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ABSTRACT

REACT is a distributed resource allocation protocol that can be used to negotiate

airtime among nodes in a wireless network. In this thesis, REACT is extended to

support quality of service (QoS) airtime in an updated version called REACTQoS.

Nodes can request the higher airtime class to receive priority in the network. This

differentiated service is provided by using the access categories (ACs) provided by

802.11, where one AC represents the best effort (BE) class of airtime and another

represents the QoS class. Airtime allocations computed by REACTQoS are realized

using an updated tuning algorithm and REACTQoS is updated to allow for QoS

airtime along multi-hop paths. Experimentation on the w-iLab.t wireless testbed in an

ad-hoc setting shows that these extensions are effective. In a single-hop setting, nodes

requesting the higher class of airtime are guaranteed their allocation, with the leftover

airtime being divided fairly among the remaining nodes. In the multi-hop scenario,

REACTQoS is shown to perform better in each of airtime allocation and delay, jitter,

and throughput, when compared to 802.11. Finally, the most influential factors and

2-way interactions are identified through the use of a locating array based screening

experiment for delay, jitter, and throughput responses. The screening experiment

includes a factor on how the channel is partitioned into data and control traffic, and

its effect on the responses is determined.
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Chapter 1

INTRODUCTION

In the modern world, wireless networks are everywhere and are used by billions

of people. According to the Cisco Annual Internet Report for 2018 to 2023, the 5.1

billion mobile subscribers in 2018 are predicted to grow to approximately 5.7 billion

by 2023 [1]. Connected devices can range from laptops or desktops connected through

a home wireless local area network (WLAN), to a cell phone connected to a cell tower

using 5G, to a low power Internet of Things sensor. With the emergence of 5G, new

applications that require quality of service (QoS) support are possible including ultra

reliable, low latency applications, such as autonomous vehicles and high capacity

applications such as virtual reality. However, 5G has some limitations, depending on

the technology used, such as the need for line of sight with the cell tower. These hold

it back from being the complete solution for every situation. WLANs have become

the access method of choice for the home, the workplace, and public spaces such

as libraries or coffee shops. They are envisioned as an offloading solution for 5G

networks, where the 5G infrastructure is unavailable or overloaded [2]. However, this

means that WLANs also need to support QoS at a level comparable to 5G.

One mechanism for achieving QoS support in WLANs is airtime allocation. Air-

time is the amount of time the channel is sensed busy due to frame transmissions [3].

This means that the amount of time a device spends transmitting is its airtime allo-

cation. In order to provide QoS support in a wireless setting, we need to ensure that

applications that require a higher airtime allocation than others get it, if possible. To

provide guarantees on metrics such as delay, airtime allocations need to be consistent

and unaffected by other transmitting devices.
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The most common channel access method for WLANs today is the Wi-Fi stan-

dard, or IEEE 802.11 [4]. Its main mechanism is the distributed coordination function

(DCF), a carrier sense multiple access protocol with collision avoidance (CSMA/CA).

The IEEE 802.11e amendment introduced traffic prioritization in the enhanced dis-

tributed channel access (EDCA) protocol using access categories (ACs) for different

traffic classes [5]. Each class has its own contention window values, allowing for higher

priority traffic to be transmitted in the network before lower priority traffic. The QoS

support provided by IEEE 801.11e is still limited, as there are no guarantees on delay,

jitter, throughput, or other metrics.

IEEE 802.11 does not allocate airtime to individual nodes; rather, each node

attempts to gain access to the channel as much as possible. A distributed resource al-

location protocol, REACT negotiates an airtime allocation among neighboring nodes,

where nodes concurrently demand and offer airtime [6]. If the sum of all of the nodes’

demands is more than is available, the remaining airtime is divided equally among

the nodes for fairness. Once REACT has converged on an allocation for a node,

the allocation must be realized. The original work on REACT proposed a scheduled

MAC protocol where the allocation corresponded to slot assignments, implemented

in simulation [6]. Later work used a contention-based method, tuning the contention

window using an algorithm based on renewal theory (RENEW [3]), and with a control

theoretic approach (SALT [7]). Through experimentation on a testbed with these two

tuning approaches, REACT had lower delay and jitter statistics than IEEE 802.11,

with only a relatively small reduction in throughput [7].

We propose an extension to REACT, REACTQoS, which extends the original al-

gorithm to support two different classes of airtime, QoS airtime and best effort (BE)

airtime. Using the same concept of demanding and offering airtime, REACTQoS al-

lows nodes to request and receive QoS airtime, which is prioritized by the algorithm.
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Any remaining airtime is distributed among the remaining BE nodes as in the orig-

inal algorithm. We study REACTQoS in an ad-hoc wireless network setting because

REACT was originally designed, implemented, and evaluated in an ad-hoc scenario

as well.

The contribution of this work is summarized here. First, the REACT algorithm

and the SALT tuning algorithm are extended to support differentiated traffic. Sec-

ondly, REACTQoS is implemented and also updated to allow for dynamically changing

demands, where prior work focused on static demands. Next, to improve the perfor-

mance of the tuning, a traffic shaping mechanism using Linux traffic control (tc) is

introduced to prevent nodes from obtaining higher airtime than they are allocated.

Multi-hop REACTQoS is enabled through a reservation server, allowing flows to re-

serve airtime along a multi-hop path, and enabling QoS support in more complex

networks. We demonstrate that the new algorithm can successfully allocate differen-

tiated airtime for nodes requesting a higher priority of service, while equally sharing

remaining airtime among BE nodes. Finally, a set of screening experiments is con-

ducted to uncover the most influential factors and 2-way interactions in our ad-hoc

scenario with REACT. This experiment is conducted as part of an investigation into

REACT control parameters.

The rest of this thesis is organized as follows. We begin by providing some back-

ground and more in depth explanations of the 802.11 Wi-Fi standard and past work

on REACT, as well as the evaluation environment and an overview on screening ex-

periments in Chapter 2. Then we present the QoS extensions to REACT in Chapter 3

and describe the implementation in detail. In Chapter 4 we discuss the design of the

evaluation experiments for REACTQoS under single-hop settings and in Chapter 5

we discuss the experiments in a multi-hop setting. The screening experiments are

3



discussed and analyzed in Chapter 6. Finally, we describe our conclusions as well as

next steps for REACT in Chapter 7.
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Chapter 2

RELATED WORK

Supporting QoS in wireless networks is a difficult problem. Many attempts have

been made, and no one solution is the best for all situations. In this chapter we

give some background on the current 802.11 Wi-Fi standard and the past work on

REACT. We also describe the testing environment used for experimentation, and give

an overview of screening experiments using locating arrays which is a technique we

use to screen for significant factors in our experimentation.

2.1 802.11 Wi-Fi Standard

The 802.11 Wi-Fi standard is the dominant protocol used today in WLANs [4]. As

mentioned in Chapter 1, the main mechanism of the protocol is the distributed coor-

dination function, or DCF. As mentioned in the introduction, DCF is a CSMA/CA.

CSMA protocols with collision avoidance differ from those with collision detection

(CSMA/CD) due to the underlying limitations of the technology. Technologies that

uses CSMA/CD do not try to avoid collisions because it is possible for them to detect

a collision in the middle of sending data. One such example is the Ethernet protocol

(802.3) [8]. WLANs using half-duplex technologies, however, cannot simultaneously

transmit and receive; this means that they cannot detect if a collision is occurring

during a transmission. In fact, once a transmission is started, 802.11 carries it out

until it is complete. This could result in extreme under-utilization of the channel,

hence the need for collision avoidance.

The DCF protocol operates by competing for channel resources. It maintains a

contention window (CW), from which a backoff counter is randomly selected. The
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backoff counter must count down to zero before attempting to transmit, and once it

does, DCF checks to see if the channel is busy. If the channel is quiet, it can then at-

tempt its transmission after waiting a period of time called the distributed interframe

space (DIFS). When a station receives a transmission, it sends an acknowledgement

after waiting a period called the short interframe space (SIFS). The SIFS, plus the

propagation delay, is shorter than the DIFS, so no stations are able to detect the

station idle and attempt to transmit during the SIFS. Acknowlegements are required

because half-duplex nodes cannot both listen and transmit at the same time.

Collisions are detected if a node does not receive an acknowledgement within a

timeout period. If a collision is detected, the size of the contention window is dou-

bled until it reaches its maximum value. This increases the probability that the next

backoff counter value chosen from the CW is larger than before. If a transmission is

successful, the contention window is reset to its minimum value, giving that node a

higher chance of being able to transmit again sooner. The minimum and maximum

values are hardware dependent, but typical values include CW = [15, 1023]. The use

of the contention window (and randomly selecting values from it), reduces the chance

of a collision between nodes. This operation of the protocol is called the two-way

handshake and is the basic access mechanism of the protocol. In addition, 802.11

also has a four way handshake that allows nodes to send a request to send (RTS)

message to “reserve” the channel for a transmission. On reception of an RTS mes-

sage, a node responds with its own clear to send (CTS) message letting the original

node know it can start its transmission. Then the node can transmit, and receives an

acknowledgement once the data has been received. The RTS/CTS messages contain

information about the transmission, such as the length of the packet being transmit-

ted. This allows nearby nodes to stay quiet during the length of the transmission,

ensuring that longer packets can be sent without collisions. 802.11 has been shown to
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perform fairly well, and the RTS/CTS mechanism tends to perform better than the

basic access mechanism [9]. However, it can also be a source of unfairness [10]. This

is due to the fact that upon a successful transmission the CW is reset to its mini-

mum value, but when a collision is detected the window is doubled. This can lead

to nodes having successful transmission having a higher chance to transmit sooner,

where unsuccessful nodes have a lower chance.

The 802.11e amendment, introduced in 2005, proposed the enhanced distributed

coordination access (EDCA) protocol, which uses different access categories (ACs) to

provide traffic differentiation in WLANs [5]. The amendment outlines four ACs, for

different types of traffic, each with an increasing level of priority: BK for background

traffic, BE for best effort traffic, VI for video traffic, and VO for voice traffic. EDCA

still uses DCF to operate, but instead of just one CW, it now uses one for each AC.

Now, instead of just competing with other nodes attempting to transmit, there is

contention among the different ACs. Each AC has a different value for its maximum

and minimum CW sizes, with the higher classes having much smaller maximum CWs

than the lower classes. Additionally, EDCA introduces the arbitration interframe

space (AIFS), which is a period of time the AC has to wait after the backoff counter

has expired and before attempting to transmit. Again, the higher classes have smaller

AIFS values than the lower ones, giving them higher priority since they can attempt

to access the channel sooner. If an intra-node collision is detected between two ACs,

the AC with the higher priority gets to transmit and the lower AC behaves as if it

detected an inter-node collision.

Although EDCA provides some level of QoS support, there are still no guarantees

on delay, jitter, or other statistics. It essentially amounts to prioritizing certain traffic

over others with no guarantees. An alternative protocol enhanced improved delay and

jitter characteristics is described next.
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2.2 REACT

REACT is a distributed resource allocation protocol that uses the metaphor of

an auction to decide an airtime allocation for the network. Initially described in [6],

REACT operates in an ad-hoc setting with each node running both an auctioneer

and bidder program. The auctioneer auctions off a certain resource which has a given

capacity, while the bidder maintains a demand on that resource. The auctioneer

attempts to satisfy all of the demands for both itself and its neighbors. If the total

demands exceed the available capacity, it splits the remaining airtime equally among

the nodes. In this way, the airtime allocation is fair among the nodes. Dividing the

remaining airtime equally is a choice; other divisions are possible as well.

Deciding on an airtime allocation for nodes in the network is only the first step;

after receiving an allocation, nodes need to be able to realize their allocation. Several

techniques for realizing an allocation have been researched. In the first version of

REACT, the allocations decided by REACT are realized by using a random sched-

uled MAC protocol called ATLAS [6]. After allocations are determined by REACT,

ATLAS randomly schedules each node a percentage of slots in which to transmit,

based on the allocation computed by REACT. ATLAS was shown in simulation to

have better delay than 802.11.

Later work focuses on implementing REACT in a testbed, and due to the dif-

ficulties implementing a scheduled MAC protocol in hardware, they are focused on

contention-based approaches. These approaches focus on tuning the contention win-

dow in order to achieve the airtime allocation desired. The idea of tuning works

because the channel access probability depends on the average size of the contention

window [11], and has been successfully done in non-REACT settings such as in [12].

There, the authors use a tuning mechanism to achieve the theoretical maximum
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throughput, ignoring delay and jitter performance. In contrast, REACT wants to

improve the delay and jitter performance without taking throughput into account.

For that purpose, one such tuning approach is RENEW, which is based on renewal

theory [3]. The goal of this approach is to tune the contention window to achieve

the airtime allocation computed by REACT. RENEW relies on the total airtime

achieved, the amount of time the channel is frozen, the number of channel accesses,

and the previous contention window size to predict the size of the next contention

window. In this way, the allocation can be realized in a contention-based manner.

In experimentation, this technique was successful in achieving the airtime allocations

from REACT [3].

Another tuning algorithm, called SALT, is based on a control theoretic approach

[13]. The SALT tuner first observes the current airtime over a given period, and

uses exponentially weighted smoothing technique to predict the size of the contention

window for the next period. The equation used to calculate the next CW value, St,

is given in Equation 2.1 (for values of t > 0; if t = 0, the CW is set to its default

values of [15, 1023]). The value of β is constrained to the interval [0, 1] and is used to

control how much past measurements influence St. The terminology and equations

are taken from [13].

St =

 a1 if t = 1

βat + (1− β)St−1 if t > 1
(2.1)

Once St is calculated, the smoothed airtime is scaled by a factor k to transform it

from a percentage to an actual CW value, Ct. SALT then sets CWmin = CWmax = Ct,

to ensure the CW value is enforced (i.e., CW values are now chosen from the range

[Ct, Ct], so only one value is available). Using this approach, REACT can realize an
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allocation using the SALT tuner. SALT has been shown to perform well, yielding

superior delay and jitter characteristics when compared to the 802.11, with only a

small reduction in throughput [7].

2.3 w.iLab-t testbed

All experiments in this thesis are conducted using the w.iLab-t wireless testbed

in Zwijnaarde, Belgium. The testbed was developed by the CREW project and is

available for use in research experimentation [14]. There are around 40 ZOTAC

type nodes, each of which are equipped with two 802.11abgn antennas which use the

Atheros ath9k driver. In this work, the ath9k driver is extended to both expose the

contention window values to the user, and to allow them to be set to values other than

powers of two. In order to run experiments on complex topologies, an experiment

was first conducted to determine which nodes are in transmission range, allowing a

graph representing connectivity to be established. The transmission power of the

nodes is set to its minimum value, and pings were sent between each of the nodes

in the testbed to determine which have solid connections. The experiment is the

same as was conducted in [13]. All experiments were run on channels that had little

traffic to ensure minimal interference from other transmitting nodes. In addition, all

the ZOTAC nodes were reserved during experiments, although other node types with

Wi-Fi cards are available. As with all wireless experimentation, not all interference

can be avoided.

2.4 Screening Experiments

In addition to the work done on achieving differentiated airtimes, this thesis also

focuses in part on screening experiments in wireless networks. The screening exper-

iments are intended to aid in both research and experimentation. As such, some
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background on experimental design, screening experiments, and locating arrays is

presented here. The screening experiments specific to this work are presented in

Chapter 6, as are the motivations for conducting them in this scenario.

2.4.1 Experimental Designs

In this section, we define terminology used to describe experimental designs. These

definitions were adapted from [15].

Suppose that a system under study has k parameters, P1, . . . , Pk, and that each

parameter Pj has a set Vj = {vj,1, . . . , vj,`j}, of `j possible values. A test is an

assignment of a value from Vj to Pj, for each parameter j = 1, . . . , k. An experimental

design (or, design) is a collection of tests.

When a design has N tests (i.e., of size N), it is represented by an N×k array A =

(aij) in which each column j corresponds to a parameter and each row i corresponds

to a test. When run on the system, a test yields the measurement of one or more

performance metrics. An experiment consists of running each test in the design.

A full-factorial design has tests that include all possible combinations of levels (a

value of a parameter) for every parameter used in the experiment. The size of such a

design is equal to the product of |Vj| for each parameter j = 1, . . . , k. All significant

parameters and t-way interactions for t = 1, . . . , k can be identified using analysis of

variance (ANOVA).

Another experimental design, called a supersaturated design (SSD), is much smaller

than a full-factorial design; the number of parameters is k = N − 1, where N is the

number of tests [16]. The much smaller size of supersaturated designs makes them

much more feasible in experimentation than a full-factorial design. However, they are

only used for identifying factors, not interactions [16].
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In order to discover interactions with many fewer tests than full-factorial designs,

covering arrays can be used. Again, we borrow the definition from [15]. An assignment

of values to any subset t ≤ k of the parameters is a t-way interaction. A covering

array of strength t is an N × k array in which for every N × t subarray, each t-way

interaction occurs in at least one test.

In order to demonstrate covering arrays (and later, locating arrays), we use an

example of an experiment containing four factors: A and B have two values each

{0, 1}, and factors C and D have three values each {0, 1, 2}. An example covering

array of strength 2 is shown in Table 2.1. There are 37 two-way interactions possible,

and these nine tests cover all of them. An example of a two-way interaction is where

A is set to 0 and C is set to 2 (or, A0C2, for short) occurs in at least one test (test 5

in this case).

Table 2.1: Covering Array (Left) and Locating Array (Right)

Test A B C D
1 0 0 0 0
2 0 0 0 1
3 0 0 1 0
4 0 0 1 2
5 0 1 2 1
6 1 0 2 2
7 1 1 0 2
8 1 1 1 1
9 1 1 2 0

Test A B C D
1 0 0 0 0
2 0 0 0 1
3 0 0 1 0
4 0 0 1 1
5 0 0 2 2
6 0 1 0 2
7 0 1 1 2
8 0 1 2 0
9 0 1 2 1
10 1 0 0 2
11 1 0 1 2
12 1 0 2 0
13 1 0 2 1
14 1 1 0 0
15 1 1 0 1
16 1 1 1 0
17 1 1 1 1
18 1 1 2 2
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Covering arrays are useful to ensure that every interaction of strength t is covered,

however, they make no guarantees that it is possible to distinguish the effects of

different interactions. For example, if the response for test 5 of the covering array

is an anomaly, it is not be possible to distinguish which interaction is responsible—

A0B1, A0C2, or C2D1—because all three occur only in test 5. In order to overcome

this limitation, locating arrays can be used instead.

A (d, t)-locating array (LA) is a covering array of strength t, with an additional

locating property : any set of d interactions each involving t parameters can be dis-

tinguished from any other such set by appearing in a distinct set of tests [15]. An

example of a (1, 2)-locating array for the same factors A-D is shown in Table 2.1

(taken from [15]).

The locating array in Table 2.1 distinguishes the three interactions in test 5 of the

CA that the covering array cannot. Each of the three interactions occur in at least

one unique row of the locating array: A0B1 occurs in rows {6, 7, 8, 9}, A0C2 in rows

{5, 8, 9}, and C2D1 in rows {9, 13}.

The size of locating arrays is larger than for covering arrays, although it is much

smaller than the full-factorial design, since they grow logarithmically. For larger

examples, such as in the experiment run in §6.3, the benefits of the smaller size of

locating arrays is more apparent. This is discussed further in Chapter 6.

2.4.2 Experimental Analysis

One important consequence of using locating arrays instead of standard experi-

mental designs is that analysis is more difficult. This is because standard experimental

designs are typically balanced, which means each interaction occurs the same number

of times. Locating arrays are often unbalanced, and so a specialized tool developed

for this purpose is used [17]. The analysis tool uses a level-wise screening method
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to identify the significant factors and 2-way interactions using two algorithms [17].

The first is a breadth-first search algorithm that uses orthogonal matching pursuit to

identify a number of models that are ‘best’ explanations of a response. Each factor

and interaction, also called effects, has a score based on its contribution to the R2

of the model. The second algorithm aggregates the effects of the generated models

and reports them in non-increasing order by their scores. The ranking output by the

screening algorithm is what is used to determine which are the most influential. It

is important to note that the R2 score can sum to more than one. This is because

the score is based on the aggregate contribution of that factor to the R2 across all of

the individual models generated. This analysis program provides the tools needed to

conduct screening experiments using locating arrays and to discover the influential

factors and 2-way interactions in a system.

2.5 Summary

In this chapter we provided background on the various protocols, techniques, and

technology that supports the work done in this thesis. We discussed the 802.11 Wi-Fi

protocol, which is the dominant MAC protocol for WLANs, as well as REACT which

is an alternative protocol that provides improved fairness over 802.11. We provided

a high-level overview of the testbed and testing environment and concluded with a

section on screening experiments using locating arrays. Now we move on and describe

our updated REACT algorithm, which we do in the next chapter.
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Chapter 3

REACTQOS

In this chapter we describe the extensions made to the REACT algorithm, the

new version that we call REACTQoS. In §3.1 we present Algorithms 1 and 2 which

together compose the REACTQoS algorithm. In §3.3 we describe how REACTQoS is

implemented as well as the extensions for allowing demands to be changed dynami-

cally. We describe the new traffic shaping mechanism to assist the tuning algorithm

in §3.4, and finally give the updated reservation algorithm used to support multi-hop

flows in §3.6. REACTQoS was first presented in [18], along with Experiments 1-4.

3.1 QoS Extensions to REACT

As mentioned in §2.2, REACT negotiates the airtime allocations for nodes in a

wireless network. The idea behind QoS support in REACTQoS is to provide two

classes of airtime that nodes can request. This allows some nodes to receive a higher

airtime allocation for their applications. In an ad-hoc setting, each node runs both

an auctioneer and a bidder algorithm. It maintains the list of offers and claims,

respectively, for itself and its adjacent auctions (neighbors).

We define two traffic classes: QoS and BE. In the QoS class, a node is guaranteed

its allocation if available, while the BE class offers no guarantees on how much airtime

a node receives. In the single-hop experiments described in Chapter 4, all traffic from

a node is treated as a single flow. Therefore, each node is considered either a QoS

node or a BE node, and must select whether it is requesting QoS airtime or BE

airtime. In contrast, in Chapter 5 nodes have to forward traffic from both a BE and a
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Algorithm 1 REACT Bidder for node i.

1: upon initialization do
2: αi ← ∅ . set of neighboring auctions of bidder i
3: BO

i ← ∅, QO
i ← ∅ . set of BE, QoS offers

4: qi ← 0, bi ← 0 . QoS, BE demand for bidder i

5: upon receiving a new demand magnitude (qi, bi) do
6: UpdateClaim()

7: upon receiving offer (xj, yj) from auctioneer j do
8: QO

i [j]← xj
9: BO

i [j]← yj
10: UpdateClaim()

11: upon bidder i joining auction j do
12: αi ← αi ∪ j
13: UpdateClaim()

14: upon bidder i leaving auction j do
15: αi ← αi \ j
16: procedure UpdateClaim()
17: for offer ∈ QO

i do
18: if offer < qi then
19: qi ← 0

20: QoS claim ← qi
21: BE claim ← min({offers [j] : j ∈ BO

i }, bi)
22: send (QoS claim,BE claim) to all auctions in αi

QoS flow, so two flow classes are available. We now present the bidder and auctioneer

algorithms that form REACTQoS.

Algorithm 1 presents the REACTQoS bidder. Each bidder i maintains three sets:

BO
i is the set of BE offers, QO

i is the set of QoS offers, and αi is the set of nearby

auctions for bidder i. Additionally, the bidder keeps track of two variables, qi and

bi which are its QoS and BE demands or claims, respectively. Initially, all sets are

empty and demands are zero.

Initially, for the single-hop experiments, nodes are considered as either QoS or BE

nodes, so only one of the two demand types is allowed to be positive at one time.

However, for the multi-hop experiments, it is necessary for each node along the path
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to have both QoS and BE demands, therefore both are allowed to be positive. When

the bidder receives a new offer from auctioneer j, it updates its sets accordingly. The

main function for the bidder is UpdateClaim (lines 16-22). The node must check

whether it has received QoS offers from each of its neighboring nodes, and that the

offer is at least as large as the demand. If any of the offers from neighboring nodes is

not as large as the demand, it sets qi to zero. After it checks all neighboring offers, it

sets QoS claim to qi and BE claim to the minimum of all offers in BO
i and bi. Finally,

it sends the tuple (QoS claim,BE claim) to all auctions in αi.

Algorithm 2 presents the REACTQoS auctioneer. Similar to the bidder, the auc-

tioneer maintains three sets: BC
j is the set of BE claims, QC

j is the set of QoS claims,

and βj is the set of bidders at auction j. It maintains one variable cj, the capacity of

its resource, which is the airtime to auction at that node.

The main part of this algorithm is the function UpdateOffer (lines 9-36). In

this function, two sets are maintained: R is the set of all satisfied QoS bidders, and C

is the set of all satisfied BE bidders. As the algorithm works through claims, it adds

bidders to these sets accordingly. The variable Aj is the remaining airtime that has

not been allocated and is initially set to the capacity of auction j, cj. The boolean

flag done keeps track of when the algorithm has terminated.

Lines 13-15 check if all bidders have been satisfied or constrained by this auction;

a bidder is constrained by an auction i if it cannot increase its claim based on a higher

offer from a different auction j. Then, BE offer is set to the remaining airtime plus

the maximum claim in BC
j , to ensure that a bidder can increase its claim if it is no

longer constrained by an adjacent auction. Lines 16-26 are where QoS claims are

satisfied and whether BE claims need to be constrained.

REACTQoS first attempts to satisfy each of the QoS bidders, subtracting out their

claims from the pool of available airtime (lines 18-23). If the claim is less than the
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Algorithm 2 REACT Auction for node j.

1: upon initialization do
2: βj ← ∅, cj ← 0 . set of bidders, capacity at auction j
3: BC

j ← ∅, QC
j ← ∅ . set of BE, QoS claims at j

4: upon bidder i joining auction j do
5: βj ← βj ∪ i
6: upon bidder i leaving auction j do
7: βj ← βj \ i
8: UpdateOffer()

9: procedure UpdateOffer()
10: C ← ∅, R← ∅ . set of satisfied BE, QoS bidders
11: Aj ← cj, done ← False

12: while (done = False) do . all bidders are satisfied
13: if (R ∪ C = βj) then
14: done← True

15: BE offer← Aj + max({claims[i] : i ∈ BC
j })

16: else
17: done← True

18: for q ∈ {QC
j \R} do

19: QoS offers [q]← Aj

20: if claims[q] <= QoS offers[q] then
21: R← R ∪ q
22: Aj ← Aj − claims[q]
23: done← False

24: else . cannot satisfy QoS demand
25: QoS offers[q]← 0
26: done← False

27: if |BC
j \ C| > 0 then

28: BE offer = Aj/|BC
j \ C|

29: else
30: BE offer = Aj

31: for b ∈ {BC
j \ C} do

32: if (claims[b] < BE offer then
33: C ← C ∪ b
34: Aj ← Aj − claims[b]
35: done← False

36: send (QoS offers,BE offer) to all bidders in QC
j ∪BC

j

remaining airtime, we can satisfy this request and move the bidder to the set R (lines

20-23). We set done to False, because we may need to update the BE offer with the
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new available airtime. If we cannot satisfy the claim (line 25), we set the offer for

that bidder to zero, and set done to False. This notifies the node requesting QoS

airtime that its demand cannot be satisfied, leaving the node to decide if it wants to

make a smaller demand instead. However, this does not affect the nodes BE request;

that is taken care of in lines 27-30.

In line 27, we check if there are any unsatisfied bidders, and if so, we divide the

remaining airtime up among them; otherwise, we set it to the available airtime as all

claims are satisfied. Finally, for each remaining unsatisfied bidder, if its claim is less

than the BE offer, we can satisfy that bidder, subtract its claim from the remaining

available airtime, and set done to False to ensure we iterate again to update the

offers. Once all bidders are satisfied or constrained, we send the set of QoS offers and

the BE offer to all bidders in QC
j ∪BC

j .

Figure 3.1 gives an example of the operation of REACTQoS. In this case, node 4 is

a QoS node and is demanding 50% QoS airtime. The other nodes are demanding 100%

BE airtime. In the figure, bt gives node t’s initial BE demand, qt is node t’s initial

QoS demand, and st gives node t’s ultimate airtime allocation. White backgrounds

represent BE nodes, gray background represent QoS nodes, and double edged circles

represent nodes whose airtime is constrained. The dotted lines represent bidirectional

links between the nodes.

Figure 3.1: Example of REACTQoS on a Line Topology.

We see that node 4 receives its QoS request, but the rest end up claiming less than

their BE request. Nodes 2 and 3 are constrained due to node 4’s request, because
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the auction at node 3 only has 50% of its airtime left over to offer as BE airtime. It

splits it evenly between the remaining nodes at its auction (nodes 2 and 3), leaving

each to claim half. Node 1 claims more airtime because node 2 offers 50%. Node 2

can offer 50% because after nodes 2 and 3 claim 25% each, it has 50% left over. No

auction here is aware of all four nodes due to the line topology and so the algorithm

relies on indirect information from neighboring auctions to determine allocations.

3.2 Updated SALT Tuner

In past work, the allocations computed by REACT were realized in several ways,

as discussed in §2.2. For this work, we use the SALT tuning algorithm, which uses

a control theoretic approach to achieve the airtime allocations [7]. However, because

we now have two classes of airtime, the tuning algorithm is extended in order to tune

two contention windows instead of one.

EDCA uses four different ACs to provide differentiated traffic and we utilize two

of these ACs for our two classes of airtime: the QoS class uses the VI AC, and the

BE class uses the BE AC. As in past work, control messages are enqueued to the VO

AC, to ensure they are sent with the highest priority. We set the CW values for each

AC according to the standard, which we present in Table 3.1. For REACTQoS, these

are the starting values, but they change as they are tunend by SALT. For the original

version of REACT and for DCF, we set the values for all ACs to be: AIFS, 2; CW

min, 15; CW max, 1023.

Table 3.1: Values for EDCA Access Categories

Queue AIFS CW min CW max
VO 2 3 7
VI 2 7 15
BE 3 15 1023
BK 7 15 1023
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In order to measure the airtime of each of these ACs, two statistics are collected

from the nodes: the first is the amount of time the station has spent transmitting

divided by the amount of time the station has been active (airtime of the node); the

second is number of bytes sent for each AC, divided by the total number of bytes

sent by all ACs. We multiply these two values together to achieve an approximation

for the airtime per AC. We then use these approximations for the airtime to perform

the tuning. Our updated SALT tuner uses essentially the same mechanism as before,

except that now it maintains two smoothed airtime values, S1
t and S2

t , instead of one.

These two airtimes correspond to the two ACs being used, and are updated separately.

At each interval, the CW values for both queues are updated simultaneously.

3.3 New Implementation

Several improvements and changes to the existing implementation of REACT

were made to simplify development and ensure maintainability of REACTQoS. For

example, the original code base was implemented in Python 2, but as Python 2 has

reached end of life as of 2020 1 , the code base was upgraded to Python 3. This brought

some challenges, as the newer version of Python handles multithreading differently.

In order to ensure performance as well as enable new, dynamic demands, REACT

was rewritten to use a producer-consumer model, where messages are passed between

threads using queues.

Figure 3.2 shows the implementation of and interactions between threads. There

are four threads: the manager thread, used for running the algorithms and coordinat-

ing the message passing between the threads as shown in the figure; a sniffer thread,

used to listen for REACTQoS control messages; a sender thread, used to send out

REACTQoS control messages; and a CW updater which sets the CW according to the

1https://www.python.org/dev/peps/pep-0373/
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Figure 3.2: Interaction of Threads in REACTQoS Implementation.

tuning algorithm. Messages are passed between the four threads using the queues.

The size of the CW’s queue is set to one, to ensure that the updater has the most

recent CW value (i.e., if there is a value already there, it is removed and replaced by

the newer value). The fourth queue is used to pass new demands from outside the

REACTQoS object, allowing a script to dynamically adjust demands. An example of

this in action is provided in Figures 4.7 and 4.8 in Chapter 4.

Figure 3.3 shows the high level overview of the REACTQoS architecture, and how

it interacts with the various components. REACTQoS communicates directly with

the driver functions, the SALT contention window tuner, and the traffic shaper (see

§3.4). REACTQoS has two separate queues, one for data (TX-Q-DATA) and one for

control messages (TX-Q-CTL). By separating the data from the control messages, we

can ensure that control messages are sent with a higher priority, therefore ensuring

the REACT algorithm can execute even when the network is under high load. In

addition, as done in earlier experimentation, we only allow each node to offer 80%

of the airtime for data, leaving 20% for the control messages being sent from the

separate queue [3][7].
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Figure 3.3: Architecture of REACTQoS Implementation.

Additionally, REACTQoS interacts directly with the driver to receive control mes-

sages and packet statistics, which it uses to conduct the auction as well as to tune the

contention window. It passes the claim for its node to the CW estimation module,

which sets the CW parameters in the driver.

3.4 Tuning with Linux tc

During development of REACTQoS, it was discovered that the current SALT tun-

ing algorithm has trouble ensuring varied allocations in the network. Specifically, if

one node is receiving a higher allocation than the remaining nodes (for example if

one node is requesting 50% QoS airtime and the others split the remaining airtime

equally), then there will be drops that occur at that node where its airtime drops to

zero for a period of time before returning to its allocation. An example of the issue

can be seen in the airtime chart shown in Figure 3.4. In this scenario, an experiment

was conducted where node zotacB3 received an airtime allocation of 44%, which it

achieved for more than half of the experiment. However, around second 25 and sec-

ond 90, the airtime dropped to zero. After about 10 seconds for the first drop and

25 seconds for the second drop, the airtime spiked as SALT attempted to correct the

issue, before settling on the correct allocation. In this experiment, all nodes were
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transmitting at the channel rate, which in this case was 6 Mbps. In past work, all

nodes requested 100% of the channel and transmitted at the full channel rate and this

issue did not occur; however, in this case nodes request less than the channel rate,

yet still transmit at the channel rate. We speculate that the issue is caused by buffer

overload at the QoS node along with the remaining nodes “stealing” more airtime

than they have been allocated due to transmitting more than they request.

Figure 3.4: Example of Airtime Drops for REACTQoS Without Traffic Shaping.

In order to assist SALT in tuning the airtime at the nodes, a traffic shaper was

introduced to ensure that nodes are not able to send more traffic than their allocation

allows. In other words, if the theoretical limit of the channel is 10 Mbps, and a node

was allocated 50% airtime, its approximate traffic rate should be 5 Mbps. REACTQoS

uses this approximation to limit nodes from transmitting more than their allocation,

to ensure that the node experiencing a drop can recover quickly. The traffic shaper

can be seen in Figure 3.3 and operates on data traffic before it enters the queue (TX-
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Q-DATA). This ensures that REACTQoS can use the shaper to control the rate at

which the node sends traffic.

The alternative to introducing a traffic shaper is to require nodes to limit their

flow rates to approximately what their allocations are. This is done in §4.4. For

experimentation, this is slightly more complicated for static experiments, because

nodes now need to adjust their flow rates according to REACTQoS. However, for

dynamic demands, discussed in §3.5, this is much more complicated because demands

change throughout the duration of the experiment. In this case, the traffic shaper

simplifies things considerably. Nonetheless, we know there are tradeoffs when using

the traffic shaper and that future work needs to improve on this subject.

To implement the shaping, we selected a token bucket filter (TBF), specifically

the tbf module from Linux traffic control 2 (tc). REACTQoS sets the rate of the

TBF whenever the offers for the node change. In the case where there are both QoS

and BE demands at a given node, the traffic shaper is set to the sum of the QoS and

BE load approximation. It is important to note that the traffic shaping mechanism

is not precise; its main purpose is to assist the tuning algorithm to ensure QoS nodes

receive their allocation consistently. Additionally, we have noticed that the TBF can

have a negative impact on delay and jitter characteristics. However, we leave tuner

improvements to eliminate the need of a traffic shaper to future work.

3.5 Dynamic Demands

Another benefit of the updated implementation of REACT discussed in §3.3 is

the ability to have dynamically changing demands in experimentation. The Python

implementation of REACTQoS is written as an importable module, allowing the ex-

perimenter to change the demands programatically. This allows for more interesting

2https://www.man7.org/linux/man-pages/man8/tc-tbf.8.html
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scenarios where nodes change their demands throughout the experiment to see more

complex behavior from REACTQoS. In addition, to simplify experimentation further,

the experimenter can pass a JSON file to REACTQoS with a list of events (including

the demand and the timestamp of the event) and REACTQoS adjusts the demands

accordingly. An experiment including dynamic demands is given in §4.3.

3.6 Reservation Server Updates

In order to support multi-hop flows, each auction along the path must be aware

of all flows passing through it. In past work, this was solved through the use of a

reservation server which runs on all nodes in the network [7]. Nodes register their

demand with servers along the path and the servers deduct the demand from the

available capacity. REACT then uses the reservations to preallocate the airtime for

those flows. In other words, REACT sets aside a certain amount of airtime for the

reservations and only offers the remaining available capacity in its auction. We use the

same technique to ensure multi-hop flows are considered in the REACTQoS auction.

However, the algorithm must be extended to support the two traffic classes. The

updated pseudocode is presented in Algorithm 3.

As before, the Reserve(s, d, q, b) function is a recursive function that first at-

tempts to reserve airtime at its node, then its neighbors, and finally forwards that

reservation along the path. In lines 1 and 2, it checks if it is possible to satisfy both

the QoS and BE amount and, if not, the reservation fails. If so, it reduces capacity

by that amount (line 3). If the source matches the destination, this means that we

are just reserving airtime, and not doing any forwarding (lines 4 and 5). Otherwise,

we attempt to reserve the airtime at all neighbors (lines 8 and 9) and if we can, then

we pass along the reservation to the next hop in the path (lines 10-14). Finally, if we

were not able to reserve at all neighbors, we tear down all of the completed reserva-
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Algorithm 3 Reserve(s,d,q,b)

1: if (capacitys − q − b) ≤ 0 then
2: return False
3: capacitys ← capacitys − q − b
4: if (s == d) then
5: return True
6: else
7: status← True
8: for each n ∈ Neighbors(s) do
9: status← status and Reserve(n, n, q, b)

10: if (status == True) then
11: if (Next Hop(s) 6= d) then
12: return Reserve(Next Hop(s), d, q, b)
13: else
14: return True
15: else
16: tear down completed reservations made by neighbors
17: of s and s itself for this multi-hop flow

tions made by this node and its neighbors, and the reservation fails. One additional

improvement to this version of the reservation code, is that reservations can be made

in either direction along a path.

One drawback to this implementation is that both the QoS and BE are considered

together. There may be available capacity to reserve only one of the two, perhaps

requiring the prioritization of the QoS reservation, but in our experimentation this

is currently unnecessary. We make reservations that are feasible, and adding this

functionality creates unneeded complexity for our experiments. Hence, we stay with

the simpler algorithm.

3.7 Experiment Setup and Measuring Statistics

In order to evaluate the performance of REACTQoS, it is necessary to conduct

experiments and collect measurements to accurately and fairly compare the two pro-
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tocols. In this subsection we describe the general overview of how experiments are

conducted as well as how measurements are collected.

As discussed in §2.3, all experiments are conducted on the w.iLab-t testbed.

Ubuntu 16.04 was installed on the nodes and the code was written using Python

3. Experiments were orchestrated using the Python fabric library 3 , which allows

scripts to send commands to remote hosts. All of the code used in experimentation

for this thesis can be found online 4 .

In order to perform the tuning necessary for SALT, two kernel extensions 5 need

to be installed: one is used to provide an interface for exposing and manually setting

the contention window values, while the other is used to allow contention window

values to be set to values other than powers of two. These are necessary because

SALT sets these values, and because the standard only allows setting CW values to

powers of two; without the extension we limit how precisely SALT can tune.

Flows are sent between nodes using iperf which provides the necessary param-

eters for adjusting flow sizes, transport protocol, and TOS fields needed for experi-

mentation. It is also used to collect throughput statistics for the various flows. To

collect delay and jitter statistics, the ping utility is used. Pings are sent between the

same nodes as the flows and the outputs are saved to disc. Jitter is calculated based

on the delay measurements. Airtime is also collected for all experiments using the

REACTQoS module, though for experiments using 802.11 the module is disabled and

is only used to collect airtime statistics.

REACTQoS uses separate ACs to differentiate between traffic, so both ping and

iperf packets must map to the correct AC. The ath9k driver maps the type of service

3https://www.fabfile.org

4https://github.com/danielkulenkamp/react80211

5https://github.com/mmellott/backports-cw-tuning
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(TOS) field from an IP packet into the four ACs. REACTQoS uses three of the four

available queues and so we make sure to set the field appropriately. For REACTQoS

control messages, we use an association request header and append our messages to

the header–association requests automatically map to the VO AC, so control messages

are handled correctly. For QoS flows and pings, we set the TOS field to 0xa0 and

for BE flows and pings we set it to 0x00. These values are taken from the ranges

described by the documentation for the ath9k driver 6 .

3.8 Summary

In this chapter we introduced REACTQoS, the updated tuning mechanism, the

traffic shaper, and the updated reservation server. We described the new implemen-

tation of REACTQoSand the overall architecture, as well as giving an overview of

the experimentation environment and how measurements are collected. In the next

chapter, we describe our single-hop experiments and present the results.

6https://wireless.wiki.kernel.org/en/developers/documentation/mac80211/queues
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Chapter 4

SINGLE-HOP EXPERIMENTS

In this chapter, we present the experiments that are designed to evaluate the

performance of REACTQoS in a setting with single-hop flows (a setting with multi-hop

flows is evaluated in Chapter 5). We begin the chapter by describing the topologies

selected for use in experimentation and the logic behind choosing them in §4.1. Next,

in §4.2, we provide an overview of the experiments conducted and we present the

results from the experiments in §4.3. In §4.4 we detail an additional experiment

demonstrating the performance of REACTQoS without the traffic shaper enabled and

finally, we summarize the chapter in §4.5.

4.1 Topologies

In evaluating REACTQoS we conduct experiments on two different topologies: a

complete topology of four nodes (i.e., fully connected) and a line topology of four

Figure 4.1: Complete Topology of Four Nodes With Flow Paths.
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Figure 4.2: Line Topology of Four Nodes With Flow Paths.

nodes (i.e., each node can only hear one or two of its neighbors). These were selected

in order to show the performance of REACTQoS in a scenario where each node has

full information of all nodes’ demands and offers, and one where nodes only have

indirect information based on the messages from its neighbors. Additionally, the

exposed terminal problem is present in the line topology which can cause degraded

performance [19]. The complete topology is shown in Figure 4.1 and the line topology

in Figure 4.2. In the figures, black lines represent connections between nodes and the

red lines represent the direction of the flow paths in the experiments. For the complete

topology, flows were sent in a circular fashion, while in the line topology flows were

sent from the end nodes to their nearest neighbors, and from their nearest neighbors

to the end nodes.

4.2 Description of experiments

Four experiments were designed to demonstrate the differences between the 802.11

standard, the original REACT algorithm, and the updated REACTQoS algorithm.

Each experiment was run twice, once on each topology. In experiment 1, 802.11 DCF

is the active protocol and the REACTQoS module is only running to capture airtime

statistics. Experiment 2 was designed to demonstrate the performance of the original

REACT protocol, so the QoS extensions are disabled. Next, experiment 3 consists of

REACTQoS running and one of the four nodes requesting 50% of the available airtime.

Finally, experiment 4 combines REACTQoS with dynamic demands enabled by the
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new implementation. The events and their occurrence times are shown in Table 4.1.

For the single-hop experiments, flows are set to a rate of 6 Mbps, and traffic shaping

is active to ensure that nodes do not overwhelm the tuning mechanism. Experiments

1-3 were all run for a duration of two minutes, while Experiment 4 was run for five

minutes.

4.3 Results of experiments

Beginning with experiment 1, we see that in the complete topology IEEE 802.11

performs quite well (Figure 4.3a). Each node is allocated about 25% of the airtime

for the entire experiment run. For the line topology in Figure 4.3b, however, IEEE

802.11 has much more variable performance.

(a) 802.11 complete topology (b) 802.11 line topology

Figure 4.3: Experiment 1: 802.11 Airtime for the Complete and Line Topology.

Experiment 2 provides an insight into how REACT performs. Here, each node is

requesting 100% of the offered airtime (because 80% is offered, this results in about a

20% allocation per node). From Figures 4.4a and 4.4b we see that REACT converges

on a much tighter airtime allocation, i.e., the means of the airtime of the four nodes

are much closer. The airtime each node receives in REACT is less than under IEEE

802.11 (partially due to 80% of the airtime being allocated), but this much more

consistent allocation is an improvement.
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(a) REACT complete topology (b) REACT line topology

Figure 4.4: Experiment 2: REACT Airtime for the Complete and Line Topology.

To compare between the two approaches, we analyze the variance; however, to

account for the period of time that REACT takes to converge, we only compute

the variance for the time after REACT has converged (at second 3 for the complete

topology; at second 10 for the line). For the complete topology, the variances for the

nodes range from 0.017 to 0.471 for 802.11, while for REACT they range from 0.016

to 0.024. For the line topology, variances for 802.11 range from 0.3 to 0.877, while for

REACT they range from 0.012 to 0.02. There is some improvement in the complete

topology, but with the line topology the improvement is much more apparent, as can

be seen when comparing between Figure 4.3b and Figure 4.4b.

In Experiment 3, node 4 requests 50% of the offered airtime as QoS airtime, which

translates to 40% of the actual airtime, while the remaining nodes request 100% of

the BE airtime. With the complete topology (Figure 4.5), node 4 receives about 40%

airtime, while the remaining three nodes receive about 13% each. The airtimes for the

line topology are more complicated to understand (Figure 4.6), however, this is the

same discussion for the scenario presented in Figure 3.1 on page 19. As before, node

4 requests half of the offered airtime, which it correctly receives. Node 1 also received

half of the offered airtime, because it is only constrained by the auction at node 2.

Nodes 2 and 3 are constrained by multiple auctions, which results in them receiving
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Figure 4.5: Experiment 3: REACTQoS in the Complete Topology.

Figure 4.6: Experiment 3: REACTQoS in the Line Topology.
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less airtime than either node 1 or node 4. This can be seen in Figure 4.6, where nodes 1

and 4 receive half the offered airtime (40%) and nodes 2 and 3 receive a quarter (20%).

Additionally, REACTQoS takes four seconds to converge in the complete topology, and

8 seconds for the line topology. The line topology takes longer to converge because

information has to travel two hops in the worst case, where a complete topology is

by definition fully connected and information has to travel at most one hop.

Finally, for Experiment 4, Figures 4.7 and 4.8 show node 1 requesting 50% QoS

airtime, with remaining nodes adjusting their demands dynamically according to the

events in Table 4.1. In this experiment, node 1 has a consistent allocation throughout

the experiment and is not affected by the demand changes at other nodes. In the

complete topology, even when nodes 2 and 3 adjust their demands at seconds 120 and

180, the sum of the three BE demands is higher than 50% of the airtime split three

ways.

Table 4.1: Events for Experiments 4

Time (s) Node Demand QoS

0 node 1 50% Yes
0 node 2 10% No
0 node 3 10% No
0 node 4 100% No
60 node 2 20% No
60 node 3 20% No
120 node 2 50% No
180 node 2 80% No
180 node 3 50% No

Therefore the airtime remains equally split between the three nodes, so no change

is reflected in the figure. In contrast, in the line topology, we see that when node 2

increases its demand to 50% of the airtime at second 120, it is allocated more of the

airtime, because there are fewer nodes competing for the airtime at node 2. Later at

second 180, nodes 2 and 3 increase their demands further — they are both constrained
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the neighboring auctions and have to split the airtime. Though REACTQoS took twice

as long to converge initially in the line topology (20 s vs. 9 s in the complete topology),

re-convergence times for both topologies averaged only four seconds.

Figure 4.7: Experiment 4: REACTQoS in the Complete Topology with Dynamic and
Varied Demands According to Table 4.1.

4.4 REACTQoS without Traffic Shaping

Traffic shaping has a negative impact on the delay and jitter characteristics of

REACTQoS, because the traffic shaper introduces artificial delay onto the packets.

Additionally, the jitter is impacted based on how the traffic shaper dequeues the

packets. The shaper’s purpose is to ensure nodes do not transmit more than their

channel allocation allows (therefore “stealing” airtime from the QoS node), so we

can instead insist that nodes only sent flows of approximately the bandwith of their

portion of the channel. Instead of having the shaper induce this requirement, we can

require the nodes themselves to limit what they send.

Another experiment (Experiment 5) was run to demonstrate this behavior. Traffic

shaping is disabled in REACTQoS, but nodes use flow sizes that approximate their
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Figure 4.8: Experiment 4: REACTQoS in the Line Topology, Dynamic and Varied
Demands According to Table 4.1.

eventual allocation. This allows us to view some of the same characteristics that

REACT originally demonstrated; namely, that delay and jitter improve with a small

reduction in throughput. This experiment is essentially the same as Experiment 2,

but with flow sizes set according to the allocation and traffic shaping disabled. This

experiment was run on the complete topology and delay and jitter measurements were

collected. We compare REACTQoS to DCF and we do not consider it fair to only

compare a scenario where the nodes reduce their transmisison rate for REACTQoS,

but not for DCF. Therefore, we run the experiment for REACTQoS and DCF with

the QoS node transmitting at a rate of 3 Mbps, and the BE nodes transmitting at

1 Mbps. Additionally, we run DCF again with a rate of 6 Mbps for all nodes. This

way we can see how REACTQoS works compared to both scenarios under DCF.

The airtime charts for both DCF runs are shown in Figures 4.9a and 4.9b, and

the airtime chart for REACTQoS is shown in 4.9c. A comparison of the delay, jitter,

and throughput measurements is given in Table 4.2.
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(a) DCF Airtime Performance (small) (b) DCF Airtime Performance (large)

(c) REACTQoS Airtime Performance

Figure 4.9: Experiment 5: DCF vs REACTQoS Airtime Performance for a Complete
Topology.

Right away we can see that when the flows are sent at the full channel capacity

(Figure 4.9b), DCF is much more variable in its performance than when the flow rates

are reduced (Figure 4.9a). Looking at Figure 4.9a, the behavior of DCF under these

loads looks similar to REACTQoS. Additionally, the way that REACTQoS performs

in this experiment appears to be slightly worse than DCF (see Figure 4.9c). Node 4

achieves 60% airtime in DCF with lower loads, while with REACTQoS node 1 (the QoS

node) only achieves 40%. The difference here is 20%, and accounts for the airtime

REACTQoS reserves for control traffic. Interestingly, the node sending the higher
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Table 4.2: Delay, Jitter, and Throughput for Experiment 5

Node 1 Node 2 Node 3 Node 4

DCF small
Delay 536.19 ms 8.74 ms 8.67 ms 66.18 ms
Jitter 131.66 ms 7.06 ms 6.47 ms 24.29 ms

Throughput 426.78 Kbps 629.15 Kbps 629.15 Kbps 629.16 Kbps

DCF large
Delay 1871.79 ms 649.27 ms 648.72 ms 777.81 ms
Jitter 496.75 ms 170.03 ms 156.85 ms 236.98 ms

Throughput 938.10 Kbps 1.29 Mbps 1.29 Mbps 1.21 Mbps

REACTQoS

Delay 536.59 ms 4.37 ms 4.13 ms 3.33 ms
Jitter 137.39 ms 4.27 ms 3.92 ms 2.5 ms

Throughput 2.59 Mbps 629 Kbps 628 Kbps 629 Kbps

traffic in both scenarios is node 1, illustrating how DCF has no way to differentiate

classes of traffic.

We present statistics for the three scenarios in Table 4.2; the DCF scenario with

reduced loads is called “DCF small” in the table, while the DCF scenario with all

loads at 6 Mbps is called “DCF large”. Looking at these statistics, we can see that

REACTQoS achieves better delay and jitter for nodes 2,3, and 4, than DCF in either

scenario, while it only improves the delay and jitter for DCF under small loads.

REACTQoS achieves essentially the same delay and jitter performance for node 1 (the

QoS node) as DCF does under small loads. It is interesting that DCF is able to

perform this well in comparison to REACTQoS. The total aggregate throughput for

DCF under large scenarios is 4.778 Mbps and for REACTQoS it is 4.476 Mbps. By

reducing the load for REACTQoS and allowing the SALT tuner to tune the contention

windows, we were able to achieve essentially the same throughput, but with much

improved jitter and delay performance with REACTQoS.
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4.5 Summary

In summary, with this implementation we initially sacrificed the delay and jitter

performance of REACTQoS to ensure that the varied airtime demands of the QoS

nodes (and the dynamic behavior enabled by the new implementation) were achiev-

able. However, if instead the flow rates of the nodes are adjusted according to the

allocations decided by REACTQoS, we can retain the delay and jitter characteristics

(and even throughput), while achieving superior delay and jitter performance. We

move on to the more challenging multi-hop scenario in the next chapter.
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Chapter 5

MULTI-HOP EXPERIMENTS

In contrast to the last chapter, where flows only traveled at most one hop, in this

chapter we study multi-hop flows. Multi-hop flows present their own problems in a

network, as nodes must forward traffic from other nodes in addition to sending their

own traffic. In §5.1 we provide an overview and explain the experiment scenario. In

§5.2 we describe our experiment and in §5.3 we report experiment results.

5.1 Overview

Past work on REACT has focused on using a reservation server running on each

node in the network to forward information about multi-hop flows along the path of

the flow [7]. As discussed in §3.6, we use the same technique with new extensions

to support REACTQoS. We consider a scenario where four nodes are arranged in a

line topology, as for the single-hop experiments in Chapter 4. Now, there are two

flows, each running the entire path of the topology; in other words, they must travel

three hops to travel from the source node of the line topology to the destination.

One of the flows is a QoS flow (running from node 1 to node 4) and the other is a

BE flow (running from node 4 to node 1). There are applications for this in a real-

world setting, as it is common to have full-duplex traffic between two senders along

a path: perhaps there is real-time data flowing in one direction, with the other flow

consisting of background traffic. This type of scenario would necessitate a QoS flow

in one direction. The topology and flows are shown in Figure 5.1, where the black

lines represent connections between nodes, the red arrows represent the QoS flow,

and the blue arrows represent the BE flow.
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Figure 5.1: Multi-Hop Line Topology with Flow Paths.

Before, we considered QoS nodes requesting a certain portion of the airtime. How-

ever, now that we are considering a multi-hop scenario, we consider flows requesting

the airtime because a flow requests airtime at multiple nodes. Deciding how much

airtime the QoS flow should request is tricky, since now nodes have forwarding require-

ments that must also share the airtime. In other words, each node must have enough

airtime preallocated for all flows going out of the node, and all flows transmitting at

neighboring nodes.

First let us focus on a flow in one direction. Considering Figure 5.1, if we ignore

the blue arrows representing BE flows, node 1 must preallocate enough airtime for

one outgoing flow as well as for the traffic occurring at node 2. Meanwhile, nodes 2

and 3 must preallocate enough for an outgoing flow as well as the traffic at their two

neighboring nodes. Node 4 does not need to reserve airtime for an outgoing flow, but

still needs to preallocate airtime for its neighbor.

In summary, the first node in the path needs to reserve twice its request, nodes

in the middle of the path need to reserve three times the request, the second to last

node (node 3 here) needs to reserve twice the request (since the destination node is

not forwarding) and the destination node needs to reserve enough for the request.

This limits how much a flow can reserve among the path. For example, let us assume

that the QoS flow wants 50% of the airtime. This can be reserved at nodes 1 and 3

(2 ∗ 50% = 100%) and node 4 (1 ∗ 50% = 50%), but it cannot be reserved at node 2
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Figure 5.2: Reservation Amounts at Nodes in a 3-Hop Line Topology.

(3 ∗ 50% = 150% > 100%). This does not even consider having a flow in the opposite

direction, so we are limited in how much airtime can be reserved for a single flow.

Instead, we can have the QoS flow reserve 25% of the available airtime. This means

that node 1 will have 50% preallocated, node 2 will have 75% preallocated, node 3

will have 50% preallocated, and node 4 will have 25% allocated. This reservation is

feasible and it leaves space for a flow in the opposite direction. For the BE flow in

the opposite direction, we are most limited by the available capacity at node 2 (25%)

and node 3 (50%). This is because we need to reserve three times the request at node

3 and two times the request at node 2. This means the maximum we can reserve for

the BE flow is bmax(25%
2
, 50%

3
)c = 12%. This means that the final reservation will be a

total of 62% at node 1, 99% at node 2, 86% at node 3, and 49% at node 4. Figure 5.2

illustrates the reservations at each node, along with the total amount reserved per

node. This leaves us with an experiment of two flows moving in opposite directions,

with enough airtime reserved to support them in the multi-hop path. The remaining

capacity is free to be claimed by the nodes at the various auctions.

5.2 Description of Experiment

For the experiment, we run the flows for a total of two minutes. Since REACTQoS

only offers 80% to nodes as available airtime, our reservation values from above need

to be scaled accordingly. Node 1 sets a reservation of 0.8 ∗ 25% = 20% and node

4 reserves 0.8 ∗ 12% = 9.6%. Once the reservations have been made, REACTQoS

43



pulls the values from the reservation server and preallocates this amount at the nodes

(i.e., the capacity offered to bidders at that auction is reduced by the preallocation

amount). Flow rates are also set depending on the amount of airtime requested, so

the QoS flow has a rate of 6 Mbps ∗ 0.2 = 1.2 Mbps and the BE flow has a rate of

6 Mbps ∗ 0.096 ≈ 0.6 Mbps. These flow rates are used for both REACTQoS as well as

for EDCA in our experiments.

5.3 Results of Experiments

We present the results of our experiment in Figures 5.3 and 5.4 as well as Table 5.1.

Figure 5.3 presents the airtime per access category for EDCA, and Figure 5.4 presents

the airtime per access category for REACTQoS. The difference in the two figures is

fairly striking, as the airtimes for EDCA vary wildly. Some of the ACs on the nodes

achieve quite high airtime values, such as node 1 receiving almost 100% for a majority

Figure 5.3: Multi-Hop Experiment: EDCA Airtime per AC per Node.
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Figure 5.4: Multi-Hop Experiment: REACTQoS Airtime per AC per Node

of the experiment. However, some of the nodes, such as the BE access category at

node 2, receive much less airtime. This means that the BE flow is going to suffer and

have lower throughput than REACTQoS. In contrast, the airtimes for the various ACs

are much more consistent for REACTQoS, with none of them achieving airtime above

40% except during initial convergence. This is the expected behavior by REACTQoS

and allows it to achieve more stable performance. The three ACs that transmit the

QoS flow (at nodes 1, 2, and 3) all achieve slightly above 20%, which is what they

were allocated. For the BE ACs, nodes 2 and 4 achieve slightly above 10%, while

node 3 achieves almost 20%. The BE AC at node 3 should not be achieving quite

this much, although it is probably due to the extra capacity available at node 3 that

goes unclaimed. The SALT tuner attempted to slow its transmissions by setting

the CW value to its maximum of 1023, but was not quite enough to slow it down.

However, the QoS AC at this node receives slightly more than its allocation, so this
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Delay Jitter Throughput
EDCA REACTQoS EDCA REACTQoS EDCA REACTQoS

BE 2629 ms 597 ms 909 ms 106 ms 34 Kbps 110 Kbps
QoS 839 ms 312 ms 157 ms 72 ms 126 Kbps 156 Kbps

Table 5.1: Delay, Jitter, Throughput Results for the Multi-Hop Experiment.

does not affect overall performance drastically. Quantitatively, the average variance

for airtimes for EDCA is 0.011914, while for REACTQoS it is 0.000571; the variance

for EDCA is over 20 times larger than for REACTQoS!

Table 5.1 presents the delay, jitter, and throughput measurements for the QoS and

BE flows. These numbers are the average for the measurements over the duration

of the experiment. We can see that REACTQoS beats EDCA on all measurements

collected. Interestingly, EDCA does provide traffic differentiation between the QoS

and BE access categories, with the QoS flow achieving much better performance

than the BE flow, by a factor of three for delay, over a factor of five for jitter, and

over a factor of three for throughput. This makes sense, especially when considering

Figure 5.3, since the QoS access categories had much higher airtime that the BE ones.

Additionally, it follows that both the delay and jitter for EDCA is much worse than

REACTQoS, due to the wild variance of the airtimes for EDCA in comparison with

the airtimes for REACTQoS. REACTQoS also provides good traffic differentiation

since the QoS flow achieves better metrics for all three statistics. Additionally, the

difference between the BE and QoS flows is much smaller than with EDCA. For

example, the delay for the BE flow in EDCA is 1790 ms longer than the QoS flow,

while for REACTQoS it is only 285 ms longer. That is a sizeable improvement over

EDCA. Similarly for jitter, EDCA has a difference of 752 ms while REACTQoS has a

difference of 34 ms. Finally, the same is true for throughput, with REACTQoS gets a

combined 266 Kbps while EDCA gets 160 Kbps. Comparing numerically, delay with
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REACTQoS improved by 440% for the BE flow, and by 260% for the QoS flow, while

jitter improved by 850% for the BE flow and by 210% for the QoS flow. Similarly,

throughput improved by 320% for the BE flow, and by 120% for the QoS flow. What

this tells us is that not only did REACTQoS provide better performance for the QoS

flow, but it improved the BE flow performance by an even larger margin. Overall,

this mostly confirms to us that EDCA provides good traffic differentiation at the local

level, but struggles with the multi-hop scenario. In contrast, REACTQoS outperforms

EDCA in the multi-hop scenario by sizeable margins on all metrics, for both the QoS

and BE flows.

5.4 Summary

In summary, in a multi-hop scenario with two opposing flows, REACTQoS per-

forms better than EDCA in all metrics considered and converges on a much more

stable airtime allocation when considering the variance. The reservation server al-

lows for successful forwarding of flow information and the new, multiple-AC SALT

tuner achieves per-AC airtimes that are very close to the desired allocations. In the

next chapter, we discuss the screening experiments, analyze the results, and discover

the influential factors and interactions for our REACTQoS scenario.
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Chapter 6

SCREENING EXPERIMENTS

This chapter describes an overview of the screening experiments conducted in this

thesis. §6.2 provides a description of the experimental design, and §6.3 presents the

results, including the most influential factors and 2-way interactions.

6.1 Overview

Typically, screening experiments are conducted first, ahead of any “real” exper-

imentation on the system being investigated. One reason for this is to discover the

most important factors on a response in a system, as well as those that are less im-

portant. In a system with many factors (such as most experiments in networked

settings), this can allow the experimenter to cut down on the number of parameters

used in experimentation. Intuitively, this makes sense because if a factor does not af-

fect the outcome of an experiment, it can be safely excluded without fear of affecting

the results.

In our case, in addition to screening factors to help reduce their number in future

experimentation, we hope to discover more information about the effect of one of RE-

ACT’s parameters on the responses. REACTQoS, along with earlier versions, reserves

a portion of the airtime for control messages. These control messages are essential

to the algorithm, and need to be exchanged constantly to ensure that auctions in

the network are up to date. These messages implicitly convey topology information

along with the demands and requests, and so can become outdated quickly if there is

a delay in transmission or reception of them. For this reason, all versions of REACT

to date only offer 80% of the airtime to data traffic from nodes, and reserve 20%

48



of the airtime solely for REACT control messages. This is quite a large amount of

overhead with REACT, and is one of its major downsides as the bandwidth of the

channel is reduced by a fifth before any actual data is sent.

The 80% value was determined when REACT was first developed in a contention-

based scenario [3], and so far has seemed to work very well. However, no further

investigation of whether 80% is the best choice has been conducted since. If the

amount needed for control traffic could be reduced, one of REACT’s largest downsides

could be mitigated. Therefore, part of our intent with the screening experiments

conducted here is to provide an investigation into the amount of airtime reserved for

control traffic. We use three different levels for the reserved amount, 80%, 85% and

90%, and hope to discover whether varying this amount has any affect on the selected

responses. This information could inform as to whether it is worthwhile to conduct a

more thorough investigation into the amount of airtime to reserve for control traffic.

Additionally, it is important to note that in our experimental design we use many

more factors and levels than just the airtime reserved for control traffic. The purpose

for this is to see if the amount of airtime reserved interacts in any way with the

other factors. This is also critical in further experimentation, as perhaps the amount

of airtime reserved does not directly affect the responses, but does when interacting

with another parameter. By screening for 2-way interactions in addition to single

factors, we can provide a more clear picture into what most strongly affects the

responses we collect and inform how we might change REACT in the future.

6.2 Description of Screening Experiments

For the screening experiments, factors were selected for use in the single-hop

scenario discussed in Chapter 4. Two sets of screening experiments are designed to
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Table 6.1: Factors and Levels for the Screening Experiments.

Factor Levels

traffic shaping yes, no
CW min 0, 15
CW max 511, 1023
QoS flow type BE, QoS, both
QoS node* node1, node2, node3, node4
QoS request 0%, 10%, 25%, 50%
MAC protocol DCF, EDCA, REACT80, REACT 85,

REACT90, REACTQoS80, REACTQoS85, REACTQoS90
Transport UDP(500K), UDP(1M), UDP(5M), UDP(10M), TCP(8K),
protocol TCP(64K), TCP(128K), TCP(256K), TCP(8K,noDelay),

TCP(64K,noDelay), TCP(128K,noDelay), TCP(256K,noDelay)

screen for the most significant factors in the ad-hoc REACT setting. The factors

selected for experimentation are shown in Table 6.1.

There are eight factors for the line topology and seven for the complete topology.

The factor “QoS node” is marked with a star because it is used in the line topology but

not in the complete topology. This is because changing the QoS node does not change

the allocation in a complete topology, but it does in a line topology. In other words,

because all nodes are aware of all others in a complete topology, switching the QoS

node to another position does not affect the information that all of the nodes have.

In a line topology, nodes only know information about their direct neighbors and not

nodes further down the line. The selected factors yield a full-factorial design of 36, 864

tests for the line topology and 9, 216 tests for the complete topology. In contrast, the

locating arrays created only have 104 tests and 98 tests, respectively. This drastically

reduces the number of experimental runs needed to determine significant factors and

2-way interactions.

Each factor affects either the flows or the behavior of REACTQoS. Starting with

the first factor in Table 6.1, the traffic shaping factor has two values and determines
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whether traffic shaping is used by the SALT tuner. In the case that REACTQoS

is disabled, the traffic shaper still operates according to this factor. Next, we have

minimum and maximum values for the CW. SALT tunes the CW, but it does not

tune outside the minimum and maximum values. This factor limits the space that

SALT has to tune. Again, if REACTQoS is disabled, these factors still take effect as

the minimum and maximum values for the CW set at the start of the experiment.

The QoS flow type determines whether the QoS node is transmitting either a BE or

QoS flow, or both at the same time. For the line topology only, QoS node determines

the node that has QoS requirements. Next we have the size of the QoS request for

the QoS node, followed by the MAC protocol used in the network. DCF is present

even though it does not have traffic differentiation; in this case, the QoS node still has

its QoS requirements, even though it does not have a mechanism in the network for

achieving differentiated traffic. The same applies for REACT without QoS support.

The levels for REACT have numbers attached; they represent the amount of airtime

offered. Due to limits on the analysis techniques, factors cannot depend on other

factors. This causes us to collapse the offered airtime factor onto the MAC protocol

factor, so each is treated as a “different” protocol for analysis. Finally, we have the

transport protocol, which varies between UDP and TCP, as well as protocol specific

parameters such as bandwidth (UDP), window size (TCP), and enabling/disabling

Nagle’s algorithm (for TCP, “noDelay” in table). Again, because there are factors

dependent on the protocol type (UDP does not have a window size), they are collapsed

into a single factor for screening.

All experiments are run as in Chapter 4, with flows running as shown in Figures 4.1

and 4.2. The only difference is in the case of the QoS flow type, when the QoS node has

two flows running. In this case, the QoS flow is sent as before, and in the complete

topology the BE flow is sent to node 3. In the line topology, if the node has two
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neighbors, the BE flow is sent to the other neighbor, otherwise it is sent along with

the QoS flow to the only neighbor. All flows run at most one hop. The responses

collected include delay, jitter, and throughput. These are the same responses that

were collected for single-hop experiments in Chapter 4. To reduce the effect of run

order between experiments, the order is randomized between each set of runs. The

screening experiments are run multiple times, for a total of three replicates, and results

are averaged from the three replicates to achieve the final responses. The replicates

were run over a period of a few days on the w.iLab-t testbed, with all of the ZOTAC

nodes reserved to ensure minimal interference. After all responses are collected, the

results are analyzed using the technique from [17] and results are presented in §6.3.

The analysis tool from [17] generates models with a configurable number of terms.

The tool outputs the score of each factor and interaction, and in this case the score is

aggregate contribution to R2 across all models generated (scores can be greater than

one, recall §2.4.2). We generate many different models, starting with 2 terms to 25

terms, and we attempt to find a model with the best fit. The ‘best’ model is chosen

when the change R2 for the new model is less than 0.01 higher than the old model.

This is not an exact science, but we felt this provided a decent way to select the

models and is similar to what was done in [17]. For each topology, we present the two

to four most important factors or interactions, depending on how many significant

effects were reported. This information gives us insight into how important the factor

or interaction is to the model and can inform us on the factors or interactions that

are most important to our system.
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6.3 Results of Screening Experiments

In this section we present the results of running analysis on our screening exper-

iments. The analysis for the complete topology is presented in §6.3.1 and the line

topology analysis in §6.3.2.

6.3.1 Complete Topology Analysis

Beginning with the delay response, the selected model has seven terms and an R2

of 0.964. The most significant factor and the two most significant interactions are

reported in Table 6.2.

Table 6.2: Top Effects for the Delay Response on the Complete Topology

Effect R2 score
transport protocol 702.773

transport protocol & mac 46.3876
transport protocol & traffic shaping 43.7748

In this case, the most important factor is the transport protocol used. The contri-

bution to R2 is much higher than for the two interactions. The interactions discovered

include an interaction between the transport protocol and the MAC protocol, as well

as one between the transport protocol and the traffic shaper. The remaining ef-

fects and interactions have even lower contributions to the R2, and can probably be

eliminated as non-significant parameters in this case. In fact, because the transport

protocol has such a high contribution compared to the others (almost sixteen times

higher), it may be correct to say we could also safely ignore these two interactions in

this case as well. The most dominant effect according to this analysis is the transport

protocol.

Moving on to the jitter response for the complete topology, we present the two

most significant effects in Table 6.3. The selected model has an R2 of 0.968 and
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has 5 terms. For this response, the third effect in the ranking has an R2 score of

2.52, much less than the top two at around 148, so we only include the top two

in the ranking. Here, again as with the delay response, the top two effects are the

transport protocol and the interaction between the transport protocol and the MAC

protocol. In this case, the R2 scores are very close. This implies that these effects are

equally important, whereas in the delay response the transport protocol was much

more active. Based on this analysis, we can safely exclude the remaining factors, and

just test using the transport protocol and the MAC protocol.

Table 6.3: Top Effects for the Jitter Response on the Complete Topology

Effect R2 score
transport protocol 147.605

transport protocol & mac 148.535

Our last response is throughput, and the selected model has 16 terms and an R2 of

0.972. This model has many more terms than for the other two responses, and as the

terms were added the R2 increased by a much more consistent amount. This implies

that as terms were added they were consistently contributing to the R2. However,

the scores for the effects drops again after the third highest effect. We present the

three effects in Table 6.4.

Table 6.4: Top Effects for the Throughput Response on the Complete Topology

Effect R2 score
transport protocol 396787

transport protocol & mac 144023
transport protocol & QoS request 144247

Again, the transport protocol is the most influential factor, followed by the inter-

action between the transport and MAC layers. The third effect here is an interaction

between the transport protocol and the QoS request factor. Recall that this factor

corresponds to how much airtime the QoS node requests, from zero to fifty percent.
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Based on this analysis, the factors we should retain in experimentation are the trans-

port protocol, the MAC protocol, and the QoS request factor.

6.3.2 Line Topology Analysis

Now we move on to the more complicated line topology. Again, we discuss analysis

for each of the responses in turn.

For the delay response, the selected model has 11 terms with an R2 of 0.945.

We report the top four effects in Table 6.5. Once again, the transport protocol is

overwhelmingly the most dominant effect. In this case, the interaction between the

transport protocol and the MAC protocol is ranked fourth, while the MAC protocol

individually ranks third. In second is the interaction between the MAC protocol and

the QoS node factor. Recall that the QoS node factor determines the node along

the line that has QoS requirements. This was not included in the complete topology

because all nodes have complete information and changing the QoS node does not

affect the allocation computed by REACTQoS. In the line topology, changing the

QoS node does affect the allocation because nodes do not have complete network

information. For this response, it makes sense to include the transport and MAC

protocols, along with the QoS node factor in future experimentation, and exclude the

remaining factors.

Table 6.5: Top Effects for the Delay Response on the Line Topology

Effect R2 score
transport protocol 13583.7

mac & QoS node 1400.19
mac 744.716

transport protocol & mac 555.404

For jitter, the selected model contains 16 terms and has an R2 of 0.965. We present

the top three effects in Table 6.6. Similarly to the other responses, the transport
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protocol ranks first, with the MAC protocol second and the interaction between the

two, third. Based on this, we can include those two factors and exclude the remaining

factors.

Table 6.6: Top Effects for the Jitter Response on the Line Topology

Effect R2 score
transport protocol 6945.52

mac 5284.72
transport protocol & mac 4543.56

Lastly, we look at throughput for the line topology. This model has seven terms

and the R2 is 0.970. There are only two significant effects, in this case both are

interactions. We present them in Table 6.7. The first effect is the transport/MAC

protocol interaction, and the second is an interaction between the transport protocol

and the QoS flow type. Recall that this factor determines what flows the QoS node

sends (one BE flow, one QoS flow, or one of each). This implies that we should

include the transport protocol, the MAC protocol, and the QoS flow type in future

experimentation and can safely exclude the remaining factors.

Table 6.7: Top Effects for the Throughput Response on the Line Topology

Effect R2 score
transport protocol & mac 544.951

transport protocol & QoS flow type 317.697

6.3.3 Airtime Reserved for Control Traffic

Part of our motivation for conducting the screening experiments was to look for

indications that the amount of airtime reserved for control traffic in REACTQoS had

an effect on any of the responses. Just looking at the ranking of the terms does not

give an indication for this, because we included the control airtime amount in the

MAC factor, so instead we look to the actual models generated. The terms in the
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models include a factor set to a specific level, so we observe these values and check

if they include the MAC factor set to one of the REACT protocols set to specific

airtime values (i.e., REACTQoS85).

Among the various responses, one of the mac levels including REACT appears

in the delay and throughput responses for both topologies. It does not appear in

the jitter response for either topology. For the complete topology, two terms in the

delay model include a REACT value (airtime reserved set to 90 and 85) while for

throughput it contains five terms including REACT with airtime values set to 80 and

90. Meanwhile, for the line topology, one term in the delay model includes REACT

with the reserved value set to 80, while for throughput it appeared twice with the

value set to 85.

From this we can conclude that the airtime value set does have some sort of an

impact on the delay and throughput responses. Otherwise, we expect to either not

see the terms present, or to see that value stay the same in the models. This provides

an indication that the amount reserved for control traffic does have an impact, and

further study could provide more insight into whether 80% for control traffic is indeed

the best value for REACTQoS.

6.4 Summary

In summary, the most significant parameters in all of the typically include both

the MAC protocol choice and the transport protocol choice. For both the delay and

throughput responses for the both topologies, we have found indications that the

amount of airtime reserved for control traffic has an impact on those responses in our

system. The fact that it does not appear in the jitter models could signify that it

does not affect jitter to a significant degree. This gives us insight into whether the

amount reserved for control traffic could be reduced, and gives us a starting point for
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a more detailed investigation into the best amount of airtime to reserve for control

traffic under REACT. Finally, we have determined that the most significant factors in

this system are the transport and MAC protocols (with some other factors specific to

certain responses) and that the majority of the remaining factors could be excluded

in experimentation. In the next chapter we briefly outline future directions for this

work and describe our conclusions.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

In this chapter, we begin by outlining future directions for this work in §7.1 and

conclude in §7.2 by providing an overview of the work presented in this thesis and

give our conclusions.

7.1 Future Work

REACTQoS is a first step to a more complete solution to realize airtime allocations

and provide QoS support in a wireless network. However, there is much that could

be done to further the work presented here.

First, this implementation of REACTQoS can impact the delay and jitter per-

formance. Prior work shows that REACT sacrifices some amount of throughput in

order to achieve superior delay and jitter [7]. Due to the traffic shaper used (the tbf

module from Linux tc 1 ), this implementation has worse delay and jitter. As we

showed in Experiment 5 in § 4.3, if the nodes adjust their traffic to match the alloca-

tion they received from the REACTQoS auction, this can be mitigated. However, it

may be possible to improve the tuning algorithm, perhaps by tuning the arbitration

interframe space (AIFS) in addition to the contention window size. However, as our

focus in this thesis is to achieve varied airtime allocations, we leave it to future work

to improve the tuning algorithm to not sacrifice delay or jitter.

An alternative solution to eliminating the need for a traffic shaper is to build

a cross-layer, application-level module that interacts with REACTQoS and automati-

cally adjusts the flow rate based on the allocation decided by REACTQoS. This would

1https://www.man7.org/linux/man-pages/man8/tc-tbf.8.html
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allow the SALT tuner to be able to tune without drops without the need for a traffic

shaper, while maintaining the delay and jitter characteristics of REACTQoS. Even if

SALT could be improved to not require the traffic shaper (or this application level

module), it may be desirable to enforce that nodes only send according to their allo-

cation. Intuitively this makes sense, as nodes should not send more than they have

been allocated.

Another improvement that could be made is to implement an explicit admission

control scheme for the QoS requests. Currently, the algorithm gives QoS nodes an

allocation of zero if the request cannot be satisfied. An explicit mechanism to request

and deny/accept the requests at the REACTQoS auction may be a better solution

and would allow for easier interaction with the REACTQoS module. This mechanism

could integrate directly with an application-level module.

As a result of our screening experiments, several cross-layer interactions were dis-

covered (particularly between the transport protocol and the MAC protocol, which

appeared for every response for both topologies). This begs the question of how these

cross-layer interactions impact the performance of REACTQoS. Further experimenta-

tion to determine the effect of these interactions is needed and can help inform what

changes to make to REACTQoS to improve performance. Furthermore, we determined

that the MAC protocol is an influential factor and that the control traffic reservation

value for REACT appeared in several of the models during the analysis. This obser-

vation is important for improving the performance of REACT and informs us that

the airtime dedicated to control messages has an impact on the responses. Through

further study, we could potentially reduce this value without losing the improved

delay and jitter characteristics of REACTQoS. Finally, the results of our screening

experiments allow us to eliminate many many factors that are unimportant to the
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responses collected. This aids in all future research because fewer factors are needed

in experimentation.

Next, REACTQoS was implemented and evaluated in an ad-hoc wireless network

scenario. We believe that the algorithm could help improve the performance of in-

frastructure WLANs in a managed access point (AP) scenario. In this case, one

REACT auction could be run per-AP, with clients only running the bidder portion

of REACT. The AP then has full knowledge of its network and could make decisions

in a centralized manner. Furthermore, if APs were in the same collision domain, a

REACT auction could be run between entire AP-subnets, over a wired connection,

to negotiate airtime among APs.

The use of REACTQoS in an AP scenario suggests the use of Software-Defined Net-

working (SDN) in a wireless network. There has been much previous work on SDN

and network slicing in the wireless domain, such as the EmPOWER system [20],[21].

But much of this work (including EmPOWER) operates higher in the network stack

and still depends on IEEE 802.11 for the lower level MAC protocol. EmPOWER, for

example, relies on manipulating the dequeuing frames at the AP using an adaptive

deficit weighted round robin (ADWRR) scheme to provide the slicing functionality.

Instead, it may be possible to use the more precise airtime realization mechanism of

REACTQoS to give nodes a precise allocation determined by a centralized controller.

This could provide more precise slicing either by replacing the ADWRR algorithm

altogether, or complementing it by replacing 802.11 at the lower MAC layer. Ad-

ditionally, conducting slicing in the uplink direction is not a solved problem, which

REACTQoS has the potential to improve because SALT could tune the airtime for the

client nodes. Some work has been done using traffic shapers interacting the with the

controller [22], but again this takes place higher in the network stack and still relies

on 802.11 at the MAC layer.
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7.2 Conclusion

In this work we proposed REACTQoS, a distributed protocol to allocate airtime

with QoS support. This allows nodes to request a higher class of airtime which,

if available at adjacent auctions, guarantees the node a higher airtime allocation.

These airtime allocations are realized through the use of an updated SALT tuner

that tunes two separate ACs from the EDCA protocol used by the 802.11 standard.

Through experimentation on the w-iLab.t testbed we have shown that this mecha-

nism is successful at achieving varied allocations in an ad-hoc wireless network in

a single-hop scenario. Additionally, through the use of a reservation server running

at all REACTQoS nodes, multi-hop flows can reserve airtime along their path to

make nodes aware of flows running through them. Our experimentation shows that

REACTQoS achieves better performance in all metrics when compared to EDCA,

including throughput. Finally, by conducting screening experiments we discovered

that we can eliminate many unimportant factors from further experimentation. In

addition to identifying the influential factors, several influential interactions were dis-

covered and indications were found that the amount of airtime reserved for control

traffic has an impact on the responses. This essential information will aid in future

research and will contribute to improvements to REACT.

This extension, combined with traffic shaping and dynamic demands, allows us to

tune the airtime nodes receive and opens the door to improved QoS support in wireless

networks in both single-hop scenarios and the more difficult multi-hop scenarios.

This work has contributed to the REACT protocol and improved quality of service

in networks, as well as improving future REACT research needs by discovering the

influential factors through screening experiments.
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