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ABSTRACT

This dissertation explores applications of machine learning methods in service of

the design of screening tests, which are ubiquitous in applications from social work,

to criminology, to healthcare. In the first part, a novel Bayesian decision theory

framework is presented for designing tree-based adaptive tests. On an application to

youth delinquency in Honduras, the method produces a 15-item instrument that is

almost as accurate as a full-length 150+ item test. The framework includes specific

considerations for the context in which the test will be administered, and provides

uncertainty quantification around the trade-offs of shortening lengthy tests.

In the second part, classification complexity is explored via theoretical and em-

pirical results from statistical learning theory, information theory, and empirical data

complexity measures. A simulation study that explicitly controls two key aspects

of classification complexity is performed to relate the theoretical and empirical ap-

proaches. Throughout, a unified language and notation that formalizes classification

complexity is developed; this same notation is used in subsequent chapters to discuss

classification complexity in the context of a speech-based screening test.

In the final part, the relative merits of task and feature engineering when designing

a speech-based cognitive screening test are explored. Through an extensive classifi-

cation analysis on a clinical speech dataset from patients with normal cognition and

Alzheimer’s disease, the speech elicitation task is shown to have a large impact on

test accuracy; carefully performed task and feature engineering are required for best

results. A new framework for objectively quantifying speech elicitation tasks is intro-

duced, and two methods are proposed for automatically extracting insights into the

aspects of the speech elicitation task that are driving classification performance. The

dissertation closes with recommendations for how to evaluate the obtained insights

and use them to guide future design of speech-based screening tests.
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Chapter 1

INTRODUCTION

This dissertation centers on applying techniques in machine learning, decision the-

ory, Bayesian inference, and neuropsychological battery design to the task of creating

a screening test. Screening tests are in widespread use in social and behavioral sci-

ences, and are ubiquitous in medical settings. They are used for applications ranging

from identifying youth at risk of joining a gang (Hennigan et al. (2014)), to measuring

quality of life (Michel et al. (2018)), assessing risk of suicide (Delgado-Gomez et al.

(2016)), and checking for early warning signs of cognitive decline (Nasreddine et al.

(2005)), to name but a few.

A screening test can be naturally cast as a classification problem, in which the

goal is to separate between two groups: people who meet the condition being screened

(e.g., at risk of joining a gang or committing suicide) and people who do not. While

relying on intuition from domain experts is a standard approach to screening test

design, and is often necessary for initial versions, a data-driven approach to creating

the test is a viable alternative, in particular for test refinement. By using a data-

driven approach, decades of machine learning research can immediately be applied

to obtain classification models that function as screening tests, given appropriate

training data. These models make predictions on whether new participants belong to

one group or the other by learning patterns from data on past screened participants.

One of the goals of the present work is to emphasize the importance of carefully

designing the data collection protocol that will be used to acquire data for creating

the screening test; this is the same protocol under which new patients will provide

data when taking the screening test. All too often, machine-learning based screening
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tests are instead created based on whatever data is readily available for the task

at hand. We posit that targeted design of the data collection context can produce

substantial gains in terms of the ability of the screening test to discriminate between

groups, in particular for screening tests based on high dimensional data present in

digital health applications. We furthermore produce recommendations for how such

targeted design can be performed, with an example using speech data for a cognitive

screening test.

While performance (e.g., sensitivity and specificity in separating between groups)

is a critical aspect of test design, real world constraints on the context of screening

test administration bring additional considerations. When the results of the screening

test are used to determine the allocation of scarce or expensive resources, such as

community support counselors or extensive neuropsychological testing, for example,

the problem becomes much more challenging. Tests must be designed to account for

these limitations, along with achieving good performance. Other considerations to

be taken into account may include, but are not limited to reliability, brevity, and

correlation with current gold standards for assessing the same condition.

In light of these considerations, another goal of the present work is to disentangle

these distinct, and often opposing, requirements during screening test design. We

provide methods that can be used to explicitly account for these opposing aims, and

quantitatively measure trade-offs between favoring one over the other.

To summarize, this dissertation encapsulates three aims.

The first aim is to highlight the importance of both identifying and prioritizing

the opposing requirements that arise while designing a particular screening test for a

particular application, and to provide a method for explicitly balancing the resulting

trade-offs. Chapter 2 encapsulates this aim.

The second aim is to raise awareness of the importance of the data collection

2



context when designing screening tests, particularly digital health screening tests,

and to provide recommendations for how to design the data collection protocol using

machine-learning based data-driven approaches. Chapter 4 covers this aim.

The third aim is to provide sufficient theoretical background in which both of

the previous two aims can be situated. For the first aim, the theoretical background

is provided in the first part of Chapter 2. For the second aim, we split the relevant

theoretical background into its own chapter, Chapter 3, due to the extensive nature of

the material and the fact that a deep exploration of the relevant topics is interesting

in its own right.

We now provide a brief look into specifics of each of the remaining chapters of this

dissertation.

In Chapter 2, we propose a method for creating a short, tree-based adaptive

test using questions from a large pool from an existing, lengthy screening test. On an

application to screening for youth delinquency in Honduras, we produce a 15-question

tree-based adaptive screening test, and show that it is almost as accurate as a full

traditional screening instrument consisting of over 200 questions. We furthermore

provide a Bayesian decision theory framework for quantifying the uncertainty around

the accuracy lost by shortening the lengthy test. The proposed method can be used

to explicitly choose a screening test length satisfying the desired trade-off between

accuracy and brevity.

In Chapter 3, we delve into theoretical and empirical measures of classification

complexity, and assess the measures on a simulated data example that explicitly

tweaks two levers of classification complexity: class overlap and decision boundary

complexity. This chapter serves as a theoretical foundation for the classification

complexity analysis in the following chapter, which is substantially more involved

than the classification problem presented in Chapter 2. This special prelude chapter

3



is made necessary by the complex nature of a digital screening test, and the lack of

theoretical underpinnings for much of speech-based machine learning literature.

Finally, Chapter 4 is dedicated to speech-based screening tests for detecting cog-

nitive impairment. First, we perform a large-scale analysis comparing classification

complexity of 5 speech feature sets, calculated on 13 different speech elicitation tasks.

The classification problem of interest is separating between cognitively normal partic-

ipants and participants diagnosed with Alzheimer’s disease. Following the large scale

analysis, we propose two tree-based methods that can be used to guide the design of

future speech elicitation tasks, with the goal of reduced complexity of the resulting

speech features.

4



Chapter 2

ADAPTIVE SCREENING TESTS

2.1 Overview

Screening tests, or instruments, serve as an important aid to decision making

in many fields, for example education, mental health, or social work1. These tests

work by sorting the population of test takers into groups which then receive different

follow-up services, such as specific curricula, therapies, medical testing, or support

resources. Designing an effective screening instrument, in other words, developing

the test items and determining the order and mode in which they are administered,

presents many challenges. In this chapter, we look specifically at the trade-off between

two competing goals when designing a screening instrument: brevity and accuracy.

Lengthy instruments can cause exam fatigue for participants as well as adminis-

trators, potentially limiting the number of individuals that can be screened at all. On

the other hand, a conveniently brief assessment with poor accuracy is equally unac-

ceptable on a screening test whose results determine the allocation of costly follow-up

resources.

The problem considered here is: starting with a screening test comprised of many

questions (a large item bank), can a shorter screening test be derived without sacri-

ficing accuracy relative to the full test? The basic statistical challenge in navigating

this trade-off is that the accuracy of both the full-length test and the abridged test

must be estimated from data. A secondary challenge is that computational search for

1The material from this chapter is modified from Krantsevich et al. (2023). Each of the co-authors

have given their written permission for the use of this material; see appendix A.
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subsets of items which preserve accuracy can be computationally infeasible.

In this chapter, we propose solutions to both of these issues. We address statistical

uncertainty in the accuracy of the screening test by framing the design of the abridged

instrument as a problem in Bayesian decision theory. We address the computational

challenge by constructing the adaptive screening test as a decision tree, allowing us

to adapt existing algorithms for the purpose of designing short screening tests.

In Section 2.2, we review previous research in two related areas: adaptive testing

and posterior model summarization. In Section 2.3, we present our Bayesian decision

theory framework, and describe how it can be applied to obtain a screening test

for a particular screening context. Section 2.4 includes a review of prior work in

youth delinquency assessments, a description of our data and model specifications,

and results. We end the chapter with a discussion in Section 2.5, which centers on

evaluating the ethical implications of our proposed method for designing tree-based

adaptive screening tests.

2.2 Previous Work

The work encapsulated in this chapter brings together (at least) two distinct

strands of research. First, we build on recent work using classification trees to design

abridged screening tests. To this literature we add a principled approach to con-

structing the tree and determining its maximum depth, using ideas from Bayesian

decision theory to evaluate the trade-offs between screening tests of different lengths.

We also introduce a novel method for fitting a classification tree, which makes use

of its application in this specific context as a screening test. Second, this Bayesian

decision theoretic approach is a natural extension of ideas developed in recent work

on utility-based posterior summarization. Here, we apply these ideas in the novel

context of adaptive screening tests.
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2.2.1 Background on Adaptive Testing

In this section, we first introduce the concept of adaptive screening tests, then

review relevant literature from both Item Response Theory and tree-based adaptive

tests built using the CART algorithm (Breiman et al. (1984)).

As described in Krohn and Thornberry (2008), Hennigan et al. (2014) and Hare

et al. (2018), reducing the instrument length is an important step in screening tool

design, since long instruments can cause fatigue and frustration for both participants

and test administrators. Additionally, lengthy instruments limit the number of sub-

jects that can be screened due to the time cost of administering a 150+ question

interview. Thus, developing a rapid and accurate screening tool is of the utmost

importance.

An adaptive test is one where the next question a subject is administered depends

on his or her answer to the previous set of questions. Adaptive tests are a powerful

approach for developing shortened screening tests, because while any given test taker

may only see a small number of questions, the wide variety of available questions

allows different subjects to be classified more accurately than if every subject was

administered the same small number of questions.

Traditionally, adaptive tests have been constructed using item response theory

(IRT), and we begin the next part of this section with a review of fundamental

concepts from IRT. Item response theory requires estimating the latent constructs

of each test taker at the time of testing (Wainer (2000)). Examples of IRT-based

adaptive testing in the academic or personnel selection setting include the Graduate

Management Admission Test (Rudner (2010)), the Graduate Record Examination

(Almond and Mislevy (1998)), and the Armed Services Vocational Aptitude Battery

(Sands et al. (1997)).
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Figure 2.1: Progression of an IRT-based adaptive test. Setting up the test requires
choosing an item selection criterion, a method for estimating the latent trait, and a
stopping criterion.

Below we give a brief overview of IRT at a high level. For a comprehensive

overview on IRT, see van der Linden and Hambleton (1997). We also refer interested

readers to Bock (1997) for a full treatise on the history of IRT, Lord et al. (1968) and

Lord (1980) for foundational texts on IRT, and Hambleton et al. (1991), Embretson

and Reise (2000), and de Ayala (2009) for more accessible and recent treatments of

the subject.

An adaptive test designed based on IRT proceeds by starting with an initial risk

level, administering the most informative item (based on the participant’s risk esti-

mate and each item’s item response function), updating the risk estimate based on

their response, and iterating until a stopping criterion is satisfied. This process is

shown in Figure 2.1.

Deploying an IRT-based adaptive test requires several specifications: the item

response function (IRF) family (and calibrating individual item parameters), the

algorithm for estimating the latent trait, the criterion for selecting successive items,

and the stopping criterion (Chang (2004), Chang (2015), van der Linden (2008),

Wainer (2000)). In the next few paragraphs we describe each of these steps and

provide relevant references.
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The item response function is the cornerstone of IRT. It is a mathematical rela-

tionship describing, for each item in the item bank, how the examinee’s response to

that item depends on the latent trait being measured. Each item has item-specific

parameters, which determine how the IRF changes over the range of examinee ability.

In order for an IRT-based adaptive test to be effective, item parameters of the IRF

must be carefully calibrated. Bock and Aitkin (1981), Bock et al. (1988), Muraki and

Carlson (1995), Gibbons and Hedeker (1992), and Gibbons et al. (2007) worked on

Expectation-Maximization (EM) algorithms for estimating parameters. Cai (010a)

and Cai (010b) vastly improve computational speed for parameter calibration in mul-

tidimensional IRT with a Metropolis-Hastings Robbins-Monro algorithm.

Beyond choosing an IRF family and calibrating item parameters, IRT setup also

implies specifying methods for estimating the latent trait at each step, selecting suc-

cessive questions, and terminating the exam. Magis and Râıche (2012), Magis and

Barrada (2017) and Chalmers (2016) provide examples of each of these choices in

their R packages catR and mirtCAT.

There are two major downsides to IRT-based adaptive tests in our application.

One, the real-time estimation of the latent trait parameter requires intense compu-

tational resources, necessitating test administration via a laptop or computer and

making the screening process more challenging. Two, as noted by Gibbons et al.

(2016) and Zheng et al. (2020), many constructs in practical screening or diagnostic

contexts are multidimensional, and IRT tests traditionally only measured a single

latent construct of interest determining the condition being screened. While multi-

dimensional extensions of IRT-based adaptive tests to a handful of dimensions exist

(Haley et al. (2006), Frey and Seitz (2009), Gibbons et al. (2016), Paap et al. (2017),

Wang and Chang (2011), Wang et al. (2012), Yao et al. (2014)Dirven et al. (2017)),

this is likely unsuitable for capturing the relationship between the 38 different scales
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that are represented in the risk assessment for youth delinquency, which we use for a

data application (see Section 2.4.2).

Here, we focus instead on the recent use of classification trees for the purpose of

constructing adaptive tests. The following part of this section reviews relevant work

in tree-based adaptive screening tests.

Tree-based adaptive tests, constructed entirely beforehand using classification

trees, are a recently explored alternative to IRT-based tests, and have already been

used for measuring a variety of medical and behavioral screening test settings. Zheng

et al. (2020) is the first tree-based adaptive test to our knowledge to be used for as-

sessing youth risk of delinquency, which is our demonstrated application as well. The

authors utilized item-response data from crime prevention programs in Honduras,

comparing the performance of several tree-based adaptive tests fit using the CART

algorithm (Breiman et al. (1984)), including one fit to synthetic data generated using

the Synthetic Minority Over-sampling Technique (SMOTE, Chawla et al. (2002)).

The tree-based approach to adaptive testing involves collecting responses to a

large number of items, as well as a true outcome measurement; a classification tree is

then fit to this data to maximize predictive accuracy. Specifically, the Classification

And Regression Trees (CART) algorithm, introduced by Breiman et al. (1984), is

applied to the item response-outcome data. Here we review the basics for reference.

A modern survey of CART and other tree-growing methods can be found in Loh

(2011).

A classification or regression tree T partitions a covariate space X into k disjoint

hypercubes, A1, A2, . . . , Ak, by repeatedly splitting X one variable at a time. Each

internal node of a final fitted tree contains a splitting variable and an associated

cutpoint, xi ≤ b. The number of leaf nodes k corresponds to the size of the partition,

and the data stored in each leaf node of the fitted tree represents the output of the tree
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function. In a regression tree, values µ1, . . . , µk ∈ R are associated to the k leaf nodes,

so that x ∈ Aj implies T (x) = µj, 1 ≤ j ≤ k. In a classification tree with c classes, the

jth leaf node contains a probability distribution {p1j, p2j, . . . , pcj} over the classes, and

for x ∈ Aj, T (x) is the class with the highest probability: T (x) = argmaxi∈{1,...,c}pij.

In the classic CART algorithm, the tree is fit to data with the goal of minimizing

node impurity according to a given criterion (e.g. mean squared error for regression

and Gini index for classification). The algorithm proceeds by first growing a very deep

tree, then pruning back to the final tree. In the growing step, all data begins in the

root node; the variable and cutpoint defining right and left groups with the smallest

combined node impurity is selected as the first split, and the process is recursively

repeated until a stopping criterion is reached. The pruning step takes in a complexity

parameter α and returns the subtree that minimizes R(T ) + α · |T |, where R(T ) is

the risk (total node impurity) of the tree and |T | is the number of leaves. This is the

final fitted tree. For more details on the CART growing and pruning algorithms, see

Breiman et al. (1984).

To use a tree as an adaptive screening test, items are used as splitting variables

and item responses as cutpoints. After fitting the classification tree to item response–

outcome data, a new subject takes the tree-based adaptive test by first answering

the root node item, then moving right or left according to their response and the

cutpoint. Subsequent items are administered based the pattern of item responses.

The assessment ends when the subject lands in a terminal or “leaf” node, with their

predicted outcome class being the one assigned to that leaf node. Alternatively, one

can use the probability of having a positive screening outcome, stored in the leaf node

as the tree output, and assign a “positive” result Y = 1 to subjects having probability

above a certain threshold. The cutoff for this threshold is determined separately. See

Figure 2.2 for an example of the latter approach, with two items.
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Figure 2.2: A tree-based adaptive test. The splitting variables are X =
{Question 1, Question 2}. A subject with responses of 3 and 4, respectively, would
land in the right-most leaf node and have “positive” probability 79%.

In the past several years, multiple groups have experimented with tree-based adap-

tive tests in various settings, including measuring quality of life in Multiple Sclerosis

patients (Michel et al. (2018)), predicting risk of suicide attempt (Delgado-Gomez

et al. (2016)) and reproducing a clinician’s diagnosis of depression (Gibbons et al.

(2013)).

Gibbons et al. (2013) depart from traditional tree-growing approaches by fitting

the tree to a large amount of artificial data, generated as follows (Gibbons and Wang

(2019)): first, item response vectors are created via local perturbations2. Next, a Ran-

dom Forest model (Breiman (2001)) is fit to the original data, and used to predict

artificial outcome classes for the artificial item response vectors. A single classifica-

tion tree is then fit to this large artificial dataset and the fitted tree is used as the

adaptive test. Gibbons et al. (2013) and Gibbons et al. (2016) claim that the use of

artificial data increases stability of the final classification tree, although they do not

discuss details. Our method, while also utilizing artificially generated data, does so

for fundamentally different reasons rooted in past work on posterior summarization

2By “local perturbation” we mean that item response vectors were selected uniformly at random

from vectors that are in a neighborhood of the observed item response vectors in terms of the L1

distance.
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for model selection (see Section 2.2.2). Synthetic data in our case is used to approxi-

mate a posterior distribution of a utility function, and we select the optimal decision

tree according to this utility. Further details are discussed in Section 2.3.2.

While tree-based adaptive tests have several advantages over IRT, including ease of

deployment and fewer modeling assumptions, there is no clear standard to determine

how deep to grow the tree, or in other words, when to terminate the test; instead, this

choice is made by the default regularization parameters in the tree-growing software.

The exam length has important implications; in particular, shortening the exam

too much can lead to unacceptable levels for instrument sensitivity and specificity.

However, to the best of our knowledge there is no standard stopping criterion for a

tree-based adaptive test to ensure a certain sensitivity and specificity.

2.2.2 Background on Utility-Based Posterior Summarization

A recent line of research has recast the problem of variable or model selection

as one of posterior summarization. The idea is to find a single model-summarizing

“action” that minimizes a penalized loss function which favors simple models. In the

present context, the idea is to find a shortened screening test that is suitably accurate

relative to the non-shortened instrument. This line of work began with Hahn and

Carvalho (2015) for linear regression models and has subsequently been expanded in

various directions (Bashir et al., 2019; Puelz et al., 2017; Woody et al., 2019).

The technique explored in these papers is a two stage process: first, a highly

flexible and accurate model is fit; then, draws from the posterior distribution are

projected onto simpler structures, producing low-dimensional model summaries. In

this way, an analyst may visualize how much accuracy (however that is defined) is

lost relative to an “ideal” non-simplified model.

In the screening test setting studied here, the “ideal” non-simplified model is a
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non-shortened screening instrument that incorporates responses to every item in the

item bank in order to predict the probability of a positive test result. In this step, we

may use any state-of-the-art predictive algorithm to obtain an probability estimate of

having a positive outcome. Then, we consider the trade-off in model accuracy that is

made by administering a greatly-shortened adaptive test, in which each subject sees

only a small number out of the many items available. We use a Bayesian decision

theory framework to formalize these trade-offs.

2.3 A Decision Theory Framework for Adaptive Screening

In the following sections, we first review general elements of Bayesian decision

theory, including definitions that will be used throughout the chapter. Following this

review, we explain its particular application in producing a shortened screening test,

and measuring the trade-offs of test shortening for a particular population.

Throughout the chapter, we use calligraphy X and Y to denote the support of

item response vectors and outcome classes, upper-case X and Y to denote a random

vector/variable representing an item response vector or outcome class, and lower-case

x and y to denote a single instantiation of the random vector/variable. As is standard

in Bayesian statistics, we treat model parameters as random variables, rather than

fixed parameters of the data generating process of X and Y ; the random vector of all

unknown model parameters is represented by θ, with Θ being its support and θ(j) a

single instantiation. When referring to observed data, we use subscripts x1:n and y1:n;

synthetic data are denoted by x̃ and ỹ.

2.3.1 Review of Bayesian Decision Theory

In this section we provide an introduction to Bayesian decision theory using the

terminology of Parmigiani and Inoue (2010), according to which an analyst chooses
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from among a set of actions, Γ. Each action γ : X → {0, 1} has consequences that

depend on an unknown state of the world, y ∈ Y . In order to evaluate the merits of

possible actions, a quantitative value is assigned to each possible (action, state) pair,

either a utility value U(γ(x), y) or a loss value L(γ(x), y). With the utility function

framework, which we employ, the analyst chooses the action that maximizes (in some

sense) a utility.

We adopt the expected utility principle, which implies the chosen action maximizes

expected utility over a target population with density f(x, y). This expected utility

is

EU(γ) := E[U(γ(X), Y ))] =

∫
X

∫
Y
U(γ(x), y)f(x, y) dy dx, (2.1)

and the optimal action is

γ∗ = argmaxγ∈ΓEU(γ).

To summarize, our decision theory formulation consists of:

(1) A utility function U.

(2) A target population defined by a distribution function FX,Y .

(3) A set of actions, denoted Γ.

These three elements come together in defining our expected (integrated) utility

EU(γ) = E[U(γ(X), Y ))], where γ ∈ Γ and E(·) denotes expectation with respect

to FX,Y .

In our application to screening tests for detecting a particular condition, an action

γ is a tree-based adaptive screening test, which takes the subject’s item responses x ∈

X , and assigns an outcome of either “positive” (γ(x) = 1) or “negative” (γ(x) = 0).

Subjects with a positive outcome are then subsequently presented with follow-up care,

such as further intensive testing or enrollment into a community counseling program.

We apply the preceding framework to the screening test problem as follows:
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(1) Our utility function, U , is a weighted average of sensitivity and speci-

ficity.

(2) Our target population is the group of subjects to be screened for

risk of a particular condition, such as joining a gang, attempting

to commit suicide, or having cognitive impairment. We let f(x, y)

denote the joint density function of item responses and true outcome

values for subjects in the target population.

(3) Our set of actions, Γ, is a collection of candidate screening tests of

varying lengths. (This action space will be populated using a tree

growing algorithm, detailed later.)

Section 2.3.2 describes these three steps in greater detail.

In practice, the density function f(x, y) is unknown and must be estimated from

available data. To do so, we will parametrize f by a vector θ, which we will esti-

mate via Bayesian inference. We choose a prior π(θ) and, after conditioning on data

(x1:n, y1:n), arrive at a posterior π(θ | x1:n, y1:n). Rather than integrating over the

estimation uncertainty in θ as would be done in traditional Bayesian decision theory,

we will instead consider posterior uncertainty of the utility EU(γ, θ), defined as

EU(γ, θ) :=

∫
X

∫
Y
U(γ(x), y)f(x, y | θ) dy dx. (2.2)

As a function of θ, EU(γ, θ) is itself a random variable, which we denote EUθ(γ) for

notational convenience. In this work, we will be interested in the posterior distribution

of EUθ(γ) induced by the posterior distribution over θ.

By integrating over the posterior, we can also obtain an overall expected utility

for a particular screening test γ:
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EU(γ) =

∫
Θ

[∫
X̃

∫
Ỹ
U(γ(x̃), ỹ)f(x̃, ỹ | θ) dỹ dx̃

]
π(θ | x1:n, y1:n) dθ,

=

∫
Θ

U(γ, θ)π(θ | x1:n, y1:n) dθ.

(2.3)

It is this quantity that is optimized in traditional Bayesian decision theory; we will

instead mainly be interested in posterior exploration of the random variable EU(γ, θ).

2.3.2 Applying the Framework to Create an Adaptive Screening Test

Here we describe how the three steps of the Bayesian decision theory framework

are applied to adaptive screening tests. Recall that our set of actions Γ is comprised

of adaptive screening tests γ for assessing the probability of having the condition

being screened. Each test γ consists of two parts:

(1) A binary tree T : X → (0, 1) representing the screening test (see

Figure 2.2, right). T predicts the probability T (x) of a positive test

result, given item responses x ∈ X .

(2) A threshold function ThrC : (0, 1)→ {0, 1} that maps the probability

T (x) to an outcome class prediction via a cutoff C ∈ [0, 1]:

ThrC(T (x)) =


0, “negative” if T (x) < C

1, “positive” if T (x) ≥ C

Put together, the adpative test is γ(·) = ThrC(T (·)), where γ(x) ∈ {0, 1} for any

given set of item responses x. The framework described in the next three sections

provides a way to compare different screening tests of this form.

Step 1 of the framework is specifying a utility function U . The adaptive test γ

should maximize EUθ(γ), the expectation of U with respect to the density f(x, y)

(which is parameterized by θ) over our target population.
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Figure 2.3: Each cutoff C results in a
particular (Specificity, Sensitivity) point
on the ROC curve. Lowering the cutoff
increases sensitivity and decreases speci-
ficity. Choosing a cutoff means choos-
ing an acceptable (Specificity, Sensitivity)
combination, or point on the ROC curve.

Figure 2.4: The cutoff that maximizes
the utility function (2.4) for w = 0.5 is
the point on the ROC curve that maxi-
mizes the perimeter of the shaded rectan-
gle. The height and width of the rectan-
gle are sensitivity and specificity, respec-
tively, for that cutoff.

In our application, we want the utility function to carry practical significance for

the adaptive test. Two important quantities are sensitivity and specificity, which

measure the true positive rate and true negative rate, respectively:

Sensitivity = Pr(γ(X) = 1 | Y = 1), Specificity = Pr(γ(X) = 0 | Y = 0).

As a reminder, γ is an adaptive test mapping item responses X to an outcome class Y ,

which represents the screening test result. We can generically label the test result as

either “positive” or “negative” (“positive” means Y = 1, “negative” means Y = 0).

Ideally, sensitivity and specificity would both be 1. In practice, there is a trade-

off between these two quantities, based on the cutoff C. A high cutoff means that

many predicted probabilities will be below the threshold and consequently labeled

“negative”, leading to high specificity and low sensitivity. A low cutoff leads to more

“positive” class predictions, increasing sensitivity and reducing specificity. This trade-

off can be visualized in a Receiver Operating Characteristic (ROC) curve, shown in

Figure 2.3.

To incorporate the importance of both sensitivity and specificity, our expected
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utility EUθ(γ) is equal to a weighted average of the two, for a user selected weight

w ∈ (0, 1):

EUθ(γ) = w · Sensitivity(γ) + (1− w) · Specificity(γ). (2.4)

For w = 0.5, this utility function can be directly visualized within a ROC curve

as shown in Figure 2.4.

Since the final adaptive tree and the associated sensitivity and specificity highly

depend on w, we recommend carefully selecting the value of the weight in conjunction

with stakeholders who understand the implications of favoring sensitivity or specificity

for the population where the test will ultimately be deployed. Multiple values of w

can and should be examined via the methods presented in Section 2.4.4.

For completeness, we introduce the point-wise (individual) specification of the

utility function U which induces this expected (population level) utility. Formally,

we define our utility function U as

U(γ(x), y) =


U0 if y = 0, γ(x) = 0

U1 if y = 1, γ(x) = 1

0 otherwise

, (2.5)

where

U0 =
1− w

Pr(Y = 0)
, U1 =

w

Pr(Y = 1)
.

Our expected utility over the target population is

EU(γ) = E[U(γ(X), Y )]

= E
[

w

Pr(Y = 1)
· 1(γ(X) = 1, Y = 1) +

1− w
Pr(Y = 0)

· 1(γ(X) = 0, Y = 0)

]
= w · Pr(γ(X) = 1, Y = 1)

Pr(Y = 1)
+ (1− w) · Pr(γ(X) = 0, Y = 0)

Pr(Y = 0)

= w · Sensitivity(γ) + (1− w) · Specificity(γ),
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as desired.

With the utility function defined in 2.4 and a value of w specified, the optimal

action γ∗ is the tree-based adaptive test (i.e., “positive” probability prediction and

associated cutoff) that maximizes this weighted average. Formally,

γ∗ = argmax EU(γ) = argmax {w · Sensitivity(γ) + (1− w) · Specificity(γ)} .

Since the expected utility of a given action γ is a simple expression at the popula-

tion level, we can evaluate EUθ(γ) over a sample from the target population by directly

computing sensitivity and specificity of γ for a particular set of item responses and

true outcome classes. To be more specific, after drawing a sample {x̃ij, ỹij | θ(j)}Ni=1

from the target population (where x̃ij is an item response vector, ỹij is the outcome

class, and θ(j) is a single fixed draw from the posterior π(θ | x1:n, y1:n)—see Section

2.3.2), we compute a draw EUθ(j)(γ) as

EUθ(j)(γ) = w ·
∑N

i=1 1(γ(x̃ij) = 1, ỹij = 1)∑N
i=1 1(ỹij = 1)

+ (1− w) ·
∑N

i=1 1(γ(x̃ij) = 0, ỹij = 0)∑N
i=1 1(ỹij = 0)

.

(2.6)

In the next section, we describe how to sample from the target population in order

to obtain draws of EUθ(γ) for any given action γ.

Step 2 of the Bayesian decision theory framework is specifying a target population

over which we seek to maximize EUθ(γ). In our application, that means defining a

specific subgroup from the population for whom the screening test will be targeted.

For example, if the screening test is being designed to screen people ages 50-59 in

Canada for symptoms of Major Depressive Disorder, our target population would be

Canadian residents aged 50-59.

After specifying the target population, the optimal action γ∗ (the “optimal” adap-

tive test) would maximize the weighted average of sensitivity and specificity for this

group specifically. The target population can mean the entire population of a par-
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ticular country, or can be more specific to people of a certain age, zip code, and so

forth.

After specifying the target population, we draw synthetic samples from the joint

density f(x, y) of the item responses X and outcome class Y in the target population.

We use the composite model specification

f(x, y) = f(x)f(y | x)

and specify the random variable θ parameterizing f(x, y) as

θ = (θX, θY ),

with θX parameterizing f(x) and θY parameterizing f(y | x). This specification allows

for additional flexibility in modeling the relationship between the item responses X

and the probability of a “positive” outcome Y = 1. Practically, we draw synthetic

data from f(x, y) as follows:

(1) Fit each component of the composite form using a Bayesian model:

one for f(x) with unknown parameters θX, and one model for f(y | x)

with unknown parameters θY .

(2) For each posterior draw θ(j) = (θ
(j)
X , θ

(j)
Y ), 1 ≤ j ≤ D, draw samples{

x̃ij, p̃ij, ỹij | θ(j)
}N
i=1

from the conditional predictive distribution f(x̃, ỹ | θ(j)). Here, x̃ij

are the synthetic item responses, p̃ij = E(Ỹ | x̃ij, θ(j)
Y ) is the synthetic

probability of belonging to class Y = 1, and ỹij is the synthetic class

status.

Taken together, we will have a sample of size N for each posterior draw θ(j), 1 ≤

j ≤ D, which is N ·D = M synthetic data in total; this data is denoted {x̃k, p̃k, ỹk},

1 ≤ k ≤M .
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Since we fit two models corresponding to different components of the same com-

posite model specification, we use a single dataset for fitting the models for f(x) and

f(y | x). Modeling details and specifics on sampling are provided in Section 2.4.3. As

a reminder, the “synthetic data” in this setting is merely a computational approach

for evaluating the integrals at the heart of the decision theory framework.

Next, we describe Step 3 of the framework, populating the action space Γ. In

our application, Γ consists of tree-based adaptive tests; each γ ∈ Γ is of the form

form γ(·) = ThrCT (T (·)), where T is a binary regression tree and CT is the cutoff

for classification into the “positive” group. The number of possible binary trees is

much too large for brute force enumeration3; many possible heuristics are available,

and different procedures will lead to higher-utility screening instruments than others.

Here we focus on one method for populating our action space, motivated by the

Bayesian decision theory context.

We first obtain a regression tree T by applying a particular tree growing algorithm

(described shortly) to large Monte Carlo samples from the posterior predictive distri-

bution f(x̃, ỹ | x1:n, y1:n). We then choose the cutoff CT that optimizes the expected

utility (2.4) relative to T over these samples.

Our proposed heuristic for obtaining the regression tree T relies on a novel stopping

criterion we call maxIPP, for “maximum Items Per Path.” The maxIPP criterion

denotes the maximum number of unique items in each root-to-leaf path of the decision

tree defining the adaptive test, and consequently, the number of items each individual

will be administered during their screening test. The tree is grown using a variation

of the CART algorithm; it achieves the maxIPP constraint by restricting the items

available for splitting in a given path after m unique items have been used.

Presuming that item responses can be stored for future splits, the maxIPP of a

3In our application our item bank consists of 173 items, each with up to 6 possible cutpoints.
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tree-based adaptive test is precisely the maximum number of questions any participant

will answer. The maxIPP characteristic is similar to maximum depth; to see the

distinction, consider the tree in the right of Figure 2.2, which has a maximum depth

of 3, but a maxIPP of 2.

For each value of maxIPP = m, we use an adapted version of the CART algorithm

to obtain an approximately optimal tree. CART consists of a tree growing phase,

followed by a tree pruning phase. Our modification uses the usual greedy algorithm

(minimizing sum-of-squares) for the growing phase, with a twist: once m unique

variables have been used as splitting variables in any particular path, only these

same variables are considered as candidates for future splits down this path. This

algorithm is implemented as a modification to the rpart package, with maxvpp (the

application-agnostic term meaning “maximum variables per path”) available as an

option for rpart.control. For the pruning stage, we start at the root tree T0 in the

list of subtrees returned by rpart, and for each next tree in the list, compute the

reduction in root mean square error (on a holdout set) relative to the previous tree.

If this reduction is not above a given threshold4 for at least 10 consecutive subtrees

in the list, we return to the last subtree that met this threshold and call this tree T ∗m.

Categorizing trees by maxIPP is useful in our context of shortening lengthy in-

struments. While maximum depth also limits the number of items, maxIPP allows

for further splitting on items already administered, without counting them against

the tree “cost”.

For a given m, we calibrate an approximately optimal tree with maxIPP m (de-

noted T ∗m) to synthetic data drawn from the posterior of θX and the posterior predic-

4We found that using 10−4 for maxIPP < 5 and 10−5 for maxIPP between 5 and 15 works well

in practice; we did not consider maxIPP values above 15 as they produced very similar results to

those near 15.
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tive of X̃. Specifically, our synthetic data used for calibrating T ∗m are {x̃k, Ē(Ỹ | x̃k)},

1 ≤ k ≤M , where the second element is the posterior predictive “positive” probabil-

ity, given x̃k:

Ē(Ỹ | x̃k) =

∫
ΘY

E(Ỹ | x̃k, θY )π(θY | x1:n, y1:n) dθY . (2.7)

As a reminder, π(θ | x1:n, y1:n) is the posterior density of θ, having observed data

(x1:n, y1:n). We use the term “calibrate” rather than “fit” for the process of applying

the maxIPP algorithm to synthetic data, in order to reserve the term “fit” for the

context of fitting the Bayesian models to real data.

Having obtained T ∗m, the cutoff CT ∗
m

is then optimized relative to the (uncondi-

tional) posterior predictive expected utility:

CT ∗
m

= argmax
C∈[0,1]

EU(ThrC(T ∗m))

= argmax
C∈[0,1]

[w · Sensitivity(ThrC(T ∗m)) + (1− w) · Sensitivity(ThrC(T ∗m))],

where the inner expression on the right-hand side (i.e., the weighted average of sen-

sitivity and specificity of ThrC(T ∗m)) is approximated using

w ·
∑M

k=1 1(ThrC(T ∗m(x̃k)) = 1, ỹk = 1)∑M
k=1 1(ỹk = 1)

+(1−w) ·
∑M

k=1 1(ThrC(T (x̃k)) = 0, ỹk = 0)∑M
k=1 1(ỹk = 0)

. (2.8)

In summary, T ∗m is our final regression tree with maxIPP m that predicts the

probability of being “positive” given a set of item responses, and ThrCT∗
m

maps these

probabilities to a predicted class status 0 or 1 (0 = “negative”, 1 = “positive”).

The threshold is chosen relative to the specific regression tree T ∗m, to optimize the

utility function for the target population. We use γ∗m = ThrCT∗
m

(T ∗m) to denote our

approximately optimal tree-based adaptive test of length m.

Our action space Γ consists of one adaptive test γ∗m for each value of m under con-

sideration for a given application. We emphasize this is just one proposed heuristic
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for obtaining an adaptive screening test that optimizes Equation (2.4), while admin-

istering at most m items. One can obtain adaptive tests with m items using other

tree growing methods calibrated with other synthetic or real data. Each of these can

be compared using the criteria described in the following paragraphs before choosing

a final adaptive test; see appendix B for comparisons of several methods.

Once we have (at least) one action γ∗m for each test length m, we need to choose

the value of m for the final adaptive screening test; although this is not a separate step

of the framework, it is the final step of using our method to design an adaptive tree-

based screening test. In general, shorter screening tests can only degrade accuracy

(utility), so the relevant questions are “by how much?” and “with what statistical

uncertainty”?

To address these questions we define a random variable (with respect to the pos-

terior distribution) ∆θ,m that characterizes the utility loss due to shortening to m

questions. That is, we are interested in the difference in expected utility between that

of the shortened exam EUθ(γ∗m) and that of the full, non-shortened, exam EUθ(γ∗).

Here, the optimal non-shortened action is γ∗(·) = ThrC∗(Ē(Ỹ | ·)), where Ē(Ỹ | ·)

is as in (2.7), and ThrC∗ is optimized relative to the posterior predictive expected

utility; specifically, ThrC∗ is optimized using Equation (2.8), but with Ē(Ỹ | x̃) in

place of T ∗m(x̃). We denote this difference as

∆θ,m = EUθ(γ∗m)− EUθ(γ∗). (2.9)

To obtain Monte Carlo samples of ∆θ,m, for each posterior draw θ(j) compute

∆θ(j),m = EUθ(j)(γ∗m)− EUθ(j)(γ∗),

where EUθ(j)(γ) is computed using (2.6).

Boxplots may then be plotted for each value of m. See Figure 2.5 for an example

with boxplots of ∆θ,m varying the number of items m and the weight w that defines
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the utility function U . These utility difference plots visually represent our statistical

uncertainty of the trade-offs between assessment sensitivity/specificity and length.

2.3.3 Comparison to Existing Methods for Designing Adaptive Tests

In Section 2.3.2 we proposed a novel algorithm for obtaining adaptive tests of

different lengths to populate the action space, our second main contribution. Here

we compare to existing work on tree-based adaptive tests, as an IRT-based test is

not appropriate for our application (see Section 2.2.1). For comparisons between

tree-based adaptive tests and IRT, see Gibbons et al. (2016) and Zheng et al. (2020).

As far as we know, current tree-based adaptive tests are fit using existing algo-

rithms; built-in hyperparameters decide test length, and the optimization criteria

(typically Gini index) is not specific to the adaptive testing context. Typically, the

decision tree is fit to item response–outcome data. Two exceptions are Gibbons et al.

(2016), who fit the tree to locally perturbed artificial data for increased model stabil-

ity, and Zheng et al. (2020), who utilized SMOTE to help with class imbalance.

The purpose of synthetic data in our application is to provide an MCMC approxi-

mation of the expected utility integral over the target population. We obtain this data

by modeling the somewhat high-dimensional joint density of item responses–outcome

class via two sophisticated Bayesian models, and use a context-specific utility func-

tion (i.e. sensitivity and specificity) for tree optimization, rather than Gini index.

Finally, our novel maxIPP stopping criterion is an application-specific design choice,

exploiting the fact that items can be reused for splitting.

Note that traditional Bayesian decision theory advocates optimizing γ directly

with respect to (2.3). We depart from this tradition in two respects. One, we will

restrict the length of the screening test γ and perform several constrained optimiza-

tions. Two, we include posterior uncertainty in our optimal utility by examining the
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posterior distribution of EUθ(γ) via plots, rather that taking the expectation over Θ

when computing EU(γ).

2.4 Screening for Youth Delinquency in Honduras

Our central application for the proposed method is the design of a brief screening

test to identify youth who are at high risk of falling into delinquent behavior, so that

they may receive additional social support intended to mitigate that risk. Specifically,

we consider data from Honduras, where decades of political, civil, and economic

instability have made gang recruitment and violent crime a major concern (Meyer

(2019), UNODC (2018)).

For the past two decades, the “Northern Triangle” nations of El Salvador, Guatemala

and Honduras in Central America have faced pressing challenges with political, civil

and economic instability. Poverty and unemployment are widespread, and fragile ju-

dicial systems weakened by corruption are unable to curb the high levels of crime and

violence that threaten many communities (Meyer (2019)). The region is a major traf-

ficking corridor for transporting illegal drugs from South America to the United States

(USD (2020)), and Honduras and El Salvador in particular face some of the highest

homicide rates in the world, despite declines in recent years (UNODC (2018)). These

challenges, along with family systems splintered by crime victimization and migra-

tion, result in many youth being susceptible to recruitment by gangs (Meyer (2019))

and other problematic behaviors.

Certain targeted interventions, such as family counseling and community support

resources, have demonstrated significant promise in reducing risk factors of criminal

behavior for at-risk youth in Honduras (Katz et al. (2021)). In order to allocate these

limited resources in an effective way, a screening instrument is deployed to identify

youth with the highest risk of delinquency. We propose our Bayesian decision theory
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framework for designing such a test.

In the following sections, we review past work on screening tests of youth delin-

quency risk, describe our data on youth delinquency in Honduras, and then demon-

strate how the method can be used to create a tree-based adaptive test to screen for

risk of violent behavior.

2.4.1 Previous Work on Youth Risk Assessment

Our method adds to a well-established literature on youth risk assessment, specifi-

cally their application to crime prevention programs aimed at youth in Central Amer-

ica. In this context, we present a novel contribution by reanalyzing data from Hon-

duras and show that an adaptive screening test consisting of only a handful of items

can provide comparably accurate risk assessment to a questionnaire with over a hun-

dred questions.

For a broad overview of the difficulties facing youth in Honduras, please consult

Berk-Seligson et al. (2014). Here we focus on risk assessment tools used in crime

prevention, which has recently gained momentum as an effective alternative to more

aggressive suppression strategies.

As a key component of crime prevention, so-called “secondary prevention” pro-

grams identify individuals within high risk communities who are at an especially high

risk for criminal activity, and provide them with targeted interventions. To effectively

execute this secondary prevention strategy, high risk youth must first be identified

via a screening tool and are subsequently enrolled in the intervention.

For the model utilized between 2013 and 2015 in Honduras specifically, high risk

youth were first identified using a Spanish adaptation of the Youth Services Eligibility

Tool (YSET) (Hennigan et al. (2014)), and then enrolled in a seven-module family

counseling program. This model represented the first time empirical data was uti-
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lized for identifying the youth with the highest risk of criminal behaviors. Following

initial successes, a more locally focused risk assessment tool was created, incorporat-

ing screening tools from around the world. The data for the present work consists

of responses to this revised Honduran YSET, and is described more fully in Section

2.4.2.

The risk assessment tools utilized in Honduras are based on a large body of re-

search surrounding the risk factor paradigm. Risk factors are characteristics that

increase the likelihood of a given problem behavior, whereas protective factors are

ones that reduce this likelihood (Arthur et al. (2002)). These factors are typically

categorized under domains such as community, family, school, peer, and individual

(Howell and Jr. (2005)). Table 2.1 provides a list of risk and protective factors mea-

sured by the Instrumento de Medicion de Comportamientos (IMC). Data using this

instrument were used for obtaining the results in the following sections.

The risk factor paradigm entered the youth delinquency sphere in 1992 with

Hawkins et al. (1992), who provided a comprehensive review of the literature on

risk and protective factors related to substance abuse in adolescents. In subsequent

years, multiple groups developed youth risk assessment tools, including three that

were used to expand the item bank for the revised Honduran YSET: the Communi-

ties That Care (CTC) Youth Survey (Arthur et al. (2002), Arthur et al. (2007)), the

Eurogang Youth Survey (Weerman et al. (2009)), and the Youth Eligibility Services

Tool (YSET) (Hennigan et al. (2014), Hennigan et al. (2015)), a Los Angeles-specific

adaptation of the empirically-developed Gang Risk of Entry Factors instrument.

While these instruments have been deployed in countries around the world, they

were largely developed for use in the United States and Europe. Research on youth

risk assessments for secondary prevention programs within developing countries in-

cludes Katz and Fox (2010) and Maguire et al. (2011), focusing on the Caribbean
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Table 2.1: Risk and protective factors measured by the IMC.
Domain Risk Factors Protective Factors

Community Transitions and mobility Rewards for prosocial involvement

Low neighborhood attachment Opportunities for prosocial involvement

Community disorganization

Laws and norms favorable to drug use

Perceived availability of drugs

Family Family history of antisocial behavior Attachment

Parental attitudes favorable towards drug use Opportunities for prosocial involvement

Poor family management Rewards for prosocial involvement

Family conflict

Weak parental supervision

Family gang influence

School Academic failure Opportunities for prosocial involvement

Low commitment to school Rewards for prosocial involvement

Peer/Individual Rebelliousness Belief in the moral order

Rewards for antisocial involvement Rewards for prosocial involvement

Favorable attitudes towards drug use Interaction with prosocial peers

Favorable attitudes towards antisocial behavior Social skills

Perceived risks of drug use

Friends’ use of drugs

Interaction with antisocial peers

Intentions to use

Antisocial tendencies

Critical life events

Impulsive risk taking

Neutralization of guilt

Negative peer influence

Peer delinquency
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nation of Trinidad and Tobago, and Webb et al. (2016), focusing on the Northern

Triangle nation of El Salvador. These works including protective factors in addition

to risk factors, which provide an avenue to learn about positive interventions the com-

munity can undertake. For more information on risk and protective factors in low-

and middle-income countries, we refer the reader to the systematic reviews of Murray

et al. (2018) on risk and protective factors for antisocial behavior, and Higginson et al.

(2018) on risk and protective factors related to gang membership.

2.4.2 Data on Youth Delinquency in Honduras

The instrument used to collect data for this project was the Instrumento de Medi-

cion de Comportamientos (IMC), a revised version of the original Honduran YSET,

which was itself a Spanish adaptation of the YSET developed by Hennigan et al.

(2014). Under a collaboration with the Center for Violence Prevention and Com-

munity Safety at Arizona State University, the item bank for the Honduran YSET

was expanded to include protective factors and increase the number of risk factors

measured, drawing on the Communities That Care survey, Eurogang Youth Survey,

and others. This revised item bank was further refined to increase predictive power

in the local context.

Our data consists of responses to the IMC from 3972 school-attending youth. The

IMC covers basic demographics about the youth, along with 173 items measuring

38 risk and protective factors over four domains: community, family, school and

peer/individual. The risk and protective factor scales are provided in Table 2.1. Our

variable X consists of responses to these 173 items.

Our data also include answers to 18 items that measure seven problem behaviors.

Three items measure violent behavior, four items measure property crime, three items

measure gang involvement, three items measure alcohol and drug use, two items mea-
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sure drug sales, two items measure weapons carrying, and one item measures truancy.

In what follows, the outcome Y is a binary variable denoting whether or not the youth

is at risk of violent behavior. The three items related to violent behavior are:

(1) In the past 6 months, have you hit someone with the intention of

hurting them?

(2) In the past 6 months, have you attacked someone with a weapon?

(3) In the past 6 months, have you used a weapon or force to get money

or goods from someone?

In this application, a “positive” test result means that the youth is “at-risk” of en-

gaging in violent behavior. Youth are deemed to be “at-risk” (Y = 1) if they answer

“yes” to any of the three items above. Items measuring the other six problem behav-

iors are not utilized for this analysis.

Connection to previous notation. We have responses to the 173 items X and an

outcome variable Y denoting whether or not the youth is in the “at-risk” group for

violent behavior (“at-risk” = 1,“not-at-risk” = 0). The variable γ denotes an adap-

tive test which takes the youth’s responses to a subset of the 173 items and predicts

a risk class. For our purposes, γ is composed of two parts: a binary decision tree T

that maps item responses to a risk probability, and a threshold C that determines

risk class based on risk probability. We will analyze the quality of a risk assessment γ

using an expected utility function EU ; EU(γ) is a weighted average of the sensitivity

and specificity of the risk assessment γ.
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2.4.3 Modeling

We model the data (X, Y ) compositionally as f(x, y) = f(y | x)f(x). We model

f(x) as a Gaussian copula factor model and f(y | x) as a logistic XBART model using

the bfa and xbart packages, respectively; this model specification is quite flexible.

As with any Bayesian modeling endeavor, we recommend interrogating model

quality and adjusting hyperparameters accordingly via standard posterior predictive

checks, including plots to avoid model misspecification; see, for example, Gelman

et al. (1996) and Gabry et al. (2019). These model checks should be performed on

training data, and not adjusted after obtaining results on hold-out or validation data.

This is the approach we used to determine the number of factors in the model for

f(x).

The model we use for f(x) is a Gaussian copula factor model (GCFM), proposed

by Murray et al. (2013) and implemented in the R package bfa. Gaussian copula

factor models unite Gaussian factor models with the Gaussian copula. The joint

distribution of the fitted model assumes the dependence structure of the Gaussian

factor model, but with marginal distributions estimated nonparametrically from the

data. The joint dependence structure of the Gaussian factor model is reasonable con-

sidering the factor-based nature of the latent constructs being measured by adaptive

tests. Additionally, the nonparametric estimation of the marginal distributions is an

advantage over methods that assume normal marginals.

As described in Carvalho (2006), in a k-dimensional Gaussian factor model, the

ith observation of a p× 1 random vector z can be represented as

zi = Λfi + νi,

where Λ is a p× k matrix of factor loadings, fi is a k × 1 vector of factor scores with

fi ∼ N(0, I), and νi is a p×1 noise vector, with νi ∼ N(0,Ψ), Ψ = diag(Ψ1, . . . ,Ψp).
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Under these assumptions, z ∼ N(0,ΛΛT + Ψ).

Intuitively, a copula is a joint distribution function that allows for separation of

the marginals from the dependence structure; the copula completely describes all

dependencies among variables. A joint distribution F has a Gaussian copula if it can

be written as

F (X1, X2, . . . , Xp) = Φp(Φ
−1(F1(X1)),Φ−1(F2(X2)), . . . ,Φ−1(Fp(Xp)) | C),

where Φp is the p-dimensional multivariate Gaussian CDF with correlation matrix C,

and Φ−1 is the inverse Gaussian CDF.

The Gaussian copula factor model starts by assigning the latent variable z a k-

dimensional Gaussian factor model: fi ∼ N(0, I), zi | fi ∼ N(Λfi, I). We then define

x as

xir = F−1
r

Φ

 zir√
1 +

∑k
t=1 λ

2
rt

 ,

where F−1
r (t) = inf{t : Fr(x) ≥ t, x ∈ R} is the pseudo-inverse of Fr, 1 ≤ r ≤ p.

By making this specification, F (x) has a Gaussian copula with covariance matrix

ΛΛT + I, and marginals F1, F2, . . . , Fp.

The bfa R package presented in Murray et al. (2013) fits a Gaussian copula

factor model to data using a parameter-expanded Gibbs sampling scheme. Their

method allows for inference on joint distributions of mixed continuous and discrete

variables, which is necessary for modeling the joint distribution of the item responses

and demographic variables from the IMC data. We fit the Gaussian copula factor

model to item response and demographic data from the target population in the IMC

data, then obtain samples {x̃i}ki=1 using the predictive distribution of the fitted model.

Note that the GCFM was fit to an augmented vector including age: (X,Age).

This allows us to condition on age in defining the posterior prediction distribution

that represents our target population. While we could have accomplished this by only
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fitting the GCFM to data from a particular age group, fitting the model to the entire

population and sampling conditionally after the fact allows for borrowing information

from the larger population, and deploying it in service of a subpopulation with fewer

data. We only use item responses as splitting variables (inputs) for the adaptive tests.

Sensitivity analysis to the number of factors via posterior predictive checks re-

vealed that 3 or more factors yielded similar conclusions; results for the k = 3 factor

specification in the Gaussian factor copula model are reported here.

We model f(y | x) using a log-linear Accelerated Bayesian Additive Regression

Trees (XBART) model that builds on the log-linear Bayesian Additive Regression

Trees (BART) model for multinomial logistic regression of Murray (2020) with a

modification of the “accelerated” model fitting algorithm of He et al. (2018) developed

by Wang and Hahn (2021).

In the log-linear Accelerated Bayesian Additive Regression Trees (XBART) model,

the probability of observing class s given covariate xi in a setting with c classes follows

a logistic specification

πs(xi) =
h(s)(xi)∑c
t=1 h

(t)(xi)
.

Following Murray (2020), log[h(s)(xi)] =
∑L

l=1 g(xi, T
(s)
l , µ

(s)
l ) is given a sum of

trees representation, where g(xi, T
(s)
l , µ

(s)
l ) is a tree with splits given by T

(s)
l and leaf

mean parameter µ
(s)
l . This yields

πs(xi) =
exp[

∑L
l=1 g(xi, T

(s)
l , µ

(s)
l )]∑c

t=1 exp[
∑L

l=1 g(xi, T
(t)
l , µ

(t)
l )]

.

In our application, we utilize this multinomial logistic XBART model with c = 2

classes to predict the probability of being “at-risk”, given item responses xi, as Ē(Ỹ |

xi) = πs=1(xi).

The log-linear XBART classification model provides class probability predictions

Ē(Ỹ | x̃k), the probability that a youth with item responses x̃k is in the “at-risk”
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group. This modeling choice provides the predictive accuracy and Bayesian uncer-

tainty quantification abilities of BART-based models, with the computational speed-

up of the XBART family and the classification-specific adaptions implemented by

Wang and Hahn (2021). Notably, this approach is substantially less constrained than

typical IRT approaches, which require that the risk probability relates to the item

response via the same low-dimensional latent factors. Here, while we assume that

the item responses have a latent dimension of k = 3, the risk probability can depend

directly on every single item individually (with no dimension reduction). However,

regularization priors in the tree ensemble representation favor trees that utilize far

fewer than every available item.

After fitting a Gaussian copula factor model for f(x) and an XBART model for

f(y | x), we can obtain data {x̃ij, p̃ij, ỹij | θ(j)} from the conditional predictive distri-

bution f(x̃, ỹ | θ(j)). The entire process can be summarized as follows:

(1) Fit a Gaussian copula factor model with parameters θX to item re-

sponse data x1:n.

(2) Fit a multinomial logistic XBART model with parameters θY to item

response/risk status data (x, y)1:n.

(3) Fixing the jth posterior draw of model parameters θ
(j)
X , draw N sam-

ples {x̃ij}Ni=1 from the conditional predictive distribution f(x̃ | θ(j)
X )

using the fitted Gaussian copula factor model.

(4) Compute the probability p̃ij = Pr(Ỹ = 1 | x̃ij, θ
(j)
Y ) using the jth

posterior tree ensemble from the fitted multinomial logistic XBART

model.

(5) Sample the class label ỹij ∼ Bernoulli(p̃ij).

(6) Our dataset conditioned on the jth posterior draw θ(j) = {θ(j)
X , θ

(j)
Y }
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is {x̃ij, p̃ij, ỹij | θ(j)}Ni=1.

Additionally, during step (4), we compute the posterior predictive mean probabil-

ity

Ē(Ỹ | x̃ij) =
1

D

D∑
j=1

p̃ij ≈
∫

ΘY

E(Ỹ | x̃k, θY )π(θY | x1:n, y1:n) dθY .

By repeating this process D times, 1 ≤ j ≤ D, we obtain D population-level samples

from our target population. In total, the synthetic data is

{x̃k, p̃k, Ē(Ỹ | x̃k), ỹk}Mk=1, M = N ·D.

We use synthetic data {x̃k, Ē(Ỹ | x̃k)}Mk=1 for calibrating the regression tree with

m items, T ∗m. We use {x̃k, ỹk}Mk=1 for choosing the optimal cutoff CT ∗
m

.

We also use {x̃k, ỹk}Mk=1 for doing uncertainty quantification plotting, but broken

up into D sample populations as {x̃ij, ỹij | θ(j)}Ni=1, 1 ≤ j ≤ D. For each value of j,

we compute EUθ(j)(γ) for both

γ∗m(·) = ThrCT∗
m

(T ∗m(·)) and γ∗(·) = ThrC∗(Ē(Ỹ | ·))

using Equation (2.6). The draws of the differences ∆θ(j),m between these utilities are

then used for uncertainty quantification of ∆θ,m = EUθ(γ∗m)− EUθ(γ∗).

For this analysis, we drew N = 1000 Monte Carlo samples of the form

{x̃ij, p̃ij, Ē(Ỹ | x̃ij), ỹij | θ(j)}Ni=1

for each of D = 1000 posterior parameter draws θ(j), 1 ≤ j ≤ 1000. We drew another

100,000 synthetic data from the same fitted models for the pruning step from our

description of populating the action space in Section 2.3.2.

We take a moment to connect the concepts introduced here to the previous nota-

tion from the beginning of this section. Recall that we fit the Gaussian copula factor
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model to item responses and age from the IMC data, then obtain synthetic item re-

sponse data {x̃k}Mk=1 from the target population using the predictive distribution of

the fitted model.

The plots in the next section compare the utility of the shortened screening test

γ∗m to the utility of the full-length test γ∗, which uses all 173 items on the IMC.

The instrument γ∗(·) = ThrC∗(Ē(Ỹ | ·)) is composed of a regression function Ē(Ỹ |

·) predicting the probability of the Honduran youth being “at-risk”, followed by a

thresholding function ThrC∗ to predict risk class status. We fit the regression function

as an XBART model using the IMC data, then obtain predicted “at-risk” probabilities

Ē(Ỹ | x̃k) for the synthetic item responses x̃k. The thresholding function is chosen

to optimize the utility function for the target population, given predicted “at-risk”

probability Ē(Ỹ | x̃k).

The shortened instrument with m items, γ∗m(·) = ThrCT∗
m

(T ∗m(·)), is composed of

a binary regression tree T ∗m with maxIPP = m, and a thresholding function ThrCT∗
m

.

The adapted test T ∗m is calibrated using synthetic data {x̃k, Ē(Ỹ | x̃k)}, 1 ≤ k ≤ M .

The thresholding function for γ∗m is computed similarly to the one for γ∗, except that

it optimizes the cutoff using “at-risk” probabilities T ∗m(x̃k) rather than Ē(Ỹ | x̃k).

Sections 2.4.4, 2.4.5, and 2.4.6 provide a demonstration of the three steps of the

method using the data for youth delinquency in Honduras. Section 2.4.7 provides

out-of-sample validation of the method on a hold out set, along with a subgroup

analysis using the same hold-out set.

Throughout Sections 2.4.4, 2.4.5, and 2.4.6 we demonstrate the method fitting

everything in sample. Out of sample validation results are provided in Section 2.4.7.

Recall the three steps in the decision theory framework laid out above: 1) a utility

function for measuring the “goodness” of the assessment; 2) a target population; 3) a

method for obtaining assessments of different lengths. Sections 2.4.4, 2.4.5, and 2.4.6

38



demonstrate how the utility difference plots change as we vary these three choices,

respectively, when applied to the Honduras youth risk assessment data.

2.4.4 Demonstration of Changing the Utility Function

First, we highlight how the plots change when we vary Step 1, the utility function.

Figure 2.5 shows boxplots of the difference in expected utility for three different

weights w in the utility function from Equation (2.4).

For each weight w and each value of m, we compute draws of the utility differ-

ence ∆θ(j),m = EUθ(j)(γ∗m)−EUθ(j)(γ∗) using synthetic data from each posterior draw

j; the posterior distribution of ∆θ,m is then visualized via a boxplot of the draws

{∆θ(j),m}Dj=1. The distribution of ∆θ,m can vary depending on our choice of both m

and w.

Figure 2.6 provides a visual example of how (Specificity(γ), Sensitivity(γ)) for

γ ∈ {γ∗, γ∗m}, in conjunction with w, lead to different draws of ∆θ,m for m = 3. In

particular, as w gets closer to 0 or 1, it is easier for the shortened test γ∗m to achieve

a utility value closer to that of the non-shortened instrument γ∗. Practically, a value

of w close to 0 or 1 amounts to strongly favoring either sensitivity or specificity, at

the expense of the other; such decisions can have unintended ramifications, which are

discussed further in Section 2.5.1.

2.4.5 Demonstration of Changing the Target Population

Next, we vary Step 2, the target population. The boxplots in Figure 2.7 represent

the same quantity as Figure 2.5 (namely, the distribution of ∆θ,m). However, Figure

2.7 shows expected utility differences for adaptive tests calibrated using two target

populations: all Honduran youth, and youth ages 15 and older. We chose to target

youth ages 15 and older since age 15 marks the transition from middle school to sec-
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Figure 2.5: Each boxplot represents the posterior distribution of ∆θ,m = EUθ(γ∗m)−
EUθ(γ∗) for a particular number of items m, and a particular value of w in the
utility function from Equation 2.4. The samples of ∆θ,m that form the boxplot are
obtained by computing EUθ(j)(γ) (via sensitivity and specificity) for γ∗m and γ∗, on a
synthetic data sample {x̃ij, ỹij | θ(j)}Ni=1. This sample is obtained from posterior draw

θ(j) = (θ
(j)
X , θ

(j)
Y ) of the two Bayesian models.

Figure 2.6: Here we show how to obtain posterior draws of ∆θ(j),m from posterior

draws θ(j). The four plots show ROC curves obtained from synthetic data samples
{x̃ij, ỹij | θ(j)}Ni=1 for j = 100, 200, 300, 400. The values of j shown here were arbitrarily
chosen for demonstration and are not inherently important. The ROC curves are
computed based on the predicted “at-risk” probabilities Ē(Ỹ | x̃ij) and T ∗m(x̃ij) from
the XBART action γ∗ and maxIPP = 3 action γ∗m=3 (respectively) for each specific
jth population. For each given w, there is exactly one cutoff C which maximizes
the utility function EUθ(γ) = w · Sensitivity(γ) + (1 − w) · Specificity(γ) over all
sample populations (all values of j), for γ = γ∗m=3 = ThrCT∗

m
(T ∗m(·)). That cutoff C

corresponds to a particular (Specificity, Sensitivity) pair for each value of j (for both
the XBART and maxIPP= 3 actions), which are visualized as points on the ROC
curves from those two actions for the jth synthetic population. Those Sensitivities and
Specificities are used to compute the realized utility values EUθ(j)(γ∗m) and EUθ(j)(γ∗),
along with their difference, ∆θ(j),m, which contributes one point to the boxplots in
Figure 2.5 for the given values of w and m = 3. Notice that values of w closer to
1 lead to differences in sensitivity between γ∗ and γ∗m=3 (distance between points on
the Sensitivity axis) being smaller than differences in specificity (distance between
points on the Specificity axis). This can be observed in the points corresponding to
w = 0.75 and, to a lesser extent, w = 0.6. The opposite behavior is observed for
w = 0.25 and w = 0.4.
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Figure 2.7: Utility difference plots when calibrating the trees to a different target
population. Plots here are shown for a target population being every youth in the
full IMC data (“All”), and those youth ages 15 and older (“Ages 15+”). The utility
plots are quite similar, although exam truncation seems to result in a greater loss of
utility (relative to the full screening instrument) for the older group. Calibrating the
adaptive test to the subgroup also results in slightly more certainty compared to the
full population.

ondary school, as well as the quinceañera ceremony. To change the target population,

we used the GCFM fit to the entire dataset, but then drew samples {x̃ij, ỹij | θ(j)}

using the conditional predictive distribution, f(x̃, ỹ | x1:n, y1:n,Age ≥ 15).

The expected utility plots are similar; however, targeting the subgroup when

designing the adaptive test yields slightly less variability in the posterior estimates of

the utility difference. Interestingly, these similar results arise based on adaptive tests

that use different splitting items and cutpoints. Figures 2.8 and 2.9 show the trees

with maxIPP of 3 representing the adaptive tests for these two target populations.

The items corresponding to these trees and their response options are listed in Table

2.2. Notice that because of the maxIPP criterion, these trees have a maximum depth

of 5, but have only 3 unique items in each root-to-leaf path.
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Figure 2.8: Tree representing the adaptive test calibrated using the entire group of
Honduran youth as the target population. The items and item responses correspond-
ing to each node label and cutpoint, respectively, are found in Table 2.2. This figure
and Figure 2.9 were created using the rpart.plot package (Milborrow (2021)).

Figure 2.9: Tree representing the adaptive test calibrated using the group of Hon-
duran youth ages 15 and older as the target population. The items and responses
corresponding to the node labels and cutpoints are found in Table 2.2.
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Table 2.2: Items corresponding to the splitting variables present in the tree-based
adaptive tests of Figures 2.8 and 2.9. The right-most column shows the target popu-
lation for which this variable is included in its adaptive test.

Variable Item Response Options Population(s)

IRf3 In the past 6 months, how many of your best 1 = None of my friends All Youth

friends have tried beer, wine or hard liquor 2 = 1 of my friends

(for example, vodka, whiskey or gin) when 3 = 2 of my friends

their parents didn’t know about it? 4 = 3 of my friends

5 = 4 of my friends or more

Yc5 In the last year, have you fought or had a 0 = No All Youth

problem with a friend? 1 = Yes

FRd3 ctc People in my family often insult or yell at 1 = No! All Youth

each other. 2 = no

3 = yes

4 = Yes!

FRa6 Has anyone in your family had a severe alcohol 1 = No All Youth

or drug problem? 2 = Yes Age ≥ 15

Yh5 During the last six months, how many friends 1 = None All Youth

have belonged to or have joined a gang or 2 = A few Age ≥ 15

“mara”? 3 = Half

4 = Most

5 = All

Yd2 Sometimes I find it exciting to do things that 1 = Strongly disagree Age ≥ 15

could get me in trouble. 2 = Disagree

3 = Neither agree or disagree

4 = Agree

5 = Strongly agree

Ya6 People “blame me” for lying or cheating. 1 = Never Age ≥ 15

2 = Rarely

3 = Half the time

4 = Often

5 = Always

2.4.6 Demonstration of Changing the Action Space

Finally, we can consider different algorithms for populating the action space. In

this work we have focused on the composite action γ = ThrC(T ), a regression tree

T predicting “at-risk” probability followed by a cutoff C that determines risk status.
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Our proposed method for populating the action space is a regression tree obtained by

applying the maxIPP growing and pruning method to synthetic data obtained from

the posterior predictive distribution, and a threshold optimized to the utility function

for the tree T .

Many other methods are possible. For example, one can calibrate the regression

tree using a stopping criterion like maximum depth, or apply the algorithm to differ-

ent synthetic data or to real data; a classification tree can be used as the adaptive

test directly instead of a regression tree followed by a cutoff. We explore these possi-

bilities in appendix B. The main takeaway is that tree-based adaptive tests that do

not optimize the utility function at all during their design are significantly worse at

reproducing the utility of a full-item assessment, relative to adaptive tests that do.

2.4.7 Out-of-Sample Corroboration

The proposed method will be empirically reliable only insofar as the posterior

predictive distribution suitably reflects the distribution of future outcomes. To verify

that our Gaussian copula factor and XBART models are succeeding in this regard, we

perform the following hold-out experiment. Our data was collected in two different

time periods, the first wave between September and November of 2017 and the second

wave between January and February of 2018. The earlier-collected data is our training

set and consists of 2787 youth; the later data is our testing set and consists of 1185

youth. Simply put, this experiment answers the question: how would our approach

have performed if we had applied it in 2018, based on the 2017 data?

Figure 2.10 demonstrates the expected utility difference plots we obtained by

applying our method on the training data, and the actual expected utility differences

on the testing data. To compute the actual expected utility, we used our proposed

method on the training data to obtain a tree-based adaptive test for each value of
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Figure 2.10: Plots of the projected difference in expected utility produced via our
method on the training data, and the actual difference in expected utility computed
on the test data; these are results for w = 0.5.

maxIPP, along with a full-item (non-shortened) test. We also produced the boxplots

representing our uncertainty around ∆θ,m using the training data alone. We then

predicted risk classes on the testing set using both the tree-based adaptive test and

the full item test, and computed the difference in empirical utility over the testing

set. The empirical utility on the testing set is always within our predicted range, in

fact within the 25th and 75th quantiles of the distribution.

Beyond utility differences relative to the full item test, practitioners are interested

in the absolute sensitivity and specificity of the instrument. Table 2.3 provides out-

of-sample sensitivity and specificity values for the adaptive tests from a subset of

maxIPP values shown in Figure 2.10, along with adaptive tests calibrated using utility

functions with w = 0.4 and w = 0.6. Increasing w results in higher sensitivity and

lower specificity, as expected. For full results on maxIPP 2 to 15, along with these

quantities for other types of adaptive tests, see the tables in appendix B.

Finally, we use the holdout set to show how specifying a particular target popula-

tion can improve sensitivity, specificity, or overall utility when building adaptive tests.

The two target populations under consideration are “All Youth” and “Ages 15+”.

Table 2.4 shows the number of participants in each of the age groups from our data in
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Table 2.3: Sensitivity and specificity on the test data for five adaptive tests, opti-
mized for w = 0.4, 0.5, 0.6. The synthetic data for calibrating the adaptive tests was
obtained from models fit to the training data only.

Number of Items Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

w = 0.4 w = 0.5 w = 0.6

3 0.396 0.841 0.778 0.522 0.882 0.355

6 0.507 0.816 0.771 0.587 0.931 0.300

9 0.514 0.812 0.750 0.609 0.924 0.354

12 0.528 0.803 0.757 0.600 0.931 0.362

15 0.528 0.803 0.757 0.600 0.931 0.372

Table 2.4: Counts of participants in each age group in the training and testing sets.

Data Ages 8-14 Ages 15+ Total

Training Set 2297 (82.4%) 490 (17.6%) 2787 (100%)

Testing Set 898 (75.8%) 287 (24.2%) 1185 (100%)

both the training and testing sets. For the adaptive test with target population “All

Youth”, we fit the Gaussian copula factor model and logistic XBART model to the

entire training data and obtained synthetic data using these models, which was then

used for calibrating the tree-based adaptive test. For the adaptive test with target

population “Ages 15+”, we used the same models fit to the entire population, but

drew synthetic data from the group of youth ages 15 and older using the conditional

predictive distribution f(x̃, ỹ | x1:n, y1:n,Age ≥ 15). We then calibrated a tree-based

adaptive test to this synthetic data. This process was repeated for maxIPP = 2

to 15, leaving a total of 28 regression trees. We computed the optimal cutoffs that

maximized the utility function (2.4) for w = 0.6.

After calibrating the trees and computing the optimal cutoffs (using the training

data only) to obtain 28 tests, both sets of adaptive tests were then deployed to

predict “at-risk” status on youth ages 15 and older in the testing set, and sensitivity,

specificity, and utility for this group were computed for each of the 28 tests. We chose

a value of 0.6 for this analysis, because we are targeting a group of older youth that
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have been shown to receive positive treatment effects from the secondary prevention

counseling program (see Katz et al. (2021)). For this group it is more important to

not miss the youth that are at the highest risk, than to prevent “not-at-risk” youth

from mistakenly receiving the intervention.

Figure 2.11 shows the differences in empirical out-of-sample sensitivity, specificity,

and overall utility between the adaptive tests calibrated to the two different popula-

tions, for each value of maxIPP; the absolute quantities are given in Table 2.5. The

adaptive tests optimized for “All Youth” with w = 0.6 are not appropriate for this

particular subpopulation, because those questions indicate that all of the youth ages

15+ in the test set are “at-risk” (leading to 0 specificity, which clearly is unacceptably

low). Trying to increase sensitivity for the entire population results in items that are

uninformative for the older youth. When we calibrate the adaptive test specifically

to this subgroup, we sacrifice only a small amount of sensitivity for huge gains in

specificity.

The improvement by focusing the test to a specific group is an important find-

ing related to focused deterrence and multiple gating. Focused deterrence implies

introducing interventions specific to the group where they will be deployed; multiple

gating means targeting youth for secondary prevention programs who are at the high-

est risk of the delinquent behavior and living within the highest risk neighborhoods

(Katz et al. (2021)). Both of these methodologies are important aspects of successful

community-based crime prevention programs (Abt and Winship (2016), Katz et al.

(2021)), and using accurate screening instruments for the population where an inter-

vention will be introduced is critical to their successful implementation.

While the lack of specificity on the older group of youth using an adaptive test

calibrated to all youth is alarming, this highlights the importance of using adaptive

tests designed specifically for the group on which they will be deployed. All adaptive
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Figure 2.11: Differences in sensitivity, specificity, and utility for youth ages 15+ in
the testing data, between two adaptive tests (γAll Youth and γAges 15+) created using
training data. The adaptive test γAll Youth is designed to approximately optimize
expected utility for all youth, and γAges 15+ for youth ages 15+. The bar height in the
upper plot is Sensitivity(γAges 15+) − Sensitivity(γAll Youth) computed on youth ages
15+ in the testing data, and similarly for specificity and utility.

tests that are created using a machine learning (ML) algorithm, such as CART, do

so by heuristically optimizing a given criterion over a specific dataset. This may have

unintended consequences when the data for which the test was optimized differs in

distribution to the specific group on which the screening test will be deployed.

The benefit of our proposed method for obtaining the adaptive test (chosen to

optimize the criteria in our Bayesian decision theory evaluation framework), is that

these choices are directly placed in front of the screening test designer when the adap-

tive test is created. One must think critically about the target population for which

the test is optimized, and the utility function being optimized–these are decisions

that are inherently made in other tree-based adaptive test procedures, but under the

hood.
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Table 2.5: Specificity, sensitivity, and utility with w = 0.65 on youth ages 15 and
older from the testing data, for adaptive tests calibrated on two different target pop-
ulations in the training data: youth ages 15 and older, and all youth. “Target Popu-
lation” shows the population from which synthetic data were obtained for calibrating
the test.

Target Population Age ≥ 15 All Youth Age ≥ 15 All Youth Age ≥ 15 All Youth

maxIPP Sensitivity Specificity Utility

2 0.826 1.000 0.386 0.000 0.650 0.600

3 0.913 1.000 0.290 0.000 0.664 0.600

4 0.913 1.000 0.349 0.000 0.687 0.600

5 0.891 1.000 0.353 0.000 0.676 0.600

6 0.957 1.000 0.365 0.000 0.720 0.600

7 0.935 1.000 0.394 0.000 0.719 0.600

8 0.935 1.000 0.390 0.000 0.717 0.600

9 0.913 1.000 0.411 0.000 0.712 0.600

10 0.913 1.000 0.411 0.000 0.712 0.600

11 0.913 1.000 0.415 0.000 0.714 0.600

12 0.913 1.000 0.444 0.000 0.725 0.600

13 0.913 1.000 0.402 0.000 0.709 0.600

14 0.913 1.000 0.423 0.000 0.717 0.600

15 0.913 1.000 0.423 0.000 0.717 0.600

A further benefit is that data from a larger population can be used to adapt a

screening test to a subpopulation where fewer data are available. We borrow infor-

mation from the whole population when fitting the GCFM model, but sample from

the subpopulation of older youth using the conditional posterior predictive distribu-

tion from that fitted model. This conditional sample is then used for calibrating the

adaptive test to the subgroup. This is an unusual and exciting example of transfer

learning—utilizing the information that an ML algorithm obtains from larger datasets

when applying the algorithm in service of a slightly different problem where fewer data

are available.
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2.5 Discussion

From a practical perspective, the summary of our analysis is highly encouraging:

a much shorter assessment can be given that will nearly match the predictive accu-

racy (as characterized by the weighted sensitivity and specificity) of the much longer

original assessment. Specifically, we were able to design adaptive tests of varying

lengths for the target population of youth ages 15 and older, living in 5 of the poorest

and most violent cities in Honduras. Out-of-sample sensitivity over 0.9 and specificity

over 0.4 was achieved for an adaptive test that uses only 9 items. This is an increase

in specificity of 0.4 over an adaptive test optimized to youth of all ages together. If

a more convenient screening tool leads to more individuals being screened, limited

crime mitigation resources can be employed in a more effective manner.

However, precisely because the stakes are so high, it is critical to carefully inspect

the algorithms and proposed methods for potential ethical implications. Accordingly,

we conclude this chapter with an examination of potential pitfalls of our proposed

method. The importance of such considerations have recently been emphasized un-

der the broad heading of “ethical AI” (artificial intelligence) (cf. Johndrow and Lum

(2019) and Chouldechova and Lum (2020)). Two main concerns include disparate im-

pacts on particular subpopulations, and the difficulty in interpreting or interrogating

automated decisions from sophisticated data-driven algorithms.

2.5.1 Evaluating Disparate Impact

Biased training data can result in risk assessment tools that produce unethical or

unfair decisions for particular groups of people, in domains such as criminal justice

(Chouldechova and Lum (2020), Chouldechova (2017), Eckhouse et al. (2018)) and

child welfare (Chouldechova et al. (2018)). For example, historical data may unfairly
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indicate that a certain racial group is at higher risk of re-arrest, simply due to more

aggressive policing in their neighborhoods; a statistical model trained on this type of

historically biased data will produce unethical decisions on important questions like

pre-trial release.

Similarly, our method is only as unbiased as the data used to train the model.

In our particular case, the outcome used in the IMC data is self-reported; unlike in

United States recidivism data, for which “re-arrest” is an inaccurate and racially-

biased proxy for “re-offense” (see Johndrow and Lum (2019)), the delinquency data

on the IMC is based on the individual youth self-reporting whether they engage in

the behavior, as opposed to school or law enforcement records that may be biased by

historical law enforcement patterns.

While our assessment would disadvantage a group of youth who were systemat-

ically dishonest in their self-reported violent behavior, and it is possible that there

may be such a group, such patterns in the youth represented in the IMC have thus far

not been observed; the scales used in the IMC were chosen for their efficacy, internal

validity and reliability (Katz et al. (2021)).

The nature of historically advantaged or disadvantaged groups also differs: the

youth for whom the current application is intended are fairly homogeneous. These

youth are of the same race and ethnicity and experience similar levels of poverty, living

in the poorest neighborhoods within the five most dangerous and violent cities in

Honduras, which is itself one of the most violent countries in the world. While ethnic

minority groups live in parts of rural Honduras, this analysis has been undertaken for

the scope of application in five particular urban neighborhoods under consideration.

Although our algorithm is unlikely to result in disparate impacts among racial

groups in these neighborhoods (simply due to lack of heterogeneity), there is a possi-

bility for differential impact by age, and possibly other features like gender or religion.

51



In Katz et al. (2021), positive treatment effects from the secondary prevention pro-

gram were observed for older youth (divided at age 14 and older), whereas mixed

treatment effects were observed for the younger group. This highlights the impor-

tance of careful selection of the weight w in designing the adaptive test.

As a concrete example, in the randomized controlled trial (RCT) which continued

after the initial IMC data collection (Katz et al. (2021)), services were given to 994

youth deemed to be “at-risk”, out of 4495 screened. Supposing that 994 of the 4495

screened youth were truly “at-risk”, a decrease in sensitivity of 5% would result in

50 more “at-risk” youth being denied the intervention, whereas a 5% rise in speci-

ficity would result in 175 more “not-at-risk” youth being prevented from incorrectly

receiving the intervention. An adaptive test that trades this increased specificity for

decreased sensitivity may be acceptable within a younger group, but not for an older

one.

Similarly, harmful consequences can arise from a shift in the target population

between test creation and deployment. An adaptive test that optimizes utility for

youth over a large age range (e.g., 8-17) may not have acceptable accuracy for youth

within a more specific age group; indeed, this was the case for youth ages 15+ (see

Section 2.4.7).

To summarize, the possibility for disparate impact using our proposed method,

as with most automated decision making via ML algorithms, hinges on whether or

not particular subpopulations are given due consideration in the test design process.

Attention and care must be given to the selection of the target population and the

weight w when optimizing the adaptive test, to ensure the best outcomes for the

youth being screened for risk of delinquency.
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2.5.2 Ability to Scrutinize Automated Decisions

Independent from concerns surrounding flawed training data and the differential

impacts it creates, the sheer complexity of a data driven risk assessment invites skepti-

cism. Flaws can be hard to identify when the inputs and outputs are high dimensional

numerical vectors (Chouldechova and Lum (2020)). On this point, we consider our

method to be a significant advance over existing approaches.

One, our final risk prediction assessment tool is a single decision tree, which can

easily be understood and adapted as needed to reduce potential bias or problematic

prediction patterns. For example, if a particular item results in lower predicted risk

probability based on behavior that is believed to increase it, that item can be excluded

from the item pool and the decision tree re-calibrated to the remaining items.

Two, the inputs to our method are transparent – a utility function, a target pop-

ulation, and a set of candidate instruments generated by a heuristic. Sensitivity to

these choices can and ought to be investigated; the execution of such comparisons is

precisely what our novel decision theory framework facilitates. Although the process

is quite involved, its transparency and flexibility should make it less prone to unantic-

ipated flaws than ad-hoc methods of abridging screening tests, whether data-driven

or human guided.

Most importantly, the application-specific nature of many aspects of this work

answer the call for locally-designed screening tests that are suitable for the specific

setting in which they will be deployed. In particular, we note the relevance of de-

signing a screening test with a specific population in mind, and of choosing the most

important utility function for evaluating the goodness of that screening test.
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2.5.3 Summary of Our Contribution

As a final summary, we recap the contributions made in this chapter. In Honduras

and other low- and middle-income countries, critical community support resources

are in short supply and must be used efficiently and effectively. In order to allocate

secondary prevention resources in the best manner possible, an accurate and short

screening instrument is needed that will allow administrators to screen as many youth

as possible, while not sacrificing too much by way of the specificity and sensitivity

of the instrument. While tree-based adaptive tests are a promising avenue for such

instruments, a clear method for understanding the losses induced by shortening the

instrument has been lacking.

To address this problem, we have presented a novel three-step framework for de-

termining how to shorten screening instruments in a principled way, which consists of

choosing a utility function, specifying a target population, and comparing a populated

action space of screening tests via expected utility.

To emphasize, while particular choices for each of these steps were presented in

our analysis of the Honduras data, many other choices are possible. For example, the

specific value of w in the utility function can be chosen based on whether specificity or

sensitivity is more important; or, another utility function involving other classification

metrics can be chosen. The target population can be specified as youth of a particular

age, neighborhood, gender, school, or any other subpopulation for which a specific

screening instrument may be useful, as long as some data for this target population

are available. And while we have focused on tree-based adaptive tests relying on

the CART algorithm in this analysis, one can utilize other tree-growing algorithms

for populating the action space, or compare IRT-based adaptive tests as well. The

framework itself is generic, in the sense that once a practitioner has chosen a utility
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function, a target population, and an algorithm for populating the action space, the

same procedure can be applied to understand the trade-offs of shortening the exam

to different lengths, or of making a different choice at one of the three steps.

These choices should be made carefully by policy-makers and local stakeholders,

aided by researchers who can explain the trade-offs associated with one decision versus

another. Researchers can provide insight via the utility plots, or similar plots created

for uncertainty quantification of sensitivity or specificity at the relative or absolute

level. Local-stakeholders and policy-makers can assess which outcomes are most im-

portant for the group being screened in their specific application. These groups

working in concert should adjust the assessment to accommodate desired levels of

sensitivity and specificity for the particular population in which it will be deployed,

as much as possible considering practical limitations (e.g. counselor availability in

our application).
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Chapter 3

CLASSIFICATION COMPLEXITY

3.1 Overview

In this chapter, we introduce ideas from statistical learning theory, information

theory, and empirical measures of data complexity to analyze the complexity of a

classification problem. We explore quantification of classification difficulty from both

a theoretical and empirical point of view.

Before beginning, we briefly situate this chapter in the context of the preceding and

following chapters. Digital screening tests present a significantly more complicated

classification problem compared to the last chapter on item-based screening tests. The

difficulty arises because data used for digital screening tests are very high dimensional

in nature, on the order of millions of samples taken at discrete time points. This data

must be transformed to a lower-dimensional set of meaningful features to be used

in a classification model that serves as the screening test. Because screening test

performance entirely relies on the nature of the underlying classification problem, the

impact of this transformation on said difficulty is of immediate interest.

In the next chapter, we will explore the impact of both the data collection protocol

(the speech elicitation task) and the subsequent feature extraction step on classifica-

tion difficulty, and provide recommendations for how to design processes that reduce

the classification complexity of the resulting data. To discuss classification difficulty

in a meaningful way, the concept of classification difficulty must first be defined.

What are the key factors that underpin how likely we are to be successful in solving

the classification problem with a particular dataset, and how well will the models
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(screening tests) we obtain perform on unseen data in the future? We seek to provide

both theoretical and empirical answers to these questions in the body of this chapter,

which serve as a backdrop for understanding the results on speech-based screening

tests in Chapter 4.

The questions raised above have been the subject of decades of fundamental re-

search in two key areas, statistical learning theory and information-theoretic diver-

gence measures. We review these areas in the first two sections and explicitly discuss

their contributions in measuring two key aspects of classification complexity.

More recently, a body of work has emerged on empirical quantities from a par-

ticular dataset that inform classification complexity. In the third section, we review

such data complexity measures and discuss how they relate to the themes presented

from the statistical learning theory and information theory literature.

In the final section, we explore a simulated example in which two aspects of clas-

sification complexity (decision boundary complexity and class overlap) are explicitly

controlled and co-varied. We show how the statistical learning theory, information

theory, and empirical data complexity measures provide information on the underly-

ing complexity of the simulated data.

First, we present definitions to be used throughout. In a generic binary classifi-

cation problem, we assume there is an underlying data generation process in which a

supervisor (or oracle), given a set of inputs X, assigns a true outcome y according to

P (Y | X). The inferential goal is to learn, from a finite set of independent and identi-

cally distributed (i.i.d) data {(x1, y1), · · · , (xn, yn)} drawn according to P (X, Y ), some

model of the data generation process, which allows for prediction of of class label ỹ

for a new datapoint x̃ drawn from P (X).

Reiterating using more formal notation, in the first part of this chapter we review

key concepts from three bodies of literature that formalize the process of learning
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about the world from data:

• Statistical learning theory provides theoretical guarantees on rates of con-

vergence of a learning algorithm (i.e., a process for selecting a function from a

function family) to an optimal function for a given learning problem; in other

words, how close are the obtained classification functions to the optimal one

that can be achieved. Statistical learning theory furthermore informs how well

the learned classification function will generalize to unseen data. Results on

these questions are relative to a specific learning algorithm and function fam-

ily, and may be distribution (i.e., P (X, Y ))-specific or distribution-agnostic; the

emphasis is on the function family, or hypothesis class, and the learned function.

• Information theoretic divergence measures provide theoretical guarantees

around how difficult a classification problem is, based on the specific distribution

P (X, Y ) underlying the data generation process for that classification problem.

The results are agnostic to the specific function chosen for future classification;

emphasis is on the underlying joint probability density P (X, Y ), and the optimal

performance that any learning algorithm can achieve for the probability density

defining the classification problem.

• Measures of classification complexity (renamed measures of dataset com-

plexity in the recent literature) provide empirical estimates on the difficulty of

a classification problem, both for specific function families and in a function-

agnostic matter. These measures approach the problem of quantifying clas-

sification difficulty from the opposite direction, using empirical, rather than

theoretical, methods applied to a specific finite sample from P (X, Y ).

The next three sections discuss each of these three bodies of literature in turn.
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3.2 Statistical Learning Theory

A foundational text in statistical learning theory is Vapnik (1995), which presents

a readable summary on key concepts originally presented in Vapnik and Chervonenkis

(1971). Vapnik (1995) reviews the key breakthroughs from a number of heavyweights

surrounding the advancements of learning theory up until the mid-1990’s, including

Andrey Tikhonov, Emanuel Parzen, Andrey Kolmogorv, and Ray Solomonoff, along

with himself and Alexey Chervonenkis. We recommend this introductory chapter

for a pleasant journey through pivotal discoveries in four areas (ill-posed problems,

nonparametric statistics, the law of large numbers in functional space, and algorithmic

complexity) that influenced the development of statistical learning theory.

The remaining text provides background and main results on the questions learn-

ing theory aims to address, such as “How can one control the rate of convergence

(the rate of generalization) of the learning machine?” In answering these and other

questions, Vapnik’s results were comprehensive, in that he produced asymptotic the-

oretical results, nonasymptotic theoretical results for both large and small samples,

and practical algorithms to which these results could be applied. One of these practi-

cal algorithms included the invention of the Support Vector Machine (SVM), (Cortes

and Vapnik (1995)), which still receives widespread use today in a diverse set of appli-

cations (Cervantes et al. (2020)). A succinct overview of Vapnik’s main questions and

the theories introduced to answer them can be found in Vapnik (1999). We present

relevant definitions and a few key results in this section, also drawing on ideas from

Bousquet et al. (2004).

In order to situate this review in an understandable context, we first pose three

questions for which statistical learning theory, in particular the results reviewed here,

provides some answers. These questions are posed informally, in order to connect

59



the type of discussions that machine learning practitioners have on a regular basis to

the body of work on statistical learning theory. The questions will also be used to

anchor the many results and examples presented throughout this section, which are

necessarily to adequately capture key themes from statistical learning theory.

The three questions are:

(1) How do we create models that learn about the world using data?

(2) How close is my model to an optimal one for this problem?

(3) How well will my model work on new data in the future?

We begin with Question (1): How do we create models that learn about the world

using data? Statistical learning theory answers this question by (a) introducing a

formal notation to discuss relevant aspects, (b) defining the optimization problem

to be solved, and (c) providing different processes for approaching this optimization

problem. We begin by formalizing the relevant aspects of learning about the world

through data.

At a high level, statistical learning theory formalizes the process of learning about

the world through a series of observations, which consists of making observations,

creating a model based on those observations, and using the model to make predictions

about future observations. Formally, the process of learning from data assumes three

parts: 1) a probability distribution P (X) over X , from which samples x ∈ X are

drawn; 2) a supervisor that assigns y ∈ Y for each x ∈ X according to P (Y | X); and

3) a learning algorithm that can realize a set F of functions f : X → Y . F is called

the hypothesis class, also called a concept class in Probably Approximately Correct

learning theory, or a function class in more recent literature.

Note that, for consistency with the rest of this thesis, we use F to denote the set

of functions in YX , rather than using F to denote their counterparts in {0, 1}{X ,Y,f}
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that map the function prediction and true outcome to a loss value when f is binary

(as is done in Bousquet et al. (2004)).

In order to choose a learning algorithm from F , we need to define a formal goal

that will delineate which functions from F are better than others, in other words, to

define the optimization problem to be solved. In statistical learning theory, the goal

is to obtain f which minimizes the risk R(f) for a given loss function L(y, f(x)):

R(f) =

∫
L(y, f(x))dP (x, y). (3.1)

The loss function changes depending on the type of inference the learning al-

gorithm is being used for (e.g. classification estimation, regression estimation). A

common loss function for the classification setting is the 0-1 loss:

L(y, f(x)) =

 0, f(x) = y

1, f(x) 6= y
(3.2)

The minimum risk over all measurable functions f is denoted

R∗ = inf
f
R(f). (3.3)

Having introduced (a) the formal notation and (b) the optimization problem to

be solved, we now turn to the final component of how to create models that learn

about the world through data: a process for how to select a model that solves the

optimization problem. Notationally, the function f that represents our selected model

of the world is chosen according to a particular process (termed a principle in Vapnik

(1995)), using observed data {(x1, y1), . . . , (xn, yn)}.

Along with the observed data, the No Free Lunch theorem, as described by Bous-

quet et al. (2004), implies that we must make assumptions in order for one function

to be better than another. These assumptions include knowledge about how the past

observations relate to future observations (in our case, the i.i.d assumption and that
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future observations are also i.i.d according to P (X, Y )), and other assumptions on

the hypothesis class F from which we select f . For example, we may assume that

F only contains functions from a specific model family, or that the optimal function

should be as simple as possible while still fitting the patterns in the observed data.

Only with such assumptions can we learn a useful model of the world that allows

us to make reasonable predictions on future data. This idea is captured in the formula

(Bousquet et al. (2004))

Generalization = Data + Knowledge. (3.4)

There are various processes for selecting the function fn which is optimal according

to our observed data, given our assumptions (knowledge). These procedures depend

on the empirical risk Remp(f) of a function f , defined as:

Remp(f) =
1

n

n∑
i=1

L(yi, f(xi)). (3.5)

Here we review three processes described in Vapnik (1995) and Bousquet et al. (2004)

for selecting fn.

• Empirical Risk Minimization (ERM): Choose F to be a hypothesis class of

lower complexity, containing a family of functions that follow a specified model.

(Precise definitions of the complexity of F will be given later in the chapter).

Then choose fn ∈ F that satisfies

fn = argminf∈FRemp(f). (3.6)

ERM is a foundational principle from the early work in statistical learning

theory; Vapnik (1995) provides necessary and sufficient conditions for the con-

sistency of the ERM principle.
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• Regularization: Choose a large function class F of greater complexity, and

apply a regularizing term, so that the regularized empirical risk is minimized:

fn = argminf∈FRemp(f) + λ||f ||2. (3.7)

In practice, we do not usually know what the best value for λ is; this is normally

chosen via cross validation. Also of note, the Regularization principle can be

recast as an ERM procedure if we make a few modifications, including 1) allow-

ing more flexibility on the hypothesis class F ; and 2) defining the loss function

over the entire sample rather than pointwise, and including the regularization

term directly into this loss function.

• Structural Risk Minimization (SRM): Choose an infinite sequence of hy-

pothesis classes {Fd | d = {1, 2, 3, . . . }}, where each hypothesis class contains

functions that follow a particular model specification, and the complexity d of

each consecutive hypothesis class increases. Then choose fn which satisfies

fn = argminf∈Fd,d∈NRemp(f) + pen(d, n), (3.8)

where the penalty term increases with hypothesis classes of increasing complex-

ity d.

In ERM, our simplifying assumption is that the optimal function is from a specific

model family, usually containing functions of lower complexity. In the Regularization

principle, we inject our assumption that simpler models are better via the penalty

term λ||f ||2, rather than explicitly selecting a simpler hypothesis class. In SRM, our

assumption favoring model simplicity is captured by the structured sequence of model

families and the penalty term pen(d, n).

With these definitions in place, we have introduced a formal setting that, at a high

level, answers Question (1), or how we can use data to learn functions that provide
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information about the world and allow us to make predictions.

With a learned function in hand, we can ask relevant questions about the learned

function (which is often called a “fitted model” rather than a learned function in

modern machine learning and statistics). We start by turning to Question (2) from

the beginning of this section: how close is my model to an optimal one for this

problem?

As a reminder, the function selected by one of the strategies (ERM, SRM, etc.)

applied to a finite sample of size n is denoted fn. Our approximation of the risk of fn

(which is R(fn)) is the empirical risk Remp(fn). Using R(f ∗) to denote the risk of the

best function in F (meaning R(f ∗) = inff∈FR(f)), Question (2) can be formalized as

seeking information about the difference R(fn)−R(f ∗). We can observe the following

as a partial answer to this question:

R(fn)−R∗ = [R(f ∗)−R∗] + [R(fn)−R(f ∗)]. (3.9)

Interestingly, this formula shows the theoretical underpinnings of the well-known bias-

variance trade off, and provides a guiding concept for how to balance our assumptions.

The first term on the right-hand side (RHS), called the approximation error, measures

how close the risk of the best function in our hypothesis class F is to the optimal

risk. The second term on the RHS, the estimation error, measures how close are the

actual risk of our empirically optimal function fn and the risk of the best possible

function in F , f ∗.

If we choose a large and complex function class F , the approximation error will

be smaller because the class is more likely to contain a function closer to the optimal

one. However, this function will be more difficult to estimate from limited data,

increasing the estimation error from the second term. On the other hand, a small

and low-complexity model class will be easier to learn from data, thus having a lower
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estimation error, but may result in higher approximation error. Finding the right

balance between these two terms is necessary for our assumptions about the world to

lead to the best possible function given the data we have observed. The Regularization

principle explicitly balances the two using the hyperparameter λ, and similarly for

SRM with pen(d, n).

The best results, in terms of difference between risk of our chosen function R(fn)

and minimum possible risk R∗, are achieved when our hypothesis class F is sufficiently

large to be able to approximate the optimal function well, (low approximation error)

and when we have enough data to reasonably estimate the best function from F (low

estimation error).

Equation (3.9) and the ensuing discussion shed light on one aspect of classifica-

tion difficulty, which is the underlying complexity of the hypothesis class needed to

obtain a low approximation error. If the underlying classification problem demands a

complex hypothesis class to accurately approximate it, we must compensate with an

appropriately large sample size in order to reduce the estimation error in the right-

hand term of the RHS; if we fail to do so, we will see a large difference between the

risk (performance) of our learned classification function R(fn) and the optimal risk

that can be achieved for this problem R∗.

Next, we turn to Question (3): how well will the learned function make predictions

for new data in the future? This question can formalized by comparing the empirical

risk of the function on the data at hand Remp(fn), defined in Equation (3.5), to the

true risk of the function R(fn), which is defined via the expectation in Equation (3.1).

The difference R(fn)−Remp(fn) provides some degree of assurance on how the model

will perform on unseen data compared to how it performed in our initial data. In

other words, this difference informs how well the model will generalize, presuming

that the new data is drawn from the same joint density P (X, Y ) from which the
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original data is sampled.

A major focus in statistical learning theory is utilizing convergence techniques

from functional analysis to prove bounds on different risk quantities, such as the ones

in Equation (3.9) or the risk difference R(fn)−Remp(fn). We present a bound on the

actual risk of our selected function R(fn) relative to the empirical risk Remp(fn), in

order to provide a partial answer to Question (3); interested readers can look ahead

to Equation (3.13) for this bound.

A key component of this bound is the relationship between the number of data

points available for learning the function (the sample size, n), and the complexity

of the hypothesis class of functions F from which the function is being learned. We

previously saw (informally) via Equation (3.9) that the relationship between these

two quantities determines how close the learned function is to the optimal one. We

will show in this section that this relationship also determines how well we are able to

estimate the true performance of the learned algorithm based off of the performance

from our finite sample, which is represented by R(fn)−Remp(fn).

In order to make a formal comparison between sample size and hypothesis class

complexity, we need to first define two critical concepts, the growth function and the

Vapnik-Chervonenkis (VC) dimension. The VC-dimension provides one way to quan-

tify the capacity, or complexity of a hypothesis class. Loosely, the larger the capacity,

the greater the diversity of function assignments that can be made by members of

the class.

Let NF(x1, x2, . . . , xn) be defined as:

NF(x1, x2, . . . , xn) = card{(f(x1), f(x2), . . . , f(xn)) | f ∈ F}

Intuitively, NF(x1, x2, . . . , xn) counts the number of distinct assignments of the points

into two classes, for the sample {x1, x2, . . . , xn} ⊂ X , among all of the functions f ∈ F .
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For example, take X = R2, and F the set of all linear classifiers:

F = {f | f(x) = sign(wTx + β), β ∈ R,w ∈ R2}. (3.10)

Then for the three points in Figure 3.1 we have NF(x1, x2, x3) = 8.

Figure 3.1: Three points in R2 can be classified in 8 ways by the set of linear
classifiers.

If F is a set of classification functions for a binary classification problem, we

immediately observe thatNF(x1, x2, . . . , xn) ≤ 2n for all sets of points {x1, x2, . . . , xn}.

When NF(x1, x2, . . . , xn) = 2n, that means that F can generate any classification

assignment on this set of points. In this case we say that F shatters {x1, x2, . . . , xn}.

The growth function GF(n), also known as the shatter coefficient, is defined as:

GF(n) = sup
x1,x2,...,xn

NF(x1, x2, . . . , xn)

In other words, GF(n) is the maximum number of class assignments possible from

functions in F ,with the maximum taken over all subsets of size n.

In binary classification, we have GF(n) ≤ 2n for any F . The Vapnik-Chervonenkis

dimension, or VC dimension, h, is the largest integer n such that GF(n) = 2n, or

such that F shatters at least one set of n points.

Going back to the example from Figure 3.1, we see that F can shatter 3 points

(because there are 23 = 8 different class assignments from the set of all linear clas-

sifiers). However, F cannot shatter 4 points because there is no linear classifier that
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can produce the class assignment in Figure 3.2, the classic XOR problem. The VC

dimension of this hypothesis class is 3.

Figure 3.2: There is no linear classifier that can classify the 4 points above into
the class assignments shown.

We provide one more example on VC dimension, using the hypothesis class of

polynomial classifiers of degree m in Rn. First we rigorously define the set of poly-

nomial classifiers using notation from Anthony (1995). Let the set {1, 2, . . . , n} be

denoted [n], and let [n]m denote the set of all subsets of [n] with at most m elements,

with repetition allowed. As an example,

[3]2 = {∅, {1}, {2}, {3}, {1, 1}, {1, 2}, {1, 3}, {2, 2}, {2, 3}, {3, 3}} .

For each S ∈ [n]m and each x = (x1, x2, . . . , xn) ∈ Rn, the notation xS denotes the

product of xi for i ∈ S. For example, x{1,3} = x1x3 and x{2,2} = x2
2.

With this notation, a polynomial classifierf is a function f : Rn → {0, 1} where

there are constants wS (one for each S ∈ [n]m) such that

f(x) = 1 ⇐⇒
∑
S∈[n]m

wSxS > 0.

The set of polynomial classifiers in Rn of degree at most m is denoted P (n,m). Intu-

itively, polynomial classifiers extend the concept of separating hyperplanes (for linear

classifiers) to separating hypersurfaces that are defined by a polynomial equation.

Anthony (1995) proves the following theorem about the VC dimension of P (n,m):

68



Theorem 1. For all n, m,

VC dim (P (n,m)) =

 n+m

m

 . (3.11)

This theorem supports our earlier assertion that linear classifiers (polynomial clas-

sifiers of degree 1) in R2 have VC dimension 3: 2 + 1

1

 =
3!

1! 2!
= 3.

Furthermore, a polynomial classifier of degree m in R2 has VC dimension

VC dim (P (2,m)) =
(m+ 2)(m+ 1)

2
. (3.12)

As a concrete example, consider the three polynomials in R2 pictured in Figure

3.3. Moving from left to right in the figure, the polynomials are of degree 3, 5, and 11.

Note that this 11-degree polynomial has fewer inflection points (5) than the maximum

possible for a polynomial in R2 of degree 11 (9); however, the higher degree is reflected

in different curvature than would be possible with a degree 7 polynomial.

The hypothesis classes of polynomial classifiers in R2 of degrees 3, 5 and 11 have

VC dimension 10, 21, and 78, respectively, as can be easily calculated from Equation

(3.12). The greater capacity of the hypothesis classes with higher VC dimension are

reflected in how “wiggly” or complex the polynomials contained in those hypothesis

classes are. The hypothesis class with a higher VC dimension contains functions

covering a greater diversity of classification decisions.

These three particular polynomials will come into play during a simulated data

example explored in Section 3.5.

Now that we have a notion for quantifying the capacity of a hypothesis class,

or more intuitively, the complexity of the functions contained in that class, we can

present one of the key bounds on the empirical risk (Bousquet et al. (2004)):
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Figure 3.3: Polynomials of degree 3, 5, and 11. Their respective hypothesis classes
have VC dimension 10, 21, and 78, respectively.

Theorem 2. Let F have VC dimension h. Then with probability at least 1− δ,

∀f ∈ F , R(f) ≤ Remp(f) + 2

√
2
h log 2en

h
+ log 2

δ

n
(3.13)

To develop greater intuition, we inspect how the right summand of the right-hand

side changes when we change individual components. If δ becomes small holding all

else constant, meaning we want to be more certain that our bound on the actual risk

is true, then the bound becomes less tight and that bounding term becomes larger.

(This is akin to the notion in Bayesian inference that if we want the credible interval

to contain the estimand with higher probability, the credible interval must become

wider.)

The ratio n/h, which represents the ratio of how much data we have to estimate

f ∗ compared to the complexity of the hypothesis class F , determines the size of the

left term under the square root, via the term

log
(
2en

h

)
n
h

. (3.14)

When the ratio n/h is large, meaning we have much more data than the capacity of

F , then this term becomes very small and the empirical risk is close to the actual

risk, with probability 1 − δ. However, if n/h is small, meaning we are trying to

estimate a function from a higher capacity hypothesis class with a small amount of
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data, we have worse guarantees on the difference between the empirical risk and the

actual risk, and the bound in (3.13) can become large. If the ratio n/h becomes small

enough (in particular, close to 0), the term in (3.14) limits to −∞ and the bound is

only valid with commensurate decreases in δ, leading to extremely low probabilities

of the bound holding.

This bound demonstrates from a theoretical standpoint how decision boundary

complexity relates to the difficulty of a classification problem, from the perspective

of predicting the performance of a learned algorithm. When the underlying classifi-

cation problem warrants a high-capacity hypothesis class for accurate approximation

(meaning, high decision boundary complexity), there is a proportionate increase in

the amount of data needed to guarantee (with any practical usefulness) our estimate

of the learned function’s true risk. If we do not use appropriate amounts of data

for learning high-capacity hypothesis classes, we have a weaker, and in some cases

irrelevant in practical terms, guarantee on how the learned algorithm will perform

on future data from the same distribution. In practice, the performance of complex

functions fitted to small data sets on new data is usually poor (Berisha et al. (2021)).

While VC dimension is useful when available, in practice it is difficult to compute,

although some work has been done on VC dimensions of more complex hypothesis

classes, for example neural networks (Sontag et al. (1998), Bartlett et al. (2019)).

As a conclusion to our review of relevant concepts from statistical learning theory,

we briefly mention other key concepts and related fields, and discuss how they address

the three questions presented at the beginning of this section. These ideas expand

Vapnik and Chervonenkis’ foundational work in creating a rigorous set of mathemat-

ical structures within which the concept of learning about the world from data can

be comprehended.

Lacking from the statistical-learning theory framework developed by Vapnik are
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guarantees on the ability of a specific learning algorithm A to actually learn the

optimal function f from the hypothesis class F , given the data and the chosen opti-

mization principle (e.g., ERM, etc.). Valiant (1984) introduced the Probably Approx-

imately Correct (PAC) framework, in which he shows that there are certain concept

classes (a process that determines whether a concept, or predicate, holds for a par-

ticular datum), which can probably (i.e. with hig probability) be accurately learned

(i.e., are approximately correct) in polynomial time, by a learning algorithm. The

emphasis here is on the learning algorithm, and its complexity in terms of execution

time. A hypothesis class being PAC-learnable is equivalent to having a finite VC

dimension (Blumer et al. (1989)), thus PAC provides as an alternative notion for hy-

pothesis class complexity. Topics in PAC are most closely connected to Question (1),

in particular, informing how quickly and with what guarantees can we create models

that learn about the world. Other key works related to PAC learning theory include

Angluin (1988), Haussler (1990), Kearns and Vazirani (1994).

Aside from VC dimension, other alternatives for measuring capacity, or com-

plexity, of a hypothesis class are the Rademacher complexity, the pseudo-dimension

or Pollard dimension, and the fat-shattering dimension. Each of these areas yields

insights that are loosely connected to Questions (2) and (3), as the capacity of a hy-

pothesis class impacts how close the learned function can be to the optimal one, and

how well we can estimate the model’s performance on future data using a given sample

size. Rademacher complexity, first proposed as a complexity measure in Koltchinskii

(2001), Bartlett et al. (2002), and Mendelson (2002), is an alternative to VC dimen-

sion characterized by the ability of functions from the hypothesis class to classify

points from the space with random labels. Rademacher complexity was further ex-

plored in Bartlett and Mendelson (2002) and Bartlett et al. (2005). The fat-shattering

dimension(cites: Kearns and Schapire (1990), Bartlett et al. (1994), Bartlett (1996),
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Alon et al. (1997)) and Pollard dimension are both extensions of VC dimension to

real valued functions.

We also mention the two related concepts of stability and robustness. Intuitively,

a learning algorithm exhibits stability if a nearly identical training set with a single

point removed will produce a similar optimal function using the given learning algo-

rithm. Stability in the context of learning algorithms was first introduced in Rogers

and Wagner (1978), Devroye and Wagner (1979), and Devroye and Wagner (1979),

and furthered by Bousquet and Elisseeff (2002), Poggio et al. (2004), and Mukherjee

et al. (2006). Robustness, introduced by Xu and Mannor (2012), requires that a test-

ing sample similar to a training sample will have similar performance on the learned

function obtained from the learning algorithm applied to data. Both stability and

robustness are useful properties of learning algorithms and can be used to improve

bounds relating empirical to actual risk, providing additional answers to Question

(3); these bounds are typically derived via functional analysis methods of uniform

convergence.

To summarize, statistical learning theory offers a theoretical foundation for for-

malizing the process of learning about the world through data. This body of literature

provides information on how close the performance of a model learned from data is

to the best performance that could theoretically be achieved for the particular classi-

fication problem. It furthermore provides theoretical bounds on the accuracy of the

performance estimates obtained for the learned algorithm in a finite sample, in other

words, how likely is the performance obtained in the original data to generalize to

unseen data.

The impact of decision boundary complexity on classification complexity is also

clarified through statistical learning theory’s formalisms. In particular, a classification

problem with higher underlying decision boundary complexity requires a higher ca-
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pacity hypothesis class in order to accurately approximate the decision boundary; this

higher capacity hypothesis class in turn demands a commensurate increase in sample

size, in order for the screening test to achieve performance close to the best possible

performance, and in order for practitioners to adequately estimate performance on

unseen data. High decision boundary complexity, combined with small sample sizes

n for obtaining the learned model, will result in poor performance relative to the op-

timal performance for the classification problem regardless of hypothesis class, along

with poor model generalization if a high capacity hypothesis class is nonetheless used.

3.3 Information Theoretic Divergence Measures

While statistical learning theory centers on hypothesis classes and the challenges

posed by complex decision boundaries, we turn to information theoretic divergence

measures for function-agnostic information on a separate aspect of classification com-

plexity: the overlap of the two classes in the joint probability distribution. Class

overlap is recognized as one of the most important aspects underlying classification

difficulty (Santos et al. (2023)). The overlap of the classes determines the limit of

the maximum performance that any learning algorithm from any hypothesis class can

achieve for that problem, as will be demonstrated shortly.

The section is roughly divided into three parts. In the first part, we define the

Bayes error rate and show how class overlap impacts classification difficulty via Bayes

error rate. In the second part, we review literature on criteria that can be used for

measuring the divergence between two distributions; these divergence measures have

a close relationship with class overlap. In the third part, we provide the definition

and relevant examples of one specific divergence measure, the Kullback-Leibler (KL)

divergence. As a look ahead, in Section 3.5, we will use the KL-divergence to quan-

tify the class overlap and show the clear connection between KL-divergence and the
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simulation hyperparameter used to control the class overlap of the simulated data.

Finally, we close the section with a comparison of the themes underpinning work from

statistical learning theory and information theory.

To begin the first part, we present key definitions. Formally, we have speech

features X collected from participants that fall under two class labels, Y = 1 (cog-

nitively impaired) or Y = 0 (cognitively normal). Their joint probability definition

is P (X, Y ). When screening a participant with speech features X = x, the predicted

class and thus the screening decision is usually based on an estimate of the probability

P (Y = 1 | x). The Bayes’ classifier for a binary classification problem is the classifier

fBayes that assigns a class based on the following rule:

fBayes(x) =

 1 if P (Y = 1 | x) > P (Y = 0 | x)

0 otherwise.
(3.15)

The error rate of the Bayes classifier is called the Bayes error rate (BER), and it is

equal to the risk of the 0-1 loss function for the Bayes classifier:

εBayes =

∫
R1

P (Y = 0 | x)dx +

∫
R0

P (Y = 1 | x)dx, (3.16)

where R1 is the region where P (Y = 1 | x) > P (Y = 0 | x), and similarly for

R0. Devroye et al. (1996) showed that the BER is the minimum achievable error

rate for the given classification problem. The higher the BER, the more difficult the

classification problem.

To make the connection between class overlap and BER explicit, consider the

following, which follows directly from Bayes’ rule:

P (Y = 1 | x) =
f(x | Y = 1)P (Y = 1)

f(x)
;

P (Y = 0 | x) =
f(x | Y = 0)P (Y = 0)

f(x)
.
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For ease of notation, we will use the shorthand f1(x)p1 for f(x | Y = 1)P (Y = 1),

and similarly for f0(x)p0. In order to achieve a BER of 0, perfect separation of the

conditional distributions is necessary, since f1, f0, p1, and p0 are nonnegative; in other

words, we would need∫
R1

f0(x)p0 dx = 0 and

∫
R0

f1(x)p1 dx = 0.

On the flip side, the BER will be high when f0(x)p0 has a large integral over

the region R1, and similarly for f1(x)p1 over R0. We use the term class overlap to

denote the “overlap” of the conditional densities f0(x)p0 and f1(x)p1. The higher this

overlap, the larger the integrals in (3.16) will be. The smaller this overlap, the lower

the BER is and the easier the classification problem is.

This exposition highlights why measuring the distance, or divergence, between

probability distributions can provide insights into the difficult of a classification prob-

lem in terms of theoretically optimal misclassification rates. More specifically, mea-

sures of divergence can be used to provide bounds on the BER. Thus, we are interested

in quantitative measures of divergence, and for this we turn to information theory.

In this second part of the section, we present the foundational literature defining

a critical class of divergence measures, called f -divergences, and discuss some appli-

cations of f -divergences in the classification setting. The seminal text in this area is

Ali and Silvey (1966), in which the authors established four criteria that they posited

would be useful and natural for a quantity measuring divergence or distance between

two probability distributions to satisfy. Ali and Silvey termed functions that satisfied

their criteria coefficients of divergence in their 1966 paper; they are now known as

Ali-Silvey distances or f-divergences.

From Ali and Silvey (1966), let P1 and P2 be two probability measures on the

same sample space (X ,F ). The four criteria proposed were (Ali and Silvey (1966)):
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(1) The coefficient d(P1, P2) should be defined for all pairs of measures P1 and P2

on the sample space.

(2) Suppose that y = t(x) is a measurable transformation from (X ,F ) onto a

measure space (Y ,G ).Then we should have

D(P1, P2) ≥ d(P1t
−1, P2t

−1),

where P−1
i denotes the induced measure on Y corresponding to Pi.

(3) d(P1, P2) should take its minimum value when P1 = P2 and its maximum value

when P1 ⊥ P2.

(4) Let θ be a real parameter and let {Pθ; θ ∈ (a, b)} be a family of equivalent (mu-

tually absolutely continuous) distributions on the real line such that the family

of densities pθ(x) with respect to a fixed measure µ has monotone likelihood

ratio in x. Then if a < θ1 < θ2 < θ3 < b, we should have

d(Pθ1 , Pθ2) ≤ d(Pθ1 , Pθ3).

The paper proceeds to show that particular measures of divergence, distance, or

discrimination, including Jeffrey’s divergence (Jeffreys (1946)), Kullback-Leibler di-

vergence (Kullback and Leibler (1951)), and Hellinger distance (Hellinger (1909)),

satisfy these properties and are indeed f -divergences. Furthermore, and of interest

to our work, they showed the connection between one of the f -divergences and the

probability of misclassification in a binary classification problem.

The family of f -divergences have been studied and used extensively in a number

of applications, including estimation, classification, detection, compression, database

indexing (Basseville (2013)). A comprehensive taxonomy of f -divergences along with

other distance measures between probability distributions is given in Cha (2007), with
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Basseville (2013) providing an alternative and more recent summary. The family of

f -divergences are of particular interest in machine learning, as they can be used to

derive bounds on the BER, also termed the Bayes risk.

For example, Berisha et al. (2016) define a nonparametric divergence measure, the

Dp distance, that improves the bounds on the Bayes risk, compared to frequently used

f -divergences such as the Bhattacharya distance (Bhattacharyya (1946)). Further-

more, they propose a feature selection method based on Dp distance that improves

classification accuracy on a set of pathological speech samples.

Having introduced the concept of f -divergences and their relation to class overlap,

classification complexity, and related applications, we now turn to the third part of

this section, namely an in-depth example using the Kullback-Leibler divergence. The

Kullback-Leibler divergence, or KL divergence, has deep connections to statistics,

machine learning, and Bayesian inference. For two probability distributions P and Q

of a continuous random variable x, with probability densities p and q, respectively,

the KL divergence or relative entropy from Q to P is defined as

DKL(P || Q) =

∫ ∞
−∞

p(x) ln

(
P (x)

Q(x)

)
dx (3.17)

The KL divergence of two distributions P and Q over a random variable X is the

expected value of the log likelihood ratio statistic if X is actually drawn from P . In

Bayesian inference, under the assumption Q is the prior probability distribution and

P is the posterior, DKL(P || Q) is a measure of the information gained by revising

beliefs, after conditioning on data, from Q to P .

For an intuitive example of KL divergence, we consider the case of two multivariate

Gaussian distributions P1 and P2 over Rn with mean vectors µ1, µ2 and covariance

matrices Σ1, Σ2, respectively. The KL divergence DKL(P1 || P2) is (Duchi (2007)):

DKL(P1 || P2) =
1

2

(
ln

det Σ2

det Σ1

− n+ tr(Σ−1
2 Σ1) + (µ2 − µ1)TΣ−1

2 (µ2 − µ1)

)
(3.18)

78



Figure 3.4 shows two examples of two multivariate Gaussian distributions with

different amounts of overlap. For the example on the left,

P1 ∼ N (µ1 = (1, 1)T ,Σ1 = I2);

P2 ∼ N (µ2 = (4, 4)T ,Σ2 = I2),

where I2 is the identity matrix of size 2. For the example on the right,

P1 ∼ N (µ1 = (2, 2)T ,Σ1 = I2);

P2 ∼ N (µ2 = (3, 3)T ,Σ2 = I2).

Figure 3.4: Two different examples of the KL divergence between two multivariate
Gaussian distributions, P1 and P2.

Using the formula in (3.18), we have

DKL(P1 || P2) =
1

2

(
ln

det(I2)

det(I2)
− 2 + tr(I−1

2 I2) + (3, 3)T I−1
2 (3, 3)

)
=

1

2

(
ln(1)− 2 + 2 + (3, 3)T (3, 3)

)
=

1

2
(18)

= 9,
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and similarly

DKL(P2 || P1) =
1

2

(
ln

det(I2)

det(I2)
− 2 + tr(I−1

2 I2) + (−3,−3)T I−1
2 (−3,−3)

)
=

1

2

(
(−3,−3)T (−3,−3)

)
= 9.

By a similar calculation, the example in the right plot of Figure 3.4 satisfies

DKL(P1 || P2) = DKL(P1 || P2) = 1.

From this simple example we see that the distributions with much less overlap have

a larger KL divergence.

We look at one more example of KL divergence, for two distributions that do not

have a symmetric KL divergence. In Figure 3.5, we see samples from two distributions

P1 and P2 which are defined as:

P1 ∼ N

µ1 =

 1

1

 ,Σ1 =

 4 0

0 2




P2 ∼ N

µ2 =

 4

4

 ,Σ2 =

 3/2 0

3/2 3


 .

To calculate the KL divergences, we first note that det(Σ1) = 8, det(Σ2) = 4.5,

and

Σ−1
1 =

 1/4 0

0 1/2

 , Σ−1
2 =

 2/3 0

−1/3 1/3

 .
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Figure 3.5: An example of two multivariate Guassian distributions P1 and P2 for
which the KL divergence is not symmetric. This is generally the case for the KL
divergence of two distributions.

Then we have

DKL(P1 || P2) =
1

2

(
ln

det(Σ2)

det(Σ1)
− 2 + tr(Σ−1

2 Σ1) + (3, 3)Σ−1
2 (3, 3)T

)
=

1

2

(
ln

4.5

8
− 2 +

(
8

3
+

2

3

)
+ (3, 3)(2, 0)T

)
=

1

2

(
ln

4.5

8
− 2 +

10

3
+ 6

)
≈ 3.54.

On the other hand,

DKL(P2 || P1) =
1

2

(
ln

det(Σ1)

det(Σ2)
− 2 + tr(Σ−1

1 Σ2) + (−3,−3)Σ−1
1 (−3,−3)T

)
=

1

2

(
ln

8

4.5
− 2 +

(
3

8
+

3

2

)
+ (−3,−3)(−3/4,−3/2)T

)
=

1

2

(
ln

8

4.5
− 2 +

15

8
+

9

4
+

9

2

)
≈ 3.43.

Indeed, we see that in this third example, the distributions are partially overlapped,
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more than in Example 1 (left plot in Figure 3.4), which has KL divergence of 9, but

less than Example 2 (right plot in Figre 3.4), which has KL divergence of 1.

In this section, we have focused on a very narrow area within information theory,

namely the information theoretic divergence measures that have a strong relationship

to class overlap and, as a result, to classification complexity. While there are numerous

other works discussing f -divergences and information theory more generally, we have

kept the scope of this section more focused in order to present some fundamental

definitions most related to our use case.

To summarize, class overlap comprises a second aspect, and in many ways the

most important one, underpinning the difficulty of the classification problem. The

connection between class overlap and classification difficulty comes via the Bayes

error rate, as higher class overlap results in a higher BER, and BER determines the

best performance that can theoretically be achieved on the classification problem.

Divergence measures, particularly f -divergences, can be used as a way to quantify

class overlap and to bound the BER; here we have used the KL-divergence as a

particular example of an f -divergence.

We close with a final comparison between the results presented in the previous

section on statistical learning theory, and the information-theoretic bounds discussed

here. The VC-dimension-based bound in Equation (3.13) provides guarantees on how

accurate is our estimate of the risk of an estimated function we have in hand, after

already applying an optimization principle (ERM, SRM, etc.) to data. On the other

hand, the divergence-based bounds set limits on the theoretically minimum error rate

that is possible to achieve for any function, including our learned one. A crude but

useful generalization is that one theory (SLT) provides insights into how well we

can learn a theoretically optimal function using a finite sample, along with how well

we can estimate that function’s performance on new data; the other (IT) provides
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insights into just how good that optimal function can be.

In relation to our aim of understanding contributors to classification complexity,

statistical learning theory offers insights on classification complexity via the com-

plexity of the decision boundary; decision boundary complexity dictates how our

algorithm’s performance compares to optimal, and how well we can estimate its per-

formance using a finite sample. Information theory, on the other hand, connects

classification complexity to the overlap between the two classes being separated in

the classification problem.

3.4 Measures of Complexity of Classification Problems

Finally, we review a body of work on purely empirical classification measures,

which aim to measure difficulty of the classification problem using quantitative mea-

sures that are calculated on the specific sample.

A downside of the theoretical results presented in the previous two sections is

that they can be difficult or impossible to calculate for a given sample, a proposed

hypothesis class, and a learning algorithm; even estimating information-theoretic di-

vergence measures can be computationally costly, limiting their adoption in practical

applications. In contrast, empirical data complexity measures are appealing because

they provide a straightforward and computationally feasible approach for quantifying

aspects of a particular dataset that relate to classification performance. However, as

empirical quantities, they suffer from the same limitations that apply to any finite-

sample estimator, including variability (caused by sampling differences) that increases

with fewer and fewer datapoints. Furthermore, data complexity measures are sus-

ceptible to unexpected behavior in high-dimensional settings, similarly to standard

learning algorithms that were originally developed and validated in n >> p scenarios

(Berisha et al. (2021)). The relationship between the complexity measures and data
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dimensionality is further discussed at length in Section 3.6. Nonetheless, they present

an alternative method for quantifying classification complexity, and here we provide

a review that discusses both their promise and their limitations.

As an overview, this section is also divided into three parts. In the first part, we

describe several sets of data complexity measures, along with related work on empir-

ical quantification of decision boundary complexity via topological data analysis. In

the second part, we discuss how the standard data complexity measures just intro-

duced relate to the concepts of decision boundary complexity and class overlap. In

the third and final part, we present modern-day applications that make use of data

complexity measures, and discuss the appropriateness of these use cases.

To begin the first part, we start with the foundational paper in this area, which is

Ho and Basu (2002). The authors introduced the concept of classification difficulty

of a dataset via 12 measures of classification complexity, and grouped these measures

in three areas: measures of individual feature overlap, measures of separability of

classes, and measures related to the geometry and topology of the class manifolds.

Ho and Basu (2002) computed the measures on more than 800 datasets from the

UCI database, (divided into linearly separable and linearly non-separable datasets),

along with 100 datasets of increasing sparsity with randomly chosen labels, to analyze

the relationship between their proposed complexity measures on these datasets. The

question they sought to answer was whether there existed an underlying continuum

along one or more of these complexity measures, or a lower dimensional projection

of them, which would yield one unified concept of “classification complexity”. This

question was explored via extensive analysis of their datasets (with three groups of

increasing complexity, namely linearly separable, which was less complex than non-

linearly separable, which was less complex than the random datasets). They found

that there was not one underlying continuum that neatly tied all of the datasets in a
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single complexity ordering along a lower-dimension, but still found rich structures in

the relationship of the complexity measures for these three subgroups of data.

In subsequent years, these measures of classification complexity, along with new

measures not defined in the original 2002 paper (re-branded in conjunction as mea-

sures of data complexity), found their way into numerous applications, which were

neatly summarized in a comprehensive review by Lorena et al. (2019). The authors

grouped this wider set of classification measures slightly differently than Ho and Basu

(2002), separating them into five groups: feature-based measures, linearity measures,

neighborhood measures, network measures, and class imbalance measures.

One drawback of the groupings of these measures chosen in Ho and Basu (2002),

Lorena et al. (2019) and others, are that the groupings do not explicitly relate to the

aspect of dataset complexity the measure is providing insights about, but are more

related to how the measure is calculated. Santos et al. (2023) provided a fresh organi-

zation for complexity measures related to class overlap, including some of the original

measures from Ho and Basu (2002), along with others. They group their 33 measures

of complexity based on the aspect of class overlap about which the measure provides

information: feature overlap (overlap of individual features, possibly projected into

new dimensions), instance overlap (analysis of a local neighborhood around each in-

dividual point), structural overlap (boundary complexity and data morphology, i.e.

the internal structure of classes), and multiresolution overlap (measures that recur-

sively assess both global and local complexity information for a combined picture of

overlap). The individual 33 measures are described in Santos et al. (2022).

In both Santos et al. (2022) and Santos et al. (2023), the authors perform a

special discussion on the separate but important issue of class imbalance, which can

exacerbate the not insignificant challenges that class overlap on its own presents.

In our experiments, we calculate the measures of complexity from Lorena et al.
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(2019), rather than Santos et al. (2023) or others, for several reasons. First, the

measures from Lorena et al. (2019) are available in a maintained and vetted R package

ECoL (Garcia and Lorena (2019)). Second, the measures have been normalized and

had their directionality reversed where necessary, so that they are all computed on a

scale from 0 to 1, with 1 being the greatest complexity.

The chosen measures and their descriptions are listed in Table 3.1; we also show

the type of insight provided into overlap or complexity, using the terminology given

in Santos et al. (2023). For the measures not discussed in Santos et al. (2023), we list

the most appropriate insight, and add a new category linear complexity for the linear

measures. We also rename Structural Overlap to Structural Overlap & Complexity,

since the measures in this group relate to both the internal structure and topology

of the classes (which directly impacts decision boundary complexity) as well as the

class overlap itself. Finally, we do not describe the class imbalance measures, as they

are not computed in ECoL.

For detailed descriptions of these measures and their calculation, see Lorena et al.

(2019).

We now take a moment to briefly mention relatied advances in topological data

analysis (TDA) (Carlsson (2009)), which seek to characterize decision boundary com-

plexity and learning algorithm capacity using mathematical formalisms from topol-

ogy and algebraic geometry; see, for example, Ramamurthy et al. (2019), Guss and

Salakhutdinov (2018), and Rieck et al. (2018). The general approach is to calculate

a persistent homology, and use the homology to quantify topological properties, such

as number of connected components or number of holes. This quantification can

then be applied in service of learning problems, such as choosing a learned algorithm

from a model marketplace whose capacity matches the complexity in a given dataset

(Ramamurthy et al. (2019), Li et al. (2020)).
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Grouping Abbr. Measure Description Insight Provided

Feature-based
F1

Maximum Fisher’s Determines the maximum discriminative
Feature overlap

measures Discriminant Ratio power among each individual feature.

F1v
Directional Vector Maximum Determines the data projection with

Feature overlap
Fisher’s Discriminant Ratio maximum separability.

F2 Volume of Overlapping Region
Measures the volume of the overlapping

Feature overlapregion by multiplying the overlap range
of each feature.

F3 Maximum Individual
Determines the minimum amount of

Feature overlap
Feature Efficiency

overlap between feature values of
different classes.

F4 Collective Feature Efficiency
Returns the ratio of examples that could

Feature overlapnot be separated, using the efficiency
of all features.

Linearity

L1
Sum of the Error Distance

Measures the sum of the distances of
Linear complexity

measures

by Linear Programming
incorrectly classified examples to a linear
boundary used in their classification.

L2
Error Rate of a Computes the error rate of the linear

Linear complexity
Linear Classifier SVM classifier.

L3 Non-Linearity of a
Measures the linear error on a set of new

Linear complexity
Linear Classifier

synthetic examples generated by inter-
polating pairs of data examples from
the same class, chosen randomly.

Neighborhood

N1 Fraction of Borderline Points
Measures the proportion of examples that

Structural overlap

measures

are connected to the opposite class by
& complexity

an edge in a Minimum Spanning Tree.

N2
Ratio of Intra/Extra Class

Computes the ratio between the sum of
Structural overlap

Nearest Neighbour Distance
intra-class distances and the sum of

& complexity
extra-class distances.

N3
Error Rate of the

Measures the error rate of the Nearest
Instance overlap

Nearest Neighbour Classifier
Neighbour classifier (1NN), estimated
using Leave-One-Out cross-validation.

N4
Non-linearity of the

Measures the 1NN error on a set of
Instance overlap

Nearest Neighbour Classifier
new synthetic examples generated the
same way as in L3.

T1 Fraction of Hyperspheres
Computes the ratio of the number of

Structural overlap
Covering Data

hyperspheres of the same class necessary
& complexityto cover the data domain, compared

to the number of points.

LSC Local Set Average Cardinality

Determines, for each point, the cardinality
Structural overlapof the local set of neighbors closer to it

& complexitythan its nearest enemy; then averages
over all points in data.

Network

Density Average Density of the Network

Measures the number of edges retained
Structural overlap

measures

in the graph built from the dataset,
& complexitynormalized by the maximum number of

edges between n pairs of data points.

ClsCoef Clustering Coefficient

Measures the ratio of the number of edges
Structural overlapbetween the neighbors of each point and

& complexitythe maximum number of edges that
could possibly exist between them.

Hubs Hub Score

Scores each node by the number of
Structural overlapconnections it has to other nodes,

& complexityweighted by the number of connections
these neighbors have.

Table 3.1: Data complexity measures from Lorena et al. (2019).
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A benefit of the TDA approach to classification complexity is that it enjoys a

rigorous mathematical formulation, which lends itself to theoretical results on the

resulting empirical quantities. To our knowledge, the lack of theoretical results on

the empirical measures described in Ho and Basu (2002), Lorena et al. (2019), and

Santos et al. (2022) is a deficiency in the field to date, although this has not hindered

the widespread adoption of these measures in many applications.

As further discussion and exploration of TDA-based work would require extensive

definitions and formulations, we believe it is outside the scope of this work, and restrict

the present analysis on simulated data (section 3.5.4) and speech data (section 4.3.3)

to the classification measures listed in Table 3.1.

For the second part of this section, we discuss how the complexity measures from

Table 3.1 relate to decision boundary complexity and class overlap, which were exten-

sively discussed in the last two sections on statistical learning theory and divergence

measures. F1, F1v, F2, F3, and F4 are related to class overlap, or to the separabil-

ity of the two classes; however, F1, F1v, and F3 are limited in that this overlap is

considered feature-by-feature, rather than looking at the overlap between the condi-

tional joint distributions over the entire feature space. F2 and F4 consider features

in tandem, but with some limitations: for F2, the defined overlap regions are parallel

to the individual feature axes, and F4 relies on subsequent feature discrimination.

As a note, univariate complexity measures such as F1 or F3 are asymmetrical in

the information they provide on data complexity. If a dataset has a single feature that

has a high value of Fisher’s discriminant ratio (F1) or low class overlap (F3), then the

dataset itself has lower complexity in these areas. However, if F1 or F3 indicate high

complexity, it may be because there is high class overlap when considering all of the

features both individually and collectively, or because the features are individually

not separable but do provide separability via (possibly complex) interactions.
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L1 and L2 relate to both decision boundary complexity and class overlap; if these

measures are low, it means that there is small class overlap, and furthermore the

decision boundary is linear (or can be closely approximated by a linear function).

If these measures are high, it means that the decision boundary is not linear, and

thus more complex. L3 also measures the complexity of the decision boundary, at

least in the basic sense of linearity versus nonlinearity; data with more interleaved

regions of concavity (a more complex decision boundary) will have a higher error

when classifying linearly interpolated points.

The Linearity measures are also asymmetrical in their informativeness, since hav-

ing poor performance on a linear classifier could be due to low class overlap (high

separability) with a highly non-linear boundary, or high class overlap with a linear

decision boundary. However, if these complexity measures show that the error with

a linear classifier is low, it implies lower complexity for the decision boundary.

N1 measures both decision boundary complexity and class overlap on the data

as a whole; high class overlap will lead to a high proportion of borderline points, as

will a complex decision boundary with less class overlap. N2 measures the dispersion

within classes compared to the margin between classes, and is related to class overlap;

however, data with classes distributed sparsely along a long thin border can still have

a high N2 value, even with little class overlap. N3 and N4 relate to the complexity

of the decision boundary in a local region, in particular whether points from different

classes are interleaved in the feature space.

T1 relates to both boundary complexity and class overlap. High values of T1 can

be obtained from both highly overlapped classes with a simple underlying decision

boundary, and from highly separated classes having a complex decision boundary; for

example, a dataset with highly separated pockets of classes interspersed inside each

other would have a high value of T1. LSC similarly relates to both class overlap and
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decision boundary complexity.

Density is more strongly connected to class overlap on the data as a whole; if

classes have little overlap, there will be high-density regions with many points from

the same class. ClsCoef and Hubs also measure decision boundary complexity (in

terms of overlap with nearby neighbors in a local region), using properties of an ε-NN

graph calculated on the data.

We make a final note on T2, one of the measures from Ho and Basu (2002) (not

included in ECoL), which calculates the average number of points per dimension.

Although not directly related to either decision boundary complexity or overlap of

the underlying process generating the data, gives an insight into the ability to learn

the underlying decision rule from data, in terms of how sparsely the data are spread

among the number of dimensions in the feature space. T2 has a connection to the

statistical learning theory bounds of the difference between empirical risk and actual

risk, because the larger the number of dimensions p in the input space, the greater

the capacity of the hypothesis classes that will be required to be considered (although

other aspects of the functions can influence capacity besides just the input dimension,

this is one influencing factor). Bounds on the difference of empirical risk compared to

actual risk frequently depend precisely on the ratio of the number of data points n to

the capacity of the hypothesis class (as in Equation (3.13)); thus there is an indirect

relationship between T2 and the statistical learning theory bounds on empirical versus

actual risk.

For the third and final part of this section, we discuss the applications of measures

of data complexity to problems in data science and machine learning. Lorena et al.

(2019) provides a review of works that utilize measures of data complexity in spe-

cific downstream applications. The four application areas covered are data analysis

(domain understanding, data generation), data pre-processing (feature selection, in-
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stance selection, noise identification, class imbalance), learning algorithms (domains

of competence, algorithm design, algorithm understanding, multiclass decomposition,

parameter tuning), and meta-learning (meta-features). See pg. 28 of Lorena et al.

(2019) for a comprehensive list of publications in these areas.

Our position on the use of data complexity measures in such applications, is that

in and of themselves, using the singular dataset on which they are being calculated,

the complexity measures cannot provide improvements to classification complexity

that overcome the fundamental limits incurred by the data generation process itself

and this particular sample of this process. These limits are formalized by theoreti-

cal bounds and equations, such as Equations (3.9), (3.13), and (3.16). As a specific

example, consider the proposition of using data complexity measures to guide a fea-

ture selection process, denoted by the function ffeature : X → X ′, prior to model

fitting; for example, suppose several feature selection methods are compared by cal-

culating the classification complexity measures on the selected features, and then the

feature selection method with the lowest resulting empirical complexity is chosen. It

is tempting to think that one has used the classification complexity measure to fun-

damentally lower the complexity of the classification problem after feature selection

is applied, and that the learned classification model in the space of selected features,

fclassification : X ′ → Y , will enjoy the advantages of reduced classification complex-

ity, namely a simpler decision boundary and lower class overlap. This idea obscures

the fact that the actual function being learned on the data is the composite func-

tion fclassification ◦ ffeature, and that the theoretical limits on Bayes Error Rate and

difference between empirical and actual risk will still apply to this composite function.

We posit the classification measures can be used to fundamentally improve the

classification process when they are utilized in a semi-supervised learning context,

in which a number of real and artificial datasets are exploited to gain information
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about the complexity measures’ behavior themselves. This knowledge is then applied

in the context of a new dataset, whose properties match the assumptions and scenar-

ios under which in which the information was obtained. This is the mode employed

by many of the articles reviewed by Lorena et al. (2019); the classification measures

are often explored in a large test bed of hundreds or even thousands of datasets,

and general principles are obtained that the authors postulate can be applied to

new problems. For example, in Luengo and Herrera (2010) and Luengo and Herrera

(2015), large scale analyses are performed to determine intervals for combinations

of complexity measures, which are called the domains of competence. Datasets with

classification complexity values inside the domains of competence are likely to have

good performance for either a particular (Luengo and Herrera (2010)) or a small fam-

ily (Luengo and Herrera (2015)) of learning algorithms. The authors demonstrate the

generalization of their findings on new datasets not included in the original analyses.

The use of data complexity measures on a large scale analysis to predict the

performance of a particular algorithm has also been explored in other contexts, such

as feature selection, instance selection, noise filtering, and meta-learning algorithms,

including dynamic selection of classifiers (Lorena et al. (2019)).

The question naturally arises, if it is valuable to use the classification measures to

obtain an indirect measure of expected performance, rather than using actual classifi-

cation performance metrics themselves from an out-of-sample analysis to benchmark

the usability of a particular algorithm for data pre-processing or model selection. We

see (at least) two scenarios in which the data complexity measures are preferable.

The first scenario is when the learning algorithm to be deployed is extremely com-

putationally expensive, and the calculation of the data complexity measures incurs

a substantially lower computational cost. In this case, the complexity measures can

be used to screen out planned classification analyses that are expensive to conduct

92



and are likely to produce unacceptably poor results, thus saving resources. This pro-

posal assumes that the limits of the data complexity measures that predict good or

poor performance have been previously assessed using extensive experiments on other

datasets.

The other scenario where this approach may be beneficial is when model selection

must be done without having the ability to test out the models on a portion of the

dataset, due to proprietary restrictions; for example, in the setting of marketplaces

for pre-trained neural networks. In this case, using information on classification

complexity measures gleaned from extensive secondary analyses can inform which

model is most likely to yield good performance based on the classification complexity

of the dataset at hand. Again, this approach only appears to be superior when

actual testing of the models and direct comparison of classification performance using

standard metrics is not possible.

To summarize this section, we have presented several sets of empirical data com-

plexity measures, which are quantities calculated on a specific finite sample that

inform different aspects of the dataset. These dataset aspects are presumed to have

an impact on classification performance, and include feature overlap, linearity of the

decision boundary, local overlap of classes at the level of individual instances, struc-

tural overlap between classes on the dataset as a whole, and global complexity via

the internal structure of classes.

We discussed which of these data complexity measures are measuring aspects of

the dataset related to class overlap, decision boundary complexity, or both, presented

applications in which the measures are used, and commented on whether such use

cases are appropriate, in our opinion.

As a concluding thought to this section, we point out that while statistical learn-

ing theory, information theoretic divergence measures, and data complexity measures
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each provide insights about the complexity of the classification problem via class

overlap and decision boundary complexity, drawing direct connections between the

theoretical results presented in the first two sections and the empirical data complex-

ity measures is challenging. A deeper theoretical foundation for the empirical data

complexity measures, and an explicit connection to the results produced by statisti-

cal learning theory and information theory would benefit our understanding of these

measures, and is a potential direction for future work.

3.5 Classification Complexity on a Simulated Example

In this section, we use a simulated data example to explore how the two aspects of

classification difficulty (decision boundary complexity and class overlap) interact, and

how they are quantified by the concepts introduced in the preceding three sections.

Simulating data provides an exact knowledge of the underlying data generation pro-

cess, in particular the relevant joint and conditional probability distributions, which

in turn allows us to calculate the quantities of VC dimension (measuring decision

boundary complexity) and KL divergence (measuring class overlap) for this setting.

Moreover, drawing finite samples of data according to this data generation process al-

lows for calculation of empirical data complexity measures from Lorena et al. (2019),

offering a direct comparison of how the empirical measures respond to increasing

levels of class overlap and decision boundary complexity.

In the first subsection, we introduce the data generation process and plot the true

decision boundaries and sampled data under different hyperparameter settings for

data generation. In the three subsections that follow, we calculate the VC dimension

for the decision boundary, the KL-divergence of the conditional distributions, and

the empirical data complexity measures listed in Table 3.1, respectively. Each of

these calculations are performed under all combinations of hyperparameter settings

94



determining class overlap and decision boundary complexity in the simulated data.

For the final subsection on calculation of data complexity measures, we also per-

form a principle component analysis to assess if the lower-dimensional structure of

the variation of the empirical measures reflects known directions of increasing classi-

fication complexity. Principle component analysis, or PCA, is a process of applying

a linear transformation to a data matrix X, such that the basis vectors in the new

space are in the directions of maximal variation, in a monotonically decreasing fash-

ion. By keeping only the first few transformed vectors (called principle components),

most of the variation in the original data can be retained, allowing for dimensionality

reduction. PCA is also used for easier visualization of the underlying structures of

variance in high dimensional data. Principle component analysis was invented by

Karl Pearson in Pearson (1901).

Formally, given an n × p data matrix X, the kth principle component of a 1 × p

data vector xi is tk(i) = xi ·wi, where wi is the eigenvector of XTX corresponding to

the kth-largest eigenvalue. The full transformation of X into the principle component

space is

T = XW,

where W is the matrix of eigenvectors of XTX, and T consists of the principle

components of X. Since the first few principle components contain the directions of

maximum variation in the original data, a frequent step is to truncate to only the

first L principle components, producing a dimensionality reduction:

TL = XWL.

In our example, we calculate the projection of the data complexity measures into

the principle component space, and look at underlying complexity structure as a

function of the hyperparameters determining the class overlap and decision boundary
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complexity of the generated data. This analysis was inspired by similar work in the

original paper on data complexity measures by Ho and Basu (2002).

3.5.1 Data Generation Process

Consider the following data generation process (DGP):

X1 ∼ Unif(−1, 1)

ε ∼ N (0, 1)

X2 | X1, ε ∼ [X2
1 + sin(αX1)] + ε

Y | X1, X2 ∼ Bernoulli

(
1

1 + exp{−λ · [X2 − (X2
1 + sin(αX1))]}

)
The parameter α governs classification difficulty via complexity of the decision

boundary, by modulating the number of changes of concavity along the decision

boundary restricted to X1 = [−1, 1]. This can be seen by calculating the true class

boundary in the (X1, X2) plane and solving for X2. The true class boundary is the

curve X2 = X2
1 + sin(αX1), from the following derivation:

P (Y = 1 | X1, X2) = 0.5

1

1 + exp{−λ · [X2 − (X2
1 + sin(αX1))]}

= 0.5

exp{−λ · [X2 − (X2
1 + sin(αX1))]} = 1

−λ · [X2 − (X2
1 + sin(αX1))] = 0

X2 − (X2
1 + sin(αX1) = 0

X2 = X2
1 + sin(αX1).

High values of α decrease the period of the sine function, resulting in a decision

boundary between the two classes with higher complexity. On the other hand, low

values of α increase the period of the sine function, resulting in a decision boundary
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with fewer concavity changes and lower complexity. Figure 3.6 demonstrates the

impact of the parameter α on the decision boundary complexity.

Figure 3.6: Impact of the boundary complexity parameter α.

The parameter λ governs classification difficulty via class overlap, by modulating

the impact of the distance X2− (X2
1 + sin(αX1)) (i.e., the distance from the decision

boundary) on the Bernoulli parameter in the distribution of Y . This can be seen by

considering how the Bernoulli parameter in the distribution of Y changes in tandem

with λ. As λ decreases toward 0, the Bernoulli parameter gets closer to to 0.5, meaning

that regardless of the value of x (and regardless of which side of the decision boundary

x falls on), there is roughly an equal probability of P (Y = 1 | x) and P (Y = 0 | x).

On the other hand, as λ becomes larger, the value of −λ · [X2 − (X2
1 + sin(αX1))]

(the distance from the decision boundary multiplied by −λ) has a stronger impact on

the Bernoulli parameter, and points on either side of the boundary will have a more

deterministic probability to belong to one class or the other. This results in lower

class overlap and greater class separability.

The impact of λ on class overlap is demonstrated in Figure 3.7, which shows both

the true decision boundary and a sample of 1000 points for each (α, λ) combination.

Since λ governs the probability of class membership as a function of distance to the

decision boundary, we plot different values of λ (rows) in the context of different

decision boundary complexities α (columns), rather than collapsing across α values
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and plotting the data as a function of λ alone.

Figure 3.7: Impact of λ and α on classification complexity. As λ increases (moving
from top to bottom), distance from the decision boundary is more strongly deter-
ministic of class membership. This leads to lower class overlap and greater class
separability.

Next, we explore this DGP by measuring 1) decision boundary complexity via VC

dimension, 2) class overlap via KL divergence, and 2) general classification complexity

via empirical complexity measures.

3.5.2 VC Dimension of Decision Boundaries

To compare decision boundary complexity via VC dimension, we approximate

the three decision boundaries (governed by α) using polynomials of three different

degrees. In actuality, all three true decision boundaries arise from the same hypothesis

class containing functions with a sin(αx) term, meaning that the overall hypothesis
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class has infinite VC dimension (Bousquet et al. (2004)). In order to compare the

“wiggly-ness” of the three decision boundaries in a rigorous and meaningful way,

we approximate the decision boundary for each complexity subgroup (defined by α)

with a function from the hypothesis class of polynomials in R2 of degree m. In

Equation 3.12, we saw that the class of polynomial classifiers in R2 of degree m has

VC dimension (m+2)(m+1)
2

. This theorem allows for a comparison of decision boundary

complexities via a simple calculation.

To summarize, we quantify the complexity of the three decision boundaries cor-

responding to three values of α, by learning three polynomials that can approximate

these boundary functions, and then calculating the VC-dimension of the hypothesis

class of polynomials of the given degree for all three cases.

First, recall that from the DGP, the true decision boundary of complexity α is the

function fα defined by

fα : R→ R

fα(x) = x2 + sin(αx).

We seek to approximate this polynomial using a function fm, which is a polynomial

in R2 of degree m. We define the minimum polynomial degree mα as the degree

m of smallest degree polynomial that can approximate fα within an error tolerance

of 0.005, using a sample of size n = 3000. The minimum polynomial degree mα

corresponding to the values of α shown in Figures 3.6 and 3.7 (α ∈ {1, 3, 8}) are

given in Table 3.2.

To support these choices for mα, we provide the root mean square error between

the value fα(x) of the true decision boundary function and the value fm(x) of a

polynomial of degree m, for n = 3000 data points drawn uniformly from [−1, 1]. The

polynomial fm is obtained using polynomial regression with the ordinary least squares
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Value of α Minimum polynomial degree mα

α = 1 mα=1 = 3

α = 3 mα=3 = 5

α = 8 mα=8 = 11

Table 3.2: Degree of the smallest degree polynomial that approximates the decision
boundary function within the given error tolerance.

(OLS) estimator, calculated using the lm function in R version 4.0.5. The root mean

square error (RMSE) corresponding to the polynomial of degree m for approximating

fα is

RMSEα(m) =

√√√√ n∑
i=1

(fα(xi)− fm(xi))2. (3.19)

With this notation,

mα = min{m | RMSEα(m) ≤ 0.005}.

Table 3.3 shows the RMSE between the true decision boundary function fα of

complexity α and the best fit polynomials of degree mα and mα− 1. As required, mα

is the lowest degree polynomial with an RMSE below the error tolerance threshold of

0.005, going one degree lower to mα−1 results in an error above the chosen threshold.

Note this assumes that polynomials of even lower degree than mα − 1 will have an

even greater RMSE.

The error tolerance threshold of 0.005 is motivated by a visual comparison of

fα and the approximating polynomials fmα and fmα−1, shown in Figure 3.8. The

polynomial resulting from a threshold of 0.005 (namely, a polynomial of degree mα =

3, 5, 11 corresponding to α = 1, 3, 8), is visually indistinguishable from the actual

decision boundary. However, the polynomials of one lower degree (2, 4, 10), which

would be considered “minimal” by choosing a threshold of 0.05 for example, have
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Value of α Value of mα RMSE(mα) RMSE(mα − 1)

α = 1 mα=1 = 3 0.0003 0.02

α = 3 mα=3 = 5 0.003 0.05

α = 8 mα=8 = 11 0.004 0.03

Table 3.3: The polynomial of degree mα is the smallest degree polynomial with
RMSE below 0.005.

visual differences between the fitted polynomial (dashed red line) and the true decision

boundary (solid blue line).

Figure 3.8: The top row shows the actual decision boundary fα (blue) and the
chosen polynomial approximation fmα (red), for α ∈ {1, 3, 8} (moving left to right).
The bottom row shows fα (blue) and fmα−1 (red). The lower degree polynomials fmα−1

are visually different from the true decision boundary fα (bottom row), whereas fα
and fmα (top row) are visually indistinguishable.

Figure 3.9 is a visual aid to confirm that the plot of the minimum degree poly-

nomials (degrees 3, 5, 11) matches their purported degrees, which is not immediately

obvious in the plots of these polynomials over a truncated support, as shown in Fig-
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ure 3.8. For example, the polynomial of Degree 3 in the top left subplot of Figure

3.8 appears to have no changes of concavity, which would only be possible for an

even-degree polynomial. Figure 3.9 clarifies this confusion by showing the chosen

minimum degree polynomials (of degrees 3, 5, 11) over a wider support (top row), and

over the support relative to our DGP (bottom row). The dashed rectangles show the

truncation of the polynomials to [−1, 1], which is the support of X1 in the DGP, and

the support visualized in Figure 3.8. Notice that these same polynomials were previ-

ously presented in Figure 3.3 during our exploration of VC dimension for polynomial

classifiers.

Figure 3.9: The top row shows the polynomials fmα for α ∈ {1, 3, 8} (from left to
right), over a larger support. This top row matches the support from Figure 3.3. The
bottom row is a zoomed in version of these polynomials, over support [−1, 1]; this
is the actual decision boundary for our DGP. The bottom row matches the decision
boundaries displayed in Figure 3.8.
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The purpose of the preceding approximation exercise was to rigorously show that

as α increases, the complexity of the decision boundary also increases in a quantifiable

way. Specifically, we see that as α increases from 1 to 3 to 8, the VC dimension of

the hypothesis class needed to approximate the decision boundary with high fidelity

increases from 10 to 21 to 78.

The increased decision boundary complexity with higher values of α makes the

classification problem more difficult, as can be seen if we consider the bias-variance

trade-off from Equation (3.9), which we reproduce here for easier reading:

R(fn)−R∗ = [R(f ∗)−R∗] + [R(fn)−R(f ∗)].

It is worth repeating that when the decision boundary has a higher level of underlying

complexity (e.g. α = 8), it means that, keeping sample size the same, either the

approximation error (left term of RHS) or the estimation error (right term of RHS)

will increase, relative to the hypothetical scenario of using the same amount of data

to solve a classification problem with a lower complexity decision boundary. If we

increase the complexity of the hypothesis class to be able to accurately approximate

the true decision boundary, the approximation error R(f ∗)−R∗ will be lower, but the

estimation error R(fn) − R(f ∗) will be higher. On the other hand, if we consider a

simpler hypothesis class to reduce the estimation error, the higher complexity of the

true underlying decision boundary means that the approximation error will increase.

From the point of view of bounding the true risk of the function (which impacts

generalization ability), consider, for example, the change in VC dimension from h = 3

to h = 11 in the bound shown in Equation (3.13). This corresponds to the lowest

and highest VC dimensions required for the class overlap settings from our simulated

example. For a sample of size n = 500, the left term under the square root (shown in

(3.14)) increases from 0.04 to 0.1 when the VC dimension h increases from 3 to 11.
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As an alternative comparison, if we want the left-term of (3.14) to be below 0.05, we

require a sample of size n = 395 if the VC dimension is h = 3, but a sample of size

n = 1446 if the VC dimension is h = 11.

These examples highlight in a concrete way how decision boundary complexity

has a quantifiable impact on the complexity of the underlying classification problem,

and that VC dimension is a relevant way to quantify decision boundary complexity.

3.5.3 KL Divergence

Next, we approximate the KL divergence from the conditional distribution

f 0
α,λ(x) = fα,λ(x | Y = 0)

to the conditional distribution

f 1
α,λ(x) = fα,λ(x | Y = 1),

which is denoted

Dα,λ
KL(f 0 || f 1).

We calculate KL divergence to provide a quantitative measure of the class overlap

of the simulated data from our example, and to show that KL divergence has a strong

relationship to the known hyperparameter λ that impacts class overlap in our DGP.

The calculation is somewhat tedious, but the results are worthwhile.

First, we derive expressions for the densities f 1
α,λ and f 0

α,λ using Bayes’ rule, the

Law of Total Expectation and the Multiplication Rule from basic probability princi-
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ples. Overloading notation for f and P ,

f 1
α,λ(x1, x2) = fα,λ(x1, x2 | Y = 1)

=
Pα,λ(Y = 1 | x1, x2) · fα,λ(x1, x2)

Pα,λ(Y = 1)

=
Pα,λ(Y = 1 | x1, x2) · fα,λ(x2 | x1) · fα,λ(x1)

Pα,λ(Y = 1)

=

1
1+exp{−λ·[x2−(x21+sin(αx1))]} ·

1√
2π

exp{−1
2
[x2 − (x2

1 + sin(αx1))]2} · 1
2

Pα,λ(Y = 1)

=

1
2
√

2π
· exp{− 1

2
[x2−(x21+sin(αx1))]2}

1+exp{−λ·[x2−(x21+sin(αx1))]}

Pα,λ(Y = 1)
,

and

f 0
α,λ(x1, x2) = fα,λ(x1, x2 | Y = 0)

=
Pα,λ(Y = 0 | x1, x2) · fα,λ(x1, x2)

Pα,λ(Y = 0)

=
(1− Pα,λ(Y = 1 | x1, x2)) · fα,λ(x2 | x1) · fα,λ(x1)

1− Pα,λ(Y = 1)

=

(
1− 1

1+exp{−λ·[x2−(x21+sin(αx1))]}

)
· 1

2
√

2π
exp{−1

2
[x2 − (x2

1 + sin(αx1))]2}

1− Pα,λ(Y = 1)

=

exp{−λ·[x2−(x21+sin(αx1))]}
1+exp{−λ·[x2−(x21+sin(αx1))]} ·

1
2
√

2π
exp{−1

2
[x2 − (x2

1 + sin(αx1))]2}
1− Pα,λ(Y = 1)

=

1
2
√

2π
· exp{−λ·[x2−(x21+sin(αx1))]− 1

2
[x2−(x21+sin(αx1))]2}

1+exp{−λ·[x2−(x21+sin(αx1))]}

1− Pα,λ(Y = 1)

=
exp{−λ · [x2 − (x2

1 + sin(αx1))]− 1
2
[x2 − (x2

1 + sin(αx1))]2}
2
√

2π(1− Pα,λ(Y = 1)) · (1 + exp{−λ · [x2 − (x2
1 + sin(αx1))]})

.

To use these densities in an integral approximation for calculating KL divergence, we

first need to numerically approximate Pα,λ(Y = 1). We have

Pα,λ(Y = 1) =

∫
X1

∫
X2

Pα,λ(Y = 1 | x1, x2) · fα,λ(x2 | x1) · fα,λ(x1)dx2dx1

=

∫
X1

∫
X2

exp{−1
2
[x2 − (x2

1 + sin(αx1))]2}
2
√

2π(1 + exp{−λ · [x2 − (x2
1 + sin(αx1))]})

dx2dx1.
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Table 3.4 provides the approximation of this integral for the 9 combinations of (α, λ)

in our simulation study1.

Pα,λ(Y = 1) α = 1 α = 3 α = 8

λ = 0.1 0.5 0.5 0.5

λ = 1.5 0.5 0.5 0.5

λ = 10 0.466833 0.421735 0.429553

Table 3.4: Numerical approximation for the marginal probabilities Pα,λ(Y = 1).

We now derive a simplified form of the integral representing the KL divergence

from f 1
α,λ to f 0

α,λ. We use the formula from (3.17), along with the preceding derivations

(and some intermediate steps) for the conditional densities.

Dα,λ
KL(f0 || f1) =

∫
X1

∫
X2

f0α,λ(x1, x2) ln

(
f0α,λ(x1, x2)

f1α,λ(x1, x2)

)
dx2dx1

=

∫
X1

∫
X2

f0α,λ(x1, x2) ln

 Pα,λ(Y=0|x1,x2)·fα,λ(x1,x2)
Pα,λ(Y=0)

Pα,λ(Y=1|x1,x2)·fα,λ(x1,x2)
Pα,λ(Y=1)

 dx2dx1

=

∫
X1

∫
X2

f0α,λ(x1, x2) ln

(
Pα,λ(Y = 0 | x1, x2) · Pα,λ(Y = 1)

Pα,λ(Y = 1 | x1, x2) · Pα,λ(Y = 0)

)
dx2dx1

=

∫
X1

∫
X2

f0α,λ(x1, x2) ln

 exp{−λ·[x2−(x2
1+sin(αx1))]}

1+exp{−λ·[x2−(x2
1+sin(αx1))]}

1
1+exp{−λ·[x2−(x2

1+sin(αx1))]}
· Pα,λ(Y = 1)

1− Pα,λ(Y = 1)

 dx2dx1

=

∫
X1

∫
X2

f0α,λ(x1, x2)

× ln

(
exp{−λ · [x2 − (x21 + sin(αx1))]} · Pα,λ(Y = 1)

1− Pα,λ(Y = 1)

)
dx2dx1

=

∫
X1

∫
X2

exp{−λ · [x2 − (x21 + sin(αx1))]− 1
2 [x2 − (x21 + sin(αx1))]2}

2
√

2π(1− Pα,λ(Y = 1)(1 + exp{−λ · [x2 − (x21 + sin(αx1))]})

×
(
−λ ·

[
x2 − (x21 + sin(αx1))

]
+ ln

(
Pα,λ(Y = 1)

1− Pα,λ(Y = 1)

))
dx2dx1.

1We approximate the double integral using the Wolfram Alpha Double Integral Calculator found

at https:www.wolframalpha.comwidgetsview.jsp?id=f5f3cbf14f4f5d6d2085bf2d0fb76e8a.
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Table 3.5 shows a numerical approximation of this integral for the same 9 combi-

nations of (α, λ). The values for Pα,λ(Y = 1) are supplied from Table 3.4.

Dα,λ
KL(f 0 || f 1) α = 1 α = 3 α = 8

λ = 0.1 0.005 0.005 0.005

λ = 1.5 0.795 0.795 0.795

λ = 10 7.239 6.516 6.634

Table 3.5: Numerical approximation for the KL divergence from f 1
α,λ to f 0

α,λ.

In general, the class overlap (as represented by KL divergence) is determined by

λ; as λ increases, the conditional distributions are more separable and have a higher

KL divergence. For λ = 0.1 and λ = 1.5, which represent the subgroups with large

and medium class overlap, respectively, we see that the value of α does not make a

difference in the approximate KL divergence (to 3 decimal places). The overlap of

these subgroups can be seen in the top tow rows from Figure 3.7; here, the region

of class overlap covers the entire decision boundary for all three choices of α, hence

the exactly shape or complexity of the boundary doesn’t have an influence on how

separated the classes are.

However, for the subgroups with λ = 10 which have a very low degree of overlap

and high KL divergence, (bottom row of Figure 3.7), the complexity of the decision

boundary has a small impact on divergence between conditional class distributions.

The subgroup with lowest complexity (α = 1) has a slightly higher divergence than

the subgroups with greater complexity, which is attributed in part to the differing

marginal probabilities Pα,λ(Y = 1).

The KL divergence calculations provide an objective quantification of the trend

in overlap that is visually present in Figure 3.7 as one moves from the bottom row

(almost no overlap) to the top row (almost full overlap), which we discuss here in
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further depth using Equation (3.16). This equation, reproduced below for easier

reading, sheds light on why higher class overlap, quantified in one sense by lower KL

divergence, increases the difficulty and complexity of the classification problem.

εBayes =

∫
R1

P (Y = 0 | x)dx +

∫
R0

P (Y = 1 | x)dx,

In Figure 3.7, the decision boundary shown by the black line demarcates R1 from

R2. With increasing class overlap (moving from the bottom to the top row), the

probability of observing data in the region of the opposite class label gets higher (e.g.

P (Y = 0 | x) increases in R1 and vice versa). This increases the integrals in Equation

(3.16) (reproduced directly above this paragraph) and thus increases the BER. Since

the BER is the theoretically lowest error that can be attained, this directly contributes

to the difficulty of the classification problem. While KL-divergence does not directly

measure the BER, it is closely related, as are other f -divergences.

This simulated example, in particular the results in Table 3.5, also highlight the

subtle interaction between decision boundary complexity and class overlap, where

greater decision boundary complexity can lead to greater class overlap even when the

probability of being in the wrong class, as a function of distance from the decision

boundary, is the same. One explanation for this interaction is that with greater

decision boundary complexity, there are more directions in the X domain in which a

fixed distance from the decision boundary lands in the region of the opposing class.

The simulated example demonstrates both of our observations at the end of Sec-

tion 3.3. Greater class overlap contributes to classification complexity by increasing

the the theoretically lowest error that can be attained by any learning algorithm on

any set of data for that problem, and greater decision boundary complexity con-

tributes by making the theoretically optimal function harder to learn and to estimate

performance for, given a fixed sample size.
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3.5.4 Empirical Measures of Data Complexity

The preceding sections demonstrated how classification difficulty is impacted by

both decision boundary complexity and class overlap, which are controlled in our

simulated data by the α and λ parameters, respectively.

To understand how these two aspects impact empirical estimates of classification

difficulty, we calculate measures of data complexity from Lorena et al. (2019) on the

9 subgroups, averaged over 10 draws of the sample with two different sample sizes

of increasing order of magnitude: 50 and 500. We use the ECoL R package for this

analysis. We use only 10 iterations in order to demonstrate the variability of the

complexity measures on small sample sizes.

In Table 3.6, we present the results of calculating the complexity measures on

datasets of size n = 50 generated according to the DGP for all combinations of

α ∈ {1, 3, 8} and λ ∈ {0.1, 1.5, 10}. Table 3.7 shows similar results but for n = 500.

Of note, many of the complexity measures yield similar results and are highly

correlated; this is to be expected because some of the measures measure very similar

quantities. There are several other clear trends. First, the main driver of the com-

plexity measures is the overlap parameter λ. However, within the subgroups with

low overlap λ = 10, the decision boundary complexity parameter α starts to come

into play; the complexity measures tend to have a higher value (indicating more

complexity) for larger values of α (which correspond to more complicated decision

boundaries). Within the n = 500 dataset (Table 3.7), this pattern is much more

stable across all of the complexity parameters.

We also see that the complexity measures have much higher variance on the smaller

dataset n = 50 (to be expected); furthermore, within this smaller dataset, for the

subgroups where λ = 10 (the most separability), the complexity measures typically
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Table 3.6: Mean (sd) of the 17 data complexity measures, calculated over 10
samples of size n = 50 drawn using the DGP above.

α α = 1 α = 3 α = 8 α = 1 α = 3 α = 8 α = 1 α = 3 α = 8

λ λ = 0.1 λ = 1.5 λ = 10

F1 0.98 (0.02) 0.98 (0.025) 0.97 (0.02) 0.85 (0.06) 0.83 (0.086) 0.8 (0.124) 0.53 (0.051) 0.58 (0.043) 0.61 (0.076)

F1v 0.91 (0.086) 0.9 (0.083) 0.87 (0.074) 0.48 (0.109) 0.52 (0.157) 0.5 (0.149) 0.14 (0.024) 0.17 (0.032) 0.28 (0.065)

F2 0.72 (0.143) 0.74 (0.126) 0.75 (0.106) 0.59 (0.142) 0.51 (0.11) 0.57 (0.175) 0.26 (0.077) 0.29 (0.043) 0.38 (0.111)

F3 0.9 (0.033) 0.92 (0.031) 0.91 (0.043) 0.85 (0.074) 0.79 (0.094) 0.81 (0.153) 0.47 (0.077) 0.49 (0.023) 0.65 (0.127)

F4 0.84 (0.042) 0.87 (0.04) 0.84 (0.059) 0.77 (0.076) 0.72 (0.105) 0.72 (0.163) 0.21 (0.149) 0.28 (0.074) 0.56 (0.134)

L1 0.47 (0.023) 0.48 (0.021) 0.47 (0.019) 0.39 (0.022) 0.4 (0.034) 0.39 (0.047) 0.26 (0.022) 0.28 (0.024) 0.33 (0.025)

L2 0.24 (0.012) 0.24 (0.011) 0.23 (0.01) 0.19 (0.013) 0.19 (0.02) 0.19 (0.029) 0.09 (0.012) 0.11 (0.014) 0.15 (0.017)

L3 0.23 (0.018) 0.23 (0.012) 0.23 (0.012) 0.17 (0.021) 0.18 (0.028) 0.18 (0.029) 0.07 (0.008) 0.09 (0.016) 0.13 (0.025)

N1 0.75 (0.1) 0.72 (0.054) 0.75 (0.057) 0.53 (0.094) 0.6 (0.069) 0.59 (0.119) 0.22 (0.072) 0.28 (0.047) 0.42 (0.062)

N2 0.51 (0.051) 0.5 (0.033) 0.52 (0.039) 0.44 (0.035) 0.46 (0.039) 0.43 (0.062) 0.29 (0.037) 0.31 (0.025) 0.37 (0.037)

N3 0.55 (0.113) 0.5 (0.067) 0.56 (0.092) 0.35 (0.087) 0.42 (0.095) 0.36 (0.146) 0.11 (0.064) 0.12 (0.05) 0.23 (0.069)

N4 0.34 (0.09) 0.37 (0.058) 0.31 (0.063) 0.25 (0.062) 0.3 (0.062) 0.25 (0.09) 0.06 (0.035) 0.06 (0.033) 0.13 (0.063)

T1 0.75 (0.077) 0.72 (0.036) 0.73 (0.064) 0.54 (0.101) 0.6 (0.057) 0.58 (0.114) 0.26 (0.057) 0.28 (0.052) 0.45 (0.092)

LSC 0.96 (0.008) 0.96 (0.004) 0.96 (0.005) 0.94 (0.012) 0.95 (0.008) 0.95 (0.015) 0.88 (0.016) 0.9 (0.013) 0.93 (0.011)

Density 0.91 (0.005) 0.91 (0.005) 0.91 (0.005) 0.89 (0.007) 0.9 (0.006) 0.9 (0.01) 0.86 (0.007) 0.87 (0.007) 0.89 (0.007)

ClsCoef 0.44 (0.06) 0.4 (0.048) 0.42 (0.042) 0.37 (0.057) 0.37 (0.052) 0.37 (0.063) 0.34 (0.033) 0.31 (0.035) 0.35 (0.047)

Hubs 0.82 (0.051) 0.86 (0.045) 0.85 (0.034) 0.84 (0.044) 0.86 (0.047) 0.83 (0.048) 0.8 (0.054) 0.84 (0.023) 0.84 (0.021)

have the highest variance with the greatest decision boundary complexity α = 8. The

patterns in variance reflect typical sampling considerations and highlight our earlier

comments that these empirical data measures suffer from the same limitations that

other empirical estimates calculated on finite samples do.

The trends discussed above can be observed in Figures 3.10 (n = 10), 3.11 (n =

20), 3.12 (n = 50) and 3.13 (n = 500), which include a more extensive set of sample

sizes. Each of the subplots shows the values of one of the complexity measures, for

each of the 9 combinations of α and λ. The different values of λ are shown in different

colors and shapes (each line corresponds to one value of λ), whereas α is shown on

the x-axis. Within the Feature Measures and Neighborhood/Network Measures, we

chose to plot these particular measures because they were the ones that will have

the highest correlation to out of sample performance, in our analysis with a speech

110



Table 3.7: Mean (sd) of the 17 data complexity measures, calculated over 10
samples of size n = 500 drawn using the DGP above.

α α = 1 α = 3 α = 8 α = 1 α = 3 α = 8 α = 1 α = 3 α = 8

λ λ = 0.1 λ = 1.5 λ = 10

F1 0.99 (0.004) 1 (0.005) 1 (0.002) 0.81 (0.018) 0.84 (0.029) 0.81 (0.014) 0.55 (0.026) 0.62 (0.028) 0.61 (0.019)

F1v 0.97 (0.021) 0.98 (0.027) 0.99 (0.01) 0.44 (0.039) 0.48 (0.041) 0.52 (0.023) 0.16 (0.01) 0.2 (0.023) 0.28 (0.015)

F2 0.86 (0.056) 0.85 (0.057) 0.87 (0.067) 0.61 (0.044) 0.65 (0.079) 0.65 (0.092) 0.32 (0.023) 0.33 (0.027) 0.39 (0.047)

F3 0.99 (0.004) 0.99 (0.003) 0.99 (0.004) 0.94 (0.019) 0.94 (0.028) 0.95 (0.023) 0.63 (0.042) 0.64 (0.048) 0.75 (0.027)

F4 0.98 (0.005) 0.99 (0.004) 0.98 (0.007) 0.93 (0.018) 0.93 (0.027) 0.94 (0.022) 0.6 (0.05) 0.63 (0.052) 0.72 (0.03)

L1 0.5 (0.003) 0.5 (0.003) 0.5 (0.001) 0.39 (0.012) 0.4 (0.012) 0.41 (0.006) 0.28 (0.007) 0.3 (0.012) 0.33 (0.009)

L2 0.25 (0.001) 0.25 (0.002) 0.25 (0.001) 0.19 (0.007) 0.2 (0.007) 0.2 (0.003) 0.11 (0.005) 0.13 (0.009) 0.15 (0.004)

L3 0.25 (0.002) 0.25 (0.002) 0.25 (0.001) 0.17 (0.009) 0.18 (0.009) 0.19 (0.004) 0.09 (0.006) 0.1 (0.008) 0.13 (0.005)

N1 0.71 (0.032) 0.72 (0.025) 0.72 (0.02) 0.53 (0.036) 0.53 (0.032) 0.52 (0.028) 0.13 (0.014) 0.13 (0.02) 0.16 (0.022)

N2 0.5 (0.016) 0.49 (0.014) 0.5 (0.007) 0.43 (0.014) 0.43 (0.013) 0.43 (0.011) 0.22 (0.012) 0.22 (0.014) 0.25 (0.014)

N3 0.5 (0.032) 0.49 (0.028) 0.5 (0.016) 0.35 (0.036) 0.37 (0.03) 0.35 (0.022) 0.08 (0.012) 0.08 (0.018) 0.1 (0.021)

N4 0.44 (0.024) 0.42 (0.026) 0.44 (0.018) 0.3 (0.024) 0.32 (0.027) 0.32 (0.027) 0.06 (0.017) 0.09 (0.016) 0.17 (0.025)

T1 0.71 (0.029) 0.72 (0.031) 0.72 (0.026) 0.53 (0.031) 0.53 (0.039) 0.54 (0.025) 0.13 (0.014) 0.14 (0.021) 0.17 (0.022)

LSC 1 (0) 1 (0) 1 (0) 0.99 (0.001) 0.99 (0.001) 0.99 (0.001) 0.95 (0.005) 0.95 (0.004) 0.97 (0.002)

Density 0.91 (0.001) 0.91 (0.001) 0.91 (0.001) 0.9 (0.001) 0.9 (0.002) 0.9 (0.001) 0.87 (0.002) 0.87 (0.002) 0.89 (0.002)

ClsCoef 0.35 (0.004) 0.34 (0.006) 0.32 (0.008) 0.32 (0.008) 0.31 (0.01) 0.3 (0.011) 0.27 (0.003) 0.27 (0.007) 0.27 (0.007)

Hubs 0.88 (0.038) 0.89 (0.031) 0.89 (0.034) 0.89 (0.025) 0.89 (0.017) 0.89 (0.025) 0.85 (0.048) 0.84 (0.039) 0.89 (0.024)

dataset (to be described in greater detail in the next chapter). We also included the

Linearity Measures for completeness.

The largest and most obvious change moving from Figure 3.10 (n = 10) through to

Figure 3.13 (n = 500), in other words, as sample size increases, is the size of the error

bars indicating the standard error for the mean complexity measure over repeated

sampling. As the sample size increases, the variability of the complexity measure

outcome over 10 sampling repetitions significantly decreases. This finding emphasizies

that the empirical data complexity measures are subject to similar considerations for

sampling variability as other empirical estimates calculated on finite samples.

Overall, the pattern between the data complexity measures and the α and λ

parameters is clear, at least for the larger sample sizes of n = 50 and n = 500: the

main driver of the complexity measures is the degree of class overlap λ. With high
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overlap (λ = 0.1), the decision boundary complexity is almost irrelevant. However,

with sufficiently low overlap (λ = 1.5 or λ = 10), the degree of decision boundary

complexity (represented by α) can impact the complexity measures. Greater decision

boundary complexity (higher α) typically increases the values of the data complexity

measures, indicating greater complexity, although in some cases it appears to decrease

it; this seems to be a result of sampling variability, as the patterns stabilize for most

of the complexity measures with the largest dataset (Figure 3.13).

Since these complexity measures are highly correlated, and in some cases com-

puting almost identical values, we perform Principle Component Analysis (PCA) to

explore underlying patterns or lower-dimensional structures in the set of complexity

measures, inspired by the insightful analysis done in Ho and Basu (2002). Note that

while PCA has limitations when used as a feature engineering technique to improve

regression or classification performance (see Jolliffe (1982) and section 4.2 on fea-

ture engineering for more details), our use of PCA here, namely, to explore lower

dimensional structure underlying a set of features, is entirely appropriate.

To perform the principle component analysis, we first calculate the set of principle

components for a 9×17 data matrix. The rows of the data matrix are the 9 hyperpa-

rameter configurations of (α, λ) for the data generation process, and the columns of

the matrix are the means for each of the 17 data complexity measures, averaged over

50 replications of the DGP. Note that we averaged the complexity measures over 50

iterations of the DGP in order to have a more stable result for the mean complexity

measure used for the PCA calculation. Since the rank of the matrix is at most 9, we

obtain 9 principle components from this process, and visualize the first four principle

components using two 2D plots, similar to the analysis performed in Ho and Basu

(2002).

This process is repeated twice, one time for the data complexity measures calcu-
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Figure 3.10: Complexity profiles on a subset of complexity measures, calculated
for data sets of size n = 10 over 10 repetitions. The x axis represents the decision
boundary complexity parameter α, with higher α indicating greater complexity. Each
line shows complexity values for a different value of the class overlap parameter λ.
The complexity measures have extremely high variation due to the small sample size,
as shown by large bars indicating the standard error of the mean complexity measure
over 10 repetitions of sampling.
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Figure 3.11: Complexity profiles on a subset of complexity measures, calculated for
data sets of size n = 20 over 10 repetitions. This figure demonstrates less variability
(smaller standard error) compared to Figure 3.10, and the patterns of complexity
related to the overlap parameter λ and the decision boundary complexity parameter
α begin to emerge. These patterns become fully clear by n = 50 and are described in
more detail in Figure 3.12.
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Figure 3.12: Complexity profiles on a subset of complexity measures, calculated for
data sets of size n = 50 over 10 repetitions. The overall level of the data complexity
measure is determined by λ, but within each value of λ (i.e. within each class overlap
setting), the decision boundary parameter α has a further impact. The trend in
decision boundary complexity is not monotonic in α when there is high class overlap
(λ ∈ {0.1, 1.5}), but when the class overlap is minimal (λ = 10), there is a clear trend
where complexity measures increase with greater decision boundary complexity.
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Figure 3.13: Complexity profiles on a subset of complexity measures, calculated for
data sets of size n = 500 over 10 repetitions. We see similar patterns as in Figure 3.13,
but with less variability in the complexity values over the 10 repetitions (as expected
with a larger dataset). We also see that the trend in complexity measures as α
increases is more stable in the lines representing higher class overlap (λ ∈ {0.1, 1.5}).
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lated on data sets of size n = 50, and another time for the data complexity measures

calculated on data sets of size n = 500. Figures 3.14 and 3.15 show, for data sets of

size n = 50 and n = 500, respectively, the location of the 9 complexity configurations

projected onto the subspaces of maximal variation of the data complexity measures.

The configurations are labeled by their corresponding decision boundary complexity

α and class overlap λ hyperparameters.

Figure 3.14: Complexity measures for the 9 data subgroups of size n = 50 per
(α, λ) combination, projected onto the PCA space. Here we visualize the first four
principle components.

Looking at the complexity profile for the 9 subgroups with dataset of size n = 50

(Figure 3.14), we see that there are 4 clusters in the first two principle components:

the subgroups of greatest overlap (λ = 0.1, small circles, upper left); the subgroups

of least class overlap and simplest decision boundary complexity (dark and light

blue squares, upper right); and the remaining subgroups, having either medium class

overlap, or low class overlap combined with high decision boundary complexity. The

first principle component seems entirely related to the class overlap λ, based on the

vertical separability of the data in that direction; this is to be expected since the

highest amount of variation in the complexity measure values (based on Figure 3.12)
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Figure 3.15: Complexity measures for the 9 data subgroups of size n = 500 per
(α, λ) combination.

is driven by λ. Interestingly, we don’t start to see pattern directly attributed to α

until we get to the third and fourth principle component, where there is a geometric

separation between low decision boundary complexity (α = 1) and the other two

cases.

When looking at the principle components for the 9 subgroups with a larger

dataset of size n = 500 (Figure 3.15), it becomes much more obvious that α and λ

are responsible for the two main components of complexity (at least, as measured by

the complexity measures of Lorena et al. (2019)). The first principle component is

primarily responsible for the difference by λ, again; however, within each λ subgroup,

further complexity is monotonically captured by the second principle component.

Thus, PC1 and PC2 capture the interaction effect of these two paramters on the

overall complexity of the data, as measured by the 17 data complexity measures. In

this case, going to the third and fourth principle components does not reveal any

particular further structure or clustering.

To summarize, the PCA analysis demonstrates that the measures of maximal vari-

ation in the principle components are primarily related to the class overlap parameter
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λ, and secondarily related to the decision boundary complexity parameter α. These

patterns are more clearly visible when we have a large sample of data, the n = 500

case, which implies that not-obvious patterns of data complexity (i.e., the complexity

determined by α) may be obscured in the empirical classification measures for small

sample sizes due to sampling variability. Furthermore, take note that these data com-

plexity measures are calculated on datasets with only 2 features, indicating a ratio of

data to feature dimension of 25 even in the “small” sample case, which is fairly large.

We discuss limitations of data complexity measures for very high dimensional data

in the next and final section.

While this exercise in calculating data complexity measures has been confined to

a single family of simulated data, the example is insightful because we have levers

to directly impact both the class overlap and decision boundary complexity of the

generated data. Here we see that the empirical measures of data complexity, which

use only the data generated from these DGPs and no knowledge of the underlying

distributions used to generate the data, or the true decision boundary, reveal patterns

in classification complexity that correspond to these two levers, in particular when

using sufficiently large sample sizes and few input features. With a large amount

of data relative to the number of features in the data generation process, the data

complexity measures provide valuable insights that align with theoretical notions of

complexity purported by statistical learning theory and information theory.

3.6 Discussion

In this chapter, we presented a review of relevant literature from statistical learn-

ing theory and information theoretic divergence measures, that demonstrated from a

theoretical point of view how classification difficulty is impacted by decision boundary

complexity and class overlap. When a classification problem has a highly complex de-
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cision boundary, a large amount of data is required to be able to learn a classification

function that will have favorable properties, from among a high capacity hypothesis

class. Lack of such data results in a large discrepancy between the risk (classification

performance) of the learned function and the theoretically optimal risk. Furthermore,

lack of large data makes the theoretical guarantees on true risk of the function, com-

pared to the empirical risk learned from the data, either very weak (large bounds) or

not holding with high probability. On the other hand, when a classification problem

has high class overlap, the theoretical limit to the best possible performance of any

algorithm, quantified by Bayes error rate, is much higher than when there is low class

overlap.

We also reviewed empirical measures of data complexity, which provide a sec-

ondary look into classification complexity, offering indirect insights on both class

overlap and decision boundary complexity. These measures of data complexity are

limited in the information they can provide by the size and representativeness of the

sampled data on which they are calculated; they are subject to variability due to

sampling variation, particularly in small samples, as shown by the size of the error

bars in Figures 3.12 and 3.13.

To demonstrate these concepts in a concrete example, we simulated data where

the degree of class overlap and decision boundary complexity was explicitly con-

trolled. We showed via this simulation that both the theoretical and empirical cal-

culations measuring aspects of data complexity (VC dimension, KL divergence, and

data complexity measures) aligned with the known complexity differences chosen in

the simulation settings.

This work presents a novel look into the connection between notions of classi-

fication complexity espoused in the large bodies of literature in statistical learning

theory and information theoretic divergence measures. This is also the first work,
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to our knowledge, to explicitly compare the complexity quantified by the data com-

plexity measures, to the complexity quantified by the long-standing concepts of VC

dimension and KL divergence, in a simulation study where true classification com-

plexity is known a priori.

Although we have focused for much of this chapter on class overlap and decision

boundary complexity as separate aspects of classification difficulty, the literature

on data complexity measures discusses at length the fact that decision boundary

complexity and class overlap are not completely disparate and independent facets of

classification complexity. These notions combine together, along with other challenges

(e.g., class imbalance, data sparsity, noisy data) to create an overall, multifaceted

concept of difficulty. The following quote from Santos et al. (2023) provides valuable

insights on this point:

Although we may argue that structural overlap measures focus on data charac-

teristics unrelated to class overlap, in the sense that they describe other general

properties of the domains (e.g., geometry, topology, density), we advocate that

class overlap cannot be fully understood irrespective of structural information,

since the global properties of the domains affect its identification and charac-

terisation.

We reiterate that the nature of the internal structure of the classes and the com-

plexity of the decision boundary inform the nature of the class overlap. Although the

classification measures may relate more strongly to either class overlap or decision

boundary complexity, many of them draw on both of these, and other aspects, to

quantify how difficult a problem is. The complexity measures force us to see that

these two aspects that we have focused on separately in the statistical learning the-

ory and information theory contexts are actually quite interconnected. This insight

is corroborated by the fact that the decision boundary complexity parameter in our
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simulated example, α, had a varying degree of impact (as captured by the empirical

measures), based on the underlying level of class overlap λ. Put more simply, the

changes in the classification measures in Figures 3.12 and 3.13 are much more stark

across the spectrum of α values when the class overlap is low (λ is high).

We finish the chapter with a discussion relating the themes discussed in this

chapter to our paper “Digital medicine and the curse of dimensionality” (Berisha

et al. (2021)). These connections help to place the results presented here in the

context of digital health data, which is the application in which they will be utilized

in the next chapter.

The key themes of the paper are 1) explaining the curse of dimensionality in the

context of large digital data streams, 2) providing insights as to when this curse can

and cannot be mitigated, and 3) giving recommendations for best practices to follow

in building machine learning models, for the situation where it can be mitigated. As a

brief background, the curse of dimensionality was first introduced by Richard Bellman

as part of his work on dynamic programming (Bellman (1954)), and the term was

coined in his book on control systems theory (Bellman (1961)). In modern machine

learning, the term is used to refer to the fact that as the dimension of the input data

(i.e., the cardinality of X ) grows, the same number of data become more and more

sparse in the input dimension, thus obscuring patterns and structured relationships

between X and Y ; see Theodoridis and Koutroumbas (2006) for more background on

the curse of dimensionality.

In the context of digital health data, the curse of dimensionality does not only

relate to the actual feature dimension of the incoming data, which can easily number

in the millions for digital health streams, but also to the intrinsic dimensionality

of the data. Intrinsic dimensionality, for our purposes, can be considered as the

capacity of the hypothesis class required to learn an optimal function that matches
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the true decision boundary of the underlying classification problem. The presumption

in the digital health space is that the hypothesis class of the underlying classification

problems attempting to be solved with these digital health streams is very high. This

assumption can be attributed to both the signal complexity of the incoming data (in

the sense of amount of information contained in the signal, see Zvonkin and Levin

(1970) and López-Ruiz et al. (1995)), and the multi-faceted sources of information

that contribute to human health.

The “curse” of dimensionality can be understood using our findings from statistical

learning theory: when a classification problem warrants a high capacity hypothesis

class, a proportionately large amount of data is required to learn the optimal function

from this hypothesis class with any degree of success. Unfortunately, it is frequently

the case in applications of machine learning to digital medicine that models are fit

with only hundreds, and frequently just tens, of datapoints (at least for community

researchers), owing to the scarcity of publicly available digital health data, and the

expense incurred in collecting proprietary digital health datasets (for all but the

largest private companies). These sample sizes are insufficient to support learning

a high capacity classification function that will possess desirable properties, such as

generalization to new data.

In Berisha et al. (2021), we demonstrate this point using an intuitive visualization

and the concept of “blind spots”, but it has been more rigorously demonstrated in

the present chapter via the theoretical results presented in Section 3.2, particularly

the leading examples of Equations (3.9) and (3.13). While the paper considers three

causes for blind spots, this current work does not consider the third, which is a biased

sampling strategy that produces data which systematically does not reflect the true

nature of the underlying probability distribution P (X, Y ). This can also be considered

a form of covariate shift and is outside the scope of the present work.
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Note that Equation (3.13) relates to how similar the empirical performance and

the actual performance (which will be reflected in future unseen data) of the learned

function are. This connection offers direct insights on the concept of generalization,

which is a recurring theme in Berisha et al. (2021); here, we have shown theoretically

that the curse of dimensionality has a direct impact on a model’s ability to generalize.

The last section of the paper is devoted to strategies for mitigating the curse of

dimensionality where possible, at each stage of model development and validation.

The first strategy, applied to the stage of data collection, is to design a thoughtful and

appropriate data collection protocol, and this is the main theme of the next chapter.

In the next chapter, we provide an extensive analysis on speech data from cognitively

normal and impaired participants, which demonstrates the benefit of using maximum

performance tasks (recommended in Berisha et al. (2021)) for reducing classification

complexity, and thereby increasing classification performance.

Another stage of model development around which we do extensive analysis in the

next chapter is feature engineering. We provide a formal context in which two rec-

ommendations from the paper, namely domain expertise based features and transfer-

learning based features, are justified as useful feature engineering strategies.

As a last connection on recommendations from Berisha et al. (2021), we discussed

at length in this chapter divergence measures, which are recommended in the paper

as a way of monitoring covariate shift between data used for model training compared

to real-world deployment. While the use case (monitoring covariate shift) is differ-

ent than our use case of measuring class overlap, the underlying theory related to

divergence measures is the same, and the background information on f -divergences

applies to this use case as well as our main one.

Finally, we make a note on the impact of dimensionality on the data complexity

measures. As these are empirical measures calculated on a finite dataset, they are also
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subject to the problems arising with high-feature, small-sample data settings. Because

structured patterns and relationships between X and Y can become obscured due to

data sparsity, empirical measures meant to quantify these patterns can also become

meaningless given a low enough data-to-feature ratio. For example, the complexity

measure F2, volume of the overlapping region, is calculated by multiplying together

overlap regions of individual features; exponential decay means that this measure

quickly tends to 0 in high dimensional datasets, severely reducing its usefulness.

Similarly, F4, collective feature efficiency, has less value due to the possibility of

datapoints from different classes being able to be spuriously separated from one among

hundreds or thousands of features.

The limitations of some of the data complexity measures in high dimensional

data are mentioned in Lorena et al. (2019), and are also directly referenced in other

works on data complexity measures. For example, Mercier et al. (2018) note that

although there are clear patterns between their classification measure degOver and

actual classification performance on simulated datasets with simpler class boundaries

and fewer data dimensions, the conclusion is less clear for the simulated datasets with

higher dimensionality; in this example, the highest dimensional datasets contained

only 40 features for 1500 dimensions.

Another limitation of using the data complexity measures for high-dimensional

datasets is that many of the large scale analyses are done on datasets mostly having

relatively large data-to-feature ratios. For example, Sáez et al. (2013) use data com-

plexity measures to predict the usefulness of noise filtering, performing their analysis

on 17 classification datasets; the smallest n/p ratio among the 17 is 3.5, but almost

all are above 50. This limits our ability to transfer the lessons gained, via the semi-

supervised learning approach described at the end of Section 3.4, to only datasets

that also have a relatively large data-to-feature ratio. In particular, we cannot imme-
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diately apply the knowledge to digital health datasets having thousands of derived

features and only hundreds of datapoints.

In the next chapter, as a secondary analysis to analyzing classification performance

under specific task and feature engineering protocols, we calculate the same empirical

measures of data complexity on each of the datasets and explore their usefulness,

paying special attention to the the impact of feature dimensionality on the complexity

measure correlation with actual out-of-sample performance.
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Chapter 4

TASK ENGINEERING FOR SPEECH-BASED SCREENING TESTS

4.1 Overview

In the last chapter, we explored two aspects of classification problem difficulty via

both theoretical and empirical approaches, namely decision boundary complexity and

class overlap. Understanding the nature of the factors impacting classification diffi-

culty is critical for designing data-driven screening tests, as the screener performance

is a direct consequence of the inherent complexity of the classification problem un-

derlying the condition being screened. In particular, an understanding of the sources

of classification complexity can be used to inform prioritization of efforts around

designing the test to reduce classification complexity.

The problem of interest in this chapter is designing a speech-based screening test

to detect cognitive impairment. In the general setting of digital screening tests for

detecting medical conditions, methods for understanding classification complexity are

of particular importance. Unlike traditional item-based exams, in which each item is

constructed to directly tap into the condition being assessed, a digital data stream in

its raw incoming form is usually not directly usable as input to a screening test; each

individual sample is meaningless with respect to the underlying condition. Instead,

the raw data stream must first be transformed to lower dimensional, meaningful

features, which are then fed as input to the classification model that comprises the

screening test. Considerations for the best data collection and subsequent feature

extraction protocols immediately arise, and an understanding of the factors impacting

classification complexity can inform the attention paid to either or both of these steps
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during test design.

The novel contributions of this chapter are two-fold. First, we undertake a large

scale comparison of the classification complexity underlying different combinations

of data collection and feature engineering protocols, on a medical speech dataset

consisting of cognitively impaired and cognitively normal participants1. The novel

contribution of this analysis is to bring attention to the relative impacts that both

data collection and feature engineering can have on the classification complexity of

the extracted features, in an analysis comparing a larger number and much broader

variety of tasks than has been performed in the speech literature to date. We par-

ticularly highlight the importance of designing a good data collection protocol, and

demonstrate that it is this step of model development and validation that can shift the

upper bound of potential classification performance for a given speech-based screening

test setting.

Second, we propose a method for systematically and objectively discovering the

aspects of the data collection tasks that are driving the performance gains measured

in the large scale comparative analysis. These aspects can then be incorporated

to a greater degree in further data collection protocol development. This analysis

represents a new approach to designing the data collection step when developing a

data-driven digital screening test.

Throughout, we bring together ideas from statistical learning theory, design of

experiments, and machine learning, to aid in the design of of digital speech-based

screening tests for neurological impairment. We use the term task engineering to

1Throughout this chapter, the analyzed features and tasks include both publicly available and

proprietary algorithms. The analysis using proprietary algorithms has been made possible through

collaboration with Aural Analytics, Inc., a speech analytics company that seeks to provide mean-

ingful clinical insights for brain health using recorded speech. Aural Analytics was founded by two

professors at Arizona State University, Dr. Visar Berisha and Dr. Julie Liss.
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describe the process of designing the data collection protocol for the screening test.

For the remainder of this section, we introduce the specific classification problem

that we aim to solve with our digital screening test, and provide general background

on speech as a digital biomarker.

Human speech has shown impressive potential as a digital biomarker of neurologi-

cal health (Fagherazzi et al. (2021)). In diverse neurodegenerative diseases, including

amyotrophic lateral sclerosis (ALS) (Maffei et al. (2023)) Parkinson’s disease (Rusz

et al. (2021)), and Alzheimer’s disease (de la Fuente Garcia et al. (2020)), speech has

proven relevant in clinical applications ranging from disease diagnosis to longitudinal

tracking of decline over time.

We will consider specifically the task of using speech as a digital biomarker for

cognitive decline. The relationship between speech/language and cognition has been

demonstrated in myriad studies (Mueller et al. (2018), Geraudie et al. (2021), Meilán

et al. (2020), Mart́ınez-Nicolás et al. (2021)). To simplify the problem setting, we fo-

cus on a speech-based screening test that determines whether the screened individual

is cognitively normal (CN) or cognitively impaired (CI), with the cognitively impaired

group being recommended for further testing. This reduces the problem to one of

binary classification, also known as pattern recognition or pattern classification.

Human speech is sampled at anywhere from 16k to 44k samples per second, mean-

ing that a 1-minute speech audio recording can result in a corresponding feature vector

(of discrete amplitude measurements) of size up to 2.64 million. The level of com-

plexity of this raw data make classification using the amplitude features extremely

difficult. As a result, and as described earlier in this chapter, the speech signal must

be transformed into a lower dimensional feature vector before making a final classifi-

cation decision.

Two options for feature engineering are possible. In the first, features are first
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extracted from the audio, and then provided as input to a separate classification

model. Figure 4.12 demonstrates this method. The second is to employ an end-to-

end model in which feature engineering is done as part of the classification model

optimization process. Deep neural networks, such as the Wav2Vec2 (Baevski et al.

(2020)) and BERT-family models (Devlin et al. (2018), Acheampong et al. (2021)),

employ this mode. See Figure 4.2 for a visual demonstration.

Figure 4.1: Flowchart showing the process of turning a raw audio signal into a
classification decision using a separate feature engineering step.

In contrast to the separate feature engineering step, which normally utilizes hand-

crafted features designed using clinical insight and domain expertise, the end-to-end

approach requires staggering amounts of data (e.g., thousands of hours of speech)

to train the network to produce meaningful speech representations in a purely data-

driven manner. As clinical speech data is extremely limited (e.g., tens to hundreds of

hours of speech in a medical speech dataset), the end-to-end approach is only feasible

via transfer learning using models already trained on large quantities of normal speech.

In both of these regimes, the emphasis is on the particular feature engineering

methods and classification models; the set of audio samples is considered fixed, often

2Image of audio wavefile by Gordon Johnson from Pixaby (https:pixabay.comusersgdj-1086657).
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Figure 4.2: Flowchart showing the process of turning a raw audio signal to a
classification decision using a built-in feature engineering step.

without particular attention paid to the way in which speech is collected, which we

call the speech elicitation task. A speech elicitation task is the activity that the

participants perform while their speech is being recorded. Passive speech recording

involves recording participants as they naturally do whatever they ordinarily do;

getting a large amount of passively recorded speech induces understandable privacy

concerns. The alternative to passively collected speech is actively collected speech, in

which the participant is asked to perform a specific task, and their responses to that

task are recorded. Examples of speech elicitation tasks include reading a sentence or

paragraph, describing a picture, or being presented with a series of words, pictures,

or a story and recalling that content after presentation.

The intense focus on feature engineering and its encompassing activities, and the

minimal attention paid to task engineering, is likely due to the pure difficulty for

most speech scientists of performing in-house studies to collect speech using speech

elicitation tasks of their own design. This difficulty is severely compounded when

seeking to design a speech-based screening test for difficult-to-access clinical popula-
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tions having a particular medical diagnosis. Speech scientists often must settle for

whatever collected speech is available, either via publicly available repositories, or via

proprietary datasets owned by their particular academic or professional networks.

One of the major contributions of this chapter is to highlight the need for a

paradigm shift, in which practitioners designing speech-based screening tests con-

sider engineering of the speech elicitation task (i.e., the data collection protocol) as a

crucial first step in algorithm design. It is our fundamental conviction that the great-

est amount of utility for using speech as a clinical tool will be achieved by careful

engineering of both the speech elicitation task and the extracted speech features and

classification models, rather than relying on feature engineering or model exploration

in isolation; this is demonstrated in extensive analyses to follow. Figure 4.3 shows a

visual representation of this paradigm. This figure is a comparator to the regime of

feature engineering as a separate step (Figure 4.1), but the same principle applies to

the end-to-end regime (Figure 4.2).

Figure 4.3: Flowchart emphasizing the engineering of the speech elicitation task
as a crucial first step to speech-based screening test design.

To describe our goal in the language of the previous chapter, both task+feature

engineering or feature engineering alone, the usefulness of the resulting speech features

for a speech-based screening test is based on whether the engineered features reduce
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the complexity of the classification problem of predicting cognitive status from the

engineered features. We rely on our insights on classification complexity from the

previous chapter to assess the difficulty of the classification problem resulting from

the extracted features. While classification complexity encompasses many facets,

we are particularly interested in whether the resulting features reduce classification

complexity via smaller class overlap and lower decision boundary complexity.

To close this introduction, we discuss the connections between speech elicitation

task design and two related fields: neuropsychological testing and design of experi-

ments.

Although novel in the speech-based machine learning community, the idea of de-

signing targeted tests that can differentiate between populations of interest has a long

and rich history in neuropsychological cognitive testing. When referred for cognitive

assessment, patients are not passively observed by a neurologist, but rather are asked

to perform a series of specific tasks that tax particular function of different cognitive

domains. Thus, our emphasis on careful design of the speech elicitation tasks used in

a speech-based cognitive screening test has a foundation in existing scientific litera-

ture, and one of our contributions is bringing existing ideas from traditional cognitive

assessment to the speech machine learning community. See Section 4.2.2 for a deep

dive into examples of traditional cognitive assessments and their design.

On the other hand, the phrase “task design” immediately evokes for statisticians

the broad field of Design of Experiments (DOE). A natural question arises: what

prevents existing methods from DOE from being immediately applied to our use

case? Briefly, DOE differs in two respects from our setup of designing speech-based

elicitation tests. First, the causal chain between the independent and dependent

variables in the model is reversed compared to DOE. Our outcome variable (cognitive

impairment status) causally impacts the independent variables (speech features); the
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reverse is the case in the traditional DOE setting. Second, we cannot directly sample

the model inputs (speech features) at locations of interest, for example at locations

that maximize variance in some way. Instead, we must decide how to change the

speech elicitation task, and then simply observe how the subsequent speech features

change as a result. These ideas, along with a more thorough review of DOE, are

detailed in Section 4.4.1.

In the next section of this chapter, we lay out some formal definitions, and provide

a brief literature review on feature engineering in speech analysis and task engineering

in standard cognitive testing. We also discuss the ability of feature and task engi-

neering to reduce the classification complexity of the resulting features, drawing on

concepts from the previous chapter to formalize the discussion. In the third section of

this chapter, we perform the large scale analysis comparing classification complexity

under different task and feature engineering protocols. Finally, in the last section, we

propose a method for deriving automatic insights that can be used to guide future

task engineering. We compare a decision tree approach with a Bayesian treed clas-

sification method to obtain objective insights into the characteristics of the speech

elicitation task that produce simpler classification problems from the resulting speech

features.

4.2 Background on Feature and Task Engineering

In this section we first present prior work on feature engineering, in particular

engineering of speech features from speech data. We subsequently review the sparse

literature on speech elicitation task design, and compare to the process of design-

ing neuropsychological cognitive batteries that has been established over the course

of decades. Finally, we highlight how, and in what context, feature and task en-

gineering can be undertaken to improve the properties of the resulting classification
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problem, which in turn impacts the performance of a screening test designed to detect

cognitively impaired individuals.

4.2.1 Feature Engineering in Applications to Speech

In typical classification or regression problems, feature engineering or feature se-

lection is a frequently used preprocessing step for reducing the dimension of the input

space. The nominal purpose of feature engineering or selection is to reduce model vari-

ability, thereby increasing performance on unseen data via the classic bias-variance

tradeoff (Hastie et al. (2009), Section 2.9). In speech analysis, before this step can

take place, one must first transform the amplitude values of the recording in the time

domain, into a much lower dimensional set of speech features that contain meaning-

ful information from the speech sample. Feature selection on the amplitude values

themselves is meaningless, as each individual discrete time sample is only useful in

the context of the signal in the surrounding time frame.

Formally, Z will denote a random vector of amplitude values comprising the orig-

inal audio recording; X is a random vector representing a set of speech features

extracted from this original audio. The support of Z is Z, with a single instantiation

denoted z. Similarly, X has support X , with x denoting a single instance of these

features for a particular audio recording.

The function ffeature : Z → X is the mathematical transformation that turns the

audio recording into a set of speech features. For a speech recording sampled at a

rate of 16k Hertz, the cardinality of Z is 16000 · L, where L is the maximum record-

ing duration (in seconds) for the speech elicitation task from which Z is recorded.

The cardinality of X depends on the particular speech feature engineering approach

employed, but typically ranges from tens to thousands.

The function ffeature is a transformation such that the resulting features X repre-
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sent an informative component of speech production. Two types of feature engineering

approaches we will discuss are so-called hand-crafted features (shown in the diagram

in Figure 4.1) and built-in features calculated as part of an end-to-end classification

model (shown in Figure 4.2).

Hand-crafted features based on the acoustic properties of the recording have been

explored for decades in signal processing applications Kahrs and Brandenburg (1998),

Crocker (1998)). Classic acoustic features include jitter, shimmer, fundamental fre-

quency F0, and harmonic-to-noise ratio ((Bielamowicz et al. (1996)), along with

Mel-Frequency Cepstral Coefficients (MFCCs) (Mermelstein (1976)). Other hand-

crafted features include clinically-relevant and interpretable measures of speech, such

as speech duration, speaking rate, or number of pauses (Meilán et al. (2020)). Hand-

crafted language features can also be extracted using an intermediary transformation

from the audio recording to a transcript of the words that were spoken; features

based on language can then be extracted from the transcript, such as word counts,

part-of-speech counts and ratios, or type-to-token ratio (Bucks et al. (2000)).

In recent years, end-to-end models based on Deep Neural Networks (DNN) that

utilize the original speech recording Z as input have surpassed the performance of

models that rely on hand-crafted features, in applications including automatic speech

recognition (Chiu et al. (2018)), speaker recognition (Bai and Zhang (2021)), and

emotion recognition (Papakostas et al. (2017)). Examples of the most successful and

popular DNN models, which are publicly available to download and have been trained

on hundreds and in some cases thousands of hours of speech, include Wav2Vec2

from Facebook (Baevski et al. (2020)) GPT4 from OpenAI (OpenAI (2023)) and

its predecessors, and the BERT family (Devlin et al. (2018), Acheampong et al.

(2021)). Wav2Vec2 uses the audio as input, whereas GPT3 and the BERT family use

transcripts of the speech recording as input. Although these models are intended to
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be used after fine tuning on a small amount of additional speech (or transcripts), the

neural network can also function as a feature extractor, by sending an audio file or

transcript through in a feed-forward pass and extracting the values from the nodes in

an intermediate or last layer of the network. These DNN-based features can then be

treated as a typical set of speech features and evaluated alongside sets of hand-crafted

features.

Although feature engineering (both hand-crafted and built-in) reduces the dimen-

sionality of the input space from millions to tens or thousands, further mathematical

transformations (feature engineering) or feature selection can be performed to further

reduce the input space prior to model fitting. We will combine all such operations

in a function denoted as fselect : X → X ′; we use the subscript select for simplicity,

although this step may also involve further mathematical transformations, such as

Principle Component Analysis (PCA), rather than pure feature selection.

For a comprehensive review on best practices for feature selection and feature

engineering, we refer readers to Section 3.3 of Hastie et al. (2009) for a discussion on

feature selection in linear models, and to Zheng and Casari (2018) for a more general

and modern treatment.

4.2.2 Task Engineering and Cognitive Battery Design

Here, we introduce relevant notation and prior work on speech elicitation task

design, along with design of gold standard tests for measuring cognition. As described

in Section 4.1, audio recordings can be obtained using an active speech elicitation

task, in which the participant is asked to perform a specific task, or a passive speech

elicitation task. In this analysis we will focus on comparing different types of active

speech elicitation tasks.

Formally, each audio recording Z is produced by asking a participant to perform
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a specific speech elicitation task T = (T1, T2, . . . , Tm). The task is comprised of

components Ti, which are meta-features describing a particular aspect of the speech

elicitation task. One instance of a task realization is t, and the support of the task

space is denoted T . Examples of the task meta-features include the recording du-

ration, whether or not specific cognitive domains are taxed (e.g. memory, retrieval,

visuospatial reasoning), or other characteristics of the stimuli that the participant is

responding to during the task.

In applications involving automated speech analysis, works describing the process

of designing and refining a speech elicitation task to be used in a particular speech-

based screening context are essentially nonexistent, to the best of our knowledge. The

closest literature involves formal comparisons of different speech elicitation tasks for

the same learning problem; these are themselves scant, and mostly focused on con-

nected speech tasks. Connected speech means continuous speaking in full sentences,

similar to normal conversation. Sajjadi et al. (2012) explored semi-structured inter-

views compared to picture descriptions, and found that the interviews elicited greater

differences in morpho-syntactic features, whereas the picture descriptions were more

sensitive to semantic features. Beltrami et al. (2016) compared picture description

tasks to two personal narrative tasks (describing a typical work day and describing

a dream) for Italian speakers and found that the picture description task had higher

accuracy using features derived from the picture description task. Seçkin and Savaş

(2023) compared the differences in extracted features between three different picture

description tasks on healthy Turkish-speaking individuals only, and found that the

Accident Scene and Picnic pictures had superiority for different sets of features, and

were both better than the Cookie Theft picture. Bose et al. (2022) compared a word-

less story telling task based on a picture book (Frog Story) to a picture description

task, and found that the Frog Story task detected differences between CN and AD
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participants on a larger number of features.

Clarke et al. (2021) performed the most wide-spread comparison to our knowl-

edge; they compared five different connected speech tasks on CN, AD, and MCI

(mild cognitive impairment) participants, reporting classification metrics for the dif-

ferent tasks on multiple classification sub-problems. The authors also analyzed which

features were the most useful for different types of connected speech tasks. The

explicit emphasis on the importance of task selection in speech-based classification

analysis, along with the impact of the speech elicitation context on the extracted

features and their subsequent usefulness, is the first of its kind and is closely related

to the present work, at least among our investigation of prior literature. Employing

a similar emphasis on task importance, Mart́ınez-Ferreiro (2022) discuss connected

speech tasks compared to naming tasks for the purpose of eliciting naming deficits.

The authors explicitly analyze the usefulness of the two task types individually and

in conjunction, for the purposes of longitudinal monitoring and cross-sectional group

differentiation, and concluded from a systematic review that the combination of both

task types was most effective in achieving these goals.

Of the works discussed above, the few works that stress the importance of task

selection are all very recent. Noticeably, all of these studies were performing pure

task comparison, and at most providing insights on which features work better for

which tasks, rather than suggesting directions for future task design based on an

empirical and clinically-informed analysis. The current work is the first work to

propose proactive speech elicitation task design (rather than comparison alone) using

ideas from both machine learning and neuropsychology, via automatic discovery of the

elements of the speech elicitation task that may be driving performance differences.

The likely cause for the dearth of literature in design of speech elicitation tasks is

the difficulty of acquiring speech recordings on a task of one’s choosing, particularly for
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a classification problem in a medical application, such as a cognition-based screening

test. Most machine learning researchers provide results on “found speech”, meaning

either publicly available speech repositories, or proprietary speech datasets to which

they have access, as evidenced by the deluge of machine learning publications related

to speech-based classification problems on standard datasets such as DementiaBank

(Becker et al. (1994)) or ADReSS (Luz and MacWhinney (2020)). As a result, in the

speech-based machine learning community, the emphasis is placed on best practices

for feature engineering, model selection, and model training, rather than on designing

a speech elicitation task that produces good audio for the classification problem in

the first place.

Although test design is not a deeply embedded concept in machine learning ap-

plications of speech, the concept of design is not new in the field of cognitive neu-

ropsychology. There are a number of neuropsychological batteries that make up a

standard cognitive assessment administered when cognitive concerns arise. Exam-

ples of commonly administered batteries include the Mini-Mental State Examination

(MMSE) (Folstein et al. (1975), Tombaugh and McIntyre (1992)), the Boston Nam-

ing Test (Goodglass and Kaplan (1972)), the ADAS-Cog assessment (W G Rosen

(1984), Cano et al. (2010)), the more recent Montreal Cognitive Assessment (MoCA)

(Nasreddine et al. (2005)), and others. Each of these batteries has been carefully de-

signed and subsequently refined over the course of years to ensure validity, reliability,

and sensitivity to cognitive impairment.

For demonstration, we briefly review the original design and validation of the

MMSE and MoCA, two of the most commonly administered cognitive assessments,

along with a short form of the Boston Naming Test (Lansing et al. (1999)).

The MMSE was first introduced in Folstein et al. (1975), in which the authors

describe the “Mini-Mental State” (MMS, originally) as an abbreviated cognitive as-
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sessment that can separate patients with cognitive impairment from those with normal

cognition, as well as track longitudinal changes. The MMSE was designed to assess

a wide range of cognitive function in a very short time (hence “Mini”), lasting only

5-10 minutes. A brief yet wide-ranging and easily accessible test, the authors postu-

lated, would alleviate two concerns: 1) lack of access to intensive memory clinics for

most patients, and 2) difficulty for patients with dementia to complete very lengthy

neuropsychological exams. Besides brevity, the other goal in designing the MMSE

was to offer insights on cognitive aspects that impact everyday functioning: orienta-

tion, memory, reading, and writing. Other standard tests from that time included

tasks that taxed cognitive abilities necessary for school or work, such as digit symbol

recognition or vocabulary-based tests, rather than ability of the patient to care for

themselves.

In summary, the MMSE was designed to 1) provide information on patients’ cog-

nitive function necessary for everyday functioning, 2) take a short time to complete,

and 3) be able to be readily adopted in varied clinical settings, providing greater

accessibility to objective cognitive assessment.

The designers of the MoCA test, while also adopting the goal of brevity, sought to

create a test for evaluating early cognitive complaints (Nasreddine et al. (2005)). The

early stage of cognitive decline is difficult to detect with the gold standard MMSE, as it

is geared to provide insights during the later stages of Alzheimer’s disease and related

dementias (ADRD) (Nasreddine et al. (2005)). The authors started designing the test

using an initial version which taxed 10 cognitive domains related to mild cognitive

impairment; this initial version was based on the authors’ clinical experience. Some

items with poor discrimination between cognitively impaired and normal patients

were subsequently identified and replaced over the course of 5 years of use in-clinic.

Both the MMSE and MoCA were validated via reliability studies using repeated
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assessment within a short period of time, along with comparisons to existing gold-

standard clinical assessments, and sensitivity and specificity in discriminating be-

tween patients with cognitive impairment or normal cognition in prospective studies

(Folstein et al. (1975), Nasreddine et al. (2005)).

Rather than use classification metrics for battery validation in a post-hoc analy-

sis, Lansing et al. (1999) proposed a short form of the Boston Naming Test (BNT)

that used these criteria for test design itself. The authors performed a stepwise dis-

criminant analysis (with the target to discriminate between normal control (NC) and

Alzheimer’s disease (AD) groups) to arrive at a subset of 22 items for potential inclu-

sion from the original 60-item. They furthermore discarded several items to achieve

gender parity, arriving at a 15-item short form. In this example, the aim of the test

design was to create an abbreviated version of the test that removed gender bias while

maintaining the discrimination of the original long form.

In the examples above, the overarching themes of test design are creation of a test

according to criteria specific to the context in which that test will be used. In the

case of the MMSE, the goal was a short, objective test that would inform cognitive

function in the late stages of ADRD. For the MoCA, the authors aimed to design a

test for early stage cognitive impairment. In the short-form BNT, the authors chose

items based on ability to discriminate between normal controls (NC) and patients

with Alzheimer’s disease (AD), while removing gender-biased items. In all of the

examples, exam brevity was of major importance.

These examples highlight that speech-based screening tests for cognitive impair-

ment should be engineered, or designed, to meet specific criteria that are important

to the context in which the test will be administered. Considerations such as patient

burden from lengthy tests, in particular for cognitively impaired patients, necessitate

reasonably brief assessments, a continuing theme from our work on screening tests for

142



youth delinquency. Furthermore, cognitive tests should be tailored to assess cognitive

functions important for a specific indication or stage of impairment.

While a speech task itself may be known to tax neurological function known to

decline with cognitive impairment, the process of feature engineering should capital-

ize on this knowledge in order to make the screening test based on these features

discriminative and, ideally, interpretable.These ideas are explored more formally in

the next subsection.

4.2.3 Theoretical Impact of Feature and Task Engineering on Classification

Complexity

In the previous subsections, we presented prior work on the process of speech

feature engineering, speech elicitation task engineering, and cognitive test design, and

pointed out that these engineering steps should be concentrated toward achieving a

specific goal in the screening test setting. The targeted goal we will concentrate both

task and feature engineering efforts on, for the time being, is to make the screening

test as accurate as possible. This in and of itself is a challenging goal for a speech-

based screening test to achieve, and is a worthy aim for a baseline screening test.

Additional considerations such as test length (number of speech elicitation tasks)

are of secondary importance for the moment. In order to achieve good classification

performance, we seek to reduce the complexity of the classification problem implied

by predicting cognitive status using the engineered speech features.

We previously discussed how increasing the class separability and reducing the

complexity of the decision boundary are two ways of reducing classification complex-

ity. Reducing classification complexity leads to improved model performance, along

with better generalization on unseen data. Here we provide several more definitions

to allow for a formal discussion around how and whether task and feature engineering
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can impact classification complexity.

The class label, or cognitive group to which the participant who provided the

audio recording belongs, is a random variable Y , with support Y = {0, 1}; a single

realization is denoted y. We use Y = 0 to denote participants from the cognitively

normal (CN) group, and Y = 1 to denote participants who are cognitively impaired

(CI), in particular who have been diagnosed with Alzheimer’s disease.

The joint distribution we are interested in is

P (Z,T, Y ) = P (Z | T, Y )P (T | Y )P (Y )

= P (Z | T, Y )P (T)P (Y ),

since the task presented to the participant is independent of diagnosis. We seek less

overlap between the conditional distributions P (Z | T, Y = 1) and P (Z | T, Y = 0),

which we previously measured using KL-divergence. We also prefer a simpler decision

boundary, which is the surface defined by the equation

P (Z | T, Y = 1) = P (Z | T, Y = 0);

we previously measured decision boundary complexity by the VC dimension of the

function family needed to accurately approximate the decision boundary function.

With these definitions in place, we take a moment to discuss how both feature and

task engineering can impact the complexity of the underlying classification problem.

Recall that fitting a classification model on audio recordings Z according to the

Regularization principle is done by finding fn : Z → Y from a given hypothesis class

F such that

fn = argminf∈FRemp(f) + λ||f ||2. (4.1)

When we consider that 1) the size of the input space Z is on the order of millions,

2) the input features in their original form Z (amplitude of the speech signal at each
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discrete time point) are not likely to be individually comparable from one audio

sample to the next, and 3) the number of training examples in a medical speech

dataset is usually on the order of tens to hundreds, choosing an appropriate hypothesis

class F and then solving Equation (4.1) is an incredibly complicated classification

problem. Recalling the bounds on empirical risk from eq. (3.13), having data size n

on the order of hundreds (or tens) severely limits the complexity of the hypothesis

class from which we can optimize fn, and still reliably estimate its true risk R(fn).

But, looking at the bias-variance trade-off in eq. (3.9), using a hypothesis class of

limited complexity in order to reduce the estimation error (because of limited sample

size), will result in a larger approximation error, due to the complex nature of the

speech signal in its original form.

This dilemma is purportedly solved by adding a first step of feature engineer-

ing ffeature to transform the process into a two-part optimization problem: find

ffeature : Z → X and g : X → Y such that the composite function g◦ffeature : Z → Y

minimizes Remp(f)+λ||f ||2 for f = g◦ffeature. Because the function ffeature typically

transforms the speech signal into a much lower dimension (on the order of tens to

thousands), the reasoning goes, the new problem of finding g : X → Z has a much

more favorable data-to-feature ratio for reducing both terms in eq. (3.9) simultane-

ously.

Without further assumptions, this reasoning taken at face value obfuscates the fact

that the feature transformation function ffeature is itself a part of the function being

optimized. The actual complexity of the hypothesis space containing the learned

function is the hypothesis space containing g ◦ ffeature, not g.

We can also look at this problem from the perspective of class overlap, which

determines the theoretically lowest error that can be obtained, namely the Bayes

error rate shown in eq. (3.16). Without extra assumptions on ffeature, we are still
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limited in eq. (3.16) by the separability of the conditional distributions in the original

space of audio recordings Z, not X , since Z is the domain of the composite function

g ◦ ffeature, which is the actual function being learned.

Thus, if the feature engineering function ffeature is obtained in a purely empirical,

data-driven manner from the same small set of data, without any additional assump-

tions in place, the fundamental complexity of the task at hand (in relation to eq. (3.9)

and eq. (3.16)) is unchanged. Although the optimization process may be more suc-

cessful, due to optimization techniques that can be applied to composite functions

with specific forms that are not available in a standalone function optimization (see,

for example Astudillo and Frazier (2019)), we still face a problem of the same com-

plexity. The composite function g ◦ ffeature may either not be sufficiently complex to

approximate the true optimum f ∗, or if the complexity is sufficiently high, we may

not be able to be reliably estimate its true risk on our small dataset; furthermore, the

overlap of the conditional distributions P (Z | T, Y = 1) and P (Z | T, Y = 1) remains

the same limiting factor.

A partial solution to this dilemma can be found by considering again the formula

from (Bousquet et al. (2004)):

Generalization = Data + Knowledge. (4.2)

In order for the feature engineering step ffeature to reduce classification complex-

ity, we need to add either more Data, or more Knowledge. These two terms relate

to the two approaches to feature engineering described in the beginning of this sec-

tion. Hand-crafted feature engineering relies on the Knowledge of the usefulness of

the extracted features; this Knowledge is often call domain expertise (Berisha et al.

(2021)). Domain expertise implies a scientific understanding of how particular as-

pects of speech and language are known to decline in a particular condition (in this
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case, Alzheimer’s disease). If those aspects of speech and language are known to dif-

fer in healthy versus impaired populations, and there is a reliable way of extracting

those particular components of speech or language for audio recordings elicited by the

speech task, then performing that feature engineering as a preprocessing step is likely

to reduce the classification complexity. The feature engineering ffeature reduces clas-

sification complexity by transforming the amplitude values Z into a low-dimensional

(reducing boundary complexity) and group-differentiating (increasing class separabil-

ity) set of speech features.

Built-in features acquired via transfer learning or semi supervised learning allevi-

ate the dilemma by adding more Data. The end-to-end models that function as fea-

ture extractors are trained to perform informative speech-based tasks, on secondary

datasets containing hundreds or thousands of hours of speech from thousands of

participants. These secondary datasets are typically orders of magnitude larger than

what is available in the medical speech dataset, which is used for the final classification

problem. Thus, the built-in feature engineering approach reduces the classification

complexity by discovering informative features via large, secondary datasets.

To summarize the preceding comments, feature engineering is helpful for reduc-

ing classification complexity precisely when there is external input, either Data or

Knowledge, that a particular feature engineering function ffeature is a useful trans-

formation. Useful in this context means that ffeature transforms the problem from

the high dimensional and complex space of functions f : Z → Y to a lower dimen-

sional problem setting g : X → Y , that has better classification properties. The

problem in the transformed space may have greater separability of class distributions

P (X | T, Y = 1) and P (X | T, Y = 0) compared to the separability of P (Z | T, Y = 1)

and P (Z | T, Y = 0); or the transformed problem may have lower complexity of the

underlying decision boundary surface P (X | T, Y = 1) = P (X | T, Y = 0) compared
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to the surface P (Z | T, Y = 1) = P (Z | T, Y = 0), meaning that the trade-off be-

tween approximation error and estimation error is shifted to a more favorable level.

Either the Knowledge gained via domain expertise, or the Data gained via transfer

learning on secondary datasets (or a different method of adding Knowledge or Data

which we haven’t covered) are required to ensure the problem in the transformed

space g : X → Y will have lower classification complexity.

While feature engineering can reduce classification complexity if these assumptions

hold, its effectiveness in doing so is still fundamentally limited by the distribution

of the original speech audio recordings, P (Z | T, Y ). Unlike feature engineering,

task engineering can fundamentally shift this distribution, because the conditional

distributions P (Z | T, Y = 1) and P (Z | T, Y = 0) are conditioned precisely on the

chosen speech elicitation task T. While certain measurable patient characteristics

such as age, height, or genetic information are fixed, we can decide what type of speech

we want to collect in assessing a potential neurological condition. An appropriate

comparison would be a blood test, where the composition of blood varies continuously

based on a multitude of factors (food and water intake, exercise, caffeine intake,

alcohol intake, etc). Specific blood tests are only useful when the blood sample is

taken in a particular context, e.g. in a fasting state; the context in which the blood

biomarker is sampled impacts the usefulness of the test, and is explicitly controlled

for in order to create a useful interpretation for the sample.

Similarly, speech is not a fixed attribute that can only be measured in a singular

and objective manner; the context under which the speech is collected determines the

make-up of the resulting sample, just as in the blood test. For example, consider the

following two speech elicitation tasks for use in classifying between cognitively normal

(CN) patients with normal memory function, and cognitively impaired (CI) patients

who suffer from memory complaints. In Task 1, participants are shown a picture of
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a single object (e.g. a car) on their mobile device, and asked to recall the object on

the next screen; they are recorded while they try to remember and name the object.

In Task 2, participants are shown 15 objects, one at a time, and are asked to recall

as many as they can on the screen following the final object. Because Task 2 has a

higher level of difficulty, the differences in how CN and CI participants perform the

task are likely to be larger in Task 2 than in Task 1. Task 1 may still contain some

subtle components of speech that can be used to differentiate the participants; for

example, time taken to name the object, number of filler words (like “uh” or “um”),

or other aspects of speech production that could be automatically extracted from a

DNN-based feature extractor. However, for Task 2, in addition to the Task 1 features,

one can measure the number of objects named, serial position effects such as recency

and primacy (Weitzner and Calamia (2020)), number and length of pauses taken in

between objects, prosody metrics capturing whether they used a listing intonation,

etc. Task 2 is likely to elicit a richer and more variable (between groups) speech

signal, producing a higher ceiling for information that can be extracted via feature

engineering.

An appropriate feature engineering algorithm ffeature will still be necessary in

order to use the resulting audio samples from the engineered task in a classification

model in any meaningful way. However, if task engineering is allowed, the task can be

modified to assess those aspects of speech and language production that are known

to differ for participants of differing cognitive function. Subsequent development of

feature engineering algorithms ffeature can be undertaken to exploit the information

known to be in the task, according to scientific and clinical domain expertise. The

task could be similarly engineered to tax elements of speech production about which

the transfer learning features carry information, as determined by the original speech-

related task that the transfer learning model was trained on. In either case, with a
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more fundamentally differentiating speech task, there is an expanded pool of feature

extraction options that are likely to reduce classification complexity, based on the

task-paired Knowledge or Data with which they are engineered.

To summarize this subsection, task engineering can impact classification complex-

ity by shifting the distribution of the speech samples in the original amplitude space

Z. It is the distribution P (Z | T, Y ) that impacts the lower bound on classification

complexity which any subsequent feature engineering approach can achieve. Feature

engineering in and of itself cannot reduce classification complexity when the decisions

made around the feature engineering protocol are purely empirical on the same dataset

to be used for classification. However, feature engineering driven by domain knowl-

edge or prior work on large secondary datasets can be used to reduce the complexity

of the classification problem; performing this process jointly with task engineering is

the avenue of greatest potential improvement for screening test performance.

4.3 Impact of Feature and Task Engineering on Classification Complexity for a

Speech-Based Screening Test

In this section, we analyze the impact of feature engineering, task engineering,

and combined feature and task engineering on the complexity of the classification

problem to separate between CN and CI participants. The goal with both feature

and task engineering is to extract useful speech features that make the underlying

classification problem easier, via increased class separability and reduced complexity

of the decision boundary. The analyses in this section demonstrate the claims in the

previous section’s discussion: task engineering determines the minimal classification

complexity that can be achieved from a set of audio recordings, but good feature

engineering is required to extract the maximum amount of useful information from

the audio. The two approaches (task and feature engineering) must be undertaken in
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tandem to produce optimal features with reduced classification complexity.

We measure the difficulty of a particular set of speech features, extracted from

a particular speech elicitation task, via two empirical analyses. First, we measure

out-of-sample model performance classifying between CN and CI participants using

speech collected from an observational study on Alzheimer’s disease. Second, we

compare empirical measures of data complexity defined in section 3.4 to the obtained

out-of-sample model performance, and show that some of these classification measures

provide useful insights into classification complexity.

4.3.1 Data Description

The data for the following analysis is a proprietary dataset owned by Aural An-

alytics, Inc. The data was collected as part of the Bio-Hermes study run by the

Global Alzheimer’s Platform Foundation. In my role as a Machine Learning Scientist

at Aural Analytics, Inc., I was granted limited permission to access that data. The

collaboration between Arizona State University and Aural Analytics has allowed for

the demonstration of our ideas on a valuable dataset of speech collected from partic-

ipants with probable Alzheimer’s disease, Mild Cognitive Impairment, and Normal

Cognition.

For the following analysis, we investigated the problem of separating between par-

ticipants who are cognitively normal (CN) and cognitively impaired (CI), specifically

who are diagnosed with probable Alzheimer’s disease (AD). The data consisted of 211

participants with NC and 30 participants with AD, leaving n = 241 participants in

total. Participants provided speech samples on 13 different speech elicitation tasks.

The tasks are described in Table 4.1.

Task Name Abbreviation Description

Category Naming CategNam Participants name as many items
as possible from a displayed category.
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Visual Naming VisualNam Participants are shown an array of objects
and asked to name them.

Visual Search VisualSearch
Participants are shown the same array,
but asked to name only objects that meet
a specific orthographic (spelling) criteria.

Object Recall ObjectRecall
Participants are presented a series of
objects one-by-one and asked to
recall them after presentation.

Immediate Word Recall WordImmed
Participants are presented a series of
target words one-by-one and asked to
recall them after presentation.

Delayed Word Recall WordDelay
After performing an intervening task,
participants are asked to recall the same set
of target words, without another presentation.

Word Recognition WordRecog

Participants are shown an array of words
containing the target words and
distractor words, and are asked to name
only the target words presented earlier.

Immediate Story Recall StoryImmed
Participants are asked to recall
everything they can remember
from a story after presentation.

Delayed Story Recall StoryDelay

After an intervening task, participants
are asked to recall everything they
can remember from the story again,
without a second presentation.

Picture Description PicDescr
Participants are shown a cartoon image
of a scene, and asked to describe everything
they see going on in the scene.

Sentence Reading Sentence Participants are asked to read aloud
a series of sentences.

Diadochokinetic Rate DDK
Participants are asked to repeat the word
“buttercup” as quickly and clearly
as they can in a limited amount of time.

Phonation Task Phonation
Participants are asked to take a deep
breath and hold out the “ahhh” sound
for as long as possible.

Table 4.1: Descriptions of 13 speech elicitation tasks used in the analysis.

Study participants provided speech recordings on each of these 13 tasks during

a speech session. Speech elicitations were recorded on a tablet device. We then

extracted five sets of speech features using both open source speech feature extraction

algorithms and proprietary speech algorithms owned by Aural Analytics. The speech
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feature sets used for the analysis are described in Table 4.2.

Feature Set Name Size Description

OpenSmile (eGeMAPSv02) 88 Open source standard acoustic features.

OpenSmile (emobase) 988
Open source acoustic features,
geared toward emotion recognition.

Talk2Me 140 Open source transcript-based features.

Wav2Vec2 1024
Output of the last layer of the Facebook
Large 960h Wav2Vec2 model.

Clinical (Proprietary) 15
Hand-crafted features measuring clinically
relevant and interpretable components of speech.

Table 4.2: Descriptions of 5 speech feature extraction methods used in the analysis.

Both OpenSmile feature sets and the Talk2Me feature set are obtained from open-

source Python packages for speech feature extraction. The OpenSmile features (Ey-

ben et al. (2010)) are acoustic-based, measuring traditional signal processing speech

features. The Talk2Me features (Komeili et al. (2019)) are calculated using only a

transcription of the audio recording, and consist of lexicosyntatic features.

The Wav2Vec2 feature set (Baevski et al. (2020)) consists of features extracted as

the last layer of an end-to-end deep learning model. Here we use a publicly available

pre-trained model without fine tuning, both for a reduction in computational time

and so that the approach can be replicated by others on a publicly available model.

Due to memory constraints, the Wav2Vec2 features were only calculated on the first

30 seconds of each audio recording.

The final feature set, the Clinical features, are a carefully designed set of inter-

pretable features calculated from proprietary algorithms developed at Aural Ana-

lytics. The Clinical features measure a small number of clinically-relevant derived

measures, which generally capture three aspects related to how a participant per-

forms a speech elicitation task: accuracy, strategy, and timing. Accuracy relates to
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how well the participant captures the content they are engaging with during the

task. For example, in the Object Recall task, one of the Accuracy metrics is the

participant’s score of how many objects they correctly recalled. Strategy features

measure how the participant actually performs the task; examples include features

related to lexical density or grammatical constructs. Finally, timing metrics measure

how quickly the participant performs a task, and other features related to rate and

prosody.

The Clinical and Talk2Me feature sets were not calculated on the Phonation task,

due to unavailability of transcripts of the audio recordings for that task. All other

task-feature datasets were calculated. In total, 63 (i.e. 12× 5 + 1× 3) combinations

of tasks and features were evaluated.

Each combination of a speech feature set calculated on a particular speech elicita-

tion task can be viewed as a separate dataset of audio to be used for a classification

task; we call each such set of speech data as a task-feature dataset. Every task-feature

dataset is a candidate for inclusion in a speech-based screening test for cognitive im-

pairment. The screening test can be designed as a classification model fit to the

speech features extracted from that particular speech elicitation task, with the out-

come variable being whether or not the participant is cognitively impaired. The goal

of the feature and task engineering is to reduce the complexity of the classification

task implied under that task-feature dataset.

In the next two sections, we evaluate the complexity of the classification problem

posed by a particular task-feature dataset in two ways. First, we look at out-of-

sample classification performance when fitting a series of classification models to each

task-feature dataset. Second, we calculate the data complexity measures for each

task-feature dataset, and analyze 1) how the data complexity measures compare to

the out-of-sample performance; 2) how the data complexity measures differ among
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task-feature datasets; and 3) what kind of structures the task-feature datasets form

in the underlying complexity space.

4.3.2 Out-of-Sample Empirical Analysis

We performed a cross-validation analysis to determine the out-of-sample perfor-

mance of the best out of a series of classification models. Recall that the aim of

this analysis is to determine the comparative classification complexity for different

combinations of task and feature engineering protocols.

We measured out-of-sample performance using the Area Under the Curve (AUC)

metric on a repeated cross validation (CV) procedure. We used 3 folds for the cross

validation step due to limited sample size in the cognitively impaired class; the 3-fold

CV was repeated 10 times. The folds for cross validation were created using stratified

sampling.

The AUC metric has known limitations. For example, two vastly different ROC

curves can have the same single AUC number, and AUC in and of itself does not

provide a classification decision until a final cutoff has been chosen, which is what

determines the final sensitivity and specificity of the test. However, because AUC is a

standard performance metric reported in medical applications of binary classification

using speech, we choose to report it here.

Here we describe the procedure performed during a single repetition of the re-

peated CV analysis, on one task-feature dataset consisting of speech features X ex-

tracted from speech elicitation task T.

After splitting the data into 3 folds, for each of the folds we performed a pipeline

of five steps, which are shown in Table 4.3: 1) data preprocessing on the training

folds; 2) (optional) feature selection or feature transformation on the training folds;

3) model fitting on the training folds; 4) data preprocessing on the testing fold, using
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parameters from the training folds; and 5) model prediction on the preprocessed

features from the testing fold.

Step Name Data Used Description

(1) Data Preprocessing Training
Centering, scaling, removing highly correlated variables,
removing variables with near-zero variance

(2)
Feature Selection or

Training
Performing principle component analysis (PCA),

Feature Transformation recursive feature elimination (RFE), or
(Optional) univariate filter-based feature selection (Filtering)

(3) Model Fitting Training Fitting each of 7 models

(4) Data Preprocessing Testing Preprocessing test data using parameters from Steps (1) and (2)

(5) Model Prediction Testing Prediction on preprocessed test data using models from Step (3)

Table 4.3: Steps performed for each of 3 folds (within each of 10 repetitions) for the
classification analysis. The predictions from each testing fold were used to calculate
out-of-sample AUC on the entire dataset, for each of the 10 repetitions.

During Step (1) of the pipeline, standard data preprocessing steps were performed,

including scaling and centering the data to have mean 0 and standard deviation 1,

removing highly correlated variables, and removing variables with near-zero variance

(NZV variables). The preprocessing transformations f train
preprocess were stored for later

use on the testing data, in Step (4).

During Step (2) of the pipeline, we performed an optional additional feature engi-

neering or feature selection step on the original speech features before model fitting.

Although the speech feature sets are themselves obtained using predetermined feature

engineering algorithms (i.e. mathematical functions) applied to the original ampli-

tude values from the audio recordings, some of the speech feature sets are very large

(> 1k features) and are likely to contain uninformative “junk” features. Thus, ac-

cording to standard practice in machine learning (Berisha et al. (2021)), additional

feature engineering or feature selection on these speech feature sets could potentially

be helpful in improving out-of-sample performance.

We compared three optional methods for feature transformation or selection: prin-
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ciple component analysis (PCA), recursive feature elimination (RFE), and univariate

filter-based feature selection. For the PCA-based feature transformation, a princi-

ple component analysis was performed, and principle components corresponding to

eigenvalues above the default threshold of 0.95 were retained for subsequent model

fitting. For the RFE feature selection, a Random Forest (RF) model was fit to sets

of l features, l = {p, p − 1, . . . , `}, where at each step, the least important feature

according to the RF variable importance metric was removed until the number of

features was reduced to a predetermined size `; these ` features were then used for

subsequent model fitting. Within each training fold, a repeated CV process was per-

formed to determine the best feature set size out of ` ∈ {10, 25, 50, 100, p} (where

p represents using all of the original speech features for that feature set). For the

univariate filter-based feature selection, the individually best ` features were used for

subsequent model fitting, where “best” was determined using performance on an RF

model fit using a single feature; the final feature set size ` was once again determined

from among the options ` ∈ {10, 25, 50, 100, p} using repeated CV within the training

fold.

While there are countless options for feature transformation and/or feature selec-

tion, the methods compared represent a diverse and commonly used set of algorithms.

As there were many other hyper-parameters of this analysis that were systematically

changed for comparison, we believe this set of feature selection/transformation ap-

proaches is sufficient to provide a sense of the decrease (or increase) in the classifi-

cation complexity of each task-feature dataset, that can be achieved via additional

feature selection or transformation of the engineered speech features.

During Step (3) of the pipeline, we fit each of 7 classification models using the

preprocessed (and optionally transformed or down-selected) features from the training

data. Taking inspiration from Smith et al. (2014), we chose 7 models from a diverse
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set of model families for this model-fitting stage. We used the same models from

Smith et al. (2014) where possible, as these models were shown in Smith et al. (2014)

to produce the largest variety of predictions according to the dendogram in Figure 1

of Smith et al. (2014). The models used from Smith et al. (2014) include Naive Bayes,

Random Forest, 5-nearest neighbors (5-NN), and Decision Tree C5.0. We substituted

CART for RIPPER, Logistic Regression for MLP, and did not assess the RIDOR or

LWL clusters of the dendogram due to unavailable substitutes in the caret package,

which was used for performing the pipeline. We also included the Bayesian Additive

Regression Tress (BART) model (Chipman et al. (2010)), which has been shown

to achieve good performance with little parameter tuning in simulation studies and

empirical data examples (Hill et al. (2020)). In total, the 7 models calculated were:

Naive Bayes, Random Forest, 5-NN, C5.0, CART, Logistic Regression, and BART.

During Step (4), the preprocessing operations from the training folds f train
preprocess

were applied to the speech features in the testing fold. Calculating the preprocessing

parameters on the training data alone for each fold, rather than on the entire dataset,

prevented data leakage whereby information from the testing data used during model

creation might artificially inflate model performance.

Finally, during Step (5), each of the fitted models was used to predict the out-

comes for the testing fold. We stored the predicted probabilities, rather than a class

prediction, to allow for calculation of the AUC metric.

Figure 4.4 provides a visualization of this process being performed on a single fold

within a single repetition of the analysis.

After performing this process on each of the three folds, the out-of-sample pre-

dictions from all folds were used to calculate a single out-of-sample AUC for the full

dataset, for each of the 7 classification models. Figure 4.5 provides a visualization of

going from the predicted probabilities for all folds to an AUC score for each model.
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Figure 4.4: Visualization of Steps (1) through (5) being performed on a single
task-feature dataset. The top row represents operations performed on the training
data; the bottom row represents operations on the testing data.

Figure 4.5: Visualization of combining the predictions from all three folds to
calculate an AUC score for each model, for a single repetition of the CV analysis.

This entire process was repeated 10 times, producing in total 10 out-of-sample

AUC values for each of the 7 classification models. Ten repetitions were used so we

could assess the variability of model performance due to sampling variability during

fold creation; with an imbalanced data set having a small minority class, the model

performance can significantly differ depending on the fold composition and the model

used. Figure 4.6 provides a visualization of the process going from 10 repetitions to

a distribution of AUC values for each model.
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Figure 4.6: Visualization of summarizing the AUC scores from 10 repetitions on
all 7 models into a boxplot of the AUC distribution for each model.

Finally, we repeated this analysis 63 times for each of the 63 task-feature datasets

combinations. As an example of the AUC results for a single task-feature dataset,

Figure 4.7 shows the the distributions of the AUC values from the 7 classification

models fit to the Clinical feature set on the Visual Naming task, using the original

speech feature set for model fitting (i.e. Step (2) was omitted and no further feature

selection or transformation was performed on the Clinical speech features). Each

boxplot shows the distribution of out-of-sample AUC values for that classification

model over the 10 repetitions.

For this particular task-feature dataset, we see a few patterns in the classification

results. First, the tree ensemble methods (BART and RF), Naive Bayes, and to a

slightly lesser extent logistic regression show the best out-of-sample performance; 5-

NN and the single tree methods show the worse performance. Furthermore, the tree

ensemble methods and Naive Bayes have lower AUC variability over the 10 repeti-

tions, whereas logistic regression, 5-NN, and the single decision tree methods (CART

and C5.0) have higher AUC variability. The patterns in AUC variability (ensemble

methods having lower variability, and KNN, logistic regression, and decision trees

having higher variability) corroborate prior work on the variability of out of sample

performance for different classification model families (Berisha et al. (2021), Drucker
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Figure 4.7: Distribution of AUC scores over 10 repetitions for the 7 classification
models, for the data set of Clinical features extracted from the Visual Naming task.
Ensemble methods and Naive Bayes have the lowest AUC variance; single decision
trees, logistic regression, and KNN have the highest AUC variance.

et al. (1994)).

Figures 4.8 and 4.9 show these same distributions for each of the 63 task-feature

datasets. While this exact pattern of model performance does not hold for every

single task-feature dataset, the general trend can be seen in most. The comparative

performance of the models was not the main point of this analysis, but of note, the

BART model has the highest AUC distribution for 41 out of 63 task-feature datasets,

with RF being highest for 17 datasets, Logistic Regression for 4 and Naive Bayes for

1 dataset. The plots for the Clinical and Talk2Me feature sets on the Phonation task

are blank, as these feature sets were not calculated on the Phonation task due to lack

of transcripts available for this task.

In order to digest this information in a useful and comprehensible way, we summa-

rized the distributions of the AUC values over the 7 models into a single AUC value

representing the overall complexity of the data set defined by the particular task

and feature set. This summary allows for comparing the classification complexity of
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Figure 4.8: Distribution of AUC scores over 10 repetitions for the 7 classification
models, for the all task-feature datasets from the first 7 tasks: Visual Search, Visual
Naming, Category Naming, Object Recall, Sentence, Story Recall Immediate, Story
Recall Delayed.

the task-feature datasets over different levers: the task engineering method (Visual

Search, Sentence Reading, etc.) or the speech feature engineering method (Talk2Me,

Wav2Vec2, etc.). Essentially, this summarization procedure allows for an easier vi-

sual comparison of the underlying classification complexity of each task or feature

set, quantified by a summary AUC score.. This visualization allows for comparing
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Figure 4.9: Distribution of AUC scores over 10 repetitions for the 7 classification
models, for the all task-feature datasets from the last 6 tasks: Delayed Word Recall,
Word Recognition, Immediate Word Recall, Picture Description, DDK, Phonation.

whether the main driver of complexity is task engineering, feature engineering, or a

combination of the two.

To create this summarizing AUC score for each of the subplots in Figure 4.8, we

first took the median out-of-sample AUC from the 10 repetitions, for each of the 7

classification model types. This number represents a typical AUC for that classifica-

tion model; using the median prevents this typical AUC from being skewed by high

or low outliers. Next, we took the maximum of these median AUCs among all of
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the 7 classification methods, which represents the best “typical” model performance

that could be achieved for this task-feature dataset. This provided a final AUC score

for each task-feature dataset, which was used for further analysis. Figure 4.10 pro-

vides a visual representation of this process for the results from the Clinical features

calculated on the Visual Naming task.

Figure 4.10: Flowchart showing the summarization of 10 AUC scores over 7 classi-
fication models into a single score, for a given task-feature dataset. First, the median
of the 10 AUCs is extracted for each method. Then, the maximum of the median
AUCs is calculated as the summarized AUC score.

Using this summarization method, we can compare a single value representing

out-of-sample classification performance for each task-feature dataset. Figure 4.11

shows this summary AUC value for each task-feature combination, using the original

speech features (no feature selection or transformation in Step (2)). Each subplot

summarizes a single column (task) from Figure 4.8; within a single subplot, each

point represents the highest median AUC value for a particular row (feature set)

from that column (task), out of all of the classification models compared. For each

task (subplot), the highest AUC score over all the feature sets is shown by a dashed

gray line.

Figure 4.11 provides a succinct visual overview of the classification complexity (as

measured by out-of-sample AUC), posed by using a particular set of speech features

X extracted from a particular speech elicitation task T to classify between cognitively

normal participants (Y = 0) and cognitively impaired participants with Alzheimer’s
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disease (Y = 1). While the classification complexity posed by a particular task-

feature set is impacted by both the task and the feature set, we claim that the speech

elicitation task determines the fundamental upper bound on model performance that

can be achieved using speech features engineered from audio on that task.

As discussed above, engineering of the task T impacts the relationship between

the two conditional distributions of the resulting audio recordings, P (Z | T, Y = 0)

and P (Z | T, Y = 1). This in turn allows greater opportunities for Knowledge via

domain expertise or Data via related transfer learning protocols to produce feature

engineering functions ffeature : Z → X that capture group differences in a particular

task.

If a task T provides a context leading to similar distributions of audio recordings

P (Z | T, Y = 0) and P (Z | T, Y = 1), then finding a feature engineering algorithm

ffeature : Z → X such that P (X | T, Y = 0) and P (X | T, Y = 1) have high separa-

bility is extremely difficult, if not impossible. This concept can be seen empirically

in Figure 4.11.

For example, in the Phonation task, participants take a deep breath and hold the

sound “ahhh” for as long as they can. This task would likely be performed differently

by healthy participants and those with a diagnosed respiratory disease (e.g. chronic

obstructive pulmonary disease), but respiration is not the primary speech function

impacted by Alzheimer’s disease. Thus, we do not expect any particular speech

feature algorithm to produce high class separability, when the speech features are

calculated on audio recordings that are fundamentally similar between participants

from the two outcome groups (CN and CI). Indeed, we see in Figure 4.11 that both the

hand crafted features using traditional signal processing (OpenSmile Emobase and

OpenSmile eGeMAPSv02) and the end-to-end features from a Deep Neural Network

(Wav2Vec2) have similarly poor AUC on this classification problem for the Phonation
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Figure 4.11: Out-of-sample performance summarized for all tasks and features,
with no additional feature selection or transformation on the original speech feature
sets. The task determines the maximum potential out-of-sample performance, but
good feature engineering is required to be able to extract the maximum classification
performance from that task.

task.

A similar story can be seen for the DDK task, in which participants are asked

to repeat the word “buttercup” as quickly and clearly as they can in a short period

of time. On this task, we see in Figure 4.11 that the Clinical features produce a

slightly higher max AUC than the other feature sets, probably because the Clinical

features are the only feature set that includes the count of how many times the

participant repeated the word “buttercup”. As Alzheimer’s disease has been shown

to impact motor function in speech (Meilán et al. (2020)), it is reasonable that this

feature set would be able to differentiate slightly better between cognitive groups,

compared to feature sets measuring vocal quality alone, or grammatical structures

on transcripts of one repeated word. More formally, the DDK task has a greater

degree of fundamental class separability in the conditional distributions of the audio
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recordings P (Z | T, Y = 0) and P (Z | T, Y = 1) compared to the Phonation task. A

feature engineering method ffeature : Z → X , that utilizes domain expertise regarding

subtle impacts to motor function in Alzheimer’s disease, has reduced classification

complexity compared to other, less informative feature sets. However, the ultimate

classification complexity for this task is still relatively high (i.e. the upper bound of

AUC is low), because it is not taxing cognitive functions that are primarily impacted

by the disease being screened.

Tasks that directly tax a neurological function known to be impacted in Alzheimer’s

disease have a higher upper bound on the summarized AUC score. The conditional

distributions of the original audio for this task, P (Z | T, Y = 0) and P (Z | T, Y = 1),

are different enough between groups that useful feature engineering algorithms ffeature

can be found. For example, the Visual Search, Visual Naming, and Category Nam-

ing tasks all require word retrieval, which is known to decline with greater levels

of cognitive impairment (Huff et al. (1986)). The existence of a higher max AUC

score on these tasks in Figure 4.11 means that participants from different cognitive

groups perform the task in a sufficiently differently way; there exists at least one set

of speech features that is measuring components of speech and language that differ

between the groups in a generalizable manner. More formally, the feature engineering

algorithm ffeature : Z → X , where ffeature is the set of algorithms for the Clinical

features, transforms the problem into a problem space with greater class separability

and lower decision boundary complexity.

Creating a differentiating speech elicitation task is not enough by itself, however.

Figure 4.11 demonstrates that good feature engineering is still necessary in order to

extract the maximum classification performance from the audio. For example, in the

Sentence Reading task, there is a difference of almost 25 percentage points between

the AUC achieved by the Clinical, Wav2Vec2, and Emobase features compared to the
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Talk2me features. The Talk2me features (which measure grammatical structures and

language complexity based on the transcript) are uninformative on a task in which

all of the participants read the same sentence; the distributions P (X | T, Y = 1) and

P (X | T, Y = 0) will have huge overlap. The Knowledge that deems these features

useful in other tasks like Story Recall, where participants are speaking spontaneously,

does not apply to this particular task.

On the tasks with lower AUC, such as DDK and Phonation, the absence of a

high performing feature set among the handful compared does not conclusively prove

the lack of existence of such a feature set. However, the diversity of the speech

feature sets compared in terms of both input (audio, transcript, or both) and method

of extraction (hand-crafted vs. end-to-end), along with a clinical understanding of

the aspects of speech production known to change in the indication studied here

(Alzheimer’s disease), points to the more likely explanation being that the task itself

produces more fundamentally similar speech for the two groups being classified.

The high-level summary of Figure 4.11 is that task engineering, specific to the

classification problem for which the speech recordings will be used, is required in order

to produce audio recordings in which participants from different groups perform the

task in predictably different ways. Additionally, speech feature engineering algorithms

that capture the aspects of speech in which the participants differ on that particular

task, are required in order to achieve maximum classification performance using audio

recordings from that task.

Figure 4.12 provides a stylized demonstration of how the speech elicitation task

can change the underlying classification complexity of the resulting speech, and thus

produce vastly different summary AUC scores. In this example, Speech Task #1

elicits speech from a region in which the conditional distributions over speech features

P (X | T, Y = 1) and P (X | T, Y = 0) have a complicated decision boundary and high
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class overlap. On the other hand, Speech Task #2 pushes the elicited speech to a

different region, in which the conditional speech feature distributions have a simpler

decision boundary and lower class overlap. This may be the case, for example, if

Speech Task #1 is a task unrelated to cognition that both classes perform similarly,

and Speech Task #2 is a cognitively challenging task that pushes both groups to

higher values of both X1 and X2, but for which the cognitively normal group can

perform at an even higher level compared to the cognitively impaired group. While

this stylized example in two dimensions cannot convey the true complexity of the

classification problem in the much higher dimensional space X of real speech data, it

demonstrates how careful task design paired with intelligent feature engineering can

produce speech features with better classification properties.

Figure 4.12: A stylized example of two different speech elicitation tasks. Speech
Task #1 elicits speech in a region of the support for which both classes perform
similarly, leading to high class overlap and a complicated decision boundary. Speech
Task #2, for example a cognitively taxing maximum performance task, elicits speech
in a region of the support for which the cognitively unimpaired class achieves higher
performance, leading to better classification properties of lower class overlap and
decision boundary complexity.

In the next part of this section, we explore the impact of additional feature selec-

tion or transformation on top of the original speech features. Figure 4.13 shows a plot
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having a similar structure as Figure 4.11, except that we provide multiple summarized

AUC results per task-feature dataset instead of just one point. The cluster of points

in the same color, for a given feature set, indicate the maximum AUC produced by

using either the original speech features (square marker), or a set of features obtained

via further transformation (PCA, diamond marker) or selection (RFE, circle marker;

Filtering, triangle marker) of the original speech features. This additional processing

was described in Step (2) of Table 4.3.

Figure 4.13: Out-of-sample performance summarized for all tasks and features,
comparing different options for additional feature selection or transformation on top
of the engineered speech features. The relative performance of different task and
feature set combinations from Figure 4.11 is largely unchanged; PCA is notably worse
than the other feature selection methods.

The patterns in relative performance of the feature sets and tasks are largely un-

changed. For the most part, using either the original features, RFE, or Filtering

produces similar results; the cluster of points appears to be anchored at a level deter-

mined by the original speech feature set, rather than the particular feature selection

method used. The only feature transformation method with substantially poorer
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performance on several of the task-feature datasets is Principle Component Analysis

(PCA).

In the language of Section 4.2, we see the following situation: the original fea-

ture engineering function ffeature transforms the problem into a new feature space;

the classification complexity in that new feature space g : X → Y is determined by

the relevance of the information (Knowledge or Data) provided by the feature set X

on the task T. This sets a baseline for the class separability and decision bound-

ary complexity determined by the conditional distributions of the resulting speech

features, P (X | T, Y = 0) and P (X | T, Y = 1). Feature sets that are known to ex-

tract an aspect of cognitive function measured on the task, or to contain information

from a related speech task via transfer learning, impart additional information such

that the classification problem in the transformed space of speech features has lower

complexity.

With the baseline level of classification complexity determined by the original fea-

ture set transformation ffeature : Z → X , further feature selection or transformations

fselect : X → X ′, driven by a purely empirical process with no additional domain

expertise or secondary dataset to add additional information, does not significantly

reduce the classification complexity in a consistent way. The resulting problem has

similar performance as the original features in most cases.

Mathematically, the solution to finding g : X → Y such that

g = argminf∈FRemp(f) + λ||f ||2,

will have a similar performance as the solution to finding a composite function g′ ◦

fselect, with fselect : X → X ′ and g′ : X ′ → Y , such that

g′ ◦ fselect = argminf∈FRemp(f) + λ||f ||2,

because both are optimized using the same small dataset.
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The impact of empirical feature selection and transformation on the Talk2me fea-

tures calculated for the Sentence task (essentially, no impact) is a good demonstration

of this phenomenon in our dataset.

PCA has substantially lower performance in some cases (21 out of 63 combina-

tions), which is unsurprising given the known perils of using PCA as a feature pre-

processing step (Jolliffe (1982)). While PCA, RFE and Filtering all provide strictly

less information to the model than the full, original feature set (i.e. they are all lossy

transformations), the features selected via RFE and Filtering are still related to the

outcome variable, either individually or in concert with other selected features. Thus,

RFE and Filtering usually maintain the performance of the original features, and in

some cases improve it.

In contrast, the PCA features are derived based on the directions of greatest

variance in the input features alone; their usefulness depends on whether or not the

key PCA assumption is satisfied, namely that the directions of greatest variation

in the input features capture variability that is important relative to the outcome

classes. If that assumption were somehow known to be true a priori, this would

be an example of a third type of additional information (besides domain expertise

and transfer learning) that could lead to feature transformations which significantly

reduce the classification complexity. In some of the task-feature datasets, however,it

appears that the directions of greatest variability (at least above the 0.95 threshold

for keeping the principle components) are not sufficient to capture the information

that was present in the original feature set; the assumption does not hold. See, for

example, the OpenSmile Emobase and OpenSmile eGeMAPSv02 feature sets on the

Category Naming task (middle subplot in the top row of Figure 4.13).

In summary, while some additional feature selection and transformation approaches

slightly improve classification performance for some of the task-feature datasets, there
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is no systematic pattern whereby a particular feature selection or transformation ap-

proach consistently and substantially improves performance; the PCA transformation

in particular seems to substantially reduce it in a third of the cases. Although this

can be attributed to us not trying the “right” feature selection or transformation

method, we believe this phenomenon is caused by the lack of outside knowledge or

data usage provided by the fselect function in our case.

We take a final moment to remark on the novel contribution that this analysis

produces in and of itself. We have performed a large scale classification analysis,

comparing a large set of highly diverse speech elicitation tasks and five different speech

feature engineering algorithms. The speech elicitation tasks include connected speech,

naming, and phonating tasks, unlike past work comparing different speech tasks on

the same set of participants, which were mainly limited to different connected speech

tasks. Furthermore, we have calculated classification performance using a highly

diverse set of classification models, in order to reduce the impact of results being

determined solely by a lack of fit between the patterns in the particular feature-task

dataset and the hypothesis class implied by each of the learning algorithms.

Beyond the basic comparison of which tasks and feature sets provide better perfor-

mance, we have used the results to draw conclusions about the higher level impact of

task or feature engineering on classification complexity. Finally, we have placed these

results within the rigorous contexts of drivers of classification complexity, presented

in the last chapter on statistical learning theory and information-theoretic divergence

measures.

4.3.3 Data Complexity Measures Analysis

As a final step to assess patterns in classification complexity for each task-feature

dataset, we calculate the set of data complexity measures outlined in table 3.1 on
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each task-feature dataset.

The results demonstrated some limitations in the data complexity measures as

originally postured, which we discussed at the end of the previous chapter. In Ho and

Basu (2002), Figure 5b (average number of points per dimension axis) shows that a

large majority of the real datasets considered had at least 10 points per dimension.

However, some of the data complexity measures can provide a misleading measure of

simplicity when the number of features relative to datapoints is large. As the classi-

fication measures are calculated only on the original dataset and do not incorporate

any technique for data splitting or subsampling, patterns that may seem to indicate

lower complexity (for some of the measures) are patterns that would not generalize

if applied to new data.

For example, the F4 measure calculates the number of datapoints that cannot be

separated using all of the features in a greedy manner. With many features compared

to number of datapoints, observations may be able to be separated using a spurious

relationship from one of the many features, but this does not necessarily indicate a

simple classification problem in which patterns observed in the dataset will generalize

to new data.

In light of these limitations, we demonstrate results for just the subset of the

complexity measures that had the highest and lowest correlation with the out-of-

sample AUC scores shown in Figure 4.11. We discuss aspects of how these complexity

measures are calculated that are likely to lead to them being informative on future

model performance. This analysis contributes to the growing body of literature that

seeks to understand how the measures of data complexity relate to out-of-sample

classification performance.

First, we look at the correlations between the data complexity measures and the

out-of-sample AUC scores for each task-feature dataset. The classification measures
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listed in table 3.1 were calculated for each task-feature dataset, and compared to the

summarized AUC score from Section 4.3.2 for that task-feature dataset.

Figure 4.14 shows a heatmap of the Pearson correlation between each of the

complexity measures and the out-of-sample AUC performance, calculated for each

complexity measure over all 63 task-feature datasets. Comparing correlation across

complexity measures is a fair comparison, because the set of data complexity mea-

sures calculated in ECoL are standardized to fall between 0 and 1, with lower scores

indicating lower complexity.

Table 4.4 shows the correlations along with p-values indicating whether the corre-

lation is statistically significant based on the sample size. While p-values have inherent

limitations and should not be taken as a binary indication of result validity based on a

particular threshold (Karpen (2017)), the value is nonetheless useful on a continuous

scale in gauging how seriously to take the positive and negative correlations shown

in Figure 4.14.

Since a high AUC score is associated with lower complexity and improved model

performance, negative correlations indicate good agreement between which tasks and

feature sets the complexity measure quantifies as being complex, and which tasks and

feature sets the AUC score quantifies as being complex.

Figure 4.14: Heatmap showing correlation of each of the complexity measures with
out-of-sample AUC scores.

The F1 measure has the largest negative correlation with the AUC scores, and
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Measure Correlation with AUC p−Value

F1 -0.74 < .00001

F1v -0.01 .938

F2 0.22 .083

F3 -0.1 .436

F4 0.31 .015

L1 0.13 .443

L2 0.24 .152

L3 0.28 .093

N1 -0.24 .058

N2 -0.25 .048

N3 -0.23 .070

N4 0.2 .116

T1 -0.36 .004

LSC -0.34 .006

Density 0.05 .697

ClsCoef -0.33 .008

Hubs 0.22 .083

Table 4.4: Measures of data complexity, their correlation with out-of-sample AUC
scores, and p-values indicating statistical significance of the correlations.

several other measures have a moderate negative correlation (N1, N2, N3, T1, LSC,

ClsCoef). To do a deeper dive into these correlations, we evaluate how the data

complexity measures correlate with the AUC scores when calculating correlation by

task or feature set group, rather than over all task-feature datasets. If the pattern of

negative correlation holds when calculated only for a particular task or feature set,

then this classification measure provides information on complexity that is consistent

with what we see in out-of-sample experiments, at least for this analysis.

Figure 4.15 shows the correlations of each complexity measure with the AUC score
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when we group the data by feature set. Note that the L1, L2, and L3 measures were

not calculated on the wav2vec2 and emobase feature sets, due to having more features

than datapoints causing an indeterminate solution. The F1, N1, N2, N3, and LSC

measures retain the negative correlation, but T1 and ClsCoef have one feature set

each in which the pattern is reversed.

Figure 4.15: Heatmap showing correlation of each of the complexity measures with
out-of-sample AUC scores; correlations are calculated for each complexity measure
on the datasets corresponding to a single feature set.

The linear complexity measures have negative correlations within each feature set,

despite having strong positive correlations overall. This indicates that L1, L2, and

L3 are useful measures in providing a relative gauge of classification complexity for a

fixed feature engineering approach, but the complexity values across different feature

sets are not comparable on an absolute scale. Similarly, the F1v measure has very

strong correlation with AUC within each feature set, but taken on the data as a whole

the correlation is almost 0, once again indicating this is a good relative measure for

a fixed feature engineering approach, but potentially not a good absolute measure of

complexity for feature sets of vastly different sizes and compositions.

Finally, Figure 4.16 shows the same type of correlation heatmap, but the correla-

tion for each measure is calculated on the subset of datasets coming from a particular

task. Thus, each correlation value measures the linear relationship between the data
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complexity measure calculated on all feature sets for one task, compared to the out-

of-sample AUC score for all the feature sets on that task. There are many data

complexity measures that have the reverse pattern compared to AUC scores as what

would be expected, meaning many squares with positive correlations. For these data

complexity measures, including F2, F4, N4, and Hubs, the measure indicates one

relationship of classification complexity among all feature sets for that task, while

the actual AUC performance on out-of-sample data indicates a different complexity

relationship among the feature sets.

Figure 4.16: Heatmap showing correlation of each of the complexity measures with
out-of-sample AUC scores; correlations are calculated for each complexity measure
on the datasets corresponding to a single task.

The complexity measures F1, N2, and T1 (and to a lesser extent, ClsCoef) retain

the correct direction of correlations for nearly all of the tasks, with near zero correla-

tion for 1 or 2 of the tasks and no statistically significant positive correlations. These
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findings indicate that the values of these data complexity measures have a consistent

relationship with the patterns observed in out-of-sample performance.

Overall, the story presented with these correlation plots is that many of the clas-

sification measures do not correlate well with classification performance, in particular

for datasets with a large amount of features or having many “junk” features. Notice

that in the correlations by feature set (Figure 4.15), the Clinical feature set has the

best correlations overall with the data complexity measures compared to the other

feature sets. We theorize this is because the Clinical feature sets produce a more tra-

ditional classification problem setting that is seen in tabular datasets found in appli-

cations to behavioral and social sciences: a large data-to-feature ratio (241/15 = 16),

and individually meaningful features that have a reasonable chance of being related

to the outcome variable (cognitive status). This is also the classification setting in

which the data classification measures have been extensively explored; many of the

works reviewed in Lorena et al. (2019) vet the classification measures using tens, or in

some cases, hundreds, of datasets that fall into this traditional classification problem

setting.

Despite the challenge of utilizing the data complexity measures for the speech

feature engineering setting, we proceed with a deep dive into a small number of

measures that demonstrated good correlation with out-of-sample performance, in

order to give a secondary look into the impact of task and feature engineering on

classification complexity.

The best performing measure, quantified by correlation to out-of-sample AUC,

is the F1 measure, which determines the maximum discriminative power from each

of the features individually. Figure 4.17 shows the value of F1 for each of the task

and feature set combinations. In this plot, lower values indicate lower classification

complexity via lower feature overlap on the best individual feature. While overlap
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of single features is not necessarily reflective of the overlap of the multidimensional

conditional class distribution as a whole, having at least one dimension with less

overlap implies a potentially easier classification problem.

Figure 4.17: Values of the F1 complexity measures on all task-feature datasets.
There is a lower limit of data complexity determined by the task; the actual level
of complexity within that task is realized based on the specific feature engineering
process used to obtain the speech feature set for that task.

The lower bound on classification complexity is determined by the task, similarly

to the AUC values shown in Figure 4.11, and within each task, the individual feature

engineering approach determines how close that feature set can get to the lowest

possible classification complexity (at least, the lowest observed in our experiment).

The tasks that were shown to be uninformative for separating between CN and CI

via low AUC values (DDK and Phonation) also have the highest complexity using the

F1 measure. Furthermore, the Clinical, emobase and Wav2Vec2 feature sets have the

lowest complexity for most tasks, whereas the Talk2me and eGeMAPSv02 features

have the highest complexity; this agrees with the AUC scores seen previously.

We also take a look at the T1 measure, shown in Figure 4.18. The T1 measure
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calculates the number of hyperspheres needed to cover the entire dataset with only

one class per hypersphere, normalized by the number of datapoints. There is a similar

pattern of classification complexity being lower bounded by task, with individual fea-

ture engineering approaches determining how close the dataset gets to that achievable

low complexity measure.

Figure 4.18: Values of the T1 complexity measure on all task-feature datasets.

Finally, as a negative example, Figure 4.19 shows the results of the F2 data com-

plexity measure for each of the task-feature datasets, in both the original scale and

log scale. F2 measures the volume of the overlapping region, which is determined

by calculating the distance in each feature dimension of overlap, then normalizing by

the feature range, and finally multiplying the normalized overlap distances over all

features. As discussed in Lorena et al. (2019), this is an example of a data complexity

measure which is not appropriate to use on a dataset with a large number of features,

or to compare for datasets with different numbers of features, due to the measure

rapidly approaching 0 as higher numbers of non-overlap distances (all between 0 and
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1) are multiplied together. All of the feature sets have a score of essentially 0 for this

classification measure, with the exception of the smallest feature set, the Clinical fea-

tures (p = 15). This is understandably a result of F2 experiencing exponential decay

in the feature set size. Thus, this is not a recommended measure for comparison on

datasets with different numbers of features, or large numbers of features.

Figure 4.19: Values of the F2 complexity measure on all task-feature datasets,
in both the original and log scale of the measure. The only feature set with non-0
values is the Clinincal feature set; all others are skewed by the ratio of size of the
feature set to the size of the dataset, and in particular the minority class, leading to
a misinformed view of complexity.

As many of the data complexity measures turn out to provide an uninformative

view of complexity (marked by a positive correlation in Figures 4.14, 4.15, 4.16), we

restrict the rest of the analysis of this section to the data complexity measures that

appear to provide useful insights that generalize to model performance on unseen

data. To be more specific, we look at how the complexity values cluster in the pair-

wise complexity space formed by two of the measures from the set F1, N2, and T1.

This clustering analysis, similar to the PCA analysis in the previous chapter, aims

to use combinations of data complexity measures to discover underlying structures in

complexity space that inform how different tasks and features fall along a complexity
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continuum.

Figure 4.20 shows the positioning of the data complexity measures in each of these

subspaces, colored by feature. There is a strong pattern of the task-feature dataset

complexities being clustered together by feature set. The Clinical features occupy the

lowest complexity region in the lower left of the plots; as the Clinical features tended

to have the highest AUC scores, this explains partially why these measures had the

best correlation with out of sample performance.

Figure 4.20: Visualization of how the data complexity measures cluster in com-
plexity space. The complexity points have a strong clustering pattern by feature set
in the complexity space spanned by F1, N2, and T1.

Figure 4.21 shows a similar kind of plot, but this time colored by task. There are

no obvious patterns wherein specific tasks occupy a particular region of the complexity

space spanned by these three complexity measures, at least when looking at all of the

feature sets combined.

Figure 4.21: Visualization of how the data complexity measures cluster in com-
plexity space. The complexity points do not have a strong clustering pattern by task
when looking at all feature sets combined.

When we visualize only the subset of the complexity scores corresponding to a
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particular feature set, however, the position of the individual tasks in the complexity

space for that feature set can be further analyzed. Investigating which tasks are near

each other in the complexity subspaces can spark intuition for why particular types

of tasks have a similar level of complexity for the given feature engineering algorithm.

We will formalize and automate this process in the final section of this chapter.

Figure 4.22 shows the distribution of complexity points by task, for only the

datasets calculated using Clinical features. We see that points that are near each

other correspond to tasks with similar levels of cognitive difficulty; for example, the

most taxing tasks, Object Recall and the Delayed recall tasks, are by each other,

and the tasks that relate to a visual searching component (Visual Search and Word

Recognition) are also located near each other in the three complexity subspaces.

Figure 4.22: Visualization of how the data complexity measures cluster in com-
plexity space., for just the datasets comprised of Clinical features on different tasks.

We see a similar pattern in the Wav2Vec2 features shown in Figure 4.23, except

that the tasks located near each other are now more closely related to what type

of speech is elicited (spontaneous speech on a description task, vs listing on a recall

task, vs naming on a visual task). This may be attributable to Wav2Vec2 features

measuring the acoustic properties of the speech, while lacking information related to

the cognitive load of each of the tasks and how well the participants captured the

content.

The three measures F1, N2, and T1 investigated in the visualization analysis from
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Figure 4.23: Visualization of how the data complexity measures cluster in complex-
ity space., for just the datasets comprised of Wav2Vec2 features on different tasks.

Figures 4.20, 4.21, 4.22 and 4.23 were the ones having the best consistency with out-

of-sample AUC scores of the task-feature datasets. F1 has a strong relationship to

class overlap, whereas N2 and T1 measure the topology and internal structure of the

classes and relate to both class overlap and the complexity of the decision boundary.

N2 and T1 specifically measure the clustering structures and distances for points

from different classes using a distance-based method, rather than one that considers

neighbors vs enemies in a distance-agnostic manner (e.g. N1, N3, N4).

To summarize this section, while the previous analysis was fairly exploratory and

qualitative, it was nonetheless an interesting exercise in assessing the data settings

for which the measures of classification complexity provide useful information that

relate to true model performance. We found that the classification measures are most

information on datasets with a small number of interpretable features, rather than one

having a large number of features (potentially more than the number of datapoints),

some of which may be “junk” features.

Additionally, for the measures that correlated well with out-of-sample perfor-

mance, we (somewhat unsurprisingly) saw similar patterns in the relative complexity

of tasks and feature sets. Overall, the task appeared to be the main limiting factor of

classification complexity, but within a given task, the particular feature engineering

approach has a large impact on the complexity of the resulting speech features.
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Finally, we looked at the structures of task-feature datasets in underlying sub-

spaces spanned by a subset of the data complexity measures. The largest patterns

in complexity similarity were determined by the feature set, however, when looking

within a single feature set, the relative positioning of tasks within the complexity

space reflected the type of information available in that task for the given feature

algorithm.

4.4 Speech Elicitation Task Engineering

The previous analyses established that the speech elicitation task, or the context

in which the audio recording is collected, is a major driving factor in the underlying

complexity of a classification problem implied by the downstream speech features.

When designing a speech-based screening test, it therefore remains critically impor-

tant to carefully consider the context of the speech to be collected, or in other words,

the data collection protocol. Joint engineering of both tasks and features is most

likely to lead to a speech-based screening test that can detect cognitive impairment

with high accuracy, which remains the target of this work.

Thus, in this final section, we concentrate on methods for guiding speech elicitation

task engineering and for discovering combinations of features and tasks that are likely

to work well together. A novel contribution of this section is the concept of objectively

and quantitatively describing a given speech elicitation task using what we term task

meta-features. To the best of our knowledge, this exercise has not been previously

undertaken or even conceived of in the medical speech community. To make the

concept explicit, we provide concrete examples of such task meta-features in the

context of a speech-based cognitive screening test. While our example focuses on

cognition, a similar approach could be undertaken for designing tasks to detect motor

impairment, for example in ALS or Parkinson’s disease.
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Beyond providing a framework for objectively characterizing the speech elicitation

task, we pioneer new use cases for two existing machine learning methods, CART

(Breiman et al. (1984)) and Bayesian treed linear models (Gramacy and Lee (2008)),

that leverage the task meta-features for task design. In particular, the proposed

methods facilitate insights into which meta-features of the speech elicitation task are

driving reductions in classification complexity.

In what follows, we first provide a literature review on key ideas from Design of

Experiments, which shares similarities with our goal of engineering (designing) speech-

based screening tests. Next, we introduce our CART-based protocol for speech task

engineering and show the results on the BioHermes data used for the analysis from the

previous section. Following the CART approach, we introduce the Bayesian method

for treed linear models, and present results for this same dataset. We conclude with

a discussion on the importance of carefully engineering both speech elicitation tasks

and speech features for successfully creating a speech-based digital screening test.

4.4.1 Design of Experiments

The phrase “design of screening tests” may easily invoke, for statisticians, the vast

field of Design of Experiments (DOE). DOE centers on finding optimal configurations

of independent variables among repeated trials of an experiment, when the aim of the

experiment is to estimate the impact of systematically modifying these independent

variables on an outcome.

The first publication in English relating to optimal design for estimating regression

models was Charles Pierce’s “Note on the Theory of the Economy of Research” (Pierce

(1879)); in 1918, Kirstine Smith published a work on optimal design for limited

cases of polynomial regression (Smith (1918)). The roots of DOE in its present

form can be traced back to Ronald Fisher’s statistical experiments for increasing
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agricultural output in the early 20th century (Fisher and Mackenzie (1923), Fisher

(1926), Fisher and Wishart (1930)). The seminal text The Design of Experiments (

Fisher (1935)) christened and laid the foundations for the theory. In subsequent years,

DOE underwent further development, with important contributions from Yates (Yates

(1937), Yates (1954)), Cox (Cox (1951)), Chernoff (Chernoff (1959)), and Box (Box

and Lucas (1959)), to name but a few. Genichi Taguchi developed an approach for

applying principles of DOE to manufacturing processes, which subsequently became a

major application area for DOE, specifically in product quality and reliability, along

with other engineering applications (Taguchi (1962), Taguchi and Phadke (1989),

Taguchi (1995)). In more recent decades, DOE has found an audience in widespread

application areas, including marketing, pharmaceuticals, energy, flavor engineering,

and architecture (Durakovic (2017)).

At its core, Design of Experiments provides a methodology for finding statistically

optimal settings when repeated experiments are being performed to test the impact

of independent variables on output variables. As a classic example (Hotelling (1944)),

consider two experiments in weighing 8 objects using a pan balance: in Experiment 1,

each object is weighed individually in one pan, requiring 8 weighings. In Experiment

2, all 8 weighings include different combinations of objects in the right and left pans,

and the estimates for each individual object are obtained by linear combinations of the

results of the 8 experiments. Both experiments require 8 separate weighings, however,

Experiment 2 results in an 8-fold reduction in the variance of the estimate of each

object. Thus, DOE is concerned with the combinations of settings of experiments

that will produce statistically optimal (to be precisely defined shortly) estimation

procedures.

Each of the independent variables that is varied in the experiment is called a

factor, Xi; the outcome being measured is denoted Y . Different experiment regimes
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include One-Factor-At-a-Time (OFAT), in which one factor is varied while the other

factors are held constant, full factorial designs, in which all combinations of all factors

are tested, and fractional factorial designs, in which a carefully chosen subset of the

full factorial designs are executed (Hicks (1964)). Full factorial designs achieve the

greatest statistically efficiency in terms of variance reduction in the estimates, but

require the highest number of trials and are sometimes infeasible in applications with

limited resources for experiment runs. In this case, fractional factorial designs often

offer an acceptable trade-off in number of trials compared to variance reduction, and

are superior to OFAT experiments in most settings.

DOE aims for optimal experiment configurations, and optimal in this context typ-

ically implies minimizing, in some sense, the variance around the estimates for Xi in

the linear regression
∑
βiXi = Y . If more than one factor is used (which is common),

instead of a single variance parameter we have the covariance matrix of the βi, here

denoted Σ; in DOE, the inverse of the covariance matrix is called the information

matrix (rather than the precision matrix). Different optimality criteria have been

derived, which are the solution to an optimization of a functional of the eigenvalues

of the information matrix. Examples of such optimality criteria include (Atkinson

et al. (2007)): A-optimality (minimizing the trace of the inverse of the information

matrix), D-optimality (minimizing the determinant of the information matrix ΣTΣ),

and E-optimality (maximizing the minimum eigenvalue of the information matrix).

While the concept of systematically changing input parameters in order to de-

termine their effect on an outcome has similar themes to designing screening tests,

there are two key differences. These differences are most easily explained by looking

at the causal graphs for the typical DOE setting compared to our setting of designing

a speech-based screening test, which are shown in Figures 4.24 and 4.25. In these

graphs, nodes show variables related to the problem, and arrows represent a causal
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relationship; A→ B means that the value of A has a causal impact on B.

X Y

Figure 4.24: Causal graph under-
pinning a traditional DOE setting.

T

X

Y

Figure 4.25: Causal graph under-
pinning the data used in a speech-
based cognitive screening test.

The first difference between our setting and DOE is in the direction of the causal

relationship between the features in the model (X) and the outcome variable (Y ). In

DOE, the variables that are modified have a direct causal impact on the outcome;

for example, settings for production equipment (X) are varied, and the product is

subsequently manufactured under these settings and tested for a particular quality

(Y ). This causal relationship is demonstrated by the arrow X→ Y in Figure 4.24. On

the other hand, in our setting of speech-based digital screeners, the speech features X

are causally downstream of the outcome of interest, the cognitive class membership

Y ; a patient’s status of being cognitively impaired is what influences the distribution

of the speech features, not the other way around. This is formally notated by the

causal arrow Y → X in Figure 4.25.

The other key difference between our setting and DOE is the manner in which we

are able to systematically intervene in the system, in order to influence the values of

the variables X being used as independent variables to a regression or classification

model. In DOE, the inputs to the model can be varied directly, as shown by the causal

arrow X → Y in Figure 4.24. For the speech-based screening test, we cannot, for

example, force patients to produce speech samples with precisely 20 words, speaking

at a rate of 4.29 syllables per second. Our lack of direct causal (interventional)

control over the speech features X is formally demonstrated by the node for X having
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no arrows going out of it in Figure 4.25. However, the speech screening context does

allow for indirectly influencing the support of the speech feature distribution X , via

systematic modifications to the speech elicitation task T. The formal notation we

have introduced for the task T emphasizes that the data collection protocol should

be carefully controlled to achieve optimal statistical learning, even when the causal

relationship between the experiment setting and the features used as model inputs is

indirect.

Thus, although DOE is not directly applicable to our problem as formulated,

themes from the field are related to our overall notion of design, and can be used to

inform the process of speech elicitation task engineering.

An interesting direction for future work would be applying the principles of DOE

to obtain optimal configurations of high and low values for task attributes, specifically

for the attributes shown later in this section to have the largest impact on screening

test performance. These configurations of tasks could then be trialed on small samples

of participants, and results compared using DOE methodology, resulting in a decision

on the best task configuration for detecting cognitive impairment.

4.4.2 Task Engineering Using CART

As a first method for task engineering, we propose to use the CART algorithm

(Breiman et al. (1984)) to automatically extract the characteristics of the tasks that

lead to reduced classification complexity. We define a set of objective task charac-

teristics that can be evaluated for each task, called meta-features. The meta-features

and their descriptions are shown in Table 4.5.

We want to understand which, if any, of these meta-features the best performing

tasks have in common. In order to do so, we fit a regression tree using the CART

algorithm, with these meta-features Ti as the independent variables and the sum-
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Task Meta-Feature Description

Type of speech Does the task imply listing separate words, connected speech,
or phonating?

Memory is taxed Does the task require the use of memory?

Retrieval is taxed Does the task require the use of retrieval?

Orthographic Does the task require spelling or substantive reading?transformation is taxed

Inhibition is taxed Does the task require the participant to refrain from naming
distractor stimuli?

Idea coherence Does the task require the participant to discuss complex ideas
is taxed in a coherent way?

Visual stimuli Does the task stimuli involve a picture of a scene or object?

Multiple Are the task stimuli on a single screen, or broken up into
stimuli screens several consecutive screens?

Stimuli in array Do the task stimuli consist of an array of words or objects, or
a single one on each screen?

Recording duration How long does the participant have, at maximum to perform the task?

Maximum number of How many different objects or words does the participant need
content units to recall to obtain from memory, retrieval, or naming?

Table 4.5: Descriptions of the task meta-features that describe objective compo-
nents of a speech elicitation task.

mary AUC score as the dependent variable. CART is described in more detail in

section 2.2.1. The idea behind this approach is to let the CART algorithm auto-

matically determine the properties that the high-performing tasks have in common,

and additionally to examine the interactions between task meta-features that reduce

classification complexity when used in conjunction. The insights gained from exam-

ining the tree can then be applied to designing future tasks that contain these task

meta-features. Furthermore, the degree to which the task incorporates the useful

meta-features can be extended, where possible.

We fit the regression tree described above on the results from the Clinical feature

set as a demonstration, since that feature set had the consistently highest performance
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for most of the tasks. The regression tree obtained using the rpart R package for

model fitting and rpart.plot package for tree visualization is shown in Figure 4.26.

This regression tree shows specifically which aspects of the speech elicitation tasks

reduce classification complexity, under the assumption that the Clinical features will

be used in the screening test after task completion. Table 4.6 shows which tasks are

included in each of the leaf nodes from the tree in Figure 4.26.

Figure 4.26: Regression tree with the task meta-features as regressors and the
summary AUC score as the outcome.

The internal splits and resulting comparative AUCs in the left and right child

nodes are reasonable and generate some interesting insights. The first insight is

that tasks which require the participant to name or recall a higher number of in-

dividual items (or content units, in the case of the story recall task), captured by

the Task max content units to recall meta-feature, lead to greater differentia-

tion between CN and CI individuals. This is a direct confirmation of the discussion

in Berisha et al. (2021) around the use of maximum performance tasks, namely that

requiring the individual to perform a task to their maximum ability can produce

speech features with better properties for a classification problem.
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Mean AUC Tasks in Leaf Node

0.68 Diadochokinetic Rate, Immediate Word Recall

0.76 Delayed Word Recall, Word Recognition

0.76 Picture Description, Sentence Reading

0.79 Visual Naming, Object Recall, Immediate Story Recall

0.81 Category Naming, Delayed Story Recall

0.85 Visual Search

Table 4.6: List of the tasks that fall into each of the leaf nodes for the regression
tree shown in Figure 4.26. The leaf node groups are listed in order from left-most leaf
node to right-most leaf node, and can also be matched via the mean summary AUC
score.

Looking further down the tree to the left of the root node and focusing on tasks

that have a lower number of content units, the regression tree indicates that tasks

involving listing speech type have worse performance than tasks requiring connected

speech. (The split on speech type does not include Phonating spech type as an

option, since the Clinical features were not calculated on the Phonation task.) Our

interpretation of this finding is that tasks that involve listing individual words are the

most useful when those words are related to a task with a larger number of content

units that must be retrieved, remembered, or individually named.

Within the group of tasks having both a low number of contents units and a

listing speech type, taxing retrieval (which is achieved in this case via a delayed

recall task) produces higher differentiation compared to not taxing retrieval. This is

a straightforward finding, considering that problems with memory and retrieval are

one of the hallmarks of Alzheimer’s disease (Venneri et al. (2008)), but nonetheless

useful to have corroborated in the data analysis.

Looking to the right of the root node to tasks that involve a higher number of con-
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tent units, the task that involves orthographic transformation (denoted by the meta-

feature Task orthographic knowledge taxed), which is the Visual Search task, has

the highest classification performance. This is consistent with literature showing that

orthographic transformation is impaired in Alzheimer’s disease (Rodŕıguez-Ferreiro

et al. (2014)). For the tasks that do not require orthographic transformation, tax-

ing retrieval produces a higher AUC than not, consistent with the findings in the

left-most two leaf nodes.

Since the regression tree is fit only to a single AUC number from each task,

the findings are potentially subject to the variability induced by reducing the AUC

distributions from Figure 4.8 to a single number. We therefore corroborated these

findings by performing the same repeated cross validation described in Section 4.3.2,

but rather than performing it separately for each task-feature dataset, we combined

the task-feature datasets included in the same leaf node into one dataset before model

fitting within each repetition. In other words, for each repetition, if the leaf included

e.g. two tasks, we took the dataset with 2n rows and 15 columns (two rows per

individual containing their feature values on the two tasks), and split this dataset

into 3 folds for cross-validated model fitting and predicted. Grouped and stratified

cross validation was performed to ensure the same participant was not included in

both the training and test dataset using features from different tasks. Furthermore,

we only performed this analysis using the BART model, as it was shown to have the

highest performance in the majority of task-feature datasets.

The results are shown in Figure 4.27, with the boxplot showing the AUC scores

over 25 repetitions, and the black dot showing the mean out-of-sample AUC calculated

for each leaf node. We used 25 repetitions rather than 10, due to increased availability

of computational resources when running the analysis using only one model and one

small feature set (Clinical features).
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Figure 4.27: AUC distributions over 25 repetitions for each of the task groupings
obtained from the leaf nodes in Figure 4.26. The black point shows the AUC score
from the regression tree. Overall, the trend aligns with the mean AUCs produced by
the regression tree.

The mean AUC from the predicted values in the leaf nodes of Figure 4.26 are

always contained within the distribution of AUC scores for the jointly fitted model,

shown in Figure 4.27. However, the groups corresponding to the four central leaf nodes

have very overlapped AUC distributions, implying that the split for taxing retrieval

between leaf nodes 4 and 5 likely does not represent a true difference between these two

sets of tasks. However, the general trend matches what was observed in Figure 4.26,

and the remaining splits seem to represent real differences in task performance based

on meta-features. Overall, averaging the AUCs obtained by fitting separate datasets

is a viable approximation for the AUC achieved by fitting the datasets together.

We conclude with remarks on how this method can be used for guiding task engi-

neering. In the concrete case of a speech-based screening test that is used for detect-
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ing cognitive impairment, we recommend including tasks that tax at least 8 content

units (objects, words, or elements of a recalled story), tax retrieval, and tax ortho-

graphic transformation. Practitioners should consider incorporating these elements

into speech-based screening tests for cognitive impairment incident to Alzheimer’s

disease.

Additionally, we recommend designing tasks which incorporate these meta-features

to a greater extent; for example, including an even higher number of content units,

presenting a stimuli with a more difficult orthographic transformation (e.g., more

complex sentences, or more challenging spelling criteria to remember). As pushing

the task to be too difficult can result in floor effects, and can also be discouraging

for cognitively impaired participants to complete, we recommend experimenting with

different task setups via A/B testing on small groups of participants, in order to find

the right balance of task difficulty in the general direction recommended here.

To summarize, in the previous section we established that task engineering is a

large driver of classification complexity. In this subsection, we have introduced a way

to obtain automatic insights into which components of the speech elicitation task may

be driving the low complexity that we seek. Furthermore, we have presented ideas for

turning these automatic insights into new speech elicitation tasks and testing them

out in a controlled manner.

4.4.3 Task Engineering Using Treed Probability Models

In the previous section, we saw that the patterns obtained by averaging AUCs

over separate models, as compared to directly fitting models on the data from the

tasks grouped together, produced similar but not identical results. (The black points

in Figure 4.27 are not identical to the median AUC from a model jointly fitted to

these tasks). Unfortunately, fitting models to all possible subsets of tasks groupings
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would involve performing the repeated CV analysis on 212 = 4096 different subsets

of task groupings; furthermore, even if these results could be obtained, the method

for automatically separating the tasks into groups by task meta-features, using the

performance of the 4096 task groupings, is not obvious.

Treed probability models provide a method for automatically performing such an

analysis. The end result of a treed linear probability model is a tree-based structure,

where data are funneled into leaf nodes based on the values of splitting variables

and cutpoints at each internal node, and then data within each leaf node are used

for fitting a separate linear regression model to the class outcomes Y coded as 0-1

numerical values.

A treed probability model in which the task meta-features are used for internal

splitting variables, and the speech features are used for fitting the leaf-node prob-

ability models, produces a similar set of insights as the CART-based approach for

task engineering. The difference in using treed probability models, rather than single

regression trees, is that leaf-node results are based on fitting a single model over data

combined from several tasks, instead of averaging over results from individual models

on each task.

Our second proposed method for task engineering implements these ideas using

Bayesian treed linear models introduced by Gramacy and Lee (2008) and imple-

mented in the tgp R package (Gramacy (2007)). Due to computational constraints,

we only perform this analysis on the set of Clinical features. Although tgp includes

functionality for fitting Bayesian treed Gaussian processes, which would potentially

improve the results via a more flexible model in the leaf node, due to computational

constraints we only used the btlm function for Bayesian treed linear models.

We take a moment to remark on the contribution of this section, namely, pre-

senting a novel use case for treed regression and classification methods. In a typical
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use of such methods, the same variables are by default used for both partitioning

the domain and fitting the model within each partition, letting the data drive which

variables should be used for internal splits versus leaf node models. An ideal example

for this use case are non-stationary Gaussian processes, which form the main motiva-

tion behind the functionality in the tgp (treed Gaussian processes) package. While

functionality exists for restricting the variables used for internal splits and leaf node

models, it can only be utilized via knowledge of specific obsolete parameters for the

function call. The use of such functionality does not appear to be standard, judging

by 1) its absence from the package vignette and 2) the fact that these parameters

are buried in the help page and only included in a tangential control function, rather

than in the main package functions.

Our use of treed probability models is novel in several ways. First, not only do

we use separate sets of variables for internal splits vs leaf node models using the

obscure function parameters mentioned above, but the two sets of variables are not

just two subsets of the same input space X . Rather, the two sets of variables have

a hierarchical relationship, in which the variables used for internal splits are “meta”

variables that determine the distribution of the actual input domain, used for fitting

the regression leaf models. In other words, we are not simply choosing X1, . . . , Xi

for internal nodes and Xi+1, . . . , Xp for leaf node models, from the input vector X.

Rather, we are partitioning the domain of meta-features T , and then within each

partition of T , fitting a model to the input features X | T that arise when collected

under the setting specified by that partition of the task meta-features.

The second novel contribution of this section is the way in which we use this

hierarchical division of meta-variables vs model input variables. We use the fitted

treed probability model to gain insights into which part of the meta-feature space T

produces the best data X | T for a particular classification problem. Thus, we use
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an existing method in Bayesian machine learning in a new setting, namely speech

elicitation task engineering.

With these remarks in mind, we now turn to describing the specifics of using

a treed linear probability model for task engineering. The input to the model is a

(n · ntasks) × (p + m) matrix (X,T), where n is the number of participants, ntasks is

the number of individual tasks, p is the number of extracted speech features and m

is the number of task meta-features. In our example using the Clinical features on

the BioHermes data, n = 241, ntasks = 12, p = 15 and m = 11. Each row is a vector

comprising the set of speech features and task meta-features from participant i on task

j, and is denoted (xi,tj , tj) = (xi,tj ,1, . . . , xi,tj ,p, tj,1, . . . , tj,m), where tj = (tj,1, . . . , tj,m)

is the vector of task meta-features describing the jth task, and xi,tj = (xi,tj ,1, . . . , xi,tj ,p)

are speech features obtained from a participant performing the jth task. In the

function call, we only allow the variables T1, . . . , Tm to be used as internal splitting

variables, and we only allow the variables XT,1, . . . , XT,p to be used for fitting the

leaf node model. These constraints are achieved using the splitmin and basemax

parameters in the btlm function call.

The hierarchical model specification for the Bayesian linear models fitted in the

leaf nodes is Gramacy (2007):

Y | β, σ2 ∼ Nn(Fβ, σ2I) σ2 ∼ IG(ασ/2, qσ/2)

β | σ2, τ 2,W, β0 ∼ Np(β0, σ
2τ 2W) τ 2 ∼ IG(ατ/2, qτ/2)

β0 ∼ Np(µ,B) W−1 ∼ W ((ρV)−1, ρ),

where F = (1,X) is the input matrix X with an intercept added, I is the n × n

identity matrix, W is an m×m matrix, N is the Multivariate Normal distribution,

IG is the Inverse-Gamma distribution, and W is the Wishart distribution. The prior

parameters ασ, qσ, µ, B, ρ, and V are treated as known. The input matrix X for
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fitting this model consists of speech features from all participants on the tasks that

belong to the partition of T corresponding to the given leaf node; Y is the outcome

vector consisting of 0’s and 1’s, repeated the same number of times as the number of

tasks in the leaf node’s partition.

For implementing the tree T, Gramacy and Lee (2008) use a modification of the

tree-generating process from Chipman et al. (2010), using the same operations grow,

prune, change, swap, along with a new operation rotate to improve Markov chain

mixing (Gramacy and Lee (2008)). The probability of splitting a node η during a

grow operation is pSPLIT(T, η) = a(1 + qη)
b, where qη is the depth of node η, and a

and b are parameters determining the overall prior on tree depth. See Gramacy and

Lee (2008) for more details on the model specification and MCMC process, which

uses reversible-jump MCMC, with some simplifications for greater computational

efficiency.

Figure 4.28 shows the Maximum A Posteriori (MAP) tree obtained from fitting the

btlm function (Bayesian Treed Linear Model) from tgp to the Bio-Hermes data. The

tgp tree-plotting function was modified to return the MAP tree with an AUC value

in the leaf node, rather than the estimate of σ which is shown in the implemented

version. For each leaf node, the AUC score is the in-sample AUC computed on

all of the data from the tasks included in that leaf node based on the task meta-

feature splits. The CI probabilities P (Y = 1 | X,T) used for calculating AUC are

the predictions using the posterior means for the linear model parameters in the leaf

node. Although the AUC values are higher than the out-of-sample AUCs shown in the

previous section, the regularization of the model via priors favoring simpler models

still prevents complete over-fitting to the training data.

Table 4.7 shows the set of tasks that fall into each of the leaf nodes based on the

task meta-feature splitting variables and cutpoints.
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Figure 4.28: MAP tree obtained from fitting a Bayesian treed linear model to
the BioHermes speech data. The leaf nodes show the in-sample AUC for the tasks
grouped in the leaf nodes, based on the splitting variables shown in the internal nodes.
The AUC is obtained using the linear model in each of the leaf nodes to predict the
probability of cognitive impairment on the full dataset contained in that node.

Mean AUC Leaf Node Number Tasks in Leaf Node

0.805 1
Category Naming, Object Recall
Delayed Word Recall, Immediate Word Recall

0.747 2 Diadochokinetic Rate

0.85 3 Sentence Reading

0.893 4 Visual Naming

0.812 5
Immediate Story Recall, Delayed Story Recall
Picture Description

0.838 6 Word Recognition

0.921 7 Visual Search

Table 4.7: List of the tasks that fall into each of the leaf nodes for the regression
tree shown in Figure 4.28. The leaf node groups are listed in order from left-most leaf
node to right-most leaf node, and can also be matched via the posterior in-sample
AUC score and leaf number (shown in the colored circle on top of the AUC score in
Figure 4.28.

The obtained decision tree can now be explored by comparing the in-sample AUC

from predicting on a single, fused dataset (Figure 4.28) to the out-of-sample AUC

obtained by averaging over all summary AUC scores for tasks in the leaf nodes (Figure

4.26). Furthermore, the internal nodes can be investigated for insights into which task
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meta-features are driving classification complexity.

The predicted in-sample AUCs have some similarities to the out-of-sample AUC

achieved on the task groupings from the CART-based approach, at least in terms of

relative order. The Diadochokinetic Rate task is clearly inferior than others in terms of

lower AUC, and the Visual Search task also appears to have the highest performance.

The Delayed and Immediate Word Recall are on the lower end, but unlike in the

previous results, Category Naming and Object Recall also fall onto the lower side

of performance. The remaining tasks are relatively mixed having intermediate AUC

scores.

Interestingly, even with this changed ordering of task performance, we still see

some of the same patterns in terms of splits on task meta-features in Figure 4.28

as we did for Figure 4.26. Taxing orthographic knowledge, taxing inhibition, and

including a larger number of content units all lead to an increase in performance, i.e.

a classification problem with reduced complexity.

We also see other task meta-features making an appearance in the internal nodes

for splitting. Making use of multiple stimuli screens leads to improved performance,

which aligns with the maximum performance findings, since spreading a task over

multiple stimuli screens normally implies a lengthy and sometimes more complex

task. The idea coherence split is curious; it appears that for longer tasks that do not

require inhibition (meaning participants can speak freely), the listing/naming tasks

are superior to those involving idea coherence for separating between Alzheimer’s

patients and those with normal cognition.

To wrap up our two proposed methods for insight generation, we compare the

CART-based method to the method based on Bayesian treed probability models.

Aside from the obvious difference of using a Bayesian method compared to a non-

Bayesian method, the key difference between the two can be summarized, loosely,
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as meta-regression (CART) versus data fusion (tgp). In a meta-regression, each

sample input is obtained from a single dataset or study; the independent variables

are features about the dataset, and the outcome variable is a summary performance

metric, traditionally a treatment effect. See Thompson and Higgins (2002) for a

deeper background on meta-regression. Here, our dataset inputs are each of the task-

feature datasets, and the outcome summary performance metric is the summary AUC

score.

On the other hand, data fusion involves combining multiple datasets together

as input to the same model, from which a single performance metric summarizing

the performance of the combined data is obtained; see Castanedo (2013) for more

information and examples of data-fusion. In the Bayesian treed linear model, we fit

a single model to multiple combined task-feature datasets and obtain a single AUC

for the combined data.

The Bayesian method takes advantage of increased statistical efficiency that is

achieved by fitting models with the same number of features on a larger dataset (data

fusion), rather than combining results from several models fit to smaller individual

datasets (meta-regression). Additionally, the Bayesian method utilizing tgp is a

novel and satisfying use of treed probability models in an innovative and challenging

problem setting.

However, the intense computational demands required for the MCMC make the

Bayesian treed probability method infeasible for large datasets with many partic-

ipants, tasks and features. Therefore, the CART-based approach is recommended

for use in a typical setting of speech elicitation task design, in which the number of

features (at a minimum) is likely to be large.
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4.4.4 Automatic Insights Guide Future Task Engineering

Both of the proposed methods (CART-based and Bayesian treed linear models)

can be used to guide the process of either refining existing speech elicitation tasks or

designing entirely new ones. First, the task meta-features used as internal splitting

variables should be interrogated to ensure the obtained insights align with established

clinical knowledge. For example, in Figure 4.26, the decision tree indicates that a

greater number of content units being named or recalled produces better classification

performance. This aligns with the clinical understanding that a more cognitively

challenging task will produce a greater difference in performance between cognitively

normal and impaired groups.

Beyond individual features, the decision tree provides insights into interactions

between the task meta-features that produce better classification results when jointly

present. Using Figure 4.26 as an example again, the two splits on the far left side of

the plot show that when the speech elicitation type is a listing (naming) task, tax-

ing retrieval via a delayed recall produces better classification performance than not

taxing retrieval, which again aligns with clinical understanding of cognitive function.

Critically, interactions between task meta-features may not be apparent to researchers

using traditional, non-data-driven approaches.

After interrogating (where available) the clinical validity of insights gained from

the decision tree, new or refined tasks can be designed to incorporate the beneficial

task meta-features (or combinations) to a greater extent. For example, in a word

recall or an object recall task, the number of content units can be increased beyond

the current amount, choosing 2 or 3 list sizes for comparison. Incorporation of the

important meta-feature(s) should be balanced to avoid floor or ceiling effects, and to

not deter patient motivation to finish the test by making it too difficult. This balance
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can be explored prior to a pilot study via market research with a small number

of individuals. An area for future work is to alternatively use fractional factorial

designs from DOE to choose combinations of the important meta-features (factors in

DOE terminology) that should be jointly incorporated into new versions of speech

elicitation tasks.

Finally, the new task versions can be compared via A/B testing in small pilot

studies, which are then used for selection of the final task to be run in a full validation

study.

The reality underlying the recommendations above is that designing a good cog-

nitive screening test is a lengthy and iterative process. Just as traditional cognitive

assessments have been subsequently refined over years and multiple validation studies,

speech-based cognitive screening tests should be updated and improved over multi-

ple iterations and separately validated in new studies. By undertaking our novel

approach to task design, practitioners can move toward reliable and accurate speech-

based cognitive screening tests that can be successfully deployed in the healthcare

setting.

4.4.5 Joint Engineering of Features and Tasks

As a final addendum to our CART-based method of task engineering, we produce

a similar CART tree that can generate ideas about which tasks and feature sets

work well together. We first fit a regression tree using the CART algorithm, with

the independent variables being two categorical variables containing the task and

feature set names, and the dependent variable being the summary AUC score shown

in Figure 4.11. Figure 4.29 shows the tree obtained using the rpart and rpart.plot

R packages. For easier visualization, we set the maxdepth parameter to 3.

Splitting on the task variable in the root node of the tree in Figure 4.29 is another
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Figure 4.29: Regression tree with Task and Feature Set as regressors and the
summary AUC score as the outcome being predicted. Splitting on Task at the root
node means that the Task variable contains subgroups having more similar clusters
of high and low AUC values than the Feature Set variable.

indication of the importance of good task engineering; it means that splitting on Task

provides a greater variance reduction in the children nodes combined than splitting on

Feature Set. In other words, there are more clustered patterns of high and low AUC

scores when task-feature datasets are grouped by task, than when they are grouped

by feature set.

The tasks that result in higher AUC scores (over all of the feature sets taken to-

gether) are: Sentence Reading, Immediate Story Recall, Delayed Story Recall, Visual

Naming, Visual Search, Word Recognition, Category Naming, and Object Recall.

Given one of these good tasks (moving to the right child of the leaf node), the next

level of AUC improvement is achieved via good feature engineering, as demonstrated

by two subsequent splits on the feature set to obtain the best performance in the

right-most leaf node. On these better tasks, the eGeMAPSv02 and Talk2me features

show the worst performance, Emobase and Wav2Vec2 have better performance, and

the Clinical features show the best performance. This corroborates our earlier finding

that good task engineering is necessary in order to move the conditional distribu-
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tions P (Z | T, Y = 1) and P (Z | T, Y = 0) to a region of Z, such that successful

speech feature engineering algorithms can be found. Furthermore, it shows that in-

formed speech feature engineering is necessary to transform the original audio from

“good” baseline tasks into meaningful and informative speech features with reduced

classification complexity. Poor speech feature algorithms ffeature on a good task are

no better than the best speech feature algorithms on a poor task. This is clear from

comparing the AUC of the worst speech feature sets (eGeMAPSv02, Talk2Me) on the

set of good tasks (mean AUC = 0.69 on the internal node with a depth of 3, second

from the left) to the AUC of the best speech feature set (Clinical) on one of the worst

tasks, DDK (second from the left leaf node, AUC = 0.68). Both task and feature

engineering must be done in tandem to achieve good classification performance.

Looking to the left side of the root node in Figure 4.29, we have the worse tasks

(when considered over all feature sets): DDK, Phonation, Picture Description, De-

layed Word Recall, Immediate Word Recall. Here, we see that the very worst tasks for

separating cognitive groups, Phonation and DDK, are split off even before splitting

on the feature set. In other words, regardless of the feature set under consideration,

these tasks showed the worst performance. This additional split on the Phonation

and DDK tasks is a secondary visualization of how the maximum AUC score in Figure

4.11 (shown by the dashed line) had the lowest level for the Phonation and DDK,

substantially worse than on other tasks.

Lastly, within both the worst performing tasks (DDK, Phonation) and the tasks

with medium performance (Picture Description, Immediate Word Recall, Delayed

Word Recall), the difference between the Clinical features and the rest of the feature

sets is greater than any other grouping of feature sets. Thus,even on tasks with a

higher inherent level of classification complexity, good feature engineering can still

improve classification performance, though not as much as simply collecting audio on
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a better task to begin with.

While the regression tree in Figure 4.29 is simply another way of visualizing and

clustering the results from Figure 4.11, it nonetheless provides useful insights, includ-

ing 1) the overall dominance of task engineering, rather than feature engineering, as

the main driver of classification complexity; 2) the importance of good feature engi-

neering to extract maximum classification performance from tasks with a high per-

formance ceiling; 3) the superiority of using a carefully designed small set of speech

features that measure clinically interpretable aspects of speech, known to change in

the disease being screened, at least in this particular analysis. While this last point

is not a main focus of this dissertation, we found it worth mentioning, in particular

because it aligns with claims made in Berisha et al. (2021).

As a final analysis, we extend the procedure described above by fitting a CART

tree using the task meta-features defined in Table 4.5 as independent variables, in

place of the task names directly. This analysis allows us to derive insights on which

components of the tasks are driving classification complexity, for all feature sets in

conjunction. We can also investigate whether individual feature sets work best for

tasks with specific meta-features. Figure 4.30 shows the regression tree obtained by

fitting the CART algorithm on both the task meta-features and the feature set names.

Similarly to Figure 4.26, the maximum number of content units is the overall

driving force behind reduced classification complexity, when taking all feature sets

in conjunction. For the eGeMAPSv02 and Talk2me feature sets, we see that taxing

retrieval provides an improvement for the low-content-unit tasks, similarly as for the

Clinical features in Figure 4.26. On the other hand, having a short recording duration

is more impactful for these feature sets on the high-content-unit tasks.

In summary, using the CART approach with both task meta-features and feature

set as regressors provides an avenue for discovering task insights that pertain to
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Figure 4.30: Regression tree with the task meta-features and feature set as regres-
sors.

specific feature sets. The obtained trees can generate ideas for which feature sets and

task meta-features may work well together in combination, helping guide future task

engineering in a feature set-agnostic or feature set-specific manner.

4.4.6 Discussion

The previous analyses use an objective quantification of characteristics of speech

elicitation tasks to derive insights on the task components driving classification per-

formance. We proposed a CART-based approach for automatically grouping high-

performing tasks using partitions driven by the objective task meta-features, and

showed how the obtained tree can be used to generate recommendations for future
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speech elicitation tasks that are likely to show good classification performance. We

discussed these insights both in a feature set-specific examples (Figure 4.26) and an

example involving interactions between both feature sets and task meta-features (Fig-

ure 4.30). Furthermore, we proposed an alternative method for obtaining a similar

regression tree using a Bayesian treed probability model (Figure 4.28). Both ap-

proaches represent an innovative way to use existing methods in service of insight

generation driving future task engineering.

There are some caveats to the proposed methods. First of all, the fact that a

particular task meta-feature is the best one for separating tasks into high and low AUC

buckets, does not mean that that particular meta-feature is singularly responsible for

the difference in task performance. The insights gained from the internal splitting

nodes should be corroborated by existing clinical evidence in the particular indication

being screened, and also by task development and validation activities such as A/B

testing, or the exploratory or confirmatory factor analyses typically performed when

validating neuropsychological cognitive batteries.

Secondly, the insights derived in the classification tree are subject to the particular

task meta-features that the practitioner chooses to define and evaluate for a particular

set of tasks. Thus, an initial theory for task meta-features that are driving classifica-

tion complexity and screening test performance is required to use this method, or at

minimum, ideas for objective aspects of a potentially extremely unique set of tasks

that are shared among multiple tasks.

Despite these limitations, the ideas presented here offer a concrete path to insight

generation for the purposes of speech elicitation task engineering. Our emphasis on

the importance of designing good speech elicitation tasks, rather than fully focusing

on speech feature engineering and model building, is in and of itself a contribution

that advances the work to date on speech-based screening tests used for screening
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medical conditions.

The proposed method can additionally be used for choosing between several differ-

ent versions of the same speech elicitation task that use different stimuli. Rather than

comparing classification model performance on 12 different tasks, we could compare

performance on 12 versions of the same task, and define a set of meta-features that

differentiate between these task versions in an objective way.

While we have named the previous section Joint task and feature engineering, the

proposed method is limited to using existing feature sets in full for a given task. An

exciting direction for future work would be designing an adaptation of the treed linear

probability model that incorporates feature selection between different feature sets in

the tree-splitting process. This could be accomplished, for example, by incorporating

Bayesian Lasso models (Park and Casella (2008)) into the leaf nodes, rather than

Bayesian linear models. Alternatively, a non-Bayesian approach that uses traditional

feature selection methods like the wrapper or filter methods described in the empirical

analyses could be considered. The feature selection methods did not seem to have

a large impact when used only within a single feature set, but we theorize that

these methods may prove more useful when applied to select a small number of

features from different feature engineering algorithms. The selected features, applied

to the best speech elicitation tasks, could thus combine complementary information

from hand-crafted clinically relevant features and built-in DNN-based speech features,

potentially making new inroads into reducing classification complexity and achieving

higher performance for speech-based cognitive screening tests.
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Chapter 5

SUMMARY OF CONTRIBUTION AND FUTURE WORK

This dissertation offers new applications of machine learning in service of designing

better screening tests. We focus in particular on two types of screening tests: adaptive

tree-based screening tests that select a small number of items for administration

from a large item pool, and speech-based screening tests which require participants

to perform a speech elicitation task that is recorded and subsequently processed

for screening. We demonstrate our novel methods in applications to screening for

youth delinquency (adaptive tree-based screening tests) and screening for cognitive

impairment (speech-based screening tests).

Our original contribution in Chapter 2 is a new method for designing adaptive tree-

based screening tests that are specifically optimized for a particular population and

test setting, using an innovative Bayesian decision theory framework. The proposed

method offers a principled approach for delineating and evaluating the trade-offs of

shortening the original assessment, which is a lengthy test consisting of all the items

in the item pool. In providing a new method for tree-based adaptive test design, we

extend prior work on both posterior summarization for model selection and youth

delinquency risk assessment, incorporating ideas from these separate fields to tackle

the problem of designing a tree-based screening test.

Chapter 3 offers a foundational literature review that connects three disparate

fields: statistical learning theory, information theory, and empirical data complex-

ity measures. This literature review highlights connections between the fields via

the insights they provide into classification complexity, and establishes a unified lan-

guage and notation for discussing classification complexity in the context of speech
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elicitation task design. We compare both theoretical and empirical measures of clas-

sification complexity from these separate fields via a carefully designed simulation

study that explicitly controls two key aspects of classification complexity. Finally,

this review and simulation study provide a language for formal insights on the curse

of dimensionality in digital health, which we contribute at the end of the chapter.

This discussion expands on ideas from our paper Digital Medicine and the Curse of

Dimensionality (Berisha et al. (2021)).

With the theoretical and empirical understanding of classification complexity es-

tablished, in Chapter 4 we apply our learnings to the problem of designing a speech-

based screening test. Our main contribution from the first half of Chapter 4 is a

demonstration via a theoretical discussion and an empirical analysis of the relative

merits of task and feature engineering in the context of a speech-based cognitive

screening test. The theoretical discussion utilizes the same formal notation about

classification complexity presented in Chapter 3. The empirical demonstration sup-

porting our theoretical ideas via a large scale analysis comparing the classification

complexity of different speech elicitation tasks and speech feature sets. The combi-

nation of theoretical discussion and empirical analysis generate several new insights,

the most important of which are:

(1) Speech elicitation task engineering is necessary to reduce the lower

limit of classification complexity for the engineered speech features;

(2) Intelligent feature engineering is required to extract maximum clas-

sification performance from well-designed speech elicitation tasks;

(3) Feature engineering is most useful when it utilizes external Knowl-

edge or Data, bringing outside information to the classification prob-

lem posed by a particular medical speech dataset.
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As a side note, the large scale analysis included a much greater variety of speech

elicitation tasks than have been previously compared in the speech literature. Specifi-

cally, we compared spontaneous speech, naming, reading, and phonating tasks across

the same participants in the same study, whereas prior work was focused on com-

paring different versions of the same picture description task, or different types of

spontaneous speech tasks only.

After demonstrating the fundamental importance of speech elicitation task de-

sign (point (1) above), in the latter part of Chapter 4 we propose new methods

for designing speech elicitation tasks. First, we introduce the novel concept of task

meta-features, which can be used to objectively quantify different aspects of a speech

elicitation task. Second, we propose new applications of two different machine learn-

ing methods, one based on meta-regression and the other based on data fusion, to

gain insights into the meta-features driving classification complexity for a speech elic-

itation task. We furthermore propose a process for how to use these objective insights

to guide future speech task design efforts.

The overall contribution of Chapter 4 is to shine a light on the importance of care-

fully designing the speech elicitation task underlying a speech-based screening test,

and providing specific recommendations to guide the design process. The contributed

proposals rely on high-level ideas similar to traditional design of neuropsychological

cognitive batteries, but subsequent task iterations are proposed using a combination

of clinical guidance and data-driven evidence, rather than clinical intuition alone.

To summarize, the contributions of this dissertation are both novel ideas and novel

methods in service of designing better screening tests, which are either conveniently

brief, have acceptable accuracy, or both (where possible). Along the way, we have

woven together ideas from a multitude of fields, including Bayesian decision theory,

machine learning, statistical learning theory, information theory, data complexity
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measures, design of experiments, and neuropsychology.

While directions for future work are numerous, we highlight two here. The first

direction is creation of publicly available software that can be used to easily imple-

ment the method from Chapter 2 for designing tree-based adaptive screening tests.

While the code used to produce the presented analysis is publicly available, a more

user-friendly interface would allow for greater adoption of the method in important

application areas such as education and federal-sponsored survey efforts.

The second direction is expanding the analysis in Chapter 4 to compare several

end-to-end classification methods on different speech elicitation tasks, rather than the

separate steps of extracting speech features and using them as input to a variety of

classification models. Our analysis established the importance of task engineering,

but combined task engineering and end-to-end model engineering is an exciting di-

rection for future exploration. While initial results on a limited subset of the speech

elicitation tasks showed similar classification performance between end-to-end and

separate feature engineering, assessing performance of state-of-the-art models on a

wider variety of speech elicitation tasks could yield valuable insights on which com-

binations of model families and speech elicitation tasks work well together. These

insights could then be used to guide efforts toward joint task engineering and model

development, maximizing classification performance on speech data collected from a

well-designed speech elicitation task.
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Magis, D. and G. Râıche, “Random generation of response patterns under comput-
erized adaptive testing with the R package catR”, Journal of Statistical Software
48, 8, URL https://doi.org/10.18637/jss.v048.i08 (2012).

Maguire, E. R., W. Wells and C. M. Katz, “Measuring community risk and protective
factors for adolescent problem behaviors: Evidence from a developing nation”,
Journal of Research in Crime and Delinquency 48, 594–620 (2011).

Mart́ınez-Ferreiro, S., “Naming as a window to word retrieval changes in healthy
and pathological ageing: Methodological considerations”, International Journal of
Language & Communication Disorders (2022).

Mart́ınez-Nicolás, I., T. E. Llorente, F. Mart́ınez-Sánchez and J. J. G. Meilán, “Ten
years of research on automatic voice and speech analysis of people with Alzheimer’s
disease and mild cognitive impairment: A systematic review article”, Frontiers in
Psychology 12, 620251 (2021).

227

https://doi.org/10.1044/2022_jslhr-22-00363
https://doi.org/10.18637/jss.v076.c01
https://doi.org/10.18637/jss.v048.i08


Meilán, J. J., F. Mart́ınez-Sánchez, I. Mart́ınez-Nicolás, T. E. Llorente and J. Carro,
“Changes in the rhythm of speech difference between people with nondegenerative
mild cognitive impairment and with preclinical dementia”, Behavioural Neurology
2020 (2020).

Mendelson, S., “Rademacher averages and phase transitions in Glivenko-Cantelli
classes”, IEEE Transactions on Information Theory 48, 1, 251–263 (2002).

Mercier, M., M. S. Santos, P. H. Abreu, C. Soares, J. P. Soares and J. Santos,
“Analysing the footprint of classifiers in overlapped and imbalanced contexts”, in
“Advances in Intelligent Data Analysis XVII: 17th International Symposium, IDA
2018,’s-Hertogenbosch, The Netherlands, October 24–26, 2018, Proceedings”, pp.
200–212 (Springer, 2018).

Mermelstein, P., “Distance measures for speech recognition, psychological and instru-
mental”, Pattern Recognition and Artificial Intelligence 116, 374–388 (1976).

Meyer, P. J., “U.S. strategy for engagement in Central America: Policy issues for
Congress”, CRS Report R44812, Congressional Research Service, retrieved from
https://crsreports.congress.gov/product/pdf/R/R44812 (2019).

Michel, P., K. Baumstarck, A. Loundou, B. Ghattas, P. Auquier and L. Boyer, “Com-
puterized adaptive testing with decision regression trees: An alternative to item
response theory for quality of life measurement in multiple sclerosis”, Patient Pref-
erence and Adherence Volume 12, 1043–1053, URL https://doi.org/10.2147/
ppa.s162206 (2018).

Milborrow, S., rpart.plot: Plot ’rpart’ Models: An Enhanced Version of ’plot.rpart’.,
R package version 3.1.0. https://CRAN.R-project.org/package=rpart.plot (2021).

Mueller, K. D., B. Hermann, J. Mecollari and L. S. Turkstra, “Connected speech and
language in mild cognitive impairment and Alzheimer’s disease: A review of picture
description tasks”, Journal of Clinical and Experimental Neuropsychology 40, 9,
917–939, URL https://doi.org/10.1080/13803395.2018.1446513 (2018).

Mukherjee, S., P. Niyogi, T. Poggio and R. Rifkin, “Learning theory: stability is suffi-
cient for generalization and necessary and sufficient for consistency of empirical risk
minimization”, Advances in Computational Mathematics 25, 1, 161–193 (2006).

Muraki, E. and J. E. Carlson, “Full-information factor analysis for polytomous item
responses”, Applied Psychological Measurement 19, 1, 73–90, URL https://doi.
org/10.1177/014662169501900109 (1995).

Murray, J., Y. Shenderovich, F. Gardner, C. Mikton, J. H. Derzon, J. Liu and M. Eis-
ner, “Risk factors for antisocial behavior in low- and middle-income countries: A
systematic review of longitudinal studies”, Crime and Justice 47, 1, 255–364, URL
https://doi.org/10.1086/696590 (2018).

Murray, J. S., “Log-linear Bayesian additive regression trees for multinomial logistic
and count regression models”, Journal of the American Statistical Association pp.
1–35, URL https://doi.org/10.1080/01621459.2020.1813587 (2020).

228

https://doi.org/10.2147/ppa.s162206
https://doi.org/10.2147/ppa.s162206
https://doi.org/10.1080/13803395.2018.1446513
https://doi.org/10.1177/014662169501900109
https://doi.org/10.1177/014662169501900109
https://doi.org/10.1086/696590
https://doi.org/10.1080/01621459.2020.1813587


Murray, J. S., D. B. Dunson, L. Carin and J. E. Lucas, “Bayesian Gaussian copula
factor models for mixed data”, Journal of the American Statistical Association 108,
502, 656–665, URL https://doi.org/10.1080/01621459.2012.762328 (2013).

Nasreddine, Z. S., N. A. Phillips, V. Bédirian, S. Charbonneau, V. Whitehead,
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correlates of spelling difficulties in Alzheimer’s disease”, Neuropsychologia 65, 12–
17 (2014).

Rogers, W. H. and T. J. Wagner, “A finite sample distribution-free performance
bound for local discrimination rules”, The Annals of Statistics pp. 506–514 (1978).

Rudner, L. M., “Demystifying the GMAT: Computer adaptive testing”, Graduate
Management Admission Council: Deans Digest (2010).
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CHANGING THE ACTION SPACE
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In Chapter 2 we present one method for populating the action space with a single
adaptive test of length m. First, we calibrate a regression tree T ∗m to synthetic data
sampled from the posterior predictive distribution, using the maxIPP algorithm with
maxIPP = m. Then we choose a threshold which is optimized relative to T ∗m. This
is only one possible heuristic for obtaining a tree-based adaptive test with at most
m questions. We can change the tree-growing algorithm, the data the algorithm
is applied to, the way the threshold is chosen; or, we can calibrate a classification
tree directly instead of using a two-stage regression tree + cutoff approach. Here we
present results for several such alternatives.

First, we obtain different adaptive tests varying the parameters above, using the
entire IMC data set. We compare two stopping criteria for growing the regression
tree: 1) growing to a maximum depth; 2) growing very deep using maxIPP then
pruning back (proposed method, described in section 2.2.1). We furthermore compare
these tree-growing algorithms applied to synthetic data generated via two different
processes:

(1) Item responses generated via local perturbations (“Perturb”) and
“at-risk” probabilities obtained using a Random Forest model (“RF”),
as in Gibbons et al. (2013).

(2) Item responses sampled from a Gaussian copula factor model (“GCFM”)
and “at-risk” probabilities obtained using a logistic Accelerated Bayesian
Additive Regression Trees (“XBART”) model. This is our proposed
method, described in Chapter 2, with data notated {x̃k, Ē(Ỹ | x̃k)},
1 ≤ k ≤M .

For each of these two regression trees, we obtain an optimal cutoff using data
{x̃k, ỹk}Mk=1.

We also consider the simpler approach of calibrating a classification tree (via
maximum depth) that predicts “at-risk” status directly, rather than the regression
tree + cutoff approach. We calibrate three classification trees using the following
synthetic datasets:

(1) Item responses generated via local perturbations (“Perturb”) and
risk classes (“at-risk” = 1, “not-at-risk” = 0) obtained using RF.
This data uses the same item responses and the same fitted model
as above, but extracting class predictions rather than probability of
being in the “at-risk” class.

(2) Synthetic item responses and classes {x̃k, ỹk}, 1 ≤ k ≤M .

(3) Synthetic item responses and utility-based synthetic classes {x̃k, γ∗k},
1 ≤ k ≤M , described below.

A reviewer suggested classification tree method (3). Unlike the first two synthetic
datasets, which do not incorporate the utility function at all, this method still approx-
imately maximizes the utility function (subject to the number of items constraint),
and allows for fine-tuning w based on desired levels of sensitivity and specificity.
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The synthetic class outcomes γ∗k are defined as:

γ∗k = γ(x̃k) =

{
1 if Ē(Ỹ | x̃k) ≥ U0

U0+U1

0 otherwise
,

where U0 and U1 are defined in section 2.3.2. If one was not required to use a decision
tree for classifying participants as “at-risk” or “not-at-risk”, this class assignment
would maximize the expected posterior utility point-wise. Thus, a classification tree
calibrated to this third synthetic dataset will approximately optimize the expected
utility function.

In summary, the settings compared for different adaptive tests are:

(1) Regression Tree + Cutoff Methods

(a) Stopping criterion:

• maxIPP & pruning (maxIPP)

• maximum depth (maxDepth)

(b) Data for calibrating (item responses + predicted probabilities):

• local perturbations + Random Forest (Perturb + RF)

• Gaussian copula factor model + accelerated Bayesian addi-
tive regression trees (GCFM + XBART)

(2) Classification Tree Method

(a) Data for calibrating (item responses + predicted classes):

• Perturb + RF

• GCFM + XBART

• GCFM + utility-based outcomes (GCFM + Utility)

In total this leaves four regression tree methods and three classification tree meth-
ods. For γ being each of the seven methods, we computed the expected utility
draw EUθ(j)(γ) over the jth sample population {x̃ij, ỹij}Ni=1 using Eqn (4). We sim-
ilarly computed the jth draw of expected utility of the non-shortened assessment
γ∗(·) = ThrC∗(Ē(Ỹ | ·)), and the difference between the two expected utilities is
∆θ(j),m.

Figure B.1 shows the boxplots representing the distribution of ∆θ,m for each of
these seven methods, for a utility function weight of w = 0.5. The maxIPP/maximum
depth criteria are grouped as “Number of Items”.

First, we emphasize that Figure B.1 is not intended to demonstrate the ultimate
superiority of any method, but rather to assess which method best approximates our
implementation of an optimal (in terms of expected utility) screening instrument that
uses all items. We make a direct comparison of these methods on out-of-sample data
shortly.

The most striking result in Figure B.1 is the superiority of the utility-based meth-
ods (all 4 regression-based methods, and the utility-based classification method) at
reproducing the utility of the full-item instrument. This is unsurprising because the
other two classification methods were not created with the utility function in mind;
they were simply calibrated to synthetic data obtained from models fit to the IMC
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Figure B.1: Utility difference plots when we change the way of populating the action
space.

data. The IMC data is highly imbalanced, so these two classification trees tend
to predict almost all youth to be “not-at-risk”, and they have low expected utility
compared to the non-sparse action.

The maxIPP and maximum depth stopping criteria produce similar results. We
expect there to be a greater difference using maxIPP for an application in which mul-
tiple strata of the same question lead to to substantially different outcomes, whereas
in this particular application, we feel that differences in item responses are mainly
important in the “high-low” sense. However, the maxIPP process seems to do at least
as well as maximum depth.

We also derived out of sample sensitivity and specificity for all 7 of these methods
in order to do a fair comparison between them. The results are shown in the tables,
at the end of this Appendix, one table per utility function (parameterized by w).

Sensitivity is quite poor for the non-utility based classification methods, presum-
ably because the IMC data is highly imbalanced. As a consequence, synthetic data
used from models fitted to this imbalanced data also have very few “at-risk” predic-
tions, and so these classification trees in turn make very few “at-risk” predictions.
We note that the method Classification – maxDepth – Perturb + RF was the method
used for designing the tree-based adaptive tests in Gibbons et al. (2016), according
to our personal communication with the authors (Gibbons and Wang (2019)). While
their method seems to work well for problems such as screening for Major Depres-
sive Disorder, in our application, which has extremely imbalanced class outcomes, it
performs quite poorly.

These results highlight the benefit of optimizing the adaptive test to the utility
function, either using a regression tree and a separately optimized cutoff, or using a
classification tree calibrated to utility-based class labels. In both of these methods, we
are able to make finer adjustments to the screening procedure and balance sensitivity
and specificity to be in line with desired ranges for a particular group.

For all of the utility-based methods (all regression methods and the utility-based
cutoff method), increasing w improves the sensitivity and decreases the specificity,
as expected. The regression methods using GCFM + XBART and the utility based
classification methods are two different ways of obtaining an adaptive test that ap-
proximates the same utility function using the same fitted models, the only difference
being whether the utility is optimized point-wise or globally.

We see three advantages of our proposed two-step (global optimization) method:

(1) We believe the two-step formulation is more intuitive, because the
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connection to sensitivity and specificity in the quantity used to op-
timize the threshold (eq. (2.4) in Chapter 2) is more direct.

(2) The two-step process allows one to visualize the impact of the weight
w via ROC curves, as in Figure fig. 2.6. Since the predicted proba-
bilities do not change, and the utility function is optimized via the
threshold function ThrCT , one can plot a ROC curve of the predicted
probabilities. This allows for directly see how changing w results in
different thresholds and corresponding Sensitivity and Specificity.

(3) In terms of practical implementation, it is much more efficient to
fit only one regression tree and then separately optimize the thresh-
old for many values of w, compared to fitting a new classification
tree for every new value of w one would like to examine. Since our
MCMC sample contains 1 million synthetic data, this is actually a
substantial computational speedup when many values of w are under
consideration.
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# Items Tree Type Criterion w Calibration Data Sens Spec
2 Classification maxDepth - Perturb + RF 0.007 1.000
2 Classification maxDepth - GCFM + XBART 0.000 1.000
3 Classification maxDepth - Perturb + RF 0.007 1.000
3 Classification maxDepth - GCFM + XBART 0.000 1.000
4 Classification maxDepth - Perturb + RF 0.014 1.000
4 Classification maxDepth - GCFM + XBART 0.000 1.000
5 Classification maxDepth - Perturb + RF 0.014 0.999
5 Classification maxDepth - GCFM + XBART 0.000 1.000
6 Classification maxDepth - Perturb + RF 0.028 0.997
6 Classification maxDepth - GCFM + XBART 0.000 1.000
7 Classification maxDepth - Perturb + RF 0.021 0.997
7 Classification maxDepth - GCFM + XBART 0.000 1.000
8 Classification maxDepth - Perturb + RF 0.028 0.997
8 Classification maxDepth - GCFM + XBART 0.000 0.999
9 Classification maxDepth - Perturb + RF 0.021 0.997
9 Classification maxDepth - GCFM + XBART 0.000 0.999
10 Classification maxDepth - Perturb + RF 0.028 0.995
10 Classification maxDepth - GCFM + XBART 0.042 0.994
11 Classification maxDepth - Perturb + RF 0.021 0.994
11 Classification maxDepth - GCFM + XBART 0.049 0.992
12 Classification maxDepth - Perturb + RF 0.021 0.995
12 Classification maxDepth - GCFM + XBART 0.062 0.980
13 Classification maxDepth - Perturb + RF 0.028 0.994
13 Classification maxDepth - GCFM + XBART 0.097 0.976
14 Classification maxDepth - Perturb + RF 0.035 0.994
14 Classification maxDepth - GCFM + XBART 0.132 0.967
15 Classification maxDepth - Perturb + RF 0.035 0.992
15 Classification maxDepth - GCFM + XBART 0.160 0.955

# Items Tree Type Criterion w Calibration Data Sens Spec
2 Regression + Cutoff maxIPP 0.4 Perturb + RF 0.319 0.908
2 Regression + Cutoff maxDepth 0.4 Perturb + RF 0.319 0.908
2 Regression + Cutoff maxIPP 0.4 GCFM + XBART 0.340 0.857
2 Regression + Cutoff maxDepth 0.4 GCFM + XBART 0.167 0.940
2 Classification maxDepth 0.4 GCFM + Utility 0.167 0.940
3 Regression + Cutoff maxIPP 0.4 Perturb + RF 0.306 0.907
3 Regression + Cutoff maxDepth 0.4 Perturb + RF 0.389 0.885
3 Regression + Cutoff maxIPP 0.4 GCFM + XBART 0.396 0.841
3 Regression + Cutoff maxDepth 0.4 GCFM + XBART 0.312 0.891
3 Classification maxDepth 0.4 GCFM + Utility 0.326 0.879
4 Regression + Cutoff maxIPP 0.4 Perturb + RF 0.444 0.848
4 Regression + Cutoff maxDepth 0.4 Perturb + RF 0.444 0.848
4 Regression + Cutoff maxIPP 0.4 GCFM + XBART 0.424 0.841
4 Regression + Cutoff maxDepth 0.4 GCFM + XBART 0.354 0.872
4 Classification maxDepth 0.4 GCFM + Utility 0.354 0.860
5 Regression + Cutoff maxIPP 0.4 Perturb + RF 0.438 0.866
5 Regression + Cutoff maxDepth 0.4 Perturb + RF 0.382 0.888
5 Regression + Cutoff maxIPP 0.4 GCFM + XBART 0.465 0.834
5 Regression + Cutoff maxDepth 0.4 GCFM + XBART 0.438 0.833
5 Classification maxDepth 0.4 GCFM + Utility 0.417 0.861
6 Regression + Cutoff maxIPP 0.4 Perturb + RF 0.514 0.859
6 Regression + Cutoff maxDepth 0.4 Perturb + RF 0.472 0.875
6 Regression + Cutoff maxIPP 0.4 GCFM + XBART 0.507 0.816
6 Regression + Cutoff maxDepth 0.4 GCFM + XBART 0.535 0.797
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6 Classification maxDepth 0.4 GCFM + Utility 0.438 0.853
7 Regression + Cutoff maxIPP 0.4 Perturb + RF 0.562 0.852
7 Regression + Cutoff maxDepth 0.4 Perturb + RF 0.521 0.865
7 Regression + Cutoff maxIPP 0.4 GCFM + XBART 0.500 0.823
7 Regression + Cutoff maxDepth 0.4 GCFM + XBART 0.486 0.826
7 Classification maxDepth 0.4 GCFM + Utility 0.500 0.835
8 Regression + Cutoff maxIPP 0.4 Perturb + RF 0.500 0.858
8 Regression + Cutoff maxDepth 0.4 Perturb + RF 0.451 0.869
8 Regression + Cutoff maxIPP 0.4 GCFM + XBART 0.569 0.780
8 Regression + Cutoff maxDepth 0.4 GCFM + XBART 0.535 0.796
8 Classification maxDepth 0.4 GCFM + Utility 0.507 0.834
9 Regression + Cutoff maxIPP 0.4 Perturb + RF 0.493 0.865
9 Regression + Cutoff maxDepth 0.4 Perturb + RF 0.479 0.866
9 Regression + Cutoff maxIPP 0.4 GCFM + XBART 0.514 0.812
9 Regression + Cutoff maxDepth 0.4 GCFM + XBART 0.486 0.827
9 Classification maxDepth 0.4 GCFM + Utility 0.507 0.828
10 Regression + Cutoff maxIPP 0.4 Perturb + RF 0.507 0.854
10 Regression + Cutoff maxDepth 0.4 Perturb + RF 0.521 0.850
10 Regression + Cutoff maxIPP 0.4 GCFM + XBART 0.528 0.799
10 Regression + Cutoff maxDepth 0.4 GCFM + XBART 0.528 0.790
10 Classification maxDepth 0.4 GCFM + Utility 0.535 0.828
11 Regression + Cutoff maxIPP 0.4 Perturb + RF 0.479 0.864
11 Regression + Cutoff maxDepth 0.4 Perturb + RF 0.479 0.861
11 Regression + Cutoff maxIPP 0.4 GCFM + XBART 0.528 0.803
11 Regression + Cutoff maxDepth 0.4 GCFM + XBART 0.549 0.795
11 Classification maxDepth 0.4 GCFM + Utility 0.535 0.824
12 Regression + Cutoff maxIPP 0.4 Perturb + RF 0.514 0.846
12 Regression + Cutoff maxDepth 0.4 Perturb + RF 0.521 0.841
12 Regression + Cutoff maxIPP 0.4 GCFM + XBART 0.528 0.803
12 Regression + Cutoff maxDepth 0.4 GCFM + XBART 0.521 0.803
12 Classification maxDepth 0.4 GCFM + Utility 0.521 0.815
13 Regression + Cutoff maxIPP 0.4 Perturb + RF 0.514 0.846
13 Regression + Cutoff maxDepth 0.4 Perturb + RF 0.556 0.821
13 Regression + Cutoff maxIPP 0.4 GCFM + XBART 0.528 0.803
13 Regression + Cutoff maxDepth 0.4 GCFM + XBART 0.528 0.807
13 Classification maxDepth 0.4 GCFM + Utility 0.521 0.835
14 Regression + Cutoff maxIPP 0.4 Perturb + RF 0.514 0.846
14 Regression + Cutoff maxDepth 0.4 Perturb + RF 0.549 0.819
14 Regression + Cutoff maxIPP 0.4 GCFM + XBART 0.528 0.803
14 Regression + Cutoff maxDepth 0.4 GCFM + XBART 0.542 0.785
14 Classification maxDepth 0.4 GCFM + Utility 0.549 0.823
15 Regression + Cutoff maxIPP 0.4 Perturb + RF 0.514 0.846
15 Regression + Cutoff maxDepth 0.4 Perturb + RF 0.479 0.823
15 Regression + Cutoff maxIPP 0.4 GCFM + XBART 0.528 0.803
15 Regression + Cutoff maxDepth 0.4 GCFM + XBART 0.535 0.795
15 Classification maxDepth 0.4 GCFM + Utility 0.562 0.822

# Items Tree Type Criterion w Calibration Data Sens Spec
2 Regression + Cutoff maxIPP 0.5 Perturb + RF 0.583 0.748
2 Regression + Cutoff maxDepth 0.5 Perturb + RF 0.868 0.465
2 Regression + Cutoff maxIPP 0.5 GCFM + XBART 0.750 0.534
2 Regression + Cutoff maxDepth 0.5 GCFM + XBART 0.840 0.425
2 Classification maxDepth 0.5 GCFM + Utility 0.549 0.722
3 Regression + Cutoff maxIPP 0.5 Perturb + RF 0.750 0.606
3 Regression + Cutoff maxDepth 0.5 Perturb + RF 0.688 0.658
3 Regression + Cutoff maxIPP 0.5 GCFM + XBART 0.778 0.522
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3 Regression + Cutoff maxDepth 0.5 GCFM + XBART 0.660 0.659
3 Classification maxDepth 0.5 GCFM + Utility 0.583 0.691
4 Regression + Cutoff maxIPP 0.5 Perturb + RF 0.792 0.627
4 Regression + Cutoff maxDepth 0.5 Perturb + RF 0.750 0.671
4 Regression + Cutoff maxIPP 0.5 GCFM + XBART 0.708 0.652
4 Regression + Cutoff maxDepth 0.5 GCFM + XBART 0.757 0.584
4 Classification maxDepth 0.5 GCFM + Utility 0.660 0.677
5 Regression + Cutoff maxIPP 0.5 Perturb + RF 0.764 0.614
5 Regression + Cutoff maxDepth 0.5 Perturb + RF 0.806 0.566
5 Regression + Cutoff maxIPP 0.5 GCFM + XBART 0.743 0.618
5 Regression + Cutoff maxDepth 0.5 GCFM + XBART 0.750 0.598
5 Classification maxDepth 0.5 GCFM + Utility 0.743 0.593
6 Regression + Cutoff maxIPP 0.5 Perturb + RF 0.750 0.661
6 Regression + Cutoff maxDepth 0.5 Perturb + RF 0.799 0.601
6 Regression + Cutoff maxIPP 0.5 GCFM + XBART 0.771 0.587
6 Regression + Cutoff maxDepth 0.5 GCFM + XBART 0.764 0.573
6 Classification maxDepth 0.5 GCFM + Utility 0.694 0.633
7 Regression + Cutoff maxIPP 0.5 Perturb + RF 0.840 0.587
7 Regression + Cutoff maxDepth 0.5 Perturb + RF 0.785 0.668
7 Regression + Cutoff maxIPP 0.5 GCFM + XBART 0.729 0.612
7 Regression + Cutoff maxDepth 0.5 GCFM + XBART 0.715 0.640
7 Classification maxDepth 0.5 GCFM + Utility 0.708 0.641
8 Regression + Cutoff maxIPP 0.5 Perturb + RF 0.799 0.594
8 Regression + Cutoff maxDepth 0.5 Perturb + RF 0.778 0.638
8 Regression + Cutoff maxIPP 0.5 GCFM + XBART 0.743 0.622
8 Regression + Cutoff maxDepth 0.5 GCFM + XBART 0.778 0.566
8 Classification maxDepth 0.5 GCFM + Utility 0.729 0.624
9 Regression + Cutoff maxIPP 0.5 Perturb + RF 0.799 0.581
9 Regression + Cutoff maxDepth 0.5 Perturb + RF 0.792 0.592
9 Regression + Cutoff maxIPP 0.5 GCFM + XBART 0.750 0.609
9 Regression + Cutoff maxDepth 0.5 GCFM + XBART 0.750 0.606
9 Classification maxDepth 0.5 GCFM + Utility 0.736 0.634
10 Regression + Cutoff maxIPP 0.5 Perturb + RF 0.806 0.571
10 Regression + Cutoff maxDepth 0.5 Perturb + RF 0.806 0.577
10 Regression + Cutoff maxIPP 0.5 GCFM + XBART 0.757 0.603
10 Regression + Cutoff maxDepth 0.5 GCFM + XBART 0.750 0.601
10 Classification maxDepth 0.5 GCFM + Utility 0.771 0.621
11 Regression + Cutoff maxIPP 0.5 Perturb + RF 0.847 0.532
11 Regression + Cutoff maxDepth 0.5 Perturb + RF 0.847 0.539
11 Regression + Cutoff maxIPP 0.5 GCFM + XBART 0.757 0.598
11 Regression + Cutoff maxDepth 0.5 GCFM + XBART 0.771 0.608
11 Classification maxDepth 0.5 GCFM + Utility 0.764 0.622
12 Regression + Cutoff maxIPP 0.5 Perturb + RF 0.854 0.523
12 Regression + Cutoff maxDepth 0.5 Perturb + RF 0.819 0.572
12 Regression + Cutoff maxIPP 0.5 GCFM + XBART 0.757 0.600
12 Regression + Cutoff maxDepth 0.5 GCFM + XBART 0.764 0.608
12 Classification maxDepth 0.5 GCFM + Utility 0.757 0.627
13 Regression + Cutoff maxIPP 0.5 Perturb + RF 0.812 0.596
13 Regression + Cutoff maxDepth 0.5 Perturb + RF 0.812 0.616
13 Regression + Cutoff maxIPP 0.5 GCFM + XBART 0.757 0.600
13 Regression + Cutoff maxDepth 0.5 GCFM + XBART 0.778 0.586
13 Classification maxDepth 0.5 GCFM + Utility 0.757 0.641
14 Regression + Cutoff maxIPP 0.5 Perturb + RF 0.868 0.529
14 Regression + Cutoff maxDepth 0.5 Perturb + RF 0.826 0.596
14 Regression + Cutoff maxIPP 0.5 GCFM + XBART 0.757 0.600
14 Regression + Cutoff maxDepth 0.5 GCFM + XBART 0.750 0.598
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14 Classification maxDepth 0.5 GCFM + Utility 0.750 0.635
15 Regression + Cutoff maxIPP 0.5 Perturb + RF 0.868 0.529
15 Regression + Cutoff maxDepth 0.5 Perturb + RF 0.861 0.549
15 Regression + Cutoff maxIPP 0.5 GCFM + XBART 0.757 0.600
15 Regression + Cutoff maxDepth 0.5 GCFM + XBART 0.715 0.612
15 Classification maxDepth 0.5 GCFM + Utility 0.757 0.630

# Items Tree Type Criterion w Calibration Data Sens Spec
2 Regression + Cutoff maxIPP 0.6 Perturb + RF 0.924 0.364
2 Regression + Cutoff maxDepth 0.6 Perturb + RF 1.000 0.000
2 Regression + Cutoff maxIPP 0.6 GCFM + XBART 0.868 0.370
2 Regression + Cutoff maxDepth 0.6 GCFM + XBART 0.840 0.425
2 Classification maxDepth 0.6 GCFM + Utility 0.840 0.443
3 Regression + Cutoff maxIPP 0.6 Perturb + RF 0.938 0.326
3 Regression + Cutoff maxDepth 0.6 Perturb + RF 1.000 0.000
3 Regression + Cutoff maxIPP 0.6 GCFM + XBART 0.882 0.355
3 Regression + Cutoff maxDepth 0.6 GCFM + XBART 0.882 0.355
3 Classification maxDepth 0.6 GCFM + Utility 0.896 0.392
4 Regression + Cutoff maxIPP 0.6 Perturb + RF 0.979 0.250
4 Regression + Cutoff maxDepth 0.6 Perturb + RF 0.972 0.290
4 Regression + Cutoff maxIPP 0.6 GCFM + XBART 0.910 0.323
4 Regression + Cutoff maxDepth 0.6 GCFM + XBART 0.910 0.323
4 Classification maxDepth 0.6 GCFM + Utility 0.854 0.433
5 Regression + Cutoff maxIPP 0.6 Perturb + RF 0.986 0.212
5 Regression + Cutoff maxDepth 0.6 Perturb + RF 0.979 0.268
5 Regression + Cutoff maxIPP 0.6 GCFM + XBART 0.944 0.276
5 Regression + Cutoff maxDepth 0.6 GCFM + XBART 0.910 0.323
5 Classification maxDepth 0.6 GCFM + Utility 0.868 0.444
6 Regression + Cutoff maxIPP 0.6 Perturb + RF 0.986 0.206
6 Regression + Cutoff maxDepth 0.6 Perturb + RF 0.979 0.261
6 Regression + Cutoff maxIPP 0.6 GCFM + XBART 0.931 0.300
6 Regression + Cutoff maxDepth 0.6 GCFM + XBART 0.938 0.310
6 Classification maxDepth 0.6 GCFM + Utility 0.924 0.382
7 Regression + Cutoff maxIPP 0.6 Perturb + RF 0.972 0.266
7 Regression + Cutoff maxDepth 0.6 Perturb + RF 0.979 0.233
7 Regression + Cutoff maxIPP 0.6 GCFM + XBART 0.931 0.353
7 Regression + Cutoff maxDepth 0.6 GCFM + XBART 0.924 0.339
7 Classification maxDepth 0.6 GCFM + Utility 0.896 0.387
8 Regression + Cutoff maxIPP 0.6 Perturb + RF 0.972 0.285
8 Regression + Cutoff maxDepth 0.6 Perturb + RF 0.986 0.213
8 Regression + Cutoff maxIPP 0.6 GCFM + XBART 0.931 0.340
8 Regression + Cutoff maxDepth 0.6 GCFM + XBART 0.917 0.354
8 Classification maxDepth 0.6 GCFM + Utility 0.910 0.399
9 Regression + Cutoff maxIPP 0.6 Perturb + RF 0.972 0.312
9 Regression + Cutoff maxDepth 0.6 Perturb + RF 0.958 0.337
9 Regression + Cutoff maxIPP 0.6 GCFM + XBART 0.924 0.354
9 Regression + Cutoff maxDepth 0.6 GCFM + XBART 0.938 0.352
9 Classification maxDepth 0.6 GCFM + Utility 0.917 0.400
10 Regression + Cutoff maxIPP 0.6 Perturb + RF 0.979 0.278
10 Regression + Cutoff maxDepth 0.6 Perturb + RF 0.979 0.304
10 Regression + Cutoff maxIPP 0.6 GCFM + XBART 0.938 0.348
10 Regression + Cutoff maxDepth 0.6 GCFM + XBART 0.944 0.363
10 Classification maxDepth 0.6 GCFM + Utility 0.938 0.391
11 Regression + Cutoff maxIPP 0.6 Perturb + RF 0.979 0.266
11 Regression + Cutoff maxDepth 0.6 Perturb + RF 0.979 0.280
11 Regression + Cutoff maxIPP 0.6 GCFM + XBART 0.931 0.374
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11 Regression + Cutoff maxDepth 0.6 GCFM + XBART 0.944 0.377
11 Classification maxDepth 0.6 GCFM + Utility 0.889 0.408
12 Regression + Cutoff maxIPP 0.6 Perturb + RF 0.979 0.271
12 Regression + Cutoff maxDepth 0.6 Perturb + RF 0.972 0.292
12 Regression + Cutoff maxIPP 0.6 GCFM + XBART 0.931 0.362
12 Regression + Cutoff maxDepth 0.6 GCFM + XBART 0.944 0.368
12 Classification maxDepth 0.6 GCFM + Utility 0.882 0.410
13 Regression + Cutoff maxIPP 0.6 Perturb + RF 0.986 0.260
13 Regression + Cutoff maxDepth 0.6 Perturb + RF 0.979 0.279
13 Regression + Cutoff maxIPP 0.6 GCFM + XBART 0.931 0.376
13 Regression + Cutoff maxDepth 0.6 GCFM + XBART 0.944 0.337
13 Classification maxDepth 0.6 GCFM + Utility 0.889 0.401
14 Regression + Cutoff maxIPP 0.6 Perturb + RF 0.986 0.262
14 Regression + Cutoff maxDepth 0.6 Perturb + RF 0.951 0.319
14 Regression + Cutoff maxIPP 0.6 GCFM + XBART 0.931 0.372
14 Regression + Cutoff maxDepth 0.6 GCFM + XBART 0.917 0.397
14 Classification maxDepth 0.6 GCFM + Utility 0.917 0.408
15 Regression + Cutoff maxIPP 0.6 Perturb + RF 0.986 0.256
15 Regression + Cutoff maxDepth 0.6 Perturb + RF 0.951 0.300
15 Regression + Cutoff maxIPP 0.6 GCFM + XBART 0.931 0.372
15 Regression + Cutoff maxDepth 0.6 GCFM + XBART 0.931 0.378
15 Classification maxDepth 0.6 GCFM + Utility 0.910 0.410
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