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ABSTRACT

Trajectory forecasting is used in many fields such as vehicle future trajectory predic-

tion, stock market price prediction, human motion prediction and so on. Also, robots

having the capability to reason about human behavior is an important aspect in

human robot interaction. In trajectory prediction with regards to human motion pre-

diction, implicit learning and reproduction of human behavior is the major challenge.

This work tries to compare some of the recent advances taking a phenomenological

approach to trajectory prediction.

The work is expected to mainly target on generating future events or trajecto-

ries based on the previous data observed across many time intervals. In particular,

this work presents and compares machine learning models to generate various human

handwriting trajectories. Although the behavior of every individual is unique, it is

still possible to broadly generalize and learn the underlying human behavior from the

current observations to predict future human writing trajectories. This enables the

machine or the robot to generate future handwriting trajectories given an initial tra-

jectory from the individual thus helping the person to fill up the rest of the letter or

curve. This work tests and compares the performance of Conditional Variational Au-

toencoders and Sinusoidal Representation Network models on handwriting trajectory

prediction and reconstruction.

i



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

CHAPTER Page

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Trajectory Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Machine learning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 Types of Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Multi-layered Perceptron Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Latent Variable Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.2 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.3 Variational Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.4 Conditional Variational Autoencoders . . . . . . . . . . . . . . . . . . . . . 17

3.4 SIREN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 Implicit Neural Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.2 SIREN and Periodic Activation Functions . . . . . . . . . . . . . . . . . 20

3.4.3 SIREN for Trajectory Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 EXPERIMENTS AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 CVAE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.2 Loss function of CVAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

ii

Stamp

Stamp

Stamp



CHAPTER Page

4.1.3 SIREN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.4 Loss function of the SIREN-based model . . . . . . . . . . . . . . . . . . 27

4.2 Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Stock market price Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.2 Sine curve trajectory prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.3 Human Handwriting trajectory prediction . . . . . . . . . . . . . . . . . 32

5 DISCUSSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

iii



LIST OF FIGURES

1.1 General Case of Trajectory Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure Page

2.1 Overview of Covernet Where a Trajectory Set Is Generated and Clas-

sified Over (Phan-Minh et al. (2020)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 TrafficPredict Architecture for a Node in Category Layer(Ma et al.

(2019)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Trajectron++ Model Representation(Salzmann et al. (2020)) . . . . . . . . . . 7

3.1 Schematic Diagram of a Mcculloch-pitts Neuron. The Index of the

Neuron Is I, It Receives Inputs from N Neurons. The Strength of

the Connection from Neuron J to Neuron I Is Denoted by W . The

Threshold Value for Neuron I Is Denoted by . The Index T = 0,1,2,3,...

Labels the Discrete Time Sequence of Computation Steps, and Sgn(B)

Stands for the Signum Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Multi-layered Perceptron Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 A Simple Autoencoder Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 The Graph on the Left Represents a Plot of the Datapoints or Ex-

tracted Features from the Dataset. The Plot on the Right Shows the

2 Principal Component Analysis Axes When the Data Is Tried to Di-

mensionally Reduced to 2 Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 Outline of Conditional Variational Autoencoder . . . . . . . . . . . . . . . . . . . . . . 17

3.6 Outline of an Implicit Neural Representation Network . . . . . . . . . . . . . . . . 19

3.7 Outline of an Implicit Neural Representation Network Architecture

with Periodic Activation Function (Siren) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

iv

Stamp

Stamp

Stamp

Stamp

Stamp



CHAPTER Page

3.8 The Reconstruction of Images, Their Gradients and Their Second Deriva-

tives by Architectures with Different Activation Functions (Sitzmann

et al. (2020)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Generic Overview of Conditional Variational Autoencoder Architecture

Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Generic Overview of Siren Architecture Implementation . . . . . . . . . . . . . . 27

4.3 Nike and American Express Stock Price Prediction . . . . . . . . . . . . . . . . . . . 28

4.4 Bank of America Stock Price Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5 Model Loss Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.6 Sin(t) Curve Trajectory Predictions. The Orange Line Shows the Ac-

tual Trajectory While the Plot in Blue Is the Predicted Trajectory by

Cvae. The Figure on the Left and Right Are Predictions Taking a Kl

Divergence Loss Weightage Of .01 And .1 Respectively . . . . . . . . . . . . . . . 31

4.7 Sin(4t) Curve Trajectory Predictions. The Orange Line Shows the

Actual Trajectory While the Plot in Blue Is the Predicted Trajectory

by Cvae. The Figure on the Left and Right Are Predictions Taking a

Kl Divergence Loss Weightage Of .01 And .1 . . . . . . . . . . . . . . . . . . . . . . . . 31

4.8 Sin(8t) Curve Trajectory Predictions. The Orange Line Shows the

Actual Trajectory While the Plot in Blue Is the Predicted Trajectory

by Cvae. The Figure on the Left and Right Are Predictions Taking a

Kl Divergence Loss Weightage Of .01 And .1 Respectively . . . . . . . . . . . . 31

4.9 Sin(4t) Curve Trajectory Predictions by Cvae When Conditioned on a

Wrong Class of 8 Instead of 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.10 All the Different Letters and Curves in the Lasa Handwriting Dataset . 32

v

Stamp



CHAPTER Page

4.11 C Shape Curve Trajectory Predictions of 2 Different Behaviors on the

Left and Right Respectively.The Blue Curve Is the Predicted Trajec-

tory While the Orange Curve Is the Actual Human Motion Trajectory 34

4.12 L Shape Curve Trajectory Predictions of 2 Different Individual Be-

haviors on the Left and Right Respectively. The Blue Curve Is the

Predicted Trajectory While the Orange Curve Is the Actual Human

Motion Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.13 Z Shape Curve Trajectory Predictions of 2 Different Individual Be-

haviors on the Left and Right Respectively. The Blue Curve Is the

Predicted Trajectory While the Orange Curve Is the Actual Human

Motion Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.14 Depiction of Some Letters in the EMNIST Dataset (Cohen et al. (2017)) 35

4.15 Reconstructed Letters from Sparse Images by Siren-based Model . . . . . . 35

4.16 Predicted Letters from a Different User’s Partially Written Letter Im-

ages by Siren-based Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vi

Stamp



Chapter 1

INTRODUCTION

1.1 Motivation

Artificial Intelligence(AI) is the field or science of exceeding or imitating human

intelligence. It has many applications such as in computer vision, natural language

processing, knowledge reasoning, game playing, knowledge reasoning etc. Some more

visible and tangible applications would be its use in self-driving cars, disease mapping,

automated finance investing, conversational marketing bots, smart assistants and

many more. Machine learning is a specific subset of AI that trains the machine

to learn specific things and in some cases, to learn to learn skills etc. It mainly

includes data handling and building, pattern recognition which allow a machine to

make decisions with minimal human intervention. Robotics is an interdisciplinary

field which involves design, construction and controls of the mechanical components

of the robots to making the robots learn many different skills which humans might

or might not be capable of.

Robots generally have various constraints and thus, whether the job of a person

is to design or to control, it is not a very easy task. This gives impetus for the

development of technology which would take manual design, control and planning out

of the picture and allow the technology and algorithms to automatically perform these

tasks with no human intervention. Also, humans are by nature very erroneous and not

very precise. Humans are also not accurate in performing most of the tasks. These

problems can be overcome by machines or robots which are very good at carrying

out these tasks. Apart from all these obvious human limitations, even the decision
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making capability of humans is highly questionable. There are many cases where

humans make huge blunders ranging from placing some machine part or component

in the wrong place to clicking the wrong button on a control panel or a computer

which makes the person regret their decision later on. This might even cost a lot

of money and time. There might also be small erroneous decisions which a human

might make which does have any effect in the short term but there might be some

significant undesirable changes in the long term. A typical example of this might be

the frequent consumption or intake of addictive substances like alcohol which might

not show its effect in the short term but as the person ages, the effects gradually show

up. This would be very detrimental to the health of the humans.

The above stated points and examples show that humans are by nature very

erroneous and act in a very unoptimized manner. Thus there then arises a need to

develop technology which can handle everything that a general human fails to do

in a satisfactory manner. Even better would be technology which performs better

than humans. This work deals with developing decision making technology category

which helps in predicting human behavior. The inaccuracy of human decision making

might be due the lapse in concentration, loss of memory, laziness or lack of sufficient

intelligence. Sometimes, human minds are not fast enough in computation or they

lack the physical speed which might be considered satisfactory. It is mostly the case

that the notion ‘the faster the better’ is true in the domain of performing physical

tasks by the humans or robots for that matter.

Thus all of this is very crisply and cleanly as stated by the 3 laws of Isaac Asimov

in his novel I, Robot stating:

1. A robot should not injure a human being or, stay put and allow a human being

to be harmed.
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2. A robot should obey all orders given by the human being unless the situation

clashes with the first Law.

3. A robot should protect itself unless the situation is in conflict with the First or

Second Law.

This leads to the formulation of the human robot interaction problem. The above

stated points were one of the earliest formulations of the human robot interaction.

Though the formulation contains only 3 points, it basically sums up all the goals to

be achieved in the field of human robot interaction. This thesis work aims to solve

one such problem where the robot learns an algorithm to predict human handwriting

motions.

1.2 Objectives

The key objective of this work is to generate trajectories of data given a set of

previous observations of the agent’s trajectories. In particular, this work presents a

comparison between 2 machine learning models used for trajectory prediction:

• Conditional Variational Autoencoders

• Sinusoidal neural representations

The performance of both these algorithms is to be analysed to gain a newer and

deeper understanding as to how the latent space and the space of priors for neural

representations work. The amount of sensitivity and accuracy in sampling from these

spaces to generate future trajectories needs to be validated.

1.3 Trajectory Prediction

Trajectory prediction is an important component in most of today’s advancing

fields such as autonomous vehicles, stock market prices, human motion prediction

3



and so on. It mainly involves predicting the next trajectory of the vehicle for the

next few seconds(uptil 5 seconds) in the case of autonomous vehicles.

Figure 1.1: General Case of Trajectory Prediction

Fig. 1.1 gives an idea of what trajectory prediction in any scenario refers to.

There is first an initial state of the agent or the system being referred to. Then,

the measurements of the past positions or the values are used to forecast the future

trajectory indicated by the dotted line.

Also, trajectory prediction models are also highly useful in predicting future tra-

jectories of pedestrians. This involves both short and long term predictions. Whereas

in scenarios such as stock market prices, the prices for the next few days can also

be predicted given the prices on many previous days from the time of prediction.

Developing close to accurate models for stock market price prediction have been tra-

ditionally very difficult to achieve as the stock market prices are often very volatile.

With the state of art machine learning models, it is only possible to accurately predict

the overall trend in the prices in the next many days. Trajectory prediction in general

involves time series models due to the requirement of data from previous time steps

to predict the trajectory in the next time steps.
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Chapter 2

RELATED WORK

There are a lot of domains where trajectory forecasting is highly useful. Some of

the most interesting domains related to robotics are autonomous vehicle trajectory

prediction, future pedestrian motion prediction and human movement and behaviour

trajectory forecasting. Below are some of the popular works related to these fields of

trajectory prediction.

One of the most challenging tasks is to generate suitable trajectories for all the

agents in the traffic in order to make reasonable navigation decisions. This majorly

involves the prediction of the spatial coordinates of the vehicles in the short and long

terms. Different kinds of vehicles have different dynamics and motion primitives.

This affects the trajectory prediction due to their driving styles. There are different

methods and models developed for trajectory prediction. In one of those works, they

frame the problem as a classification problem over many sets of trajectories. These

trajectories are provided to the model to train on.

Figure 2.1: Overview of Covernet Where a Trajectory Set Is Generated and Classi-
fied Over (Phan-Minh et al. (2020))

The model then learns to classify the situation and then learn which trajectory
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the vehicle should take from the already known set of trajectories like in the paper

by Phan-Minh et al. (2020). Fig. 2.1 gives an overview of the Covernet model.

There are also other works which are long short term memory(LSTMs) based

approaches like Ma et al. (2019) where they introduce an algorithm called TrafficPre-

dict. Here, the authors use an LSTM based approach to predict the trajectories of the

traffic where they learn all the instances’ movements and behaviour and then learn

the similarities among the instances to easily categorize and for good prediction. The

model overview for TrafficPredict is shown in Fig. 2.2.

Figure 2.2: TrafficPredict Architecture for a Node in Category Layer(Ma et al.
(2019))

Another one of the more phenomenal works would be Trajectron++ by Salzmann

et al. (2020). In this paper, they present Trajectron++ which is a graph-structured

recurrent model which forecasts the trajectories of some agents like humans taking the

agent dynamics into consideration. This model basically produces control sequences

6



which are true for any kind of agent. These control sequences are then integrated

into the specific agent dynamics for forecasting its trajectory. This is advantageous

when we know the dynamics of the agent perfectly which is true in most cases. Thus,

the neural network does not have to learn the dynamics as well which is the case if

we want to output the position waypoints instead of control sequences. The model

overview is shown in Fig. 2.3.

Figure 2.3: Trajectron++ Model Representation(Salzmann et al. (2020))

There are also other important works in this field like Social LSTMs by Alahi

et al. (2016) and Social Attention by Vemula et al. (2018). In the work by Alahi

et al. (2016), the authors present an LSTM-based model which is used to learn human

movement and predict their future trajectories. They test this model on various other

baseline models like Linear model, collision avoidance, social force model, iterative

gaussian process and LSTM with occupancy maps and show that this model has a

better performance than the other mentioned models.

Multi-modal trajectory prediction is also seen in works by Cui et al. (2019) and

by Dong et al. (2021). In these works, the focus is more on generating a number of

closely feasible trajectories.
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Chapter 3

METHODOLOGY

3.1 Machine learning Methods

Machine learning methods are the most widely used for all kinds of tasks with

which machines can perform certain functions similar to the human brain. In partic-

ular, it is about the learning tasks which the human brain performs. Growing from a

child to an adult, humans always keep learning new concepts, methods and acquire

new skills in the day-to-day life. A step above that would be the humans developing

and improving the ability of abstraction and forming generic correlations and causal-

ity. This helps in the improvement of the generic problem solving ability of humans

also known in colloquial language as intelligence.

Machine learning methods mainly broadly deal with pattern recognition in which

the machines learn to deduct and observe similar patterns in various applications and

problems similar to how humans start learning any new task. In general, when a

human becomes very good at pattern recognition, the person is usually deemed as

an intelligent person. Similarly, artificial intelligence is the intelligence pertaining to

a machine when it becomes very good at pattern recognition. Recent advances have

shown the algorithms to be very good at performing specific learning operations like

classifying data like images, learning the underlying structure in the data and so on.

It is similar to the human brain in the sense that the algorithms are very good at

performing certain tasks which the human brain can perform. The ideal human brain

or a super human brain can be developed when an algorithm can perform all the tasks

which a human brain can achieve. The machine would then have some attributes like

8



it would be very fast, large memory and also good at problem solving than humans.

This is sometimes called as artificial general intelligence. Thus, machine learning is

a powerful way to achieve artificial general intelligence.

3.1.1 Types of Learning Methods

There are different kinds of learning techniques such as supervised learning, un-

supervised learning and semi-supervised learning methods. Starting first with super-

vised learning:

Formulation

Supervised learning is a category of machine learning techniques where a function

f : RN×M −→ RP is learnt to map X values to y in the following equation:

f(X) = y (3.1)

We have some samples of X ∈ RN×M to y ∈ RP mappings and this is called the

dataset which is used to learn the the function. Here, X consists of N input vectors

each of size M while y is a vector of size P . In general, the X values in the dataset

are termed as inputs and the corresponding y values as their labels.

Bias-Variance

Bias indicates how likely the machine learning model is to not predict the output

for particular inputs of X. Whereas variance indicates how likely the model is to not

have a constant prediction value of X when it is trained on different datasets which

are equally good. It is harmful for the model to either have a large bias or large

variance and vice-versa. So, there needs to be a tradeoff between the 2 quantities

while designing supervised learning models.
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Some examples of supervised learning algorithms include Bayesian Networks,

Naive Bayes, Logistic Regression, K-Nearest Neighbours, Decision Trees, Random

Forests, Support Vector Machines and Neural Networks.

Unsupervised learning is a category of machine learning techniques where the

algorithms take data as input and try to find some patterns in the data on their own

to perform specific tasks or to learn some representations from the given data. Thus,

they majorly differ from supervised learning algorithms in their ability to learn from

unlabelled datasets.

One of the classic examples would be the clustering problem where the algorithm

needs to learn to cluster the data based on the specific patterns it observes in the

given data on its own. This includes different variety of clustering problems such as

k-means, DBSCAN, mixture models and so on. Other algorithms such as anomaly

detection, generative adversarial networks (GANs), self-organizing maps also belong

to this class of learning algorithms since they do not have any target labels or values

associated with the input data, but rather analyze the changes and patterns in the

data itself. Dimensionality reduction algorithms also fall under this category. Some

of them are Non-negative matrix factorization (NMF), Linear discriminant analysis

(LDA), Generalized discriminant analysis (GDA), t-distributed stochastic neighbor

embedding (t-SNE), Uniform manifold approximation and projection (UMAP), Prin-

cipal Component Analysis (PCA), Autoencoder models and many more.

One of the techniques used for trajectory prediction in this work is based on

autoencoders and conditional variational autoencoders which can also be used as a

dimensionality reduction technique. In this work, it is used to encode the richer and

the main behavioral representations from data of quite large dimensions.

Sometimes, it becomes difficult to get labelled data and it is not feasible to use

supervised learning in these scenarios. At the same time, it might not be possible
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to train the algorithm on unlabelled data. So, there will only be some labelled data

points while others would be unlabelled. In this case, semi-supervised learning is used

to learn from the given data and labels. One of the main reasons this problem occurs

is because there is a huge amount of data to be annotated and labelled which is not

manually possible. There are some cases where the human may not even know how

to label some of the data.

These methods can either be used to find the labels of the unlabelled data or map

the whole input domain to output space. They are called transductive and inductive

learning respectively. So, semi-supervised learning helps to deal with these scenarios.

Some of the methods belonging to this class of learning algorithms are Generative

Models, Low-density separation, Heuristic approaches and Laplacian regularization.

3.2 Multi-layered Perceptron Model

There is a linear regression model in which a linear curve is fitted to the data points

in a single or multi-dimensional space. Whereas in logistic regression, we introduce

non-linearity factor which gives the algorithm more flexibility.

Figure 3.1: Schematic Diagram of a Mcculloch-pitts Neuron. The Index of the
Neuron Is I, It Receives Inputs from N Neurons. The Strength of the Connection
from Neuron J to Neuron I Is Denoted by W . The Threshold Value for Neuron I
Is Denoted by . The Index T = 0,1,2,3,... Labels the Discrete Time Sequence of
Computation Steps, and Sgn(B) Stands for the Signum Function

A perceptron basically does logistic regression. It is a function which takes in one
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or more inputs, then takes the sum of all the outputs after multiplying them with

some weights. Finally, this is passed through an activation function like sigmoid,

“rectified linear unit (ReLu)” and so on to gain the advantage of non-linearity after

adding the bias or the threshold term to it. The resulting value is the output of the

perceptron. This is shown in Fig. 3.1.

Figure 3.2: Multi-layered Perceptron Model

Also, the perceptrons can be stacked up and the weights can be interlinked between

them to form a more complex function. This is called a “multilayered perceptron

(MLP)”. This model is used because in most of the real-world scenarios, a complex

function is required to perform a task or fit some data. Fig. 3.2 shows an outline of an

MLP. An MLP contains an input layer followed by some hidden layers of varying or the

same dimensions. These hidden layers are finally followed by an output layer. Each

of the neurons in the hidden layers may have different activation functionsaccording

to the desired non-linearity at these layers.
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3.3 Latent Variable Modeling

3.3.1 Introduction

Latent variable models map a given set of observations or data to the variables

in the latent space. This latent space is rich in the information about the observed

data and they are very good at encoding the patterns, features and attributes of

data. Some of the examples include gaussian mixture models and autoencoders. In

this thesis, one of the types of variational autoencoders is used to perform trajectory

prediction. They are called conditional variational autoencoders and they are very

good at storing latent data in a sophisticated manner.

3.3.2 Autoencoders

An autoencoder is usually a neural network that tries to learn to copy its input

and produce an output. It contains two components: encoder which encodes the

input data and the decoder tries to decode this encoded representation to produce

meaningful results. This is the main idea which is to stack autoencoders and then

greedily train it. Autoencoders are used in various fields and has many applications

like dimensionality reduction, information retrieval, data compression, clustering and

generating new examples.

Figure 3.3: A Simple Autoencoder Layout

Conditional variational autoencoder is a special kind of autoencoder and it was

used as one of the models for trajectory forecasting. Conditional variational autoen-
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coders are the one of the best models for reconstruction and data generation. The

prediction of trajectory in the various models as shown in the results section show

that the trained model has a decent accuracy.

Autoencoders try to reconstruct input data using an unsupervised learning tech-

nique. They compress the input data to learn the underlying representation of the

data and then try transform the data back to the input data. The component which

tries to compress the data is an encoder and the one which tries to reconstruct data

from the compressed representation is a decoder. This is basically identity mapping

with constraints which learns the compressed data representation.

We can extend it to a many layered neural networks acting as the encoders and

decoders. A simple autoencoder model outline can be seen in Fig. 3.3. The loss

function over which optimization takes place includes the reconstruction loss term as

well as a regularizer term to avoid overfitting. Though autoencoders might work well

to just reconstruct input, they do not perform well as a generative model. This is

because a random input to the decoder does not produce good output. This is mainly

because the new input might be very far from the trained inputs of the decoder.

Figure 3.4: The Graph on the Left Represents a Plot of the Datapoints or Extracted
Features from the Dataset. The Plot on the Right Shows the 2 Principal Component
Analysis Axes When the Data Is Tried to Dimensionally Reduced to 2 Dimensions.

Autoencoders are in one way similar to Principal Component Analysis(PCA) be-

cause they can be seen as an efficient dimensionality reduction technique. This is
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because encoder basically reduces the dimensionality of the input data in a meaning-

ful way and store important information so that the decoder can then interpret this

information and increase the dimensionality of the encoded information. Thus, it is

very necessary that the encoder model is chosen very well since it needs to encode

only rich and useful information from the input which indirectly also depends on the

encoder model choice. This thereby leads to solving many problems in the domain of

data compression where data loss is one of the most important factors. Since PCA

is also a data compression technique for low dimensional representation of data, it

is very similar to an encoder. This is due to the fact that many input features are

correlated and this correlations are learnt by the autoencoder to encode information.

A practical example of an application of dimensionality reduction using PCA is shown

in Fig. 3.4.

3.3.3 Variational Autoencoders

Latent variables in variational autoencoders(VAE) by Kingma and Welling (2013)

are used to describe or represent the data. This makes the model more expressive.

Some of the notations used are X ∈ RN×M which represents data of dimensions M and

N, z ∈ RP×Q which belongs to a lower dimensional space of dimensions P and Q. P (X)

represents probability distribution of data, P (z) indicates probability representation

of latent variable and P (X|z) is the conditional probability distribution given latent

variable.

The goal is to find P(X). Since any distribution can be modelled as a Gaussian

mixture, we marginalize z and try to find P (z) using P (z|X). P (z|X) is inferred using

variational inference where it can be thought of as an optimization problem and model

P (z|X) as a simple gaussian or normal distribution. The loss between Q(z|X) and

P (z|X) is minimized using KL divergence metric i.e., DKL[Q(z|X)||P (z|X)]. Here,
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it is seen that Q(z|X) and P (z|X) are the encoder and decoder respectively. After

applying the Bayes rule and deriving, we get the objective function to be:

logP (X)−DKL[Q(z|X)||P (z|X)]

= E[logP (X|z)]−DKL[Q(z|X)||P (z)]

(3.2)

where Q(z|X) is the model’s predicted latent space distribution and P(z—X) is

the actual latent distribution. E[logP (X|z)] is the expectation of the approximation

of the true latent space distribution.

The latent variable distribution P (z) is modelled as N (0, 1) since it is the easiest

choice. Now, Q(z|X) can be assumed to be Gaussian with parameters µ(X) and∑
(X). Now, the equation 3.2 can be written as follows:

DKL[N (µ(X), σ(X))||N (0, 1)] =

1

2

∑
k

(exp(
∑

(X)) + µ2 − 1 −
∑

(X))

where k is the dimension of the Gaussian.

Reparameterization trick

If z is sampled from the Gaussian parameters which the encoder outputs directly, it

becomes difficult to train the model as the sampling operation does not have gradient.

This poses a problem while executing backpropagation. This is solved by factoring

out the parameters of the latent distribution. ε is sampled from a standard normal

distribution and it can be easily converted to a Gaussian with the mean and variance

which the encoder outputs. We use the fact that any gaussian can be described by

only sampling from a normal distribution. This is one of the key tricks which makes

variational autoencoders work in practice. This reparameterization equation is given

as:
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z = µ(X) +
∑

1
2
(X)ε (3.3)

where ε ∼ N (0, 1)

The data points with the same label are close together in the latent space distribu-

tion. VAEs can be used for data reconstruction and also for generating new samples

by sampling points from the normal distribution.

3.3.4 Conditional Variational Autoencoders

The problem with variational autoencoders is that there is no control over the

data generation process. That is, VAEs cannot explicitly produce data of a par-

ticular label in demand. This is solved with the help of a “conditional variational

autoencoder(CVAE)”. CVAE by Sohn et al. (2015) models the latent variables and

data, conditioned to a random variable which is usually given as an extra input to

the encoder and decoder. The layout of CVAE can be seen in Fig. 3.5. Some of

the works using CVAE in trajectory prediction are by Rhinehart et al. (2019) and

Ivanovic and Pavone (2019).

Figure 3.5: Outline of Conditional Variational Autoencoder

In VAE, the encoder does not take the different type of X into account. Thus,

it will not be able to generate specific data. Usually, while executing CVAEs, we

condition the latent variables and data on the label of X. That is, we also give the

label of X as an input to both the encoder and decoder. Now, if the variable on
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which the data is conditioned on is c, the encoder and decoder become Q(z|X, c) and

P (X|z, c) respectively. Thus, the new objective function is given as:

logP (X|c)−DKL[Q(z|X, c)||P (z|X, c)]

= E[logP (X|z, c)]−DKL[Q(z|X, c)||P (z|c)]
(3.4)

This implies that there is a separate P(z) for each value of c. Thus, even if we

input the same point from the standard normal distribution of the data in the latent

space, under different labels, it will produce different outputs.

Since each datapoint under a specific label has its own distribution, it is very easy

to sample unlike VAE, where all the datapoints of all labels are mixed. Also, the

reconstructions in VAE suffer from edge cases in the latent distribution and may not

result in correct reconstructions.

Another advantage of CVAE is that we can generate new data under our specific

condition given by the label. This grants a lot of control over data generation.

3.4 SIREN

3.4.1 Implicit Neural Representations

Many of the works in machine learning include taking some kind of signal as input

to our model and then learn something about the real world with the help of this

signal. In case of computer vision for instance, one look at signals which are images

and then learn about our 3D world. The way one chooses to represent a signal has

a huge impact on the kinds of models we build to analyze the signal afterwards. It

is worth asking how to represent the signals today or in recent times. Most of the

time, the signals are represented discreetly. For example, images are discrete grids

of pixels, shapes are discrete voxels or meshes and audio waves are represented as

discrete amplitude values.
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Figure 3.6: Outline of an Implicit Neural Representation Network

If the images were not represented as grids of pixels, it is very unlikely that con-

volutional neural networks would still be used today. Still, this is quite an intriguing

question because seeing how the choice of parameterization has impacted the algo-

rithm is worthwile to think about. This way of parameterization into pixels or ampli-

tudes is not obvious whether it is a particularly good or bad way of parameterization.

So, there has been a new kind of representation proposed for 3D shapes and the key

idea here is to encode a 3D shape in the weights of a neural network. In particular,

the 3D shape is represented as a neural network that maps the (x, y, z) coordinate to

the occupancy of the 3D shape at that coordinate or the signed distance of the shape

at that (x, y, z) coordinate. Some of the important benefits to this representation

are:

1. The representation is agnostic to grid resolution or any sampling criterion.

2. Model memory scales only with signal complexity and is independent of the

sampling density.

3. It admits effective learning of priors. This is really a key benefit as can be seen

in Mescheder et al. (2019) where they reconstruct 3D shapes and also used in

the paper by Chen et al. (2018)

Thus, these representations are called implicit neural representations as shown in
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Fig. 3.6. There has also been similar kind of work done by Berg and Nyström (2018).

3.4.2 SIREN and Periodic Activation Functions

There are a few papers which use implicit neural representations to parameterize

simple 3D shapes but fail to parameterize more complex shapes and signals. For

example, a scene such as representing a room is very difficult to model for the pro-

posed neural networks with “multilayered perceptron(MLP)” with ReLu activation

functions. This model fails to encode all the geometry and fine detail in the scene.

It was also shown that the implicit neural representations work only on simple 3D

shapes. So, the next question would be to see if they work on image signals, audio

signals and so on. But it is found that the ReLu MLPs fail to properly parameterize

signals like audio and images.

Also, a lot of natural signals are shown as the solutions to partial differential

equations in the physical world like lightwaves, audiowaves etc. Parameterizing these

natural signals with ReLu MLPs also does not work. Thus, modelling physics in this

world with these kinds of implicit neural representations becomes a challenge. The

reason they do not work is not completely clear and it is currently a hot research

topic. But a few things can still be pointed out as problems with using Relu MLPs:

• The learned function is not shift-invariant. That is the ReLu MLP finds it very

difficult to apply the same function at two or more different (x, y, z) coordinates.

This becomes a big problem if we have signals with their information spread

out over a large domain or the ones which have fine detail information across

the whole domain like an image.

• With regards to physical signals, it turns out that the conventional architectures

fail to parameterize the derivatives of the signals in the physical domain. It can
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be seen intuitively for ReLu MLPs because all functions parameterized by ReLu

MLPs are piecewise linear and this indicates that the first derivative is piecewise

constant and the second derivative would be zero. This would imply that any

signal carrying information in the second derivative cannot be parameterized

by a ReLu MLP like soluitons to the wave equation. It is also the same case

with other non-linearities like the tanh non-linearity which do not parameterize

signals with second derivatives effectively.

Figure 3.7: Outline of an Implicit Neural Representation Network Architecture with
Periodic Activation Function (Siren)

To address the above two issues, a new model called “Sinusoidal Representation

Networks (SIREN)” Sitzmann et al. (2020) is used. It is a multilayered perceptron

network with periodic sine function as their activation function instead of the conven-

tional ReLu, ReLu with positional encoding, tanh etc. ReLu with positional encoding

is used in various recent works including transformers by Vaswani et al. (2017) and

some other works by Bilan and Roth (2018). This is used along with the initialization

scheme to get good results. So, the above two issues are addressed by this architecture

as follows:

• It can be observed that there is a gain of shift-invariance in SIREN which is not

the case with conventional activation functions. This can be seen intuitively as

in if the first layer of the MLP generates the same set of activations for more

than one coordinate, then the rest of the MLP also generates and applies the
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same function at these coordinates. Then, if a single neuron with sine activation

function is considered, it can be seen that it produces the same embedding or

output for many points in its input domain. This helps in gaining some shift

invariance. Thus, it is very easy for this architecture to apply the same function

at different (x, y, z) coordinates.

• The sine activation function also has a very beautiful property which is that the

derivative of the function is cosine or the same periodic sine function with some

shift. This means that the neural network that parameterizes the derivatives of

the input coordinates is also a similar MLP network with sine non-linearities as

activation functions. Thus, the derivatives of the network inherit some of the

properties of the network itself.

The SIREN architecture as shown in Fig. 3.7 can parameterize signals like images,

shapes, audio, video and physical signals along with their dervatives very well. For

example, when it is trained to parameterize an audio signal, the training data would

be the time points and their corresponding amplitudes as their labels. The L2 loss

between the output of the network Φ(t) : RM −→ RN where the function Φ maps

vector coordinates of dimensions M to the distance at those coordinates with a vector

dimension of N. and the actual amplitude values f(t) over all the domain values Ω is

calculated and minimized as shown below:

L =

∫
Ω

||Φ(t)− f(t)||dt (3.5)

The SIREN architecture performs better than other implicit neural representation

networks having different activation functions such as ReLu and ReLu with positional

encoding.
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This can also be shown in images or videos training by mapping (x, y) pixel

coordinates or (x, y, t) pixel coordinates respectively to color values.

Figure 3.8: The Reconstruction of Images, Their Gradients and Their Second
Derivatives by Architectures with Different Activation Functions (Sitzmann et al.
(2020))

But when there is no access to the grayscale or RGB pixel values of the image and

there is only access to the gradient values at each coordinate, reconstruction of the

image in the primal domain can be achieved by supervising the derivative of SIREN

with the gradient at that coordinate. We can implement this by understanding the

concept of automatic differentiation in pytorch from Paszke et al. (2017). This helps

train a SIREN function parameterizing the original image. The only difference in the

loss function would be that the loss is calculated over the gradients of the Φ and f

functions. The loss function can be written as:

L =

∫
Ω

||∇Φ(t)−∇f(t)||dt (3.6)

When SIREN is compared with architectures with other non-linear activation

functions, it can be seen from the Fig. 3.8 that SIREN fits the gradient and laplacian
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of the images quite well when compared to other architectures. SIREN can also be

used to learn the Eikonal equation in a similar manner.

3.4.3 SIREN for Trajectory Prediction

Over the long run, it is desirable to learn priors over the space of implicit functions.

In the case of images, in the paper by Sitzmann et al. (2020), it is tested on Celeba

dataset. Here, the input is a set of pixels and an encoder produces a latent code from

them. This latent code is then given as an input to the hypernetwork which then

outputs the parameters of the respective SIREN representation of the image. The

architecture thus learns the prior over the space of functions that parameterize many

images or signals. This allows the reconstruction of images because the priors learnt

by the hypernetwork allow it to generate the parameters of the corresponding SIREN

network.

In the case of trajectory prediction, the input to the hypernetwork would be the

latent vector encoded by the encoder and the hypernetwork would then translate it

into parameters of the SIREN network which models the specific trajectory. The en-

coder takes the past trajectory as the input and produces a latent vector. This process

of generating the parameters of SIREN network can also be viewed as sampling from

a function space where the different functions correspond to different trajectories.

The priors of the trajectories learnt by the hypernetwork play an important role in

generating the implicit representation of the respective trajectory. Now, this network

can be used to predict the values in the whole trajectory.
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Chapter 4

EXPERIMENTS AND RESULTS

4.1 Implementation Details

Conditional variational autoencoder(CVAE) is implemented on various datasets

for trajectory forecasting.

4.1.1 CVAE

Figure 4.1: Generic Overview of Conditional Variational Autoencoder Architecture
Implementation

As shown in the fig. 4.1, the network has 3 parts namely the encoder or Q(z|x, c),

sampling from the gaussian distribution latent space and the decoder or P (y|z, c). The

input to the network would be a set of observations [Ot, Ot−1, ..Ot−4] and conditioned

on a label which might be a number, vector or a one-hot encoded vector. Then the

encoder outputs the mean and variance of the gaussian distribution to be considered

for sampling in the latent space.

Now, the reparameterization trick is used to sample from a normal distribution

using which we can indirectly sample from the gaussian distribution. This is because
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the sampling operation from a gaussian distribution whose parameters are µ and Σ is

not differentiable which would become a problem during backpropagation. Now this

sample is given as input to the decoder which predicts the next set of observations

in the trajectory [Ot+1, Ot+2, ..Ot+5]. It can be seen that a similar kind of approach

taken in the work by Gomez-Gonzalez et al. (2020).

4.1.2 Loss function of CVAE

The loss function contains 2 main terms which are the reconstruction loss and

regularization loss. In the case of trajectory prediction, the reconstruction loss is the

mean squared loss(MSE) between the actual and predicted future trajectories y and ŷ

respectively while the regularization term is the KL-divergence(KL) loss between the

gaussian distribution choice of the encoder N(µ,Σ) and normal distribution N(0, I).

The loss function is as shown below:

L = MSE(y, ŷ) +KL(N(µ,Σ)||N(0, I)) (4.1)

In the equation 4.2, y, ŷ are the actual and predicted values.

4.1.3 SIREN

As shown in 4.2, the model has 3 components namely the convolutional image

encoder, the hypernetwork and the SIREN network. The input to the network is an

incomplete image of a letter in an unknown handwriting. The convolutional image

encoder then encodes the image by propagating the image data through a series of

convolutions and ReLu layers. The output from the encoder is then passed through

a hpernetwork. The hypernetwork is a multi-layered perceptron. This hypernetwork

then outputs the weights of the SIREN network.

The SIREN network can be viewed as the image trajectory function corresponding
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to the input image. Thus, by passing the pixel coordinates to the SIREN network, the

missing component or the incomplete part of the input image can be predicted. An

important component in the training of this network is to generate sparse images from

fully complete ones to train the network. These are generated with by masking the

image with a mask generated by getting all the elements in the mask from bernoulli

distribution. This allows some elements of the mask to be 0 and the others to be 1

which is used to perform element-wise multiplication with the original image to get

the sparse image.

Figure 4.2: Generic Overview of Siren Architecture Implementation

4.1.4 Loss function of the SIREN-based model

The loss function contains 3 main terms namely the mean squared loss between

the ground truth and predicted image pixel vectors, the squared loss of the weights of
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SIREN predicted by the hypernetwork and the latent vector loss or the squared loss

of the latent vector produced by the encoder. They correspond to the 3 components

in the model. The loss function is as shown below:

L = MSE(y, ŷ) + λ1||Wsiren||2F + λ2||Lv||22 (4.2)

In the equation 4.2, y, ŷ are the actual and predicted image pixel vector values and

the first term is the mean squared loss between them while λ1 and λ2 are the weights

of the frobenius and L2 regularization terms. Wsiren and Lv are the weights of the

siren network and the latent vector produced by the image encoder respectively.

4.2 Plots

4.2.1 Stock market price Prediction

Figure 4.3: Nike and American Express Stock Price Prediction

Figure 4.4: Bank of America Stock Price Prediction
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The dataset consisted of features of 500 companies taken from the S&P 500 Index.

There are a total of 7 features representing each datapoint. Some of the features

included are opening stock price, closing stock price, high, low etc. This dataset was

taken from Kaggle. Then the 30 companies which have the Dow Jones Industrial

Average were separated and used to train the CVAE model. The dataset contains 5

years of stock data of the companies from 2013 to 2018.

Figure 4.5: Model Loss Plot

After some feature engineering, some extra features were added and the resulting

dataset was used for training and testing. A total of 11 features were used for training

and testing the model. The encoder and the decoder of the CVAE model consisted

of 3 layers each. The hidden layers had a total of 8 dimensions and the latent space

size was taken as 4. The binary cross-entropy loss and the KL divergence loss added

together made up the loss function which was optimized using the Adam optimizer.

The input to the CVAE included features as well as the label which was the stock

symbol identifier of the company. The data was divided into batches of batch size of

50 and was run for 40 epochs during training.

The train and test loss of the model are plotted and shown in Fig. 4.5. It can

be seen from the figure that there is a fast convergence in the loss values. Fig. 4.4

shows the plots of model reconstructed(predicted) values of bank of america stocks

as well as the true values of its stocks for the last 100 days in the dataset. The values
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plotted are those of closing stock price values. We can see that the predicted curve

is between the control limits of the other curve implying it to be reasonably good.

4.2.2 Sine curve trajectory prediction

The trajectory predictions in the stock market price prediction show that the

model is able to detect the underlying trend in the closing stock price values and the

predicted values is able to increase and decrease with the values. But it is still not

very accurate since the stock market price fluctuations are too volatile and encoding

their behavior is very tough. Hence, the models are tested on simple sine curve

trajectories to see how good the models are in generating trajectories given a set of

previous observations.

Here, the dataset consists of points on the sine wave 3° apart from each other.

Now, the model is trained to predict the values of the next 60° of the sine curve given

the previous 20° values of the curve. The values are taken from a large domain of

sin(t) where t ranges from [-2000,2000]. Also, it is trained on sine curves of multiple

frequencies. In the case of CVAE model, the model is conditioned on the frequency

values. So, the input to the model are the data points concatenated with the fre-

quency of the sine curve. This model performs with a high accuracy as seen from the

Fig. 4.6, 4.7, 4.8.

Also, it is evident from Fig. 4.9 that during inference, if the same model is given

the wrong frequency along with the correct datapoints as the input, it outputs a

completely different trajectory. Since the frequency of sin(8t) is higher than sin(4t),

the generated curve is also of higher frequency. This also shows that the model learns

the underlying patterns associated with the frequencies in the latent space.
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Figure 4.6: Sin(t) Curve Trajectory Predictions. The Orange Line Shows the Actual
Trajectory While the Plot in Blue Is the Predicted Trajectory by Cvae. The Figure
on the Left and Right Are Predictions Taking a Kl Divergence Loss Weightage Of .01
And .1 Respectively

Figure 4.7: Sin(4t) Curve Trajectory Predictions. The Orange Line Shows the
Actual Trajectory While the Plot in Blue Is the Predicted Trajectory by Cvae. The
Figure on the Left and Right Are Predictions Taking a Kl Divergence Loss Weightage
Of .01 And .1

Figure 4.8: Sin(8t) Curve Trajectory Predictions. The Orange Line Shows the
Actual Trajectory While the Plot in Blue Is the Predicted Trajectory by Cvae. The
Figure on the Left and Right Are Predictions Taking a Kl Divergence Loss Weightage
Of .01 And .1 Respectively
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Figure 4.9: Sin(4t) Curve Trajectory Predictions by Cvae When Conditioned on a
Wrong Class of 8 Instead of 4

4.2.3 Human Handwriting trajectory prediction

Finally, the models are tested on a handwriting dataset to learn the human behav-

iors. Using this learned behavior, future trajectories of human handwriting motion

while writing letters are predicted. Since the model would predict the future writing

trajectory, it is possible for the machine or the robot to help the human fill out the

rest of the letter once the individual starts writing by grasping his behavior. Thus,

this becomes a very good goal to achieve in human-robot interaction.

Figure 4.10: All the Different Letters and Curves in the Lasa Handwriting Dataset

The CVAE model is trained on the Lasa handwriting dataset shown in Fig. 4.10.
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This dataset consists of letters and other curves each letter having 7 different behav-

ioral trajectories. Each curve has 1000 datapoints or coordinates and the model is

trained such that it takes 20 points as input to predict the next 60 points or coordi-

nates thus generating a trajectory. The individual corresponding to the letter writing

is encoded in the form of a number and the model is conditioned on the individual by

also giving this number as the input to the model. is The loss function of the CVAE

model then will have 3 terms as shown below:

L = MSEloss+MSEvloss+KLloss (4.3)

The first term MSEloss is the reconstruction loss which is also the mean squared

loss between the predicted and actual future trajectory. The second term MSEvloss

is the mean squared loss between the last point in the trajectory input and the first

point in the output trajectory. This is important because this term ensures the

smooth continuity of the future trajectories without being broken. The third term

KLloss is the regularization loss which ensures a smooth future trajectory.

Fig. 4.11, 4.12, 4.13 show the predictions of the model on different letters on

2 different human behaviors. It can be seen that the model is able to generate

trajectories quite well for different human writings.

The SIREN-based model is trained on the Extended-MNIST(EMNIST) dataset

shown in Fig 4.14. This dataset consists of digits and letters. This was published by

Cohen et al. (2017).

The dataset is derived from the NIST special database 19 as shown in 4.14. It

contains handwriting letters of 3600 people. Handwritten letters were extracted from

the EMNIST dataset which were used to learn the handwriting behaviors of the people

in general helping to understand the underlying human behavior which can then be

used to fill the letters in a way as similar as possible to the individual writing the
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Figure 4.11: C Shape Curve Trajectory Predictions of 2 Different Behaviors on the
Left and Right Respectively.The Blue Curve Is the Predicted Trajectory While the
Orange Curve Is the Actual Human Motion Trajectory

Figure 4.12: L Shape Curve Trajectory Predictions of 2 Different Individual Behav-
iors on the Left and Right Respectively. The Blue Curve Is the Predicted Trajectory
While the Orange Curve Is the Actual Human Motion Trajectory

Figure 4.13: Z Shape Curve Trajectory Predictions of 2 Different Individual Behav-
iors on the Left and Right Respectively. The Blue Curve Is the Predicted Trajectory
While the Orange Curve Is the Actual Human Motion Trajectory

letter.

In Fig. 4.15, the 3 pairs of images are the input images to the model and the
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Figure 4.14: Depiction of Some Letters in the EMNIST Dataset (Cohen et al.
(2017))

Figure 4.15: Reconstructed Letters from Sparse Images by Siren-based Model

model output on the left and right respectively. It can be seen that the sparse images

are reconstructed quite well though not perfectly . The predicted image of K in the

first pair is quite thick in stroke but it still gets the angle, font and a unique style

from the image to its left. The reconstructed H image on the other hand is quite

sharp and the angle also matched the sparse image input. This is also true in the

case of the letter O. This especially highlights the capability of the model to learn

the angle of the letter very accurately.

4.16 contains 5 sets of test cases where partially drawn images of a completely

new individual are given as input and the model tries to predict the letter the person

wants to draw and outputs the supposed complete image of the letter the user wants

to draw. It can be observed that the model is quite good at predicting what the

letter is by understanding the human writing and trying to replicate the style of the
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Figure 4.16: Predicted Letters from a Different User’s Partially Written Letter
Images by Siren-based Model

person drawing it. But from the right most pair of images, it can be seen that the

predictions are strongly dependent upon how long of a future trajectory it can predict.

It is expected that the model would predict and output the letter h or b. Instead, it

just predicted it as the letter I.

It can also be observed that the prediction in the centre could have been the letter

C or the letter O. But the model predicts it as an O. Also, in the last prediction, the

actual letter to be predicted is the lower case letter h. But the model predicts it as

something very unclear between h and the lower case letter b. In general, it is seen

that the models generates outputs which are blurred as can be seen for almost all

the predictions except one or two predictions. Thus, the model predictions are not

very accurate and the sparsity of the input image plays a key role to get accurate

predictions.
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Chapter 5

DISCUSSION AND FUTURE WORK

This work has used and compared the performance of conditional variational au-

toencoders and SIREN models for trajectory prediction and reconstruction. For this,

human hand writing motion trajectories are generated. In general, in real-life scenar-

ios, people write completely or partially in cursive style. But the proposed models

are not yet tested on whole cursive words and sentences which is a potential future

direction in testing and improving the models. This would also help in knowing how

deeply the models can encode the human behavior from the given data.

Another future direction of work would be to modify the SIREN-based model in

which it learns priors in a better and more accurate manner. This can especially

be seen as a way of figuring out a more systematic and maybe even a parametric

approach in controlling how the model samples from the SIREN function space. There

is presently no method interfering or intervening in this process of sampling.

Finally, the current model still has fidelity issues and doesn’t generate accurate

parameters of the SIREN network consistently. One of the ways to improve this

would be researching on the function sampling process as mentioned previously. Al-

ternately, the encoding process could also be improved. Currently, the SIREN-based

model encodes the human writing sample using a convolutional image encoder which

is connected to a hypernetwork followed by a SIREN network. So, the type of en-

coding plays a major role in getting the correct predictions from the model. A more

sophisticated encoder model might be preferred in such cases.
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