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ABSTRACT  

   

Gallium Nitride (GaN) is uniquely suited for Radio Frequency (RF) and power 

electronic applications due to its intrinsically high saturation velocity and high mobility 

compared to Silicon and Silicon Carbide (SiC). High Electron Mobility Transistors 

(HEMTs) have remained the primary topology for GaN transistors in RF applications. 

However, GaN HEMTs suffer from a variety of issues such as current crowding, lack of 

enhancement mode (E-Mode) operation and non-linearity. These drawbacks slow the 

widespread adoption of GaN devices for ultra-low voltage (ULV) applications such as 

voltage regulators, automotive and computing applications. E-mode operation is 

especially desired in low-voltage high frequency switching applications. In this context, 

Fin Field Effect Transistors (FinFETs) offer an alternative topology for ULV applications 

as opposed to conventional HEMTs.  

Recent advances in material processing, high aspect ratio epitaxial growth and 

etching methods has led to an increased interest in 3D nanostructures such as Nano-

FinFETs and Nanowire FETs. A typical 3D nano-FinFET is the AlGaN/GaN Metal 

Insulator Semiconductor (MIS) FET wherein a layer of Al2O3 surrounds the AlGaN/GaN 

fin. The presence of the side gates leads to additional lateral confinement of the 2D 

Electron Gas (2DEG). Theoretical calculations of transport properties in confined 

systems such as AlGaN/GaN Finfets are scarce compared to those of their planar HEMT 

counterparts.  

A novel simulator is presented in this dissertation, which employs self-consistent 

solution of the coupled 1D Boltzmann – 2D Schrödinger – 3D Poisson problem, to yield 

the channel electrostatics and the low electric field transport characteristics of 
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AlGaN/GaN MIS FinFETs. The low field electron mobility is determined by solving the 

Boltzmann transport equation in the Quasi-1D region using 1D Ensemble Monte Carlo 

method. Three electron-phonon scattering mechanisms (acoustic, piezoelectric and polar 

optical phonon scattering) and interface roughness scattering at the AlGaN/GaN interface 

are considered in this theoretical model. Simulated low-field electron mobility and its 

temperature dependence are in agreement with experimental data reported in the 

literature.  

A quasi-1D version of alloy clustering model is derived and implemented and the 

limiting effect of alloy clustering on the low-field electron mobility is investigated for the 

first time for MIS FinFET device structures. 
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CHAPTER 1  

INTRODUCTION 

1.1 Gallium Nitride HEMTs 

Gallium Nitride is one of the strongest candidates for high power, high frequency 

device applications. GaN has wide applications in optoelectronic devices (such as Blue 

LEDs)[1], [2] as well as RF [3]–[5] and power electronics [6]–[8]. GaN also holds good 

potential for developing radiation-hard devices due to its high bandgap and high critical 

electric field. Power devices are widely sought after for fast chargers, wireless chargers 

and EVs.  

Heterostructure interfaces of III-V materials allow formation of quantum wells, 

leading to formation of 2D Electron Gas (2DEG) at the interface. The 2DEG has 

excellent electrical conductivity because of the presence of Nitrides with large 

spontaneous polarization that leads to high electron density in the triangular potential 

well at the heterointerface. The strain present at the interfaces due to lattice mismatch 

also induces piezoelectric polarization, which further enhances the 2DEG density. 

Table 1.1 Material properties of GaN compared with conventional semiconductors[3][9]  

Property GaN Si GaAs 4H-SiC 

Bandgap (eV) 3.39 1.12 1.42 3.25 

Critical Electric Field (MV/cm) 4.0 0.25 0.40 3.0 

Saturation velocity (107 cm/s) 3.0 1.0 2.0 2.0 

Electron Mobility (cm2/Vs) 1300 1350 6000 800 

Thermal conductivity (W/cm K)  1.3 1.4 0.5 4.9 

Dielectric Constant 9.0 11.8 12.8 9.7 
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The excellent material properties of III-nitrides, such as high electron mobility, high 

saturation velocity and high critical electric field (see Table 1.1 for more details) lead to 

GaN being a material of choice for RF and power devices working in the high frequency, 

high voltage regimes.  Power device applications can be categorized into low-voltage, 

medium-voltage and high-voltage classes. The scope for GaN in medium and high 

voltage class devices is well researched. Currently, GaN HEMTs (Figure 1.2) have been 

commercialized for operation in the 15-650V range[10]–[13]. The high switching speeds 

of HEMTs compared to Si devices have enabled application of GaN HEMTs in the 

charging infrastructure for electrified transportation[14]. Because of their widespread 

usage, GaN HEMTs have been extensively studied experimentally and theoretically. 

Indeed, this is evidenced by the availability of a vast amount of literature on modeling 

mobility in GaN HEMTs [15]–[18].  

 

Figure 1.1 Voltage classes of power device applications. Reprinted from [14] , with the 

permission of AIP Publishing 



3 

 

 

 

Figure 1.2 Typical Gallium Nitride HEMT structure. An AlN layer may or may not be 

present (depending on the design). 

  The high polarization field at the AlGaN (AlN)/GaN hetero-interface induces 2D 

electron gas (2DEG) which is responsible for the high conductivity of the channel in 

HEMTs. However, the ever-present electron gas, limits HEMTs to only D-mode 

operation. (HEMTs are depletion mode devices because the 2DEG channel exists at zero 

gate bias and requires application of negative gate bias to be turned off.) Widespread 

application of HEMTs in RF applications is also limited by the non-linear 

transconductance exhibited by these devices[10].  

In addition to medium and high voltage devices, several opportunities exist for 

extending the application of GaN in the low and ultra-low voltage (ULV) device 

applications (<50 V) traditionally dominated by Silicon lateral MOS devices. Some key 

low voltage power applications include voltage regulators (VR) commonly used in data 

centers, mobile devices and wearable electronics [19]. The VRs which are mounted 

directly next to the load (CPUs and GPUs) consume valuable real estate. One of the 

approaches to increase efficiency and reduce space is to increase the switching frequency 

of the VRs. GaN FETs have been explored for design of high frequency DC-DC 
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converters [20], [21] for use in automotive applications such as hybrid and electric 

vehicles [22]. While Si LDMOS is most widely used in ultra-low voltage high frequency 

applications, GaN provides a favorable alternative here too due to the small reverse 

recovery times, thus allowing operations at higher switching frequencies. Current GaN 

devices, which are being considered in this voltage regime, are based on the Schottky p-

gate HEMT (SP-HEMT) [14]. However, the difficulty of realizing a high-quality p-type 

GaN prevents the full realization of the material potential of GaN. Additionally, in order 

to realize E-mode devices (necessary in power converters to have safe switching), either 

thick p-GaN layers or MOS-HEMT approaches are necessary. Note that both 

technologies increase the on-state resistance and exhibit a low transconductance. 

For ULV devices, the critical targets are to reduce on resistance and increase 

channel mobility, gate capacitance and transconductance. In this context, Finfets and 

other non-planar GaN FETs are better candidates for ULV operation, as they can achieve 

E-mode operation due to lateral gates, rather than using a p-GaN layer. Heterojunction 

GaN Finfets retain the 2DEG, thus reducing the on resistance, increasing channel 

mobility, transconductance and gate capacitance.  

There is a significant knowledge gap which exists regarding the designs of such 

GaN Finfets, particularly for the above mentioned ULV applications. E-mode operation 

in Finfets can be achieved by varying the critical design parameters such as the fin width. 

However, there is a scarcity of models which predict the transport behavior of these GaN 

Finfets. A unified low-field transport model for GaN Finfets can thus allow one to predict 

channel mobility, transconductance, on resistance and gate capacitance, all of which are 

key design features of ULV GaN device technology. With the increasing market of 
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wearables and mobile devices, it is expected that there will be sufficiently large need for 

ULV high frequency GaN devices, such as those examined in this work. 

1.2 Need for GaN Finfets 

Although GaN has superior material properties over Silicon, the performance of 

commercial devices have not yet reached the material limit. Recent advances in high 

aspect ratio etching have led to the development of 3D nanostructures[23]. These 3D 

GaN nanostructures can be classified into NanoFin (NF) FETs and Nanowire (NW) 

FETs.  GaN Finfets offer an alternative topology to realizing GaN transistors. Like Si 

Finfets, GaN Finfets offer significant advantages over planar devices such as improved 

electrostatic gate control and alleviated short channel effects. Unlike Si Finfets, GaN 

Finfet bodies can be made of doped GaN alone, AlGaN/GaN heterojunction or multiple 

heterojunctions. GaN Finfets also improve upon the HEMT disadvantages such as non-

linearity[24] and poor on/off characteristics[25][26].  

FinFETs have significant advantages over their HEMT counterparts. Figure 1.3 

shows the superiority of FinFETs over HEMTs in power transistor applications. One can 

see that vertical GaN FinFETs have significantly lower specific on resistance and possess 

BVs of over 1000 V.  For RF applications, devices are used as amplifiers in the saturation 

regime, which requires high linearity. Lateral nanowire FETs display a flatter 

transconductance curves compared to the bell curves for planar HEMTs[10]. This is 

primarily due to the presence of sidewall channels in lateral Finfets. The broad 

transconductance plot preserves linearity and, thus, will have high fT across a wide range 

of gate biases[27]. Nanowire and Nanofin FET devices are preferable for large signal 
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operation of GaN transistors over complex circuit and material level approaches. The 

current distribution in non-planar FETs also aids in better heat management. 

 

Figure 1.3 RON vs BV trade-off for lateral and vertical GaNFETs compared to HEMTs 

[10].  © IOP Publishing. Reproduced with permission. All rights reserved 

 

 

Figure 1.4 Transfer characteristics and transconductance plots of Nanowire FETs (red 

curves) and planar HEMT devices (black curves). © IOP Publishing. Reproduced with 

permission from [10]. All rights reserved 
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NanoFin FETs can be subdivided into Lateral and Vertical NF FETs. Lateral 

devices are used in Low voltage (LV) and Medium Voltage (MV) applications, such as 

RF devices, whereas vertical devices are favored for power devices due to the presence of 

a large die area. 

1.2.1 Lateral and Vertical NanoFin FETs 

Lateral Finfets can be heterojunction free or consist of an AlGaN/ GaN 

heterojunction. The conduction mechanism in the heterojunction free FET is through the 

bulk GaN. FinFETs allow E-mode operation by varying the fin width. This is different 

from other methods of achieving E-mode in GaN FETs, such as recess gate and p-GaN 

gate, in that the 2DEG is still present in the FinFETs, thus preserving the excellent 

transport properties. The heterojunction free GaNFET has better off-state characteristics, 

however, the AlGaN/GaN NF MISFET has a lower on resistance due to the presence of 

the 2DEG layer.  

 

 

Figure 1.5 A GaN nanoFin FET without heterojunction. The conduction path is through 

the bulk and sidewalls. © 2013 IEEE. Reprinted with permission, from[28]. 
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Figure 1.6 The AlGaN/GaN nanoFin MISFET. Reprinted from [29] with permission from 

Elsevier. 

The device structure under study in this work is the AlGaN/GaN MISFET 

structure shown in figure 1.6. The fin channel is made up of an 80nm thick n-doped GaN 

layer grown over a Sapphire or a high resistive GaN substrate [29]. A 30 nm n-doped 

AlGaN layer with Aluminum composition (20-30%) is grown on top of the GaN layer. 

An Al2O3 gate oxide layer then wraps the fin on all three sides. The width of the fin 

varies from 20-50 nm (narrow fin device) to up to 100s of nm (wide-Fin device). 

Typically, many of these fin channels may exist as parallel nanoribbons between the 

same source and drain ohmic contacts [30]. 

Vertical Finfets are characterized by the presence of a thick drift region and a 

vertical conduction channel. The small area of the fin-channels enables higher current 

density in the channel as compared to conventional power MOSFETs.  Heterojunctions 

are not typically present in vertical FinFETs. There are two approaches to designing a 

vertical FinFET depending on the gate stack: the Junction FET and the MOS FET 

approach (see figure 1.7). While P-N junctions in Fin-JFETs allow for stronger depletion 

of the vertical channel leading to a positive threshold voltage, the sidewall channels in the 
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MOS-Fin devices decrease the on resistance. Vertical devices are, thus, suitable for MV 

and HV applications.  Vertical GaN power MOS-Finfets have been shown to achieve 1.2 

kV breakdown voltages [31]–[33]. 

 

Figure 1.7 Two different implementations of the vertical Finfet (cross-section shown). 

MOS-FinFET (left) and the JFET (right).  © IOP Publishing. Reproduced from [10] with 

permission.  

1.2.2 Temperature Dependent Characteristics of Lateral GaN Finfets 

Ki-Sik Im et al. [34] in their work describe the variation of threshold voltage and the 

electron mobility of an AlGaN/GaN MIS FinFET with temperature. The results are 

peculiar in that the temperature dependence reverses as one shifts from a negative to a 

positive gate bias. The authors compare Id-Vg characteristics at different temperatures 

from 100-350K for the MIS FinFET with fin width of 400 nm (wide fin) and for a MIS 

FinFET with a fin width of 50 nm (narrow fin). In narrow fin devices, one notes the 

presence of two different regimes: Vg < 0 and Vg > 0. The transconductance has a 

negative temperature coefficient for the former and a positive temperature coefficient for 

the latter. The focus of this work is to develop and implement theoretical model that will 

allow us to understand this temperature dependence in the negative gate bias regime. 
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Figure 1.8 Experimental measurements of transconductance values for Finfets and planar 

MISFETs [31]. a) Transconductance vs. temperature variation for a planar MISFET. b) 

Transconductance vs. temperature variation for 400nm wide Finfet. c) Transconductance 

vs. temperature variation for 50nm wide Finfet. Reprinted from [34] © 2016 with 

permission from Elsevier. 

1.3 Previous Work in Mobility modeling of nanoscale devices 

The low field electron mobility is a critical transport property which is responsible 

for the drift component of the current. In nanoscale devices, the reduction in 

dimensionality from 3D to 2D and 1D changes the mobility of the system. Rode’s 

method [35] and the Kubo-Greenwood formalism are some of the common methods used 

to determine the electron mobility[36], [37]. Monte Carlo approaches for modeling 

electron mobility have been employed for GaN nanowires[38], [39] and Silicon 

nanowires[40]–[43]. 

1.3.1 Determining electron mobility using the relaxation time approximation (Kubo-

Greenwood approach) 

To understand how electron mobility can be calculated from Kubo-Greenwood 

Formula, one needs to begin from the relaxation-time approximation of the Boltzmann 
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transport equation. The Boltzmann transport equation, in the effective mass 

approximation and for parabolic bands, is written as 

𝑑𝑓

𝑑𝑡
+ 𝐯∇r𝑓 + 𝐅∇𝑝𝑓 =  

𝜕𝑓

𝜕𝑡
|
𝑠𝑐𝑎𝑡𝑡

(1.1) 

 If one assumes steady state conditions and a homogeneous material, the first two terms 

on the left-hand side vanish.  For small electric fields, the distribution function is 

expanded as 

𝑓(𝑘) = 𝑓𝑜(𝑘) + 𝑔(𝑘) (1.2) 

Here 𝑔(𝑘) is the perturbation of the distribution function, i.e. the deviation of the 

distribution function from its equilibrium value. 

At low electric fields and if the scattering process is either elastic or isotropic, the right 

hand side of the above equation can be written as  

𝜕𝑓

𝜕𝑡
|
𝑠𝑐𝑎𝑡𝑡

= −
𝑓𝐴
𝜏(𝑘)

=  −
𝑓 − 𝑓𝑜
𝜏(𝑘)

(1.3) 

Thus,  

−𝑒𝐸

ℏ
. ∇𝑘𝑓 =  −

𝑓 − 𝑓𝑜
𝜏(𝑘)

 (1.4) 

𝑓(𝑘) = 𝑓𝑜 +
𝜏(𝑘)𝑒𝐸

ℏ
. ∇𝑘𝑓𝑜 (1.5) 

The current density can be extracted from the first moment of the distribution function as 

𝐉(𝒓, 𝑡) =  −
𝑒

𝑉
∑𝐯(𝐤)𝑓(𝐫, 𝐤, t)

𝑘

 (1.6) 

Using the integral form of equation 1.6, one has (for nanowires) 

𝐉 =  −𝑒
2

2𝜋
∫𝑓(𝐤)𝐯(𝐤)𝑑𝑘 (1.7) 
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Substituting 𝑓(𝑘) from equation 1.5 leads to 

𝐉 =  −𝑒
2

2𝜋
∫(𝑓𝑜 +

𝜏(𝑘)𝑒𝐸

ℏ

𝜕𝑓𝑜
𝜕𝜖

𝜕𝜖

𝜕𝑘
) 𝐯(𝐤)𝑑𝑘 (1.8) 

The derivative of the equilibrium Fermi-Dirac distribution function with respect to 

energy evaluates to 
𝜕𝑓𝑜

𝜕𝜖
= 

−1

𝐾𝐵𝑇
𝑓𝑜(𝜖)(1 − 𝑓𝑜(𝜖) 

Thus, equation 1.7 reduces to 

𝐉 =
𝑒

𝐾𝐵𝑇

2

2𝜋
∫𝑓𝑜(𝜖)(1 − 𝑓𝑜(𝜖)) (

𝜏(𝜖)𝑒𝐸

ℏ
)𝐯(𝛜)𝑑𝜖 (1.9) 

For quasi-1D system, expressing the velocity in terms of the kinetic energy (𝜖 − 𝜖𝑛) , 

where 𝜖𝑛 is the nth subband energy, gives for the current density of the nth channel the 

following result: 

𝐉𝐧 =
𝑒

𝐾𝐵𝑇

2

2𝜋
√
2

𝑚∗
∫𝑓𝑜(𝜖)(1 − 𝑓𝑜(𝜖)) (

𝜏(𝜖)𝑒𝐸

ℏ
)√𝜖 − 𝜖𝑛𝑑𝜖  (1.10) 

 Since there is no spatial gradient in the distribution function, the current consists only of 

the drift component, thus 

𝐉𝐧 = 𝑁𝑙
𝑛𝑒𝜇𝑖𝐸 =  

𝑒

𝐾𝐵𝑇

2

2𝜋
√
2

𝑚∗
∫𝑓𝑜(𝜖)(1 − 𝑓𝑜(𝜖)) (

𝜏(𝜖)𝑒𝐸

ℏ
)√𝜖 − 𝜖𝑛𝑑𝜖 (1.11) 

Where, 𝑁𝑙
𝑖  and 𝜇𝑖 are the line density and the electron mobility of the ith subband, 

respectively. Hence 

𝜇𝑛 = 
𝑒

𝐾𝐵𝑇𝑁𝑙
𝑛

2

2𝜋
√
2

𝑚∗
∫𝑓𝑜(𝜖)(1 − 𝑓𝑜(𝜖)) (

𝜏(𝜖)

ℏ
)
𝜖 − 𝜖𝑛

√𝜖 − 𝜖𝑛
𝑑𝜖 (1.12) 

The 1-D density of states expression is of the form: 
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𝑔1𝐷(𝜖) = √
𝑚∗

2

1

𝜋ℏ
 

1

√𝜖 − 𝜖𝑛
 (1.13)    

Using equation 1.13 in 1.12, gives 

𝜇𝑛 = 
2𝑒

𝐾𝐵𝑇𝑁𝑙
𝑛𝑚∗

∫𝑔1𝐷(𝜖)𝑓𝑜(𝜖)(1 − 𝑓𝑜(𝜖))𝜏(𝜖)(𝜖 − 𝜖𝑛)𝑑𝜖  (1.14) 

Equation 1.14 can be used to determine the electron mobility assuming that the 

relaxation-time approximation holds. This is also referred to as Kubo-Greenwood 

formalism in the literature [44], [45]. Kotliyar et al. [46] and Fischetti et al. [47] use this 

method to determine phonon-limited electron mobility in silicon nanowires. Kumar et al. 

[36] use Kubo-Greenwood formalism to determine the electron mobility for an 

AlGaN/GaN split gate FET. The mobility is computed by calculating the momentum 

relaxation time for each scattering mechanism and the 1D electron density. 1D scattering 

rate expressions are used to determine the momentum relaxation rate. 

1.3.2 Determining Electron Mobility using the Rode’s iterative method 

If the scattering process is inelastic and anisotropic, as in the case of polar materials, 

the RTA cannot be used since it is impossible to define a simple relaxation time 𝜏𝑓(𝜖) that 

does not depend upon the distribution function [48]. Returning to equation 1.2, 

𝑓𝑛(𝑘) = 𝑓𝑛𝑜 + 𝑔𝑛(𝑘) 

The BTE now becomes, 

−𝑒𝐸

ℏ
. ∇𝑘𝑓𝑛 =  

𝜕𝑓

𝜕𝑡
|
𝑠𝑐𝑎𝑡𝑡

= ∑[𝑆𝑘′𝑘𝑓𝑚(1 − 𝑓𝑛) − 𝑆𝑘𝑘′𝑓𝑛(1 − 𝑓𝑚)]

𝑚,𝑘′

(1.15) 

Substituting 𝑓𝑛(𝑘) in equation 1.15 leads to 
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−𝑒𝐸

ℏ

𝜕

𝜕𝑘
(𝑓𝑛𝑜 + 𝑔𝑛(𝑘)) = 

∑[𝑆𝑘′𝑘(𝑓𝑚𝑜 + 𝑔𝑚)(1 − 𝑓𝑛𝑜 − 𝑔𝑛) − 𝑆𝑘𝑘′(𝑓𝑛𝑜 + 𝑔𝑛)(1 − 𝑓𝑚𝑜 − 𝑔𝑚)]

𝑚,𝑘′

(1.16)
 

Please note that we use the short-hand notation  𝑓𝑚 = 𝑓𝑚(𝑘′) 𝑎𝑛𝑑 𝑓𝑛 = 𝑓𝑛(𝑘) . 

The principle of detailed balance states that equilibrium scattering rate from state 𝑘 𝑡𝑜 𝑘’, 

from subband 𝑚 𝑡𝑜 𝑛 equals the scattering rate for the reverse process. In other words, 

under equilibrium conditions the change of the distribution function due to scattering 

processes has to be zero. The principle of detailed balance reads:  

𝑆𝑘′𝑘
𝑆𝑘𝑘′

=
𝑓𝑛𝑜(1 − 𝑓𝑚𝑜)

𝑓𝑚𝑜(1 − 𝑓𝑛𝑜)
  

Using the principle of detailed balance, and assuming that higher order terms of 𝑔𝑛(𝑘) are 

negligible, equation 1.16 reduces to, 

−𝑒𝐸

ℏ

𝜕

𝜕𝑘
(𝑓𝑛𝑜) =  ∑ 𝑆𝑘′𝑘[(1 − 𝑓𝑛𝑜)𝑔𝑚 − 𝑓𝑚𝑜𝑔𝑛]

𝑚,𝑘′

− 

∑ 𝑆𝑘𝑘′[(1 − 𝑓𝑚𝑜)𝑔𝑛 − 𝑓𝑛𝑜𝑔𝑚]

𝑚,𝑘′

(1.17)
 

Expressing in terms of 𝑔𝑛 gives 

𝑔𝑛 =

−𝑒𝐸
ℏ

𝜕
𝜕𝑘
(𝑓𝑛𝑜) + ∑ 𝑆𝑘′𝑘[1 − 𝑓𝑛𝑜𝑔𝑚] + 𝑔𝑚𝑓𝑛𝑜𝑆𝑘𝑘′𝑚,𝑘′

∑ [𝑓𝑚𝑜𝑆𝑘′𝑘 + 𝑆𝑘𝑘′(1 − 𝑓𝑚𝑜)]𝑚,𝑘′
 (1.18) 

Equation 1.18 is the Rode’s iterative method. The equation is solved iteratively and 

converges in a few iterations, yielding the value of perturbation 𝑔𝑛(𝑘). 

Returning to equation 1.7, the current density is expressed as  

𝐉 =  −𝑒
2

2𝜋
∫𝑓(𝑘)𝐯(𝐤)𝑑𝑘 
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𝐉 =  −𝑒
2

2𝜋
∫(𝑓𝑜 + 𝑔𝑛(𝑘))𝐯(𝐤)𝑑𝑘 (1.19) 

or 

𝐉 =  −
𝑒𝑚∗

𝜋ℏ√2𝑚∗
∫(𝑔𝑛(𝑘))𝐯(𝐤))/√𝜖 − 𝜖𝑛  𝑑𝜖  (1.20) 

Using the 1D Density of states expression (Equation 1.13), one can write 

𝐉 =  −𝑒∫(𝑔𝑛(𝜖))𝐯(𝛜)𝑔1𝐷(𝜖)) 𝑑𝜖 =   𝑁𝑙
𝑛𝑒𝜇𝑛𝐸 (1.21) 

Expressing velocity in terms of energy, the expression for electron mobility becomes 

𝜇𝑛 = 
1

𝑁𝑙
𝑛𝐸
√
2

𝑚∗
∫𝑔𝑛(𝜖)√𝜖 − 𝜖𝑛 𝑔1𝐷(𝜖)) 𝑑𝜖  (1.22) 

The total mobility is then a weighted sum of the subband mobility, i.e.: 

𝜇 =  
∑ 𝜇𝑛𝑁𝑙

𝑛
𝑛

∑ 𝑁𝑙
𝑛

𝑛
 (1.23) 

Equation 1.22 gives the electron mobility determined using Rode’s Iterative method.  

Rode’s iterative method has been used to model the low field mobility in InAlAs solar cells 

[49] as well as nanowires. 

Although Rode’s method and the relaxation time approximation approach are 

effective ways to determine the low-field electron mobility, Monte Carlo methods provide 

a very generic framework to solve the Boltzmann Transport Equation. Knezevic et al. [38] 

determine the electron mobility of rectangular GaN nanowires using Ensemble Monte 

Carlo simulations.  Monte Carlo method also enables one to build a device simulator and 

generate device performance characteristics. 
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1.4 Motivation for this work 

There are several reasons which form the motivation for this work: 

a) To understand the peculiar temperature dependence of the transconductance in 

lateral Finfets as a function of bias and width. 

b) To calculate I-V characteristics, one would need to couple 3D Poisson with 2D 

Schrödinger solved in slices (from source to drain). These are next coupled with a 

quasi-1D Monte Carlo transport solver. 

Since the focus is on the temperature dependence of transconductance in this work, 

which comes from the transfer characteristics of the device at low drain bias, one can 

assume low-field transport and, thus, low-field mobility is the desired quantity to be 

determined. For that purpose, one needs to solve coupled Schrödinger-Poisson-Monte 

Carlo problem illustrated below.  

 

Figure 1.9 The theoretical modeling approach used in this work. 

Solution of Schrödinger-Poisson Problem for heterostructures has been done by 

solving 3D Poisson Equation coupled with a 2D Schrödinger Solver. For the solution of 

the Poisson equation, BiCGSTAB method is used and implemented in MATLAB. For the 

solution of the Schrödinger equation, this work used canned Eigenvalue solvers in 

MATLAB. In the Boltzmann solver, this work considered quasi-1D system and included 
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the following scattering mechanisms; acoustic phonon scattering, piezoelectric scattering, 

polar optical phonon scattering and Interface roughness scattering. The impact of alloy 

clustering is also studied in details.  

1.5 Outline of the dissertation 

The technical details for the solution of the 3D Poisson Equation coupled with a 

2D Schrödinger equation are given in chapter 2. Chapter 3 of the dissertation contains 

details on the choice of the band-structure and the implementation of the quasi-1D Monte 

Carlo transport solver. The simulation results for the MIS FinFET devices introduced in 

section 1.2 are presented in the latter half of chapter 3. At the end we present conclusive 

comments related to the work accomplished so far and discus prospective future work. 
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CHAPTER 2  

MODELING ELECTROSTATICS 

In a typical FinFET device, the charge densities and the material compositions vary along 

the length, along the fin width and along the device thickness. Therefore, to accurately 

model the electrostatics, it is necessary to couple a 3D Poisson equation solver and a 2D 

Schrödinger solver and solve them self-consistently. The following section introduces the 

Poisson equation and discusses efficient solution of the same for the case of 3D 

problems. The solution of the 2D Schrödinger equation is discussed next. Finally, self-

consistent results of the solution of the 3D Poisson-2D Schrödinger problem are 

presented, and the overall convergence of the self-consistent scheme is discussed. 

2.1 3D Poisson Equation Solver 

The solution of the 3D Poisson Equation, described by equation 2.1, yields the 

potential profile, and, thus, the charge densities in a given region. 

∇ ∙ (𝜖(𝒓)∇ϕ(𝐫)) = −𝜌(𝒓) (2.1) 

2.1.1 Linearization and discretization of the Poisson Equation 

Under equilibrium conditions and non-degenerate statistics, the charge density 

term on the right-hand-side (RHS) of equation 2.1 is expressed as 

𝜌(𝜙) = 𝑞(𝑝𝑜 − 𝑛𝑜 + 𝐷𝑜𝑝) = 𝑞(𝑛𝑖 exp (
−𝜙

𝑉𝑇
) − 𝑛𝑖 exp (

𝜙

𝑉𝑇
) + 𝐷𝑜𝑝)   

i.e., the Poisson equation can be written as 

𝛻(𝜖𝛻𝜙) = −
𝜌(𝜙)

𝜖𝑜
. (2.2) 
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The linearization of the RHS of equation 2.2, and the finite difference discretization of 

the resultant equation, leads to the following system of linear equations: 

𝐹𝑖𝑗𝑘𝜙𝑖,𝑗,𝑘−1 + 𝑁𝑖𝑗𝑘𝜙𝑖,𝑗−1,𝑘 + 𝐸𝑖𝑗𝑘𝜙𝑖−1,𝑗,𝑘 +

𝐶𝑖𝑗𝑘𝜙𝑖𝑗𝑘 +𝑊𝑖𝑗𝑘𝜙𝑖+1,𝑗,𝑘 + 𝑆𝑖𝑗𝑘𝜙𝑖,𝑗+1,𝑘 + 𝐵𝑖𝑗𝑘𝜙𝑖,𝑗,𝑘+1 = 𝒻𝑖𝑗𝑘 (2.3)
 

The off-diagonal coefficients are given by: 

𝑁𝑖𝑗𝑘 =  
𝜖𝑖−1,𝑗−1,𝑘 + 𝜖𝑖−1,𝑗−1,𝑘−1 + 𝜖𝑖,𝑗−1,𝑘−1 + 𝜖𝑖−1,𝑗−1,𝑘

2𝑌𝑗−1(𝑌𝑗 + 𝑌𝑗−1)
 

    

𝑆𝑖𝑗𝑘 = 
𝜖𝑖−1,𝑗,𝑘 + 𝜖𝑖−1,𝑗,𝑘−1 + 𝜖𝑖,𝑗,𝑘−1 + 𝜖𝑖−1,𝑗,𝑘

2𝑌𝑗(𝑌𝑗 + 𝑌𝑗−1)
 

    

𝐸𝑖𝑗𝑘 = 
𝜖𝑖−1,𝑗−1,𝑘 + 𝜖𝑖−1,𝑗−1,𝑘−1 + 𝜖𝑖−1,𝑗,𝑘−1 + 𝜖𝑖−1,𝑗,𝑘

2𝑋𝑖−1(𝑋𝑖 + 𝑋𝑖−1)
 

    

𝑊𝑖𝑗𝑘 = 
𝜖𝑖,𝑗−1,𝑘−1 + 𝜖𝑖,𝑗,𝑘−1 + 𝜖𝑖,𝑗−1,𝑘 + 𝜖𝑖,𝑗,𝑘

2𝑋𝑖(𝑋𝑖 + 𝑋𝑖−1)
 

    

𝐹𝑖𝑗𝑘 = 
𝜖𝑖−1,𝑗−1,𝑘−1 + 𝜖𝑖,𝑗−1,𝑘−1 + 𝜖𝑖−1,𝑗,𝑘−1 + 𝜖𝑖,𝑗,𝑘−1

2𝑍𝑘−1(𝑍𝑘 + 𝑍𝑘−1)
 

    

𝐵𝑖𝑗𝑘 = 
𝜖𝑖−1,𝑗−1,𝑘 + 𝜖𝑖,𝑗−1,𝑘 + 𝜖𝑖−1,𝑗,𝑘 + 𝜖𝑖,𝑗,𝑘

2𝑍𝑘(𝑍𝑘 + 𝑍𝑘−1)
 

The central coefficient is calculated using 

𝐶𝑖𝑗𝑘 = −(𝐵𝑖𝑗𝑘 + 𝐹𝑖𝑗𝑘 + 𝐸𝑖𝑗𝑘 +𝑊𝑖𝑗𝑘 + 𝑁𝑖𝑗𝑘 + 𝑆𝑖𝑗𝑘)

− (𝑛𝑖𝑟 exp(
𝜙𝑖𝑗𝑘
𝑜𝑙𝑑

𝑉𝑇
) +𝑛𝑖𝑟 exp (−

𝜙𝑖𝑗𝑘
𝑜𝑙𝑑

𝑉𝑇
))  
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and the forcing function is given by 

𝒻𝑖𝑗𝑘 = 𝑉𝑇 (𝑛𝑖𝑟 exp(
𝜙𝑖𝑗𝑘
𝑜𝑙𝑑

𝑉𝑇
) −𝑛𝑖𝑟 exp (−

𝜙𝑖𝑗𝑘
𝑜𝑙𝑑

𝑉𝑇
) −  𝐷𝑜𝑝𝑖𝑗𝑘)

− 𝜙𝑖𝑗𝑘
𝑜𝑙𝑑 (𝑛𝑖𝑟 exp(

𝜙𝑖𝑗𝑘
𝑜𝑙𝑑

𝑉𝑇
) +𝑛𝑖𝑟 exp(−

𝜙𝑖𝑗𝑘
𝑜𝑙𝑑

𝑉𝑇
))  

 

Here, 𝑖, 𝑗, 𝑎𝑛𝑑 𝑘 are the nodes along the x, y and z directions respectively. 𝜙𝑖𝑗𝑘
𝑜𝑙𝑑 

corresponds to the old (previous) solution.  

2.1.2 Modifying the Poisson Equation for Heterostructures  

For the case where the material parameters are inhomogeneous and position 

dependent, such as for the case of heterostructures, the expressions for the electron and 

hole concentrations, and for the electrostatic potential need to be modified.  If the density 

of states function is position dependent, the electron concentration also becomes position 

dependent and is calculated using 

𝑛(𝑥) =  ∫ 𝑔𝑐(𝐸 − 𝐸𝑐, 𝑥)𝑓𝐹𝐷(𝐸, 𝐸𝑓𝑛)𝑑𝐸
𝐸𝐶
𝑇𝑜𝑝

𝐸𝐶

(2.4) 

For a non-degenerate semiconductor, Boltzmann statistics can be used, for which 

𝑛(𝑥) = 𝑛𝑖 exp ( 
𝐹𝑛 − 𝐸𝐼
𝜅𝑇

) (2.5) 

If 𝜙𝑛 is the quasi-Fermi level in the semiconductor, then 𝐹𝑛 = 𝐸𝐹 − 𝜙𝑛. At equilibrium, 

𝜙𝑛 = 𝜙𝑝 = 0 and 𝐹𝑛 = 𝐹𝑝 = 𝐸𝐹. 

To accurately express the intrinsic Fermi level in heterostructures in devices with 

position dependent material parameters, one needs to adopt the local vacuum level 
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approach [50], [51]. The local vacuum level must follow electrostatic potential within the 

device. In this approach, all energy levels are defined with respect to the reference level 

(𝐸𝑜), thus 

𝐸𝐶(𝑥) = 𝐸𝑜 − 𝑞𝜙(𝑥) − 𝜒(𝑥) (2.6) 

𝐸𝑉(𝑥) = 𝐸𝑜 − 𝑞𝜙(𝑥) − 𝜒(𝑥) − 𝐸𝐺 (𝑥) (2.7) 

𝐸𝐼(𝑥) = 𝐸𝑜 − 𝜒(𝑥) − 𝑞𝜙(𝑥) −
𝐸𝐺(𝑥)

2
+
𝜅𝑇

2
log (

𝑁𝑉(𝑥)

𝑁𝐶(𝑥)
) (2.8) 

Defining a reference location in the heterostructure [52][53] and writing the electron (and 

hole) concentrations in equation 2.5 as 

𝑛(𝑥) = 𝑛𝑖𝑟𝑒𝑓 exp ( 
𝐸𝐹 − 𝐸𝐼
𝜅𝑇

) exp (log (
𝑛𝑖
𝑛𝑖𝑟𝑒𝑓

)) = 

𝑛𝑖𝑟𝑒𝑓 exp( 

𝐸𝐹 − 𝐸𝐼 + 𝜅𝑇 log (
𝑛𝑖
𝑛𝑖𝑟𝑒𝑓

)

𝜅𝑇
) (2.9)

 

Substituting Equation 2.8 into 2.9, gives 

𝑛(𝑥) = 𝑛𝑖𝑟𝑒𝑓 exp( 𝐸𝐹 − 𝐸𝑜 + 𝜒(𝑥) + 𝜅𝑇 log (
𝑁𝑐(𝑥)

𝑛𝑖𝑟𝑒𝑓
) + 𝜙(𝑥)) (2.10) 

Let us define the electron concentration as 

𝑛(𝑥) = 𝑛𝑖𝑟𝑒𝑓 exp (
𝑞

𝜅𝑇
(𝜙(𝑥) + 𝑉𝑛(𝑥))   (2.11) 

And the hole concentration as 

𝑝(𝑥) = 𝑛𝑖𝑟𝑒𝑓 𝑒𝑥𝑝 (−
𝑞

𝜅𝑇
(𝜙(𝑥) − 𝑉𝑝(𝑥))) 

Then, the band parameters 𝑉𝑛 and 𝑉𝑝 are calculated using 

𝑉𝑛 =
𝜒(𝑥)

𝑞
− 𝐸0 +

𝜅𝑇

𝑞
log (

𝑁𝑐(𝑥)

𝑛𝑖𝑟𝑒𝑓
) (2.12)  
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𝑉𝑝 = −
𝜒(𝑥)

𝑞
−
𝐸𝐺
𝑞
+ 𝐸0 +

𝜅𝑇

𝑞
log (

𝑁𝑣(𝑥)

𝑛𝑖𝑟𝑒𝑓
) 

One can choose the reference energy level 𝐸0 such that the electrostatic potential 𝜙 = 0 in 

the reference material [54] (the reference material being intrinsic). Thus,  

𝐸𝑜 = 𝜒𝑟𝑒𝑓 + 𝐸𝐹 + 𝜅𝑇 ln (
𝑁𝑐𝑟𝑒𝑓

𝑛𝑖𝑟𝑒𝑓
) (2.13) 

Using this result, the heterostructure band parameters become 

𝑉𝑛 =
𝜒 − 𝜒𝑟𝑒𝑓

𝑞
 + (

𝜅𝑇

𝑞
log
𝑁𝑐(𝑥)

𝑁𝑐𝑟𝑒𝑓
) (2.14) 

𝑉𝑝 = −
(𝜒 − 𝜒𝑟𝑒𝑓)

𝑞
−
(𝐸𝐺 − 𝐸𝐺𝑟𝑒𝑓)

𝑞
+ (

𝜅𝑇

𝑞
log
𝑁𝑉(𝑥)

𝑁𝑉𝑟𝑒𝑓
) 

If Fermi-Dirac statistics are used, similar analysis [55] can lead to the following 

modification in the band parameters 

𝑉𝑛 =
𝜒 − 𝜒𝑟𝑒𝑓

𝑞
+ (

𝜅𝑇

𝑞
log
𝑁𝑐(𝑥)

𝑁𝑐𝑟𝑒𝑓
) +

𝜅𝑇

𝑞
ln(

𝐹1
2

(𝜂𝑐)

exp(𝜂𝑐)
) (2.15) 

𝑉𝑝 = −
(𝜒 − 𝜒𝑟𝑒𝑓)

𝑞
−
(𝐸𝐺 − 𝐸𝐺𝑟𝑒𝑓 )

𝑞
+ (

𝜅𝑇

𝑞
log

𝑁𝑉
𝑁𝑉𝑟𝑒𝑓

) +
𝜅𝑇

𝑞
ln(

𝐹1
2

(𝜂𝑣)

exp(𝜂𝑣)
)  

Where, 𝜂𝑐 = 
𝐸𝐹−𝐸𝐶

𝜅𝑇
 . 
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2.1.3 Boundary conditions for Schottky and Ohmic contacts 

Schottky contacts 

 

Figure 2.1 Energy band diagram at a Schottky interface. 

Referring to fig 2.1, the Schottky barrier height ϕb0 can be given as ϕb0 = EC(x) − EF. 

Note also that 

EF − EI (x) = EF − EC(x) + Ec(x) − EI(x) 

= −ϕb0 +
EG(x)

2
−
κT

2
ln (

NV(x)

NC (x)
) (2.16) 

Substituting EI (x) and E0 from equations (2.8) and (2.13) into the LHS of equation 

(2.16), one arrives at the following boundary condition for the potential 𝜙 at the Schottky 

contact 

q𝜙(x) =  −ϕb0 + (χref − χ(x)) + κT log (
Ncref
niref

) (2.17) 

q𝜙(x) =  −(ϕm − χ(xint)) + (χref − χ(xint)) +
κT

2
log (

NCref
NVref 

) +
EG(xint)

2
(2.18) 
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Ohmic contacts 

  At Ohmic contacts, Dirichlet boundary conditions are used for the electrostatic 

potential (𝜙 ). Invoking charge neutrality conditions at the Ohmic contact, gives 

p − n + Dop = 0  

with Dop = ND − NA. Substituting the results given in equation (2.11) leads to 

𝑛𝑖𝑟𝑒𝑓 exp (
𝑞

𝜅𝑇
(−𝜙 + 𝑉𝑝)   −  𝑛𝑖𝑟𝑒𝑓 exp (

𝑞

𝜅𝑇
(𝜙 + 𝑉𝑛) + 𝐷𝑜𝑝 = 0  (2.19) 

Solving for ϕ, gives 

ϕ(x) =  
Vp − Vn

2

+ sgn(D)
KT

q
 ln

(

 
 
 
 
 |

Dop

2niref
| exp(−

q(Vp(x) + Vn(x))

2KT
) +

√
1

4
(
Dop

niref
)
2

exp(−
q (Vp(x) + Vn(x))

2KT
) + 1

)

 
 
 
 
 

(2.20)

 

 

2.1.4 Introducing polarization-induced charge density into the Poisson Equation 

Origin of spontaneous and piezoelectric polarization in III-nitrides 

Group III-nitride materials naturally occur as a Wurtzite crystal structure with 

lattice constants 𝑎0 and 𝑐0 along the base hexagon and along the height, respectively. 

Since the growth along the c plane {0001} is a highly mature standard, the discussion 

presented here will be restricted to polarization in the c plane.  
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The atoms in group III-nitrides are arranged in closely spaced hexagonal bilayers 

with alternating anion and cation layers creating a dipole moment. Due to the ionic nature 

of the Ga-N bond, the positive and negative charge centers do not coincide, leading to the 

formation of a dipole. This forms the basis of spontaneous polarization present in the c 

plane of Ga (Al) N.  The spontaneous polarization is positive in the direction from Ga 

(Al) to N atom.  

 

 

Figure 2.2 Crystal structure of wurtzite GaN indicating the Ga –face and N- face crystals 

along growth direction of [0001] and [0001̅] respectively[56]. 

Piezoelectric polarization on the other hand arises from the dipole moment created 

in response to stress applied to the crystal. The stress arises typically due to lattice 

mismatch between different materials in the growth layers. Piezoelectric polarization along 

the c-axis ([0001]) is given by the contribution of piezoelectric tensors and the in-plane 

and c-plane strain components [15]. 

𝑃𝑝𝑒 = 𝑒33𝜖𝑧 + 𝑒31(𝜖𝑥 + 𝜖𝑦) (2.21)    
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Where, 𝑒33 and 𝑒31 are piezoelectric coefficients and 𝜖𝑥, 𝜖𝑦 and 𝜖𝑧 are strain components 

along the basal (a) plane and along the c plane, respectively. The respective strain 

components are given by 

𝜖𝑥 = 𝜖𝑦 =
𝑎𝑠 − 𝑎0
𝑎0

(2.22) 

𝜖𝑧 =
𝑐 − 𝑐0
𝑐0

 

The unstrained lattice constants are given by 𝑎0 and 𝑐0, and satisfy the following 

relationship 

𝑐 − 𝑐0
𝑐0

= −2
𝐶13

𝐶33

𝑎𝑠 − 𝑎0
𝑎0

(2.23) 

where, C13 and C33 are the elastic constants. Using equations 2.22 and 2.23 into 2.21, the 

piezoelectric polarization expression becomes, 

𝑃𝑝𝑒 = 2
𝑎𝑠 − 𝑎0
𝑎0

(𝑒31 −
𝐶13
𝐶33

𝑒33) (2.24)  

The strained lattice constant 𝑎𝑠 is determined by averaging the lattice constants of 

the layers directly above and below the strained layer. This approach is common in 

commercial device simulators such as Silvaco [57].  In case of a tensile strain, the 

piezoelectric polarization is parallel to the spontaneous polarization (for Ga- face 

crystals) since 𝑒31 −
𝐶13

𝐶33
𝑒33 is always negative. Piezoelectric polarization is antiparallel 

to spontaneous polarization if the layer in question is under a compressive strain.  

The AlGaN/GaN MISFET presented here is grown on the polar c-plane ([0001] 

direction). Thus, the spontaneous polarization for both AlGaN and GaN layer and the 

piezoelectric polarization for the AlGaN layer need to be accounted for in the model. 
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Strain relaxation in nano-FinFETs  In nanostructures, such as finfets and 

nanoribbons[58], it has been observed that the heterostructure layers grown epitaxially 

tend to relax, especially if the lateral dimensions (for example, the fin width) is less than 

100nm. This directly results in a reduction of the piezoelectric polarization charge 

density. To account for this phenomenon, one needs to modify equation 2.24 by 

introducing a ‘strain relaxation parameter’ (the value of which is set to 1 if there is no 

strain relaxation).   

Total polarization charge in a layer and coupling to the total charge density 

 

Figure 2.3 Polarization charge densities in an AlGaN/AlN/GaN heterostructure 

Consider an AlGaN/AlN/GaN heterostructure system presented in figure 2.3. The 

total polarization charge density in a given layer is the sum of the spontaneous and the 

piezoelectric polarization charge densities in that layer, i.e. 

𝑷𝒕𝒐𝒕 = 𝑃𝑠𝑝 + 𝑃𝑝𝑒 (2.25) 

The bottom GaN layer is relaxed and hence is absent of any piezoelectric 

polarization. The AlN and AlGaN layers are under tensile strain and the total polarization 

 

GaN 

AlN 

AlGaN 

[0
0
0
1
] 

Psp  

Psp  

Psp  Ppe  

Ppe  
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in those layers is a sum of piezoelectric and spontaneous polarization charge densities. The 

net polarization charge density that appears at the interfaces between the two layers is 

𝜎𝑝𝑜𝑙 = 𝑷𝒕𝒐𝒕
𝒃𝒐𝒕 − 𝑷𝒕𝒐𝒕

𝒕𝒐𝒑
 (2.26) 

The polarization charge density is accounted for in the Poisson equation by adding it as a 

sheet charge density at the heterojunction interfaces. 

2.2 Numerical solution methods for the Poisson equation 

The linearized (and discretized) Poisson equation (Equation 2.3) is of the form  

𝐴𝒙 = 𝑓 (2.27) 

where, A is the coefficient matrix, x is the unknown potential and f is the forcing function. 

A variety of numerical methods exist in the literature for solving equations of the form 

2.27. Numerical solution methods for Poisson’s equation can be divided into Direct and 

Iterative methods. Direct methods include LU decomposition and Gaussian elimination, 

whereas Iterative methods can be mesh relaxation methods, such as Jacobi, Gauss-Seidel 

and Successive over Relaxation (SOR), Alternating direction Implicit (ADI) or Matrix 

methods, which consist of Sparse Matrix methods, conjugate gradient methods and Multi-

Grid methods. 

2.2.1 Direct Methods 

Direct methods such as LU decomposition and Gaussian elimination involve matrix 

factorization and inversions. As such, these methods are limited to use in solution of 1D or 

2D Poisson equations where the coefficient matrix is smaller in size, and the inversion of 

the matrix does not pose a significant computational burden. For 3D systems, the 
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coefficient matrix becomes too large. At that size, matrix inversion becomes 

computationally expensive and, hence, time consuming.  

2.2.2 Iterative Methods 

Since the coefficient matrix is large, but often sparse, one can utilize the power of 

iterative solution methods. Iterative (or relaxation) methods start with an approximation 

which is successively improved by the repeated iteration of the same algorithm, until a 

sufficient accuracy is obtained. In this way, the original approximation is “relaxed” toward 

the exact solution which is numerically more stable. Iterative methods are used most often 

for large sparse system of equations, and always when a good approximation of the solution 

is known. Error analysis and convergence rate are two crucial aspects of the theory of 

iterative methods. All iterative methods follow a similar algorithm as outlined below: 

 For the equation = 𝑓 , a sequence of approximations 𝒗0, 𝒗1…𝒗𝑛 converging to x 

is constructed. If 𝒗𝑖 is the 𝑖𝑡ℎ  approximation to x, then the residual is defined as a 

measure of deviation of the 𝑖𝑡ℎ  approximation from x. The residual for the 𝑖𝑡ℎ 

iteration is given by 

𝑟𝑖 = 𝑓 − 𝐴𝑣𝑖  (2.28)  

  

 The algebraic error of the 𝑖𝑡ℎ approximation is defined by 

𝑒𝑖 = 𝑥 − 𝑣𝑖  (2.29) 

 

 The error 𝑒𝑖 obeys the residual equation 

𝐴𝑒𝑖 = 𝑟𝑖 (2.30) 
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Mesh relaxation methods such as SOR and ADI methods are popular iterative methods 

used when the coefficient matrix is small, such as for 2D Poisson equations. One can switch 

to matrix methods when dealing with large sparse matrices such as those arising from 

discretization of the 3D Poisson Equation.   

Mesh relaxation methods are slower to converge. Although the high frequency 

errors are damped quickly in mesh relaxation methods, convergence of the low frequency 

errors is quite slow. This is not the case in matrix methods, which are popular for fast 

convergence. This work makes use of conjugate gradient methods which fall under the 

category of matrix methods.   

Conjugate gradient Methods: general algorithm: For all descent algorithms, the following 

describes the fundamental structure[59]: 

 Start with an initial point determined according to a fixed rule, a direction of 

movement. 

 The direction is toward a relative minima of the objective function.  

 At this now point, a new direction is determined and the process is repeated. 

The major difference between different matrix method algorithms is the rule by which 

successive directions of movement are selected. 

Method of Steepest Descent 

In the method of steepest descent, one starts with an arbitrary point x0 and takes a 

series of steps x1 and x2 and move toward the solution. The direction of movement is 

toward what minimizes the forcing function most quickly. That is 

−𝑓′(𝑥𝑖) = 𝑏 − 𝐴𝑥(𝑖) 

From the definition of residuals, it follows that, 
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𝑟𝑖 = −𝐴𝑒𝑖 = −𝑓
′(𝑥𝑖) 

From 𝑥0 , the next vector will fall along the solid line given by 

𝑥1 = 𝑥0 + 𝛼𝑟0 

Since the magnitude of the step must be such that it minimizes f along the line, then 

 

Figure 2.4 Path of the search vector xi toward the solution x [59]. 

𝑑

𝑑𝛼
𝑓(𝑥1) = 𝑓

′(𝑥1)
𝑇
𝑑𝑥1
𝑑𝛼

= 0 

−𝑟1
𝑇𝑟0 = 0 

𝛼 =
𝑟0
𝑇𝑟0

𝑟0
𝑇𝐴𝑟0

  

Thus, the algorithm for steepest descent is 

𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑖𝑟𝑖 

𝛼𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖
𝑇𝐴𝑟𝑖

 (2.31) 

 To reduce matrix multiplication, one can simplify the above as 

𝑟𝑖+1 = 𝑟𝑖 − 𝛼𝑖𝐴𝑟𝑖 (2.32) 
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A major disadvantage of the steepest descent algorithm is that (as seen in figure 

2.4) a large number of steps has to be taken before converging to the solution. This is in 

part because this algorithm often results in the descent steps repeating the same direction 

as earlier steps. This issue is resolved in the Conjugate directions and Conjugate gradient 

algorithms. 

Method of conjugate directions 

The core idea in the method of conjugate directions is that instead of steps in 

successive iterations repeating the direction of previous steps, the search directions 

(𝒅𝟎, 𝒅𝟏, 𝒅𝒏−𝟏  ) will be orthogonal [59]. Taking exactly one step in each search direction 

to line up with the solution 𝒙 ensures convergence in precisely 𝑛 steps for an 𝑛 × 𝑛 

coefficient matrix A. 

 

Figure 2.5 Illustration of the basic idea of conjugate directions. [59] 

At each step, the next iteration of 𝒙  is computed as  

𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑖𝑑𝑖 (2.33) 
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Since 𝒆𝒊+𝟏 needs to be orthogonal to 𝒅𝒊 

𝑑𝑖
𝑇𝑒𝑖+1 = 0 

𝑑𝑖
𝑇(𝑒𝑖 + 𝛼𝑖𝑑𝑖) = 0 

𝛼𝑖 = −
𝑑𝑖
𝑇𝑒𝑖

𝑑𝑖
𝑇𝑑𝑖

(2.34) 

Since 𝑒𝑖  is unknown, instead of demanding the search directions to be orthogonal, one 

can force the directions to be A-orthogonal to each other. In other words,  

𝑑𝑖
𝑇𝐴𝑑𝑗 = 0 (2.35) 

Equation 2.35 is a condition of A-orthogonality. Thus, the new requirement is that 

𝑒𝑖+1 needs to be A-orthogonal to 𝑑𝑖. Ensuring the minimization of 𝑓(𝑥𝑖), one has 

𝑑

𝑑𝛼
𝑓(𝑥𝑖+1) = 𝑓

′(𝑥𝑖+1)
𝑇
𝑑𝑥𝑖+1
𝑑𝛼

= 0 

Substituting 𝒙𝒊+𝟏 from equation 2.33 gives 

−𝑟𝑖+1
𝑇 𝑑𝑖 = 0 

𝑑𝑖
𝑇𝐴𝑒𝑖+1 = 0 

𝑑𝑖
𝑇𝐴(𝑒𝑖 + 𝛼𝑖𝑑𝑖) = 0 

𝛼𝑖 = −
𝑑𝑖
𝑇𝐴𝑒𝑖

𝑑𝑖
𝑇𝐴𝑑𝑖

 

𝛼𝑖 = −
𝑑𝑖
𝑇𝑟𝑖

𝑑𝑖
𝑇𝐴𝑑𝑖

(2.36) 

Finally, one needs to compute the A-orthogonal search directions (𝒅𝒊). This is 

accomplished using the conjugate Gram-Schmidt process. The algorithm is outlined 

below. 

 Take a set of linearly independent vectors 𝒖𝟎, 𝒖𝟏, 𝒖𝒏−𝟏 , assuming that 𝒅𝒐 = 𝒖𝟎 
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 For 𝑖 > 0 , take an 𝒖𝒊 and subtract all the components from it that are not A-

orthogonal to the previous search directions. 

𝒅𝒊 = 𝒖𝒊 +∑𝛽𝑖𝑗𝒅𝒋

𝑖−1

𝑗=0

 

𝛽𝑖𝑗 = −
𝒖𝒊
𝑻𝑨𝒅𝒋

𝒅𝒋
𝑻𝑨𝒅𝒋

(2.37) 

 

A key point in the method of conjugate directions is that while the error vector is A-

orthogonal to all previous search directions, the residual vector is orthogonal to previous 

search directions as well as all previous basis vectors. 

Method of conjugate gradients 

  The method of Conjugate Gradients (CG) expands upon the conjugate directions 

method where the search directions are constructed by conjugation of the residuals. That 

is, 𝑢𝑖 = 𝑟𝑖. This simplifies the calculation of the new search direction.  

𝛽𝑖𝑗 = {

1

𝛼𝑖−1

𝑟𝑖
𝑇𝑟𝑖

𝑑𝑗
𝑇𝐴𝑑𝑗

=
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇  𝑟𝑖−1

  𝑖 = 𝑗 + 1

0                                              𝑖 > 𝑗 + 1

 

The new search direction then is determined by the linear combination of the previous 

search direction and the new residual: 

𝑑𝑖+1 = 𝑟𝑖+1 + 𝛽𝑖+1𝑑𝑖  

Thus, the method of conjugate gradients is represented with the following pseudocode: 

𝑑𝑖 = 𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 

𝛼𝑖 = −
𝑟𝑖
𝑇𝑟𝑖

𝑑𝑖
𝑇𝐴𝑑𝑖
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𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑖𝑑𝑖 

𝑟𝑖+1 = 𝑟𝑖 − 𝛼𝑖𝐴𝑑𝑖  

𝛽𝑖+1 = 
𝑟𝑖+1
𝑇 𝑟𝑖+1

𝑟𝑖
𝑇 𝑟𝑖

 

𝑑𝑖+1 = 𝑟𝑖+1 + 𝛽𝑖+1𝑑𝑖 (2.38) 

For the CG method, there is one matrix-vector product, two vector dot products per 

iteration and a need to store four 𝑛-vectors. The CG method converges in at most 𝑛 steps. 

However, rounding errors in floating point arithmetic can lead to loss of orthogonality 

among the residuals. The CG method will converge in 𝑚 steps if the A matrix has only 𝑚 

distinct eigenvalues. 

Methods for non-symmetric Matrices 

The conjugate gradient methods discussed above are valid when the A matrix is 

symmetric. However, this is seldom the case when discretizing Poisson equations. For 

example, in the case of heterostructures, the coefficient matrix is asymmetric due to the 

differences in relative permittivity (𝜖𝑟) . Asymmetric coefficient matrix can also result 

from the discretization implemented, such as the presence of non-uniform meshing over 

the simulation domain. Since this work deals with heterostructure systems, the A-matrix 

is always asymmetric. For such cases, conjugate gradient type algorithms for non-

symmetric matrices based on Krylov subspace methods have to be used.  

The Bi-Conjugate gradient (Bi-CG) algorithm was proposed by Lanczos in 

1954 and can solve the original system 𝐀𝐱 = 𝐛 as well as the dual linear system 𝐀𝐓𝐱∗ =

𝐛∗. Each step of this algorithm involves a matrix-vector product with both 𝐀 and 𝐀𝐓.  The 

update relations for residuals in the CG method (equation 2.38) are augmented in the Bi-
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CG method by involving 𝐀𝐓 as well as  𝐀.  The search direction 𝒑𝒋
∗ does not directly 

contribute to the solution directly [60].  

The Conjugate gradient squared (CGS) algorithm was developed by Sonneveld 

in 1984. The CGS method requires the same number of iterations as the BCG method but 

does not involve computations with 𝐀𝐓. 

The BiCGSTAB method was developed by van der Vorst in 1992. This method 

improves upon the Bi-CG method which can be numerically unstable. BiCGSTAB 

converges as fast (and sometimes faster) than CGS method. The residual vector is 

minimized locally which leads to a considerably smoother convergence behavior.  The 

unpreconditioned BiCGSTAB method proceeds according to the following algorithm 

[61].  

Let 𝑥0 be an initial guess for the linear system 𝐀𝐱 = 𝐁. The residual is then 𝐫𝟎 =

𝐛 − 𝐀𝐱𝟎. The algorithm is initialized as follows 

1. Choose an arbitrary vector 𝒓�̂� , such that 𝒓�̂�
𝑻𝒓𝟎  ≠ 𝟎. 

2. Set 𝜌0 = 𝛼 = 𝜔0 = 1. 

3. Set the search direction 𝒗𝟎 = 𝒑𝟎 = 𝟎.  

For  𝑖 > 1 , the iterations proceed as 

1. 𝜌𝑖 = 𝒓�̂�
𝑻𝒓𝒊−𝟏 

2.  𝛽 = (𝜌𝑖/𝜌𝑖−1)(𝛼/𝜔𝑖−1) 

3. 𝒑𝒊 = 𝒓𝒊−𝟏 + 𝛽(𝒑𝒊−𝟏 − 𝜔𝑖−1𝝂𝒊−𝟏) 

4.  𝝂𝒊 = 𝑨𝒑𝒊 

5. 𝛼 = 𝜌𝑖/(𝒓�̂�
𝑻𝝂𝒊) 
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6. 𝒉 = 𝒙𝒊−𝟏 + 𝛼𝒑𝒊 

7. 𝐹𝑖𝑟𝑠𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑡𝑒𝑠𝑡; 𝑡𝑒𝑠𝑡 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 ℎ.  𝐼𝑓 |ℎ − 𝑥𝑖−1| < 𝑡𝑜𝑙 , 𝑠𝑒𝑡 𝒙𝒊 =

𝒉 𝑎𝑛𝑑 𝑞𝑢𝑖𝑡. 

8. 𝒔 = 𝒓𝒊−𝟏 − 𝛼𝝂𝒊 

9. 𝒕 = 𝑨𝒔 

10. 𝜔𝑖 = (𝒕
𝑻𝒔)/(𝒕𝑻𝒕) 

11. 𝒙𝒊 = 𝒉 + 𝜔𝑖𝒔 

12. 𝑆𝑒𝑐𝑜𝑛𝑑 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑡𝑒𝑠𝑡;  .  𝐼𝑓 |𝑥𝑖 − 𝑥𝑖−1| < 𝑡𝑜𝑙 , 𝑞𝑢𝑖𝑡. 

13. 𝒓𝒊 = 𝒔 − 𝜔𝑖𝒕 

BiCGSTAB method has two stopping tests: Stopping on the first test reduces the number 

of iterations. BiCGSTAB method requires two matrix-vector products and four vector dot 

products. 

In this work, the algorithm described above is implemented in MATLAB to solve 

the discretized Poisson equation,  𝐴𝜙 = 𝑓 and determine the electrostatic potential.  The 

coefficient matrix resulting from discretization of the 3D Poisson equation is stored as a 

sparse matrix. MATLAB allows for operations on matrices and vectors directly, which 

significantly reduces the computation time spent per iteration. Figure 2.6 shows the 

convergence behavior of the BICGSTAB algorithm when implemented to solve a 3D 

equilibrium Poisson equation in an AlGaN/GaN FinFET. The convergence plot is shown 

for two different applications: 3D Poisson equation for a narrow (40nm) Finfet and a 

wide (160nm) Finfet. 
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Figure 2.6 BiCGSTAB convergence plot for solving a 3D equilibrium Poisson equation 

for narrow and wide Finfet. 

2.3 The 2D Schrödinger equation solver 

The 3D Poisson equation solver discussed in section 2.1 provides the electrostatic 

potential, from which one can compute the carrier densities using semi-classical 

equilibrium Boltzmann statistics. The semi-classical charge description is not appropriate 

for the case when carriers are confined in a potential well in nanostructure devices like 

FinFETs, and/or quantum wells and Si/SiO2 inversion layers. The confinement of 

electrons in the potential wells leads to a quasi-1D (Q1D) or a quasi-2D (Q2D) behavior. 

In the case of Q1D or Q2D carrier confinement, one needs to solve the Schrödinger 

equation in conjunction with the previously described Poisson equation to get accurate 

description of the charge densities. Within this self-consistent solution procedure, the 

Schrödinger equation is solved within a domain that is a subset of the entire simulation 

domain (hereafter referred to in this work as Schrödinger domain). The solution of the 

Schrödinger equation yields the electron wavefunction and the subband energies. These 

quantities are, in turn, used to determine the quantum electron density within the 
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Schrödinger domain. The self-consistent procedure is discussed in more details in the 

subsequent section. Here, the focus is on the solution of the Schrödinger equation only. 

 

Figure 2.7 AlGaN/GaN FinFET cross section. The blue dotted box highlights the 

Schrödinger domain. 

Figure 2.7 shows the cross section of the FinFET device under consideration in 

which the Schrödinger domain is highlighted (blue box). The presence of the triangular 

well region near the AlGaN/GaN interface and the reduced dimensions of the width of 

the device result in a quasi-1D behavior of the electrons in this system, thus necessitating 

the solution of a 2D Schrödinger equation. 

The time independent Schrödinger wave equation is 

−
ℏ2

2𝑚∗
∇𝜓 + 𝜙𝜓 = ℰ𝜓 (2.39)  

Where, 𝑚∗ is the effective mass of the electron, 𝜙 is the confining electrostatic potential 

energy (related to the electrostatic potential 𝜙′ discussed in the previous section via the 

relationship 𝜙 = −𝑞𝜙′, where q is the elementary charge). In heterostructures, where the 

electrons possess a varying effective mass depending on the bulk material of the region, 

the generalized effective mass Schrödinger equation is: 
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−ℏ2

2
∇ · (

1

𝑚∗(𝑥, 𝑦)
∇ψ(x, y)) + 𝜙(𝑥, 𝑦)𝜓(𝑥, 𝑦) = ℰ𝜓(𝑥, 𝑦) (2.40) 

Since the effective mass is a property of a bulk, it is not well defined in the neighborhood 

of a sharp material transition. In the hypothesis of slow material composition variations in 

space, one can adopt the Schrödinger equation with a spatially varying effective mass, 

taken to be the mass of a bulk with the local material properties. 

2.3.1 Discretization of the Schrödinger Equation using Finite Volume method 

The Schrödinger equation given in equation 2.40 can be conveniently written in the form 

of the eigenvalue equation as shown below 

(
−ℏ2

2
∇. (

1

𝑚∗(𝑥, 𝑦)
∇) + 𝜙(𝑥, 𝑦))𝜓(𝑥, 𝑦) = ℰ𝜓(𝑥, 𝑦) 

ℋ𝜓 = ℰ𝜓 (2.41) 

To arrive at the Hamiltonian ℋ  and employ eigenvalue solvers on equation 2.41 one 

needs to discretize the Schrödinger equation. This section describes briefly the Finite 

Volume (FV) discretization method [62].   

The Schrödinger equation is a linear PDE consisting of a second order and a 

zeroth order differential operator. Consider a 2D grid depicted below in figure 2.8. Next, 

consider a “Control Volume”, divided up into N octants around each mesh point. For a 2-

dimensional system, the number of octants is 𝑁 = 22 = 4. 

The second order differential operator in the Schrödinger equation is of the form 

𝐷2(𝑟) =  −
ℏ2

2
∑ 𝜕𝑖 (1/𝑚𝑖𝑗

∗ (𝑟)) 𝜕𝑗𝜓(𝑟) 

𝑖,𝑗 ∈{𝑥,𝑦}
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Writing the differential equation as an integral one by integrating over the control volume 

Ω, equation 2.41 can be rewritten as 

∫ −
ℏ2

2
∑ 𝜕𝑖 (1/𝑚𝑖𝑗

∗ (𝑟)) 𝜕𝑗𝜓(𝑟) 

𝑖,𝑗 ∈{𝑥,𝑦}Ω

𝑑𝑉 + ∫ 𝜙(𝑟)𝜓(𝑟)𝑑𝑉
Ω

 =  ∫ ℰ𝜓(𝑟)𝑑𝑉
Ω

(2.42) 

 

Let I1 be the first integral term in equation 2.42 

𝐼1 = ∫ −
ℏ2

2
∑𝜕𝑖  ∑(1/𝑚𝑖𝑗

∗ (𝑟)) 𝜕𝑗𝜓(𝑟) 

𝑗𝑖Ω

𝑑𝑉 (2.43) 

Using Gauss Divergence theorem, ∫𝛁. 𝐅 dV = ∫𝑭. 𝑑𝑺 and considering the terms within 

the second summation in equation 2.43 as flux F, one can write 𝐼1 as 

𝐼1 = ∫ −
ℏ2

2
 ∑ (1/𝑚𝑖𝑗

∗ (𝑟)) 𝜕𝑗𝜓(𝑟) 

𝑖,𝑗∈{𝑥,𝑦}S

𝑑𝑺 �̂�𝑖 (2.44) 
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Figure 2.8 Five-Point stencil for finite volume discretization grid. Dotted lines enclose 

the control volume around the grid point (i,j)  which is sub-divided into 4 octants. Vij is 

the volume of the Control Volume at the grid point (i,j). 

The surface integral in 𝐼1 is next written as sum of surface integrals over each of the N 

octants.   

𝐼1 = −
ℏ2

2
∑∫  ∑ (

1

𝑚𝑖𝑗
∗ (𝑟)

)

𝑛

[ 𝜕𝑗𝜓(𝑟)]𝑛 

𝑖,𝑗∈{𝑥,𝑦}Sn

𝑑𝑺𝒏 �̂�𝑖

𝑁=4

𝑛=1

 (2.45) 

The surface integral over each octant (𝑺𝒏) can be further broken down into sum of 

surface integrals over each surface of the octants. For a 2D system, each octant has two 

such surfaces. The second summation in equation 2.45 is sum of surface integrals over 

pth-surface of the nth-octant. 

𝐼1 = −
ℏ2

2
∑∑∫  ∑ (

1

𝑚𝑖𝑗
∗ (𝑟)

)

𝑛

[ 𝜕𝑗𝜓(𝑟)]𝑛
𝑝
 

𝑖,𝑗∈[𝑥,𝑦}Sn
p

𝑑𝑠𝑛
𝑝�̂�𝑖�̂�𝒏

𝒑

2

𝑝=1

𝑁=4

𝑛=1

(2.46) 

CVi

1

23

4
i, j i+1,ji-1,j

i,j-1

i,j+1

 𝑥
𝑛

 𝑦
𝑛

X 

Y 
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𝒆�̂� is the unit normal vector of the pth surface of the nth octant. Since �̂�𝑖 is also a unit 

vector, one can use basis orthonormality ( �̂�𝑖. �̂�𝒏
𝒑
= 𝛿𝑖𝑝�̂�𝒏

𝒑
(𝑝) ) to eliminate the 

summation on 𝑝 in equation 2.46, i.e. 

𝐼1 = −
ℏ2

2
∑ ∑ ∫ (

1

𝑚𝑖𝑗
∗ (𝑟)

)

𝑛

[ 𝜕𝑗𝜓(𝑟)]𝑛
𝑖
 �̂�𝒏
𝒊 (𝑖)

𝑆𝑛
𝑖

𝑑𝑠𝑛
𝑖

𝑖,𝑗∈{𝑥,𝑦}

𝑁=4

𝑛=1

(2.47) 

𝐼1 =  −
ℏ2

2
∑ ∑ (

1

𝑚𝑖𝑗
∗ (𝑟)

)

𝑛

[ 𝜕𝑗𝜓(𝑟)]𝑛
𝑖

𝑖,𝑗∈{𝑥,𝑦}

𝑁=4

𝑛=1

�̂�𝒏
𝒊 (𝑖)𝑆𝑛

𝑖 (2.48) 

Here, 𝑆𝑛
𝑖  is the surface area of the surface in the ith-direction of the nth-octant. The term 

[ 𝜕𝑗𝜓(𝑟)]𝑛
𝑖
 describes the differential change in the wavefunction 𝜓 in the jth - direction on 

the surface along ith - direction of the nth octant of the control volume. For electron 

wavefunctions in the Schrödinger equation, this quantity exists only when 𝑖 = 𝑗.  

Furthermore, if the effective mass can be assumed as being isotropic, then one can set 𝑖 =

𝑗 in equation 2.48.  For the case of 𝑖 = 𝑗, the term [ 𝜕𝑗𝜓(𝑟)]𝑛
𝑖
 is discretized as 

[ 𝜕𝑖𝜓(𝑟)]𝑛
𝑖 = 

𝜓(Δ𝑛
𝑖 �̂�𝑛

𝑖 ) − 𝜓(𝑟)

Δ𝑛
𝑖

�̂�𝑛
𝑖  (2.49) 

Using equation 2.49, the final discretized expression for the second order differential 

operator can be written as 

𝐼1 = −
ℏ2

2
∑ ∑ (

1

𝑚𝑖
∗(𝑟)

)

𝑛

 
𝜓(Δ𝑛

𝑖 �̂�𝑛
𝑖 ) − 𝜓(𝑟)

Δ𝑛
𝑖

𝑖∈{𝑥,𝑦}

𝑁=4

𝑛=1

𝑆𝑛
𝑖 (2.50) 

Here Δ𝑛
𝑖  is the mesh spacing along the ith direction on the nth octant. The surface area 𝑆𝑛

𝑖  

can be expressed as 
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𝑆𝑛
𝑖 =

Δ𝑛
𝑗

2
 (2.51) 

The zeroth order operator (the second integral in equation 2.42) discretization can be 

written as 

𝐼2 = ∫ 𝜙(𝑟)𝜓(𝑟)𝑑𝑉
Ω

 

𝐼2 = 𝜓(𝑟)∑𝜙𝑛

4

𝑛=1

𝑉𝑛 (2.52) 

Here, 𝜙 is the confining potential and 𝑉 is the control volume. Since the potential 𝜙 is 

defined around the grid point (𝑖, 𝑗) and not in the octants, the summation can thus be 

eliminated, i.e. 

𝐼2 = 𝜓(𝑟)𝜙(𝑟)𝑉𝑖,𝑗 (2.53) 

Here 𝑉𝑖𝑗 is the volume of the control volume at grid point (𝑖, 𝑗) and is given as 

𝑉𝑖𝑗 = (
𝑋𝑖 + 𝑋𝑖−1

2
) (
𝑌𝑗 + 𝑌𝑗−1

2
) (2.54) 

where 𝑋𝑖 and 𝑌𝑗 describes the mesh spacing along the x and y directions at grid point 

(𝑖, 𝑗). 

Thus, the final discretized Schrödinger equation (referring to the grid in figure 2.8) is 

given as 

𝑁𝑖,𝑗𝜓𝑖,𝑗−1 + 𝐸𝑖,𝑗𝜓𝑖+1,𝑗 +𝑊𝑖,𝑗𝜓𝑖−1,𝑗 + 𝑆𝑖,𝑗𝜓𝑖,𝑗+1 + 𝐶𝑖,𝑗𝜓𝑖,𝑗 =  ℰ𝑉𝑖,𝑗𝜓𝑖,𝑗 (2.55) 

The off-diagonal coefficients are calculated using the following expressions 

𝑁𝑖,𝑗 = (−
ℏ2

2
) [ ∑

Δ𝑛
𝑥

Δ𝑛
𝑦

𝑛=1,4

1

𝑚𝑛∗ (𝑖, 𝑗)
 ] 
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𝐸𝑖,𝑗 = (−
ℏ2

2
) [ ∑

Δ𝑛
𝑦

Δ𝑛
𝑥

𝑛=1,2

1

𝑚𝑛∗ (𝑖, 𝑗)
 ] 

𝑊𝑖,𝑗 = (−
ℏ2

2
) [ ∑

Δ𝑛
𝑦

Δ𝑛
𝑥

𝑛=3,4

1

𝑚𝑛∗ (𝑖, 𝑗)
 ] 

𝑆𝑖,𝑗 = (−
ℏ2

2
) [ ∑

Δ𝑛
𝑥

Δ𝑛
𝑦

𝑛=2,3

1

𝑚𝑛∗ (𝑖, 𝑗)
 ] 

 And the central coefficient is of the form, 

𝐶𝑖,𝑗 = (
ℏ2

2
) [∑

Δ𝑛
𝑥

Δ𝑛
𝑦

1

𝑚𝑛∗ (𝑖, 𝑗)
+

4

𝑛=1

∑
Δ𝑛
𝑦

Δ𝑛
𝑥

1

𝑚𝑛∗ (𝑖, 𝑗)

4

𝑛=1

 ] + 𝜙(𝑖, 𝑗)𝑉𝑖,𝑗 

Here, Δ𝑛
𝑥  and Δ𝑛

𝑦
  define the mesh spacing in the nth octant along the 𝑥 and 𝑦 directions 

respectively. 𝑉𝑖,𝑗 is the control volume defined by equation 2.54. 

The discretized equation leads to an eigenvalue equation of the form 

ℋΨ = ℰSΨ  (2.56) 

Where, ℋ is the Hamiltonian matrix, Ψ is the collection of the electron wavefunctions, ℰ 

is the diagonal eigenvalue matrix and 𝑆 is the volume matrix containing the control 

volumes  𝑉𝑖,𝑗 as diagonal elements. In some cases (such as for non-uniform meshing), the 

Hamiltonian may be non-Hermitian, thus leading to significantly higher computation 

times. The following transformation leads to a Hermitian Hamiltonian matrix. 

 ℋΨ = ℰ𝑆Ψ  

Left multiplying the above expression by 𝑆−0.5 gives 

𝑆−0.5ℋΨ = 𝑆−0.5ℰ𝑆Ψ  

Right multiplying by 𝑆−0.5𝑆0.5 leads to 

𝑆−0.5ℋ𝑆0.5𝑆−0.5Ψ = 𝑆0.5ℰ𝑆−0.5𝑆0.5Ψ  
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Since S matrix is a positive diagonal matrix, 𝑆0.5𝑆0.5 = S  holds; thus 

𝑆−0.5ℋ𝑆−0.5𝑆0.5Ψ = ℰ𝑆0.5Ψ 

Writing 

𝑆0.5Ψ = Ψ′ 

and 

𝑆−0.5ℋ𝑆−0.5 = ℋ′ 

The eigenvalue equation becomes 

ℋ′Ψ′ =  ℰΨ′ (2.57) 

This simple transformation leads to a Hermitian eigenvalue problem and the solution is 

less computationally expensive, compared to other discretization methods such as finite 

element method. Please note that the eigenvectors in Equation 2.56 and 2.57 are related 

by the expression 

Ψ = 𝑆−0.5Ψ′ (2.58) 

2.3.2 Eigenvalue Solvers 

For solving the eigenvalue equation 2.57, this work employs the canned 

Eigenvalue solvers provided in MATLAB for Hermitian matrices. Specifically, this work 

uses the eigs function in MATLAB. This function is a special version of the eigenvalue 

solver for Hermitian matrices. The MATLAB function uses an implementation of the QZ 

algorithm for determining the eigenvalues and eigenvectors if the matrix is Hermitian. 

The smallest k eigenvalues are requested from the solver. This corresponds to the lowest 

k subbands of the Q1D system. The value k depends on the dimensions of the 
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Schrödinger domain and hence the fin width and the depth of the well. The resulting 

eigenvectors are normalized such that their 2-norm is 1. 

2.3.3 Quantum electron density  

Once the subband energies and the corresponding electron wavefunctions are 

known, the subband occupation (or line electron density) is determined using general 

Fermi-Dirac statistics as 

𝑁𝑙
𝑖 = ∫ 𝑓(𝐸)𝑔(𝐸)𝑑𝐸

∞

𝐸𝑖

 (2.59) 

Here, 𝑁𝑙
𝑖  is the line density of subband i and 𝑓 (𝐸) and 𝑔(𝐸) are the Fermi-Dirac 

distribution function and the density of states function, respectively. Substituting the 

expression for 1D density of states function leads to 

𝑁𝑙
𝑖 =

√2𝑚∗𝜅𝑇

𝜋ℏ
𝐹
−
1
 2

(𝜂𝑖) (2.60) 

where 

𝜂𝑖 =
𝐸𝐹 − 𝐸𝑖
𝜅𝑇

(2.61) 

Here 𝐸𝑖 is the electron energy in the ith subband and 𝐹
−
1

 2

 is the Fermi integral of order -

1/2 which is evaluated using standard analytical approximations.  The quantum electron 

density in the 2D slice is thus given as 

𝑛(𝑥, 𝑦) =  ∑𝑁𝑙
𝑖|𝜓𝑖(𝑥, 𝑦)|

2

𝑘

𝑖=1

(2.62) 
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2.4 The Self Consistent Schrödinger Poisson Equation Solver 

  Once the quantum electron density for a given 2D slice is determined as described 

in the previous section, it is substituted back into the 3D Poisson equation. The quantum 

electron density calculation is repeated for each 2D slice along the z direction. As 

described previously, the quantum electron density is determined in the Schrödinger 

domain. The boundaries of the Schrödinger domain over the device need to be properly 

set as this ensures that electrostatics are accurately calculated wherever electron 

confinement is present. 

2.4.1 Extent of Schrödinger domain 

The electrostatic potential resulting from the 3D Poisson equation solver (with 

semi-classical charge description) determines the extent of the Schrödinger which 

depends on the device dimensions, i.e., fin width and the type of structure (MISFET or 

MESFET). The Schrödinger domain should encompass all regions where there is 

formation of a potential well. The potential in the transition region between Schrödinger 

and classical domains should not be discontinuous. Finally, one also needs to account for 

wavefunction decay onto surrounding regions. 

These conditions can be further exemplified by considering the AlGaN/GaN 

MISFET structure shown in figure 2.7. One can note that the active regions in this 

structure are the AlGaN and GaN channel regions. 

1. When a negative gate bias is applied, both the bulk of GaN channel and 

AlGaN channel regions are under depletion regime. Thus, the electron density 

is confined to the potential well created at the AlGaN/GaN interface owing to 
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polarization-induced charge density. Therefore, the Schrödinger domain will 

comprise of the potential well at the AlGaN/GaN interface. 

2. When a positive gate bias is applied, the AlGaN and GaN channel regions 

shift to accumulation regime, thus the Schrödinger domain will include the 

entire AlGaN and GaN channel regions under the gate oxide. 

2.4.2 Predictor-Corrector Method 

The quantum electron density, at this step, needs to be inserted into the charge 

density term on the right hand side of the Poisson equation, as described in section 2.1.  

Referring back to equation 2.2, 

𝛻(𝜖𝛻𝜙) = −
𝜌(𝜙)

𝜖0
(2.63) 

Where 𝜌(𝜙) =  −
𝑞

𝜖𝑂
(𝑝(𝜙) − 𝑛(𝜙) + 𝐷𝑜𝑝) 

In section 2.1, the carrier densities were calculated using semi-classical Boltzmann 

approximations or Fermi-Dirac statistics. Similar to section 2.1, one can use Taylor series 

expansion of the right-hand side of equation 2.63 around 𝜙𝑘 (where 𝑘 denotes the current 

iteration) 

𝑓(𝜙𝑘+1) = 𝑓(𝜙𝑘) +
𝜕𝑓(𝜙𝑘+1)

𝜕𝜙𝑘+1 
(𝜙𝑘+1 − 𝜙𝑘) + 𝑂(𝜙𝑘) (2.64) 

𝑓(𝜙𝑘) =  
−𝑞

𝜖0
(𝑝𝑘
𝑐 − 𝑛𝑘

𝑞 + 𝐷𝑜𝑝) (2.65) 

The superscripts 𝑐 and 𝑞 indicate if the terms are calculated using semi-classical and 

quantum mechanical expressions respectively. The expression for quantum electron 

density is given as 
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𝑛𝑘
𝑞 = 𝑁1𝐷∑|Ψ𝑖|

2𝐹
−
1
2
(
ℰ𝐹 − ℰ𝑘

𝑖

𝑉𝑇
)

𝑁

𝑖=1

 

𝑁1𝐷 =
(2𝑚∗𝜅𝑇)1/2

𝜋ℏ
 

Where N is the total number of subbands and ℰ𝑘
𝑖 is the energy of the ith subband. The second 

term in equation 2.64 can be written as 

𝜕𝑓(𝜙𝑘+1)

𝜕𝜙𝑘+1 
(𝜙𝑘+1 − 𝜙𝑘) =  

−𝑞

𝜖0
(
−𝑝𝑘

𝑐

𝑉𝑇
−
𝜕𝑛𝑘+1

𝑞

𝜕𝜙𝑘+1
) (𝜙𝑘+1 − 𝜙𝑘) (2.66) 

 

𝑛𝑘+1
𝑞 = 𝑁1𝐷∑|Ψ𝑖|

2𝐹
−
1
2
(
ℰ𝐹 − ℰ𝑘+1

𝑖

𝑉𝑇
)

𝑁

𝑖=1

(2.67) 

One can assume that the potential in the next iteration shifts each subband energy 

by a small perturbation, but does not change the electron wavefunction. The electron 

wavefunctions are determined exactly in the previous iteration of the Schrödinger 

equation solver. Using this approximation,  

ℰ𝑘+1
𝑖 ≈ ℰ𝑘

𝑖 − 𝛿𝜙𝑘+1 (2.68) 

Where, 𝛿𝜙𝑘+1 = (𝜙𝑘+1 − 𝜙𝑘)  

Using the property of Fermi integrals, 

𝑑𝐹𝑗(𝜂)

𝑑𝑥
= 𝑗𝐹𝑗−1(𝜂) 

One can write,  

𝜕𝑛𝑘+1
𝑞

𝜕𝜙𝑘+1
|
𝜙𝑘

= 
1

𝑉𝑇
(−

𝑁1𝐷
2
∑|𝛹𝑖|

2𝐹
−
3
2
(
ℰ𝐹 − ℰ𝑘

𝑖

𝑉𝑇
)

𝑁

𝑖=1

) (2.69) 
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Since analytical expressions for Fermi integral of order (-3/2) is not available, one can 

instead calculate the differential of 𝐹
−
1

2

  using the standard definition of derivative. 

𝐹
−
3
2
 (𝜂𝐹) =  𝐹

−
1
2

′ (𝜂𝐹) =

𝑑 𝐹
−
1
2

(𝜂𝐹)

𝑑𝜂
≈

 𝐹
−
1
2

(𝜂𝐹 + ℎ) −  𝐹
−
1
2

(𝜂𝐹)

ℎ
 (2.70) 

Once equation 2.70 is numerically computed, one can rewrite equations 2.69 as 

𝜕𝑛𝑘+1
𝑞

𝜕𝜙𝑘+1
|
𝜙𝑘

=
1

𝑉𝑇
(𝑁1𝐷∑|𝛹𝑖|

2𝐹′
−
1
2
(
ℰ𝐹 − ℰ𝑘

𝑖

𝑉𝑇
)

𝑁

𝑖=1

) =  
1

𝑉𝑇
𝑛𝑘
𝑄 (2.71) 

 

Where 𝑛𝑘
𝑄 = 𝑁1𝐷 ∑ |𝛹𝑖|

2𝐹′
−
1

2

(
ℰ𝐹−ℰ𝑘

𝑖

𝑉𝑇
)𝑁

𝑖=1  . 

Finally, substituting equation 2.71 in 2.65, the charge density term of the Poisson 

equation becomes 

𝜌(𝜙𝑘+1) = −
𝑞

𝜖0
(𝑝𝑘
𝑐 − 𝑛𝑘

𝑞 + 𝐷𝑜𝑝) −
𝑞

𝜖0𝑉𝑇
(𝑝𝑘
𝑐 + 𝑛𝑘

𝑄)𝜙𝑘 +
𝑞

𝜖0𝑉𝑇
(𝑝𝑘
𝑐 + 𝑛𝑘

𝑄)𝜙𝑘+1 

 

Thus, for (𝑖, 𝑗, 𝑘) ∈ 𝑆𝑐ℎ𝑟ö𝑑𝑖𝑛𝑔𝑒𝑟 𝑑𝑜𝑚𝑎𝑖𝑛, the central coefficient and the forcing function 

of the discretized Poisson equation (Equation 2.3) is updated to 

𝐶(𝑖, 𝑗, 𝑘) =  −(𝐵(𝑖, 𝑗, 𝑘) + 𝐹(𝑖, 𝑗, 𝑘) + 𝐸(𝑖, 𝑗, 𝑘) +𝑊(𝑖, 𝑗, 𝑘) + 𝑁(𝑖, 𝑗, 𝑘) + 𝑆(𝑖, 𝑗, 𝑘))

− (𝑛𝑖𝑟 exp (−
𝜙(𝑖, 𝑗, 𝑘)𝑘

𝑉𝑇
) + 𝑛(𝑖, 𝑗, 𝑘)𝑘

𝑄) 

𝒻(𝑖, 𝑗, 𝑘) = 𝑉𝑇 (𝑛(𝑖, 𝑗, 𝑘)𝑘
𝑄 − 𝑛𝑖𝑟 exp (−

𝜙(𝑖, 𝑗, 𝑘)𝑘
𝑉𝑇

) −  𝐷𝑜𝑝(𝑖, 𝑗, 𝑘))

− 𝜙(𝑖, 𝑗, 𝑘)𝑘 (𝑛(𝑖, 𝑗, 𝑘)𝑘
𝑄 + 𝑛𝑖𝑟 exp (−

𝜙(𝑖, 𝑗, 𝑘)𝑘
𝑉𝑇

)) 
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All the other coefficients remain unchanged.  The Poisson equation is solved using 

BICGSTAB method described previously. 

States in the continuum 

If one considers the triangular potential well at the AlGaN/GaN interface (along the 

depth) as shown in figure 2.9, one encounters bound states (with closed boundary 

conditions on both sides) as well as free states (with open boundary conditions). 

 

Figure 2.9 Bound and free states in the potential well. 

One needs to account for electrons in the bound states as well as states in the 

continuum. If the electrons in the continuum are discounted, then the quantum electron 

density fluctuates from iteration to iteration. In the Schrödinger domain, the electrons in 

the bound states obey 1D density of states, while the electrons occupying the continuum 

states are not confined and thus obey the 3D density of states expression. It should be 

noted that the occupancy of the continuum states will be significant at positive gate 

biases. 
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Referring to figure 2.9, one can assume  ℰ𝑚𝑖𝑛 to be the transition point between 

bound and free states such that the density of states for ℰ > ℰ𝑚𝑖𝑛, will obey 3D 

characteristics. Thus, the electron density in the Schrödinger domain (𝑛𝑠𝑐ℎ) is given as 

𝑛𝑠𝑐ℎ = 𝑛𝑞 + 𝑛𝑐𝑜𝑛𝑡 (2.72) 

𝑛𝑞 is the electron density of the bound states and determined using equation 2.67 and the 

continuum electron density is given as 

𝑛𝑐𝑜𝑛𝑡 =  𝑁3𝐷
2

√𝜋
 𝐹1
2

(ℰ𝐹 − ℰ𝑚𝑖𝑛) (2.73) 

𝑁3𝐷 = 2(
2𝜋𝑚∗𝜅𝑇

(2ℏ𝜋)2
)
3/2

 

Applying the approach similar to section 2.4.1, one can modify equation 2.68 as 

𝜕𝑛𝑘+1
𝑠𝑐ℎ

𝜕𝜙𝑘+1
|
𝜙𝑘

=
𝜕𝑛𝑘+1

𝑞

𝜕𝜙𝑘+1
|
𝜙𝑘

+
𝜕𝑛𝑘+1

𝑐𝑜𝑛𝑡

𝜕𝜙𝑘+1
|
𝜙𝑘

(2.74) 

 

Using the similar approach as described previously and assuming that between 𝑘𝑡ℎ and 

(𝑘 + 1)𝑡ℎ iteration, ℰ𝑚𝑖𝑛 changes as 

ℰ𝑘+1
𝑚𝑖𝑛 ≈ ℰ𝑘

𝑚𝑖𝑛 − 𝛿𝜙𝑘+1 

The second term in equation 2.73 can be expanded to 

𝜕𝑛𝑘+1
𝑐𝑜𝑛𝑡

𝜕𝜙𝑘+1
|
𝜙𝑘

=
𝑁3𝐷
𝑉𝑇

1

√𝜋
 𝐹
−
1
2

(ℰ𝐹 − ℰ𝑚𝑖𝑛) =
1

𝑉𝑇
𝑛𝑘
𝐶 (2.75) 

One can combine electron density terms in equations 2.71 and 2.75 and write 

𝑛𝑘
𝑆 = 𝑛𝑘

𝐶 + 𝑛𝑘
𝑄 (2.76) 
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One can thus use equations 2.70, 2.74 and 2.75 to modify the charge density term of the 

Poisson equation to 

𝜌(𝜙𝑘+1) = −
𝑞

𝜖0
(𝑝𝑘
𝑐 − 𝑛𝑘

𝑠𝑐ℎ +𝐷𝑜𝑝) −
𝑞

𝜖0𝑉𝑇
(𝑝𝑘
𝑐 + 𝑛𝑘

𝑆)𝜙𝑘 +
𝑞

𝜖0𝑉𝑇
(𝑝𝑘
𝑐 + 𝑛𝑘

𝑆)𝜙𝑘+1 

𝑛𝑘
𝑠𝑐ℎ = 𝑁1𝐷∑|Ψ𝑖|

2𝐹
−
1
2
(
ℰ𝐹 − ℰ𝑘

𝑖

𝑉𝑇
)

𝑁

𝑖=1

+ 𝑁3𝐷
2

√𝜋
 𝐹1
2
(ℰ𝐹 − ℰ𝑚𝑖𝑛

𝑘 ) 

𝑛𝑘
𝑆 = 𝑁1𝐷∑|Ψ𝑖|

2𝐹′
−
1
2
(
ℰ𝐹 − ℰ𝑘

𝑖

𝑉𝑇
)

𝑁

𝑖=1

+ 𝑁3𝐷
1

√𝜋
 𝐹
−
1
2
(ℰ𝐹 − ℰ𝑚𝑖𝑛

𝑘 ) (2.77) 

The central coefficient and the forcing function is then modified accordingly, and the 

Poisson equation is solved using previously discussed numerical solution methods. 

2.4.3 Initialization of the solver and the self-consistent solver loop 

One can summarize the self-consistent Schrödinger-Poisson solver process described 

in the previous section with the flowchart shown in figure 2.10.  

 Device data and Simulation parameters:  The Finfet dimensions, structure and 

doping density of respective regions is taken as user input. Material parameter 

database is loaded and updated for given temperature. The mesh is refined near 

interfaces, if necessary. 

  Initialization:  Determine polarization induced charge density, heterostructure 

band parameters and initialize potential at all nodes using charge neutrality. Apply 

Dirichlet and Neumann boundary conditions. 

 Define Schrödinger domain: Depending on the initial output of Poisson solver, 

define the boundaries of the Schrodinger domain. Set the requested number of 

eigenvalues depending on the size of the Schrödinger domain. 
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 Run Schrödinger Solver:  Solve the Schrödinger equation over the Schrödinger 

domain and determine the electron wavefunctions and electron line densities. 

 Update Central coefficient and forcing function:  Modify the charge density term 

in Poisson equation after calculating 𝑛𝑘
𝑆 and 𝑛𝑘

𝑠𝑐ℎ. This leads to an update in the 

forcing function and central coefficient of the discretized Poisson equation. Run 

the Poisson Solver using BICGSTAB method. 

 Check convergence and exit: If the convergence criteria is satisfied, exit loop. Save 

electron wavefunctions, line densities and subband energies. Transfer data to 

transport kernel. 
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Figure 2.10 Implementation of Self-consistent Schrödinger-Poisson solver loop. 

Convergence plot 

Figure 2.11 shows the implementation of the Schrödinger-Poisson equation solver 

for Finfets of two different widths. The convergence plot shows the error steadily 
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decreasing in both cases. The wide Finfet (160nm) takes 15 iterations to converge as 

compared to 10 for the narrow Finfet (40nm).  

 

Figure 2.11 Convergence plot for the self-consistent Schrödinger-Poisson solver for 

narrow and wide Finfets. 

The increased iterations for wide Finfet can be attributed to the higher number of 

subbands, which are also closer to each other, in the wider lateral potential well of the 

160nm Finfet. 

2.5 Results of the Schrödinger-Poisson Equation solver 

2.5.1 Simulated device structure 

The Schrödinger-Poisson solver described in the previous section is used to study 

AlGaN/GaN MIS FinFET discussed in Chapter 1. The Finfet device simulated here is 

similar to that fabricated by the authors in [29] and [34], which consists of an 80 nm-

thick GaN channel layer and an AlGaN layer of thickness 30 nm grown on a highly 

resistive GaN substrate. The fin is wrapped around by 20m thick Aluminum oxide layer 

and a tri-gate. The width of the fin is varied from 20 nm to 200 nm. The fin width 
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variation is simulated to determine the change in behavior between narrow and wide Fin 

devices. The simulated cross section is shown in figure 2.12. 

Table 2.1 Simulated device design parameters 

 

Figure 2.12 Cross section of simulated AlGaN/GaN Finfet. This is the cross section of the 

AlGaN/GaN MIS Finfet shown in figure 1.6 (channel region). 

2.5.2 Subband Energies and Wavefunctions  

At negative gate biases, the 2D Schrödinger domain is set near the AlGaN/GaN 

interface allowing 5 nm penetration depth into the AlGaN layer and into the surrounding 

oxide layers. For positive gate biases, the Schrödinger domain extends over the entire 

Parameter Value 

WFIN 20 nm -200 nm 

TAlGaN 25 nm, 30 nm 

Tox 20 nm 

Al mole fraction x 20%, 30% 
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GaN channel region. The shape of the confining potential along the depth of the fin, for 

VG =0 V, is shown in fig. 2.13 which suggests a triangular confinement. The inset of fig 

2.13 shows the wavefunctions of first 4 eigenstates. 

Along the width of the fin, the confining potential is a truncated parabola. 

Therefore, the subband energies are a superposition of a triangular and parabolic 

confinement. This is clearly seen in the plot shown in fig. 2.14 which shows the first 

(lowest) 15 subband energy levels.  

 

Figure 2.13 The triangular confining potential (Ec) along the fin depth near the 

AlGaN/GaN interface (only the Schrödinger domain is shown). The magnitude squared 

of the wavefunctions of the lowest four states is shown in the inset (VG = 0V) 
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Figure 2.14 Subband energies vs. fin width at zero bias. 

One can see that as the fin width reduces, the number of energy levels above the 

Fermi level (E = 0 eV) increases substantially. This results in an exponential reduction in 

occupancy of these states. Thus, one can conclude that the threshold voltage of a Finfet 

device reduces with fin width and the device shifts from a D-mode to an E-mode device.  

2.5.3 Electron density contour plots 

As one increases the gate bias above zero, one notes the formation of sidewall 

channels in the device. Figure 2.15 (a) shows the electron density in the cross-section when 

the gate is biased at 0 V. The electrons are confined in a quasi-1D channel peaking at the 

center of the fin.  

As the gate bias shifts to positive, we see the formation of side-wall channels 

laterally in addition to channel present at the AlGaN/GaN interface. Although the electron 

density in the sidewall channels is an order of magnitude lower than the channel near the 

interface, the sidewall channel density increases sharply with increasing gate bias. 



61 

 

 

 

 

 

Figure 2.15 Electron density contour plots. a) Gate bias = 0 V. b) Gate bias = 1.0V. The 

GaN channel shifts to accumulation regime when gate bias is positive 

.    
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2.5.4 Electron Line density and Threshold Voltage Extraction 

The variation of line density with gate bias can be taken as a way of determining 

the threshold voltage. Since the drop in electron line density by an order of magnitude 

will lead to proportional decrease in drift current, one can estimate VT from the line 

density – VG plot. 

The procedure starts with extracting the channel electron density along the 2DEG 

channel. It is then integrated over the Schrödinger domain to determine the corresponding 

line density. This line density is then plotted as a function of the gate bias and the 

procedure is repeated for a range of temperature from 100-350K. The threshold voltage is 

next taken as the gate bias at which the line density drops below 101 𝑐𝑚−1. This value is 

somewhat arbitrary, and it is chosen as such because the line density increases 

exponentially beyond this point. The threshold voltage is plotted against temperature in 

figure 2.16 (b). The simulation is repeated for a lower fin width of 40 nm as well. 

The experimental threshold voltage data is taken from the work of Ki Sik et al. [34]. The 

threshold voltage, as determined by the Schrödinger-Poisson Solver used in this work, 

matches closely the experimental values and follows the same decreasing trend with 

temperature for a given fin width. This can be attributed to the behavior of the Fermi-

Dirac distribution function which increases with temperature. This leads to a higher 

electron density in the 2DEG channel at lower VG, thus decreasing the threshold voltage 

(making it more negative). 
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Figure 2.16 Electron line density and threshold voltage of an AlGaN/GaN Finfet. a) 

Variation of the line density vs. gate bias for different temperatures. b) Simulated 

threshold voltage data vs experimental results. Experimental data are taken from Ki-sik et 

al. [34] c) Line density on a linear scale illustrating the impact of the sidewall channels. 

d) Derivative of the line density with respect to the gate voltage to illustrate the 

conduction in the Q1D and the sidewall channels. 
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One can note that the Vth dependence on temperature reduces with decreasing fin 

width, as the 40 nm Finfet shows a lower variation in threshold voltage with temperature. 

This is due to the increasing impact of the side-gates in narrow fin devices. As the fin 

width reduces, one observes that the fringing fields from the side gates are the major 

factor in depleting the conducting channel, which do not show a dependence on 

temperature. For narrow fin width devices, the sidewall channels play a more critical role 

in conduction, and this leads to a ‘flat’ profile in the Vth -T curves. Thus, one can argue 

that with the proper design parameters, it is possible to design a Finfet with temperature-

insensitive current. 
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CHAPTER 3  

MODELING MOBILITY 

For low electric fields, mobility is the most important transport parameter as it determines 

the drift component of the current. For confined systems, the electron mobility depends 

upon the electron wavefunctions and the corresponding subband energies. The overlap 

between wavefunctions of initial and final states along with the density of states 

determine the scattering rates.  This work determines electron mobility by solving the 

Boltzmann transport equation using Monte Carlo method. Each scattering event is treated 

independently of each other, and Fermi’s Golden rule is assumed to hold. 

Conduction regimes in the AlGaN/GaN FinFet device 

 Referring to the electron density contour plots in figure 2.12 and the subsequent 

discussion in the previous chapter, one recalls the formation of sidewall channels along 

the lateral gates under the application of a positive gate bias. Only 2DEG channel at the 

AlGaN/GaN interface exists when 𝑉𝐺 ≤ 0. The sidewall channels may have different 

transport characteristics as compared to AlGaN/GaN interface channel, i.e. different 

scattering mechanisms will dominate in each regime. Thus, it is imperative to treat each 

conduction channel separately. It is also assumed that electrons in both channels are 

independent of each other. This enables one to treat both regions as parallel conduction 

channels and the total mobility can be calculated as a weighted sum of the individual 

mobility components. 

Therefore, one would need to develop two different transport models; one for the 

interface channel, which is applied when 𝑉𝐺 ≤ 0 and one for the sidewall channels which 

are primarily present when 𝑉𝐺 > 0 . The work accomplished as part of this dissertation 
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focuses on the transport model for the conduction channel present at the AlGaN/GaN 

interface, which will be discussed in the current chapter. 

3.1 Transport Model for the AlGaN/GaN 2DEG channel 

As introduced previously, the Schrödinger domain, which includes the 

AlGaN/GaN channel, is quasi-1D in nature. It is important to reiterate here that, for 𝑉𝐺 ≤

0 V, the Schrödinger domain only encompasses the AlGaN/GaN interface and does not 

extend to cover the sidewall channels. Thus, being a Q1D system, one needs to employ 

1D scattering rate expressions for the various scattering mechanisms considered. The 

electrons are confined in the x and y directions, while the direction of propagation is 

along z. That is, if one considers the 3D structure of the lateral Finfet, the electrons will 

be free to propagate along the length of the fin channel. Accordingly, the applied electric 

field will be from source to drain along the z direction. The electron wavefunctions are 

plane waves in the unconfined z plane, and are solutions of the Schrödinger-Poisson 

problem in the confined x-y plane.  Therefore, the electron wavefunctions for the initial 

and final states are given by 

Ψ𝑛(𝑘𝑧) =
1

√𝐿𝑧
𝜓𝑛(𝑥, 𝑦) exp(𝑖kz. z)|

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒

(3.1) 

Ψ𝑚(𝑘𝑧
′ ) =

1

√𝐿𝑧
𝜓𝑚(𝑥, 𝑦) exp(𝑖𝑘𝑧

′ . z)|
𝑓𝑖𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒

(3.2) 
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3.1.1 The Bandstructure 

 For the low-field electron mobility calculation in wurtzite GaN, it is sufficient to 

consider only a single valley (𝛤1). In the theoretical model, the non-parabolicity 

parameter for this valley is 𝛼 = 0.189 𝑒𝑉−1. 

 

Figure 3.1 Bandstructure of Wurtzite GaN. For low-field electron mobility calculation, it 

is sufficient to only consider the Γ valley. 

 3.1.2 Relevant Scattering Mechanisms 

Acoustic Phonon Scattering 

Acoustic phonons originate from the lattice atoms oscillating in the same 

direction leading to a deformation (strain) in the unit cell. The perturbation potential is, 

thus, proportional to the differential displacement 

�̂�𝑒−𝑝(𝑟) = Ξ𝑎𝑐  ∇ ⋅ 𝒖(𝒓) (3.3) 

Where, Ξ𝑎𝑐 is the acoustic phonons deformation potential and 𝒖(𝒓) is the phonon unit 

vector given by 



68 

 

 

𝑢(𝑟) =  ∑√
ℏ

2𝜌𝜔𝑞Ω
𝑞

𝒆𝒒(𝑎𝑞𝒆
𝒊𝒒.𝒓 + 𝑎𝑞

+𝒆−𝒊𝒒.𝒓) (3.4) 

Here  𝑎𝑞 , 𝑎𝑞
+ are the annihilation and creation operators, q is the phonon wave vector, ρ 

is the material density, 𝒆𝒒 is the unit polarization vector and ℏ𝜔𝑞 is the phonon energy. 

Using elastic and equipartition approximation, one can assume that the phonon energy is 

much less than the thermal energy (ℏ𝜔𝑞 ≪ 𝜅𝑇). Thus, in addition to the interactions with 

electrons being elastic, one can also assume that 

𝑁𝑞 ≅ 𝑁𝑞 + 1 ≅
𝜅𝑇

ℏ𝜔𝑞
(3.5) 

For low energies, the dispersion curve for acoustic phonons is linear (Debye model); 

therefore, one can write 

𝜔𝑞 = 𝑣𝑠𝑞 (3.6) 

Where 𝑣𝑠 is the longitudinal sound velocity in GaN. As described in [41], the matrix 

element for this scattering process is 

|𝑀(𝑘𝑧 , 𝑘𝑧
′ )|2 = 

Ξ2𝜅𝑇

2𝜌Ω𝑣𝑠2
|𝐼𝑛𝑚

𝑎𝑐(𝑞𝑥, 𝑞𝑦)|
2
𝛿(𝑘𝑧 − 𝑘𝑧

′ ± 𝑞𝑧) (3.7) 

The overlap integral in equation 3.7 is of the form 

𝐼𝑛𝑚
𝑎𝑐(𝑞𝑥, 𝑞𝑦) =  ∬𝜓𝑚(𝑥, 𝑦) exp (𝑖(𝑞𝑥𝑥 + 𝑞𝑦𝑦))𝜓𝑛(𝑥, 𝑦)𝑑𝑥𝑑𝑦 

And the final expression for acoustic scattering rate from subband n to subband m is 

given as 

Γ𝑛𝑚
𝑎𝑐 = 2∑ 𝑆𝑛𝑚(𝑘𝑧 , 𝑘𝑧

′ )

𝑘𝑧′𝑞

(3.8) 
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Where the prefactor of 2 accounts for absorption and emission of phonons. Using Fermi’s 

Golden rule and converting the summation to an integral, leads to the following result 

Γ𝑛𝑚
𝑎𝑐 = 2

2𝜋

ℏ

Ξ2𝜅𝑇

2𝜌Ω𝑣𝑠2
1

2𝜋
 

∬
1

(2𝜋)2
|𝐼𝑛𝑚

𝑎𝑐(𝑞𝑥, 𝑞𝑦)|
2
𝑑𝑞𝑥𝑑𝑞𝑦 ∫𝛿(𝑘𝑧 − 𝑘𝑧

′ ± 𝑞𝑧) 𝛿(𝐸 − 𝐸
′)𝑑𝑘𝑧

′ (3.9) 

Evaluating the integral of the overlap function |𝐼𝑛𝑚
𝑎𝑐(𝑞𝑥, 𝑞𝑦)|

2
 one arrives at 

𝐼𝑜𝑣𝑒𝑟𝑙𝑎𝑝
𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐 =∬

1

(2𝜋)2
|𝐼𝑛𝑚

𝑎𝑐(𝑞𝑥, 𝑞𝑦)|
2
𝑑𝑞𝑥𝑑𝑞𝑦 =∬|𝜓𝑚(𝑥, 𝑦)|

2|𝜓𝑛(𝑥, 𝑦)|
2𝑑𝑥𝑑𝑦 (3.10)  

The overlap integral is evaluated over the entire Schrödinger domain. The final scattering 

rate for acoustic phonons is given by 

Γ𝑛𝑚
𝑎𝑐 =

Ξ2𝜅𝑇√2𝑚∗

2𝜌𝑣𝑠2ℏ2
 𝐼𝑜𝑣𝑒𝑟𝑙𝑎𝑝
𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐

(1 + 2𝛼𝐸𝑓)

√𝐸𝑓(1 + 𝛼𝐸𝑓)

Θ(𝐸𝑓) (3.11)
 

Where the step function Θ(𝐸𝑓) allows only those transitions when the final energy is 

positive. Acoustic phonon scattering rate decreases with increasing energy. Hence, 

acoustic phonons are primarily active at low electron energies. The cumulative scattering 

rate for acoustic phonon scattering out of subband 1 is plotted in figure 3.2. 
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Figure 3.2 Cumulative Acoustic phonon scattering rate out of subband 1 

Piezoelectric Scattering 

Polar scattering occurs in materials having two different kinds of atoms in their 

basis. In such crystals, there is charge transfer between the two atoms, thus creating a 

dipole moment. Polar Scattering can be due to optical phonons (Polar Optical Phonon 

scattering) and acoustic phonons (Piezoelectric scattering). Second order interaction of 

electrons with these fields gives rise to piezoelectric scattering which is discussed here. 

Piezoelectric polarization is proportional to the acoustic strain which further depends on 

the differential displacement, i.e.  

𝑷 =  𝑒𝑝𝑧∇. u(𝐫) (3.12) 

In eq. 3.12, 𝑒𝑝𝑧 is the piezoelectric constant which depends on the piezoelectric and elastic 

properties of the material [63], [64]. The perturbing Hamiltonian is given by 

�̂�𝑝𝑖𝑒𝑧𝑜 = −
𝑒𝑒𝑝𝑧

휀∞
 ∑√

ℏ

2𝜇𝑁𝜔𝑞
𝑞

(𝑎𝑞𝒆
𝒊𝒒.𝒓 + 𝑎𝑞

+𝒆−𝒊𝒒.𝒓) (3.13) 
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Since one is dealing with acoustic phonons, one can use the elastic and equipartition 

approximation as well as the linear dispersion of acoustic phonons at low energies. 

Integrating equation (3.13) over phonon coordinates, one can write the matrix element as 

|𝑀(𝑘𝑧 , 𝑘𝑧
′ )|2 =  (

𝑒𝑒𝑝𝑧

휀∞
)
2 𝜅𝑇

2𝜌𝑣𝑠2
1

𝑞2
|𝐼𝑛𝑚

𝑝𝑖𝑒𝑧𝑜(𝑞𝑥, 𝑞𝑦)|
2
𝛿(𝑘𝑧 − 𝑘𝑧

′ ± 𝑞𝑧) (3.14) 

The final scattering rate from state n to m  is then given as 

Γ𝑛𝑚
𝑝𝑖𝑒𝑧𝑜

=  (𝐾𝑎𝑣)
2
𝑒2𝜅𝑇

4𝜋2ℏ2𝜖∞
√
𝑚∗

2
𝐼𝑜𝑣𝑒𝑟𝑙𝑎𝑝
𝑝𝑖𝑒𝑧𝑜 (𝑞𝑧)

(1 + 2𝛼𝐸𝑓)

√𝐸𝑓(1 + 𝛼𝐸𝑓)

Θ(𝐸𝑓) (3.15) 

Where 𝐸𝑓 = 𝐸𝑛 − 𝐸𝑚+𝐸𝑖   and  

𝐼𝑜𝑣𝑒𝑟𝑙𝑎𝑝
𝑝𝑖𝑒𝑧𝑜 (𝑞𝑧) =  ∬

1

𝑞𝑥2 + 𝑞𝑦2 + 𝑞𝑧2
|𝐼𝑛𝑚

𝑝𝑖𝑒𝑧𝑜(𝑞𝑥, 𝑞𝑦)|
2
𝑑𝑞𝑥 𝑑𝑞𝑦 (3.16)  

One has to evaluate the integral in equation 3.16 numerically. 

The piezoelectric constant (𝑒𝑝𝑧) can be expressed in terms of electromechanical 

coupling coefficient (𝐾𝑎𝑣). 𝐾𝑎𝑣  is expressed in literature [65] in terms of the longitudinal 

and transverse elastic and piezoelectric constants as 

𝐾𝑎𝑣
2 =  

𝑒𝑝𝑧
2

𝜌𝑣𝑠2휀∞
⇒

𝑒𝐿
2

𝐶𝐿휀∞
+

𝑒𝑇
2

𝐶𝑇휀∞
(3.18) 

The cumulative scattering rate for piezoelectric scattering out of subband 1 is plotted in 

figure 3.3. 
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Figure 3.3 Cumulative Piezoelectric scattering rate out of subband 1 

Polar optical phonon Scattering 

Optical Phonons arise out of lattice vibrations wherein the constituent atoms oscillate in 

opposite directions creating a relative displacement. This does not induce lattice strain, 

rather alters the size of the unit cell [66]. Therefore, any perturbation potential arising out 

of optical phonon interaction is a product of the optical deformation potential and the 

lattice displacement 

�̂� = D𝑜𝒖(𝒓) (3.19) 

In polar materials, the optical phonons cause oscillatory behavior in the existing 

dipole. Electrons are scattered by this long-range dipole field which oscillates in time and 

space [67]. This forms the basis of the perturbing potential. Although there is no clear 

distinction between longitudinal mode (LO) and transverse mode (TO) optical phonons, in 

Wurtzite materials, it is seen that LO phonons have higher scattering rates than TO 

phonons[38]. This work considers only the longitudinal mode (LO) optical phonons as 

participating in polar optical scattering. The interaction between LO optical phonons and 
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electrons is called Fröhlich interaction and the Fröhlich Hamiltonian[68] is used in 

determination of the matrix element. The Fröhlich Hamiltonian can be expressed as 

�̂�𝑝𝑜𝑝 = 
𝑖𝑒𝑒∗

휀∞Ω 
 ∑√

ℏ

2𝜇𝑁𝜔𝑞
𝑞

1

𝑞
(𝑎𝑞𝒆

𝒊𝒒.𝒓 − 𝑎𝑞
+𝒆−𝒊𝒒.𝒓) (3.20) 

Where, e* is the effective charge and is given by 

𝑒∗
2
= 𝜇Ω𝜔𝐿𝑂

2 (
1

휀∞
−

1

휀(0)
) (3.21) 

Using the fact that 𝜔𝑞 = 𝜔𝐿𝑂  for optical phonons, the matrix element is given as 

|𝑀(𝑘𝑧 , 𝑘𝑧
′ )|2 = 

 ℏ𝑒2𝜔𝐿𝑂
2𝑉

(
1

휀∞
−

1

휀(0)
)
1

𝑞2
(𝑁𝑞 +

1

2
±
1

2
)

|𝐼𝑛𝑚
𝑝𝑜𝑝(𝑞𝑥, 𝑞𝑦)|

2
𝛿(𝑘𝑧 − 𝑘𝑧

′  ∓ 𝑞𝑧) (3.22)

 

Thus, the final scattering rate from subband n to m is given as 

Γ𝑛𝑚
𝑝𝑜𝑝 =

𝑒2𝜔𝐿𝑂
8𝜋2

(
1

휀∞
−

1

휀(0)
)√(

2𝑚

ℏ2
) (𝑁𝑞 +

1

2
±
1

2
) 𝐼𝑜𝑣𝑒𝑟𝑙𝑎𝑝
𝑝𝑜𝑝 (𝑞𝑧)

(1 + 2𝛼𝐸𝑓)

√𝐸𝑓(1 + 𝛼𝐸𝑓)

(3.23) 

The overlap integral 𝐼𝑜𝑣𝑒𝑟𝑙𝑎𝑝
𝑝𝑜𝑝 (𝑞𝑧) is a function of the final electron wavevector and is 

evaluated using 

𝐼𝑜𝑣𝑒𝑟𝑙𝑎𝑝
𝑝𝑜𝑝 (𝑞𝑧) =  ∬

1

𝑞𝑥2 + 𝑞𝑦2 + 𝑞𝑧2
|𝐼𝑛𝑚

𝑝𝑜𝑝(𝑞𝑥, 𝑞𝑦)|
2
𝑑𝑞𝑥 𝑑𝑞𝑦 (3.24) 

where 

𝐼𝑛𝑚
𝑝𝑜𝑝(𝑞𝑥, 𝑞𝑦) = ∬𝜓𝑚(𝑥, 𝑦) exp (𝑖(𝑞𝑥𝑥 + 𝑞𝑦𝑦))𝜓𝑛(𝑥, 𝑦)𝑑𝑥𝑑𝑦 (3.25) 

Since the final electron wavevector is limited to only a component along the z axis, this 

results in 𝑞𝑧 taking on only two possible values 

𝑞𝑧 = 𝑘𝑧
′ ∓ 𝑘𝑧 
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These are termed as forward and backward scattering, respectively. The cumulative 

scattering rate for polar optical phonon scattering out of subband 1 is plotted in figure 3.4. 

  

 

Figure 3.4 Cumulative Polar optical phonon scattering rate out of subband 1 

Interface Roughness Scattering 

Interface roughness scattering arises due to surface irregularities at the interface between 

AlGaN/GaN regions. The AlGaN/GaN interface exists along the growth direction, that is, 

the y direction. This invariably leads to variations in confining potential 𝜙 along the growth 

direction (𝑦). These variations lead to scattering of electrons as they move closer to the 

interface. Since the electrons in the Q1D gas exist close to the interface, interface roughness 

scattering plays a key role in impacting the mobility of electrons in the channel. One can 

adopt the approach used by Goodnick et al. [69] to model Si-SiO2 interfaces to this work 

as well. To that end, one can assume that the interface between AlGaN and GaN is an 

abrupt boundary with Δ(𝑧) describing the random interface fluctuations. Secondly, the 
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electron wavefunction is assumed to be not perturbed by the random interface fluctuations. 

Under these assumptions, expanding the confining potential around the interface, 

ϕ(x, y + Δ(z)) = ϕ(x, y) +
∂ϕ

∂y
Δ(z) + ⋯ (3.26) 

ϕ(x, y + Δ(z)) ≅ ϕ(x, y) + eεyΔ(z) (3.27) 

Where εy is the electric field along y. Thus the perturbing potential is given as 

𝐻𝐼𝑅 = 𝑒εy(x, y)Δ(z) (3.28) 

The matrix element of scattering from subband n to m is then expressed as 

|𝑀(𝑘𝑧𝑘𝑧
′ )|𝑛𝑚 = 𝑒∬𝜓𝑛(𝑥, 𝑦)εy(x, y)𝜓𝑚(x, y)dxdy  

1

Lz
∫exp(i(kz − kz

′ ) ⋅ z) Δ(z)dz (3.29)
 

Grouping together the terms that make up the overlap integral leads to 

𝐼𝑛𝑚
𝐼𝑅  =  ∬𝜓𝑛(𝑥, 𝑦)εy(x, y)𝜓𝑚(x, y)dxdy 

One can then write the expectation value of the matrix element as 

⟨|𝑀(𝑘𝑧 , 𝑘𝑧
′ )|2⟩ = 𝑒2|𝐼𝑛𝑚

𝐼𝑅 |2 𝐿𝑧
−2∫𝑑𝑧1∫𝑑𝑧2 𝑒𝑖(𝑧1−𝑧2)(𝑘𝑧−𝑘𝑧

′)⟨Δ(𝑧1)Δ(z2)⟩ (3.30) 

As done in [69], one can assume that the autocorrelation function is exponential, 

⟨Δ(𝑧1)Δ(z2)⟩ =  𝛥
2𝑒𝑥 𝑝 (−

√2|𝑧|

𝐿
) 

Where, Δ is the rms roughness and L is the correlation length for GaN interfaces 

Thus, the square of the matrix element can be written as 

|𝑀(𝑘𝑧 , 𝑘𝑧
′ )|2 = 𝑒2|𝐼𝑛𝑚

𝐼𝑅 |2 𝐿𝑧
−2∫𝑑𝑧1∫𝑑𝑧2 𝑒𝑖(𝑧1−𝑧2)(𝑘𝑧−𝑘𝑧

′) 𝛥2 exp(−
√2|𝑧|

𝐿
) (3.31) 

Writing 𝑞𝑧 = 𝑘𝑧 ∓ 𝑘𝑧
′ , 𝑤𝑒 ℎ𝑎𝑣𝑒 



76 

 

 

𝑆(𝑞𝑧) =  ∫  𝑒𝑖𝑞𝑧𝑧 𝛥2 exp (−
√2|𝑧|

𝐿
)𝑑𝑧 =  ∫  𝑒𝑖𝑞𝑧𝑧 𝛥2 exp (−

|𝑧|

𝐿′
)𝑑𝑧 

Where 𝐿′ = 𝐿/√2. This leads to 

|𝑀(𝑘𝑧 , 𝑘𝑧
′ )|2 = 𝑒2|𝐼𝑛𝑚

𝐼𝑅 |2 𝐿𝑧
−1𝑆(𝑞𝑧) (3.32) 

Where, the power spectrum 𝑆(𝑞𝑧) of the autocorrelation function is 

𝑆(𝑞𝑧) =
Δ2

𝑖𝑞𝑧 +
1
𝐿′

−
Δ2

𝑖𝑞𝑧 −
1
𝐿′

 

𝑆(𝑞𝑧) =
2Δ2𝐿′

1 + 𝑞𝑧2𝐿′
2 = 

4Δ2𝐿

√2(2 + 𝑞𝑧2𝐿2)
(3.33) 

Thus, using Equations 3.32 and 3.33, the final scattering rate from subband m to n is 

written as 

Γ𝑛𝑚
𝐼𝑅 =

2√𝑚∗𝑒2

ℏ2
Δ2𝐿

2 + 𝑞𝑧2𝐿2
|𝐼𝑛𝑚
𝐼𝑅 |2

(1 + 2𝛼𝐸𝑓)

√𝐸𝑓(1 + 𝛼𝐸𝑓)

Θ(Ef) (3.34)
 

The cumulate interface roughness scattering rate out of subband 1 is given in figure 3.5 

 

 

Figure 3.5 Cumulative Interface Roughness scattering rate out of subband 1. 
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Scattering due to Alloy Clustering  

Substantial progress in AlGaN/GaN and InAlN/GaN research has been made over the 

past ten years, but crystal imperfections are still a major obstacle to realize high 

performance HEMTs and Finfets. Due to large differences in binding energies between 

Al-N (2.74 eV) and In-N (2.08 eV) bonds, InAlN/GaN heterostructures, especially those 

grown by molecular beam epitaxy, generally exhibit severe lateral compositional 

inhomogeneity. The effect is less pronounced for the AlGaN/GaN heterointerfaces 

because the binding energy of the Ga-N bond is 2.45 eV, but the effect is still there [70]. 

In compositionally inhomogeneous InAlN (AlGaN) layers, alternate AlN-rich and InN 

(GaN)-rich regions form clusters. Alloy clustering causes 2DEG subband energy 

fluctuations and InAlN (AlGaN) conduction band fluctuations (see figure 3.6), both 

affecting the electron transport properties of InAlN/GaN and AlGaN/GaN 

heterostructures.  
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Figure 3.6 Schematic diagram of the conduction band in an AlGaN/GaN heterostructure 

with columnar clusters. [71] 

 

Ahmadi et al. [72] and Liu et al. [73] studied the subband energy fluctuation 

scattering (SEFS) and suggested that the SEFS played an important role in the electron 

transport, especially for lower 2DEG sheet densities. The SEFS, although closely related 

to the InAlN and AlGaN conduction band fluctuations, is independent of electrons 

penetrating into the InAlN or AlGaN barrier layers. Hence, the interactions of InAlN and 

AlGaN conduction band fluctuations and electrons penetrating into the InAlN (AlGaN) 

barrier layers behaves as another scattering mechanism. In contrast with the SEFS, the 

conduction band fluctuation scattering (CBFS) taking place in InAlN (AlGaN) barrier 

layers is directly related to the degree of the overlap between the InAlN (AlGaN) 
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conduction band fluctuations and the electronic wave function. The CBFS has been 

studied in the literature in the works of  Li et al. [71].  

In this dissertation a theoretical model is presented for the SEFS for the 

AlGaN/GaN MISFET device structure that is in the focus of the present research, and the 

theoretical results and comparisons with experimental data are analyzed for evaluating 

the role of the SEFS in electron transport in the nano-Finfet. According to our 

knowledge, this is the first study of the effect of SEFS for nanoscale Finfets where we 

have confinement in two spatial directions and carriers are free to move only in the z-

direction. Also, the approach of Ahmadi et al. [72] is expanded for a multi-subband case. 

The effect of CBFS, even though less important for AlGaN/GaN heterointerfaces, will be 

studied in future work. 

 Following the work of Ahmadi et al. [72] , one can assume that SEFS is similar to 

interface-roughness scattering (discussed in the work of Goodnick et al.[69]).  In the case 

of interface roughness, changes in the width of the quantum well cause fluctuations in the 

energy levels of the 2DEG, whereas in the case of alloy clustering, variations in the depth 

of the quantum well change the energy levels. Therefore, a local change in the 

composition causes perturbing potential of the form: 

Δ𝐸𝑛(𝑥, 𝑧) =
𝜕𝐸𝑛
𝜕𝑋

Δ𝑋(𝑥, 𝑧) (3.35) 

Where the vector 𝑟 = 𝑟(𝑥, 𝑧) is a two-dimensional vector in the plane parallel to the 

heterointerface. It is difficult to obtain the exact form for 𝛥𝑥(𝑟) in a real heterostructure 

due to complicacy of the Al compositional distribution. For mathematical convenience, 
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this work has adopted the Gaussian autocorrelation function to describe the statistical 

properties of Al composition distribution, which can be expressed as: 

⟨𝛥𝑥(𝑟)𝛥𝑥(𝑟′)⟩ = 𝛥2 exp (−
(𝑟 − 𝑟′)2

𝐿2
) (3.36) 

Using Gaussian model for the autocorrelation function allows one to describe the Al 

composition distribution by two parameters: the standard deviation Δ and the correlation 

length L of the Al composition distribution. 

Following the work of Goodnick and co-workers [69], the matrix element for 

SEFS, for a nanowire system, is of the form: 

|𝑀(𝑘𝑧 , 𝑘𝑧
′ )|𝑛𝑚 =

1

𝐿𝑧
∭𝜓𝑚(𝑥, 𝑦)Δ𝐸𝑛(𝑥, 𝑧)𝑒

−𝑖𝑞𝑧.𝑧 𝜓𝑛(𝑥, 𝑦)𝑑𝑥𝑑𝑦𝑑𝑧 (3.37) 

And the magnitude of the matrix element squared for alloy clustering scattering is: 

|𝑀(𝑘𝑧 , 𝑘𝑧
′ )|𝑛𝑚

2 =
1

𝐿𝑧
2
∭

𝑑𝑥𝑑𝑦𝑑𝑧 ∭𝑑𝑥′𝑑𝑦′𝑑𝑧′𝜓𝑚(𝑥
′, 𝑦′)𝜓𝑛(𝑥

′, 𝑦′) 

Δ𝐸𝑛(𝑥, 𝑧)Δ𝐸𝑛(𝑥
′, 𝑧′)𝜓𝑚(𝑥, 𝑦)𝜓𝑛(𝑥, 𝑦)𝑒

−𝑖𝑞𝑧.(𝑧−𝑧
′) 

(3.38) 

Doing statistical averaging gives 

〈Δ𝐸𝑛(𝑥
′, 𝑧′)Δ𝐸𝑛(𝑥, 𝑧)〉 = |

𝜕𝐸𝑛
𝜕𝑋
|
2

 Δ2𝑒
−
(𝑥−𝑥′)

2

𝐿2
−
(𝑧−𝑧′)

2

𝐿2 (3.39) 

Where Δ is the r.m.s amplitude of the fluctuation and L is the autocorrelation (AC) 

length. Using equation 3.39 into statistically averaged equation 3.38 gives 

|𝑀(𝑘𝑧 , 𝑘𝑧
′ )|𝑛𝑚

2 = |
𝜕𝐸𝑛
𝜕𝑋
|
2

 Δ2
1

𝐿𝑧2
∬𝑑𝑥𝑑𝑦 ∬𝑑𝑥′ 𝑑𝑦′𝜓𝑚(𝑥, 𝑦)𝜓𝑚(𝑥

′, 𝑦′) 

𝑒
−
(𝑥−𝑥′)

2

𝐿2 𝜓𝑛(𝑥, 𝑦)𝜓𝑛(𝑥
′, 𝑦′) ∫𝑑𝑧∫𝑑𝑧′ 𝑒

−𝑖𝑞𝑧.(𝑧−𝑧
′)−

(𝑧−𝑧′)
2

𝐿2 (3.40) 

Writing the 4-dimensional overlap integral as  
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𝐼𝑛𝑚
𝑎𝑙𝑙𝑜𝑦

= ∬𝑑𝑥𝑑𝑦 ∬𝑑𝑥′ 𝑑𝑦′𝜓𝑚(𝑥, 𝑦)𝜓𝑚(𝑥
′, 𝑦′)𝑒

−
(𝑥−𝑥′)

2

𝐿2 𝜓𝑛(𝑥, 𝑦)𝜓𝑛(𝑥
′, 𝑦′) (3.41) 

The scattering matrix element becomes 

|𝑀(𝑘𝑧 , 𝑘𝑧
′ )|𝑛𝑚

2 = |
𝜕𝐸𝑛
𝜕𝑋
|
2

 Δ2
1

𝐿𝑧
√𝜋𝐿𝑒

−
𝐿2𝑞𝑧

2

4 𝐼𝑛𝑚
𝑎𝑙𝑙𝑜𝑦 (3.42) 

Using Fermi’s golden rule, and assuming that the scattering process is elastic, the total 

scattering rate out of subband n to subband m, due to this scattering mechanism is: 

Γnm
alloy

(𝑘𝑧) =∑
2π

ℏ
kz
′

 |M(kz, kz
′ )|nm

2 δ(E′ − 𝐸) 

The final scattering rate expression, after some algebra, reduces to:  

Γn
alloy

(𝑘𝑧) =∑√
m∗π

2ℏ
Δ2L |

𝜕𝐸𝑛
𝜕𝑋
|
2

𝐼𝑛𝑚
𝑎𝑙𝑙𝑜𝑦 (1 + 2𝛼𝐸𝑓)

√𝐸𝑓(1 + 𝛼𝐸𝑓)

𝑒−
𝐿2𝑞𝑧

2

4

𝑚

(3.43) 

Where 𝑞𝑧 = ±𝑘𝑧
′ − 𝑘𝑧 denoting forward and backward scattering respectively. The final 

energy 𝐸𝑓 = 𝐸𝑖 + 𝐸𝑚 − 𝐸𝑛. 
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Figure 3.7 (a) Composition map of the in-plane Al distribution in an Al0.15Ga0.85N layer 

(Black arrows illustrate the directions along which the AC lengths were calculated). (b) 

AC sequence of digitized data shown in part (a). (c) An example of the power spectrum 

calculated using both the FFT and AR methods and the fitted Gaussian function. (d) 

Histogram of the AC lengths obtained from different areas on the 2D III-site composition 

map. Reprinted with permission from [72]. 

To characterize alloy clustering, in ref. [72] , Atomic Probe Tomography (APT) 

was performed on the Al0.15Ga0.85N electron blocking layer of a commercial c-plane 

(0001) GaN LED. The in-plane Al distribution in the Al0.15Ga0.85N layer was 

reconstructed by averaging the Al mole fraction over 3 nm along the c-axis. To obtain a 
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significant number of sampling points, a 6060 nm2 in-plane composition map was 

generated by combining 3030 nm2 composition maps extracted from different regions in 

the AlGaN layer. The digitalized data were then used to calculate the 2D autocorrelation 

function (AC). The root mean square (rms) value of Al composition fluctuations () was 

obtained from the zeroth coefficient of the 2D AC sequence. To estimate the AC length, 

the composition profile was sampled along different directions, and the AC function was 

calculated for each profile. Since the Fourier transform of the AC function (the power 

spectrum) is the quantity that appears in the scattering rate rather than the AC function 

itself, the power spectrum was calculated next using Fast Fourier Transform (FFT). 

Autoregressive (AR) model was used to smooth out the power spectral density. The AC 

length was obtained by fitting a Gaussian function to the power spectrums of the 1D 

composition sequences. The distribution of f-values was next characterized by a log-

normal function, and, for this particular sample, the AC length was estimated to be 12.3 

nm from the expectation value of the log-normal distribution fit. The results from ref. 

[72] are summarized in figure 3.7. 

 In the results section below (Section 3.2), we vary both the rms value of the Al 

composition fluctuations and the AC length to get estimates of the limiting effect of alloy 

clustering (SEFS) on the low-field electron mobility in the AlGaN/GaN MISFET 

structure.  

To calculate the variation of the subband energy En with the mole fraction X (the 

scattering potential), the variation of the energies of the lowest 10 subbands as a function 

of the mole fraction in the AlxGa1-xN layer was calculated (figure 3.8). As expected, one 

can observe almost linear variation of the subband energy with the Al mole fraction. The 
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slope of this curve gives the strength of the scattering potential, and for the structure 

investigated, it equals approximately to -0.596 eV for each of the lowest 10 subbands at 

T=300 K. By entering these values in equation 3.43, the scattering rate out of subband n 

due to alloy clustering for different AC lengths and fluctuation amplitudes is calculated, 

as discussed later in the text. 

 

Figure 3.8 Variation of the 10 lowest subband energies as a function of the mole fraction 

at T=300 K. The slope of the curves gives the strength of the scattering potential. 

The scattering rate for scattering out of subband 1, for the case when the overlap 

integral is calculated using the result given in equation 3.41 and when the overlap integral 

is assumed to be unity only when n = m, is shown in figure 3.9.  
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Figure 3.9 Scattering rate vs. energy for SEFS for the case when the overlap integral is 

calculated using the result given in equation 3.41 (most general result) (solid line) and, 

when the overlap integral is assumed to be unity only when n = m (intra-subband 

scattering only) (dashed line). 

3.1.3 Brief Summary of the 1D Monte Carlo Algorithm 

This section briefly describes the algorithm used to solve the Boltzmann transport 

equation for Q1D low-field transport in a nanowire Finfet.  The 1D Monte Carlo code 

calculates mobility by simulating transport along the unconfined z-direction.  Electrons are 

moved in k space in response to the electric field applied along the positive z-direction. 

Since this work is concerned with low field mobility calculation, the applied electric field 

is restricted to a few kV/cm (1-10) in the transport direction. Overlap integrals between the 

initial and final states are a crucial factor in the calculation of the scattering rates.  The 

number of electrons taking part in the simulation is set to 5 × 106. 

Since the motion of electrons is restricted to only one direction, the average energy 

of the carriers without any applied electric field is, according to Boltzmann distribution, 
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equal to 
1

2
𝜅𝑇.   The momentum vector is determined according to non-parabolic E-k 

relationship and assigned either a forward (+z) or a backward (-z) direction according to a 

uniformly distributed random variable. The number of subbands being considered depends 

on the size of the Schrödinger domain and, hence, the fin width. The electrons are 

distributed among different subbands by using the percentage population of the subbands 

obtained from the subband density file output by the Schrodinger Poisson Solver. The rest 

of the algorithm follows generic ensemble Monte Carlo process of free-flight (drift) and 

scatter [74]. At steady state, ensemble averages of the drift velocity and the average carrier 

energy are calculated, which, in turn, allows calculation of the low-field electron mobility. 

3.2 Mobility Modeling Results (without the effect of alloy clustering) 

From the 1D Monte Carlo Simulation, the subband mobility and the total mobility 

are extracted in the following manner. Upon reaching steady state, the electron mobility 

is calculated by a weighted average of the mobility of each subband, which is, in turn, 

calculated by dividing the time-averaged subband velocity with the applied electric field 

휀. Thus, mobility of the nth subband is calculated as 

𝜇𝑛 =
𝑣𝑛
𝑎𝑣𝑔

휀
(3.44) 

For M subbands, the weighted average of the mobility is 

𝜇 =  
∑ 𝜇𝑖𝑁𝑖
𝑀
𝑖=1

∑ 𝑁𝑖
𝑀
𝑖=1

 (3.45) 

Where 𝑁𝑖   is the population of the ith subband. The electron mobility calculation is repeated 

for Finfet structures with fin widths ranging from 40 nm (narrow fin) to 200 nm (wide fin) 
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devices. The variation of the electron mobility with the gate bias and for different 

temperatures is also simulated.  

3.2.1 Validation with experimental results 

The mobility results presented in this work are compared to experimental data 

presented in the work of Ki Sik et al. [34]. The cited work presents the variation of the 

transconductance with temperature in addition to the electron mobility results. These 

trends are presented for a wide as well as narrow Finfets. The transconductance variation 

plots from the paper are shown in figure 3.10. As previously mentioned, the transport 

model is split into two different regimes based on the conduction channel. The results 

presented in this work deal with the conduction along the interface channel when VG≤0 

V. Thus, it is sensible to validate the results with corresponding experimental data for 

VG≤0V. 

 

Figure 3.10 Transconductance vs. gate bias plots at different temperatures for a) Wide 

Fin device (400nm). b)  narrow fin device (50nm) Reprinted from [34]© 2016 with 

permission from Elsevier. 

The relation between transconductance and electron mobility is. 
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𝑔𝑚 =
𝛿𝐼𝐷
𝛿𝑉𝐺

|
𝑉𝐷𝑆

= 𝐴𝜇𝑉𝐷𝑆 (3.46) 

Where the various constant terms have been grouped together under the constant ‘𝐴′. 

Thus, 

𝛿 log 𝑔𝑚
𝛿𝑇

∿
𝛿 log(𝜇)

𝛿𝑇
(3.47) 

Therefore, the simulation results can be deemed validated if the transconductance plots 

vs. temperature T and the electron mobility variation vs. T have the same slopes on a 

semi-log plot. Note that the transconductance values are extracted at the gate bias where 

gm peaks. Therefore, the transconductance and the mobility are compared at 𝑉𝐺 = −3𝑉. 

 

 

Figure 3.11 Simulated mobility compared with experimental values of transconductance 

for wide and narrow Finfets 
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3.2.2 Contribution to the electron mobility at Room Temperature 

The electron mobility in the Finfet is influenced by the three phonon scattering 

processes considered and by interface roughness. The contribution of each mechanism can 

be determined by selectively ‘turning on’ only that particular scattering mechanism in the 

Monte Carlo module.  One can then employ Mathiessen’s rule to determine the 

contribution of the said mechanism to the overall electron mobility. At a gate bias of 0V 

and at room temperature (300K), the contribution of each scattering mechanism is shown 

in figure 3.12 

 

Figure 3.12 Contribution of each scattering mechanism at Room Temperature, VG = 0V. 

One can note that piezoelectric scattering rate is the dominant mobility scattering 

mechanism at 300K. Interface roughness scattering significantly affects the electron 

mobility as well. This is expected as the electrons are situated close to the AlGaN/GaN 

interface in the conduction channel. The polar optical phonon scattering does not 

dominate at room temperature due to the high energy of the polar optical phonon (∿90 

meV). 

3.2.3 Electron Mobility as a function of the fin width. 

The fin width is a critical design parameter in AlGaN/GaN Finfets. One can note 

the change in the transport properties for different fin width devices by observing the trend 
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in the electron mobility as a function of the fin width. Figure 3.13 shows the electron 

mobility vs. fin width plot for an AlGaN/GaN MIS Finfet device with an Al composition 

of 20%. The fin width range is varied from narrow fin (< 50 nm) to a wide (> 100nm) fin 

devices.  

 

 

Figure 3.13 Electron Mobility plotted as a function of fin width for AlGaN/GaN Finfet. 

Al composition 20%. 

As the fin width increases, the size of the lateral well also increases, increasing 

the number of subbands present below the Fermi level. This must be accounted for in the 

Schrödinger equation solver by increasing the number of eigenvalues requested. One 

must also include a higher number of subbands in the input to the Monte Carlo kernel. 

One finds that the mobility is almost invariant upon the variation of the fin width, 

however, one can note a definite transition point when the fin width increases beyond 

100nm. Beyond 100 nm, it can be said that the lateral confinement reduces, and one starts 
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observing Quasi-2D behavior instead of a Quasi-1D behavior (which is the case for 

narrow fin devices). As the fin width increases, the impact of interface roughness 

scattering reduces as the average distance of an electron from the interface increases 

slightly [75]. It should be also noted that, as the fin width increases, the electron mobility 

approaches the experimental Hall mobility value for planar AlGaN/GaN HEMT 

devices[29], [76].  

3.2.4 Electron Mobility as a function of the gate bias 

The gate bias directly affects the induced electron density in the AlGaN/GaN 

interface channel. Furthermore, as seen in previous chapters, it also affects the lateral 

confinement, and hence the shape of the 2D well region. Thus, it is imperative to know the 

variation of the electron mobility in the interface channel as a function of the gate bias 

(VG). It is to be noted that the gate bias is varied only in the range (VG≤0 V) since this 

transport model is valid for conduction in the interface channel only. The electron mobility 

is plotted as a function of the gate bias in figure 3.14 
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Figure 3.14 Variation of Electron mobility vs. Gate voltage VG for AlGaN/GaN Finfet 

(Fin width = 40 nm. Al composition =20%). Inset: Average electron distance and 

Effective electric field as a function of VG 

The simulated device is an AlGaN/GaN MIS Finfet device similar to the one shown 

in figure 1.6. This is a narrow fin width device with 𝑊𝐹𝑖𝑛 = 40 𝑛𝑚 and with 20% Al 

composition. The gate bias is varied from 0.5V down to -1.5 V. The gate bias is not varied 

beyond 0.5 V as sidewall channels start to form when VG > 0.5 V. The electron mobility 

drops as the gate bias reduces. As explained previously, the effective width (x) of the 2D 

well in the Schrödinger domain reduces with decreasing VG. As the well width reduces, 

the electron wavefunctions are confined in narrower widths, increasing the overlap integral. 

The increase in the overlap integral increases the scattering rates, thus reducing the electron 

mobility as VG reduces. 

Average electron distance and effective electric field 

Similar to the approach used in the analysis of the electron mobility in Si inversion layers 

in MOS devices[77], one can determine the effective electric field and the average 
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electron distance from the interface. This can help one analyze the impact of interface 

roughness. For the ith-subband, we let ⟨𝑦⟩ represent the average position of electron along 

the well depth that is calculated using 

⟨𝑦⟩𝑖 =  ∬𝜓𝑖
∗(𝑥, 𝑦) 𝑦 𝜓𝑖(𝑥, 𝑦)𝑑𝑥𝑑𝑦 =∬𝑦 | 𝜓𝑖(𝑥, 𝑦)|

2𝑑𝑥𝑑𝑦 (3.48) 

𝑦𝑎𝑣𝑔 =
∑ ⟨𝑦⟩𝑖𝑛𝑖

𝑙𝑁
𝑖=1

∑𝑛𝑖
𝑙

(3.49) 

𝑛𝑖
𝑙 represents electron line density of the ith subband and 𝑦𝑎𝑣𝑔 is the average carrier 

position.  Let the interface be located at 𝑦𝑖𝑛𝑡. Thus, average carrier distance from the 

interface  𝑦 = 𝑦𝑎𝑣𝑔 − 𝑦𝑖𝑛𝑡. This quantity is plotted in the inset of figure 3.14. 

Similarly, 𝐸𝑦 is the vertical electric field seen by the electrons in the 2D well 

⟨𝐸𝑦⟩𝑖 =∬𝐸𝑦(𝑥, 𝑦) | 𝜓𝑖(𝑥, 𝑦)|
2𝑑𝑥𝑑𝑦 (3.50) 

 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝐹𝑖𝑒𝑙𝑑 =
∑ ⟨𝐸𝑦⟩𝑖𝑛𝑖

𝑙𝑁
𝑖=1

∑𝑛𝑖
𝑙

(3.51) 

Unlike the case for Si, the effective electric field is almost invariant with 

decreasing gate bias. However, the average carrier distance decreases with decreasing 

gate bias. This implies that the electrons move closer to the interface with reducing gate 

bias, thus increasing the impact of interface roughness scattering and thus reducing 

electron mobility.  

3.2.5 Impact of strain relaxation on electron mobility 

The lateral strain experienced by the epitaxially grown AlGaN layer due to lattice 

mismatch is key to the induced electron density at the AlGaN/GaN interface. As 
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discussed previously, piezoelectric polarization is directly dependent on the lateral strain 

in the given layer.  

In thin films and nanostructures, lateral strain relaxation has been observed[58], 

[78], specifically as the dimensions of the nanopillars reduce. Palacios et al.[30] 

investigated strain relaxation in AlGaN/GaN nano Finfets similar to the ones discussed in 

this work.  Figure 3.15 is one of the key observations from this work, where they plot the 

bi-axial strain and the sheet resistance as a function of the nanoribbon width. One can 

relate the NR width to the fin width of the Finfets discussed in this work (refer to the 

inset in figure 3.16 showing the structure of their nanoribbons). As the nanoribbon width 

drops below 300 nm, the biaxial strain reduces. There is a corresponding increase seen in 

the sheet resistance.  

One can investigate this effect using the simulation developed in this work. (It 

should be noted that the results discussed so far do not take any strain relaxation into 

account.)  A strain relaxation parameter is introduced in the Schrödinger-Poisson 

equation solver which modifies calculation of the piezoelectric charge density. A strain 

relaxation parameter of 1 corresponds to ‘no strain relaxation’; a parameter of 0.4 implies 

a strain relaxation of 60 %, and so on. Using this method, the electron line density and the 

electron mobility is calculated for three different values of strain relaxation: no strain 

relaxation, 30 % strain relaxation in the fin and 60 % strain relaxation, respectively. This 

simulation is run for an AlGaN/GaN Finfet device with a fin width of with 𝑊𝐹𝑖𝑛 =

40 𝑛𝑚 and a 20% Al composition. The electron mobility variation vs. gate bias is plotted 

in figure 3.16. 
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Figure 3.15 Tensile strain relaxation and corresponding sheet resistance change in AlGaN 

GaN nanoribbons. Reprinted from [30] with the permission of AIP Publishing. 

 

Figure 3.16 Impact of Strain relaxation. Electron Mobility (left) and electron line density 

(right) vs gate bias for different values of strain relaxation (WFin = 40 nm and a 20% Al 

composition). 
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As the strain relaxation parameter is increased, less piezoelectric polarization 

density is induced at the AlGaN/ GaN interface (this is seen in the decrease in electron 

line densities in figure 3.16). A small increase in electron mobility is observed as the 

lateral strain is reduced. This effect can be explained by the reduction in interface 

roughness scattering which is primarily influenced by the vertical electric field. 

To test this hypothesis, the potential well along the depth is plotted in figure 3.17 for 

three different values of the strain relaxation parameter. The well becomes shallower as 

the strain relaxation increases. This results in the increase of average electron separation 

from the interface, as seen in the inset of figure 3.18. The average electron separation is 

calculated using equations 3.48 and 3.49. As discussed previously, the increase in 

average electron separation from the interface lowers the impact of interface roughness 

scattering and leads to a corresponding increase in electron mobility.  

 

 

Figure 3.17 Change in the shape of the potential well with increasing strain relaxation. 

Inset: Average electron separation from the AlGaN/GaN interface. 



97 

 

 

Calculation of the Sheet resistance  

One can calculate the sheet resistance of the conduction channel in the Quasi 1D 

region in the following manner. If yavg is the average electron separation from the 

AlGaN/GaN interface, then one can estimate the thickness of the channel below the 

interface as ~2 yavg. If WFin is the width of the fin, nl is the electron density and μ is the 

channel mobility, then the conductivity of the channel can be given as  

σ =
1

ρ
=

eμnl
2yavgWfin

 (3.52) 

Thus, assuming a thickness t of 1 nm, the sheet resistance is 

Rsh =
ρ

t
=  
2 yavg WFIN

e nlμ
(3.53) 

The sheet resistance for different values of the strain relaxation parameter is given in 

Table 3.1. Comparing with the experimental results shown in figure 3.16, one can note 

that at 60% strain relaxation, the sheet resistance determined from the simulation of 4000 

Ω/square matches well with the measured value of about 3500 Ω/square for a NR width 

of ~50 nm. 

Table 3.1 Sheet resistance for different strain relaxation parameters. 

Strain  

(%) 

Line 

Density,  

(107/cm) 

Mobility   

(cm2/V-s) 

𝐲𝐚𝐯𝐠  

(Å) 

R  

(Ohms/sq) 

0 2 1500 10.0 2080 

30 1.6 1600 10.7 2608 

60 1.1 1630 11.5 4002 
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3.3 The Role of Alloy Clustering on the low-field electron mobility 

Figure 3.18 shows the mobility limited by alloy clustering (SEFS) as a function of the 

fluctuation amplitude for different AC lengths. As expected, the mobility limited by alloy 

clustering decreases as the fluctuation amplitude increases. The decrease of the 

autocorrelation length of the alloy clustering also leads to decrease in the mobility as 

lower values of L mean more pronounced clustering effect on a shorter length scale. 

 

Figure 3.18 . Low field electron mobility limited by alloy clustering as a function of the 

rms (Delta) of the Al mole fraction variation and the autocorrelation (AC) length L 

 

The variation of the low-field electron mobility as a function of the mole fraction 

x (Al composition) in the AlGaN layer is shown in Figure 3.19.  The overall mobility 

decreases with increasing x due to the increased importance of piezoelectric scattering.  

As a result of this trend, the mobility degradation due to the additional alloy clustering is 
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about 8% for x=20% and about 6% for x=30%. We use L=10 nm for the autocorrelation 

length (AC). The rms of the alloy clustering scattering is Delta=0.03. 

 

Figure 3.19 Low-field electron mobility as a function of Al mole fraction for the case 

when alloy clustering is excluded (open circles) and included (open diamonds) in the 

theoretical model.  

 

Figure 3.20 Alloy clustering (SEFS) limited mobility as a function of temperature. (L  = 

10 nm, Δ = 0.03) 
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The variation of the alloy clustering limited mobility vs. temperature is shown in Figure 

3.20.  One can note that alloy clustering scattering has significant effect on the overall 

mobility values at low temperatures, and has very small effect at T=300K, as already 

shown in Figure 3.19.  The larger impact of alloy clustering scattering at low 

temperatures is because, at low T, carriers occupy few of the lowest subbands, which 

makes the average separation of the carriers from the heterointerface to be smaller at 

T=100K as opposed to the case of T=350K, when the alloy clustering limited mobility is 

over 6,000 cm2/V-s. At T=350K, the low-field electron mobility is dominated, i.e. limited 

by interface roughness, piezoelectric and polar optical phonon scattering (not shown on 

this figure). 

3.4 Impact of Interface Roughness on the Low-Field Electron Mobility for the 50 nm 

width Finfets 

The overall variation of the electron low-field mobility for a MIS Finfet with 

50nm fin width, is shown in figure 3.21. All relevant scattering mechanisms, except for 

Coulomb scattering in the side-wall channels, are included in the theoretical model. Also 

shown in this figure are the experimental data from ref [34]. Parameter in these curves is 

the r.m.s. height (Δ) of the interface roughness (0.11, 0.3 and 0.35 nm). From the results 

shown, it is evident that, at high temperatures, interface-roughness is dominant scattering 

mechanism in this particular structure. Since at low temperatures Coulomb scattering (not 

included into our theoretical model), in addition to roughness scattering, limits the low-

field mobility, there is a discrepancy between the simulated and the experimental data. 

Incorporation of Coulomb scattering will be done in future work. 
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Figure 3.21 Comparison of the expermental low-field electron mobility data for MIS 

Finfet with 50nm fin width. The theoretical model includes interface roughness, alloy 

clustering (SEFS), and all modes of phonon scattering (acoustic, piezoelectric and polar). 

Parameter in the simulated data is the r.m.s height of interface roughness. For SEFS, L = 

6 nm and Δ = 0.03 is used. The Al compostion (x) in the Finfet is 30%.  
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CHAPTER 4  

CONCLUSIONS AND FUTURE WORK 

The properties of GaN make it an excellent wide bandgap (WBG) material of choice for 

applications ranging from power and RF devices to optoelectronics. GaN has also been 

proposed as an alternative to Si in the high-speed ultra-low voltage (<50V) class of 

switching devices such as those needed for EVs and computing applications. Extending 

GaN to ULV necessitates a shift from HEMTs to Finfet devices. Compared to HEMTs, 

modeling studies on Finfets have been scarce. Previous studies used Kubo-Greenwood 

approach for determining electron mobility.  

A novel simulator was developed in this work to solve the coupled Schrödinger-

Poisson-Boltzmann solver for modeling mobility in lateral AlGaN/GaN MIS Finfets. A 

self-consistent 2D Schrödinger – Poisson solver along with a 1D Monte Carlo transport 

kernel is used for determining the electron mobility in the confined Q1D channel. The 

linearized and discretized 3D Poisson equation is solved using the Biconjugate Gradient 

stabilized (BiCGSTAB) method as the discretization results in a non-symmetric 

coefficient matrix. The Poisson solver results determine the extent of the Schrödinger 

domain, over which the 2D Schrödinger equation is solved. The self-consistent solution 

of Schrödinger-Poisson equation results in determination of subband energies in the 2D 

well, the quantum electron density and the electron wavefunctions. The electron line 

densities are determined using Fermi-Dirac statistics. Using line densities as a measure 

for the threshold voltage of the Finfet device, the simulator results are validated with 

experimental measurements from literature. The results from the solver show that narrow 

fin devices can function as E-mode devices with a positive threshold voltage due to 
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additional depletion of the channel from the side gates.  Temperature variance of VTH 

also reduces with fin width. The solver results also show distinct regimes of conduction; 

AlGaN/GaN interface channel (predominantly for VG≤0V) and a combination of sidewall 

channels and interface channel (for VG>0V). 

Presently, the transport kernel is developed only for the interface channel conduction. 

Thus, gate bias is restricted to VG ≤0V.  The Schrödinger-Poisson solver results are 

transferred to the 1D Monte Carlo kernel. Three phonon scattering mechanisms (acoustic, 

polar optical phonon and piezoelectric scattering) and interface roughness scattering are 

considered. Total electron mobility is determined as a weighted average of mobility of 

each subband and is derived from the steady state drift velocities. The mobility results are 

validated by using transconductance values of a comparable Finfet structure. The 

equivalence between derivatives of transconductance and mobility with temperature is 

used to compare and validate the mobility modeling. At 300K and zero gate bias, 

piezoelectric and interface roughness scattering emerge as dominant scattering 

mechanisms. Electron mobility in the channel is found to reduce with gate bias due to 

increasing impact of interface roughness scattering.  

The impact of lateral strain relaxation in narrow fin devices on the electron mobility in 

Finfets is discussed. The simulation results predict that, although increase in electron 

mobility due to decreased impact of interface roughness scattering is observed, strain 

relaxation reduces the induced electron density in the channel significantly which, in turn, 

leads to increase of the sheet resistance. 

The impact of alloy clustering (Subband Energy Fluctuation Scattering) and interface 

roughness on the 1D mobility is studied for the case of narrow Finfets. Alloy clustering 
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largely affects the low temperature electron mobility. At room temperature, the effect of 

alloy clustering ranges from 8% drop in electron mobility for Finfet with Al mole fraction 

of 0.2 to 6% drop for Finfet with Al mole fraction of 0.3. Throughout the whole 

temperature range, interface roughness is the most dominant scattering mechanism. An 

r.m.s height of 0.35nm for the interface roughness leads to a good agreement with 

experimental measurements of low-field electron mobility of similar Finfets at higher 

temperatures.  

The primary future development in this work is the incorporation of sidewall channels 

into the transport kernel. A separate and independent transport model will need to be 

developed for the sidewall conduction and the positive gate bias regime. Since the 

sidewall conduction would be affected primarily by electrons in the bulk GaN region, 

Coulomb scattering is predicted to play a major role on the magnitude of the electron 

mobility, especially at low T. In addition, one can also extend this work to include a full 

particle-based device simulator to determine the channel current and predict IV-

characteristics. 
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