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ABSTRACT

Machine learning (ML) and deep learning (DL) has become an intrinsic part of

multiple fields. The ability to solve complex problems makes machine learning a

panacea. In the last few years, there has been an explosion of data generation,

which has greatly improvised machine learning models. But this comes with a cost of

high computation, which invariably increases power usage and cost of the hardware.

In this thesis we explore applications of ML techniques, applied to two completely

different fields - arts, media and theater and urban climate research using low-cost

and low-powered edge devices.

The multi-modal chatbot uses different machine learning techniques: natural lan-

guage processing (NLP) and computer vision (CV) to understand inputs of the user

and accordingly perform in the play and interact with the audience. This system is

also equipped with other interactive hardware setups like movable LED systems, to-

gether they provide an experiential theatrical play tailored to each user. I will discuss

how I used edge devices to achieve this AI system which has created a new genre in

theatrical play. I will then discuss MaRTiny, which is an AI-based bio-meteorological

system that calculates mean radiant temperature (MRT), which is an important pa-

rameter for urban climate research. It is equipped with a vision system that performs

different machine learning tasks like pedestrian and shade detection. The entire sys-

tem costs around $200 which can potentially replace the existing setup that costs

$20,000. I will further discuss how I overcame the inaccuracies in MRT value caused

by the system, using machine learning methods.

These projects although belonging to two very different fields, are implemented

using edge devices and use similar ML techniques. In this thesis I will detail out

different techniques that are shared between these two projects and how they can be

used in several other applications using edge devices.
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Chapter 1

INTRODUCTION

1.1 MOTIVATION

In recent years, the availability of large datasets combined with the improvement

in algorithms and the exponential growth in computing power led to an unparalleled

surge of interest in machine learning. Due to its ubiquitous application and versatility,

it can be used in a variety of settings [76, 54]. What started as a computer program

to solve simple but generic problems without explicitly programming it, machine

learning has grown to new heights in last few years and continues to grow. Time series

forecasting, weather prediction, stock market prediction, medical image classification,

object detection and tracking etc. [78, 85] are some of the applications of machine

learning. With ever-increasing data and continued improvements of the algorithms,

these models continues to better their performance.

These models are complex and require high computing power. To support compu-

tation, special hardware like Graphical Processing Units (GPU) are leveraged along

with Central Processing Unit (CPU), which results in high power consumption. The

extra peripheries required to facilitate computation and power, makes the device

bulky and expensive, thus making it difficult to use in applications involving smaller

devices. This paved way for edge computing and machine learning applied on edge

devices.

The Last decade has marked an era for cloud computing, making tremendous

progress in infrastructure, security and software development[83, 93]. This progress

is primarily due to the ease of applications not having to worry about their own
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infrastructure to utilize compute power. Cloud computing works well for applications

involving large data, on which processing and analytics can be carried over a period of

time. For applications involving real-time inference, cloud computing can have high

latency, putting critical processes at risk. Most cloud infrastructure is handled by a

vendor, making it difficult for quick changes, adding to the risk of losing data and

making the process expensive.

Edge computing on the other hand tackles these problems, making it a robust

solution for applications involving Internet of Things (IoT) and real-time data pro-

cessing [111, 59]. Any device at the edge of the network which produces and/or

consumes the data can be referred as an edge device. These programmable devices

support many different programming languages and operating systems, making them

flexible for variety of applications. Since the computation is carried on-board the

device, it has low latency and inference time perfect for real-time data.

There are many edge devices available, specifically meant for running machine

learning algorithms [84, 62]. These devices are equipped with hardware and also low-

level Application Programming Interface (APIs) to run complex machine learning

algorithms. The chapters in this thesis will explore different applications built using

these devices along with different machine learning algorithms. They will also discuss

difficulties of using these devices and what methods to overcome them. Further,

the applications explore two entirely different fields of study which showcases the

versatility and flexibility of these devices.

1.1.1 Contributions and Outline

The main contributions of the thesis revolves around development and implemen-

tation of the following projects :

2



• ODO - A multimodal AI chatbot. ODO can be thought as an intelligent inter-

active entity capable of performing custom plays. It consists of a vision system

to understand user’s emotions and language system to understand text input

and is supported by a movable LED system.

• MaRTiny- A low cost thermal sensing device. MaRTiny is a vision powered

bio-meteorological station which calculates Mean Radiant Temperature (MRT).

The weather parameters are supported by AI-based vision system which detects

pedestrian, regions of shade and counts pedestrian in shade.

Outline: The first chapter provides a background to understand the technical

details which will be highlighted in the consequent chapters. In the second chapter

we detail out the collaborative implementation of ODO which involves three sub-

parts: language system, vision system and communication system. In particular

we discuss the language system in detail as I have worked on it extensively. We

will discuss how we implemented different deep learning models on edge devices and

started a new genre in the field of arts, media and theater. The third chapter we will

discuss design, implementation and development of MaRTiny. We will discuss how

the vision system deployed for ODO to understand emotions can also be deployed to

perform other tasks like pedestrian counting. Further, we will also discuss how we

used machine learning algorithm to estimate MRT value using only a few weather

parameters with a higher accuracy than the existing methods. We will also discuss

how we came up with a novel approach to detect pedestrian in shade. Finally, we

will discuss limitations and future works of ODO and MaRTiny.
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Chapter 2

BACKGROUND

2.1 ARTIFICIAL INTELLIGENCE

Artificial intelligence (AI) is a wide-ranging branch of computer science concerned

with building smart machines capable of performing tasks that typically require hu-

man intelligence [52]. AI is an interdisciplinary science with multiple approaches, but

advancements in machine learning and deep learning are creating a paradigm shift in

virtually every sector of the technological industry [33, 102].

Figure 2.1 depicts different branches of science and technology combined to make

an AI system. Note that each of the these sub-system has its own roots in different

domains which does not involve AI.

2.1.1 Machine Learning

Machine learning is a subset of AI, where a computer program is built to solve a

problem without having to explicitly code for a given task, but rather the machine

learns from the data it is trained on. Just like human intelligence, the machine learns

from the data after being repeatedly trained on it. This is the reason why most of

the models tend to perform better with more data and this also the reason machine

learning has become so popular in last few years. But this is not necessarily true for

all the models, in these case we perform ”hyper-parameter tuning” to improve the

performance [60].

While the concept of ML has been around for a long time (Enigma Machine during

WWII), the ability to automate the application of complex mathematical calculations
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Figure 2.1: Different Branches of Artificial Intelligence

to big data has been gaining momentum over the last few years. In a high level, we

can understand ML to be a very complex mathematical function which is performed

by the machine based on the input data.

Learning: There are two main types of learning:

• Supervised Learning

• Unsupervised Learning

The process of supervised learning starts with inputting training data into the

selected algorithm. The model initially generates random weights and biases (these

are basically co-efficient of the equation) and updates these values with every training
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data. The output is compared with the ground truth and the difference between them

is calculated. This suggests how well a machine is learning a particular task. This

is defined as loss function and there are many different types of loss functions. This

difference is used to update the weights and the process continues for all the input

data, many times [94, 77].

The process of unsupervised learning is similar to that of supervised learning,

except there is no ground truth for data comparison. The loss function instead uses

other means of understanding the data and their relation with each other. Clustering

is one such example of unsupervised learning [120, 49].

In our work we have mainly used supervised learning for prediction, pedestrian

detection, shadow detection, MRT calculation which are explained in Chapter 2 and

3. But we have also used clustering algorithm, which is explained in Chapter 2.

2.2 EDGE COMPUTING AND IOT

For a long period of time, centralized cloud computing has been considered as

the standardised IT delivery platform. Without having to worry about the physical

location of the servers, its scalability and security, the centralised architecture of the

cloud makes makes it convenient for the end user [93]. In recent times, there has been

rise in the demand for faster computation and lower latency especially for applications

involving IoT and real-time data processing. This can be achieved using edge devices,

where computing is carried out on the devices which are at the edge of the network.

[84, 62]

While there is no definitive definition, edge computing can be thought as a dis-

tributed system where data collection and processing is carried out at the edge, where

things and people produce or consume this data. ”Put another way, edge computing

brings the data and the compute closest to the point of interaction.” - E.G Nadan,
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Chief of Red Hat technology. Below are the few of the edge devices that were leveraged

in our projects.

Figure 2.2: Jetson Nano

Nvidia Jetson Nano: We chose Jetson

Nano because of its compact size and high compu-

tational abilities. With the help of the on-board

128 CUDA core Maxwell GPU we can run various

DL algorithms. It is also equipped with low-level

API - TensorRT using which we can convert dense

layered models into low-level graph models exe-

cutable on the on-board GPUs. It is built using

ARM Cortex A-57 MPCore processor along with

4GB RAM which provides enough computational capabilities for our projects. The

operating power is 5V and 4A, making it a low-powered device which can be oper-

ated using portable power-supplies. It aslo has Camera Serial Interface(CSI) port for

camera connection which is used in both our applications to perform various vision

task like emotion detection and pedestrian detection.

Figure 2.3: Arduino Uno

Due to these hardware and software features,

jetson nano is used in several application like ob-

ject detection and tracking [88, 114], AI traffic

control system [103], energy efficient analysis [63]

etc. covering various different fields. In Chapters

2 and 3, we will discuss how this device was put to

use to perform language understanding and visual

recognition tasks using deep learning algorithms.
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Arduino Uno and NodeMCU: Arduino is an open-source platform used for

constructing and programming of electronics. It can receive and send information to

electronic devices, and even through the internet to command the specific electronic

device. It uses an Arduino Uno circuit board and software program (Simplified C++)

which can be used to program the board. The board does not have a separate piece

of hardware in order to load new code onto the board, one can simply use a USB

cable to upload. Some of the exmple applications are home automation [1], smart

traffic system [48], smart irrigation system [47], car controlling systems [15], heart

rate monitoring system [80] etc.

The lack of WiFi module on the Uno board makes it a standalone on-primes IoT

device. With only a temporary storage space on uno it becomes necessary to use

other micro-controllers to transfer data to a remote database. NodeMCU is one such

edge device which is compatible with uno board. Developed on ESP8266 architecture,

this single board micro-controller has in-built WiFi, flash memory, and supports the

PEM (Privacy Enhanced Mail) file system. These features makes it an ideal edge

device connecting the IoT devices to the internet securely. The data from uno board

is transferred to NodeMCU using serial communication, which is further transmitted

to databases using MQTT protocol. In Chapter 3, we will discuss in detail how

we leveraged this communication bridge to transmit various sensor data to AWS

databases.

2.2.1 MQTT Protocol

Message Queuing Telemetry Transport (MQTT) is an OASIS standard messaging

protocol for the Internet of Things (IoT). It is designed as an extremely lightweight

publish/subscribe messaging transport that is ideal for connecting remote devices

with a small code footprint and minimal network bandwidth.
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Figure 2.4: MQTT Protocol Architecture

Figure 2.4 explains the general architecture of the protocol. The broker holds the

responsibility to initialize communication, create a bridge and transfer data between

different clients. Although the broker can be developed using another edge device,

we have leveraged an API from AWS to establish this communication. In chapter

3 we will detail out how the sensor data from uno board, which acts as a client is

transferred to online databases through AWS APIs.
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Chapter 3

ODO

In this chapter, I detail our efforts in making a multi-modal AI chatbot using

Nvidia Jetson Nano for use in an interactive theater performance. This chatbot has an

architecture consisting of vision and natural language processing capabilities, as well

as embodiment in a non-anthropomorphic movable LED array set in a stage. Designed

for interaction with up to five users at a time, the system can perform tasks including

face detection and emotion classification, tracking of crowd movement through mobile

phones, and real-time conversation to guide users through a nonlinear story and

interactive games. The final prototype, named ODO, is a tangible embodiment of

a distributed multimedia system that solves several technical challenges to provide

users with a unique experience through novel interaction.

3.1 BACKGROUND

3.1.1 Motivation

With the advances in artificial intelligence, especially natural language process-

ing, machine agents serving as natural language user interfaces (i;e chatbots) have

become highly sophisticated. These chatbots have seen widespread use in client com-

munication and customer services . While some of the traditional criticism of these

chatbots include their limitations of understanding the language and expressions used

by human beings, there has also been work to try and improve the effective comput-

ing underlying chatbots [10, 121]. This has allowed them to be deployed in diverse

forward-facing settings including psychological counseling and therapy services [117].
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However, there is a lack of research on enabling chatbots for artistic installations,

particularly chatbots combined with existing multi-media setups including distributed

audio, video and illumination systems. This is primarily due to two main challenges:

(1) existing chatbots can rarely integrate multimodal sensory inputs such as com-

bined audio and video to perform their functions, and (2) existing experiential media

systems typically feature primitive or non-intelligent signal processing or algorithmic

controllers, which rarely can adapt to users in semantically meaningful ways.

Further, there is interest in making these systems energy-efficient to reduce the

carbon footprint and enable new use cases for the technology. Edge computing devices

have recently gained sophistication in their capability to handle complex workloads

including that of image and audio processing necessary for embedded machine learn-

ing. This is an emerging paradigm that can be leveraged by experiential multimedia

systems for maximum impact.

Inspired by these challenges, we have endeavored to create a novel, multimodal

chatbot that can successfully integrate with an experiential media system. The goal

of this system is to provide a new, interactive experience for multiple users, and

designed for digital and interactive theater. Our chatbot is able to perform crucial

vision and natural language processing to communicate with end users, while still

communicating and actuating a distributed media system to change the environment

and ambience settings.

3.1.2 Related Work

Our work draws upon a vast literature in the areas of intelligent personal as-

sistants, experiential media systems, and the deployment of computer characters in

theater productions. We situate our work with ODO at the intersection of these three

areas, comparing similarities and differences.
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Intelligent Personal Assistants. There has been several recent developments

in the area of intelligent personal assistants (IPAs) [91] include the creation of Ama-

zon Alexa and Google Assistant. In this project, we will refer these IPAs as chatbots

for ease of use. There exist many currently available frameworks for chatbots in-

cluding OpenDialog [55], Google Dialogflow [89], IBM Watson [90], and Microsoft

Bot Framework (MBF) [65]. While all of these options feature advanced functional-

ity especially in their NLP (Natural Language Processing) capabilities, we decided

to implement our own chatbot with its own custom dialogue management system

in the Python programming language. Our reason for doing so is maintaining an

easy-to-use, simple code interface that could interact with our multimodal stage and

to create a non-linear model of storing-telling. Our chatbot was heavily modeled

after the Amazon Lex framework [113], but we needed to bypass the Amazon Web

Services (AWS) database in order to do custom TCP/IP communications for our

system and linear setup of interaction. Recently, the use of deep learning and neural

networks within these chatbots has led to improvements in state-of-the-art perfor-

mance [32, 92, 95, 105]. We also augment our chatbot with deep learning networks,

particularly in computing word similarity for improved NLP performance, but also

adding vision capabilities including facial detection/recognition and emotion classifi-

cation and crowd clustering and segmentation.

The advances in chatbot technology has in turn spurred a renaissance of research

on the topic [24], including human-computer interaction [7, 30, 82]. Many studies

have focused on the effective components of interacting with chatbots [20, 121] and

how humans language use changes when interacting with them [38]. In this chap-

ter, we are focused on the implementation details of our chatbot. A full HCI study

analyzing the efficacy of our system for user engagement is the subject of future work.
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Experiential media systems. We follow the framework introduced by [97] of

experiential media systems. Such systems build on the foundation of experiential

computing [43, 25], and typically feature sensing, computation, and multimodal feed-

back to the users in the system. Experiential media systems have been built for

purposes such as biofeedback for stroke rehabilitation [16] and studying coordinated

group activity [45]. One potentially similar experiential media system is the “Sound

and Light” festival held on the Island of Rhodes, where multimodal interaction uses

stereophonic light and sound to tell the medieval history of Rhodes without actors.

Our system differs from this particular example as we involve human audience par-

ticipants to interact with an AI chatbot as part of the performance. ODO is an

experiential media system which utilizes a physically-instantiated matrix of 26 LED

lights that can move up/down on the stage coupled with displays and speakers to

give users an interactive theater experience. In particular, the feedback given to the

user is driven by the chatbot, thus yielding a level of personalized feedback that is

rare among typical experiential media systems.

Autonomous computer characters in theater. There has been an active

thread of research using autonomous computer characters in theater productions.

In [81], the first computer character was introduced to interact with a human actor

on stage. In this work, the computer uses gesture recognition to analyze a human

actor’s movements, and then digitally projected a virtual character onto a screen to

advance the story. Following this line of work, there have been several more uses

of robots in theater [51, 39, 66] including exploring improvisation and non-scripted

behavior [67]. All these examples were designed to give the automated character

presence on the stage, helping to draw the audience’s attention and engage them.
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In contrast to these previous works, in our production, ODO is an invisible charac-

ter that is not represented by any one device, but which manifests itself only through

voice and ephemeral events. 26 lights moving in space form a cloud which triggers

visual associations utilizing a LED stage. At every stage, users are encouraged to use

their imagination to have a complete experience of the plays. Rather than a limitation

of the system, this is an intentional benefit to trigger associations for the audience

and also to avoid representational issues with giving the chatbot a type of distributed

embodiment rather than a single body/terminal which limits user interaction. One

of the main aims of post-dramatic theater is to question the central role of the text or

script in a performance. Rather other elements of theater include movement, image

and sound, and the new post dramatic theater dramaturgy puts all media elements

of the stage on the same equitable level with no hierarchy. With this, ODO can

be described as a post-dramatic digital character, using all media elements on stage

including the underlying chatbot to realize its presence.

3.2 SYSTEM OVERVIEW

Our system consists of several key components including the chatbot itself, its

computer vision sub-system for face detection/recognition and emotion classification,

and the crowd tracking through mobile phones. All of this is wrapped together

through a communication protocol designed for real-time responsivity and feedback

with the users. A full diagram of the system architecture can be seen in Figure 3.4b.

In the following subsections, we describe the design choices for each of the subsystems

that make up the entire architecture.

14



3.2.1 Chatbot

Designs of chatbots can range from the conventional, knowledge-based architec-

tures to more free-ranging, open models. In our case, the design requirements of

the chatbot include: (1) the ability to interpret user behavior and inputs to provide

appropriate responses, and (2) a “character” or dramatic identity to aid the theater

performance. Thus we built our own chatbot from scratch, inspired by the design of

the Amazon Lex chatbot.

Intent Modeling for Storytelling:: Stories are stored as a collection of intents

and each intent is a pair of utterances and responses. Utterances are set of sentences

which probably a user can utter to the chatbot. These utterances will trigger its

associated responses which are nothing but the story lines. Depending on the utter-

ance, different story lines are presented to the user. For instance when the user utters

words/sentences like “plane”, “go for plane”, “fix the plane”, triggers the response,

which is one of the dialogue “let’s fix the plane and then search water”. These both

are wrapped in one collection called intent (in this case intent name is “plane”), which

basically checks the intention of the user behind uttering their words. In this way, a

conventional chatbot is converted into a theatrical story teller.

While simple keyword spotting could give some base functionality for our chatbot,

we implemented a deep learning network for natural language Understanding to help

ensure that the system could robustly identify synonyms and other utterances that

are similar to the desired intents. To process the words/sentences uttered by the user

and map them to the utterances that we have stored, the chatbot uses a pre-trained

Deep Learning model - USE (Universal Sentence Encoder) [11]. This takes the user

input, performs word embedding (namely word2vec [75, 74]), combines the words

using composition function and then finds similarity between the two sentences and
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Figure 3.2: Conversational Strategies for Chatbots

the one which has highest similarity is chosen. For instance, sentence like ”repair

the plane” and “fix the plane” basically have the same meaning. This similarity

is understood by using USE and this way the user doesn’t have to utter the exact

words/sentences, giving them the flexibility to converse with the chatbot. For out of

domain utterances, if the similarity score was below a certain threshold, a standard

response was selected which reset the conversation or returned back to the previous

intent in the conversation.

Figure 3.1: Sentence Matching Using the

Universal Sentence Encoder

Conversational Strategies: Con-

ventional chatbots are either convergent

or task-based (e.g. Amazon Lex, query

systems) or divergent/theme-based (e.g.

Pandorabot’s Mitusku [79]). Both these

conversational strategies do not fit to a

conversation in theater, where the main

goal is to develop a conversation based

on a given story or dramaturgy.

We tested branching hierarchies and

nonlinear storytelling strategies till we found a combined system of convergent and
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divergent conversational strategies which managed to both involve an audience in a

conversation and also drive the story. A chatbot uses utterances, intents and entities

or slots to structure a conversation. The utterance is the human to machine conver-

sation to find out an intent of a conversation, which leads to the entities or slots to set

cornerstones of a conversational path. In a theatrical conversation theses paths have

to be both divergent and convergent, but they are set in specific times which develops

a specific chatbot dramaturgy. It resembles a road map connecting cities, where a

main road branches out into meandering smaller streets entering a city. Inside the

city the map is two dimensional and nonlinear. Leaving the city the streets need to

converge back into a linear system of one main road to connect the next city or hub.

We visualize this strategy in Figure 3.2

For the nonlinear conversation part, the chatbot was given the ability to interact

with the audience through physical games and interaction with the system, or recite

haikus to the users. This gave a whimsical nature to the chatbot that is refreshing

and charming, leading the user through the story without feeling forced or rushed

towards the end goal, at least in design.

3.2.2 Emotion Detection

Along with language understanding, we empower ODO with vision capabilities

to understand the emotion of the users. We primarily use two video feeds from 160

degree cameras and design the system to accommodate 5 users at a time. We chose

5 users because this was the maximum number of users that we could accommodate

for our interaction games which is a main focus of ODO’s performance. Our vision

subsystem consists of the main task of (1) detecting the faces of these five users, and

(2) performing emotion classification to help aid the chatbot in performing effective

decision making in its responses to user utterances.
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Reading images coming off a live camera stream, the system first performs face de-

tection using Haar feature-based cascade classifier [106] built into the OpenCV library.

After face detection, emotion estimation is performed using a trained deep learning

emotion recognition model based on a convolutional neural network [5]. Every de-

tected emotion is classified in one of angry, disgust, scared, happy, sad, surprised,

and neutral. While we acknowledge such a coarse, discrete categorization is not in-

dicative of the range of human emotions and subtleties that can occur in a theater

performance, we found this enabled a tractable computational platform to perform

decision making for the chatbot.

The software archives the detected emotion of the audiences and shares this infor-

mation using a client/server architecture and Transmission Control Protocol/Internet

Protocol (TCP/IP) protocol. Each of the vision sub-systems is identified by their

name and the chatbot can request the emotion of a particular vision system having

a specified field of view or the consolidated emotion estimate of all the vision sub-

systems. Moreover, the chatbot can request the current emotion index or the average

emotion for a specified period. In our current deployment we have two vision sub-

systems to capture and estimate the emotion of the audience.

3.2.3 Crowd Clustering

In addition to visual data collected of the users, the chatbot also collects gestural

and movement data via users’ mobile devices. This yields a lot of opportunities for

the chatbot, including the possibility to play movement games and other embodied

practices within the context of the physical system that the chatbot is embedded in.

To do so, we develop the notion of a crowd index system.
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(a) Vision (b) NLP

Figure 3.3: Vision and NLP Architectures for the Chatbot

The crowd index system communicates with the camera using the OSC protocol.

The crowd index continuously receives the location data captured by the user device,

via an intermediate software known as Max/MSP [22]. The crowd index system uses

this data to make an estimate of the crowd behavior and shares it with the max

system whenever it is requested. The system leverages the Density-Based clustering

(DBSAN) algorithm to estimate the number of clusters formed by the audience and

to identify the presence of isolated audience members [29]. Moreover, the software

computes the velocity and acceleration on a per audience basis, based on their real-

time location data to get an estimate of the energy and agility among the audience.

3.2.4 System Communication via Max/MSP

The entire system is necessarily complex and thus needs to be coordinated with a

global protocol and communication scheme to be effective. A key design consideration

for us is that we need the system to be interactive rates (only a few seconds of latency),

so that users do not get frustrated when interacting with the chatbot.

The Max/MSP system is the backbone for communication in ODO. It receives user

chat, location and other sensory information and forwards it to the other destination

19



(a) System Architecture (b) Hardware Connectivity

Figure 3.4: System Architecture for ODO Including the High Level Block Diagram

systems for processing. The chatbot, along with vision sub-system and crowd index

sub-system, processes the Max input and communicates back to Max with the result

metric.

Max/MSP system uses OSC (Open Sound Control) for communication [31]. OSC

adds a layer on top of a UDP (User Datagram Protocol) to standardize information

transfer between media systems. Being a connection-less protocol, it decouples the

chatbot from the Max/MSP, making the system modular. The vision sub-system com-

municates with the chatbot over TCP/IP (Transmission Control Protocol/Internet

Protocol). This has been done to closely integrate the system with chatbot, as the

vision sub-system will only start after the chatbot. The crowd index system is loosely

coupled with the chatbot via the OSC interface.

Figure 3.5 depicts the overall system call flow diagram. Upon start the chatbot

triggers a request to the vision system to start the camera and receives an acknowl-

edgement. Next the chatbot system sends a trigger to the Max system to start the

conversation and receives the acknowledgement. The max system receives the user

input over the OSC interface and forwards it to the chatbot to get a response. The
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Figure 3.5: Call Flow among the Components of the ODO

response is then shared with the user. Additionally, the max system and the chatbot

can request the vision system to get the emotion estimate of the audience and receives

the response. Finally, whenever required the max system requests for the crowd index

system for the mobility related metric and receives a response.

3.3 IMPLEMENTATION

In this section, we discuss implementation of the system and how we achieve the

desired design for our chatbot. The overall system performs all of its computing lo-

cally on either the computers or the Nvidia Jetson Nano rather than user’s phones.

This avoids the latency due to round trip back and forth from a cloud server due

to streaming video, which we experienced in a previous iteration of the system us-

ing the Amazon DeepLens for our vision processing. Finally, we utilize LAN based

communication to setup our own internal network in which to run the entire system.
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(a) Motorized LED (b) Camera Setup (c) Max Software Setup

Figure 3.6: ODO Setup on Stage

3.3.1 Stage Hardware

For the chatbot, we are using 4 NVIDIA Jetson Nanos (NVIDIA Jetson Nano

Developer Kit Item Model Nr 945-13450-0000-000, Arm Cortex A57) along with two

160 degree IR cameras (Waveshare IMX219-160 IR Camera). Each Nano is used

to perform certain task and is distributed to avoid overloading of computation on

devices. The chatbot runs on the master Jetson Nano which encapsulates the code

for the chatbot, communication code for the 2 cameras, and communication code

with the MAX system. Each of the cameras is connected to a separate Nano, which

captures and processes emotions of the crowd. We are also monitoring movement

of the crowd though a mobile application which communicates with the 4th Nano.

Clustering of the crowd is calculated using their relative positions on the stage. Both

crowd emotions and crowd clustering are then sent to the chatbot, where the chatbot

engages with the crowd depending on the crowd behaviour.

Multi-modal Stage: The chatbot is embodied physically in a system on a black-

box theatrical stage. The stage size is 8meters × 6meters with a height of 5 meters.

Motorized lights are hung from a scaffolding and truss system as shown in Figure 3.6a.

The entire stage is covered with these double sided LED lights, connected to motors to

move the lights vertically which is shown in Figure 3.7, which immerses the audience
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in light and movement. This stage is similar to the forest3 stage by Ziegler et al. used

in the dance production COSMOS [18, 19]. The lights are controlled with ARTNET, a

network protocol for theatrical control over UDP/IP. The Max/MSP light and motor

control software uses GPU accelerated rendering techniques to compute the output

animation of the physical LED units with minimal latency. All of the animations

can be mixed before final ARTNET output to the lighting network, affording artists

a degree of variability in visual design without the need to implement or add new

components to the software. This dedication to efficiency and flexibility enables rapid

prototyping for designers of exhibitions and modalities of interaction.

Figure 3.7: Moving LED

Stage

Computers and cameras are hung from the center

of the truss construction. The audiences position and

movement data is sent to a central host, which re-

lays the data to the chatbot network. A network of 4

NVIDIA Jetson Nanos with one Mac computer com-

municate with Open Sound Control (OSC) [31] via

LAN and WLAN. 5 Android phones with a custom

app sends text and motion data from each user to

a host computer, which is coordinated through the

Max/MSP system, as shown in Figure 3.6c. Two

camera-based linux systems feed face tracking data

to the chatbot which sends text and metadata of the

conversation to the central host. An additional exter-

nal crowd index computer permanently analyzes motion and position data from the

audience and sends movement vectors and velocity data of each audience member

to the host computer. The central computer feeds two main displays on stage with

cluster index which signifies cluster and separation of audience on the stage.
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3.3.2 Algorithms

NLP Architecture: Stories are divided into a set of different intents which

consists of a pair of utterances and responses. Utterances are the the possible

words/sentences that a user can use to converse with the chatbot, which triggers

responses from the chatbot which are story lines from different section of the story.

We utilize Google’s Universal Sentence Encoder-USE [11] to understand users inputs.

Universal Sentence Encoder gives the similarity index between the input and utter-

ances. If a similarity index above the threshold (we have used 70%) is calculated,

then the corresponding response of the matched utterance is triggered, otherwise the

chatbot will request for a new input relevant to the story. This way conversation

is focused on a given topic of story and doesn’t meander out. Figure 3.1 shows the

correlation between user input text and saved utterances using the network. The

utterance with highest correlation coefficient is selected and the corresponding story

intent is executed.

Since there can be same/similar utterances for different intents corresponding to

the different story-lines, it is difficult to identify the right intent as this scenario can

trigger multiple intents. To avoid this, we utilize weighted intents to uniquely identify

the correct intent to trigger in the story. As the story progresses, weights are updated

and is tracked, this way the story always proceeds forward and does not loop back

into previous story lines even utterance matches.

Vision architecture: To detect the emotion we use a trained fully convolutional

neural network-based mini-Xception model [6, 5]. The mini-Xception architecture

as proposed in [6] comprises of a fully convolutional neural network that comprises

of 4 residual depth-wise separable convolutions [17] with batch normalization [42],

ReLU activations, and a last layer of global average pooling and a soft-max activation

24



function to get the prediction of the emotion. Owing to elimination of the fully

connected layers and use of depth-wise separable convolutions, the mini-Xception

model has low latency in detecting the emotion, which is paramount in detecting

emotion in a live video feed, and hence we use it for our vision sub-system. The

architecture has approximately 60,000 parameters which is much less compared to

other architectures and henceforth makes it lightweight and fast in the prediction.

The model was trained on the FER 2013 data set [34] and the accuracy was reported

to be 66 percent. We found this accuracy to be suitable for our purposes as emotion

data would only be periodically be queried by the chatbot in the performance, and

thus any mistakes in classifications were sparse in the actual performance. Future

work could try to improve the emotion recognition by finetuning the network on

captured data from the system if absolute accuracy was desired from the performance.

Once the software detects the emotions for a frame it is archived along with the

current timestamp. This archived information is used to make a response to the

request for an emotion metric. To facilitate this, the vision sub-system software hosts

a TCP/IP server and makes a response to the client by using the request-response

messaging pattern. When the server receives a request from the chatbot, it shares

the emotion metric with the chatbot.

Crowd Index System: As depicted in Figure 4 the crowd index system has soft-

ware running on an Nvidia Jetson Nano. It receives the real-time sensor information

captured by the User Device. The received data comprises of the audience’s real-time

location. The Crowd index receives this captured location of the audiences in real

time. To compute the Crowd index, we use the DBSCAN (Density-Based Spatial

Clustering of Applications with Noise) [29] clustering algorithm which is character-

ized by two parameters: ε and MinPoints. ε defines what point should be considered

as within a proximity and MinPoints defines the minimum numbers of points required
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to form a cluster. We choose the distance metric as Euclidian distance and the value

of the ε is based on the dimension of the stage and a reasonable definition of prox-

imity distance. The MinPoints is chosen as 2 and thus cluster can be formed by two

or more people. The noise points is used to identify an isolated audience member.

In addition, we also calculate the velocity and acceleration of each user from their

phone, which is also forwarded to the main system via OSC.

There may be some error introduced into the location estimation algorithms based

on noise in the smartphone sensing. However, since our crowd index measure uses

density-based clustering, the overall algorithm is resilient to individual errors in the

localization, and the chatbot further only uses the crowd index to help guide the

audience towards completing the interaction games at a coarse location granularity

(meter scale in our implementation). Thus we did not find that noise significantly

affects the system performance.

3.4 RESULTS

3.4.1 ODO Conversations

ODO uses its multiple sensing modalities synergistically to interact with up to five

given audience members at a time. A text-based conversation is limited like every

other natural conversation to one partner, but in games and physical interactions

the chatbot can interact with up to 5 users at the same time. At the start of the

conversation, ODO asks each audience member for their names. ODO leads the

conversation dialog. The audience members use either a text-based or voice-to-text

application on their mobile phones to send system input. These are stored in the

order in which they are sent, and are responded to in turn by the system. Since ODO

has multiple responses for any particular intent, there is a very low probability of
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repeated responses from ODO due to multiple similar inputs. However, having ODO

respond to each participant in turn does limit the ability of the system to have a long,

extended conversations with each user. At the same time as the conversation, the apps

also send movement and position sensor information continuously. Most of the script

for ODO tends to encourage somatic and physical games for the audience leading

through a story of a journey, while the chatbot cannot leave the stage physically.

The play is based on the premise that ODO is aware of being stuck on stage. The

chatbot needs to communicate and to play with the audience to grow as a character.

At the end of the performance ODO thanks the audience for sharing time and space

to “create a world together”.

The vision cameras track up to 5 faces and perform emotion recognition on these

faces. Typically the five emotion values are combined together via majority vote so

that a single emotion value is held for a particular time period, which the system

uses to inform its responses as a particular intent. The audience is perceived as one

audience body. At the same time, the crowd index system delivers an estimate of

the crowd activity, which is periodically sent every minute to the chatbot that will

trigger unique responses in the output during the performance. Thus the chatbot

alternates between responding to user input, emotions received from each vision sys-

tem, and the crowd index with a combination of asynchronous (as they arrive) as

well as synchronous (periodic emotion queries, etc) behavior in the order in which

these intents are triggered. In Figure 9, we show an example of the output of the

system for a sample conversation of ODO. We can see ODO exhibiting several of the

conversational strategies described earlier, including working with the emotion data

to inform its responses at the end.
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Figure 3.8: Example of ODO Conversation

3.4.2 Interaction and Games

One of the main user interactions that ODO performs is playing games with the

audience members. 3D Games usually are programmed for user interfaces, perform-

ing in virtual space. Using the LED lights described in the implementation section,

the following games are implemented in the system using position and motion data

from 5 users. Each of these games are triggered periodically in the story based on

the playwright’s script, as ODO is led out of the cave with the help of the audience.

Users mainly use their phone to communicate and perform tasks at the game.
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• POINT Game: One users controls the z / height of one light by using position

and z / height information via magnetic / pressure sensor information.

• LINE Game: Two users generate a line of lights between them controls the z /

height of both ends of the line.

• WAVES game: The acceleration (x,y,z) information of all users is averaged and

mapped to the speed of a perlin noise generator controling motion movement

of all 26 lights.

• PLANE game: Three users control the 3D orientation of a flat plane of lights.

The host receives the x and y position of each user and z / height information

via magnetic / pressure sensor information.

• LANDSCAPE game: up to 5 users can move into the center field of stage

between the 26 lights and build valleys and mountains using a terrain builder

algorithm which uses the user’s x and y position and z / height information via

magnetic / pressure sensor information in the APP to shape a 3D landscape

terrain model.

3.4.3 ODO Conversation

ODO uses its multiple sensing modalities synergistically to interact with up to five

given audience members at a time. A text-based conversation is limited like every

other natural conversation to one partner, but in games and physical interactions

the chatbot can interact with up to 5 users at the same time. At the start of the

conversation, ODO asks each audience member for their names. ODO leads the

conversation dialog. The audience members use either a text-based or voice-to-text

application on their mobile phones to send system input. These are stored in the
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order in which they are sent, and are responded to in turn by the system. Since ODO

has multiple responses for any particular intent, there is a very low probability of

repeated responses from ODO due to multiple similar inputs. However, having ODO

respond to each participant in turn does limit the ability of the system to have a long,

extended conversations with each user. At the same time as the conversation, the apps

also send movement and position sensor information continuously. Most of the script

for ODO tends to encourage somatic and physical games for the audience leading

through a story of a journey, while the chatbot cannot leave the stage physically.

The play is based on the premise that ODO is aware of being stuck on stage. The

chatbot needs to communicate and to play with the audience to grow as a character.

At the end of the performance ODO thanks the audience for sharing time and space

to “create a world together”.

The vision cameras track up to 5 faces and perform emotion recognition on these

faces. Typically the five emotion values are combined together via majority vote so

that a single emotion value is held for a particular time period, which the system

uses to inform its responses as a particular intent. The audience is perceived as one

audience body. At the same time, the crowd index system delivers an estimate of

the crowd activity, which is periodically sent every minute to the chatbot that will

trigger unique responses in the output during the performance. Thus the chatbot

alternates between responding to user input, emotions received from each vision sys-

tem, and the crowd index with a combination of asynchronous (as they arrive) as

well as synchronous (periodic emotion queries, etc) behavior in the order in which

these intents are triggered. In Figure 9, we show an example of the output of the

system for a sample conversation of ODO. We can see ODO exhibiting several of the

conversational strategies described earlier, including working with the emotion data

to inform its responses at the end.
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Figure 3.9: Example ODO Conversation
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Average Latency and bandwidth of the System

Max-Chatbot 10 ms

Max-Sentence Match-

ing

02 ms

Max-Haiku Poem 60 ms

Max-Emotions 42 ms

Max-Crowd Index 1470 ms*

Table 3.1: Latency of Different Sub-systems in the Chatbot

3.4.4 Latency

We did experiments to quantify the latency of the system. We have used iPerf [100]

to calculate the available bandwidth among the components of the overall system.

We observed the available bandwidth to be 930 +- 5 Mbps among all the system com-

ponents which need to communicate in the ODO’s intranet. Since all the computing

happens on the edge, we do not need internet communication. The latency including

the request and response time is computed and is depicted in the Table 3.1. As we

show, the latency of most of the sub-systems are at interactive frame rates, and thus

are not significantly noticeable for the human users. While it is difficult to compare

these numbers to any benchmarks or baseline numbers, we note that milliseconds are

well within the expectation for an interactive system, and the crowd-index, the only

operation which is longer than a second, is only periodically queried every minute in

the background by the system.
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3.5 DISCUSSION

ODO is a theater production with a multi modal stage, which challenges the

audience to play an active role as listeners and participants. In this production the

audience plays a similar role compared to the chorus of Greek ancient theater. The

chorus is positioned in the “orchestra”, which is the stage area between the audience

and the center of stage. The chorus of the ancient theater is the “translator” from

the imagined world on stage to the world of the audience.

Our multimedia system has a lot of design implications for future work. We note

that the primary novelty of this project is not the individual components as we use

off-the-shelf vision, NLP, and mobile applications to build the system. However, the

culmination of the components, implemented in the system, realizes a full interactive

experience for users, with sensory input and feedback in terms of motion and lighting.

The design of the chatbot and its conversational strategies forms an intermediate

between convergent/task-based and divergent/open-ended designs, which can help

inform the next generation of chatbots. The resulting system design has been achieved

on low-cost edge computing hardware (NVIDIA Jetson Nanos) with minimal latency,

and the actual physical mechanisms of the LED stage with trusses is portable and

mobile, able to be installed in multiple venues with little effort. We believe this system

can serve as an inspiration for artistic installations that leverage state-of-the-art AI

and physical interaction into the system.

Future work is needed to fully evaluate the efficacy of ODO as an experiential

media system, and how it engages users who participate in the production. Putting

the audience into an active role is a difficult task, because the audience expects an

experience, watching a performance from distant. To offer the reader some sense

of the feedback given by the audience, we did informally ask their opinions after
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interacting with the system. The audience gave a mixed feedback on their experience,

mentioning that doing active tasks during the performance also makes it difficult to

enjoy the “linear” parts of the story. The experience, playing an active role was new

to them. Some of them responded to have enjoyed a new role in this performance.

They saw it as a new and different experience compared to a traditional theater

watching experience. Both groups feel better prepared experiencing other interactive

productions. This is good feedback as we go through the iterative design process for

this theatrical performance in the future, and work to evaluate the system from a

HCI perspective. The theater installation “No Body lives here (ODO)” premiered

July 2020 in Munich is also presented in ”Artificial Empathy” exhibition at Center

for Art and Media ZKM Karlsruhe, Germany in Fall 2020.
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Chapter 4

MARTINY

In this chapter, we propose an in-house built, low-cost and low-powered smart

weather station called MaRTiny. This $200 system is built with an intention to

replace the existing $20,000 MaRTy system along with cloud and vision capabilities

by leveraging different edge devices. Different machine learning and deep learning

models are implemented on these devices using low-level API -TensorRT to enhance

performance.

4.1 BACKGROUND

4.1.1 Motivation

The year 2020 marks the Earth’s warmest 10-year period with an average in-

crease in global temperature of 1.3°C above pre-industrial levels. Extreme heat puts

tremendous stress on individuals’ health and well-being and limits their ability to

work, travel, and socialize in outdoor settings. Future trends of urban warming indi-

cate the need for adaption measures to promote resilience in the population.

The outdoor urban environment is a complex arrangement of urban forms and

materials that impact how heat is experienced by pedestrians at the microscale. In

hot, dry cities pedestrian comfort is strongly dictated by the availability of shade

[69, 72]. Pedestrian may respond to microscale outdoor conditions by changing their

walking path from sun to shade or vice versa based on their thermal comfort.

The most common way to report urban heat is air temperature, which has been

shown to be insufficient to quantify personal heat exposure [36, 53]. A more human-

centric metric that emphasizes the heat load on the human body is the Mean Radiant
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Temperature (MRT). MRT objectively quantifies the total short- and longwave radi-

ation the human body is exposed to at a given location and time [46]. This includes

longwave radiation emitted from hot surfaces, such as asphalt parking lots, and short-

wave radiation from the sun. MRT roughly equals air temperature in the shade but

can be 30°C higher in the sun, making a person feel much less comfortable when

it is hot [68]. In desert cities such as Phoenix, Arizona, USA, MRT is the type of

temperature that best describes how people experience heat.

MRT has been successfully used in urban climate and human biometeorology

research to predict heat-related mortality and outperformed air temperature as pre-

dictor [99]. Using computer simulations, MRT was estimated to assess the impact

of tree planting strategies on human thermal exposure under climate change in Van-

couver, Canada [3] and to perform thermal comfort routing in Tempe, Arizona, USA

[71]. Observational studies have quantified the benefit of shade for thermal comfort

of different shade types including trees, engineered structures, and urban form [68].

Accurate, high resolution MRT measurements require expensive equipment, such as

the bio-meteorological instrument platform MaRTy [70], but lower-cost alternatives

such as the grey 38 mm globe thermometers have been developed [98].

Active shade management in cities is important, especially in the Southwestern

US, to provide shade where people work, travel, and socialize outdoors, because

cooling benefits are hyperlocal. Yet, little information exists on how people use public

spaces and when and where they are exposed to outdoor heat. We close this gap by

developing a novel low-cost, portable, smart IOT weather station (MaRTiny) that can

count people in the shade and sun. Connecting hyperlocal meteorological conditions

with space use data captured by a camera reveals behavioral patterns of shade and

sun preferences that vary by time of day, location, and ambient conditions.

36



4.2 RELATED WORK

4.2.1 MRT Sensing and Modeling

MRT Sensing: There are two ways to calculating MRT value, by building hard-

ware setup for measurements or by using mathematical models for estimation. MRT

can most accurately be sensed through integral radiation measurements using the so-

called 6-directional method [41]. This setup aligns three net radiometers orthogonally

to each other to measure the longwave and shortwave radiation in 6 directions which

is summarized into a temperature value using the Stefan-Boltzmann Law:

MRT =
4

√∑6
i=1Wi(akKi + alLi)

alσ
− 273.15 (4.1)

where Ki and Li are the directional shortwave and longwave radiation fluxes,

respectively; ak and al are absorption coefficients for short- and long wave radiation

fluxes, respectively; σ is the Stefan-Boltzmann constant; and Wi are factors that

weigh the directional fluxes to match the cylindrical shape of the human standing

body (0.06 is used for sensors pointing up and down, 0.22 for lateral sensors). The

method is expensive with three net radiometers that cost $5k each.

A more affordable but less accurate method to estimate MRT is using a black

globe thermometer. Globe thermometers such as the Kestrel Heat Stress meter ($500)

have been widely used in outdoor thermal comfort studies to quantify the heat load of

pedestrians [44]. Thorsson et al. [98] developed a low-cost globe thermometer using

a thermocouple in a grey ping pong ball (<$100). The grey color of the globe almost

matches the albedo of the human skin and is an easy and reliable method to estimate

MRT. To convert grey globe temperature Tg to MRT, Vanos et al. [104] developed

an empirical correction equation based on air temperature Ta, wind speed Va, globe

thermometer diameter D = 38mm, and emissivity ε = 0.97 of the globe.
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MRT Modeling: Due to limited sensing resources, MRT measurements across

space and time are usually sparse. To address this gap, microclimate and radiation

models have been developed that can calculate MRT using information on the built

form and meteorological data. For example, RayMan [64] is a point-based, single

location model that requires hemispherical fisheye photos as input and calculates

MRT based on the horizon limitation and standard weather information. ENVI-met

[9] is a 3D gridded computational fluid dynamics (CFD) model that has been widely

used in urban climates studies to assess heat at the neighborhood level. ENVI-met

and RayMan calculate MRT based on the position of the sun to calculate the direct

solar radiation and other radiative fluxes. However, Crank et al. [21] found that both

models do not perform well in extreme heat cases and struggle with complex urban

forms. Currently, no model can accurately estimate MRT in the absence of detailed

urban form parameters.

4.2.2 Pedestrian Counting

Lot of works have been purposed for pedestrian counting and crowd estimation

using different techniques. Sensor-based techniques [56, 86, 109, 118] use passive

infrared (PIR) and proximity sensors to monitor pedestrians in motion. Although

these setups are compact and low-cost, they have a low accuracy and are prone to

miss-classification. These setups are not versatile and work best only under certain

environmental conditions. There also network-based techniques [112, 26, 50] that use

Bluetooth and WiFi networks for crowd sensing.

More recently, there have been works involving machine learning techniques where

low-level image features are extracted using different techniques [13, 14], such as Haar

cascade [107] and HOG (Histogram of Oriented Gradient) [116, 23] combined with
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a regression model like SVM (Support Vector Machine) [116] or with a detector like

AdaBoost [108]. With the introduction of different variants of Convolution Neural

Network, feature extraction became simpler and thus several deep learning models

were built for crowd estimation using individual detection [110, 115, 8, 96, 61] and

using perspective maps [119, 12, 58].

Further, there are works revolving around analysis and study on crowd behaviour

in urban areas [57, 37, 40] and their relation with thermal comfort [28, 4, 33, 27]. Our

main motto is not to challenge any of the existing pedestrian counting technique, but

to combine it with a weather station as a single setup.

In summary, thermal exposure measurements in tandem with public space use

assessments are crucial for active shade management in cities, but accurate MRT

measurement setups are expensive and bulky. Low-cost systems such as grey globe

thermometers have been developed but are not connected to the cloud for easy data

storage and analysis. None of the existing MRT sensing platforms have vision capa-

bilities, and space use is often assessed through time-consuming manual observations.

Finally, physics-based MRT models require detailed 3D data of the urban environ-

ment to model radiation flux densities and sun-exposure. Our MaRTiny system and

machine learning approach address these gaps.

4.3 SYSTEM OVERVIEW

4.3.1 MaRTiny Weather Station

MaRTiny is configured with four types of sensors to collect meteorological data

every minute - a temperature probe/thermometer, UV sensor, humidity sensor, and

anemometer (wind speed). Two temperature probes are utilized for globe and air

temperature respectively. Globe temperature is measured using a gray ping-pong ball
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Figure 4.1: Block Diagram of Martiny Setup with Communication Protocols

attached on top of its probe. The grey color of the globe almost matches the albedo

of the human skin. This emulates omnidirectional thermal exposure for a human

body as a function of radiation, air temperature, and velocity [98]. Air temperature is

measured using a downward hanging white cup that shades the attached temperature

probe. The white cup reflects most of the solar radiation instead of absorbing it to

provide an air temperature ”free” from the influence of solar radiations. For a full list

of meteorological parameters description and units, please see Table 4.2 and for the

full list of sensors used, please refer to Table 4.1. MaRTiny is powered by a DC adapter

of 5V/4A, which is shared by both systems (weather station and vision system). The

anemometer is supplied with 9V power by stepping up the primary voltage source.

This setup can be easily scaled with more sensors without compromising on space

and power.

In practice, low-cost sensors are subject to noise and variation, which can yield

errors in MRT estimation as we show later in Section 4.5. To solve this problem, we

introduce a machine learning model to robustly estimate MRT despite these inaccu-

racies.
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Meteorological Parameters

Parameter Description Unit

Air Temperature Temperature of the surrounding air ◦C

Globe Temperature Temperature experienced in the gray globe ◦C

UV Intensity Medium and long wave UV radiation mW/cm2

Humidity Amount of humidity in the air g/kg

Wind-speed Speed of the wind m/s

Table 4.1: List of Meteorological Parameters Measured by MaRTiny

Part List

Sensor Part no. Cost ($)

Temperature Probe DS18B20 9

Humidity Sensor DHT22 5

UV Sensor ML8511 5

Anemometer Adafruit 35

Arduino Uno 20

Node MCU ESP8266 7

CSI Camera MIPI 20

Nvidia Jetson Jetson Nano 108

Table 4.2: List of Electrical Parts and Its Cost Used in MaRTiny
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Figure 4.2: System Overview of the MaRTiny Vision Using Different Deep Learning

Models

4.3.2 MaRTiny Vision System

Along with meteorological parameters, MaRTiny requires vision capabilities in-

cluding object detection and identification as well as shade detection in outdoor ar-

eas. We leverage the NVIDIA Jetson Nano, which is a low-cost and low-powered

edge device capable of running state-of-the-art deep learning models. The Jetson

Nano features an ARM-based micro-processor built with a Nvidia V100 GPU that

is programmed through Nvidia’s low level API TensorRT engine. To capture video,

we utilize a compact MIPI (Mobile Industry Processor Interface) camera and stream

the data to the Jetson Nano using a gstreamer pipeline. Vision data is sent to AWS

via an external USB WiFi on-board. In the next section, we describe in detail our

deep learning networks to detect people as well as shade regions in a scene in a

privacy-preserving manner.
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4.3.3 Data Logging and Communication

To read the meteorological sensor data, we use Arduino Uno, a cost effective and

versatile micro-controller. The Uno board communicates with a NodeMCU micro-

controller featuring an ESP8266 architecture that has an inbuilt WiFi module, flash

memory, and supports the PEM (Privacy Enhanced Mail) file system. Sensor data

are continuously read in a loop by the Uno board with a small delay of 1ms to

avoid overheating. Records are collected in a buffer, and an average is calculated for

every minute, which is then transmitted to the NodeMCU board. On average, the

Uno acquires around 80 readings per minute. Both boards make use of the serial

communication protocol UART (Universal Asynchronous Receiver/Transmitter) to

communicate with each other.

The NodeMCU communicates securely with the online database. For our appli-

cation we utilize AWS DynamoDB, which is a NoSQL database. Unlike traditional

relational database systems, NoSQL can handle unstructured data, making it very

flexible. All the necessary security PEM files are stored in the flash memory of

NodeMCU, which is required during authentication of MaRTiny. Using these files,

NodeMCU establishes a communication path with AWS through the MQTT protocol.

MQTT is an extremely lightweight publish/subscribe messaging protocol designed for

IoT communication. Once the communication is established, Node MCU waits for

bytes of data to be received from the Uno board. Sensor data collected by Uno is

sent to NodeMCU via serial communication every minute, which is then transmitted

to DynamoDB using the MQTT protocol.
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4.4 IMPLEMENTATION

To fully leverage the MaRTiny system, we require advanced machine learning

capabilities on-board the device to fully interpret and analyze the meteorological

sensor data and images captured. In this section, we first describe our approach

for robustly estimating accurate MRT from the sensor data via supervised learning

with a SVM (Support Vector Machine) and ANN (Artificial Neural Network) models.

Next, we describe deep learning models for people detection and shade identification

in images, which allows to count people in shade. To preserve privacy, images taken

by our vision are purely used for detection purposes and are not stored on the device

memory or in the cloud.

4.4.1 Machine Learning Model for Accurate MRT Estimation

As MaRTiny is a low-cost, compact alternative to the MaRTy sensing platform [70,

73, 68] the replacement of highly accurate sensors has drawbacks including less sen-

sitivity and sensor lag [35]. We noticed these inaccuracies caused serious errors in

the calculated MRT values (Figure 4.7). In particular, MRT was sensitive to the po-

sitioning and orientation of the MaRTiny relative to MaRTy (e.g the MaRTiny was

shaded, which resulted in lower MRT values, while MaRTy’s net radiometers were

partially sun-exposed).

To overcome this limitation, we formulate MRT estimation as a supervised learn-

ing problem. This requires labeled ground-truth MRT values to be provided in corre-

spondence with our less robust meteorological sensor data. In Section 4.5, we discuss

dataset collection consisting of paired MaRTy and MaRTiny measurements to create

this labeled data. This allows us to train a machine learning model to estimate MRT

accurately from MaRTiny sensor data.
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Figure 4.3: MaRTy and MaRTiny experimental setup
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We explored both, a traditional machine learning method using support vector

machine (SVM) model, with three different kernels as well as deep learning method

by using an artificial neural network (ANN) model to perform this supervised learning

task. We outline the results of this estimation in Section 4.5. In particular, we

observed an SVM with RBF (Radial Basis Function) kernel achieved the highest

accuracy on our evaluation dataset. This method has the added advantage of being

computationally lightweight, so it can be easily deployed on the Jetson Nano with

minimal resource requirements for training and inference purposes.

4.4.2 People and Shade Detection

We leverage state-of-the-art deep learning models to detect people in the shade

and sun. Important model selection criteria: the models need to fit onto the NVIDIA

Jetson Nano and they must be able to process frames coming from the MIPI camera

with a frame rate of at least 1fps.

Shadow Detection: To perform shadow detection in an image, we use the deep

learning model Bi-directional Feature Pyramid with Recurrent Attention Residual

Modules (BDRAR) [122], visualized in the upper branch of Figure 4.2. This BDRAR

network takes a single image as input and outputs a binary shadow map as output

in an end-to-end manner. First, it leverages a convolutional neural network (CNN)

to extract feature maps at different spatial resolutions. It then employs two series

of recurrent attention residual modules to fully exploit global and local context for

these feature maps. The features captured by shallow layers exploit shadow details

in the local regions and the features captured by deep layers understands the overall

shadow regions of the image. To implement this network in practice on the Jetson

Nano, we updated the code base to the Jetpack-v4.4 Linux system running on our

embedded device including rewriting the code in Python 3.6.
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Figure 4.4: Shadow Masks Captured by the Martiny Vision System

Object Detection: For object detection, we utilise the state-of-the-art Yolov3

network [2]. The model is trained on 80 different classes of the Microsoft COCO

dataset with high object detection performance. The Yolov3 algorithm can be built

using two different frameworks - DarkNet and MobileNet [87]. The MobileNet frame-

work is computationally light but has low accuracy, hence we decided to use the

Darknet framework.

Since the YOLOv3-darknet model is large and computationally expensive to run

on the NVIDIA Jetson Nano, we converted it into a simple neural graph using Nvidia’s

TensorRT. This allowed the model to run successfully on the Nano with a frame-rate

of 4fps, which is sufficient for our application.
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Figure 4.5: Pedestrian Counter for Sun Exposed and in Shade Regions

Pedestrian in Shade Detection

Images represent the 3D environment in 2D, limiting our ability to determine the exact

location of a person on the ground and distance from the camera. We introduce a

simple approach to identify pedestrians in shade without determining the position

in 3D space. First, a binary shadow map from BDRAR indicating the presence of

shade per pixel is computed periodically (in our case, every 15 minutes as shade

does not vary significantly in such a short time). For every frame from the 4fps

MIPI camera, yolov3 outputs objects with their bounding boxes consisting of pixel

coordinates for the corners. Our algorithm calculates the IOU (Intersection over

Union) of the bounding box with the shade map. We consider a person to be in

shade if 40% of the bounding box region is inside the shade map (i.e. IOU = 0.4).

Calculating IOU without considering the position of the person with respect to

shade can lead to errors. For example, in the Figure 4.6, one person is sun-exposed

and the other person is in the shade. IOU of the bounding box with the shadow map

equals 60% in the first case and 40% in the second case. IOU for the first case is

high due to shade in the background and shadow cast by the person’s body. This is
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the most common type of error that occurs at different orientations and positions of

a person; therefore, it is necessary to distinguish between shade from a person and

shade from the surroundings. The algorithm first checks if the edge of the bounding

box is in the shade. Aa person does not have to be completely in shade to feel the

cooling effect, hence we consider only the bottom half i.e. 50% of the bounding box as

ROI (Region of Interest). We then calculate IOU between this region and the shadow

map. For our application an IOU of 80% (which implies an IOU of 40% in the overall

picture) is considered the optimum value for a person to experience the cooling effects

of shade. The ROI and IOU is subjected to change based on the environment and

application, but the core logic will remain same.

People count data for sun and shade along with other space use relevant counts

(umbrellas, pets, and bicycles) are reported to the online database, and the frame

with identifying features is discarded. This allows our device to preserve the privacy

of the individuals being observed, which is necessary for public deployment of the

sensing platform.

4.4.3 Training

As MaRTiny is a low-cost, compact alternative to the MaRTy sensing platform [70,

73, 68] the replacement of highly accurate sensors has drawbacks including less sen-

sitivity and sensor lag [35]. We noticed these inaccuracies caused serious errors in

the calculated MRT values (Figure 4.7). In particular, MRT was sensitive to the po-

sitioning and orientation of the MaRTiny relative to MaRTy (e.g the MaRTiny was

shaded, which resulted in lower MRT values, while MaRTy’s net radiometers were

partially sun-exposed).

To overcome this limitation, we formulate MRT estimation as a supervised learn-

ing problem. This requires labeled ground-truth MRT values to be provided in corre-
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spondence with our less robust meteorological sensor data. In Section 4.5, we discuss

dataset collection consisting of paired MaRTy and MaRTiny measurements to create

this labeled data. This allows us to train a machine learning model to estimate MRT

accurately from MaRTiny sensor data.

We explored both, a traditional machine learning method using SVM model with

three different kernels as well as Deep learning method by using an ANN model to

perform this supervised learning task. We outline the results of this estimation in

Section 4.5. In particular, we observed an SVM with RBF (Radial Basis Function)

kernel achieved the highest accuracy on our evaluation dataset. This method has the

added advantage of being computationally lightweight, so it can be easily deployed

on the Jetson Nano with minimal resource requirements for training and inference

purposes.

4.5 RESULTS

4.5.1 Data Collection

To evaluate the MaRTiny system, we collected a custom dataset of ground truth

MRT values for two sun-exposed outdoor locations for three days in Tempe, Arizona,

USA. For validation purposes, the MaRTy human-biometeorological platform [70]

was paired with the MaRTiny system for simultaneous data logging. Figure 4.3

illustrates the paired setup and the difference in scale between MaRTy and MaRTiny.

In addition, an image dataset was collected to evaluate the performance of the object

and shade detection. Using a pipeline, the images from the MIPI camera were stored

at random intervals along with the bounding boxes of present objects. Ground truth

bounding boxes were drawn manually using tools such as [2, 101] for 30 images

consisting of around 50 different objects. We calculate Precision and Recall for each
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object, which is further used to calculate MAP. The same images were used to evaluate

shade detection using IOU (Intersection Over Union) metrics. Small snippets of videos

were stored at random intervals which helped to cross verify number of people in a

given time frame. All the images and videos were stored in AWS S3 bucket and later

deleted to preserve privacy.

4.5.2 MRT Estimation

We first evaluated the performance of MaRTiny in estimating MRT values. We

utilize Equation (4.1) with the sensor data on-board the system to calculate MRT.

MaRTy logs data every 2 seconds, and MaRTiny stores data every minute, hence we

calculated 1-min averages for comparison. Ground truth MRT was calculated using

Equation (4.1). Figure 4.7 shows MaRTiny MRT results in green and MaRTY’s

ground truth calculation in red. A significant error in MaRTiny’s estimation of MRT

was found in the morning with an MSE of 10◦. The error is due to the offset of the

two devices, which caused the MaRTiny sensor to be partially shaded by a nearby

palm tree in the morning while MaRTy’s net radiometers were sun-exposed.

To improve MRT estimations, we utilize our supervised learning approach using

both support vector machines and artificial neural networks. Machine learning models

were trained on selected meteorological parameters - air temperature, globe temper-

ature, humidity and UV intensity, which were comparatively more accurate and less

prone to noise. We used around 12,000 data points for training and 3000 for testing

from a range of dates, times, and locations in the sensing period. Cross-validation

was used to tune hyperparameters of the models. A separate dataset for evaluation

consisted of around 700 data points from a single location collected in a day as is the

usual application for this algorithm.
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Since there is a non-linear relation of globe temperature and air temperature

with MRT given in (4.1), we anticipated the need of machine learning models which

could understand complex non-linear relation between these parameters. SVM with

RBF kernel and a neural network with Relu activation function are example of such

models. In Table 4.3, we present a comparison of SVMs with three different kernels

and a traditional artificial neural network. We report root mean square error (RMSE)

for both the testing and evaluation datasets. Note that the results of linear and

polynomial SVM kernels justify our earlier assumption and the results of SVM with

RBF kernel as well as the ANN achieved the best performance in quantitative metrics.

We visualize SVM-RBF’s MRT curve in Figure 4.7.

We trained our ANN on a i7 CPU. We set our learning rate α to 0.001, which took

around 5 minutes and 300 epochs to converge. Although this model performs slightly

better on the test dataset thant the SVM-RBF model, performance is identical on the

evaluation dataset. The SVM model is lighter and can be easily trained and deployed

on edge devices such as Jetson Nano.

4.5.3 Shade and Object Detection

For the object and shade detection algorithms, we used pre-trained models that

were evaluated by their respective studies [2, 122]. However, for our example appli-

cation of detecting people in shade, we leverage our small custom image dataset that

we curated to estimate this information.

The standard evaluation metric used for any object detection is mAP (Mean

Average Precision). Bounding boxes were manually drawn using the tool for the

dataset consisting of 30 images and IOU was calculated with the bounding boxes

predicted by our model. Precision and recall is calculated for a series of different IOU

thresholds ranging from 0.5 to 0.95. A precision-recall graph is constructed and the
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area under this graph provides us the mAP value of around 55%. All These steps

were carried out programmatically in python language using frameworks like PyTorch

and numpy. For our application IOU threshold of 0.5 gives us the optimal results.

We also achieved an Average Precision of more than 85% for each of the following

classes - Pedestrian, Bike, Pets and Umbrella.

The evaluation of the shadow detection is done on a per pixel basis, which is a

binary evaluation method. A dataset consisting of 30 shade images was collected

from different locations and time. We manually annotated these images using the

tool [101] and calculated IOU of the shadow map with the ground truth and found a

precision of 90%. This is not the most effective method to calculate the accuracy of

the model due to the irregular shapes, human error in annotation and small dataset

and hence we back it up with the evaluation metrics of the original paper [122].

Machine Learning Algorithms for MRT

Algorithm RMS-Test RMS-Eval

SVM-Linear 16.8 20.2

SVM-Poly 12.01 10.02

SVM-RBF 4.61 3.95

ANN 3.28 3.82

Table 4.3: Performance of Machine Learning

4.6 DISCUSSION

In our work, we combine meteorological sensing with computer vision techniques

to understand the relationship between weather and public space usage. MaRTiny

leverages edge devices which are low-cost, low-powered, and yet computationally ca-
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pable of running state-of-the-art Machine Learning algorithms. We compared our

results with different setups, metrics, and methodologies 4.5 and conclude that the

MaRTiny system can replace $20k worth MaRTy system in addition to the IOT and

vision capabilities, but considering few of its limitations.

The MaRTiny Weather Station is built using off-the-shelf sensors, making them

highly sensitive to environmental and circuit noise, effecting the accuracy of MRT

calculation. During the experiments we observed that the position and orientation

of MaRTiny makes a significance difference for MRT calculation. The shading effect

caused by surrounding trees and buildings is one such example. We also observed

errors in MRT calculation during cloudy and hazy days, as globe temperature sensor

and UV sensor were affected by the clouds. This limitation is true even for our

trained machine learning model as it is not trained on different climatic conditions.

The conversion of the codebase of BDRAR network to python3.6 (explained in the

Section 4.4), causes small inaccuracies in the shadow map estimation. Further, there

are few scenarios where the pedestrian is partially under shade but our algorithm fails

to recognise these.

In the future, we will build several MaRTinies and deploy them in public parks

and playgrounds in collaboration with the City of Tempe. Data will provide impor-

tant insight into how people use public spaces under varying meteorological condi-

tions, especially in the summer when temperatures can reach 115◦F in the Phoenix

metropolitan area. We also plan to train our ML model to include a variety of weather

conditions, such as cloudy and windy days, to make it more accurate, robust, and

scalable to other locations and geographies.
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Figure 4.6: Images of a Person with Bounding Box and Shadow Map of the Surround-

ing
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Figure 4.7: Graph Comparison of ML model with ground truth

Figure 4.8: Sample Images of Shade Detection and Pedestrian Counting
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Chapter 5

CONCLUSION

In this thesis I presented machine learning and computer vision techniques applied

on edge devices in two different fields. I first discussed how different edge devices are

used to achieve better understanding of people in Chapter 2 and better understanding

of an environment in Chapter 3. Techniques like edge detection and key-feature

extraction are crucial for every image analysis. Applications of these techniques are

discussed in Chapter 2 for understanding and classifying emotions and in Chapter 3

to detect pedestrians and regions of shade.

I also discussed how different domains are combined with deep learning meth-

ods to achieve interdisciplinary goals. In our ODO project we combined sequence

translation methods, used to interpret language with vision techniques and clustering

algorithms to build a sophisticated AI system capable of interacting with users. In

our MaRTiny project, we combined an IoT weather station, which calculates MRT

value with pedestrian detection algorithm to provide a full-fledged understating of

the public space usage.

ODO project paved a new path in the field of arts, media and theater. ODO

challenges the conventional method of theatrical plays and encourages audience to be

a part of the play and also gives freedom to construct their own story. This portable

system which is packaged with flawless story narration along with user interactions

and supported by movable LED system was made possible using edge devices and

their abilities to run machine learning algorithms. Although the story is customized

according to the user, they are still bound within the boundaries set by the narrator.

As a part of future work, ODO is to be developed with general purpose intelligence,
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capable of striking general conversations with the users without any boundaries.

While ODO is built to create better experience of the theater, MaRTiny on the

other hand is built with an intent to solve urban city meteorological problems. MaR-

Tiny has the potential to replace $20,000 system, saving around 99% of the expense.

The IoT system along with vision capabilities makes it one of its-kind device for urban

city research. These systems when installed across a city, can provide great insight

into the weather conditions at different parts of the city, people’s outdoor behaviour

at different climatic conditions and public space usage. These parameters play very

crucial role for town planning, architecture and civil engineering.

We have reached a stage in technological growth, where every field can make

use of machine learning algorithms to improvise their processes and solve complex

problems. The two projects discussed through out the thesis are examples of this.

From arts, media and theater to urban climate research, machine learning is used

to either solve an existing problem or to build something new. The low-cost, low-

powered and portable edge devices makes this possible by facilitating the platform to

run ML algorithms efficiently.
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