
On Density and Noise Challenges in Tensor-Based Data Analytics

by

Xinsheng Li

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved May 2019 by the
Graduate Supervisory Committee:

K. Selçuk Candan, Chair
Hasan Davulcu

Maria Luisa Sapino
Hanghang Tong

ARIZONA STATE UNIVERSITY

May 2019

ABSTRACT

Many real-world problems, such as model- and data-driven computer simulation analysis,

social and collaborative network analysis, brain data analysis, and so on, benefit from jointly

modeling and analyzing the underlying patterns associated with complex, multi-relational

data. Tensor decomposition is an ideal mathematical tool for this joint modeling, due to

its simultaneous analysis of such multi-relational data, which is made possible by the data’s

multidimensional, array-based nature.

A major challenge in tensor decomposition lies with its computational and space complex-

ity, especially for dense datasets. While the process is comparatively faster for sparse tensors,

decomposition is still a major bottleneck for many applications. The tensor decomposition

process results in dense (hence, large) intermediate results, even when the input tensor is

sparse (or small). Noise is another challenge for most data mining techniques, and many

tensor decomposition schemes are sensitive to noisy datasets; this is an inevitable problem

for real-world data, which can lead to false conclusions.

In this dissertation, I develop innovative tensor decomposition algorithms for mining both

sparse and dense multi-relational data in a noise-resistant way. I present novel, scalable, par-

allelizable tensor decomposition algorithms, specifically tuned to be effective for dense, noisy

tensors, and which maintain the quality of the resulting analysis. Furthermore, I present

results on multi-relational data applications focusing on model- and data-driven computer

simulation analysis, as well as social network and web mining, which demonstrate the effec-

tiveness of these tensor decompositions.

i

DEDICATION

To my parents and my wife

ii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. K. Selçuk Candan. Without his mentorship

and endless support, I can not finish this journey. He gives me an example of an excellent

researcher, mentor, instructor. His feedback and insights were extremely critical to achieving

my goal, and I will always be grateful to him for that.

I would like to thank my committee members, Dr. Maria Luisa Sapino, Dr. Hasan

Davulcu, and Dr. Hanghang Tong. Thanks for all your guidance through this process; I

would also like to thank the graduate advisors and technical staff members at CIDSE for

always being very helpful.

I would like to thank all my excellent lab members of EmitLab, Parth Nagarkar, Jung

Hyun Kim, Xilun Chen, Mijung Kim, Mithila Nagendra, Yash Garg, Sicong Liu, Shengyu

Huang, Silvestro Poccia, Ashish Gadkari, Mao-Lin Li, and Hans Behrens. I am very happy

to have this opportunity to work with such wonderful team members.

Lastly, I would especially like to thank my amazing family for the love, support, and

constant encouragement I have gotten over the years. In particular, I would like to thank my

parents, my wife, and my brother. Without your support, I definitely could not finish this.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . xi

CHAPTER

1 INTRODUCTION . 1

1.1 Tensor Representation and Analysis . 2

1.2 Research Contributions . 4

1.2.1 Dealing with Noisy Data . 4

1.2.2 Density Challenge in Tensor-Based Analytics 7

1.2.3 Tensor-based analytics on Inherent Sparse Simulation En-

sembles . 9

1.3 Dissertation Outline . 11

2 BACKGROUND AND RELATED WORKS . 13

2.1 Tensors and Tensor Decompositions . 13

2.2 CP Decomposition . 13

2.3 Tucker Decomposition . 14

2.4 Tensor Train Decomposition . 15

2.5 Block-based CP Decomposition . 17

3 NOISE-PROFILE ADAPTIVE TENSOR DECOMPOSITION IN BLOCK

BASED FORMAT . 20

3.1 Introduction . 20

3.2 Grid based Probabilistic Tensor Decomposition (GPTD) 21

3.2.1 Phase 1: Monte Carlo based Bayesian Decomposition of

Sub-tensors . 22

3.2.2 Phase 2: Iterative Refinement . 24

iv

CHAPTER Page

3.3 Overview of GPTD . 25

3.4 Noise-Profile Adaptive Tensor Decomposition . 25

3.4.1 Noise Sensitive Sample Assignment: First Naive Attempt . . . 27

3.4.2 Noise Sensitive Sample Assignment: Second Naive Attempt . 29

3.4.3 S-Strategy for Sample Assignment . 31

3.5 Overview of nTD . 32

3.6 Experimental Evaluation . 32

3.6.1 Experiment Setup . 33

3.6.2 Discussion of the Results . 35

4 NOISE ADAPTIVE TENSOR DECOMPOSITION IN TENSOR TRAIN

FORMAT . 41

4.1 Introduction . 41

4.2 Probabilistic Tensor train Decomposition (PTTD) 41

4.2.1 Probabilistic Matrix Factorization . 42

4.2.2 Overview of PTTD. 46

4.3 Noise Adaptive Probabilistic Tensor train Decomposition (NTTD) . . . 46

4.3.1 External and Internal Noise . 47

4.3.2 Noise Adaptation through Sample Assignment 48

4.3.3 Gibbs Sampling and (Internal) Decomposition Error 49

4.3.4 Gibbs Sampling and (External) Noise . 51

4.3.5 Overall Sample Assignment . 56

4.4 Experimental Evaluation . 57

4.4.1 Experiment Setup . 57

4.4.2 Discussion of the Results . 60

v

CHAPTER Page

5 TENSOR DECOMPOSITION FOR BILLION-SCALE DENSE TENSOR 65

5.1 Introduction . 65

5.2 Overview of 2PCP . 66

5.2.1 Key Observations . 66

5.2.2 Problem Statement: Re-Use Promoting Data Access and

Buffer Management During Iterative Refinement Phase 71

5.3 Block-Centric Scheduling of Iterative Improvement Process 71

5.3.1 Block-centric Scheduling of the Update Rules for Iterative

Refinement . 73

5.3.2 Virtual Iterations . 76

5.4 I/O Reducing Update Schedules . 77

5.4.1 Re-Use Promoting Schedules . 78

5.4.2 Fiber-Order Update Schedules . 79

5.4.3 Fractal-based Update Schedules . 80

5.4.4 Z-Order Update Schedules. 80

5.4.5 Hilbert-Order Update Schedules. 82

5.5 Update Schedule Aware Buffer Replacement . 83

5.5.1 Fiber-Order Schedules and MRU . 83

5.5.2 Forward-Looking Buffer Replacement . 83

5.6 Experimental Evaluation . 85

5.6.1 Experiments with Strong Configuration . 85

5.6.2 Experiments with Weak Configuration . 87

5.6.3 Parameter Analysis (Stand-Alone Configuration) 88

vi

CHAPTER Page

6 MULTI-TASK TENSOR DECOMPOSITION FOR SPARSE ENSEM-

BLE SIMULATION . 94

6.1 Introduction . 94

6.2 Background and Notation . 95

6.2.1 Tensor Representation of Simulation Ensembles 95

6.2.2 Inherent Sparsity of Ensembles . 96

6.2.3 Tensor Representation of a Complex System 97

6.2.4 Tensor Representation of a Simulation Ensemble 97

6.3 Contribution . 98

6.3.1 Contribution 1: Density Boosting Partition-Stitch Sampling . 98

6.3.2 Contribution 2: Multi-Task Tensor Decomposition (M2TD) . 100

6.4 Problem Definition. 101

6.5 Conventional Ensemble Sampling Strategies . 102

6.5.1 Strategy #1: Random Sampling . 102

6.5.2 Strategy #2: Grid Sampling . 102

6.5.3 Strategy #3: Slice Sampling . 103

6.6 Partition-Stitch Sampling . 103

6.6.1 Key Observation . 103

6.6.2 PF-Partitioning of a Parameter Space . 104

6.6.3 JE-Stitching . 105

6.7 Multi-Task Tensor Decomposition (M2TD) . 107

6.7.1 M2TD-Average (M2TD-AVG) . 108

6.7.2 M2TD-Concatenate (M2TD-CONCAT). 110

6.7.3 M2TD-Selection (M2TD-SELECT) . 113

vii

CHAPTER Page

6.7.4 Distributed M2TD (D-M2TD) . 114

6.8 Experiments . 117

6.9 Dynamic Systems . 118

6.10 Simulation Ensembles . 119

6.11 Alternative Ensemble Construction Schemes . 119

6.12 Evaluation Criteria . 120

6.13 Discussions of the Results . 120

6.13.1 General Overview . 120

6.13.2 Decomposition Time Distribution . 121

6.13.3 Varying Data Sets . 123

6.13.4 Varying Budgets and Zero-Joins . 123

6.13.5 Varying Pivot/Sub-Ensemble Densities . 124

6.13.6 Selection of the Pivot Parameter . 126

7 CONCLUSION . 129

7.1 Noise-Profile Adaptive Tensor Decomposition . 129

7.2 Noise Profile Adaptive Tensor Train Decomposition 130

7.3 Tensor Decomposition for Billion - Scale Dense Tensor 130

7.4 Multi-Task Tensor Decomposition for Sparse Ensemble Simulation . 131

REFERENCES . 132

viii

LIST OF TABLES

Table Page

3.1 Parameters – Default Values, Used Unless Otherwise Specified, Are

Highlighted . 34

4.1 Example of Tensor Train Decomposition with Different Sample Dis-

tribution Strategies: The Input Tensor Has Dimensions 143 × 200 ×

12 × 4 (Density 5.68e-04), with Schema < User, Product, Category,

Helpfullness>; In This Example, the Total Sampling Number Is Set

to 90; Rmse (Matching Error) Is Presented to Illustrate the Decom-

position Performance (Here l Stands for the Number of Gibbs Sample

Allocated; Details Of the Parameters Are Described In Section 4.4) 50

4.2 Parameters – Default Values, Used Unless Otherwise Specified, Are

Highlighted . 57

4.3 RMSE with Different Decomposition Orders (Default Parameters) 63

5.1 Comparison of Execution times on Billion-scale Dense Tensors (Density

0.2; Target Rank 10; Results Reported Here Use a 2×2×2 Partitioning

Strategy for 2pcp; Due to the Large Execution Time of Haten2, I Only

Report Execution Time for 1 Iteration) . 86

5.2 Execution Times (in Minutes) . 87

5.3 Parameter Settings (Unless Otherwise Specified) . 88

6.1 Experiment Setup – Default Values, Used Unless Otherwise Specified,

Are Highlighted . 118

6.2 Results for Double Pendulum System (Pivot=t, p = 100%, e = 100%) . . 122

6.3 Different Number of Servers (Double Pendulum, Resolution=70, Rank

= 10, Pivot=t, p = 100%, e = 100%) . 123

ix

Table Page

6.4 Results for Different Dynamical Systems (Resolution=70, Rank = 10,

Pivot=t, p = 100%, e = 100%) . 124

6.5 Results for Different Ensemble Budgets (Double Pendulum, Resolu-

tion=70, Rank = 10, Pivot=t; Note That b = 4× 105 Corresponds to

the Case Where Both Pivot, p, and Sub-systems, e, Have 100% Densities)125

6.6 Results for Different Pivot Densities (Double Pendulum, Resolution=70,

Rank = 10, Pivot=t, e = 100%) . 126

6.7 Results for Different Sub-system Densities (Double Pendulum, Reso-

lution=70, Rank = 10, Pivot=t, p = 100%) . 127

6.8 Results for Different Pivots (Double Pendulum, Resolution=70, Rank

= 10, p = 100%, e = 100%; 3-mode Sub-systems Are Created in Such

a Way That Free Parameters of the Same Pendulum Are Kept in the

Same Sub-system) . 128

x

LIST OF FIGURES

Figure Page

1.1 Alternative Noise Profiles of a Tensor . 5

2.1 Illustration of CP Decomposition . 14

2.2 Illustration of Tucker Decomposition . 15

2.3 Illustration of Tensor Train (TT) Decomposition . 16

2.4 Each Sub-tensor (or Block) Can Be Described in Terms of The Corre-

sponding Sub-factors . 18

3.1 A Sample 3-mode Tensor, Partitioned into a Grid Of Sub-tensors, and

Its Noise Profile: The Figure Highlights (in Orange) a Subset Of The

Sub-tensors Which Are Noisy . 21

3.2 Illustration of Sub-tensor Based Tensor Decomposition: The Input

Tensor Is Partitioned into Smaller Blocks, Each Block Is Decomposed

(Potentially in Parallel), and the Partial Decompositions Are Stitched

Together Through an Iterative Improvement Process 24

3.3 A Sample Grid and the Corresponding Pairwise Refinement Depen-

dencies among the Sub-tensors per Equation 3.4. 28

3.4 Measuring the Alignment of Two Sub-tensors: (A) The Sub-tensors

with Pairwise Impact, (B) Their Compressions onto Their Shared Modes,

(C) Well-aligned Tensors Have Similar Distributions On This Com-

pressed Representation, Whereas (D) Poorly Aligned Tensors Have

Dissimilar Distributions . 30

3.5 Impact of Sub-tensor Parallelism on Ntd (4× 4× 4 Grid; Uniform and

Value Independent Noise; Noise Density 10%; f = 10; Num. Gibbs

Samples per Sub-tensor = 3; Max. Num. Of P2 Iteration = 1000; 4

Sub-tensors with Noise; Ciao) . 36

xi

Figure Page

3.6 GPTD Vs. GridParafac Alternative (Denoted as “alt”); (Uniform

Noise; Value Independent Noise; Noise Density 10%; f = 10; Num.

Gibbs Samples per Sub-tensor = 3; Max. Num. Of P2 Iteration =

1000; 4 Sub-tensors with Noise) . 37

3.7 (a)GPTD vs. GridParafac (2 × 2 × 2 Grid; Varying Noise Density;

Uniform Noise; Value Independent Noise; Num. Gibbs Samples per

Sub-tensor = 3; f = 10; Max. Num. Of P2 Iteration = 1000); (b)

GPTD with Different Num. Of Gibbs Samples (4× 4× 4 Grid; Uniform

Noise; Value Independent Noise; Noise Density 10%; f = 10; Max.

Num. Of P2 Iteration = 1000 . 38

4.1 A Sample Noise Profile: The Figure Highlights (In Orange) the Sub-

tensor Which Is Expected to Be More Noisy . 42

4.2 Illustration of PMF, Each Object of u and v Follows a Gaussian Dis-

tribution . 44

4.3 Probabilistic Tensor Train Decomposition (PTTD) . 46

4.4 Two Types of Errors Propagate to Downstream Matricizations in Ten-

sor Train Decomposition: (Internal) Approximate Factorization Error

and (External) Data Noise Error . 48

4.5 Illustration of Decomposition Noise Error Propagation and Reconstruc-

tion Noise Error for the First Decomposition Step . 51

4.6 Illustration of Noise Error Propagation . 52

4.7 RMSE with Different Data Sets and Noise Densities (Ltotal = 90)) 61

4.8 RMSE with Different Num. Of Samples; I.E. lTotal Is 90, 135, or 180

(Noise Density 10%, Noise Intensity 1) . 62

xii

Figure Page

4.9 RMSE with Different Noise Intensities; I.E., σ Is 1, 3, or 5 (Noise

Density 10%) . 62

5.1 Illustration of the Two-phase, Block-based Tensor Decomposition: The

Input Tensor Is Partitioned into Smaller Blocks, Each Block Is Decom-

posed (Potentially in Parallel), and the Partial Decompositions Are

Stitched Together Through an Iterative Improvement Process 67

5.2 The Outline of the Mode-centric Iterative Improvement Algorithm Pro-

posed In [51]: The kth Partial Factor along Mode i Is Updated Using

the Mode i Partial Factors Of the Blocks Aligned with the kth Mode

Partition along Mode i . 70

5.3 For Any Block X [k1,...,∗,ki,∗,...,kN], Its Factors U
(1)
[k1,...,∗,ki,∗,...,kN] Through

U
(N)
[k1,...,∗,ki,∗,...,kN] Can Be Used For Maintaining N Sub-factors of X ,

One Along Each of the N Modes. 73

5.4 (a) Mode-centric vs. (b) Block-centric Scheduling of Updates 74

5.5 Virtual Iterations Are Equal in Length to the Length Of The Iterations

of the Mode-centric Update Process and The Block-centric Process

Checks for Termination Once for Each Virtual Iteration. 76

5.6 For a Given Block Position ~k = [k1, . . . , kN] ∈ K, I Need To Bring

into the Memory, for Each Mode i = 1 to N , The Data Unit data(~k, i)

Consisting of the Sub-factor, A
(i)
(ki)

And U
(i)
[∗,...,∗,ki,∗,...,∗]. 79

5.7 Alternative Update Schedules for the Blocks of a 2-mode Tensor (the

Numbers along a given Mode Denote the Block Indexes Along That

Mode) . 81

xiii

Figure Page

5.8 Forward-looking, Schedule-aware Buffer Replacement: Let Us Assume

That the Buffer Currently Contains the 4 Shown Data Units, 2 for Each

Of [k1,1, k1,2] and [k2,1, k2,2]. Since, According to the Current Traversal

Plan, data([k1,1, k1,2], 2) = {A(2)
(k1,2); U

(2)
[k1,1,k1,2]} is the Last Data Unit

To Be Needed, It Will Be the One Selected For Replacement 84

5.9 2PCP Scales Well as the Tensor Size Grows (Data From Table 5.1) 86

5.10 Per-(Virtual)Iteration Number of Data Swaps for Different Configura-

tions (since the Per-iteration Number of Swaps Is Not A Function of

the Data, but the Number of Partitions and the Size Of the Buffer

Relative to the Total Space Requirement, I Have The Same Result for

All Data Sets) . 92

5.11 Relative Accuracy Difference: Positive Values Indicate Cases Where

Buffer-centric Approach Outperforms Mode-centric Approach. 93

6.1 Coupled Simulation of a Hurricane and Human Mobility 95

6.2 States of a Multi-pendulum System . 98

6.3 Partition-Stitch Sampling . 101

6.4 Conventional Solutions for Ensemble Generation . 102

6.5 Ensemble Creation Through Pf-partitioning, Followed By Je-stitching

Provides a Higher Effective Density than The Convention Sampling of

the Original Parameter Space . 106

6.6 Overview of M2TD-AVG . 108

6.7 Overview of M2TD-CONCAT . 110

6.8 Overview of M2TD-SELECT . 113

xiv

Figure Page

6.9 Comparison of the Row Construction Processes Between M2TD-AVG

and M2TD-SELECT . 115

xv

Chapter 1

INTRODUCTION

Tensors or multi-way arrays (number of orders higher than two) are arrays indexed by

three or more indices, which is a high-order generalization of matrices. Tensors are used

in various disciplines. In the real world, most media and sensor data are multi-dimensional

and multi-relational, such as social network, web graphs, sensor streams, and simulation

ensembles. All multi-dimensional data can be modeled as tensor [23, 58, 35, 48, 39, 17] .

Tensor decomposition is a process which rewrites an input tensor as a set of factor matrices

and a core tensor(which describes the strength of latent clusters).

Many tensor decomposition schemes are sensitive to noisy data (i.e., due to the sensor

fault, sensor streams is inconsistent). Noise pollution is an unavoidable problem in the data

analysis domain. It has two major sources, one introduced by measurement tools. One intro-

duced by the batch processing of expert, when the data is collected. The noisy data problem

can be further compounded by overfitting, especially when the observed data is sparse. To

address these challenges, I proposed the Noise-Profile Adaptive Tensor Decomposition (nTD)

method, which leverages rough information about noise distribution in the data to improve

tensor decomposition accuracy with block based tensor decomposition framework. Another

approach, Noise-Profile Adaptive Tensor Train Decomposition (NTTD) method, is proposed,

which is deployed on the Tensor Train format. NTTD aims to tackle the challenge, noise

is rarely uniformly distributed in the data. Another key problem with tensor decomposi-

tion is its computational complexity and space requirements. As the relevant data sets get

denser and larger, in-memory schemes for tensor decomposition become increasingly ineffec-

tive; therefore out-of-core (secondary-memory supported, potentially parallel) computing is

1

necessitated. In this dissertation, I introduced 2PCP, a two-phase, block-based CP decompo-

sition system with intelligent buffer sensitive task scheduling and buffer management mech-

anisms. 2PCP aims to reduce I/O costs in the analysis of relatively dense tensors common

in scientific and engineering applications. Data- and model-driven computer simulations are

increasingly critical in many application domains. However, obtaining and interpreting sim-

ulation ensembles to generate actionable results present difficulties, such as limited ensemble

simulation budgets, need for post-simulation data processing, and inherent data sparsity of

simulation ensembles. To handle those challenges, I propose an alternative ensemble creation

strategy, which I refer to as the partition-stitch sampling, to increase the effective density of

the ensemble with limited ensemble simulation budgets. Based on partition-stitch sampling,

Multi-Task Tensor Decomposition (M2TD) scheme is proposed, which reduces the compu-

tational complexity of high-order tensor decomposition by (a) first cheaply decomposing the

low-order partial tensors and (b) intelligently stitching back the decompositions of these

partial tensors to obtain the decomposition for the whole system. Intuitively, M2TD lever-

ages partial and imperfect simulation-based knowledge from the resulting partial dynamical

systems to obtain a global view of the complex process being simulated.

1.1 Tensor Representation and Analysis

As a good representation of multi-dimensional and multi-relational data, the tensor repre-

sentation is widely used in many applications include representations of RDF triples (subject-

predicate-object) in knowledge bases, (venue-author-keywords) relationships in scientific dig-

ital libraries [18], and (movie-user-rating) relationships in movie recommendation [39]. Con-

sequently, tensor decomposition operations (such as CP [23] and Tucker [58]) are showing an

upward trend in many data analysis and knowledge discovery tasks, from clustering, trend

detection, anomaly detection [18], to correlation analysis [56]. Tensor decomposition is com-

monly used techniques in the domain of tensor analysis, which is high order generation of

2

matrix factorization. Similar to matrix factorization, it recovers latent features or clusters

through decomposing tensor. Tensor decomposition is to decompose tensor into one small

core tensor and a set of factor matrices. The small core tensor indicates the relational strength

among latent clusters. The factor matrix represents the probability of the object belonging

to latent clusters. CANDECOMP/PARAFAC (CP) proposed by Harshman [23] and Carrol

[10] of the tensor concept is the fuse to make tensor popular. Tucker decomposition is an-

other landmark in the tensor decomposition domain. The CP format can effectively avoid the

curse of dimensionality. However, the disadvantage of CP format is numerical problem for

very high-order tensors, which is caused by the intrinsic uncloseness of the CP format. TT

tensor network [48] is proposed to overcome this problem, which have both good numerical

properties and the ability to control the error of approximation. Those characteristic provide

relatively easy opportunity to achieve desired approximation accuracy. Truncated singu-

lar value decompositions (tSVD) or adaptive cross-approximation [30, 47, 6] of TT format

achieve stable quasi-optimal rank reduction, which is the disadvantage of CP decomposition.

TT format is widely used in many domains for its stale and simple approaches, which sep-

arate latent variables in a sophisticated way. The associated TT decomposition algorithms

provide full control over low-rank TN approximations

One problem with tensor decomposition, however, is its computational complexity espe-

cially for dense data sets, the decomposition process takes exponential time in the number of

tensor modes. While the process is relatively faster for sparse tensors, decomposition is still a

major bottleneck in many applications: decomposition algorithms have high computational

costs and incur large memory overheads and, thus, are not suitable for large problems. Even

more recent improvements distributed/parallel implementations, such as Grid PARAFAC

[51] and GigaTensor [28], suffer from high computational costs. Due to the approximate

nature of the tensors decomposition process, one way to reduce computational requirements

might be to trade performance with accuracy. However, naturally, a drop in accuracy may

3

not be acceptable in many applications. Therefore, this is not a feasible solution to tackle

the computational cost.

1.2 Research Contributions

While block-based tensor decomposition techniques [51] and tensor network formats [14,

15, 48]provide potential opportunities to boost the accuracy/efficiency trade-off in the noisy

data and dense data. Those solutions leave several open questions, including (a) how to

partition the tensor and (b) how to most effectively combine results from these partitions

(c) how to optimize for the out-of-core computing scenario (d) opportunities in inherent

sparse simulation ensembles. In this dissertation, I introduce different algorithms to address

different scenarios, which quantify how to leverage the inherent structure of different tensor

decompositions to impact the overall tensor decomposition accuracy under different scenarios.

I present four complementary algorithms that leverage the inherent structure of different

tensor decomposition to address various key challenges in tensor decomposition, including

noise, dense data, and sparse simulation ensembles scenario.

1.2.1 Dealing with Noisy Data

Many of the tensor decomposition schemes are sensitive to noisy data, an inevitable

problem in the real world that can lead to false conclusions. Tensor decomposition faces

are that the process can be negatively affected from the noise and low quality in the data,

which is especially a concern for web-based user data in particular, especially for sparse data,

avoiding over-fitting to the noisy data can be a significant challenge. Recent research has

shown that it is possible to avoid such over-fitting by relying on probabilistic techniques [35],

which introduces priors on the parameters, it can effectively average over various models and

ease the pain of tuning parameters.

4

(a) uni noise (b) sc noise (c) mm noise

Figure 1.1: Alternative Noise Profiles of a Tensor

Parameters of Tensor Noise Profile

Noise distribution: Noise can be distributed in a tensor in several ways:

• In uniform (uni) noise (Figure 1.1(a)), there is no underlying pattern and noise is not

clustered across any slice or region of the tensor.

• Slice-concentrated (sc) noise (Figure 1.1(b)) is clustered on one or more slices on the

tensor across one or more modes. For example, a particular data source (represented

by one or more slices) may be known to provide low quality, untrusted information.

• In multi-modal (mm) noise, again, the noise is clustered; however, in this case the noise

is expected to occur when a combination of a subset of the values across two or more

modes are considered together as in Figure 1.1(c).

Noise density: This is the ratio of the cells that are subject to noise. In this dissertation,

without loss of generality, noise is on cells that have values (i.e., the observed values can

be faulty, but there are no spurious observations) and, thus, noise density as a ratio of the

non-null cells.

5

Dependent vs. independent noise: Noise may impact the observed values in the tensor in dif-

ferent ways: in value-independent noise, the correct data may be overwritten by a completely

random new value, whereas in value-correlated noise existing values may be perturbed (often

with a Gaussian noise, defined by a standard deviation, σ).

Block Based Tensor Decomposition Dealing with Noisy Data

Unfortunately, existing probabilistic approaches have two major deficiencies: (a) firstly, they

assume that all the data and intermediary results can fit in the main memory and (b) they

treat the entire tensor uniformly, ignoring possible non-uniformities in the distribution of

noise in the given tensor.

To deal with the challenge, in this dissertation, I propose a Noise Adaptive Tensor De-

composition (nTD) method: nTD partitions the tensor into multiple sub-tensors and then

decomposes each sub-tensor probabilistically through Bayesian factorization – the resulting

decompositions are then recombined through an iterative refinement process to obtain the

decomposition for the whole tensor. Simultaneously nTD develops a resource allocation strat-

egy that accounts for the impact of the noise density of one sub-tensor on the decomposition

accuracies of the other sub-tensors:

This provides several benefits:

• Firstly, the partitioning helps ensure that the memory footprint of the decomposition

is kept low.

• Secondly, the probabilistic framework used in the first phase ensures that the decom-

position is robust to the presence of noise in the sub-tensors.

• Thirdly,a priori knowledge about noise distribution among the sub-tensors is used to

obtain a resource assignment strategy that best suits the noise profile of the given

tensor.

6

Tensor Train Format Dealing with Noisy Data

Recent research has shown that several generalizations of higher order tensors’ low-rank de-

compositions, such as hierarchical Tucker (HT) [20] and the Tensor Train (TT) [48] format,

are effective solutions to this problem. Both Hierarchical Tucker and Tensor Train are de-

signed to avoid the curse of dimensionality, in the form of the exposition of intermediary

results, which plagues other tensor decomposition techniques. Noise-Profile Adaptive Tensor

Train Decomposition (NTTD) method is proposed to leverages rough a prior information about

noise in the data (which may be user provided or obtained through automated techniques

[54, 13]) to improve decomposition accuracy in Tensor Train format. NTTD decomposes each

mode matricization probabilistically through Bayesian factorization – the resulting factor

matrix are then reconstructed to obtain the tensor approximations. Most importantly,

NTTD provides a resource allocation strategy, which accounts for the impacts of

(a) the noise density of each mode and (b) inherent approximation error of the

Tensor Train decomposition process, on the overall decomposition accuracy of the

input tensor.

In other words, a priori knowledge about noise distribution on the tensor and the in-

herently approximate nature of the tensor train decomposition process are both considered

to obtain a decomposition strategy, which involves (a) the order of the modes and (b) the

number of Gibbs samples allocated to each step of the decomposition process, that best suits

the noise distribution of the given tensor.

1.2.2 Density Challenge in Tensor-Based Analytics

Tensor decomposition process results in dense (and hence large) intermediary data, even

when the input tensor is sparse (and hence small). This is known as the intermediate memory

blow-up problem and renders purely in-memory implementations of tensor-decomposition

7

impractical, for both CP and Tucker decompositions

As the relevant data sets get large, existing in-memory schemes for tensor decomposition

become increasingly ineffective and block-based solutions where some (possibly intermediate)

data may be materialized on disks (instead of main memory) or other servers contributing

to the decomposition process is necessitated. Several implementations of tensor decompo-

sition operations on disk-resident data sets have been proposed, such as GridPARAFAC

[51], TensorDB[33], HaTen2[26] and so on. In all these systems, I/O costs are an inevitable

problem as they need I/O to fetch data either from disk or from the network. As experi-

ments verified, the I/O or communication overhead of iterative algorithm (especially on a

distributed platform like MapReduce) can be very expensive. In addition, naive implementa-

tions of the block-based iterative improvement algorithms can result in significant I/O, when

the buffer memory is not large enough to hold the entire intermediary data. Consequently,

reducing these I/O and communication costs, especially for dense tensors common in science

and engineering, is a critical challenge.

In this dissertation, I propose 2PCP, a two-phase CP tensor decomposition mechanism.

Two-phase block-based tensor decomposition can help reduce the memory-blow-up problem

as the first phase requires decomposition of much smaller tensors. However, the number

of the (so-called factor) matrices that are produced in the first phase and the intermediary

data generated while these are stitched together through an iterative process in the second

phase may still be quite large. Consequently, the intermediary data may still take too much

space to be fully memory-resident and may need to be brought to the memory on the on-

demand basis. Consequently, the 2PCP system, I present in this dissertation, complements

the basic two-phase CP tensor decomposition approach with novel data re-use promoting

block scheduling and buffer management mechanisms to address this difficulty:

In its first phase, 2PCP partitions the input data to blocks (or sub-tensors), then con-

ducts ALS on each sub-tensor (potentially in parallel using a MapReduce based platform)

8

independently

In the second phase, which is executed on a single worker machine, 2PCP leverages fine-

grained block centric iterative refinement with a novel forward looking buffer replacement

strategy that helps improve buffer utilization and reduce I/O:

• In particular, I extend the conventional mode-centric approach in a way that enables

more flexible, fine-grained, block-centric scheduling of updates and the corresponding

data accesses

• Given this fine-grained block-centric iterative improvement scheme, I then consider

alternative scheduling techniques that can maximize the utility of the intermediary-

data already in the buffer

• I then propose and study alternative buffer replacement policies complementing the

different scheduling techniques considered above and develop a forward-looking, pre-

dictive buffer replacement strategy that matches the proposed scheduling techniques to

further push the I/O costs down

1.2.3 Tensor-based analytics on Inherent Sparse Simulation Ensembles

Data- and model-driven computer simulations are increasingly critical in many application

domains. For example, for predicting geo-temporal evolution of epidemics and assessing the

impact of interventions, experts often rely on epidemic spread simulation software, such

as STEM [40]. Consequently, obtaining and interpreting simulation ensembles to generate

actionable results present difficulties: Limited ensemble simulation budgets: Since complex,

inter-dependent parameters affected by complex dynamic processes have to be taken into

account, execution of simulation ensembles can be very costly. This leads to simulation

budget constraints that limit the number of simulations one can include in an ensemble.

Need for post-simulation data processing: Because of the complexities of key processes and

9

the varying scales at which they operate, experts often lack the means to drive conclusions

from these ensembles. This leads to the need for data analytics on simulation ensembles to

discover broad, actionable patterns. Inherent data sparsity of simulation ensembles: While

the size and complexity of a simulation ensemble can indeed tax decision makers, I note

that a simulation ensemble is inherently sparse (relative to the space of potential simulations

one could run), which constitutes a significant problem in simulation-based decision making.

This leads to the following critical question: “Given a parameter space and a fixed simulation

budget, which simulation instances should be included in the ensemble?

To address those challenges, Density Boosting Partition-Stitch Sampling is proposed. I

propose an alternative ensemble creation strategy, which I refer to as the partition-stitch sam-

pling: given an N -parameter simulation and an ensemble budget of B, instead of randomly

allocating the B samples in the N -dimensional parameter space, I partition the simulation

space into ∼ N/2 dimensional sub-spaces and allocate B/2 simulations for each sub-space:

note that, since the number of possible simulations for each sub-space reduced exponentially

(in the number of excluded parameters), this corresponds to an exponential increase in the

density of the samples for each sub-space: Note that neither of the two systems is perfect

representations of the overall behavior of the whole system.

One important question is “How to stitch back the results obtained from the individual

sub-spaces?” Here there might be several alternatives: In the simplest alternative, all the

simulations from the two systems can be unioned into a single N-mode tensor and this

N-mode tensor can be decomposed for analysis. This is potentially very expensive as the

decomposition cost often increases exponentially with the number of modes of the input

tensor. Once unioned into a single tensor, the overall density is still low and the accuracy

gains will be very limited. Instead, I present a join-based scheme to increase the effective

density of the ensemble. In particular, two approaches (join stitching and zero-join stitching)

are presented to combine simulation results form the sub-systems and experimentally validate

10

the effectiveness of these schemes.

Multi-Task Tensor Decomposition (M2TD): Naively joining the sub-ensembles would map

the simulations back to an N -modal tensor and this would exponentially increase the tensor

decomposition time. Instead, I propose a novel Multi-Task Tensor Decomposition (M2TD)

scheme, which reduces the computational complexity of high-order tensor decomposition by

(a) first cheaply decomposing the low-order partial tensors and (b) intelligently stitching

back the decompositions of these partial tensors to obtain the decomposition for the whole

system. Intuitively, M2TD leverages partial and imperfect simulation-based knowledge from

the resulting partial dynamical systems to obtain a global view of the complex process being

simulated. I study alternative ways one can stitch the tensor decompositions and propose an

M2TD− SELECT that provides better accuracy than the alternatives.

1.3 Dissertation Outline

The dissertation is organized in the following ways:

• In section 2,the background and related work about noise and density challenge for

tensor-based analysis is presented

• In section 3, I describes the algorithm of nTD to handle the noise data scenario in block

based tensor decomposition framework.

• in section 4, NTTD is proposed, which leverages a model-based noise adaptive tensor

train decomposition strategy.

• In section 5, 2PCP framework to reduce I/O costs in the decomposition of relatively

dense tensors is introduced

• in section 6, M2TD is illustrated, which rely on a tensor-based framework to represent

and analyze patterns in large simulation ensemble data sets to obtain a high-level

11

understanding of the dynamic processes implied by a given ensemble of simulations

• in section 7, I conclude this dissertation.

12

Chapter 2

BACKGROUND AND RELATED WORKS

2.1 Tensors and Tensor Decompositions

In this section, the relevant background and notations are presented. Tensors are gen-

eralizations of matrices: while a matrix is essentially a 2-mode array, a tensor is an array

of possibly larger number of modes. Intuitively, the tensor model maps a relational schema

with N attributes to an N -modal array (where each potential tuple is a tensor cell).

The two most popular tensor decomposition algorithms are the Tucker [58] and the CAN-

DECOMP/PARAFAC (or CP) [23] decompositions. Intuitively, both decompositions gener-

alize singular value matrix decomposition (SVD) to tensor. CP decomposition, for example,

decomposes the input tensor into a sum of component rank-one tensors.

2.2 CP Decomposition

More specifically, given a tensor X , the CP decomposition factorizes the tensor into F

component matrices (where F is a user supplied non-zero integer value also referred to as

the rank of the decomposition). For the simplicity of the discussion, let us consider a 3-mode

tensor X ∈ RI×J×K. CP would decompose X into three matrices A,B, and C, such that

X ≈ X̃ = [A,B,C] ≡
F∑
f=1

af ◦ bf ◦ cf ,

where af ∈ RI, bf ∈ RJ and cf ∈ RK. The factor matrices A, B, C are the combinations of

the rank-one component vectors into matrices; e.g., A = [a1 a2 · · · aF]. This is visualized

in Figure 2.1.

Many algorithms for decomposing tensors are based on an iterative process that tries to

13

!!"

!#

!$

%
&

&

&

'
$

'#

'"

&

&

&

!"
!#

! $

Figure 2.1: Illustration of CP Decomposition

improve the approximation until a convergence condition is reached through an alternating

least squares (ALS) method: at its most basic form, ALS estimates, at each iteration, one

factor matrix while maintaining other matrices fixed; this process is repeated for each factor

matrix associated to the modes of the input tensor. Note that due to the approximate nature

of tensor decomposition operation, given a decomposition [A,B,C] of X , the tensor X̃ that

one would obtain by re-composing the tensor by combining the factor matrices A, B, and

C is often different from the input tensor, X . The accuracy of the decomposition is often

measured by considering the Frobenius norm of the difference tensor:

accuracy(X , X̃) = 1− error(X , X̃) = 1−

(
‖X̃ −X‖
‖X‖

)
.

2.3 Tucker Decomposition

The Tucker decomposition is a form of higher-order principal component analysis. It

decomposes a tensor into a core tensor multiplied (or transformed) by a matrix along each

mode.

Given a tensor X , Tucker decomposition factorizes the tensor into factor matrices with

different rows, which are referred to as the rank of the decomposition. For the simplicity of

the discussion, let us consider a 3-mode tensor X ∈ RI×J×K. Tucker decomposition would

14

↵
↵

↵

↵

↵
↵

↵

↵

↵

↵

↵

↵↵

↵

↵

↵

↵

↵

Figure 2.2: Illustration of Tucker Decomposition

decompose X into three matrices A,B,C and one core dense tensor g, such that

X ≈ X̃ = g ×1 A×2 B×3 C ≡
P∑
p=1

Q∑
q=1

R∑
r=1

gpqrap ◦ bq ◦ cr,

where A ∈ RI×P, B ∈ RJ×Q, C ∈ RK×R, are the factor matrices and can be treated as

the principal components in each mode. g ∈ RP×Q×Rdense core tensor, which indicates the

strength of interaction between different component of each factor matrix. Since tensors may

not always be exactly decomposed, the new tensor X̃ obtained by recomposing the factor

matrices A, B, C and core tensor g is often different from the input tensor, X . The accuracy

of the decomposition is often measured by considering the Frobenius norm of the difference

tensor.

2.4 Tensor Train Decomposition

Intuitively, the tensor model maps a schema with N attributes to an N -modal array

(where each potential tuple is a tensor cell). Tensor decomposition process generalizes the

matrix decomposition process to tensors and rewrites the given tensor in the form of a

set of factor matrices (one for each mode of the input tensor) and a core matrix (which,

intuitively, describes the spectral structure of the given tensor). A common problem faced

by tensor decomposition techniques, such as Tucker, which generates dense core tensors, is

15

! " #
$%&$'&(&$)

*$% *$'
*$+ *$),%

*$)-.

/.

-.

-0

/0 /1

-0

-1

/23.

-230

-23.

/2

-.
!

Figure 2.3: Illustration of Tensor Train (TT) Decomposition

that, even when the input is sparse, the intermediary and final steps in the decomposition

may lead to very large datasets. Recent research has shown that several generalizations of

higher order tensors’ low-rank decompositions, such as hierarchical Tucker (HT) [20] and the

Tensor Train (TT) [48] format, are effective solutions to this problem. Both Hierarchical

Tucker and Tensor Train are designed to avoid the curse of dimensionality, in the form of the

exposition of intermediary results, which plagues other tensor decomposition techniques.

Intuitively, the tensor train decomposition (which can be interpreted as a special case

of HT, without a recursive formulation) avoids the creation of a high-modal dense core, by

splitting the core into a sequence of low (3) modal cores (Figure 2.3). Since, the intermedi-

ary/final data size is exponential in the number of modes of the core tensor, this significantly

reduces the computation and storage requirements of the decomposition process.

A major difficulty with the Tucker decomposition is that the dense core can be pro-

hibitively large and expensive for high-modal tensors. As discussed in the introduction and

related work, several tensor network approaches [48, 5, 4, 25] (where network edges cor-

respond to contraction indices) have been proposed to avoid this large, dense core tensor.

Unfortunately, many of these possess bad numerical properties. Due to its simpler structure,

16

the tensor train (TT) format, which creates a linear tensor network (or a matrix product

state, MPS [14, 15]) avoids the deficiencies of many other complex decomposition structures:

Definition 2.4.1 (Tensor Train (TT) Format) Let X ∈ Rn1×n2×···×nd be a tensor of or-

der d. In Figure 2.3 (in Introduction) shown, the tensor train decomposition decomposes X

into d matrices Un1 ,Un2 , . . . ,Und
such that,

X ≈ X̃ = Un1 ◦Un2 ◦ · · · ◦Und
, (2.1)

where Un1 ∈ Rn1×r1, Uni
∈ Rri−1×ni×ri(i = 2, . . . , d− 1), and Und

∈ Rrd−1×nd.

Note that Equation 2.1, above, can also be written as follows:

X [i1 . . . id] ≈

X̃ [i1 . . . id] =
∑
j1

· · ·
∑
jd−1

Un1 [i1, j1]Un2 [j1, i2, j2] . . .Und
[jd−1, id].

As in Tucker decomposition, a common way to obtain tensor train decomposition is to

rely on singular value decompositions (SVD) of the matricizations of the tensor to obtain

factors. Unlike HOSVD, however, instead of obtaining all matricizations across all modes

simultaneously and then solving for a multi-modal dense core, tensor train decomposition

proceeds matricization along one mode at a time: at each step, a factor matrix or a low-

dimensional core, corresponding to the current mode, is obtained and the remainder of the

data (which now has one less mode) is passed to the next step in the process [48].

2.5 Block-based CP Decomposition

block-based CP decomposition techniques[51] partition the given tensor into blocks, ini-

tially decompose each block independently, and then iteratively combine these decomposi-

tions into a final composition.

Let us consider an N -mode tensor X ∈ RI1×I2×...×IN , partitioned into a set (or grid)

of sub-tensors X = {X ~k | ~k ∈ K} where K is the set of sub-tensor indexes. Without

17

!"#

!"$%"# %"#

&'()#*#

&
'(
)#
+#

%*#

%+#

%"#

!"
!"

!"

,$%#

-*$%#

-"$%#

-+$%#

!+#!
+$%+#

%+#

!*#

%*#

!
*
$
%
*
#

Figure 2.4: Each Sub-tensor (or Block) Can Be Described in Terms of The Corresponding

Sub-factors

loss of generality, let us assume that K partitions the mode i into Ki equal partitions; i.e.,

|K| =
∏N

i=1 Ki. Let us also assume that a target decomposition rank, F , is given for the

tensor X . Let us further assume that each sub-tensor in X has already been decomposed

with target rank F and let U(i) = {U (i)
~k
| ~k ∈ K} denote the set of F -rank sub-factors1

corresponding to the sub-tensors in X along mode i. In other words, for each X ~k, there is

X ~k ≈ I ×1 U
(1)
~k
×2 U

(2)
~k
· · · ×N U (N)

~k
, (2.2)

where I is the N -mode F ×F × . . .×F identity tensor, where the diagonal entries are all 1s

and the rest are all 0s.

Given these, [51] presents an iterative improvement algorithm for composing these initial

sub-factors into the full F -rank factors, A(i) (each one along one mode), for the input tensor,

1If the sub-tensor is empty, then the factors are 0 matrices of the appropriate size.

18

X . The outline of this block based process is as follows: Let us partition each factor A(i)

into Ki parts corresponding to the block boundaries along mode i:

A(i) = [A
(i)T
(1) A

(i)T
(2) ...A

(i)T
(Ki)

]T .

Given this partitioning, each sub-tensor X ~k,
~k = [k1, . . . , ki, . . . , kN] ∈ K can be described in

terms of these sub-factors (Figure 2.4):

X ~k ≈ I ×1 A
(1)
(k1) ×2 A

(2)
(k2) · · · ×N A

(N)
(kN)

(2.3)

Moreover [51] shows that the current estimate of the sub-factor A
(i)
(ki)

can be revised using

the update rule (for more details on the update rules please see [51]):

A
(i)
(ki)
←− T

(i)
(ki)

(
S

(i)
(ki)

)−1
(2.4)

where

T
(i)
(ki)

=
∑

~l∈{[∗,...,∗,ki,∗,...,∗]}

U
(i)
~l

(
P~l � (U

(i)T
~l
A

(i)
(ki)

)
)

S
(i)
(ki)

=
∑

~l∈{[∗,...,∗,ki,∗,...,∗]}

Q~l �
(
A

(i)T
(ki)
A

(i)
(ki)

)
such that, given ~l = [l1, l2, . . . , lN], there is

• P~l = ~N
h=1(U

(h)T
~l

A
(h)
(lh)) and

• Q~l = ~N
h=1(A

(h)T
(lh) A

(h)
(lh)).

Above, ~ denotes the Hadamart product and � denotes the element-wise division operation.

While the precise derivation of the above update rule is not critical for the discussion

(and is beyond the scope of this dissertation), it enables us to formulate the 2PCP two-phase,

block-based tensor decomposition process.

19

Chapter 3

NOISE-PROFILE ADAPTIVE TENSOR DECOMPOSITION IN BLOCK BASED

FORMAT

3.1 Introduction

The problem tensor decomposition faces is that the process can be negatively affected

from noise and low quality in the data, which is especially a concern for web-based user

data [3, 60, 61, 12] – in particular, especially for sparse data, avoiding over-fitting to the

noisy data can be a significant challenge. Recent research has shown that it is possible to

avoid such over-fitting by relying on probabilistic techniques [59], which introduces priors on

the parameters, it can effectively average over various models and ease the pain of tuning

parameters. Unfortunately, existing probabilistic approaches have two major deficiencies: (a)

firstly, they assume that all the data and intermediary results can fit in the main memory

and (b) they treat the entire tensor uniformly, ignoring possible non-uniformities in the

distribution of noise in the given tensor.

In this dissertation, I propose a Noise-Profile Adaptive Tensor Decomposition (nTD)

method, which leverages a priori information about noise in the data (which may be user

provided or obtained through automated techniques [54, 13]) to improve decomposition ac-

curacy. nTD partitions the user data tensor into multiple sub-tensors (Figure 3.1) and then

decomposes each sub-tensor probabilistically through Bayesian factorization – the resulting

decompositions are then recombined to obtain the decomposition for the whole tensor. Most

importantly, nTD provides a resource allocation strategy that accounts for the impact of the

noise density of one sub-tensor on the decomposition accuracies of the other sub-tensors. In

other words, a priori knowledge about noise distribution among the sub-tensors (noise pro-

20

!"
!"

#""

"

$"

%"

&"

'"

("

)"

##"

#*""

#!"

#%"

#+"

#$"

#("

#&"

#'"

!*"

#)""

!#"

!+"

!!"

!%"

!&"

!$"

!("

!!

,-./#"

,
-
.
/
+
"

,
-
.
/!
"

!!

!!&"!

!*"!*!

#"!!#!!!!

Figure 3.1: A Sample 3-mode Tensor, Partitioned into a Grid Of Sub-tensors, and Its Noise

Profile: The Figure Highlights (in Orange) a Subset Of The Sub-tensors Which Are Noisy

files depicted in Figures 3.1 and 1.1) is used to obtain a resource assignment strategy that

best suits the noise distribution of the given tensor.

3.2 Grid based Probabilistic Tensor Decomposition (GPTD)

Noise may not be uniformly distributed on a tensor. In order to take into account the

underlying non-uniformities, I propose to partition the tensor into a grid and treat each grid

partition differently based on its noise profile. In this section, I present a Grid Based Prob-

abilistic Tensor Decomposition (GPTD) approach which extends the Probabilistic Tensor

Decomposition (PTD [59]) into a grid-based framework. Note that, in and of itself, GPTD

does not leverage a priori knowledge about noise distribution, but in Section 3.4, it provides

a framework in which noise-profile based adaptation can be implemented.

Let us consider an N -mode tensor, X ∈ RI1×I2×...×IN , partitioned into a set (or grid) of

sub-tensors X = {X ~k | ~k ∈ K}, where K is the set of sub-tensor indexes. Without loss of

21

generality, let us assume that K partitions the mode i into Ki equal partitions; i.e., |K| =∏N
i=1Ki. Given a target decomposition rank, F , the first step of the proposed decomposition

(GPTD) scheme is to decompose each sub-tensor in X with target rank F , such that for each

X ~k, there is X ~k ≈ I ×1 U
(1)
~k
×2 U

(2)
~k
· · · ×N U (N)

~k
, where U(i) = {U (i)

~k
| ~k ∈ K} denotes the

set of F -rank sub-factors1 corresponding to the sub-tensors in X along mode i and I is the

N -mode F × F × . . .× F identity tensor, where the diagonal entries are all 1s and the rest

are all 0s. Intuitively, given a sub-tensor X ~k, each entry X ~k(i1,i2,i3,...,iN) can be expressed as

the inner-product of N F -dimensional vectors: X ~k(i1,i2,...,iN)
≈ [U

(1)
~k(i1)

,U
(2)
~k(i2)

. . . ,U
(N)
~k(iN)

]. I

discuss the sub-tensor decomposition process next.

3.2.1 Phase 1: Monte Carlo based Bayesian Decomposition of Sub-tensors

For decomposing individual sub-tensors, the probabilistic approach proposed in [43, 59]

is used: i.e., the fit between the observed data and the predicted latent factor matrices,

probabilistically, is described as follows:

X ~k(i1,i2,...,iN)

∣∣∣U (1)
~k
,U

(2)
~k
. . . ,U

(N)
~k

∼N ([U
(1)
~k(i1)

,U
(2)
~k(i2)

. . . ,U
(N)
~k(iN)

], α−1),

(3.1)

where the conditional distribution of X ~k(i1,i2,...,iN)
given U

(j)
~k

(1 ≤ j ≤ N) is a Gaussian dis-

tribution with mean [U
(1)
~k(i1)

,U
(2)
~k(i2)

, . . .,U
(N)
~k(iN)

] and the observation precision α. independent

Gaussian priors is imposed on the modes:

U
(j)
~k(ij)
∼N (µ

U
(j)
~k

,Λ−1

U
(j)
~k

) ij = 1...Ij (3.2)

where Ij is the dimensionality of the jth mode. Given this, one can estimate the latent features

U
(j)
~k

by maximizing the logarithm of the posterior distribution, log p(U
(1)
~k
,U

(2)
~k
. . . ,U

(N)
~k
|X ~k).

One difficulty with this approach, however, is the tuning of the hyper-parameters of the

1If the sub-tensor is empty, then the factors are 0 matrices of the appropriate size.

22

Algorithm 1 Phase 1: Monte Carlo based Bayesian decomposition of each sub-

tensor(extension of [59] to more than 3 modes)

Input: Sub-tensor X ~k, sampling number L

Output: Decomposed factors U
(1)
~k

, U
(2)
~k

, . . ., U
(N)
~k

1. Initialize model parameters U
(1)1
~k

, U
(2)1
~k

, . . ., U
(N)1
~k

.

2. For l = 1, . . . , L

(a) Sample the hyper-parameter, α:

• αl ∼ p(αl|U (1)l
~k

,U
(2)l
~k

, . . . ,U
(N)l
~k

,X~k
)

(b) For each mode j = 1, . . . , N ,

i. Sample the corresponding hyper-parameter, Θ:

• Θ
U

(j)l
~k

∼ p(Θ
U

(j)l
~k

|U (j)l
~k

)

ii. For ij = 1, ..., Ij , sample the mode (in parallel):

U
(j)(l+1)
~k(ij)

∼ p

(
U

(j)
~k(ij)

∣∣∣∣U (1)l
~k

, . . . ,U
(j−1)l
~k

,

U
(j+1)l
~k

, . . . ,U
(N)l
~k

,

Θl

U
(j)
~k

, αl,X~k

)
3. For each mode j = 1, . . . , N ,

• U
(j)
~k

=

∑L
i=1U

(j)i
~k

L

23

Figure 3.2: Illustration of Sub-tensor Based Tensor Decomposition: The Input Tensor Is

Partitioned into Smaller Blocks, Each Block Is Decomposed (Potentially in Parallel), and the

Partial Decompositions Are Stitched Together Through an Iterative Improvement Process

model: α and Θ
U

(j)
~k

≡ {µ
U

(j)
~k

,Λ
U

(j)
~k

} for 1 ≤ j ≤ N . [59] notes that one can avoid the diffi-

culty underlying the estimation of these parameters through a fully Bayesian approach, com-

plemented with a sampling-based Markov Chain Monte Carlo (MCMC) method to address

the lack of the analytical solution. The process is visualized in Algorithm 1 in pseudo-code

form.

3.2.2 Phase 2: Iterative Refinement

Once the individual sub-tensors are decomposed, the next step is to stitch the resulting

sub-factors into the full F -rank factors, A(i) (each one along one mode), for the input tensor,

X . Let us partition each factor A(i) into Ki parts corresponding to the block boundaries

24

along mode i:

A(i) = [A
(i)T
(1) A

(i)T
(2) ...A

(i)T
(Ki)

]T .

Given this partitioning, each sub-tensor X ~k,
~k = [k1, . . . , ki, . . . , kN] ∈ K can be described in

terms of these sub-factors:

X ~k ≈ I ×1 A
(1)
(k1) ×2 A

(2)
(k2) · · · ×N A

(N)
(kN)

(3.3)

The current estimate of the sub-factor A
(i)
(ki)

can be revised using the following update

rule [51]:

A
(i)
(ki)
←− T

(i)
(ki)

(
S

(i)
(ki)

)−1
(3.4)

where

T
(i)
(ki)

=
∑

~m∈{[∗,...,∗,ki,∗,...,∗]}

U
(i)
~m

(
P ~m � (U

(i)T
~m A

(i)
(ki)

)
)

S
(i)
(ki)

=
∑

~m∈{[∗,...,∗,ki,∗,...,∗]}

Q~m �
(
A

(i)T
(ki)
A

(i)
(ki)

)
such that, given ~m = [m1,m2, . . . ,mN], there is

• P ~m = ~N
h=1(U

(h)T
~m A

(h)
(mh)) and

• Q~m = ~N
h=1(A

(h)T
(mh)A

(h)
(mh)).

Above, ~ denotes the Hadamart product and � denotes the element-wise division operation.

3.3 Overview of GPTD

The two phases of the decomposition process are visualized in Algorithm 2 and Figure 3.2.

3.4 Noise-Profile Adaptive Tensor Decomposition

One crucial piece of information that the basic grid based decomposition process fails

to account for is potentially available knowledge about the distribution of the noise across

25

Algorithm 2 The outline of the GPTD process
Input: Input tensor X , partitioning pattern K, and decomposition rank, F , and per sub-tensor

sample count, L

Output: Tensor decomposition X̊

1. Phase 1: for all ~k ∈ K

• decompose X~k
into U

(1)
~k

, U
(2)
~k

, . . ., U
(N)
~k

with sample count L using Algorithm 1.

2. Phase 2: repeat

(a) for each mode i = 1 to N

i. for each modal partition, ki = 1 to Ki,

A. update A
(i)
(ki)

using U
(i)
[∗,...,∗,ki,∗,...,∗], for each block X [∗,...,∗,ki,∗,...,∗]; more specifi-

cally,

• compute T
(i)
(ki)

, which involves the use of U
(i)
[∗,...,∗,ki,∗,...,∗] (i.e. the mode-i

factors of X [∗,...,∗,ki,∗,...,∗])

• revise P [∗,...,∗,ki,∗,...,∗] using U
(i)
[∗,...,∗,ki,∗,...,∗] and A

(i)
(ki)

• compute S
(i)
(ki)

using the above

• update A
(i)
(ki)

using the above

• for each ~k = [∗, . . . , ∗, ki, ∗, . . . , ∗]

– update P ~k
and Q~k

using

– U
(i)
~k

and A
(i)
(ki)

until stopping condition

3. Return X̊

26

the input tensor. Note that, in the second phase of the process, each A
(i)
(ki)

is maintained

incrementally by using, for all 1 ≤ j ≤ N , (a) the current estimates for A
(j)
(kj) and (b)

the decompositions in U(j); i.e., the F -rank sub-factors of the sub-tensors in X along the

different modes of the tensor. This implies that a sub-tensor which is poorly decomposed due

to noise may negatively impact decomposition accuracies also for other parts of the tensor.

Consequently, it is important to properly allocate resources to prevent a few noisy sub-tensors

among all from negatively impacting the overall accuracy.

In [39],the approach of how to allocate resources is introduced, in a way that takes into

account, user’s non-uniform accuracy preferences for different parts of the tensor. In this

dissertation, I develop a novel noise-profile adaptive tensor decomposition (nTD) scheme that

focuses on resource allocation based on noise distribution. More specifically, user provided

or automatically discovered [1, 60, 61] a priori knowledge about the noise profiles of the

grid partitions enables us to develop a sample assignment strategy (or s-strategy) that

best suits the noise distribution in a given tensor. In particular, nTD assigns the ranks and

samples to different sub-tensors in a way that maximizes the overall decomposition accuracy

of the whole tensor without negatively impacting the efficiency of the decomposition process.

Since probabilistic decomposition can be costly, nTD considers a priori knowledge about each

sub-tensor’s noise density to decide the appropriate number of Gibbs samples to achieve good

accuracy with the given number of samples.

3.4.1 Noise Sensitive Sample Assignment: First Naive Attempt

As experiments shown, there is a direct relationship between the amount of noise a (sub-

)tensor has and the number of Gibbs samples it requires for accurate decomposition. On

the other hand, the number of samples also directly impacts the cost of the probabilistic

decomposition process. Consequently, given a set of sub-tensors, with different amounts of

27

!
"#

!
$#

!
%#

!
&#

(a) A 2× 2× 2 grid (b) Corresponding sub-tensors (c) Pairwise refinement dependencies

Figure 3.3: A Sample Grid and the Corresponding Pairwise Refinement Dependencies among

the Sub-tensors per Equation 3.4

noise, uniform assignment of the number of samples, L =
(
L(total)

|K|

)
, where L(total) is the total

number of samples for the whole tensor and |K| is the number of sub-tensors, may not be

the best choice.

In fact, the numbers of Gibbs samples allocated to different sub-tensors X ~k in Algorithm

1 do not need to be the same. In Section 3.2.1, Phase 1 decomposition of each sub-tensor is

independent from the others and, thus, the number of Gibbs samples of different sub-tensors

can be different. This observation, along with observation that more samples can provide

better accuracy for noisy sub-tensors, can be used to improve the overall decomposition

accuracy for a given number of Gibbs samples. More specifically, the number of samples

a noisy sub-tensor, X ~k, is allocated should be proportional to the density, nd~k, of noise it

contains:

L(X ~k) = dγ × nd~ke+ Lmin, (3.5)

where Lmin is the minimum number of samples a (non-noisy) tensor of the given size would

need for accurate decomposition and γ is a control parameter. Note that the value of γ is

selected such that the total number of samples needed is equal to the number, L(total), of

28

samples allocated for the whole tensor:

L(total) =
∑
~k∈K

L(X ~k). (3.6)

3.4.2 Noise Sensitive Sample Assignment: Second Naive Attempt

Equations 3.5 and 3.6, above, help allocate samples across sub-tensors based on their noise

densities. However, they ignore the relationships among the sub-tensors. In Section 3.2.2,

during the iterative refinement process of Phase 2, inaccuracies in decomposition of one sub-

tensor can propagate across the rest of the sub-tensors. Therefore, a better approach could

be to consider how errors can propagate across sub-tensors when allocating samples.

A. Accounting for Accuracy Inter-dependencies among Sub-Tensors More specif-

ically, in this section, if a significance score is assigned to each sub-tensor, X ~k, that takes into

account not only its noise density, but also the position of the sub-tensor relative to other

sub-tensors, this information could be used to allocate samples.

Let X be a tensor partitioned into a set (or grid) of sub-tensors X = {X ~k | ~k ∈ K}.

According to the update rule (Equation 3.4) in Section 3.2.2, if two sub-tensors are lined

up along one of the modes of the tensor, they can be used to revise each other’s estimates.

This means that the update rule ties each sub-tensor’s accuracy directly to
∑

1≤i≤N Ki other

sub-tensors (that line up with the given sub-tensor along one of the N modes – see Figure 3.3).

Moreover, if the two sub-tensors are similarly distributed along the modes that they share,

then they are likely to have high impacts on each other’s decomposition; in contrast, if they

are dissimilar, their impacts on each other will also be minimal. In other words, given two

sub-tensors X~j and X~l, an alignment score can be computed, align(X~j,X~l), between X~j

and X~l as align(X~j,X~l) = cos(X~l
~j
X~j
~l
), where cos() is the cosine similarity function and

X~b
~a is the version of the sub-tensor X ~a compressed, using the standard Frobenius norm,

onto the modes along which the sub-tensor X ~a and X~b are aligned (Figure 3.4). Intuitively,

29

!"#$%&'!()*+,*

+,* +-*

!"#$%&'!()*+-*

(a) Two sub-tensors with pairwise impact

!"#$%&'!()*+,*
!"#$%&'!()*+-*+,*

-* +-*
,*

(b) Their compressions onto shared modes

!"#
$# !$#

"# !"#
$# !$#

"#

(c) Well-aligned sub-tensors (d) Poorly aligned sub-tensors

Figure 3.4: Measuring the Alignment of Two Sub-tensors: (A) The Sub-tensors with Pairwise

Impact, (B) Their Compressions onto Their Shared Modes, (C) Well-aligned Tensors Have

Similar Distributions On This Compressed Representation, Whereas (D) Poorly Aligned

Tensors Have Dissimilar Distributions

this pairwise alignment score describes how the decomposition of one sub-tensor will impact

another and also indicate the degree of numeric error propagation. A sub-tensor which is

not aligned with the other sub-tensors is likely to have minimal impact on the accuracy

of the overall decomposition even if it contains significant amount of noise. In contrast, a

sub-tensor which is well-aligned with a larger portion of other sub-tensors may have a large

impact on the other sub-tensors, and consequently, on the whole tensor. Consequently, while

the former sub-tensor may not deserve a significant amount of resources, the accuracy of

the latter sub-tensor is critical and hence that tensor should be allocated more resources to

ensure better overall accuracy.

30

B. Sub-Tensor Centrality based Sample Assignment Therefore, given pairwise align-

ment scores among the sub-tensors, one option is to measure the significance of a sub-tensor

relative to other sub-tensors using a centrality measure like PageRank (PR [8]), which com-

putes the significance of each node in a (weighted) graph relative to the other nodes. More

specifically, given a graph, G(V,E), the PageRank score ~p[i], of a node vi ∈ V is obtained

by solving ~p = (1 − β)A ~p + β~s, where A denotes the transition matrix, β is a parameter

controlling the random walk likelihood , and ~s is a teleportation vector such that for vj ∈ V ,

~s[j] = 1
‖V ‖ . Therefore, given (a) the set (or grid) of sub-tensors X = {X ~k | ~k ∈ K} and (b)

their pairwise alignment scores, a significance score can be associated,

τ~k =
~p[~k]−min~j∈K(~p[~j)]

max~j∈K(~p[~j])−min~j∈K(~p[~j])
,

to each sub-tensor X ~k by computing PageRank scores described by the vector ~p. Given this

score, Equation 3.5 can be rewritten as

L(X ~k) = dγ × τ~k × nd~ke+ Lmin, (3.7)

taking into account both the noise density of the sub-tensor along with its relationship to

other sub-tensors.

3.4.3 S-Strategy for Sample Assignment

The above formulation considers the position of each sub-tensor in the whole sub-tensor

to compute its significance and then multiplies this with the corresponding noise density to

decide how much resources to allocate to that sub-tensor. This, however, may not properly

take into account the relationship among the noisy sub-tensors and the positioning of sub-

tensors relative to the noisy ones.

In this dissertation, a better approach would be to consider the noise densities of the

sub-tensors directly when evaluating the significance of each sub-tensor. More specifically,

31

instead of relying on PageRank, I propose to use a measure like personalized PageRank

(PPR [11]), which computes the significance of each node in a (weighted) graph relative to a

given set of seed nodes. Given a graph, G(V,E), and a set, S ⊆ G(V,E), of seed nodes, the

PPR score ~p[i], of a node vi ∈ G(V,E) is obtained by solving ~p = (1 − β)A ~p + β~s, where

A denotes the transition matrix, β is a parameter controlling the overall importance of the

seeds, and ~s is a seeding vector such that if vi ∈ S, then ~s[i] = 1
‖S‖ and ~s[i] = 0, otherwise.

Therefore, given (a) the set (or grid) of sub-tensors X = {X ~k | ~k ∈ K}, (b) their pairwise

alignment scores, and (c) a seeding vector

~s[~k] =
nd~k∑
~j∈K nd~j,

A noise sensitive significance score is associated,

η~k =
~p[~k]−min~j∈K(~p[~j])

max~j∈K(~p[~j])−min~j∈K(~p[~j])
,

to each sub-tensor X ~k based on the PPR scores, described by the vector ~p, relative to the

noisy tensors. Given this score, Equation 3.5 is rewritten as

L(X ~k) = dγ × η~ke+ Lmin. (3.8)

3.5 Overview of nTD

The pseudo-code of the proposed noise adaptive tensor decomposition (nTD) process is

visualized in Algorithm 3.

3.6 Experimental Evaluation

In this section, experiments is reported, which aim to assess the effectiveness of the

proposed noise adaptive tensor decomposition approach. In particular, the proposed approach

is compared against another grid based strategy, GridParafac.I further assess the proposed

32

Algorithm 3 Overview of nTD: noise adaptive decomposition (with noise based resource

allocation)
Input: original tensor X , partitioning pattern K, noisy sub-tensor KP , and decomposition rank,

F and total sampling number L

Output: tensor decomposition, X̂

1. obtain the noise profile of the sub-tensors of X ,

2. for sub-tensor ~k ∈ K, assign a decomposition rank F~k = F and a sampling number L~k based

on noise-sensitive sample allocation strategy, described in Section 3.4.3.

3. obtain the decomposition, X̂ , of X using the GPTD algorithm (Algorithm 2), given parti-

tioning pattern K and the initial decomposition ranks {F~k | ~k ∈ K} and sampling number

{L~k | ~k ∈ K},

4. Return X̂

noise-sensitive sample assignment strategy (s-strategy) by comparing the performance of

nTD, which leverages this strategy, against GPTD with uniform sample assignment, on user-

centered data.

3.6.1 Experiment Setup

Key parameters and their values are reported in Table 3.1.

Data Sets. In these experiments, I used three user centered datasets: Epinions [57],

Ciao [57], and MovieLens [21, 22]. The first two of these are comparable in terms of their

sizes and semantics: they are represented in the form of 5000×5000×999 (density 1.4×10−6)

and 5000× 5000× 996 (density 1.7× 10−6) tensors, respectively, and both have the schema

〈user, item, time〉. The MovieLens data set (943×1682×2001, density 3.15×10−5) is denser

and has a different schema, 〈user,movie, time〉. In all three data sets, the tensor cells contain

33

Parameters Alternative values

Noise Density 10%; 30%; 50%; 80%

partitions 2× 2× 2; 4× 4× 4

Per sub-tensor Gibbs sample count 1; 3; 5; 10; 30; 80

Target Rank (F) 10

Table 3.1: Parameters – Default Values, Used Unless Otherwise Specified, Are Highlighted

rating values between 1 and 5 or (if the rating does not exist) a special “null” symbol.

Noise. In these experiments, uniform value-independent type of noise were introduced by

modifying the existing ratings in the data set2. More specifically, given a uniform noise

profile and density, I have selected a subset of the existing ratings (ignoring “null” values)

and altered the existing values – by selecting a completely new rating (which I refer to as

value-independent noise).

Evaluation Criteria. I use the root mean squares error (RMSE) inaccuracy measure to

assess the decomposition effectiveness. I also report the decomposition times and memory

consumptions. Unless otherwise reported, the execution time of the overall process is reported

as if sub-tensor decompositions in Phase 1 and Phase 2 are all executed serially, without

leveraging any sub-tensor parallelism. Each experiment was run 10 times with different

random noise distributions and averages are reported.

Hardware and Software. I ran experiments on a quad-core CPU Nehalem Node with

12.00GB RAM. All codes were implemented in Matlab and run using Matlab R2015b. For

conventional CP decomposition, I used MATLAB Tensor Toolbox Version 2.6 [2].

2Because of space limitations, I do not include results with slice-concentrated, multi-modal, and value-

dependent noise; but the results for those types of results are similar to the results presented in this section.

34

3.6.2 Discussion of the Results

I start the discussion of the results by studying the impact of the s-strategy for lever-

aging noise profiles.

Impact of Leveraging Noise Profiles. In Figure 4.7, I compare the performance of

nTD with noise-sensitive sample assignment (i.e., s-strategy) against GPTD with uniform

sample assignment and the two naive noise adaptations, presented in Sections 3.4.1 and 3.4.2,

respectively. Note that in the scenario considered in this figure, I have 640 total Gibbs

samples for 64 sub-tensors, providing on the average 10 samples per sub-tensor. In these

experiments, I set Lmin to 9 (i.e. very close to this average), thus requiring that 576(= 64×9)

samples are uniformly distributed across the sub-tensors – this leaves only 64 samples to be

distributed adaptively across the sub-tensors based on the noise profiles of the sub-tensors

and their relationships to other sub-tensors. In this figure, the proposed nTD is able to

leverage these 64 uncommitted samples to significantly reduced RMSE relative to GPTD with

uniform sample assignment. Moreover, I also see that naive noise adaptations can actually

hurt the overall accuracy. These together show that the proposed s-strategy is highly

effective in leveraging rough knowledge about noise distributions to better allocate the Gibbs

samples across the tensor. Note that, as expected, nTD is costlier than GPTD as it requires

additional preprocessing to compute sub-tensor alignments in Phase 2. However, the required

pre-processing is trivially parallelizable as discussed next.

Impact of Sub-Tensor Parallelism. In Figure 3.5, Phase 1 of the nTD algorithm (Al-

gorithm 1) is highly parallelizable as the sub-tensors resulting from grid-partitioning can

be decomposed in parallel. Similarly, the pre-processing needed for computing the sample

assignment strategy in Phase 2 is also highly parallelizable: the most expensive step of the

process is the compression of the sub-tensors on modes shared with their neighbors (since the

resulting sub-tensor graph is small, the PPR computation has negligible cost) and that work

35

(a) No sub-tensor parallelism (b) sub-tensor parallelism

(c) Execution time with different degrees of parallelism

Figure 3.5: Impact of Sub-tensor Parallelism on Ntd (4 × 4 × 4 Grid; Uniform and Value

Independent Noise; Noise Density 10%; f = 10; Num. Gibbs Samples per Sub-tensor = 3;

Max. Num. Of P2 Iteration = 1000; 4 Sub-tensors with Noise; Ciao)

can be done in parallel for each sub-tensor or even for each cell in the resulting compressed

representation. Unfortunately, Phase 2, involving incremental stitching and refinement of

the factor matrices (see Algorithm 2) cannot be trivially parallelised by assigning different

sub-tensors to different processors as the refinement rules need to simultaneously access data

from multiple sub-tensors. While parallel execution of Phase 2 may be achieved by schedul-

ing the refinement rules asynchronously in parallel, I leave the investigation of this as future

work.

GPTD vs. GridParafac in the Presence of Noise In its Phase 1, nTD relies on grid

based probabilistic decomposition strategy. I next compare this grid probabilistic tensor

36

(a) RMSE

(b) Memory requirement

(c) Execution time

Figure 3.6: GPTD Vs. GridParafac Alternative (Denoted as “alt”); (Uniform Noise; Value

Independent Noise; Noise Density 10%; f = 10; Num. Gibbs Samples per Sub-tensor = 3;

Max. Num. Of P2 Iteration = 1000; 4 Sub-tensors with Noise)

37

!"!#

!"$#

%"!#

%"$#

&"!#

&"$#

'"!#

'"$#

("!#

("$#

)*+,# -.*/*,/# 0,1*232/#)*+,# -.*/*,/# 0,1*232/#

45*67+5+8+9# 47:;#

<
0
=
-
#

<0=-#8,5#45*67+5+8+9#1>"#47:;#?1+5@*/A#/,*>2#62/>*B@C#

!"#$

%"#$

&"#$

'"#$

!"!#

!"$#

%"!#

%"$#

&"!#

&"$#

'"!#

()*+# ,-).)+.# /+0)121.3#

4
/
5
,
#

6#+7#3*8-913#-1:#3;<=>1.3+:#

?@AB#4/5,#03"#5*8-9).C#4*>1#

!"

#"

!$"

%$"

&$"

(a) RMSE (b) RMSE

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'()*" +,(-(*-" .*/(010-" '()*" +,(-(*-" .*/(010-"

23(45)3)6)7" 2589"

8
(:

0
";
<0
7=
>"

+?07"8(:0"6*3"23(45)3)6)7"/<="2589";/)3@(-A"-*(<0"

40-<(B@>"

!"#$

%"#$

&"#$

'"#$

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&'()" *+',')," -).'/0/,1"

2
'3

/
"4
1/
56
7"

8")9"1(3+:/1"+/;"1<=>?/,1);"

@A2B"*C/56"2'3/".16"D(3+:',E"F(?/"

!"

#"

!$"

%$"

&$"

(c) Execution Time (d) Execution Time

Figure 3.7: (a)GPTD vs. GridParafac (2× 2× 2 Grid; Varying Noise Density; Uniform Noise;

Value Independent Noise; Num. Gibbs Samples per Sub-tensor = 3; f = 10; Max. Num.

Of P2 Iteration = 1000); (b) GPTD with Different Num. Of Gibbs Samples (4× 4× 4 Grid;

Uniform Noise; Value Independent Noise; Noise Density 10%; f = 10; Max. Num. Of P2

Iteration = 1000

38

decomposition (GPTD) against the more conventional GridParafac . In Figure 3.6, GPTD

provides significantly better accuracy than the conventional approaches and also requires

significantly lesser memory. As expected, I also see that increasing the number of sub-

tensors results in a significant drop in the per-sub-tensor memory requirement (therefore

improving the scalability of the tensor decomposition process) – though the execution time

of the second phase of the process (where the initial decompositions of the sub-tensors are

stitched together) increases due to the existence of more sub-tensors to consider.

An important observation in Figure 3.6 (b) is that the memory requirement for the con-

ventional techniques is very sensitive to data density: While the MovieLens tensor has smaller

dimensionality then the other two, it has a slightly higher density (3.15×10−5 vs. 1.7×10−6).

Consequently, for this data set, the memory consumptions of the conventional techniques (es-

pecially when the number of grid partitions used are low) are significantly higher than their

memory consumptions for the other two data sets. In contrast, the results show that the

probabilistic approach is not sensitive to data density and GPTD has similar memory usage

for all three data sets.

Impact of Noise Density. These results are confirmed in Figure 3.7(a) & (c), where I vary

the noise density between 10% and 80%: for all considered noise densities and for all three

data sets, the RMSE provided by GPTD is significantly better than the RMSE provided by

the conventional GridParafac and this RMSE gain does not come with a significant execution

time penalty.

Impact of Numbers of Samples. A key parameter of the GPTD algorithm is the number

of Gibbs samples used per

sub-tensor in Phase 1. In Figure 3.7(b)&(d), as expected, increasing the number of Gibbs

samples helps reduce the decomposition error (measured using RMSE) ; however having more

samples increases the execution time of the algorithm. It is important to note that, when

the number of Gibbs samples is low, the algorithm is very fast, indicating that the worst

39

case complexity of the Bayesian iterations arises only when the number of Gibbs samples

is very high. Most critically, in Figures 3.6 and 3.7(a), the GPTD algorithm does not need

too many Gibbs samples: using a few (in these experiments, even just 1) Gibbs samples per

sub-tensor is sufficient to provide significantly better accuracy than GridParafac, as reported

in Figures 3.6 (a), with similar or better time overhead, as reported in Figure 3.6 (c).

40

Chapter 4

NOISE ADAPTIVE TENSOR DECOMPOSITION IN TENSOR TRAIN FORMAT

4.1 Introduction

In this chapter, Noise-Profile Adaptive Tensor Train Decomposition (NTTD) method is

proposed, which leverages rough a prior information about noise in the data (which may be

user provided or obtained through automated techniques [54, 13]) to improve decomposi-

tion accuracy. NTTD decomposes each mode matricization probabilistically through Bayesian

factorization – the resulting factor matrix are then reconstructed to obtain the tensor ap-

proximations. Most importantly,

NTTD provides a resource allocation strategy, which accounts for the impacts of

(a) the noise density of each mode and (b) inherent approximation error of the

Tensor Train decomposition process, on the overall decomposition accuracy of the

input tensor.

In other words, a priori knowledge about noise distribution on the tensor (noise profiles

depicted in Figure 4.1 and Section 4.3.1) and the inherently approximate nature of the tensor

train decomposition process are both considered to obtain a decomposition strategy, which

involves (a) the order of the modes and (b) the number of Gibbs samples allocated to each

step of the decomposition process, that best suits the noise distribution of the given tensor.

4.2 Probabilistic Tensor train Decomposition (PTTD)

In this section, I present a probabilistic tensor train decomposition (PTTD) approach. In

particular, PTTD replaces the SVD decomposition step in tensor train decomposition with

41

!"#$%&'

(&)*+$&" ,-%-

./#"0&

1/2$3 (&)*+$&"

,-%- ./#"0&

!"#$%&'

(&)*+$&" ,-%-

./#"0& !
"
#$
%
&
'
(
)
%
"
(
*
"
+
%
,

!"#$% &'()% "(*"+% -

!
"#
$%
&
'(
)%
"(
*
"+
%
.

Figure 4.1: A Sample Noise Profile: The Figure Highlights (In Orange) the Sub-tensor Which

Is Expected to Be More Noisy

probabilistic matrix factorization, in order to avoid over-fitting due to data sparsity and

noise.

Note that, in and of itself, PTTD does not leverage a priori knowledge about noise distri-

bution and internal decomposition interaction, but in Section 4.3, it provides the framework

in which noise-profile based adaptation can be implemented.

4.2.1 Probabilistic Matrix Factorization

The singular value decomposition (SVD) that is commonly used in tensor train decom-

position can be negatively affected from the noise and low data quality, which is especially a

concern for web-based user data [3, 60, 61]. Especially for sparse data, avoiding over-fitting

to the noisy data can be a significant challenge when using SVD. Recent research has shown

that it may be possible to avoid such over-fitting by relying on probabilistic techniques [59],

which introduce priors on the parameters, and can potentially average over various models

and ease the difficulty of parameter tuning.

42

Probabilistic Matrix Factorization

Probabilistic Matrix Factorization (PMF) is a probabilistic linear model with Gaussian ob-

servation noise. Let us consider a matrix M ∈ Rn1×n2 . The conditional distribution over the

observed values M ∈ Rn1×n2 (the likelihood term) and the prior distributions over U ∈ Rr×n2

and V ∈ Rr×n1are given by

p(M |U, V, α) =

n1∏
i=1

n2∏
j=1

[N (Mij|UT
i Vj, α

−1)] (4.1)

p(U |αU) =

n1∏
i=1

N (Ui|0, α−1
U) and p(V |αV) =

n2∏
j=1

N (Vj|0, α−1
V),

where N (x|µ, α−1) denotes the Gaussian distribution with mean µ and precision α.

Bayesian Probabilistic Matrix Factorization

In the Bayesian formulation the prior distributions over U and V feature vectors are assumed

to be Gaussian:

p(U |µU ,ΛU) =

n1∏
i=1

N (Ui|µU ,Λ−1
U)

A similar formulation holds for V . Note that each row of factor matrices U and V follows

a Gaussian distribution, as shown in Figure 4.2. In general, this Gaussian is related to the

uncertainty in the corresponding element and, thus, provides an opportunity to discover the

distribution of data noise across the tensor, as mentioned in Section 4.3. The Gaussian-

Wishart priors on the U and V hyperparameters ΘU = {µU ,ΛU} and ΘV = {µV ,ΛV } are

modeled as

p(ΘU |Θ0) = N (µU |µ0, (βΛU)−1)W(ΛU |W0, v0)

Again, A similar formulation hold for V .

W is the Wishart distribution with v0 degrees of freedom and a D × D scale matrix, W0:

W(Λ|W0, v0) =
1

C
|Λ|(v0−D−1)/2exp(−1

2
Tr(W−1

0 Λ)),

43

!

!

"

!

"

#$

!

%
! " # #&

$%&'(')*)+,)- .(,%)/ 0(-,&%)1(,)&2

Figure 4.2: Illustration of PMF, Each Object of u and v Follows a Gaussian Distribution

where C is the normalizing constant. Here, Θ0 = µ0, v0,W0, v0 = D and W0 are identity

matrix for both U and V hyperparameters.

Given the above, M̃ij can be predicted by marginalizing over model parameters and

hyperparameters:

p(M̃ij|M,Θ0) =

∫∫
p(M̃ij|Ui, Vj)p(U, V |R,ΘU ,ΘV)

p(ΘU ,ΘV |Θ0)d{U, V }d{ΘU ,ΘV }.

Since exact evaluation of this predictive distribution is analytically intractable due to the

complexity of the posterior I need to resort to approximate inference.

To provide deterministic approximation schemes for posteriors, variational methods [27]

are one choice .The true posterior of factor matrixp(U, V,ΘU ,ΘV) parameters can be approx-

imated by the distribution that factors. And each factor having a specific parametric form

such as a Gaussian distribution. Equation 4.2.1 is leveraged to approximate the approximate

posteriors. Variational methods have become the methodology of choice, since they typically

scale well to large applications. However, they can produce inaccurate results because they

44

tend to involve overly simple approximations to the posterior.

MCMC-based methods [45], for example, use Monte Carlo approximation to the predictive

distribution of Equation 4.1, given by:

p(M̃ij|M,Θ0) ≈ 1

K

K∑
k=1

p(M̃ij|U (k)
i , V

(k)
j) (4.2)

More specifically, the factor matrix {U (k)
i , V

(k)
j } are sampled by running a Markov chain,

which is stationary distribution over the model parameters and hyperparameters {U, V,ΘU ,ΘV }.

MCMC methods asymptotically approach the exact results.

Algorithm 4 PTTD
Input: d dimensional tensor X , Rank R = {r1, ..., rd−1}

Output: Decomposed factors U (1), . . ., U (d) of

TT-approximation X̃

1. generate the appropriate sampling number for each mode ,S = {s1,, sd1} with intelligent

sampling assignment strategy

2. Temporary Tensor: M = X

3. for k = 1 to d-1 do

(a) M := reshape(M, [rk−1nk,
numel(M)
rk−1nk

])

(b) apply the Probabilistic Matrix Factorization (PMF) on the matrix M with pre-given

rank rk and sampling number sk to get the U (k)andV (k)

(c) New core: U (k) = reshape(U, [rk−1, nk, rk])

(d) M := SV (k)T

4. Ud = M

5. Return tensor X̃ in TT-format with scores U (1), . . ., U (d)

45

!" #$!% #$!& #$!'

!"

!% #$!& #$!'

!"

("

("

!% #$!& #$!'

("#!%

!& #$!'

(%

(%

!& #$!'("
#!
%

(%#!&

!'

(&

(&

!'(%
#!
&

!"

(" ("

!%

(%
(&

(%

!&

(&

!'

!"#$%$&'&()&* +, - !"#$%$&'&()&* +, . !"#$%$&'&()&* +, /()*+,-)
()*+,-)

()*+,-) ()*+,-)

."
.% .&/" /% /&

." .% .&
.'

0 "
0% 0&

0

Figure 4.3: Probabilistic Tensor Train Decomposition (PTTD)

4.2.2 Overview of PTTD

Given the limitations of SVD on sparse and noisy tensors, the first step is to introduce a

probabilistic tensor train decomposition scheme (PTTD), which extends tensor train decompo-

sition framework with probabilistic matrix factorization [43].

In PTTD, the tensor X is matricized as a matrix, M , and then I apply probabilistic matrix

factorization on this matrix. The resulting factor matrix, U , is assigned as the first TT factor

matrix. The matrix V is reshaped into the matrix Mnext to be factorized in the next step.

This probabilistic factorization and reshape processes are repeated until the decomposition

is completed. The pseudo code of the algorithm is presented in Algorithm 4 and the process

is visualized in Figure 4.3.

4.3 Noise Adaptive Probabilistic Tensor train Decomposition (NTTD)

One key advantage of the probabilistic decomposition framework presented above is that

it can simultaneously uncover (Gaussian) noise while obtaining the decomposition[48]. Yet,

it fails to account for the potentially available (user-provided or automatically discovered)

46

knowledge about (a) the distribution of the external data noise across the tensor and (b) the

noise generated internally due to the inherent imperfections in the decomposition process at

the different steps of the tensor train network.

4.3.1 External and Internal Noise

External (Data) Noise

I define, (external data) noise density as the ratio of the cells that are subject to noise.

Without loss of generality, I assume noise exists only on cells that have values (i.e., the

observed values can be faulty, but there are no spurious observations) and, thus, I formalize

noise density as the ratio of the non-null cells that are subject to noise. Note that noise

may impact the observed values in the tensor in different ways: in value-independent noise,

the correct data may be overwritten by a completely random new value, whereas in value-

correlated noise, existing values may be perturbed (often with a Gaussian noise, defined by

a standard deviation, σ). I refer to the amount of perturbation as the noise intensity.

In a tensor, noise can be distributed in many ways, depending on how data is collected.

In uniform noise, there is no underlying pattern and noise is not clustered across any slice

or region of the tensor. In general, however, noise is rarely uniformly distributed on a given

tensor and may be clustered along rows, slices, or modes [37].

Internal (Decomposition) Noise

In Section 2.4, in the tensor train format, the network structure acts as a ”train” or ”chain” of

tensors: the core tensors only interact with their neighboring cores as illustrated in Figure 2.3.

The corresponding tensor train decomposition relies on sequential projections (formulated as

sequential matrix factorizations) and

the decomposition accuracy of the intermediate matrix, Mk, depends on the ac-

47

!"

!# $%!& $%!'

!"

("

("

!# $%!& $%!'

!"

("

!"#$%$&'&()&* +, -

)"

)"

*"

+"

,-./0%12!30

!"##$%%&'

($#&)*&%+,+&-

4.!50(!267 288(-9.:25.-! ;2<5-(.=25.-! 0((-(

40950(!267 >252 !-./0 0((-(

Figure 4.4: Two Types of Errors Propagate to Downstream Matricizations in Tensor Train

Decomposition: (Internal) Approximate Factorization Error and (External) Data Noise Error

curacy of the previous matrix Mk−1’s (approximate) decomposition; similarly, the

factorization error of Mk propagates to the following sequence of (intermediate)

matrices, Mk+1, ...,MN , of the chain.

This implies that a predecessor matrix which is poorly decomposed due to data noise or

approximation error may negatively impact decomposition accuracies also for the rest of the

successor matrices.

4.3.2 Noise Adaptation through Sample Assignment

Consequently, the inaccuracies resulting from each intermediate decomposition along the

chain (whether due to data noise or factorization approximation error, Figure 4.4) need to

be carefully considered during planning and resource allocation. The proposed noise-profile

adaptive tensor decomposition (NTTD) algorithm adapts to (user provided or automatically

discovered) a priori knowledge about noise by selecting a resource assignment strategy that

best suits to the internal and external noise profiles. More specifically, NTTD assigns Gibbs

samples to the decompositions of the various individual matricizations in a way that maxi-

mizes the overall decomposition accuracy of the whole tensor, In particular, it considers noise

48

density along various modes and internal interaction between neighboring matrices to decide

the appropriate number of samples to allocate for each matricization to achieve good overall

accuracy with a given sample budget.

Table 4.1 provides a motivating example for the non-uniform sampling strategy. Uniform

sampling strategy, which would distribute the available sampling budget, Ltotal, among the

various steps in the decomposition chain gives the worst accuracy performance in term of

RMSE. We, therefore, need a strategy to allocate the Gibbs samples across the various steps

in the tensor train. In the rest of this section, I carefully study the two (internal and external)

types of errors and how they propagate during the overall decomposition and how they impact

the overall decomposition accuracy.

4.3.3 Gibbs Sampling and (Internal) Decomposition Error

As discussed in Section 4.2.2, the probabilistic tensor train decomposition process consists

of several sequential probabilistic matrix decompositions. Consequently, any inaccuracies

generated in any of the upstream decompositions will propagate to the downstream matrix

decompositions along the ”train” structure. In this section, I ignore the external data noise

and focus on the impact of this internal noise generated due to decomposition inaccuracies.

More specifically, I aim to investigate how to allocate Gibbs samples in a way that is sensitive

to (a) the internal noise generated by the individual matrix factorizations, (b) the downstream

(internal) noise propagation, and (c) their impacts to the accuracy of the overall tensor train

decomposition.

As discussed in Section 4.2.1, Gibbs sampling is used for tackling the challenge of eval-

uating the predictive distribution of the posterior by approximating the expectation by an

average of samples drawn from the posterior distribution through a Markov Chain Monte

Carlo (MCMC) technique. Gibbs sampling cycles through the latent variables, sampling

each one from its distribution, conditioned on the current values of all other variables. In

49

Uniform Sampling Non-Uniform (Li err(M))

Lmin = 5 Lmin = 10 Lmin = 15 Lmin = 20

RMSE 1.1 0.5783 0.4846 0.4455 0.6524

Table 4.1: Example of Tensor Train Decomposition with Different Sample Distribution

Strategies: The Input Tensor Has Dimensions 143 × 200 × 12 × 4 (Density 5.68e-04), with

Schema < User, Product, Category, Helpfullness>; In This Example, the Total Sampling

Number Is Set to 90; Rmse (Matching Error) Is Presented to Illustrate the Decomposition

Performance (Here l Stands for the Number of Gibbs Sample Allocated; Details Of the Pa-

rameters Are Described In Section 4.4)

Figure 4.4, for each intermediate matrix decomposition in PTTD, two factor matrices are

generated: The U factor matrix is used to construct the core tensor corresponding to the

current mode, whereas the V factor matrix is re-shaped as an input matrix for the successor

decomposition step. Therefore,

• the accuracy of the Uk matrix has direct impact on the accuracy of one of the cores,

whereas

• the accuracy of the Vk matrix indirectly influences accuracies of all downstream cores,

This observation, along with the observation that more samples can help provide bet-

ter accuracy (to certain degree) in matrix factorization, can be used to improve the overall

decomposition accuracy, to help allocate Gibbs samples to the different steps in tensor decom-

position. More specifically, the number of samples for an intermediate matrix, Mk, should be

allocated proportional to the size of the factor matrix, size(Uk) +size(Vk), which reflects the

number of unknowns to be discovered during the factorization of matrix Mk. In other words,

the internal decomposition error sensitive sampling number, Li err(Mk), for matrix Mk can

50

!"

!# $%!& $%!'

!"

("

("

!# $%!& $%!'

!"

("

!"#$%$&'&()&* +, -

)" *"

+,-./%01!2/

!,-./ /((,(3(,31214-,!

(/5,!.4(654-,! !,-./ /((,(

7"

)"

Figure 4.5: Illustration of Decomposition Noise Error Propagation and Reconstruction Noise

Error for the First Decomposition Step

be computed as

Li err(Mk) = Lmin(Mk) + dγi err × (size(Uk) + size(Vk))e,

where γi err is a scaling parameter such that the sum of all the sample counts is equal to the

total number, Li err(total), of samples allocated for dealing with internal decomposition errors

for the whole tensor decomposition:

Li err(total) =
d−1∑
k=1

Li err(Mk) (4.3)

In Table 4.1, internal error informed sample assignment provides significant gains over

uniform sample assignment. While the parameter Lmin has some impact on the overall accu-

racy, its impact is minor relative to the impressive gains I obtain by considering the impact

of the number of samples allocated on the individual matrices on the overall decomposition.

I will further experimentally study this in Section 4.4.

4.3.4 Gibbs Sampling and (External) Noise

Equation 4.7, above, helps allocate samples across intermediate decomposition phases.

However, it ignores one crucial piece of information that may be available: distribution of

51

!"

!# $%!& $%!'

!"

("

("

!# $%!& $%!'

("$!#

!& $%!'

(#

(#

!& $%!'("
$!
#

(#$!&

!'

(&

(&

!'(#
$!
&

!"

("
("

!#
(#

(&

(#

!&

(&

!'

!"#$%$&'&()&* +, - !"#$%$&'&()&* +, . !"#$%$&'&()&* +, /()*+,-) ()*+,-)

()*+,-) ()*+,-)

." .# .&

." .# .&
.'

/"

0" 0#

/&

0&

123*)%4,!5) 123*)%4,!5) 123*)%4,!5)

/#

Figure 4.6: Illustration of Noise Error Propagation

the noise across the input tensor.

The basic probabilistic tensor train decomposition (Section 4.2) assumes the noise is

uniformly distributed across the tensor. In the real world, however, noise is rarely uniformly

distributed along the entire tensor. More often, I would expect that noise would be clustered

across slices of the tensor (corresponding, for example, to unreliable information sources or

difficult to obtain data). In many cases, even if I do not have precise knowledge about the

cells that are subject to such noise or the amount of noise they contain, I may have a rough

idea about the distribution of noise across the different modes [37]. As I experimentally show

in Section 4.4, there is a direct relationship between the noise distribution across the tensor

and the number of Gibbs samples it requires for accurate decomposition. Consequently, given

a tensor with non-uniform noise distribution across different modes, uniform assignment of

the number samples, Ln err(Mk) =
Ln err(total)

d−1
(where Ln err(total) is the total number of Gibbs

samples for tackling the impact of noise) becomes ineffective. Therefore, in this section, I

aim to answer the question

can we leverage rough information that may be available about noise distribution

in improving the accuracy of the overall tensor train decomposition?

52

Noise taints accuracy through two distinct mechanisms: (a) impact of noise during de-

composition and, for applications (such as recommendation and prediction) that involve the

recovery of missing entries in the tensor, (b) impact of noise during reconstruction .In Fig-

ure 4.5, the noise in the input matrix partitions itself into the resulting factor matrices U and

V . The factor matrix Vi is reshaped as input matrix for the following tensor train decompo-

sition steps, therefore is involved in the propagation of the noise to downstream steps during

the tensor train decomposition process (Figure 4.6). The matrix, Ui, however, is separated

into a factor matrix (for U1) or more generally to a core tensor for factor i > 1, and thus

impacts accuracy during reconstruction. I discuss these next.

Impact of Noise During Reconstruction

The noise reconstruction error taints the overall accuracy in the reconstruction process due

to the matrix tensor multiplication operations involved in the recomposition of the (ap-

proximate) tensor. For example, if the ith object of Uk is polluted by the noise, after the

reconstruction process, the complete slice X̃ ∗,...,∗,k(i),∗,...,∗ will be tainted by the noise pollution

from column Uk(i) due to the matrix and tensor multiplication. Consequently, to account for

the noise reconstruction error, the number of Gibbs samples should be proportional to the

mode noise density, ndk.

Impact of Noise During Decomposition

A naive approach to allocate the number of samples for a noisy matrix, Mk, is to allo-

cate it proportional to its noise density, ndk. However, since the probabilistic tensor train

decomposition process follows a ”train” structure, errors propagate downstream as shown

in Figure 4.6. Consequently, allocating sampling number proportional to the noise density

maybe not the best strategy.

As mentioned earlier, the Gibbs sampling algorithm cycles through the latent variables,

53

Algorithm 5 Gibbs sampling for Bayesian PMF

1. Initialize model parameters {U1, V 1}

2. For t = 1,...,T

(a) Sample the hyperparameters

Θt
U ≈ p(ΘU |U t,Θ0)

Θt
V ≈ p(ΘV |V t,Θ0)

(b) For each decomposition= 1,...,N sample U features in parallel

U t+1
i ≈ p(Ui|R, V t,Θt

U)

(c) For each j = 1,...,M sample V features in parallel

V t+1
j ≈ p(Uj |R, V t,Θt

U)

sampling each one from its distribution conditional on the current values of all other vari-

ables. Due to the use of conjugate priors for the parameters and hyperparameters in the

Bayesian PMF model, the conditional distributions derived from the posterior distribution

are easy to sample from. In particular, the conditional distribution over the feature vector

Ui, conditioned on the other features Vi, observed matrix cell value Mi, and the values of the

hyperparameters are Gaussian:

p(Ui|M,V,ΘU , α) = N (Ui|µi,Λ−1
i)

≈
n1∏
i=1

[N (M̃i,j|UT
i , Vi, α

(−1))]ni,jp(Ui|µU ,Λ−1
U)

(4.4)

Here,

Λi = ΛU + α
M∑
j=1

[Vj ∗ V T
j]nij

and

µi = [Λi]
−1(α

M∑
j=1

[Vj ∗ M̃i,j]
nij + µUΛU).

54

Note that the conditional distribution over the latent feature matrix U factorizes into the

product of conditional distributions over the individual feature vector:

p(U |M,V,ΘU) =

n1∏
i=1

p(Ui|M,V,ΘU) (4.5)

The conditional distribution over the U feature matrix hyperparameters conditioned on

the feature matrix U is given by the Gaussian-Wishart distribution

p(µU ,ΘU) =

N (µU |µ∗0, (β∗ΘU)−1)W(ΘU |W ∗
0 , V

∗
0)

where

µ∗0 =
β0µ0 + n1U

β0 + n1

, β∗0 = β0 + n1; v∗0 = v0 + n1;

[W ∗
0]−1 = W−1

0 + n1S +
β0n1

β0 + n1

(µ0 − U)(µ0 − U)T

U =
1

n1

n1∑
i=1

Ui, S =
1

n1

n1∑
i=1

UiU
T
i

The conditional distributions over the V feature vectors and the V mode hyperparameters

have exactly the same form. Consequently, the Gibbs sampling algorithm takes the form in

Algorithm 5.

Equations 4.4 and 4.5, along with figure 4.6, indicate how errors propagate downstream.

In particular, in Figure 4.6, red columns of the first matricization, M1, show the columns that

are noise polluted. During the decomposition, the corresponding columns of resulting factor

matrix V1 (highlighted also in red) are also tainted with stronger noise than other columns of

V1. This tainting process flows downstream (subject to matrix re-shape operations) as shown

in the figure 4.6. Consequently, for decomposition phase k, the number of samples should be

proportional to
d−1∑
j=k

d∏
i=j+1

ndi, (4.6)

55

where,
∏d

i=j+1 ndi is the noise density of matricization of Vk on mode k . The
∑d−1

j=k oper-

ation, above, takes into account the accumulation process of the noise on all downstream

decomposition steps.

Combining Decomposition and Reconstruction Impacts of Noise

Assuming that the decomposed tensor will be utilized for an application (such as recommen-

dation) which necessitates reconstruction of the approximate tensor, I need to consider recon-

struction and decomposition errors together when assigning the number of Gibbs samples. In

other words, for an intermediate matrix, Mk, the number of samples must be allocated pro-

portional to the sum of reconstruction and decomposition errors, i.e, ndk +
∑d−1

j=k

∏d
i=j+1 ndi.

This leads to the following formula for the number Ln err(Mk) of samples:

Lmin(Mk) + dγn err × (
d−1∑
j=k

d∏
i=j+1

ndi + ndk)e × Ln err(total),

where γn err is a scaling parameter such that the sum of all the sample counts is equal to the

total number, Ln err(total), of samples allocated for dealing with noise errors:

Ln err(total) =
d−1∑
k=1

Ln err(Mk). (4.7)

4.3.5 Overall Sample Assignment

As seen above, while considering the error propagation, both internal decomposition error

(Section 4.3.3) and external noise error (Section 4.3.4) need to be accounted for. Therefore,

the combined sample assignment equation, for matricization, Mk, in the tensor train decom-

position process, can be written as

L(Mk) = dγn err × (
d−1∑
j=k

d∏
i=j+1

ndi + ndk)e × Ln err(total)

+ dγi err × (size(Uk) + size(Vk))e × Li err(total)

+ Lmin(Mk)

(4.8)

56

Parameters Alternative values

Dataset Ciao; BxCrossing; MovieLens

Noise Density 10%; 20%; 30%;

Noise Intensity (σ) 1,3,5

Total Samples (Ltotal) 90; 135; 180;

Min. Samples (Lmin(Mk)) Ltotal/(3× (d− 1)) = Ltotal/9

Table 4.2: Parameters – Default Values, Used Unless Otherwise Specified, Are Highlighted

where Lmin(Mk) is the minimum number of samples a (non-noisy) tensor of the given size

would need for accurate decomposition and γn err and γi err are two scaling parameters,

selected such that the total number of samples is equal to the number, Ltotal, of samples

allocated for the whole tensor; i.e.,

Ltotal =
d−1∑
k=1

L(Mk).

The two parameters, γn err and γi err, also control the relative impacts of the internal and

external noise on sample allocation. In the experiments below, they are set such that the

number of samples allocated to handle internal and external noise are the same.

4.4 Experimental Evaluation

In this section, I report experiments that aim to assess the effectiveness of the proposed

noise adaptive tensor train decomposition approach.

4.4.1 Experiment Setup

Key parameters and their values are reported in Table 4.2

57

Data Sets

In these experiments, I used three user-centered datasets: Ciao [57], MovieLens [21] and

BxCrossing [62]. Ciao dataset is represented in the form of 143×200×12×4 (density 5.68E-

04), which has the schema <user, product, category, helpfullness>. BxCrossing dataset is

represented in the form of 2599 × 34 × 16 × 76 (density 2.48E-0.5), which has the schema

<user, book, published year, user age>. The MovieLens dataset is represented in the form of

247× 112× 48× 21 (density 8.86E-06), which has the schema <user, movie, age, location>.

In Ciao and MovieLens data sets, the tensor cells contain rating values between 1 and 5 or

(if the rating does not exist) a special ”null” symbol. And for the BxCrossing dataset, the

tensor cells contain rating values between 1 and 10.

Noise

In order to observe the different degrees of noise, I selected a random portion of the non-null

cells (based on the noise density) and randomly perturbed the value (based on the noise

intensity). Note that this is a worst-case scenario for NTTD, where the noise is distributed

uniformly on the tensor; but the experiments show that even in this case, NTTD can take into

account the noise density difference across the various data modes, implied by the difference

in corresponding data densities. Therefore, in the experiments, the noise density for different

modes is approximated by the corresponding data density.

Alternative Strategies

I compare the proposed approach against other sampling strategies: uniform, internal-noise

only, and external-noise only sample assignment:

• In uniform strategy (UNI), Ltotal is uniformly divided among the three matricizations

involved in the tensor train decomposition and default PTTD is used for decomposition.

58

• In internal-noise only strategy (I ERR), γn err is set to zero in Equation 4.8, focusing

the assignment to only internal decomposition error.

• In external-noise only strategy (N ERR), γi err is set to zero in Equation 4.8, focusing

sample assignment to the impact of noise and its propagation during the decomposition

and reconstruction.

Decomposition Order and Rank

For tensor train decomposition, as default decomposition orders, I used the following:

• Ciao: user → product→ category → helpfulness,

• BxCrossing: user → book → year → age.

• MovieLens: user → movie→ age→ location.

To pick the decomposition ranks for the different modes, I used the recommended ranks as

computed by the TT-SVD strategy [48].

Evaluation Criterion

I use the root mean squares error (RMSE) inaccuracy measure to assess the decomposition

effectiveness. Each experiment was run 10 times with different random noise distributions

and averages are reported.

Hardware and Software

I ran experiments on an eight-core CPU Nehalem Node with 16.00GB RAM. All codes were

implemented in Matlab and run using Matlab R2016b. For tensor decomposition, I used

MATLAB Tensor Toolbox Version 2.6

59

4.4.2 Discussion of the Results

Overview

In Figure 4.7, I compare the performance of NTTD with noise-adaptive sample assignments

against other strategies for different noise densities.

In this figure, the proposed NTTD strategy is able to allocate Gibbs samples effectively to

significantly reduce RMSE relative to PTTD with uniform sample assignment for all data sets

and noise densities.

Moreover, I also see that internal- and external-only strategies that ignore part of the

error, can actually hurt the overall accuracy and perform worse than the uniform strategy.

These, together, show that the proposed noise-adaptive strategy is highly effective in

leveraging rough knowledge about external noise distributions and internal decomposition

errors to better allocate the Gibbs samples across the tensor.

Impact of the total number of samples.

A key parameter of the NTTD algorithm is the number of total Gibbs samples. In Figure 4.8,

as expected, increasing the number of Gibbs samples helps reduce the overall decomposition

error. It is important to note that, among the four strategies, NTTD strategy is the one that

provides most consistent and quickest drop in error. The figure shows the result for the

MovieLens data; the results are similar also for the other data sets.

Impact of the noise intensity.

In Figure 4.9, I consider the MovieLens data set with different noise intensities. As expected,

in this data set, increased noise corresponds to increased RMSE. However, NTTD provides the

best results for all noise intensities considered. NTTD is also the best strategy for the other

two data sets.

60

!"#

!"$

!"%

&"&

&"'

&"#

&"$

&"%

&!()!('!(

*
+
,
-

./012 3241056

708/ *+,- 905: ./012 ;<8=5850/4

>.?

.@-**

?@-**

.AA3

(a) RMSE for Ciao Dataset

!

!"#

!"!

!"$

!"%

!"&

!"'

!"(

!")

#*+ !*+ $*+

,
-
.
/

01234 5463278

9:;<13326=,-./ >27? 01234 @ABC7B7216

D0E

0F/,,

EF/,,

0GG5

(b)RMSE for BxCrossing Dataset

!"#

!"$

!"%

!"&

!"'

(

("(

(")

(!*)!* +!*

,
-
.
/

01234 5463278

-1924:463 ,-./ ;27< 01234 =>?@7?7216

A0B

0C/,,

BC/,,

0DD5

(c) RMSE for MovieLens Dataset

Figure 4.7: RMSE with Different Data Sets and Noise Densities (Ltotal = 90))

61

!"#

!"##

!"$

!"$#

!"%

!"%#

!"&

!"&#

!"'

!"'#

(

'! ()# (&!

*
+
,
-

./0123,145267839:4;<=

*+,->60?39/6@<3AB150106/7C+/D6<E<7@

F9G

9H-**

GH-**

9..I

Figure 4.8: RMSE with Different Num. Of Samples; I.E. lTotal Is 90, 135, or 180 (Noise

Density 10%, Noise Intensity 1)

!

!"#

!"$

!"%

!"&

'

'"#

'"$

()*+,' ()*+,- ()*+,.

/
0
1
2

34567 89:7965:;

/012 < 045=7>796

?38

3@2//

8@2//

3AAB

Figure 4.9: RMSE with Different Noise Intensities; I.E., σ Is 1, 3, or 5 (Noise Density 10%)

62

RMSE

UNI I ERR N ERR NTTD

Ciao 1.551 1.30 1.494 1.233

Ciao (alterate) 1.507 1.299 1.320 1.329

BxCrossing 2.4326 2.4838 2.3414 2.3251

BxCrossing (alternate) 2.3689 2.3445 2.311 2.2835

MovieLens 0.9507 0.9515 0.8497 0.8007

MovieLens (alternate) 0.9272 0.8952 0.8546 0.8032

Table 4.3: RMSE with Different Decomposition Orders (Default Parameters)

Impact of decomposition order

In the above experiments reported, I considered the default tensor train “chain” order. In

Table 4.3, I study the impact of different decomposition orders. In particular, I swap the

second and third steps in the decomposition to obtain the following alternative chains:

• Ciao: user → category → product→ helpfulness,

• BxCrossing: user → year → book → age.

• MovieLens: user → age→ movie→ location.

As seen in the table, the overall decomposition accuracy depends on the order 1. Nevertheless,

in most cases, NTTD is still providing the best sample assignment strategy for all orders

considered. The only exception is the Ciao dataset, where for the alternative chain order,

the uniform strategy provides the best overall accuracy, with the internal-error based strategy

1The decomposition order in tensor train decomposition is usually assumed to be an input provided by

the user. The study of the impact of this order on the overall accuracy and optimization of orders is a future

work.

63

being a close second. Note that the Ciao dataset is also the only data set where the alternative

order actually provides a significantly lower error than the default. This indicates that, in

the alternative order, the decomposition process is simpler and mostly error free and thus

NTTD strategy cannot bring advantages over the naive sample assignment approach. However,

NTTD is especially advantageous in the more likely cases where the decomposition process is

subject large errors.

64

Chapter 5

TENSOR DECOMPOSITION FOR BILLION-SCALE DENSE TENSOR

5.1 Introduction

A major challenge with tensor decomposition is its computational and space complexities

– especially for dense data sets1. While the process is relatively faster for sparse tensors,

decomposition is still a major bottleneck in many applications [16]: Tensor decomposition

process results in dense (and hence large) intermediary data, even when the input tensor is

sparse (and hence small). This is known as the intermediate memory blow-up problem [28]

and renders purely in-memory implementations of tensor-decomposition impractical, for both

CP and Tucker decompositions [50]. As the relevant data sets get large, existing in-memory

schemes for tensor decomposition become increasingly ineffective and block-based solutions

where some (possibly intermediate) data may be materialized on disks (instead of main

memory) or other servers contributing to the decomposition process are necessitated. Several

implementations of tensor decomposition operations on disk-resident data sets have been

proposed, such as GirdPARAFAC [51], TensorDB [31, 32], HaTen2 [26]. In all these systems,

I/O costs is an inevitable problem as they need I/O to fetch data either from disk or from the

network. Consequently, reducing these I/O and communication costs, especially for dense

tensors common in science and engineering, is a critical challenge.

In this dissertation, I propose 2PCP, a two-phase CP tensor decomposition mechanism. In

Figure 5.1, two- phase block-based tensor decomposition can help reduce the memory-blow-

1Such dense tensors are common in science and engineering: ensemble simulations, for example, are

created by sampling the domains of the relevant input parameters, and recording simulation results for each

configuration.

65

up problem as the first phase requires decomposition of much smaller tensors. However,

the number of the (so called factor) matrices that are produced in the first phase and the

intermediary data generated while these are stitched together through an iterative process in

the second phase may still be quite large. Consequently, the intermediary data may still take

too much space to be fully memory-resident and may need to be brought to the memory on

on-demand basis. Consequently, the 2PCP system I present in this dissertation complements

the basic two-phase CP tensor decomposition approach with novel data re-use promoting

block scheduling and buffer management mechanisms to address this difficulty:

5.2 Overview of 2PCP

The outline of the proposed two-phase, block-based tensor decomposition algorithm, 2PCP

is presented in Algorithm 6 and visualized in Figures 5.1 and 5.2.

Example 5.2.1 In Figure 3.2, the given tensor X is partitioned into two sub-tensors X 1

and X 2:

• Phase 1: In phase 1, each sub-tensor is decomposed with a standard PARAFAC algo-

rithm. In the example, sub-factors U
(1)
(1), U

(2)
(1), U

(3)
(1) of sub-tensor X 1 and sub-factors

U
(1)
(2), U

(2)
(2), U

(3)
(2) of sub-tensor X 2 are generated in the first stage.

• Phase 2: In the second phase, the sub-factors U
(i)
~k

of each sub-tensor X ~k are used for

iteratively refining the sub-factors A
(i)
(ki)

of the input tensor X.

5.2.1 Key Observations

The pseudo code presented in Algorithm 6 supports the following key observations:

• Observation #1 (Independent/Parallel Sub-tensor Decomposition in Phase 1):

Each sub-tensor X ~k can be decomposed (in parallel) independently from the others. This

ensures that the proposed system can handle very large tensors as long as the input tensor

66

Phase 1: (Parallel) CP
decomposition of the sub-

tensors

Phase 2: Block-centric scheduling
of the update rules for iterative

refinement

!!!
!

!

!!
!
!

!!!
!

!

!!!

!

!!!

!

!!!

!

!!!!!!!

!!!!!!!!

!!!!!!!

!

!

!!!

!!! !!!

!!

!!!

!

!!!
!!

!!!

!!!

!!

!!

!"
!!
!
!

!!
!
!

!!
!!

!

!

!"

!

!!
!
!

!!
!
!

!!
!!

!

!!
!
! !!

!!

!

!

!!
!
!!!! ! !!

!!

!

!

!!
!
!!!!!!

!
!

!!!!!!!!

!!!!!!!

!!!!!!!

Update of !!
! with revised factors

!!
!! ! ! !!!!!!!! ! ! !!!!!

N sub-factors of ! aligned with !! N sub-factors of ! aligned with !!

Figure 5.1: Illustration of the Two-phase, Block-based Tensor Decomposition: The Input

Tensor Is Partitioned into Smaller Blocks, Each Block Is Decomposed (Potentially in Paral-

lel), and the Partial Decompositions Are Stitched Together Through an Iterative Improve-

ment Process

is partitioned into several blocks in such a way that each block can be decomposed with

the available memory. Moreover, this phase is easy to parallelize using, for example, the

popular distributed computing framework, MapReduce, using the following map and reduce

operators (assuming a three-mode input tensor):

• map: 〈b, i, j, k,X (i, j, k)〉 on b. Here, b is the sub-tensor id, i, j, k together give the

coordinate of sub-tensor X~k. Tuples with the same b are shuffled to the same reducer

in the form of 〈key : b, values : i, j, k,X (i, j, k)〉.

• reduce 〈key : b, values : i, j, k,X (i, j, k)〉: The reducer processing the key b

receives the non-zero elements of sub-tensor X~k. It recomposes the sub-tensor X~k.

Then sub-tensor X~k is decomposed into sub-factor Un
b , where n is the mode id, by

67

using PARAFAC. Finally, reducer emits each sub-factor Un
b as an independent file,

with content 〈 key : Un
b , value : i, j,Un

b (i, j)〉. Here, i, j are the coordinates of sub-

factor Un
b .

.

• Observation #2 (In-place Iterative Refinement in Phase 2): As shown in Algo-

rithm 6, once Phase 1 is completed, in the second phase, each A
(i)
(ki)

can be maintained by

computing and revising T
(i)
(ki)

and P [∗,...,∗,ki,∗,...,∗] incrementally. Note that this incremental

update process presented in Algorithm 6 is logically equivalent to the one presented in [51],

but includes a significant structural difference: in [51], P and Q are updated using a sepa-

rate loop for each mode to optimize for parallelism, whereas Algorithm 6 updates P and Q

in-place to significantly reduce the amount of disk accesses.

The total space requirement during this iterative refinement process is governed by the

sizes of the F -rank partial factors, A
(i)
(ki)

, and the corresponding, U
(i)
[∗,...,∗,ki,∗,...,∗], for each mode

i of the given tensor X ; i.e., memory requirement memtotal(X) can be computed as

N∑
i=1

Ki ×


(
Ii
Ki

× F
)

︸ ︷︷ ︸
A

(i)
(ki)

+

((∏
j 6=i

Kj

)
× Ii
Ki

× F

)
︸ ︷︷ ︸

total for U
(i)
[∗,...,∗,ki,∗,...,∗]


or equivalently as

memtotal(X) ∼
N∑
i=1

((
1 +

∏
j 6=i

Kj

)
× Ii × F

)
.

This implies that the total memory requirement increases quickly with the number of parti-

tions considered. Since, when large tensors are considered, the number of partitions them-

selves may need to be large (to ensure that each resulting block can be decomposed using

the available memory), memtotal(X) can go beyond the available memory.

• Observation #3 (On-demand Per Mode-Partition (MP) Data Access in Phase

2): Fortunately, during this iterative refinement process I do not need all this data in the

68

Algorithm 6 The Outline of the 2PCP Block-based Iterative Improvement Process
Input: original tensor X , partitioning pattern K, and decomposition rank, F

Output: CP tensor decomposition X̊

1. Phase 1: for all ~k ∈ K

• decompose X~k
into U

(1)
~k

, U
(2)
~k

, . . ., U
(N)
~k

2. Phase 2: repeat

(a) for each mode i = 1 to N

i. for each modal partition, ki = 1 to Ki,

A. update A
(i)
(ki)

using U
(i)
[∗,...,∗,ki,∗,...,∗], for each block X [∗,...,∗,ki,∗,...,∗]; more specifi-

cally,

• compute T
(i)
(ki)

, which involves the use of U
(i)
[∗,...,∗,ki,∗,...,∗] (i.e. the mode-i

factors of X [∗,...,∗,ki,∗,...,∗])

• revise P [∗,...,∗,ki,∗,...,∗] using U
(i)
[∗,...,∗,ki,∗,...,∗] and A

(i)
(ki)

• compute S
(i)
(ki)

using the above

• update A
(i)
(ki)

using the above

• for each ~k = [∗, ∗, . . . , ki, . . . , ∗, ∗]

– update P ~k
and Q~k

using

– U
(i)
~k

and A
(i)
(ki)

until stopping condition

3. Return X̊

69

!"#$"%&'"()*#+&"%*,-&.*/0&1&

!"
#$
"%
&'
"(
)*
#+
&"
%*
,-
&&

.
*/
0&
2&

!
"
#$
"
%&
'
"
()
*
#+
&"
%*
,
-
&.

*
/
0
3
&

!"
!"

!"

415"&

!"
!"

!"

4356&

!"
!"

!"

425(&

Figure 5.2: The Outline of the Mode-centric Iterative Improvement Algorithm Proposed

In [51]: The kth Partial Factor along Mode i Is Updated Using the Mode i Partial Factors

Of the Blocks Aligned with the kth Mode Partition along Mode i

memory simultaneously. Incrementally maintaining T
(i)
(ki)

and P [∗,...,∗,ki,∗,...,∗] require bringing

only U
(i)
[∗,...,∗,ki,∗,...,∗] (i.e. the mode-i factors of X [∗,...,∗,ki,∗,...,∗]) and (the old value of) A

(i)
(ki)

to the main memory. In fact, Phase 2 can be executed by considering each mode-partition

individually and bringing to the memory only the relevant partial factors. In other words,

for maintaining each A
(i)
(ki)

, I need

memMP (X ,A
(i)
(ki)

) ∼

(
1 +

∏
j 6=i

Kj

)
× Ii
Ki

× F

units of memory.

• Observation #4 (Challenge - Naive Execution Increases I/O): While the above

observations show that using the proposed two phase Algorithm 6, I am able to significantly

reduce the amount of memory needed to decompose large tensors. A naive implementation

of this strategy, however, may require significant amount of I/O: After each mode partition

is processed, to open space for the data needed to process the next mode partition, (a) all

updated data need to be written back to the disk and (b) data relevant to the next mode

70

partition need to be read from the disk into the memory, resulting in
∑N

i=1Ki data swap

operations for a single iteration of the algorithm. A more reasonable alternative would be

to use the memory as a cache for mode-partition data and only swap data in and out of the

buffer if the cache is full.

5.2.2 Problem Statement: Re-Use Promoting Data Access and Buffer Management During

Iterative Refinement Phase

In the second phase of 2PCP, the overall efficiency of the process depends highly on the

effectiveness of the buffer utilization. Therefore, the key problem that needs to be addressed

to improve the efficiency of 2PCP is to improve the utilization of the buffer through re-use

promoting data access and buffer management during the iterative improvement process.

In the rest of the section, I introduce how 2PCP addresses this problem: I first (a) present

an alternative fine-grained block-centric iterative refinement scheme, next (b) I consider al-

ternative block-scheduling techniques leveraging this block-centric update process, and then

(c) I investigate corresponding buffer replacement strategies to help improve the buffer uti-

lization and reduce I/O costs.

5.3 Block-Centric Scheduling of Iterative Improvement Process

In the previous section (Algorithm 6 and visualized in Figure 5.2), the conventional way

to perform the iterative refinement process of the block-based CP involves considering each

mode, i, separately. In this mode-centric scheme, for the kthi partition of mode i, I then main-

tain A
(i)
(ki)

using, for all 1 ≤ j ≤ N , the current estimates for A
(j)
(kj) and the decompositions

in U(j); i.e., the F -rank sub-factors of the sub-tensors in X along different modes.

As ny experiments validated, however, this conventional scheme may result in a significant

amount of I/O (for swapping data in and out of memory) if the available memory is not

sufficient to buffer all the data. Intuitively, this is because the order in which the update

71

Algorithm 7 The outline of the fine-grained decomposition algorithm, used by 2PCP, which

schedules update rules in a block-centric manner
Input: original tensor X , partitioning pattern K, and decomposition rank, F

Output: CP tensor decomposition X̊

1. for all ~k ∈ K

• decompose X~k
into U

(1)
~k

, U
(2)
~k

, . . ., U
(N)
~k

2. repeat for each ~k = [k1, . . . , kN] ∈ K

(a) for each mode i = 1 to N

i. update A
(i)
(ki)

using U
(i)
[∗,...,∗,ki,∗,...,∗], for each block X [∗,...,∗,ki,∗,...,∗]; more specifically,

• compute T
(i)
(ki)

, which involves the use of U
(i)
[∗,...,∗,ki,∗,...,∗] (i.e. the mode-i factors

of X [∗,...,∗,ki,∗,...,∗])

• revise P [∗,...,∗,ki,∗,...,∗] using U
(i)
[∗,...,∗,ki,∗,...,∗] and A

(i)
(ki)

• compute S
(i)
(ki)

using the above

• update A
(i)
(ki)

using the above

ii. for all ~l = [∗, . . . , ∗, ki, ∗, . . . , ∗] ∈ K

• update P~l and Q~l using

– U
(i)
~l

and A
(i)
(ki)

until stopping condition

3. Return X̊

72

!"#

!"$%"# %"#

&'()#*#

&
'(
)#
+#

%*#

%+#

%"#

!"
!"

!"

,$%#

-*$%#

-"$%#

-+$%#

!+#!
+$%+#

%+#

!*#

%*#

!
*
$
%
*
#

Figure 5.3: For Any Block X [k1,...,∗,ki,∗,...,kN], Its Factors U
(1)
[k1,...,∗,ki,∗,...,kN] Through

U
(N)
[k1,...,∗,ki,∗,...,kN] Can Be Used For Maintaining N Sub-factors of X , One Along Each of

the N Modes.

rules are applied does not lend itself into significant amount of data sharing. In this section,

I present an alternative block-centric way to implement the process of iterative refinement;

this alternative process lends itself to better data sharing and memory utilization, thereby

helping reduce the overall I/O costs.

5.3.1 Block-centric Scheduling of the Update Rules for Iterative Refinement

The key observation that forms the basis of this alternative iterative refinement process

is visualized in Figure 5.3: here, for any block X [k1,...,∗,ki,∗,...,kN], its factors U
(1)
[k1,...,∗,ki,∗,...,kN]

through U
(N)
[k1,...,∗,ki,∗,...,kN] can be used for maintaining N sub-factors of X , one along each of

the N modes. Therefore an alternative way to implement the iterative refinement process

73

!"#$%&'()* !"#$%&'(+*

,*

,*

-'.#*)* -'.#*+* -'.#*/* -'.#*)* -'.#*+* -'.#*/* ,*

!"#$%&'(*0* !"#$%&'(*102)3*

-'.#*)* -'.#*+* -'.#*/* -'.#*)* -'.#*+* -'.#*/* ,*

,*

(a) Mode-centric Scheduling of Updates

!"#$%&!'((&)*+(,&&-.&/((&0(-+1&2-$"3-.$&

44444&

44444&

44444&

44444&

0(-+1&5&0(-+1&6& 4444444444444& 4444444444444&

0(-+1&5&0(-+1&6&

44444444444&

7,+-.8&!'((&)*+(,&&-.&/((&0(-+1&2-$"3-.$&

(b) Block-centric Scheduling of Updates

Figure 5.4: (a) Mode-centric vs. (b) Block-centric Scheduling of Updates

is to schedule the update rules in a block-centeric manner as opposed to the mode-centeric

manner of the conventional scheme.

The outline of the proposed block-centric iterative refinement process is visualized in

Algorithm 7. While the core update-rule is identical to that of the conventional, mode-

centric decomposition process [51] (detailed in Algorithm 6) and while the two algorithms

have the same time and space complexities, these two algorithms differ significantly in the

ways the update-rules are scheduled:

• as visualized in Figure 5.4(a), the mode-centric Algorithm 6 considers each mode one

at a time, and for each mode it schedules the update rule for all the partitions of that

mode; whereas

• as visualized in Figure 5.4 (b), the block-centric Algorithm 7, considers the individual

block positions one at a time, and for each block index, ~k, it schedules update rules for

all N modes together.

One way to see the key difference between these two algorithms is to consider their outer

repeat-loops: as also visualized in Figure 5.4, in the mode-centric Algorithm 6, for each cycle

of the repeat rule, each sub-factor, A
(i)
(ki)

, along each mode, i, is updated exactly once. In the

74

block-centric Algorithm 7, however, when all the block indexes, ~k ∈ K, are considered once,

the sub-factor A
(i)
(ki)

along mode i is updated once for each block along the partition ki; i.e.,

A
(i)
(ki)

has been updated
∏

j 6=iKj times.

Definition 5.3.1 (Block-Centric Update Schedule) Let us consider an N-mode tensor

X ∈ RI1×I2×...×IN , partitioned into a set (or grid) of sub-tensors X = {X ~k | ~k ∈ K} where

K is the set of sub-tensor indexes. An update schedule, S = 〈u1, u2, . . .〉, is a sequence, such

that each uj belongs to the set, K, of block positions.

In other words, a block-centric update schedule drives the order in which Algorithm 7

applies its updates through the order in which the blocks of the tensor are considered. In

this dissertation, I consider tensor-filling, cyclic update schedules.

Definition 5.3.2 (Tensor-Filling Schedules) Let X ∈ RI1×I2×...×IN be an N-mode tensor

partitioned into a grid of blocks and K be the indexes of the resulting blocks. A schedule, S,

is said to be tensor-filling if S is of the form C : C : C : . . . : C ′ (i.e., S can be thought as a

repeated concatenation of a cycle sequence, C), such that

• the length of the cycle sequence C is

equal to |K|,

• there exists a one-to-one mapping be-

tween uj ∈ C, and ~ki ∈ K,

• the last (potentially partial) sequence,

C ′, is a prefix of the cycle sequence C.

Intuitively, a tensor-filling schedule consists of cycle sequences, each traversing all the blocks

of the given tensor – possibly except the last cycle, which may be partial if the termination

condition is satisfied before the cycle sequence is completed. A tensor-filling cycle sequence

75

!"#$%&'()* !"#$%&'(+*

,*

,*

-'.#*)* -'.#*+* -'.#*/* -'.#*)* -'.#*+* -'.#*/*

!"#$%&'(*0* !"#$%&'(*102)3*

-'.#*)* -'.#*+* -'.#*/* -'.#*)* -'.#*+* -'.#*/*

45$6"*4788*9:;8#**'(*%88*<8';=*>'65&'(6*

,,,,,*

,,,,,*

,,,,,*

,,,,,*

<8';=*)*<8';=*+* ,,,,,,,,,,,,,* ,,,,,,,,,,,,,*

<8';=*)*<8';=*+*

,,,,,,,,,,,*

,*

,*

?#;'(.*4788*9:;8#**'(*%88*<8';=*>'65&'(6*

,

,

@5$"7%8*!"#$%&'(* @5$"7%8*!"#$%&'(* @5$"7%8*!"#$%&'(*

,*,*

@5$"7%8*!"#$%&'(*

A
#
$B

5(
%
&
'
(
**

9
'
(
.
5&
'
(
*

*C
D
%
8E
*

A
#
$B

5(
%
&
'
(
**

9
'
(
.
5&
'
(
*

*C
D
%
8E
*

A
#
$B

5(
%
&
'
(
**

9
'
(
.
5&
'
(
*

*C
D
%
8E
*

A
#
$B

5(
%
&
'
(
**

9
'
(
.
5&
'
(
*

*C
D
%
8E
*

!
"
#
$
%&
$
'
(
)
*+
,

-
."
+
/
%&
$
'
(
)
*+
,

Figure 5.5: Virtual Iterations Are Equal in Length to the Length Of The Iterations of the

Mode-centric Update Process and The Block-centric Process Checks for Termination Once

for Each Virtual Iteration.

would ensure that all sub-factors of X are updated using all the data available from the

decompositions of its blocks.

5.3.2 Virtual Iterations

In the mode-centric Algorithm 6, the stopping condition is checked once for each iteration

of the outer repeat-loop; in other words, each sub-factor, A
(i)
(ki)

, along each mode, i, is updated

once. On the other hand, the outer-cycle of the block-centered Algorithm 7 is not necessarily

aligned with individual iterations of the outer repeat-loop Algorithm 6. In fact, as visualized

in Figure 5.4, each cycle of Algorithm 7 potentially involves many more updates than a

single iteration of Algorithm 6. This naturally raises the question of when to check for the

termination condition. While the termination condition can be checked at the end of one full

cycle, this might result in redundant updates if the termination condition is reached early in

a cycle.

Therefore, instead of using cycle boundaries as positions for termination condition evalu-

ation, virtual iterations is introduced, which are equal in length to the length of the iterations

of the mode-centric update process.

76

Definition 5.3.3 (Virtual Iteration) Given an N-mode tensor X ∈ RI1×I2×...×IN , parti-

tioned into a set (or grid) of sub-tensors X = {X ~k | ~k ∈ K} where K is the set of sub-tensor

indexes, partitioning each mode i into Ki equal partitions, the length of each virtual iteration

is

length virtual iteration(K) =
N∑
i=1

Ki

updates of the sub-factors of X.

Given a tensor-filling, cyclic update schedule S with cycle C, the update schedule C is

split into
∏N

i=1Ki∑N
i=1Ki

virtual iterations, each of length length virtual iteration(K).

As visualized in Figure 5.5, I check for termination once for each virtual iteration.

5.4 I/O Reducing Update Schedules

Intuitively, when the available buffer is not sufficient to hold the entire data needed to

support the decomposition process, the efficiency of the decomposition will necessarily depend

on the effectiveness of the utilization of the buffer. In this section, I consider alternative block-

centric update scheduling techniques, which set the order in which blocks are considered in

a way to boost data reuse and reduce I/O needed to obtain tensor decomposition.

In Section 5.2.1, I had formalized the amount of data needed for each iteration of the

mode-centric iterative improvement algorithm. I now formalize the amount of data needed

for each step of the block-centric update process.

Definition 5.4.1 (Unit of Data Access) In Algorithm 7, for each ~k = [k1, . . . , kN] ∈ K,

I need to bring into the memory, for each mode i = 1 to N , (a) the sub-factor, A
(i)
(ki)

, of

the corresponding mode partition, and (b) the ith mode factors of all blocks corresponding

to the mode partition ki; i.e., U
(i)
[∗,...,∗,ki,∗,...,∗]. Therefore, for a given a block position, ~k =

[k1, . . . , kN] ∈ K,

data(~k, i) =

{
A

(i)
(ki)

; U
(i)
[∗,...,∗,ki,∗,...,∗]

}
, i ∈ {1 . . . N}

77

are the N units of data needed for implementing the update corresponding to this block posi-

tion.

This is visualized in Figure 5.6. Therefore the data in the buffer can be organized in terms

of mode-partition pairs,

〈i, ki〉 =

{
A

(i)
(ki)

; U
(i)
[∗,...,∗,ki,∗,...,∗]

}
,

of size (assuming 8-byte double precision representation)
(
Ii
Ki

× F
)

︸ ︷︷ ︸
A

(i)
(ki)

+

((∏
j 6=i

Kj

)
×
(
Ii
Ki

× F
))

︸ ︷︷ ︸
U

(i)
[∗,...,∗,ki,∗,...,∗]

×8

 bytes

as also discussed in Section 5.2.1. Once brought into memory, such a pair can be used

for implementing the factor matrix revision updates at any block position ~k for which the ith

mode partition is equal to ki.

5.4.1 Re-Use Promoting Schedules

As seen above, the update process corresponding to two distinct block positions, ~k =

[k1, . . . , kN] ∈ K and ~l = [l1, . . . , lN] ∈ K, can share the same U
(i)
[∗,...,∗,ki,∗,...,∗] matrices, if

ki = li for some mode i, 1 ≤ i ≤ N (i.e., they are along the same mode partition on

mode i). The larger the number of common mode partitions between ~k = [k1, . . . , kN] and

~l = [l1, . . . , lN], the larger will be the sharing of U matrices. This leads me to my primary

desideratum.

Desideratum 1 (Reuse-Promoting Schedules) The cycle sequence, C = 〈u1, u2, . . . , um〉

of the update schedule S should be such that, the closer ua and ub are to each other (i.e.,

the smaller |a− b| is), the larger the intersection between the corresponding block partitions,

~ka, ~kb ∈ K.

78

!"
!"

!"

!"#

!"
!"

!"

!$#

!"
!"

!"

!%#

&"#

&$#

&%#

'&"(&$(&%)#

*"
&"#

*$
&$#

* %
&% #

Figure 5.6: For a Given Block Position ~k = [k1, . . . , kN] ∈ K, I Need To Bring into the

Memory, for Each Mode i = 1 to N , The Data Unit data(~k, i) Consisting of the Sub-factor,

A
(i)
(ki)

And U
(i)
[∗,...,∗,ki,∗,...,∗].

As experiments validated, the more reuse-promoting a schedule is, the lower is the number

of accesses to the disk. I next consider alternative update schedules, with different traversal

patterns of the tensor blocks.

5.4.2 Fiber-Order Update Schedules

The first, straightforward, alternative is to traverse the tensor blocks one fiber at a time

as shown in Figure 5.7(a). This strategy is very simple to implement in the form of a set of

nested loops, with one loop for each mode.

Fiber-order update schedules support significant amount of data re-use. To see why,

consider two consecutive block positions ~kh = [kh,1, . . . , kh,N] and ~kh+1 = [kh+1,1, . . . , kh+1,N],

visited as the schedule traverses along a single fiber. It is easy to see that, in most cases, the

only difference between these two positions will be in their N th position; i.e., ∀i<N (kh,i =

79

kh+1,i) and (kh+1,i = kh,i + 1). Consequently, ∀i<N data(~kh, i) = data(~kh+1, i). Therefore

(assuming that N data units fit into memory), once all the data needed for the block position,

~kh, are brought into memory, the only new data unit that may need to be fetched from the

disk for the block position, ~kh+1, is data(~kh+1, N).

5.4.3 Fractal-based Update Schedules

We, however, note that I can have even better data reuse by using fractal-structured block

traversals, instead of relying on this simple fiber-order scheduling strategy. A fractal curve,

thus, is a curve that looks similar when one zooms-in or zooms-out in the space that contains

it. Fractals that are space-filling, such as Z-order curve [44] and Hilbert curve [24] are known

to show good clustering properties in the sense that these curves tend to completely traverse

a neighborhood of the space before moving to another neighborhood.

My intuition is that, if two block locations ~ka = [ka,1, . . . , ka,N] and ~kb = [kb,1, . . . , kb,N],

share significant amount of data, then traversals based on space-filling fractal curves are likely

to visit them close to each other. Based on this intuition, I propose two update scheduling

techniques, based on Z-order and Hilbert-order traversal of tensor blocks.

5.4.4 Z-Order Update Schedules

Z-order (or Morton-order) curve [44] is a fractal-based curve that fills the space more

effectively than the fiber-order traversal described above. In particular, as mentioned above

its fractal nature ensures that it clusters nearby block positions (i.e., nearby block positions

are visited close to each other during traversal).

Let us consider an N -mode tensor where each mode i is partitioned into 2m partitions for

some m > 0 and let ~k = [k1, k2, . . . , kN] be a block position. Then, the Z-value corresponding

80

(a) fiber-order schedule

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 1 2 3 4 5 6 7

6

 7

1
1
0

1
1
1

 3

 4

5

0
1
1

1
0
0

1
0
1

13

0

1

2

0
0

0
0
1

0
1
0

0

0
0

CZ(010,011) = 001101

5

 6

 7

 2

3

 4

0

1

0 1 2 3 4 5 6 7

(b) z-order (c) Hilbert-order

Figure 5.7: Alternative Update Schedules for the Blocks of a 2-mode Tensor (the Numbers

along a given Mode Denote the Block Indexes Along That Mode)

to ~k is an integer, zvalue(~k), defined as follows: ∀1≤i≤N∀1≤j≤m

zvalue(~k).base2((m− j)N + i) = ki.base2(j),

where, given an integer a (0 ≤ a ≤ 2m − 1), a.base2(j) ∈ {0, 1} denotes the value of the jth

least significant bit of a.

Figure 5.7(b) provides an example. In this example, the block position [2, 3], has the

corresponding Z-order value, 0011012 (= 1310), which can be obtained by shuffling the bits

of the inputs, 0102 (= 210) and 0112 (= 310) as specified by the above formula. This example

81

also shows that the Z-order traversal of the space is self-similar (i.e., composed of “Z”s at

multiple scales) and clustered: block-positions that are closer to each other on the grid tend

to be visited closer to each other also in traversal sequence. I argue that this property of the

Z-order traversal should help provide a more re-use promoting schedule than the fiber-order

traversal.

5.4.5 Hilbert-Order Update Schedules

A second look at Figure 5.7(b), however, points to a potential weakness of the Z-order

traversal: the Z-order traversal of the blocks contains a few relatively large jumps and, at

these points, the Z-order based schedule may result in a large amount of data to be brought

into the memory from the disk. Therefore, the Hilbert (or Peano-Hilbert) curve [24], which

tends to have smaller jumps, may provide a higher degree of reuse-promotion. Figure 5.7(c)

shows a sample Hilbert traversal of blocks assuming a 2 mode tensor. As I see here, Hilbert

traversal relies on “U” shaped curve-segments (as opposed to the “Z” shaped curve-segments

of the Z-order traversal) and this helps better preserve the adjacency property (i.e., avoiding

discontinuity - which would require undesirable jumps).

As experiments verify, Hilbert-order based traversal indeed provides lower I/O costs than

Z-order based scheduling of the updates. However, one difficulty with the Hilbert-order

traversal is that, unlike the Z-order traversal, there does not exist an efficient way to map

from the block positions to the positions on the Hilbert curve (and vice versa). Existing

algorithms are not practical for tensors with large numbers (10s or 100s) of modes as they

may require large amounts of memory. Therefore, in those cases, Z-order traversal, which

(as described above) has very efficient mapping implementations, may be preferred over

Hilbert-order traversals of block positions.

82

5.5 Update Schedule Aware Buffer Replacement

So far, I focused on the problem of selecting an update schedule for tensor decomposition

refinement such that the total amount of data that need to be brought from disk to the

buffer is minimized. In this section, I argue that the I/O needed to perform the iterative

refinement can be further reduced by using buffer replacement policies that complement the

traversal order, driving the update scheduling process. In particular, I argue that the common

least-recently used (LRU) buffer replacement strategy2, which relies on the temporal-locality

principle (i.e., assumes that data brought to the memory recently is likely to be used also in

the near future) and drops the data which have been used furthest in the past, is not likely

to be effective.

5.5.1 Fiber-Order Schedules and MRU

Let us first consider the fiber-order strategy described in Section 5.4.2 and visualized in

Figure 5.7(a). It is easy to see that data brought to the memory for a given block of a fiber

will not be accessed again during the traversal of that fiber. This implies that temporal

locality principle does not hold during fiber-order traversal. In contrast, due to the looping

characteristic of the traversal, a temporal-alocality principle (which states that data brought

to the memory for a block is not likely to be used in the near future) holds and this implies

that a most-recently used (MRU) buffer replacement strategy may be more suitable for fiber-

order schedules.

5.5.2 Forward-Looking Buffer Replacement

More importantly, though, the definition of the unit of data access (Definition 5.4.1 in

Section 5.4), along with the proposed update scheduling techniques, enable more precise

2For example, SciDB[9] array database underlying TensorDB [31, 32] implements LRU-based buffer man-

agement.

83

!"#$#$"#$%&'

(%
"#$%'

(#
"#$#'

!"%$#$"%$%&'

(%
"%$%'

(#
"%)#'

*+,,-./''

012341.'

#'

%'

5'

6'

/,78-,279'2*:-;+9-'

<%
!"#$#$"#$%&'

<#
!"#$#$"#$%&' <#

!"%$#$"%$%&'

<%
!"%$#$"%$%&'

Figure 5.8: Forward-looking, Schedule-aware Buffer Replacement: Let Us Assume That the

Buffer Currently Contains the 4 Shown Data Units, 2 for Each Of [k1,1, k1,2] and [k2,1, k2,2].

Since, According to the Current Traversal Plan, data([k1,1, k1,2], 2) = {A(2)
(k1,2); U

(2)
[k1,1,k1,2]} is

the Last Data Unit To Be Needed, It Will Be the One Selected For Replacement

forward-looking, and traversal order aware, predictive buffer replacement strategies as opposed

to the backward-looking strategies, such as LRU and MRU. In particular, the data in the buffer

are organized in the form of mode-partition pairs, 〈i, ki〉 =

{
A

(i)
(ki)

; U
(i)
[∗,...,∗,ki,∗,...,∗]

}
. Once

brought into memory, a 〈i, ki〉 pair is used for updates at any block position ~k for which

the ith mode partition is equal to ki. Consequently, given the current position in an update

schedule, if I can compute for each mode-partition pair 〈i, ki〉 in the buffer, how far in the

future the traversal will cross that mode-partition pair, then I can select for replacement the

pair that will be crossed furthest in the future (Figure 5.8).

While such forward-looking replacement policies are difficult to implement when the data

accesses are irregular and unpredictable, thanks to the regular natures of fiber-, Z-, and

Hilbert-order traversals, it is possible to compute in advance precisely how far in the future

84

(i.e., how urgently) a given data unit that is brought into the buffer will be needed again.

This enables us to maintain the data units in an order of urgency and, if needed, replace

the least urgent data unit. As expriments shown, this forward-looking, traversal-order aware

replacement policy significantly reduces the I/O cost of the decomposition process.

5.6 Experimental Evaluation

In this section, I report experiments that aim to assess the effectiveness of the proposed

disk and buffer sensitive update scheduling and buffer management techniques underlying

2PCP. In particular, I aim to observe and report the amount of I/O (i.e., data swaps)

necessitated by different update schedules under different partitioning strategies, memory

availabilities, and buffer replacement strategies.

5.6.1 Experiments with Strong Configuration

In these experiments, I considered billion-scale (with ∼ 1 billion non-zero entries) dense

tensors and compared the execution time performance of 2PCP to that of another billion-scale

tensor decomposition platform, HaTen2 [26]. Note that unlike 2PCP designed for scientific

applications, HaTen2 is designed for handling sparse tensors, commonly found in social media

applications.

Hardware. For these experiments, I used EC2 platform with R3.xlarge configurations: I

deployed 2PCP and HaTen2 each on 8 Intel Xeon E5-2670 v2 (Ivy Bridge) Processors (4

CPUs, each with 30.5GB and 80 GB SSD storage).

Software. Distributed version of 2PCP was implemented in Java 7, over Hadoop 0.20.2. The

binary code for HaTen2 was obtained from http://datalab.snu.ac.kr/haten2.

In Table 5.1, I compare the execution time performance of 2PCP to that of HaTen2 [26]

for dense tensors of different sizes. As I mentioned earlier, HaTen2 is designed for handling

85

http://datalab.snu.ac.kr/haten2

Tensor size 2PCP (sec.) HaTen2 (sec.)

500× 500× 500 (0.025B non-zeros) 92.9 2380.2

1000× 1000× 1000 (0.2B non-zeros) 441.5 11764.9

1500× 1500× 1500 (0.7B non-zeros) 1513.9 FAILS

Table 5.1: Comparison of Execution times on Billion-scale Dense Tensors (Density 0.2; Target

Rank 10; Results Reported Here Use a 2× 2× 2 Partitioning Strategy for 2pcp; Due to the

Large Execution Time of Haten2, I Only Report Execution Time for 1 Iteration)

!"

#!!"

$!!"

%!!"

&!!"

'!!!"

'#!!"

'$!!"

'%!!"

!" !('" !(#" !()" !($" !(*" !(%" !(+" !(&"

!
"
#$
%
&
'
(%
)
*
(+
,*
#&
'
-
,.
(

/(&0('&'12*3&,(+45665&'.(

78*(9*6:%&',85;(<*=>**'(=8*(/(&0(?&'1

@*3&(!6*)*'=,(:'-(=8*(!"*#$%&'(75)*(

Figure 5.9: 2PCP Scales Well as the Tensor Size Grows (Data From Table 5.1)

sparse tensors, commonly found in social media applications, whereas 2PCP (motivated by

scientific and engineering applications) does not make this assumption. The results reported

in Table 5.1 confirm this: in this table and Figure 5.9, while 2PCP scales well as the tensor

size grows, HaTen2 requires significantly more time and memory and soon fails to run with

the available resources.

It is important to note that this execution time gain does not come with any loss in

accuracy. In fact, 2PCP provides significantly higher accuracy than that of HaTen2. For

example, for the case with 0.025B non-zeros, the fit measure (described in Section 2.2) for

86

Part. Phase I Phase II Total

BD (per block) LRU FOR LRU FOR

Naive CP >12 hours N/A N/A N/A N/A

2× 2× 2 79.1 10.6 9.6 89.7 88.7

4× 4× 4 9.8 64.3 54.5 74.1 64.4

Table 5.2: Execution Times (in Minutes)

2PCP is 0.077 whereas HaTen2’s fit for the same configuration is only 0.0011.

5.6.2 Experiments with Weak Configuration

In addition to the configuration considered above, I also ran experiments with a weaker

configuration, consisting of quad-core Intel(R) Core(TM)i5-2400 CPU @ 3.10GHz machines

with 8.00GB RAM. Since in this configuration the main-memory is much smaller, 2PCP

is implemented on top TensorDB (obtained from https://github.com/mkim48/TensorDB

and installed on SciDB 12.12 [9], using Python and C++) to enable out-of-core CP-ALS

computations in Phase 1.

In Table 5.2, I compare Naive CP-ALS against 2PCP with LRU and the forward-looking

(FOR) strategies (both under the proposed Z-order update scheduling scheme) for different

partition scenarios, for a 1000 × 1000 × 1000 of high density (0.49). The target rank was

set to 100. Here, the execution time for the first phase includes the time for obtaining and

decomposing each block. The second phase was ran until convergence. The table also includes

times for the conventional CP-decomposition (i.e., default TensorDB with no partitioning [31,

32]).

The first thing to note in this table is that, compared to conventional CP tensor de-

composition (without partitioning), the fine-grained decomposition strategies that operate

in a block-centric manner, significantly improve the execution time of tensor decomposition

87

Parameter Alternative values

partitions 2× 2× 2; 4× 4× 4; 8× 8× 8

Buffer size (portion

of the total space

requirement)

1/3; 1/2; 2/3

(virtual) itera-

tions

100; 200

Schedules Mode-centric (MC); Fiber-order (FO);

Z-order (ZO); Hilbert-order (HO)

Replacement LRU; MRU; Forward (FOR)

Table 5.3: Parameter Settings (Unless Otherwise Specified)

process. Secondly, I see that, as expected, the forward-looking buffer replacement (FOR)

outperforms the LRU buffer replacement strategy. The fastest execution time was obtained

using the 4 × 4 × 4 strategy, where the forward strategy (FOR) completed in 64.4 minutes,

against 74.1 minutes for the LRU strategy, a ∼ 15% gain. These results are especially signif-

icant when considering that (a) this tensor cannot be decomposed using a fully in-memory

Matlab based strategy and (b) a naive secondary-storage supported CP tensor decomposition

using TensorDB runs more than 12 hours for the same configuration.

5.6.3 Parameter Analysis (Stand-Alone Configuration)

In the next set of experiments I study the impact of various parameters on the data swap

and accuracy performance of 2PCP. These experiments are running on a stand alone version

of 2PCP developed to support system-independent evaluation of the algorithms underlying

2PCP: in order to count data swaps precisely, this version is implemented and run using

Matlab 7.11.0 (2010b) and Tensor Toolbox Version 2.5 [2].

Evaluation Criteria - Data Swaps. Since (a) the wall-clock execution times depend on

the particular hardware/software setting (including the disk page read/write times and data

compression/decompression costs – based on whether the data is compressed on the disk)

88

and (b) since the block-based decomposition process is I/O-bound3 I observe and report the

amount of I/O (i.e., data swaps) between the disk and memory buffer for different scenarios,

as is common in the buffer/cache management literature.

Evaluation Criteria - Accuracy. I use the measure reported in Section 2.2 to assess

decomposition accuracy. Each experiment is ran 10 times and I report median results.

Data. I used four real datasets with different characteristics: Epinions [57], Ciao [57],

Enron [52], and Face [19]. The first two of these are comparable in terms of their sizes

and semantics: they are represented in the form of 170 × 1000 × 18 (density 2.4 × 10−4)

and 167 × 967 × 18 (density 2.2 × 10−4) tensors, respectively, and both have the schema

〈user, item, category〉. The Enron email data set, however, is larger (5632×184×184, density

1.8 × 10−4) and has a different schema, 〈time, from, to〉. The Face data set, a benchmark

for research of face recognition, is a dense 480× 640× 100 tensor with schema 〈x-coord, y-

coord, image〉 and density 1.0. For these experiments, I set the stopping condition to an

accuracy improvement of less than 10−2 per iteration; but, I also set a maximum number

of (virtual) iterations to help observe how quickly iterative improvement converges under

different strategies. In these experiments, I set the target decomposition rank to 100.

Parameter Settings. The number of data swaps necessary for iterative improvement is not

a function of the absolute data size, but the number of partitions and the size of the buffer

relative to the total space requirement (see Section 5.2.1). Therefore, as I report in Table 5.3,

in these experiments, I primarily vary the number of partitions of the tensors and the size of

the memory buffer, relative to the total space requirement for the decomposition process.

3I observed that, on the average, swapping a block takes ∼ 3 times more than the time needed to perform

the in-memory operations on the block.

89

Amount of I/O (Data Swaps)

In Figure 5.10, I see per-(virtual)iteration data swaps for different scheduling and replacement

algorithms, and different buffer sizes. Since the number of per-iteration swaps is not a

function of the data, but the number of partitions and the size of the buffer relative to

the total space requirement, I have the same result for all data sets. To see the impact of

scheduling on convergence, the scheduling process was run without any bound on iterations.

In this figure 5.10, for all configurations the conventional mode-centric (MC) update plans

result in the highest amount of I/O. In contrast, the proposed block-centric schedules require

significantly lesser I/O, especially when combined with the forward-looking, schedule aware

buffer replacement strategies. The worst strategy is the mode-centric (MC) schedules with

LRU buffer replacement, with up to ∼ 24 swaps per iteration, for 8 × 8 × 8 partitions,

independent of the buffer availability; while MRU based replacement brings the number

of swaps down, MC is overall the worst strategy. In contrast, block-centric Hilbert-order

schedules (HO) with forward-looking (FOR) buffer replacement has as low as ∼ 1.1 swaps

per iteration for 8× 8× 8 partitions with 1
3

buffer availability and ∼ 0.22 swaps per iteration

for the same partition with 2
3

buffer availability.

To give context, let us consider a 100K × 100K × 100K tensor partitioned into 8× 8× 8

blocks. Let me also assume that my target rank is 100. The best case for MC is on the

average ∼ 8.32 swaps per iteration with MRU, corresponding to (assuming double-precision

number representation)

8.32×
((

105

8
× 100

)
+

(
(8× 8)×

(
105

8
× 100

))
× 8

)
' 6GB data exchange per iteration (Section 5.4). In contrast, for the same configuration,

Hilbert-order (HO) schedule with forward-looking replacement (FOR) requires only ∼ 0.22

swaps per iteration, corresponding to only ∼ 160MB data exchange per iteration.

90

Accuracy Results

In Figure 5.11, I see the accuracy results for different data sets, scheduling algorithms, and

partition configurations The charts in the figure plot the relative accuracy difference between

the block-centric algorithms (fiber-order, FO, Z-order, ZO, and Hilbert-order, HO) and con-

ventional mode-centric scheduling (MO). Positive relative difference indicates cases where

buffer-centric approach outperforms mode-centric approach.

Except for a few instances (specifically Enron data set, 2 × 2 × 2 partitions), the ac-

curacies of the block-centric algorithms (especially Hilbert-order, HO) do match or exceed

the accuracies of the mode-centric algorithm. As expected, the variability is higher for the

sparse data sets as the accuracy of the block-based iterative improvement strategy depends

highly on the densities of the blocks and, on sparse data sets, densities of the blocks can

vary significantly. For the dense Face data set, accuracies for the mode- and block-centric

algorithms are virtually identical.

91

(a) Buffer size is 1
3

of total data req.

(b) Buffer size is 1
2

of total data req.

(c) Buffer size is 2
3

of total data req.

Figure 5.10: Per-(Virtual)Iteration Number of Data Swaps for Different Configurations (since

the Per-iteration Number of Swaps Is Not A Function of the Data, but the Number of

Partitions and the Size Of the Buffer Relative to the Total Space Requirement, I Have The

Same Result for All Data Sets) 92

!"#$%

!&#$%

!'#$%

!(#$%

#$%

(#$%

'#$%

&#$%

'
)
'
)
'
%

"
)
"
)
"
%

*
)
*
)
*
%

'
)
'
)
'
%

"
)
"
)
"
%

*
)
*
)
*
%

'
)
'
)
'
%

"
)
"
)
"
%

*
)
*
)
*
%

'
)
'
)
'
%

"
)
"
)
"
%

*
)
*
)
*
%

+,-.-/.0% 1-2/% +.3/.% 4256%

768-2.%955:325;%<-=636.56%36>2?@6%A/%AB6%955:325;%

C-AB%71%D5B68:>6%!%(E&%F:=63G%79H%%(##%IA632?/.0%

!"#

$"#

%"#

(a) Max. 100 iterations; buffer size is 1
3

of total

data req.

!"#$%

!&#$%

!'#$%

!(#$%

#$%

(#$%

'#$%

&#$%

'
)
'
)
'
%

"
)
"
)
"
%

*
)
*
)
*
%

'
)
'
)
'
%

"
)
"
)
"
%

*
)
*
)
*
%

'
)
'
)
'
%

"
)
"
)
"
%

*
)
*
)
*
%

'
)
'
)
'
%

"
)
"
)
"
%

*
)
*
)
*
%

+,-.-/.0% 1-2/% +.3/.% 4256%

768-2.%955:325;%<-=636.56%36>2?@6%A/%AB6%955:325;%/C%

71%D5B68:>6%!%(E&%F:=63G%79H%%'##%IA632?/.0%

!"#

$"#

%"#

(b) Max. 200 iterations; buffer size is 1
3

of total

data req.

Figure 5.11: Relative Accuracy Difference: Positive Values Indicate Cases Where Buffer-

centric Approach Outperforms Mode-centric Approach.

93

Chapter 6

MULTI-TASK TENSOR DECOMPOSITION FOR SPARSE ENSEMBLE SIMULATION

6.1 Introduction

Data- and model-driven computer simulations are increasingly critical in many application

domains. For example, for predicting geo-temporal evolution of epidemics and assessing the

impact of interventions, experts often rely on epidemic spread simulation software, such as

STEM [40]. Simulation-based decision making, however, introduces several fundamental data

challenges [42, 55]:

• Many complex processes (such as disasters [46]) involve various distinct, yet inter-

dependent, sub-processes. Consequently, in order to be useful, these simulations may

track 100s of parameters, spanning multiple layers and spatial-temporal frames, affected

by complex inter-dependent dynamic processes (Figure 6.1).

• Moreover, due to large number of unknowns, decision makers usually need to gen-

erate an ensemble of stochastic realizations, requiring 1000s of individual simulation

instances, each with different parameter settings corresponding to different, but plau-

sible, scenarios.

Consequently, obtaining and interpreting simulation ensembles to generate actionable results

present difficulties:

• Limited ensemble simulation budgets: Since complex, inter-dependent parameters

affected by complex dynamic processes have to be taken into account, execution of

simulation ensembles can be very costly. This leads to simulation budget constraints

that limit the number of simulations one can include in an ensemble.

94

!"##$%&'()*+,(-)) !".&')*+/$-$01)*+,(-))

Figure 6.1: Coupled Simulation of a Hurricane and Human Mobility

• Need for post-simulation data processing: Because of the complexities of key

processes and the varying scales at which they operate, experts often lack the means

to drive conclusions from these ensembles. This leads to the need for data analytics on

simulation ensembles to discover broad, actionable patterns.

• Inherent data sparsity of simulation ensembles: While the size and complexity of

a simulation ensemble can indeed tax decision makers, I note that a simulation ensemble

is inherently sparse (relative to the space of potential simulations one could run), which

constitutes a significant problem in simulation-based decision making. This leads to

the following critical question: “Given a parameter space and a fixed simulation budget,

which simulation instances I should include in the ensemble?”

6.2 Background and Notation

6.2.1 Tensor Representation of Simulation Ensembles

I propose a tensor-based framework to represent and analyze large simulation ensembles.

Intuitively, the tensor model maps a multi-attribute schema to a multi-modal array (where

each potential tuple is a tensor cell). Consequently, I can map a given simulation ensemble

95

onto a tensor such that each simulation parameter corresponds to a mode of a tensor and

the non-null entries in the tensor represent results of the simulations I have executed.

Tensor decomposition [23, 58, 36] (which generalizes matrix decomposition to tensors)

has been successfully used in various applications, such as social networks, sensor streams,

and others [35]. Intuitively, the tensor decomposition process rewrites the given tensor in the

form of a set of factor matrices (one for each mode of the input tensor) and a core matrix

(which, intuitively, describes the spectral structure of the given tensor).

As such, tensor decomposition has also been used for the analysis of dynamical systems:

[53] proposed a tensor-based model for time series and [34] proposed a dynamic mode de-

composition (DMD) scheme for the analysis of the behavior of complex dynamical systems.

6.2.2 Inherent Sparsity of Ensembles

While, as discussed above, tensors have been successfully used for understanding dy-

namic systems, I note that when the data is sparse, tensor decomposition is less effective in

extracting meaningful information – which is a significant challenge when I am attempting

to learn about dynamic processes through an inherently sparse ensemble of simulations. To

see why, note that as the number of input parameters of a simulation increases, the number

of potential situations one can simulate increases exponentially. Consider for example, the

simple dynamical system, double equal-length pendulum, depicted in Figure 6.2: in this sys-

tem there are five parameters that one can control: (a) the initial angle of the first pendulum

φ1, (b) the initial angle of the second pendulum φ2, (c) the weight of the first bob m1, (d)

the weight of the second bob m2, and (b) the gravity, g. For each combination of parameter

values, the system can be viewed as a two-variate time series consisting of the angles of the

pendulums at each time step. It is easy to see that the number of potential simulations of

this double equal-length pendulum system is a function of the resolution of each of these four

parameters – if I simply assume that for each parameter I consider, say, 20 distinct values,

96

this would lead to 205 = 3200000 possible simulations to potentially consider. Assuming

that I have a simulation budget, B = 1000, this would lead to a simulation density of only

1000/3200000 ∼ 0.0003125. Therefore, even for a relatively small number of parameters,

any realistic simulation budget is likely to be much smaller than the possible space of all

simulations – consequently, the naive approach of randomly sampling the simulation space

is likely to lead to sparse tensors that are difficult to accurately analyze.

6.2.3 Tensor Representation of a Complex System

Let us be given a complex dynamic system, S, with N input parameters, such that the

ith input parameter can take Ii distinct values. For simplicity of the discussion, let us fur-

ther assume that for each input parameter combination 〈v1, . . . vN〉, the complex dynamic

system S generates a single value S(v1, . . . , vn). Let, further, Y be the set of all simu-

lations of the system S one can execute and the corresponding results; i.e., Y = {yi =

〈〈vi,1, . . . , vi,N〉, S(vi,1, . . . , vi,N)〉 ‖ 1 ≤ i ≤ I1× I2× . . .× IN}. It is easy to see that Y can be

encoded as a tensor Y ∈ RI1×I2×...×IN , where for all yi ∈ Y , the tensor cell Y(vi,1, . . . , vi,N)

has the value S(vi,1, . . . , vi,n).

6.2.4 Tensor Representation of a Simulation Ensemble

The number, I1 × . . . × IN , of simulations of the system, S, one can run can be very

large. Instead, as discussed in the introduction, a much smaller subset (or ensemble) of the

simulations is executed to get an idea about S. Given an ensemble of, B � I2 × . . . × IN

simulations, let X be the set of simulations that have been selected to be executed as well

as the corresponding system outputs; i.e., X = {xi = 〈〈vi,1, . . . , vi,N〉, S(vi,1, . . . , vi,N)〉 ‖ 1 ≤

i ≤ B}. It is easy to see that X can be encoded as a tensor X ∈ RI1×I2×...×IN , where for

all xi ∈ X, the tensor cell X (vi,1, . . . , vi,N) has the value S(vi,1, . . . , vi,N) and all other cells

have null values (indicating simulations that could potentially have been run, but have not

97

!
"

!
#

!
" !

#

!
"

!
#

!
"

!
!

#

!
"

!
"

!
#

Figure 6.2: States of a Multi-pendulum System

been included in the ensemble). Since B � I1 × I2 × . . .× IN , the tensor X is very sparse,

meaning that there will be many more null-valued cells than the cells recording real-valued

simulation results; i.e., B � I1 × I2 × . . .× IN .

6.3 Contribution

6.3.1 Contribution 1: Density Boosting Partition-Stitch Sampling

I propose an alternative ensemble creation strategy, which I refer to as the partition-

stitch sampling (Figure 6.3): given an N -parameter simulation and an ensemble budget of B,

instead of randomly allocating the B samples in the N -dimensional parameter space, I par-

tition the simulation space into ∼ N/2 dimensional sub-spaces and allocate B/2 simulations

for each sub-space: note that, since the number of possible simulations for each sub-space

reduced exponentially (in the number of excluded parameters), this corresponds to an expo-

nential increase in the density of the samples for each sub-space: let us re-consider the double

equal-length pendulum system in Figure 6.2: instead of considering the original 5-parameter

system, I can divide the simulation space into simulations for two 3-parameter systems:

98

• System 1: In this system, I am allowed to vary the initial angle, φ1, and weight, m1,

of the first pendulum as well as the gravity, g; but the initial angle, φ2, and weight,

m2, of the second pendulum are fixed.

• System 2: In the second system, I can vary the initial angle, φ2, and weight, m2, of

the second pendulum as well as the gravity, g; in this case, the initial angle, φ1, and

weight, m1, of the first pendulum are fixed.

Note that neither of the two systems are perfect representations of the overall behavior

of the whole system as, in both cases, two out of the five parameters are fixed to some

default values. However, the simulation densities of both systems are now much higher

than the simulation density of the original system: using the numbers considered earlier,

each sub-system has 3 parameters with 20 distinct values, leading to a parameter space of

203 = 8000 simulations. If I allocate 500 (=1000/2) simulations to each sub-space, this leads

to a simulation density of 500/8000 = 0.0625, which is 200 time denser than the original

simulation space. There, however, remain several important questions:

• The first important question is “How do I stitch back the results obtained from the

individual sub-spaces?”

Here I may have several alternatives: In the simplest alternative, all the simulations from

the two systems can be unioned into a single 5-mode tensor and this 5-mode tensor can be

decomposed for analysis. This is potentially very expensive as the decomposition cost often

increases exponentially with the number of modes of the input tensor [33, 41]. I will also see

that, once unioned into a single tensor, the overall density is still low and the accuracy gains

will be very limited.

Instead, I present a join-based scheme to increase the effective density of the ensemble. In

particular, I will present two approaches (join stitching and zero-join stitching) to combine

99

simulation results form the sub-systems and experimentally validate the effectiveness of these

schemes. Several questions, however, remain:

• How do I select the parameter to be shared across the two sub-spaces?: experiments

verify that the significant gains in accuracy due to the increase in simulation densities

of the sub-systems reduces the need to be particularly careful in selecting the shared

parameter.

• What about the fact that both partial systems use some default values to fix some of the

parameters? Doesn’t this negatively affect accuracy? the gains obtained in accuracy

due to the significant jump in simulation densities will overcome any disadvantages

associated with fixing some of the parameters.

• If I am joining the sub-ensembles back to the original N-parameter space, wouldn’t this

negatively effect the tensor decomposition cost? If done naively, yes; and I discuss this

in the next sub-section.

6.3.2 Contribution 2: Multi-Task Tensor Decomposition (M2TD)

Naively joining the sub-ensembles would map the simulations back to an N -modal tensor

and this would exponentially increase the tensor decomposition time. Instead, I propose a

novel Multi-Task Tensor Decomposition (M2TD) scheme, which reduces the computa-

tional complexity of high-order tensor decomposition by (a) first cheaply decomposing the

low-order partial tensors and (b) intelligently stitching back the decompositions of these par-

tial tensors to obtain the decomposition for the whole system. Intuitively, M2TD leverages

partial and imperfect simulation-based knowledge from the resulting partial dynamical sys-

tems to obtain a global view of the complex process being simulated. I study alternative

ways one can stitch the tensor decompositions and propose an M2TD− SELECT that provides

better accuracy than the alternatives.

100

!"#$%"&

'%()&"$%*+

!"#$%"&

'%()&"$%*+

!"#"$%#&'

,

(-

(.

(-

(-

,

(.

(-
(.

,

(.

(-

()*"#"#+&#&'

!-

!.

!-

!-

!.

!.

!.

!-

!.

!-

Figure 6.3: Partition-Stitch Sampling

6.4 Problem Definition

Ideally, to study the system, S, i would construct a complete tensor Y ∈ RI1×I2×...×IN ,

and given target rank values, r1 through rN , I would obtain its corresponding Tucker decom-

position [H,V(1),V(2),V(3), . . . ,V(N)], where

Ỹ = H×1 V(1) ×2 V(2) ×3 V(3) . . .×N V(N) ≈ Y .

However, this would be prohibitively costly:

• Firstly, this would require I1 × . . . × IN simulations, which can be computationally

overwhelming.

• Even if this many simulations can be obtained, the analysis of the resulting tensor may

be prohibitively expensive.

Instead, given a budget B � I1 × . . . × IN of simulations, the problem is to identify a set,

X = {xi = 〈〈vi,1, . . . , vi,N〉, S(vi,1, . . . , vi,N)〉 ‖ 1 ≤ i ≤ B} of B simulations to execute, such

101

!"#$%&%

!
"
#
$
%'
%

!
"
#
$
%(
%

!"#$%&%

!
"
#
$
%'
%

!
"
#
$
%(
%

!"#$%&%

!
"
#
$
%'
%

!
"
#
$
%(
%

(a) Random (b) Grid (c) Slice

Figure 6.4: Conventional Solutions for Ensemble Generation

that the Tucker decomposition [G,U(1),U(2),U(3), . . .U(N)] of the corresponding tensor X

has the following property:

X̃ = G ×1 U(1) ×2 U(2) ×3 U(3)...×N U(N) ≈ X ,

and the Frobenius norm, ‖Y − X̃‖F , of the difference (from the full simulation ensemble, Y)

is small.

6.5 Conventional Ensemble Sampling Strategies

6.5.1 Strategy #1: Random Sampling

The first approach to creating a budget constrained ensemble of simulations for the system

S is to uniformly randomly sample B � I1 × . . .× IN parameter value configurations in the

parameter space and execute those B randomly sampled simulations to obtain the ensemble,

Xrs (Figure 6.4(a)).

6.5.2 Strategy #2: Grid Sampling

The second approach to creating a budgeted ensemble of simulations for S is to sample

B parameter value configurations at positions defined by a regularly spaced grid and execute

102

those B sampled simulations to obtain the ensemble, Xgs (Figure 6.4(b)).

6.5.3 Strategy #3: Slice Sampling

From Figures 6.4(a) and (b), the major difference between random sampling and grid

sampling is that in grid-based ensemble construction, the subsets of the selected simulation

samples are aligned on vertical and horizontal directions (or slices) of the underlying tensor

and these vertical and horizontal slices cover the tensor regularly. Alternatively, these slices

and the samples within each slice can be randomly selected. Intuitively, each slice fixes one

of the parameters, therefore, the samples within each slice are denser (whereas the density

of the overall tensor remains the same). I refer to the resulting ensemble as Xss.

6.6 Partition-Stitch Sampling

The three alternatives presented in the previous section cover the underlying parameter

space in different ways using the same number of simulation instances. Consequently, while

the local sub-space densities may differ, the overall simulation density is identically low for

all three cases.

In this section, it shows that, while executing the same number (B) of simulation in-

stances as before, I can increase the effective simulation density of the ensemble by carefully

partitioning the simulations to run into two groups and, then, by carefully stitching them,

relying on shared information among these groups to transfer knowledge among them.

6.6.1 Key Observation

The key observation is that most complex processes can be partitioned such that, while

each partition captures different sub-processes, these nevertheless relate to each other and,

hence, reflect the footprints of the same underlying global pattern. Therefore, at least in

theory, it should be possible to partition the given system S into two sub-systems S1 and S2,

103

analyze them independently, and then transferring what I independently learned from the

analysis of S1 and S2 back-and-forth, I should be able to gather information regarding the

original global system, S. To leverage this observation, however, I need to answer two major

questions: (a) “How do I partition the system, S, into two sub-systems?” and (b) “How do

I stitch the outcomes of these two sub-systems, S1 and S2, back to learn about S?”

6.6.2 PF-Partitioning of a Parameter Space

It turns out that the answer to the first question is relatively straightforward: Given a

system S with N input parameters, I will partition the system into two sub-systems S1 and

S2, each with N−k
2

+ k input parameters, such that

• the two systems share k of their input parameters as pivot parameters, and

• for each system, the remaining N−k
2

parameters will be set to a default value, referred

to as fixing constants.

I will refer to this as the Pivoted/Fixed (PF)-partitioning of a parameter space. Intuitively,

S1 and S2 correspond to two constrained sub-spaces: they have lesser free parameters than

the original system S as each one is generated by fixing N−k
2

of the input parameters. Once

the two sub-systems are obtained through PF-partitioning, I can then create two sets, X1

and X2, of ensembles (through random, grid, or slice sampling), each with B/2 simulations –

these simulations are created with common values for shared pivot parameters. Consequently,

the pivot parameters can be used for stitching the two ensembles together. More formally,

let ρ1, . . . , ρi, . . . ρN denote the N input parameters of S, each with a domain with Ii distinct

values. Without loss of generality, I refer to

• ρ1 through ρk as the pivot parameters,

104

– I select P ≤ I1 × . . . × Ik possible configurations for the pivot parameters for

ensemble generation,

• ρk+1 through ρk+(N−k)/2 will serve as the free input parameters of system S1 and fixed

parameters of S2,

– I select E ≤ Ik+1× . . .× Ik+(N−k)/2 possible configurations for the free parameters

for ensemble generation for system S1,

• ρk+(N−k)/2+1 through ρN will serve as the free input parameters of system S2 and fixed

parameters of S1.

– I select E ≤ Ik+(N−k)/2+1× . . .× IN possible configurations for the free parameters

for ensemble generation for system S2.

Note that, given the input budget B, I have P ×E = B/2. In the next sub-section, I discuss

how to stitch these sub-ensembles to increase the overall effective density.

6.6.3 JE-Stitching

As I mentioned above, the goal of the stitching process is to increase the effective density

of the ensemble. Join-Ensemble (JE)-Stitching achieves this by joining or zero-joining the

two sub-systems along the shared modes:

Join-based Stitching Let X 1 and X 2 denote the two tensors representing the simulation

ensembles, X1 andX2, for the two sub-systems S1(ρ1,1, . . . , ρ1,k+(N−k)/2) and S2(ρ2,1, . . . , ρ2,k+(N−k)/2),

respectively. For simplicity, let the first k parameters of both sub-systems denote the set of

parameters shared between the two sub-systems. I construct a new join ensemble, J , as

follows: for all pairs of simulations in the two ensembles that agree on the parameter values

for the k shared parameters (i.e., (ρ1,1 = ρ2,1) ∧ . . . ∧ (ρ1,k = ρ2,k)), I compute the average of

105

!"#$%#&"#'()*'+,(-#.) /'0&&"#1*&234)*'+,(-#.)56-24)789:;)

7"<%=)

7"<%8) 7
"<
%>
)

7"<%?)

7"<%=)7"<%=

7"<%8) 7
"<
%>
)

7"<%=

7
"<
%>

7
"<
%>

7
"<
%@
)

7"<%?)

?17"<%)*-+A('&"#)*,'3%)

7"<%=)

7"<%8)

7
"<
%@
)

7"<%?)

7"<%8)

7
"<
%@
)

7"<%?)

Figure 6.5: Ensemble Creation Through Pf-partitioning, Followed By Je-stitching Provides

a Higher Effective Density than The Convention Sampling of the Original Parameter Space

the terms

x1 = X1(ρ1,1, . . . , ρ1,k, ρ1,k+1, . . . , ρ1,k+(N−k)/2)

x2 = X2(ρ2,1, . . . , ρ2,k, ρ2,k+1, . . . , ρ2,k+(N−k)/2)

and the resulting average, x1+x2
2

, as the value for the corresponding join ensemble entry -

J(ρ1,1, . . . , ρ1,k+(N−k)/2, ρ2,k+1, . . . , ρ2,k+(N−k)/2).

Note that, since for each one of the P unique combinations selected for the shared pivot

parameters, there are E ensemble simulations in both sub-systems, the resulting join ensemble

tensor, J , represents P × E2 joined simulations – since, in the previous section, I have

P × E = B/2, this gives us B2/(4P) simulation entries, (and assuming that B � (4P))

effectively squaring the simulation density (Figure 6.5). As experiment verified, (due to this

increase effective density) the decomposition of J will be a far better approximation for the

original system S then the decomposition of the tensor X which represents the original set of

simulations, X = X1 ∪X2. In fact, the accuracy gains associated with this density increase

106

• prevents any disadvantages associated with eliminating some of the free parameters,

and

• leads to significant overall accuracy gains, even without precise a priori knowledge

about parameters to use as pivot and/or values for fixing constants.

Zero-Join based Stitching Note, however, that when E (i.e., sub-system densities) is

small, the overall join ensemble density may still be too low to provide accurate analysis. In

such a case, I can further boost the overall ensemble density by using zero-join (as opposed

to simple join) to stitch the sub-ensembles: when constructing the join ensemble, J , for all

pairs of simulations in the two sub-ensembles that agree on the parameter values for the k

shared parameters (i.e., (ρ1,1 = ρ2,1) ∧ . . . ∧ (ρ1,k = ρ2,k)), I still compute the average of the

terms as described above. But, in this case, if there is a simulation instance,

x1 = X1(ρ1,1, . . . , ρ1,k, ρ1,k+1, . . . , ρ1,k+(N−k)/2)

but the simulation instance

X2(ρ1,1, . . . , ρ1,k, ρ2,k+1, . . . , ρ2,k+(N−k)/2)

does not exist; then I treat the missing simulation instance as if it exists with 0 value, and I

construct the corresponding join ensemble entry J(ρ1,1, . . . , ρ1,k+(N−k)/2, ρ2,k+1, . . . , ρ2,k+(N−k)/2)

with value x1+0
2

. I similarly handle simulation instances in X2.

Note that zero-joining increases the effective density of the simulation ensemble to 2 ×

(P × E2) × E2, and as experiments verified, it significantly boosts accuracy in cases where

sub-ensemble simulation densities are too low to for basic join-based stitching be effective.

6.7 Multi-Task Tensor Decomposition (M2TD)

The difficulty with JE-stitching, of course, is that tensor J has almost double the num-

ber of modes as the tensors X 1 and X 2. Consequently, its decomposition is likely to be

107

!" !#
$%&'()'*+

!","- !",#- !",.-

)/(0%1%2/(%'3

!#,"- !#,#- !#,.-

)/(0%1%2/(%'3

4+1'56'7%(%'3 4+1'56'7%(%'3

8",#- 8",.- 8","-
8#,"- 8#,#- 8#,.-

8,#- 8,.- 8,9- 8,:-8,"-

;&+0/<+

=>?@(%(1A%3<

='%3 B+37'0C,!-

!"#D'0+

@EF?+37+5FG+C " @EF?+37+5FG+C #

Figure 6.6: Overview of M2TD-AVG

significantly more expensive than the decomposition of these two pre-join tensors. What

remains to be shown is that I can, in fact, obtain the decomposition of J directly from the

decompositions of X 1 and X 2. I discuss this in this section.

Let X 1 and X 2 be two sub-ensemble tensors corresponding to sub-systems constructed

through PF-partitioning of an N -parameter system, S. Let J be the join ensemble and J

be the corresponding join tensor one could obtain through JE-stitching. In this section, I

introduce three alternative multi-task tensor decomposition (M2TD) schemes to obtain the

decomposition of J from the decompositions of X 1 and X 2.

6.7.1 M2TD-Average (M2TD-AVG)

Remember from the earlier sections that both X 1 and X 2 are M -model tensors, where

M = k+ (N − k)/2, and that the first k modes are shared. I modify the HOSVD algorithm,

to obtain the proposed M2TD-AVG algorithm (Algorithm 8). Intuitively, M2TD-AVG takes

the first k factor matrix pairs, (U1(n), U2(n)), corresponding to the shared pivot tensors of the

independently decomposed tensors, X 1 and X 2, and averages each pair to obtain a common

factor matrix representing both tensors: since factor matrices, U1(n) and U2(n), both map

108

Algorithm 8 M2TD-AVG

Input: Tensors X 1 and X 2, Rank for each mode r1, r2, ..., rN

Output: Decomposed factors U (1), U (2), . . ., U (N) and core tensor G for the join tensor J

for m = 1, ...,M do

matricize X 1 into matrix X1(m)

matricize X 2 into matrix X2(m)

end

for n = 1, ..., k do

U1(n) ← rn leading left singular vectors of X1(n)

U2(n) ← rn leading left singular vectors of X2(n)

U (n) ← average(U1(n), U2(n))

end

for n = k + 1, ...,M do

U (n) ← rn leading left singular vectors of X1(n)

end

for n = M + 1, ..., 2M − k do

U (n) ← rn leading left singular vectors of X2(n−M+k)

end

J = join tensor(X 1,X 2)

G = J ×1 U
(1)T ×2 U

(2)T , ...,×NU (N)T

return G, U (1), U (2),..., U (N)

the domain of the corresponding factor to a vector space represented by rn singular factors

(sorted in decreasing order of significance), the operation average(U1(n), U2(n)) essentially

constructs a new vector space, where each element of the domain is represented by the

average vector from the two input vector spaces (Figure 6.9(a)). Remaining factor matrices

are then combined to obtain the core tensor, G (see Figure 6.6). As experiment verify,

this leads to a better approximation of the original system than any of the naive ensemble

109

!" !#
$%&'()'*+

!",-. !",#. !",".

)/(0%1%2/(%'3

!#,". !#,#. !#,-.

)/(0%1%2/(%'3

4+1'56'7%(%'34+1'56'7%(%'3

8,#. 8,-. 8,9. 8,:.8,".

;<=>(%(1?%3@

;'%3 A+37'0B,!.

!"#C'0+

>DE=+37+5EF+B " >DE=+37+5EF+B #

!",-. !",#. !#,#. !#,-.

C'31/(+3/(%'3

4+1'56'7%(%'3

!,".

4+1'56'7%(%'3 4+1'56'7%(%'3

Figure 6.7: Overview of M2TD-CONCAT

sampling schemes.

6.7.2 M2TD-Concatenate (M2TD-CONCAT)

M2TD-AVG, presented in the previous section, recovers the factor matrices for pivot

parameters (modes) by averaging the corresponding factor matrices; i.e., by first obtaining

the singular vectors of the matricizations and then averaging these singular vectors. However,

there is nothing that guarantees that these averages will act as singular vectors themselves.

Instead, the alternative M2TD-CONCAT algorithm (detailed in Algorithm 9 and visu-

alized in Figure 6.7) avoids this potential issue by first constructing a concatenated matri-

cization for each pivot mode pair and then seeking the left singular vectors of this combined

matricization. Intuitively, M2TD-CONCAT maps the matricizations along the shared/pivot

modes back into the higher-modal space and seeks the singular vectors that best represent

this higher modal space.

110

Algorithm 9 M2TD-CONCAT

Input: Tensors X 1 and X 2, Rank for each mode r1, r2, ..., rN

Output: Decomposed factors U (1), U (2), . . ., U (N) and core tensor G for the join tensor J

for n = 1, ..., k do

matricize X 1 into matrix X1(n)

matricize X 2 into matrix X2(n)

X(n) ← concatenate(X1(n), X2(n))

U (n) ← rn leading left singular vectors of X(n)

end

for m = k + 1, ...,M do

matricize X 1 into matrix X1(m)

matricize X 2 into matrix X2(m)

end

for n = k + 1, ...,M do

U (n) ← rn leading left singular vectors of X1(n)

end

for n = M + 1, ..., 2M − k do

U (n) ← rn leading left singular vectors of X2(n−M+k)

end

J = join tensor(X 1,X 2)

G = J ×1 U
(1)T ×2 U

(2)T , ...,×NU (N)T

return G, U (1), U (2),..., U (N)

111

Algorithm 10 M2TD-SELECT

Input: Tensors X 1 and X 2, Rank for each mode r1, r2, ..., rN

Output: Decomposed factors U (1), U (2), . . ., U (N) and core tensor G for the join tensor J

for m = 1, ...,M do

matricize X 1 into matrix X1(m)

matricize X 2 into matrix X2(m)

end

for n = 1, ..., k do

U1(n) ← rn leading left singular vectors of X1(n)

U2(n) ← rn leading left singular vectors of X2(n)

U (n) ← row select(U1(n), U2(n))

end

for n = k + 1, ...,M do

U (n) ← rn leading left singular vectors of X1(n)

end

for n = M + 1, ..., 2M − k do

U (n) ← rn leading left singular vectors of X2(n−M+k)

end

J = join tensor(X 1,X 2)

G = J ×1 U
(1)T ×2 U

(2)T , ...,×NU (N)T

return G, U (1), U (2),..., U (N)

112

!" !#
$%&'()'*+

!","- !",#- !",.-

)/(0%1%2/(%'3

!#,"- !#,#- !#,.-

)/(0%1%2/(%'3

4+1'56'7%(%'3 4+1'56'7%(%'3

8",#- 8",.- 8","- 8#,"- 8#,#- 8#,.-

8,#- 8,.- 8,9- 8,:-8,"-

;<=>(%(1?%3@

;'%3 A+37'0B,!-

!"#C'0+

>DE=+37+5EF+B " >DE=+37+5EF+B #

>+F+1(%'3

Figure 6.8: Overview of M2TD-SELECT

6.7.3 M2TD-Selection (M2TD-SELECT)

The M2TD-CONCAT algorithm presented above tries to improve the vector averaging

scheme of M2TD-AVG through row-by-row concatenation of the pivot matricizations before

the corresponding factor matrices are computed. In this section, I note that there is an

alternative, and potentially more effective, way to improve the M2TD-AVG scheme: once

the factor matrices for the pivots are obtained, instead of averaging them, I can carefully

select between the individual rows of the corresponding factor matrices and use these selected

rows to construct more effective combined factor matrices.

The pseudocode for the process is shown in Algorithm 10 and visualized in Figure 6.8.

Note that the major difference between this algorithm and M2TD-AVG is the line

U (n) ← row select(U1(n), U2(n)),

where the factor matrix U (n) is constructed by selecting the appropriate rows from U1(n)

or U2(n), instead of simply averaging them. This row selection process is further detailed

in Algorithm 11 and visualized in Figure 6.9(b).The key idea is to consider the energies

(captured by the 2-norm function) of each row, i, in U1 and U2, and identify which of the two

113

Algorithm 11 ROW SELECT
Input: Factor matrices U1 and U2

Output: Row-selected Factor Matrix U

I ← num rows(U1)

for 1 ≤ i ≤ I do

if ‖row(U1, i)‖2 ≥ ‖row(U2, i)‖2 then

row(U, i)← row(U1, i)

else

row(U, i)← row(U2, i)

end

end

return U

factor matrices provides a higher energy for that particular row. Intuitively, this enables us

to identify which of the two factor matrices better represent the entity corresponding to row,

i, and, given this information, I can construct the row i of the output factor matrix, U , by

selecting the corresponding row from the factor matrix, U1 or U2, with a higher representation

power for that entity.

As experiment verified, this selection strategy prevents the row with the lesser energy to

act as noise on the description of the corresponding entity and, thus, leads to significantly

higher decomposition accuracies. Moreover, as the experiments show, the accuracy gains

gets higher as I target higher ranking decompositions that maintain more details by seeking

a larger number of patterns in the data.

6.7.4 Distributed M2TD (D-M2TD)

A major challenge with tensor decomposition is its computational and space complexity.

This is especially true for the Tucker decomposition with a dense core. In this section, relying

on several key properties of the M2TD algorithm, I propose a 3-phase distributed version of

114

!"#$%&'()*&+$#,-'./!0"-1'2'

!"
#$
%
&
'(
)*
&
+
$
#,
-'
.
/
!0
"
-1
'3
'

!"#$%&'4'

-"
5
'6
-"
%
'7
2'

-"
5'
6-"

%
'7
3'

,./-,+/8'-"5'6"-'

09/'"$0:$0'7'

!"#$%&'()*&+$#,-'./!0"-1'2'

!"
#$
%
&
'(
)*
&
+
$
#,
-'
.
/
!0
"
-1
'3
'

!"#$%&'4'

-"
5
'6
-"
%
'7
2'

-"
5'
6-"

%
'7
3'

)/#/!0/8'-"5'6"-'

09/'"$0:$0'7'

(a) M2TD-AVG (b) M2TD-SELECT

Figure 6.9: Comparison of the Row Construction Processes Between M2TD-AVG and M2TD-

SELECT

M2TD that can be efficiently and scalably executed on MapReduce or Spark based platforms

(see Algorithm 12):

• Phase 1: Parallel Sub-Tensor Decomposition: Consider the M2TD-SELECT pseu-

docode in Algorithm 10. Here, X 1 and X 2 are two sub-tensors corresponding to two sub-

systems constructed through PF-partitioning. These low-order sub-tensors can be decom-

posed (in parallel) independently from each other. Therefore, this phase can be parallelized

using, for example, the popular distributed computing framework, MapReduce, using the

following map and reduce operators:

• map: 〈κ, ρ1, ρ2, . . . , ρM ,Xκ(ρ1, ρ2, . . . , ρM)〉 on κ. Here, κ is the low-order tensor id;

i.e., κ ∈ {1, 2}. ρ1, ρ2, . . . , ρM together give the coordinate of a cell in the low-order

tensor Xκ. Key-value pairs with the same κ are shuffled to the same reducer in the

form of 〈key : κ, val : ρ1, ρ2, . . . , ρM ,Xκ(ρ1, ρ2, . . . , ρM)〉.

• reduce: 〈key:κ, val:ρ1, ρ2, . . . , ρM , Xκ(ρ1, ρ2, . . . , ρM)〉. The reducer processing the

key, κ, receives the non-zero elements of sub-tensor Xκ and decomposes it into sub-

factor Uκ(n), where n is the mode id, by using SVD. Finally, reducer appropriately

115

Algorithm 12 The outline of the Distributed Multi-Task Tensor Decomposition, D− M2TD,

process
Input: Tensor X 1, X 2, Rank for each mode r1, r2, . . . , rN

Output: Factor Matrices U(1), U(2), ..., U(N) and core tensor G

for the join tensor J

1. Phase 1: Parallel decomposition of X 1 and X 2 to generate U1(n), U2(n), n ∈ {1, . . . , N}

2. Phase 2: Parallel JE-Stitching X 1, X 2 to obtain the decomposition of the joined tensor J

3. Phase 3: for 1 ≤ n ≤ N

(a) Parallel tensor matrix mutiplication- Gn = J ×n U(n)

4. Return Factor Matrices U(1), U(2), ..., U(N) and core G

relabels each Uκ(n) as U (n) and emits each sub-factor as an independent file, with

content 〈 key : n, value : i, j,U (n)(i, j)〉. Here, i, j are the coordinates of sub-factor

U (n).

Note that this step can be further parallelized by leveraging parallel Tucker decomposition

techniques, such as [49, 26].

• Phase 2: Parallel JE-Stitching to Obtain Join Tensor, J : The goal of the stitching

process is to increase the effective density of the ensemble. JE-stitching achieves this by

joining the two sub-systems along their shared pivot modes to obtain the J tensor. This

process can be parallelized as follows:

• map: 〈κ, ρ1, ρ2, . . . , ρM ,Xκ(ρ1, ρ2, . . . , ρM)〉. Key-value pairs with the same pivot mode

index (ρ1, ρ2, . . . , ρk)are shuffled to the same reducer in the form of 〈key:(ρ1, ρ2, . . . , ρk),

val:ρ1, ρ2, . . . , ρM ,Xκ(ρ1, ρ2, . . . , ρM)〉.

• reduce: 〈key:(ρ1, ρ2, . . . , ρk), val:ρ1, ρ2, . . . , ρM ,Xκ(ρ1, ρ2, . . . , ρM)〉. The join ensem-

116

ble J (ρ1, ρ2, . . . , ρk, . . .) is constructed for all pairs of Xκ, that agree on the parameter

values for the k pivot parameters.

.

•Phase 3: Parallel Tensor-Matrix Multiplication to Recover the Core Tensor: The

costliest part of the M2TD algorithm is the final step where the join tensor J is multiplied

by the transposes of the factor matrices to recover the dense core tensor. I parallelize this as

follows:

• map: 〈ρ1, ρ2, . . . , ρN ,J (ρ1, ρ2, . . . , ρN)〉, 〈n, i, j,U (n)(i, j)〉. Cells of J (from Phase 2)

with index (ρ1, ρ2, . . . , ρn−1, ρn+1, . . . , ρN) are shuffled to the same reducer in the form

of 〈key:(ρ1, ρ2, . . . , ρn−1, ρn+1, . . . , ρN), val:J (ρ1, ρ2, . . . , ρN)〉

• map: 〈n, i, j,U (n)(i, j)〉. Outputs of Phase 1 〈n, i, j,U (n)(i, j)〉 are shuffled to the

same reducer based on mode id n in the form of 〈key:(ρ1, ρ2, . . . , ρn−1, ρn+1, . . . , ρN),

val:n, i, j,U (n)(i, j)〉

• reduce: The reducer takes

〈key : (ρ1, .., ρn−1, ρn+1, .., ρN), val : J (ρ1, , . . . , ρN)〉

and

〈key : (ρ1, .., ρn−1, ρn+1, .., ρN), val : n, i, j,U (n)(i, j)〉

and performs vector-matrix multiplication to emit

〈(ρ1, ρ2, . . . , ρn−1, j, ρn+1, . . . , ρN),
∑In

ρn=1 J (ρ1, , . . . , ρn, . . . , ρN) ∗U (n)(ρn, j)〉.

6.8 Experiments

In this section, I report results of the experiments that aim to assess the effectiveness and

efficiency of the proposed partition-stitch ensemble sampling strategy and the novel multi-

task tensor decomposition (M2TD) scheme. For these experiments, I used the Chameleon

117

Alternative values

Dynamic systems Double Pend.; Triple Pend. Lorenz System

Parameter resolution 60 ; 70; 80

Size of the corresponding simulation space (S) 605(8× 108); 705(2× 109); 805(3× 109)

Pivot density (P) 10%; 100%

Sub-system density (E) 10%; 100%

Ensemble budget 4× 104, 7× 104, 1× 105,

(B = 2× P × E × S) 4× 105, 7× 105, 1× 106

Target decomposition rank (r) 5; 10; 20

Stitching technique Join; Zero-Join

Number of servers 2, 6, 10, 14, 18

Table 6.1: Experiment Setup – Default Values, Used Unless Otherwise Specified, Are High-

lighted

cloud platform [29]: I deployed all algorithms on 18 xxlarge instances, with 8-core vCPU,

32GB memory, 160GB disk space. Distributed versions were implemented in Java 8, over

Hadoop 2.7.3. The key system parameters and their value ranges are reported in Table 6.1

and explained below.

6.9 Dynamic Systems

In these experiments, I consider three dynamic processes: double pendulum, triple pendu-

lum, lorenz system [7]. The code for these systems was obtained from [38]. These dynamic

processes are selected for their varying complexities:

The double pendulum system has four parameters: initial angle, φ1, and weight, m1, of

the first pendulum as well as the initial angle, φ2, and weight, m2, of the second pendulum.

The triple pendulum (with variable friction) system is similar, but more complex

due to the addition of a third pendulum. Moreover, the system has a different set of initial

parameters: the angle φ1 of the first pendulum, the initial angle φ2 of the second pendulum,

the initial angle φ3 of the third pendulum, and the friction f of whole system. Intuitively,

118

unlike the double pendulum system, in the triple pendulum system the friction is considered

as a simulation parameter.

The Lorenz system is notable for having chaotic solutions for certain initial conditions

[7]. The system has four variable parameters: the coordinate of the initial position, z, and

three other system parameters, σ, β, ρ.

6.10 Simulation Ensembles

For the above systems, I construct 5-mode simulation ensembles. Each cell of the 5-mode

ensemble simulation tensor encodes the Euclidean distance between the states of the resulting

simulated system and the observed system parameters at a given time stamp, for a given

quadruple of simulation parameters. Intuitively, each cell encodes the relationship between

a given simulation instance to a configuration observed in the real-world.

In Table 6.1, in the experiments, the size of the simulation space varied between 605 ∼

8 × 108 to 805 ∼ 3 × 109 simulation instances. In contrast, the simulation instance budgets

were on the order of 104 to 105, indicating that, despite the large number of simulations

included in the ensembles, the resulting ensemble tensors were very sparse (densities on the

order of∼ 10−4). Despite this sparsity, for the different configurations considered in Table 6.1,

the simulation ensemble required from 25GB to 105GB data storage.

6.11 Alternative Ensemble Construction Schemes

In this section, I evaluated the M2TD-AVG, -CONCAT, and -SELECT strategies and

compared them against the conventional (RANDOM, GRID, and SLICE) ensemble sampling

approaches (Section 6.5). For M2TD-based schemes, I considered the case with a single pivot

parameter and, to analyze worst case behavior, I sampled the sub-systems randomly.

119

6.12 Evaluation Criteria

I compared accuracy and efficiency of alternative schemes, for different target decompo-

sition ranks, different parameter space resolutions, and simulation budgets (see Table 6.1).

To measure accuracy, I use the Frobenius norm of the difference tensor:

accuracy(X̃ ,Y) = 1−

(
‖X̃ −Y‖
‖Y‖F

)
,

where X̃ is the reconstructed tensor (after sampling and decomposition), while Y is the

tensor corresponding to the full simulation space. I also report the decomposition times.

6.13 Discussions of the Results

6.13.1 General Overview

Table 6.2 focuses on the double pendulum system and compares accuracies and decom-

position times for various approaches considered in this section for the different target ranks

and for different parameter resolutions. In the table, the M2TD-based algorithms provide

several orders better accuracy than the conventional approaches, with the same number of

simulation instances. As expected, among the conventional schemes, the Random strategy

provides the worst and the Grid strategy provides the best accuracy; however, even Grid is

∼ 1000× worse than the proposed M2TD-SELECT algorithm. As also expected, among the

M2TD-based algorithms, M2TD-SELECT provides the best overall accuracy: moreover, the

relative performance gains of M2TD-SELECT algorithm further increases for larger decompo-

sition ranks, indicating that as I seek more detailed patterns in the ensemble, M2TD-SELECT

better captures these underlying patterns in the data.

In the Table, M2TD-based algorithms are somewhat more expensive than the conven-

tional sampling strategies; but the gains in accuracy are several orders higher than the

decomposition time overheads of M2TD-based techniques. This is because, as highlighted

120

in Section 6.6.3, the proposed partition-stitch technique increases the effective density of the

join ensemble. Consequently, the increase in the decomposition is well amortized by the

increase in the effective simulation density. In these experiments, each double pendulum

simulation took roughly 0.66ms. Given this, obtaining an ensemble simulation with den-

sity 704(= 702 × 702) would require roughly 16000 seconds (ignoring the additional time

to decompose). In contrast, the proposed M2TD based techniques are able to achieve the

same effective density by running only 2 × 702 simulations in just 46 seconds and obtain

the ensemble decomposition in an additional ∼ 1600 seconds. This points to the impres-

sive performance gains provided by the proposed multi-task tensor decomposition (M2TD)

technique.

One question that remains is whether I could have joined the sub-ensembles directly

into tensor J to decompose instead of relying on the M2TD techniques: the answer to this

question is a strong no: for the experiments reported in Table 6.2, with the configuration of

18 xxlarge servers, direct decomposition of the resulting dense tensor was not feasible due to

memory limitations.

6.13.2 Decomposition Time Distribution

Table 6.3 presents how the decomposition time is split among the three phases of the

map-reduce process described in Section 6.7.4. The table also shows how the execution time

varies as I change the number of servers allocated for the decomposition process. In this

table, as expected, the third phase where I recover the core tensor of the decomposition is

the costliest step of the process. Allocating more servers indeed helps bring the cost of this

phase down; however, there are diminishing returns due to data communication overheads.

121

Accuracy for Double Pendulum System

Res. Rank M2TD Random Grid Slice

AVG CONCAT SELECT

60 5 0.49 0.49 0.54 1E-8 3E-4 2E-4

10 0.50 0.50 0.62 2E-7 3E-4 2E-4

20 0.52 0.53 0.56 5E-6 3E-4 2E-4

70 5 0.46 0.46 0.51 7E-9 2E-4 2E-4

10 0.47 0.48 0.57 9E-8 2E-4 2E-4

20 0.49 0.50 0.73 2E-6 2E-4 2E-4

80 50 0.46 0.46 0.50 4E-9 1E-4 1E-4

10 0.47 0.47 0.49 4E-8 1E-4 1E-4

20 0.48 0.49 0.59 1E-6 2E-4 1E-4

(a) Accuracy

Decomposition Time for Double Pendulum System (sec.)

Res. Rank M2TD Random Grid Slice

AVG CONCAT SELECT

60 5 808 797 785 203 144 167

10 808 819 849 234 148 186

20 1034 929 935 348 456 258

70 5 1508 1581 1594 312 209 193

10 1696 1645 1576 379 201 244

20 1866 1914 1995 575 744 381

80 5 3990 3591 4907 414 227 336

10 5232 5979 6068 514 239 410

20 5341 5707 5439 860 883 606

(b) Time (sec.)

Table 6.2: Results for Double Pendulum System (Pivot=t, p = 100%, e = 100%)122

Decomposition Time using Different Numbers of Servers (sec.)

Num. Servers M2TD-SELECT Random Grid Slice

Phase 1 Phase 2 Phase 3

2 52 817 4167 670 420 488

6 62 383 1802 464 275 318

10 61 371 1318 415 237 280

14 65 354 1279 381 214 253

18 67 363 1118 379 201 244

Table 6.3: Different Number of Servers (Double Pendulum, Resolution=70, Rank = 10,

Pivot=t, p = 100%, e = 100%)

6.13.3 Varying Data Sets

In Table 6.4, I study the accuracy and decomposition time results for different dynamic

systems. As seen here, also for the triple pendulum and Lorenz systems, I observe the very

same pattern: M2TD-SELECT provides the best accuracy among all alternatives, providing

several orders of magnitude gain in accuracy relative to the conventional schemes.

6.13.4 Varying Budgets and Zero-Joins

In the default experiments considered above, the budget was selected such that the sub-

ensembles would have a perfect density of 1.0. In the first row of Table 6.5, I reduced the

ensemble budget by taking 1/10th of the samples I considered in the previous examples.

Naturally, this results in a drop in accuracy for all approaches. However, M2TD-based

schemes remain several orders better than the conventional approaches.

The table also shows that when the budgets (thus sub-ensemble densities) are low, I can

boost the overall accuracy by leveraging zero-joins (introduced in Section 6.6.3), rather than

123

Accuracy for Different Systems

Dyn.System M2TD Random Grid Slice

AVG CONCAT SELECT

D.P. 0.47 0.48 0.57 9E-8 2E-4 2E-4

T.P. 0.25 0.25 0.31 6E-8 2E-4 1E-4

L.S. 0.31 0.32 0.36 4E-8 2E-4 1E-4

(a) Accuracy

Decomposition Time for Different Systems (sec.)

Dyn.System M2TD Random Grid Slice

AVG CONCAT SELECT

D.P. 1696 1645 1576 379 201 244

T.P. 992 1422 1106 221 180 166

L.S. 1728 1850 1705 444 230 211

(b) Time (sec.)

Table 6.4: Results for Different Dynamical Systems (Resolution=70, Rank = 10, Pivot=t,

p = 100%, e = 100%)

using simple joins when implementing JE-stitching.

6.13.5 Varying Pivot/Sub-Ensemble Densities

Tables 6.6 and 6.7 show the impact of reduced pivot and sub-ensemble densities (i.e., P

and E) respectively. As seen here, the overall pattern is as before: reduction in the simulation

budget reduces the overall accuracy; however, M2TD-based schemes provide significantly

higher accuracy overall.

An interesting observation, however, is that (while the total number of simulations is the

same) reduction in the pivot sub-ensemble density has a significantly higher impact than the

124

Accuracy for Different Ensemble Budgets (B)

Budget M2TD Random Grid Slice

AVG CONCAT SEL.

4× 104 (join) 3.5E-5 3.4E-5 4.1E-5 9E-9 2E-5 2E-6

4× 104 (zero-join) 3.3E-3 3.2E-3 3.9E-3 9E-9 2E-5 2E-6

4× 105 0.47 0.48 0.57 9E-8 2E-4 2E-4

(a) Accuracy

Decomposition Time for Different Ensemble Budgets (B) (sec.)

Budget M2TD Random Grid Slice

AVG CONCAT SEL.

4× 104 (join) 200 201 200 190 175 183

4× 104 (zero-join) 596 598 592 190 175 183

4× 105 1696 1645 1576 379 201 244

(b) Time (sec.)

Table 6.5: Results for Different Ensemble Budgets (Double Pendulum, Resolution=70, Rank

= 10, Pivot=t; Note That b = 4 × 105 Corresponds to the Case Where Both Pivot, p, and

Sub-systems, e, Have 100% Densities)

reduction in the pivot density: this is because, as discussed in Section 6.6.3, the effective

density of a stitched simulation ensemble is proportional to P ×E2, and thus reductions in E

have a more significant impact than reductions in P : this further confirms our initial hypoth-

esis that maintaining sub-ensemble densities high is important for accurate characterization

of the system being studied.

125

Accuracy for Different Pivot Densities (P)

P. Density M2TD Random Grid Slice

AVG CONCAT SELECT

10% 3.5E-2 7.6E-3 3.6E-2 9E-9 2E-5 2E-6

100% 0.47 0.48 0.57 9E-8 2E-4 2E-4

(a) Accuracy

Decomposition Time for Different Pivot Densities (P) (sec.)

P.Density M2TD Random Grid Slice

AVG CONCAT SELECT

10% 606 597 607 190 175 183

100% 1696 1645 1576 379 201 244

(b) Time (sec.)

Table 6.6: Results for Different Pivot Densities (Double Pendulum, Resolution=70, Rank =

10, Pivot=t, e = 100%)

6.13.6 Selection of the Pivot Parameter

In Table 6.8, I vary the pivot parameter1: as expected, which parameter is selected as the

pivot has some impact on the accuracy of the proposed partition-stitch scheme. However,

whichever pivot is selected, the overall accuracy is several orders of magnitude better than

that of conventional schemes, indicating that I do not need very precise information about

the system being studied to decide how to partition the system.

1Due to space constraints, I omit experiments where I keep the same pivot parameter, but vary the

groupings of free parameters. The results are similar to the results of pivot parameter selection.

126

Accuracy for Different Sub-system Densities (E)

E. Density M2TD Random Grid Slice

AVG CONCAT SELECT

10%(join) 4E-5 4E-5 4.5E-5 9E-9 2E-5 2E-6

10% (zero-join) 3.4E-3 3.3E-3 3.8E-3 9E-9 2E-5 2E-6

100% 0.47 0.48 0.57 9E-8 2E-4 2E-4

(a) Accuracy

Decomposition Time for Different Sub-system Densities (E) (sec.)

E. Density M2TD Random Grid Slice

AVG CONCAT SELECT

10%(join) 207 202 201 190 175 183

10% (zero-join) 602 640 617 190 175 183

100% 1696 1645 1576 379 201 244

(b) Time (sec.)

Table 6.7: Results for Different Sub-system Densities (Double Pendulum, Resolution=70,

Rank = 10, Pivot=t, p = 100%)

127

Accuracy for Different Pivot Parameters

Pivot M2TD Random Grid Slice

AVG CONCAT SELECT

t 0.47 0.48 0.57 9E-8 2E-4 2E-4

φ1 0.35 0.36 0.40

φ2 0.40 0.41 0.56

m1 0.58 0.59 0.71

m2 0.41 0.40 0.42

(a) Accuracy

Decomposition Time for Different Pivot Parameters (sec.)

Pivot M2TD Random Grid Slice

AVG CONCAT SELECT

t 1696 1645 1576 379 201 244

φ1 1607 1673 1673

φ2 1694 1677 1571

m1 1661 1512 1697

m2 1556 1602 1538

(b) Time (sec.)

Table 6.8: Results for Different Pivots (Double Pendulum, Resolution=70, Rank = 10, p =

100%, e = 100%; 3-mode Sub-systems Are Created in Such a Way That Free Parameters of

the Same Pendulum Are Kept in the Same Sub-system)

128

Chapter 7

CONCLUSION

The main goal of this dissertation is to optimized the tensor decomposition for two major

challenges - Density and Noise. I particularly look at those two different kinds of challenges

for different scenarios. Each of these challenges for tensor decomposition under different

scenario has their own unique propertywhich need to be investigated separately. In this

dissertation, I proposed different algorithms that tackled these challenges for each of the

above mentioned different scenarios.

7.1 Noise-Profile Adaptive Tensor Decomposition

Web-based user data can be noisy. Recent research has shown that it is possible to im-

prove the resilience of the tensor decomposition process to overfitting (an important challenge

in the presence of noisy data) by relying on probabilistic techniques. However, existing tech-

niques assume that all the data and intermediary results can fit in the main memory and

(more critically) they treat the entire tensor uniformly, ignoring potential non-uniformities

in the noise distribution. In chapter 3, I proposed a novel noise-adaptive decomposition

(nTD) technique that leverages rough information about noise distribution to improve the

tensor decomposition performance. nTD partitions the tensor into multiple sub-tensors and

then decomposes each sub-tensor probabilistically through Bayesian factorization. The noise

profiles of the grid partitions and their alignments are then leveraged to develop a sample

assignment strategy (or s-strategy) that best suits the noise profile of a given tensor. Exper-

iments with user-centered web data show that nTD is significantly better than conventional

CP decomposition on noisy tensors.

129

7.2 Noise Profile Adaptive Tensor Train Decomposition

Tensor train decomposition, one of the widely used tensor decomposition techniques, is

designed to avoid the curse of dimensionality, in the form of the exposition of intermediary

results, which plagues other tensor decomposition techniques.However, many tensor decom-

position schemes, including tensor train decomposition is sensitive to noise in the input data

streams: this is especially true for relatively sparse web and social network datasets, where

incorrect or inconsistent data, an inevitable problem in the real world, can lead to false

conclusions and recommendations. The problem is compounded by over-fitting as the web

and user data are sparse. These techniques have a major deficiency: they treat the entire

tensor uniformly, ignoring potential non-uniformities in the noise distribution. The noise is

rarely uniformly distributed in the data. In chapter 4, Noise-Profile Adaptive Tensor Train

Decomposition (NTTD) method is proposed, which aims to tackle this challenge. In partic-

ular, NTTD leverages a model-based noise adaptive tensor train decomposition strategy for

the purposes: any rough priori knowledge about the noise profiles of the tensor enable us to

develop a sample assignment

7.3 Tensor Decomposition for Billion - Scale Dense Tensor

One key problem with tensor decomposition is its computational complexity and space

requirements. Especially, as the relevant data sets get denser, in-memory schemes for ten-

sor decomposition become increasingly ineffective; therefore out-of-core (secondary-memory

supported, potentially parallel) computing is necessitated. However, existing techniques do

not consider the I/O and network data exchange costs that out of core execution of the

tensor decomposition operation will incur. In chapter 5, I note that when this operation is

implemented with the help of secondary-memory and/or multiple servers to tackle the mem-

ory limitations, I would need intelligent buffer-management and task-scheduling techniques

130

which take into account the cost of bringing the relevant blocks into the buffer to minimize

I/O in the system. I introduce 2PCP, a two-phase, block-based CP decomposition system

with intelligent buffer sensitive task scheduling and buffer management mechanisms. 2PCP

aims to reduce I/O costs in the analysis of relatively dense tensors common in scientific and

engineering applications. Experiment results compare with current state of art tensor de-

composition algorithms and show that our algorithms can significantly reduce the amount of

I/O and execution time while maintaining decomposition accuracy.

7.4 Multi-Task Tensor Decomposition for Sparse Ensemble Simulation

Data- and model-driven computer simulations are increasingly critical in many application

domains. These simulations may track 10s or 100s of parameters, affected by complex inter-

dependent dynamic processes. Moreover, decision makers usually need to run large simulation

ensembles, containing 1000s of simulations. In this chapter 6, a tensor-based framework is

proposed to represent and analyze patterns in large simulation ensemble data sets to obtain

a high-level understanding of the dynamic processes implied by a given ensemble of simula-

tions. The inherent sparsity of the simulation ensembles (relative to the space of potential

simulations one can run) constitutes a significant problem in discovering these underlying

patterns. To address this challenge, a partition-stitch sampling scheme is proposed, which

divides the parameter space into subspaces to collect several lower modal ensembles, and

complement this with a novel Multi-Task Tensor Decomposition (M2TD) technique which

helps effectively and efficiently stitch these sub ensembles back. Experiments showed that,

for a given budget of simulations, the proposed structured sampling scheme leads to signif-

icantly better overall accuracy relative to traditional sampling approaches, even when the

user does not have a perfect information to help guide the structured partitioning process.

131

REFERENCES

[1] Abedjan, Z., X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas, M. Ouzzani, P. Papotti,
M. Stonebraker and N. Tang, “Detecting data errors: Where are we and what needs to
be done?”, Proceedings of the VLDB Endowment 9, 12, 993–1004 (2016).

[2] Bader, B. W., T. G. Kolda et al., “Matlab tensor toolbox version 2.6”, Available online,
URL http://www.sandia.gov/~tgkolda/TensorToolbox/ (2015).

[3] Balakrishnan, R. and S. Kambhampati, “Sourcerank: relevance and trust assessment
for deep web sources based on inter-source agreement”, in “Proceedings of the 20th
international conference on World wide web”, pp. 227–236 (ACM, 2011).

[4] Ballani, J. and L. Grasedyck, “A projection method to solve linear systems in tensor
format”, Numerical linear algebra with applications 20, 1, 27–43 (2013).

[5] Ballani, J., L. Grasedyck and M. Kluge, “Black box approximation of tensors in hierar-
chical tucker format”, Linear algebra and its applications 438, 2, 639–657 (2013).

[6] Bebendorf, M., “Adaptive cross approximation of multivariate functions”, Constructive
approximation 34, 2, 149–179 (2011).

[7] Bergé, P., Y. Pomeau and C. Vidal, “Order within chaos: towards a deterministic
approach to turbulence. 1986”, New York: Wiley Google Scholar (1986).

[8] Brin, S. and L. Page, “The anatomy of a large-scale hypertextual web search engine”,
Computer networks and ISDN systems 30, 1-7, 107–117 (1998).

[9] Brown, P. G., “Overview of scidb: large scale array storage, processing and analysis”,
in “Proceedings of the 2010 ACM SIGMOD International Conference on Management
of data”, pp. 963–968 (ACM, 2010).

[10] Carroll, J. D. and J.-J. Chang, “Analysis of individual differences in multidimensional
scaling via an n-way generalization of eckart-young decomposition”, Psychometrika 35,
3, 283–319 (1970).

[11] Chakrabarti, S., “Dynamic personalized pagerank in entity-relation graphs”, in “Pro-
ceedings of the 16th international conference on World Wide Web”, pp. 571–580 (ACM,
2007).

[12] Chen, X. and K. S. Candan, “Lwi-svd: low-rank, windowed, incremental singular value
decompositions on time-evolving data sets”, in “Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining”, pp. 987–996 (ACM,
2014).

[13] Chu, X., I. F. Ilyas, P. Papotti and Y. Ye, “Ruleminer: Data quality rules discovery”, in
“2014 IEEE 30th International Conference on Data Engineering (ICDE)”, pp. 1222–1225
(IEEE, 2014).

132

http://www.sandia.gov/~tgkolda/TensorToolbox/

[14] Cichocki, A., N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, D. P. Mandic et al., “Tensor
networks for dimensionality reduction and large-scale optimization: Part 1 low-rank
tensor decompositions”, Foundations and Trends® in Machine Learning 9, 4-5, 249–
429 (2016).

[15] Cichocki, A., A.-H. Phan, Q. Zhao, N. Lee, I. Oseledets, M. Sugiyama, D. P. Mandic
et al., “Tensor networks for dimensionality reduction and large-scale optimization: Part
2 applications and future perspectives”, Foundations and Trends® in Machine Learning
9, 6, 431–673 (2017).

[16] Cohen, J., B. Dolan, M. Dunlap, J. M. Hellerstein and C. Welton, “Mad skills: new
analysis practices for big data”, Proceedings of the VLDB Endowment 2, 2, 1481–1492
(2009).

[17] Davidson, I., S. Gilpin, O. Carmichael and P. Walker, “Network discovery via constrained
tensor analysis of fmri data”, in “Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining”, pp. 194–202 (ACM, 2013).

[18] Drumond, L., S. Rendle and L. Schmidt-Thieme, “Predicting rdf triples in incomplete
knowledge bases with tensor factorization”, in “Proceedings of the 27th Annual ACM
Symposium on Applied Computing”, pp. 326–331 (ACM, 2012).

[19] Georghiades, A., P. Belhumeur and D. Kriegman, “From few to many: Illumination
cone models for face recognition under variable lighting and pose”, IEEE Trans. Pattern
Anal. Mach. Intelligence 23, 6, 643–660 (2001).

[20] Grasedyck, L. and W. Hackbusch, “An introduction to hierarchical (h-) rank and tt-rank
of tensors with examples”, Computational Methods in Applied Mathematics Comput.
Methods Appl. Math. 11, 3, 291–304 (2011).

[21] Harper, F. M. and J. A. Konstan, “The movielens datasets: History and context”, Acm
transactions on interactive intelligent systems (tiis) 5, 4, 19 (2016).

[22] Harper, F. M. and J. A. Konstan, “The movielens datasets: History and context”, Acm
transactions on interactive intelligent systems (tiis) 5, 4, 19 (2016).

[23] Harshman, R. A., “Foundations of the parafac procedure: Models and conditions for
an” explanatory” multimodal factor analysis”, (1970).

[24] Hilbert, D., Über die stetige Abbildung einer Linie auf ein Flächenstück, pp. 1–2
(Springer Berlin Heidelberg, Berlin, Heidelberg, 1935), URL https://doi.org/10.
1007/978-3-662-38452-7_1.

[25] Holtz, S., T. Rohwedder and R. Schneider, “The alternating linear scheme for tensor
optimization in the tensor train format”, SIAM Journal on Scientific Computing 34, 2,
A683–A713 (2012).

[26] Jeon, I., E. E. Papalexakis, U. Kang and C. Faloutsos, “Haten2: Billion-scale tensor de-
compositions”, in “Data Engineering (ICDE), 2015 IEEE 31st International Conference
on”, pp. 1047–1058 (IEEE, 2015).

133

https://doi.org/10.1007/978-3-662-38452-7_1
https://doi.org/10.1007/978-3-662-38452-7_1

[27] Jordan, M. I., Z. Ghahramani, T. S. Jaakkola and L. K. Saul, “An introduction to
variational methods for graphical models”, Machine learning 37, 2, 183–233 (1999).

[28] Kang, U., E. Papalexakis, A. Harpale and C. Faloutsos, “Gigatensor: scaling tensor
analysis up by 100 times-algorithms and discoveries”, in “Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery and data mining”, pp. 316–
324 (ACM, 2012).

[29] Keahey, K., J. Mambretti, D. Panda, P. Rad, W. Smith and D. Stanzione, “Nsf
chameleon cloud”, website, November (2014).

[30] Khoromskij, B. and A. Veit, “Efficient computation of highly oscillatory integrals by
using qtt tensor approximation”, Computational Methods in Applied Mathematics 16,
1, 145–159 (2016).

[31] Kim, M. and K. S. Candan, “Efficient static and dynamic in-database tensor decom-
positions on chunk-based array stores”, in “Proceedings of the 23rd ACM International
Conference on Conference on Information and Knowledge Management”, pp. 969–978
(ACM, 2014).

[32] Kim, M. and K. S. Candan, “Tensordb: in-database tensor manipulation with tensor-
relational query plans”, in “Proceedings of the 23rd ACM International Conference on
Conference on Information and Knowledge Management”, pp. 2039–2041 (ACM, 2014).

[33] Kim, M. and K. S. Candan, “Decomposition-by-normalization (dbn): leveraging approx-
imate functional dependencies for efficient cp and tucker decompositions”, Data mining
and knowledge discovery 30, 1, 1–46 (2016).

[34] Klus, S., P. Gelß, S. Peitz and C. Schütte, “Tensor-based dynamic mode decomposition”,
Nonlinearity 31, 7, 3359 (2018).

[35] Kolda, T. G. and B. W. Bader, “Tensor decompositions and applications”, SIAM review
51, 3, 455–500 (2009).

[36] Kolda, T. G. and J. Sun, “Scalable tensor decompositions for multi-aspect data mining”,
in “Data Mining, 2008. ICDM’08. Eighth IEEE International Conference on”, pp. 363–
372 (IEEE, 2008).

[37] Li, X., K. S. Candan and M. L. Sapino, “ntd: Noise-profile adaptive tensor decomposi-
tion”, in “Proceedings of the 26th International Conference on World Wide Web”, pp.
243–252 (International World Wide Web Conferences Steering Committee, 2017).

[38] Li, X., K. S. Candan and M. L. Sapino, “M2td: multi-task tensor decomposition for
sparse ensemble simulations”, in “2018 IEEE 34th International Conference on Data
Engineering (ICDE)”, pp. 1144–1155 (IEEE, 2018).

[39] Li, X., S. Huang, K. S. Candan and M. L. Sapino, “Focusing decomposition accuracy
by personalizing tensor decomposition (ptd)”, in “Proceedings of the 23rd ACM Inter-
national Conference on Conference on Information and Knowledge Management”, pp.
689–698 (ACM, 2014).

134

[40] Li, X., S. Huang, K. S. Candan and M. L. Sapino, “Focusing decomposition accuracy
by personalizing tensor decomposition (ptd)”, in “Proceedings of the 23rd ACM Inter-
national Conference on Conference on Information and Knowledge Management”, pp.
689–698 (ACM, 2014).

[41] Li, X., S. Huang, K. S. Candan and M. L. Sapino, “2pcp: Two-phase cp decompo-
sition for billion-scale dense tensors”, in “Data Engineering (ICDE), 2016 IEEE 32nd
International Conference on”, pp. 835–846 (IEEE, 2016).

[42] Liu, S., Y. Garg, K. S. Candan, M. L. Sapino and G. Chowell-Puente, “Notes2:
Networks-of-traces for epidemic spread simulations.”, in “AAAI Workshop: Compu-
tational Sustainability”, (2015).

[43] Mnih, A. and R. R. Salakhutdinov, “Probabilistic matrix factorization”, in “Advances
in neural information processing systems”, pp. 1257–1264 (2008).

[44] Morton, G. M., “A computer oriented geodetic data base and a new technique in file
sequencing”, (1966).

[45] Neal, R. M., “Probabilistic inference using markov chain monte carlo methods”, (1993).

[46] on Disaster Reduction, S., “Grand challenges for disaster reduction”, (2005).

[47] Oseledets, I. and E. Tyrtyshnikov, “Tt-cross approximation for multidimensional ar-
rays”, Linear Algebra and its Applications 432, 1, 70–88 (2010).

[48] Oseledets, I. V., “Tensor-train decomposition”, SIAM Journal on Scientific Computing
33, 5, 2295–2317 (2011).

[49] Papalexakis, E. E., C. Faloutsos and N. D. Sidiropoulos, “Parcube: Sparse paralleliz-
able tensor decompositions”, in “Joint European Conference on Machine Learning and
Knowledge Discovery in Databases”, pp. 521–536 (Springer, 2012).

[50] Phan, A. H. and A. Cichocki, “Block decomposition for very large-scale nonnegative
tensor factorization”, in “Computational Advances in Multi-Sensor Adaptive Processing
(CAMSAP), 2009 3rd IEEE International Workshop on”, pp. 316–319 (IEEE, 2009).

[51] Phan, A. H. and A. Cichocki, “Parafac algorithms for large-scale problems”, Neurocom-
puting 74, 11, 1970–1984 (2011).

[52] Priebe, C., J. Conroy, D. Marchette and Y. Park, “Enron data set, 2006”, URL
http://cis. jhu. edu/˜ parky/Enron/enron. html (2006).

[53] Rogers, M., L. Li and S. J. Russell, “Multilinear dynamical systems for tensor time
series”, in “Advances in Neural Information Processing Systems”, pp. 2634–2642 (2013).

[54] Sadiq, S. and P. Papotti, “Big data quality-whose problem is it?”, in “Data Engineering
(ICDE), 2016 IEEE 32nd International Conference on”, pp. 1446–1447 (IEEE, 2016).

135

[55] Silvestro Roberto, P., L. S. Maria, L. Sicong, C. Xilun, G. Yash, H. Shengyu, H. K.
Jung, L. Xinsheng, N. Parth and K. Selcuk Candan, “Simdms: Data management and
analysis to support decision making through large simulation ensembles”, in “20th In-
ternational Conference on Extending Database Technology (EDBT’17)”, pp. 582–585
(OpenProceedings. org, 2017).

[56] Sun, J., S. Papadimitriou and S. Y. Philip, “Window-based tensor analysis on high-
dimensional and multi-aspect streams.”, in “ICDM”, vol. 6, pp. 1076–1080 (2006).

[57] Tang, J., H. Gao and H. Liu, “mtrust: discerning multi-faceted trust in a connected
world”, in “Proceedings of the fifth ACM international conference on Web search and
data mining”, pp. 93–102 (ACM, 2012).

[58] Tucker, L. R., “Some mathematical notes on three-mode factor analysis”, Psychometrika
31, 3, 279–311 (1966).

[59] Xiong, L., X. Chen, T.-K. Huang, J. Schneider and J. G. Carbonell, “Temporal collab-
orative filtering with bayesian probabilistic tensor factorization”, in “Proceedings of the
2010 SIAM International Conference on Data Mining”, pp. 211–222 (SIAM, 2010).

[60] Zafarani, R. and H. Liu, “Users joining multiple sites: Friendship and popularity varia-
tions across sites”, Information Fusion 28, 83–89 (2016).

[61] Zafarani, R., L. Tang and H. Liu, “User identification across social media”, ACM Trans-
actions on Knowledge Discovery from Data (TKDD) 10, 2, 16 (2015).

[62] Ziegler, C.-N., S. M. McNee, J. A. Konstan and G. Lausen, “Improving recommendation
lists through topic diversification”, in “Proceedings of the 14th international conference
on World Wide Web”, pp. 22–32 (ACM, 2005).

136

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Tensor Representation and Analysis
	Research Contributions
	Dealing with Noisy Data
	Density Challenge in Tensor-Based Analytics
	Tensor-based analytics on Inherent Sparse Simulation Ensembles

	Dissertation Outline

	BACKGROUND AND RELATED WORKS
	Tensors and Tensor Decompositions
	CP Decomposition
	Tucker Decomposition
	Tensor Train Decomposition
	Block-based CP Decomposition

	NOISE-PROFILE ADAPTIVE TENSOR DECOMPOSITION IN BLOCK BASED FORMAT
	Introduction
	 Grid based Probabilistic Tensor Decomposition (GPTD)
	Phase 1: Monte Carlo based Bayesian Decomposition of Sub-tensors
	Phase 2: Iterative Refinement

	Overview of GPTD
	Noise-Profile Adaptive Tensor Decomposition
	Noise Sensitive Sample Assignment: First Naive Attempt
	Noise Sensitive Sample Assignment: Second Naive Attempt
	S-Strategy for Sample Assignment

	Overview of nTD
	Experimental Evaluation
	Experiment Setup
	Discussion of the Results

	NOISE ADAPTIVE TENSOR DECOMPOSITION IN TENSOR TRAIN FORMAT
	Introduction
	Probabilistic Tensor train Decomposition (PTTD)
	Probabilistic Matrix Factorization
	Overview of PTTD

	Noise Adaptive Probabilistic Tensor train Decomposition (NTTD)
	External and Internal Noise
	Noise Adaptation through Sample Assignment
	Gibbs Sampling and (Internal) Decomposition Error
	Gibbs Sampling and (External) Noise
	Overall Sample Assignment

	Experimental Evaluation
	Experiment Setup
	Discussion of the Results

	TENSOR DECOMPOSITION FOR BILLION-SCALE DENSE TENSOR
	Introduction
	Overview of 2PCP
	Key Observations
	Problem Statement: Re-Use Promoting Data Access and Buffer Management During Iterative Refinement Phase

	Block-Centric Scheduling of Iterative Improvement Process
	Block-centric Scheduling of the Update Rules for Iterative Refinement
	Virtual Iterations

	I/O Reducing Update Schedules
	Re-Use Promoting Schedules
	Fiber-Order Update Schedules
	Fractal-based Update Schedules
	Z-Order Update Schedules
	Hilbert-Order Update Schedules

	Update Schedule Aware Buffer Replacement
	Fiber-Order Schedules and MRU
	Forward-Looking Buffer Replacement

	Experimental Evaluation
	Experiments with Strong Configuration
	Experiments with Weak Configuration
	Parameter Analysis (Stand-Alone Configuration)

	MULTI-TASK TENSOR DECOMPOSITION FOR SPARSE ENSEMBLE SIMULATION
	Introduction
	Background and Notation
	Tensor Representation of Simulation Ensembles
	Inherent Sparsity of Ensembles
	Tensor Representation of a Complex System
	Tensor Representation of a Simulation Ensemble

	Contribution
	Contribution 1: Density Boosting Partition-Stitch Sampling
	Contribution 2: Multi-Task Tensor Decomposition (M2TD)

	Problem Definition
	Conventional Ensemble Sampling Strategies
	Strategy #1: Random Sampling
	Strategy #2: Grid Sampling
	Strategy #3: Slice Sampling

	Partition-Stitch Sampling
	Key Observation
	PF-Partitioning of a Parameter Space
	JE-Stitching

	Multi-Task Tensor Decomposition (M2TD)
	M2TD-Average (M2TD-AVG)
	M2TD-Concatenate (M2TD-CONCAT)
	M2TD-Selection (M2TD-SELECT)
	Distributed M2TD (D-M2TD)

	Experiments
	Dynamic Systems
	Simulation Ensembles
	Alternative Ensemble Construction Schemes
	Evaluation Criteria
	Discussions of the Results
	General Overview
	Decomposition Time Distribution
	Varying Data Sets
	Varying Budgets and Zero-Joins
	Varying Pivot/Sub-Ensemble Densities
	Selection of the Pivot Parameter

	CONCLUSION
	Noise-Profile Adaptive Tensor Decomposition
	Noise Profile Adaptive Tensor Train Decomposition
	Tensor Decomposition for Billion - Scale Dense Tensor
	Multi-Task Tensor Decomposition for Sparse Ensemble Simulation

	REFERENCES

