(XT∗(c)) ≤ E(X0(c)) = E

(∑
x∈V

||ξ0(x)− c||
)

= card(V ) · E ||X − c||. (2.10)
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Now, on the complement of A ,

for all x ∈ V , there exists cx ∈ ∆ such that ||ξT∗(x)− cx|| ≥ τ.

This and the triangle inequality imply that

||ξT∗(x)− c|| ≥ ||ξT∗(x)− cx|| − ||cx − c|| ≥ τ − r for all x ∈ ∆.

This gives the following bound for the conditional expectation:

E(XT∗(c) |A c) = E

(∑
x∈V

||ξT∗(x)− c||
∣∣∣A c

)
≥ (τ − r) · card(V ). (2.11)

Combining (2.10) with c = c and (2.11), we deduce that

(τ − r)(1− P (A )) ≤ E(XT∗(c) |A c)P (A c)

card(V )
≤ E(XT∗(c))

card(V )
≤ E ||X − c||

which, together with Lemma 2.7, implies that

P (C ) ≥ P (A ) ≥ 1− E ||X − c||
τ − r

for all τ > r.

This completes the proof of the theorem. �
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Chapter 3

MIXED HEGSELMANN-KRAUSE DYNAMICS

Hsin-Lun Li

Abstract. The original Hegselmann-Krause (HK) model consists of a set of n agents that are

characterized by their opinion, a number in [0, 1]. Each agent, say agent i, updates its opinion xi

by taking the average opinion of all its neighbors, the agents whose opinion differs from xi by at

most ε. There are two types of HK models: the synchronous HK model and the asynchronous HK

model. For the synchronous model, all the agents update their opinion simultaneously at each time

step, whereas for the asynchronous HK model, only one agent chosen uniformly at random updates

its opinion at each time step. This paper is concerned with a variant of the HK opinion dynamics,

called the mixed HK model, where each agent can choose its degree of stubbornness and mix its

opinion with the average opinion of its neighbors at each update. The degree of the stubbornness

of agents can be different and/or vary over time. An agent is not stubborn or absolutely open-

minded if its new opinion at each update is the average opinion of its neighbors, and absolutely

stubborn if its opinion does not change at the time of the update. The particular case where, at

each time step, all the agents are absolutely open-minded is the synchronous HK model. In contrast,

the asynchronous model corresponds to the particular case where, at each time step, all the agents

are absolutely stubborn except for one agent chosen uniformly at random who is absolutely open-

minded. I first show that some of the common properties of the synchronous HK model, such as

finite-time convergence, do not hold for the mixed model. I then investigate conditions under which

the asymptotic stability holds, or a consensus can be achieved for the mixed model.

3.1 Introduction

The Hegselmann-Krause (HK) model is a popular opinion dynamics model describing the inter-

actions among a population of agents. In the standard HK model, there are n agents and each agent

updates its opinion by taking the average opinion of its neighbors. More precisely, let

xi(t+ 1) =
1

|Ni(t)|
∑

j∈Ni(t)

xj(t) where xi(t) ∈ Rd
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represents the opinion of agent i at time t ∈ N, and let

Ni(t) = {j ∈ [n] : ‖xi(t)− xj(t)‖ ≤ ε} where [n] = {1, 2, . . . , n}

be the set of agents whose opinion differs from the opinion of agent i by at most ε, that I call the

neighbors of agent i at time t. Here, ‖ ‖ refers to the Euclidean norm and ε is a positive number

that represents a confidence bound. The authors of [17] considered the one-dimensional modified HK

model as follows:

xi(t+ 1) = αi xi(t) +
(1− αi)
|Ni(t)|

∑
j∈Ni(t)

xj(t) where xi(t) and αi ∈ [0, 1].

In words, the convex combination indicates that agent i mixes its opinion with the average opinion

of its neighbors, with the parameter αi measuring the degree of stubbornness of agent i. In this

paper, I extend the modified HK model to higher dimensional sets of opinions and allow the degree

of stubbornness αi to vary over time. The resulting model can be expressed in matrix form as

x(t+ 1) = diag(α(t))x(t) + (I − diag(α(t)))A(t)x(t) (3.1)

where A(t) ∈ Rn×n is row stochastic with

Aij = 1{j ∈ Ni(t)}/|Ni(t)|

and where

x(t) = (x1(t), x2(t), . . . , xn(t))′ = transpose of (x1(t), x2(t), . . . , xn(t)),

α(t) = (α1(t), α2(t), . . . , αn(t))′ = transpose of (α1(t), α2(t), . . . , αn(t)).

In particular, agent i is absolutely stubborn when αi(t) = 1 and absolutely open-minded when αi(t) =

0. Observe also that (3.1) reduces to

• the synchronous HK model if α(t) = ~0 for all t ≥ 0 and

• the asynchronous HK model if α(t) = (1{j 6= i(t)})nj=1 for all t ≥ 0 and for some i(t) ∈ [n]

chosen uniformly at random.

Our main objective is to study the strategies the agents should play so that the asymptotic stability

holds, or a consensus can be achieved. Some of the common properties of the synchronous HK model

do not hold for the mixed HK model. Before going into the details, I need the following definitions.
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Definition 3.1. An opinion profile at time t or simply a profile at time t is an undirected graph G (t)

with the vertex set and edge set

V (t) = [n] and E (t) = {ij : i 6= j and ‖xi(t)− xj(t)‖ ≤ ε}.

Apart from [2], the opinion profile is simple.

Definition 3.2. The termination time of n agents, Tn, is the maximum number of iterations in (3.1)

by reaching a steady state over all initial profiles, i.e.,

Tn = inf{t ≥ 0 : x(t) = x(s) for all s ≥ t}.

Definition 3.3. The convex hull generated by v1, v2, . . . , vn ∈ Rd is the smallest convex set con-

taining v1, v2, . . . , vn, i.e.,

C({v1, v2 . . . , vn}) = {v : v =

n∑
i=1

λivi where (λi)
n
i=1 is stochastic}.

Definition 3.4. A profile G (t) is δ-trivial if any two of its vertices are at a distance of at most δ

apart. In particular, G (t) is complete if it is ε-trivial.

Definition 3.5. For δ > 0, x(t) in (3.1) is a δ-equilibrium if there is a partition

{G1, G2, . . . , Gm} of the set {x1(t), x2(t), . . . , xn(t)}

such that the following two conditions hold:

dist(C(Gi), C(Gj)) > ε for all i 6= j and diam(C(Gi)) ≤ δ for all i ∈ [m].

Definition 3.6. A merging time is a time t that two agents with different opinions at time t − 1

have the same opinion at time t, i.e.,

xi(t) = xj(t) and xi(t− 1) 6= xj(t− 1) for some i, j ∈ [n].

The following are some properties distinct from the synchronous HK model.

Property 3.1. The termination time is not finite.

Example 3.1. Assume that n = 2, d = 1,

x1(0) = 0, x2(0) = ε and α1(t) = α2(t) = 1/2 for all t ≥ 0.

Then, at each time step, x1 and x2 get closer to each other. However, never do they reach a steady

state in finite time.
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Property 3.2. Agents merging at time t may depart at time t+1. In particular, G (t) ε-trivial may

not imply that x(t+ 1) in (3.1) is a steady state.

Example 3.2. Assume that n = 3, d = 2,

x1(0) = (0, 0), α1(0) = 0, α1(1) = 1/3,

x2(0) = (ε, 0), α2(0) = 0, α2(1) = 1/2,

x3(0) = (ε/2, ε).

Then, x1 and x2 merge at time t = 1 but depart at time t = 2.

Property 3.3. A δ-equilibrium may not exist for all 0 < δ ≤ ε.

Example 3.3. Assume that n = 3, d = 2,

x1(0) = (0, 0), x2(0) = (ε, 0), x3(0) = (ε/2, ε) and α1(t) = α2(t) = 1/2

for all t ≥ 0. Then, x has no δ-equilibrium for all 0 < δ ≤ ε. Note that vertex 3 of the profile is

isolated all the time.

The following lemma plays an important role in the proof of the main theorems.

Lemma 3.1. Let λ1, . . . , λn ∈ R with
∑n
i=1 λi = 0 and x1, . . . , xn ∈ Rd. Then, for

λ1x1 + λ2x2 + · · ·+ λnxn,

the terms with positive coefficients can be matched with the terms with negative coefficients in the

sense that
n∑
i=1

λixi =
∑

i,ci≥0,j,k∈[n]

ci(xj − xk) and
∑
i

ci =
∑
j,λj≥0

λj .

Proof. I prove the result by induction on n. Without loss of generality, I may assume that λ1 ≥

λ2 ≥ · · · ≥ λn. For n = 2, λ1 + λ2 = 0 implies that

λ2 = −λ1 and λ1 ≥ 0 therefore λ1x1 + λ2x2 = λ1(x1 − x2),

which proves the result for n = 2. Now, assume that n > 2. Because the λi’s add up to 0, I

have λn ≤ 0. Define

λn = −λ and i = min

{
m ∈ Z+ :

m∑
k=1

λk ≥ λ
}
.
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Then, λk ≥ 0 for all 1 ≤ k ≤ i so

n∑
k=1

λkxk =

i−1∑
k=1

λk(xk − xn) +

(
λ−

i−1∑
k=1

λk

)
(xi − xn)

+

( i∑
k=1

λk − λ
)
xi +

n−1∑
k=i+1

λkxk.

Now, observe that λ−
∑i−1
k=1 λk ≥ 0,

∑i
k=1 λk − λ ≥ 0 and( i∑

k=1

λk − λ
)

+

n−1∑
k=i+1

λk =

n−1∑
k=1

λk − λ =

n−1∑
k=1

λk + λn =

n∑
k=1

λk = 0.

By the induction hypothesis,( i∑
k=1

λk − λ
)
xi +

n−1∑
k=i+1

λkxk =
∑

`,c`≥0,j,k∈[n−1]−[i−1]

c` (xj − xk),

∑
`

c` =

( i∑
k=1

λk − λ
)

+
∑

k∈[n−1]−[i],λk≥0

λk.

Hence, λ1x1 + λ2x2 + · · ·+ λnxn can be written as

∑
`,ĉ`≥0,j,k∈[n]

ĉ`(xj − xk)

where the sum of the coefficients ĉ` is given by

∑
`

ĉ` =

i−1∑
k=1

λk +

(
λ−

i−1∑
k=1

λk

)
+
∑
`

c` = λ+
∑
`

c`

= λ+

i∑
k=1

λk − λ+
∑

k∈[n−1]−[i],λk≥0

λk =
∑

k∈[n−1],λk≥0

λk =
∑

k∈[n],λk≥0

λk.

This completes the proof.

This result allows us to observe the interactions among the agents and derive a better upper bound.

For any x, y ∈ C({v1, ..., vn}),

• the coefficients of all vi’s in x− y add up to zero and

• the sum of the positive coefficients of the vi’s in x− y is at most one.

In particular, by Lemma 3.1 and the triangle inequality,

‖x− y‖ ≤ max
i,j∈[n]

‖vi − vj‖ ≤ diam(C({v1, . . . , vn}))

therefore diam(C({v1, . . . , vn})) = maxi,j∈[n] ‖vi − vj‖.
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Lemma 3.2. I have

diam(C({v1, . . . , vn})) = max
i,j∈[n]

‖vi − vj‖ for all vi ∈ Rd.

In contrast with the synchronous HK model, G (t) ε-trivial may not imply that a consensus is reached

at the next time step. However, G (t+ 1) is again ε-trivial. Observe that

xi(t+ 1) ∈ C({x1(t), . . . , xn(t)}) for all i ∈ [n]

and according to Lemma 3.2,

max
i,j∈[n]

‖xi(t+ 1)− xj(t+ 1)‖ ≤ max
i,j∈[n]

‖xi(t)− xj(t)‖.

Lemma 3.3 (δ-trivial-preserving). For any δ > 0, if

G (t) is δ-trivial, then G (t+ 1) is δ-trivial.

Indeed, I can derive a better upper bound for ‖xi(t + 1) − xj(t + 1)‖ by re-organizing the terms

of xi(t+ 1)− xj(t+ 1).

Lemma 3.4. Assume that G (t) is ε-trivial. Then,

max
i,j∈[n]

‖xi(t+ 1)− xj(t+ 1)‖

≤ max
i,j∈[n],αi(t)≥αj(t)

(
αi(t)−

αi(t)− αj(t)
n

)
max
i,j∈[n]

‖xi(t)− xj(t)‖.

Proof. Let x = x(t), x′ = x(t+ 1) and α = α(t). For any i, j ∈ [n] with αi ≥ αj ,

x′i − x′j =

(
αi −

αi − αj
n

)
xi −

(
αj +

αi − αj
n

)
xj −

αi − αj
n

∑
k∈[n]−{i,j}

xk.

Observe that

αi −
αi − αj

n
≥ αi −

αi
n
≥ 0, αj +

αi − αj
n

≥ 0 and
αi − αj

n
≥ 0,

showing that xi is the only term with nonnegative coefficient, whereas the other terms have non-

positive coefficients. Because x′i ∈ C({x1, x2, . . . , xn}) for all i ∈ [n], it follows from Lemma 3.1

that

x′i − x′j =

(
αj +

αi − αj
n

)
(xi − xj) +

αi − αj
n

∑
k∈[n]−{i,j}

(xi − xk)

26



and the coefficients of the terms xi−xk for k ∈ [n]−{i} add up to αi− αi−αj
n . Thus, by the triangle

inequality,

‖x′i − x′j‖ ≤
(
αj +

αi − αj
n

)
‖xi − xj‖+

αi − αj
n

∑
k∈[n]−{i,j}

‖xi − xk‖

≤
(
αi −

αi − αj
n

)
max

k∈[n]−{i}
‖xi − xk‖

=

(
αi −

αi − αj
n

)
max
k∈[n]

‖xi − xk‖

≤ max
i,j∈[n],αi≥αj

(
αi −

αi − αj
n

)
max
i,k∈[n]

‖xi − xk‖.

If αi ≤ αj , then exchanging the roles of i and j, I get

‖x′j − x′i‖ ≤ max
j,i∈[n],αj≥αi

(
αj −

αj − αi
n

)
max
j,k∈[n]

‖xj − xk‖

= max
i,j∈[n],αi≥αj

(
αi −

αi − αj
n

)
max
i,k∈[n]

‖xi − xk‖.

In conclusion,

max
i,j∈[n]

‖x′i − x′j‖ ≤ max
i,j∈[n],αi≥αj

(
αi −

αi − αj
n

)
max
i,k∈[n]

‖xi − xk‖.

This completes the proof.

Observe that

βt := max
i,j∈[n],αi(t)≥αj(t)

(
αi(t)−

αi(t)− αj(t)
n

)
≤ 1.

Therefore, G (t) ε-trivial implies G (s) ε-trivial for all s ≥ t. Hence,

max
i,j∈[n]

‖xi(s+ 1)− xj(s+ 1)‖ ≤ βs max
i,j∈[n]

‖xi(s)− xj(s)‖ for all s ≥ t.

Theorem 3.1. Assume that lim supt→∞ βt < 1 and that G (t) is ε-trivial. Then,

lim
t→∞

max
i,j∈[n]

‖xi(t)− xj(t)‖ = 0.

Proof. Define

ds = max
i,j∈[n]

‖xi(s)− xj(s)‖.

According to Lemma 3.4,

G (t) ε-trivial =⇒ ds+1 ≤ βsds for all s ≥ t.

Since lim supt→∞ βt < 1, there exists (ti)
∞
i=1 ⊂ N strictly increasing with t1 ≥ t such that βti ≤ δ < 1

for some δ and for all i ≥ 1. For any s > t1, I have tis < s ≤ tis+1 for some is ∈ Z+ therefore

ds ≤ βs−1βs−2 · · ·βt1dt1 ≤ δisdt1 .
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As s→∞, is →∞. Thus,

lim sup
s→∞

ds ≤ 0,

showing that the limit exists. This completes the proof.

In an ε-trivial profile, agents need not be open-minded all the time. As long as there are infinitely

many βt with an upper bound less than one, eventually will the population reach a consensus.

The next theorem shows that, even though the profile is not ε-trivial, still can the agents’ opinions

converge.

Theorem 3.2. Define dit = maxj∈Ni(t) ‖xi(t)− xj(t)‖. If

∞∑
t=0

(1− αi(t))
(

1− 1

|Ni(t)|

)
dit <∞, then xi(t)→ xi ∈ Rd as t→∞.

Proof. By Lemma 3.1 and the triangle inequality,

‖xi(t)− xi(t+ 1)‖ = ‖(1− αi(t))
(

1− 1

|Ni(t)|

)
xi(t)−

1− αi(t)
|Ni(t)|

∑
j∈Ni(t)−{i}

xj(t)‖

=
1− αi(t)
|Ni(t)|

∥∥∥∥ ∑
j∈Ni(t)−{i}

[xi(t)− xj(t)]
∥∥∥∥ ≤ (1− αi(t))

(
1− 1

|Ni(t)|

)
dit,

from which it follows that
∞∑
t=0

‖xi(t)− xi(t+ 1)‖ <∞.

This shows that (xi(t))
∞
t=0 is a Cauchy sequence in Rd. Hence, xi(t) converges to some xi in Rd as

t goes to infinity. This completes the proof.

The assumption of Theorem 3.2 is difficult to check because it depends on the entire dynamics’

trajectory. However, since αi(t) is controllable and(
1− 1

|Ni(t)|

)
dit

is bounded, the assumption holds if the sum of 1−αi(t) over time is finite. For instance, given a > 1,

if

1− αi(t) = O

(
1

ta

)
, then xi(t) converges to some xi ∈ Rd as t→∞.

Next, I study several conditions under which every component of a profile is δ-trivial in finite time

or under which the asymptotic stability holds. The following definition and lemmas will lead us to

these conditions.
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Definition 3.7. A symmetric matrix M is called a generalized Laplacian of a graph G = (V,E) if

for x, y ∈ V , the following two conditions hold:

Mxy = 0 for x 6= y and xy /∈ E and Mxy < 0 for x 6= y and xy ∈ E.

Let dG(x) = degree of x in G, let V (G) = vertex set of G, and let E(G) = edge set of G. Then, the

Laplacian of G is defined as L = DG −AG where

DG = diag((dG(x))x∈V (G)) and AG = the adjacency matrix.

In particular, (AG)xy = 1{xy ∈ E(G)} when the graph G is simple.

Note that there is no restrictions on the diagonal entries of the matrix M . Also, the Laplacian of G

is clearly a generalized Laplacian.

Lemma 3.5 (Perron-Frobenius for Laplacians [4]). Assume that M is a generalized Laplacian of a

connected graph. Then, the smallest eigenvalue of M is simple and the corresponding eigenvector

can be chosen with all entries positive.

Lemma 3.6 (Courant-Fischer Formula [23]). Assume that Q is a symmetric matrix with eigenval-

ues λ1 ≤ λ2 ≤ · · · ≤ λn and corresponding eigenvectors v1, v2, . . . , vn. Let Sk be the vector space

generated by v1, v2, . . . , vk and S0 = {0}. Then,

λk = min{x′Qx : ‖x‖ = 1, x ∈ S⊥k−1}.

Lemma 3.7 (Cheeger’s Inequality [3]). Assume that G = (V,E) is an undirected graph with the

Laplacian L . Define

i(G) = min

{
|∂S|
|S|

: S ⊂ V, 0 < |S| ≤ |G|
2

}
where ∂S = {uv ∈ E : u ∈ S, v ∈ Sc}. Then,

2i(G) ≥ λ2(L ) ≥ i2(G)

2∆(G)
where ∆(G) = maximum degree of G.

Lemma 3.8. Let Z(t) =
∑
i,j∈[n] ‖xi(t)− xj(t)‖2 ∧ ε2. Then, Z is nonincreasing with respect to t.

In particular,

Z(t)− Z(t+ 1) ≥ 4

n∑
i=1

(
1 + |Ni(t)|

αi(t)

1− αi(t)
1{αi(t) < 1}

)
‖xi(t)− xi(t+ 1)‖2.
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Proof. Let Ni = Ni(t), N
∗
i = Ni(t + 1), α = α(t), x = x(t), x∗ = x(t + 1) and x′i = 1

|Ni|
∑
k∈Ni xk

for all i ∈ [n]. Via the Cauchy-Schwarz inequality, I obtain

Z(t)− Z(t+ 1) =
∑
i,j∈[n]

(‖xi − xj‖2 ∧ ε2 − ‖x∗i − x∗j‖2 ∧ ε2)

=

n∑
i=1

[ ∑
j∈Ni∩N∗i

(‖xi − xj‖2 − ‖x∗i − x∗j‖2) +
∑

j∈Ni−N∗i

(‖xi − xj‖2 − ε2)

+
∑

j∈N∗i −Ni

(ε2 − ‖x∗i − x∗j‖2)

]

≥
n∑
i=1

∑
j∈Ni

(‖xi − xj‖2 − ‖x∗i − x∗j‖2)

=

n∑
i=1

∑
j∈Ni

(‖xi − xj‖2 − ‖x∗i − xj‖2 + ‖x∗i − xj‖2 − ‖x∗i − x∗j‖2)

=

n∑
i=1

∑
j∈Ni

(‖xi − x∗i + x∗i − xj‖2 − ‖x∗i − xj‖2 + ‖x∗i − x∗j + x∗j − xj‖2

− ‖x∗i − x∗j‖2)

=

n∑
i=1

∑
j∈Ni

(‖xi − x∗i ‖2 + 2 < xi − x∗i , x∗i − xj > +‖x∗j − xj‖2

+ 2 < x∗i − x∗j , x∗j − xj >)

=

n∑
i=1

|Ni|(‖xi − x∗i ‖2 + 2 < xi − x∗i , x∗i − x′i >) +

n∑
j=1

∑
i∈Nj

‖x∗j − xj‖2

+ 2

n∑
j=1

∑
i∈Nj

< x∗i − xi + xi − x∗j , x∗j − xj >

=

n∑
i=1

|Ni|
(
‖xi − x∗i ‖2 +

2αi
1− αi

1{αi < 1}‖xi − x∗i ‖2
)

+

n∑
j=1

|Nj |‖x∗j − xj‖2

+ 2

n∑
j=1

∑
i∈Nj

< x∗i − xi, x∗j − xj > +2

n∑
j=1

∑
i∈Nj

< xi − x∗j , x∗j − xj >

=

n∑
i=1

|Ni|
(

1 +
2αi

1− αi
1{αi < 1}

)
‖xi − x∗i ‖2 +

n∑
i=1

|Ni|‖x∗i − xi‖2

+ 2

n∑
j=1

< x∗j − xj , x∗j − xj > +2

n∑
j=1

∑
i∈Nj−{j}

< x∗i − xi, x∗j − xj >

+ 2

n∑
j=1

|Nj | < x′j − x∗j , x∗j − xj >

≥
n∑
i=1

|Ni|
(

2 +
2αi

1− αi
1{αi < 1}

)
‖xi − x∗i ‖2 + 2

n∑
j=1

‖x∗j − xj‖2
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− 2

n∑
j=1

∑
i∈Nj−{j}

‖x∗i − xi‖‖x∗j − xj‖+ 2

n∑
j=1

|Nj |
αj

1− αj
1{αj < 1}‖x∗j − xj‖2

=

n∑
i=1

|Ni|
(

2 +
4αi

1− αi
1{αi < 1}

)
‖xi − x∗i ‖2 + 2

n∑
j=1

‖x∗j − xj‖2

+

n∑
j=1

∑
i∈Nj−{j}

[
(‖x∗i − xi‖ − ‖x∗j − xj‖)2 − ‖x∗i − xi‖2 − ‖x∗j − xj‖2

]

≥
n∑
i=1

|Ni|
(

2 +
4αi

1− αi
1{αi < 1}

)
‖xi − x∗i ‖2 + 2

n∑
j=1

‖x∗j − xj‖2

−
n∑
i=1

∑
j∈Ni−{i}

‖x∗i − xi‖2 −
n∑
j=1

∑
i∈Nj−{j}

‖x∗j − xj‖2

=

n∑
i=1

|Ni|
(

2 +
4αi

1− αi
1{αi < 1}

)
‖xi − x∗i ‖2 + 2

n∑
j=1

‖x∗j − xj‖2

−
n∑
i=1

(|Ni| − 1)‖x∗i − xi‖2 −
n∑
j=1

(|Nj | − 1)‖x∗j − xj‖2

=

n∑
i=1

4

(
1 + |Ni|

αi
1− αi

1{αi < 1}
)
‖xi − x∗i ‖2

This completes the proof.

Lemma 3.9. Assume that Q is a real square matrix and that V is invertible such that the ma-

trix V Q = L is the Laplacian of some connected graph. Then, 0 is a simple eigenvalue of Q′Q

corresponding to the eigenvector 1 = (1, 1, . . . , 1)′. In particular, I have

λ2(Q′Q) = min{x′Q′Qx : ‖x‖ = 1 and x ⊥ 1}.

Proof. To begin with, observe that

Q′Qx = 0 ⇐⇒ Qx = 0 ⇐⇒ L x = 0.

Recall that a real symmetric matrix is diagonalizable, and that its algebraic multiplicity = its

geometric multiplicity. Since L is positive semi-definite and has an eigenvalue 0 corresponding to

the eigenvector 1, by Lemma 3.5, 0 is a simple eigenvalue of L . Hence, by the above relation

between L and Q′Q, the matrix Q′Q has a simple eigenvalue 0 corresponding to the eigenvector 1.

Since in addition

x′Q′Qx = ‖Qx‖2 ≥ 0,

the matrix Q′Q is positive semi-definite. Finally, applying Lemma 3.6, I get

λ2(Q′Q) = min{x′Q′Qx : ‖x‖ = 1 and x ⊥ 1}.
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This completes the proof.

Now, I am ready to investigate several conditions under which, for any δ > 0, every component of a

profile is δ-trivial in finite time.

Theorem 3.3. Assume that lim supt→∞maxi∈[n] αi(t) < 1. Then, for any δ > 0, every component

of a profile is δ-trivial in finite time, i.e.,

τα,δ := inf{t ≥ 0 : every component of G (t) is δ-trivial} <∞.

Proof. If every component of G (t) is δ-trivial, I am done. Now, assume that G (t) has a δ-nontrivial

component. Without loss of generality, I may assume that G (t) is connected; if not, I can restrict

to a δ-nontrivial component. For 1 ∈ Rn and W = Span({1}), Rn = W ⊕W⊥. Then, write

x(t) = [c11 | c21 | · · · | cd1] +
[
ĉ1u

(1) | ĉ2u(2) | · · · | ĉdu(d)
]

where ci and ĉi are constants and u(i) ∈ 1⊥ is a unit vector for all i ∈ [d].

Claim:

d∑
k=1

ĉ2k >
δ2

2
.

Assume by contradiction that this is not the case. Then, for any i, j ∈ [n],

‖xi(t)− xj(t)‖2 =

d∑
k=1

ĉ2k(u
(k)
i − u

(k)
j )2

≤
d∑
k=1

ĉ2k 2((u
(k)
i )2 + (u

(k)
j )2) ≤ 2

d∑
k=1

ĉ2k ≤ δ2,

contradicting the δ-nontriviality of G (t). Let B(t) = diag(α(t)) + (I − diag(α(t)))A(t). Then,

x(t)− x(t+ 1) = (I −B(t))x(t) =
[
ĉ1(I −B(t))u(1) | · · · | ĉd(I −B(t))u(d)

]
,

from which it follows that

n∑
i=1

‖xi(t)− xi(t+ 1)‖2 =

d∑
j=1

ĉ2j‖(I −B(t))u(j)‖2.

Now, observe that

I −B(t) = (I − diag(α(t)))(I +D(t))−1L

where L is the Laplacian of G (t) and D(t) is diagonal with Dii(t) = di(t), the degree of vertex i.

Assume that αi(t) < 1 for all i ∈ [n]. Then, I−diag(α(t)) is invertible, and according to Lemmas 3.7
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and 3.9,

‖(I −B(t))u(j)‖2 = u(j)′(I −B(t))′(I −B(t))u(j) ≥ λ2((I −B(t))′(I −B(t)))

= λ2

(
L diag

(((
1− αi(t)
1 + di(t)

)2)n
i=1

)
L

)

≥
(

1−maxi∈[n] αi(t)

n

)2

λ2(L 2) =

(
1−maxi∈[n] αi(t)

n

)2

λ2
2(L )

>
4(1−maxi∈[n] αi(t))

2

n8

where I used that

λ2(L ) ≥ i2(G (t))

2∆(G (t))
>

(2/n)2

2n
=

2

n3
.

In particular, I obtain

n∑
i=1

‖xi(t)− xi(t+ 1)‖2 >
2δ2(1−maxi∈[n] αi(t))

2

n8
.

Since lim supt→∞maxi∈[n] αi(t) < 1, there exists (tk)k≥1 ⊂ N strictly increasing such that

max
i∈[n]

αi(tk) ≤ γ < 1 for some γ and for all k ≥ 1.

Now, let τ = τα,δ. By Lemma 3.8, for all m ≥ 1,

n2ε2 > Z(0) ≥ Z(0)− Z(m) =

m−1∑
t=0

(Z(t)− Z(t+ 1))

≥
m−1∑
t=0

∑
i∈[n],αi(t)<1

4

(
1 + |Ni(t)|

αi(t)

1− αi(t)

)
‖xi(t)− xi(t+ 1)‖2

≥ 4

m−1∑
t=0

∑
i∈[n],αi(t)<1

‖xi(t)− xi(t+ 1)‖2. (∗)

Now, assume by contradiction that τ =∞. Letting m→∞, I get

n2ε2 ≥ 4

∞∑
t=0

∑
i∈[n],αi(t)<1

‖xi(t)− xi(t+ 1)‖2

≥ 4
∑

t≥0,maxi∈[n] αi(t)<1

2δ2(1−maxi∈[n] αi(t))
2

n8

≥
∑
k≥1

8δ2(1−maxi∈[n] αi(tk))2

n8
≥
∑
k≥1

8δ2(1− γ)2

n8
=∞,

a contradiction. This completes the proof.

From Theorem 3.3, if lim supt→∞maxi∈[n] αi(t) < 1, then τα,δ < ∞. Thus, if G (τα,δ) is connected

for some 0 < δ ≤ ε, then by Theorem 3.1, a consensus is reached eventually. The main parts of the
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proof of Theorem 3.3 resemble the ones in the proof of Theorem 2 in [2]. The similarities between

the proofs consist in the derivation of a lower bound for

n∑
i=1

‖xi(t)− xi(t+ 1)‖2

by restricting to a δ-nontrivial component and then choosing a bounded function to construct an

inequality involving the sum. The main difference is that Theorem 3.3 assumes that

lim sup
t→∞

max
i∈[n]

αi(t) < 1 (3.2)

to ensure that the smallest eigenvalue of (I − B(t))′(I − B(t)) is simple, but Theorem 2 in [2] has

no such assumptions since (3.2) automatically holds if α(t) = ~0 for all t ≥ 0. Theorem 2 in [2]

states that the termination time of the synchronous HK model is independent of d and bounded

from above. In fact, the result is a special case of the following corollary.

Corollary 3.1. Assume that supt∈N maxi∈[n] αi(t) < 1. Then, τα,δ is bounded from above. Also,

letting τm = τα,ε/m for m ≥ 4, there is no interactions between any two components of G (t) at the

next time step for some M ≥ 4 and for all t ≥ τM , i.e.,

G (t) = G (τM ) for some M ≥ 4 and for all t ≥ τM .

Hence, x in (3.1) is asymptotically stable.

Proof. Because

lim sup
t→∞

max
i∈[n]

αi(t) ≤ sup
t∈N

max
i∈[n]

αi(t) < 1,

it follows from Theorem 3.3 that τ <∞. For τ ≥ 1, setting m = τ in (∗), I get

n2ε2 > 4

τ−1∑
t=0

∑
i∈[n],αi(t)<1

‖xi(t)− xi(t+ 1)‖2

= 4

τ−1∑
t=0

n∑
i=1

‖xi(t)− xi(t+ 1)‖2 ≥ 4

τ−1∑
t=0

2δ2(1−maxi∈[n] αi(t))
2

n8

≥
8τδ2(1− supt∈N maxi∈[n] αi(t))

2

n8
,

from which it follows that

τ <
n10

8(1− supt∈N maxi∈[n] αi(t))2

(
ε

δ

)2

.

Hence, τ is bounded from above. To show the asymptotic stability of x, I first observe that τm

is finite and nondecreasing with respect to m. For all 0 < δ ≤ ε/4 and t ≥ 0, assume that every

component of G (t) is δ-trivial. Then, the following three conditions are equivalent:
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1. Some component of G (t+ 1) is δ-nontrivial.

2. Some components of G (t) interact at time t+ 1.

3. Some component of G (t+ 1) is ε/2-nontrivial.

It is clear that 1 ⇒ 2 and 3 ⇒ 1; therefore I show 2 ⇒ 3.

Proof of 2 ⇒ 3. Let the convex hull of a component G be

Cv(G) = C({xj : j ∈ V (G)}).

The fact that some components of G (t) interact at time t+ 1 implies that there exist

i, j ∈ [n] with ij ∈ E (t+ 1), i ∈ V (Gĩ) and j ∈ V (Gj̃)

for some distinct components Gĩ and Gj̃ of G (t). Therefore,

xi(t+ 1) ∈ Cv(Gĩ) and xj(t+ 1) ∈ Cv(Gj̃).

Hence,

ε < ‖xi(t)− xj(t)‖

≤ ‖xi(t)− xi(t+ 1)‖+ ‖xi(t+ 1)− xj(t+ 1)‖+ ‖xj(t+ 1)− xj(t)‖

≤ δ + ‖xi(t+ 1)− xj(t+ 1)‖+ δ = ‖xi(t+ 1)− xj(t+ 1)‖+ 2δ.

This implies that

‖xi(t+ 1)− xj(t+ 1)‖ > ε− 2δ ≥ ε− 2 · ε
4

=
ε

2
for all 0 < δ ≤ ε

4

so the component of G (t+ 1) containing ij is ε/2-nontrivial.

Let

Am = {t ∈ [τm, τm+1) : some component of G (t) is ε/m-nontrivial}

and tm = inf Am.

Claim: the set A := {tk : Ak 6= ∅} is finite.

For tm ∈ A , since some component of G (tm) is ε/m-nontrivial and all components of G (tm − 1)

are ε/m-trivial, by 1⇒ 3, some component of G (tm) is ε/2-nontrivial. Using (∗) and letting m→∞,
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I get

n2ε2 ≥ 4
∑
t≥0

∑
i∈[n],αi(t)<1

‖xi(t)− xi(t+ 1)‖2 = 4
∑
t≥0

n∑
i=1

‖xi(t)− xi(t+ 1)‖2

≥ 4
∑
t∈A

2(ε/2)2(1−maxi∈[n] αi(t))
2

n8

≥ |A |
8(ε/2)2(1− supt≥0 maxi∈[n] αi(t))

2

n8
,

from which it follows that

|A | ≤ n10

2(1− supt≥0 maxi∈[n] αi(t))2
.

Hence, the set A is finite. By the fact that A is finite and that 2⇒ 1, there is no interactions

between any two components of G (s) at the next time step for some M ≥ 4 and for all s ≥ τM .

Hence, I deduce that every component of G (τM ) is an independent system. Since in addition

lim sup
t→∞

βt ≤ sup
t∈N

βt ≤ sup
t∈N

max
i∈[n]

αi(t) < 1,

by Theorem 3.1, x in (3.1) is asymptotically stable.

Note that the upper bound for τ is independent of d, and (3.1) reduces to the synchronous HK

model if α(t) = ~0 for all t ≥ 0. Since supt≥0 maxi∈[n] αi(t) < 1 automatically holds if α(t) = ~0 at all

times, G (s) = G (τM ) for some M ≥ 4 and for all s ≥ τM . This shows that G (τM + 1) is a steady

state and that the termination time of the synchronous HK model is bounded from above.

3.2 Conclusion

The mixed HK model covers both the synchronous and the asynchronous HK models, and is

therefore more general and more complicated. At each time step, each agent can choose its degree

of stubbornness and mix its opinion with the average opinion of its neighbors. Agents with the

same opinion may depart later, depicting the changeability of agents, which is closer to real world

circumstances. Given the givens, make it more difficult to reach asymptotic stability or a steady

state. However, under some conditions, not only does the asymptotic stability hold, but also a

consensus can be achieved.
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Chapter 4

PROBABILITY OF CONSENSUS OF HEGSELMANN-KRAUSE DYNAMICS

Hsin-Lun Li

Abstract. The original Hegselmann-Krause (HK) model comprises a set of n agents characterized

by their opinion, a number in [0, 1]. Agent i updates its opinion xi via taking the average opinion

of its neighbors whose opinion differs by at most ε from xi. In the article, the opinion space is

extended to Rd. The main result is to derive bounds for the probability of consensus. In general, I

derive a positive lower bound for the probability of consensus and demonstrate a lower bound for

the probability of consensus on a unit cube. In particular for one dimensional case, I derive an upper

bound and a better lower bound for the probability of consensus and demonstrate them on a unit

interval.

4.1 Introduction

The original Hegselmann-Krause (HK) model consists of a set of n agents characterized by their

opinion, a number in [0, 1]. Agent i updates its opinion xi via taking the average opinion of its

neighbors whose opinion differs by at most ε from xi for a confidence bound ε > 0. In this essay, the

opinion space is extended to Rd. The aim is to derive a lower bound for the probability of consensus

for the synchronous HK model as follows:

x(t+ 1) = A(t)x(t) for t ∈ N, (4.1)

Aij(t) = 1{j ∈ Ni(t)}/|Ni(t)|,

x(t) = (x1(t), . . . , xn(t))′ = transpose of (x1(t), . . . , xn(t))

for [n] := {1, 2, . . . , n}, Ni(t) = {j ∈ [n] : ‖xj(t) − xi(t)‖ ≤ ε} the collection of agent i′s neighbors

at time t and ‖ ‖ the Euclidean norm. [8] gives an overview of HK models. [19, 35] elaborate that

(4.1) has finite-time convergence property. [13] further illustrates that the termination time

Tn = inf{t ≥ 0 : x(t) = x(s) for all s ≥ t}

is bounded from above. Finite-time convergence property is enough to imply

lim
t→∞

max
i,j∈[n]

‖xi(t)− xj(t)‖ exists.
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Let the initial opinions xi(0) be independent and identically distributed random variables with a

convex support S ⊂ Rd of positive Lebesgue measure and a probability density function f , where

P (xi ∈ B) =
∫
B
f(xi)dm(xi) for all i ∈ [n], B a Borel set and m the Lebesgue measure. Here, Say

a function or a set is measurable if it is Lebesgue measurable. A profile at time t is an undirected

graph G (t) = (V (t),E (t)) with the vertex set and edge set

V (t) = [n] and E (t) = {(i, j) : i 6= j and ‖xi(t)− xj(t)‖ ≤ ε}.

A profile G (t) is δ-trivial if any two vertices are at a distance of at most δ apart. Observe that a

consensus is reached at time t+ 1 if G (t) is ε-trivial.

4.2 Main results

Define

C = { lim
t→∞

max
i,j∈[n]

‖xi(t)− xj(t)‖ = 0},

the collection of all sample points that lead to a consensus.

Theorem 4.1.

P (C ) ≥ P (G (0) is connected) for 1 ≤ n ≤ 4.

In general,

P (C ) ≥ P (G (0) is ε-trivial)

≥ P (xi(0) ∈ B(x1(0), ε/2) for all i ∈ [n])

=

∫
Rd

f(x1)

(∫
B(x1,ε/2)

f(x)dm(x)

)n−1

dm(x1) > 0 for n ≥ 1.

In particular, the probability of consensus is positive.

Corollary 4.1. Assume that S = [0, 1]d and xi(0) = Uniform ([0, 1]d). Then,

P (C ) ≥
(

(
ε

2
)dm(B(0, 1))

)n−1

(1− ε)d =

(
(
ε

2
)d

π
d
2

Γ(d2 + 1)

)n−1

(1− ε)d

for all i ∈ [n] and ε ∈ (0, 1).

Define

(1) = arg min
k∈[n]

xk and (i) = arg min
k∈[n]−{(j)}i−1

j=1

xk for i ≥ 2.
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Namely x(i) is the i-th smallest number among (xk)nk=1. For n ≥ 4, let m = bn−4
3 c and k = n−m−1.

Say G (t) satisfies (∗) if

((m+ 2), (k)) ∈ E (t) and (x(n) − x(k) + x(m+2) − x(1))(t) ≤ ε.

Say G (t) satisfies (∗∗) if

max
(
(x(n) − x(n−i−1))(t), (x(n−i−1) − x(i+2))(t), (x(i+2) − x(1))(t)

)
≤ ε

2

for some 0 ≤ i ≤ m.

Theorem 4.2 (d = 1).

P (C ) = P (G (0) is connected) for 1 ≤ n ≤ 4.

P (C ) ≥ P (G (0) satisfies (∗)) for 5 ≤ n ≤ 7.

In general,

P (G (0) is connected) ≥ P (C ) ≥ P (G (0) is ε-trivial or satisfies (∗∗)) for n ≥ 1.

Corollary 4.2. Let S = [0, 1], d = 1, ε ∈ (0, 1) and xi(0) = Uniform ([0, 1]) for all i ∈ [n]. Then,

for n = 2,

P (C ) = ε(2− ε)

for n = 3,

P (C ) =

 6ε2(1− ε) ε ∈ (0, 1
2 )

1− 2(1− ε)3 ε ∈ [ 1
2 , 1)

for n = 4,

P (C ) =



24ε3(1− 3ε) + 36ε4 ε ∈ (0, 1
3 )

19ε4 − 4ε3(1− 2ε) + (1− 2ε)4 − 6ε2(3ε− 1)2

−4ε(1− 2ε)3 + 12ε3(1− 2ε) + 12ε2(1− 2ε)2 ε ∈ [ 1
3 ,

1
2 )

ε4 + 4ε3(1− ε) + 6ε2(1− ε)2 + 4ε(1− ε)3 − 2(1− ε)4 ε ∈ [ 1
2 , 1)

for n ≥ 1,

P (G (0) is ε-trivial) = εn−1[n− (n− 1)ε]

P (xi(0) ∈ B(x1(0), ε/2) for all i ∈ [n]) =
2

n
εn(1− 1

2n
) + εn−1(1− ε).
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In general,

P (C ) ≥ P (G (0) is ε-trivial) = εn−1[n− (n− 1)ε] for n ≥ 1.

Figure 4.1: Bounds for P (C )
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From Figure 4.1, labels ε/2, ε and c denote respectively the lines of

P (xi(0) ∈ B(x1(0), ε/2) for all i ∈ [n]), P (G (0) is ε-trivial) and P (G (0) is connected).

The black points are simulations for the probability of consensus. For n = 2,

P (C ) = P (G (0) is connected) = P (G (0) is ε-trivial)

so ε and c-lines overlap. Observe that the points for the probability of consensus are around c-

line for 2 ≤ n ≤ 4, which meets the theory. For 5 ≤ n ≤ 7, the gray points and the solid

line are respectively simulations and numerical integrals of P (G (0) satisfies (∗)), suggesting that

theoretically P (G (0) satisfies (∗)) is a better lower bound for P (C ) than P (G (0) is ε-trivial). For

n = 10, the dark gray points are simulations of P (G (0) is ε-trivial or satisfies (∗∗)), and the points

and solid line are respectively simulations and numerical integrals of P (G (0) satisfies (∗∗) and i =

(m)). Suggest that

P (G (0) is ε-trivial) ∨ P (G (0) satisfies (∗∗) and i = (m))

is a better lower bound than each of the two for the probability of consensus.

4.3 Probability of consensus

To derive a better lower bound for the probability of consensus, I study properties other than ε-

triviality that leads to a consensus. If a profile is connected-preserving, then a consensus can be

achieved in finite time. I illustrate that any profile G is connected-preserving for 1 ≤ n ≤ 4

and some profile G of some configuration x fails to remain connected for n > 4. Thus P (C ) ≥

P (G (0) is connected) for 1 ≤ n ≤ 4. It is straightforward in general, P (G (0) is ε-trivial) is a lower

bound for P (C ) but it is uneasy to calculate in high dimensions. Therefore I provide an easier

calculated lower bound for the probability of consensus and also depict that the probability of

consensus is positive.

Lemma 4.1 is the key to depict that any profile G is connected-preserving for 1 ≤ n ≤ 4.

Lemma 4.1 ([32]). Given λ1, ..., λn in R with
∑n
i=1 λi = 0 and x1, ..., xn in Rd. Then for λ1x1 +

λ2x2 + ...+ λnxn, the terms with positive coefficients can be matched with the terms with negative

coefficients in the sense that

n∑
i=1

λixi =
∑

i,ci≥0,j,k∈[n]

ci(xj − xk) and
∑
i

ci =
∑
j,λj≥0

λj .
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From Lemma 4.1, I derive a good upper bound for ‖xi(t+ 1)− xj(t+ 1)‖ for any (i, j) ∈ E (t).

Lemma 4.2. Assume that (i, j) ∈ E (t) and that |Ni(t)| ≤ |Nj(t)|. Then,

‖xi(t+ 1)− xj(t+ 1)‖ ≤ ε
(

3− |Ni(t) ∩Nj(t)|(
2

|Nj(t)|
+

1

|Ni(t)|
)

)
.

Proof. Let x = x(t), x′ = x(t+ 1) and Ni = Ni(t) for any i ∈ [n]. Via Lemma 4.1, for any i, j ∈ [n],

x′i − x′j =
1

|Ni|
∑
k∈Ni

xk −
1

|Nj |
∑
k∈Nj

xk

= (
1

|Ni|
− 1

|Nj |
)
∑

k∈Ni∩Nj

xk +
1

|Ni|
∑

k∈Ni−Nj

xk −
1

|Nj |
∑

k∈Nj−Ni

xk

=
∑

p∈Ni∩Nj ,q∈Nj−Ni

ar(xp − xq) +
∑

p∈Ni−Nj ,q∈Nj−Ni

br(xp − xq)

where ar, br ≥ 0,
∑
r ar = ( 1

|Ni| −
1
|Nj | )|Ni ∩Nj | and

∑
r br = |Ni −Nj |/|Ni|. Thus by the triangle

inequality,

‖x′i − x′j‖ ≤
∑

p∈Ni∩Nj ,q∈Nj−Ni

ar(‖xp − xj‖+ ‖xj − xq‖)

+
∑

p∈Ni−Nj ,q∈Nj−Ni

br(‖xp − xi‖+ ‖xi − xj‖+ ‖xj − xq‖)

≤ (
1

|Ni|
− 1

|Nj |
)|Ni ∩Nj |(ε+ ε) +

|Ni −Nj |
|Ni|

(ε+ ε+ ε)

= (
1

|Ni|
− 1

|Nj |
)|Ni ∩Nj |2ε+ (1− |Ni ∩Nj |

|Ni|
)3ε

= ε

(
3− |Ni ∩Nj |(

2

|Nj |
+

1

|Ni|
)

)
.

Thus ε
(

3− |Ni(t) ∩Nj(t)|( 2
|Nj(t)| + 1

|Ni(t)| )
)
≤ ε implies (i, j) ∈ E (t + 1). For the following

lemmas, assume x = x(t), x′ = x(t+ 1) and Ni = Ni(t) for any i ∈ [n] without specifying.

Lemma 4.3. Assume that (i, j) ∈ E (t) with |Ni(t)| ≤ |Nj(t)| and that

|Ni(t) ∩Nj(t)|(
2

|Nj(t)|
+

1

|Ni(t)|
) ≥ 2.

Then, (i, j) ∈ E (t+ 1).

Proof. By Lemma 4.2,

‖x′i − x′j‖ ≤ ε
(

3− |Ni ∩Nj |(
2

|Nj |
+

1

|Ni|
)

)
≤ ε(3− 2) = ε.

Thus (i, j) ∈ E (t+ 1).
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Observe that |Ni(t) ∩ Nj(t)| ≥ 2 for (i, j) ∈ E (t) and that the inequality 2
|Nj(t)| + 1

|Ni(t)| ≥ 1

automatically holds for 1 ≤ n ≤ 3. It is not straight forward to see Lemma 4.3 works for n = 4.

However, categorizing the degrees of the pair (i, j) ∈ E (t), a profile G remains connected for n = 4.

Lemma 4.4 (connected-preserving). For 1 ≤ n ≤ 4, a profile G is connected-preserving.

Proof. Since i, j ∈ Ni ∩Nj for (i, j) ∈ E (t) and |Ni| ≤ n for all i ∈ [n],

|Ni ∩Nj |(
2

|Nj |
+

1

|Ni|
) ≥ 2(

2

n
+

1

n
) ≥ 2(

2

3
+

1

3
) = 2 for 1 ≤ n ≤ 3.

From Lemma 4.3, (i, j) ∈ E (t + 1). Thus any edge in E (t) remains in E (t + 1). Hence a profile is

connected-preserving for 1 ≤ n ≤ 3.

For n = 4, let di = di(t)=the degree of vertex i at time t. For (i, j) ∈ E (t) and di ≤ dj , i is either a

leaf or a non-leaf, and i and j can not be both leaves. So the cases of (di, dj) are as follows:di 1 1 2 2 3

dj 2 3 2 3 3

 .
Thus the cases of corresponding (|Ni|, |Nj |) are|Ni| 2 2 3 3 4

|Nj | 3 4 3 4 4

 .
From Lemma 4.3, if 2

|Nj | + 1
|Ni| ≥ 1 or |Ni ∩ Nj |( 2

|Nj | + 1
|Ni| ) ≥ 2, then (i, j) ∈ E (t + 1). I check if

each case meets one of the two conditions:

(2, 3) :
2

3
+

1

2
>

1

2
+

1

2
= 1

(2, 4) :
2

4
+

1

2
=

1

2
+

1

2
= 1

(3, 3) :
2

3
+

1

3
= 1

(3, 4) : 3(
2

4
+

1

3
) =

3

2
+ 1 > 1 + 1 = 2

(4, 4) : 4(
2

4
+

1

4
) = 2 + 1 = 3 > 2.

Since each case satisfies one of the two conditions, (i, j) ∈ E (t+ 1) for each case above, so a profile

is connected-preserving for n = 4.

Lemma 4.3 does not work for n = 5 even by categorizing the degrees of the pair (i, j) ∈ E (t).

But indeed some profile G of some configuration x fails to remain connected.
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(a) (b)

Figure 4.2

Lemma 4.5. For n ≥ 5, some profile G of some configuration x is not connected-preserving.

Proof. Need only show that there is a configuration x with the profile G (0) connected but G (1)

disconnected for n = 5 and d = 1. Consider

ε = 1, x1(0) = −1, x2(0) = 0, x3(0) = 1 and x4(0) = x5(0) = 2.

Then, G (0) as Figure 4.2(a) is connected,

x1(1) = −0.5, x2(1) = 0, x3(1) = 1.25 and x4(1) = x5(1) =
5

3
.

So G (1) as Figure 4.2(b) is disconnected. For n > 5, let the new added vertices whose opinion be

-1 or 2. Then, at the next time step, opinion 0 goes much closer to -1 or opinion 1 goes much closer

to 2, and so G (0) connected but G (1) disconnected. This completes the proof.

Hence a profile is connected-preserving for n ≤ 4, and some profile G of some configuration x

fails to remain connected for n > 4. I can estimate the probability of consensus via the initial profiles

G (0). Lemmas 4.6-4.9 indicate the probability of consensus is positive.

Lemma 4.6. Let g > 0 be a measurable function on a measurable set A with m(A) > 0. Then,∫
A
gdm > 0.

Proof. Let Ek = {g > 1
k}. Then, A = ∪k≥1Ek. Suppose by contradiction that

∫
A
gdm = 0. Then,

1

k
m(Ek) ≤

∫
Ek

gdm ≤
∫
A

gdm = 0 for all k ≥ 1.

Thus via the subadditivity of a measure,

m(A) ≤
∑
k≥1

m(Ek) = 0, a contradiction.
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Lemma 4.7. (i) The intersection of convex sets is convex. (ii) The closure of a convex set is convex.

Proof. (i) Let Q′αs be convex sets. If ∩αQα = ∅, then clearly it is convex. Else, for a, b ∈ ∩αQα, a, b ∈

Qα for all α. So by convexity of convex sets, any point on the segment ab is in Qα for all α. Thus

any point on the segment ab is in ∩αQα.

(ii) Let V be a convex set. For v ∈ V , there exists (vn)n≥1 ⊂ V with vn → v as n → ∞. For

u, v ∈ V ,

tu+ (1− t)v = lim
n,m→∞

[tun + (1− t)vm]

where un, vm ∈ V for all n,m ≥ 1 and t ∈ (0, 1). By convexity of V, tun + (1 − t)vm ∈ V , so

tu+ (1− t)v ∈ V .

A convex hull generated by v1, . . . , vk ∈ Rd, denoted by C({v1, . . . , vk}), is the smallest convex

set containing v1, . . . , vk, i.e.,

C({v1, . . . , vk}) = {v : v =

k∑
i=1

aivi, (ai)
k
i=1 is stochastic}.

Lemma 4.8. A convex set in Rd is measurable.

Proof. Let L be the collection of all Lebesgue sets in Rd and V ⊂ Rd be a convex set.

Claim: m(∂V ) = 0.

For V ◦ = ∅, if m(V ) > 0, then V is uncountable, and there exist d+1 distinct points, v1, v2, ..., vd+1,

in V not in any hyperplane in Rd. By convexity of V , C({v1, ..., vd+1}) ⊆ V with its interior

nonempty, a contradiction.

For V ◦ 6= ∅, since measurability is shift-invariant, may assume zero vector ~0 ∈ V ◦. Then B(0, r) ⊂ V

for some 0 < r < 1. For n ∈ Z+, let An = B(0, n) ∩ V then by Lemma 4.7, An is bounded and

convex. For q ∈ ∂An, by convexity of V and An ⊃ B(0, r),

p = s · q + (1− s) ·~0 ∈ A◦n for all s ∈ (0, 1).

Thus q ∈ 1
sA
◦
n. Since 1

sA
◦
n ⊃ A◦n,

m(∂An) ≤ m(
1

s
A◦n −A◦n) = m(

1

s
A◦n)−m(A◦n)

= (
1

s
)dm(A◦n)−m(A◦n)→ 0 as s→ 1.

45



Since ∪n≥1∂An ⊃ ∂V,

m(∂V ) ≤ m(∪n≥1∂An) ≤
∑
n≥1

m(∂An) = 0.

Thus ∂V is a null set. By the completion of Lebesgue measure ∂V ∩ V ∈ L . Hence

V = V ◦ ∩ (∂V ∩ V ) ∈ L .

Lemma 4.9. Let V ⊂ Rd be a convex set with m(V ) > 0. Then,

m(V ∩B(x, r)) > 0 for any x ∈ V and r > 0.

Proof. From the proof of Lemma 4.8, m(∂V ) = 0 so

m(V ◦) = m(V )−m(∂V ∩ V ) = m(V ) > 0.

Thus V ◦ is uncountable and V ◦ = ∪u∈V ◦B(u, ru) for some ru > 0. For x ∈ V and r > 0, by the

convexity of V , there exists y ∈ V ◦ with ‖y−x‖ < r
2 , so by the triangle inequality, B(y, r2 ) ⊂ B(x, r).

Hence

V ∩B(x, r) ⊃ B(y, ry) ∩B(y,
r

2
) = B(y, ry ∧

r

2
), so m(V ∩B(x, r)) ≥ m(B(y, ry ∧

r

2
)) > 0.

This completes the proof.

Proof of Theorem 4.1. From Lemma 4.4, {G (0) is connected} ⊂ C for 1 ≤ n ≤ 4 so

P (C ) ≥ P (G (0) is connected) for 1 ≤ n ≤ 4.

Observe that C ⊃ {G (0) is ε-trivial} ⊃ {xi(0) ∈ B(x1(0), ε/2) for all i ∈ [n]} so

P (C ) ≥ P (G (0) is ε-trivial)

≥ P (xi(0) ∈ B(x1(0), ε/2) for all i ∈ [n])

=

∫
Rd

∫
B(x1,ε/2)

...

∫
B(x1,ε/2)

n∏
i=1

f(xi)dm(xn)...dm(x1)

:=

∫
Rd

(

∫
B(x1,ε/2)

)n−1
n∏
i=1

f(xi)dm(xn)...dm(x1)

=

∫
Rd

f(x1)

(∫
B(x1,ε/2)

f(x)dm(x)

)n−1

dm(x1).
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Observe that f > 0 on the convex set S and m(B(x1, ε/2) ∩ S) > 0 for all x1 ∈ S from Lemma 4.9.

Hence via Lemma 4.6,

P (C ) ≥
∫
Rd

f(x1)

(∫
B(x1,ε/2)

f(x)dm(x)

)n−1

dm(x1)

=

∫
S

f(x1)

(∫
B(x1,ε/2)∩S

f(x)dm(x)

)n−1

dm(x1) > 0.

Proof of Corollary 4.1. From theorem 4.1,

P (C ) ≥ P (xi(0) ∈ B(x1(0), ε/2) for all i ∈ [n])

≥
∫

[ε/2,1−ε/2]d
dm(x1)

(∫
B(x1,ε/2)

1dm(x)

)n−1

=

∫
[ε/2,1−ε/2]d

m(B(x1,
ε

2
))n−1dm(x1)

=
(

(
ε

2
)dm(B(0, 1))

)n−1

(1− ε)d =

(
(
ε

2
)d

π
d
2

Γ(d2 + 1)

)n−1

(1− ε)d.

4.4 One dimensional probability of consensus

In this section, I focus on the one dimensional HK model. Apart from higher dimensions,

opinions in one dimension are ordered by ≤. I demonstrate that opinions are order-preserving

and profiles are disconnected-preserving. Hence P (C ) = P (G (0) is connected) for 1 ≤ n ≤ 4 and

in general P (G (0) is connected) is an upper bound for the probability of consensus. Furthermore, I

demonstrate the probability of consensus on [0, 1].

Lemma 4.10 (order-preserving). For d=1, if xi(t) ≤ xj(t) then xi(t+ 1) ≤ xj(t+ 1).

Proof. Let x = x(t), x′ = x(t+ 1), and Ni = Ni(t) for all i ∈ [n]. From Lemma 4.1,

x′j − x′i = (
1

|Nj |
− 1

|Ni|
)
∑

k∈Ni∩Nj

xk +
1

|Nj |
∑

k∈Nj−Ni

xk −
1

|Ni|
∑

k∈Ni−Nj

xk

=


∑

k,p∈Nj−Ni,q∈Ni

ak(xp − xq) if |Nj | ≥ |Ni|∑
k,p∈Nj ,q∈Ni−Nj

ak(xp − xq) else,

where ak ≥ 0 for all k. I claim that
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1. If a ∈ Ni and b ∈ Nj −Ni, then xa < xb.

2. If a ∈ Ni −Nj and b ∈ Nj , then xa < xb.

Proof of Claim 1. Assume by contradiction that there exist a ∈ Ni and b ∈ Nj − Ni such that

xa ≥ xb. Then, xj − ε ≤ xb < xi − ε, a contradiction.

Proof of Claim 2. Assume by contradiction that there exist a ∈ Ni − Nj and b ∈ Nj such that

xa ≥ xb. Then, xi + ε ≥ xa > xj + ε, a contradiction.

Either way, x′j − x′i ≥ 0. This completes the proof.

Lemma 4.11 (disconnected-preserving). For d = 1, if G (t) is disconnected then G (t+ 1) is discon-

nected.

Proof. Assume x1(t) ≤ x2(t) ≤ ... ≤ xn(t). Since G (t) is disconnected,

xi+1(t)− xi(t) > ε for some i ∈ [n− 1].

Since vertices i and i+ 1 have respectively no neighbors on its right and left at time t,

xi(t+ 1) ≤ xi(t) and xi+1(t) ≤ xi+1(t+ 1).

Hence xi+1(t+ 1)− xi(t+ 1) > ε. From Lemma 4.10,

x1(t+ 1) ≤ x2(t+ 1) ≤ ... ≤ xn(t+ 1).

Thus G (t+ 1) is disconnected.

Next, I consider several circumstances under which a profile is connected at the next time step.

Let M ⊂ R be a finite nonempty set and M =
∑
x∈M x

|M | be the average on M. It is clear that

a+M > M ⇐⇒ a > M. (4.2)

Lemma 4.12. For 4 ≤ n ≤ 7, if G (t) satisfies (∗), then so does G (t+ 1).

Proof. Let x = x(t), x′ = x(t+1), ε1 = x(m+2)−x(1), ε2 = x(n)−x(k), y1 = x(1), y2 = x(m+2), y3 =

x(k), y4 = x(n). Since x′is are order-preserving, need only consider y′3− y′2, y′2− y′1, and y′4− y′3. By
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(4.2),

max
(xi)ni=1−{y2,y3}

(y′3 − y′2) =
y2 + y3 + (y3 + ε2) + [sy2 + (k −m− 3− s)y3] +m(y3 + ε2)

k

− (y2 − ε1) + y2 + y3 +m(y2 − ε1) + [sy2 + (k −m− 3− s)y3]

k

for some 0 ≤ s ≤ k −m− 3,

=
(y3 − y2) + ε2 + ε1 +m(y3 − y2) +m(ε2 + ε1)

k

=
(m+ 1)(y3 − y2) + (m+ 1)(ε1 + ε2)

k

≤ 2(m+ 1)

k
ε < ε so ((m+ 2), (k)) ∈ E (t+ 1).

max
(xi)ni=1−{y1,y2}

(y′2 − y′1) =
y1 + y2 + (n−m− 2)(y2 + ε) + [sy1 + (m− s)y2]

n

− y1 + y2 + [sy1 + (m− s)y2]

m+ 2
for some 0 ≤ s ≤ m.

Since

∂s max
(xi)ni=1−{y1,y2}

(y′2 − y′1) =
y1 − y2

n
− y1 − y2

m+ 2
= (y1 − y2)(

1

n
− 1

m+ 2
) ≥ 0, set s = m,

max
(xi)ni=1−{y1,y2}

(y′2 − y′1)

=
(m+ 2)[(m+ 1)y1 + (n−m− 1)y2 + (n−m− 2)ε]− n[(m+ 1)y1 + y2]

n(m+ 2)

=
(m+ 1)(n−m− 2)(y2 − y1) + (m+ 2)(n−m− 2)ε

n(m+ 2)
.

By symmetry,

max
(xi)ni=1−{y3,y4}

(y′4 − y′3) =
(m+ 1)(n−m− 2)(y4 − y3) + (m+ 2)(n−m− 2)ε

n(m+ 2)
.

Hence

max
(xi)ni=1−{y1,y2}

(y′2 − y′1) + max
(xi)ni=1−{y3,y4}

(y′4 − y′3)

=
(m+ 1)(n−m− 2)(y2 − y1 + y4 − y3) + (m+ 2)(n−m− 2)ε

n(m+ 2)

≤ (n−m− 2)(2m+ 3)

n(m+ 2)
ε ≤ ε for 4 ≤ n ≤ 7.

So y′4 − y′3 + y′2 − y′1 ≤ ε for 4 ≤ n ≤ 7. This completes the proof.
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Observe that a profile is connected-preserving if it satisfies (∗). It is clear that an ε-trivial

profile satisfies (∗) and there exists an ε-nontrivial profile satisfies (∗). Thus {G (0) satisfies (∗)} )

{G (0) is ε-trivial}.

Lemma 4.13. For any 0 ≤ i ≤ m and n ≥ 4, assume that

max
(
(x(n) − x(n−i−1))(t), (x(n−i−1) − x(i+2))(t), (x(i+2) − x(1))(t)

)
≤ ε

2
.

Then,

max
(
(x(n) − x(n−i−1))(t+ 1), (x(n−i−1) − x(i+2))(t+ 1), (x(i+2) − x(1))(t+ 1)

)
<
ε

2
.

Proof. Let x = x(t), x′ = x(t + 1), y1 = x(1), y2 = x(i+2), y3 = x(n−i−1), y4 = x(n). By the

assumption, the neighborhood of (i+ 2) is the same as that of (n− i− 1), so y′3 − y′2 = 0. Via (4.2),

max
(xi)ni=1−{y1,y2}

(y′2 − y′1)

=
y1 + y2 + [s1y1 + (i− s1)y2] + [s2y2 + (n− 2i− 3− s2)(y2 + ε

2 )] + (i+ 1)(y2 + ε)

n

−
y1 + y2 + [s1y1 + (i− s1)y2] + [s2y2 + (n− 2i− 3− s2)(y2 + ε

2 )]

n− i− 1

for some 0 ≤ s1 ≤ i and 0 ≤ s2 ≤ n− 2i− 3. Since 3m+ 4 ≤ n ≤ 3m+ 6, 0 ≤ i ≤ m,

∂s1 max
(xi)ni=1−{y1,y2}

(y′2 − y′1) = (y1 − y2)(
1

n
− 1

n− i− 1
) ≥ 0,

∂s2 max
(xi)ni=1−{y1,y2}

(y′2 − y′1) = [y2 − (y2 +
ε

2
)](

1

n
− 1

n− i− 1
) ≥ 0,

set s1 = i and s2 = n− 2i− 3,

max
(xi)ni=1−{y1,y2}

(y′2 − y′1)

=
(i+ 1)y1 + (n− i− 1)y2 + (i+ 1)ε

n
− (i+ 1)y1 + (n− 2i− 2)y2

n− i− 1

=
(n− i− 1)[(i+ 1)y1 + (n− i− 1)y2 + (i+ 1)ε]− n[(i+ 1)y1 + (n− 2i− 2)y2]

n(n− i− 1)

=
(i+ 1)2(y2 − y1) + (n− i− 1)(i+ 1)ε

n(n− i− 1)
≤

(i+1)2

2 + (n− i− 1)(i+ 1)

n(n− i− 1)
ε

=
1

2

(i+ 1)(2n− i− 1)

n(n− i− 1)
ε ≤ 1

2

(m+ 1)(2n− 1)

n(n−m− 1)
ε ≤ 1

2

(m+ 1)(6m+ 11)

(3m+ 4)(2m+ 3)
ε <

ε

2
.

By symmetry,

max
(xi)ni=1−{y3,y4}

(y′4 − y′3) =
(i+ 1)2(y4 − y3) + (n− i− 1)(i+ 1)ε

n(n− i− 1)
<
ε

2
.

This completes the proof.
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Observe that an ε-trivial profile may not satisfies the assumption of Lemma 4.13. Consider

n > 1, x1(t) = 0, xi(t) = ε for i > 1 then G (t) is ε-trivial but does not satisfy the assumption of

Lemma 4.13. Observe that G (s) satisfies (∗∗) for all s ≥ t.

Proof of Theorem 4.2. From Lemmas 4.4 and 4.11, G (t) is connected-preserving and disconnected-

preserving for 1 ≤ n ≤ 4 so C = {G (0) is connected}. Thus

P (C ) = P (G (0) is connected) for 1 ≤ n ≤ 4.

Since G (t) is disconnected-preserving for all n ≥ 1 and G (t) is connected-preserving if it satisfies

(∗∗) for all n ≥ 4,

{G (0) is connected} ⊃ C ⊃ {G (0) is ε-trivial} ∪ {G (0) satisfies (∗∗)}.

Hence

P (G (0) is connected) ≥ P (C ) ≥ P (G (0) is ε-trivial or satisfies (∗∗)).

Proof of Corollary 4.2. For n = 2,

P (C ) = 2!

∫
[0,1]

dx1

∫
[x1,x1+ε]∩[0,1]

dx2.

∫
[0,1]

dx1

∫
[x1,x1+ε]∩[0,1]

dx2 =

∫
[0,1−ε]+[1−ε,1]

[(x1 + ε) ∧ 1− x1] dx1

=

∫
[0,1−ε]

εdx1 +

∫
[1−ε,1]

1− x1dx1

= ε(1− ε)−
[

(1− x1)2

2

]1

1−ε
= ε(1− ε) +

1

2
ε2 = ε(1− ε

2
).

Thus

P (C ) = ε(2− ε).

For n = 3,

P (C ) = 3!

∫
[0,1]

dx1

∫
[x1,x1+ε]∩[0,1]

dx2

∫
[x2,x2+ε]∩[0,1]

dx3.
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(i) ε ∈ [ 1
2 , 1)

∫
[0,1]

dx1

∫
[x1,x1+ε]∩[0,1]

dx2

∫
[x2,x2+ε]∩[0,1]

dx3

=

∫
[0,1]

dx1

∫
[x1,(x1+ε)∧1]

dx2

∫
[x2,(x2+ε)∧1]

dx3

=

∫
[0,1]

dx1

∫
[x1,(x1+ε)∧1]

(x2 + ε) ∧ 1− x2dx2

=

∫
[0,1]

dx1

(∫
[x1,(x1+ε)∧1]∩[0,1−ε]

εdx2 +

∫
[x1,(x1+ε)∧1]∩[1−ε,1]

1− x2dx2

)

=

∫
[0,1−ε]

dx1

(∫
[x1,1−ε]

εdx2 +

∫
[1−ε,x1+ε]

1− x2dx2

)
+

∫
[1−ε,1]

dx1

∫
[x1,1]

1− x2dx2

=

∫
[0,1−ε]

ε(1− ε− x1)−
[

(1− x2)2

2

]x1+ε

x2=1−ε
dx1 +

∫
[1−ε,1]

−
[

(1− x2)2

2

]1

x2=x1

dx1

−ε(1− ε− x1)2

2
|1−ε0 +

1

2

∫
[0,1−ε]

ε2 − (1− ε− x1)2dx1 +
1

2

∫
[1−ε,1]

(1− x1)2dx1

=
1

2

{
ε(1− ε)2 + ε2(1− ε) +

[
(1− ε− x1)3

3

]1−ε

0

−
[

(1− x1)3

3

]1

1−ε

}

=
1

2

{
ε(1− ε)− (1− ε)3

3
+
ε3

3

}
so

P (C ) = 3ε(1− ε)− (1− ε)3 + ε3 = ε3 + (1− ε)3 + 3ε(1− ε)− 2(1− ε)3

= ε2 − ε(1− ε) + (1− ε)2 + 3ε(1− ε)− 2(1− ε)2

= ε2 + 2ε(1− ε) + (1− ε)2 − 2(1− ε)3 = 1− 2(1− ε)3.
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(ii) ε ∈ (0, 1
2 ) ∫

[0,1]

dx1

∫
[x1,x1+ε]∩[0,1]

dx2

∫
[x2,x2+ε]∩[0,1]

dx3

=

∫
[0,1]

dx1

(∫
[x1,(x1+ε)∧1]∩[0,1−ε]

εdx2 +

∫
[x1,(x1+ε)∧1]∩[1−ε,1]

1− x2dx2

)

=

∫
[0,1−2ε]

dx1

(∫
[x1,x1+ε]∩[0,1−ε]

εdx2 +

∫
[x1,x1+ε]∩[1−ε,1]

1− x2dx2

)

+

∫
[1−2ε,1−ε]

dx1

(∫
[x1,x1+ε]∩[0,1−ε]

εdx2 +

∫
[x1,x1+ε]∩[1−ε,1]

1− x2dx2

)

+

∫
[1−ε,1]

dx1

(∫
[x1,1]∩[0,1−ε]

εdx2 +

∫
[x1,1]∩[1−ε,1]

1− x2dx2

)

=

∫
[0,1−2ε]

ε2dx1 +

(∫
[1−2ε,1−ε]

ε(1− ε− x1)−
[

(1− x2)2

2

]x1+ε

x2=1−ε
dx1

)

+

∫
[1−ε,1]

−
[

(1− x2)2

2

]1

x2=x1

dx1

= ε2(1− 2ε) +

∫
[1−2ε,1−ε]

ε(1− ε− x1)

+
1

2

[
ε2 − (1− ε− x1)2

]
dx1 +

1

2

∫
[1−ε,1]

(1− x1)2dx1

= ε2(1− 2ε)−
[
ε(1− ε− x1)2

2

]1−ε

1−2ε

+
1

2

{
ε3 +

[
(1− ε− x1)3

3

]1−ε

x1=1−2ε

}

− 1

2

[
(1− x1)3

3

]1

1−ε

= ε2(1− 2ε) +
1

2
(ε3 + ε3 − ε3

3
+
ε3

3
) = ε2(1− 2ε) + ε3 = ε2(1− ε) so

P (C ) = 6ε2(1− ε).

Thus

P (C ) =

 6ε2(1− ε) ε ∈ (0, 1
2 )

1− 2(1− ε)3 ε ∈ [ 1
2 , 1)

For n = 4,

P (C ) = 4!

∫
[0,1]

dx1

∫
[x1,(x1+ε)∧1]

dx2

∫
[x2,(x2+ε)∧1]

dx3

∫
[x3,(x3+ε)∧1]

dx4.
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(i) ε ∈ [ 1
2 , 1)∫

[0,1]

dx1

∫
[x1,(x1+ε)∧1]

dx2

∫
[x2,(x2+ε)∧1]

dx3

∫
[x3,(x3+ε)∧1]

dx4

=

∫
[0,1]

dx1

∫
[x1,(x1+ε)∧1]

dx2

∫
[x2,(x2+ε)∧1]

(x3 + ε) ∧ 1− x3dx3

=

∫
[0,1]

dx1

∫
[x1,(x1+ε)∧1]

dx2

(∫
[x2,(x2+ε)∧1]∩[0,1−ε]

εdx3 +

∫
[x2,(x2+ε)∧1]∩[1−ε,1]

1− x3dx3

)

=

∫
[0,1]

dx1

[∫
[x1,(x1+ε)∧1]∩[0,1−ε]

(∫
[x2,1−ε]

εdx3 +

∫
[1−ε,x2+ε]

1− x3dx3

)

+

∫
[x1,(x1+ε)∧1]∩[1−ε,1]

dx2

(∫
[x2,1]

1− x3dx3

)]

=

∫
[0,1]

dx1

(∫
[x1,(x1+ε)∧1]∩[0,1−ε]

ε(1− ε− x2)−
[

(1− x3)2

2

]x2+ε

1−ε
dx2

+

∫
[x1,(x1+ε)∧1]∩[1−ε,1]

−
[

(1− x3)2

2

]1

x2

dx2

)

=

∫
[0,1−ε]

dx1

(∫
[x1,1−ε]

ε(1− ε− x2) +
1

2
[ε2 − (1− ε− x2)2]dx2

+
1

2

∫
[1−ε,x1+ε]

(1− x2)2dx2

)
+

∫
[1−ε,1]

dx1

(
1

2

∫
[x1,1]

(1− x2)2dx2

)

=

∫
[0,1−ε]

−
[
ε(1− ε− x2)2

2

]1−ε

x1

+
1

2

(
ε2(1− ε− x1) +

[
(1− ε− x2)3

3

]1−ε

x1

)

− 1

2

[
(1− x2)3

3

]x1+ε

1−ε
dx1 +

∫
[1−ε,1]

−1

2

[
(1− x2)3

3

]1

x1

dx1

=
1

2

(∫
[0,1−ε]

ε(1− ε− x1)2 + ε2(1− ε− x1)− (1− ε− x1)3

3

+
[ε3 − (1− ε− x1)3]

3
dx1 +

∫
[1−ε,1]

(1− x1)3

3
dx1

)

=
1

2

{
−
[
ε(1− ε− x1)3

3

]1−ε

0

−
[
ε2(1− ε− x1)2

2

]1−ε

0

+
1

3

(
ε3(1− ε) +

[
2(1− ε− x1)4

4

]1−ε

0

− 1

3

[
(1− x1)4

4

]1

1−ε

)}

=
1

2

{
ε(1− ε)3

3
+
ε2(1− ε)2

2
+

1

3

[
ε3(1− ε)− 2(1− ε)4

4

]
+
ε4

12

}
=

1

2

(
ε(1− ε)3

3
+
ε2(1− ε)2

2
+
ε3(1− ε)

3
− (1− ε)4

6
+
ε4

12

)
=

1

24

(
ε4 + 4ε3(1− ε) + 6ε2(1− ε)2 + 4ε(1− ε)3 − 2(1− ε)4

)
so

P (C ) = ε4 + 4ε3(1− ε) + 6ε2(1− ε)2 + 4ε(1− ε)3 − 2(1− ε)4.
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(ii) ε ∈ [ 1
3 ,

1
2 )∫

[0,1]

dx1

∫
[x1,(x1+ε)∧1]

dx2

∫
[x2,(x2+ε)∧1]

dx3

∫
[x3,(x3+ε)∧1]

dx4

=

∫
[0,1]

dx1

∫
[x1,(x1+ε)∧1]

dx2

(∫
[x2,(x2+ε)∧1]∩[0,1−ε]

εdx3 +

∫
[x2,(x2+ε)∧1]

1− x3dx3

)

=

∫
[0,1]

dx1

[∫
[x1,(x1+ε)∧1]∩[0,1−2ε]

dx2

(∫
[x2,x2+ε]

εdx3

)

+

∫
[x1,(x1+ε)∧1]∩[1−2ε,1−ε]

dx2

(∫
[x2,1−ε]

εdx3 +

∫
[1−ε,x2+ε]

1− x3dx3

)

+

∫
[x1,(x1+ε)∧1]∩[1−ε,1]

dx2

∫
[x2,1]

1− x3dx3

]

=

∫
[0,1]

dx1

(∫
[x1,(x1+ε)∧1]∩[0,1−2ε]

ε2dx2

+

∫
[x1,(x1+ε)∧1]∩[1−2ε,1−ε]

ε(1− ε− x2)−
[

(1− x3)2

2

]x2+ε

1−ε
dx2

+

∫
[x1,(x1+ε)∧1]∩[1−ε,1]

−
[

(1− x3)2

2

]1

x2

dx2

)

=

∫
[0,1−2ε]

dx1

(∫
[x1,1−2ε]

ε2dx2 +

∫
[1−2ε,x1+ε]

ε(1− ε− x2)

+
1

2
[ε2 − (1− ε− x2)2]dx2

)
+

∫
[1−2ε,1−ε]

dx1

(∫
[x1,1−ε]

ε(1− ε− x2) +
1

2
[ε2 − (1− ε− x2)2]dx2

+
1

2

∫
[1−ε,x1+ε]

(1− x2)2dx2

)
+

1

2

∫
[1−ε,1]

dx1

∫
[x1,1]

(1− x2)2dx2

=

∫
[0,1−2ε]

ε2(1− 2ε− x1)−
[
ε(1− ε− x2)2

2

]x1+ε

1−2ε

+
1

2

(
ε2(x1 + 3ε− 1) +

[
(1− ε− x2)3

3

]x1+ε

1−2ε

)
dx1

+

∫
[1−2ε,1−ε]

−
[
ε(1− ε− x2)2

2

]1−ε

x1

+
1

2

(
ε2(1− ε− x1) +

[
(1− ε− x2)3

3

]1−ε

x1

)

− 1

2

[
(1− x2)3

3

]x1+ε

1−ε
dx1 −

1

2

∫
[1−ε,1]

[
(1− x2)3

3

]1

x1

dx1

=

∫
[0,1−2ε]

ε2(1− 2ε− x1) +
1

2
[ε3 − ε(1− 2ε− x1)2]

+
1

2

(
ε2(x1 + 3ε− 1) +

1

3
[(1− 2ε− x1)3 − ε3]

)
dx1 +

∫
[1−2ε,1−ε]

ε(1− ε− x1)2

2
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+
1

2

(
ε2(1− ε− x1)− (1− ε− x1)3

3

)
+

1

6
[ε3 − (1− ε− x1)3]dx1

+
1

2

∫
[1−ε,1]

1

3
(1− x1)3dx1

= −
[
ε2(1− 2ε− x1)2

2

]1−2ε

0

+
1

2

(
ε3(1− 2ε) +

[
ε(1− 2ε− x1)3

3

]1−2ε

0

)

+
1

2

[[
ε2(x1 + 3ε− 1)2

2

]1−2ε

0

+
1

3

(
−
[

(1− 2ε− x1)4

4

]1−2ε

0

− ε3(1− 2ε)

)]

+
1

2

{
−
[
ε(1− ε− x1)3

3

]1−ε

1−2ε

−
[
ε2(1− ε− x1)2

2

]1−ε

1−2ε

+

[
(1− ε− x1)4

12

]1−ε

1−2ε

+
1

3

(
ε4 +

[
(1− ε− x1)4

4

]1−ε

1−2ε

)}
− 1

6

[
(1− x1)4

4

]1

1−ε

=
ε2(1− 2ε)2

2
+

1

2
[ε3(1− 2ε)− ε(1− 2ε)3

3
] +

1

4
[ε4 − ε2(3ε− 1)2] +

1

24
(1− 2ε)4

− 1

6
ε3(1− 2ε) +

1

6
ε4 +

1

4
ε4 − 1

24
ε4 +

1

6
ε4 − 1

24
ε4 +

1

24
ε4

=
19

24
ε4 − 1

6
ε3(1− 2ε) +

1

24
(1− 2ε)4 − 1

4
ε2(3ε− 1)2 − 1

6
ε(1− 2ε)3

+
1

2
ε3(1− 2ε) +

1

2
ε2(1− 2ε)2 so

P (C ) = 19ε4 − 4ε3(1− 2ε) + (1− 2ε)4 − 6ε2(3ε− 1)2 − 4ε(1− 2ε)3

+ 12ε3(1− 2ε) + 12ε2(1− 2ε)2.

(iii) ε ∈ (0, 1
3 )∫
[0,1]

dx1

∫
[x1,(x1+ε)∧1]

dx2

∫
[x2,(x2+ε)∧1]

dx3

∫
[x3,(x3+ε)∧1]

dx4

=

∫
[0,1]

dx1

(∫
[x1,(x1+ε)∧1]∩[0,1−2ε]

ε2dx2 +

∫
[x1,(x1+ε)∧1]∩[1−2ε,1−ε]

ε(1− ε− x2)

−
[

(1− x3)2

2

]x2+ε

1−ε
dx2 +

∫
[x1,(x1+ε)∧1]∩[1−ε,1]

−
[

(1− x3)2

2

]1

x2

dx2

)

=

∫
[0,1−3ε]

dx1

∫
[x1,x1+ε]

ε2dx2 +

∫
[1−3ε,1−2ε]

dx1

(∫
[x1,1−2ε]

ε2dx2

+

∫
[1−2ε,x1+ε]

ε(1− ε− x2) +
1

2
[ε2 − (1− ε− x2)2]dx2

)

+

∫
[1−2ε,1−ε]

dx1

(∫
[x1,1−ε]

ε(1− ε− x2) +
1

2
[ε2 − (1− ε− x2)2]dx2

+
1

2

∫
[1−ε,x1+ε]

(1− x2)2dx2

)
+

1

2

∫
[1−ε,1]

dx1

∫
[x1,1]

(1− x2)2dx2
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=

∫
[0,1−3ε]

ε3dx1 +

∫
[1−3ε,1−2ε]

ε2(1− 2ε− x1)−
[
ε(1− ε− x2)2

2

]x1+ε

1−2ε

+
1

2

(
ε2(x1 + 3ε− 1) +

[
(1− ε− x2)3

3

]x1+ε

1−2ε

)
dx1

+

∫
[1−2ε,1−ε]

−
[
ε(1− ε− x2)2

2

]1−ε

x1

+
1

2

(
ε2(1− ε− x1) +

[
(1− ε− x2)3

3

]1−ε

x1

)

− 1

2

[
(1− x2)3

3

]x1+ε

1−ε
dx1 +

1

2

∫
[1−ε,1]

−
[

(1− x2)3

3

]1

x1

dx1

= ε3(1− 3ε) +

∫
[1−3ε,1−2ε]

ε2(1− 2ε− x1) +
1

2
[ε3 − ε(1− 2ε− x1)2]

+
1

2
ε2(x1 + 3ε− 1)− 1

6
[ε3 − (1− 2ε− x1)3]dx1

+
1

2

∫
[1−2ε,1−ε]

ε(1− ε− x1)2 + ε2(1− ε− x1)− (1− ε− x1)3

3

+
1

3
[ε3 − (1− ε− x1)3]dx1 +

1

6

∫
[1−ε,1]

(1− x1)3dx1

= ε3(1− 3ε)−
[
ε2(1− 2ε− x1)2

2

]1−2ε

1−3ε

+
1

2
ε4 +

1

2

[
ε(1− 2ε− x1)3

3

]1−2ε

1−3ε

+
1

2

[
ε2(x1 + 3ε− 1)2

2

]1−2ε

1−3ε

− 1

6
ε4 − 1

6

[
(1− 2ε− x1)4

4

]1−2ε

1−3ε

1

2

(
−
[
ε(1− ε− x1)3

3

]1−ε

1−2ε

−
[
ε2(1− ε− x2)2

2

]1−ε

1−2ε

+
1

3

[
(1− ε− x1)4

4

]1−ε

1−2ε

+
1

3
ε4 +

1

3

[
(1− ε− x1)4

4

]1−ε

1−2ε

)
− 1

6

[
(1− x1)4

4

]1

1−ε

= ε3(1− 3ε) +
1

2
ε4 +

1

2
ε4 − 1

6
ε4 +

1

4
ε4 − 1

6
ε4 +

1

24
ε4 +

1

6
ε4 +

1

4
ε4 − 1

24
ε4

+
1

6
ε4 − 1

24
ε4 +

1

24
ε4

= ε3(1− 3ε) +
3

2
ε4 so

P (C ) = 24ε3(1− 3ε) + 36ε4.

For n ≥ 2,∫
[0,1]

dx1

∫
[x1,x1+ε]∩[0,1]

dxn

(∫
[x1,xn]

dxn

)n−2

=

∫
[0,1]

dx1

∫
[x1,(x1+ε)∧1]

(xn − x1)n−2dxn

=

∫
[0,1]

(xn − x1)n−1

n− 1
|(x1+ε)∧1
xn=x1

dx1

=
1

n− 1

∫
[0,1]

[(x1 + ε) ∧ 1− x1]
n−1

dx1

=
1

n− 1

{∫
[0,1−ε]

εn−1dx1 +

∫
[1−ε,1]

(1− x1)n−1dx1

}
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=
1

n− 1

{
εn−1(1− ε)−

[
(1− x1)n

n

]1

1−ε

}
=

1

n− 1

{
εn−1(1− ε) +

1

n
εn
}

=
εn−1

n− 1
(1− ε+

ε

n
) =

εn−1

n− 1

[
1− (1− 1

n
)ε

]
so

P (G (0) is ε-trivial) = εn−1 [n− (n− 1)ε] .

Observe that εn−1 [n− (n− 1)ε] = 1 for n = 1. So

P (G (0) is ε-trivial) = εn−1 [n− (n− 1)ε] for n ≥ 1.

P (xi(0) ∈ B(x1(0), ε/2) for all i ∈ [n]) =

∫
[0,1]

dx1

(∫
[x1− ε2 ,x1+ ε

2 ]∩[0,1]

dx

)n−1

=

∫
[0,1]

[
(x1 +

ε

2
) ∧ 1− (x1 −

ε

2
) ∨ 0

]n−1

dx1

=

∫
[0, ε2 ]

(x1 +
ε

2
)n−1dx1 +

∫
[ ε2 ,1−

ε
2 ]

[(x1 +
ε

2
)− (x1 −

ε

2
)]n−1dx1

+

∫
[1− ε2 ,1]

[1− (x1 −
ε

2
)]n−1

=
(x1 + ε

2 )n

n
|
ε
2
0 + εn−1(1− ε)−

[
(1 + ε

2 − x1)n

n

]1

1− ε2

=
1

n
[εn − (

ε

2
)n] + εn−1(1− ε) +

1

n
[εn − (

ε

2
)n]

=
2

n
εn(1− 1

2n
) + εn−1(1− ε)

In conclusion, the probability of consensus is positive and is bounded from below by the one

that an initial profile is connected for 1 ≤ n ≤ 4. In particular for one dimension, the disconnected-

preserving property for a profile engenders an upper bound P (G (0) is connected) for the probability

of consensus, and therefore P (C ) = P (G (0) is connected) for 1 ≤ n ≤ 4.
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