
A Blockchain-Based Approach for

Tracing Security Requirements for

Large Scale and Complex Software Development

by

Adi Kulkarni

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2022 by the

Graduate Supervisory Committee:

Sik-Sang Yau, Chair

Jaejong Baek

Ayan Banerjee
Ruoyu Wang

ARIZONA STATE UNIVERSITY

May 2022

 i

ABSTRACT

 Security requirements are at the heart of developing secure,

invulnerable software. Without embedding security principles in the

software development life cycle, the likelihood of producing insecure

software increases, putting the consumers of that software at great

risk. For large-scale software development, this problem is

complicated as there may be hundreds or thousands of security

requirements that need to be met, and it only worsens if the software

development project is developed by a distributed development team.

In this thesis, an approach is provided for software security

requirement traceability for large-scale and complex software

development projects being developed by distributed development

teams. The approach utilizes blockchain technology to improve the

automation of security requirement satisfaction and create a more

transparent and trustworthy development environment for distributed

development teams. The approach also introduces immutability,

auditability, and non-repudiation into the security requirement

traceability process. The approach is evaluated against existing

software security requirement solutions.

 ii

DEDICATION

This thesis is dedicated to my mother and father, who have been

instrumental in supporting me throughout my education. Thank you.

 iii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to all of those that

have made an impact on this thesis. I would like to recognize my

committee chair, Professor Stephen Yau, for being extremely

supportive and providing me with advice throughout the journey of my

thesis and most of my time at Arizona State University. Professor

Yau’s insight and academic experience aided me greatly in improving

my ability to perform research as well as my academic and personal

development. I would also like to thank my committee members,

Professors Jaejong Baek, Ayan Banerjee, and Ruoyu Wang for giving

their time and feedback to complete this thesis.

I would also like to recognize the financial support of the

National Science Foundation’s CyberCorps: Scholarship for Service and

appreciate the immense support it has provided throughout my time at

Arizona State University.

I would also like to thank my friends and family for providing me

with feedback and input, listening to my talks about my research, and

supporting me with my efforts in this thesis.

 iv

TABLE OF CONTENTS

 Page

LIST OF TABLES .. v

LIST OF FIGURES ... vi

CHAPTER

1 INTRODUCTION ... 1

2 BACKGROUND ... 5

3 CURRENT STATE-OF-THE-ART 14

4 OVERALL APPROACH ... 17

5 TRACING IN THE DESIGN PHASE.................................... 32

6 TRACING IN THE IMPLEMENTATION PHASE 34

7 TRACING IN THE TESTING PHASE 38

8 INNOVATION ... 42

9 AN ILLUSTRATIVE EXAMPLE .. 46

10 EVALUATION ... 60

11 CONCLUSION .. 66

12 FUTURE WORK ... 67

REFERENCES ... 68

 v

LIST OF TABLES

Table Page

1. Notation and Symbols for Overall Approach 20

2. Requirement Field Purposes ... 23

3. An Example Requirement with Attributes 50

4. Component Assignment to Nodes on Development Team ... 55

5. Comparison of Approach to Centralized Solutions 64

 vi

LIST OF FIGURES

Figure Page

1. Threat Model Diagram from OWASP 15

2. The Overall Approach .. 21

3. Security Requirement Mapping to Software Component 27

4. Tracing in the Implementation Phase 29

5. The Private Blockchain Network 48

6. Customer Login Portal of Illustrated Example 54

 1

CHAPTER 1

INTRODUCTION

Security should be embedded in the software development life

cycle to ensure the creation of secure software. This begins with

putting security requirements at the forefront for all phases of the

software development lifecycle, namely the design, implementation,

and testing phases. For complicated and large-scale software, security

requirement traceability becomes difficult as security requirements

need to be traced among several different software components

including the component interaction. This becomes increasingly

difficult in distributed development environments, as the coordination

between the development teams needs to be sufficient for security

requirements to be properly addressed. In addition, without the proper

tools to facilitate coordination for decentralized software development

environments, common security activities like security testing,

vulnerability mitigation, and code audits are non-trivial to conduct.

This problem becomes even more complicated when considering the

design and implementation phases as well, when vulnerabilities are the

most likely to be introduced into the system either by developers or

inherited components such as open-source libraries or other open-

source software used in the software development project. Therefore,

it is important for software developers and large distributed

 2

development teams to adhere to a software development lifecycle that

places security at the forefront of development, ensuring that potential

vulnerabilities are mitigated and that an environment is provided for

security activities to be conducted with little to no manual intervention

from the development teams. For large-scale distributed development

teams, there are not adequate solutions for security requirement

traceability that will consistently produce high quality software results

for decentralized work environments. For complex software

development projects which may have thousands of security

requirements, it is important that the history for every requirement is

recorded correctly such that they are able to be satisfied at the end of

the development cycle.

The traceability of security requirements for large scale software

development projects are crucial to their success, and the proper

management of security requirements will ensure the creation of

secure, robust, vulnerability-free software. When considering the

traceability of security requirements over the long duration of the

development of complicated, large-scale software, it is important to

also consider the auditability, transparency, consensus, and other

security properties of the system used to manage them. For some of

these desirable properties, one can look to blockchain technology as a

 3

part of the solution to help grant some of these traits for security

requirement traceability during the software development life cycle.

Blockchain allows for developers to create software and provides an

immutable history of security requirements while also facilitating the

process of software development in a decentralized development

environment [1].

It is the aim of the research conducted to provide a framework

for security requirements to be traced over the software development

life cycle, while also reducing the number of vulnerabilities present in

the developed software. The organization of this thesis is given over

nine chapters. The first chapter details the importance of why security

requirements traceability and management are important for the

overall software development lifecycle. The second chapter will cover

background information about security requirements identification and

traceability, as well as an overview of blockchain technology. The third

chapter will detail the existing research that has been done for security

requirements management solutions. The fourth chapter covers my

overall approach for handling security requirements traceability using

blockchain for large scale and complex software development. The fifth

chapter will discuss the innovative aspects of my approach and why

they are beneficial to the overall software development lifecycle. The

 4

sixth chapter will provide an example that illustrates my overall

approach in a clear and understandable fashion. The eighth chapter

will provide the conclusion for my research and overall approach. The

ninth chapter will provide a brief overview of the potential future of

blockchain and software security requirements in the software

development life cycle.

 5

CHAPTER 2

BACKGROUND

2.1 Security Requirements

 The proper management of security requirements are paramount

to the completion of secure, vulnerability-free software. Therefore,

software development teams must prioritize security requirement

satisfaction during the software development life cycle to eliminate and

mitigate the introduction of vulnerabilities in software. Properly

generated security requirements allow developers to ensure that their

software is only able to be used for their intended purpose and not be

circumvented to perform malicious activities [2].

OWASP [3] has created a method for defining security

requirements utilizing the resources and tools that they have created

[4]. In this method, the OWASP ASVS [5] is used as a set of

statements that can be improved upon using conventional software

engineering techniques like user story generation, threat modeling,

and misuse cases. This allows developers to create security

requirements that are specific and detailed for their own application

instead of adhering to the one-size-fits-all approach that the ASVS

provides.

 6

 The next step in the process is implementation, which consists of

four sub-steps. These sub-steps are the discovery and selection phase,

the investigation and documentation phase, the implementation phase,

and the testing phase. In the discovery and selection phase,

developers are tasked with understanding the security requirements

given to them from something like the ASVS and deciding what

security requirements fit the need of their release. As the development

of the application progresses, more security requirements will be

implemented and add additional security functionality over the

development of the application. In the investigation and

documentation phase, the developer will review the existing software

against the set of security requirements and determine whether the

software already complies with the new requirements. This

investigation will create the documentation of the phase. The next

phase is the implementation phase, where the software will be

modified to comply with any security requirements that the software is

already deemed to not comply with. In this step, new functionality will

be added to the software, or an insecure component will be modified

to make it secure. After the implementation of the security

requirements, test cases should be created to validate the security

functionality or ensure that no vulnerabilities are present.

 7

The main problem of security requirements arises from the sheer

complexity of all the activities that need to be performed. The security

requirement elicitation step is non-trivial, as project managers and

stakeholders need to communicate and apply security principles to

derive a set of security requirements that are suitable for the

application they are trying to develop. This is mainly because

development organizations are failing to apply security

recommendations due to resistance of new processes and that

software engineers and developers are hesitant to accept that their

software is vulnerable to security flaws [6]. In the paper by Parveen

et. al, they describe some of the issues related to software security

requirement issues, such as access control, auditability, privacy,

integrity, availability, and more [7]. Existing tools to manage these as

well as the security activities described above exist in practice, such as

GitHub [8], Gitlab [9], and JIRA [10]. All these tools have integrations

which allow them to perform some of the security activities described

above and are considered the industry standard for software

development. However, these tools are centralized, and suffer from

numerous issues, such as the use of a centralized authority, a single

point of failure, lack of data ownership, and limited availability. These

industry standard tools are targets for data-breaches and DDoS

attacks, which are not suitable for large development teams that rely

 8

on these tools [11]. Importance should be placed on facilitating the

secure software development lifecycle with tools and mechanisms that

do not put the organization’s data and work at risk, while also

providing an environment that is trustworthy and has integrity.

 Other than the centralized tools presented above, Ramachandran

proposed utilizing a cloud computing service to manage the complex

security requirements activities described above [12]. However, their

approach is limited to a very rigid security methodology and is not

flexible to handle large scale software development.

2.2 Security Requirement Identification

 In the paper by Haley et. Al [13], they provide a framework for

security requirements identification that is comprehensive and

generates detailed security requirements for domain specific

applications. This security requirement identification approach allows

for the developers to identify implied security requirements depending

on the high-level requirement. For example, identifying all the

underlying security requirements for a password reset component,

such as the proper storage and encryption of the data, the security of

sending the password reset mechanism would be an example of this.

 9

The paper shows that security requirements must satisfy three

criteria:

• Definition: What the security requirement is.

• Assumptions: Any implicit or explicit assumptions that the

analyst makes about the behavior of components on the system.

• Satisfaction: Whether the identified security requirements satisfy

the security goals established.

The method for security requirements identification according to the

paper by Haley et. al [13] provides a good foundation for a security

traceability model to ensure the completion of secure, vulnerability-

free software. Below is a brief overview of the steps taken for the

security requirements framework in the paper written by Haley et. al

[13].

Stage 1: Identifying Functional Requirements

In order to begin the creation of security requirements, a

representation of the system context must exist, which means that the

functional requirements must be completed [13]. Since security

requirements are constraints on existing requirements, functional

requirements must exist to identify what security requirement is

mapped to the relevant functional requirement. In addition, the

 10

elicitation of these functional requirements is agnostic from the

technique used.

Stage 2: Identifying Security Goals

2.1) Identify Candidate Assets

Identify assets in the system that have value and record them.

2.2) Selecting Management Principles

First, identify the assets that are worth protecting and determine

all possible threat scenarios on that asset. Then select management

principles that allow for the protection of those assets and the

mitigation of damage assuming that the asset is compromised. For

security risk analysis, CORAS models can be used to represent the risk

management for a particular asset [14] [15]. CORAS is a model-driven

approach for risk analysis which consists of a graphical modeling

language and a method for the generation and evaluation of models.

The main benefit for using CORAS in this type of framework is because

it is an asset-driven approach.

For threat analysis on identified assets, STRIDE is typically used

for the identification of security threats [15] [16]. STRIDE stands for

“Spoofing, Tampering, Repudiation, Information Disclosure, Denial of

Service, Elevation of Privilege.” STRIDE can capture common attack

patterns from malicious actors, allowing organizations to predict the

 11

behavior that these identified assets may face in production. CAPEC

can also be used for threat modeling, which is a database that

contains many attack patterns. CAPEC stands for the Common Attack

Pattern Enumeration and Classification [17].

Another example of threat risk driven analysis is provided by a

paper by Qian et. al, which proposes a threat risk driven analysis

based on OWASP threats [18]. OWASP stands for the Open Web

Application Security Project and defines the top ten risks for mobile

development, web applications, and many more [3]. By using the

OWASP top ten to specify security requirements, the design and

implementation phases become easier to manage, as mitigation for

vulnerabilities are noticeably clearer and more precise, eliminating and

mitigating damage against potential vulnerabilities.

Stage 3) Identify Security Requirements

 In this stage, the security goals generated earlier will be applied

to the functional requirements which will generate the security

constraint on the system.

 12

Stage 4) Verification of Security Requirements

 To perform verification on the security requirements, the paper

uses a two-part satisfaction argument to verify that the generated

security requirements satisfy the security goals described earlier [13].

The outer portion of the argument consists of a formal argument that

proves that the instance of the system satisfies its security

requirements assuming that the system context is correct, and the

implementation will not incur any conflicting behavior. The inner

argument consists of several structured informal arguments that

support the assumptions made in the outer argument regarding

behavior and system composition. This is an iterative process, which

will increase the detail and quality of each generated security

requirement through each iteration.

2.3 Blockchain Technology

 The information pertaining to the security requirements and

testing information will be stored on a blockchain, specifically a private

blockchain. A blockchain is a ledger consisting of several blocks, each

of which are linked using cryptographic methods. Blockchain was first

implemented by an anonymous individual named Satoshi Nakamoto

detailing a new currency called Bitcoin [1]. In a blockchain

implementation, the entire blockchain network must come to a

 13

consensus on whether to add a new block to the blockchain. Due to

the nature of the cryptographic link, it is extremely difficult to change

the previous blocks in the chain, making the blockchain history

immutable. Blockchain has been used in software development before,

notably by several papers by Jinal et. Yau which are used for trusted

coordination during software development and the testing of software

for collaborative software development [19] [20]. However, the use of

blockchain in software development is still very immature and more

research needs to be done to fully realize the potential that blockchain

technology has to play in software development overall.

 14

CHAPTER 3

CURRENT STATE-OF-THE-ART

 The current state-of-the-art for security requirement

management and traceability solutions are centralized repository

software like GitHub [8], JIRA [10], and GitLab [9]. Tools like these

allow developers to trace software requirements throughout the entire

development lifecycle and use version control to update software

requirement information. It is through this version control functionality

that developers can see the history of a given requirement over time.

GitHub and GitLab both have DevSecOps integrations that somewhat

automate performing the testing of security requirement activities [21]

[22]. Specifically pertaining to security requirements, OWASP [3] has

created a tool called “SecurityRAT” which stands for Security

Requirement Automation Tool [23]. The aim of SecurityRAT is to

simplify and minimize the amount of effort spent performing

requirement management during development by using automation

and existing resources to avoid redundant security requirement

generation [23]. SecurityRAT works by having the developer provide

what kind of software is being developed, such as a mobile application,

web application, etc. Based on the type of software being developed,

SecurityRAT will use the OWASP ASVS, which is the OWASP

Application Security Verification Standard, which provides a list of

 15

security requirements depending on the type of application being

developed [5]. A developer can also opt to use an internally provided

set of security requirements to fit their risk profile obtained via threat

modeling. An example of the threat model from OWASP is provided

below to demonstrate what information is generated.

Figure 1: Threat Model Diagram from OWASP [24]

From there, SecurityRAT will generate the security requirements

that the software must fulfill, and it will then send those to a

requirement tracker, usually GitHub, GitLab or JIRA in this case. As

development proceeds, developers can create tickets and update the

artifact state of the requirement in the issue tracker and document the

 16

relevant changes as needed [23]. It is important to note for security

requirement identification for domain specific applications, the current

state of the art is the approach by Haley et. al [13].

 The issue with tools like GitHub, GitLab, and JIRA being used for

large scale software development is that they are centralized, and are

not suitable for distributed, decentralized development environments.

These tools suffer from numerous issues, such as the use of a

centralized authority, a single point of failure, lack of data ownership,

and limited availability since they are centralized services. It is also

evident that due to their prevalence in the software development

domain, they are subjects of DDoS attacks and data breaches which

are not suitable for large scale organizations where availability of tools

and services is crucial [11]. In addition, all security requirement

information can be modified due to the lack of immutability of data in

a centralized service. In a distributed, decentralized team, team

policies can vary differently, and a global shared development service

may not work, which is why I propose a decentralized security

requirement manager to ensure that the security aspect of large-scale

development projects are transparent, immutable, and auditable.

 17

CHAPTER 4

OVERALL APPROACH

In this chapter, the overall approach for blockchain-based

security requirement governance in a large-scale development context

is provided. The overall approach consists of five steps – the

initialization of the blockchain infrastructure, the mapping of security

requirements and open-source software to respective software

components, the implementation of requirements in code, ensuring

that the testing criteria for security requirements are satisfied, and

system-wide testing and consensus. This approach is based on the

foundation provided by the paper written by Jinal et. Yau [20] but

applied in a different context. In this case, the context is software

security requirements as opposed to trusted coordination.

This blockchain-based approach relies on the usage of a

permissioned or private blockchain instance being used to facilitate the

communication between the distributed development teams as well as

govern the security requirements set forth at the beginning of the

large-scale software development cycle [1]. This private or

permissioned blockchain instance will essentially be a representation of

the state of all security requirements for the large-scale distributed

development project at any given moment. All transactions between

 18

the distributed development teams related to the governance of

security requirements will take place on this private or permissioned

blockchain instance. During the initialization of the blockchain

instance, every development team on the large-scale development

project is assigned a node on the blockchain instance. A single node on

the blockchain, which is assigned to the management team of the

large-scale software development project, will be designated authority

over the blockchain and be responsible for the assignment of software

components to their respective development teams. In addition, for

each development team that has been assigned a node on the

blockchain instance, a single individual per each node will be assigned

the role of ‘Administrator.’ This administrator role will be able to

perform actions related to security requirements governance for each

development team on the project. The reason a private blockchain is

used is due to the following reasons: all nodes in the private

blockchain instance are pre-authenticated and verified, private

blockchain instances have high transaction rates, private blockchains

have high fault tolerance and performance, private blockchain

instances support non-repudiation, privacy, and integrity, and that

private blockchains provide access control that are suitable for large

scale software development projects. This private blockchain instance

will use a pBFT (Practical Byzantine Fault Tolerance) consensus

 19

algorithm to validate transactions during the final phases of

development [25].

 The usage of this approach assumes that the security requirements

for the large-scale project have already been generated prior to the

initialization of the private or permissioned blockchain instance. The

identification of these requirements can be done in several ways, such

as manual security requirements identification as described in the

paper [13], or via pre-generated requirements from a security

requirements repository such as the OWASP ASVS [5]. Both

approaches can generate detailed security requirements that can be

implemented, as they include the necessary detail that should be

present after the requirement of software development. For the design

phase, I refer to the OWASP Application Security Fragmentation

integration standards for the appropriate security activities [24]. This

approach will work agnostic of the security requirements elicitation

technique that is employed, if the testing criteria for each respective

security requirement is able to be well defined. The appropriate detail

for all steps including sub steps is outlined below.

 20

Symbol Meaning

t A team in the large-scale development project

T The set of all teams in the large-scale development project

n A node in the large-scale development project

N The set of all nodes in the private or permissioned

blockchain instance

r A requirement for the large-scale software development
project

R The complete set of requirements for the large-scale
development project.

c A software component in the large-scale software

development project

C The set of software components in the large-scale software
development project

S A software component holding requirement information and
open-source dependencies.

O The complete set of open-source dependencies

o An open-source dependency.

Table 1: Notation and Symbols for Overall Approach

 21

Figure 2: The Overall Approach

 22

Step 1: Initializing the Blockchain Infrastructure

 Step 1.1) Private/Permissioned Blockchain Instance is Initialized:

For ∀t ∈ T, a permissioned or private blockchain instance is created.

The private or permissioned blockchain will be created with a pBFT

(Practical Byzantine Fault Tolerance) consensus model [25] to validate

transaction ordering and acceptance criteria for software component

results from the nodes on the blockchain instance.

Step 1.2) Every Team on the Large-Scale Software Development

Project is Assigned a Node on the Blockchain: For ∀t ∈ T, ∀t is assigned

a node n on the private or permissioned blockchain instance.

Step 1.3) A Single Node is Designated Authority over Blockchain

Instance: We designate a single node n ∈ N authority over the

blockchain instance. This team will be considered as the management

node which will designate responsibility of software components for ∀n

∈ N.

Step 1.4) An Administrator is Assigned for Every Team: For ∀t ∈

T, a single member of each t ∈ T is given the role of ‘Administrator’ to

handle updating and the modification of requirements information, as

well as handling the communication between other teams in the large-

scale software development project.

 23

Step 1.5) All Elicited Security Requirements Must Be Stored: ∀r ∈

R must have a complete set of information based on the fields

specified. A table of all the fields is provided below.

Requirement
Field

Purpose

Requirement ID A unique identifier for each requirement

Requirement
Owner

The owner of a given requirement

Requirement

Description

A description of what the security requirement is

Implementation
Specifics

Code that defines the threat modeling for the security
requirement itself as well as a general system

architecture. Also can include security requirement
dependencies.

QA The type of QA that is required to test the requirement

functionality (e.g., Black-box testing, White-box
testing, Functional testing)

Requirement Type The type of the requirement (Functional requirement,

Performance requirement, technical requirement,
specification)

Field for Source

Code Link

A link to a function or piece of source code

Testing Criteria The testing criteria needed to validate that the
requirement is met.

Requirement
Satisfaction

A field that indicates whether the requirement is met.

Table 2: Requirement Field Purposes

 24

Step 2) Tracing the Activities in the Design Phase

Step 2.1) Performing the activities for Security Requirements for

the Design Phase: This step follows the OWASP Application Security

Fragmentation integration standards [24]. For ∀r ∈ R, each security

requirement will need to be given implementation specifics. This

means providing detailed threat modeling information as well as

providing a general system architecture for the requirement by using

tools that allow developers to represent this information in code like

PyTM [26] and ThreatSpec [27]. Generating the implementation

specifics entails several things, the main components of which are a

diagram of the data flow for the given requirement as well as a general

system architecture that will apply to the given requirement [24]. The

generation of these implementation specifics gives the development

teams the ability to perform comprehensive threat modeling and apply

all relevant security desirables to the specific requirement. Typically,

this can be done by performing threat modeling using code by utilizing

tools like PyTM [26] and ThreatSpec [27]. PyTM and ThreatSpec are

both Python libraries that allow developers to generate threat

modeling diagrams and data flow diagrams in code automatically. To

apply the design phase in this step, developers must create their data

flow diagrams using conventional code as stated above and store them

in some form in the ‘Implementation Specifics’ field in the requirement

 25

field. As the security requirement threat modeling and system

architecture is iterated upon in code, the field must continue to be

updated by developers to reflect the changes. As the field continues to

get updated, the changes will be reflected in the blockchain

infrastructure. Because the changes are reflected in the blockchain

infrastructure, the security requirement’s entire history during this

step will be viewable by the relevant development team. It is left up to

the discretion of the development team when the security requirement

is sufficiently described from the design phase to proceed onto the

development phase.

Step 2.2) Establish Communication Channels: For ∀t ∈ T,

communication channels are established between ∀t ∈ T.

 Step 2.3) Assigning Specific Requirements to the Respective

Software Component: ∀r ∈ R will be assigned to S, which is the set of

requirements for a given software component. The r that is assigned

to S must be relevant to the software component that it belongs to.

 Step 2.4) Assigning Specific Open-Source Software to the

Respective Software Component: ∀o ∈ O will be assigned to S, which is

the set of open-source dependencies for a given software component.

The o that is assigned to S must be relevant to the software

component that it belongs to. The completed software component is

 26

then added to the blockchain as a smart contract with its assigned

development team.

 27

Figure 3: Security Requirement Mapping to Software Component

 28

Step 3) Tracing the Implementation Phase

Step 3.1) Linking Source Code to Security Requirements: ∀r ∈ R,

the source code link will be filled with the appropriate link to the

source code in the large-scale software development project by

updating the information in the respective smart contract. The main

benefit of this step is to simplify security requirement traceability in

subsequent steps.

 Step 3.2) Assigning Specific Open-Source Versioning: ∀o ∈ O,

open-source software dependencies will be assigned the specific

versioning that developers intend to use through the software

development life cycle. This is done so that at a later step, specific

versioning for all open-source dependencies will be checked for

vulnerabilities.

 Step 3.3) Modifying, Updating, and Auditing Security

Requirement Information: Throughout the duration of this step,

software development teams in the large-scale collaborative project

will be able to modify core security requirements information (given

that the consensus is made for the change), audit security

requirements, and update security requirements information. These

activities are like the activities in [20], but applied to a different

context, in this case software requirements.

 29

Figure 4: Tracing in the Implementation Phase

 30

Step 4) Tracing the Security Testing Activities

 Step 4.1) Conducting Automated and Manual Tests for Security

Requirements: ∀r ∈ R, the requirements are checked to see if the

testing criteria defined at the requirement’s birth is satisfied. Since

some requirements can be automatically tested, it is expected that

testers will be responsible for writing and defining the tests, whether it

be unit tests, fuzzing, or any other type of automated analysis for

security functionality. For tests that are unable to be automated,

white-box testing is used to ensure security functionality works

properly. These security requirement test results and automated

testing mechanisms can be embedded in the appropriate smart

contracts for each security requirement.

 Step 4.2) Performing Origin Analysis/Composition Analysis: ∀o ∈

O, specific open-source library versions are checked to ensure that no

vulnerabilities are present. This is done by analyzing the relevant

vulnerability repositories such as the MITRE CVE vulnerability

repository [28].

 31

Step 5) Software Component Result Submission and Consensus

 Step 5.1) Submitting the Software Component Result: Once Step

4.1 and 4.2 are completed, the development team will submit the

software component result which contains all open-source software

vulnerability information as well as the satisfaction status for all

security requirements in the software component. At submission time,

the automated tests will execute to ensure that all security

requirements pass their testing criteria. For any changes that need to

be made, automated test execution will be crucial in ensuring that any

future software component result submissions are expeditious.

 Step 5.2) Gathering Software Component Consensus: After the

software component result is checked to ensure that all testing criteria

are met and that any open-source software does not contain any

vulnerabilities, each software component is reviewed by ∀t ∈ T for

system-wide testing. If the software component is deemed non-

defective, and the consensus is gathered among ∀t ∈ T, the software

component result is then written to the blockchain.

 32

CHAPTER 5

TRACING IN THE DESIGN PHASE

 After the initialization of the blockchain infrastructure,

developers will be able to trace the results of the security

requirements during the design phase. During this phase, the

developers will be responsible for building security into the application

design, ensuring that the application will not contain any security

vulnerabilities at the conclusion of the development cycle. According to

OWASP, this is done by performing three activities, outlining data

flows, generating a general system architecture, and performing threat

modeling as well as attaching general security considerations to each

security requirement [24]. In this phase, the information provided by

the developer consists of the results generated by the activities in the

design phase, such as the threat modeling representations, the overall

architecture of the software development project, and any other

important security information generated in the design phase. In my

approach, the tracing of these activities and data is done by storing

the relevant threat modeling data and architecture data in the

‘Implementation Specifics’ field. Using the open-source tools

recommended by OWASP [24], such as PyTM [26] and ThreatSpec

[27], code can be generated that represents the threat model of the

overall application as well as the general system architecture and

 33

other security considerations that may be needed to ensure that the

security requirement is able to be satisfied. During the design phase,

as developers continue to update the representations of the threat

model, the relevant ‘Implementation Specifics’ field will be updated in

the blockchain infrastructure. During the same phase or during later

phases of the software development lifecycle, developers will be able

to query the blockchain to audit the results of the security activities

that were performed during the design phase. This is done by a

function that is written in the software component smart contract that

will allow the developers to read the changes made to the

representation generated by any of the threat modeling tools or other

representations that may be used to show the advancement of the

results of the design phase security activities. The goal of this phase is

to generate the security technical specifications and the plans to

ensure that the security requirements are understandable and able to

be implemented and tested in the later development phases [29]. To

ensure this happens, the traceability that is introduced in the design

phase is crucial to understand the considerations that were made

before the implementation of the security requirement.

 34

CHAPTER 6

TRACING IN THE IMPLMENTATION PHASE

 During the implementation of the security requirements in my

approach, developers will be able to perform several activities to

ensure the completion of secure code with the security requirements

set forth at the beginning of the development cycle. In this chapter, I

will provide some additional detail on step three of my approach, as

well as the results of the step and the information that is supposed to

be generated. I will provide detail for each sub step of my approach

and explain exactly what it entails as well as how it will aid in the

completion of secure software. In this phase the information that is

used is provided by the developer which consists of the source code of

the software development project.

 The first sub step of step three is the activity of the developer to

link source code to the security requirement. For each smart contract

where the security requirements are encoded, there exists a field

which allows developers to link a source code location to a security

requirement. The rationale for why I do this is for two reasons, the

first of which is that it will allow for the effective traceability of the

security requirement in code as the relevant source code location

scope increases over the software development lifecycle. The second

reason is that it will allow for the faster creation of the tests for the

 35

security requirement in step four as the development team will easily

be able to identify the relevant code segment to test for the security

requirement.

 The second sub step of step three details how the developers

must assign specific open-source dependency versioning that

developers intend to use during the development phase of the

software development life cycle. This will entail marking very specific

open-source versions and recording them in the smart contract for the

relevant software component. The rationale for why this is done is

because development teams will want to avoid using vulnerable open-

source software in the completed build of their software. To mitigate

this, any time any open-source software dependencies are introduced

into the developed software, they are recorded and checked at a later

step to ensure that there are no inherited vulnerabilities from open-

source software in the final build.

 The third and final sub step of step three is the development

team activities of being able to modify, update, and audit every

security requirement in the software component smart contract

assigned to them. For the modification of core security requirement

information, the development team must go through the process of

obtaining consensus for the change as we assume that after the design

phase the security requirement is complete enough for development.

 36

By obtaining consensus from the blockchain network, it is ensured that

the developed software is still secure and that any dependencies on

the modified security requirement are still satisfied. For the updating

of security requirement attributes, this activity entails the

development team updating each security requirement field that needs

to be updated during step three of my approach. This will mainly

involve updating three fields: the ‘QA’ field, the ‘Source Code Link’

Field, and the ‘Testing Criteria’ field. Depending on the type of security

requirement designated at the requirement phase, the QA field might

be changed during the implementation phase. As the code written

during the implementation phase continues to expand and grow, the

software component smart contract will continue to be updated with

the updated source code link. For the testing criteria field, towards the

end of the completion of the implementation phase, detailed testing

criteria will be written that is tailored to the written code in the source

code link field. This will allow for developers to have exotic testing

mechanisms that will are designed to vigorously test security

functionality in their software, allowing for the completion of secure

software. As these fields continue to be changed throughout the

implementation phase of development, developers will be able to see

these changes reflected on the blockchain infrastructure, with

 37

blockchain-enforced immutability enhancing security requirement

traceability.

 The results of this step are achieved at the end of the

implementation phase, where there will be a set of software

components that will have all their security requirements with a filled

source code link, a detailed testing criteria tailored towards the specific

code that the requirement is linked to, the specific open-source

versioning that has been used in the software component, as well the

information history of the security requirement that has been created

during the implementation phase reflected in the blockchain

infrastructure. All this information generated during the

implementation phase in my approach creates a good environment for

step four, which involves the testing of all these security requirements

using the detailed tests that have been written during the

implementation phase. During the next step, the written tests that

have been defined in the testing criteria will be executed using the

blockchain infrastructure, and the open-source versioning gathered

during this step will be checked against vulnerability repositories to

ensure they are vulnerability-free.

 38

CHAPTER 7

TRACING IN THE TESTING PHASE

 During the testing phase in my approach, developers will be able

to automatically test security requirements using the smart contract

executability functionality that is inherent from using a blockchain

infrastructure. This will allow development teams in the large-scale

development project to create secure software quicker, and more

efficiently. In this chapter, I will provide some additional detail on the

sub steps of step four, as well as the overall result that is generated

after the successful completion of this step. The information provided

by the developer in this phase consists of the source code and the

automated tests to test every security requirement. This includes the

testing mechanisms for integration testing, component testing, unit

testing, and any other additional security testing mechanisms.

 In the first sub step of step four, my approach will check each

security requirement to ensure that the testing criteria defined at the

requirement’s birth which has been iterated on over the development

cycle, has been satisfied. It is expected that every security

requirement that has been encoded in every software component

smart contract cannot be automatically tested, so for security

requirements that cannot be automatically tested, developers and

testers must ensure that the proper testing mechanisms and

 39

formalisms are conducted to ensure that those security requirements

are satisfied. For the security requirements that can be automatically

tested and have been provided the relevant functionality to test, the

relevant tests can be encoded in the software component smart

contract and be executed at any point, usually whenever a change is

made in the functionality or before the submission of a software

component. Because we allow any kind of software security test to be

encoded in the software component smart contract, development

teams in the large-scale development project can execute exotic tests

that are tailored specifically to the code written for the security

requirement as well as the security requirement description itself.

These tests may include unit tests, fuzzing, or any other type of

automated analysis security testing that will ensure the satisfaction of

security requirements. As the testing process proceeds through in the

software development life cycle, the results of these security

requirement tests will be stored in the blockchain infrastructure, and

they will be accessible by the development teams in the software

development project. This will ensure traceability for all testing for

every security requirement encoded in the software component smart

contract. If the security requirement test succeeds, then the security

requirement satisfaction field will be updated to reflect that. If not, the

field will be updated to reflect as such.

 40

 For the second sub step of step four, origin and composition

analysis will be performed for every software component with the

open-source information encoded in each smart contract. This can be

done automatically by analyzing vulnerability repositories such as the

MITRE CVE vulnerability repository to ensure that the open-source

dependencies are vulnerability free [28].

 The results of this step are achieved at the end of the testing

phase, where there will be a set of complete software components that

will have all their security requirements with a complete, executable

testing criteria field that will return a result of the security requirement

satisfaction. Every security requirement encoded in the software

component smart contracts will have their satisfaction field updated to

reflect that the security requirement has passed the testing phase, and

the satisfaction history will be viewable and auditable as it is stored in

the blockchain infrastructure. In the next step, which involves the

submission of the software component for consensus, these automated

security testing mechanisms will be crucial in accelerating the

consensus gathering, as it will be evident that the software component

is vulnerability free, and the developed software has already satisfied

every security requirement. In addition, developers can trust that the

blockchain infrastructure has sufficiently tested the software that their

 41

components rely on, making the system-wide testing phase efficient

and trustworthy.

 42

CHAPTER 8

INNOVATION

 In this chapter, the innovations of each step in the approach

described above will be detailed. In the approach, a private blockchain

network is applied to a security requirements traceability framework

for security requirements to be traced throughout the software

development life cycle, which is a part of the broader innovation of my

approach.

A. Initialization of Blockchain Infrastructure

The first innovation in my approach will be found in step 1,

where the initialization of the blockchain infrastructure will allow for

security requirement traceability throughout the entire life of the

requirement during the software development lifecycle with

complete immutability of the security requirement history. In

addition, the additional fields that have been given to each security

requirement will ensure that the prerequisite security requirement

information is complete, and that each security requirement is

verbose enough to ensure that it is implemented correctly. Fields

like the source code links, testing criteria, and other requirement

fields will help ensure all aspects of the security requirement is

reflected in the blockchain infrastructure and are used in later

development phases for security requirement satisfaction. In

 43

addition, the initialization of this private blockchain infrastructure

creates a privacy-centric development environment where teams

can operate individually depending on internal policies for the

satisfaction of security requirements. This is one of the major

innovations of this approach as it greatly aids in the development of

large-scale software in distributed development environments.

B. Modifying Security Requirements Information

The major innovation in step 3 is that development teams in the

large-scale development project will be allowed to make changes to

existing security requirements, add additional security

requirements, and retrieve information about existing security

requirements while always having their changes reflected in the

blockchain infrastructure. This is done by loading smart contracts

from the blockchain and updating the information with the desired

attributes. For any core security requirement modification, the

acceptance criteria need to be met by the prime contractor team for

the change to occur. This reflection of changes on the blockchain

infrastructure creates a development environment for security

requirements that ensures full traceability for all security

requirements which is both visible and transparent.

 44

C. Tracing in the Testing Phase

The innovation in step 4 is the ability for development

teams in distributed development environments to perform

automated security requirement testing using the existing smart

contracts on the blockchain infrastructure. By allowing

developers to update the testing criteria defined at the security

requirement’s birth, developers can write tests that can

automatically be tested via an executable smart contract. The

main difference between the testing performed in this approach

compared to existing DevSecOps [30] solutions is that in this

approach, the testing result history for all security requirements

is immutable and all the history for a security requirement is

easily viewable and auditable. This is especially important for

large scale software development projects where there may be

hundreds or thousands of security requirements. This innovation

allows security requirement testing to be conducted and

automated en masse while also maintaining completeness and

transparency in security requirement traceability.

 45

Some of the other innovations in my approach arise from

the nature of using blockchain technology in any sort of

environment. Due to the nature of how blockchain functions,

transparency, auditability, non-repudiation, and consensus

protocols are introduced into the security requirements

management process. This creates a more trustworthy

development environment, which is needed especially in

distributed development teams tackling large-scale software

development projects. In addition, a decentralized solution that

utilizes blockchain does not suffer from the same issues that

centralized solutions do, such as a single point of failure,

limitations of a central authority, and a lack of immutability for

security requirement history.

 46

CHAPTER 9

AN ILLUSTRATIVE EXAMPLE

To illustrate the approach and advantages for blockchain-based

security requirements traceability for large scale software

development, I will be using a secure banking system as an example.

In this example, I assume that the security requirements for the

secure banking system have already been generated. In addition, all

security requirements that are used in this example have been taken

from the OWASP Application Security Verification Standard [5]. The

OWASP Application Security Verification standard focuses on mitigating

security issues with application security, such as buffer overflows,

program misuse, input sanitization, file integrity, etc. In addition, I will

be using the Hyperledger Blockchain platform to illustrate the example

[31].

 47

Step 1: Initializing the Blockchain Infrastructure

 Step 1.1) Private/Permissioned Blockchain Instance is Initialized:

For all the teams of the large-scale collaborative software development

project, in this case a secure banking system, a private or

permissioned blockchain instance is created to support the storage and

communication between teams for the governance of security

requirements. The private or permissioned blockchain will use a pBFT

consensus algorithm for the validation of transaction ordering and

acceptance criteria for the software component results which hold the

security requirements information for the large-scale software

development project [25].

Step 1.2) Every Team on the Large-Scale Software Development

Project is Assigned a Node on the Blockchain: In order to ensure that

all development teams of the secure banking system can participate in

the governance process for security requirements, all teams will be

assigned a node on the blockchain. In addition, the responsibility of

ensuring proper access control mechanisms is left to the organization

to ensure that all development teams can view and modify only the

information that they are authorized to. For the sake of this example,

we assume that there are 10 development teams on the large-scale

 48

collaborative software development project (T1, T2, T3, T4…, T10), and

that each team has been assigned a node on the blockchain.

Step 1.3) A Single Node is Designated Authority over Blockchain

Instance: In this step, it is imperative that a single node in the

blockchain instance is designated as the prime contractor team, such

that it is given authority over the entire blockchain instance [20]. This

prime contractor team will be responsible for designating responsibility

of all software components to teams T1 through T10 where T1 will be

the prime contractor team. This prime contractor team will serve as an

administrative entity for the entire private blockchain network.

Figure 5: The Private Blockchain Network

 49

Step 1.4) An Administrator is Assigned for Every Team: A single

member of T1 through T10 will be assigned the role of ‘Administrator’ to

handle the updating and modification of security requirements

information. In addition, this role will be responsible for handling

communication between all other teams in the large-scale

collaborative software development project.

Step 1.5) All Elicited Security Requirements Must Be Stored: All

elicited security requirements will have a complete set of information

based on the table provided in a previous section. An example of a

final security requirement is provided in the table below. Note that

some fields are left as “N/A” because at this current step in the

approach, they should not be complete.

 50

Requirement ID 0123456

Requirement Owner Project Lead

Requirement
Description

“Verify that 2 factor authentication endpoints are
not brute forceable.”

QA Blackbox, Whitebox, Functional Test

Implementation
Specifics

N/A

Requirement Type Design, Technical

Field for Source Code
Link

N/A

Testing Criteria “2FA endpoint APIs are rate limited.”

Requirement
Satisfaction

No

Table 3: An Example Requirement with Attributes

 51

Step 2) Tracing the Design Phase Activities

Step 2.1) Performing the Activities for Security Requirements for

the Design Phase: This step follows the OWASP Application Security

Fragmentation Integration Standards [24]. During this step, the

implementation specifics will be given for all the security requirements

before they are assigned to the development teams before the

development phase. This is done by performing threat modeling and

generating data flow diagrams as well as the general system

architecture using tools like PyTM [26] and ThreatSpec [27].

Development teams will update the security requirement

dependencies, threat modeling representations, and system

architecture by creating the code that will be represented in some

form in the ‘Implementation Specifics’ for each security requirement.

As these representations continue to be iterated upon, the changes will

be reflected in the blockchain, and their history will be traceable by the

relevant development team. The results and output of this phase

consists of the security technical specifications and the plans on how to

implement the security requirement in the implementation phase. The

threat modeling activities will have the developers decompose the

application, categorize the threats that the application may face,

ranking the threats, and figuring out how the threats can be mitigated

[29]. The PyTM [26] and ThreatSpec [27] representations will be

 52

stored in the ‘Implementation Specifics’ field for each security

requirement in the smart contract software components stored in the

blockchain infrastructure.

 53

Step 2.2) Establish Communication Channels: Between T1

through T10, communication channels are established.

 Step 2.3) Assigning Specific Requirements to the Respective

Software Component: For the sake of this example, there will be nine

software components, S1 through S9. All elicited security requirements

will be assigned to their respective software components. For the sake

of simplicity in this example, we will only look at a specific software

component, S1, assigned to T2.

 Step 2.4) Assigning Specific Open-Source Software to the

Respective Software Component: At this stage in development, the

distributed development teams will identify the open-source software

that is needed for the completion of their respective software

component. All identified open-source software will then be assigned

to their respective software components. At this point, the software

component is written to the blockchain as a smart contract. An

example of what a software component will look like at the end of this

step is provided below. In addition, software components are then

assigned to their respective development teams for fulfillment. The

result of this step is the history of all the design phase security

activities and the preliminary software component information.

 54

Figure 6: Customer Login Portal of Illustrated Example

 55

Team Component

Assignment

T1 Customer Login

Portal

T2 Transaction

T3 Backend

T4 Help and Support

T5 Frontend

T6 Service Integration

T7 Example Component

T8 Example Component

T9 Example Component

Table 5: Component Assignment to Nodes on Development Team

 56

Step 3) Tracing Implementation Phase

 Step 3.1) During the implementation of security requirements in

code, the source code link for every security requirement must be

created by updating the respective smart contract holding the desired

security requirements information. In this example, this means

updating the source code links of SR1 and SR2, where they will be

linked to functions x, y, and z in twofactor.py. The attributes of SR1

and SR2 are provided below.

 Step 3.2) All open-source software dependencies will be assigned

the specific versioning that developers intend to use through the

software development life cycle. This is done so that at a later step,

specific versioning for all open-source dependencies will be checked for

vulnerabilities. For the sake of this example, OSL1 and OSL2 are

provided the versions ‘NodeJS 15.1’ and ‘OpenSSL 3.0’.

 57

 Step 3.3) Throughout the duration of this step, software

development teams in the large-scale collaborative project will be able

to modify core security requirements information (given that the

consensus is made for the change), audit security requirements, and

update security requirements information.

Step 4) Tracing the Security Testing Activities

 Step 4.1) Conducting Automated and Manual Tests for Security

Requirements: In this sub-step, all the security requirements for S1

through S9 will need to be checked for satisfaction. As a result, detailed

testing criteria will be made for each security requirement in their

respective software component. The testers will be responsible for

either the creation of a testing server or implementing the software

tests in the respective Hyperledger smart contract languages. For the

sake of simplicity, we assume that a testing server exists in the

development environment and can return the results of security

requirement satisfaction based on the requirement ID utilizing fuzzing,

automated tests (such as DevSecOps), and other security testing

methods discussed earlier. For manual testing, we assume that the

testing server will be able to return a result with a requirement after

manual review of security requirement satisfaction based on code

auditing utilizing the source code links defined earlier. As an example,

 58

for SR1, the testing criteria field is currently set to “2FA endpoint APIs

are rate limited”. In this sub-step, the testing criteria will be updated

with an API call that gets sent to a testing server that returns the

result of the requirement satisfaction based on the requirement ID.

 Step 4.2) Performing Origin Analysis/Composition Analysis: In this

sub-step, all inherited open-source software recorded in the software

components are analyzed for vulnerabilities via executable code in the

smart contract. This is done by analyzing the relevant vulnerability

repositories such as the MITRE CVE vulnerability repository [28]. In

addition, this executable code can conduct fuzzing on open-source

components and search for vulnerabilities.

Step 5) Software Component Result Submission and Consensus

 Step 5.1) Submitting the Software Component Result: Once Step

4.1 and 4.2 are completed, T2 through T9 will submit the software

component result which contains all open-source software vulnerability

information as well as the satisfaction status for all security

requirements in the software component. At submission time, the

automated tests contained in the security requirement testing criteria

fields will execute to ensure that all security requirements pass their

testing criteria.

 59

 Step 5.2) Gathering Software Component Consensus: After the

software component result is checked to ensure that all testing criteria

are met and that any open-source software does not contain any

vulnerabilities, each software component is reviewed by teams T2

through T9. If the software component is deemed non-defective by the

development teams, and the validation consensus is gathered among

T2 through T9, the software component result is then written to the

blockchain. This process is repeated for each software component in

the blockchain.

 60

CHAPTER 10

EVALUATION

In this chapter, I will compare my approach to existing

centralized approaches for the management and governance for

security requirements for large-scale software development projects.

It is important to point out that there are no decentralized approaches

that involve security requirements management as of writing, so there

is no comparison to be made. For this reason, I can only compare my

approach to the SecurityRAT [23] tool with the integration into other

services like JIRA [10] and GitHub [8].

The centralized approaches like JIRA [10] and GitHub [8]

mentioned earlier suffer from the same problems that all centralized

solutions do, such as a non-immutable versioning history, a single

point of failure, and limitations on data ownership and privacy for

development teams. However, some of the advantages of using

centralized solutions for security requirements management are that

the performance overhead of using a decentralized solution is

significantly lessened and the initial setup of a centralized solution is

significantly less complex and more efficient. For small-scale software

development, it does not make much sense to utilize a blockchain-

based system, as the performance overhead is immense, and the

infrastructure cost is non-negligible. However, for large-scale

 61

development it makes much more sense, as blockchain will aid in the

coordination of security requirements as well as the traceability of a

large amount of security requirements which may require advanced

testing techniques. For testing and implementation specifically, it is

difficult to have the exotic security testing approach that my approach

has for a centralized solution, because all security testing changes are

reflected in the blockchain, and each development team can tailor their

security tests to the code that they write. Because each development

team in the large-scale development project has a node on the

blockchain infrastructure, every one of them can utilize the testing

mechanisms and implementation features to ensure the completion of

secure software as well as being able to audit and view the security

requirement history during the entire software development life cycle.

Development teams maintain ownership of the testing mechanisms, as

well as the data that is provided by those testing mechanisms, which

is one of the best aspects of a decentralized security requirements

traceability approach, which is why this aspect is so crucial to making

this applicable to large-scale software development.

 In my approach, the blockchain infrastructure suffers from a

higher performance overhead than a centralized solution due to the

consensus protocols that are involved for each decision that a

development team makes. In addition, the initial blockchain

 62

infrastructure creation is very inefficient compared to a centralized

network, as it involves the creation of an entire private blockchain

network with the creation of nodes for each development team. In

addition, there needs to be significantly more storage in a

decentralized solution like my approach due to each copy of the

blockchain being stored on each node in the private blockchain

network.

 The prototype that I have implemented contained three nodes

on a private blockchain network, with three smart contracts for three

software components. These smart contracts contained dummy

requirement information and some executable code that would contact

an external API. The time that it took for any information to be written

or read was roughly 3 to 5 seconds. However, this is not an accurate

representation of my approach, since it only contains three nodes.

According to the Hyperledger Foundation, a transaction on a twenty-

node private blockchain will take an average of 16 seconds. During my

testing, the commit history to GitHub had roughly 0.1 to 2 seconds of

latency. This means that the processing speed and responsiveness of

my approach on Hyperledger is worse than GitHub but considering the

frequency at which the system will be interacted with, an average of

16 seconds is reasonable considering the introduction of immutability,

 63

auditability, non-repudiation, and more attributes that will increase the

trustworthiness and integrity of the development environment.

While the initial setup for the blockchain infrastructure in my

approach is complex and computationally intensive due to the use of a

private blockchain instance, the benefits of using a decentralized

security requirements platform severely outweigh the negative

properties. The negative aspects of a private blockchain based

solutions do not outweigh the immutability of security requirements

history, the auditability of any security requirement during the

software development lifecycle, the non-repudiation characteristics of

blockchain, and the automated security requirement testing

acceptance criteria. One of the most important parts of my approach is

that it encourages a privacy-centric development environment which is

ideal for large-scale distributed development environments. Non-

repudiation in the private blockchain network will also ensure that data

cannot be tampered with and that development teams cannot contest

the content or integrity of the data stored in the blockchain. These

beneficial properties only arise with some cost to performance and

additional costs to infrastructure creation due to the cryptographic

properties of the private blockchain infrastructure. In addition, the

access control mechanisms provided by Hyperledger Fabric and my

 64

approach have parity with the access control mechanisms of the

centralized approaches, ensuring that the whole network is secure.

Number Properties Centralized Solution My Approach

1 Initial Setup

Cost

Low High

2 Processing

Speed and

Responsiveness

High (0.1 – 2 seconds) Low (16

seconds)

3 Storage Cost Low High

4 Immutability No Yes

5 Auditability No Yes

6 Non-repudiation No Yes

7 Consensus

Protocols

No Yes

Table 5: Comparison of Approach to Centralized Solutions

 65

 The table shown above shows the most important properties of

my approach, comparing them to centralized solutions for large scale

security requirements traceability. The first three properties

specifically address the costs for initialization and performance of the

systems. The first property, while being high for my approach, it only

happens once during the initial private blockchain infrastructure

creation. The fourth property is immutability, which is intended to

ensure the integrity of security requirements history. The fifth, sixth,

and seventh property are crucial for the traceability of security

requirements throughout the entire software development process.

Strictly looking at the table above, it is evident that my blockchain-

based approach is suitable for performing security requirements

traceability and management for large scale software development.

 66

CHAPTER 11

CONCLUSION

In this thesis, an approach has been presented for security

requirements traceability and management. This approach can be

implemented using open-source software to create a private

blockchain platform, like Hyperledger Fabric [31]. My approach has

important properties that enhance the security of the software

development life cycle such as immutability, auditability, non-

repudiation, and the creation of a privacy-centric environment for

security requirements traceability for large scale software

development.

 67

CHAPTER 12

FUTURE WORK

 Future work includes improving the state of the open source

blockchain solutions like Hyperledger Fabric [31] such that they are

more efficient and easier to setup for developers. This also involves

reducing the performance and storage cost of using a blockchain

infrastructure. In addition, future work includes expanding my

approach to facilitate more aspects of software development other

than security requirements traceability and utilizing the private

blockchain network that has been created to its fullest extent. Future

work also includes improving the state of software security testing, in

both open source and closed source software. Fuzzing tools like

American Fuzzy LOP [32] and radamsa [33] require a significant

amount of setup to harness making automated fuzzing difficult.

Improving the state of fuzzing will allow for more bugs to be found and

mitigated before they are exploited by malicious actors.

 68

REFERENCES

[1] S. Nakamoto, "http://bitcoin.org/bitcoin.pdf," 2008. [Online].

[2] Synopsys, "Software Security Requirements," [Online]. Available:
https://www.synopsys.com/blogs/software-security/software-
security-requirements/. [Accessed 19 April 2022].

[3] OWASP, "OWASP," [Online]. Available: https://owasp.org/.
[Accessed 19 2022 April].

[4] OWASP, "C1: Define Security Requirements," [Online]. Available:

https://owasp.org/www-project-proactive-controls/v3/en/c1-
security-requirements. [Accessed 19 April 2022].

[5] OWASP, "OWASP Application Security Verification Standard,"

[Online]. Available: https://owasp.org/www-project-application-
security-verification-standard/. [Accessed 19 April 2022].

[6] M. Silva and M. Danziger, "The importance of Security

Requirements Elicitation and how to do it," Project Management
Institute Requirements Management, 2015.

[7] N. Parveen and M. K. M. H. Beg, "Software Security Issues:

Requirement Perspectives," International Journal of Scientific &
Engineering Research, vol. 5, no. 7, 2014.

[8] "GitHub," [Online]. Available: https://github.com. [Accessed 19

April 2022].

[9] Gitlab, [Online]. Available: https://about.gitlab.com/. [Accessed
19 April 2022].

[10] Atlassian, [Online]. Available:
https://www.atlassian.com/software/jira. [Accessed 19 April
2022].

[11] L. H. Newman, "GitHub Survived the Biggest DDoS Attack Ever
Recorded," WIRED, 1 Mar 2018. [Online]. Available:
https://www.wired.com/story/github-ddos-memcached/.

[Accessed 19 April 2022].

[12] M. Ramachandran, "Software security requirements management
as an emerging cloud computing service," International Journal

of Information Management, 3 March 2016.

[13] C. Haley and R. Laney, "Security Requirements Engineering: A
Framework for Representation and Analysis," IEEE Transactions

on Software Engineering, vol. 34, pp. 133-153, 2008.

[14] "The CORAS Method," [Online]. Available:
http://coras.sourceforge.net/. [Accessed 19 April 2022].

 69

[15] S. Türpe, "The Trouble With Security Requirements," 2017 IEEE
25th International Requirements Engineering Conference (RE),

pp. 122-133, 2017.

[16] "Microsoft Threat Modeling Tool threats," Microsoft, 2 January
2022. [Online]. Available: https://docs.microsoft.com/en-

us/azure/security/develop/threat-modeling-tool-threats#stride-
model. [Accessed 19 April 2022].

[17] "Common Attack Pattern Enumeration and Classification," MITRE,

[Online]. Available: https://capec.mitre.org/. [Accessed 19 April
2022].

[18] K. Qian, R. Parizi and D. Lo, "OWASP Risk Analysis Driven

Security Requirements Specification for Secure Android Mobile
Software Development," 2018 IEEE Conference on Dependable
and Secure Computing (DSC), pp. 1-2, 2018.

[19] S. S. Yau and J. S. Patel, "A Blockchain-based Testing Approach
for Collaborative Software Development," 2020 IEEE
International Conference on Blockchain (Blockchain), pp. 98-105,

2020.

[20] S. S. Yau and J. S. Patel, "Application of Blockchain for Trusted
Coordination in Collaborative Software Development," 2020 IEEE

44th Annual Computers, Software, and Applications Conference
(COMPSAC), pp. 1036-1040, 2020.

[21] GitLab, "DevOps Solution Resource: DevSecOps," [Online].

Available:
https://about.gitlab.com/handbook/marketing/strategic-
marketing/usecase-gtm/devsecops/. [Accessed 19 April 2022].

[22] Microsoft, "DevSecOps in GitHub," [Online]. Available:
https://docs.microsoft.com/en-us/azure/architecture/solution-
ideas/articles/devsecops-in-github. [Accessed 19 April 2022].

[23] OWASP, "OWASP SecurityRAT," [Online]. Available:
https://owasp.org/www-project-securityrat/. [Accessed 19 April
2022].

[24] OWASP, "OWASP Application Security Fragmentation," [Online].
Available: https://owasp.org/www-project-integration-
standards/writeups/owasp_in_sdlc/. [Accessed 19 April 2022].

[25] M. Castro and B. Liskov, "Practical Byzantine Fault Tolerance,"
Proceedings of the Third Symposium on Operating Systems
Design and Implementation, 1999.

[26] [Online]. Available: https://github.com/izar/pytm. [Accessed 19
April 2022].

 70

[27] [Online]. Available: https://github.com/threatspec/threatspec.
[Accessed 19 April 2022].

[28] [Online]. Available: https://www.cve.org/. [Accessed 19 April
2022].

[29] E. Keary and J. Manico, "Secure Development Lifecycle".

[30] M. Akbar, K. Smolander, S. Mahmood and A. Alsanad, "Toward
successful DevSecOps in software development organizations: A
decision-making framework," International Conference on

Digitization, pp. 178-182, 2019.

[31] Hyperledger Foundation, "Hyperledger Fabric," [Online].
Available: https://www.hyperledger.org/use/fabric. [Accessed 19

April 2022].

[32] Google, [Online]. Available: https://github.com/google/AFL.
[Accessed 19 April 2022].

[33] [Online]. Available: https://gitlab.com/akihe/radamsa. [Accessed
19 2022 April].

[34] Hyperledger Foundation, [Online]. Available:

https://www.hyperledger.org/. [Accessed 19 April 2022].

	REFERENCES

