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ABSTRACT

Deep neural networks (DNNs), as a main-stream algorithm for various AI tasks,

achieve higher accuracy at the cost of increased computational complexity and model

size, posing great challenges to hardware platforms. This dissertation first tackles

the design challenges of resistive random-access-memory (RRAM) based in-memory

computing (IMC) architectures. A new metric, model stability from the loss landscape,

is proposed to help shed light on accuracy under variations and model compression

and guide a novel variation-aware training (VAT) solution. The proposed method

effectively improves post-mapping accuracy of multiple datasets. Next, a hybrid

RRAM/SRAM IMC DNN inference accelerator is developed, that integrates an

RRAM-based IMC macro, a reconfigurable SRAM-based multiply-accumulate (MAC)

macro, and a programmable shifter. The hybrid IMC accelerator fully recovers the

inference accuracy post the mapping. Furthermore, this dissertation researches on

architectural optimizations for high IMC utilization, low on-chip communication cost,

and low energy-delay product (EDP), including on-chip interconnect design, PE array

utilization, and tile-to-router mapping and scheduling. The optimal choice of on-chip

interconnect results in up to 6× improvement in energy-delay-area product for RRAM

IMC architectures. Furthermore, the PE and NoC optimizations show up to 62%

improvement in PE utilization, 78% reduction in area, and 78% lower energy-area

product for a wide range of modern DNNs. Finally, this dissertation proposes a novel

chiplet-based IMC benchmarking simulator, SIAM, and a heterogeneous chiplet IMC

architecture to address the limitations of a monolithic DNN accelerator. SIAM utilizes

model-based and cycle-accurate simulation to provide a scalable and flexible architec-

ture. SIAM is calibrated against a published silicon result, SIMBA, from Nvidia. The

heterogeneous architecture utilizes a custom mapping with a bank of big and little

i



chiplets, and a hybrid network-on-package (NoP) to optimize the utilization, intercon-

nect bandwidth, and energy efficiency. The proposed big-little chiplet-based RRAM

IMC architecture significantly improves energy efficiency at lower area, compared to

conventional GPUs. In summary, this dissertation comprehensively investigates novel

methods that encompass device, circuits, architecture, packaging, and algorithm to

design scalable high-performance and energy-efficient IMC architectures.
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Chapter 1

INTRODUCTION

1.1 Reliable In-Memory Computing

Deep neural networks (DNNs) have seen exceptional success in numerous cognitive

applications such as image classification and object detection. Higher accuracy

comes at the cost of increased computational complexity and model size, posing

great challenges to traditional architectures Chen et al. (2019); Jouppi et al. (2017).

Furthermore, DNN hardware accelerators incur a significant area overhead, especially

when the DNN model size is rapidly increasing. Finally, limited on-chip memory

capacity leads to a significant amount of communication with off-chip memory, whose

energy consumption is 1,000× higher than that of computations Horowitz (2014).

In-Memory computing (IMC) architecture provide a viable alternative to conven-

tional architectures. They combine memory access and computation into a single

unit through analog or digital domain computation. IMC architectures are designed

using different types of IMC cells, RRAM, SRAM, FeFET, etc. First, we focus on

an RRAM-based IMC architecture. RRAM-based IMC accelerators provide a dense

and parallel structure to achieve high performance and energy efficiency Song et al.

(2017); Krishnan et al. (2020b); Mandal et al. (2022); Krishnan et al. (2022a). RRAM

memory cell stores the weights of the DNN. Furthermore, multi-level RRAM cells

can store multi-bit weights in a single cell, thus increasing the density of the IMC

architecture. Through this, a more dense computing structure of the RRAM-based

IMC allows for more weights to be stored on-chip resulting in reduced off-chip memory
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access. Prior works with RRAM-based crossbar architectures have shown up to 1,000×

improvement in energy efficiency as compared to CPUs/GPUs Song et al. (2017);

Krishnan et al. (2020b); Shafiee et al. (2016); Mandal et al. (2020); Imani et al. (2019);

Qiao et al. (2018); Mao et al. (2019). The increased energy-efficiency is attributed to

a full-custom design following the assumption; all weights are stored on-chip Shafiee

et al. (2016); Song et al. (2017); Krishnan et al. (2020b).

But, the increased model size of DNNs result in higher area overhead for RRAM-

based IMC architecture. Hence, model compression (e.g. pruning and quantization)

is necessary for RRAM-based in-memory acceleration of DNNs. Furthermore, in

reality, RRAM suffers from statistical variations such as quantization error, device-to-

device write variations, stuck-at-faults, and limited Roff/Ron ratio, posing a significant

challenge to designing reliable RRAM-based IMC architectures Chen et al. (2014);

Chakraborty et al. (2020); Charan et al. (2020a). To mitigate the post-mapping

accuracy loss in DNNs, variation-aware training (VAT) is employed Long et al. (2019);

Charan et al. (2020a); Chakraborty et al. (2020); He et al. (2019b); Ma et al. (2020).

But, conventional VAT methods perform training and testing at the same RRAM

variations. Simultaneously, conventional VAT methods require precise knowledge of

the RRAM variations from the fabricated cells. Finally, conventional VAT methods

do not address effect of limited precision within the RRAM IMC architecture (ADC

and accumulator) and effect of pruning and quantization for DNNs.

To address this, in this dissertation, we propose the following:

• A new metric, model stability, from the loss landscape to help shed light on

accuracy under variations and model compression and guide an algorithmic

solution that mitigates the loss. The model stability is visualized by the loss

landscape and evaluated by the roughness score Du et al. (2020),
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• To the best of our knowledge, this is the first time model stability and loss

landscape are used for reliable RRAM-based IMC computing,

• We utilize model stability to select the more stable model that can withstand the

variations better. The proposed model stability-based model selection effectively

tolerates device variations and achieves a post-mapping accuracy higher than

that with 50% lower RRAM variations,

• We show that pruning results in a less stable model, while quantization improves

the model stability,

• We further propose a model stability-based VAT method for compressed DNNs,

which searches the most stable model under variations to achieve the best

post-mapping accuracy, without knowing the exact amount of RRAM testing

variations upfront,

• Finally, we show that the model-stability-based VAT method achieves up to 19%,

21%, and 11% improvement in accuracy for compressed DNNs on CIFAR-10,

CIFAR-100, and SVHN datasets, respectively.

Next, in this dissertation, we aim to bridge the gap between the floating-point

software accuracy and the post-mapping accuracy of RRAM-based IMC architectures

(after applying model stability-based VAT methods). To address this, we propose the

following:

• We propose a novel hybrid IMC architecture that utilizes an RRAM-based IMC

macro and a reconfigurable SRAM array and output stationary multiply-and-

accumulate (MAC) macro,

• The RRAM macro consists of a IMC crossbar array with a column multiplexer,

ADCs, a PMOS header circuit, and a shift and add circuit. At the same time,

the SRAM macro consists of an SRAM memory array with N-bit word size and
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N parallel MAC engines that utilize an output stationary architecture to reduce

partial sum movement,

• A programmable shifter is implemented to allow for 1-bit, 2-bit, and 3-bit shift

for the SRAM output to generate different levels of compensation for the RRAM

macro. Finally, an adder is used to combine the RRAM and SRAM output to

generate the overall output of the DNN layer,

• We designed a prototype of the hybrid IMC architecture with a fully integrated

1T1R RRAM structure and a custom SRAM module in the SUNY Polytechnic

Institute’s 65nm process,

• Compared to state-of-the-art methods, the proposed hybrid IMC architecture

achieves up to 21.9%, 12.65%, and 6.52% improvement in post-mapping accuracy

with minimal overhead for ResNet-20 on CIFAR-10, VGG-16 on CIFAR-10, and

ResNet-18 on ImageNet, respectively.

1.2 In-Memory Computing Architectures and Optimizations

In addition to the mitigation of the non-ideal effects of RRAM-based IMC archi-

tecture, this dissertation also presents two architectural optimizations (both RRAM-

and SRAM-based IMC) that provides high IMC utilization, optimal on-chip com-

munication cost, and reduced energy-delay product (EDP) for DNN inference. First

we evaluate and give insights on the effect of the choice of the interconnect in IMC

architectures, as shown below:

• First, we illustrate that the point-to-point (P2P)-based interconnect is incapable

of handling a high volume of on-chip data movement for DNNs,

• We evaluate P2P and network-on-chip (NoC) interconnect (with a regular
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topology such as a mesh) for SRAM- and ReRAM-based in-memory computing

(IMC) architectures for a range of DNNs,

• Furthermore, we propose to use analytical models of NoC to evaluate end-to-end

communication latency of any given DNN and determine the optimal choice of

interconnect for any given DNN,

• We demonstrate that the interconnect optimization in the IMC architecture

results in up to 6× improvement in energy-delay-area product for VGG-19

inference compared to the state-of-the-art ReRAM-based IMC architectures.

Second, we identify the area and energy bottleneck in IMC architectures. We

propose to utilize an area and energy optimization to improve the IMC utilization

and reduce the interconnect energy, as shown below:

• We propose an area-aware optimization technique that improves the PE array

utilization. This is achieved by generating a heterogeneous tile-based IMC

architecture that consists of tiles of different sizes, i.e. with different numbers of

PEs where each PE is of the same size,

• Further, we minimize the communication energy across a large number of tiles

using an NoC architecture with optimized tile-to-router mapping and scheduling,

• Overall, our proposed area and energy optimization methodology generates

a heterogeneous IMC architecture coupled with an optimized NoC for DNN

acceleration,

• Experimental evaluations show up to 62% improvement in PE utilization, 78%

reduction in area, and 78% lower energy-area product for a wide range of modern

DNNs such as DenseNet (100,24), and ResNet-152.
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1.3 IMC Chiplet Architecture and Benchmarking Simulator

Furthermore, in this dissertation, to address the limitations of a monolithic DNN

accelerator, we propose a novel chiplet-based IMC benchmarking simulator and an

heterogeneous chiplet IMC architecture. The following are the key contributions of

this dissertation through the chiplet-based IMC benchmarking simulator, SIAM:

• We propose a novel benchmarking tool, SIAM, device, circuits, architecture,

NoC, NoP, and DRAM access estimation under a single roof for design space

exploration,

• SIAM supports both monolithic and chiplet-based IMC architectures,

• To the best of our knowledge, this is the firs open-sourced architectural explo-

ration tool for chiplet-based IMC architectures,

• SIAM has a flexible architecture to support multiple DNN to IMC chiplet and

crossbar partition and mapping schemes, thus generating different types of

chiplet-based IMC architectures,

• Furthermore, SIAM has a low simulation time ranging from a few minutes to

a few hours (4.5Hrs for VGG-16 with 138M parameters) to support the fast

design and benchmarking exploration,

• We calibrate SIAM against a published silicon result, SIMBA, a real-world chip

from Nvidia,

• We demonstrate SIAM’s capabilities by conducting experiments on state-of-

the-art DNNs such as ResNet-110 for CIFAR-10, VGG-19 for CIFAR-100, and

ResNet-50 and VGG-16 for ImageNet datasets.

Finally, to optimize chiplet-based IMC architecture, we propose a heterogeneous

chiplet-based IMC architecture with a custom mapping for scalable DNN acceleration.
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• We propose a heterogeneous big-little chiplet-based IMC architecture that uti-

lizes a big and little IMC-based chiplet bank coupled with an optimal NoP

configuration (interposer and bridge),

• We develop an algorithm to determine the optimal configuration of the big-

little IMC chiplet architecture. The little-chiplet bank consists of little chiplets

interconnected by an interposer-based NoP (chiplets are placed closed to each

other). Similarly, the big-chiplet bank consists of big chiplets interconnected by

a bridge-based NoP. In addition, each chiplet (big/little) utilizes a local DRAM

to store the weights of the DNN.

• We present a custom mapping strategy of DNNs onto the big-little chiplet

IMC architecture that exploits the non-uniform distribution of weights and

activations. The smaller structure of the weights in the early layers results in

higher utilization within the little chiplet bank, while the larger layers towards

the end of the DNN achieve high utilization on the big-chiplet bank. We also

exploit the activation distribution by utilizing an interposer-based NoP with

high bandwidth within the little chiplet bank, which houses the early layers

with higher on-chip data movement. Simultaneously, the subsequent layers with

lower on-chip data movement (fewer activations) utilize the bridge-based NoP

with lower bandwidth within the big chiplet bank.

• Experimental evaluation of the proposed big-little chiplet-based RRAM IMC

architecture on ResNet-50 on ImageNet shows up to 259×, 139×, and 48×

improvement in energy-efficiency and lower area compared to Nvidia V100 GPU,

Nvidia T4 GPU, and SIMBA architecture, respectively.
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1.4 Thesis organization

The outline of this thesis is as follows:

• Chapter 2 presents model stability as a metric for reliable RRAM-based IMC

acceleration. This chapter explains model stability, the methodology utilized to

evaluate the metric and effect of pruning and quantization on model stability.

Next, we discuss the proposed model stability-based model selection for reliable

RRAM-based IMC accelerations. Finally, we extend model stability to propose

a novel VAT method that searches for the most stable model through an optimal

training variations scale for reliable RRAM computing.

• Chapter 3 presents the hybrid RRAM/SRAM IMC architecture for robust

RRAM-based IMC acceleration of DNNs. The chapter discussed a hybrid IMC

architecture that utilizes an RRAM-based IMC macro and a SRAM memory

and associated output stationary MAC engine. The architecture utilizes a

programmable shifter to combine the outputs from the RRAM and SRAM

macro where the SRAM output acts as a compensation with different scales

through the shifter.

• Chapter 4 presents a detailed study and insights into the effect of the choice

of the interconnect for IMC architectures. We discuss P2P and network-on-chip

(NoC) as a choice for the interconnect. Furthermore, we propose to use analytical

models of NoC to evaluate end-to-end communication latency of any given DNN

and determine the optimal choice of interconnect for any given DNN.

• Chapter 5 presents an area and energy optimization to improve the utilization

and energy cost for IMC architectures. We evaluate the methodology for both

SRAM and RRAM IMC architectures. The chapter discusses the effect of the
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optimizations individually and together for a wide-range of DNNs across different

datasets.

• Chapter 6 presents the first open-sourced architectural benchmarking simulator,

SIAM, that supports both monolithic and chiplet-based IMC architectures. The

chapter details each engine within SIAM, the supported architectures, underlying

dataflow, working, and benchmarking with a real-world chip like SIMBA. Finally,

the chapter discusses the capabilities of SIAM through experiments and the

different grades of architectural exploration across different DNNs and datasets.

• Chapter 7 presents the heterogeneous big-little chiplet architecture for In-

Memory acceleration of DNNs. The architecture utilizes a big and little IMC-

based chiplet bank coupled with an optimal NoP configuration (interposer and

bridge). Furthermore, Each chiplet (big/little) utilizes a local DRAM to store

the weights of the DNN. In addition, we develop an algorithm to determine

the optimal configuration of the big-little IMC chiplet architecture. Finally, we

present a custom mapping strategy of DNNs onto the big-little chiplet IMC

architecture that exploits the non-uniform distribution of weights and activations

for higher IMC utilization and NoP energy efficiency.

• Chapter 8 concludes the dissertation.
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Chapter 2

RELIABLE RRAM-BASED IN-MEMORY COMPUTING THROUGH MODEL

STABILITY

2.1 Introduction

Deep neural networks (DNNs) outperform humans for a variety of applications,

such as computer vision and natural language processing. Higher accuracy comes at

the cost of increased computational complexity and model size, posing great challenges

to traditional architectures Chen et al. (2019). In addition, limited on-chip memory

capacity leads to a significant amount of communication with off-chip memory, whose

energy consumption is 1,000× higher than that of computations Horowitz (2014).

RRAM-based IMC accelerators provide a dense and parallel structure to achieve

high performance and energy efficiency Song et al. (2017); Krishnan et al. (2020b); Du

et al. (2019). Prior works with RRAM-based crossbar architectures have shown up

to 1,000× improvement in energy efficiency as compared to CPUs/GPUs Song et al.

(2017); Krishnan et al. (2020b); Shafiee et al. (2016); Mandal et al. (2020); Imani et al.

(2019). The increased energy-efficiency is attributed to a full-custom design following

the assumption; all weights are stored on-chip Shafiee et al. (2016); Song et al. (2017);

Krishnan et al. (2020b). However, RRAM-based IMC architectures incur a significant

area overhead, especially when the DNN model size is rapidly increasing. Hence,

model compression (e.g. pruning and quantization) is necessary for RRAM-based

in-memory acceleration of DNNs.

In reality, RRAM suffers from statistical variations such as quantization error,
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Figure 1. Post-Mapping Accuracy for ResNet-20 on CIFAR-10 (a) Across Different
RRAM Levels and Average RRAM Variations. For a Given Roff/Ron Ratio, Higher
RRAM Levels Suffer From Variations and Thus Lower Accuracy. Simultaneously,
a Lower Average RRAM Variation Results in Higher Accuracy, (b) At 8-bit and
Ternary-Bit Precision, with 29% Sparsity Yang et al. (2020). Model is Trained and
Tested with the Same Variation (σ) Long et al. (2019); Charan et al. (2020a). The
8-bit Model has More Accuracy Loss Than the Ternary Model As σ Increases.

device-to-device write variations, stuck-at-faults, and limited Roff/Ron ratio, posing

a significant challenge to designing reliable RRAM-based IMC architectures Chen

et al. (2014); Chakraborty et al. (2020); Charan et al. (2020a); Krishnan et al. (2021a);

Charan et al. (2020b). The statistical variations in RRAM cause deviation in the

programmed resistance leading to a significant loss in post-mapping accuracy (i.e.,

accuracy in the presence of RRAM variations) for DNNs. To mitigate the post-

mapping accuracy loss in DNNs, variation-aware training (VAT) is employed Long

et al. (2019); Charan et al. (2020a); Chakraborty et al. (2020); He et al. (2019b); Ma
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et al. (2020); Krishnan et al. (2022b). VAT exploits the inherent redundancy in DNN

by embedding the device variations (σ), based on a log-normal or normal distribution

model, into the training process to achieve a variation-tolerant model, with no need of

re-training for each individual RRAM chip Long et al. (2019); Charan et al. (2020a);

He et al. (2019b). The conventional VAT techniques train and test the DNN model at

the same level of variation.

Fig. 1(a) shows the post-mapping accuracy for ResNet-20 He et al. (2016) on

CIFAR-10 dataset for different RRAM levels across various average RRAM variations.

The baseline accuracy for the floating-point 32bit (FP-32) model is shown in red (dash

line). The red curve shows the variation of pre-mapping accuracy with RRAM levels

for our 65nm RRAM data with an average variation (σavg) of 0.3. For a given Roff/Ron

ratio, a higher number of RRAM levels leads to higher variation and lower accuracy,

and vice-versa. A higher variation for a higher number of RRAM levels arises from

the increased HRS state utilization. Further, we analyze the scenario with a reduced

average variation of 0.2 and 0.15. A reduction in RRAM variation through improved

process control improves the pre-mapping accuracy. But, though the reduction in

RRAM variation improves the accuracy, it does not achieve the same accuracy as

FP-32. Hence, we establish that the reduction in RRAM variation does not get the

pre-mapping accuracy back to the FP-32 level (baseline).

Next, we analyze the effect of RRAM variations on a sparse and quantized DNN.

Fig. 1(b) shows the accuracy of ResNet-20 for CIFAR-10 at 29% sparsity for different

RRAM write variations and data precision using the conventional VAT method Long

et al. (2019). Conventional VAT proves ineffective under pruning Krishnan et al.

(2020a) and quantization, resulting in reduced post-mapping accuracy. Furthermore,

a lower precision (ternary) helps improve the post-mapping accuracy, as shown in
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Fig. 1(b). Hence, there is a need for a more systematic solution for reliable RRAM-

based in-memory computing for dense, sparse, and quantized DNNs.

To address this, in this work1, we propose a new metric, model stability, from the

loss landscape to help shed light on accuracy under variations and model compression

and guide an algorithmic solution that mitigates the loss. The model stability is

visualized by the loss landscape and evaluated by the roughness score Du et al. (2020).

A lower roughness score indicates a smoother loss landscape and a more stable model.

Through this, we select the more stable model that can withstand the variations

better. The proposed model stability-based model selection effectively tolerates device

variations and achieves a post-mapping accuracy higher than that with 50% lower

RRAM variations. Next, we propose a novel variation-aware training (VAT) method

for best model stability in compressed DNNs. The proposed method utilizes VAT

to train the compressed DNN with different scales of device variations (σ) to search

for the most stable model and improve post-mapping accuracy. For a given DNN

model, higher model stability implies better tolerance of variations and thus, higher

post-mapping accuracy. We utilize a structured pruning method Yang et al. (2020)

and model quantization He et al. (2019a); Zhou et al. (2016) to compress DNN.

The pruning method considers the mapping of the DNN onto the RRAM crossbar

for best IMC performance. We show that pruning results in a less stable model,

while quantization improves the model stability. We demonstrate that the proposed

method achieves up to 19%, 21%, and 11% improvement in post-mapping accuracy on

CIFAR-10, CIFAR-100, and SVHN datasets, respectively. The major contributions of

this work are as follows:

1Work done in collaboration with Prof. Deliang Fan, Li Yang, and Jingbo Sun at ASU, and
SUNY.
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• We propose a new metric, model stability, using the loss landscape to mitigate

the accuracy loss of dense and compressed DNNs in the presence of RRAM

variations,

• Using model stability as a metric to choose the more stable model results in

similar accuracy improvement as that for 50% lower RRAM variations through

costly process control,

• We further propose a model stability-based VAT method for compressed DNNs,

which searches the most stable model under variations to achieve the best

post-mapping accuracy, without knowing the exact amount of RRAM testing

variations upfront,

• Finally, we show that the model-stability-based VAT method achieves up to 19%,

21%, and 11% improvement in accuracy for compressed DNNs on CIFAR-10,

CIFAR-100, and SVHN datasets, respectively.

2.2 DNN Model Stability

Given a trained DNN model, its model stability is an intrinsic property to withstand

perturbations, such as variations in model weights and input noise. Model stability of

a DNN, i.e., the DNN generalization capability, is directly related to the contour of the

loss function Hochreiter and Schmidhuber (1997); Keskar et al. (2019); Li et al. (2018);

Du et al. (2020). A flatter contour of the loss function leads to a larger region of

acceptable minima, which allows the DNN model to better tolerate variations in both

weights and inputs. Vice versa, a steeper contour of the loss function leads to a smaller

region of acceptable minima Hochreiter and Schmidhuber (1997), which implies that

any perturbations to the weights or inputs will lead to appreciable movement of the
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minima point and thus, reduce model accuracy. In this work, we utilize DNN model

stability as a metric to guide reliable RRAM-based IMC acceleration.

2.2.1 Landscape visualization

In order to quantitatively understand model stability, we utilize the landscape

visualization method Li et al. (2018) to visualize the minima of the loss function. In Li

et al. (2018), filter normalization is applied to remove the scaling effect of injected

noise, and a 3-dimension matrix is generated with x, y, and z coordinates, where x

and y represent the scale of two random perturbations injected into the model and z

is the loss function. Essentially this matrix plots the fluctuation of the loss function

under the local perturbation around the local minimum.

2.2.2 Roughness Score

We calculate the smoothness of the loss function, defined as roughness score, to

quantify the loss landscape’s stability further. We fit the 3-dimensional data from the

landscape using quadratic linear regression and obtain the mean square error (MSE)

of the fitting model, as shown below:

ẑj = wj4x
2
j + wj3y

2
j + wj2xj + wj1yj + wj0, (2.1)

ŵ = argmin
wj

1

n

n∑
j=0

(zj − ẑj)
2 (2.2)

where wj represents the fitted coefficients. We denote the stability or roughness score

of the DNN model as MSE(z;x2, y2, x, y; ŵ). A smaller MSE arises from a flat and

smooth landscape and vice-versa. Note that such a method was previously used to
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Figure 2. A Lower Roughness Score Leads to a Smoother Loss Landscape, Higher
Stability and Thus, Higher Model Accuracy.

improve the accuracy in continual learning Du et al. (2020), while it did not consider

device variations, sparsity, and quantization. To the best of our knowledge, this is

the first time that model stability has been employed to provide systematic guidanceto

improve the post-mapping accuracy for the acceleration of dense and compressed DNNs

using RRAM-based IMC architectures.

2.2.3 Roughness Score and DNN Accuracy

Fig. 2 shows the accuracy and roughness score for different DNNs. We generate

different versions for a DNN model by utilizing different weight initialization, which

leads to different roughness scores and corresponding accuracy. VGG-16 for CIFAR-10

achieves 94.2% accuracy and the lowest roughness score of 118x10-3. At the same

time, a ResNet-20 version achieves the lowest accuracy of 89.5% with a roughness

score of 278x10-3. To further understand the relationship between the roughness score,

loss landscape, and DNN accuracy, we visualize the loss landscape using the method

detailed in Li et al. (2018). VGG-16 has a shallow and smooth loss landscape while
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Figure 3. HRS (Left) and LRS (Right) Cycle-To-Cycle Switching Variation Across
the 300mm Wafer at 65nm. HRS State has a Higher Variation Than LRS.

the lowest accuracy ResNet-20 variant has a rough loss landscape. Through these

examples we establish that a lower roughness score leads to a smoother loss landscape,

more acceptable local minima for the loss function, and a higher DNN accuracy.

2.3 65nm 1T1R RRAM Device

To accurately model the RRAM device properties, RRAM data is collected from a

fully integrated 1T1R structure on a 300mm wafer, using a custom RRAM module

within the SUNY Polytechnic Institute’s 65nm process. The size of each RRAM device

is 100nmx100nm. The RRAM device stack is comprised of a 6nm HfO2 mem-resistive

switching layer, a 6nm PVD Ti oxygen exchange layer (OEL), and TiN electrodes (top

and bottom). Electrical characterization is performed using a pulse-based approach

having a magnitude 1V – 1.2V and width of 10µs for the set and reset operation of

RRAM devices.
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Table 1. Endurance Measurement up to 1 Billion Cycles

Cycles 10 102 103 105 107 109

LRS (KΩ) 5.7 5.5 5.7 5.6 5.8 5.9

HRS (KΩ) 109 231 157 43.3 113.8 30.8

Fig. 3 shows the wafer-level cycle-to-cycle switching variations for the 65nm RRAM

device measured using the pulse-based switching technique. The high-resistance state

(HRS) has a higher variation up to 0.6, while the low-resistance state (LRS) has a

lower variation up to 0.1. The average variation (σavg) for the entire range of HRS

and LRS amounts to 0.3.

Fig. 4 shows the normalized variation for different Roff/Ron ratios across 1110 1T1R

RRAM devices at 65nm. As the ratio of Roff/Ron goes up its HRS state utilization

increases. A higher HRS state utilization results in higher device variations and an

increase in overall average variation, as shown in Fig. 3. Overall, a lower Roff/Ron

ratio results in lower average device variation at the cost of lower usable resistance

levels and hardware performance, and vice-versa.

Fig. 5 shows the retention of both HRS and LRS for 105 seconds at 100◦C. The
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Table 2. Device Models From 65nm 1T1R RRAM Device

Parameter Value

Roff/Ron 2-650

Write Variation1 r′ ← r.eθ; θ ∼ N (0, σ2)

Average Variation (σavg) 0.3

RRAM levels (#) 16

Aging Variation (σage) 0.1, 0.02 (HRS, LRS)
1r is the ideal resistance to be programmed and

r’ is the real value in RRAM. 0.1 ≤ σ ≤ 0.5.

grey region overlaid on the plot shows the static variation from the RRAM device.

The 65nm 1T1R RRAM device shows low retention variation, as shown in Fig. 5.

Table 1 shows the endurance data for both HRS and LRS states up to 1 billion cycles.

Both the HRS and LRS states show high endurance with distinction between the two

states up to 1 billion cycles. Since static write variations are dominant, in this work,

we do not consider the effects of retention or endurance. Table 2 summarizes the

device models used in the cross-layer simulation framework described in Section 2.4.

In this work, we use the 65nm RRAM models for all our experiments to provide

realistic results.
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2.4 Cross-Layer Simulation Framework

In this work, we develop an in-house simulator to perform system-level benchmark-

ing of the RRAM-based IMC architecture. Fig. 6 shows the block diagram of the

cross-layer benchmarking tool utilized.

The simulator incorporates device, circuits, architecture, and algorithm under

a single roof to perform system-level benchmarking. The simulator provides post-

mapping accuracy (hardware accuracy), the overall hardware performance, roofline

model, and model stability. The inputs to the simulator include the DNN structure,

data precision, target sparsity, technology node, bits per RRAM cell, IMC crossbar

size, ADC resolution, read-out method, frequency, NoC topology, and NoC size, among

others.

2.4.1 Device Models

The tool incorporates device models from the 65nm 1T1R RRAM device, as

shown in Table 2. The RRAM device variations are modeled using the log-normal
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distribution Krishnan et al. (2021f); Charan et al. (2020a). The Roff/Ron ratio of the

RRAM device ranges between 2 and 650. We assume that the discrete resistance levels

used to represent the weights are within the limited Roff/Ron ratio. The maximum

number of resistance levels that a single RRAM cell can handle is 16, limiting the

weights to be mapped to a single cell to 4-bits.

2.4.2 Circuit Estimator

The circuit estimator performs the estimation of the IMC, peripheral circuits, and

digital modules within the architecture. We benchmark the overall circuit estimator

with SIAM Krishnan et al. (2021e). The circuit estimator performs the mapping of the

DNN onto the RRAM-based IMC crossbar architecture. The mapping utilized within

the estimator follows that in Krishnan et al. (2021e). The IMC circuit components

include the crossbar, wordline (WL) driver, level shifters, bitline (BL) and select-line

(SL) multiplexers (MUX), column MUX, analog-to-digital converter (ADC), and shift

and add circuit. In addition, the circuit estimator benchmarks the accumulator,

pooling unit, and buffer circuits in the architecture. The estimator utilizes the device

models and the transistor properties to perform the overall estimation.

2.4.3 Architecture

Fig. 6 shows the overall architecture utilized in this work. The architecture utilized

is similar to that in Krishnan et al. (2020b) with a homogeneous crossbar size. The

top-level consists of an array of IMC tiles interconnected by an NoC-mesh. Each tile

consists of an array of PEs connected by an H-Tree interconnect. The PE consists
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of an RRAM-based IMC crossbar and associated peripheral circuits. The peripheral

circuits include an ADC, column MUX, switch matrix, WL decoder and driver, level

shifters, and SL and BL MUX. In addition, the PE consists of a local buffer that is

utilized for the movement of activations and partial sums into and out of the PE.

The architecture utilizes an NoC-mesh to perform the on-chip data movement at

the tile-level. Each tile is associated with an NoC router that performs the packet

scheduling and routing. The NoC utilizes an X–Y routing mechanism. To benchmark

the NoC interconnect, we utilize a cycle-accurate simulator that is benchmarked

against the NoC module within SIAM Krishnan et al. (2021e). To perform the

estimation, we generate traces for the packets communicated between the tiles similar

to that detailed in Krishnan et al. (2021e). These traces are then utilized as the input

to the NoC estimator to evaluate the cost of on-chip communication.

2.4.4 Algorithm

The algorithm component of the simulator performs the DNN training, prun-

ing, quantization, variation-aware-training (VAT), evaluation of model stability, and

hardware-aware training. The VAT training performed in this work utilizes the device

models detailed in Table 2. We utilize the log-normal distribution to add the variations

for each weight. The variations are added such that the variations depend on the

weight value, thus having one-to-one correlation to the real hardware. In addition,

for the hardware-aware training we include the effect of the limited precision of the

RRAM, the ADC, and the accumulator within the shift and add circuit. Finally, the

algorithm component of the simulator evaluates the model stability of the DNN after

training. To achieve this, we evaluate the roughness score of the loss function and
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visualize the loss landscape as detailed Section 2.2. In the following sections we detail

the pruning and quantization methodologies utilized in this work.

2.4.4.1 Pruning

In this work, we adopt the structured pruning method in Yang et al. (2020). It

utilizes a weight-penalty clipping with a self-adapting threshold, as shown below:

L̂ = L(f(x; {Wl}Ll=1), t) + λ
L∑
l=1

Gi∑
i=1

min(∥Wl,i∥2; δl) (2.3)

δl = α.
1

Gl

Gi∑
i=1

∥Wl,i∥2 (2.4)

where δl denotes the layer-wise self-adapting clipping threshold, L is the number of

layers, Gl is the number of groups in the l -th layer, λ is the hyper-parameter to be

tuned based on the dataset, and α is the scaling coefficient. The pruning is conducted

group-wise along the output channel dimension: for layer l with weight matrix Wl

∈ RNof×Nif×Kx×Ky , we choose a group of size Ng along the Nif dimension, where Ng

is determined by the crossbar size. Groups of Kx×Ky×Ng weights are pruned across

output channels to favor the IMC.

2.4.4.2 Quantization

The pruned model is further compressed by applying quantization. For 4-bits

or higher precision, we employ uniform in-training quantization Zhou et al. (2016).

Furthermore, for ternary bit precision, we follow the ternarization method in He

et al. (2019a). For both ternary and higher bit precision, we employ the straight-

through-estimator (STE) method in the backward-propagation to counteract the
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non-differential issues of the discrete quantization function. In this work, we focus on

8-bit and ternary weight quantization.

2.5 Model Stability for RRAM-based IMC

In this section, we detail the algorithm utilized to evaluate the model stability of

DNN under the presence of RRAM variations, sparsity, and quantization. Algorithm 1

Algorithm 1: Model Stability
1 Input: DNN, weight precision (W ), activation precision (A), RRAM training

variations (σtrain), RRAM testing variations (σtest), crossbar size, and ADC
precision

2 Output: Roughness Score (Rs) and loss landscape
3 for DNN Model do
4 Perform DNN training

/* Model A */
5 if Quantize then
6 Perform DNN quantization (Section 2.4.4.2)

/* Model B */
7 end
8 if Pruning then
9 Perform pruning for DNN Model as in Equation 3.1 and Equation 3.2

/* Model C */
10 end
11 Add RRAM variations (σtrain) and perform hardware-aware training

/* Model D */
12 Plot loss landscape using tool in Li et al. (2018) for models A, B, C, and D
13 Calculate roughness score of loss landscape for models A, B, C, and D
14 end

details the methodology utilized in this work to evaluate the model stability. First,

for each DNN model we perform training to generate the floating-point model A.

We perform inference with model A to calculate the inference accuracy. Next, we

quantize the DNN model to fixed-point weights and activations across all layers
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of the DNN, to generate model B. Uniform quantization is employed to maximize

the hardware performance for the RRAM-based IMC architecture. The quantized

model is then pruned to generate the structured sparse DNN model C. Thereafter,

we add the RRAM variations (σtrain) and perform hardware-aware training for the

quantized model to generate model D. In addition to adding the RRAM variations,

hardware-aware training involves breaking the convolution or fully-connected (FC)

layer into partial convolutions and FC layer operations based on the size of the crossbar

and adding the ADC quantization for the column sum from each crossbar. We then

perform inference for the hardware-aware trained model D in the presence of the

RRAM testing variations (σtest) to generate the realistic hardware accuracy. Next, to

evaluate the model stability for each model, we plot the loss landscape as defined in

Section 2.2.1. Finally, we evaluate the roughness score of the loss landscape (models

A, B, C, and D) to quantify the stability of the DNN model. In this work, we propose

to use model stability as a metric for reliable RRAM-based IMC accelerations. To

achieve this, we propose two directions, first, a model stability-based model selection,

and second, a model stability-based VAT method.

Given a dataset, Fig. 2 illustrates that the choice of the DNN model significantly

affects the accuracy. Based on this observation, we propose a novel loss landscape-

based model selection for stability that tolerates RRAM device variations and achieves

higher post-mapping accuracy. Such an observation is attributed to the DNN model

stability. Model stability of a trained DNN is the intrinsic property to withstand

perturbations such as variations and noise. A more stable model with higher model

stability will be more robust under RRAM variations and have higher post-mapping

accuracy.

Model stability-based model selection provides a viable solution when there is a
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choice for the target DNN. But, if the DNN cannot be changed and is compressed,

model selection cannot be utilized. To address this, in this work, we propose a novel

model stability-based VAT to improve the post-mapping accuracy of DNNs under

sparsity and quantization. Previous VAT approaches focus on non-pruned DNNs

and require the precise knowledge of RRAM testing variations and apply that to the

training Long et al. (2019); Charan et al. (2020a). Distinct from that,we first train

the sparse and quantized DNN model with different scales of device variations (σtrain),

without knowing the exact amount of RRAM testing variations. The range of σtrain is

from 0.1 to 0.5, as suggested by the 65nm 1T1R RRAM data. Furthermore, we evaluate

the loss landscape and the roughness score for each of the different VAT variants to

help identifythe optimal model with the highest model stability (Algorithm 1). A

higher model stability from the optimal scale of training variation leads to higher

post-mapping accuracy.

2.6 Experiments and Results

2.6.1 Experimental Setup

We evaluate the proposed model stability metric for reliable RRAM-based IMC

acceleration using two main methods. First, we demonstrate a DNN model selection

for higher model stability which improves the overall DNN accuracy. We evaluate

the proposed method for ResNet-20 on CIFAR-10, DenseNet-40 for CIFAR-10 and

CIFAR-100, and ResNet-32 for CIFAR-100. All experiments are done for a crossbar

size of 256×256 with a 5-bit ADC at the periphery. We evaluate for different RRAM

levels ranging from 2 to 16.
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Figure 7. Normalized Energy-Delay Product (EDP) at Different Sparsity for ResNet-20
on CIFAR-10 at 8-bit and Ternary Precision.

Next, we extend the model stability metric to present a novel model stability-based

VAT method to mitigate the accuracy degradation in RRAM-based IMC architectures.

We evaluate the proposed VAT method for ResNet-20 on CIFAR-10, VGG-16 on

CIFAR-10, ResNet-32 on SVHN, and ResNet-56 for CIFAR-100. We evaluate the

VAT method in the presence of RRAM variations that range from 0.1 to 0.5, ternary

and 8-bit quantization, and different levels of structured sparsity generated using

pruning method detailed in Section 2.4.4.1. The pruning group size is chosen equal to

the crossbar size for maximum hardware inference performance. We utilize the same

crossbar size of 256×256 with a 5-bit ADC at the periphery.

2.6.2 Pruning and Quantization

2.6.2.1 Effect of Pruning and Quantization on RRAM IMC

We follow the mapping as in Krishnan et al. (2021e). In the pruning method, we

set the group size in accordance with the number of rows of the crossbar. For example,
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for a crossbar of size 72×64 and kernel size of 3x3, we set the group size to be 8. Hence,

we prune groups of 3×3×8 weights along the output feature dimension. Therefore, we

are able to skip the mapping of 3×3×8 weights along the column dimension of the

RRAM crossbar while maintaining high utilization. In this work, we set the group

size to be 8 and the crossbar size as 72×64. Fig. 7 shows the energy-delay product for

ResNet-20 on CIFAR-10 with pruning and quantization. At higher rates of sparsity,

the EDP reduces exponentially across different grades of quantization, thus increasing

the hardware performance.

Fig. 8 shows the loss landscape, roughness score, and accuracy for the floating-

point 32-bit (FP-32), pruning only (29%), and pruned and quantized (29% and 8-bit)

versions of ResNet-20 on CIFAR-10. Pruning and quantization follow the methodology

detailed in Sections 2.4.4.1 and 2.4.4.2, respectively. The pruned model has a roughness

score higher than the FP-32 model, resulting in a rougher loss landscape, less stability,

and lower accuracy. At the same time, the addition of quantization to the pruned

model results in a reduced roughness score, making it more stable with a smoother

loss landscape and a higher accuracy. Hence, we quantitatively establish through
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Figure 9. ADC Dominates the Energy Consumption, Especially Under High ADC
Precision. With Higher RRAM Levels, its Portion Reduces Due to Reduced Number
of Crossbars and Associated Peripherals.

the roughness score and loss landscape that quantization helps improve the model

stability and is a necessary step for reliable RRAM-based IMC acceleration of sparse

DNNs.

2.6.3 System-Level IMC Analysis

2.6.3.1 Precision and Variation

The inherent variations with the RRAM device result in significant accuracy

degradation. Section 2.1 details the effect of RRAM variation for ResNet-20 on

CIFAR-10 with full precision and pruned and quantized models (8-bit and ternary).

Through this, we establish that higher RRAM levels lead to higher variation and

degradation in post-mapping accuracy.

Next, we evaluate the effect of ADC precision on post-mapping accuracy. Fig. 9

shows the total inference energy breakdown for ResNet-20 on CIFAR-10 at two ADC

precisions, 8-bit and 5-bit. We divide the total energy into ADC, buffer, and other
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(accumulator, NoC, crossbar, ReLU, pooling, etc.) components. It can be seen that a

higher ADC precision leads to higher energy dominated by the ADC and higher post-

mapping accuracy. At the same time, a lower precision reduces the ADC component

resulting in reduced total energy. At higher RRAM levels, the ADC cost reduces due

to reduced crossbars and associated peripherals. Considering the dramatic design

challenge and cost, a low-power and high throughput, and high-precision ADC may

not be practical soon for RRAM IMC.

2.6.3.2 Roofline Model

In this section, we develop a roofline model that comprises of the number of

RRAM levels, RRAM variation, stuck-at-faults, Roff/Ron ratio, and ADC precision.

We evaluate the post-mapping accuracy for two DNNs, DenseNet-40 and ResNet-32

for the CIFAR-100 dataset, for our fabricated HfO2 based RRAM device.

Fig. 10 shows the roofline model for the two DNNs, DenseNet-40 and ResNet-32,

on the CIFAR-100 dataset. The black curve shows the post-mapping accuracy for

different RRAM levels with (black) and without considering the ADC precision (grey).

A higher number of RRAM levels leads to lower post-mapping accuracy and vice-versa.

A similar trend is seen for both ResNet-32 and DenseNet-40. Next, we consider the

ADC precision in the accuracy estimation and evaluate the post-mapping accuracy.

The red curve shows the maximum achievable post-mapping accuracy with a 5-bit

ADC. Hence, the RRAM-based IMC accuracy at lower RRAM levels is limited by the

ADC precision, while at higher RRAM levels, the RRAM device limits the accuracy.

Finally, for our 16-level 65nm 1T1R RRAM devices, only 4-6 levels are useful to achieve
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the best performance due to the ADC precision, RRAM variations, and algorithm

limits.

2.6.4 Model Stability-based Model Selection

Table 3. Roughness Score and Post-Mapping Accuracy for Different DNN Models
Under RRAM Variation and a 5-bit ADC. A More Stable Model (Lower Roughness
Score) Effectively Improves the Accuracy, More Than That by Reducing RRAM
Variation by 50% Only.

Model Size (Size) Variation (σ) Roughness Score (x10-3) Accuracy (%)

CIFAR-10

ResNet-20 (0.3M) 0.3* 278 68.83

0.15 72.04

DenseNet-40 (0.2M) 0.3* 173 72.34

CIFAR-100

ResNet-32 (0.5M) 0.3* 130 36.76

0.15 43.41

DenseNet-40 (0.2M) 0.3* 121 44.68

In this section, we show the efficacy of the model stability-based model selection
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method. Here the training and testing RRAM variations are the same (σ) Charan et al.

(2020a). Table 3 shows the post-mapping accuracy of various DNNs for CIFAR-10

and CIFAR-100 datasets. We evaluate ResNet-20 and DenseNet-40 for CIFAR-10.

For our 65nm RRAM device with a device variation (σ) of 0.3, ResNet-20 achieves

68.83% accuracy. A 50% reduction in RRAM variation (σ = 0.15) through process

control results in 72.04% accuracy, a 4% increment. At the same time, DenseNet-40,

which has higher model stability, achieves a higher accuracy of 72.34% at a σ of

0.3, a 0.3% and 4% improvement over ResNet-20 with 0.15 and 0.3 σ, respectively.

For CIFAR-100 dataset, we evaluate ResNet-32 and DenseNet-40. For our 65nm

RRAM device, ResNet-32 achieves 36.76% and 43.41% post-mapping accuracy at

σ of 0.3 and 0.15, respectively. DenseNet-40 (more stable model) achieves 44.68%

post-mapping accuracy at a σ of 0.3, a 1.27% improvement over ResNet-32 at of 0.15

(7.9% higher than ResNet-32 at σ of 0.3). We note that the more stable model has a

smaller model size and attributes to improved hardware performance. The improved

accuracy is attributed to the lower roughness score and higher model stability from

the proposed loss landscape-based model selection. Through this, we establish that a

loss landscape-based model selection achieves higher post-mapping accuracy than a

50% reduction in RRAM device variation through process control.

2.6.5 Model Stability-based VAT

In this section, we detail the efficacy of the proposed model stability-based VAT

method. Fig. 11 shows the loss landscape, roughness score, and post-mapping accuracy

for ResNet-20 at 29% sparsity and 8-bit quantization for a testing variation (σ) of 0.1
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8-bit Precision for Three Different RRAM Variations Under Test.The Optimal Scale
of Training Variation (Green Circle) has the Lowest Roughness Score and Highest
Post-Mapping Accuracy.

on the CIFAR-10 dataset. The model is trained with different scales of variations (σ)

from 0.1 to 0.3 to generate each of the VAT models. The most stable VAT model, σ

equal to 0.15, has the lowest roughness score of 91×10-3, resulting in a smoother loss

landscape, higher model stability, and post-mapping accuracy. As the roughness score

increases, the loss landscape becomes more rough, and the post-mapping accuracy
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Figure 13. Post-Mapping Accuracy for VGG-16 on CIFAR-10 at 82.3% Sparsity and
Ternary Precision for Three Different RRAM Testing Variations (σ). The Optimal
Model (Green Circle) has the Lowest Roughness Score Resulting in Higher Accuracy.

reduces. Fig. 12 shows the detailed result. The optimal scale of training variation is

different for each testing variation and is chosen based on the model stability. Thus,

the proposed method is also applicable to situations with unknown precise RRAM

testing variation.

Table 4. Post-Mapping Accuracy and Improvement for VGG-16 on CIFAR-10 (82.3%
Sparsity and Ternary Precision). Conventional Method: Same Training and Testing
Variation

Testing
Variation

Optimal Training
Variation (σ)

Post-Mapping Accuracy (%) Accuracy
Improvement (%)

Conventional Charan et al. (2020a) Optimal

0.1 0.15 87.9 88.5 0.6

0.2 0.15 84.8 87.7 2.9

0.3 0.15 81.2 85.8 4.6

0.4 0.10 64.9 83.9 19.0

0.5 0.20 64.6 80.0 15.4
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Table 5. Comprehensive Results Using the Proposed Model Stability-based VAT
Method. Conventional Method: Same Training and Testing Variation

Dataset Network (Size) Quantization Sparsity (%) Testing Variation Optimal Training
Variation (σ)

Post-Mapping Accuracy (%) Accuracy
Improvement (%)

Conventional Optimal

CIFAR-10
ResNet-20 (0.27M) 8-Bit 29.0 0.30 0.20 35.7 47.2 11.5

VGG-16 (15M) Ternary 82.3 0.40 0.10 64.9 83.9 19.0

88.3 0.20 0.10 84.7 86.9 2.2

SVHN ResNet-32 (0.45M) Ternary 48.4 0.15 0.20 91.0 91.6 0.6

71.5 0.30 0.15 75.1 86.3 11.2

CIFAR-100 ResNet-56 (0.85M) 8-Bit 17.8 0.15 0.10 30.5 51.6 21.1

We repeat the same experiment for VGG-16 on CIFAR-10 with ternary quantization

and 83% sparsity as shown in Fig. 13. Table 4 shows the detailed results for VGG-16

on CIFAR-10 across the entire range of testing variations. Conventional methods

refer to using the same scale of variation for both training and testing Long et al.

(2019); Charan et al. (2020a). In contrast, in this work, we show that an optimal scale

for training variation results in higher model stability and post-mapping accuracy.

Furthermore, at a higher range of testing variations, the proposed method provides

greater improvement in post-mapping accuracy. Hence, the systematic model stability-

based VAT method is effective in choosing the optimal VAT model at different precision

and sparsity for best accuracy across a range of DNN models.

2.6.5.1 Overall Results with Proposed VAT

Table 5 shows the overall results across different models and datasets. All post-

mapping accuracy is compared to that of conventional VAT, where the training and

testing variations are the same. ResNet-20 on CIFAR-10 at 29% sparsity and 8-bit

precision shows 11.5% improvement in post-mapping accuracy with the proposed

method at 0.3 testing variation. At the same time, VGG-16 at 88.3% and 82.3%

sparsity and ternary bit quantization achieve 2.2% and 19% improvement post-mapping
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Table 6. Post-Mapping Accuracy of VGG-16 on CIFAR-10

Method Sparsity (%) Quantization Accuracy (%)

Baseline Post-Mapping (Average)

DFP+DVA Long et al. (2019) - 8-Bit 93.85 80.1

Ours 83.2 Ternary 85.2

accuracy for 0.2 and 0.4 testing variations (σ), respectively. We evaluate ResNet-32

on SVHN dataset at ternary quantization and two sparsity (48.4% and 71.5%) and

achieve up to 11.2% improvement in post-mapping accuracy. Finally, for ResNet-56

for CIFAR-100, at 17.8% sparsity, 8-bit quantization, and testing variation of 0.15, we

achieve a 21.1% improvement in post-mapping accuracy.

2.6.5.2 Comparison with Other Work

We compare the proposed model-stability-based VAT method with the state-of-

the-art method as proposed in Long et al. (2019). Table 6 shows the post-mapping

accuracy for VGG-16 on CIFAR-10. The proposed method achieves a 5.1% higher

average improvement (as defined in Long et al. (2019)) in post-mapping accuracy

as compared to Long et al. (2019). Furthermore, the proposed method provides an

improvement in the presence of structured sparsity, which reduces the model stability

due to the presence of more sensitive weights. Finally, the proposed method does not

require precise prior knowledge of the testing variations (instead requires only the

expected range), hence providing a more generic solution for reliable RRAM-based

IMC acceleration.
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2.7 Conclusion

In this work, we explore the model stability of DNNs as a metric for reliable RRAM-

based in-memory acceleration. Utilizing the loss landscape and roughness score, we

show that a more stable model has a lower roughness score, a smoother loss landscape,

and higher accuracy under variations. To provide realistic evaluation, we measured

statistical variations from a 65nm 1T1R RRAM test chip and integrated them into a

cross-layer benchmark tool to access model accuracy and other performance metrics

under variations. Based on the model stability of DNNs, we propose two methods to

achieve reliable RRAM-based in-memory acceleration. First, a novel model stability-

based model selection that effectively tolerates RRAM device variations and achieves

higher accuracy than that with 50% lower RRAM variations for both CIFAR-10 and

CIFAR-100 datasets. Second, we propose a variation-aware training (VAT) method to

mitigate the post-mapping accuracy loss in sparse and quantized DNNs. We conclude

that quantization improves the stability under variations, leading to higher accuracy,

but pruning reduces the model stability. The proposed VAT method searches for the

most stable model to mitigate the post-mapping accuracy loss without pre-knowledge of

testing RRAM variations and no re-training during mapping. Experimental evaluation

shows up to 19%, 21%, and 11% improvement in post-mapping accuracy at different

sparsity, quantization, and device variations on CIFAR-10, CIFAR-100, and SVHN

datasets, respectively.

37



Chapter 3

HYBRID RRAM/SRAM IN-MEMORY COMPUTING FOR

ROBUST DNN ACCELERATION

3.1 Introduction

RRAM device suffers from several non-idealities such as limited resistance levels,

device-to-device write variations, stuck-at-faults, and limited Roff/Ron ratio, posing

a significant challenge to designing reliable RRAM-based IMC architectures Long

et al. (2019); Ma et al. (2020); Chakraborty et al. (2020); Charan et al. (2020a); Sun

et al. (2021); Krishnan et al. (2021f); Joshi et al. (2020); Yang et al. (2021). The

non-idealities within the RRAM device results in a deviation of the programmed weight

values (resistance value), causing a significant reduction in post-mapping accuracy for

DNNs. Furthermore, the crossbar structure of the IMC, with its limited array size,

requires splitting of the large convolution (conv) or fully-connected (FC) layers into

partial operations. Such partial operation (conv/FC) results in further error due to

the limited precision of the peripheral circuits of the RRAM-based IMC crossbar.

To mitigate the post-mapping accuracy loss in DNNs, variation-aware training

(VAT) and special encoding schemes are employed Long et al. (2019); Charan et al.

(2020a); Chakraborty et al. (2020); He et al. (2019b); Ma et al. (2020); Sun et al. (2021).

VAT exploits the inherent DNN redundancy by embedding the device variations (σ),

based on a log-normal or normal distribution model, into the training process to achieve

a variation-tolerant model Long et al. (2019); Charan et al. (2020a); Chakraborty et al.

(2020); He et al. (2019b); Ma et al. (2020); Sun et al. (2021). To further understand
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Figure 14. Accuracy with RRAM IMC Macro for Three Different DNNs for Both
CIFAR-10 and ImageNet Datasets. The Baseline Model Deals with a 32-bit Floating-
Point Model, Quantization Refers to Fixed-Point Precision for Activation and Weights
(e.g., 3W3A Means 3-bit Weight and 3-bit Activation), and VAT Refers to Variation-
Aware Training with the RRAM Variations Long et al. (2019).

VAT, we evaluate the post-mapping accuracy for three DNNs across CIFAR-10 and

ImageNet datasets. We perform in-training quantization for both weights Zhou et al.

(2016) and activations Choi et al. (2018). In addition, we extract RRAM device

variation from our 65nm SUNY 1T1R device (average variation (σavg) of 0.3) to

perform VAT. Finally, we perform a hardware-aware training for the DNN by splitting

the conv and FC layers into partial operations based on the IMC crossbar size (we use

64×64 He et al. (2019b)). Fig. 14 shows the accuracy of the quantized VAT trained

RRAM IMC macro. Although VAT improves the accuracy, it does not achieve the

same accuracy as the baseline 32-bit floating-point (FP-32) model, with up to 27.8%

accuracy loss for ImageNet class DNNs. Hence, there is an urgent need to bridge this

gap in the accuracy for RRAM-based IMC acceleration of DNNs.

To address this, in this work, we first propose a hybrid RRAM/SRAM IMC

architecture for robust DNN acceleration. The proposed hybrid architecture utilizes
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an RRAM-based IMC macro, an SRAM-based macro, and a programmable shifter.

The RRAM macro consists of the RRAM IMC crossbar, decoder, and associated

peripheral circuits. The SRAM macro consists of an SRAM memory array, buffers,

and an output stationary CMOS-based multiply-and-accumulate (MAC) engine. The

output from the SRAM macro (clean) is added to the noisy RRAM macro output

to create an ensemble model and achieve bit-level compensation. Furthermore, the

degree of compensation is controlled by utilizing a programmable shifter. Depending

on the DNN, different scales of the shift operation are performed on the SRAM macro

output to achieve varying degrees of compensation for the RRAM macro output. To

illustrate the efficacy of the architecture, we design a test-chip in the 65nm SUNY

process Liehr et al. (2020) to demonstrate the proposed hybrid RRAM/SRAM IMC

architecture. We utilize an RRAM macro with a 64×64 IMC and associated peripheral

circuits, and a dedicated control logic. Furthermore, we design an SRAM macro with a

32×64 SRAM memory array and an output stationary MAC engine Ma et al. (2017a).

Finally, a custom control logic is designed to synchronize both RRAM and SRAM

macro. The programmable shifter is implemented outside the chip for simplicity.

Next, on the algorithm side, we develop a framework for the training of the DNNs

to support the hybrid IMC architecture. The proposed framework performs in-training

quantization for both weights and activations following Zhou et al. (2016); Choi et al.

(2018), structured pruning Yang et al. (2020), RRAM IMC-aware training, and support

for different compensation scales through the programmable shifter. The parallel

SRAM macro addition is performed in a layer-wise manner. In addition, structured

pruning is performed on the SRAM macro weights to achieve minimal hardware

overhead. For efficient hardware execution, the precision of the RRAM and SRAM

macros, activations, and shift scale are kept constant across all layers of the DNN. To
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accurately model the RRAM device in the framework, RRAM data is collected from

a fully integrated 1T1R structure on a 300mm wafer, using a custom RRAM module

within the SUNY 65nm process. We plan to open-source the algorithm framework

upon acceptance of this work.

We perform extensive experiments on four DNNs across CIFAR-10 and ImageNet

datasets at different precision (weights and activations). We show that at higher RRAM

macro precision and SRAM macro precision, the proposed method achieves near FP-32

accuracy (at 1× and 2× RRAM variations of 65nm RRAM device). Furthermore, we

show that the proposed hybrid IMC architecture with SRAM compensation opens

up the opportunity for a realistic IMC architecture with multi-level RRAM cells

(MLC) even though they suffer from high variations. Compared to state-of-the-art

methods, the proposed hybrid IMC architecture achieves up to 21.9%, 12.65%, and

6.52% improvement in post-mapping accuracy with minimal overhead for ResNet-20

on CIFAR-10, VGG-16 on CIFAR-10, and ResNet-18 on ImageNet, respectively.

In addition, we analyze the overhead from the SRAM macro and programmable

shifter. In terms of training time, the proposed method incurs up to a 25% increase in

training time compared to the VAT method. We evaluate the hardware cost overhead

for the SRAM macro by extracting the post-layout area and power measurements from

the 65nm test-chip. The proposed hybrid IMC architecture achieves small overhead

in terms of memory requirement (up to 24%), area (up to 20%), and power (up to

2.6%) across different DNNs and datasets. The major contributions of this work are

as follows:

• We propose a novel hybrid RRAM/SRAM IMC architecture that utilizes an

RRAM IMC macro with MLC cells, SRAM macro, and a programmable shifter

for robust DNN acceleration,
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• We develop a training framework to enable the hybrid IMC architecture that

supports quantization, structured pruning, RRAM IMC-aware training, and

different compensation scales through the programmable shifter,

• Experimental evaluation of the hybrid IMC architecture shows that the SRAM

compensation opens the opportunity for a realistic IMC architecture with multi-

level RRAM cells. Compared to state-of-the-art methods, the proposed hybrid

IMC architecture achieves up to 21.9%, 12.65%, and 6.52% improvement in

post-mapping accuracy with minimal overhead for ResNet-20 on CIFAR-10,

VGG-16 on CIFAR-10, and ResNet-18 on ImageNet, respectively.

• Finally, we design a test-chip using the 65nm SUNY process to demonstrate the

proposed hybrid IMC architecture and analyze the hardware performance.

3.2 Hybrid IMC Architecture

In this section, we detail the hybrid IMC architecture proposed in this work. Fig. 15

shows the overall block diagram of the proposed hybrid IMC architecture for one

RRAM IMC and SRAM macro. The architecture consists of an RRAM IMC macro,

an SRAM macro, a programmable shifter, adder, buffers, and associated control logic.

The proposed hybrid IMC architecture utilizes an ensemble of the output from the

RRAM IMC macro and the SRAM macro combined using a programmable shifter

and an adder circuit. Each macro functions independently with the associated control

logic. The control logic also handles the scale of the shifter to facilitate different

compensation of the RRAM macro by the SRAM macro. Finally, each layer of the

DNN utilizes a number of RRAM IMC and SRAM macros to perform the DNN

acceleration.
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Figure 15. Block Diagram of the Proposed Hybrid RRAM/SRAM IMC Architecture.
Both the RRAM and SRAM Macros Compute in a Parallel Manner to Generate the
Output. A Programmable Shifter Allows for Different Scales of Compensation Using
the SRAM Macro. The Overall Output is an Ensemble of the RRAM and SRAM
Macro Outputs.

3.2.1 RRAM IMC Macro

Fig. 16 shows the architecture of the RRAM IMC macro. The RRAM macro

consists of an RRAM-based IMC crossbar structure of a specific size. Each cross-point

in the array consists of a 1T1R RRAM multi-level cell. The 1T1R cell connects

the transistor (gate) to the wordline (WL), while the two terminals of the RRAM

are connected to the select-line (SL) and the bitline (BL). The RRAM-based IMC

crossbar utilizes analog domain computation to perform the MAC operation. Each

IMC crossbar has associated peripheral circuits such as analog-to-digital converter

(ADC), PMOS header, column multiplexer, BL and SL mux, WL driver and level

shifters, and RRAM decoder. The column multiplexer is used to share the read-out

circuit (ADC and PMOS header) across multiple columns of the IMC crossbar array.

The ADC performs the conversion of the analog output to the digital domain. In
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Figure 16. Block diagram of the RRAM IMC Macro Within the Hybrid Architecture.
The Macro Consists of a Crossbar Array of RRAM Cells, a Decoder, PMOS Headers,
Column Multiplexers (MUX), BL and SL Mux, Shift and Add Circuit, and ADC.

this work, instead of employing a digital-to-analog converter (DAC), we perform

bit-serial computing over multiple cycles for multi-bit activations. The ADC output

is accumulated based on the input bit significance using shifter and adder circuits to

compute the MAC output. Finally, the overall result is generated by accumulating

the outputs from each IMC crossbar array.

3.2.2 SRAM+MAC Engine Macro

Fig. 17 shows the block diagram of the SRAM macro within the hybrid IMC

architecture. The SRAM macro consists of an array of processing elements (PE) of

MAC engines, SRAM memory array, buffers, and associated control logic. The SRAM

memory array stores the weights while the inputs are streamed into the PEs through
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Figure 17. Block diagram of the SRAM Macros Within the Hybrid Architecture.
An SRAM Array Stores the Weights While an Array of Processing Elements (PE)
Perform the MAC Operations.

the buffer. Each PE utilizes an output stationary computation flow to reduce on-chip

data movement. The multiplier and adder support the fixed-point MAC operations

with the required precision for the SRAM macro output. The final output is obtained

pixel-wise across feature maps and moved to the output buffer within the SRAM

macro. Note that the read word size of the SRAM memory array is equal to the

number of parallel PE to ensure maximum utilization and throughput. The SRAM

macro performs the computations in parallel with the RRAM macro, thus avoiding

any reduction in the overall hardware performance.
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3.2.3 Programmable Shifter

The programmable shifter performs the shift operation for the output from the

SRAM macro, as shown in Fig. 15. The different scales of shifting allow for the

compensation of different bits of the RRAM macro output. The shift operation follows

a right shift within the hybrid IMC architecture. Fig. 18 shows an example of 1-bit,

2-bit, and 3-bit SRAM macro output compensation for a 2-bit RRAM macro output.

We show three shift cases across all configurations. Fig. 18(a) shows RRAM macro

output at 2-bit and SRAM macro output at 1-bit. First, the blue region shows the case

when the SRAM macro output compensates only for the MSB of the RRAM macro

output, i.e., no shift. Such compensation provides a larger impact as the position of

compensation of the RRAM macro output has higher significance. Next, the grey

region shows the case when the SRAM macro output compensates only the LSB of

the RRAM macro output through a 1-bit shift. Finally, the purple region shows a

2-bit shift for the SRAM macro output, thus adding a higher precision for the RRAM
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of Size 32x64 with a 16-Word Size and 16 MAC Engines that Utilize an Output
Stationary Dataflow.

macro output by adding an extra bit. In this case, neither of the RRAM output bits

are individually compensated, while the extra bit provides an increased precision to

the overall output. Similarly, Fig. 18(b) and Fig. 18(c) show the cases for 2-bit and

3-bit SRAM macro compensation. The optimal choice of the scale of shift depends on

the DNN algorithm, dataset, the extent of RRAM device variations, and the hardware

performance overhead.

3.2.4 65nm Hybrid IMC Test Chip

To demonstrate the efficacy of the proposed hybrid IMC architecture, we design

a test-chip using a custom RRAM module within the 65nm SUNY process. Fig. 19
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shows the layout of the 65nm test-chip of the hybrid IMC architecture. The test-chip

consists of a RRAM macro, an SRAM macro, and associated testing structures such

as scan chain. The shifter circuit is implemented outside the chip for higher testing

flexibility. Finally, the test-chip is designed for an operating frequency of 100MHz.

3.2.4.1 RRAM IMC Macro

The RRAM macro consists of a 64×64 IMC crossbar array of 1T1R cells. In

addition to the IMC crossbar array, peripheral circuits such as ADC, PMOS header,

BL/SL/column multiplexers, WL driver and level shifter, and RRAM decoder are

custom designed in the 65nm process. A 64-to-1 BL and SL one-hot multiplexer are

utilized for the programming of RRAM cells. Furthermore, to share eight columns

across each read-out circuit, an 8-to-1 column multiplexer is designed using a trans-

mission gate and sized carefully to reduce the overall resistance of the circuit. The

read-out circuit within the RRAM macro utilizes a flash ADC with a 3-bit resolution

and a PMOS header. A single column (BL) combined with the PMOS header forms a

resistance divider circuit, which converts the accumulated current to voltage. The

voltage is then used as the input to the ADC, converting the analog output to the

digital domain. Overall, eight read-out circuit instances are utilized across the 64

columns of the IMC crossbar array. Note that the PMOS header is sized appropriately

to ensure that the resistance is much lower than the minimum resistance from the

IMC crossbar array (with only one row turned on). Finally, input and output buffers

are used to store the activations.

The RRAM decoder performs the overall control of the macro. The decoder

utilizes a finite state machine (FSM) with three main states to generate the required
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control signals. Furthermore, the decoder also performs the operation of driving the

inputs to the WL through the driver and level shifters. During the write state, the

RRAM cells can be programmed one-by-one by choosing a specific WL, BL, and SL.

Next, the compute state performs the MAC operations in a parallel fashion across

rows and columns. The sharing of the columns requires the column multiplexer to

choose columns sequentially to generate the output. Hence, 8 cycles are required

to perform the MAC operations with the 64×64 IMC crossbar array. Furthermore,

during the compute state the decoder enables the ADC to perform the analog to

digital conversion for the MAC output. The ADC output is then moved to the buffer

that holds the value until it is moved outside the chip using the scan chain. Finally,

the new input state is utilized within the decoder to accept the next stream of input

activations.

3.2.4.2 SRAM Macro

The SRAM macro consists of an SRAM memory array, MAC engine array (PE

array), and associated control logic. The SRAM memory consists of a 32×64 SRAM

cells with a read-out word size of 16 bits. To match the SRAM memory read-out size,

the MAC engine consists of an array of 16 PEs that implement an output stationary

dataflow. The memory read out, and the number of computation units is matched

to achieve the best performance and utilization. Next, a custom control logic is

implemented utilizing an FSM. The FSM consists of 4 main states, namely, idle, load,

compute, and finish. The idle state is the default state the SRAM macro assumes upon

power-up of the chip. The load state is utilized to perform the loading of the weights

and activations to the SRAM memory and local input buffer. The load state triggers
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a counter that automatically moves the data from the scan chain to the corresponding

memory/buffer. The SRAM memory with 64 columns is divided into 16 sets, with

each column multiplexer servicing four columns of the array. Next, the compute

state is utilized to perform the MAC operations. A counter is triggered such that it

reads the weights from the SRAM memory and the input buffer to perform the MAC

operation within the PEs. All PEs operate in a parallel fashion on different data, thus

providing high throughput. Each PE performs the computations for a pixel within an

output feature map. Through this, one pixel across 16 different output feature maps

is generated. In addition, PE control is generated to enable the D flip-flops (DFF)

at the input and the subsequent datapath to follow the output stationary dataflow.

Finally, the finish state is utilized to denote the completion of the MAC operations

and the transfer of the output data to the scan chain. We note that, for the increased

flexibility of testing, we perform the computation of multi-bit inputs with bit-serial

processing. The output is then post-processed outside the chip to obtain the final

result.

3.3 Hybrid IMC Training Framework

In this section, we detail the algorithm framework developed for the hybrid

RRAM/SRAM IMC architecture. The overall framework is developed using the

Python programming language and the PyTorch deep learning framework.

50



- 9 - 6 - 3 0 3 6 9

- 6

- 3

0

3

6

- 9 - 6 - 3 0 3 6 9

L R SH R S
C y c l e - t o - C y c l e  S w i t c h i n g  V a r i a t i o n  

D i e  P o s i t i o n  ( X )

Die
 Po

sit
ion

 (Y
)

0 . 1 00 . 2 00 . 3 00 . 4 00 . 5 00 . 6 0
D i e  P o s i t i o n  ( X )

0 . 1 00 . 1 50 . 2 00 . 2 50 . 3 0

Figure 20. HRS (Left) and LRS (Right) Cycle-to-Cycle Switching Variation Across
the 300mm Wafer at 65nm Liehr et al. (2020). HRS State has a Higher Variation
Than LRS.

3.3.1 Statistical RRAM Device Models

To accurately model the RRAM device, data is collected from a fully integrated

1T1R RRAM structure on a 300mm wafer (at room temperature), using a custom

RRAM module within the SUNY 65nm process Krishnan et al. (2021f). In this

work, we focus on a multi-level RRAM device. Each RRAM device has a size of

100nm×100nm and utilizes a device stack comprised of a 6nm HfO2 mem-resistive

switching layer, a 6nm PVD Ti oxygen exchange layer (OEL), and TiN electrodes

(top and bottom). Pulses with a magnitude of 1V – 1.2V and width of 10µs are used

for the set/reset operation of RRAM devices.

Fig. 20 shows the wafer-level cycle-to-cycle switching variations for the 65nm RRAM

device measured using the pulse-based switching technique. The high-resistance state
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(HRS) has a higher variation up to 0.6 σ, while the low-resistance state (LRS) has

a lower variation up to 0.2 σ. The average variation (σavg) for the entire range of

HRS and LRS across the wafer amounts to 0.3. To further understand the RRAM

variations, we analyze the distinct resistance levels that can be achieved for the

65nm 1T1R RRAM device. Fig. 21 shows the box and whisker plot of the measured

resistance at different compliance currents for the multi-level 65nm RRAM device.

The 65nm RRAM device achieves up to 8 distinct levels with 6 LRS and 2 HRS states.

Furthermore, at the single device level, the LRS achieves a lower variation compared

to HRS. Hence, the 65nm RRAM device can support up to 3-bit data.
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Figure 21. Box and Whisker Plot Showing the Eight Distinct Resistance Levels (6 LRS
and 2 HRS) Within our 65nm 1T1R RRAM Device. Different Compliance Currents
Lead to Different Resistance Levels.

Next, we analyze the variations for each bit when mapped to the 65nm 1T1R

RRAM device. Table 7 summarizes the level-wise and bit-wise RRAM device variation

up to 3-bits for the 65nm 1T1R RRAM device. For a 1-bit value, only two levels

are needed to map the data to the RRAM device. Hence, the lowest two resistance

levels (LRS) can be utilized, thus reducing the overall RRAM device variations.

52



Simultaneously, for a 2-bit value, four levels are required to map the data to the

RRAM device. The first two levels utilize the lowest two resistance levels from the

1-bit case, while the third and fourth levels utilize higher resistance levels (LRS)

with higher variation, as shown in Fig. 21. Finally, for a 3-bit data, eight resistance

levels are required to map to the RRAM device. The first four levels utilize the

same resistance levels as that for the 2-bit case. Meanwhile, the third bit further

utilizes four resistance states of which two are LRS and two are HRS for the 65nm

RRAM device. Hence, for accurate RRAM variation modeling, we utilize the bit-wise

variation models within the hybrid IMC training framework.

Table 7. RRAM Device Variation for Different Bit

Level 0 1 2 3 4 5 6 7

RRAM State LRS HRS

Average Variation
(σ)

1-bit 0.1035 NA

2-bit 0.1035 0.2760 NA

3-bit 0.1035 0.2760 0.2259 0.3549

3.3.2 Training for Hybrid IMC Architecture

Algorithm 2 details the methodology utilized to train the DNN for the hybrid

RRAM/SRAM IMC architecture.

3.3.2.1 RRAM Macro Training

The training of the RRAM macro is performed in two stages. The first stage

performs in-training quantization for the DNN model, while the second stage performs
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the RRAM IMC-aware training in the presence of quantization. First, the DNN model

weights are randomly initialized. Next, we perform in-training quantization for the

weights with precision WRRAM and RRAM macro output (ARRAM) and train the

DNN to generate Model A. In this work, we keep the weight and activation precision

the same for the RRAM macro model (WRRAM equal to ARRAM). We utilize the

quantization method in Zhou et al. (2016) for the weights and Choi et al. (2018) for

the activations. Next, we split each conv and FC layer into partial MAC operations

based on the IMC crossbar size. For our test-chip, we utilize a 64×64 IMC crossbar

array. Finally, the output from each partial MAC operation is accumulated to generate

layer-wise output activations. The quantized weights from Model A are then loaded

to the partial conv/FC operations, and RRAM variations (σbit) are added using the

log-normal distribution Charan et al. (2020a) (at each epoch) in a bit-wise manner

following Table 7. Finally, the model is trained for M epochs to generate the RRAM

IMC-aware trained model (Model B). Lines 3–13 of Algorithm 2 show the RRAM

macro model training.

3.3.2.2 Training SRAM Macro and Programmable Shifter

Once the RRAM macro is trained (Model B), we perform the training for the

SRAM macro with the programmable shifter. First, we add a parallel model (Model

C) for the SRAM macro with the same size as that of RRAM macro model and

randomly initialize weights in a layer-wise manner (100% size as that of the RRAM

macro model). Next, we add the output from Model C to that of Model B in a

layer-wise manner. The Model C output is shifted based on the scale of shifting (bshift)

utilized in the programmable shifter. We note that the scale of shift is kept constant
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across all layers of the DNN. Through this, we generate the DNN structure that

follows the hybrid IMC architecture (Model D). Thereafter, Model D is trained such

that the weights of the SRAM Macro model (Model C) are quantized to WSRAM and

the activations to ASRAM following the methodology in Zhou et al. (2016) and Choi

et al. (2018), respectively. Furthermore, the output from each layer within Model D

(after adding the Model B and shifted Model C outputs) is quantized to the overall

layer-wise activation precision A. During the training of Model D, the weights of

Model B are frozen without any update during backpropagation while the Model C

weights are updated. Hence, the RRAM macro model serves as the backbone model

while the SRAM macro model assists it.

Next, to reduce the overhead from the SRAM macro, we utilize group-wise prun-

ing Yang et al. (2020) with a group-size of Gprune for the Model C weights. The

pruning utilizes weight-penalty clipping with a self-adapting threshold Yang et al.

(2020), as shown below:

L̂ = L(f(x; {Wl}Ll=1), t) + λ
L∑
l=1

Gi∑
i=1

min(∥Wl,i∥2; δl) (3.1)

δl = α.
1

Gl

Gi∑
i=1

∥Wl,i∥2 (3.2)

where δl denotes the layer-wise self-adapting clipping threshold, L is the number of

layers, Gl is the number of groups in the SRAM macro model for the l -th layer, λ is

the hyper-parameter to be tuned based on the dataset, and α is the scaling coefficient.

The pruning is performed group-wise along the output channel dimension: for layer l

with SRAM macro weight matrix Wl ∈ RQ
Nof×Nif×Kx×Ky , we choose a group of size

Gprune along the Nif dimension, where the maximum value of Gprune is determined by

the number of PEs in the SRAM macro (RQ denotes quantized SRAM macro weights).

The training for Model D is performed for N epochs, where N is less than M. Overall,
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Figure 22. Post-Mapping Accuracy with the Proposed Hybrid IMC Architecture
for ResNet-20 on CIFAR-10. A Higher SRAM Macro Precision Leads to Better
Compensation Across Different RRAM Precision.

the trained model consists of an RRAM macro model with weight precision WRRAM

and output activation precision ARRAM , a structured sparse SRAM macro model

with weight precision WSRAM output activation precision ASRAM , overall layer-wise

activation precision A, and a shift scale of bshift. Lines 14–22 of Algorithm 2 show the

SRAM macro with programmable shifter model training.

3.4 Experiments and Results

We perform extensive experiments to evaluate the proposed hybrid RRAM/SRAM

IMC architecture from both an algorithm and a hardware standpoint. The algorithm

experiments are performed on a Nvidia Quadro RTX 8000 GPU by utilizing the

algorithm framework developed in this work (Section 3.3). We evaluate four different

DNNs across two datasets: ResNet-20 on CIFAR-10 (0.27M), VGG-16 on CIFAR-10

(15M), ResNet-18 for ImageNet (11.5M), and MobileNet-v2 for ImageNet (3.4M). All
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Table 8. Comprehensive Evaluation of the Choice of Programmable Shifter Across
Different DNNs for CIFAR-10 Dataset. (*At Same RRAM and Overall Activation
Precision).VAT – Variation-Aware Training Long et al. (2019).

Network RRAM Macro
Precision

Accuracy with
VAT Only* (%)

SRAM Macro
Precision

Activation
Precision

Shifter Scale
for SRAM Macro

Post-Mapping
Accuracy - Ours (%)

Improvement in Accuracy
over VAT only (%)

ResNet-20

2-bit 87.40 1-bit 3-bit
0-bit 90.28 2.88

1-bit 90.33 2.93

2-bit 89.68 2.28

3-bit 87.45 3-bit 6-bit

0-bit 90.92 3.47

1-bit 90.73 3.28

2-bit 90.87 3.42

3-bit 90.80 3.35

VGG-16

1-bit 89.02 2-bit 3-bit 0-bit 92.56 3.54

1-bit 92.54 3.52

3-bit 91.06 3-bit 6-bit

0-bit 92.97 1.91

1-bit 92.96 1.90

2-bit 92.92 1.86

3-bit 92.90 1.84

experiments performed utilize the device models extracted (at room temperature) for

the 65nm 1T1R RRAM device with up to 8 levels (Section 3.3.1). The weight and out-

put activation precision values are kept the same within each macro (WRRAM=ARRAM

and WSRAM=ASRAM ) throughout the DNN. The experiments utilize a RRAM crossbar

size of 64×64 for consistency with the 65nm test-chip. Furthermore, we evaluate

up to a 3-bit RRAM macro weight and activation precision, a 3-bit SRAM macro

weight and activation precision, a 6-bit overall layer-wise activation precision, and a

3-bit shift scale. Finally, for the hardware performance, we utilize the post-layout

performance of the 65nm test-chip at 100MHz. The results obtained through VAT

refer to the variation-aware training method in Long et al. (2019).

3.4.1 Effect of different Scales of SRAM Compensation

We analyse the effect of different scales of SRAM compensation by varying the

SRAM macro precision. Fig. 22 shows the post-mapping accuracy for ResNet-20 on

CIFAR-10 across different RRAM macro and SRAM macro precisions. No pruning
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is performed for the SRAM macro weights, and no shift is applied. The baseline

FP-32 ResNet-20 model for CIFAR-10 dataset achieves 91.34% accuracy. Consider an

RRAM macro precision of 1-bit. At an SRAM macro precision of 1-bit, the SRAM

compensates entirely for the variations within the RRAM macro. Meanwhile, at a

higher SRAM macro precision, in addition to the variation compensation the SRAM

adds additional bits to increase the dynamic range and the precision of the RRAM

macro output for the DNN layer. Hence, at higher SRAM macro precisions, higher

accuracy is achieved with up to 90.2%.

Simultaneously, consider an RRAM macro precision of 3-bits. A 3-bit RRAM

macro precision provides higher density and better hardware performance, but suffers

from higher RRAM device variations. At an SRAM macro precision of 1-bit, the MSB

of the RRAM macro is compensated, thus providing a high degree of compensation.

Hence, the higher RRAM macro precision and the MSB compensation result in a

higher post-mapping accuracy of 90.01%. At an SRAM macro precision of 2-bit, both

the MSB and the second bit are compensated, thus providing a higher accuracy of

90.7%. Finally, at a 3-bit SRAM macro precision, all the three bits of the RRAM

macro output are compensated, thus providing maximum accuracy of 90.92%. Hence,

the SRAM macro compensates for the RRAM macro variations, thus achieving higher

accuracy. Through this, the SRAM macro compensation, the hybrid IMC architecture

helps exploit the advantage within MLC RRAM cells.

3.4.2 Optimal Shifter Configuration

In this section, we analyze the effect of the scale of shift utilized in the hybrid IMC

architecture on the post-mapping accuracy. We note that no pruning is performed
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Figure 23. Post-Mapping Accuracy for ResNet-20 on CIFAR-10 at Different RRAM
Macro and SRAM Macro Precision. (a) Post-Mapping Accuracy with SRAM Macro
at Gprune of 16 and (b) Pruning Ratio of the SRAM Macro Weights Across Different
RRAM and SRAM Precision at Gprune of 16, (c) Post-Mapping Accuracy for a Gprune

of 4 for the SRAM Macro Weights, and (d) Pruning Ratio of the SRAM Macro
Weights at Gprune of 4. A Lower Group Size Leads to Higher Pruning at the Same
Accuracy.

Table 9. Comprehensive Evaluation of the Post-Mapping Accuracy Across Different
DNNs and Datasets with the Proposed Hybrid IMC Architecture. SRAM is Pruned
With a Group Size of 4. (*Top-1 Accuracy, **At Same RRAM Precision).

Network Dataset RRAM
Precision

VAT Only
Accuracy (%)**

SRAM
Precision

Activation
Precision

Shifter
Scale

SRAM Pruning
Ratio (%)

Post-Mapping
Accuracy - Ours (%)

Accuracy Improvement
over VAT only (%)

ResNet-20 CIFAR-10 2-bit 87.40 1-bit 3-bit 1-bit 87.8 90.73 3.3

VGG-16 CIFAR-10 3-bit 91.06 3-bit 6-bit 0-bit 98.9 92.75 1.7

ResNet-18 ImageNet 3-bit 63.79 2-bit 5-bit 2-bit 99.7 69.21* 5.4

MobileNet-v2 ImageNet 3-bit 36.60 2-bit 5-bit 2-bit 36.6 61.6* 25.0

on the SRAM macro in this experiment. Table 8 shows the post-mapping accuracy

for different DNNs on CIFAR-10 dataset across varying RRAM and SRAM macro

precisions at different shifting scales. Consider ResNet-20 on CIFAR-10 at 2-bit RRAM

macro precision and 1-bit SRAM macro precision. We utilize a 3-bit overall activation

precision across layers. At a 0-bit shift scale, the SRAM output compensates for the

MSB of the RRAM macro output, achieving a post-mapping accuracy of 90.28%. At

the same time, a 1-bit shift for the SRAM macro compensates the LSB of the RRAM
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macro output, achieving an accuracy of 90.33% (within statistical error range). Finally,

a 3-bit shift for the SRAM macro output results in the extension of the precision of

the output with no compensation for the MSB and LSB of the RRAM macro output.

Such a scale of shift results in reduced post-mapping accuracy (89.68%) due to the

effect of the RRAM variations on the output. Similarly, we evaluate a 3-bit RRAM

macro precision and a 3-bit SRAM macro precision. A 0-bit shift provides the best

post-mapping accuracy as the SRAM macro compensates for all the bits of the RRAM

macro output.

We repeat the same experiment with VGG-16 for CIFAR-10. For a 1-bit RRAM

macro precision and a 2-bit SRAM macro precision, a 0-bit shift provides the highest

accuracy. Similarly, a 0-bit shift provides the highest accuracy of 92.97% for a

3-bit RRAM and SRAM macro precision. We conclude that the optimal scale of

shift depends on the DNN structure, RRAM and SRAM macro precisions, and the

overall activation precision. To provide further context, we compare the post-mapping

accuracy of the two DNNs to the FP-32 baseline accuracy. For ResNet-20 on CIFAR-

10, the FP-32 model achieves 91.34% accuracy, while the best configuration hybrid

IMC model achieves 90.92% accuracy. For VGG-16 on CIFAR-10, the hybrid IMC

model achieves 92.97% accuracy compared to 93.04% for the FP-32 model. Finally,

we compare the post-mapping accuracy with the hybrid IMC architecture to that

with VAT only. The proposed method consistently outperforms the VAT method and

achieves near baseline (Floating-point 32-bit) accuracy.
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3.4.3 Pruning Analysis of SRAM

The addition of the SRAM macro and programmable shifter results in an overhead

for the hardware architecture. Hence, to reduce the overhead, we utilize group-wise

pruning of the weights within the SRAM macro, as detailed in Section 3.3.2. Fig. 23

shows the post-mapping accuracy and the SRAM macro pruning ratio for two different

pruning group sizes for ResNet-20 on CIFAR-10. The pruning ratio gives the amount

of sparsity achieved through pruning. We note that we perform the pruning for the

optimal configurations of the shift scale. We explore 1-bit to 3-bit precisions for

both the RRAM and SRAM macros. Fig. 23(a) shows the post-mapping accuracy

across different configurations for a pruning group size of 16. A higher SRAM macro

precision allows for higher compensation for the RRAM macro output in the presence

of sparsity. Next, we analyze the pruning ratio achieved with pruning across the

different configurations, as shown in Fig. 23(b). For the 1-bit RRAM macro precision,

a lower pruning ratio (sparsity) is obtained for best post-mapping accuracy since the

SRAM macro output provides both compensation and increased precision and range.

Meanwhile, a higher precision for the RRAM macro weights results in a higher accuracy

compared to a binary model. Therefore, for 2-bit and 3-bit RRAM macro precision,

the SRAM macro compensation is easier, allowing the pruning method to generate

a higher pruning ratio for the SRAM macro. We repeat the same experiment for a

smaller group size of 4, as shown in Fig. 23(c) and (d). The hybrid IMC architecture

achieves similar post-mapping accuracy as that for the 16 group size. In addition, a

higher pruning ratio is achieved for the SRAM in all cases due to the ability of the

pruning algorithm to remove smaller groups of weights compared to a group size of

16. Hence, we conclude that a smaller group size and a higher RRAM precision is
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preferred as it provides higher sparsity (lower overhead), higher RRAM density, and

similar post-mapping accuracy with the hybrid IMC architecture.

3.4.4 Overall Accuracy Results

Table 9 shows the overall comprehensive results for the hybrid IMC architecture.

The baseline (floating-point 32-bit) accuracy for the DNNs are as follows; ResNet-20

- 91.32%, VGG-16 - 93.04%, ResNet-18 - 69.57%, and MobileNet-v2 - 71.87%. The

choice of the optimal configuration is determined based on the post-mapping accuracy

and the SRAM macro pruning ratio. For example, for VGG-16 on CIFAR-10 with

3-bit RRAM macro precision, an SRAM macro precision of 2-bit with a 2-bit shift

achieves 92.76% post-mapping accuracy with a 95% SRAM pruning ratio. At the

same time, a 3-bit SRAM macro precision with a 0-bit shift results in 92.75% accuracy

at a 98.9% SRAM pruning ratio. Hence, we choose the 3-bit RRAM 3-bit SRAM

configuration considering both the accuracy and SRAM macro pruning ratio.

We compare the post-mapping accuracy of the hybrid IMC architecture with that

of the conventional VAT technique. For fair comparison, we utilize the same RRAM

macro precision (weights and activation) for both approaches. For ResNet-20 on

CIFAR-10, the hybrid IMC architecture achieves 3.3% higher accuracy, while for VGG-

16 on CIFAR-10 the hybrid architecture achieves 1.7% improvement in post-mapping

accuracy. At the same time, for ImageNet models ResNet-18 and MobileNet-v2, the

proposed hybrid IMC architecture achieves 5.4% and 25% improvement, respectively.

For all the networks except MobileNet-v2, the proposed hybrid IMC architecture

achieves greater than 87% sparsity (pruning ratio) for the SRAM macro. MobileNet-v2

being a small model for the ImageNet dataset requires highly accurate weights in the
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Table 10. Post-Mapping Accuracy and SRAM Macro Pruning Ratio for 1x and 2x
RRAM Variation. We Use a Pruning Group Size of 4.

RRAM
Precision

SRAM
Precision

Post-Mapping
Accuracy (%)

SRAM Macro Pruning
Ratio (%)

1x Var 2x Var 1x Var 2x Var

1-bit
1-bit 82.68 83.50 31.20 29.10

2-bit 85.59 85.37 31.63 31.10

3-bit 88.18 88.00 27.78 27.30

2-bit
1-bit 90.73 90.11 87.88 67.11

2-bit 90.78 90.41 77.90 73.70

3-bit 90.84 90.39 60.52 50.60

3-bit
1-bit 90.65 90.59 82.62 54.80

2-bit 90.83 90.75 83.79 74.11

3-bit 90.90 90.90 63.81 44.90

RRAM macro, i.e., a higher degree of compensation to ensure high post-mapping

accuracy.

3.4.5 Evaluation with 2× RRAM Variation

In this section, we evaluate the post-mapping accuracy for the hybrid IMC archi-

tecture with 2× the bit-wise variations (σ) in Table 7. Note that we perform shifting

and pruning for the SRAM macro in this experiment. Table 10 shows the comparison

of the post-mapping accuracy and SRAM pruning ratio for ResNet-20 on CIFAR-10 at

1× and 2× RRAM variations. For each RRAM macro precision, the proposed hybrid

IMC architecture achieves similar post-mapping accuracy for both 1× and 2× RRAM

variations. At the same time, a 1× RRAM variations results in a higher SRAM

pruning ratio and a lower SRAM macro overhead. The increased overhead for 2×

RRAM variations is attributed to the higher SRAM compensation needed for better
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Figure 24. (a) Training Time Overhead for the SRAM Macro and the Shifter. The
Proposed Hybrid IMC Architecture Incurs at Most 25% (Compared to Time of RRAM
Macro) Overhead in Training Time. (b) Memory Overhead for the SRAM Macro
Compared to the RRAM Macro. The Hybrid IMC Architecture Incurs at Most 24%
Overhead (Compared to the Memory of RRAM Macro).

accuracy. Furthermore, for a given RRAM macro precision, the optimal SRAM macro

precision results in higher accuracy for both 1× and 2× RRAM variations. Hence,

the hybrid IMC architecture provides a scalable solution that opens the opportunity

for multi-level RRAM devices for the acceleration of a wide range of DNNs across

different datasets.

3.4.6 SRAM Macro and Shifter Overhead Analysis

We analyze the overhead for the SRAM and programmable shifter from an algo-

rithm and hardware standpoint in the proposed hybrid IMC architecture. Note that

we utilize the optimal hybrid IMC architecture model for each of the DNNs. Fig. 24(a)
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Figure 25. (a) Area Overhead and (b) Power Overhead of the SRAM Macro as a
Percentage of the Total RRAM Macro Area and Power. The Proposed Hybrid IMC
Architecture Results in a Very Low Overhead with Up to 20% Area and 2.6% Power
Overhead for State-of-the-Art Accuracy Across Different DNNs.

shows the training time overhead for the SRAM macro as a percentage of the training

time for the RRAM macro. For ResNet-20 and VGG-16 on CIFAR-10, the hybrid

IMC architecture results in 12% and 23% overhead in training time. The increased

overhead for VGG-16 is attributed to the larger model size compared to ResNet-20

(15M for VGG-16 compared to 0.27M for ResNet-20). At the same time, for ResNet-18

and MobileNet-v2, a 16% and 25% overhead in training time are incurred. Hence, the

hybrid IMC architecture at most incurs a training time overhead of 25% of the RRAM

macro training time. Next, we compare the overhead for the hybrid IMC training to

the traditional read-verify-write (R-V-W) method utilized to achieve accurate RRAM

device resistance levels. The R-V-W method requires time of the order of days to

verify and write 100% of the RRAM cells Charan et al. (2020a). At the same time,
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Table 11. Comparison of Post-Mapping Accuracy with State-Of-The-Art Methods.
Ours-A SRAM Macro Weights Pruned; Ours-B#: SRAM Macro Weights Not Pruned.
(**Precision Not Reported In the Manuscript)

Method Weight
Precision

Activation
Precision

Post-Mapping
Accuracy (%)

Accuracy Improvement
by Our Work (%)

ResNet-20 on CIFAR-10

Model Stability Krishnan et al. (2021f) 8-bit 8-bit 68.83 21.9

ReSNA Yang et al. (2021) 8-bit 8-bit 88.43 2.3

Ours-A 2-bit RRAM &
1-bit SRAM 3-bit 90.73 -

VGG-16 on CIFAR-10

DFP+DVA Long et al. (2019) 8-bit ** 80.1 12.65

Go Unary Ma et al. (2020) 8-bit ** 87.94 4.84

KD+OSA Charan et al. (2020a) 4-bit 32-bit 92.57 0.18

Unary Opt Sun et al. (2021) 8-bit ** 92.77 0.20 (Compared to Ours-B)

Ours-A 3-bit RRAM & SRAM 6-bit 92.75 -

Ours-B# 3-bit RRAM & SRAM 6-bit 92.97 -

ResNet-18 on ImageNet (Top-1)

Unary Opt Sun et al. (2021) 8-bit ** 62.69 6.52

Ours-A 3-bit RRAM &
2-bit SRAM 5-bit 69.21 -

the proposed hybrid IMC architecture requires time of the order of a couple of hours

to achieve near baseline (FP-32) accuracy, thus, providing a scalable solution.

Next, we evaluate the memory overhead as a percentage of the total RRAM

memory requirement. Based on the SRAM pruning ratio, we evaluate the total

number of non-zero bits that need to be stored within the SRAM macro. The

structured pruning method employed allows the skipping of the zero weights in the

SRAM macro. Fig. 24(b) shows the memory overhead for the hybrid IMC architecture.

For ResNet-20 and VGG-16 on CIFAR-10, the hybrid IMC architecture incurs 6.5%

(0.004MB SRAM to 0.067MB RRAM) and 4% (0.22MB SRAM to 5.63MB RRAM)

overhead in the memory requirement. At the same time, for the ImageNet dataset, a

4.7% (0.2MB SRAM to 4.32MB RRAM) and 24% (0.31MB SRAM to 1.3MB RRAM)

overhead in memory is incurred for ResNet-18 and MobileNet-v2, respectively. The
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increased overhead for MobileNet-v2 is attributed to the lower SRAM pruning ratio

due to the need for higher compensation.

Finally, we evaluate the overhead in terms of the hardware performance (area

and power) for the hybrid IMC architecture. We utilize the post-layout area and

power measurements at 100MHz from the designed 65nm test-chip. The area and

power of the RRAM macro consists of the RRAM IMC crossbar array, WL driver

and shifter, RRAM decoder, flash ADCs (3-bits), PMOS headers, and BL/SL/column

multiplexers. The power is measured by evaluating the total current drawn by each

supply voltage (1.2V and 3.3V) and taking the product of the voltage and current.

The PMOS header and ADC account for 90% of the power of the RRAM macro. The

SRAM macro consists of the SRAM memory array, PE array, and buffers. A similar

area and power estimation as that of the RRAM macro is performed for the SRAM

macro.

Fig. 25(a) and Fig. 25(b) show the area and power overhead for the SRAM macro

as a percentage of the RRAM macro. For ResNet-20 on CIFAR-10, an area and power

overhead of 3.7% and 0.5% are incurred for the SRAM macro, respectively. At the

same time, for VGG-16 on CIFAR-10, an area and power overhead of 2.3% and 0.3%

are incurred for the SRAM macro, respectively. Meanwhile, MobileNet-v2 incurs the

highest area and power overhead of 20% and 2.6%, respectively. The higher overhead

is attributed to the higher compensation requirement resulting in a lower SRAM

macro pruning ratio.
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3.4.7 Comparison with Other Work

We compare the post-mapping accuracy for the proposed hybrid RRAM/SRAM

IMC architecture with state-of-the-art methods. Table 11 shows the comparison

for ResNet-20 and VGG-16 on CIFAR-10, and ResNet-18 on the ImageNet dataset.

For ResNet-20 on CIFAR-10, compared to the method in Krishnan et al. (2021f)

and Yang et al. (2021), the proposed hybrid IMC architecture achieves 21.9% and

2.3% improvement in post-mapping accuracy at lower weight and activation precision,

respectively.

Next, for VGG-16 on CIFAR-10, the proposed hybrid IMC architecture achieves

92.75% accuracy at 3-bit RRAM and SRAM macro precision with a 6-bit activation

precision. Compared to Long et al. (2019); Ma et al. (2020); Charan et al. (2020a),

the hybrid IMC architecture achieves 12.65%, 4.84%, and 0.18% improvement in

post-mapping accuracy, respectively. Furthermore, if the SRAM macro is not pruned,

the proposed method achieves 92.97% accuracy, a 0.2% improvement in post-mapping

accuracy compared to Sun et al. (2021). For ResNet-18 on ImageNet, compared

to Sun et al. (2021), the proposed hybrid IMC architecture achieves 6.52% higher

post-mapping accuracy at 3-bit RRAM macro precision, 2-bit SRAM macro precision,

and a 5-bit activation precision. Authors in Long et al. (2019); Ma et al. (2020);

Sun et al. (2021); Charan et al. (2020a) do not discuss the quantization activation

precision. The hybrid IMC architecture with a lower activation precision provides

higher hardware performance and accuracy. Furthermore, Charan et al. (2020a)

utilizes the larger ImageNet VGG-16 model with 3 FC layers for the CIFAR-10 dataset

(134M parameters). In this work, we utilize the smaller CIFAR-10 model for VGG-16

with 15M parameters. Finally, both Ma et al. (2020) and Sun et al. (2021) utilize a
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unary mapping scheme, thus requiring exact variation measurements for each cell in

the RRAM IMC crossbar. A complete R-V-W (takes up to many days) needs to be

performed to quantify the variations at the cell level. Hence, the proposed hybrid IMC

architecture provides a more scalable solution for robust DNN acceleration. Overall,

the improved accuracy is attributed to the hybrid IMC architecture with the optimal

scale of SRAM compensation achieved through the programmable shifter. We carefully

tune the precision (weights and activations), the sparsity for the SRAM MAC engine

macro, and the scale of shit for the SRAM macro output to obtain the best accuracy.

3.5 Conclusion

In this work, we propose a novel hybrid RRAM/SRAM IMC architecture for

robust DNN acceleration. The hybrid IMC architecture utilizes an RRAM IMC macro

with MLC cells, an SRAM macro, and a programmable shifter. The output from the

RRAM macro is compensated by the SRAM macro output to create an ensemble

model and achieve bit-level compensation. The scale of compensation is controlled

by using a programmable shifter for the SRAM macro output. Next, we develop a

training framework to enable the hybrid IMC architecture that supports quantization,

structured pruning, RRAM IMC-aware training, and different compensation scales

through the programmable shifter. Finally, we design a test-chip using the 65nm

SUNY process to demonstrate the efficacy of the proposed hybrid IMC architecture.

We perform detailed experiments across different DNNs and datasets to demon-

strate the performance of the proposed hybrid IMC architecture. Compared to the

conventional VAT method, the proposed hybrid IMC architecture achieves up to 25%

improvement in post-mapping accuracy. In addition, compared to state-of-the-art
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methods, the proposed hybrid IMC architecture provides a scalable solution that

achieves up to 21.9%, 12.65%, and 6.52% improvement in post-mapping accuracy with

minimal overhead for ResNet-20 on CIFAR-10, VGG-16 on CIFAR-10, and ResNet-18

on ImageNet, respectively. Finally, through the experimental evaluation of the hybrid

IMC architecture, we show that the SRAM compensation opens the opportunity for a

realistic IMC architecture with multi-level RRAM cells.
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Algorithm 2: Training Methodology for the hybrid RRAM/SRAM IMC
architecture
1 Input: DNN, RRAM weight precision (WRRAM), RRAM output precision

(ARRAM), SRAM weight precision (WSRAM), SRAM output precision
(ASRAM), overall activation precision (A), shift scale (bshift), SRAM pruning
group size (Gprune), Training epochs M and N, and bit-wise RRAM variations
(σbit)

2 Output: Trained Hybrid RRAM/SRAM IMC model
3 for RRAM Model do
4 Initialize DNN model randomly
5 Perform in-training quantization for weights (WRRAM) and activations

(ARRAM)
/* Model A */

6 Layer-wise split conv and FC layer into partial conv/FC based on RRAM
crossbar size

7 Load trained quantized weights from Model A
8 Add partial conv/FC outputs to generate final layer-wise output
9 for Epoch ≤ M do

10 Add RRAM variations (bit-wise) to weights
11 Train DNN model
12 end
13 end

/* Model B */
14 for SRAM Model do
15 Create parallel SRAM model layer-wise with size 100% of RRAM model

and randomly initialize weights
/* Model C */

16 Add Model B output layer-wise to the Model C output with bshift shift
/* Model D */

17 for Epoch ≤ N do
18 Perform in-training quantization and group-wise pruning (Gprune) for

Model C weights (WSRAM) at activation precision ASRAM

19 Perform in-training quantization for overall layer-wise activation output
to A

20 Backpropagation: Freeze Model B weights with no update. Only
update Model C weights

21 end
22 end
23 Save final trained Model D and perform inference
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Chapter 4

IMPACT OF ON-CHIP INTERCONNECT ON IN-MEMORY ACCELERATION

OF DEEP NEURAL NETWORKS

4.1 Introduction

DNNs have achieved high accuracy that exceeds human-level perception for a

variety of applications such as computer vision, natural language processing, and

medical imaging Krizhevsky et al. (2012); Deng et al. (2013); Litjens et al. (2017).

The DNNs that achieve higher accuracy tend to consist of deeper and denser network

structures. However, DNNs for edge devices tend to use smaller and shallower

networks Bhat et al. (2018).

Figure 26 shows the trend in connection density for various DNNs in the literature,

where connection density is defined as the average number of connections per neuron

in DNNs. In the context of DNNs, a neuron is defined as an output feature of a

convolution layer and every neural unit of the fully-connected (FC) layer. Three

representative DNN structures and connection patterns are illustrated in Figure 27.

Linear structures such as LeNet-5 LeCun et al. (1998) and VGG-19 Simonyan and

Zisserman (2014) have a connection density of one owing to one connection per neuron.

Since residual networks such as ResNet He et al. (2016) have residual skips, it has more

connections than the number of neurons resulting in a connection density higher than

one. Dense structures like DenseNet Huang et al. (2017) have multiple connections

from each neuron, resulting in a higher connection density.

We observe two main trends by analyzing the connection density for different DNNs
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Figure 26. Connection Density of Different DNNs for Three Different Datasets. Each
Output Feature Map (Convolution Layer) and Neural Unit (FC Layer) Represent a
Neuron. Larger Markers Represent Higher Accuracy.

in Figure 26. First, increasing connection density provides higher accuracy, which is

essential for cloud-based computing platforms. Second, lower connection density is

observed for compact models, which is necessary for edge computing hardware. Both

hardware platforms require the processing of large amounts of data with corresponding

power and performance constraints. Hence, there is a need to design optimal hardware

architectures with low power and high performance for DNNs with different connection

densities.

With limited on-chip memory, conventional DNN architectures inevitably involve

a significant amount of communication with off-chip memory resulting in increased

energy consumption Chen et al. (2019). However, it has been reported that the energy

consumption of off-chip communication is 1,000× higher than the energy required to

perform the computations Horowitz (2014).

Dense structures like DenseNet perform approximately 2.7× 107 off-chip memory
accesses to process a frame of an image Huang et al. (2017). As a result, off-chip
memory access becomes the energy bottleneck for hardware architectures of dense
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Figure 27. Different Types of DNN Structures and Their Representative Connection
Density.
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Figure 28. Contribution of Routing Latency to Total Latency for Different DNNs
for a P2P-based IMC Architecture Chen et al. (2018). With Increase in Connection
Density, Routing Latency Becomes the Bottleneck for Performance.

structures. Employing dense embedded non-volatile memory (NVM) such as ReRAM
for in-memory computing (IMC) substantially reduces off-chip memory accesses Shafiee
et al. (2016); Song et al. (2017).

On-chip interconnect is an integral part of hardware architectures that incorporate

in-memory acceleration. Both point-to-point (P2P) interconnect Kwon et al. (2018);

Venkataramani et al. (2017) and NoC-based interconnect Shafiee et al. (2016); Chen

et al. (2019); Krishnan et al. (2020b) are used for on-chip communication in state-of-

the-art DNN accelerators. Shafiee et al. Shafiee et al. (2016) utilizes a concentrated

mesh for the interconnect, while Chen et al. Chen et al. (2019) employs three different

NoCs that are used for on-chip data movement in the architecture. In contrast,

Krishnan et al. Krishnan et al. (2020b) utilizes a custom mesh-NoC for on-chip
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communication. The custom NoC derives the structure based on the on-chip traffic

between different IMC processing elements (PEs), where each PE denotes the SRAM-

or ReRAM-based IMC crossbar. A technique to construct custom NoC which provides

minimum communication latency for a given DNN is proposed in Mandal et al. (2020).

Since custom NoC requires alteration in hardware for different DNNs, our studies focus

on regular NoC topologies. A more detailed survey on work which design efficient

interconnect for DNN accelerators can be found in Nabavinejad et al. (2020).

To better understand the need for an NoC-based on-chip interconnect, we analyze

the scalability of P2P interconnect in in-memory computing (IMC) architectures by

evaluating the contribution of routing latency to end-to-end latency for different DNNs,

as shown in Figure 28. The contribution of routing latency increases up to 94% with

increasing connection density. The high routing latency is attributed to the increased

connection density, which correlates to more on-chip data movement. VGG-19 shows

a reduced contribution compared to lower connection density DNNs due to the high

utilization of the IMC PEs or crossbars resulting in reduced on-chip data movement.

Hence, P2P networks do not provide a scalable solution for high connection density

DNNs. At the same time, NoC-based interconnects require higher area and energy for

operation and can result in a significant overhead for low connection density DNNs.

Furthermore, different NoC topologies, mesh, or tree, are appropriate for DNNs with

varying connection densities. Therefore, a connection density-aware interconnect

solution is critical to DNN acceleration.

In this work2, we first perform an in-depth performance analysis of P2P

interconnect-based in-memory computing (IMC) architectures Song et al. (2017).

Through this analysis, we establish that P2P-based interconnects are incapable of

2Work done in collaboration with Sumit K. Mandal (UW– Madison)
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Table 12. Summary Of Notations

Symbol Definition Symbol Definition

NL
Number of
Layers xi, yi

Input image size in
ith layer

Ti
Number of
tiles in ith layer Ci

Input channels of
ith layer

Ai
Number of
activations in ith layer λi,j,k

Injection rate from jth

tile of (i− 1)th

layer to kth tile
of ith layer

di
Input activations in
ith layer Lcomm Total communication latency

handling data communication for dense DNNs and that NoC-based interconnect is

needed for IMC architectures. Next, we evaluate P2P-based and NoC-based SRAM

and ReRAM IMC architectures for a range of DNNs. Further, we evaluate NoC-tree,

NoC-mesh, and c-mesh topologies for the IMC architectures. A c-mesh NoC is used

in Shafiee et al. (2016) at the tile-level to connect different tiles. C-mesh uses more

number of links and routers, providing better performance in terms of communication

latency. However, interconnect area and energy becomes exorbitantly high for c-mesh

NoC. Therefore, the energy-delay-area product (EDAP) of c-mesh is higher than

NoC-mesh. Hence, we restrict the detailed evaluations to NoC-mesh and NoC-tree. In

these evaluations, we perform cycle-accurate NoC simulations through Booksim Jiang

et al. (2013). However, cycle-accurate NoC simulations are very time consuming and

consequently slow down the overall performance analysis of IMC architectures. Our

experiment with different DNNs (the simulation framework is described in more detail

in Section 4.3) shows that cycle-accurate NoC simulation takes up to 80% of the total

simulation time for high connection density DNNs.

To accelerate the overall performance analysis of the IMC architecture, we propose

analytical models to estimate the NoC performance of a given DNN. Specifically,

we incorporate the analytical router modeling technique presented in Ogras et al.
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(2010) to obtain the performance model for an NoC router. Then we extend the

existing analytical model to get an estimation of end-to-end communication latency

for NoC-tree and NoC-mesh for any given DNN as a function of the number of

neurons and connection density. Through the analytical latency model, the variable

communication patterns of different DNNs are incorporated using connection density

and number of neurons. Leveraging this analysis and the analytical model, we conclude

the importance of the optimal choice of interconnect at different hierarchies of the IMC

architecture. Utilizing the same analysis, we provide guidance for the optimal choice

of interconnect for IMC architectures. At the tile-level, NoC-mesh for high connection

density DNNs and an NoC-tree for low connection density DNNs provide low power and

high performance for IMC-based architectures. Leveraging this observation, we propose

an NoC-based heterogeneous interconnect IMC architecture for DNN acceleration.

We demonstrate that the NoC-based heterogeneous interconnect IMC architecture

(ReRAM) achieves up to 6× improvement in the energy-delay-area product (EDAP)

for inference of VGG-19 when compared to state-of-the-art implementations. The

following are key contributions of this work:

• An in-depth analysis of the shortcomings of P2P-based interconnect and the

need for NoC in IMC architectures.

• Analytical and empirical analysis to guide the choice of optimal NoC topology

for an NoC-based heterogeneous interconnect.

• Proposed heterogeneous interconnect IMC architecture achieves 6× improvement

in EDAP with respect to state-of-the-art ReRAM-based IMC accelerators.
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Figure 29. Multi-Tiled IMC Architecture with Routing Architectures Based on (a)
P2P Network, (b) NoC-tree, (c) NoC-mesh. NoC-tree is a P2P Network with Routers
at Junctions.
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Figure 30. Comparison of Average Latency Among P2P, NoC-tree, and NoC-mesh
Interconnect for Different Injection Bandwidth Jiang et al. (2013). NoC Topologies
Show Better Scalability Than P2P Interconnect.

4.2 Interconnect Network

As discussed in Section 4.1, the on-chip interconnect is critical to the accelerator

performance for DNN acceleration. There are multiple topologies for Network-on-Chip

(NoC). The well-known topologies are mesh, tree, torus, hypercube, and concentrated

mesh (c-mesh). NoC with torus topology shows better performance than mesh due to

long links between the nodes located at the edges. However, the power consumption

by torus is significantly higher than mesh, as shown in Mirza-Aghatabar et al. (2007).

Hypercube and c-mesh have a similar disadvantage as a torus. Therefore, only NoC-
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tree and NoC-mesh are considered in this work. Also, they are the industrial standard

for SoCs used in heavy workloads Jeffers et al. (2016).

Figure 29 illustrates representative interconnect schemes of P2P, NoC-tree, and

NoC-mesh for multi-tiled IMC architectures. Each tile consists of several crossbar

sub-arrays which perform the IMC operation. Existing implementations of DNN

accelerators use both P2P-based Venkataramani et al. (2017); Kwon et al. (2018)

and NoC-based Shafiee et al. (2016); Krishnan et al. (2020b); Zhu et al. (2020)

interconnect for on-chip communication. To better understand the performance of

different interconnect architectures, we plot the average interconnect latency for a P2P

network with 64 nodes, NoC-tree with 64 nodes, and an 8×8 NoC-mesh with X–Y

routing as shown in Figure 30. The NoC utilizes one virtual channel, a buffer size (all

input and output buffers) of eight, and three router pipeline stages. We observe that

for lower injection rates, the performance is comparable for all topologies, while for

higher injection rates, NoC performs better in terms of latency. Hence, NoC provides

better scalability and performance compared to P2P interconnects. Moreover, with

increasing connection density, injection bandwidth between layers increase due to

increased on-chip data movement. Therefore, P2P interconnect performs poorly for

DNNs with high connection density. Hence, there is a need for systematic guidance

for choosing the optimal interconnect for in-memory acceleration of DNNs. Other

works such as Chen et al. (2019) utilizes three separate NoC for weights, activations

and partial sums. Such a design choice results in increased area and energy cost for

the interconnect fabric. Furthermore, the three NoCs are under-utilized, resulting in

a sub-optimal design choice for acceleration of DNNs.
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4.3 Simulation Framework

There exist multiple simulators that evaluate the performance of DNNs on different

hardware platforms Chen et al. (2018). These simulators consider different technologies,

platforms, and peripheral circuit modeling while providing less consideration to

interconnect. With the advent of dense DNN structures Xie et al. (2019), the

importance of interconnect cost is higher, as discussed in Section 4.1. In this work,

we develop an in-house simulator, where a circuit-level performance estimator of the

computing fabric is combined with a cycle-accurate simulator for the interconnect.

The simulator also aims at being versatile by supporting multiple DNN algorithms

across different datasets, and various interconnect schemes.

Figure 31 shows a block-level representation of the simulator. The inputs of the

simulator primarily include the DNN structure, technology node, and frequency of

operation. In the proposed simulation framework, any circuit-level performance esti-

mator Dong et al. (2012); Chen et al. (2018) and any interconnect simulator Jiang et al.

(2013); Agarwal et al. (2009) can be plugged in to extract performance metrics such

as area, energy, and latency, proving a common platform for system-level evaluation.

In this work, we use customized versions of NeuroSim Chen et al. (2018) for circuit

simulation and BookSim Jiang et al. (2013) for cycle-accurate NoC simulation.

4.3.1 Circuit-level Simulator: Customized NeuroSim

The inputs to NeuroSim include the DNN structure indicating the layer size and

layer count along with technology node, the number of bits per in-memory compute

cell, frequency of operation, read-out mode, etc. The simulator performs the mapping
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Figure 31. Block-Level Representation of the Proposed Architecture Simulator.

of the entire DNN to a multi-tiled cross-bar architecture by estimating the number of

cross-bar arrays and the number of tiles per layer. Based on the size of the cross-bar

PEx and PEy, the number of cross-bar arrays is determined by (4.1).

No. crossbars =
NL∑
i=1

⌈(Kxi ×Kyi × Ci)

(PEx)i

⌉
×
⌈(Ci+1)×Nbits

(PEy)i

⌉
, (4.1)

where Nbits is the precision of the weights. The total number of tiles is calculated

as the ratio of the total number of crossbar arrays to the number of crossbar arrays

per tile. Furthermore, the peripheral circuits are laid out, and the complete tile

architecture is determined. The peripheral circuits include an ADC, sample and hold

circuit, shift and add circuit, and a multiplexer circuit. However, NeuroSim lacks an

accurate estimation of the interconnect cost in latency, energy, and area. Therefore,

we replace the interconnect part of NeuroSim with customized BookSim. We also

extract the performance metrics for tile-to-tile interconnect in NeuroSim and replace

it with the BookSim tile-to-tile interconnect. With this customization, our circuit

simulator only reports performance metrics, such as area, energy, and latency of the

computing logic. It provides the number of tiles per layer, activations, and the number

of layers to the interconnect simulator.
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Figure 32. Tile Numbering and Placement While Mapping the DNN to the IMC
Architecture. The Red Arrows show the Flow of the Data Across the Tiles.

4.3.2 Interconnect Simulator: Customized BookSim

Algorithm 3: Evaluation of interconnect latency through simulation
1 Input: Number of layers (NL), Number of tiles in each layer (Ti), FPS (F ),

Number of activation in each layer (Ai), interconnected topology
2 Output: End-to-end interconnect latency (Lrouting)
3 for each layer i do
4 for each tile j in layer i− 1 do
5 for each tile k in layer i do
6 if i > 0 then
7 Compute λi,j,k following Equation 4.2.
8 end
9 end

10 end
11 Simulate with interconnect topology and λi,j,k

12 Obtain (li)sim from the simulator.
13 Calculate li following Equation 4.3.
14 end
15 Calculate Lsim

comm : Lsim
comm =

∑NL

i=1 li.

DNNs have varying structures resulting in different traffic loads and data-patterns
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between the IMC PEs. To accurately capture the NoC traffic of a given DNN

configuration, we customize BookSim to evaluate the area, energy, and latency for

interconnect, as shown in Figure 31. We use the customized version of BookSim

to simulate the network traffic using non-uniform injection rate. We compute the

injection rates for each source-destination pair in the multi-tiled architecture. The

placement of tiles and routers in the IMC architecture has a direct impact on the

interconnect performance. In this work, we incorporate the impact of mapping into

the injection matrix calculation. The mapping of the DNN is performed such that each

tile can have at least one layer while no layer is divided between two tiles. Figure 32

shows a sixteen tile IMC architecture with the tiles numbered. The red arrows

show the data flow in the IMC architecture. Next, while evaluating the interconnect

latency, we create an injection matrix that incorporates the position of the tile into the

calculation by calculating the number of hops for each source-destination pair. Hence,

the injection matrix incorporates the tile placement into the NoC latency calculation.

Overall, the proposed approach can be generalized to any tile placement.

Algorithm 3 describes the steps performed to compute injection rates and obtain

the interconnect latency. Without loss of generality, we assume that the number of

nodes required in the interconnect is equal to the total number of tiles across all layers.

The injection rate calculation is shown in lines 5–11 of Algorithm 3. The injection

rate is expressed in (4.2) from each source to each destination in each layer.

λi,j,k =
Ai ×Nbits × FPS

Ti × Ti−1 ×W × freq
(4.2)

where Nbits, W , and FPS represent data precision and bus width, and frames-per-

second throughput, respectively. In the numerator of (4.2), we multiply the number

of input activations (Ai) for ith layer by Nbits to obtain the total number of bits to

be transferred from (i− 1)th layer to ith layer for one frame of an image. We further
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multiply this term with FPS to obtain the total number of bits transferred between

layers per second. Then, we divide this term by the operating frequency (freq) to

obtain the total number of bits transferred between layers per cycle. We assume an

equal injection rate between all tiles in two consecutive layers. Therefore, to get the

number of bits transferred from one tile to another in two consecutive layers, the

denominator in (4.2) includes a multiplication between Ti and Ti−1. Thus, we divide

the expression obtained so far by W to obtain the injection rate (λi,j,k). The injection

rate from every source to every destination is the input to the interconnect simulator.

The interconnect simulator then provides average latency to complete all transactions

from (i− 1)th layer to ith layer ((li)sim cycles). Next, we multiply this latency with

the number of bits from one tile to the next tile to get the total number of cycles

required to transfer all data between two consecutive layers. Then, the latency from

one layer to the next layer (li) is given by:

li =
(li)sim × Ai ×Nbits × FPS

freq
(4.3)

Finally, we accumulate the latency of all layers to compute the end-to-end interconnect

latency as

Lsim
comm =

NL∑
i=1

li (4.4)

4.4 Analytical Performance Models for NoCs in IMC Architecture

In this section, we discuss an analytical approach to estimate NoC performance for

IMC architecture. The analytical performance model of NoCs is primarily useful to

overcome longer simulation time incurred by cycle-accurate NoC simulators. Specifi-

cally, we utilize analytical performance models for NoCs to compare the performance

of NoC-tree and NoC-mesh for a given DNN. The analytical model of an NoC router
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is adopted from the work proposed in Ogras et al. (2010). We extend this router

model for NoC-tree and NoC-mesh to obtain end-to-end communication latency for

different DNNs. Algorithm 4 describes the technique to evaluate the communication

latency through analytical models. There are two major steps involved in analyzing

the performance of an NoC: 1) Computing injection rate and 2) Computing contention

probability matrix.

Computing injection rate matrix (Λ): First, the injection rate from each source

to each destination (λsd) for each layer of the DNN is computed through (4.2). We

note that the injection rate calculation incorporates the tile placement as detailed

in Section 4.3.2. Each NoC router has five ports: North (N), South (S), East

(E), West (W ), and Self (Se). The injection rate at each port p of every router r

(λr
p, p ∈ {N,S,E,W, Se}) is computed as:

λr
p =

Ar
p ×Nbits × FPS

Tl × Tl+1 ×W × freq
(4.5)

where Tl denotes the number of tiles in the lth layer. λr
p is a function of the number

of activations through each port p of router r (Ar
p). From λr

p, the injection rate

matrix for router r (Λr) is computed (as shown in line 5–7 of Algorithm 4), where

Λr = {λr
ij}, 1 ≤ i ≤ 5, 1 ≤ j ≤ 5, λr

ij = 0 ∀i ̸= j.

Computing contention matrix (C): Each element of the contention matrix C (cij)

denotes the contention between port i and port j. To compute the contention matrix

of router r (Cr = {crij}), we first compute forwarding probability matrix F r = {f r
ij}.

f r
ij denotes the probability of a packet that arrived at the port i of the router r to be

forwarded to the port j, and is computed as shown in (4.6) Ogras et al. (2010).

f r
ij =

λr
ij∑5

k=1 λ
r
jk

(4.6)
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Algorithm 4: End-to-end latency computation through analytical models
1 Input: Input activation, Number of routers in each layer l (Rl), Number of

layers (NL)
2 Output: End-to-end communication latency (Lcomm)
3 for l = 1: NL-1 do
4 for r = 1: Rl do

/* Computing injection rate matrix */
5 Compute Ar

p

6 Compute λr
p using (4.5)

7 Construct Λr

/* Computing contention matrix */
8 Compute forwarding probability matrix (F r)
9 Compute contention matrix (Cr)

/* Computing average waiting time */
10 Compute average queue length (N r) using (4.7)
11 Compute average waiting time (W r

avg) using (4.8)
12 end
13 Compute average latency for the layer (Ll

avg) using (4.9)
14 end
15 Lana

comm =
∑NL

l=1 L
l
avg

The contention probability between port i and port j of the router r is computed as

crij =
∑5

k=1 f
r
ikf

r
jk. Line 10-11 of Algorithm 4 shows the computation of the contention

matrix.

Next, the average queue length of each port of the router r (N r) is computed

through the technique described in Ogras et al. (2010).

N r = (I − tΛrCr)−1ΛrR, (4.7)

where t is the service time of the router, and we assume t = 1 for our evaluation.

R is the average residual time and is calculated assuming that the packets arrive in

discrete clock cycles Mandal et al. (2019). Waiting time of the packets at each port

of the router r is computed as W r = N r(Λr)−1. End-to-end average latency for each

layer l (Ll
avg) is obtained by averaging the waiting time through all 5 ports (W r

avg) of
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Figure 33. Throughput Comparison for Three Interconnect Topologies (P2P, NoC-tree,
and NoC-mesh) for SRAM-based IMC Architecture, Normalized to P2P, for Different
DNNs. NoC Shows Superior Performance and Scalability than P2P-Based Network.

router r and then adding across all routers, as shown in (4.8) and (4.9).

W r
avg =

1

5

5∑
p=1

W r
p (4.8)

Ll
avg =

R∑
r=1

W r
avg (4.9)

Finally, total communication latency (Lana
comm) is obtained by adding end-to-end average

latency for each layer l as:

Lana
comm =

NL∑
l=1

Ll
avg (4.10)

4.5 Connection-centric Architecture

In this section, we first discuss a multi-tiled SRAM-based IMC architecture with

three different interconnect topologies, namely, P2P, NoC-tree, and NoC-mesh at the

tile level. We perform a comprehensive analysis of these three interconnect-based

SRAM IMC architectures for different DNNs using the simulation framework described

in Section 4.3. Based on the analysis, we show the need for an NoC-based heterogeneous

interconnect IMC architecture for efficient DNN acceleration. We assume all weights
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are stored on-chip to avoid any DRAM access. The weights are loaded pre-execution

and stored on-chip. The inputs are then loaded, and the computation is performed.

There is no re-loading of intermediate results or weights from the off-chip memory

during the execution of the DNN. The SRAM buffer is designed large enough to hold

the intermediate results on-chip rather than moving them off-chip. Multiple inferences

of the images can be performed using one pre-execution loading of the weights. Hence,

we do not consider the initial loading of the weights into the energy calculation,

consistent with prior work Shafiee et al. (2016); Song et al. (2017) compared in the

manuscript. In addition, we adhere to layer-by-layer design instead of a layer-pipelined

design, since a pipelined design introduces pipeline bubbles in the execution flow and

complicates the control logic Qiao et al. (2018).

4.5.1 Design Space Exploration

We evaluate different performance metrics for a wide range of DNNs with P2P,

NoC-tree, and NoC-mesh-based interconnect for SRAM-based IMC architectures.

We consider routers with five ports, one virtual channel for NoCs and X–Y routing

for NoC-mesh for this evaluation. To facilitate fair comparison, we normalize the

throughput of the hardware architectures with three interconnect topologies to that

of P2P interconnect.

Figure 33 shows the throughput comparison for different DNNs. For low connection

density DNNs such as MLP and LeNet-5 LeCun et al. (1998), the choice of interconnect

does not make a significant difference to the throughput, due to low data movement

between different tiles of the IMC architecture. However, P2P interconnect results

in 1.25× and 2× higher area cost than NoC-tree for MLP and LeNet-5, respectively.
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Figure 34. Comparison of Energy-Delay-Area Product (EDAP) of NoC-tree, NoC-
mesh, and C-mesh for Different DNNs.

Hence, NoC-tree provides better overall performance than P2P for both MLP and

LeNet-5. We further analyze dense DNNs such as NiN Lin et al. (2013), VGG-19,

ResNet-50 He et al. (2016) and DenseNet-100 Huang et al. (2017). The performance

comparison shows that the NoC-tree and NoC-mesh-based IMC architectures perform

better than the P2P-based architectures (up to 15× for DenseNet-100). Since higher

connection density of the DNNs results in increased on-chip data movement, the

routing latency dominates the end-to-end latency. We see a similar trend with ReRAM-

based IMC architectures with similar throughput for MLP and 15× improvement in

throughput for DenseNet-100. Through this, we establish that the performance of the

P2P-based IMC architecture (SRAM- or ReRAM-based) diminishes with increasing

connection density. In contrast, the performance of the NoC-based (tree, mesh) IMC

architecture scales better (Figure 33).

Exploration of other NoC topologies: Apart from tree and mesh, the other

commonly known NoC topologies include c-mesh, hypercube, and torus. These

topologies utilize more resources in terms of routers and links to reduce communication

latency. However, the usage of more resources increases power consumption and the

area of the NoC. For example, we performed experiments with c-mesh topology for
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Figure 35. NoC-based Heterogeneous Interconnect IMC Architecture. A Three-Level
Interconnect Scheme Consisting of NoC (Tree or Mesh) Between Tiles, P2P Network
Between CEs, and Bus Between PEs.

different DNNs. Figure 34 compares energy-delay-area product (EDAP) of mesh-,

tree- and c-mesh-based NoC for different NoC. We observe that while mesh- and

tree-NoC provides comparable EDAP, the same for c-mesh is a minimum of five orders

of magnitude higher than mesh- and tree-NoC.

4.5.2 Hardware Architecture

Based on the conclusions from Section 4.5.1, we derive an NoC-based heterogeneous

interconnect IMC architecture for DNN acceleration. Figure 35 shows the hardware

architecture which employs the heterogeneous interconnect system.

The proposed architecture is divided into a number of tiles, with each tile having

a set of computing elements (CE). The tile architecture includes non-linear activation

units, I/O buffer, and accumulators to manage data transfer efficiently. Each CE

further consists of multiple processing elements (PE) or crossbar arrays, multiplexers,
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buffers, a sense amplifier, and flash ADCs. The ADC precision is set to four bits

such that there is minimum or no accuracy degradation for DNNs. In addition, the

architecture does not utilize a digital-to-analog (DAC) converter; instead, it uses

sequential signaling to represent multi-bit inputs Peng et al. (2019b). The proposed

heterogeneous tile architecture can be used for both SRAM and ReRAM (1T1R)

technologies. However, the peripheral circuits change based on the technology. In

this work, we choose a homogeneous tile design consisting of four CEs and a CE

structure consisting of four PEs. We evaluate both SRAM- and ReRAM-based IMC

architectures for PE sizes varying from 64×64 to 512×512. We sample 8 DNNs

(LeNet, NiN, SqueezeNet, ResNet-152, ResNet-50, VGG-16, VGG-19, and DenseNet-

100) and a crossbar size of 256×256 provides the lowest EDAP for 75% of the DNNs.

Hence, in this work, we choose 256×256 as the crossbar size for both SRAM- and

ReRAM-based IMC architectures. To maximize performance, the architecture uses

heterogeneous interconnects. It employs the NoC-based interconnect on the global

tile-level with a P2P interconnect (H-Tree) at the CE-level and bus at the PE-level due

to significantly lower data volume. For low data volume, the NoC-based interconnect

provides marginal performance gain while increasing energy consumption.

4.6 Experiments and Results

4.6.1 Experimental Setup

We consider an IMC architecture (Figure 35) with a homogeneous tile structure

(SRAM, ReRAM) and one NoC router per tile. Table 13 summarizes the design

parameters considered. We report the end-to-end latency, chip area, and total

91



energy obtained for a PE size of 256×256 for each of the DNNs using the simulation

framework discussed in Section 4.3. We incorporate conventional mapping Shafiee

et al. (2016), IMC SRAM bitcell/array design from Khwa et al. (2018) and 1T1R

ReRAM bitcell/array properties from Chen et al. (2018). The IMC compute fabric

utilizes a parallel read-out method. We utilize the same crossbar array size of 256×256

for both SRAM and ReRAM-based IMC architectures. All rows of the IMC crossbar

are asserted together, analog MAC computation is performed along the bitline, and

the analog voltage/current is digitized with a 4-bit flash ADC at the column periphery.

We perform an extensive evaluation of the IMC architecture with both SRAM-based

and ReRAM-based PE arrays for both NoC-tree and NoC-mesh. Unless specified, the

NoC utilizes one virtual channel, a buffer size (all input and output buffers) of eight,

and three router pipeline stages.

Table 13. Summary Of Design Parameters

PE array size 256×256 Read-out Method Parallel

Technology node 32nm Flash ADC resolution 4 bits

Cell levels 1 bit/cell Operating frequency 1 GHz

Data precision 8 bits NoC bus width 32

4.6.2 Evaluation of NoC Analytical Model

Figure 36 shows the accuracy of the analytical model (presented in Algorithm 4 in

Section 4.4) to estimate the end-to-end communication latency with both NoC-tree

and NoC-mesh. We observe that the accuracy is always more than 85% for different

DNNs. On an average, the NoC analytical model achieves 93% accuracy with respect
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Figure 36. Accuracy of NoC Analytical Model for NoC-mesh and NoC-tree With
Respect to Cycle-Accurate Simulator Jiang et al. (2013).

to cycle-accurate NoC simulation Jiang et al. (2013). Moreover, we achieve 100×-

2000× speed-up with the NoC analytical model with respect to cycle-accurate NoC

simulation. Figure 37 shows the speed-up for different DNNs with mesh-NoC. This

speed-up is useful to perform design space exploration by considering various sizes of

PE arrays and other NoC topologies. Due to the high speed-up in NoC performance

analysis , we achieve 8× speed-up in overall performance analysis with respect to the

framework which uses cycle-accurate NoC simulation.

Figure 37. Speed-up (in NoC Simulation) with NoC Analytical Models with Respect
to Cycle-Accurate NoC Simulation for Different DNNs with Mesh-NoC.
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4.6.3 Analysis on Traffic Congestion in NoC

In this section, we present an analysis on traffic congestion in NoC for various

DNNs. To this end we discuss about average queue length of different buffers in the

NoC and worst case communication latency.

Analysis of the average queue length: Furthermore, we investigated the average

queue length at different ports of different routers in the NoC through a cycle-accurate

NoC simulator. We performed this experiment with mesh-NoC considering the

configuration parameters shown in Table 13. Figure 38 shows that 64%-100% of the

queues contain no flit when a new flit arrives for different DNNs. The percentage of

queues with zero occupancy for LeNet-5 and NiN is 91% and 65%, respectively. These

two DNNs utilize fewer number of routers, which results in less parallelism in data

communication. However, we note that determining the optimal number of routers

for a given DNN is not a scope of this work.

Figure 39 shows the average queue length for NiN and VGG-19 for the queues with

non-zero length when a new flit arrives to the queues. We observe that the average

queue length varies from 0.004-0.5 for these DNNs. Average queue length is very low

in these cases since the injection rate to the queues are less, and NoC introduces a

high degree of parallelism in data transmission between routers.

Analysis of the worst case latency: Furthermore, we extracted the worst-case

latency (Lmax) for different source to destination pairs of different DNNs with mesh-

NoC. We compared Lmax of each source to destination pair with corresponding average

latency (Lavg). Then we compute mean absolute percentage deviation (MAPD) of
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Figure 38. Percentage of Queues with Zero Occupancy When a New Flit Arrives.

Figure 39. Average Occupancy of Queues with Non-Zero Length for (a) NiN, (b)
VGG-19.

Lmax from Lavg as the equation below.

MAPD = 100× 1

N

N∑
i=1

(Li
max − Li

avg)

Li
avg

(4.11)

Where N is the total number of source to destination pairs with non-zero average

latency. Li
max and Li

avg are the worst-case latency and the average latency respectively

of ith source to destination pair. Table 14 shows the mean absolute percentage

deviation for different DNNs. We observe that the deviation is insignificant, except
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Table 14. Mean Absolute Percentage Deviation (MAPD) of Worst-Case NoC Latency
From Average NoC For Different DNNs.

DNNs MLP LeNet-5 NiN ResNet-50 VGG-19 DenseNet-100

MAPD(%) 0 9.13 20.76 0 0.14 0

for LeNet-5 and NiN. The deviations for these two networks are 9.13% and 20.76%,

respectively.

Furthermore, in Figure 40 we show the absolute difference between the worst-case

latency and the average latency for LeNet-5 and NiN for different source to destination

pairs with non-zero latency. The maximum difference is 6 cycles both for LeNet-5

and NiN. This analysis shows that the worst-case latency has very less deviation from

the average latency. Therefore, the studies of average queue length and worst-case

latency confirm that there is no congestion in the NoC.

4.6.4 Guidance on Optimal Choice of Interconnect

4.6.4.1 Empirical Analysis

We compare the performance of the IMC architecture using both NoC-tree and NoC-

mesh for both SRAM and ReRAM-based technologies. We perform the experiments

for representative DNNs. MLP, LeNet-5, and NiN depict low connection density

DNNs; ResNet-50, VGG-19, and DenseNet-100 depict high connection density DNNs.

We report throughput and the product of energy consumption, end-to-end latency,

and area (EDAP) of the IMC architectures. EDAP is used as the metric to guide the

optimal choice for the interconnect for IMC architectures.
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Figure 40. Comparison Between Average Latency and Worst-Case Latency for Source
to Destination Pairs with Non-Zero Latency for (a) LeNet-5 and (b) NiN.

Figure 41(a) shows the ratio of the throughput of the SRAM-based IMC architecture

using NoC-tree and NoC-mesh interconnect. We normalize the throughput values with

respect to that of NoC-tree. NoC-tree performs better than the NoC-mesh for DNNs

with low connection density. This is because of the reduced injection bandwidth into

the interconnect. In addition, while NoC-mesh provides lower interconnect latency

than NoC-tree, it comes at an increased area and energy cost. However, NoC-mesh

performs better for DNNs with high connection density. The improved performance

stems from the reduced interconnect latency for high injection rates of data into the

interconnect. The reduction in latency is much higher than the additional overhead

due to both area and energy of NoC-mesh.

To better understand the performance, we report the EDAP for the SRAM-
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Figure 41. (a) Normalized Throughput and (b) Normalized EDAP of NoC-tree
and NoC-mesh-based On-Chip Interconnect for SRAM-based IMC Architecture for
Different DNNs. Dense DNNs Favor NoC-mesh While NoC-tree is Sufficient for
Shallow DNNs.

Figure 42. (a) Normalized Throughput and (b) Normalized EDAP of NoC-tree
and NoC-mesh-based On-Chip Interconnect for ReRAM-based IMC Architecture
for Different DNNs. Dense DNNs Favor NoC-mesh While NoC-tree is Sufficient for
Shallow DNNs.

based IMC architecture. Figure 41(b) shows normalized EDAP of the NoC-tree

and NoC-mesh for both low and high connection density DNNs. DNNs with low

connection density have significantly lower EDAP for NoC-tree than that with NoC-

mesh. Such an improved EDAP performance for NoC-tree complements the observation

for throughput. At the same time, for DNNs with high connection density, the EDAP

of NoC-mesh is lower than that of the NoC-tree for IMC architectures. A similar

observation is seen for ReRAM-based IMC architectures as shown in Figure 42(a)

and Figure 42(b). In contrast to the SRAM-based IMC architecture, NiN provides

better performance in throughput for the NoC-mesh interconnect. At the same
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time, NoC-tree provides better EDAP compared to NoC-mesh, similar to that of the

SRAM-based IMC architecture.

Furthermore, we performed another two sets of experiments with NoC-mesh and

NoC-tree by varying the number of virtual channels and bus-width. In this case, we

consider ReRAM-based IMC architectures. Figure 43 shows the comparison with

different numbers of virtual channels, and Figure 44 shows the comparison with

different bus width of the NoC. We observe similar trends for different DNNs with a

different NoC configurations.

Figure 43. Assessment of (a) Throughput and (b) EDAP Between NoC-tree and
NoC-mesh With Different Numbers of Virtual Channels for Different DNNs. The
Throughput is Normalized to That of NoC-tree. The Preferred NoC Topology for
Optimal Performance is Shown for the Regions Above and Below the Red Line.

Since the injection rate to the input buffer of the NoC is always low (less than one

packet in 100 cycles), increasing the number of virtual channels does not alter the

inference latency significantly. Therefore, throughput remains similar (for all DNNs)

both for NoC-tree and NoC-mesh with an increasing number of virtual channels.

However, the area and power of both NoC-mesh and NoC-tree increase proportionally

with an increasing number of virtual channels. Therefore, the normalized EDAP

(EDAP of mesh-NoC divided by the EDAP of tree-NoC) is similar for all DNNs with

different numbers of virtual channels.
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Figure 44. Assessment of (a) Throughput and (b) EDAP Between NoC-tree and NoC-
mesh With Different Bus Width for Different DNNs. The Throughput is Normalized
to That of NoC-tree. The Preferred NoC Topology for Optimal Performance is Shown
for the Regions Above and Below the Red Line.

While we change the bus width of the NoC, the latency increases (decreases) with

decreasing (increasing) bus width proportionally, i.e., the latency with a bus width of

32 is twice than the latency with bus width of 64. Moreover, the area and power of

the NoC increases (decreases) with increasing (decreasing) bus width proportionally.

Therefore, the normalized EDAP is similar for all DNNs with different NoC bus

widths. Consequently, for all configurations, we obtain exactly the same guidance on

the choice of NoC for different DNNs. Therefore, the guidance is consistent across

different parameters of NoCs.

4.6.4.2 Theoretical Analysis

We utilize the analytical model in Section 4.4 and the experimental results described

in Figure 41 and Figure 42 to provide guidance on the optimal choice of interconnect

for IMC architectures. The injection rate at each port of an NoC router for each

layer of the DNN is expressed in (4.5). The numerator of (4.5) denotes the total data

volume between ith layer and (i + 1)th layer for each port of the router per cycle.

This is divided by (Ti × Ti+1 ×W ) to obtain the injection rate from for each port
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of every router as detailed in Section 4.4. For a fixed NoC-based IMC architecture,

target throughput (FPS), frequency of operation (freq), and bus width (W ) remain

constant. Hence, from (4.5) we obtain,

λi ∝
Ai ×Nbits

Ti × Ti+1

(4.12)

Let the connection density for ith layer be ρi and the number of neurons be µi. Data

volume between ith and (i+ 1)th layer is proportional to the product of ρi and µi, as

shown in (4.13).

(Ai ×Nbits) ∝ (ρi × µi) (4.13)

Additionally, the number of tiles in ith layer is directly proportional to µi. Hence,

from (4.12) and (4.13) we get,

λi ∝
ρi × µi

µi × µi−1

=
ρi
µi−1

(4.14)

Generalising (4.14), we obtain,

λ ∝ ρ

µ
(4.15)
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Figure 45. Optimal NoC Topology for IMC Architectures for Different DNNs.
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Therefore, the injection rate is directly proportional to the connection density and

inversely proportional to the number of neurons of the DNN. Figure 45 presents the

preferred regions for NoC-tree and NoC-mesh for best throughput for different DNNs

with IMC architectures. If the connection density of a DNN is more than 2×103, then

NoC-mesh is suitable. If the connection density is less than 1×103, then NoC-tree is

appropriate. Both NoC-tree and NoC-mesh are suitable for the DNNs with connection

density in the range of 1×103-2×103 (the region where red and blue ovals overlap in

Figure 45).

4.6.5 Comparison with state-of-the-art architectures

Table 15 compares the proposed architecture with state-of-the-art DNN accelerators.

Prior works show the efficacy of their ReRAM-based IMC architectures for VGG-

19 DNN Qiao et al. (2018); Shafiee et al. (2016); Song et al. (2017). Hence for

comparison, we choose VGG-19 network as the representative DNN. Moreover, we

compare the dynamic power consumption of the DNN hardware since prior work

utilizes dynamic power in their results, hence making the comparison consistent. The

inference latency of the proposed architecture with SRAM arrays is 2.2× lower than the

architecture with ReRAM arrays. The proposed ReRAM-based architecture achieves

4.7× improvement in FPS and 6× improvement in EDAP than AtomLayer Qiao

et al. (2018). The improvement in performance is attributed to the optimal choice of

interconnect coupled with the absence of off-chip accesses. The proposed ReRAM-based

architecture consumes 400× lower power per frame along with 1.74× improvement in

FPS than PipeLayer Song et al. (2017). Moreover, there is a 5.4× improvement in
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inference latency compared to ISAAC Shafiee et al. (2016), which is achieved by the

heterogeneous interconnect structure.

Table 15. Inference Performance Results for VGG-19. *Reported in Qiao et al. (2018)

Latency Power/frame
(W/frame) FPS EDAP

(J.ms.mm2)

Proposed-SRAM 0.68 1.96 1458 0.46

Proposed-ReRAM 1.49 0.43 670 0.28

AtomLayer Qiao et al. (2018) 6.92 4.8 145 1.58

PipeLayer Song et al. (2017) 2.6* 168.6 385 94.17

ISAAC Shafiee et al. (2016) 8.0* 65.8 125 359.64

4.6.6 Connection Density and Hardware Performance

Figure 26 showed a trend of DNNs moving toward a high connection density

structure for performance and low connection density structure for compact models.

Figure 46 shows the performance for both P2P and NoC-based interconnect at the tile-

level for IMC architecture for DNNs with different connection density. We observe a

steep increase in total latency with a P2P interconnect. However, the IMC architecture

with NoC interconnect shows a stable curve as we move towards high connection

density DNNs. With the advent of neural architecture search (NAS) techniques Xie

et al. (2019); Zoph et al. (2018), DNNs are moving towards a highly branched structure

with very high connection densities. Hence, the NoC-based heterogeneous interconnect

architecture provides a scalable and suitable platform for IMC acceleration of DNNs.
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Figure 46. Appropriate Selection of NoC Topology Significantly Improves Performance
for Both SRAM- and ReRAM-based IMC Architectures.

4.7 Conclusion

The trend of connection density in modern DNNs requires a re-evaluation of

the underlying interconnect architecture. Through a comprehensive evaluation, we

demonstrate that the P2P-based interconnect is incapable of handling the high volume

of on-chip data movement of DNNs. Further, we provide guidance backed by empirical

and analytical results to select the appropriate NoC topology as a function of the

connection density and the number of neurons. We conclude that NoC-mesh is

preferred for DNNs with high connection density, while NoC-tree is suitable for DNNs

with low connection density. Finally, we show that the NoC-based heterogeneous

interconnect IMC architecture achieves 6× lower EDAP than state-of-the-art ReRAM-

based IMC accelerators.
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Chapter 5

INTERCONNECT-AWARE AREA AND ENERGY OPTIMIZATION FOR

IN-MEMORY ACCELERATION OF DNNS

5.1 Introduction

Deep neural networks (DNNs) achieve accuracy levels that exceed human-level

perception for a variety of applications, such as computer vision, natural language

processing, and medical imaging. Higher accuracy comes with increased computational

complexity and model size which in turn require more memory to store both the

weights and activations. Due to limited on-chip memory capacity, this leads to a

significant amount of communication with off-chip memory Chen et al. (2019), whose

energy is 1,000× higher than the energy required to perform computations. Therefore,

there is a strong need to minimize energy cost related to memory access.

In-memory computing (IMC) has emerged as a promising method to address

the memory access bottleneck. Both SRAM and nanoscale non-volatile memory

(e.g. resistive RAM or ReRAM) based IMC hardware architectures provide a dense

and parallel structure to achieve high performance and energy efficiency Shafiee

et al. (2016); Song et al. (2017); Valavi et al. (2019). However, state-of-the-art IMC

architectures which employ an array of homogeneous tiles (tiles having the same size),

have severely underutilized crossbar arrays or processing element (PE). For example,

Figure 47(a) shows that most commonly used DNNs utilize less than 65% of PEs in

an SRAM-based homogeneous IMC architecture with PE size of 256× 256 Chen et al.

(2018); the exceptions are the two VGG networks where input features in most layers
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are multiples of 256. The low utilization of PE arrays occurs due to the non-uniform

distribution of weights across different layers Ma et al. (2018). Reduced utilization

results in increased area, leading to additional on-chip interconnect and higher energy

consumption.

Communication latency between different tiles also plays a crucial role in overall

hardware performance. Conventional hardware architectures use H-Tree, point-to-

point (P2P), and bus architectures Chen et al. (2018) for on-chip communication,

resulting in lower performance. Figure 47(b) shows that up to 90% of the total latency

is spent on communication in a bus-based H-Tree interconnect Chen et al. (2018). In

contrast, the NoC-based interconnect provides lower communication latency for DNN

accelerators, as demonstrated in Chen et al. (2019); Shafiee et al. (2016).

State-of-the-art hardware architectures typically implement multiple DNNs on

the same NoC Shafiee et al. (2016); Chen et al. (2019). Small DNNs, like NiN,

under-utilize the NoC, while large DNNs, such as DenseNet, lead to congestion.

Moreover, if one NoC node is employed per tile as in Chen et al. (2019); Kwon et al.

(2017), communication energy constitutes 20%–40% of the total energy, as shown in

Figure 47(c). Here the global interconnect energy from BookSim Jiang et al. (2013) is

combined with the local interconnect energy (within tile) from NeuroSim Chen et al.

(2018). As we show later in Section V-C, the initial layers account for a large portion

of the total number of packets. Thus, if a tile is serviced by a dedicated router, the

number of packets per router is very high for the initial layers. This increases the

total communication latency and in-turn reduces energy efficiency.

In this work3, we first propose an area-aware optimization technique that improves

3Work done in collaboration with Sumit K. Mandal (UW– Madison)
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Figure 47. Experiments Using NeuroSim Chen et al. (2018) for Different DNNs Using
Homogeneous SRAM-based IMC Architecture With P2P Interconnect Show that (a)
Less than 65% of the PEs are Utilized, Except for VGG Network, (b) up to 90% of
the End-to-End Latency is Spent on On-Chip Communication, (c) Communication
Energy Constitutes 20%–40% of the Total Energy with NoC Having One Node per
Tile Chen et al. (2019); Kwon et al. (2017).

Figure 48. Overview of the Proposed Methodology to Obtain an Area- and Energy-
Optimized IMC DNN Accelerator. (a) Shows DNNs with Various Connection Struc-
tures, (b) Shows the Joint Optimization Technique, and (c) Shows the Generated
Heterogeneous IMC Architecture With Optimized Interconnect. Each PE Consists of
the Crossbar of the Same Size, with Different Numbers of PEs Within Each Tile.

the PE array utilization. This is achieved by generating a heterogeneous tile-based

IMC architecture that consists of tiles of different sizes, i.e. with different numbers
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of PEs where each PE is of the same size. Second, we minimize the communication

energy across a large number of tiles using an NoC architecture with optimized tile-to-

router mapping and scheduling. Overall, our proposed area and energy optimization

methodology generates a heterogeneous IMC architecture coupled with an optimized

NoC for DNN acceleration. Thorough experimental evaluations show up to 62%

improvement in PE utilization, 78% reduction in area, and 78% lower energy-area

product for a wide range of modern DNNs such as DenseNet (100,24), and ResNet-152.

The major contributions of this paper are as follows:

• An area-aware optimization technique to maximize the PE array utilization to

reduce area,

• An energy-aware NoC mapping and scheduling technique to minimize communi-

cation latency and energy,

• Experimental demonstration of the proposed methodology showing up to 78%

reduction in energy-area product with respect to conventional IMC architectures.

5.2 Overview of the Proposed Methodology

Our methodology to generate an area and energy-optimized IMC architecture for

a given DNN is described in Figure 48. It targets the following three objectives.

• Increased PE array utilization for overall area reduction,

• Optimized interconnect for energy-efficient on-chip communication,

• Integration of area-aware and energy-aware optimization to generate the hetero-

geneous IMC architecture.

The skeleton architecture consists of multiple tiles where each tile is built with several
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compute elements (CEs), and each CE consists of multiple PEs. Each PE is a crossbar

array and all PEs are of the same size. The proposed hierarchical architecture enables

efficient data transfer, reduced accumulator size, and distributed buffer structure.

Figure 48(c) shows the skeleton architecture.

The methodology takes inputs such as the network structure and precision of the

data for the target DNN, as illustrated in Figure 48(a). Additional inputs include

a maximum number of routers and minimum/maximum number of PEs per CE,

and CEs per tile. A joint optimization is performed on these inputs as shown in

Figure 48(b). First, an area-aware optimization is done to improve the utilization of

the PE arrays to produce the heterogeneous tile architecture. Second, an energy-aware

NoC optimization is used to produce the optimal distribution of routers across different

layers of DNNs on this architecture. Our optimization methodology also includes

a scheduling technique to avoid congestion in the NoC, resulting in reduction of

NoC energy and end-to-end latency. The proposed method supports different IMC

technologies, such as SRAM, ReRAM, and PCM.

Overview of Generated Architecture: The heterogeneous IMC architecture

generated by the proposed methodology is shown in Figure 49. It consists of tiles

along with non-linear activation units, I/O buffer, and accumulators to manage data

transfer efficiently. Each tile consists of a different number of CEs, buffers, and an

accumulator. Each CE consists of several PE arrays, multiplexers, buffers, ADCs,

and sample and hold circuits. In addition, the architecture does not use a DAC and

assumes all weights are stored on-chip similar to Shafiee et al. (2016); Song et al.

(2017). Such an assumption results in a large chip area for high-precision DNNs, but

the chip area can be reduced by exploiting low-precision quantization and slim DNN

models.
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Figure 49. The Hierarchical Structure of the Generated Heterogeneous In-Memory
Architecture with Optimized NoC by Utilizing the Proposed Area and Energy Opti-
mization Methodology.

The proposed architecture employs NoC-based interconnect at the global tile level

with an H-Tree interconnect at the CE level, and bus interconnect at the PE level.

Since the injection rate is much lower at the CE and PE level than that at the tile

level, H-Tree and bus interconnect provide ample performance. At the tile level,

the proposed energy-optimized mesh NoC with X–Y routing algorithm is used. We

consider mesh NoC as the interconnect topology since mesh NoC is the state-of-the-art

interconnect topology both in the realm of computer architecture Jeffers et al. (2016)

and DNN accelerators Chen et al. (2019); Shafiee et al. (2016).

Table 16. Summary Of Notation

Symbol Definition Symbol Definition

Tk
Number of tiles
in kth layer Nbits

Weight
precision

Kxk,
Kyk

Kernel size ck
Number of
CEs in Tk

(PEx)k,
(PEy)k

Size of the PE array pk
Number of
PEs in ck

Ik
Input activations
in kth layer N if

k , N of
k

Number of i/p
and o/p features
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5.3 Area and Energy Optimization methodology

In this section, we describe our proposed methodology that performs area and

energy optimizations to construct an optimized architecture for a given DNN.

Area-Aware Tile Optimization: Mapping different DNNs to a homogeneous

tile-based hardware architecture results in considerable under-utilization of the PE

arrays as shown in Figure 1(a). We propose an area-aware optimization to generate

a heterogeneous tile-based (varying tile sizes) hardware architecture that increases

PE array utilization and in-turn decreases the total area. Using the weight mapping

scheme in Shafiee et al. (2016), we calculate the number of rows N r
k in (5.1) and

columns N c
k in (5.2) of PEs required for the kth layer of the DNN with K layers.

N r
k =

⌈Kxk ×Kyk ×N if
k

(PEx)k

⌉
(5.1)

N c
k =

⌈N of
k ×Nbits

(PEy)k

⌉
(5.2)

Nbits, N if
k , N of

k , (PEx)k, and (PEy)k are defined in Table 12. The proposed area

optimization applies to any other crossbar mapping method by changing the calculation

of N r
k and N c

k . Next, we calculate the number of tiles Tk required for the kth layer of

the DNN, as shown in (5.3):

Tk =
⌈N r

k ×N c
k

ck × pk

⌉
(5.3)

The parameters ck and pk are unknown and are found by the proposed optimization. To

generate an optimal tile architecture, we propose an objective function that minimizes

the residual area to increase PE utilization:

Ak(ck, pk) = (ck × pk × Tk −N r
k ×N c

k)× T 2
k (5.4)

where the product of ck, pk, and Tk represents the number of PEs used to map the

kth layer of the DNN. The product of N r
k and N c

k provides the actual number of PEs
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required to map the kth layer of the DNN. The difference between the two products

signifies the residual area. Additionally, the total area and energy of the chip are

directly proportional to the number of tiles required to realize the kth layer of the

DNN. Hence, we incorporate the area and energy cost of the hardware by multiplying

the residual area by the square of Tk. Finally, we minimize the objective function with

an upper and lower bound on ck and pk for all layers of the DNN as shown in (5.5):

minimize
ck,pk

Ak(ck, pk); k = 1, . . . , K,

subject to cmin ≤ ck ≤ cmax,

pmin ≤ pk ≤ pmax.

(5.5)

where cmin, cmax, pmin, and pmax are user-defined constraints that are an input to the

optimization engine.

By solving the problem in (5.5), we obtain the optimal number of CEs in a tile (ck)

and the number of PEs in each CE (pk) for each layer of the DNN. This results in a

heterogeneous tiled IMC architecture with high PE array utilization and low area.

Figure 50. NoC Optimization Effectively Reduces the Power Consumption Because
of its Non-Linear Dependence on the Mesh Size. We Obtain NoC Power Through
BookSim Jiang et al. (2013) Simulations.

Energy-Aware Optimization for NoC: As a result of the proposed area-aware

optimization, the total number of tiles in an IMC architecture can be very high. For

example, DenseNet (100,24) requires 1,088 tiles Chen et al. (2018). For such an
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architecture, one-to-one mapping of a router to tile Kwon et al. (2017) will require

a large number of NoC routers and consume high power, as shown in Figure 50.

Therefore, in our framework we introduce an energy-aware optimization for the NoC.

Mapping Tiles to Routers: We first construct an objective function that represents

the NoC energy consumption. Let nk be the number of routers required for the kth

layer of the DNN. The number of activations communicated between nk and nk+1

routers is Ik. Hence, the number of activations between each source-destination pair

is given by Ik/(nk × nk+1). The total amount of communication volume can be found

by adding this across all K layers and routers:

E(n̄) =
(K−1∑

k=1

Ik
nknk+1

)( K∑
k=1

nk

)
(5.6)

E(n̄) is proportional to the total communication energy of the DNN assuming that all

transactions have a uniform size. We minimize this objective function with an upper

bound on the total number of routers, N as:

minimize
n̄

E(n̄)

subject to nk ≥ 1; k = 1, . . . , K,

K∑
k=1

nk < N.

(5.7)

where the first constraint ensures that each layer of the DNN is associated with at

least one router. N is a user-defined constraint (input to the optimization framework)

that represents the maximum number of routers in the IMC architecture. At the end

of this optimization, we obtain the number of routers needed for each layer (nk) of

the DNN.

Packet Scheduling in NoC: If the activations of a layer are injected into the NoC in

the order of computation, there is a high possibility of congestion resulting in high
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communication latency in the NoC. Therefore, we propose a scheduling technique for

the NoC to schedule the activations between two layers of the DNN. The scheduling

technique is applied on top of the optimal tile-to-router mapping for the NoC. This

scheduling technique provides a starting time for activations from each source to

destination pair in the NoC. Without loss of generality, we assume that all activations

for a particular source-destination pair can be injected back-to-back.

Using the NoC topology and the routing algorithm, we first find the source-

destination pairs which contend for the same link in the NoC. We model each source-

destination pair (sd) as an individual task. The start time of the task corresponding

to the pair sd is denoted by tsd and the duration of the task equals to the number of

packets for that pair (nsd). Next, we put constraints on the start time of each task

so that there is no contention between two transactions for the same link. The set

of all tasks is denoted by T and the set of all non-overlapping tasks is denoted by

C. (5.8) shows the formulation of the non-overlap constraint, where the start time of

two tasks is separated by the duration. Furthermore, the start time of all tasks are

integers and greater than zero. We add one terminal task with the constraint that the

start time of the terminal task (tterminal) is greater than the start time of any of the

source-destination pairs. We minimize tterminal to obtain the optimal schedule for all

source-destination pairs.

minimize tterminal

subject to tmn > tpq + npq ∨ tpq > tmn + npq,

∀tmn, tpq ∈ C,

txy ≥ 0,∀ txy ∈ T

tterminal > txy + nxy,∀ txy ∈ T .

(5.8)
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5.4 Experimental Evaluation

5.4.1 Experimental Setup

We evaluate the proposed methodology for a wide range of DNNs. An in-house

simulator is developed to analyze the performance of the generated architecture for

different DNNs. The inputs of the simulator primarily include the DNN structure,

technology node, number of tiles, configuration of each tile, type of in-memory technol-

ogy (ReRAM, SRAM, etc), number of bits per cell, and frequency of operation. The

circuit part and interconnect part of the simulator are calibrated with NeuroSim Chen

et al. (2018) and BookSim Jiang et al. (2013), respectively. The simulator performs

the mapping of the entire DNN to a multi-tiled IMC architecture Shafiee et al. (2016)

based on the output from the area-aware optimization. The number of tiles and

configuration of each tile is taken as input to perform the DNN mapping. The circuit

simulator reports performance metrics, such as area, energy, and latency of the com-

puting logic. The interconnect performance is evaluated using the cycle-accurate NoC

simulator. The circuit simulator provides the number of tiles per layer, activations, and

the number of layers as output, which are taken as input by the NoC simulator. The

NoC simulator computes the area, energy, and latency based on the number of routers

and the computed schedules through our proposed approach. The overall performance

of the architecture is calculated by combining the circuit-level and interconnect-level

performance results.

Finally, to evaluate the effectiveness of the proposed methodology, we compare

the generated IMC architecture using 1T1R ReRAM bitcell/array Chen et al. (2018)

with state-of-the-art ReRAM-based IMC architectures.
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Baseline Architecture: We incorporate IMC SRAM bitcell/array design Chen

et al. (2018) for the baseline architecture. We use 256×256 crossbar array with 32nm

technology Shafiee et al. (2016); all 256 rows are asserted together, analog MAC

computation is performed along the bitline, and the analog voltage/current is digitized

with a 4-bit flash ADC at the column periphery. The frequency of operation is 1GHz.

Parallel read-out is assumed for the crossbar with a 4-bit flash ADC at the column

periphery Chen et al. (2018). We consider NoC bus width of 32. It should be noted

that our proposed methodology applies to other values of these parameters.

5.4.2 Area-Aware Optimization for Heterogeneous Tiles

Figure 51. Improvement With Respect to the Baseline Architecture (SRAM) in (a)
PE Utilization and (b) Total Area with the Proposed Area-Aware Optimization.

We compare both PE array utilization and the total chip area against the baseline

architecture. The area-optimal tile architecture is obtained by following the method-

ology described in Section 5.3. For our evaluation, we consider cmin = 2, cmax =

4, pmin = 1 and pmax = 4. Increasing the pmax beyond 4 results in very low PE
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array utilization. The optimal value of ck and pk is always less than 5, otherwise, the

utilization starts reducing drastically. At the same time, the number of CEs is always

more than 1 to keep the tile count reasonable, to limit the energy consumption.

Figure 51(a) shows the improvement in crossbar utilization with heterogeneous

tile architecture for a range of DNNs. The improvement in utilization is the highest

(62%) for NiN, and the least for VGG-19 (6%). The low improvement for VGG-19

is attributed to the baseline utilization being as high as 93%. This is because the

number of input features in most layers are multiples of 256. The increase in PE

utilization results in chip area reduction as shown in Figure 51(b). Compared to

the homogeneous tile structure, we achieve a 79% reduction in area for SqueezeNet

and 57% for NiN. For VGG-19, a higher area improvement is observed due to the

reduction in both the number of PE arrays and associated peripheral circuits.

To better understand the efficacy of the proposed method, we analyze the layer-

by-layer improvement in utilization for NiN in Figure 52(a). Two configurations of

tile structures are obtained; (1) ck = 2, pk = 1 and (2) ck = 3, pk = 2. We note that,

even with a high degree of freedom (15 possible combinations) for the optimization,

only two configurations are chosen across the range of DNNs evaluated in this work.

5.4.3 Energy-Aware NoC Optimization

The proposed methodology includes an energy-aware tile-to-router mapping and

scheduling technique for the NoC. The upper bound on the number of routers is

set as three times the number of DNN layers to balance energy and performance.

Figure 52(b) shows the improvement in latency for each layer of NiN due to the

proposed NoC optimization. The proposed NoC mapping reduces the communication
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Figure 52. Layer-wise Improvement for NiN in (a) PE Utilization for Each Layer with
SRAM-Based Heterogeneous Tile Architecture. The Tile Structure for Each Layer
(ck, pk) is Shown on Top of Each Bar and (b) Communication Latency for Each Layer
with Proposed NoC Optimization.

latency between layers 1 and 2 from 51ms to 47ms. As we integrate the NoC mapping

with the scheduling technique, latency reduces further to 22ms. The first three layers

of NiN contain more than 50% of the total number of activations. Therefore, the

proposed NoC mapping reserves more routers for the first three layers, resulting in

a significant reduction in latency for those layers. Additionally, the total number of

routers is reduced which reduces the NoC area. A direct consequence of both latency

and area reduction is lower communication energy, as shown in Figure 53(a) with

an average reduction of 74%. The energy reduction is the highest for the case of

VGG networks – 97%/98% for VGG-16/VGG-19. For ResNet-152, energy reduction

is the lowest (15%), since the tiles are well distributed across layers for the baseline

architecture, leaving less room for improvement.
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5.4.4 Overall Improvement

We compare the energy-area product of the generated architecture against the

baseline to assess the overall improvement. The proposed approach achieves up to 78%

improvement in energy-area product, as shown in Figure 53(b). This improvement

is a direct consequence of the heterogeneous tile architecture (with different sizes of

tiles) and optimized NoC. The improvement for ResNet-50 is 10% since the initial

mapping result is already area- and energy-efficient.

Figure 53. Improvement in (a) Communication Energy of the Proposed Energy-Aware
NoC Optimization with Respect to the Baseline (SRAM) and (b) Energy-Area Product
of the Generated SRAM-based Architecture with Respect to the Baseline (SRAM).

5.4.5 Comparison with State-of-the-Art Architectures

Table 17 compares the ReRAM-based architecture generated by the proposed

methodology with state-of-the-art works using the VGG-19 network as a representative
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example. The architectures have the following assumptions: crossbar of size 128× 128,

2 bits/cell, 32nm technology node, NoC flit width of 32 bits, and 16-bit precision for

activations and weights. The generated ReRAM-based architecture achieves 2.56×

improvement in frames per second (FPS) and 7.6× improvement in the energy-delay-

area product (EDAP) than those of AtomLayer Qiao et al. (2018). It consumes 40×

lower power per frame along with 452× improvement in EDAP than PipeLayer Song

et al. (2017) for comparable throughput. Moreover, there is a 3× improvement in

inference latency compared to ISAAC Shafiee et al. (2016). The gain in performance

is attributed to the high utilization of the crossbar arrays and the efficient tile-to-

router mapping and scheduling for the NoC. Overall, the proposed area and energy

optimization methodology generates a heterogeneous IMC architecture (ReRAM) with

an optimized NoC that has lower EDAP and power-per-frame than prior works for

better or comparable throughput.

Table 17. Inference Performance Results for VGG-19. *Reported in Qiao et al. (2018)

Latency (ms) Power/frame
(W/frame) FPS EDAP

(mm2.ms.J)

Proposed Approach-ReRAM 2.69 4.2 372 0.208

AtomLayer Qiao et al. (2018) 6.92 4.8 145 1.58

PipeLayer Song et al. (2017) 2.6* 168.6 385 94.17

ISAAC Shafiee et al. (2016) 8.0* 65.8 125 359.64

5.5 Discussion and Conclusion

This work presents an area and energy optimization methodology to generate

a heterogeneous IMC architecture with optimized NoC for a given DNN. Unlike

conventional DNN architectures that use homogeneous tiles, the architecture derived
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using the proposed area-aware optimization technique results in a heterogeneous

architecture, where the tiles are of different sizes. The high energy efficiency is

achieved through the proposed energy-aware optimization of the NoC architecture

along with an associated scheduling technique. We show the efficacy of our proposed

methodology for a wide range of DNN models from MLP to DenseNet, and depths

up to 152 layers (ResNet-152). We observe that the proposed methodology has an

execution overhead of 12 seconds for small DNNs to 150 seconds for large DNNs.

This shows that the proposed methodology is scalable with the size and depth of

DNNs. The proposed methodology also supports emerging technologies (such as

SRAM, ReRAM, PCM, etc.) and applies to any mapping of weights on the crossbar.

An evaluation of the architecture generated by the proposed methodology shows that

our architecture achieves up to 7× improvement in the energy-delay-area product

compared to state-of-the-art DNN accelerators. For future work, we will build upon

the optimization techniques proposed in this work to develop a run-time reconfigurable

architecture that utilizes the reuse of IMC crossbar arrays.
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Chapter 6

SIAM: CHIPLET-BASED SCALABLE IN-MEMORY ACCELERATION WITH

MESH FOR DEEP NEURAL NETWORKS

State-of-the-art deep neural networks (DNNs) have become more complex with

wider, deeper, and more branched structures to cater to the needs of various applica-

tions Huang et al. (2017); Howard et al. (2019). For instance, network architecture

search (NAS) methods generate highly branched and complex DNNs, which increase

compute and memory requirements Xie et al. (2019); Zoph and Le (2016). In-memory

computing (IMC)-based architectures can support these network models because

of their ability to embed deep learning operations in the memory array, achieving

massively parallel computing with high storage density. Prior studies demonstrated

that crossbar-based IMC architectures with RRAM or SRAM significantly improved

throughput and energy-efficiency for DNN accelerators Krishnan et al. (2020b); Man-

dal et al. (2020); Shafiee et al. (2016); Imani et al. (2019); Song et al. (2017); Krishnan

et al. (2021d,c,b); Mandal et al. (2020). Such architectures usually assume all DNN

weights are stored on a monolithic chip to minimize DRAM access and maximize

parallel IMC computing. However, as the DNN model size becomes larger and larger,

this approach leads to increased chip area and on-chip memory.

Figure 54(a) shows the total chip area for a monolithic RRAM-based IMC archi-

tecture across different DNNs Krishnan et al. (2020b). Larger and branched DNNs

like DenseNet-110 Huang et al. (2017) result in a chip area of up to 1, 200mm2. The

increased area is attributed to the larger model size and the branched structure

in DNNs. For example, ResNet-50 has 23M parameters and residual connections
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(branched connections). For an 8-bit precision, the mapping scheme in Shafiee et al.

(2016), and a crossbar size of 128x128, results in 802 tiles. Here each tile consists of

16 IMC crossbar arrays. In addition, the presence of the residual connections results

in increased buffer cost due to the need to store the activations of previous layers

to perform residual addition operations in the ResNet DNN. For the same hardware

configuration, LeNet-5 with 0.43M parameters requires 43 tiles, while DenseNet-110

with 28.1M parameters requires 2184 tiles for the same hardware configuration. Hence,

the DNN size and structure influence the overall area and, in turn, fabrication cost.

Furthermore, higher chip area further causes lower yield and higher defects across

the wafer Kannan et al. (2015), resulting in wasted area and a higher fabrication

cost. Figure 54(a) also shows the fabrication cost of the monolithic RRAM-based

IMC architecture for different DNNs. We see that the fabrication cost increases

exponentially with increased chip area (note that the cost is shown in the logarithmic

scale), thus making the monolithic IMC architecture much less cost-efficient if all

weights are stored on a single chip. Hence, there is an urgent need to address the

increased fabrication cost of IMC-based DNN accelerators Krishnan et al. (2020b);

Song et al. (2017); Shafiee et al. (2016).

2.5D integration or chiplet-based architectures Shao et al. (2019); Beck et al. (2018);

Zimmer et al. (2019); Lin et al. (2020) provide a promising alternative to monolithic

hardware architectures. They integrate multiple chiplets through silicon interposers

or organic substrates Turner et al. (2018); Greenhill et al. (2017). Compared to the

monolithic chip, the smaller chiplet size helps improve the design effort, yield, reduces

defect ratio, and reduces fabrication cost. Figure 54(b) shows a representative 3-

dimensional diagram of a chiplet-based IMC architecture. Chiplets comprise of memory

units, computation blocks, and DRAM allowing for large-scale system integration.
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Figure 54. (a) Total Chip Area and Fabrication Cost for a Monolithic RRAM-based
IMC Architecture for Different DNNs Shafiee et al. (2016). Fabrication Cost Increases
Exponentially with an Increase in Total Chip Area (Appendix A Details the Method
to Calculate the Fabrication Cost). (b) 3-Dimensional Diagram Showing the Chiplet-
based IMC Architecture. The Architecture Includes an Array of IMC Chiplets, Global
Buffer, Global Accumulator, and DRAM Connected by an NoP. The Figure is for
Representational Purposes and Not Drawn to Scale.

The interposer acts as an additional routing layer (network-on-package or NoP) that

utilizes package-level signaling to connect different chiplets. Recent advances in

package-level signaling have enabled a 2× improvement in bandwidth over board-level

interconnections with 8× lower energy-per-bit Turner et al. (2018); Lin et al. (2020).

In a chiplet-based architecture, the design space parameters primarily include IMC

crossbar size, the number of crossbars per chiplet, the number of chiplets, network-on-

chip (NoC), NoP, and the DNN structure. These parameters need to be optimized
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systematically in order to exploit the potential provided by this new architecture.

For example, SIMBA Shao et al. (2019), a chiplet-based accelerator developed by

Nvidia, utilizes 36 chiplets, with each chiplet consisting of 16 processing elements

(PEs) Shao et al. (2019). While the underlying architecture ensures correct general-

purpose functionality, it does not guarantee optimal performance for various DNN

applications. Therefore, an extensive design space exploration is required to identify

the optimal chiplet-based IMC architecture for DNN inference.

In this work4, we propose a novel chiplet-based IMC architecture simulator, SIAM,

that integrates device, circuits, architecture, NoC, NoP, and DRAM access estimation

under a single roof for design space exploration. We plan to open-source SIAM upon

acceptance of this work. To the best of our knowledge, SIAM will be the first open-

sourced chiplet-based IMC architecture simulator to promote architectural research in

this emerging domain. SIAM includes four main components: partition and mapping

engine, circuit and NoC engine, NoP engine, and DRAM engine. A Python wrapper

is used to interface each engine with one another. The wrapper also interfaces SIAM

with popular deep learning frameworks such as TensorFlow and PyTorch.

SIAM provides a scalable solution that utilizes model-based and cycle-accurate

simulation components, allowing for performance evaluation of a wide range of DNNs

across multiple datasets. It has a flexible architecture to support multiple DNN to

IMC chiplet and crossbar partition and mapping schemes, thus generating different

types of chiplet-based IMC architectures. Thus, SIAM provides a platform to enable

comparisons across different chiplet-based IMC architectures and also between chiplet-

based and monolithic IMC architectures. Furthermore, SIAM has a low simulation

time to support the fast design and benchmarking exploration. For example, ResNet-

4Work done in collaboration with Sumit K. Mandal (UW– Madison)
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110 with 1.7M parameters takes 12 minutes, while VGG-16 with 138M parameters

takes 4.26 hours for benchmarking.

We demonstrate SIAM’s capabilities by conducting experiments on state-of-the-

art DNNs such as ResNet-110 He et al. (2016) for CIFAR-10, VGG-19 Simonyan

and Zisserman (2014) for CIFAR-100, and ResNet-50 He et al. (2016) and VGG-

16 Simonyan and Zisserman (2014) for ImageNet datasets. Furthermore, to evaluate

SIAM at the system level , we calibrate SIAM against a published silicon result,

SIMBA Shao et al. (2019), especially the scaling trend with the number of chiplets.

The major contributions of this work are three-fold:

• We propose a complete framework, SIAM, that combines IMC circuit, NoC,

NoP, and DRAM performance evaluation under a single roof. SIAM is the first

simulator to provide support for hardware performance evaluation of chiplet-based

IMC architectures. We carefully model the components of architecture like the

IMC circuit, NoC, network-on-package (NoP), and DRAM.

• We provide a high degree of freedom to the user through different mapping

schemes and customizable architectural parameters for IMC circuit, NoC, NoP,

and DRAM components. We demonstrate different architectural design space

exploration experiments that can be performed using SIAM.

• Extensive experimental evaluation of the SIAM simulator for different DNNs

across CIFAR-10, CIFAR-100, and ImageNet datasets. Furthermore, we perform

detailed experiments to calibrate the simulator to a real-design, SIMBA Shao

et al. (2019), making SIAM a reliable and accurate simulator. For ResNet-50

on ImageNet, the generated chiplet-based IMC architecture achieves 130× and

72× improvement in energy-efficiency compared to Nvidia V100 and T4 GPUs.
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6.1 Chiplet-based IMC Architecture

Figure 55. Chiplet-based IMC Architecture Utilized Within SIAM. The Architecture
Consists of IMC Chiplets, Global Accumulator, Buffer, and DRAM Connected Using
an NoP. SIAM Supports Both SRAM- and RRAM-based IMC Architectures. An
NoP is Applied for Inter-Chiplet Communication and an NoC is Utilized Within the
Chiplet for Intra-Chiplet Communication.

Overview: This section presents the underlying chiplet-based IMC architectures

supported by SIAM, for homogeneous (generic) and custom designs. In a homogeneous

architecture, the number of chiplets is fixed and is determined by the user. A custom

architecture consists of the required number of chiplets to map the DNN under

consideration. In both cases, the chiplet structure has a fixed number of IMC crossbar

arrays inside (user-defined).

Figure 55 shows a homogeneous chiplet-based IMC architecture utilized by SIAM.

The entire architecture consists of an array of chiplets that include IMC compute

units, a global accumulator, a global buffer, and a DRAM chiplet. The chiplets are

connected using an NoP fabric. The global accumulator and buffers are used to

perform the accumulation across chiplets, and the DRAM chiplet is used to store the

pre-trained DNN weights. In this work, we assume that all weights are transferred

to the IMC chiplets from the DRAM chiplet before performing the DNN inference,
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consistent with prior works Krishnan et al. (2020b); Shafiee et al. (2016); Imani et al.

(2019).

Intra-Chiplet IMC Architecture: Each IMC chiplet consists of an array of IMC

tiles connected using an NoC. The IMC tiles consist of an array of processing elements

(PEs) or crossbar arrays. SIAM currently supports both RRAM- and SRAM-based

IMC crossbar architectures. The IMC crossbars utilize analog computation to perform

the multiply-and-accumulate (MAC) operation. Each IMC crossbar has associated

peripheral circuitry (e.g. column multiplexers, analog-to-digital converter (ADC),

shift and add circuits, etc.). A column multiplexer is used to share a flash ADC or

sense amplifier (SA) across multiple columns of the IMC crossbar. The ADC converts

the analog output from the IMC crossbar to the digital domain. Next, the ADC

output is accumulated based on the bit significance using shifter and adder circuits

to extract the computed MAC output. Finally, the overall result is generated by

accumulating the outputs from each IMC crossbar across the entire input. Note that

our architecture does not use a digital-to-analog converter (DAC), and it instead

employs sequential bit-serial computing for multi-bit inputs. Furthermore, each chiplet

consists of a pooling and activation unit. The pooling unit supports both max and

average pooling operations, while the activation unit supports ReLU and sigmoid

functions.

Interconnect: The IMC chiplets are connected at the tile-level (within chiplet)

using an NoC. A point-to-point (P2P) interconnect, such as H-Tree, is used for

communication at the PE-level. Each tile within the chiplet has a five-port router

that performs the data scheduling and X–Y routing through the NoC. The NoC can

be configured for multiple flit width and operating frequencies by the user. The array

of chiplets are interconnected using an NoP that utilizes the interposer for routing.
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A passive interposer is implemented within SIAM where the interposer does not

contain any active elements like repeaters. Each chiplet consists of a dedicated NoP

transmitter and receiver (TX/RX) circuit and an NoP router. The router performs

the packet scheduling and utilizes a dedicated port to transmit data to the TX/RX

circuit. The custom TX/RX circuit can be configured for a given signaling technique

to achieve data transfer across the NoP Turner et al. (2018); Lin et al. (2020). The

architecture also includes a clocking circuit (e.g.: LC-PLL Poulton et al. (2013))

for the TX/RX circuit. The NoP interconnect properties such as wire resistance,

capacitance, and inductance are carefully modeled by utilizing the PTM models Sinha

et al. (2012) following prior works Turner et al. (2018); Lin et al. (2020). Section 6.2.4

details the modeling of both the NoP interconnect and the driver.

6.2 SIAM Simulator

Figure 56. An Overview of the Proposed Chiplet-based IMC Benchmarking Simulator,
SIAM. SIAM Incorporates Device, Circuits, Architecture, NoC Jiang et al. (2013),
NoP, and DRAM Access Model Kim et al. (2015) Under a Single Roof for System-Level
Analysis of Chiplet-based IMC Architectures.
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6.2.1 Overview

SIAM provides a unified framework for performance benchmarking of chiplet-

based IMC architectures, as shown in Figure 56. SIAM operates on user inputs to

generate the chiplet-based IMC architecture and to benchmark the corresponding

hardware performance. The hardware performance metrics include area, energy,

latency, energy efficiency, power, leakage energy, and IMC utilization. The overall

simulator is developed using Python and C++ programming languages. A top-level

Python wrapper is built to combine the different components within the simulator.

Furthermore, SIAM interfaces with popular deep learning frameworks such as PyTorch

and Tensorflow. Thus, SIAM supports multiple network structures in current literature

(as shown in Section 6.4) and can be used for exploring NAS techniques. Table 18

shows the user inputs and associated descriptions of the SIAM benchmarking tool.

Table 18. Definition Of the User Inputs to SIAM

User Input Description User Input Description

DNN Algorithm Device and Technology

Network Structure DNN network structure information Tech Node Technology node for fabrication
Data Precision Weights and activation precision Memory Cell RRAM or SRAM
Sparsity DNN layer-wise sparsity Bits/Cell Number of levels in RRAM

Intra-Chiplet Architecture Inter-Chiplet Architecture

Crossbar Size IMC crossbar array size Chip Mode Monolithic or chiplet-based IMC architecture
Buffer Type SRAM or Register File Chiplet Structure Homogeneous or custom chiplet structure
ADC Resolution Bit-precision of flash ADC Chiplet Size Number of IMC tiles within each chiplet
Read-out Method Sequential or Parallel Total Chiplet Count Fixed count or DNN specific custom count
NoC Topology Mesh or Tree Global Accumulator Size Size of global accumulator
NoC Width Number of channels in the NoC NoP Frequency Frequency of the NoP driver and interconnect
Frequency Frequency of operation NoP Channel Width Number of parallel links for TX and RX

SIAM consists of four engines:

• Partition and mapping engine (Python)

• Circuit and NoC engine (C++)

• NoP engine (Python and C++)
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• DRAM engine (Python and C++)

Each engine functions independently on a subset of the user inputs, while commu-

nicating with each other using the top-level Python wrapper. To further understand

the framework, we detail the simulation flow used for SIAM in Figure 56. First, SIAM

takes the user inputs and performs the layer partition and mapping onto the chiplets

and IMC crossbars using the partition and mapping engine. The outputs include the

structure of IMC architecture, the number of chiplets and IMC tiles required per layer,

utilization of the IMC architecture, intra-chiplet and inter-chiplet data movement

volume, and the number of global accumulator accesses. Next, the intra-chiplet and

global circuit performance are evaluated using the circuit and NoC engine. The engine

provides the hardware performance metrics such as area, energy, and latency for the

intra-chiplet and global circuit operations across all chiplets. Simultaneously, the NoP

engine evaluates the cost of the interconnect, router, and driver associated with the

chiplet-to-chiplet data movement. Finally, the DRAM engine determines the cost of

the memory accesses and provides the energy and latency performance metrics. All

engines except the partition and mapping engine work simultaneously, thus reducing

the total simulation time. We note that SIAM also supports benchmarking of con-

ventional monolithic IMC architectures. In the following sections, we detail the four

engines that represent the core functionality within SIAM.

6.2.2 Partition and Mapping Engine

Algorithm 5 describes the step-by-step operation of the partition and mapping

engine. The engine performs the partition of DNN layers to the IMC chiplets and the

corresponding mapping to the IMC crossbar arrays. The partition and mapping is
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Algorithm 5: Partition and Mapping of DNN layers
1 Input: DNN structure, chiplet count (C), chiplet size (S), the number of DNN layers (Nl)
2 Output: Layer-wise chiplet partition (L → P) and layer to chiplet mapping (L → C)
3 for i = 1 : Nl do
4 NChiplet = 0, NChiplet

i = 0, NTotal
i = 0 /* Initialize variables */

/* Layer-wise Mapping (L → C) */
5 Calculate number of rows of IMC crossbars (Nr

i ) to map layer i (Equation 6.1)
6 Calculate number of columns of IMC crossbars (N c

i ) to map layer i (Equation 6.1)
7 NTotal

i = Nr
i × N c

i /* Total number of IMC crossbars for layer i */
/* Layer-wise Partitioning (L → P) */

8 NChiplet
i =

⌈
NTotal

i

S

⌉
/* Calculate the number of chiplets for layer i */

9 NChiplet+ = NChiplet
i /* Increment total chiplets in the architecture */

10 if Homogeneous Mapping then
11 if NChiplet > C then
12 exit() /* Error: Exceeded the maximum number of chiplets */
13 end
14 end

/* Partition and Mapping completed for layer i */
15 end

performed layer-wise for the entire DNN. The engine utilizes user inputs such as the

DNN structure, DNN weight precision, IMC chiplet mapping scheme, size of the IMC

chiplet, and the IMC crossbar size, among others.

We first discuss the IMC mapping scheme utilized in SIAM. For a given layer i,

let the weight matrix be Wi represented by Kxi × Kyi × Nifi × Nofi, where Kx and

Ky represent the kernel size, Nif the number of input features, and Nof the number of

output features. We adopt the following mapping scheme, similar to that in Krishnan

et al. (2020b); Shafiee et al. (2016):

N r
i =

⌈Kxi ×Kyi ×Nifi
(PEx)

⌉
; N c

i =
⌈Nofi ×Nbits

(PEy)

⌉
(6.1)

In the above equation, Nr
i and Nc

i are the required number of rows and columns of

IMC crossbars needed to map the layer i of the DNN. Nbits, PEx and PEy represent

the DNN weight precision, the number of rows and columns in the IMC crossbar array,
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respectively. The product of Nr
i and Nc

i is the total number of required IMC crossbar

arrays NTotal
i to map layer i of the DNN (line 7 of Algorithm 5).

SIAM can generate (a) homogeneous and (b) custom chiplet-based IMC archi-

tectures using two types of chiplet partitions. Figure 57 shows the two generated

architectures based on the homogeneous and custom chiplet partitioning. The par-

tition and mapping engine assumes that DNN layers cannot be partitioned across

multiple chiplets, and a single chiplet can support multiple layers to achieve high

chiplet utilization (shown in Section 6.4). Since each layer of the DNN contains a

large number of multi-bit weights, multiple chiplets consisting of IMC crossbar arrays

are required to map the whole layer. If one layer is distributed across chiplets, it

increases the overhead in terms of the control logic for routing the inputs to the

respective chiplets, an increased volume of inter-chiplet data communication, and a

higher chiplet-to-chiplet communication energy and latency. During the partition

of layers across multiple chiplets, the engine divides the layer uniformly across the

chiplets, thus avoiding the workload imbalance issue. Based on the total number of

required IMC crossbar arrays, NTotal
i , the engine determines the number of chiplets

necessary to map the layer i of the DNN as: NChiplet
i =

⌈
NTotal

i

S

⌉
, where S denotes the

total number of IMC crossbar arrays within a chiplet (size of the chiplet).

Next, the total number of chiplets in the architecture (NChiplet) is determined (line

9 of Algorithm 5). In the homogeneous chiplet partition scheme, a fixed number of

chiplets (user input) is used to map the DNN. Hence, the engine compares the total

number of chiplets in the architecture (NChiplet) with the maximum available chiplets

(C). If greater, then the engine throws an error and requests for an increase in the

number of available chiplets in the architecture. If lesser, the engine continues the

partition and mapping for the subsequent layers in the DNN.
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Figure 57. Representative Figure Showing the Two Generated Chiplet-based IMC
Architectures for the Same DNN, Homogeneous (Left) and Custom (Right), from the
Supported Partition Schemes in SIAM. Homogeneous Architecture is Generic, while
Custom Architecture is DNN Specific. R Refers to the NoP Router.

In the custom partition scheme, the architecture consists of the required number

of chiplets to map the DNN. Hence, there is no maximum limit in the number of

available chiplets within the architecture. Such a design results in a fully-custom

architecture specific to the DNN under consideration. Each chiplet has the same

structure with a fixed number of IMC tiles, where each tile consists of IMC crossbar

arrays and associated peripheral circuitry. Thus, SIAM provides a platform to perform

comparison between homogeneous (generic) and custom-designed chiplet-based IMC

architectures.

After partitioning and mapping layers onto the IMC chiplets, the engine deter-

mines the total volume of data communicated within the chiplet and across chiplets.

Simultaneously, when a layer is partitioned across chiplets, the global accumulator

is used to generate the overall layer output. The engine determines the number

of additions performed by the global accumulator and the number of global buffer

accesses. Overall, the engine provides the layer partition across chiplets, the number

of required chiplets and IMC crossbars, IMC crossbar utilization, volume of intra- and

inter-chiplet data movement, and the number of the global accumulator and buffer
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accesses. The other engines (circuit, NoC and NoP) then utilize these outputs to

evaluate the hardware performance of the chiplet-based IMC architecture.

6.2.3 Circuit and NoC Engine

After completing the partition and mapping of the DNN, SIAM performs the

inter- and intra-chiplet floorplanning and placement, thus determining the entire

chiplet-based IMC architecture. Thereafter, the circuit and NoC engine estimates

the hardware performance. Figure 58 shows the block diagram of the circuit and

NoC engine. The engine employs a model-based estimator for the circuit part, and a

trace-based estimator for the interconnect part.

6.2.3.1 Circuit Estimator

The circuit estimator evaluates the overall hardware performance of each chiplet,

global accumulator, and global buffer in the overall architecture. The inputs to the

engine include the intra- and inter-chiplet placement, per layer chiplet and IMC

crossbar count, layer-wise IMC utilization, technology node, frequency of operation,

IMC cell type, the number of bits per cell, read-out mode (row-by-row or parallel),

and ADC precision, among others. The intra-chiplet circuits include the IMC crossbar

array and associated peripheral circuits, buffer, accumulator, activation unit, and the

pooling unit. The peripheral circuits include the ADC, multiplexer circuit, shift and

add circuit, and decoders. We calibrate the circuit estimator with NeuroSim Peng

et al. (2019a).

The circuit estimator evaluates the performance of the entire chiplet-based IMC
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Figure 58. Block Diagram of the Circuit and NoC Engine Within SIAM. The Engine
Utilizes a Separate Circuit and NoC Simulators that Perform the Overall Hardware
Performance Estimation.

architecture in a layer-wise manner. Each chiplet performs the computations of a

subset of layers in the DNN. For a given DNN layer i, the chiplet count per layer,

the IMC crossbar count per layer, and the IMC utilization values are taken from the

partition and mapping engine. Area, energy, and latency are estimated in a bottom-up

manner, i.e., the estimation starts from the device level and moves up to the circuit

level and, finally, the architecture level. Based on user inputs such as technology node,

IMC cell type, IMC crossbar size, IMC utilization, ADC precision, and read-out mode,

the estimator evaluates the cost of a single crossbar and associated peripheral circuits.

The estimator repeats the process for all IMC crossbars within the chiplet for the

given layer i in the DNN. Next, the estimator evaluates the buffer cost, shift and

adder circuitry, and the accumulator within the chiplet. After that, the pooling and

activation units are evaluated to obtain the total area, energy, and latency of the IMC

chiplet. At the chiplet-level, the global accumulator and global buffer accumulate the

partial sum of a layer across chiplets. The circuit estimator utilizes the number of

additions performed, the data volume from each chiplet, and the accumulator size
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Algorithm 6: NoC (or NoP) Trace Generation
1 Input: Number of tiles for each layer (for each chiplet in case of NoP) (|T |), Number of

input activations for each layer(A), Number of chiplets (C), Layer to chiplet mapping
(L → C), Quantization bit (Q), Bus width (W )

2 Output: Trace file for each chiplet (trc)
3 for c = 1 : |C| do
4 Find index of the first layer (LS

c ) and the last layer (LE
c ) in the chiplet from L → C

5 for l = LS
c : LE

c do
6 k = 0 /* Initialize timestamp */
7 Find index of first source tile (TS

l ) and last source tile (TE
l )

8 Find index of first destination tile (TS
l+) and last destination tile (TE

l+)
9 Np = ⌈A(l)Q

W ⌉ /* Number of packets */
10 for n = 1 : Np do
11 for s = TS

l : TE
l do

12 for d = TS
l+ : TE

l+ do
13 trc ← [trc; [s, d, k]]
14 k ← k + 1 /* Increment timestamp */
15 end
16 k ← k + 1 /* Increment timestamp */
17 end
18 end
19 end
20 end

(user input) to determine the area, energy, and latency of the global accumulator

and buffer. Finally, based on the number of chiplets required for layer i of the DNN,

the circuit estimator repeats the estimation for all chiplets to determine the overall

hardware performance.

6.2.3.2 NoC Estimator

Communication plays a crucial role in the hardware performance of DNN accel-

erators Mandal et al. (2020). A detailed description of communication-centric DNN

accelerators can be found in Nabavinejad et al. (2020). Each layer within the DNN

sends a significant amount of data to other layers. Authors in Krishnan et al. (2020b)

show that communication alone incurs up to 90% of the total inference latency for
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DNNs. Therefore, designing an efficient communication protocol for DNNs is of

supreme importance. Hence, we carefully incorporate the cost of communication

between multiple layers within a chiplet. We consider an NoC for intra-chiplet commu-

nication since NoC is the standard interconnect fabric used in the SoC-domain Jeffers

et al. (2016). We customize a cycle-accurate NoC simulator, BookSim Jiang et al.

(2013), to evaluate the NoC performance. First, a trace file is generated for each

chiplet following Algorithm 6. The algorithm takes the number of tiles for each layer,

the number of input activations for each layer, number of chiplets, layer to chiplet

mapping, quantization bit-precision, and bus width. From these inputs, we find the

indices of the first and the last layer of each chiplet. Next, for each layer in each

chiplet, we find the source and destination tile information as shown in lines 7–8 of

Algorithm 6. The number of packets for each source-destination pair is then calculated.

After that we iterate over the number of packets, the number of source tiles, and the

number of destination tiles to obtain a trace in the form of a tuple consisting of the

source tile ID, destination tile ID, and the timestamp. The timestamp variable is reset

to zero after generating trace for each pair of layers. Then, the trace file is simulated

using BookSim to obtain the area, energy, and latency for on-chip communication

within each chiplet.

6.2.4 NoP Engine

The NoP connects different chiplets through a silicon interposer or organic substrate.

It performs the on-chip data movement using special signaling techniques and driver

circuits, as shown in Poulton et al. (2013); Lin et al. (2020). Figure 59 (left) shows the

cross-sectional image of a 2.5D integration with chiplets and an interposer. Modeling
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the NoP performance has many challenges due to the complex interconnect structure,

specialized driver architectures, and the corresponding signaling techniques.

To this end, our NoP engine models each component in the NoP for accurate

performance estimation. Figure 59 (right) shows various NoP implementations with

the corresponding energy-per-bit (Ebit) proposed in prior works. There are two main

components of the NoP performance evaluation: 1) NoP latency estimation and 2)

NoP area and power estimation.

NoP latency estimation: The engine utilizes a cycle-accurate simulator to

perform the interconnect evaluation. First, based on the chiplet-to-chiplet data

volume generated by the partition and mapping engine, the NoP engine utilizes

Algorithm 6 (same as the algorithm for NoC) to generate the trace for the NoP.

These traces are simulated using a cycle-accurate simulator or the NoP estimator (a

customized version of BookSim to incorporate a trace-based simulation) to obtain the

latency of the NoP interconnect.

NoP area and power estimation: To estimate the area and power consumption

of the NoP, we first obtain the interconnect parameters for the NoP, which include

wire length, pitch, width, and stack-up. We use these parameters to determine the

interconnect capacitance and resistance using the PTM interconnect models Sinha

et al. (2012). Next, based on the capacitance and resistance, the timing parameters for

the interconnect are generated and compared with the target bandwidth. If the timing

parameters do not satisfy the bandwidth, the NoP engine chooses the maximum

allowable bandwidth.

Next, the engine evaluates the NoP transmitter/receiver (TX/RX) circuits, in-

cluding the clocking circuitry. The engine utilizes Ebit, number of TX/RX channels,

bandwidth, chiplet-to-chiplet data volume, and operation frequency to generate the
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Within the Interposer Connecting Different Chiplets Across the Architecture. µbumps
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Algorithm 7: Computation of NoP driver energy
1 Input: DNN structure, Chiplet count (C), Number of activations per layer

(A), NoP bus width (W ), Quantization bit (Qbit), Energy per bit (Ebit)
2 Output: Energy for NoP driver (ED)
3 Initialize: ED ← 0
4 for c = 1 : |C| do
5 Find index of source layer (l)
6 Find index of destination layer (l + 1)

/* Number of packets between two consecutive chiplets */
7 Np = ⌈A(l)Q

W
⌉

8 Nbits = Np ×Qbit

9 ED = ED +Nbits × Ebit

10 end

energy and latency cost of the TX/RX circuits. Algorithm 7 details the energy

calculation for the NoP driver. We compute the total number of bits between chiplets.

Furthermore, we obtain the energy per bit (Ebit) from prior works, as shown in Fig-
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ure 59(right). We multiply the number of bits and energy per bit to obtain the total

energy for TX/RX channel, as shown in line 9 of Algorithm 7. Next, the TX/RX

circuit area from prior implementations (Figure 59) is utilized to obtain the NoP

driver area cost. Finally, the NoP engine combines the performance metrics for the

interconnect and the driver to generate the overall NoP performance. We summarize

the functional flow of the NoP engine:

• NoP trace generation based on the inter-chiplet layer partition, chiplet placement,

and inter-chiplet data transfer volume.

• NoP interconnect evaluation using a cycle-accurate simulator to generate area,

energy, and latency metrics.

• NoP TX/RX driver and router modeling based on real measurements. Finally,

the NoP engine combines the interconnect and NoP driver metrics to generate

the overall NoP performance.

6.2.5 DRAM Engine

The chiplet-based IMC architecture consists of a DRAM chiplet that acts as the

external memory for the IMC chiplets. The DRAM engine performs the external

memory access estimation for the chiplet-based IMC architecture. In this work, we

assume that the DRAM only transfers the entire set of weights to the chiplet one time

before the inference task is performed. Hence, it remains constant for a given DNN

across different architectural configurations and inference runs.

The engine consists of a DRAM request generator, RAMULATOR Kim et al.

(2015) for estimating the latency for the DRAM transactions, and VAMPIRE Ghose
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Simulation Time, and (b) EDP of DRAM Transactions (DDR4) for Different DNNs.
There is an Exponential Increase in DRAM Cost with an Increase in DNN Model Size.

et al. (2018) to estimate the DRAM transaction power. First, the choice of DRAM is

determined based on the user input. Currently, SIAM supports both DDR3 and DDR4.

For DDR3 and DDR4, we incorporate the DRAM models detailed in MICRON (2011,

2014). Next, for a given DNN model, the model size and data precision are determined

from the user inputs. Furthermore, the DRAM engine generates the required traces

and memory requests with time stamps. The requests include the location within the

DRAM memory and the operation.

SIAM utilizes a customized version of the cycle-accurate simulator RAMULA-

TOR Kim et al. (2015) and the model-based power analysis tool VAMPIRE Ghose

et al. (2018). The customization includes the addition of support for larger DNNs, dif-

ferent data precision, and the addition of custom DDR3/DDR4 models. Furthermore,

to reduce the simulation time for large DNNs such as VGG-16 (138M parameters), the

DRAM engine breaks down the total number of instructions into smaller sets. The

engine then performs the estimation for one set of instructions and multiplies it by the

total number of sets required to represent all the weights in the DNN. To calibrate the

method, we perform an experiment for 3,000 instructions broken down into a number

142



of smaller sets of instructions. Figure 60(a) shows the corresponding energy-delay-

product (EDP) accuracy for different sizes of instruction sets. A reduction in 50% of

DRAM instructions to the engine results in less than 2% EDP accuracy degradation

than that at 100% instructions. Furthermore, the reduced number of instructions

allows for reduced simulation time for the DRAM engine. We establish that, through

this method, the DRAM engine performs fast and accurate estimation of external

memory access for the entire range of DNNs. Figure 60(b) shows the overall EDP

for different networks across different datasets for DDR4. There is an exponential

increase in EDP with the increase in the model size of the DNN.
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Figure 61. Computation Dataflow Within the Chiplet-based IMC Architecture in
SIAM. Two Cases Arise, (a) No Layer is Partitioned Across Two or More Chiplets,
and (b) a Layer is Partitioned Across Two or More Chiplets.

To summarize, the following are the key steps in the execution of the DRAM

engine:
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• Generate DRAM requests based on the DNN model size and data precision.

• Calculate DRAM transaction latency cost using a customized version of RAMU-

LATOR, and calculate the power consumption using a customized version of

VAMPIRE.

• Combine the outputs to generate the overall DRAM access cost.

6.3 SIAM Dataflow

This section presents the default dataflow in the generated chiplet-based IMC

architecture. Figure 61 shows an example of the computation dataflow within the

SIAM architecture. Before performing the inference task, the weights are retrieved

from the DRAM and mapped to the IMC chiplets based on the output from the

partition and mapping engine (detailed in Section 6.2.2), as shown in Figure 61(a).

Algorithm 8: Dataflow for SIAM IMC Chiplet Architecture
1 Input: Weights, input features, and total number of layers of the DNN
2 Output: Execution flow of the DNN on SIAM chiplet-based IMC architecture
3 while i < Total number of layers do

/* Partitioning and mapping of the DNN */
4 Calculate number of chiplets required for ith layer
5 Perform computation for ith layer

/* Check if layer is distributed across chiplets */
6 if Number of chiplets > 1 then
7 Data transfer to accumulator
8 Partial sum accumulation for ith layer
9 end

10 Data transfer to chiplets of (i+ 1)th layer
11 i ←i+ 1

12 end

Two cases can arise during the partitioning: first, no layer is distributed across

two or more chiplets; second, a layer is distributed across two or more chiplets. The

two cases result in two different scenarios within the execution dataflow. Consider
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that layer N of the DNN is mapped onto the first chiplet in the architecture, as shown

in Figure 61(a). During the computation, the entire layer is consumed within one

chiplet, producing the computed output activations from layer N. Both the global

accumulator and buffer are not utilized in the process and are turned off. After the

computation, the output activations are transferred to the chiplets that implement

layer N+1. For layer N+1, let’s assume that two chiplets are required to map the

weights. Hence, the NoP transfers the output activation from layer N to both chiplets

housing layer N+1, as shown in Figure 61(a). Figure 61(b) shows the computation

flow for layer N+1. Both chiplets perform the computation in a parallel manner.

The mapping ensures that the same number of weights are mapped to each chiplet,

thus avoiding the workload imbalance issue. After completion of the computation,

the generated partial sums are accumulated using the global accumulator and buffer.

Then, the accumulated outputs from layer N+1 are transferred to the chiplets housing

weights of layer N+2. The process is repeated until all the layers are completed and

the final output is obtained. Algorithm 8 details the algorithmic implementation of

the dataflow utilized in the SIAM IMC chiplet architecture.

6.4 Experimental Evaluation

We perform a wide range of experiments to demonstrate the effectiveness of the

proposed SIAM simulator. These include detailed analysis of homogeneous and

custom IMC chiplet architectures, comparison between monolithic and chiplet IMC

architectures, calibration with real silicon data from SIMBA Shao et al. (2019),

comparison of the performance with GPUs, and evaluation of the SIAM’s simulation
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time. We also illustrate the three characteristics of SIAM, flexibility, scalability, and

simulation speed as shown below:

• Flexibility and scalability: Supporting different DNNs across datasets, two types

of DNN partition to the IMC chiplets, and support for different IMC tile and

chiplet configurations (Section 6.4.2, Section 6.4.3).

• Simulation speed: Fast design space exploration of SIAM is demonstrated for

different DNNs (Section 6.4.6).

6.4.1 Experimental Setup

The DNNs that we evaluated include ResNet-110 (1.7M) on CIFAR-10, VGG-19

(45.6M) on CIFAR-100, ResNet-50 (23M) on ImageNet, and VGG-16 (138M) on

ImageNet. We use 8-bit quantization for the weights and activations and a 32nm

CMOS technology node for the hardware. We perform the experiments on an Intel

Xeon CPU platform. The mapping of DNNs onto the IMC crossbars follows prior

works Krishnan et al. (2020b); Shafiee et al. (2016). Unless specified otherwise, all the

experiments are performed based on the assumptions detailed next. The chiplets are

placed to achieve the least Manhattan distance. All results shown are for RRAM-based

IMC architectures with the following parameters: one bit per RRAM cell, a Roff/Ron

ratio of 100, 16 tiles per chiplet, IMC crossbar size of 128×128, ADC resolution of

4-bits with 8 columns multiplexed, operating frequency of 1GHz Imani et al. (2019);

Shafiee et al. (2016), and a parallel read-out method. We note that, the experiments

do not consider the non-ideal effects within the RRAM-based IMC architecture. The

NoP parameters include a bandwidth of 250MHz, Ebit of 0.54pJ/bit Poulton et al.

(2013), interconnect parameters such as width, thickness, and pitch from Poulton et al.
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(2013), NoP TX/RX area of 5,304 µm2 Poulton et al. (2013), NoP clocking circuit

area of 10,609 µm2 Poulton et al. (2013), and 32 channels (channel width). We note

that SIAM can support any NoP performance estimation as long as the NoP wiring

parameters, bandwidth, channel width, TX/RX circuit area, clocking circuit area,

and Ebit are provided by the user. Finally, the reported results do not include the

RRAM write, and DRAM read energy and latency. Since we focus on DNN inference,

the RRAM write and DRAM read operations are applied offline before performing

the inference. They do not involve in the inference runs and remain constant across

IMC chiplet architectural configurations.

6.4.2 Custom and Homogeneous Chiplet-based IMC Design
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Figure 62. IMC Utilization for a Custom RRAM-based Chiplet IMC Architecture
Across Different DNNs and Different Chiplet Configurations. The Mapping Strategy
Adopted Within SIAM Ensures High Utilization Across all DNNs.
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6.4.2.1 IMC Crossbar Utilization

Figure 62 shows the overall IMC crossbar utilization for a custom RRAM-based

chiplet IMC architecture across different tiles per chiplet and DNNs. We see that SIAM

consistently achieves high (>50%) IMC crossbar utilization. The high IMC utilization

indicates that mapping within SIAM generates chiplet-based IMC architectures that

are area-efficient. ResNet-110 has the lowest utilization due to the small network

structure with fewer input and output features. At the same time, ResNet-50, VGG-19,

and VGG-16 achieve >75% utilization across the entire chiplet-based IMC architecture.

Hence, the partition and mapping engine within SIAM provides a flexible and efficient

platform to generate chiplet-based IMC architectures with multiple configurations for

design space exploration.

6.4.2.2 IMC Chiplet Performance Breakdown
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Figure 63. Breakdown of the Different Components Contributing to the Overall Area,
Energy, and Latency Performance Metrics, for a Custom Design RRAM-based Chiplet
IMC Architecture When Mapping ResNet-110 for CIFAR-10 Dataset.

We analyze the breakdown of different components for the area, energy, and latency

metrics for the RRAM-based chiplet IMC architecture. Figure 63 shows the breakdown
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for the implementation of ResNet-110 on CIFAR-10. We divide each metric into three

main components, IMC circuit, NoC, and NoP. The IMC circuit component consists of

the IMC crossbar array and associated peripherals, buffers (global and within chiplet),

accumulators (global and within chiplet), pooling unit, and the activation unit. At

the same time, the NoP component consists of the NoP interconnect, NoP router,

and the NoP driver and clocking circuit. Finally, the NoC component deals with the

intra-chiplet interconnect and the NoC routers.

We first analyze the area metric. The NoP dominates the overall area with 84.7%,

while the NoC contributes the least to the area. The NoP drivers are designed such

that differential signaling is utilized to avoid common-mode noise along with a clocking

circuit for every N lanes. This results in increased circuitry for the TX-RX driver

pairs and associated clocking circuitry for the 32 NoP channels. For example, Shao

et al. (2019) utilizes one clocking lane per 4 data lanes. The NoP router area depends

on the technology node of the chiplet and the number of ports (default ports is

set to 5). Simultaneously, the NoP link area depends on the wire properties. The

NoP wire width and length are designed to maintain signal integrity at the specified

frequency of operation. The wire for NoP link requires shielding on both sides of the

signal, thus resulting in an increased pitch Poulton et al. (2013). This results in a

significant increase in the wiring area. We note that the NoP wire has a 56x larger

metal pitch than that for the wires within the chiplet. Furthermore, an increased

NoP channel width is needed for higher performance at the cost of increased area.

For energy and latency, the IMC circuit component dominates with 63.4% and 69.7%

contributions, respectively. The NoP contributes the second highest to energy, while

the NoC contributes the least. Simultaneously, NoC contributes the second highest to
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latency, while NoP contributes the least. Overall, the area is dominated by the NoP,

and the energy and latency are dominated by the IMC circuit.

6.4.2.3 NoP and NoC Performance Trade-offs
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Figure 64. NoP and NoC Trade-Off Analysis for ResNet-110 on CIFAR-10 Dataset.
(a) Ratio of the Energy-Delay-Area Product (EDAP) of NoP to NoC for Both Ho-
mogeneous and Custom Chiplet-based IMC Architectures. The Increase in Tiles
per Chiplet Reduces the NoP/NoC EDAP, (b) NoP and NoC Energy-Delay Product
(EDP) for a 36 Chiplet Count Configuration of Homogeneous RRAM-based Chiplet
IMC Architectures. An Increased Tiles per Chiplet Leads to Higher NoC Cost and
Lower NoP Cost.

We compare the EDAP for the NoC and NoP interconnect. Figure 64(a) shows

the ratio of the EDAP of the NoP to that of NoC for ResNet-110 on CIFAR-10, for

both homogeneous and custom RRAM-based chiplet IMC architectures. When there

are fewer number of tiles per chiplet, more IMC chiplets are used to map the DNN

to the IMC crossbars, resulting in distributed computing. This results in an increase

in the data transfer volume across chiplets and higher NoP EDAP compared to that

of NoC. Furthermore, at higher chiplet counts, the NoP is much larger and results

in increased area, thus increasing the EDAP. As we increase the number of tiles per

chiplet, computations are more localized, leading to reduced volume of data transfer
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across chiplets. This reduces the ratio of NoP EDAP to NoC EDAP. The custom

chiplet-based IMC architecture consists of the required number of chiplets to map the

DNN under consideration. In addition, the custom chiplet architecture is designed

specific to a DNN, resulting in a highly localized computing platform with a smaller

NoP. Hence, the ratio of NoP EDAP to NoC EDAP is very small and is relatively

insensitive to the change in tiles per chiplet.

To further understand the trade-off between NoC and NoP, we evaluate the

energy-delay product (EDP) of NoC and NoP separately. Figure 64(b) shows the

energy-delay product (EDP) for the NoP and NoC for a 36 chiplet count configuration

of homogeneous chiplet IMC architecture. The x-axis shows the number of tiles in

each chiplet. The EDP of NoP reduces with the increasing number of tiles in each

chiplet. The reduced EDP of NoP is achieved due to the highly localized computing

resulting in lesser inter chiplet communication data volume. At the same time, the

NoC EDP increases with an increase in tiles per chiplet. The increased EDP is due

to the larger NoC size (3x3 for 9 tiles per chiplet compared to 4x4 for 16 tiles per

chiplet) and the increased intra-chiplet communication volume. Hence, a balance

between the NoP and NoC cost is essential for optimal DNN inference performance

with chiplet-based IMC architectures. We note that a similar trend is seen for other

chiplet count configurations. From this experiment (ResNet-110 on CIFAR-10), we

can conclude that the design with 16 tiles per chiplet provides a good balance in

communication volume between NoC and NoP.
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Figure 65. Energy-Delay-Area Product as the Metric. (a) Overall EDAP and (b) Total
Area for the Homogeneous and Custom RRAM-based Chiplet IMC Architecture When
Mapping ResNet-110 for CIFAR-10 Dataset. The Results Indicate that a Custom
Architecture Outperforms a Homogeneous Architecture. The Increased Number of
Tiles per Chiplet Provides Better Performance at the Cost of Increased Area for the
Homogeneous Chiplet IMC Architecture, While Providing Better Performance and
Lower Area for the Custom Chiplet IMC Architecture.

6.4.2.4 Overall Hardware EDAP and Area

Figure 65(a) shows the overall performance (EDAP) of the RRAM-based chiplet

IMC architecture for ResNet-110 on CIFAR-10. For a homogeneous chiplet-based IMC

architecture, the EDAP increases with higher chiplet counts (lower tiles per chiplet),

resulting in higher chip area. Furthermore, with higher tiles per chiplet, the total

energy contribution from the NoP reduces due to highly localized computing from

the larger chiplet size and a lower NoP data volume. Overall, higher tiles per chiplet

and lower chiplet count allow for a reduced EDAP in homogeneous RRAM-based

chiplet IMC architectures. Simultaneously, the custom chiplet architecture has better

performance than the homogeneous architecture due to the reduced NoP size and a

customized architecture for the given DNN. A similar outcome arises for the custom

design on increasing the tiles per chiplet, with the reduction in the EDAP.

Figure 65(b) shows the overall area of the chiplet-based IMC architecture with

different tiles per chiplet and different chiplet counts (homogeneous) and the custom
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chiplet architecture. The increase in the number of tiles per chiplet results in a higher

area for the homogeneous chiplet architecture. The increase in area is due to the

larger chiplet size while keeping the total chiplet count fixed. For example, the area

for a 36 chiplet count and 16 tiles per chiplet architecture is larger than that of the 36

chiplet count and 9 tiles per chiplet architecture. Furthermore, the custom chiplet

IMC architecture utilizes the required number of chiplet to map the whole DNN. Such

an architecture benefits from increasing the tiles per chiplet since fewer chiplets are

required to map the DNN. This results in lower NoP area and chiplet area (IMC

circuit and NoC). Hence, with the increase in the number of tiles per chiplet the total

area is reduced for the custom chiplet IMC architecture.

6.4.3 Comparison between Monolithic and Chiplet-based IMC Architectures
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Figure 66. Improvement in Fabrication Cost ($) for the RRAM-based Chiplet IMC
Architecture, (a) Custom and (b) Homogeneous, as Compared to a Monolithic RRAM-
based IMC Architecture. Smaller DNNs Like ResNet-110 have Similar Cost for Both
Architectures, while Larger DNNs Such as VGG-19 have up to 60% Improvement.

We perform a comparison between a custom monolithic RRAM-based architecture

and both homogeneous and custom RRAM-based chiplet IMC architectures. Due to
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increased area, a monolithic IMC architecture suffers from increased defect ratio and

lower yield. Consequently, a large monolithic IMC architecture experiences a very

high fabrication cost, as shown in Figure 54(a). Figure 66 shows the improvement

in fabrication cost of (a) custom and (b) homogeneous RRAM-based chiplet IMC

architectures, compared to that of a monolithic RRAM-based IMC architecture. We

observe that the improvement is similar for different number of tiles per chiplet

for a particular DNN. The increase in the number of tiles per chiplet results in a

reduction in the total used chiplets, while keeping the same utilization across the used

chiplets. Moreover, the improvement is similar for both custom and homogeneous

chiplet architecture for a particular DNN. The improvement in fabrication cost is

a strong function of the DNN structures. DNNs with fewer parameters exhibit less

improvement. For example, ResNet-110 with 1.7M number of parameters shows up

to 0.57% improvement in fabrication cost. At the same time, VGG-19 with 45.6M

number of parameters show more than 50% improvement in the fabrication cost. The

reduced fabrication cost is attributed to lower defect ratio and increased yield achieved

through smaller chiplets connected together to form a large system. Hence, larger and

branched DNNs benefit significantly from chiplet-based IMC architectures.

6.4.4 Calibration with SIMBA

This section presents the calibration results for the SIAM RRAM-based chiplet

IMC architecture compared to published silicon data from SIMBA Shao et al. (2019).

We note that, there is no prior work that reports real silicon data for chiplet-based IMC

architectures. Therefore, we choose SIMBA, the work that has the most resemblance to

that of SIAM. We utilize the NoP driver circuit and the signaling technique similar to
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Figure 67. (a) Total Energy for DNN Inference Reduces with an Increase in the Number
of Tiles per Chiplet (Chiplet Size), (b) Total Inference Latency and Throughput for
ResNet-110 on CIFAR-10. Due to the Small Network Size, a Lower Number of Chiplets
Provide Better Performance, (c) Normalized Latency for Two Layers Within ResNet-50
on ImageNet for SIAM RRAM-based Chiplet IMC Architecture and SIMBA Shao et al.
(2019). The Decreasing Trend of Latency with Increasing Chiplet Count Exhibited
by SIAM is Consistent with SIMBA, (d) Bandwidth Sensitivity for a Layer Within
ResNet-50. The Decreasing Trend in the PE Cycles with Increasing NoP Speed-Up
Similar to SIMBA.

those in SIMBA for our experiments. Furthermore, the NoP interconnect parameters

utilized in SIAM are closed to that in SIMBA.

Total Energy: Figure 67(a) shows the total energy for inference across different

number of tiles per chiplet for both ResNet-50 and VGG-16 on the ImageNet dataset.

The increase in the number of tiles per chiplet results in a reduction in the total

number of chiplets used to map the DNN and, in turn, a reduction in the total

inference energy. The same trend is reported in SIMBA (ResNet-50).

Total Latency: We evaluate the effect of chiplet scaling or, in other words, the

number of chiplets used to map a small DNN. Figure 67(b) shows the total inference

latency and throughput for ResNet-110 on CIFAR-10 dataset. Since ResNet-110 is a

small DNN, distributing the computation across more chiplets results in a sub-optimal

configuration. A similar trend is shown in SIMBA for a small DNN, DriveNet Bojarski

et al. (2017).

Layer Sensitivity: We consider two representative layers in ResNet-50,
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res3a_branch1 and res5[a-c]_branch2b , same as that shown in SIMBA. We analyze

the latency (normalized with the latency of the design consisting of only one chiplet)

by varying the number of chiplets used to map the DNN layer. We note that the

chiplet count to map the DNN is different from SIMBA due to the difference in the

computation element in SIAM (IMC crossbars) and SIMBA (MAC arrays). The

analysis shown in Figure 67(c) (top) reveals that there is a decreasing trend in latency

with increasing number of chiplets. For res3a_branch1 the latency reduces initially

with the increase in chiplet count and finally increases slightly (with chiplet count of

16). The increase in latency is due to a higher NoP latency from more distributed

computation. res5[a-c]_branch2b shows a consistent decrease in the latency with the

increase in chiplet count. These trends are consistent with that reported in SIMBA,

as shown in Figure 67(c) (bottom).

PE cycles vs NoP speed-up: In this experiment, we vary NoP frequency and

analyze the variation in PE cycles of res3a_branch1 layer in ResNet-50. We normalize

it to the 1× case to be consistent with SIMBA. The SIAM chiplet IMC architecture

shows decreasing PE latency with increasing NoP bandwidth, which conforms SIMBA,

as shown in Figure 67(d).

In summary, these comparisons confirm that, during the scaling of chiplet parame-

ters, such as the number of chiplets and their utilization, SIAM predicts similar trends

as the measured results from real silicon.

6.4.5 Comparison with GPUs

We compare the performance of the chiplet-based IMC architecture generated using

SIAM with state-of-the-art GPUs such as Nvidia V100 and T4. Unlike GPUs, SIAM
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generates architectures for energy-efficient inference using small batch sizes. All GPU

hardware performance numbers have been adopted from those reported in Shao et al.

(2019). We compare the performance of the architecture for inference with a batch size

of one. For ResNet-50 on ImageNet dataset, the architecture generated using SIAM

(36 tiles per chiplet) results in a total area of 273 mm2 as compared to 525 mm2 for T4

and 815 mm2 for V100. The reduced area is attributed to the high compute density

achieved using an IMC design and the support for a wide range of computations

within the GPU. We also compare the energy-efficiency of SIAM IMC architecture to

that of the GPUs for ResNet-50 on ImageNet. SIAM achieves 130× and 72× higher

energy-efficiency as compared to V100 and T4 GPUs, respectively. The chiplet-based

IMC architecture has higher performance since IMC architectures have all weights on

chip, thus avoiding the external memory access. Furthermore, IMC utilizes analog

domain computation within the crossbar arrays that are more energy-efficient than

regular multiply-and-accumulate (MAC) units Shafiee et al. (2016).

6.4.6 Simulation Time

Table 19. Simulation Time for SIAM

Network Dataset Model Size (M) Simulation Time (Hours)

ResNet-110 CIFAR-10 1.7 0.2

VGG-19 CIFAR-100 45.6 0.36

ResNet-50 ImageNet 23 1.26

VGG-16 ImageNet 138 4.26

Table 19 shows the simulation time for the proposed chiplet-based IMC simulator,

SIAM, for different DNNs across different datasets. The simulation time is extracted by
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running SIAM on an Intel Xeon W-2133 CPU platform with 12 cores and 32GB RAM.

The range of the simulation times varies from a couple of minutes for small DNNs to a

few hours for large DNNs. For a fair analysis, we report the overall simulation time that

includes the partitioning and mapping, circuit and NoC simulation, NoP estimation,

and DRAM access estimation. For example, ResNet-110 with 1.7M parameters for

CIFAR-10 dataset takes 12 minutes (0.2 hours) for SIAM to perform the performance

benchmarking. A large DNN such as VGG-16 with 138M parameters on the ImageNet

dataset takes 4.26 hours for SIAM to perform the benchmarking.

Finally, we perform a comparison between SIAM and NeuroSim Peng et al. (2019a)

in terms of simulation for benchmarking a RRAM-based monolithic IMC architecture.

We note that we choose a monolithic IMC architecture as no other simulator supports

chiplet-based IMC architecture benchmarking. We perform the comparison for four

networks namely, ResNet-110 (1.7M), VGG-19 (45.6M), ResNet-50 (23M), and VGG-

16 (138M). For ResNet-110 SIAM requires 60s while NeuorSim takes 30s while for

VGG-19, SIAM takes 86s and NeuroSim takes 46s. Furthermore, for ResNet-50

SIAM takes 818s while NeuroSim takes 276s and for VGG-16 SIAM takes 3110s

while NeuroSim takes 1110s. We note that the simulation times for SIAM are in the

same range as that of NeuroSim rather than being orders of magnitude higher. The

increased simulation times are due to the additional functionality that SIAM provides

in NoC and DRAM performance estimation.

6.5 Conclusion and Discussion

This work presents SIAM, a novel performance benchmarking tool for chiplet-based

IMC architectures. To the best of our knowledge, this will be the first benchmarking
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tool for design space exploration of chiplet-based IMC architectures. SIAM integrates

device, circuits, architecture, NoC, NoP, and DRAM estimation into an end-to-end

system. It supports two types of chiplet architectures, homogeneous and custom,

generated using different partition schemes. In addition, SIAM supports different

DNNs across different datasets and various IMC chiplet configurations. Through this

study, we establish the scalability and flexibility features of SIAM. We demonstrate

the speed of SIAM by evaluating the simulation time of SIAM for different DNNs and

comparing it against state-of-the-art chiplet simulators like NeuroSim for monolithic

IMC architectures. Next, we calibrate SIAM with respect to published silicon result,

SIMBA, which confirms that the trends projected by SIAM match the measured results

from real silicon. Finally, we compare the performance of the generated chiplet-based

IMC architecture using SIAM to that of state-of-the-art GPUs. The SIAM chiplet

architecture achieves 130× and 72× improvement in energy-efficiency compared to

Nvidia V100 and T4 GPUs, respectively.

Appendix A

Estimating manufacturing cost of a chip: Let us consider a reference chip with

area Aref and Nref chips per wafer. The cost of the reference chip (Cref ) is expressed

as shown in Equation 6.2.

Cref =
CTotal

ηrefNref
(6.2)

where, ηref is the yield of the wafer. Number of chips per wafer (Nref) is expressed

in 6.3 AnySilicon (2011).

Nref = Dπ
( D

4Aref
− 1√

2Aref

)
(6.3)
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where D is the wafer diameter. The cost of a target (Ctarget) and normalized cost

(Cnorm) are:

Ctarget =
CTotal

ηtargetNtarget
, Cnorm =

Ctarget

Cref
=

Nrefηref
Ntargetηtarget

(6.4)

Assuming poisson defect model, η = e−D0A, where D0 is the defect density. Replacing

the expression of η in expression for Cnorm, we obtain:

Cnorm =
Nrefe

−D0Aref

Ntargete−D0Atarget
=

Nref

Ntarget
e−D0(Aref−Atarget) (6.5)

Verification of chip cost estimation: To verify the chip cost estimation, we assume

Aref = 296mm2, D0 = 0.012/mm2 and D = 152.4mm. The comparison reveals

that the estimation is 98% accurate with respect to the real chip cost of commercial

processors Tam et al. (2018).
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Chapter 7

BIG-LITTLE CHIPLETS FOR IN-MEMORY ACCELERATION OF DNNS: A

SCALABLE HETEROGENEOUS ARCHITECTURE

Prior studies have demonstrated chiplet-based architectures based on both IMC and

conventional multiply-and-accumulate (MAC) engines for DNN acceleration Krishnan

et al. (2021e); Tan et al. (2021); Shao et al. (2019); Pal et al. (2021); Wang et al.

(2021); Kwon et al. (2021); Kim et al. (2020); Vivet et al. (2020); Zheng et al. (2020);

Hwang et al. (2020); Li et al. (2021, 2022a,b). However, existing schemes do not

consider the non-uniform distribution of weights and activations within DNNs while

designing the chiplet-based architecture.

Figure 68(a) and Figure 68(b) show the distribution of activations and weights

(normalized) across all layers of ResNet-50 on ImageNet and VGG-19 on CIFAR-100.

The initial layers have more activations between layers but have fewer weights. A

larger number of activations lead to more on-chip data movement, while fewer weights

imply reduced computations. In contrast, the latter layers have more weights and fewer

activations, resulting in increased computations and reduced data movement. Hence,

the chiplet-based IMC architectures should be optimized to match the non-uniform

algorithm structure and maximize the efficiency of computation and data movement

across the DNN layers.

Figure 69(a) shows the IMC utilization of four different DNNs using a homogeneous

chiplet-based RRAM IMC architecture. The architecture utilizes chiplets with 16 tiles,

where each tile consists of an array of 16 IMC crossbar arrays of size 256×256 Krishnan
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Figure 68. Normalized Layer-Wise Activation/Weight Distribution for (a) ResNet-50
(ImageNet) and (b) VGG-19 (CIFAR-100). Initial/Latter Layers are Activation/Weight
Dominated.

Figure 69. IMC Utilization for Different DNNs Using a Homogeneous Chiplet RRAM
IMC Architecture Krishnan et al. (2021e) and the Proposed Heterogeneous Big-Little
Chiplet Architecture. The Heterogeneous Big-Little Architecture Improves the IMC
Utilization.

et al. (2021e). The chiplets are interconnected by a 32-bit wide NoP operating at

250MHz, having the signaling scheme in Turner et al. (2018). Smaller DNNs like
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DenseNet-40 on CIFAR-10 have 29% IMC utilization, while larger DNNs like VGG-19

on CIFAR-100 achieve 40% IMC utilization.

A lower IMC utilization leads to increased IMC array arrays and in turn, higher

energy and latency. Furthermore, a single NoP structure results in significant area

overhead due to the large NoP driver and interconnect cost. Figure 69(b) shows that

for the homogeneous structure, the NoP accounts for 90% and 50% of the total area

for VGG-19 on CIFAR-100 and DenseNet-40 on CIFAR-10, respectively. In addition,

the increased NoP bus width leads to higher NoP energy with up to 53.75× higher cost

relative to an 8-bit multiply-and-accumulate (MAC) operation in 16nm technology

node Tan et al. (2021).

This work5 addresses the inefficiency of homogeneous chiplet-based IMC architec-

tures that fail to exploit the underlying distribution of weights and activations within

DNNs. To this end, we propose a heterogeneous chiplet-based IMC architecture that

integrates big and little-chiplet banks, as illustrated in Figure 70. Specifically, we

develop an algorithm to determine the optimal configuration of the big-little IMC

chiplet architecture. The little-chiplet bank consists of little chiplets interconnected

by an interposer-based NoP (chiplets are placed closed to each other) Turner et al.

(2018). Similarly, the big-chiplet bank consists of big chiplets interconnected by a

bridge-based NoP Mahajan et al. (2016). Little chiplets consist of fewer/smaller IMC

crossbars or processing element (PE) arrays, while the big chiplets have more/larger

IMC crossbars or PE arrays. In addition, each chiplet (big/little) utilizes a local

DRAM to store the weights of the DNN.

In addition to the hardware architecture, we also propose a new technique to

map DNNs onto the big-little chiplet-based IMC architecture. Taking a cue from the

5Work done in collaboration with Sumit K. Mandal (UW– Madison)
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Figure 70. Cross-Sectional View of the Big-Little Chiplet-based IMC Architecture.
The Architecture Consists of a Little Chiplet Bank with Little Chiplets (Connected by
an NoP Within the Interposer and a Big Chiplet Bank with Big Chiplets Connected
by a Bridge NoP. NoP Properties: 1.5–8mm Length, 2–4.5µm Pitch, and 0.5–2µm
Width.

non-uniform distribution of the weights and activations within the DNN, we propose

to map the early layers within a DNN onto the little chiplet bank and the subsequent

layers onto the big chiplet bank. The smaller structure of the weights in the early

layers results in higher utilization within the little chiplet bank, while the larger layers

towards the end of the DNN achieve high utilization on the big-chiplet bank. To

achieve this, we develop a custom mapping algorithm that performs the mapping of

the DNN on to the big-little architecture. We note that, the algorithm is universal

and applies to the case when the resource in a given big-little chiplet is not enough

to store all DNN weights. We exploit the activation distribution by utilizing an

interposer-based NoP with high bandwidth within the little chiplet bank, which houses

the early layers with higher on-chip data movement. Simultaneously, the subsequent

layers with lower on-chip data movement (fewer activations) utilize the bridge-based

NoP with lower bandwidth within the big chiplet bank. Experimental evaluation

of the proposed big-little chiplet-based RRAM IMC architecture on ResNet-50 on

ImageNet shows up to 259×, 139×, and 48× improvement in energy-efficiency with

lower area compared to Nvidia V100 GPU, Nvidia T4 GPU, and SIMBA Shao et al.

(2019) architecture, respectively.
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The major contributions of this work are as follows:

• We propose a heterogeneous big-little chiplet-based IMC architecture that utilizes

a big and little IMC-based chiplet compute structure coupled with an optimal

NoP configuration (interposer and bridge),

• We present a custom mapping strategy of DNNs onto the big-little chiplet

IMC architecture that exploits the non-uniform distribution of weights and

activations,

• Our experiments of the proposed big-little chiplet-based RRAM IMC architecture

on ResNet-50 on ImageNet achieve up to 259×, 139×, and 48× improvement

in energy-efficiency and lower area compared to Nvidia V100 GPU, Nvidia T4

GPU, and SIMBA Shao et al. (2019) architecture, respectively.

7.1 Big-Little Chiplet Architecture

Figure 71(a) shows the top-level block diagram of the heterogeneous big-little

chiplet IMC architecture. The architecture consists of two banks of IMC chiplets, a

little bank (shown in yellow color) and a big bank (shown in light red color). The

little IMC chiplet bank consists of chiplets with smaller and fewer IMC crossbar

arrays compared to the big chiplets. It is placed on an interposer that houses the

NoP. The NoP provides high bandwidth and a compact structure for on-package

communication within the little chiplet bank. At the same time, the increased size and

count within the big chiplet bank allow for higher computation capability. The big

chiplets are directly connected to the substrate using micro-bumps. A bridge-based

NoP is utilized within the big chiplet bank for on-package communication. Long
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Figure 71. (a) Overview of the Big-Little Chiplet IMC Architecture. The Little
Chiplet Bank Utilizes Smaller Chiplets Connected by a Interposer-based NoP While
the Big Chiplet Bank Utilizes Bigger Chiplets Connected by a Bridge-based NoP.
Each Chiplet Utilizes a Local DRAM, (b) IMC Chiplet Architecture (Big and Little).
Each Chiplet Consists of an Array of IMC Tiles and a Dedicated NoP Transceiver and
Router, (c) The Little Chiplet Bank Consists of Fewer and Smaller Tiles While the
Big Chiplet Bank Consists of More Bigger Tiles. Both Chiplet Structures Utilize a
Mesh-based NoC for On-chip Communication, and (D) Structure of Each Tile Within
the Big and Little Chiplet. It Consists of an Array of IMC Crossbar Arrays and
Associated Peripheral Circuits with an Interconnect Similar to That in Shafiee et al.
(2016). The Little Chiplet Consists of Fewer and Smaller IMC Crossbars While the
Big Chiplet has Larger and More IMC Crossbar Arrays.

wires of the bridge NoP allow easy integration of the big chiplets. We utilize the

Y–X routing methodology for the NoP. Each chiplet (big and little) consists of a local

DRAM (DDR4 in this work) that stores the weights required for the IMC crossbar

arrays.

Figure 71(b) shows the structure of a IMC chiplet. Each chiplet utilizes a hier-

archical structure that consists of an array of big (bottom of Figure 71(c)) or little

IMC tiles (top of Figure 71(c)) and each tile consists of an array of IMC crossbars

or PEs. In addition, the chiplet contains a pooling unit, non-linear activation unit,

accumulator, and buffer. The accumulator is used for the partial sum accumulation

across different tiles within the chiplet. Furthermore, the buffers allow for efficient

data movement in and out of the chiplet. Each IMC chiplet consists of a dedicated

NoP transceiver used for the transmission and reception of packets across the NoP. In
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this work, we adopt the NoP transceiver from Turner et al. (2018). Each transceiver

consists of a local PLL circuit that provides the clock for the transceiver. A five-port

router is utilized for routing of the data across the NoP.

Each IMC chiplet utilizes a local DRAM to store the weights. The local DRAM

allows for external memory access, thus making our proposed big-little architecture a

generic platform. If a DNN does not fit on the entire chip, the DRAM stores all the

weights necessary for each chiplet. First, the DRAM loads the necessary weights into

the IMC crossbar arrays. Next, while the computation is performed, the DRAM loads

the next set of weights of the DNN. The buffer is designed to support a ping-pong

operation Ma et al. (2017b). The weights from the DRAM are loaded into the first

buffer stage (ping) and then moved to the second buffer stage (pong). Therefore, the

big-little IMC chiplet architecture masks the DRAM latency with the computation

latency, achieving high throughput.

Finally, Figure 71(d) shows the structure of an IMC tile. Each array in the

crossbar consists of PEs that perform the computations. In this work, we focus on a

resistive random-access-memory (RRAM) based IMC crossbar array due to its superior

energy-efficiency Shafiee et al. (2016). The computations are performed in the analog

domain by turning on all wordlines (WL) together and performing accumulation along

the bitline (BL). The inputs are given through the WL while the weights are stored

within the RRAM cells. Each IMC array consists of specialized peripheral circuitry

that assists the computation. The peripheral circuitry includes a column multiplexer

(mux), an analog-to-digital converter (ADC), a shift and add circuit, and a buffer. The

column mux is used to share the ADC across columns of the IMC array. The ADC

converts the MAC output in the analog domain across each column into the digital

domain. The big-little IMC architecture does not utilize a digital-to-analog converter
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(DAC) by employing bit-serial computing. The shift and add circuit handles the

positional value of each bit within the multi-bit input activations that are computed

using the IMC arrays. The buffers within the tile are utilized for storing the partial

sums and the input activations.

7.2 Parameters of the Big-Little Architecture and Mapping

The underlying non-uniform distribution of weights and activations within a DNN

results in an increased number of activations in the early layers and larger number of

weights in the subsequent layers (Figure 68). This non-uniform weight distribution

leads to under-utilization of chiplets in the early layers, thus a lower overall IMC

utilization. To improve the IMC utilization, crossbar arrays with smaller size (e.g.

32×32 instead of 128×128) can be used everywhere. In turn, larger number of chiplets

in the system increases the area as well as energy consumption (due to higher relative

area and energy of the peripheral circuits) masking the benefit of using chiplet-based

system. Therefore, a balance between crossbar array size and number of chiplets in

the system is necessary. To this end, we propose a technique to optimize the big-little

chiplet configuration as discussed next.

7.2.1 Configuration of the big-little chiplets

We first determine the configuration of big-little chiplets by computing the tile

utilization with different big-little chiplet configurations for a given DNN. Algorithm 11

shows our proposed technique to find the utilization. The inputs to the algorithm are

1. the set of crossbar sizes for the little chiplets (XL) and the big chiplets (XB),
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2. set of number of tiles in the little chiplets (TL) and the big chiplets (TB),

3. number of little chiplets (NL) and big chiplets (NB),

4. the DNN structure,

5. the total number of chiplets in the system.

We note that the initial layers of the DNN are mapped on to little chiplets since there

are fewer weights in the initial layers. A DNN layer is mapped on to a chiplet when

number of tiles required for that layer is less than the number of remaining tiles in the

chiplet, i.e., the available resource on the chiplet is sufficient for the layer (as shown

in line 13–17 of Algorithm 11). Once a layer (layer-j) is mapped on to a chiplet, the

tile utilization is computed as:

IMCj =

⌈
Kx

j × ky
j ×N if

j

x

⌉
×

⌈
N of

j ×Q

x

⌉

uj = 100×
Kx

j × ky
j ×N if

j ×N of
j ×Q

IMCj × x× x
(7.1)

where Kx
j and Ky

j are the kernel sizes of layer-j, N if
j and N of

j are the number of i/p

and o/p features for layer-j, Q is the quantization precision, IMCj is the number of

IMC crossbars required for layer-j and x is the IMC crossbar size (x× x). Once the

resources of a chiplet are exhausted, the next chiplet is considered for mapping. This

process continues until no chiplet (little/big) is available.

In the proposed method, for each chiplet configuration, we obtain the average

utilization for a particular DNN after each layer is mapped(line 36 of Algorithm 11).

Then we sort (in descending order) the configurations based on the utilization and

save the top K configurations. The above procedure is repeated for M different

DNNs and the configuration with highest utilization which is common for all DNNs is

considered as the final configuration for the big-little chiplet system. We note that
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K and M are user-defined parameters and our proposed technique is independent of

these parameters.

Algorithm 9: Determining Big-Little NoP Configuration
1 Input: DNN structure, number of chiplets (NC), set of NoP bus widths for

the little chiplets (WL) and the big chiplets (WB); set of NoP frequency for
the little chiplets (FL) and the big chiplets (FB), mapping of layers to the
big-little chiplet (L → C)

2 Output: NoP EDP for each configuration-i (Ei)
3 Ncfg ← number of configurations in the set containing all possible

combinations of the elements in WL, WB, FL, FB
4 L← number of DNN layers
5 nl = Number of little chiplets
6 nb = Number of big chiplets
7 for i = 1 : Ncfg do
8 wl = Bus-width of little chiplets in Config-i
9 wb = Bus-width of big chiplets in Config-i

10 fl = NoP frequency of little chiplets in Config-i
11 fb = NoP frequency of big chiplets in Config-i
12 Ei ← 0 // Initializing EDP of Config-i
13 for j = 1 : nl do
14 Compute edpj by from Equation 7.2
15 Ei = Ei + edpj // Communication EDP
16 end
17 for k = 1 : (nb − 1) do
18 Compute edpk from Equation 7.2
19 Ei = Ei + edpk // Communication EDP
20 end
21 end

7.2.2 Configuration of the big-little NoP

The heterogeneous chiplet configuration (discussed in Section 7.2.1) improves

the overall chiplet utilization by using smaller chiplets that match well to the early

layers with fewer weights. However, the initial DNN layers produce higher number
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Algorithm 10: Mapping DNN Layers to Big-Little Chiplets
1 Input: DNN layers (L), IMC crossbar size in Big chiplet (xb), IMC crossbar

size in little chiplet (xl), number of tiles in big chiplets (tb), number of tiles in
little chiplets (tl), number of available big chiplets (nb), number of available
little chiplets (nl)

2 Output: Mapping of layers to of big-little chiplet (L → C)
3 Compute SB by following Equation 7.3
4 Compute Pr by following Equation 7.4
5 for j = 1 : Pr do
6 Lj → DNN layers for partition-j; Lj ∈ L
7 for i = 1 : |Lj| do
8 aL → 1 // Number of little chiplets used
9 Compute utilization of ith (U i

B) layer on a big chiplet using xb, tb
10 Compute utilization of ith (U i

L) layer on a little chiplet using xl, tl
11 if ((U i

B < U i
L)&(aL ≤ AL)) then

12 Map ith layer to little chiplet.
13 if Resource in aL is exhausted then
14 aL → aL + 1
15 end
16 end
17 else
18 Compute number of big chiplets (aB) required to map layer-i –

layer-|L||
19 assert((aB ≤ AB), ‘Error’)
20 for k = i : |Lj| do
21 Map kth layer to big chiplet.
22 end
23 break;
24 end
25 end
26 end

of activations compared to later layers. Therefore, the volume of traffic between

little chiplets (used for initial DNN layers) is higher than the traffic volume between

big chiplets (used for later DNN layers). Hence, the network-on-package (NoP)

configuration between little chiplets needs to be different than that of the big chiplets.

To this end, we propose a technique to determine optimal NoP configuration for a
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system with big-little chiplet targeted for a particular DNN. Algorithm 9 shows the

technique to determine NoP configuration for a particular DNN. The inputs to the

algorithm are:

1. big-little chiplet configuration obtained from Algorithm 11,

2. set of NoP bus width for the little chiplets (WL) and the big chiplets (WB),

3. set of NoP frequency for the little chiplets (FL) and the big chiplets (FB),

4. the DNN structure.

We evaluate the energy-delay product of communication for each NoP configuration

in the set of configurations. An analytical expression based evaluation is incorporated

to perform fast exploration in the NoP configuration space. First, we evaluate

communication volume of each NoP configuration given a particular DNN. The

communication volume is equivalent to the number of packets transferred between

two chiplets, and the number of packets (P ) is expressed as P = b
w
, where b is the

number of bits to be communicated and w is the NoP bus width. We divide the

number of packets by NoP frequency (f) to obtain an approximation of NoP latency

d = P
f
= b

w×f
. Next, we compute NoP power consumption by assuming that it is

proportional to cube of NoP frequency Mudge (2001); p = f 3. Then the approximate

energy consumption (e) is computed by multiplying communication latency and

communication power; e = d× p. Finally, communication EDP between each pair of

chiplet (edp) is computed as:

edp = e× d = d× p× d = d2 × f 3 =
( b

w × f

)2 × f 3 =
b2 × f

w2
(7.2)

The total communication EDP for each NoP configuration for a particular DNN is

obtained by adding the communication EDP between each pair of chiplets. A total of

K NoP configurations with lower EDP are saved and the above procedure is repeated
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for M different DNNs. The configuration with lowest cost which is common for all

DNNs is considered as the final NoP configuration for the big-little chiplet system.

Similar to the technique of selecting big-little chiplet configuration (described in

Section 7.2.1), K and M are the user defined parameter and our proposed technique

is independent of these parameters.

7.2.3 Mapping a Previously Unseen DNN to a System on big-little Chiplets

So far, we described our proposed technique to determine the optimal configuration

of big-little chiplet and the NoP. The optimal configuration is determined by performing

design space exploration with several DNNs. However, an unknown DNN (not seen

before) may be encountered at runtime. Moreover, there is no guarantee that all the

weights of a given DNN will fit in the on-chiplet resources since the number of DNN

parameters seem to be continuously growing. In these cases, we need to divide the

entire DNN into multiple parts and load the weights of each part from DRAM before

executing. Algorithm 10 shows the DNN partitioning as well as the mapping technique.

The input to the algorithm is the DNN structure, big-little chiplet configuration and

big-little NoP configuration. First, we compute the number of in-memory computing

bits available on the system (SB). Specifically, for each type (little/big) of chiplets, we

multiply the number of available chiplets (nl/nb), the number of tiles in each chiplet

(tl/tb), the number of crossbar array in each tile (16), and the size of IMC crossbar

array for big and little chiplets (xl/xb). Then we add the product for big and little

chiplets to obtain the total number of in-memory computing bits available on the

system (SB):

SB = (nl × tl × 16× xl × xl) + (nb × tb × 16× xb × xb) (7.3)
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Next, we compute the number of bits required to store all the weights of the DNN

(DB). Assuming average utilization of u(0 < u ≤ 1), the total number of partitions

(Pr) required for the DNN is computed by taking the ceiling of the quotient obtained

by dividing the required number of bits to store all weights (DB) by the available

number of in-memory bits on the system (SB):

Pr =
⌈ DB

SB × u

⌉
(7.4)

For each partition, first, we compute the utilization of ith layer on a big chiplet

(U i
B) as well as on a little chiplet (U i

L). We compute U i
B and U i

L using Equation 7.1.

If the big chiplet utilization ((U i
B)) is less than the little chiplet utilization (U i

L) and

the little chiplet bank is not exhausted, then the layer is mapped onto a little chiplet,

as shown in lines 7–12 of Algorithm 10. Otherwise, we compute the number of big

chiplets required (aB) to map the rest of the layers. If aB is less than or equal to the

number of available big chiplets (AB), then we map the rest of the layers to the big

chiplet bank, else the algorithm throws an error since the resource requirement exceeds

the available capacity (shown in line 18–23 of Algorithm 10). Thus, we ensure that the

initial layers with fewer weights are mapped into little chiplets and the latter layers

with higher number of weights are mapped onto big chiplets with more computation

resources. Therefore, our proposed custom mapping of the DNN onto the big-little

chiplet architecture ensures high IMC utilization.
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7.3 Experimental Evaluation

7.3.1 Experimental Setup

Evaluation platform: To evaluate the proposed heterogeneous big-little IMC chiplet

architecture, we use a customized version of the open-sourced tool SIAM Krishnan

et al. (2021e). The customization includes the addition of the custom mapping scheme

detailed in Section 7.2. In addition, we handle the big-little chiplet IMC architecture

by adding the number of each type (big/little) of chiplets, the number of tiles inside

big and little chiplets, and the big-little IMC structure. Furthermore, we also assume

that each type of chiplet can use different NoP width. The simulator performs the

mapping of a given DNN onto the big-little IMC chiplet architecture. The outputs

include area, energy, latency, throughput, energy efficiency, and IMC utilization (for all

individual components in the architecture). Finally, we add support for intermediate

DRAM access (DDR4 MICRON (2014)) for each chiplet to handle the case where

all weights do not fit on the system at once. We plan to open-source the tool and

optimization methodology upon acceptance of the paper.

DNN algorithms and architectural parameters: We evaluate the proposed

heterogeneous chiplet architecture with DenseNet-40 (0.26M) on CIFAR-10, ResNet-

110 (1.7M) on CIFAR-10, VGG-19 (45.6M) on CIFAR-100, ResNet-34 (21.5M) and

ResNet-50 (23M) on ImageNet. We utilize an RRAM-based IMC structure for DNN

inference with the following parameters: one bit per RRAM cell, a Roff/Ron ratio

of 100, ADC resolution of 4-bits with 8 columns multiplexed, operating frequency of

1GHz Imani et al. (2019); Shafiee et al. (2016), and a parallel read-out method. We

use 8-bit quantization for the weights and activations, and a 32nm CMOS technology
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Table 20. Set Of Configurations Considered to Determine Big-Little Chiplet and NoP
Structure.

Chiplet Configuration NoP Configuration

Parameter Values in the Set Parameter Values in the Set

XL {32, 64} WL {16, 32, 64}

XB {128, 256, 512} WB {4, 8, 12, 16, 20, 24}

TL {9, 16, 25} FL {600, 1000, 1400, 1800} MHz

TB {36, 49} FB {600, 800, 1000} MHz

node. The chiplets are placed to achieve the least Manhattan distance. The NoP

parameters include Ebit of 0.54pJ/bit Turner et al. (2018), interconnect parameters

width, length, and pitch for the interposer-based NoP from Turner et al. (2018) and

for bridge-based NoP from Greenhill et al. (2017) (Figure 70), per lane NoP TX/RX

area of 5,304 µm2, and NoP clocking circuit area of 10,609 µm2 Poulton et al. (2013).

In addition, we also model the µbump for both the interposer Su et al. (2016) and

bridge-based Liu et al. (2021) NoP by utilizing the PTM models Sinha et al. (2012).

7.3.2 Big-Little IMC Structure and NoP

This section demonstrates the parameters related to big-little IMC structure and

big-little NoP. Specifically, we consider four DNNs (mentioned in Section 7.3.1) and

execute Algorithm 11 to determine the top 10 (K=10) configurations with highest

utilization for each DNN. We consider a system with 36 chiplets to limit the total

area and power consumption of the system. Table 20 shows the input parameters

(XL,XB, TL, TB) to the algorithm. We vary the number of little chiplets from 1 to 35

while maintaining the total number of chiplets to be 36. Then, we choose the best
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Figure 72. IMC Utilizations for Different DNNs Across Different Big-Little Chiplet-
based RRAM IMC Configurations for (a) ResNet-110, (b) ResNet-34, (c) VGG-19,
(d) DenseNet-40. Based on the Utilization, We Choose Crossbar Size of Big Chiplet
as 256×256 and Crossbar Size of Little Chiplet as 64×64 (256–64).
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Figure 73. Normalized NoP EDP for Different Bus-Widths for VGG-19 and ResNet-34.
The NoP With Bus Width of 24 for Big and 32 for Little Chiplets (24–32) Shows
Lowest EDP.

Table 21. Performance Comparison of Each Component of a Homogeneous (Little
Only, Big Only) Chiplet Architecture and the Heterogeneous Big-Little IMC Chiplet
Architecture for VGG-19 on CIFAR-100.

Configuration Area Energy Latency

IMC
(%)

NoP
(%)

NoC
(%)

Total
(mm2)

Normalized to
big-little (×)

IMC
(%)

NoP
(%)

NoC
(%)

Total
(mJ)

Normalized to
big-little (×)

IMC
(%)

NoP
(%)

NoC
(%)

Total
(ms)

Normalized to
big-little (×)

Little only 11.9 88.0 0.1 952.1 10.9 99.7 0.2 0.1 1.3 4.1 99.7 0.1 0.2 1.6 1.3

Big only 44.0 55.5 0.5 597.2 6.8 78.6 11.0 10.4 0.43 1.3 99.6 0.1 0.3 3.2 2.7

Big-Little (this work) 52.4 47.4 0.2 87.4 1.0 99.8 0.1 0.1 0.32 1.0 99.2 0.3 0.5 1.2 1.0

configuration which is common for all four DNNs. We observe that a system with 25

little chiplets with a 64×64 IMC crossbar and 25 tiles per chiplet, and 11 big chiplets

with a 256×256 IMC crossbar and 36 tiles per chiplet provides best utilization across

all four DNNs.
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Figure 72 shows the utilization for a system with 25 little and 11 big chiplets with

varying size of crossbars (both for big and little chiplet) for all four DNNs. In this

case, we also fixed the number of tiles per chiplet to 25 for the little chiplets and 36

for the big chiplets. Figure 72 reveals that the configuration where the crossbar size of

the big chiplets is 256×256 and the crossbar size of the little chiplets is 64×64 (256–64,

256 denotes crossbar size of big chiplets and 64 denotes crossbar size of little chiplets)

shows higher utilization than other configurations for three out of four DNNs. Only in

the case of ResNet-110, the configuration 256–32 shows higher utilization than 256–64.

However, we choose 256–64 over 256–32 since it provides more on-chip resources, lower

area and energy efficiency for the IMC crossbar array (due to peripheral circuits).

Similarly, we execute Algorithm 9 for four DNNs to obtain the NoP configuration.

Table 20 shows the set of different NoP parameters (WL,WB,FL,FB used as inputs

to Algorithm 9). The parameters are adopted from CHIPS Alliance (INTEL) (2021).

EDP for NoP is obtained for all NoP configurations for the four DNNs. Then, the

NoP configuration having the lowest EDP for all four DNNs is chosen. Based on the

EDP results, the big NoP frequency and the little NoP frequency is set to 600 MHz

and 1 GHz, respectively; the big NoP bus width and the little NoP bus width is set

to 24 and 32, respectively. Figure 73 shows the normalized NoP EDP for different

combination of bus width for big and little chiplets. For illustration purpose, we show

VGG-19 and ResNet-34 since these two DNNs utilize more than 34 out of 36 chiplets.

From Figure 73, it is observed that the configuration with big NoP bus width of 24

and little NoP bus width of 32 shows the lowest EDP. Since little chiplets produce

higher number of activations than the big chiplets, it is intuitive that little NoP are

wider (larger bus width) than the big NoP.
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Table 22. Performance Comparison of a Homogeneous (Little Only, Big Only) Chiplet
Architecture and the Heterogeneous Big-Little IMC Chiplet Architecture For Different
DNNs.

Configuration Utilization (%) Area (mm2) Energy (mJ) Latency (ms)

Res-110 VGG-19 Dense-40 Res-34 Res-110 VGG-19 Dense-40 Res-34 Res-110 VGG-19 Dense-40 Res-34 Res-110 VGG-19 Dense-40 Res-34

Little only 69 92 58 93 171.7 952.1 71.5 657.8 1.4 1.3 0.22 41.1 23.0 1.6 1.6 13.1

Big only 44 59 32 82 220.0 597.2 220.2 595.9 0.28 0.43 0.11 3.7 1.1 3.2 0.02 20.2

Big-Little (this work) 88 93 90 98 87.4 87.4 87.4 87.4 0.18 0.32 0.06 8.2 1.1 1.2 0.03 48.6

7.3.3 Comparison with Baseline Architectures with Homogeneous Chiplets

We compare the performance of our proposed big-little chiplet architecture with

respect to two baseline architectures with homogeneous chiplets Krishnan et al. (2021e).

1) Little only: In this configuration, we consider a system where the configuration

of all chiplets as well as the NoP is same as that of the little chiplets. 2) Big only:

In this configuration, we consider a system where the configuration of all chiplets as

well as the NoP is same as that of the big chiplets. We note that, the total number of

chiplets with ‘Little only’ and ‘Big only’ configurations vary for different DNNs.

Table 21 shows the performance comparison for ‘Little only’, ’Big only’ and

the proposed big-little architectures for VGG-19 on CIFAR-100. In this table, the

performance of each component of the architecture, i.e. IMC, NoP and NoC is shown.

Our proposed big-little chiplet architecture results in a balanced distribution of the

area among the circuit and NoP components, while the NoC accounts for a minimal

portion (0.2%) of the total area. In ‘Little-only’ architecture, NoP becomes the

bottleneck for area since the chiplets have smaller size, hence more number of chiplets

are required which increases the NoP. In ‘Big only’ architecture, NoP consumes more

energy due to higher volume of data movement between each pair of chiplets. In

contrast, the proposed big-little architecture with its high IMC utilization and reduced

on-chip communication as well as on-package data movement results in less total
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energy consumption and less inference latency. Overall, the proposed heterogeneous

big-little architecture achieves up to 10.9× lower area, 4.1× lower energy, and 2.7×

lower latency than ‘Little only’ and ‘Big only’ architectures.

Next, we compare the IMC utilization and the performance (area, energy and

latency) for ResNet-110, VGG-19, DenseNet-40, and ResNet-34 against ‘little only’

and ‘big only’ architecture. For VGG-19, our proposed big-little architecture achieves

the highest IMC utilization of 93% compared to 92% and 59% for ‘Little only’ and

‘Big only’, respectively. Similarly, the big-little architecture achieves 88%, 90%, and

98% IMC utilization for ResNet-110, DenseNet-40, and ResNet-34, respectively, up

to 2.8× greater than ‘Little only’ and ‘Big only’ architectures. We observe that the

big-little architecture provides up to 7.8× improvement in energy and up to 21×

improvement in inference latency with respect to baseline homogeneous architectures.

‘Big only’ architecture consumes less energy and less latency than big-little architecture

for ResNet-34, but in this case, the area of ‘Big only’ is 6.8× higher than big-little

architecture. To better analyze the performance comparison, we plot the energy-

delay-area product (EDAP) for all DNNs, as shown in Figure 74. The big-little

chiplet architecture provides up to 329× lower EDAP than the ‘Little only’ and ‘Big

only’ architectures across all four DNNs. Although ‘Big only’ architecture shows

improvement in energy consumption and inference latency with respect to big-little for

ResNet-34, the EDAP with ‘Big only’ is 1.3× higher than big-little architecture in this

case. Hence, the proposed big-little IMC architecture achieves optimal performance

through reduced EDAP at higher IMC utilization across different DNNs.
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Figure 74. EDAP Comparison (Log-Scale) of the Big-Little Chiplet-based RRAM IMC
Architecture to ‘Little Only’ and ‘Big Only’ Chiplet-based RRAM IMC Architectures.
The Big-Little Architecture Achieves up to 329× Improvement Compared to ‘Little
Only’ Architecture.

7.3.4 Results with DRAM (DDR4)

In this section, we show the performance results when the resource on a big-little

chiplet-based system is not sufficient to store all the weights of a given DNN. In that

case, the DNN is divided into multiple partitions. One partition is mapped on to

the big-little chiplets at a time. While the computations of a partition of the DNN

are performed, the weights corresponding to the next partition are loaded from the

DRAM into the ping-pong buffer. The additional DRAM accesses result in increased

energy. At the same time, the impact on latency is reduced through the ping-pong

buffers Ma et al. (2017b). Table 23 shows the ratio between DRAM energy and

compute energy for VGG-16 and VGG-19 with systems having different number of

chiplets. We observe that, the ratio of DRAM energy to computation energy increases

with reduction in the system sizes for both the DNNs. With decreasing system size,

more weights need to be stored and loaded from DRAM, thereby increasing DRAM

energy.
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Table 23. Ratio Between DRAM Energy and Compute Energy for VGG-16 and VGG-
19 With Systems Having Different Number of Chiplets (**All Weights of VGG-19 Fit
On Chip With This Configuration, Significantly Reducing the DRAM Energy).

# Chiplets VGG-16 VGG-19

#partitions Ratio #partitions Ratio

36 2 1.1 1 0.08**

25 2 2.1 2 131

16 3 3.6 2 161

Table 24. Comparison With Other Platforms for ResNet-50 on ImageNet (*Reported
in Shao et al. (2019)).

Platform Area (mm2) Energy Efficiency (Images/s/W)

Nvidia V100 GPU* 815 8.3

Nvidia T4 GPU* 525 15.5

SIMBA Shao et al. (2019) 215 45

Big-Little (this work) 85 827

7.3.5 Comparison with State-of-the-art Work

Table 24 shows the comparison of the proposed heterogeneous big-little RRAM

IMC chiplet architecture with an Nvidia T4 and V100 GPU, and SIMBA Shao et al.

(2019). The big-little chiplet architecture achieves a lower area for the architecture

due to the custom RRAM-based IMC and the optimized NoP structure. Compared to

the Nvidia V100, Nvidia T4, and SIMBA architecture, the big-little IMC architecture

achieves 9.6×, 6.2×, and 2.5× area improvement and 99.6×, 53.4×, and 18.4× energy-

efficiency improvement, respectively. The improved energy efficiency is attributed

to the higher IMC utilization, analog computation within the RRAM-based IMC,
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reduced NoP data movement and bus width, and the absence of intermediate DRAM

transactions for weights and partial sums.

7.4 Conclusion

We proposed a heterogeneous big-little chiplet-based IMC architecture driven by

the non-uniform nature of DNN layers. To the best of our knowledge, this is the first

heterogeneous chiplet-based IMC architecture that leverages different IMC compute

structures coupled with a heterogeneous NoP. We show that mapping the early layers

to the little chiplet bank and the subsequent layers to the big chiplet bank, achieve

up to 2.8× higher IMC utilization and up to 329× improvement in energy-delay-area

product compared to homogeneous chiplet IMC architectures. Experimental evaluation

of the proposed big-little chiplet-based RRAM IMC architecture for ResNet-50 on

ImageNet shows 18.4× energy-efficiency improvement compared to SOTA chiplet-based

architecture SIMBA.
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Algorithm 11: Determining Big-Little Chiplet Configuration
1 Input: DNN structure, number of chiplets (NC), set of crossbars sizes for the

little chiplets (XL) and the big chiplets (XB); set of number of tiles in the
little chiplets (TL) and the big chiplets (TB); number of little chiplets (NL)
and number of big chiplets (NB)

2 Output: Tile utilization for each configuration i (Ui)
3 Ncfg ← number of configurations in the set containing all possible

combinations of the elements in XB, XL, TL, TB, NL, NB
4 L← number of DNN layers
5 for i = 1 : Ncfg do
6 nl = Number of little chiplets in Config-i
7 nb = Number of little chiplets in Config-i
8 j ← 0 // Number of layers already mapped
9 U ← 0 // Sum of utilization

10 nu
l ← 0 // Number of little chiplets used

11 while nu
l ≤ nl and j < L do

12 jt ← Number of tiles required for layer-j
13 rlt ← Number of remaining tiles in the little chiplet
14 if jt < rlt then
15 Map layer-j to the little chiplet
16 uj ← Tiles utilization for layer-j (Eq. 7.1)
17 U = U + uj; j = j + 1

18 end
19 else
20 nu

l = nu
l + 1

21 end
22 end
23 nu

b ← 0 // Number of big chiplets used
24 while nu

b ≤ nb and j < L do
25 jt ← Number of tiles required for layer-j
26 rbt ← Number of remaining tiles in the big chiplet
27 if jt < rbt then
28 Map layer-j to the big chiplet
29 uj ← Tiles utilization for layer-j (Eq. 7.1)
30 U = U + uj; j = j + 1

31 end
32 else
33 nu

b = nu
b + 1

34 end
35 end
36 Ui =

U
L

37 end
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Chapter 8

CONCLUSION

In this dissertation, first, we presented an algorithm solution through a novel

metric, model stability, to achieve reliable RRAM-based IMC acceleration of DNNs.

The proposed metric, model stability, from the loss landscape helps shed light on

accuracy under variations and model compression and guide an algorithmic solution

that mitigates the loss. We utilize model stability to select the more stable model

that can withstand the RRAM variations better. The proposed model stability-based

model selection effectively tolerates device variations and achieves a post-mapping

accuracy higher than that with 50% lower RRAM variations. Next, we show that

pruning results in a less stable model, while quantization improves the model stability.

Finally, we propose a model stability-based VAT method for compressed DNNs, which

searches the most stable model under variations to achieve the best post-mapping

accuracy, without knowing the exact amount of RRAM testing variations upfront.

We show that the model-stability-based VAT method achieves up to 19%, 21%, and

11% improvement in accuracy for compressed DNNs on CIFAR-10, CIFAR-100, and

SVHN datasets, respectively.

Next, we bridge the gap between the floating-point software accuracy and the post-

mapping accuracy of RRAM-based IMC architectures (after applying model stability-

based VAT methods). To achieve this, we propose a novel hybrid RRAM/SRAM IMC

architecture that utilizes an RRAM-based IMC macro and a reconfigurable SRAM

array and output stationary multiply-and-accumulate (MAC) macro. The hybrid IMC

architecture utilizes an RRAM IMC macro with MLC cells, an SRAM macro, and
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a programmable shifter. The output from the RRAM macro is compensated by the

SRAM macro output to create an ensemble model and achieve bit-level compensation.

The scale of compensation is controlled by using a programmable shifter for the

SRAM macro output. Next, we develop a training framework to enable the hybrid

IMC architecture that supports quantization, structured pruning, RRAM IMC-aware

training, and different compensation scales through the programmable shifter. Finally,

we design a test-chip using the 65nm SUNY process to demonstrate the efficacy of the

proposed hybrid IMC architecture. Compared to the conventional VAT method, the

proposed hybrid IMC architecture achieves up to 25% improvement in post-mapping

accuracy. In addition, compared to state-of-the-art methods, the proposed hybrid

IMC architecture provides a scalable solution that achieves up to 21.9%, 12.65%, and

6.52% improvement in post-mapping accuracy with minimal overhead for ResNet-20

on CIFAR-10, VGG-16 on CIFAR-10, and ResNet-18 on ImageNet, respectively.

Next, in this dissertation, we propose architectural optimizations to guide the

optimal choice of the on-chip interconnect and generate an area and energy optimized

IMC architecture. First, we provide quantitative insights into the effect of the choice of

the interconnect in IMC architectures. We illustrate that the P2P-based interconnect is

incapable of handling a high volume of on-chip data movement for DNNs. Furthermore,

we propose to use analytical models of NoC to evaluate end-to-end communication

latency of any given DNN and determine the optimal choice of interconnect for

any given DNN. We demonstrate that the optimal choice of interconnect in the

IMC architecture results in up to 6× improvement in energy-delay-area product for

VGG-19 inference compared to the state-of-the-art ReRAM-based IMC architectures.

Second, we propose an interconnect-aware area and energy optimization for efficient

IMC acceleration of DNNs. To achieve this, we propose an area-aware optimization

186



technique that improves the PE array utilization. This is achieved by generating a

heterogeneous tile-based IMC architecture that consists of tiles of different sizes, i.e.

with different numbers of PEs where each PE is of the same size. Further, we minimize

the communication energy across a large number of tiles using an NoC architecture

with optimized tile-to-router mapping and scheduling. Experimental evaluations show

up to 62% improvement in PE utilization, 78% reduction in area, and 78% lower

energy-area product for a wide range of modern DNNs such as DenseNet (100,24),

and ResNet-152.

Furthermore, this dissertation proposes a novel chiplet-based IMC benchmarking

simulator, SIAM, and an heterogeneous chiplet IMC architecture to address the limi-

tations of a monolithic DNN accelerator. SIAM bridges the gap between architectural

optimizations and benchmarking of such optimizations for IMC-based architectures.

SIAM integrates device, circuits, architecture, NoC, NoP, and DRAM access estima-

tion under a single roof for design space exploration. To the best of our knowledge,

this is the first open-sourced architectural exploration tool for chiplet-based IMC

architectures. SIAM has a flexible architecture to support multiple DNN to IMC

chiplet and crossbar partition and mapping schemes, thus generating different types

of chiplet-based IMC architectures. Furthermore, SIAM has a low simulation time

ranging from a few minutes to a few hours (4.5Hrs for VGG-16 with 138M parameters)

to support the fast design and benchmarking exploration. We calibrate SIAM against

a published silicon result, SIMBA, a real-world chip from Nvidia. We demonstrate

SIAM’s capabilities by conducting experiments on state-of-the-art DNNs such as

ResNet-110 for CIFAR-10, VGG-19 for CIFAR-100, and ResNet-50 and VGG-16 for

ImageNet datasets.

Finally, this dissertation proposes a heterogeneous big-little chiplet-based IMC
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architecture driven by the non-uniform nature of DNN layers. The proposed architec-

ture utilizes a heterogeneous IMC architecture with big-little chiplets and a hybrid

network-on-package (NoP) to optimize the utilization, interconnect bandwidth, and

energy efficiency. We also develop a custom methodology to map the model onto

the big-little architecture such that the early layers in the DNN are mapped to the

little chiplets with higher NoP bandwidth and the subsequent layers are mapped

to the big chiplets with lower NoP bandwidth. Furthermore, we achieve a scalable

solution by incorporating a DRAM into each chiplet to support a wide range of DNNs

beyond the area limit. Experimental evaluation of the proposed big-little chiplet-based

RRAM IMC architecture for ResNet-50 on ImageNet shows 259×, 139×, and 48×

improvement in energy-efficiency at lower area compared to Nvidia V100 GPU, Nvidia

T4 GPU, and SIMBA architecture, respectively.

In summary, this dissertation comprehensively discusses techniques to achieve scal-

able high performance and energy-efficient in-memory acceleration of DNNs through

a hardware-software co-design approach. We propose novel methods from both an

algorithm and architecture end to achieve reliable RRAM-based IMC acceleration.

Furthermore, the dissertation details architectural optimizations for energy-efficient

IMC architecture design. Finally, the dissertation proposed a chiplet-based IMC

benchmarking simulator and a heterogeneous big-little chiplet-based IMC architecture

for scalable DNN acceleration.
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