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ABSTRACT

Large software tend to have a large number of configuration options that can

be tuned to a varying degree in order to run the software in a specific way. These

configuration options cause a change in the execution of the software, and therefore

affect the code coverage of the software. This gives rise to the problem of understanding

how much a certain configuration change affects the code coverage of the software in

a measurable way. It also raises the question of effectively mapping code coverage

to a configuration change. Solutions to these problems could give way to increasing

efficiency in various areas of software security, like maximizing code coverage in fuzz

testing and vulnerability identification in specific configurations.

In this work, I perform analyze widely used software, such as the database cache

‘Redis’ and web servers like ‘Nginx’ and ‘Apache httpd’. I perform fuzz tests on

multiple configurations of each of these software to measure the difference in code

coverage caused by each configuration. I use Coverage Instrumentation to obtain

traces for each software in their configurations, and then I analyze these traces to

understand the configuration’s impact on the software’s code coverage.

In conclusion, I describe a method to measure how much code coverage differs for

each configuration with respect to the default configuration of the software, and how

certain configurations have a much larger difference in code coverage with respect to

the default configuration than others, analyze the overlap in code coverage between

the configurations and finally find the root causes of the differing code coverage.
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Chapter 1

INTRODUCTION

Software, historically, was built to be versatile. Consider one of the simplest

programs that is part of the GNU Core Utilities[1] package: date. date happens to

have eight configuration options. These configuration are of various types. There’s

options that act like a switch. --universal is an example of that, where the date

program outputs the UTC time. The number of arguments or parameters here is

not surprising. As requirements grow, a software is expected to perform its role in a

variety of modes, which gives rise to configurations. As the number of configurations

increase, the amount of code that the software needs also increases.

If we choose to look at a larger software, like a web server like Nginx, we see that

the number of configurations is much higher. The core HTTP module, which takes

care of the web server’s core functionality to serve webpages, has 79 configuration

options. This is the number of configurations for one HTTP module, of the 59 different

HTTP modules that can be configured in Nginx. The other modules take care of

many specific options like Gzip compression, HTTP Proxy, HTTP Headers, etc. The

total number of configuration options that Nginx provides is considerably larger than

that of a somewhat simple software like date.

The problem we face with such configuration options is this: It is hard to create a

map of configuration changes to code coverage. To solve this problem, we need defined

methodologies to quantitatively measure the effect a certain configuration option may

have on code coverage. Such methods, apart from aiding in the creation of a map of
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configuration changes to code coverage, could also be used to analyze the raw impact

on code coverage caused by these configurations.

This work focuses on the analysis of the effect configuration changes may have

on code coverage. First, I fuzz tested Redis, Nginx and Httpd, each run in about 10

different configuration options. I gathered trace information for each configuration and

then contrasted them with the software’s default configuration traces. The contrast

helped me find how much each configuration differed in code coverage in terms of

basic blocks, lines of code and functions.

Through this work, I contribute the methods I use for accurately analyzing

and measuring the impact of configurations on dynamic code coverage, along with

documenting the application of these methods on three major software – Redis[2],

Nginx[3] and Apache httpd[4].
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Chapter 2

BACKGROUND

I used a range of tools to uncover code coverage information for each software in

their respective configurations. In order to fuzz test the software, I relied on AFL++[5].

AFL++ in the binary mode can fuzz software that hasn’t been instrumented for

fuzzing, essentially allowing a user to perform black-box fuzzing.

With modern compilers like clang, there are ways to add instrumentation to the

compiled code. One such instrumentation is for measuring coverage and profiling.

When an executable with such instrumentation is run, it creates a log of the details of

its execution. This log, present in the form of a binary profile file, correlates with the

program’s source code. Code coverage information is also a part of this log. There

are various ways to visualize and export this log. HTML is a common way to view

code coverage, and a preferred way for many software developers. In my work, I used

the lcov format, because of its ease of parsing and how much information an lcov

analysis contains.

As a comparative to my main approach, I used a popular software emulator called

QEMU[6] to extract traces. Internally, QEMU translates a target software’s code to

QEMU’s own intermediate representation. Then, this intermediate representation is

translated to the host machine’s architecture. QEMU does this on the fly at the basic

block level. A basic block in QEMU’s intermediate language is called a Translation

Block. QEMU is also used in AFL++ internally.

The software that I have analyzed in my work are used widely in the world. Redis

is an open source data store, that is used commonly as a cache or a database. Nginx
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is an open source web server. It is also, as of March 2023, world’s most used web

server[7]. In addition to being a web server, it also has capabilities to act as a reverse

proxy and a load balancer. Apache httpd is also an open source web server that is

widely used on the internet. It is the second most employed web server on the internet,

with a share of 32.4%[7].
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Chapter 3

EXPERIMENTATION SETUP

To run my experiments, there were three major areas that needed attention. An

ideal experimentation setup needed to have software that is widely used, large and is

highly configurable. Another important factor was that the software should work well

with my fuzz testing setup.

In the following sections, I elaborate on each of these goals.

3.1 Choice of software

The software under test needs to be a widely used software. One reason for this

is that a larger user base ensures that the software has complexities because of a

high number of requirements. These complexities can be thought of as the number of

slightly different ways a certain task can be achieved. If we consider a trivial example

of the program date, it displays the current date and time, in the timezone of the

machine. However, it can display time in Coordinated Universal Time (UTC) or in a

different format like RFC 5322, which is used in E-Mails.

The complexity of the software also ties in with how large it is. There is a direct

correlation between the size and complexity of software. A larger software, apart

from adding complexity, also gives some level of confidence that the code for various

configurations is loosely tied with each other. This makes it slightly easier to analyze

the impact of a specific configuration on the overall code coverage. While a larger
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software can have tight coupling, the sheer size of the software increases the possibility

of a code coverage difference that can be reliably detected and measured.

The software needs to be a network service. While not a hard requirement for the

purpose of my research, it did become a requirement specific to my fuzz testing setup.

However, the requirement did not feel unrealistic, as many large software happen to

be network services, like web servers, databases, load balancers, etc.

Finally, the software needs to be highly configurable. This mostly ensures that

the software under test can be configured in various configurations that are relatively

unrelated to each other, thus yielding reliable results.

3.2 Choice of Test Configurations

A Test Configuration is a software run in a specific configuration that differs from

the default configuration. For the experiments, I chose configurations that could

cause a varying degree of difference in code coverage, if contrasted with the default

configurations. For configuration options that are mandatory, like the path to the root

directory of a web server, the values are kept the same across all Test Configurations.

Among these Test Configurations, I chose a few configurations that I expected to

make a considerable difference in code coverage. An example of this is having Transport

Layer Security (TLS) enabled on the software for any incoming communication. Clearly,

the flow of the software will change drastically in the early stages to establish encryption

(TLS Handshake) and to decrypt any data that the connecting client has sent.

In contrast to the Test Configurations described above, I chose configurations

that I expected to not diverge the code coverage by a lot. An example of this was

configuration options like ‘Keep-alive Timeout’. My fuzz testing setup was fully local,
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so the possibility of this configuration coming into action was low. While these types

of Test Configurations above are expected to make a very small impact on the code

coverage, they are still functionally relevant to the software. That is a key factor to

choosing these configurations, which is also why configuration options like logging are

not chosen for this experiment.

3.3 Fuzz testing setup

The fuzzing setup involves the use of AFL++ and QEMU. QEMU is not used

directly in this setup, but fork of it is used internally by AFL++ to obtain signals

that feedback into the fuzzer. When invoked in the ‘binary only’ mode, AFL++ is

able to run the software in the forked version of QEMU and send seeds as inputs to

the software.

The main reason for using fuzz testing is to ensure that for each configuration,

the maximum amount of coverage has been gained. Fuzzing involves mutating seeds,

running the software with the mutated seeds, analyzing signals to measure an increase

in coverage, repeating the cycle with mutated seeds. Advanced fuzzers like AFL++

pick mutated seeds that add considerable coverage to the software and further mutate

them to maximize coverage. This helps my experiments because it provides reliability

to the results of the analysis.

Further, the experiments involve fuzzing each Test Configuration for multiple days,

three to five days on average. Fuzz tests eventually reach a convergence, when no new

seeds are being mutated and the coverage is relatively similar to the earlier mutation.

In my experiments, this is the part when I shut down the fuzzer. At this point, the

fuzzer has explored a good amount of the Test Configuration.
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3.4 Chosen software

Considering these factors, I decided to go with these three software –

1. Redis. Redis is an in-memory cache, message broker and key-value data store.

Redis has further applications too, like a Publisher-Subscriber service or a

message queue. Redis is a pretty widely used software, employed by companies

like Microsoft, FedEx and Gojek[8].

2. Nginx. Nginx is a web server, that has the capability of acting like a reverse-

proxy, load balancer and an HTTP cache. Nginx hosts 34.4%[7] of the world’s

web pages.

3. Apache httpd. Apache httpd is a web server maintained by the Apache

Foundation. It is the second most widely used web server after Nginx, hosting

32.2%[7] of the world’s web pages.
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Chapter 4

SOFTWARE CONFIGURATIONS

4.1 Redis

In my experiment, I fuzzed Redis version 6.2. I tested Redis in the following 10

configurations, as described in Table-1, with descriptions in Table-2.

Name Test Configuration Default Configuration

rds01 appendonly yes
appendfsync always

appendonly no
appendfsync everysec

rds02 hash-max-ziplist-entries 32
hash-max-ziplist-value 16

hash-max-ziplist-entries 512
hash-max-ziplist-value 64

rds03 tracking-table-max-keys 10 tracking-table-max-keys 1000000

rds04 lazyfree-lazy-user-del yes lazyfree-lazy-user-del no

rds05
maxmemory 100mb
maxmemory-policy allkeys-lru
maxmemory-samples 10

maxmemory (80% of total memory)
maxmemory-policy noeviction
maxmemory-samples 5

rds06 protected-mode yes protected-mode no

rds07 bind *-::*
protected-mode yes

bind 127.0.0.1 -::1
protected-mode yes

rds08 rdbcompression no
rdbchecksum no

rdbcompression yes
rdbchecksum yes

rds09 save 300 1
save 3600 1
save 300 100
save 60 10000

rds10 port 0
tls-port 6379 port 6379

Table 1. Redis Test Configurations
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Name Description

rds01 Runs Redis in append only mode

rds02 Change the thresholds for saving hashes

rds03 Reduce the number of tracked keys on the client

rds04 Reprogram DEL to work as UNLINK

rds05 Reduce max memory used by redis and the cache eviction policy

rds06 Enable protected mode without a bind directive

rds07 Enable protected mode with a bind directive

rds08 Disable RDB compression, checksums and sanitization of saved data

rds09 Change the frequency of saving data to disk

rds10 Enable TLS

Table 2. Redis Test Configuration descriptions

These configurations are described in detail in Redis’ documentation[9]. There are

a few configurations that are expected to give a very different code coverage, rds10

with TLS enabled is one example of this. There are other configurations which may

make a relatively smaller impact on the overall coverage. rds09 is an example of this.

In this configuration, we change the save frequency to a lower value. However, there

may be cases where Redis may not need to save to disk, like in cases where the only

operation was a retrieval.

To test these configurations, I created three base seeds. These three seeds performed

the most common operations that are performed on Redis: GET, SET, and DEL (delete).

10



4.2 Nginx

For my tests, I used Nginx version 1.22.1. There are 11 configurations that I

built for this test. Table-3 describes the configuration options that I set on my Test

Configurations.

Name Test Configuration Default Configuration

ngx01 aio on aio off

ngx02 aio_write on aio_write off

ngx03 keepalive_timeout 0s keepalive_timeout 75s

ngx04 merge_slashes off merge_slashes on

ngx05 autoindex on autoindex off

ngx06 etag off etag on

ngx07 expires -1 expires off

ngx08 gzip on
gzip_comp_level 9

gzip off
gzip_comp_level 1

ngx09 worker_processes 64 worker_processes 1

ngx10 worker_priority 20 worker_priority -10

ngx11 listen 80 listen 443 ssl

Table 3. Nginx Test Configurations

The configuration options in Nginx are elaborated upon in their documentation[10].

The Test Configurations I created for my tests is described in Table-4.
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Name Description

ngx01 Turns on Async I/O

ngx02 Turns on Async I/O writing

ngx03 Changes Keep-Alive timeout to zero seconds

ngx04 Merges trailing slashes in the request URL

ngx05 Lists the contents of the directory when the request URL ends in a ‘/’

ngx06 Adds an ETAG to the response

ngx07 Turns off Cache-Control by setting it to no-cache

ngx08 Enables Gzip compression and sets the compression level to maximum

ngx09 Reduces the number of worker processes to 1

ngx10 Changes worker priority to 20, like nice in Linux

ngx11 Enable HTTPS on port 443

Table 4. Nginx Test Configuration descriptions

In these configurations, there are a few configurations that are expected to have

very different code coverage than the default. ngx11, where HTTPS is enabled, is one

such configuration.

On the other hand, there are also a few configurations that should make a very

small difference to the code coverage. An example of this could be ngx03, as the

possibility of a Keep-Alive request coming to the software is low in a controlled testing

environment like mine.
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4.3 Apache httpd

The last software that I tested was Apache httpd, version 2.4. The exact configu-

ration options for the Test Configurations are described in Table-5.

Name Test Configuration Default Configuration

httpd01 HttpProtocolOptions
Unsafe LenientMethods Require1.0

HttpProtocolOptions
Strict LenientMethods Allow0.9

httpd02 AllowEncodedSlashes ON AllowEncodedSlashes OFF

httpd03 KeepAliveTimeout 1ms KeepAliveTimeout 5

httpd04 MergeSlashes OFF MergeSlashes ON

httpd05 Options Indexes
DirectoryIndex None.html

Options FollowSymlinks
DirectoryIndex index.html

httpd06 FileETag All FileETag MTime Size

httpd07 ExpiresActive ON
ExpiresDefault access plus 0 seconds ExpiresActive Off

httpd08 DeflateCompressionLevel 9 // not set

httpd09 MaxRequestThreads 1 MaxRequestThreads 16

httpd10 StrictHostCheck Off StrictHostCheck On

httpd11 SSLEngine On SSLEngine Off

Table 5. Apache httpd Test Configurations

Apache httpd’s documentation[11] mentions these configurations in detail. One

thing to note is that the exact description of specific options exist in their respective

modules only. DeflateCompressionLevel, for example, is present in the mod_deflate

module documentation. A summary of these configurations are described in Table-6.
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Name Description

httpd01 Allow requests with unknown HTTP Request methods

httpd02 Allow slashes to be encoded in HTTP Encoding (%2F)

httpd03 Reduce the Keep-Alive timeout to 1 millisecond

httpd04 Allow trailing slashes at the end of the URL

httpd05 List the directory index if the request URL ends with a ‘/’

httpd06 Set FileEtags to have all attributes

httpd07 Set Cache-Control to no-cache

httpd08 Enable Gzip and set compression level to maximum

httpd09 Reduce the maximum request threads to 1

httpd10 Enable strict host checking, disallow requests with unknown hosts

httpd11 Enable HTTPS

Table 6. Nginx Test Configuration descriptions

As it is evident from the summary above, many configurations overlap with those

in Nginx. This is intentional to allow a comparison between the two software that

provide similar configurations and features.

As was the theme between the last two software, this software too has configurations

that should make a huge difference to the code coverage, like httpd11 with HTTPS.

There is a possibility that httpd10 with strict host checking makes little difference to

the code coverage as many requests to it may fail at the host checks.
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Chapter 5

METHODOLOGY – COVERAGE INSTRUMENTATION

In order to ensure that the software in each Test Configuration is covered to a

reliable extent, I fuzzed each of them. During the fuzz tests, AFL++ keeps track of

the seeds that cause an increase in coverage. In the subsequent sections, I shall refer

to them as ‘generated seeds’. These generated seeds form the basis of my analysis in

both of the following methodologies.

5.1 Premise

At a high level, instrumentation is adding additional code to the binary executable

during compilation, that is responsible for providing metadata about the program’s

execution. For example, instrumented code is capable of reporting the number of

times a certain function is invoked, or how much time a certain operation took.

In my case, I used instrumentation to obtain code coverage information for the

execution of the software under test. In order to do this, I used the ‘clang’ C compiler

that is part of the LLVM project. Since all my target software were written either in

C or C++, clang was a great fit for compilation. clang and its backend LLVM[12]

allow us to generate various types of instrumented code, and in my case I used

Profile Instrumentation and Coverage Mapping. The former, activated by the flag

-fprofile-instr-generate, emits information in terms of how many times a certain

piece of code is executed. The latter, activated by the flag -fcoverage-mapping,

maps this information to the exact file and line of code that is executed.
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Upon running any of these instrumented programs, a binary file ending in

‘.profraw’ will be generated by the program. I process these files further and convert

them to a plain-text format called ‘lcov’, to make it easier to parse and store. lcov[13]

is a popular format for storing coverage information, used widely for its simple struc-

ture for storing coverage information while also being human-readable. These files

form the basis of my analysis in this method.

5.2 Analysis Model

The trace file generated as a result, in the ‘lcov’ format, contains detailed coverage

information of the software’s execution. A count of lines found, lines hit, branches

found, branches hit, functions found, functions hit is part of this information. The

trace file also contains the execution count of each function, line and branch. This

information is grouped by every source file in the software.

In my case, I focused on a summarized version of the trace. This summary included

the following parameters for every source file –

1. Number of lines found.

2. Number of lines executed.

3. The exact lines that are executed.

4. Number of functions found.

5. Number of functions executed.

These factors from the trace file are sufficient to quickly judge the impact on code

coverage a certain Test Configuration has on the software under test. The reason

being that I can obtain raw statistics on the broad components of the software, like

functions and lines. As the trace data is also grouped by source files, I can also
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measure how much a Test Configuration affects the code coverage of a specific file or

a module. The final advantage that this approach gives me is having a quantifiable

value on how much code coverage increased or decreased holistically because of the

Test Configuration. This value can also be obtained for a certain file or set of files if I

narrow my scope of measurement to that set of files.

The software that is run in default configuration produces the reference trace and

the Test Configuration produces the test trace. Then, I contrast the test trace from

the reference trace for two data points: lines executed and functions executed.

Lines executed gives an idea of the total code coverage in terms of raw lines of

code. The information I gain from here is the amount of total coverage that the Test

Configuration affects. The count of functions executed, on the other hand, gives a

measure of how much the Test Configuration affects the code coverage functionally.

There could be a scenario where the lines of code executed can be within a specific set

of functions only. Therefore the lines of code alone does not act as a strong signal for

how much the coverage is affected by the test configuration. If we combine the count

of lines executed with the number of functions executed, we can get a more holistic

idea of how much functionally the Test Configuration affected the overall coverage in

that specific execution.

As the fuzz test generates a number of seeds during its run, I repeat the above

approach for each of the generated seeds. After gaining trace information for all the

seeds, I aggregate information for each Test Configuration trace contrasted with the

corresponding reference configuration trace. The aggregated information includes the

maximum, minimum and average difference from the reference trace measurements for

lines executed and functions executed. I also show the difference in traces for specific
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cases, if these are edge cases where the difference in coverage is expected to be very

similar or very dissimilar to the reference trace.

Algorithm 1 Obtaining coverage gain using coverage instrumentation traces
LFs← ∅ ▷ Initialize empty list of lines executed
FNFs← ∅ ▷ Initialize empty list of functions executed
for seed in generated_seeds do

base_trace← cov_trace(base_config, seed)
test_trace← cov_trace(test_config, seed)
LF ← test_trace.lf − base_trace.lf ▷ Difference in count of lines executed
FNF ← test_trace.fnf − base_trace.fnf ▷ Difference in count of functions

executed
LFs← LFs ∪ LF ▷ Add to list of lines executed
FNFs← FNFs ∪ FNF ▷ Add to list of functions executed

end for

cov_trace, in this pseudocode, is a procedure that obtains the coverage trace

information from the software run in a specific configuration.

This gives an approximate but close measure of how much code coverage difference

is caused by the Test Configuration. After I have identified the configurations that

have caused a stark difference in coverage, I will perform deeper analyses on those

configurations. These deeper analysis include analyzing the exact source code files

and lines that have differed, then reading the source code to understand what the

differing code is performing.

Finally, to eliminate any level of randomness due to fuzzing, I perform a cross-

seed analysis on every configuration. In this analysis, I will a configuration with

the generated seeds of all the other configurations. After obtaining traces for every

configuration, I will compare the code coverage of each crossing seed to see how much

difference has the seed caused in the code coverage for that configuration.
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5.3 Overlap Analysis

After a holistic idea of how certain configurations have differed from the Base

Configuration, I performed overlap analysis. Here, I am looking for configurations

that have code that overlaps. The reason I needed to evaluate this was to understand

the configurations that, while making impact on the coverage, are making the same

impact on the configuration. So for many purposes, except functional, selecting the

same configuration makes very little difference.

The results of this analysis can help systems that need to know coverage of the

software, irrespective of what the software is doing. Fuzzers, for example, could deeply

benefit from these results. Knowing that two or more configurations nearly have

the same effect on the coverage of the software, then just fuzzing one of them and

eliminating the others helps decrease the search space of the fuzzer.

5.4 Causality Analysis

After understanding the configurations that have caused the most difference in

coverage than the Base Configuration, and also understanding the configurations that

have the most and least overlap with each other, I will perform Causality Analysis on

Test Configurations that really stick out.

I perform this to expose the exact code that is covered just by that configuration

and is not caused by the randomness of the fuzz test. The way I do that is finding

the lines of code that are always triggered in every run of that configuration, that are

not part of any other configuration.

Finally, I read the lines of code that are identified through this process, and
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then conclude what caused the divergence in the first place. This analysis helps us

understand the root cause of the divergence and gives us a way to isolate the lines of

code that are covered only because of the configuration change.
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Chapter 6

ANALYSIS RESULTS – COVERAGE INSTRUMENTATION

6.1 Redis

Figure-1 and Figure-2 describe how average of Lines Hit and Functions hit, respec-

tively, differed from the base configuration.

Figure 1. Average Lines Hit Difference for Redis
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Figure 2. Average Functions Hit Difference for Redis

Table-7 shows the average Lines Hit difference and Functions Hit difference for all

the Test Configurations of Redis. It is worth noting that the line coverage and the

function hit coverage for each configuration vary in relation to each other. rds10 has

more lines and functions, while rds02 has fewer lines and functions differing.

rds10 again seems to have a huge difference in Lines and Functions Hit, as was
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Test Configuration Avg Functions Hit Difference Avg Lines Hit Difference

rds01 5.853 124.736

rds02 0.437 52.093

rds03 2.197 61.487

rds04 1.925 30.95

rds05 4.764 116.548

rds06 -55.361 -626.937

rds07 2.155 39.313

rds08 -2.791 -35.811

rds09 -0.326 21.92

rds10 -48.824 -391.376

Table 7. Average Lines Hit and Functions Hit Difference for Redis

expected given the configuration it runs in. rds06, on the other hand, had much

lower code coverage than the base configuration. This could be because most requests

sent to rds06 were dropped before they were even parsed as Redis was running in

protected mode. If we contrast this with rds07, where Redis runs in protected mode

but while accepting on all interfaces and all addresses, I observed that the average

difference in number of Lines and Functions was much smaller, 30.95 lines and 1.925

functions respectively. This is because the requests must have reached Redis, and

were subsequently executed.

Also worth noting is the rds01 configuration. The difference in Lines Hit is

significant at 124.736, but Functions Hit is around 5.8. The statistic indicates that
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the code coverage within Redis for this configuration was high. This is also the case

for rds05. For rds05, the coverage could be because of jemalloc. jemalloc is a

general purpose implementation of malloc from libc that Redis is statically complied

with. As rds05 changes how much memory Redis should use, the coverage must have

changed in jemalloc’s code as it is statically compiled within Redis.

Finally, there’s configurations like rds04, rds09 and the remaining configurations

that averaged less than 65 differing Lines Hit. This could be because the functionality

required to implement these configurations must not be too large in code. rds09,

for example, could just be a small piece of code that checks if it is time to save the

in-memory database down to the disk.

Overall, the results of the analysis line up with how much difference the configura-

tions could have made. rds06 is the only configuration that happened to have made

a larger difference than imagined.
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6.2 Nginx

Figure-3 and Figure-4 describe how average of Lines Hit and Functions hit, respec-

tively, differed from the base configuration.

Figure 3. Average Lines Hit Difference for Nginx

Looking at Table-8, Figure-3 and Figure-4, the clearest thing to observe is that every

Test Configuration covered less overall code than the base configuration. This implies
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Figure 4. Average Functions Hit Difference for Nginx

that every Test Configuration caused considerable parts of the Base Configuration to

not be covered in their execution.

The ngx11 and ngx03 configurations were the most divergent in terms of Lines

Hit and Functions Hit, covering 617.976 and 634.765 fewer lines than the base

configurations. ngx11 was expected to have such a coverage, as it enables TLS, which

causes the coverage of code that parses TLs requests. However, ngx03 was unexpected.
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Test Configuration Avg Functions Hit Difference Avg Lines Hit Difference

ngx01 -8.907 -335.069

ngx02 -15.651 -446.508

ngx03 -23.739 -617.976

ngx04 -15.632 -446.83

ngx05 -14.465 -421.681

ngx06 -15.787 -462.134

ngx07 -10.792 -288.927

ngx08 -3.905 -158.708

ngx09 -11.833 -298.833

ngx10 -11.0 -331.882

ngx11 -25.329 -634.765

Table 8. Average Lines Hit and Functions Hit Difference for Redis

ngx03 reduces the keep-alive timeout to zero seconds. It indicates that changing the

keep-alive timeout affects a larger part of the source code than expected.

Another interesting find is that ngx08 happens to have the lowest coverage differ-

ence than the base, while it was expected to have a considerable difference. ngx08

turns on Gzip compression for incoming requests and responses, serving compressed

resources to the client. It only differs in 158.708 lines (fewer) than the Base Configura-

tion. Upon further investigation, it seems that Nginx calls zlib to compress resources.

This explains why Nginx in this configuration has lower coverage difference, as it just

ships off the main functionality of resource compression to the zlib library.

27



Finally, the other configurations have a lower difference in relation to ngx11 and

ngx03, yet the difference in the absolute sense is pretty high. The only configurations

that had a rather modest difference in coverage were –

1. ngx07. Adds an Expires header to the response.

2. ngx09. Changes number of worker processes from 64 to 1.

3. ngx10. Changes worker priority from -10 to 20.

On average, the configurations have 403.94 fewer lines than the base Nginx config-

uration.
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6.3 Apache httpd

Figure-5 and Figure-6 describe how average of Lines Hit and Functions hit, respec-

tively, differed from the base configuration.

Figure 5. Average Lines Hit Difference for Apache Httpd
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Figure 6. Average Functions Hit Difference for Apache Httpd

Table-9 shows the average Lines Hit and Functions Hit for httpd. It appears to be

a mix of more and fewer code coverage than the Base Configuration.

As was the pattern with the other two software, the configuration with TLS

enabled, httpd11, happens to have a very huge difference in code coverage than the

Base Configuration. httpd11 had 715.5 fewer Lines Hit and 31.9 fewer Functions Hit
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Test Configuration Avg Functions Hit Difference Avg Lines Hit Difference

httpd01 10.173 268.398

httpd02 1.13 11.121

httpd03 3.358 46.988

httpd04 2.0 14.325

httpd05 5.328 48.517

httpd06 1.0 55.822

httpd07 0.253 6.762

httpd08 3.345 43.517

httpd09 0.028 -35.687

httpd10 -4.659 -157.492

httpd11 -31.9 -715.5

Table 9. Average Lines Hit and Functions Hit Difference for Apache Httpd

than the Base Configuration. Understandably so, as the reasons for this would be

same as the reasons for the other two software run with TLS.

The other configurations that clocked in a pretty high difference were httpd01

and httpd10. The former, disallowing lenient parsing of HTTP Methods, had 268.398

more coverage than the Base Configuration. The additional code covered should be

the code that is required to strictly parse HTTP Methods. The latter, enabling strict

host-checking has 157.492 fewer Lines Hit. This makes sense as many requests must

not have been processed by Nginx in this configuration, leading to a lower coverage

than the base.
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Among these, the configurations that had significant coverage, but lower than

the above mentioned configurations, are httpd03, httpd05, httpd06, httpd08 and

httpd09. httpd05 is an interesting configuration in this list, as it serves the directory

listing of the web root folder as opposed to a webpage. While it has a high Lines Hit

difference, it has a fairly high Functions Hit difference too, higher than the others in

this category. This must be because of the rendering of the listing web page or just

listing the contents of the directory along with stat information for all files.

httpd06, a configuration that enables the resources ETag to have all information

(inode number, modified time and size), has the highest Lines Hit difference while

only having a Functions Hit difference of 1.0. This could be because while the ETag is

calculated by a single function. httpd08 also has a high number of Lines Hit difference,

as is expected from the configuration that enables Gzip.

The configuration with the lowest coverage was httpd07, which added an Expires

header on the served resource. This is extremely interesting as httpd07 had one of

the most differing code coverage in the Translation Blocks analysis.
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Chapter 7

OVERLAP ANALYSIS

In this analysis, I checked how many configurations of a software happened to

have similar code coverage. To do this, I obtained the ‘lcov’ coverage data for each

software and converted the line coverage into a set, call this a ‘trace set’. Now I find

the intersection of every configuration’s trace set with every other configuration’s

trace set. The configurations that intersect a lot are very similar in code coverage,

while those that are not too similar have covered different parts of the source code.

7.1 Redis

Figure-7 shows how much overlap existed between configurations. Most configura-

tions seemed to have less than 10 percent divergence. In fact, some configurations like

rds04 and rds07 were 97% similar in terms of code coverage. Other configurations

that had very similar coverages are rds01 and rds04 at 94%, and rds02 and rds05

with 96% similar code coverage.

However, there were two configurations that happened to consistently have a large

difference in coverage than the other configurations. These are rds06 and rds10,

respectively. The former is running Redis in protected mode and the latter is running

Redis with TLS enabled. These findings actually line up with the Coverage Instru-

mentation findings in Chapter 6, where these configurations had a large divergence

from the base Redis configuration’s code coverage.

rds10 had only 60% of its code overlap with rds01, and scores similar figures
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Figure 7. Code Coverage Overlap for Redis Configurations (in Percentage)

with the other Redis configurations. However, with rds06, it has 91% overlap. As

for rds06, it has the lowest overlap with rds01 at 62%, and scores similar overlap

percentages with other configurations. The cause of this is analyzed in the subsequent

chapter. An interesting thing to note is that there were as much as 5060 lines of

code that were part of every configuration in this experiment. If we consider these
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to be configuration-independent, then my analysis showed that 92.3% and 96.3% of

configuration-independent code was present in rds10 and rds06.

35



7.2 Nginx

Figure-8 plots the coverage overlap of Nginx configurations.

Figure 8. Code Coverage Overlap for Nginx Configurations (in Percentage)

Many configurations of Nginx had a large overlap. Some configurations overlapped
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up to 99%. ngx04 alone has approximately 99% similarity with ngx02, ngx05, ngx06,

ngx07.

Now let’s consider ngx11. ngx11 enables TLS on Nginx. It has consistently

low overlap with every configuration on the graph. This finding, again, lines up

with the results in Chapter 6, where ngx11 had a very different coverage than the

base configuration. ngx11 overlaps the least with ngx09, at 79.172%. The most it

overlaps with is ngx02 at 84.477%. Even then, it contained more than 15% unique,

non-overlapping lines. The cause of this is analyzed in the subsequent chapter.

Nginx also happened to have 11530 lines of code intersecting in every configuration.

In this seemingly configuration independent set of lines, ngx11 happened to have

87.1% overlap with this code.
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7.3 Apache httpd

Figure-8 plots the coverage overlap of Apache httpd configurations.

Figure 9. Code Coverage Overlap for Apache httpd Configurations (in Percentage)

Like Nginx, httpd too had many overlapping configurations. Most configurations
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had more than or close to 95% overlap. Configurations like httpd02 has over 98%

overlap with httpd07, httpd08 and httpd09.

httpd11 is httpd running with TLS enabled, and it had the lowest overlap with

other configurations in the list. The highest overlap it had was approximately 75%,

which is still 25% non-overlapping code. The lowest overlap it had was with httpd09

at 70%. It isn’t unreasonable to assume that the causes for this difference in overlap

in httpd is quite similar to that of Nginx. In the next section, I perform deeper

analysis of this configuration, by understanding the exact code that was covered by

this configuration and none of the other configurations.

In this analysis, I found that 6252 lines of code were common across configurations,

thus were seemingly configuration independent. httpd11 had 98% overlap with this

configuration independent code, indicating that it had really low coverage induced by

the configuration change.
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Chapter 8

CAUSALITY ANALYSIS

In order to analyze causality of every configuration that had very little overlap

in coverage with other configurations, I had to look for the lines of code that were

uniquely and consistently covered in these configurations, and nowhere else. The

method of finding these unique lines of code can be boiled down to a set expression.

Let’s consider a configuration C, and we wish to find the lines of code that are

uniquely and consistently part of C. Let the coverage of C be a set of lines called

Sc. I first find a set difference between Sc and every other trace set. This gives me

the lines of code that are present in Sc and not in the other configuration. After I

have performed this for every configuration, I obtain the intersection of all the set

differences that I have obtained. Now, I have all the lines of code of C that are in set

Sc and present in every difference.

CAUc =
⋂(

set_diffn
i=0

(
Sc, Si

))
Here CAUc is the set of lines of code that is uniquely present in Configuration

C and is present in every set difference against C. I repeated this process for every

configuration to find the lines of code that are caused by that configuration. This

analysis helps understand why these configurations have different code coverage, and

what is the code that differs among them.

I perform this analysis on configurations that have either showed a considerably

low overlap than other configurations, or have showed a pretty high coverage difference
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than the Base Configuration. The findings that did have something useful to show out

of this analysis are mentioned in the ‘Other Findings’ subsections for each software.

8.1 Redis

8.1.1 Redis in Append Only Mode

In the Append Only mode, Redis saves an AOF (Append Only File) that saves

every operation that Redis performs. One file that uniquely stood out was src/aof.c.

This file contains all the code required by Redis to perform operations on AOF. The

functions aofWrite – writes AOF file to disk, flushAppendOnlyFile – flushes AOF

to disk and loadAppendOnlyFile – loads AOF on startup, were among the functions

called during the execution of this Test Configuration.

Apart from that, the src/server.c file also had coverage unique to this config-

uration. The snippet in Figure-10 shows how Redis checks if Append Only mode

is enabled and then calls flushAppendOnlyFile. This is called in the beforeSleep

function in src/server.c, which is called every time Redis is entering its event loop.

There are other lines all over the file that point to loading AOF, writing to AOF, etc.

Figure 10. Code Snippet From Redis Executed in Append Only Configuration
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8.1.2 Redis with faster saves

The file src/config.c had code that wasn’t covered in any configurations. When

I examined the code, the differing lines had code that would translate strings to

integers (using atoi) and records that as the save configuration for the execution.

As this configuration only changes the frequency at which data is saved, these

were the only unique lines of code that I could find.

8.1.3 Redis in Protected Mode

Majorly, Redis in protected mode received coverage from two files:

src/networking.c and src/anet.c. The former manages incoming connections to

the Redis server and the latter is an abstraction over Socket API that the OS exposes.

In src/anet.c, Redis calls the anetFdToString function to convert the IP address

and port to text form, by internally calling Linux’s inet_ntop function. This could

be for initializing Protected Mode’s allowed IP addresses.

In src/networking.c, the only unique code covered is the warning that Redis

provides when a host from an unknown IP or interface connects. Figure-11 shows this

code.

There’s some coverage in src/connection.c, however it is only a wrapper function

around anetFdToString. I also calculated the negative overlap of this configuration

to see how little the coverage was compared to other configurations. There were 1370

lines of code that were not present in this configuration but were present in all other

configurations. I found this by calculating the set difference of the lines intersecting

in all configurations, differed with the lines that were found in this configuration.
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Figure 11. Code Snippet From Redis Executed in Protected Mode

8.1.4 Redis Running with TLS Enabled

This is the only configuration that showed a lot of coverage in the src/tls.c.

Needless to say, this source file contains multiple methods that pertain to parsing

and decrypting encrypted TLS traffic. 206 lines from src/tls.c have at least been

covered in every run of Redis with TLS enabled.

As for other files, src/networking.c also has some unique coverage. Its function
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acceptTLSHandler is uniquely covered only in this configuration. This function

internally calls src/tls.c file’s connCreateAcceptedTLS function, which further

handles the incoming TLS connection. Interestingly, there were only 77 lines of code

that were present in every other configuration but this, which is a lower number than

the rest of the configurations of this type in the other software.

8.1.5 Other Findings

As was the case with the previous analysis, the configuration rds03 had very little

impact on code coverage. In this analysis, it did not have any lines of code that

were unique to it. rds04 lazily deletes keys and had triggered the dbAsyncDelete

function from src/lazyfree.c uniquely and for every execution of the Configuration.

Interestingly, the only code that rds07 (protected mode with allowing all connections)

had unique was configuration code that set the bind addresses. This makes sense,

as the rest of the configuration was untouched and worked as a regular Redis server.

Overall, the configurations pointed to exactly the code that was pertinent to them,

and the configurations that did not make much impact did not have a lot of unique

code.

8.2 Nginx

8.2.1 Keep-alive Timeout Set to Zero

When Nginx is run with keep-alive timeout set to zero, two files show unique

coverage – src/core/ngx_parse.c and src/http/ngx_core_http_module.c. In the
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first file, a lot of the unique lines are around parsing the configuration file. As the

timeout has to be specified as a time, which can be seconds or minutes, the value set

in the configuration file is parsed. After parsing, this value is sanitized and calculated.

This happens in a function called ngx_parse_time.

In src/http/ngx_core_http_module.c, there are two regions of code that are

covered in every run of this configuration. The first is on line 1340, where the keep

alive timeout is set to zero. This happens after the code checks if the timeout is set to

zero in the configuration file. Further, it calls the function ngx_http_core_keepalive

which sets the keep-alive value in the configuration file into an internal configuration

object.

8.2.2 Nginx Running with TLS Enabled

Upon just raw analysis, it appears that running Nginx in TLS

causes 559 unique lines of code to be covered. Most of these lines

are from two files – src/http/modules/ngx_http_ssl_module.c and

src/event/ngx_event_openssl.c. In src/event/ngx_event_openssl.c, the

function ngx_create_ssl is covered in this configuration, which is a function that

initializes the SSL context. Other functions initialize data that is required by SSL,

like Diffie-Hellman parameters, SSL session caches, etc.

The src/modules/ngx_http_ssl_module.c file contains code to initialize SSL,

which includes loading certificates, keys, etc. A lot of the code that parses configuration

specific to SSL is also in this file and is covered by the configuration.

Further, there are lines in the src/http/ngx_core_http_module.c that

enable SSL in the main listen function of Nginx. Line 2042 onwards in
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src/http/ngx_http_request.c upgrades a plain HTTP connection to an HTTPS

connection. There are also functions that initiate the SSL handshake and close

connections that are part of the covered lines in this file. As for the negative overlap,

there were 1230 lines of code that were present in every configuration but this.

8.2.3 Other Findings

ngx06 disables ETag, and it has two unique lines that are always covered, and they

disable ETag in the response header. ngx07 calls the function ngx_http_set_expires

from file src/http/modules/ngx_http_headers_filter_module.c.

Similarly, ngx09 sets worker priority, and the only unique coverage that the

configuration had was in src/core/nginx.c in the function ngx_set_priority. All

other configurations, similarly, had coverage unique to them as a result of this analysis.

8.3 Apache httpd

8.3.1 Allow Lenient Parsing of HTTP Methods

Since this configuration allows HTTP methods that are not formatted correctly,

it is expected to have some parsing code that is uniquely covered by it. Function

set_http_protocol_options from file src/server/core.c parses the actual config-

uration from the configuration file and sets flags according to the read values.

In the file src/server/protocol.c, lines 1240 onwards is covered uniquely in this

configuration. This block of code, depicted in Figure-12, shows the legacy parser in

action, as specified in the configuration.
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Figure 12. Code Snippet From httpd Executed With Lenient Parsing

8.3.2 Apache httpd Running with TLS Enabled

The line that stands out in src/server/listen.c is line 849, which sets a variable

called proto to ‘https’. This line is uniquely covered in this configuration at all times.

In src/server/ssl.c, the function ap_ssl_add_cert_files is called that adds

SSL certificates to the server. This, again, is unique to the configuration.
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Finally, some utility files are covered in this configuration. These files are utils.c,

utils_md5.c and utils_mutex.c, where the functions provide functionality around

registering mutexes, calculating MD5 digests and converting binary data to printable

string. As for the negative overlap, there were 1580 lines of code that were present in

every configuration but this.

8.3.3 Other findings

There were other configurations that also had very unique code that they cov-

ered. For example, httpd02 that allows the %2F character in URIs had a uniquely

covered function called set_allow2f in src/server/core.c, along with line 268 in

src/server/request.c that normalizes the URI after checking that the character is

allowed in the URI.

Interestingly, httpd04 that allows merged slashes did not have any unique lines.

This is mostly because every line that this configuration touches is covered in other

configurations too. Generally because those are if statements with multiple conditions,

and those are evaluated for every configuration.

Configurations that added ETag and Gzipped the response had unique coverage

in the files that assist in these functionalities. For ETag, the src/server/core.c file

also calls a function called set_etag_bits, that is unique to the configuration.
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Chapter 9

RELATED WORKS

ConfigFuzz[14] is a project that fuzzes the configuration file of a software, given

the grammar of the configuration file. The project is aimed towards obtaining the

configuration that provides the maximum code coverage.

T-Fuzz[15] is a grey box fuzzing technique that works by mutating the software

under test to obtain maximum coverage in the fuzz test. It does so by using a tracer

to check where the input fails and removing the check from the target software that

causes the input to fail.

As a Proof-of-Concept, I also tried this analysis with QEMU Translation Blocks

as the trace information instead of LCOV, and it gave results similar to the ones

described in Chapter 6. These results were difficult to get details out of, but for a

black-box approach it did give an approximate measure of how much code coverage

differed for a specific configuration.
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