
On Stochastic Modeling Applications to Cybersecurity:

Loss, Attack, and Detection

by

Axel La Salle

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved June 2023 by the
Graduate Supervisory Committee:

Nicolas Lanchier, Co-Chair
Petar Jevtić, Co-Chair

Dragan Boscovic
Sebastien Motsch
Rodrigo Platte

ARIZONA STATE UNIVERSITY

August 2023

©2023 Axel La Salle

All Rights Reserved

ABSTRACT

The main objective of this work is to study novel stochastic modeling applications

to cybersecurity aspects across three dimensions: Loss, attack, and detection. First,

motivated by recent spatial stochastic models with cyber insurance applications, the

first and second moments of the size of a typical cluster of bond percolation on finite

graphs are studied. More precisely, having a finite graph where edges are independently

open with the same probability p and a vertex x chosen uniformly at random, the

goal is to find the first and second moments of the number of vertices in the cluster of

open edges containing x. Exact expressions for the first and second moments of the

size distribution of a bond percolation cluster on essential building blocks of hybrid

graphs: the ring, the path, the random star, and regular graphs are derived. Upper

bounds for the moments are obtained by using a coupling argument to compare the

percolation model with branching processes when the graph is the random rooted tree

with a given offspring distribution and a given finite radius. Second, the Petri Net

modeling framework for performance analysis is well established; extensions provide

enough flexibility to examine the behavior of a permissioned blockchain platform

in the context of an ongoing cyberattack via simulation. The relationship between

system performance and cyberattack configuration is analyzed. The simulations

vary the blockchain’s parameters and network structure, revealing the factors that

contribute positively or negatively to a Sybil attack through the performance impact

of the system. Lastly, the denoising diffusion probabilistic models (DDPM) ability for

synthetic tabular data augmentation is studied. DDPMs surpass generative adversarial

networks in improving computer vision classification tasks and image generation, for

example, stable diffusion. Recent research and open-source implementations point to a

strong quality of synthetic tabular data generation for classification and regression tasks.

i

Unfortunately, the present state of literature concerning tabular data augmentation

with DDPM for classification is lacking. Further, cyber datasets commonly have highly

unbalanced distributions complicating training. Synthetic tabular data augmentation

is investigated with cyber datasets and performance of well-known metrics in machine

learning classification tasks improve with augmentation and balancing.

ii

DEDICATION

To my family and friends.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . ix

CHAPTER

1 SIZE DISTRIBUTION OF BOND PERCOLATION CLUSTERS ON

FINITE GRAPHS AND INSURANCE PREMIUM 5

1.1 First and Second Moments of the Size Distribution of Bond Per-

colation Clusters on Finite Graphs . 6

1.1.1 Introduction . 6

1.1.2 Percolation Model for the Loss Distribution 7

1.1.3 Size Distribution of the Percolation Clusters 10

1.1.4 Preliminary Results . 16

1.1.5 Proof of Theorem 1 . 17

1.1.6 Proof of Theorem 2 . 20

1.1.7 Proof of Theorem 3 . 24

1.1.8 Proof of Theorem 4 . 27

1.1.8.1 Number of Individuals in a Branching Process 27

1.1.9 Proof of Theorem 4 . 31

1.2 First and Second Moments of the Size Distribution of Bond Per-

colation Clusters on Regular graphs. 36

1.2.1 Introduction . 36

1.2.2 Model Description . 37

1.2.3 Main Results . 38

1.2.4 Proof of Theorem 1 . 39

iv

CHAPTER Page

1.2.5 Proof of Theorem 2 . 45

1.3 Exact and Approximations to First and Second Moments of the

Size Distribution of Bond Percolation Cluster on the Platonic Solids 46

1.3.1 Introduction . 46

1.3.2 Main Results . 47

1.3.3 Preliminary Results . 49

1.3.4 Proof of Theorem 1 . 52

1.3.5 Proof of Theorem 2 . 56

1.3.6 Proof of Theorem 3 . 58

2 JOINT MODELING OF HLF AND SYBIL ATTACK: PETRI NET

APPROACH . 62

2.1 Introduction . 63

2.2 Hyperledger Fabric Version V2.x Description . 68

2.3 Petri Nets Basics . 69

2.3.1 Stochastic Petri Net . 72

2.3.2 Generalized Stochastic Petri Net . 73

2.3.3 Stochastic Reward Net . 74

2.4 Hyperledger Fabric Platform . 75

2.4.1 Version Releases . 75

2.4.2 HLF Network Initialization . 75

2.5 SRN Hyperledger Fabric Model . 77

2.5.1 SRN Model Features . 80

2.6 Simulations . 82

2.7 Numerical Results . 85

v

CHAPTER Page

2.8 Validation . 95

2.9 Conclusion . 100

3 EFFECT OF MACHINE LEARNING PERFORMANCE WITH SYN-

THETIC DATA AUGMENTATION FROM DIFUSSION MODELS ON

CYBER-INTRUTION DATASETS . 103

3.1 Introduction . 104

3.2 Literature Review . 104

3.3 Methods . 105

3.4 Evaluation Metrics . 106

3.4.1 ROC Curve . 108

3.4.2 Precision-Recall Curve . 108

3.4.3 F1-Score . 109

3.4.4 Matthew’s Correlation Coefficient. 109

3.5 Datasets . 110

3.5.1 Credit Card Fraud Detection . 110

3.5.2 Ethereum Transactions . 110

3.5.3 UNSW-NB15 . 111

3.5.4 BRL IoT Device Management over Blockchain 111

3.6 Results . 112

3.6.1 Augmenting with Synthetic Data . 113

3.6.2 Balancing with Synthetic Data . 114

3.7 Conclusion . 116

REFERENCES . 118

vi

LIST OF TABLES

Table Page

1. The Rate Parameters Varied and the Structural Variations of the SRN Net

(Endorsing Peers) in the Set of Simulations. 83

2. SPNP Options for Discrete-Event Simulations Used. 84

3. The Rate Parameters Kept Constant During the Set of Simulations. 85

4. The Rate Parameters Categories and the Structural Variations of the SRN

Net (Number of Endorsing Peers) in the Set of Simulations. 86

5. Model Parameters Obtained from Validating Framework. See Section 2 For

a Description of Model Parameters. 99

6. Mean Queue Length Comparison Between Spnp and Validating Framework

under Baseline Scenario. 100

7. Confusion matrix for two classes, negative (non-fraud) and positive (frauds).107

8. Summary of the Two Datasets. 111

9. UNSW NB15 Data Distribution for Train and Test Sets. 112

10. Summary of ROC AUC Performance Metric for an XGBoost Classifier. 114

11. Summary of Performance Metrics for the BRL IoT Dataset with XGBoost

Classifier. 114

12. Summary of Results for UNSW NB15 Dataset on Test set. Metrics for

Model Trained with Original Train and Balanced Train Set Shown. 115

13. Summary of Performance Metrics for the Credit Card Dataset with XGBoost

Classifier. 115

14. Summary of Performance Metrics for the Ethereum Dataset with XGBoost

Classifier. 115

vii

Table Page

15. Percent Improvement of Performance Metrics with Decision Tree and Ran-

dom Forest Classifiers under Synthetic Tabular Data Balancing from CT-

GAN and TabDDPM on the UNSW NB15 Dataset. 116

viii

LIST OF FIGURES

Figure Page

1. First Moment, Square Root of the Second Moment, and Variance of the

Size of the Infection on the Ring, Path and (Deterministic) Star with 10

Vertices as a Function of p. The Last Figure Shows the Bound ϕ1 and the

Square Root of the Bound ϕ2 given in Theorem 4 for the Binary Tree with

Radius 3 and 1+2+4+8 = 15 Vertices. 12

2. Illustration of the Events B1, B2, B3 in (12). The Solid Lines Represent the

Edges That Must Be Open Whereas the Dashed Lines Represent the Edges

That Can Be Either Open or Closed. 18

3. Illustration of the Three Orderings in (18). The Solid Lines Represent the

Edges That Must Be Open Whereas the Dashed Lines Represent the Edges

That Can Be Either Open or Closed. 21

4. Illustration of the Three Cases in (26). The Solid Lines Represent the Edges

That Must Be Open Whereas the Dashed Lines Represent the Edges That

Can Be Either Open or Closed. 25

ix

Figure Page

5. Illustration of the Coupling Used in the Proof of Lemma 17 When T Is the

Deterministic Binary Tree with Radius Two. The Picture Shows That, for

Any given Vertex (Vertex 2 in Our Example), This Tree Can Be Embedded

in the Rooted Tree with Degree 3 and Radius 4 in Such a Way That the

Designated Vertex Becomes the Root. Note That the Subtree Drawn in

Thick Lines on the Right-hand Side Is Indeed Isomorphic to the Binary

Tree on the Left-hand Side. In Particular, the Size of an Infection Starting

at Vertex 2 on the Tree T Is Dominated Stochastically by the Size of an

Infection Starting at the Root on the Tree T+ Provided the Probability of

Contagion p Is the Same. 32

6. Example of a Construction of the Birth Process from a Realization of Bond

Percolation on the Dodecahedron. The Thick Lines Represent the Open

Edges, the Black Dots Represent the Vertices Occupied by a Particle at

Each Generation, and the Arrows Represent the Birth Events, from Parent

to Children. 40

7. Picture of the Five Platonic Solids. The Number Between Parentheses

Refer to the Number of Vertices, the Number of Edges, and the Number of

Faces, Respectively. Note That the Tetrahedron Is Dual to Itself, the Cube

and the Octahedron Are Dual to Each Other, and the Dodecahedron and

Icosahedron Are Dual to Each Other. 48

x

Figure Page

8. First Moment on the Left and Second Moment on the Right of the Size

Distribution of Bond Percolation Clusters on the Tetrahedron as Function

of p. The Thick Solid Lines Show the Exact Expressions in Theorem 1 of

This Section While the Other Curves, Labeled Th 3, and Theorems 1, 2

from the Previous Section Labeled as Th1, and Th 2 Respectively. 49

9. First Moment on the Left and Second Moment on the Right of the Size

Distribution of Bond Percolation Clusters on the Cube (Top) and the

Octahedron (Bottom) as Functions of the Probability p. The Thick Solid

Lines Show the Exact Expressions Found in Theorem 2 of This Section, the

Thick Dashed Lines Show the Second Moment Obtained from the Average

of One Hundred Thousand Independent Realizations of the Process for

Various Values of p, and the Other Curves Show the Upper Bounds in Th 1

and Th 2 from the Previous Section for the Appropriate Values of D and N . 50

10. First Moment on the Left and Second Moment on the Right of the Size

Distribution of Bond Percolation Clusters on the Dodecahedron (Top) and

Icosahedron (Bottom) as Functions of the Probability p. The Thick Dashed

Lines Show the Second Moment Obtained from the Average of One Hundred

Thousand Independent Realizations of the Process for Various Values of p

While the Other Curves Show the Upper Bounds in Th 1 and Th 2 from

the Previous Section for the Appropriate Values of the Degree D and the

Number of Vertices N , and the Lower Bounds in Th 3. 51

xi

Figure Page

11. The Three Pictures on the Left Show Planar Representations of the Tetra-

hedron, the Cube and the Octahedron, along with an Arbitrary Labeling of

Their Edges. The Tables on the Right Give the List of the Self-avoiding

Paths Connecting the Two Vertices (or Pairs of Self-avoiding Paths Con-

necting the Three Vertices) Represented by the Black, Dark Grey, Light

Grey And/Or White Dots in the Pictures. Each Path Is Represented by

the Collection of Its Edges Using the Labels Shown in the Pictures. The

Numbers in the First Column of Each Table Indicate the Length of the Paths. 53

12. Coefficients Returned by Algorithm (1.55) for the Dodecahedron (Left)

and the Icosahedron (Right) Using the Self-avoiding Paths Represented

in Figure 11. The Last Column of Each Table Is Equal to the Linear

Combination of the Other Columns with Weight given by the Value of

The Ns in the Second Row. Because We Only Look at a Subset of the

Self-avoiding Paths Connecting Two Vertices the Last Column Now Gives

the Coefficients of a Polynomial In p That Is Smaller than the First Moment

of the Cluster Size. 57

13. Picture of the Self-avoiding Paths with Length at Most Five Connecting

Two Vertices of the Dodecahedron at Respectively Distance 1, 2, 3, 4, and

5, of Each Other, and Picture of the Self-avoiding Paths with Length at

Most Three Connecting Two Vertices of the Icosahedron at Respectively

Distance 1, 2, and 3, of Each Other. The Label (2) next to Some Pictures

Means That the Mirror Image of the Path Is Another Path Connecting the

Same Two Vertices. 59

xii

Figure Page

14. Coefficients Returned by Algorithm (19) for the Dodecahedron (Left) and

the Icosahedron (Right) Using the Self-avoiding Paths Represented in Figure

8. The Last Column of Each Table Is Equal to the Linear Combination

of the Other Columns with Weight given by the Value of the Ns in the

Second Row. Because We Only Look at a Subset of the Self-avoiding Paths

Connecting Two Vertices the Last Column Now Gives the Coefficients of a

Polynomial in p That Is Smaller than the First Moment of the Cluster Size. 61

15. A Simple Petri Net Consisting of Three Places with Four Tokens in P1, One

Transition T0 and Three Arcs . 70

16. Firing Sequence of Petri Net . 72

17. HLF Network Initialization . 77

18. Decomposition of HLF model . 79

19. Petri Net Model for Baseline Scenario When There Is No Sybil Attack. 80

20. HLF SRN Model of Sybil Attack Scenario. 81

21. Average Endorsement Time of Malicious Transactions (Tokens) in Time

- Comparison Between the Change of the Number of Malicious Peers Vs.

Change in Malicious Peers Endorsement Rate. 87

22. Average Endorsement of Regular Transactions (Tokens) in Time - Compari-

son Between the Change of the Number of Malicious Peers Vs. Change in

Malicious Peers Endorsement Rate. 88

23. Average Endorsement of Regular Transactions (Tokens) in Time - with and

Without Cyber Attack Component. 89

25. Average Endorsement of Transactions (Tokens) in Time. 91

26. Average Endorsement of Transactions (Tokens) in Time. 93

xiii

Figure Page

27. Average Endorsement of Transactions (Tokens) in Time. 94

28. Hyperledger Fabric Network Set-Up . 97

29. After Separating into a Training and Testing the Training Set Is Used for

Synthetic Data Generation. The Test Set Is Not Leaked. 106

xiv

INTRODUCTION

1

Cybersecurity risks, losses, and attacks are constant threats affecting every industry

and government in the world. Recently, novel stochastic modeling applications have

emerged in the academic and industry setting, evolving ever-increasingly. A recent

definition of cyber risk appears in [1] stating that ‘cyber risk means any risk of financial

loss, disruption or damage to an organization’s reputation from some sort of failure of

its information technology systems.’. First, however, we focus on the reformulation

in [2]. Motivated by the lack of loss distributions in the cyber insurance setting,

Jevtic and Lanchier introduced a realistic framework based on random graphs and

percolation theory to quantify the loss distribution due to cyberattacks on Local Area

Networks in small and medium size companies [2]. In the context of Blockchain 2.0,

their framework is generalized for cyber risk in the context of smart contracts [3].

Furthermore, their modeling framework is applicable to many industry cases. The

modeling framework for cyber risk is adapted in [4] for the healthcare hospital setting.

Additional industry-specific case studies can be found in [5]. In Chapter 1, we study

the first and second moments of bond percolation clusters on a class of finite graphs

that can be seen as building blocks to more general hybrid graphs. The network

infrastructures arising from smart technologies or enterprise networks are typically

more complex than these graphs. These complex structures, however, often consist of

the composition of these simple graphs, so studying these classes of graphs above is a

good starting point.

Hyperledger Fabric (HLF) is an open-source enterprise-grade permissioned dis-

tributed ledger technology (DLT) platform established under the Linux Foundation.

In the business context, it is the most highly used private blockchain platform today

[6]. Unfortunately, the advent of this new technology is rightfully accompanied by the

realization of its potential cyber vulnerabilities and worries about its future implica-

2

tions for the stability of our economic system and economic transactions relying on

this new technology. We can categorize HLF vulnerabilities into internal and external

issues and attacks. Internal vulnerabilities are specific to the blockchain protocol

and lie in configuration, consensus and endorsement, membership and access, and

chaincode. In contrast, external vulnerabilities include physical machine attacks and

endpoint security. Regarding HLF performance modeling and threat modeling, Place

Transition Net (PN) models are taking a prominent role. To expand the HLF Petri

Net modeling literature work, we first use Petri Nets to model HLF. Next, we develop

a model of a cyber attack. Finally, we present a joint model of HLF and a cyber

attack. In the context of the simulation environment we develop to mimic real-world

situations, we investigate the joint behavior of effectively two joint systems and see

how their implementations affect mutual performance.

Finally, when it comes to data, the successful application of machine learning

models in various fields strongly depends on the data quality used for training. The

ability to obtain additional data can improve a machine learning model’s performance.

Unfortunately, this could prove challenging, costly, or, in some cases, impossible. More

specifically, leveraging additional data can be crucial for achieving satisfactory per-

formance for applications involving classification tasks in the unbalanced setting and

anomaly detection tasks via unsupervised and semi-supervised methods. Originally

developed for image generation, diffusion models have shown promise in generating

realistic synthetic tabular data. Emerging evidence points to the eventual triumph of

diffusion models over generative adversarial networks analogous to what has happened

in the computer vision field with image generation. This chapter explores the adapta-

tion of recent open-source implementations of diffusion models for synthetic tabular

data generation. We discuss the principles of diffusion models, their application to

3

tabular data, and the challenges and future directions in this field in the context

of cybersecurity and anomaly detection. We aim to provide insights and empirical

evidence into the effectiveness of diffusion models for generating high-quality synthetic

tabular datasets focusing on cyber and anomaly detection datasets for performance

improvements through synthetic data augmentation in the tabular setting.

4

Chapter 1

SIZE DISTRIBUTION OF BOND PERCOLATION CLUSTERS ON FINITE

GRAPHS AND INSURANCE PREMIUM

5

1.1 First and Second Moments of the Size Distribution of Bond Percolation

Clusters on Finite Graphs

1.1.1 Introduction

The bond percolation cluster on a connected graph is a collection of independent

Bernoulli random variables with the same success probability p indexed by the set

of edges, with the edges associated to a success being referred to as open edges, and

the ones associated to a failure being referred to as closed edges. The open cluster

containing a vertex x is the random subset of vertices that are connected to vertex x by

a path of open edges. Bond percolation is traditionally studied on infinite graphs such

as the d-dimensional integer lattices, and the quantity of interest is the percolation

probability, the probability that the cluster containing the origin is infinite [7, 8]. The

original motivation was to determine the probability that the center of a porous stone

immersed in water is wet, but bond percolation can more generally be seen as the

simplest spatially explicit invasion model and now has a number of applications.

In this chapter, we are interested in bond percolation on finite graphs. In particular,

all the open clusters are finite so whether the open cluster containing a given vertex is

infinite or not becomes irrelevant. Instead, we investigate the size distribution of the

open cluster containing a vertex chosen uniformly at random. Studying the size of a

typical cluster is natural from a mathematical point of view but our main motivation

originates from cyber insurance.

Due to the increasing use of smart technologies, our economy is now exposed to

cyber risks caused by system failures, computer viruses, cyber attacks, etc. thus the

need for customers to look for an insurance. Insurance premiums (the amount of

6

money an individual or business must pay for an insurance policy) are computed

based on the mean and variance of the aggregate loss distribution over a given period

of time which, in turn, are typically estimated from past data. However, due to the

lack of data in the context of cyber risk, insurance companies are unable for the

moment to have a good idea of what their premiums should be. Motivated by this

problem, Jectić and Lanchier [2] recently introduced a stochastic modeling framework

to evaluate insurance premiums in the context of cyber risk. In their model, the

system to be insured consist of a finite random graph equipped with a cost topology

representing the network infrastructure of components that are attributed a certain

monetary value. Losses occur at the times of a Poisson process with a fixed intensity,

and each loss is modeled from a realization of bond percolation and quantified as

the combined cost of all the components in the open cluster containing a component

chosen uniformly at random. Using some conditionings, one can prove that the mean

and variance of the aggregate loss, which are key quantities to compute insurance

premiums, can be expressed using the first and second moments of the size of the

open cluster containing a vertex chosen uniformly at random, the two quantities we

study in this chapter.

1.1.2 Percolation Model for the Loss Distribution

To quantify the aggregate loss in a given time window, Jevtic and Lanchier [2, 3]

introduced a class of stochastic models that consists of the combination of a Poisson

process, independent realizations of a random graph equipped with a random cost

topology, and independent realizations of bond percolation processes on these graphs.

More precisely, the process can be constructed using the following components:

7

• a Poisson process (Nt) with intensity λ representing the times at which losses

occur,

• a finite random graph G = (V ,E) representing the network infrastructure,

• a probability p ∈ (0, 1) representing the vulnerability of the network,

• a positive distribution C representing the cost distribution.

The aggregate loss Lt at time t is determined as follows. At the arrival times

Ti = inf{t : Nt = i} for all i = 1, 2, ...

of the Poisson process, we let

Gi = (Vi,Ei) for all i = 1, 2, ...

be independent (and identically distributed) realizations of the random graph G , and

assume that an infection resulting in a loss spreads at time Ti on the graph Gi. To

model the spread of the infection and quantify the loss, we use bond percolation with

parameter p, i.e., we let

ξi(e) = Bernoulli(p) for all e ∈ Ei and i = 1, 2, ...

be independent. As previously mentioned, edges with ξi(e) = 1 are referred to as open

edges while the other edges are referred to as closed edges. Assuming in addition that

the consecutive infections start at a vertex Ui chosen uniformly at random, i.e.,

Ui = Uniform(Vi) for all i = 1, 2, ...

the set of vertices that get infected at time Ti is

Ci(Ui) = {y ∈ Vi : there is a path of open edges connecting Ui and y},

8

the open cluster containing Ui. Finally, to quantify the financial or reputational loss

resulting from the infections, we attach a random cost to each vertex by letting

Ci(y) for all y ∈ Vi and i = 1, 2, ...

be independent and identically distributed with distribution C. We then define the

size of the infections and the losses resulting from the infections as

Si = card(Ci(Ui)) and Li =
∑
y∈Vi

Ci1{y ∈ Ci(Ui) =
∑

Ci(Ui)

Ci(y)

the number of infected vertices and the cumulative cost of all these vertices. The

aggregate loss at time t is the sum of the all losses by time t, i.e.,

Lt =
Nt∑
i=1

Li =
Nt∑
i=1

∑
y∈Ci(Ui)

Ci

As previously mentioned, insurance premiums are computed from the mean and

variance of the aggregate loss Lt. Because the consecutive losses Li are defined from

independent and identically distributed random objects, they are themselves indepen-

dent and identically distributed. In particular, to avoid cumbersome notations, we

can drop all the subscripts i referring to the number of the infections. By conditioning

on the number of infections, we get

E(Lt) = E(E(Lt|Nt)) = E(NtE(L)) = E(Nt)E(L).

Using also independence and the law of total variance, we obtain

Var(Lt) = E(Var(Lt)|Nt) + Var(E(Lt)|Nt)

= E(NtVar(L)) + Var(NtE(L))

= E(Nt)Var(L) + Var(Nt)(E(L))2

9

Because Nt = Poisson(λt), we deduce that

E(Lt) = λtE(L) and Var(Lt) = λtVar(L) + λt(E(L))2 = λtE(L2) (1.1)

showing that the mean and variance of the aggregate loss can be conveniently expressed

using the first and second moments of the loss L resulting from a single infection.

Similarly, conditioning on the size of the infection and using independence of the local

costs, we get

E(L) = E(E(L|S)) = E(SE(C)) = E(S)E(C)

E(L2) = E(E(L2|S)) = E(SE(C2) + S(S − 1)(E(C)2))

= E(S)E(C2) + E(S2)(E(C))2 − E(S)(E(C))2

= E(S)Var(C) + E(S2)(E(C))2

(1.2)

Combining (1.1) and (1.2), we deduce that

E(Lt) = λtE(S)E(C)

Var(Lt) = λtE(S)Var(C) + λtE(S2)(E(C))2
(1.3)

which shows that computing the mean and variance of the aggregate loss in a given time

window reduces to computing the first and second moments of the size distribution of

the bond percolation cluster containing a vertex chosen uniformly at random. Studying

the size distribution, however, is mathematically challenging due to the presence of

spatial correlations: the fact that the states at different vertices (infected or not) are

not independent. In particular, computing the first and second moments of the size of

a percolation cluster is graph-specific. In the next section, we state our main results,

focusing on four different classes of finite graphs.

1.1.3 Size Distribution of the Percolation Clusters

Motivated by (1.3) and (1.4), our main results focus on estimates for the first and

10

second moments of the size distribution of bond percolation cluster on four classes

of finite graphs: deterministic rings, deterministic paths, random stars, and random

rooted trees with a fixed radius. The network infrastructures arising from smart

technologies are typically more complex than these graphs. These complex structures,

however, often consist of the composition of these simple graphs, so studying the four

classes of graphs above is a good starting point.

Ring. To begin with, we focus on the ring with R edges (and R vertices). Because

there are two self-avoiding paths connecting any two vertices, one needs to use the

inclusion-exclusion identity to determine the probability of a path of open edges

connecting a given vertex to the origin of the infection, but the calculations are

simplified due to spherical symmetry.

Theorem 1 – For the ring with R edges,

E(S) =
1 + p

1− p
−

(
2

1− p
+ (R− 1)

)
pR

E(S2) = 1 +
6p

(1− p)2
−

[(
6

1− p

)(
R +

p

1− p

)
+ (R− 1)(2R− 1)

]
pR

Path. We now look at the path with R edges (and R+ 1 vertices). In contrast

with the ring, there is now a unique self-avoiding path connecting any two vertices,

so computing the probability that a given vertex is connected to the origin of the

infection by a path of open edges (and therefore infected) is simpler, but spherical

symmetry is lost.

Theorem 2 – For the path with R edges,

E(S) =

(
1 + p

1− p

)
−

(
2p

R + 1

)
1− pR+1

(1− p)2

E(S2) = 1 +
6p

(1− p)2

[
1−

(
1 + p

R + 1

)(
1− pR+1

1− p

)
+ pR+1

]

11

Figure 1. First Moment, Square Root of the Second Moment, and Variance of the
Size of the Infection on the Ring, Path and (Deterministic) Star with 10 Vertices as
a Function of p. The Last Figure Shows the Bound ϕ1 and the Square Root of the
Bound ϕ2 given in Theorem 4 for the Binary Tree with Radius 3 and 1+2+4+8 = 15
Vertices.

12

Note that, for bond percolation on the integers, the open cluster containing the

origin spans from vertex −X− to vertex X+ where X± are two independent shifted

geometric random variables (number of failures before the first success) with success

probability 1 − p, the probability that an edge is closed. In particular, for bond

percolation on the integers,

E(S) = E(1 +X+ +X−) = 1 + 2
(1

1− p
− 1

)
=

2

1− p
− 1 =

1 + p

1− p

which, in agreement with our results, corresponds to the (common) limit as R → ∞ of

the first moment in the two theorems. Similarly, for bond percolation on the integers,

Var(S) = 2Var(X+) =
2p

(1− p)2
and E(S2) =

2p

(1− p)2
+
(
(
1 + p

1− p
)2
)
= 1 +

6p

(1− p)2

the (common) limit as R → ∞ of the second moment in both theorems.

Star. The next graph is the random star with X edges (and X +1 vertices) where

X is a positive random variable with the probability mass function (pk)
∞
k=1 and finite

mean and variance

µ = E(X) =
∞∑
k=0

kpk < ∞ and σ2 = Var(X) =
∞∑
k=0

(k − µ)2pk < ∞

As for the path, there is a unique self-avoiding path connecting any two vertices, which

facilitates the analysis. Looking separately at the size of the open clusters containing

the center and containing a leaf, and using spherical symmetry, we get the following

theorem.

Theorem 3 – For the (random) star with X branches,

E(S) = 1 + 2E

(
X

X + 1

)
p+ E

(
X(X − 1)

X + 1

)
p2

E(S2) = 1 + 6E

(
X

X + 1

)
p+ 6E

(
X(X − 1)

X + 1

)
p2 + E

(
X(X − 1)(X − 2)

X + 1

)
p3

13

Tree. Finally, we study the size of the bond percolation clusters on the random

rooted tree with offspring distribution X and radius R. To construct this random

graph, we draw k edges with probability pk starting from a root, and additional edges

starting from each of the subsequent vertices using the same probability distribution.

The construction stops after R steps, or generations, so the tree has radius R. Bond

percolation of this graph has already been studied in [2] where it is proved, using

combinatorial arguments to count the number of self-avoiding paths of a given length

starting from a given vertex, that the conditional mean is equal to

Er(S) =
1

1− µp

(
1 + p(1− pr)− (µp)R−r+1(1− p2(1 + (µ− 1)(µp2)r))

1− µp2

)
for all 0 ≤ r ≤ R. Here, the subscript r refers to the conditional mean given that

the infection starts at distance r from the root. See [2, Theorem 4] with p0 = 0. In

addition, uniformly in all possible realizations of the random tree, we have the following

upper bounds for the conditional variance and the conditional second moment:

Varr(S) ≤ (p−2R − 1)(Er(S))
2 therefore Er(S

2) ≤ (p−REr(S))
2.

See [2, Theorem 5]. Motivated by the lack of information about the origin of the

infection, rather than computing conditional quantities that might not be relevant for

insurance premiums, we study their unconditional counterparts when the infection

starts from a vertex chosen uniformly at random, just like we did for the other three

graphs. Using coupling arguments to compare the open cluster of bond percolation

with a certain branching process, we obtain the following upper bounds for the

unconditional first and second moments.

14

Theorem 4 – For the (random) rooted tree with radius R,

E(S) ≤ ϕ1(X,R) =
1− ν2R+1

+

1− ν+

E(S2) ≤ ϕ2(X,R) =
Σ2

+

(1− ν+)2

(1− ν4R+1

1− ν+
− (4R + 1)ν2R

+

)
+
(1− ν2R+1

+

1− ν+

)2

where ν+ = p(µ+ 1) and Σ2
+ = p(1− p)(µ+ 1) + p2σ2.

Based on their probabilistic interpretation, the upper bounds ϕ1 and ϕ2 in the theorem

must be increasing with respect to the radius. In particular, the theorem immediately

implies that, when ν+ < 1, we have the following (simpler) upper bounds that are

uniform in the radius:

E(S) ≤ limR→∞ϕ1(X,R) =
1

1− ν+

E(S2) ≤ limR→∞ϕ2(X,R) =
Σ2

+

(1− ν)3
+

1

(1− ν+)2

Figure 1 shows the first moment, the square root of the second moment, and the

variance of the size distribution computed from the first three theorems as a function

of the probability p. The last panel shows the upper bounds for the first moment and

the square root of the second moment in the last theorem as a function of p. The

reason for looking at the square root of the second moment is just a convenient choice

to plot the functions as the first moment and the square root of the second moment

both range from one when p = 0 to the number of vertices when p = 1. The rest of

the section is devoted to proofs. The next section explains how the moments of the

size distribution of a random percolation cluster are related to the (joint) probability

of open paths connecting pairs of vertices. These results hold for all graphs and are

applied in the three subsequent sections to rings, paths, and stars in order to prove the

first three theorems. The proof of the last theorem relies in addition on the properties

of a certain branching process and coupling arguments to compare this branching

process to the percolation clusters.

15

1.1.4 Preliminary Results

To begin with, we collect a few general results that will be used repeatedly across

the section regardless of the graph under consideration.

Having a realization G = (V ,E) of the random graph and a vertex x ∈ V , probabilities,

expected values, and variances with a subscript x refer to conditional counterparts

given that the infection starts at vertex U = x. Having another vertex y ∈ V , we

write x ↔ y to indicate that the two vertices are connected by a path of open edges.

That is, there exist

{x0, x1, x2, ..., xn ⊂ V } with x0 = x and xn = y

such that, for all j = 0, 1, ..., n− 1,

(xj, xj+1) ∈ E and ξ((xj, xj+1)) = 1

On the event that the infection starts at vertex U = x, we can keep track of the state

(infected or not) at each vertex by defining the function

ζ : V → {0, 1} with ζ(y) =

1 if y ∈ C (x)

0 if y /∈ C (x)

Observing that y ∈ C (x), meaning that y is infected, if and only if there is a path of

open edges connecting x, the origin of the infection, and vertex y, we deduce that the

conditional kth moment of the size distribution can be expressed using the probability

of open paths as

Ex(S
K) = Ex

(∑
y∈V

ζ(y)
)k

= Ex

(∑
X∈V k

ζ(X1) · · · ζ(Xk)
)

=
∑
X∈V k

Px(ζ(X1) = 1 for all i) =
∑
X∈V k

P (x ↔ Xi for all i)
(1.4)

16

Taking k = 1, 2, and conditioning on U , we get

E(S) =
∑
x∈V

Ex(S)P (U = x) =
1

card(V)

∑
P (x ↔ y) (1.5)

while the second moment can be expressed as

E(S2) =
∑
x∈V

Ex(S
2)P (U = x) =

1

card(V)

∑
P (x ↔ y, x ↔ z) (1.6)

1.1.5 Proof of Theorem 1

In this section, G is the ring with R edges, and we write V = {0, 1, ..., R − 1}.

The probability that two given vertices are connected by an open path is slightly more

difficult to compute for this graph than for the path, the star and the tree because

there are two (rather than one) self-avoiding paths connecting the two vertices. The

analysis, however, is simpler overall because of the obvious symmetry of the graph

that implies that

E(Sk) =
R−1∑
x=0

Ex(S
k)P (U = x) =

1

card(V)

R−1∑
x=0

Ex(s
k) = E0(S

k) (1.7)

The following two lemmas give respectively the first and second moments of the size

distribution of the cluster of open edges containing vertex zero.

Lemma 5 – For all p ∈ (0, 1),

E0(S) =
1 + p

1− p
−

(2

1− p
+ (R− 1)

)
pR

Proof. Let y ∈ V . As previously mentioned, there are exactly two self-avoiding

paths going from zero to y, and we let A1 and A2 be the events that the path is going

clockwise.counter-clockwise is open. Because each edge is independently open with

probability p,

P (0 ↔ y) = P (A1 ∪ A2)

= P (A1) + P (A2)− P (A1 ∩ A2) = pd(0,y) + pR−d(0,y) − pR
(1.8)

17

Figure 2. Illustration of the Events B1, B2, B3 in (12). The Solid Lines Represent the
Edges That Must Be Open Whereas the Dashed Lines Represent the Edges That Can
Be Either Open or Closed.

Combining (4) and (8), we deduce that

E0(S) =
∑
y∈V

P (0 ↔ y) =
R−1∑
y=0

(py + pR−y − pR)

Then, using symmetry, we conclude that

E0(S) = 1 =
R−1∑
y=1

(py + pR−y − pR) = 1 +
R−1∑
y=1

(2py)− (R− 1)pR

= 1 + 2p
(1− pR−1

1− p

)
− (R− 1)pR =

(1 + p

1− p

)
−
(2

1− p
+ (R− 1)

)
pR

(1.9)

This completes the proof. □

Lemma 6 – For all p ∈ (0, 1),

E0(S
2) = 1 +

6p

(1− p)2
−

[(6

1− p

)(
R +

p

1− p
+ (R− 1)(2R− 1)

)]
pR

Proof. According to (1.4), the second moment is

E0(S
2) =

∑
y,z∈V

P (0 ↔ y, 0 ↔ z)

Decomposing depending on whether card{0, y, z} = 1, 2, 3, we get

E0(S
2) = 1 + 3

(∑
y ̸=0

P (0 ↔ y)
)
+ 2

(∑
0<y<z

P (0 ↔ y, 0 ↔ z)
)

(1.10)

18

Applying Lemma 5, the first sum in (1.10) is∑
y ̸=0

P (0 ↔ y) = E0(S)− 1 =
(1 + p

1− p

)
−
(2

1− p
+ (R− 1)

)
pR − 1

=
(2p

1− p

)
−
(2

1− p
+ (R− 1)

)
pR

(1.11)

To compute the last sum in (1.10), let 0 < y < z, and define the events

B1 = path (0, 1, ..., y, ..., z − 1, z) is open,

B2 = path (y, y + 1, ..., z, ..., R− 1, 0) is open,

B3 = path (z, z + 1, ..., 0, ..., y − 1, y) is open,

(1.12)

See Figure 2 above. Observe that 0 ↔ y and 0 ↔ z is and only if at least one of the

three events above occurs which, applying the inclusion-exclusion identity, gives

P (0 ↔ y, 0 ↔ z) = P (B1) + P (B2) + P (B3)− P (B1 ∩B2)

− P (B2 ∩B3)− P (B3 ∩B1) + P (B1 ∩B2 ∩B3)

= pz + pR−y + pR+y−z − pR − pR − pR + pR

= pz + pR−y + pR+y−z − 2pR

(1.13)

Summing over all 0 < y < z, we get

∑
0<y<z

pz =
R−2∑
y=1

R−1∑
z=y+1

pz =
R−2∑
y=1

(1− pR−y−1

1− p

)
=

1

1− p

R−2∑
y=1

(py+1 − pR) =
1

1− p

[
p2
(1− pR−2

1− p

)
− (R− 2)pR

] (1.14)

Similarly, we prove that∑
0<y<z

pR−y =
∑

0<y<z

pR+y−z =
1

1− p

[
p2
(1− pR−2

1− p

)
− (R− 2)pR

]
(1.15)

while for the last term in (1.13),∑
0<y<z

2pR = 2

(
R− 1

2

)
pR = (R− 1)(R− 2)pR (1.16)

19

Combining (1.13)-(1.16), we deduce that∑
0<y<z

P (0 ↔ y, 0 ↔ z) =
3

1− p

[
p2
(1− pR−2

1− p

)
− (R− 2)pR

]
− (R− 1)(R− 2)pR

then using also (1.10) and (1.11),

E0(S
2) = 1 +

(6p

1− p

)
−

(6

1− p
+ 3(R− 1)

)
pR

+
(6

1− p

)[
p2
(1− pR−2

1− p

)
− (R− 2)pR

]
− 2(R− 1)(R− 2)pR

Rearranging the terms and simplifying, we conclude that

E0(S
2) = 1 +

(6p

1− p
+

6p2

(1− p)2

)
−
(
3(R− 1) + 2(R− 1)(R− 2)

)
pR

−
(6

1− p

)(
1 +

1

1− p
+R− 2

)
pR

= 1 +
6p

(1− p)2
−

[(6

1− p

)(
R +

p

1− p

)
+ (R− 1)(2R− 1)

]
pR

This completes the proof. □

Theorem 1 immediately follows from (1.7) and Lemmas 5 and 6.

1.1.6 Proof of Theorem 2

We now assume that G is the path with R edges, and we write V = {0, 1, ..., R}.

To compute the unconditional first and second moments, we start by computing their

conditional counterparts given that the infection starts at x ∈ V using (1.4). The

next lemma focuses on the first moment and shows the first part of the theorem.

Lemma 7 – For all p ∈ (0, 1),

E(S) =
(1 + p

1− p

)
−
(2p

R + 1

)(1− pR+1

(1− p)2

)
Proof. Let x ∈ V . Due to the absence of cycle symmetry, we now have

P (x ↔ y) = pd(x,y) for all y ∈ V

20

Figure 3. Illustration of the Three Orderings in (18). The Solid Lines Represent the
Edges That Must Be Open Whereas the Dashed Lines Represent the Edges That Can
Be Either Open or Closed.

This together with (1.4), implies that

Ex(S) =
∑
y∈V

pd(x,y) = 1 +
∑

y = 0x−1px−y +
R∑

y=x+1

py−x

= 1 +
x∑

y=1

py +
R−x∑
y=1

py = 1 + p
(1− px

1− p

)
+ p

(1− pR−x

1− p

) (1.17)

Note that the previous equation also holds for x = 0 and x = R. In particular,

combining (5) and (17), we deduce that the first moment is given by

E(S) =
1

R + 1

R∑
x=0

(
1 + p

(1− px

1− p

)
+ p

(1− pR−x

1− p

))
= 1 +

(2p

1− p

)
−
(1

R + 1

)(p

1− p

) R∑
x=0

(px + pR−x)

Using some evident symmetry, and simplifying,

E(S) = 1 +
(2p

1− p

)[
1−

(1

R + 1

) R∑
x=0

px
]

= 1 +
(2p

1− p

)[
1−

(1

R + 1

)(1− pR+1

1− p

)]
=

(1 + p

1− p

)
−
(2p

R + 1

)(1− pR+1

(1− p)2

)
This completes the proof. □

We now look at the second moment of the size distribution.

21

Lemma 8 – For all p ∈ (0, 1),

E(S2) = 1 +
6p

(1− p)2

[
1−

(1 + p

R + 1

)(1− pR+1

1− p
+ pR+1

)]
Proof. Note that, for all x, y, x ∈ V ,

P (x ↔ y, x ↔ z) =

pd(x,z) = pz−x when x ≤ y ≤ z,

pd(y,z) = pz−y when y ≤ x ≤ z,

pd(x,y) = px−y when y ≤ z ≤ x

(1.18)

See Figure 3 for an illustration of these three cases. In particular, partitioning based

on the possible orderings of the vertices, accounting for symmetry, and using (4), we

deduce that

Ex(S
2) = 2

(∑
x≤y≤z

pz−x +
∑

y≤z≤x

px−y +
∑

y≤x≤z

pz−y
)
+
(∑

y≤x

px−y +
∑
x≤z

pz−x
)

(1.19)

For all x < R, the first sum in (1.19) is

∑
x≤y≤z

pz−x =
R−1∑
y=x

R∑
z=y+1

pz−x =
R−1∑
y=x

py−x+1
(1− pR−y

1− p

)
=

p

1− p

y=x∑
R−1

(py−x − pR−x) =
p

1− p

(1− pR−x

1− p
− (R− x)pR−x

) (1.20)

The left-hand side and right-hand side are both equal to zero when x = R therefore

(20) also holds in this case. Similarly, the second sum in (19) is given by

∑
y≤x≤z

pz−y =
x∑

z=1

z−1∑
y=0

px−y =
p

1− p

(1− px

1− p
− xpx

)
(1.21)

for all x ∈ V . The third sum in (1.19) is

∑
y≤x≤z

pz−y =
x−1∑
y=0

R∑
z=x+1

pz−y =
x−1∑
y=0

px−y+1
(1− pR−x

1− p

)
=

(1− pR−x

1− p

) x+1∑
y=2

py = p2
(1− pR−x

1− p

)(1− px

1− p

) (1.22)

22

for all x ∈ V . Finally, the last two sums are given by∑
y≤x

px−y =
1− px+1

1− p
= 1 + p

(1− px

1− p

)
and

∑
x<z

pz−x = p
(1− pR−x

1− p

)
(1.23)

Combining (1.19)-(1.23), we deduce that

Ex(S
2) = 1 +

(
p

2p

1− p

)(1− px

1− p
+

1− pR−x

1− p

)
+ 2p2

(1− px

1− p

)(1− pR−x

1− p

)
−
(2p

1− p

)
(xpx + (R− x)pR−x)

Then, using (1.6), we get

E(S2) = 1 +
(
p+

2p

1− p

)(1

1− p

)[
2−

(1

R + 1

) R∑
x=0

(px + pR−x)
]

+ 2
(p

1− p

2[
(1 + pR)−

(1

R + 1

) R∑
x=0

(px + pR−x)
])

−
(2p

1− p

)(1

R + 1

) R∑
x=0

(xpx + (R− x)pR−x)

(1.24)

Observe also that
R∑

x=0

xpx = p
R∑

x=0

∂(px)

∂p
= p

∂

∂p

(R∑
x=0

)
= p

∂

∂p

(1− pR+1

1− p

)
= p

(RpR+1 − (R + 1)pR + 1

(1− p)2

)
=

p

1− p

[(1− pR+1

1− p

)
− (R + 1)pR

] (1.25)

Combining (1.24) and (1.25), and using symmetry,

E(S2) = 1 +
(
p+

2p

1− p

)(2

1− p

)[
1−

(1

R + 1

)(1− pR+1

1− p

)]
+ 2

(2

1− p

)2[
(1 + pR)−

(2

R + 1

)(1− pR+1

1− p

)]
+
(2p

1− p

)2[
pR −

(1

R + 1

)(1− pR+1

1− p

)]
then simplifying, we conclude that

E(S2) = 1 +
6p

(1− p)2

[
1−

(1 + p

R + 1

)(1− pR+1

1− p

)
+ pR+1

]
This completes the proof. □

23

1.1.7 Proof of Theorem 3

In this section, we study the size distribution of the clusters on the random star

with X branches, where X is a positive integer-valued random variable. We write

V = {0, 1, ..., X} with vertex 0 referring to the center of the star. Because the center

plays a special role, to find the moments of the size distribution, we first look at their

conditional counterparts given that the infection starts from the center, and given

that the infection starts from a leaf, respectively.

Lemma 9 – For all k ≥ 1 and p ∈ (0, 1),

E0(S|X = k) = 1 + kp and E0(S
2|X = k) = 1 + 3kp+ k(k − 1)p2

Proof. When the infection starts at the center, the probability that leaf y gets

infected is the probability p that edge (0, y) is open. This and (4) imply that

E0(S|X = k) =
k∑

y=0

P (0 ↔ y) = 1
k∑

y=1

P (0 ↔ y) = 1 + kp

To deal with the second moment, observe that

P (0 ↔ y, 0 ↔ z) =

p0 when card{0, y, z} = 1,

p1 when card{0, y, z} = 2,

p2 when card{0, y, z} = 3

(1.26)

Using again (1.4), and decomposing based on the cardinal,

E0(S
2|X = k) =

∑
y,z∈V

P (0 ↔ y, 0 ↔ z)

= P (0 ↔ 0) + 3
(∑

y ̸=0

P (0 ↔ y)
)
+ 2

(∑
0<y<z

P (0 ↔ y, 0 ↔ z)
) (1.27)

24

Figure 4. Illustration of the Three Cases in (26). The Solid Lines Represent the Edges
That Must Be Open Whereas the Dashed Lines Represent the Edges That Can Be
Either Open or Closed.

Counting the number of vertices and combining (1.26) and (1.27),

E0(S
2|X = k) = P (0 ↔ 0) + 3kP (0 ↔ 1) + k(k − 1)P (0 ↔ 1, 0 ↔ 2)

= 1 + 3kp+ k(k − 1)p2

This completes the proof. □

We now look at the size distribution given that the infection starts from a leaf

x ̸= 0.

Lemma 10 – For all k ≥ 1 and p ∈ (0, 1),

Ex(S) = 1 + p+ (k − 1)p2

Ex(S
2) = 1 + 3p+ 5(k − 1)p2 + (k − 1)(k − 2)p3

Proof. When the infection starts at x ̸= 0, the probability that a leaf y ̸= x gets

infected is the probability p2 that both (0, x) and (0, y) are open. This and (4) imply

that

Ex(S|X = k) =
k∑

y=0

P (x ↔ y) = 1 + p+
∑
y ̸=0,x

P (x ↔ y) = 1 + p+ (k − 1)p2

25

Now, for y = 0 and/or z = 0,

P (x ↔ y, x ↔ z) =

p1 when card{x, y, z} = 2,

p2 when card{x, y, z} = 3

(1.28)

while for all y, z ̸= 0,

P (x ↔ y, x ↔ z) =

p0 when card{x, y, z} = 1,

p2 when card{x, y, z} = 2,

p3 when card{x, y, z} = 3

(1.29)

In addition, using (1.4) and spherical symmetry, we have

Ex(S
2|X = k) = 3P (1 ↔ 0) + 2(k − 1)P (1 ↔ 0, 1 ↔ 2) + P (1 ↔ 1)

+ 3(k − 1)P (1 ↔ 2) + (k − 1)(k − 2)P (1 ↔ 2, 1 ↔ 3)

(1.30)

Combining (1.28)-(1.30), and simplifying, we get

Ex(S
2|X = k)1 + 3p+ 5(k − 1)p2 + (k − 1)(k − 2)p3

This completes the proof. □

Combining Lemmas 9 and 10, we can now compute the unconditional first and

second moments given in the theorem when the infection starts at a vertex chosen

uniformly at random. The two parts of the theorem are proved in the following two

lemmas, respectively.

Lemma 11 – For all p ∈ (0, 1),

E(S) = 1 + 2E
(X

X + 1

)
p+ E

(X(X − 1)

X + 1

)
p2

Proof. Conditioning on the origin U = Uniform(V), we get

E(S|X) =
X∑

x=0

E(S|X,U = x)P (U = x) =
1

X + 1

X∑
x=0

Ex(S|X)

26

Then, applying Lemmas 9 and 10, we deduce that

E(S|X) =
E0(S|X) +XE1(S|X)

X + 1
=

1 +Xp

X + 1
+

X(1 + p+ (X − 1)p2)

X + 1

= 1 + 2
(X

X + 1

)
p+

(X(X − 1)

X + 1

)
p2

Taking the expected value on both sides gives the result. □

Lemma 12 – For all p ∈ (0, 1),

E(S2) = 1 + 6E
(X

X + 1

)
p+ 6E

(X(X − 1)

X + 1

)
p2 + E

(X(X − 1)(X − 2)

X + 1

)
p3

Proof. Proceeding as in the proof of Lemma 11, we get

E(S2|X) =
E0(S

2|X) +XE1(S
2|X)

X + 1

Using again Lemmas 9 and 10, we deduce that

E(S2|X) =
1 + 3Xp+X(X − 1)p2

X + 1

+
X(1 + 3p+ 5(X − 1)p2 + (X − 1)(X − 2)p3)

X + 1

= 1 + 6
(X

X + 1

)
p+ 6

(X(X − 1)

X + 1

)
p2 +

(X(X − 1)(X − 2)

X + 1

)
p3

which gives the result. □

1.1.8 Proof of Theorem 4

1.1.8.1 Number of Individuals in a Branching Process

This section is devoted to collecting preliminary results about branching processes

that will be used later to prove Theorem 4. More precisely, we compute the first

and second moments of the number of individuals up to a given generation in a

27

Galton-Watson branching process (Xn) with offspring distribution Yn,i, i.e, the process

starts with X0 = 1 individual and

Xn+1 = Yn,1 + Yn,2 + · · ·Yn,Xn for all n ≥ 0 (1.31)

where the random variables Yn,i are independent and identically distributed with finite

mean and finite variance. The main objective is to study

X̄R = X0 +X1 + · · ·+XR,

the cumulative number of individuals up to generation R. The first and second

moments of this random variable can be conveniently expressed using the mean and

variance

E(Yn,i) = ν < ∞ and Var(Yn,i) = Σ2 < ∞

The next lemma gives the first moment.

Lemma 13 – For all ν ̸= 1,

E(X̂R) =
R∑

n=0

νn =
1− νR+1

1− ν

Proof. We proceed by induction. The lemma clearly holds for R = 0. Now, assume

that the result holds up to generation R. It follows from (31) that

E(Xn+1) = E(E(Xn+1|Xn)) = E(E(Yn,1 + Yn,2 + · · ·Yn,Xn|Xn))

= E(XnE(Yn,i)) = E(Xn)E(Yn,i) = νE(Xn)

(1.32)

In particular, an inductive argument gives

E(Xn) = νE(Xn−1) = ν2E(Xn−2) = · · · = νnE(X0) = νn, (1.33)

from which we deduce that

E(X̄R+1) = E(X̄R +XR+1) =
(R∑

n=0

νn
)
+ νR+1 =

R+1∑
n=0

νn

28

This completes the proof. □

We now compute the second moment of the number of individuals at a given

generation as well as the expected value of the product of the number of individuals

at two different generations. These two quantities will be used to compute the second

moment of X̄R.

Lemma 14 – For all ν ̸= 1 and Σ2 > 0,

E(X2
n) = Σνn−1

(n−1∑
k=0

νk
)
+ ν2n = Σνn−1

(1− νn

1− ν

)
+ ν2n

Proof. We again proceed by induction. The result is clear for n = 0. Now, assume

that this holds at generation n. Using the fact that Yn,i are independent, we get

E(X2
n+1) = E(E(X2

n+1|Xn)) = E(E((Yn,1 + · · ·Yn,Xn)|Xn))

= E(XnE(Y 2
n,i) +Xn(Xn − 1)(E(Yn,i))

2) = E(XnVar(Yn,i) + (XnE(Yn,i))
2)

= E(Σ2Xn + ν2Xn
2) = Σ2E(Xn) + ν2E(X2

n)

In particular, using (33) and our assumption, we conclude that

E(X2
n+1) = Σ2νn + ν2

(
Σ2νn−1

(n−1∑
k=0

)
+ ν2n

)
= Σ2νn

(
1 + ν

(n−1∑
k=0

νk
))

+ ν2n+2 = Σ2νn
(n∑

k=0

)
+ ν2n+2

This completes the proof. □

Lemma 15 – For all ν ̸= 1 and Σ2 > 0,

E(XnXm) = νm−nE(X2
n) = Σ2νm−1

(1− νn

1− ν

)
+ νm+n for all n ≤ m

Proof. Conditioning on Xn and using (32), we get

E(XnXm) = E(E(XnXm|Xn)) = E (XnE(Xm|Xn))

= E(Xn(ν
m−nXn)) = νm−nE(X2

n)

The second equality follows by using Lemma 14. □

29

Lemma 16 – For all ν ̸= 1and Σ2 > 0,

E(X̄2
n) =

Σ2

(1− ν)2

(1− ν2R+1

1− ν
− (2R + 1)νR

)
+
(1− νR+1

1− ν

)2

Proof. Combining Lemmas 14 and 15 implies that

E(X̄2
R) = E

(R∑
n=0

R∑
m=0

XnXm

)
= 2

R∑
n=0

R∑
m=0

E(XnXm)−
R∑

n=0

E(X2
n)

=
R∑

n=0

[(R∑
m=n

2νm−n
)
− 1

]
E(X2

n) =
R∑

n=0

[
2
(1− νR−n+1

1− ν

)
− 1

]
E(X2

n)

=
R∑

n=0

(1 + ν − 2νR−n+1

1− ν

)(
Σ2νn−1

(1− νn

1− ν

)
+ ν2n

)
(1.34)

Now observe that

R∑
n=0

(1 + ν − 2νR−n+1

1− ν

)(
Σ2νn−1

(1− νn

1− ν

))
=

Σ2

(1− ν)2

R∑
n=0

(
(1 + ν)(νn−1 − ν2n−1)− 2νR(1− νn)

)
=

Σ2

(1− ν)2

(
(1 + ν)

R−1∑
n=0

(νn − νν2n)− 2νR

R∑
n=0

(1− νn)
)

Computing these sums explicitly and simplifying,

R∑
n=0

(1 + ν − 2νR−n+1

1− ν

)(
Σ2νn−1

(1− νn

1− ν

))
=

Σ2

(1− ν2)

[
(1 + ν)

(1− νR

1− ν
− ν

(1− ν2R

1− ν2

))
− 2νR

(
R + 1− 1− νR+1

1− ν

)]
=

Σ2

(1− ν2)

[(1 + ν)(1− νR)

1− ν
− ν(1− ν2R)

1− ν
+

2νR(1− νR+1)

1− ν
− 2(R + 1)νR

]
=

Σ2

(1− ν2)

(1− ν2R+1

1− ν
− (2R + 1)νR

)
(1.35)

30

In addition, we have

R∑
n=0

(1 + ν − 2RR−n+1

1− ν

)
ν2n =

(1

1− ν

)[
(1 + ν)

R∑
n=0

ν2n − 2νR+1

R∑
n=0

]
=

(1

1− ν

)[
(1 + ν)

(1− ν2R+2

1− ν2

)
− 2νR+1

(1− νR+1

1− ν

)]
=

1− 2νR+1 + ν2R+2

(1− ν)2
=

(1− νR+1

1− ν

)2

(1.36)

Combining (1.34)-(1.36) implies the result. □

1.1.9 Proof of Theorem 4

The key to proving the upper bounds in Theorem 4 is to compare the bond percolation

process on the random rooted tree with the branching process studied in the previous

section. To compare both processes, the first step is to find a stochastic upper bound

for the random tree and the size of the infection. To do this, we consider the following

random tree.

T+ = rooted tree with radius 2R in which the number of edges starting from

each vertex (and moving away from the root) is k + 1 with probability pk

We further define a contagion process on this tree using again bond percolation by

assuming that the edges are independently open with probability p, and let

S+ = number of vertices connected to the root of T+ by an open path

which is also the size of the bond percolation cluster containing the root of the tree.

The tree is designed in such a way that S+ provides a stochastic upper bound for the

size distribution of the infection on the original random tree, as shown in the next

lemma.

31

Figure 5. Illustration of the Coupling Used in the Proof of Lemma 17 When T Is
the Deterministic Binary Tree with Radius Two. The Picture Shows That, for Any
given Vertex (Vertex 2 in Our Example), This Tree Can Be Embedded in the Rooted
Tree with Degree 3 and Radius 4 in Such a Way That the Designated Vertex Becomes
the Root. Note That the Subtree Drawn in Thick Lines on the Right-hand Side Is
Indeed Isomorphic to the Binary Tree on the Left-hand Side. In Particular, the Size
of an Infection Starting at Vertex 2 on the Tree T Is Dominated Stochastically by
the Size of an Infection Starting at the Root on the Tree T+ Provided the Probability
of Contagion p Is the Same.

Lemma 17 – Letting 0+ be the root of the tree T+ we have,

Px(S > s) ≤ P0+(S+ > s) for all s > 0 and x ∈ V

Proof. Let T = (V ,E) be a realization of the original random tree and x =

Uniform(V). First, we use a coupling argument to prove that T+ = (V+,E+) can be

constructed such that

P1 - the root of T+ coincides with x and

P2 - the random tree T is a subgraph of T+ i.e. V ⊂ V+ and E ⊂ E+

There is a natural approach to construct T+ which is illustrated in Figure 5 when

the original rooted tree is the deterministic binary tree with radius two. To turn the

picture into a rigorous construction, we proceed recursively by drawing edges starting

from the root x of the tree T+, then edges starting from each of the neighbors of

x (and moving away from x), and so on until generation 2R, the radius of T+. To

32

specify the set of edges at each generation, we let

E (y) = {z ∈ V : d(y, z) = 1 and d(x, z) = d(x, y) + 1} for all y ∈ V

be the set of neighbors of y that are one unit further away form x than y. Then, the

edges in E+ starting from the (new) root of x consists of

• the edges in E (x) when 0 < d(0, x), R,

• the edges in E (x) and one more edge when d(0, x) = 0,

• the edges in E (x) and k more edges with probability pk when d(0, x) = R,

where all the additional edges are not in E and their numbers are chosen independently.

Assuming that all the vertices in V+ that are at a distance 0 < n < 2R from x have

been constructed, for each y ∈ V+ at generation n, the set of edges starting from y

consisting of

• the edges in E (y) and one more edge when 0 < d(0, y) < R,

• the edges in E (y) and two more edges when d(0, y) = 0,

• a set of k + 1 edges with probability pk when d(0, y) = R or y ∈ V+ \ V .

where as previously the additional edges are not in E and chosen independently. The

construction stops at generation 2R. This construction implies that T+ is indeed the

random rooted tree with radius 2R and the desired degree distribution. In addition,

because

d(x, y) ≤ 2R for all x, y ∈ V ,

after at most 2R steps, all the vertices and edges in T have been included in the

graph T+, therefore the two properties P1 and P2 above hold. Next, we define bond

percolation processes with the same parameter p on each of the two trees by again

33

using a coupling. More precisely, we let

ξ(e) = Bernoulli(p) for all e ∈ E+

be independent, and declare edge e to be open if ξ(e) = 1. Then, each edge in E that

is open is also an edge in E+ that is open. Recalling also that the new root is 0+ = x,

we get

C (x) = {y ∈ V : there is a path x ↔ y of open edges in E }

⊂ {y ∈ V+ : there is a path 0+ ↔ y of open edges in E+} = C+(0+)

Using monotonicity, we conclude that

Px(S > s) = P (card(C (x)) > s) ≤ P (card(C+(0+)) > s) = P0+(S+ > s)

This completes the proof. □

Motivated by Lemma 17, we now use the branching processes results from the

previous section to study the first and second moments of the size distribution of the

percolation cluster starting at the root of the tree T . Spherical symmetry due to the

fact that the infection starts from the root makes the calculations of the first and

second moments easier.

Lemma 18 – Let ν+ = p(µ+ 1) and Σ2
+ = p(1− p)(µ+ 1) + p2σ2. Then,

E0+(S+) =
1− ν2R+1

1− ν+

E0+(S
2
+) =

Σ2
+

(1− ν+)2

(1− ν4R+1

1− ν+
− (4R + 1)ν2R

+

)2

Proof. Because for the tree T+ the number of edges moving away from the root has

the same distribution as X + 1 and each edge is independently open with probability

p,

Sn = card{y ∈ C+(0+) : d(0+, y) = n}, n = 0, 1, ..., 2R,

34

the number of infected vertices at distance n from the root 0+, is equal (in distribution)

to the number of individuals at generation n in the branching process whose offspring

distribution consists of the sum of X + 1 independent Bernoulli random variables:

Yn,i = Bn,i,0 +Bn,i,1 + · · ·+Bn,i,X where Bn,i,j = Bernoulli(p)

In particular, to prove the result, the key is to compute the mean and variance of the

offspring distribution and then apply Lemmas 13 and 16. Conditioning on X, we get

E(Yn,i|X) = E(Bn,i,0 + · · ·+Bn,i,X |X) = (X + 1)E(Bn,i,j) = p(X + 1)

then taking expected value,

E(Yn,i) = E(E(Yn,i|X)) = pE(X + 1) = p(µ+ 1) = ν+

In addition, because the Bn,i,j are independent,

Var(Yn,i|X) = Var(Bn,i,0 = · · ·+Bn,i,X |X)

= (X + 1)Var(Bn,i,j) = p(1− p)(X + 1)

This, together with (37) and the law of total variance, implies that

Var(Yn,i) = E(Var(Yn,i|X)) + Var(E(Yn,i|X))

= p(1− p)E(X + 1) + p2textV ar(X + 1) = p(1− p)(µ+ 1) + p2σ2 = Σ2
+

In addition, using that Sn is the number of individuals in the branching process with

offspring distribution Yn,i and recalling that the random tree has radius 2R, we obtain

E0+(S+) = E(X̄2R) and E0+(S
2
+) = E(X̄2

2R)

The lemma follows from (1.38)-(1.40) and Lemmas 13 and 16. □

According to Lemmas 17 and 18,

E(S) ≤ supx∈V Ex(S) ≤ E0+(S+) =
1− ν2R+1

1− ν+

35

where ν+ = p(µ+ 1), so E(S) ≤ ϕ1(X,R). Similarly,

E(S2) ≤ E0+(S
2
+) =

Σ2
+

(1− ν)2

(1− ν4R+1

1− ν+
− (4R + 1)ν2R

+

)
+
(1− ν2R+1

+

1− ν+

)2

where Σ2
+ = p(1− p)(µ+ 1) + p2σ2, so E(S2) ≤ ϕ2(X,R). This shows the theorem.

1.2 First and Second Moments of the Size Distribution of Bond Percolation

Clusters on Regular graphs

1.2.1 Introduction

Bond percolation consists of a collection of independent Bernoulli random variables

with the same success probability p indexed by the edges of a graph, with the edges

associated to a success being open and the ones associated to a failure being closed.

The percolation clusters are the connected components of the subgraph induced

by the open edges. This process was introduced by [7] to study the spread of a

fluid through a medium. Bond percolation has been extensively studied on infinite

graphs such as integer lattices [8] in which case the process typically exhibits a phase

transition for the density p of open edges from a subcritical phase where all the

percolation clusters are finite to a supercritical phase where at least one percolation

cluster is infinite. Bond percolation has also been studied along increasing sequences

of finite graphs: as the size of the graphs tends to infinity, the supercritical phase is

now characterized by the existence of a giant connected component of open edges

whose size scales like the size of the graph. Important examples are the complete

graph, in which case the set of open edges consists of the Erdos-Rényi random graph

[9], and the hypercube [10]. Much less attention has been paid to bond percolation

on fixed finite graphs in spite of its growing importance in terms of applications.

36

Indeed, the first moment of the size of the percolation clusters on finite graphs is

closely related to the notion of network resilience in computer network theory [11].

Similarly, the modeling framework introduced by [2] shows that, in the context of

cyber security, both the first and the second moments of the cluster size are keys

to computing insurance premiums. Motivated by these aspects, [12] studied the

first and second moments of the cluster size on elementary graphs: the path, the

ring and the star. In both contexts (network resilience and cyber insurance), the

underlying graph represents a local area network, i.e., a finite group of computers

(the vertices) along with the way these computers are connected (the edges). In this

work, we study the first and second moments of the cluster size on general finite reg-

ular graphs that model local area networks more realistically than paths, rings or stars.

1.2.2 Model Description

Throughout this section, G = (V ,E) is a finite connected D−regular graph with

N vertices. Let x be a vertex chosen uniformly at random and assume that the edges

are independently open with probability p. The main objective of this section is to

study the first and second moments of

S = card(Cx)

where

Cx = {y ∈ V : there is a path of open edges connecting x and y}

the random number of vertices in the percolation cluster starting at x.

37

1.2.3 Main Results

In this section, we prove the following upper bounds for the first and second

moments.

Theorem 19 – For every D-regular graph with N vertices,

E(S) ≤ 1 +Dp

(
1− νR

1− ν

)
E(S2) ≤

(
1 +Dp

(
1− νR

1− ν

))2

+
Dp(1− p)

(1− ν)2

(
(1− νR)(1 + νR+1)

1− ν
− 2RνR

)
where ν = (D − 1)p and R = N − 1.

To prove the theorem, the idea is to think of the cluster Cx as a dynamical object

described by a birth process starting with one particle at x and in which particles give

birth with probability p onto vacant adjacent vertices. The size of the cluster is equal

to the ultimate number of particles in the birth process which, in turn, is dominated

stochastically by the number of individuals up to generation card(V)− 1 = N − 1 in

a certain branching process.

Taking D and N in the theorem to be the degree and the number of vertices in

each of the Platonic solids, we get the solid curves in Figures 8–10, Section 3. Note

that these upper bounds are only accurate for p small. To have upper bounds that

are accurate for p large, we use that a vertex y ̸= x cannot be in the percolation

cluster Cx when all the edges incident to x are closed. This gives the following result

that again applies to all finite regular graphs.

Theorem 20 – For every D-regular graph with N vertices,

E(S) ≤ N − (N − 1)(1− p)D

E(S2) ≤ N2 − (N − 1)(2N − 1)(1− p)D + (N − 1)(N − 2)(1− p)2D−1.

38

1.2.4 Proof of Theorem 1

Having a vertex x ∈ V and a realization of bond percolation with parameter p on

the graph, we consider the following discrete-time birth process (ξn). The state at

time n is a spatial configuration of particles on the vertices:

ξn ⊂ V where ξn = set of vertices occupied by a particle at time n

The process starts at generation 0 with one particle at x, therefore ξ0 = {x}. Then,

• for each vertex y adjacent to vertex x, the particle at x gives birth to a particle

sent to vertex y if and only if the edge (x, y) is open.

These are the particles at generation 1. Assume the process has been defined up to

generation n > 0, and let Yn = card(ξn\ξn−1) be the number of particles of generation

n. Label 1, 2, ..., Yn these particles and let xn,1, xn,2, ..., xn,Yn be their locations so that

ξn\ξn−1 = {xn,1, xn,2, ..., xn,Yn}

Then, generation n+ 1 is defined sequentially from step 1 to step Yn where, at step i,

• for each vertex y adjacent to vertex xn,i, the ith particle of generation n gives

birth to a particle sent to vertex y if and only if vertex y is empty and the edge

(xn,i, y) is open.

Note that two particles i and j with i < j might share a common neighbor y in

which case a child of particle i sent to y prevents particle j from giving birth onto y.

For a construction of the birth process from a realization of bond percolation on

the dodecahedron, we refer to Figure 6. The process is designed so that particles

ultimately occupy the open cluster starting at x. In particular, the total number of

particles equals the cluster size, as proved in the next lemma.

39

Figure 6. Example of a Construction of the Birth Process from a Realization of Bond
Percolation on the Dodecahedron. The Thick Lines Represent the Open Edges, the
Black Dots Represent the Vertices Occupied by a Particle at Each Generation, and
the Arrows Represent the Birth Events, from Parent to Children.

Lemma 21 – The cluster size is given by

S = card (Cx) = card (ξN−1) = Y0 + Y1 + · · ·+ YN−1 where N = card (V).

Proof. To begin with, we observe that

• Because particles can only give birth to another particle sent to an empty vertex,

each vertex is ultimately occupied by at most one particle.

• The open cluster containing x can be written as

Cx = {y ∈ V : there is a self-avoiding path of

open edges connecting vertex x and vertex y}.

• The set of vertices occupied by a particle of generation n is

ξn \ ξn−1 = {y ∈ Cx : the shortest self-avoiding path of

open edges connecting x and y has length n}.

These three properties imply that all the vertices in the open cluster Cx are ultimately

occupied by exactly one particle whereas the vertices outside the cluster remain empty

therefore

S = card (Cx) = card (ξ0) + card

(∞⋃
n=1

(ξn \ ξn−1)

)
= card (ξ0) +

∞∑
n=1

card (ξn \ ξn−1) =
∞∑
n=0

Yn.

(1.37)

40

In addition, because the graph has N vertices, the shortest self-avoiding path on this

graph must have at most N − 1 edges, from which it follows that

ξn = ξn−1 and Yn = card (ξn \ ξn−1) = 0 for all n ≥ N. (1.38)

Combining (1.37) and (1.38) gives the result. □

Coupling with a branching process. The next step is to compare the number

of particles in the birth process with the number of individuals in a branching

process (Xn). The process coincides with the birth process when the graph is a tree,

and is defined as

X0 = 1 and Xn+1 = Xn,1 +Xn,2 + · · ·+Xn,Xn for all n ≥ 0

where the random variables Xn,i representing the offspring distribution (number of

offspring of individual i at time n) are independent and have probability mass function

X0,1 = Binomial (D, p) and Xn,i = Binomial (D − 1, p) for all n, i ≥ 1.

This branching process can be visualized as the number of particles in the birth process

above modified so that births onto already occupied vertices are allowed. In particular,

the branching process dominates stochastically the birth process.

Lemma 22 – For all n ≥ 0, we have the stochastic domination Yn ⪯ Xn.

Proof. As for the branching process, for all n ≥ 0 and i ≤ Yn, we let

Yn,i = # offspring of the ith particle of generation n in the birth process.

Because the edges are independently open with the same probability p and there are

exactly D edges starting from each vertex, the number of offspring of the first particle

is

Y1 = Y0,1 = Binomial (D, p). (1.39)

41

For each subsequent particle, say the particle located at z, we distinguish two types

of edges starting from z just before the particle gives birth.

• There are m edges (z, y) that are connected to an occupied vertex y. Because

parent and offspring are located on adjacent vertices, we must have m ≥ 1.

• There are D −m edges (z, y) that are connected to an empty vertex y. These

edges have not been used yet in the construction of the birth process, i.e., there

has been no previous attempt to give birth through these edges, therefore each of

these edges is open with probability p independently of the past of the process.

From the previous two properties, we deduce that, for all n > 0 and i ≤ Yn,

P (Yn,i ≥ k) = E(P (Yn,i ≥ k |Y0,1, Y1,1, . . . , Yn,i−1))

≤ P (Binomial (D − 1, p) ≥ k) = P (Xn,i ≥ k).

(1.40)

The stochastic domination follows from (1.39) and (1.40). □

Number of individuals. It directly follows from Lemmas 21 and 22 that

E(Sk) = E((Y0 + Y1 + · · ·+ YN−1)
k) ≤ E((X0 +X1 + · · ·+XN−1)

k) (1.41)

for all k > 0. In view of (1.41), the last step to complete the proof of Theorem 19 is to

show that the upper bounds in the theorem are in fact the first and second moments of

the total number of individuals up to generation R = N − 1 in the branching process:

E(X̄R) and E(X̄2
R) where X̄R = X0 +X1 + · · ·+XR.

The rest of this section is devoted to computing these moments.

Lemma 23 – Let ν = (D − 1)p. Then,

E(X̄R) = 1 +Dp

(
1− νR

1− ν

)
for all R > 0.

42

Proof. For i = 1, 2, . . . , X1, let

Z̄i = number of descendants of the ith offspring of the first individual

up to generation R, including the offspring.

Then X̄R = 1 + Z̄1 + · · ·+ Z̄X1 and the Z̄i are independent of X1 so

E(X̄R) = E(E(X̄R |X1)) = E(E(1 + Z̄1 + · · ·+ Z̄X1 |X1))

= E(1 +X1E(Z̄i)) = 1 + E(X1)E(Z̄i) = 1 +DpE(Z̄i).

Because Z̄i is the number of individuals up to generation R − 1 in a branching

process with offspring distribution Binomial (D− 1, p), we deduce from [2, Theorem 2]

that

E(X̄R) = 1 +Dp

(
1− (µp)R

1− µp

)
= 1 +Dp

(
1− νR

1− ν

)
where ν = µp = (D − 1)p.

This completes the proof. □

Using the same decomposition as in the previous lemma, we now compute the second

moment of the number of individuals up to generation R = N − 1.

Lemma 24 – Let ν = (D − 1)p. Then, for all R > 0,

E(X̄2
R) =

(
1 +Dp

(
1− νR

1− ν

))2

+
Dp(1− p)

(1− ν)2

(
(1− νR)(1 + νR+1)

1− ν
− 2RνR

)
.

Proof. Using again X̄R = 1 + Z̄1 + · · ·+ Z̄X1 and independence, we get

E(X̄2
R) = E(E((1 + Z̄1 + · · ·+ Z̄X1)

2 |X1))

= E(E(1 + 2(Z̄1 + · · ·+ Z̄X1) + (Z̄1 + · · ·+ Z̄X1)
2 |X1))

= E(1 + 2X1E(Z̄i) +X1E(Z̄2
i) +X1(X1 − 1)(E(Zi))

2)

= 1 + 2E(X1)E(Z̄i) + E(X1)E(Z̄2
i) + E(X1(X1 − 1))(E(Zi))

2.

(1.42)

43

In addition, using that X1 = Binomial (D, p), we get

E(X1(X1 − 1)) = Var(X1) + (E(X1))
2 − E(X1)

= Dp(1− p) +D2p2 −Dp = D(D − 1)p2.

(1.43)

Combining (1.42) and (1.43) gives

E(X̄2
R) = 1 + 2DpE(Z̄i) +DpE(Z̄2

i) +D(D − 1)p2(E(Z̄i))
2

= 1 + 2DpE(Z̄i) +Dp(Var(Z̄i) + (E(Z̄i))
2) +D(D − 1)p2(E(Z̄i))

2

= 1 + 2DpE(Z̄i) +Dp(Dp+ 1− p)(E(Z̄i))
2 +DpVar(Z̄i)

= (1 +DpE(Z̄i))
2 +Dp(1− p)(E(Z̄i))

2 +DpVar(Z̄i).

Then, applying [2, Theorem 2] with µ = D − 1 and σ2 = 0, we get

E(X̄2
R) =

(
1 + Dp

(
1− νR

1− ν

))2

+Dp(1− p)

(
1− νR

1− ν

)2

+ Dp
ν(1− p)

(1− ν)2

(
1− ν2R−1

1− ν
− (2R− 1)νR−1

)
.

Observing also that

Dp (1− p)

(
1− νR

1− ν

)2

+Dp
ν(1− p)

(1− ν)2

(
1− ν2R−1

1− ν
− (2R− 1)νR−1

)
=
Dp(1− p)

(1− ν)2

(
(1− ν)(1− νR)2 + ν(1− ν2R−1)

1− ν
− (2R− 1)νR

)
=
Dp(1− p)

(1− ν)2

(
1− 2νR + 2νR+1 − ν2R+1

1− ν
− (2R− 1)νR

)
=
Dp(1− p)

(1− ν)2

(
1− 2νR + 2νR+1 − ν2R+1 + (1− ν)νR

1− ν
− 2RνR

)
=
Dp(1− p)

(1− ν)2

(
(1− νR)(1 + νR+1)

1− ν
− 2RνR

)
completes the proof. □

Theorem 19 directly follows from (1.41), and from Lemmas 23 and 24.

44

1.2.5 Proof of Theorem 2

Theorem 1 gives a good upper bounds when the probability is p is small. To

complement this result, we now give a second set of upper bounds that are accurate

when p is close to one.

Theorem 20 relies on the following observation: vertex y ̸= x cannot be in the

percolation cluster starting at x when all the edges incident to y are closed. In contrast

with the comparison with branching processes, this result leads to a good approximation

of the moments of the size distribution when the probability p approaches one. To

prove the theorem, note that

E(Sk) = E

(∑
y∈V

1{y ∈ Cx}
)k

=
∑

y1,...,yk∈V

E(1{y1 ∈ Cx} · · · 1{yk ∈ Cx})

=
∑

y1,...,yk∈V

P (x ↔ y1, . . . , x ↔ yk)

(1.44)

for all integers k. To estimate the last sum, we let By be the event that all the edges

incident to y are closed. Using that there are exactly D edges incident to each vertex,

and that there is at most one edge connecting any two different vertices, say y ̸= z,

we get

P (By) = (1− p)D

P (By ∪Bz) = P (By) + P (Bz)− P (By ∩Bz) ≥ 2(1− p)D − (1− p)2D−1.

(1.45)

In addition, we have the inclusion of events

By ⊂ {x ̸↔ y} for all y ̸= x. (1.46)

Combining (1.45) and (1.46), we get

P (x ̸↔ y or x ̸↔ z) ≥

(1− p)D when card {x, y, z} = 2

2(1− p)D − (1− p)2D−1 when card {x, y, z} = 3.

(1.47)

45

Using (1.44) with k = 1 and (1.47), we deduce that

E(S) = 1 +
∑

y ̸=x P (x ↔ y) = 1 +
∑

y ̸=x (1− P (x ̸↔ y))

≤ 1 +
∑

y ̸=x (1− (1− p)D)

= 1 + (N − 1)(1− (1− p)D) = N − (N − 1)(1− p)D.

Similarly, applying (1.44) with k = 2, observing that

card {(y, z) ∈ V 2 : card {x, y, z} = 2} = 3(N − 1)

card {(y, z) ∈ V 2 : card {x, y, z} = 3} = (N − 1)(N − 2),

and using (1.45) and (1.47), we deduce that

E(S2) ≤ 1 + 3(N − 1)(1− (1− p)D) + (N − 1)(N − 2)(1− 2(1− p)D + (1− p)2D−1)

= N2 − 3(N − 1)(1− p)D − (N − 1)(N − 2)(2(1− p)D − (1− p)2D−1)

= N2 − (N − 1)(2N − 1)(1− p)D + (N − 1)(N − 2)(1− p)2D−1.

This completes the proof of Theorem 20.

1.3 Exact and Approximations to First and Second Moments of the Size

Distribution of Bond Percolation Cluster on the Platonic Solids

1.3.1 Introduction

Having a simple finite undirected graph G = (V ,E), let

x = Uniform(V) and ζ(e) = Bernoulli(p), e ∈ E ,

be a vertex chosen uniformly at random and a collection of Bernoulli random variables

with the same success probability p on the set of edges. The edges with ζ(e) = 1 are

said to be open while the edges with ζ(e) = 0 are said to be closed, and we let

Cx = {y ∈ V : there is a path of open edges connecting x and y}

46

be the percolation cluster containing x. The main objective of this section is to study

the first and second moments of S = card(Cx) = the size of this percolation cluster

when the graph G consists of each of the five Platonic solids depicted in Figure 7.

Our last results are specific to the five Platonic solids and we denote by Sf the

size of a percolation cluster on the solid with f faces. To obtain these results, we first

observe that the mean cluster size can be easily expressed using the probability that

each vertex belongs to the open cluster Cx which, in turn, is equal to the probability

that at least one of the self-avoiding paths connecting x to this vertex is open. In

particular, identifying all the self-avoiding paths connecting x to any other vertex and

using the inclusion-exclusion identity give an exact expression for the first moment.

The same holds for the second moment looking instead at all the pairs of paths

connecting x to two other vertices. This approach also shows that the first and second

moments of the cluster size are polynomials in p with integer coefficients and degree

(at most) the total number of edges so, to state our next results and shorten the

notation, we let

Pk = (p0, p1, . . . , pk) for all k ∈ N.

The main difficulties following this strategy is to identify all the self-avoiding paths

and compute the probability that any sub-collection of paths are simultaneously open.

1.3.2 Main Results

Theorem 1 (tetrahedron) – For all p ∈ (0, 1),

E(S4) = (1, 3, 6, 0,−21, 21,−6) ·P6 and E(S2
4) = (1, 9, 36, 30,−171, 153,−42) ·P6.

47

Figure 7. Picture of the Five Platonic Solids. The Number Between Parentheses Refer
to the Number of Vertices, the Number of Edges, and the Number of Faces, Respectively.
Note That the Tetrahedron Is Dual to Itself, the Cube and the Octahedron Are Dual
to Each Other, and the Dodecahedron and Icosahedron Are Dual to Each Other.

Theorem 2 (cube and octahedron) – For all p ∈ (0, 1),

E(S6) = (1, 3, 6, 12, 9, 12,−81,−75, 69, 473,−777, 447,−91) · P12

E(S8) = (1, 4, 12, 20,−14,−196, 12, 1316,−2815, 2824,−1564, 464,−58) · P12.

The dodecahedron and the icosahedron both have thirty edges. For these two solids,

even writing down all the self-avoiding paths connecting two vertices is beyond human

capability so we only focus on the paths of length at most five for the dodecahedron

and of length at most three for the icosahedron.

Using that two vertices are in the same open cluster if (but not only if) at least

one of the paths is open, we get the following lower bounds for the mean cluster size.

Theorem 3 (dodecahedron and icosahedron) – For all p ∈ (0, 1),

E(S12) ≥ (1, 3, 6, 12, 24, 30,−24,−30,−36, 3,−6, 42,

−6, 18,−21, 14, 0,−6,−9, 0, 0, 6, 0, 0,−1, 0, 0, 0, 0, 0, 0) · P30

E(S20) ≥ (1, 5, 20, 60,−90,−75, 0, 190,−10,−80,−60, 10,

−5, 120,−35,−88, 35, 40,−35, 10,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) · P30.

The two moments in Theorem 1 and the first moments in Theorem 2 are represented

by the thick solid curves in Figures 8 and 9. These curves fit perfectly with numerical

48

Figure 8. First Moment on the Left and Second Moment on the Right of the Size
Distribution of Bond Percolation Clusters on the Tetrahedron as Function of p. The
Thick Solid Lines Show the Exact Expressions in Theorem 1 of This Section While the
Other Curves, Labeled Th 3, and Theorems 1, 2 from the Previous Section Labeled
as Th1, and Th 2 Respectively.

solutions obtained from one hundred thousands independent realizations of the perco-

lation process. The lower bounds for the first moments in Theorem 3 are represented

by the dotted curves in Figure 10.

1.3.3 Preliminary Results

First, we prove a result (see (1.51) below) that holds not only for the Platonic

solids but also a larger class of regular graphs. Fix a vertex x ∈ V , let r be the radius

of the graph, and define

Λs = {y ∈ V : d(x, y) = s} and Ns = card (Λs) for s = 0, 1, . . . , r.

At least for the Platonic solids, Ns does not depend on the choice of x. Fixing

ys ∈ Λs for all s = 0, 1, . . . , r,

49

Figure 9. First Moment on the Left and Second Moment on the Right of the Size
Distribution of Bond Percolation Clusters on the Cube (Top) and the Octahedron
(Bottom) as Functions of the Probability p. The Thick Solid Lines Show the Exact
Expressions Found in Theorem 2 of This Section, the Thick Dashed Lines Show the
Second Moment Obtained from the Average of One Hundred Thousand Independent
Realizations of the Process for Various Values of p, and the Other Curves Show the
Upper Bounds in Th 1 and Th 2 from the Previous Section for the Appropriate Values
of D and N .

and applying (1.44) with k = 1, we get

E(S) =
∑
y∈V

P (x ↔ y) =
r∑

s=0

∑
y∈Λs

P (x ↔ y) =
r∑

s=0

NsP (x ↔ ys). (1.48)

To compute the probabilities ps = P (x ↔ ys), we label the edges 0, 1, . . . , n− 1, think

of each self-avoiding path π as the collection of its edges, and let

π1(ys), . . . , πKs(ys) = all the self-avoiding paths x → ys

Ai = the event that πi(ys) is an open path for i = 1, 2, . . . , Ks.

50

Figure 10. First Moment on the Left and Second Moment on the Right of the
Size Distribution of Bond Percolation Clusters on the Dodecahedron (Top) and
Icosahedron (Bottom) as Functions of the Probability p. The Thick Dashed Lines
Show the Second Moment Obtained from the Average of One Hundred Thousand
Independent Realizations of the Process for Various Values of p While the Other
Curves Show the Upper Bounds in Th 1 and Th 2 from the Previous Section for the
Appropriate Values of the Degree D and the Number of Vertices N , and the Lower
Bounds in Th 3.

Because the edges are independently open with the same probability p,

P (Ai1 ∩ · · · ∩ Aij) = P (πi1(ys), . . . , πij(ys) are open paths)

= P (e is open for all e ∈ πi1(ys) ∪ · · · ∪ πij(ys))

= pcard (πi1
(ys)∪ ··· ∪πij

(ys))

for all 0 < i1 < · · · < ij ≤ Ks. Here card refers to the number of edges in the

subgraph that consists of the union of the self-avoiding paths. Using that x ↔ ys if

51

and only if at least one of the paths connecting the vertices is open, it follows from

the inclusion-exclusion identity that

P (x ↔ ys) = P

(Ks⋃
j=1

Aj

)
=

Ks∑
j=1

(−1)j+1
∑

0<i1<···<ij≤Ks

P (Ai1 ∩ · · · ∩ Aij)

=
Ks∑
j=1

(−1)j+1
∑

0<i1<···<ij≤Ks

pcard (πi1
(ys)∪ ··· ∪πij

(ys)).

(1.49)

Note that, in the previous expression, the index j corresponds to the number of self-

avoiding paths while the second sum is over all possible choices of j paths. In particular,

the double sum consists in looking at all the possible nonempty sub-collections of

the Ks self-avoiding paths, therefore the right-hand side of (1.49) can be rewritten as

P (x ↔ ys) =
∑

B⊂[Ks]:B ̸=∅

(−1)card (B)+1 pcard
(⋃

i∈B πi(ys)
)

(1.50)

where [Ks] = {1, 2, . . . , Ks}. Combining (1.48) and (1.50) gives

E(S) =
r∑

s=0

Ns

(∑
B⊂[Ks]:B ̸=∅

(−1)card (B)+1 pcard
(⋃

i∈B πi(ys)
))

. (1.51)

The previous equation shows that computing the mean cluster size reduces to

finding the self-avoiding paths that connect any two vertices of the graph. We now

apply (1.51) to each of the five Platonic solids in order to prove Theorems 1–3.

1.3.4 Proof of Theorem 1

For the tetrahedron, all the vertices are distance one apart and there are exactly

five self-avoiding paths connecting any two vertices (see first table in Figure 11).

Calling these paths π1, . . . , π5 in the order they are listed in the table, and writing

card (πi1 ∪ πi2 ∪ · · · ∪ πij) = |πi1,i2,...,ij |

52

Figure 11. The Three Pictures on the Left Show Planar Representations of the
Tetrahedron, the Cube and the Octahedron, along with an Arbitrary Labeling of Their
Edges. The Tables on the Right Give the List of the Self-avoiding Paths Connecting
the Two Vertices (or Pairs of Self-avoiding Paths Connecting the Three Vertices)
Represented by the Black, Dark Grey, Light Grey And/Or White Dots in the Pictures.
Each Path Is Represented by the Collection of Its Edges Using the Labels Shown in
the Pictures. The Numbers in the First Column of Each Table Indicate the Length of
the Paths.

53

for short, one can easily check that

|π1| = 1 |π1,2| = 3 |π1,2,3| = 5 |π1,2,3,4| = 6 |π1,2,3,4,5| = 6

|π2| = 2 |π1,3| = 3 |π1,2,4| = 5 |π1,2,3,5| = 6

|π3| = 2 |π1,4| = 4 |π1,2,5| = 5 |π1,2,4,5| = 6

|π4| = 3 |π1,5| = 4 |π1,3,4| = 5 |π1,3,4,5| = 6

|π5| = 3 |π2,3| = 4 |π1,3,5| = 5 |π2,3,4,5| = 5

|π2,4| = 4 |π1,4,5| = 6

|π2,5| = 4 |π2,3,4| = 5

|π3,4| = 4 |π2,3,5| = 5

|π3,5| = 4 |π2,4,5| = 5

|π4,5| = 5 |π3,4,5| = 5

This, together with (1.50), implies that, for all x ̸= y,

P (x ↔ y) = (p+ 2p2 + 2p3)− (2p3 + 7p4 + p5) + (9p5 + p6)− (p5 + 4p6) + p6

= p+ 2p2 − 7p4 + 7p5 − 2p6 = (0, 1, 2, 0,−7, 7,−2) · P6.

(1.52)

Using also (1.51) and that N1 = 3 for the tetrahedron, we conclude that

E(S4) = 1 + 3 (0, 1, 2, 0,−7, 7,−2) · P6 = (1, 3, 6, 0,−21, 21,−6) · P6

which proves the first part of Theorem 1.

To compute the second moment, we observe that any three distinct vertices of the

tetrahedron always form a triangle (regardless of the choice of the vertices) and, for

all x ∈ V ,

card {(y, z) ∈ V 2 : card {x, y, z} = 2} = 3× 3 = 9

card {(y, z) ∈ V 2 : card {x, y, z} = 3} = 3× 2 = 6.

54

Using also (1.44) with k = 2, we get

E(S2
4) = P (x ↔ x) + 9P (x ↔ y) + 6P (x ↔ y, x ↔ z) (1.53)

where vertices x, y, z are arbitrary but all three distinct. In addition, let-

ting γ1, γ2, . . . , γK be the pairs of self-avoiding paths connecting all three vertices, and

using the same argument as before based on the inclusion-exclusion identity, we get

P (x ↔ y, x ↔ z) =
∑

B⊂[K]:B ̸=∅

(−1)card (B)+1 pcard
(⋃

i∈B γi

)
(1.54)

which can be viewed as the analog of (1.50). For the tetrahedron, there are K = 10

such paths (see the second table in Figure 11). As previously, computing

card

(⋃
i∈B

γi

)
for every B ⊂ [10] = {1, 2, . . . , 10}

is straightforward in the sense that it does not require any abstract reasoning. However,

having ten self-avoiding paths, the sum in (1.54) is now over

210 − 1 = 1, 023 terms

and is therefore unrealistic to compute by hand. Also, to compute (1.54), we designed

a computer program that goes through all the possible subsets B ⊂ [10] and returns

seven (= 1 + number of edges of the tetrahedron) coefficients a0, a1, . . . , a6. These

seven coefficients are initially set to zero and increase or decrease by one according to

the following algorithm:

replace aj → aj + 1 each time card
(⋃

i∈B γi

)
= j and card (B) is odd

replace aj → aj − 1 each time card
(⋃

i∈B γi

)
= j and card (B) is even.

(1.55)

In other words, because the tetrahedron contains six edges, the right-hand side of (1.54)

is a polynomial with degree at most six, and the algorithm returns the value of the

55

seven coefficients of this polynomial. We point out that the values we obtain are

exact because the computer is simply used to add a large number of integers, not to

simulate the percolation process. The input of the program is the ten self-avoiding

paths represented by the subsets of edges in the second table of Figure 11, and the

output of the program is

a0 = 0, a1 = 0, a2 = 3, a3 = 5, a4 = −18, a5 = 15, a6 = −4.

This, together with (1.52) and (1.53), implies that

E(S2
4) = 1 + 9 (0, 1, 2, 0,−7, 7,−2) · P6 + 6 (a0, a1, a2, a3, a4, a5, a6) · P6

= 1 + 9 (0, 1, 2, 0,−7, 7,−2) · P6 + 6 (0, 0, 3, 5,−18, 15,−4) · P6

= (1, 9, 36, 30,−171, 153,−42) · P6.

This completes the proof of Theorem 1.

1.3.5 Proof of Theorem 2

The idea is again to compute the sum (1.51) explicitly by first collecting the

self-avoiding paths connecting two vertices.

Cube. For the cube, there are respectively fifteen, sixteen and eighteen self-avoiding

paths connecting any two vertices at distance one, two, and three from each other,

as shown in Figure 11. Because the cube has twelve edges, the sum consists of a

polynomial with degree 12. The first four columns in the first table of Figure 12 show

the coefficients. The first column means that, with probability one, a vertex is in

the open cluster starting from itself while the second column means that a vertex at

56

Figure 12. Coefficients Returned by Algorithm (1.55) for the Dodecahedron (Left)
and the Icosahedron (Right) Using the Self-avoiding Paths Represented in Figure 11.
The Last Column of Each Table Is Equal to the Linear Combination of the Other
Columns with Weight given by the Value of The Ns in the Second Row. Because We
Only Look at a Subset of the Self-avoiding Paths Connecting Two Vertices the Last
Column Now Gives the Coefficients of a Polynomial In p That Is Smaller than the
First Moment of the Cluster Size.

distance one from x is in the open cluster starting at x with probability

(0, 1, 0, 2,−2, 8,−15,−5, 0, 67,−99, 55,−11) · P12

= p+ 2p3 − 2p4 + 8p5 − 15p6 − 5p7 + 67p9 − 99p10 + 55p11 − 11p12.

The second row in the first table of Figure 12 shows the value of Ns for the cube.

The last column is the linear combination of the first four columns where column s

has weight Ns. By (1.51), this is the expected value of the cluster size so the proof

for the cube is complete.

57

Octahedron. Because the radius of the octahedron is two, two distinct vertices can

only be at distance one or two apart. There are respectively twenty-six and twenty-

eight self-avoiding paths connecting any two vertices at distance one and two from

each other (see Figure 11). The sum again consists of a polynomial with degree 12,

the common number of edges in the cube and the octahedron, whose coefficients are

reported in the second table of Figure 12. The rest of the proof is exactly the same as

for the cube.

1.3.6 Proof of Theorem 3

For the dodecahedron and the icosahedron, not only the sum (1.51) cannot be

computed by hand, but also the number of self-avoiding paths connecting two vertices

is beyond human capability. However, we can find lower bounds for the mean cluster

size by only taking into account a subset of paths. More precisely, given x ̸= y, and

letting

• π1, π2, . . . , πJ be the self-avoiding paths of length ≤ c connecting x and y,

• πJ+1, πJ+2, . . . , πK be the self-avoiding paths of length > c connecting x and y,

we deduce from (1.50) that

P (x ↔ y) =
∑

B⊂[K]:B ̸=∅

(−1)card (B)+1 pcard
(⋃

i∈B πi

)
≥

∑
B⊂[J]:B ̸=∅

(−1)card (B)+1 pcard
(⋃

i∈B πi

)
.

(1.56)

The inequality follows from an inclusion of events: if at least one of the first J

paths is open then at least one of the K paths is open. For both the dodecahedron and

the icosahedron, we choose the cutoff c to be the radius of the graph, meaning that

58

Figure 13. Picture of the Self-avoiding Paths with Length at Most Five Connecting
Two Vertices of the Dodecahedron at Respectively Distance 1, 2, 3, 4, and 5, of Each
Other, and Picture of the Self-avoiding Paths with Length at Most Three Connecting
Two Vertices of the Icosahedron at Respectively Distance 1, 2, and 3, of Each Other.
The Label (2) next to Some Pictures Means That the Mirror Image of the Path Is
Another Path Connecting the Same Two Vertices.

59

we only consider self-avoiding paths with length at most five for the dodecahedron

and self-avoiding paths with length at most three for the icosahedron. These paths

are drawn in Figure 13. Because both graphs have thirty edges, the right-hand side

of (1.56) is a polynomial with degree at most 30. The probabilities that two vertices

at a given distance from each other are connected by an open path are reported in

Figure 14. As previously, multiplying each column by the appropriate Ns listed in the

first row of each table gives the coefficients of the polynomial on the right-hand side

of (1.56), which completes the proof.

60

Figure 14. Coefficients Returned by Algorithm (19) for the Dodecahedron (Left) and
the Icosahedron (Right) Using the Self-avoiding Paths Represented in Figure 8. The
Last Column of Each Table Is Equal to the Linear Combination of the Other Columns
with Weight given by the Value of the Ns in the Second Row. Because We Only Look
at a Subset of the Self-avoiding Paths Connecting Two Vertices the Last Column Now
Gives the Coefficients of a Polynomial in p That Is Smaller than the First Moment of
the Cluster Size.

61

Chapter 2

JOINT MODELING OF HLF AND SYBIL ATTACK: PETRI NET APPROACH

62

2.1 Introduction

Hyperledger Fabric (HLF) is an open-source enterprise-grade permissioned dis-

tributed ledger technology (DLT) platform established under the Linux Foundation.

It is governed by a diverse technical steering committee and has a large community of

over 35 organizations and nearly 200 developers since its earliest commits [13]. Among

global corporate brands that use HLF technology, the adopters’ list includes at least 20

largest global companies, including Allianz SE, Amazon, BNP Paribas, Intel, Microsoft,

Siemens, State Farm, Visa, and Walmart [14]. Their economic activities represent an

important part of total economic activity, and the prospect of increasingly channeling

it through blockchain technology promises a fantastic future for this technology and

its reach.

Unfortunately, the advent of this new technology is rightfully accompanied by

the realization of its potential cyber vulnerabilities and worries about their future

implications for the stability of our economic system and economic transactions

relying on this new technology. To understand the backdrop of the emergency of this

new technology, one needs to go no further than the summary of the Government

Accountability Office, which notes that federal executive branch civilian agencies

reported over 28,000 cybersecurity-related incidents to the Department of Homeland

Security in the fiscal year 2019 [15].

When it comes to understanding the cyber vulnerabilities of HLF, or more general

permissioned blockchains, despite the growing need and certain urgency given the

current level of adoption, the present state of academic literature is its nascent form

and offers little guidance. That is why the purpose of this report is to introduce the

approach, based on graph-theoretical mathematical formalism for modeling discrete

63

event systems, to improve the understanding of HLF behavior in the context of

ongoing cyber attacks. This work’s significant implications shed light on the interplay

between the implementation of HLF and the implementation of a cyber attack in the

context of the resilience of HLF which we view as the structural properties, policy

adoptions and network management of a HLF’s implementation leading to lower risk

for potential cyber attacks, and the effectiveness of the Sybil cyber attack as our

example of choice. To our knowledge, no other works of similar nature exist in current

academic literature.

To achieve the stated purpose of this work we first use Petri Nets to model HLF.

Next, we develop a model of a cyber attack. Finally, we present a joint model of HLF

and a cyber attack. In the context of the simulation environment we develop to mimic

real-world situations, we investigate the joint behavior of effectively two joint systems

and see how their implementations affect mutual performance. The current literature

that showcases practical mathematical modeling of HLF is reflected in papers [16],

[17], and [18] that focus on understanding the performance of HLF configurations.

The attention by Sukhwani et al. [18] is on performance modeling of the consensus

phase under Practical Byzantine Fault Tolerance (PBFT) algorithm in HLF version

v0.6. In turn, the work by Sukhwani et al. [16] presents a performance model of

Hyperledger Fabric v1.0+ using Stochastic Reward Nets (SRN). In the context of

their model, they compute the throughput, utilization, and mean queue length at

each peer and processing stages within a peer. The authors in Yuan et al. [17], in

the context of their HLF model, analyze the performance of the system by using

Generalized Stochastic Petri Nets (GSPN). Their model decomposes a transaction

flow into multiple phases and uses a simulation approach to find the system latency

and throughput. Further, they analyze the impact of different configurations of the

64

Ordering service on system performance to find out the bottleneck. Further HLF

performance analysis can be found in [19], [20], [21], [22], [23], and [24]. Performance

analysis on HLF version 1.4 include [19], [20]. With HLF version 2.0, [21] and in HLF

version 2.2 [22]. HLF smart contract “chain code“ performance analysis is studied in

[25].

HLF capabilities for extending next-generation secure and intelligent communi-

cation in Cyber-Physical Systems (CPS), are studied in Lohachab et al. [26], where

performance analysis to identify bottlenecks and best configurations are investigated

for the energy trading CPS use case. More generally, research investigating detection,

resilience and control against cyber attacks can be found in [27], [28], [29], [30]. In

You et al. [27] methods for sensor-reading modification (SM) attacks are studied. Ulti-

mately, a method is proposed that synthesizes a liveness-enforcing supervisor tolerant

to SM attacks considering the CPS as a bounded Petri Net. The subsequent papers

are outside the scope of Petri Net modeling formalism but within cybersecurity and

explore a variety of attacks. The work in Zhao et al. [28] investigates load frequency

schemes for resilience against DoS attacks in CPS. The class of false data injection

attacks in CPS aims to damage CPS by injecting false data like sensor measurements

or control signals. A defense framework can be found in Zhao et al. [29]. For modeling

large complex embedded systems, the state explosion is a difficult problem for Petri

Net representation for embedded systems. In Xia and Li [30] synthesis methods are

proposed to avoid the state space explosion problem. For modeling blockchain-enabled

IoT networks, Lee et al. [31] proposes a model of HLF latency and provides insight

into minimizing the latency for HLF-enabled IoT which is critical for securely handling

time-sensitive data. Within the field of Machine Learning, advancements in the

sub-field of Deep Learning (DL) along with high-quality, publicly available datasets

65

have contributed to improvements in methods to detect cyber attacks successfully in

CPS. An excellent survey listing new DL architectures for detection of cyber attacks

can be found in Zhang et al. [32].

The literature related to cyber vulnerabilities of HLF is very scarce. The hy-

pothesized attacks and potential vulnerabilities of HLF are presented in the works

of Dabholkar and Saraswat [33], Hasanova et al. [34], Lagarde [35], Benedikt and

Günther [36], and Wang [37]. The work of Dabholkar and Saraswat [33] lists or

hypothesizes attacks when a membership service provider is compromised or in the

presence of malicious ordering service, malicious validating nodes, external attacks,

protocol-based attacks, chain code attacks, and implementation/architectural attacks.

The work of Lagarde [35] provides an excellent concrete overview of cybersecurity

vulnerabilities for HLF on various layers and components of the platform. It includes

specific cybersecurity recommendations at the protocol level as well as at the archi-

tectural level. A discussion on the security implications arising from working in a

permissioned DLT setting can be found in the work of Benedikt and Günther [36]. Key

observations from their work are that the challenges emanating “from the inside” in a

permissioned DLT setting, referred to as insider threats, are intertwined with the level

of trust in architectural components and software layers of the platform, and therefore

these technologies should not be regarded as “trust-free“. The authors investigate how

“insiders” can exploit trust and carry out attacks on the platform. In the work of

Wang [37] the impact of malicious behavior is analyzed in the specific context of HLF.

The author designs malicious behavior patterns and tests the blockchain performance

of HLF under scenarios like PBFT with malicious behavior, denial-of-service attacks

specifically high-rate spam transactions, and transactions with infinite loops. In the

context of Petri Net approaches, when it comes to high-level modeling of cyberattacks,

66

mostly on public blockchains, only the paper of Shahriar et al. [38] offers guidance. In

terms of modeling complexity, amiability to our modeling approach, and its impact,

the Sybil attack, in our view, takes an important role. In this attack, the attacker

undermines a peer-to-peer network’s reputation system and uses a large number of

pseudonymous identities to achieve its goals [33]. That is why in this work, as a

leading example of our approach, we use the Sybil attack as an attack of choice for

the investigated joint model.

The main contributions of this paper are two-fold: (1) To expand the HLF Petri

Net modeling literature by abstracting HLF’s network transaction flow using a realistic

majority endorsement policy under a more recent version of HLF v2.2. (2) Introduce a

novel joint model of HLF under a Sybil attack scenario along with extensive numerical

simulations of the joint model involving numerous parameter variations and network

structure considerations to quantify the level of performance impact that the Sybil

attack exerts on the HLF network.

The remainder of the paper is organized as follows. In Section 2, we briefly describe

Hyperledger Fabric Version V2.x with an emphasis on transaction flow. In Section

2, we explain the basics of Petri Net mathematical formalism used in the modeling

of HLF. Section 2 presents a few facts regarding the evolution of the HLF platform

and a high-level overview of the steps involved in creating a HLF network. Section 2

presents our approach for Joint Modeling of Hyperledger Fabric and Sybil attack. In

Section 2, we describe our simulation settings, which are used as a basis for numerical

experiments whose results are presented in Section 2. Next, in Section 2, we discuss the

HLF’s model parametrization and validation. Finally, we conclude this work in Section

2 with a summary of our main findings and give suggestions for the continuation of

the research.

67

2.2 Hyperledger Fabric Version V2.x Description

HLF was designed from the very beginning for enterprise use. One of the most

critical features of HLF is the facilitation of a network of networks via channels.

Generally, participants are not anonymous, and while absolute trust may not be

present between participants, the HLF architecture allows for operation under a

governance model built on the degree of trust that is present between them. The

concept of “channels“ aids when a subset of participants of the original network

identifies additional applications of interests such that transactions stemming from

these newly identified applications be kept private. HLF provides the capability for

channel creation for this new activity of transactions. This new channel acts as a

subnetwork of the HLF network and includes a separate ledger thereby guaranteeing

data privacy of transactions involving the members of the channel from the rest of

the HLF network. Multiple channels can be created in a HLF network and intuitively

this corresponds to multiple subnetworks of clients within the HLF network. To

summarize more precisely, according to the HLF documentation “a channel is a private

blockchain overlay which allows for data isolation and confidentiality. A channel-

specific ledger is shared across the peers in the channel, and the transacting parties

must be authenticated to a channel in order to interact with it” [39].

Hyperledger Fabric has a highly modular and configurable architecture by design.

It supports pluggable consensus protocols that allow the platform to adjust to many

use cases and trust models [13].

When it comes to Hyperledger Fabric’s Transaction Flow, it follows the execute-

validate-order approach that can be summarized as follows.

68

• Transaction proposal: Channel client creates and submits a transaction proposal

to peers designated with the endorsing role.

• Endorsement: The transaction proposal is simulated in each endorsing peer for

the correctness of the transaction proposal. The endorsing peers return the

proposal response with the needed data along with its signature.

• Ordering: After the client has collected enough endorsements for its transaction

proposal from network peers, the proposal is sent to the ordering service. The

ordering service verifies the transaction proposal against the channel policies

and definitions. After that, transactions are bundled into blocks thus putting

order to transactions.

• Validation: The validating set of peers perform the validation logic. First, a

validation system chaincode (VSCC) check is performed. After that, a Multi-

version concurrency control check is also performed. These checks essentially

validate the identities that signed the transaction, verify the signature of the

endorsing peers, and verify that the transactions’ endorsing policy matches the

chaincode definition. Finally, the block is committed to the ledger and local

copies are updated.

2.3 Petri Nets Basics

In this work, when it comes to modeling HLF, the Petri Net model is used. Within

the modeling framework of discrete-event dynamic systems, a place/transition net is

a mathematical model for the characterization of distributed systems. Introduced by

Carl Adam Petri [40] in 1962 and more commonly known as Petri Nets (PN), these

69

models consist of places, transitions, arcs, and tokens [41] whose intuitive meaning

and visual characteristics can be summarized as follows:

• Places – visually represented as circular nodes, the places abstract logical

conditions or system states.

• Transitions – visually represented via rectangular boxes, they denote transitions

abstracting a change in the status of the system. When a transition is enabled

and fires, it “transitions” the system into a new state. The transitions can be

seen to represent some production process that transforms resources from one

place and stores them in another.

• Arcs – visually represented asymmetrical links exclusively between places and

transitions never between places or between transitions. They denote the explicit

relationship between the objects of the system where resources/logic can be

consumed from and produced/transferred to.

• Tokens – visually represented as dots, they represent a numerical quantity of

resources and are expressed in form of tokens inside a place.

Figure 15. A Simple Petri Net Consisting of Three Places with Four Tokens in P1,
One Transition T0 and Three Arcs

In graph-theoretic terms, Petri Nets are bipartite graphs. Formally, a Petri Net

is defined as a tuple N = (P, T, F,M0) where P is a set of places, T is a set of

70

transitions with P and T are disjoint sets. The function F : (P × T) ∪ (T × P) → N

assigns a weight to each arc in the PN. Here M0 is the initial marking, a function

from the set of places to the positive integers. Markings Mi, i ∈ N represent the

distribution/configurations of tokens over the Petri Net graph. The arcs connect a

place to a transition or vice-versa. The places in the former case are called input places,

and in the latter case, output places. Arcs can be assigned weights with non-negative

integer values. A transition t becomes enabled when the number of tokens in the input

place is at least the arc’s weight, that is, when for all s,Mi(P) ≥ F (P, T). When the

transition fires, it will consume a total number of tokens matching the arc weight

from each input place i, F (i, t) and produce a total number of tokens matching the

weight of the arc into each output place o, F (t, o). This setting represents the resource

requirements for some production processes to take place. The distribution of tokens

over the places represents a configuration or marking of the net.

For a concrete example of the basic PN dynamics consider Figure 16. The PN

consists of three places, P1, P2, P3, one transition T0, and three arcs with cardinalities,

F ((P1, T0)) = 2, F ((T0, P2)) = 1, F ((T0, P3)) = 2.

1. The initial marking M0 = (4, 0, 0) corresponds to four tokens in P0, 0 tokens

in P1, and zero tokens in P2. Transition T0 is enabled since M0(P0) = 4 ≥

F ((P1, T0)) = 2.

2. After the first firing of T0 the marking of the PN is M1 = (2, 1, 2). Transition T0

is still enabled in the current marking since M1(P0) = 2 ≥ F ((P1, T0)) = 2.

3. After the second firing of transition T0 the marking of the PN is M2 =

(0, 2, 4). Transition T0 is not enabled in the current marking since M2(P0) =

0 is less than F ((P1, T0)) = 2.

71

(a) Initial Marking of PN (b) Marking After First Firing of Transition T0

(c) Marking After Second Firing of Transition T0

Figure 16. Firing Sequence of Petri Net

Petri Net is a mathematical formalism with precise definitions and foundations but

it also possesses intuitive graphical representation and visualization. There are a vast

number of extensions and variations of Petri Nets each providing unique modeling

power and sophistication [42]. In the following three subsections we introduce some of

the most prominent classes of PN.

2.3.1 Stochastic Petri Net

Within the theory of Petri Nets, one of the most prominent examples is Stochastic

Petri Net (SPN) which associates an exponential distribution to the firing of transitions

thereby establishing a link with the theory of Markov Chains. Formally, a stochastic

Petri Net SPN = (PN,Λ) is formed from a Petri Net PN = (P, T, F,M0) by

augmenting the definition to include the set Λ = (λ1, ..., λm) as part of the definition.

The λi is the transition rate of transition ti. Thus the firing time is exponentially

distributed and the cumulative distribution of χi the firing time of transition ti is

given by

Fχi
(x) = 1− e−λix.

72

SPNs are used to generate the, usually large, Markov chain based on a concise

description of the system using the SPN modeling language. This allows the study

of the corresponding Markov model of the system. One major challenge of Markov

models is the cardinality of their state space. Deciding the appropriate PN formalism

for modeling is one of the steps manifesting a great impact in regards to determining

model complexity and state space largeness.

2.3.2 Generalized Stochastic Petri Net

An extension to SPN, the class of Generalized Stochastic Petri Net (GSPN)

includes additional features to further extend the modeling power beyond SPNs.

GSPNs add inhibitor arcs and immediate transitions. An inhibitor arc is an arc from

a place to a transition that inhibits the firing of the transition when a token is present

in the input place.

Given a marking of the PN, more than one transition may be simultaneously

enabled. The tie between simultaneously enabled transitions can be broken by speci-

fying priorities, by specifying probabilities, or by a race involving the corresponding

exponential random variables of firing times i.e. min(Fχi
, Fχj

, ..., Fχk
). Priorities are

non-negative integers that determine an ordering of transitions. Whenever a transition

with a priority µ is enabled, all transitions with priorities less than µ are inhibited

from firing. If probabilities are assigned to the transitions, they are interpreted as

the weights of each transition. With some probability, any of the enabled transitions

may be the first to fire; any enabled transition with positive probability may fire

73

subsequently. Immediate transitions which can be simultaneously enabled must have

either priorities or probabilities specified in order to avoid errors in the definition of

the PN. For timed transitions, the decision as to which transition fires next can be

decided by a race; the transition with the minimal delay prior to firing will fire next.

The markings of a GSPN are classified into two categories, tangible or vanishing. A

marking is called tangible if the only transitions enabled are timed transitions, and a

marking is called vanishing if one or more immediate transitions are enabled in the

marking.

2.3.3 Stochastic Reward Net

Our modeling focuses on Stochastic Reward Nets (SRN) [43], a marking-dependent

oriented formalism derived from GSPNs. SRNs substantially increase the modeling

power of the GSPN by adding guard functions, marking dependent arc multiplicities,

general transition priorities, and reward rates at the net level.

A guard function is a boolean function associated with the definition of a transition.

Whenever the transition satisfies all the input and inhibitor conditions in a marking

M , the guard is evaluated. The transition is considered enabled only if the guard

boolean function evaluates to true.

Marking dependent arc multiplicities allow either the number of tokens required

for the transition to be enabled, or the number of tokens removed from the input

place, or the number of tokens placed in an output place to be a function of the

current marking of the PN. Such arcs are called variable cardinality arcs. These

74

capabilities provide powerful modeling flexibility to capture Hyperledger Fabric’s

modular architecture.

2.4 Hyperledger Fabric Platform

2.4.1 Version Releases

The earliest release of HLF dates back to September 2016 with release version v0.6.

Currently, HLF stands with release v2.3, as of the time of current writing. Major

milestones have been achieved over the years strengthening the security and design of

the platform. In this section, we summarize the major changes to the platform.

• HLF v0.6 was shown in [37] vulnerable from attacks to the PBFT consensus as

well as to variations of denial-of-service attacks.

• In HLF v1.0+, the execute-order-validate paradigm was adopted to help mitigate

the scenarios like the ones mentioned above. But in HLF v1.0+ the issue of

centralization of governance of chaincode (smart contracts) is still present.

• In HLF v2.0+, decentralized governance of chaincode was implemented. From

this version onwards, multiple organizations must agree on the parameters of a

chaincode definition. [13].

2.4.2 HLF Network Initialization

In this section, we describe the creation and initialization of the conceptual

Hyperledger Fabric network leading to our proposed cybersecurity scenario. We

refer the reader to the Hyperledger Fabric documentation [13] for a glossary of all

75

the terms used throughout this paper. We remark that HLF, being a permissioned

DLT platform, gains security from the construct of having verifiable identities and

actors on the network. But the risk can emanate from poor governance, flawed policy

administration, or configuration of the HLF network.

We now outline the steps involved in constructing the network with the cybersecu-

rity scenario CSS2:

1. The ordering service (OS) is started by an administrator from organization

R0. The configuration NC0 contains the policies that describe the initial

administrative capabilities of the HLF network N.

2. Organization R0 updates the network configuration NC0 to give the organization

R1 an administrator role. After this, both R0, R1 have equal rights over the

HLF network N.

3. Network administrator R1 defines CA1 as the certificate authority for this

organization.

4. A channel C1 has been created for R1 using the consortium definition X1. The

channel is governed according to the channel configuration CC1 completely

disjoint from the network configuration file NC0. CC1 is managed by R1 and

R0 has no rights in channel C1.

5. Peer nodes P1, P2, P3 (with designated endorsing roles) have joined channel

C1. Peers P1, P2, P3 physically host a copy of the ledger L1. The set of peers

and the ordering service can communicate with each other via channel C1. The

certificate authority CA1 provides the certificates for the set of peers which

determines their permission levels on channel C1.

6. A smart contract SC has been installed onto peers P1, P2, P3. Client application

A1 in organization R1 can use SC to access the ledger via peer nodes P1, P2, P3.

76

Steps 1, 2 Steps 3, 4

Steps 5, 6 Step 7

Figure 17. HLF Network Initialization

The application A1, peers P1, P2, P3, and ordering service OS are all joined to

channel C1 and thereby able to use resources from it.

7. Organization R2 is added to channel 1. Peers Ps1, Ps2, Ps3 (with designated

endorsing roles) have joined channel 1.

2.5 SRN Hyperledger Fabric Model

In this section, we introduce the Stochastic Reward Net model to Hyperledger

fabric version V2.x under our proposed cyber-security scenario. The main advantages

of using this Stochastic Petri Net formalism lie in the ability to easily add and remove

77

system details which is crucial to study different scenarios given Hyperledger Fabric’s

architecture. We first describe the model for the HLF network with one regular

client, then, by employing HLF’s modular nature, we describe the updated HLF

network, with overwritten policies, under which a malicious client has joined the

channel along with a set of endorsing peers for his transaction proposals. The SRN

model that captures this set-up is shown in Figure 20. We proceed in two stages:

pre-cyber-security scenario (CSS1) and post-cyber-security scenario (CSS2).

First, for CSS1, the SRN model is abstracting a regular functioning single-channel

fabric network with one regular client, three endorsing peers, and a single peer

running the validation logic. The endorsement policy has been established as a

majority endorsement, that is, at least two out of the three peers must provide their

endorsement to a transaction proposal. Figure 18 illustrates the decomposition of

the model into four phases. In the remainder of this section, we describe each phase

before presenting Figure 19 containing the diagram for the baseline model CSS1 of

the HLF network.

Transaction requests from the regular client follow a Poisson arrival process with

rate λPC and this phase corresponds to Figure 18 (a). The client prepares a transaction

proposal, requesting endorsement from designated endorsing peers PEni
for i = 0, 1, 2

(transition TPr, client processing time). The peers endorse the transaction proposal

(transitions TEni
for i = 0, 1, 2); this phase is shown in Figure 18 (b). Further details

on how the majority endorsement policy is modeled with SRNs are given in subsection

2.

When the client receives enough endorsements, as specified by the endorsement

policy, it sends the transaction proposal to the ordering service (transition TTx ,

transmission to ordering service, becomes enabled). In the channel configuration, a

78

(a) Transaction Proposal (b) Endorsement

(c) Ordering Service (d) Block Validation & commit

Figure 18. Decomposition of HLF model

designated value for a bundle of transactions has been defined to be M , this is the

block size. Now M pending transaction proposals are bundled into a “block“ and sent

to the committing peers of the channel (transition TOS); this phase corresponds to

Figure 18 (c).

In the final phase corresponding to Figure 18 (d), a Validation System Chaincode

(VSCC, TV SCC) check is performed to evaluate and confirm all the transactions

endorsements in the block against the endorsement policy of the channel (the rate

is limited by the CPU limitations of the peer). After, a Multi-version Concurrency

Control check is performed to ensure that the versions of the keys read by the

transaction during the endorsement phase are consistent with the current state at

commit time (transition TMVCC). At last, all transactions are written to the local

copies of the ledger (TledWrite). We now present the complete diagram for the model

made up of the previously presented parts.

For the second part CSS2, we consider the scenario where a second client (malicious

79

Figure 19. Petri Net Model for Baseline Scenario When There Is No Sybil Attack.

client) has joined the network and channel with appropriate permissions. Transaction

requests from the malicious client follow a Poisson arrival process with rate λPsC . A

set of three endorsing peers have joined the channel. The channel endorsing policy is

updated to 2/3 of PEni
OR 2/3 of PsEni

. The malicious client requests endorsement to

its transaction proposals from the set PsEni
. After collecting the required endorsement,

its transaction proposals are delivered to the channel’s ordering service. The rest of

the transaction flow of the network continues in the same way as described above for

the HLF network in CSS1.

The complete diagram for this scenario is presented below in Figure 20

2.5.1 SRN Model Features

The main SRN features that allow multiple endorsement policies to be easily

implemented in SPNP are: variable arcs and enabling guards.

These are defined in the SPNP manual 6.0 as viarc(t, p, func) and voarc(t, p, func).

These functions define, respectively, an input arc from place p to transition t, an output

arc from transition t to place p with multiplicity given by the marking-dependent

function func.

80

Figure 20. HLF SRN Model of Sybil Attack Scenario.

The variable arc function definitions from Figure 19, 20 are:

N1 = mark(PEn0) N4 = mark(PsEn0)

N2 = mark(PEn1) N5 = mark(PsEn1)

N3 = mark(PEn2) N6 = mark(PsEn2)

The weight of the variable arcs above, N1, ..., N6, are defined to be the current

mark of the input place.

The enabling guard definitions from Figure 19, 20 are:

[g.0] =

 1 mark(Pwait) > 1

0 otherwise
(2.1)

[g.1] =

 1 mark(Pswait) > 1

0 otherwise
(2.2)

Here the enabling guards (1), and (2) enforce the endorsement policy. Increasing

the number in the logical expression with the mark of the place will translate to

81

requiring more endorsements for a transaction proposal. In our case, we require at

least two endorsements (out of three possible). The variable output arcs, N1, ..., N6,

guarantee that as soon as the endorsement policy is satisfied the transition Iwait and

Iswait will become enabled therefore correctly capturing the majority endorsement

policy since only a subset of peers are required to endorse. By leveraging variable arcs

and enabling guards, numerous endorsement policies can be implemented without

introducing much complexity: AND, OR, K/N , K/N OR K ′/N ′, K/N AND K ′/N ′.

A Sybil attack involves creating a set of pseudoanonymous identities that joined

the network in order to undermine the functionality of the network. By modifying

the number of sybil peers (places Psi, and transitions Tsi), the SRN models of HLF

presented in this paper are able to capture a large space of Sybil attack configurations.

The structure of the SRN net from Figure 20 consists of: places (21), immediate

transitions (1), timed transitions (16), constant input arcs (19), constant output arcs

(24), and variable input arcs (8).

2.6 Simulations

Since the state space of the SRN is considerable, we must rely on discrete-event

simulations using the software package SPNP 6.0 [44]. We carry out a set of experiments

varying the following parameters rates and structure of the SRN as presented in Table

1:

• regular client transaction arrivals rate corresponding to the transition TPr,

• malicious client transaction arrivals rate corresponding to the transition TsPr,

• regular client endorsement rate corresponding to the transitions TEni
,

• malicious client endorsement rate corresponding to the transitions TSEni
,

• the number of regular client endorsing peers (in blue, places PEni
), and

82

HLF Setup and parameters (variable)
Component Rate

(s−1)
Mean Time (s) Number

Regular Client
Transactions
arrival rate

180 0.0055 -
200 0.0050 -
220 0.0045 -

Regular Client
Endorsement rate

270 0.0037 -
300 0.0033 -
330 0.0030 -

Number of Regular
Client peers

- - 3
- - 6

Malicious Client
Transactions
arrival rate

180 0.0055 -
200 0.0050 -
220 0.0045 -

Malicious Client
Endorsement rate

270 0.0037 -
300 0.0033 -
330 0.0030 -

Number of Malicious
Client peers

- - 3
- - 6

Table 1. The Rate Parameters Varied and the Structural Variations of the SRN Net
(Endorsing Peers) in the Set of Simulations.

• the number of malicious client endorsing peers (in red, places PsEni
).

During the simulations, the regular client submits a total of 200 transaction

proposals. The malicious client submits a total of 50 transaction proposals. In the

ordering phase a bundle of five transactions results in a block, so M = 5. Both clients

wait for endorsement completion on a transaction proposal before requesting a new

endorsement for new transactions. Further, both sets of endorsing phases are mutually

exclusive in the sense that at a point in time only one of the two client’s transaction

proposals is in the endorsement phase.

The cumulative performance measures recorded for transitions are:

83

Simulation specific options - SPNP 6.0
Option Value Description
IOP_SIMULATION VAL_YES Simulation procedure on
FOP_SIM_LENGTH 2000 Length of each simulation run
IOP_SIM_CUMULATIVE VAL_YES Cumulatively data from 0 to 2000
FOP_SIM_CONFIDENCE 0.9 Confidence interval
FOP_SIM_RUNS 100000 Max number of simulations runs
FOP_SIM_LENGTH {0.1,0.2,...,4.8,4.9} Length of each simulation run

Table 2. SPNP Options for Discrete-Event Simulations Used.

• Utilization – the weighted average (by the probability of each marking) that the

function is enabled.

• Average throughput – defined for a transition as

E(Ts) =
∑

i∈R(s)

p(i) · ρ(s, i)

where R(a) is the subset of reachable markings in which s is enabled, p(i) is the

probability of the marking i and ρ(s, i) is the rate of transition s in the marking

i (SPNP marking-dependent function rateval in our set-up).

The simulation options for our sets of experiments are in Table 2 above. Since

the structure of an SRN cannot vary dynamically, we implemented a python script

to generate all the different configurations (C ANSI files) we are interested in.

By varying the parameters listed above we obtain a total of 15,876 SRN nets

that represent all the combinations from Table 1. We have focused on examining

the average number of tokens passing through transitions Iwait and Iswait, which

are the endorsed transactions from the endorsement phase that are being sent

back to the client and ultimately to the ordering service, then to the rest of the

network, to compare them as the parameters change. These are measured from

simulation start time 0 to simulation run-time of 4.9 via discrete increments of 0.1.

84

HLF Setup and parameters (constant)
Component Rate (s−1) Mean Time (s) Number of Peers
OS 12 0.0833 1
VSCC 397 0.006 1
MVCC 196 0.005 1
Ledger write 48 0.0201 1

Table 3. The Rate Parameters Kept Constant During the Set of Simulations.

We seek to collect performance metrics under specific scenarios and gain insight

into how the system performance is affected in the event of a cybersecurity risk scenario.

More precisely, letting (AvT0.1, AvT0.2, ..., AvT4.9) be a vector containing the aver-

age throughput, AvTi, at transitions Iwait for i ∈ {0.1, ..., 4.9}, (0.1, 0.2, ..., 4.9) be the

run-time increments , and #(I iwait) represent the average number of tokens flowing

through the transition at run-time i then

(AvT0.1, AvT0.2, ..., AvT4.9) · (0.1, 0.2, ..., 4.9)T = (#(I0.1wait), ...,#(I4.9wait))

represents a vector of measurements of the average number of tokens flowing through

the transition at run-time i ∈ {0.1, ..., 4.9}. We study this measurement for the impact

on the transaction flow for different configurations of the HLF network over time in

the next section. Table 3 provides a summary of parameters kept constant in the set

of simulations.

2.7 Numerical Results

Our numerical investigations reveal the impact that changes in transaction arrival

85

rate, peer endorsement rate, and the number of endorsement peers have1. The scenario

labels for the simulation settings are given in Table 4 for Figures 21-27.

HLF Setup and parameters (variable)
Component Scenario

Label
Rate (category) Number

Regular Client
Transactions
arrival rate

RCTARL Low -
RCTARN Normal -
RCTARH High -

Regular Client
Endorsement rate

RCERL Low -
RCERN Normal -
RCERH High -

Number of Regular
Client peers

NRCP3 - 3
NRCP6 - 6

Malicious Client
Transactions
arrival rate

MCTARL Low -
MCTARN Normal -
MCTARH High -

Malicious Client
Endorsement rate

MCERL Low -
MCERN Normal -
MCERH High -

Number of Malicious
Client peers

NMCP3 - 3
NMCP6 - 6

Table 4. The Rate Parameters Categories and the Structural Variations of the SRN
Net (Number of Endorsing Peers) in the Set of Simulations.

First, we consider the setting of 3 regular client peers (NRCP3), low regular client

transaction arrival rate (RCTARL), and low malicious client transaction arrival rate

(MCTARL). In this setting, we consider 3 and 6 malicious client peers (NMCP3

and NMCP6), as well as change malicious client endorsement rates from low, to

normal and high (MCERL, MCERN and MCERH respectively). We present our

finding in Figure 21 and Figure 22. Figure 21 shows that increasing the number

of peers increases overall malicious transaction endorsement time. Also, increasing

1In the interest of effective visual presentation only the time till the average number of transactions
reaches 49.5 for Sybil attack and 199.5 for regular transactions, will be considered.

86

the malicious peer endorsement rate increases the overall malicious transactions

endorsement time, however, the impact of an increase of peers from 3 to 6 is larger.

The relative impact of increase or decrease of malicious peers’ endorsement rate is

smaller for 6 peers than for 3 peers. Figure 22 shows that both increase in malicious

peer transaction rate and an increase in the number of malicious peers positively

affect the overall regular transactions processing time. This is an intuitive result

as the sooner malicious transactions are endorsed less they can interfere with the

endorsement of regular transactions. More malicious peers allow for faster reaching

of consensus. The impact of their increase is found to be stronger. The kink in

the slope of endorsement of regular transactions in time could serve as an indicator

that malicious transactions have interfered with the rate of endorsement of regular

transactions. Figure 23 shows the impact under, the same scenario settings, of the

system with and without the cyberattack component.

Figure 21. Average Endorsement Time of Malicious Transactions (Tokens) in Time -
Comparison Between the Change of the Number of Malicious Peers Vs. Change in
Malicious Peers Endorsement Rate.

87

Figure 22. Average Endorsement of Regular Transactions (Tokens) in Time - Compar-
ison Between the Change of the Number of Malicious Peers Vs. Change in Malicious
Peers Endorsement Rate.

Second, we consider setting of 3 malicious client peers (MRCP3), low regular

client transaction arrival rate (RCTARL) and low malicious client transaction arrival

rate (MCTARL) as well as low regular and malicious transactions endorsement rate

(RCERL and MCERL). In this setting, we consider 3 and 6 regular client peers

(NRCP3 and NRCP6). We present our finding in Figure 24c. Figure 24a shows that

increase in the number of regular peers has a positive overall effect on the processing

time of a majority of regular transactions. However, from Figure 24b we learn that

there will be also a positive overall impact on the overall endorsement time of most

malicious transactions. This is intuitive, and due to the symmetry of our scheme. The

faster the majority consensus is achieved, the faster the regular transactions will be

endorsed and the less they will interfere endorsement of malicious transactions.

Third, we consider the setting of 3 regular and 3 malicious client peers (NRCP3 and

NMCP3), low regular client transaction arrival rate (RCTARL), and low malicious

client transaction arrival rate (MCTARL) as well as low malicious transactions

endorsement rates (MCERL). In this setting, we consider low and high regular client

88

Figure 23. Average Endorsement of Regular Transactions (Tokens) in Time - with
and Without Cyber Attack Component.

endorsement rates (RCERL and RCERH). We present our finding in Figure 25. Figure

25a shows that an increase in the regular client endorsement rate has a positive overall

effect on the processing time of a majority of regular transactions. For similar reasons

as in the previous paragraph Figure 25b show a positive impact on the overall malicious

client’s endorsement rate. However, comparing Figures 24c and 25 we see that impact

created by the increase in the number of regular clients is stronger compared to the

increase in regular client endorsement rate.

Fourth, we consider setting of 3 regular and 3 malicious client peers (NRCP3 and

NMCP3), low regular client transaction arrival rate (RCTARL) as well as low regular

and malicious transactions endorsement rate (RCERL and MCERL). In this setting,

we consider low and high malicious client transaction arrival rates (MCTARL and

MCTARH). We present our findings in Figure 26. Figure 26a shows a positive impact

on the overall endorsement time of malicious transactions as expected. However,

Figure 26b shows a negative impact on endorsement times of part of the regular

89

(a) Malicious Transactions - Impact of Number of Regular Client Peers Change.

(b) Regular Transactions - Impact of Number of Regular Client Peers Change.

(c) Average Endorsement of Transactions (Tokens) in Time.

90

(a) Malicious Transactions - Impact of Regular Client Endorsement Rate Change.

(b) Regular Transactions - Impact of Regular Client Endorsement Rate Change.

Figure 25. Average Endorsement of Transactions (Tokens) in Time.

91

(initial) transaction. This suggests that this approach could have adverse effects on

HLF in case of a denial of service attack.

Finally, we consider the setting of 3 regular and 3 malicious client peers (NRCP3

and NMCP3), low malicious client transaction arrival rate (MCTARL) as well as low

regular and malicious transactions endorsement rate (RCERL and MCERL). In this

setting, we consider low and high regular client transaction arrival rates (RCTARL

and RCTARH). We present our findings in Figure 27. Figure 27a shows a positive

impact on the overall endorsement time of regular transactions as expected. However,

Figure 27b shows a negative impact on endorsement times of part of the malicious

transactions. This suggests that this approach could be a potential antidote that HLF

can deploy in case of a denial of service attack.

92

(a) Malicious Transactions - Impact of Malicious Transactions Arrival Rate Change.

(b) Regular Transactions - Impact of Malicious Transactions Arrival Rate Change.

Figure 26. Average Endorsement of Transactions (Tokens) in Time.

93

(a) Malicious Transactions - Impact of Regular Transactions Arrival Rate Change.

(b) Regular Transactions - Impact of Regular Transactions Arrival Rate Change.

Figure 27. Average Endorsement of Transactions (Tokens) in Time.

94

2.8 Validation

We parametrize our SRN model using data collected from a HLF network setup

in our cloud environment using the Google Cloud Platform (GCP). The ultimate

goal of this campaign is to collect performance measures subject to realistic traffic

patterns for validation purposes. In this section, we provide details of network setup,

tools used, and our procedure for data collection and analysis. Below, we expand and

detail these steps: network setup, chaincode test application, measurements, Caliper

measurement procedure, and key parameters.

Network Setup. The data collected to parametrize our model is obtained from a

HLF network setup deployed on a computing instance over the GCP. The computing

instance is running a Linux-based machine (typec2-standard-8, 60vCPUs, 236 GB

RAM) having the image Debian-10-buster-v2021072. Intel’s Cascade Lake is the CPU

platform chosen for emulation. The boot disk is set as a Balanced Persistent disk.

The HLF network setup is achieved using a minikube (v1.22.0) cluster over

Kubernetes (v1.21.3). Kubernetes and minikube can be classified as container tools.

Kubernetes2 is an open-source orchestration system for Docker containers. It handles

the scheduling aspect of nodes and actively manages workloads in a computing cluster.

Minikube is a local Kubernetes, a single node cluster contained in a virtual machine

(VM). We deploy the HLF over minikube using locally built Docker images. To obtain

the needed parameters from the network, we make changes to the HLF (v2.2) source

code and build the binaries locally on the GCP machine with Golang (v1.16.6) and

Node (v10.24.0) installed. All binaries are hosted over Docker inside minikube. Within

Kubernetes, each pod has a unique IP address for communication with other pods.

2See https://kubernetes.io/docs/tutorials/kubernetes-basics/.

95

The HLF network consists of four peers, and the channel’s endorsement policy is

set as a majority endorsement policy. Three peers have an endorsing role and the last

remaining peer has the committing role (see Figure 28). The ordering service contains

one ordering service node (OSN), 3 ZooKeeper nodes, and 4 Kafka brokers. The

choice of Kafka ordering service is made following [16]. Since emulation is performed

for a very small network and the ordering service is crash fault-tolerant, our choice is

justified, however in future research RAFT can be considered. Hyperledger Caliper

(v0.4.2) is acting as a client application to send transactions to the HLF network.

An initial attempt was made to make changes in HLF (v1.x) but due to deprecated

support from various Node and Golang libraries, it was abandoned in favor of HLF

(v2.2).

All peer nodes (including the ordering service) are connected over a single channel

using separate computational resources (8 CPUs each). Overall, each network entity

is launched as a containerized application and connected to other network components

using a single channel. Containers corresponding to each network entity (peer,

certificate of authority, etc.) run over separate pods with a single channel thread that

interacts with the network using locally installed Fabric SDK.

To execute the workload for the HLF network, we use Hyperledger Caliper (HC),

a blockchain benchmarking tool under the Hyperledger project from the Linux foun-

dation. HC allows users to measure the performance of a blockchain implementation.

One of the many benefits of using HC is that it automatically handles the complex

workflow performed by the client application. It features various standard rate control

functions but for our purposes, we have implemented a new rate-control function to

generate traffic following a Poisson arrival process. The literature on HLF modeling is

still missing a distribution study analysis to choose the best-fit distribution for each

96

transaction. However, consistently good validation results presented in this chapter

and earlier works [16] certainly justify the choice of the exponential distribution for

all transaction rates.

Figure 28. Hyperledger Fabric Network Set-Up

Chaincode Test Application. For performance measurements, we leverage a simple

smart contract (’chaincode’ SC1) and make necessary changes for our purposes of

model validation. The function of SC1 is to maintain the account balance of users and

it mainly performs two functions, ’query’ and ’transfer’. The ’query’ function checks

if an account exists, and if not, creates a new account with a starting balance. It

performs a total of two operations, one read and one write to the key-value repository.

The ’transfer’ function performs a balance transfer from one account to another. It

performs two read and two write operations to the key-value repository. After a

suitable amount of time running ’query’ functions, the key-value repository will be

97

populated for ’transfer’ operations to complete successfully. Both functions on the

client-side receive a random account number as input thus there is no dependency

between consecutive transactions. This makes transactions rarely fail the validation

stage. In this manner, we generate the workload of valid transactions following the

desired process.

Measurements. We measure the time elapsed to perform the critical steps in the

transaction flow by analyzing the HC output, logs files from the peers, and log files

from the ordering service. We modify the HLF code by adding additional log entries

to obtain the time when a transaction enters or leaves any particular phase. In any

distinct phase, the weighted-time average of the number of transactions gives the

mean queue length. The parameters of interest are measured for different block sizes

with various transaction arrival rates.

Caliper Measurement Procedure. We run Hyperledger Caliper with a single

client thread and a test duration of 240 seconds. To validate our model for various

configuration settings, we vary three parameters in our network implementation:

transaction type (’query’, ’transfer’), block size, and transaction arrival rate. The

parameters in Table 5 are used by the simulation in SPNP.

Key Parameters. We perform multiple test runs by varying the set of parameters

described in the previous sections, collect log files, and derive the required parameters.

Each test run consists of 9k to 20k transactions, with firing times following an

exponential distribution that we enforce via mean transaction arrival rate. The key

measurements for a ’query’ type transaction are summarized in Table 6 given below.

The MVCC and ledWrite are captured at the block level. For the validation effort, we

compute the mean queue length at various stages within a peer: OS, VSCC, MVCC,

98

and ledWrite. Mean queue length provides an intuitive insight into the performance

of the HLF system.

The results given in Table 6 are measurements from the simulation (SPNP column)

and real HLF network deployment (Validating Framework column) baseline scenario.

The rows are mean queue length measurements of the four stages for a particular arrival

rate and block size combination considered. To validate our model, we follow the

common validation procedure in the literature [16], [17] by computing and comparing

the mean queue length (MQL) at the stages: OS, VSCC, MVCC, and ledWrite with

empirical results obtained from the validation framework. The MQL measure at these

four stages between simulation and validation framework is an intuitive validation

metric that establishes a correspondence between their transaction flow. For all stages,

our differences, deduced from Table 6, between empirical and simulated values are

comparable to the validation criteria in [16], where similar differences between SPNP

and validating framework MQL measurements hold as arrival rate and block size are

varied. Overall, we have similar differences and validating characteristics between

simulation and empirical results as was shown in [16]. Therefore, in the context of

validation purposes existing in the literature, we consider our model validated, that is,

Parameter (ms) Block 40 Block 60 Block 80 Block 200
Client Processing 4.990 4.964 4.993 4.992
Endorsement 1.289 1.278 1.251 1.193
Transmit to Ordering Service 1.577 1.597 1.582 1.585
Block Creation and Delivery 76.196 114.747 156.616 381.808
VSCC 0.0401 0.0580 0.0718 0.0260
MVCC 4.938 7.475 9.535 18.777
Ledger Write: 39.641 47.432 53.237 81.484
Arrival Rate (TPS) 235.5 236.6 237.9 237.2

Table 5. Model Parameters Obtained from Validating Framework. See Section 2 For
a Description of Model Parameters.

99

Mean Queue Length Validation Set - Baseline Scenario
(Arrival Rate,
Block Size)

Stage SPNP Validating Framework

OS 27.503 26.324
(235.5, 40) VSCC 0.0111 0.0145

MVCC 0.516 0.577
Ledger
Write

4.175 4.677

OS 41.602 40.725
(236.6, 60) VSCC 0.0236 0.0241

MVCC 0.785 0.881
Ledger
Write

4.950 5.638

OS 56.127 58.474
(237.9, 80) VSCC 0.0385 0.0278

MVCC 1.009 1.125
Ledger
Write

5.574 6.358

Table 6. Mean Queue Length Comparison Between Spnp and Validating Framework
under Baseline Scenario.

the model captures the transaction flow of a real HLF network deployment with a

majority endorsement policy.

2.9 Conclusion

In this work, we contribute to the literature a novel approach in joint modeling

of HLF, together with a cyberattack, here Sybil attack. Our findings show that this

approach can yield a novel understanding of vulnerabilities of HLF and the interplay

between structure and parametrization of HLF and, structure and parametrization of

Sybil cyberattack.

Our simulations can capture the overall impact, at the transaction level, that a

Sybil attack exerts on a HLF network. In all simulations involving the Sybil attack,

100

there is a quantifiable degradation of performance on the HLF network. Moreover,

the simulations provide a high level of detail capturing performance degradation from

the beginning of a Sybil attack until its conclusion for all parameter and network

structure combinations considered. The classification of the specific ways the network’s

performance is affected serves as a basis for advancing the understanding of Sybil

attacks on HLF.

In view of increasing the chances of a successful Sybil attack and forcing malicious

transactions through the network, the numerical results indicate: (1) A Sybil attack

configuration that involves six Sybil endorsing peers is a favorable configuration over

having three endorsing peers for each, the regular client and Sybil client. Additionally,

the Sybil attack will cause less performance degradation to the HLF network with six

endorsing peers than with three. (2) A Sybil attack that involves a high Sybil client

transaction proposal rate will be favorable over having a lower Sybil client transaction

proposal rate. Moreover, a high Sybil client transaction proposal rate will cause less

performance degradation than a lower Sybil client transaction proposal rate. The

favorable configurations for a Sybil attack in (1) and (2) also imply a higher difficulty

in detecting such an attack via performance metrics.

From the point of view of decreasing the chances of allowing malicious transactions

through the HLF network in a Sybil attack scenario, the numerical results reveal: (3)

Having fewer regular client endorsing peers, three, compared to six is more favorable in

hindering the number of Sybil transactions committed to the ledger. (4) Maintaining

a lower client transaction proposal rate will decrease a Sybil client’s ability to propose

transactions and ultimately commit them to the ledger. The configurations and

restrictions from (3) and (4) imply a lower chance of a successful Sybil attack.

When it comes to future work, the work presented in this paper is generalizable in

101

at least two directions. First, it can be a template for understanding the behavior of

other cyber-physical systems during a cyberattack. Various structural and contextual

choices can be made within a particular attack, making for a potentially large space

of attacks and their variations. As an added complexity, the efficiency of an attack

is very dependent on the structure of HLF, and its implementation. An interesting

analysis would look at how for a particular attack, the characteristics of HLF fabric

affect its effectiveness. Second, it can be expanded to be a platform for understanding

the performance of various types of cyberattacks and devising ways for their detection.

A particular structural choice of attack, for example, the various configurations of the

Sybil attack presented in this paper, offers multiple ways of information extraction over

time. Thus multiple signal formulations can be considered to discern the possibility of

their detection within the space of measurable variables within HLF.

102

Chapter 3

EFFECT OF MACHINE LEARNING PERFORMANCE WITH SYNTHETIC

DATA AUGMENTATION FROM DIFUSSION MODELS ON CYBER-INTRUTION

DATASETS

103

3.1 Introduction

The successful application of machine learning models in various fields strongly

depends on the quality of the data used for training. Obtaining additional data

can improve a machine learning model’s performance. Unfortunately, this could

prove challenging, costly, or, in some cases, impossible. More specifically, leveraging

additional data can be crucial for achieving satisfactory performance for applications

involving classification tasks in the imbalanced setting and anomaly detection tasks

via unsupervised and semi-supervised methods. Originally developed for image

generation, diffusion models have shown promise in generating realistic synthetic

tabular data. Emerging evidence points to the eventual triumph of diffusion mod-

els over generative adversarial networks analogous to what has happened in the

computer vision field with image generation. This chapter explores the adaptation

of recent open-source implementations of diffusion models for synthetic tabular

data generation. We discuss the principles of diffusion models, their application to

tabular data, and the challenges and future directions in this field in the context

of cybersecurity and anomaly detection. We aim to provide insights and empiri-

cal evidence into the effectiveness of diffusion models for generating high-quality

synthetic tabular datasets focusing on cyber and anomaly detection datasets for

performance improvements through synthetic data augmentation in the tabular setting.

3.2 Literature Review

The cumulative number of deep learning papers has been increasing steadily over

the last decade, according to [45], showing no signs of stopping. Even subfields of

104

deep learning, like generative AI, have recently had an explosion of research activity

on ArXiv. Further narrower in scope, diffusion models have increased their numbers

rapidly and intensely. Diffusion models have a wide range of applications, including

computer vision, natural language processing, reinforcement learning anomaly detec-

tion, and more. More unconventional applications include protein design [46], medical

image synthesis [47], inverse problems [48] and stenography [49].

One of the first works in denoising diffusion probabilistic models for image

synthesis we refer the reader to is [50]. The focus of this chapter is on the adaptation

of diffusion models for synthetic tabular data generation. Our primary reference

is [51], where the authors introduced a single diffusion model for tabular datasets

capable of handling numerical and categorical and thus can be universally applied to

any tabular dataset. The model performed strongly in extensive tests on a wide set of

datasets for regression and classification tasks. The authors show that the superiority

of the diffusion model’s synthetic data surpasses that of GAN/VAE alternatives,

which is consistent with the advantage of diffusion models in other fields like computer

vision. An earlier effort [52] tackled the inherent inhomogeneous nature of tabular

data by separating discrete and continuous variables using two separate conditional

diffusion models. Outside the general generation of synthetic data, the authors in

[53] considered the problem of the imputation of tabular data with diffusion models

with comparable and effective performance with well-known existing methods. For a

complete textbook introduction to the field of synthetic data, we refer the reader to [54].

3.3 Methods

We augment an original dataset with synthetic samples to measure the effectiveness

105

Figure 29. After Separating into a Training and Testing the Training Set Is Used for
Synthetic Data Generation. The Test Set Is Not Leaked.

of synthetic tabular data generated by TabDDPM on cyber datasets. We train machine

learning classifiers on the original and augmented datasets. We then use a test set to

compute well-known classification metrics and asses the performance improvements

obtained. The frameworks for synthetic data generation used in this chapter are

open-source and available at [51, 55].

3.4 Evaluation Metrics

In order to evaluate these models, we compute the following:

• True Negatives (TN): number of correctly classified negative (normal) samples

• True Positives (TP): number of correctly classified positive (fraudulent) samples

106

• False Negatives (FN): number of positive (fraudulent) samples incorrectly classified

as negative (normal)

• False Positives (FP): number of negative (normal) samples incorrectly classified as

positive (fraudulent).

The relationship between the predicted and the actual classifications can be

represented by a confusion matrix as shown in Table 7.

Table 7. Confusion matrix for two classes, negative (non-fraud) and positive (frauds).

Predicted Class
Negative Positive

Actual
Class

Negative True Negative (TN) False Positive (FP)
Positive False Negative (FN) True Positive (TP)

There are several metrics that combine these quantities in some way to evaluate a

model, the most common being accuracy. Accuracy measures the number of correctly

classified samples (TP + TN) out of the total number of samples.

accuracy =
TN + TP

TP + FN + FP + FN
.

The accuracy can range from 0 to 1, where 1 represents a perfect-performance model.

However, the accuracy sometimes may not be a good indicator for imbalanced data

because a model that classifies all samples as normal transactions will still obtain

an accuracy of more than 99%, even though it completely disregards the fraudulent

samples. In such cases, balanced accuracy is used instead because it places equal

weight on the correct classification of each class.

balanced accuracy =
1

2

(
TP

TP + FN
+

TN
TN + FP

)
.

107

The balanced accuracy can range from 0 to 1, where 1 represents a model with perfect

performance.

3.4.1 ROC Curve

The Receiving operating characteristic (ROC) curve plots the True Positive Rate

(TPR) against False Positive Rate (FPR) at all possible classification thresholds. True

Positive Rate (TPR) is a synonym for recall and is computed as

True Positive Rate =
TP

TP + FN
.

False Positive Rate (FPR) measures the number of incorrectly classified positive

(fraudulent) samples out of the total number of samples actually belonging to the

negative class. It is defined as

False Positive Rate =
FP

FP + TN
.

The ROC curve considers negative (normal) and positive (fraudulent) classes. Both

metrics are computed for various probability thresholds τ in order to construct a

curve. The area under this curve (AUC) can be used for aggregating the measure of

TPR and FPR across all possible thresholds and returns a single score. The AUC

score can range from 0 to 1, with 1 indicating perfect performance.

3.4.2 Precision-Recall Curve

The precision-recall curve is constructed using the metrics of precision and recall.

Precision measures the number of correctly classified positive (fraudulent) samples

out of the total number of samples classified as coming from the positive class. It is

108

defined as

precision =
TP

TP + FP
.

Recall measures the number of correctly classified positive (fraudulent) samples out of

the total number of samples actually belonging to the positive class. It is defined as

recall =
TP

TP + FN
.

Unlike the ROC-AUC Curve, precision and recall are only concerned with the positive

(fraudulent) class and therefore evaluate a model’s performance primarily based on

the minority class. Likewise, both metrics are obtained with various probability

thresholds in the ROC curve. We could then compute the AUC to obtain the model

performance.

3.4.3 F1-Score

F1-Score is the weighted average of precision and recall, and is used for model

comparison. It is defined as,

F1-score =
2 · (precision ∗ recall)

precision + recall
.

F1-Score can fall between 0 and 1, with 0 meaning either precision or recall are

zero.

3.4.4 Matthew’s Correlation Coefficient

The Matthew’s Correlation Coefficient (MCC) is used to assess machine learning

predictions in binary and multiclass settings [56, 57]. The correlation coefficient is

between +1 and -1, and the correlation coefficient is 0 when the prediction is entirely

109

random. The MCC is defined as,

MCC =
TP × TN − FP × FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)

3.5 Datasets

3.5.1 Credit Card Fraud Detection

The dataset we use is from the machine learning group at the Université Libre de

Bruxelles, Belgium, publicly available via Kaggle and contains credit card transactions

made by European cardholders over the span of two days in September of 2013. This

dataset has 492 frauds out of 284,807 total transactions, i.e., the positive class (frauds)

comprises 0.172% of all transactions. There are 31 features. The other two are ’Time’,

which specifies the seconds elapsed between each transaction and the first transaction

in the dataset, and ’Amount’, which is the transaction amount. The column ’Class’

contains the target labels, which take a value of 1 for fraudulent transactions and 0

otherwise.

3.5.2 Ethereum Transactions

The second dataset we use is also from Kaggle. This dataset consists of 7,662

non-fraud transactions and 2,179 frauds out of 9,841 total transactions made over

Ethereum, i.e., the positive class (frauds) accounts for 22.14% of all transactions,

which is much higher than the Credit Card dataset. There are 51 features where, 3 of

which are categorical, and the others are numeric. In this section, we only use numeric

110

https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://www.kaggle.com/datasets/vagifa/ethereum-frauddetection-dataset

Credit-card Ehetereum
size (N) 284, 807 9, 841
proportion fraud 0.17% 22%
number features 29 45

Table 8. Summary of the Two Datasets.

features for computation efficiency. The feature ’FLAG’ contains the target labels,

which take a value of 1 for fraudulent transactions and 0 otherwise. Table 8 shows

the summary of the two datasets.

3.5.3 UNSW-NB15

UNSW-NB15 is a comprehensive dataset for network intrusion detection systems

released by the Intelligent Security Group at UNSW Canberra [58]. The dataset

consists of a hybrid of real modern normal activities and synthetic contemporary

attack behaviors. It includes nine types of attacks: worms, shellcode, reconnaissance,

generic, exploits, denial of service, backdoors, analysis, and fuzzers. It has 42 features

and the attack or normal label. The original dataset is considerably large (≈ 2.5

million records), but the authors released a partitioned training set and a test set

containing 82,332 and 175,341 records, respectively. The number of instances added

for DoS, analysis, backdoor, exploit, fuzzers, reconnaissance, shellcode, and worm are:

7000, 7000, 6989, 2000, 9809, 3450, 12000, and 1000 respectively.

3.5.4 BRL IoT Device Management over Blockchain

This dataset is from the Blockchain Research Laboratory at Arizona State Uni-

versity. It contains static and dynamic parameters from an IoT device logging data

to a Hyperledger Fabric platform (permissioned blockchain). The goal is to create a

111

Class Train (%) Test (%)
Normal 37000 75.5 56000 32.0

DoS 4089 8.3 12264 7.0
Generic 18871 38.5 40000 22.8
Exploit 11132 22.7 33393 2.0
Fuzzers 6062 12.4 18184 10.4

Reconnaissance 3496 7.1 10491 6.0
Analysis 677 1.4 2000 1.2
Backdoor 583 1.2 1746 1.0
Shellcode 378 0.77 1133 0.6
Worms 44 0.09 130 0.1

Table 9. UNSW NB15 Data Distribution for Train and Test Sets.

digital twin stored on an immutable ledger to asses levels of cybersecurity by deploying

machine learning models on the historical data to keep track of changes in the device’s

state. The dataset subset used for augmentation contains four features: usedMemory,

bufferCache, availableMemory, and Memory Utilization_kbcommit. The target col-

umn contains the device state with four unique values, giving a multi-classification

dataset.

3.6 Results

This section presents the results concerning performance improvements from

metrics introduced in Section 3. We remark that during the training process, the

test set is not, in any way, used or leaked into training. The augmentation for these

two datasets is with positive and negative classes with the generation following the

distribution of the train set. All models use the default hyperparameters from the

Scikit-learn module [59].

The ML classifiers considered in this section are briefly described below:

XGBoost: XGBoost is an optimized distributed gradient boosting library designed

to be highly efficient, flexible, and portable. It implements machine learning algorithms

112

under the Gradient Boosting framework. XGBoost provides a parallel tree boosting

(also known as GBDT, GBM) that solves many data science problems in a fast and

accurate way [60].

Decision Tree: Are a class of non-parametric supervised learning algorithms used

for regression and classification. We focus on the latter task; in this case, decision

trees are called classification trees. The classification tree predicts the value of a target

variable by learning decision rules inferred from the data features.

Random Forest A random forest is an estimator that trains a number of decision

tree classifiers on various sub-samples of the dataset and uses averaging to improve

the predictive accuracy and control any over-fitting.

3.6.1 Augmenting with Synthetic Data

In this section, the objective is augmentation with synthetic data, that is, data rows

(instances) with positive and negative labels following the training set’s distribution.

The quantity added is usually a multiple of the training set’s size. Classifiers are

trained independently on the training and augmented training set, respectively, and

their performance determined from the test set. ROC AUC is one of the most widely

used threshold-free metrics for binary classification [57]. Table 10, shows the ROC

AUC on the test set by XGBoost classifiers trained on the training and training

augmented with synthetic data. The train, validation, and test split for both dataset

is 70%, 15%, and 15% respectively.

113

ROC AUC Credit-card Ethereum
Original 0.967 0.983
Augmented 0.981 0.997

Table 10. Summary of ROC AUC Performance Metric for an XGBoost Classifier.

Results for the BRL IoT dataset are shown in table 11. Synthetic data augmentation

is used, meaning instances are added following the training data’s distribution. A total

of 1,100 instances are added. On this dataset, all performance metrics improve with

synthetic data augmentation. The accuracy score improved from 0.6356 to 0.6639.

Original TabDDPM Augmented

Precision Recall F1-score MCC Precision Recall F1-score MCC

XGB 0.6391 0.6356 0.6354 0.5149 0.6771 0.6705 0.6718 0.5621

Table 11. Summary of Performance Metrics for the BRL IoT Dataset with XGBoost
Classifier.

3.6.2 Balancing with Synthetic Data

In this section, we balance the original training set with labels from classes that

contain a low number of instances. Then, classifiers are independently trained on the

original training set and the balanced training set, and their performance is assessed

on a test set. Table 12 presents the precision, recall, f1-score, and MCC scores for

the UNSW NB15 dataset. Performance gains exist in the decision tree (DT) and

XGBoost (XGB) classifiers. Slight performance degradation in performance exists for

the random forest classifier.

Balancing with synthetic data for the credit card dataset yields improvements in

ROC AUC, recall, and F1-score. Table 14 summarizes the results. The ROC AUC

114

Original TabDDPM Balanced

Precision Recall F1-score MCC Precision Recall F1-score MCC

XGB 0.7524 0.7699 0.7253 0.7089 0.7651 0.7712 0.7378 0.7094
RF 0.7458 0.7470 0.7111 0.6792 0.7483 0.7534 0.7178 0.6865
DT 0.6682 0.6847 0.6468 0.6002 0.6990 0.7103 0.6801 0.6359

Table 12. Summary of Results for UNSW NB15 Dataset on Test set. Metrics for
Model Trained with Original Train and Balanced Train Set Shown.

metric improved from 0.872 to 0.904. The balanced accuracy increased from 0.8717 to

0.9005. The train, test split is 80%, 20% respectively.

Original TabDDPM Balanced

Precision Recall F1-score MCC Precision Recall F1-score MCC

XGB 0.951 0.744 0.835 0.841 0.933 0.808 0.866 0.868

Table 13. Summary of Performance Metrics for the Credit Card Dataset with XGBoost
Classifier.

Adding 500 positive instances to the Ethereum dataset yields slight performance

improvements. The ROC AUC increased from 0.962 to 0.969. The balanced accuracy

slightly rose from 0.9616 to 0.9687. The train, test split is 70%, 30% respectively.

Original TabDDPM Balanced

Precision Recall F1-score MCC Precision Recall F1-score MCC

XGB 0.9866 0.9866 0.9865 0.9470 0.9882 0.9883 0.9882 0.9537

Table 14. Summary of Performance Metrics for the Ethereum Dataset with XGBoost
Classifier.

The main objective of conditional tabular generative adversarial network (CTGAN)

model introduced in [61] is to tackle the inherent mix of continuous and discrete

columns or features in commonly found in tabular datasets. CTGAN competes with

115

tabular variational autoencoders (TVAE), and is able to provide better performance

in several datasets. We find TabDDPM providing, in turn, comparable performance

to CTGAN [62] and ultimately providing slight performance boost in five of the eight

metrics we consider across two models: decision trees and random forests on the

UNSW NB15 dataset.

CTGAN TabDDPM

Precision Recall F1-score MCC Precision Recall F1-score MCC

DT 2.296% 2.519% 3.333% 3.690% 4.609% 3.738% 5.148% 5.948%
RF 1.323% 1.227% 0.470% 1.720% 0.335% 0.856% 0.942% 1.074%

Table 15. Percent Improvement of Performance Metrics with Decision Tree and
Random Forest Classifiers under Synthetic Tabular Data Balancing from CTGAN
and TabDDPM on the UNSW NB15 Dataset.

3.7 Conclusion

Performance obtained from leveraging a small number of labels (≈ 1%) with semi-

supervised methods can surpass the current state-of-the-art unsupervised learning

methods [63]. In ML cybersecurity applications where, labels of rare instances,

cyberattacks, intrusion logs, and many more., can be challenging to obtain initially,

synthetic data augmentation can be crucial for successful classification tasks. Thus,

synthetic tabular data generation via denoising diffusion models naturally finds its

place as components to be integrated early in the design of ML classifiers to aid

when small amounts of the label are available, and increasing the availability of such

is virtually impossible. The authors in [51] have demonstrated the good quality of

synthetic data generation by TabDDPM in a wide range of datasets with a combination

of numerical, categorical, or both for regression and classification tasks. The results

116

in [62] show improvements in the performance metrics of ML classifiers via balancing

with conditional generative adversarial networks for tabular data. At the moment,

conditional GAN models posses an advantage in the capabilities to balance tabular

data since their data generation can be guided towards the desired labels of low

quantities. The diffusion model for tabular data considered in this chapter is not

conditional and thus one has to resort to filtering data generated for a certain constraint

of interest, for example, the class labels that are imbalanced. In summary, we have

applied synthetic tabular data augmentation to cyber datasets, which are characterized

as being highly imbalanced, which makes training challenging. We have found that

synthetic data augmentation can improve standard classification metrics commonly

used for anomaly detection and classification tasks in these datasets. These results

firmly position denoising diffusion probabilistic models for additional research in

applications to anomaly detection, especially with MLP and NN-based algorithms

architectures. Future research will investigate the performance improvements synthetic

data augmentation can provide with custom losses, architecture, and ensemble models.

117

REFERENCES

[1] ‘Cyber risk and risk management.’ In: The Institute of Risk Management (2018).

[2] Jevtić, P. and Lanchier, N. ‘Dynamic structural percolation model of loss
distribution for cyber risk of small and medium-sized enterprises for tree-based
LAN topology’. In: Insurance Math. Econom. 91 (2020), pp. 209–223. doi:
10.1016/j.insmatheco.2020.02.005. url: https://doi-org.ezproxy1.lib.asu.edu/10.
1016/j.insmatheco.2020.02.005.

[3] Lanchier, Nicolas et al. ‘Probabilistic Framework For Loss Distribution Of Smart
Contract Risk’. In: Advances in Complex Systems (ACS) 24.07n08 (2021), pp. 1–
31.

[4] Chiaradonna, Stefano, Jevtić, Petar, and Lanchier, Nicolas. ‘Framework for
cyber risk loss distribution of hospital infrastructure: Bond percolation on mixed
random graphs approach’. In: Risk Analysis (2023). doi: https://doi.org/10.
1111/risa.14127. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/risa.
14127. url: https://onlinelibrary.wiley.com/doi/abs/10.1111/risa.14127.

[5] Chiaradonna, Stefano et al. ‘Framework for cyber risk loss distribution of client-
server networks: a bond percolation model and industry specific case studies.’
In: Submitted. (2023).

[6] Androulaki, Elli et al. ‘Hyperledger fabric: a distributed operating system for
permissioned blockchains’. In: Proceedings of the thirteenth EuroSys conference.
2018, pp. 1–15.

[7] Broadbent, S. R. and Hammersley, J. M. ‘Percolation processes. I. Crystals
and mazes’. In: Proc. Cambridge Philos. Soc. 53 (1957), pp. 629–641. doi:
10.1017/s0305004100032680. url: https://doi-org.ezproxy1.lib.asu.edu/10.1017/
s0305004100032680.

[8] Grimmett, G. Percolation. Second. Vol. 321. Grundlehren der Mathematischen
Wissenschaften. Springer-Verlag, Berlin, 1999, pp. xiv+444. doi: 10.1007/978-3-
662-03981-6. url: https://doi-org.ezproxy1.lib.asu.edu/10.1007/978-3-662-
03981-6.

[9] Erdős, P. and Rényi, A. ‘On random graphs. I’. In: Publ. Math. Debrecen 6
(1959), pp. 290–297.

118

https://doi.org/10.1016/j.insmatheco.2020.02.005
https://doi-org.ezproxy1.lib.asu.edu/10.1016/j.insmatheco.2020.02.005
https://doi-org.ezproxy1.lib.asu.edu/10.1016/j.insmatheco.2020.02.005
https://doi.org/https://doi.org/10.1111/risa.14127
https://doi.org/https://doi.org/10.1111/risa.14127
https://onlinelibrary.wiley.com/doi/pdf/10.1111/risa.14127
https://onlinelibrary.wiley.com/doi/pdf/10.1111/risa.14127
https://onlinelibrary.wiley.com/doi/abs/10.1111/risa.14127
https://doi.org/10.1017/s0305004100032680
https://doi-org.ezproxy1.lib.asu.edu/10.1017/s0305004100032680
https://doi-org.ezproxy1.lib.asu.edu/10.1017/s0305004100032680
https://doi.org/10.1007/978-3-662-03981-6
https://doi.org/10.1007/978-3-662-03981-6
https://doi-org.ezproxy1.lib.asu.edu/10.1007/978-3-662-03981-6
https://doi-org.ezproxy1.lib.asu.edu/10.1007/978-3-662-03981-6

[10] Ajtai, M., Komlós, J., and Szemerédi, E. ‘Largest random component of a
k-cube’. In: Combinatorica 2.1 (1982), pp. 1–7. doi: 10.1007/BF02579276. url:
https://doi-org.ezproxy1.lib.asu.edu/10.1007/BF02579276.

[11] Kott, A. and Linkov, I. Cyber resilience of systems and networks. Springer
International Publishing, 2019.

[12] Jevtić, P., Lanchier, N., and La Salle, A. ‘First and second moments of the size
distribution of bond percolation clusters on rings, paths and stars’. In: Statist.
Probab. Lett. 161 (2020), pp. 108714, 6. doi: 10.1016/j.spl.2020.108714. url:
https://doi-org.ezproxy1.lib.asu.edu/10.1016/j.spl.2020.108714.

[13] Foundation, Linux. A Blockchain Platform for the Enterprise - Hyperledger
Fabric Read the Docs. url: https://hyperledger-fabric.readthedocs.io/en/release-
2.2/.

[14] Castillo, Michael del and Schifrin., Matt. Forbes BLOCKCHAIN 50. url: https:
//www.forbes.com/sites/michaeldelcastillo/2020/02/19/blockchain-50/?sh=
398cb51e7553.

[15] Federal Government Needs to Urgently Pursue Critical Actions to Address Major
Cybersecurity Challenges – High Risk Issue. url: https://www.gao.gov/assets/
gao-21-288.pdf.

[16] H. Sukhwani N. Wang, K. S. Trivedi and Rindos., A. ‘Performance Modeling
of Hyperledger Fabric (Permissioned Blockchain Network).’ In: 2018 IEEE
17th International Symposium on Network Computing and Applications (NCA)
(2018).

[17] Yuan, Pu et al. ‘Performance modeling and analysis of a Hyperledger-based
system using GSPN’. In: Computer Communications 153 (Feb. 2020). doi:
10.1016/j.comcom.2020.01.073.

[18] Sukhwani, H. et al. ‘Performance Modeling of PBFT Consensus Process for
Permissioned Blockchain Network (Hyperledger Fabric)’. In: 2017 IEEE 36th
Symposium on Reliable Distributed Systems (SRDS) (2017), pp. 253–255.

[19] Jiang, Lili et al. ‘Performance analysis of Hyperledger Fabric platform: A
hierarchical model approach’. In: Peer-to-Peer Networking and Applications 13.3
(2020), pp. 1014–1025.

119

https://doi.org/10.1007/BF02579276
https://doi-org.ezproxy1.lib.asu.edu/10.1007/BF02579276
https://doi.org/10.1016/j.spl.2020.108714
https://doi-org.ezproxy1.lib.asu.edu/10.1016/j.spl.2020.108714
https://hyperledger-fabric.readthedocs.io/en/release-2.2/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/
https://www.forbes.com/sites/michaeldelcastillo/2020/02/19/blockchain-50/?sh=398cb51e7553
https://www.forbes.com/sites/michaeldelcastillo/2020/02/19/blockchain-50/?sh=398cb51e7553
https://www.forbes.com/sites/michaeldelcastillo/2020/02/19/blockchain-50/?sh=398cb51e7553
https://www.gao.gov/assets/gao-21-288.pdf
https://www.gao.gov/assets/gao-21-288.pdf
https://doi.org/10.1016/j.comcom.2020.01.073

[20] Xu, Xiaoqiong et al. ‘Latency performance modeling and analysis for hyperledger
fabric blockchain network’. In: Information Processing & Management 58.1
(2021), p. 102436.

[21] Wu, Ou et al. ‘Performance Modeling of Hyperledger Fabric 2.0’. In: The
International Conference on Evaluation and Assessment in Software Engineering
2022. 2022, pp. 357–365.

[22] Khattar Krish Mittal Dev, Tyagi Shobha. ‘Performance analysis of hyperledger
fabric blockchain network 2.2’. In: JIMS8I International Journal of Information
Communication and Computing Technology 10 (2022), pp. 553–556. doi: http:
//dx.doi.org/10.5958/2347-7202.2022.00003.2.

[23] Melo, Carlos et al. ‘Performance and availability evaluation of the blockchain
platform hyperledger fabric’. In: The Journal of Supercomputing (2022), pp. 1–
23.

[24] Kuzlu, Murat et al. ‘Performance analysis of a hyperledger fabric blockchain
framework: throughput, latency and scalability’. In: 2019 IEEE international
conference on blockchain (Blockchain). IEEE. 2019, pp. 536–540.

[25] Foschini, Luca et al. ‘HyperLedger fabric blockchain: chaincode performance
analysis’. In: ICC 2020-2020 IEEE International Conference on Communications
(ICC). IEEE. 2020, pp. 1–6.

[26] Lohachab, Ankur et al. ‘Performance evaluation of Hyperledger Fabric-enabled
framework for pervasive peer-to-peer energy trading in smart Cyber–Physical
Systems’. In: Future Generation Computer Systems 118 (2021), pp. 392–416.

[27] You, Dan, Wang, Shouguang, and Seatzu, Carla. ‘A liveness-enforcing supervisor
tolerant to sensor-reading modification attacks’. In: IEEE Transactions on
Systems, Man, and Cybernetics: Systems 52.4 (2021), pp. 2398–2411.

[28] Zhao, Xin, Zou, Suli, and Ma, Zhongjing. ‘Decentralized Resilient H Load
Frequency Control for Cyber-Physical Power Systems Under DoS Attacks’. In:
IEEE/CAA Journal of Automatica Sinica 8.11 (2021), pp. 1737–1751.

[29] Zhao, Yue et al. ‘Passivity-based robust control against quantified false data in-
jection attacks in cyber-physical systems’. In: IEEE/CAA Journal of Automatica
Sinica 8.8 (2021), pp. 1440–1450.

120

https://doi.org/http://dx.doi.org/10.5958/2347-7202.2022.00003.2
https://doi.org/http://dx.doi.org/10.5958/2347-7202.2022.00003.2

[30] Xia, Chuanliang and Li, Chengdong. ‘Property preservation of Petri synthesis
net based representation for embedded systems’. In: IEEE/CAA Journal of
Automatica Sinica 8.4 (2020), pp. 905–915.

[31] Lee, Sungho et al. ‘Latency modeling of hyperledger fabric for blockchain-enabled
IoT networks’. In: arXiv preprint arXiv:2102.09166 (2021).

[32] Zhang, Jun et al. ‘Deep learning based attack detection for cyber-physical
system cybersecurity: A survey’. In: IEEE/CAA Journal of Automatica Sinica
9.3 (2021), pp. 377–391.

[33] Dabholkar, Ahaan and Saraswat., Vishal. ‘Ripping the fabric: Attacks and
mitigations on hyperledger fabric.’ In: International Conference on Applications
and Techniques in Information Security, Springer. (2019).

[34] Hasanova, Huru et al. ‘A Survey on Blockchain Cybersecurity Vulnerabilities
and Possible Countermeasures’. In: Int. J. Netw. Manag. 29.2 (Mar. 2019). url:
https://doi.org/10.1002/nem.2060.

[35] Lagarde, Marie-Jeanne. ‘Security Assessment of Authentication and Authoriza-
tion Mechanisms in Ethereum,Quorum, Hyperledger Fabric and Corda’. In:
(2019).

[36] Putz, Benedikt and Pernul, Günther. ‘Trust Factors and Insider Threats in
Permissioned Distributed Ledgers’. In: Transactions on Large-Scale Data- and
Knowledge-Centered Systems XLII. Ed. by Abdelkader Hameurlain and Roland
Wagner. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019, pp. 25–50.

[37] Wang, Shuo. ‘Performance Evaluation of Hyperledger Fabric with Malicious
Behaviour’. In: Blockchain ICBC 2019, Springer (2019), pp. 211–219.

[38] Shahriar, M. A. et al. ‘Modelling Attacks in Blockchain Systems using Petri
Nets’. In: 2020 IEEE 19th International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom). 2020, pp. 1069–1078.

[39] Glossary. url: https://hyperledger- fabric.readthedocs.io/en/release-2.2/
glossary.html.

[40] Petri, Carl Adam. ‘Communication with automata’. In: Schriften des Instituts
fur Instrumentelle Mathematik, Bonn, (1966).

[41] Davidrajuh, Reggie. Modeling Discrete Event Systems with GPenSIM: An intro-
duction. Springer, 2020.

121

https://doi.org/10.1002/nem.2060
https://hyperledger-fabric.readthedocs.io/en/release-2.2/glossary.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/glossary.html

[42] Haustermann, Michael. url: https://www2.informatik.uni-hamburg.de/TGI/
PetriNets/index.php.

[43] Ciardo, Gianfranco and Trivedi, Kishor. ‘Stochastic Reward Nets for Reliability
Prediction’. In: Communications in Reliability, Maintainability and Serviceability
1 (Oct. 2002).

[44] Tivedi., K.S. ‘SPNP User’s Manual - Version 6.0.’ In: International Journal of
Network Management (1999).

[45] Castelle, M. ‘Deep learning as an epistemic ensemble’. In: https://castelle.org/pages/
deep- learning- as- an- epistemic- ensemble.html (2018).

[46] Gruver, Nate et al. ‘Protein Design with Guided Discrete Diffusion’. In: arXiv
preprint arXiv:2305.20009 (2023).

[47] Dorjsembe, Zolnamar et al. ‘Conditional Diffusion Models for Semantic 3D
Medical Image Synthesis’. In: arXiv preprint arXiv:2305.18453 (2023).

[48] Mardani, Morteza et al. ‘A Variational Perspective on Solving Inverse Problems
with Diffusion Models’. In: arXiv preprint arXiv:2305.04391 (2023).

[49] Kim, Daegyu et al. ‘Diffusion-Stego: Training-free Diffusion Generative Steganog-
raphy via Message Projection’. In: arXiv preprint arXiv:2305.18726 (2023).

[50] Ho, Jonathan, Jain, Ajay, and Abbeel, Pieter. ‘Denoising diffusion probabilistic
models’. In: Advances in Neural Information Processing Systems 33 (2020),
pp. 6840–6851.

[51] Kotelnikov, Akim et al. ‘TabDDPM: Modelling Tabular Data with Diffusion
Models’. In: arXiv preprint arXiv:2209.15421 (2022).

[52] Lee, Chaejeong, Kim, Jayoung, and Park, Noseong. ‘CoDi: Co-evolving Con-
trastive Diffusion Models for Mixed-type Tabular Synthesis’. In: arXiv preprint
arXiv:2304.12654 (2023).

[53] Zheng, Shuhan and Charoenphakdee, Nontawat. ‘Diffusion models for missing
value imputation in tabular data’. In: arXiv preprint arXiv:2210.17128 (2022).

[54] Nikolenko, Sergey I. Synthetic data for deep learning. Vol. 174. Springer, 2021.

[55] Qian, Zhaozhi, Cebere, Bogdan-Constantin, and Schaar, Mihaela van der. Synthc-
ity: facilitating innovative use cases of synthetic data in different data modalities.

122

https://www2.informatik.uni-hamburg.de/TGI/PetriNets/index.php
https://www2.informatik.uni-hamburg.de/TGI/PetriNets/index.php

2023. doi: 10.48550/ARXIV.2301.07573. url: https://arxiv.org/abs/2301.
07573.

[56] Baldi, Pierre et al. ‘Assessing the accuracy of prediction algorithms for classifi-
cation: an overview’. In: Bioinformatics 16.5 (2000), pp. 412–424.

[57] Jurman, Giuseppe, Riccadonna, Samantha, and Furlanello, Cesare. ‘A compari-
son of MCC and CEN error measures in multi-class prediction’. In: (2012).

[58] Moustafa, R and Slay, J. ‘A comprehensive data set for network intrusion
detection systems’. In: School of Engineering and Information Technology Uni-
versity of New South Wales at the Australian Defense Force Academy Canberra,
Australia, UNSW-NB15 (2015).

[59] Pedregosa, F. et al. ‘Scikit-learn: Machine Learning in Python’. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[60] Chen, Tianqi and Guestrin, Carlos. ‘Xgboost: A scalable tree boosting system’.
In: Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 2016, pp. 785–794.

[61] Xu, Lei et al. ‘Modeling tabular data using conditional gan’. In: Advances in
neural information processing systems 32 (2019).

[62] Dina, Ayesha Siddiqua, Siddique, AB, and Manivannan, D. ‘Effect of balancing
data using synthetic data on the performance of machine learning classifiers for
intrusion detection in computer networks’. In: IEEE Access 10 (2022), pp. 96731–
96747.

[63] Han, Songqiao et al. ‘ADBench: Anomaly Detection Benchmark’. In: Neural
Information Processing Systems (NeurIPS). 2022.

123

https://doi.org/10.48550/ARXIV.2301.07573
https://arxiv.org/abs/2301.07573
https://arxiv.org/abs/2301.07573

	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 Size distribution of bond percolation clusters on finite graphs and insurance premium
	2 Joint Modeling of HLF and Sybil Attack: Petri Net Approach
	3 Effect of Machine Learning Performance with Synthetic Data Augmentation from Difussion Models on Cyber-Intrution Datasets

	References

