
Energy Efficient ASIC/FPGA Neural Network Accelerators

by

Shreyas Kolala Venkataramanaiah

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved February 2022 by the
Graduate Supervisory Committee:

Jae-sun Seo, Chair
Yu Cao

Chaitali Chakrabarti
Deliang Fan

ARIZONA STATE UNIVERSITY

May 2022

ABSTRACT

Convolutional neural networks(CNNs) achieve high accuracy on large datasets but

requires significant computation and storage requirement for training/testing. While

many applications demand low latency and energy-efficient processing of the images,

deploying these complex algorithms on the hardware is a challenging task.

This dissertation first presents a compiler-based CNN training accelerator us-

ing DDR3 and HBM2 memory. An optimized RTL library is implemented to per-

form training-specific tasks and an RTL compiler is developed to generate FPGA-

synthesizable RTL based on user-defined constraints. High Bandwidth Memory(HBM)

provides efficient off-chip communication and improves the training performance.

The impact of HBM2 on CNN training workloads is analyzed and compressively

compared with DDR3. For training ResNet-20/VGG-like CNNs for the CIFAR-10

dataset, the proposed CNN training accelerator on Stratix-10 GX FPGA(DDR3)

demonstrates 479 GOPS performance, and on Stratix-10 MX FPGA(HBM) shows

4.5/9.7 X energy-efficiency improvement compared to Tesla V100 GPU.

Next, the FPGA online learning accelerator is presented. Adopting model seg-

mentation techniques from Progressive Segmented Training(PST), the online learning

accelerator achieved a 4.2X reduction in training latency.

Furthermore, this dissertation presents an 8-bit floating-point (FP8) training

processor which implements (1) Highly parallel tensor cores that maintain high PE

utilization, (2) Hardware-efficient channel gating for dynamic output activation sparsity

(3) Dynamic weight sparsity based on group Lasso (4) Gradient skipping based on FP

prediction error. The 28nm prototype chip demonstrates significant improvements in

FLOPs reduction (7.3×), energy efficiency (16.4 TFLOPS/W), and overall training

latency speedup (4.7×) for both supervised training and self-supervised training tasks.

i

In addition to the training accelerators, this dissertation also presents a CNN

inference accelerator on ASIC(FixyNN) and FPGA(FixyFPGA). FixyNN consists

of a fixed-weight feature extractor that generates ubiquitous CNN features and a

conventional programmable CNN accelerator. In the fixed-weight feature extractor,

the network weights are hard-coded into hardware and used as a fixed operand for

the multiplication. Experimental results demonstrate FixyNN can achieve very high

energy efficiencies up to 26.6 TOPS/W, and FixyFPGA achieves 2.34× higher GOPS

on ImageNet classification.

In summary, this dissertation comprehensively discusses novel architectures of high-

performance and energy-efficient ASIC/FPGA CNN inference/training accelerators.

ii

ACKNOWLEDGMENTS

I owe many thanks to my wife - Rochana Shreyas, my parents - Janaki C.V. and

Venkataramanaiah K.V, and my sister - Shilpa Pradeep, for their unwavering support

and love throughout my Ph.D. education. It is to them I dedicate this dissertation.

I would like to sincerely thank my advisor and committee chair, Dr. Jae-sun

Seo, for developing my research skills, paper writing, time management and provide

valuable guidance and encouragement throughout my Ph.D. studies. I appreciate

his patience and assistance in guiding the research projects and giving his insightful

recommendations and ideas at each step of the work. It has been such a pleasure and

honor to be one of his students and learn from him.

I want to extend my gratitude to Dr. Yu Cao, Dr. Chaitali Chakrabarti, and Dr.

Deliang Fan for their guidance in my research projects, comments and suggestions on

my dissertation and for taking the time to serve as committee members. I thank Dr.

Aravind Dasu and Dr. Eriko Nurvithadi from Intel Corporation, Dr. Paul Whatmough,

Chuteng Zhou and Patrick Hansen from ARM research for their collaborative research

opportunity and invaluable inputs during my summer research internships.

I am indebted to my colleagues, Deepak Vinayak Kadetotad, Shihui Yin, Gaurav

Srivastava, Minkyu Kim, Han-Sok Suh, Jian Meng, Sai Kiran Cherupally, Jyotishman

Saikia, Xiaocong Du, Zheng Li and Amitesh Sridharan for their invaluable contribution,

discussions, and support throughout my study. I must also thank my graduate advisor

Toni Mengert for her active help with all the administrative procedures. Thanks to my

friends, Gunnam Sridhar, Shanshank T.R., Amrut Deshpande, Rahul Rao, Shreyas

Ravishankar, Vinay Suresh, Dheeraj Nag, Nikhitha Prahlad, Nagarjun Aswath, Vivek

Rai and many others, who were also crucial in the successful realization of this

dissertation.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

1.1 CNN Training . 1

1.2 CNN Inference . 4

1.3 Thesis Organization . 6

2 AUTOMATIC COMPILER BASED FPGA ACCELERATOR FOR

CNN TRAINING . 8

2.1 Introduction . 8

2.2 CNN Training Algorithm . 11

2.2.1 Training-Specific Computations During BP and WU 15

2.2.2 CNN Training Using Fixed-Point Precision 16

2.3 CNN Training Hardware . 16

2.3.1 RTL Compiler and Algorithm Mapping 16

2.3.2 Training Accelerator Architecture . 17

2.3.3 MAC Array . 19

2.3.4 Transposable Weight Buffer . 20

2.3.5 Weight Update Unit . 21

2.3.6 Efficient MAC Usage in Weight Update layers 22

2.3.7 Upsampling and Scaling module . 24

2.4 Results . 25

2.4.1 Experimental Setup . 25

iv

CHAPTER Page

2.4.2 Analysis of Results . 26

2.5 Conclusion . 28

3 FPGA-BASED LOW-BATCH TRAINING ACCELERATOR FOR

MODERN CNNS FEATURING HIGH BANDWIDTH MEMORY 29

3.1 Introduction . 29

3.2 Background . 32

3.2.1 Modern CNN Training . 34

3.3 CNN Training Accelerator Design . 36

3.3.1 Overall Architecture and Operation . 36

3.3.2 Dilated Convolutions . 40

3.3.3 HBM2 Configurator Module . 41

3.3.4 HBM2 Integration . 43

3.3.5 Data Scatter/Gather Unit . 44

3.3.6 HBM2 Initialization . 45

3.4 Experimental Results . 46

3.4.1 Experimental Setup . 46

3.4.2 Results and Analysis . 47

3.5 Conclusion . 51

4 EFFICIENT AND MODULARIZED TRAINING ON FPGA FOR

REAL-TIME APPLICATIONS . 52

4.1 Introduction . 52

4.2 System Overview . 55

4.2.1 Demo System . 55

4.2.2 CNN Training Hardware . 56

v

CHAPTER Page

4.2.3 Demonstration Setup . 57

5 FIXYNN: EFFICIENT HARDWARE FOR MOBILE COMPUTER

VISION VIA TRANSFER LEARNING . 58

5.1 Introduction . 58

5.2 Related Work . 61

5.3 Fixed-Weight Feature Extractor Hardware Design 64

5.3.1 Fully-Parallel Fixed-Weight CNN Datapath 66

5.3.2 Fully-Pipelined CNN Buffering . 67

5.3.3 DeepFreeze Tool Flow . 68

5.4 Transfer Learning with a Fixed Feature Extractor 69

5.5 Experimental Methodology . 71

5.5.1 Hardware Modeling . 72

5.5.2 Transfer Learning . 73

5.6 Experimental Results . 75

5.6.1 Hardware . 75

5.6.2 Model Accuracy . 79

5.6.3 Discussion . 81

5.7 Conclusion . 83

6 FIXYFPGA: EFFICIENT FPGA ACCELERATOR FOR DEEP NEU-

RAL NETWORKS WITH HIGH ELEMENT-WISE SPARSITY AND

WITHOUT EXTERNAL MEMORY ACCESS . 84

6.1 Introduction . 85

6.2 Fixed Weight Accelerator Design . 89

6.2.1 Fixed-Weight CNN Datapath. 89

vi

CHAPTER Page

6.2.2 Fully-Pipelined Activation Buffering . 90

6.2.3 Deep Freeze Tool Flow . 91

6.3 Experiment Results . 92

6.4 Experiment Results . 92

6.4.1 Experiment Setup . 93

6.4.2 FPGA Implementation Results and Analysis 94

6.4.2.1 Image classification . 94

6.4.2.2 Comparison to Prior Works . 95

6.5 Conclusion . 97

7 CONCLUSION . 98

REFERENCES . 101

vii

LIST OF TABLES

Table Page

1. CNN Design Variables . 11

2. Evaluation of CNN Training Accelerator on Stratix 10 FPGA , Using 16-

Bit Fixed Point Precision. CIFAR10-1X Refers to Network Structure of

16C3-16C3-P-32C3-32C3-P-64C3-64C3-P-FC, and 2X/4X Designs Refer to

Accordingly Wider CNNs. 25

3. HBM Channel Allocation for Training Parameters. 16 Pseudo Channels of

the HBM2 Is Divided into Four Groups, for Which Input/output Activations

(In./out Act), Local Gradients (LG), Transposable Weights and Weight

Gradients (Wt Gradients) Are Assigned. 42

4. Resource Utilization for Training Tasks of ResNet-20 and VGG-Like CNNs

on Intel Stratix-10 MX and Stratix-10 GX FPGA. 48

5. Published NVDLA Configurations, Reproduced from NVDLA 72

6. Pareto-Optimal FixyNN Configurations for a Given Area Budget, with

Throughput and Efficiency Priority. ‘‘Improvement” Is Relative to an

NVDLA Configuration of Comparable Silicon Area. All Results Shown Are

Modeled in 16nm CMOS Technology. 77

7. Transfer Learning Results for MobileNet-0.25 with Fixed Feature Extractor,

the Model Is Trained on ImageNet and Transferred to Six Different Vision

Tasks. 81

8. Transfer Learning Results for MobileNet-1.0 with Fixed Feature Extractor.

The Model Is Trained on ImageNet and Transferred to CIFAR-100. 81

9. Evaluation of CNN Accelerators on Stratix 10 10M FPGA with Various

CNN Models and Datasets. 92

viii

Table Page

10. Comparison to Different FPGA Accelerators for MobileNets for ImageNet. . 94

ix

LIST OF FIGURES

Figure Page

1. SGD Based CNN Training Dataflow Illustrated for a Simple 2C-2P-1FC

Model. 12

2. Convolution Operations and Changes in Kernels during FP and BP Nof 2,

Nif 3 . 14

3. Proposed RTL Compiler Automatically Generates FPGA Training Acceler-

ator from High-Level CNN Description and FPGA Design Variables. 17

4. Top-Level Block Diagram of CNN Training Accelerator. 18

5. Proposed Transposable Weight Buffer Stores Weights in a Circulant Matrix,

Enabling Both Normal and Transpose Read. 19

6. Systolic MAC Array Is Reused for Training Phases of FP, BP and WU, by

Feeding Different Activations/gradients/kernels. 20

7. Block Diagram of Weight Update Unit. 21

8. Operation of MAC Load Balancing Unit during Convolution Weight Gradi-

ent Computation. 23

9. The Upsampling Unit Receives Input from Index Buffer, Activation Gradient

Buffer and Input Buffer. 24

10. Buffer Usage Breakdown of CIFAR-10 4X CNN. 26

11. Latency Breakdown of CIFAR-10 4X CNN for FP, BP and WU for the Last

Iteration of a Batch. 27

12. ResNet-20 CNN Training Performance for CIFAR-10 Dataset on Tesla V100

GPU for Different Batch Sizes. 31

13. Intel S-10 MX Device Integrated with HBM2 . 33

x

Figure Page

14. Eight Independent Physical Channels (CH) and Corresponding Pseudo

Channels (PC) of HBM2 Connected to CNN Training Accelerator on the

Base Die Using Intel HBM2 Interface FPGA IP. 33

15. Training Dataflow for CNNs Involving Stride-2 Convolutions (C4) and

Shortcut Connections. Ci Is ith Convolution Layer, d Is the Input Pixel

Dilation, and FC Is the Fully-Connected Layer. 34

16. Stride-2 Convolutions in Different Training Phases Are Shown. Blue Cells

Represent Dilated Positions of the Activations (Beige) or Weights (Grey). . . 35

17. Top-Level Block Diagram of the Proposed CNN Training Hardware Accel-

erator Using HBM2 Memory. 37

18. Flexible MAC Unit with a Dilation Control Block for Both Weights and

Activations. The Non-Dilated Weights/activations from the HBM2 Is

Rearranged by the Dilation Control Block and the Data Scatter Unit. 40

19. HBM2 Configurator Module Generates HBM2 Read and Write Configuration

Signals Based on the Layer Type. 41

20. CNN Training Accelerator Integrated with HBM2, following AMBA AXI4

Protocol. 43

21. Training Latency Breakdown of ResNet-20 CNN for (a) S-10 GX Device

with DDR3 and (B) S-10 MX Device with HBM2, Both Running at 185 MHz. 44

22. Training Latency Breakdown of VGG-Like CNN for (a) S-10 GX Device

with DDR3 and (B) S-10 MX Device with HBM2, Both Running at 185 MHz. 44

xi

Figure Page

23. Throughput and Power Comparison of Training Tasks Using Intel I7-9800X

CPU, Tesla V100 GPU, Jetson Nano, S-10 GX FPGA with DDR3, and S-10

MX FPGA with HBM2. (a) Throughput and (B) Power for ResNet-20 CNN

Training and (C) Throughput and (D) Power of VGG-Like CNN Training

Are Shown . 45

24. Energy and Accuracy Comparison of Low-Batch CNN Training on Tesla

V100 GPU, Jetson Nano, S-10 MX and GX Devices. 48

25. The Demonstration System Consists of Intel Straix-10 FPGA Initialized

with Pre-Trainined Model Parameters. The New Data Is Streamed to the

FPGA and Learned Locally in Real-Time Using PST Algorithm. 54

26. FixyNN Proposes to Split a Deep CNN into Two Parts, Which Are Im-

plemented in Hardware Using a (Shared) Fixed-Weight Feature Extractor

(FFE) Hardware Accelerator for the Shared Front-End and a Canonical

Programmable Accelerator for the Task-Specific Back-End. 59

27. A Fully-Parallel Fixed-Weight Native Convolution Hardware Datapath Stage

for a 3× 3 CONV Layer. Other CNN Layer Shapes Are Implemented in

an Identical Fashion, but with Different Dimensions. ‘‘CS” Denotes Carry-

Save Arithmetic Representation. ‘‘BN” Denotes Batch Normalization and

Incorporates the Bias Term. ‘‘Q” Denotes a Programmable Quantization

Function that Converts from 32-Bit to 8-Bit. The Multiplier Symbols

Actually Represent Fixed-Weight Shift-Add Scalers with a Single Input

Operand. Grey Multipliers and Signals Denote Hardware Removed due to

Pruned Zero or Small Non-Zero Weights. 62

xii

Figure Page

28. Overview of the Fully-Pipelined Feature Map Buffering Micro-Architecture

between Consecutive Layers of Fixed-Weight Fully-Parallel CNN Layers.

This Example Illustrates the Case for Two Consecutive CNN Layers with

3×3 Kernels. 64

29. The DeepFreeze Tool Flow Automatically Generates Verilog HDL for Opti-

mized Fixed Feature Extractors from a High-Level Description of the Model

in a Software Framework such as TensorFlow. 68

30. Per-Layer Throughput and Energy Efficiency of a Fixed-Weight Feature

Extractor vs Programmable NVDLA on MobileNet-0.25. 76

31. Cumulative Area of a Fixed Feature Extractor for MobileNets of Varying

Width. 76

32. Performance and Energy Efficiency of Different FixyNN Topologies. Each

Line Corresponds to a Single Size Feature Extractor Being Used with

Different Sized Programmable Accelerators. 77

33. PPA Breakdown of FixyNN for MobileNet-0.25 with 7 Fixed Layers and a

1.00mm2 NVDLA. 80

34. (Top) Categorization of DNN Accelerators on FPGAs. (Bottom) Mapping

the Entire MobileNet-V1 CNN onto FPGA Requires a Number of Techniques

Employed Collectively in This Work. 86

35. Percentage of Non-Zero Weights in Each Layer of 4-Bit MobileNet-V1 0.75

after Element-Wise Pruning (Total Number of Non-Zero Weights Is 161K). . 92

36. For Fully-Parallel Implementation of MobileNet-V1 on FPGA, ALM Usage

Is Reduced by 107× Collectively by Pruning, Low-Precision Quantization,

and Fixed-Weight Scalers. 93

xiii

Figure Page

37. Layer-Wise Timing Analysis of MobileNet-V1 Generated by RTL Simulation

with 224×224×3 Input Image for ImageNet. 94

xiv

Chapter 1

INTRODUCTION

1.1 CNN Training

Convolutional neural networks (CNNs) have seen exceptional success in numerous

cognitive applications such as image classification and object detection. However, the

immense amount of computations and parameters in state-of-the-art CNN algorithms

have posed significant challenges for energy-efficient CNN hardware designs. In

particular, it requires enormous memory and computes resources to perform CNN

training. To support the high computation requirement, training is typically conducted

in datacenters with high-end GPUs. However, the GPUs ’ high power consumption

and low mobility make them non-ideal for on-device learning with a limited power

budget. In addition, although GPUs provide very high throughput on CNN training

with large batch sizes, they suffer from low utilization/throughput for smaller batch

sizes Chundi et al. (2019). Nowadays, training on resource-constrained platforms is also

becoming more crucial for networks that need user’s private data. However, executing

computation-/memory-intensive training tasks on hardware platforms with power

and resource constraints becomes very challenging. Low-batch training significantly

reduces memory requirement and unlocks opportunities for FPGAs, which provide

higher configurability for custom architecture and better energy efficiency than high-

power GPUs. Training on edge FPGA devices also reduces latency overhead (due

to limited data exchange with the cloud server), prevents privacy/security problems,

and is well-suited to exploit new features such as low precision training, sparse weight

1

updates, online learning, etc. They also offer a large volume of off-chip memory

(DRAM) and shorter design time when compared to ASIC designs. However, training

CNNs on FPGAs is a challenging task for two reasons: (1) it demands high memory

bandwidth, which is the primary limiting factor in many accelerators Wissolik et al.

(2017); Deo et al. (2017), (2) complexity arises in implementing a generalized flexible

training accelerator supporting new advancements in CNN training algorithms and (3)

compared to inference, the training phase involves a much higher number of operations

(>3X) with increased complexity Choi et al. (2018).

To aid training on edge FPGA device, ons the algorithm side, researchers have

proposed low batch trainingWu and He (2018); Masters and Luschi (2019); Ioffe (2017),

low-precision training Gupta et al. (2015); Köster et al. (2017), frequency domain

training Ko et al. (2017), and sparse weight update Sun et al. (2017). Techniques such

as sparse weight update introduce irregular parallelism, making it more suitable for

flexible FPGAs compared to GPUs Nurvitadhi et al. (2017). Furthermore, FPGAs are

well-suited for low-precision DNN algorithms as it provides an enormous improvement

in throughput and energy efficiency with low-precision arithmetic Wang et al. (2019).

On the hardware side, training deep neural networks on FPGA platform has not been

investigated comprehensively.

For CNN inference tasks, a number of FPGA accelerators have been proposed

Zhang et al. (2015); Ma et al. (2017); Zhang and Li (2017); Zeng et al. (2018); Yang

et al. (2019). Training accelerators for non-CNN applications were proposed in Zeng

and Prasanna (2020); Liu et al. (2018); Gomperts et al. (2011); Rafael et al. (2005);

Zhou et al. (2020). Only a few prior works presented a CNN training accelerator

supporting all three phases of training Venkataramanaiah et al. (2019a); Nakahara

et al. (2019); Luo et al. (2020), but these works still did not include back-propagation

2

of either residual connections or stride-2 convolutions that are necessary for modern

CNNs. Furthermore, none of the aforementioned FPGA works studied the use of high

bandwidth memory, which is critical for CNN training.

For CNN training, ASIC accelerators are also receiving increasing attention because

of their high energy efficiency and performance. Most of the ASIC DNN accelerators

for edge or mobile applications have supported only DNN inference. Nowadays, on-chip

learning processors have huge research interest in both academia and industry as they

help to personalize the edge devices without sending the data to cloud. This reduces

the privacy/security risks and also reduces the latency by performing computations

on-chip.

The key contributions of this thesis to accelerate CNN training are

• We present a comprehensive investigation of CNN training operations and

challenges in FP, BP and WU stages.

• To the best of our knowledge, we present the first FPGA accelerator for CNN

training that fully utilizes high bandwidth memory (HBM2) and executes end-

to-end CNN training.

• We developed a training-specific RTL module library and an RTL compiler

to automatically implement CNN training accelerator with 16-bit fixed-point

precision and 16-bit floating point precision.

• A configurable FPGA hardware is presented for FP, BP and WU phases of the

entire CNN training process using SGD with momentum.

• Our programmable FPGA accelerator reads high-level descriptions of CNNs

(similar to TensorFlow/PyTorch) including those with residual connections and

stride-2 convolutions, and automatically generates RTL for synthesis.

• We analyze the impact of HBM2 on CNN training workloads, provide a compre-

3

hensive comparison with DDR3, and discuss the strategies to efficiently use the

HBM2 features for enhanced performance.

• Our accelerator using Intel Stratix-10 (S-10) MX FPGA with HBM2 is evaluated

for ResNet-20 and VGG-like CNNs for CIFAR-10 dataset, achieving up to 14X

improvement in energy-efficiency, compared to Tesla V100 GPU.

• Our accelerator using Intel Stratix 10-GX FPGA is evaluated on training three

different CNNs for CIFAR-10 dataset, achieving up to 479 GOPS of throughput.

• We present an 8-bit floating-point (FP8) ASIC training processor which imple-

ments (1) highly parallel tensor cores (fused multiply-add trees) that maintain

high utilization throughout forward propagation (FP), backward propagation

(BP), and weight update (WU) phases of the training process

• The 28nm prototype chip demonstrates large im-provements in FLOPs reduction

(7.3×), energy-efficiency (16.4 TFLOPS/W), and overall training latency speedup

(4.7×), for both supervised training and self-supervised training tasks

1.2 CNN Inference

Over the past few years, convolutional neural network (CNN) approaches have

rapidly displaced traditional hand-crafted feature extractors, such as Haar Viola and

Jones (2004) and HOG Dalal and Triggs (2005). Mobile devices exhibit constraints in

the energy and silicon area that can be allocated to CV tasks, which limits the adoption

of CNNs at high resolution and frame-rate (e.g. 1080p at 30 FPS). This results in

a gap in energy efficiency between the requirements for real-time CV applications

and the power constraints of mobile devices. In this thesis we describe FixyNN

4

and FixyFPGA , a hardware/CNN co-design approach to CNN inference for CV on

mobile devices.

FixyNN divides a CNN into two parts.The front-end layers are implemented

as a heavily optimized fixed-weight feature extractor (FFE) hardware accelerator.

The second part of the network is unique for each dataset, and hence needs to be

implemented on a canonical programmable CNN hardware accelerator Nvidia (2019);

Arm (2019). Following this system architecture, FixyNN diverts a significant portion

of the computational load from the CNN accelerator to the highly-efficient FFE,

enabling much greater performance and energy efficiency.

While FixyNN only employed an FFE for the early layers of CNNs for an ASIC

design, in FixyFPGA, we employ such fixed-weight scalers for the entire CNN layers

for an FPGA design. By mapping hard-coded weights in the ALMs of the FPGA,

we perform CNN inference of all layers in a fully-parallel, fully-pipelined manner.

Contrary to the notion that element-wise sparsity is inefficient for hardware design,

one important advantage of the fixed-weight FPGA design (FixyFPGA) is that,

element-wise pruning of DNNs can be seamlessly integrated with FixyFPGA design

with very high efficiency. This is because pruning out weight elements is equivalent

to removing the corresponding hardware operands without introducing any index

overhead. This enables us to exploit the high amount of sparsity achievable by the

element-wise pruning algorithms.

Overall, the main contributions of this these for CNN inference are:

• A description of a hardware accelerator architecture for the fixed-weight feature

extractor (FFE), including a survey of the potential optimizations.

• An open-source tool-flow DeepFreeze (2018) for automatically generating and

optimizing an FFE hardware accelerator from a TensorFlow description.

5

• Present results that compare FixyNN against a conventional baseline at iso-area.

• We present FixyFPGA, a fully-parallel, fully-pipelined, and pruning-friendly

FPGA-based CNN accelerator design based on fixed hard-coded weights.

• We investigate implementing a number of DNN models with different widths and

compression ratios with the fixed-weight scheme onto a single Intel Stratix-10

FPGA chip without any DRAM access.

• We analyze the algorithm and hardware results of DNNs for both image classifi-

cation tasks (ImageNet, TinyImageNet, and CIFAR-10 datasets).

1.3 Thesis Organization

The outline of this thesis is as follows:

• Chapter 2 presents an automatic compiler-based FPGA accelerator for CNN

training. This chapter explains the RTL compiler design and hardware architec-

ture of FPGA based CNN training accelerator using 16-bit fixed-point precision

and DDR3 as the off-chip memory. The proposed accelerator is implemented

on Intel Stratix-10GX FPGA. The results are comprehensively discussed and

compared with prior works.

• Chapter 3 presents an FPGA-based Low-Batch Training Accelerator for Modern

CNNs Featuring High Bandwidth Memory. This chapter describes a CNN

training accelerator that uses HBM as off-chip memory and supports stride-

2 convolutions, residual connections. In addition, it provides the analysis of

the impact of HBM2 on CNN training workloads, provides a comprehensive

comparison with DDR3, and discusses the strategies to use the HBM2 features

for enhanced performance efficiently.

6

• Chapter 4 presents an online learning FPGA accelerator on Intel Stratix-10

MX FPGA that exploits the hardware benefits of progressive segmented training

(PST).

• Chapter 5 presents a 28nm 8-bit Floating-Point Tensor Core based CNN

Training Processor with Dynamic Activation/Weight Sparsification. The training

processor follows a four-core architecture supporting FP8/FP16 precision and

highly optimized for energy efficient sparse CNN training.

• Chapter 6 presents FixyNN: efficient hardware for mobile computer vision via

transfer learning. This chapter details a novel design technique using a fixed-

feature extractor to develop a high throughput energy-efficient CNN inference

ASIC accelerator.

• Chapter 7 presents FixyFPGA: an efficient FPGA accelerator for deep neural

networks with high element-wise sparsity and without external memory access.

This chapter explains the adaptation of the fixed-feature extractor technique

to design a fully parallel, fully-pipelined, and pruning-friendly CNN inference

FPGA accelerator without external memory access.

• Chapter 8 concludes the dissertation.

7

Chapter 2

AUTOMATIC COMPILER BASED FPGA ACCELERATOR FOR CNN TRAINING

Training of convolutional neural networks (CNNs) on embedded platforms to

support on-device learning is earning vital importance in recent days. Designing

flexible training hardware is much more challenging than inference hardware, due

to design complexity and large computation/memory requirement. In this work,

we present an automatic compiler based FPGA accelerator with 16-bit fixed-point

precision for complete CNN training, including Forward Pass (FP), Backward Pass

(BP) and Weight Update (WU). We implemented an optimized RTL library to

perform training-specific tasks, and developed an RTL compiler to automatically

generate FPGA-synthesizable RTL based on user-defined constraints. We present

a new cyclic weight storage/access scheme for on-chip BRAM and off-chip DRAM

to efficiently implement non-transpose and transpose operations during FP and BP

phases, respectively. Representative CNNs for CIFAR-10 dataset are implemented

and trained on Intel Stratix 10 GX FPGA using proposed hardware architecture,

demonstrating up to 479 GOPS performance.

2.1 Introduction

CNNs have shown tremendous performance in many practical tasks including com-

puter vision Hu et al. (2018) and speech recognition Zhang et al. (2016). Deep CNNs

achieve high accuracy on large datasets, but an enormous amount of computation is

required for training such networks. To support the high computation requirement,

8

training tasks have been typically performed on datacenters with high-end GPUs.

Nowadays, training on resource-constrained platforms is becoming more crucial for

training networks with each user’s private data. However, executing computation-

/memory-intensive training tasks on hardware platforms with power and resource

constraints become very challenging. This gives an opportunity to map these algo-

rithms on FPGAs, which provide high configurability and power-efficiency compared

to those of GPUs. They also provide a large volume of off-chip memory (DRAM) and

shorter design time when compared to ASIC designs.

For CNN inference tasks, a number of FPGA accelerators have been proposed

Zhang et al. (2015); Ma et al. (2017); Zhang and Li (2017); Zeng et al. (2018); Yang

et al. (2019). However, training deep neural networks on FPGA platform has not been

investigated comprehensively. Compared to inference, the training phase involves a

much higher number of operations (>3X) with increased complexity Choi et al. (2018).

The training phase also involves high intermediate data volume, necessitating high

memory bandwidth and large storage. GPUs have been the de-facto for training tasks

to meet immense computation requirements. However, GPUs’ energy-efficiency is

poor Jouppi et al. (2017c), and they are not well-suited for on-device learning with

limited power budget.

To address this issue on the algorithm side, researchers have proposed low-precision

training Gupta et al. (2015); Köster et al. (2017), frequency domain training Ko et al.

(2017), and sparse weight update Sun et al. (2017). Techniques such as sparse

weight update introduce irregular parallelism, making it more suitable for flexible

FPGAs compared to GPUs Nurvitadhi et al. (2017). FPGAs are well-suited for

low-precision DNN algorithms as it provides large improvement in throughput and

energy efficiency with low-precision arithmetic Wang et al. (2019). To that end,

9

implementing configurable training hardware on FPGA becomes crucial to exploit

these algorithmic advances.

On the hardware side, several prior FPGA works have implemented training of

fully-connected neural networks Liu et al. (2018); Gomperts et al. (2011); Rafael et al.

(2005). A floating-point FPGA accelerator Liu et al. (2017) reported training of small

CNNs using an uniform computation structure with a fixed number of multiply-and-

accumulate (MAC) units. F-CNN Zhao et al. (2016) presented a training framework

where convolutions are done in FPGA and weight updates are performed in CPU.

TrainWare Choi et al. (2018) implemented dedicated hardware for weight update using

a fixed Nkx×Nky MAC array as the local gradients window is reused only Nkx×Nky

times during weight gradient computation. However, this is not suitable for FP/BP

convolutions where there exists more kernel reuse. DeepTrain Kim et al. (2018) presents

an embedded platform for DNN training, but does not include back-propagation of

pooling layers and DNN weight updates, which needs significant memory access.

Overall, these works have not presented a compiler-based FPGA accelerator that

supports all phases of training for various CNNs. Designing a standalone FPGA

accelerator for CNN training involves managing limited memory resources to support

batch operations and different CNN configurations.

In this work, we propose a flexible FPGA accelerator that performs stochastic

gradient descent (SGD) based training of various CNNs. We extracted and designed

training-specific operations and then developed a library based automatic RTL com-

piler to flexibly support training operations with different sizes of CNNs. The user

provides the high-level CNN network configurations along with the design variables to

characterize FPGA hardware usage to the RTL compiler. The RTL compiler generates

10

a FPGA compatible training accelerator based on the user’s requirements. The key

contributions of this work are:

• We present a comprehensive investigation of CNN training operations and

challenges in FP, BP and WU stages.

• We developed a training-specific RTL module library and an RTL compiler

to automatically implement CNN training accelerator with 16-bit fixed-point

precision.

• A configurable FPGA hardware is presented for FP, BP and WU phases of the

entire CNN training process using SGD with momentum.

• Our accelerator using Intel Stratix 10-GX FPGA is evaluated on training three

different CNNs for CIFAR-10 dataset, achieving up to 479 GOPS of throughput.

2.2 CNN Training Algorithm

Fig. 1 illustrates the dataflow of stochastic gradient descent (SGD) based weight

update for a simple 2C-2P-1FC CNN model. The CNN design variables and naming

conventions used throughout this chapter are described in Table 1. Output activation

value olx,y is given by Eq. (2.1), where wl
x,y are kernel values and al−1

x,y are activations

Table 1. CNN design variables

Kernel size
width/height

Output feature map
width/height/depth

Input feature map
width/height/depth

Convolution
dimensions Nkx, Nky Nox, Noy, Nof Nix, Niy, Nif

Loop unroll
factors Pkx, Pky Pox, Poy, Pof Pix, Piy, Pif

11

𝚫𝒘𝟎

Conv

Pool

Conv
Conv

Pool Upsamp

FC FC

1x10

Error

Upsamp

1x10

Input

image

𝒘𝟎

𝚫𝒘𝟐

𝚫𝒘𝟏

Local

gradients

Weight

gradients

Conv

Conv

Vector

mult

Loss

Weight

update

𝒘𝟎, 𝜶, 𝜷

𝒘𝟏, 𝜶, 𝜷

𝒘𝟐, 𝜶, 𝜷

𝒘𝟎new

new

new

Forward

pass

Backward

pass
Weight

update

𝒘𝟏

𝒘𝟐

𝒘𝟏

𝒘𝟐

𝒘𝒇𝒍𝒊𝒑
𝟏

𝒘𝑻
𝟐

Figure 1. SGD based CNN training dataflow illustrated for a simple 2C-2P-1FC
model.

from layer l − 1.

olx,y =
∑
x'

∑
y'

wl
x,ya

l−1
(x+x'),(y+y') (2.1)

In supervised training, each input is associated with a label. After the completion

of the forward pass, the performance of the network is estimated using a cost function.

Eq. (2.2) shows a quadratic cost function of output layer L, where ai is the obtained

output value and yi is the label. The derivative of the cost function with respect to

output is also given in Eq. (2.2).

C =
1

2

L∑
i

(ai − yi)
2,

∂C

∂aLi
= (ai − yi) (2.2)

12

Error values are back-propagated to all hidden layers and the required deviation

of weight parameters to minimize the error is calculated. The derivative of the cost

function with respect to weight parameters provides the required deviation for the

weight parameters ∆w to minimize the error. By applying the basic chain rule, weight

deviation ∆w can be obtained by convolving the derivative of the cost function with

layer output activations, which we term as local gradients and feedforward activations.

Local gradients of layer (l) can be obtained by convolving the gradients of the previous

layer (l − 1) with its own convolution kernel.

During these backward convolutions, the original kernel tensors are flipped. The

differences of BP and FP convolutions are shown in Fig. 2. Fig. 2a shows FP

convolutions of input image with three input channels (Nif = 3) and two sets of

kernels to obtain two output feature maps (Nof = 2). During BP, convolutions are

performed using local gradients of previous layer and FP kernels, where the number

of input channels and convolution depth are interchanged. In Fig. 2b, it is shown that

Nif = 2 and Nof = 3. Flipped kernels are used in BP convolutions to compute the

local gradients.

δlx,y = φ'
l(o

l
x,y)

∑
x'

∑
y'

δl+1
x',y'w

l+1
(x−x'),(y−y') (2.3)

∆wn =
∂C

∂wL
x,y

=
∑
x'

∑
y'

δlx',y'a
l−1
(x+x'),(y+y') (2.4)

wl
i,j(n) = −α∆wn + wl

i,j(n− 1) (2.5)

wl
i,j(n) = β∆wn−1 − α∆wn + wl

i,j(n− 1) (2.6)

Local gradients of each layer l is computed using Eq. (2.3), where w is the flipped

kernel. Eq. (2.4) is used for weight gradient computation, where l is local gradients

13

Input

image

Convolution

outputs

Normal

kernels
Flipped

kernels

Local

gradients of

layer l-1

Local

gradients of

layer l

(a) Feedforward convolutions (b) Backward convolutions

Figure 2. Convolution operations and changes in kernels during FP and BP Nof 2,
Nif 3

of a layer and φ'
l(x) is activation gradients of layer l. The weight gradients of any

layer l is obtained by the convolution of local gradient layer l and feedforward input

activations of layer l. These convolutions involve large kernel sizes. One feature map

of feedforward activation is convolved with one feature map of local gradients to obtain

one kernel gradient (intra-tile accumulation). Hence, this weight gradient convolution

results in a 4D output. These weight gradients are averaged over a batch and new

weights are computed using gradient descent algorithm given by Eq. (2.5), where α

represents learning rate, wl
i,j(n − 1) represents weights of previous batch and ∆wn

represents average weight gradients. The weight update process can be accelerated

by using past weight gradients as momentum. Eq. (2.6) shows the weight update in

SGD with momentum, where β is a hyper-parameter.

14

2.2.1 Training-Specific Computations During BP and WU

The operations during BP are different than those of FP. In backward convolutions,

the inputs are scaled by activation gradients, and convolutions are performed by

applying 180-degree-rotated kernels. In hardware implementation, the same kernels

should be read in normal mode and transpose mode to support FP and BP operations.

Similarly, fully-connected layers in BP also use transposed weight matrix to compute

the local gradients. At the max-pooling node, the gradients propagate only through

the selected maximum pixel location and all other pixels in the pooling window will be

zero. Based on the pooling pixel index selected during FP, the gradients are upsampled

and propagated back to the next layers.

During FP, we need to store not only the output activations, but also the activation

gradients and max-pooling indices at all ReLU activations and max-pooling nodes.

For ReLU, activation gradients are binary as the derivative of ReLU with respect

to activations results in a step function. Our RTL library currently supports only

ReLU activation function as it is less complex and widely used. During weight update

of fully-connected layers, the weight gradients ∆w are obtained by performing the

outer product of the local gradient vector and the error vector. In convolution kernel

updates, kernel gradient calculation involves convolution of input activations using

local gradients as kernels, which are very large kernels. Each of these convolutions is

considered as an FP convolution with Nif = 1 and results in Nof kernel gradients. To

reuse FP convolution control logic, we employed an additional outer loop to iterate

through the actual Nif local gradients.

15

2.2.2 CNN Training Using Fixed-Point Precision

Unlike CNN inference, CNN training usually requires higher precision. In this work,

weights, activations, local gradients and weight gradients are represented with 16-bit

fixed-point precision to ensure good training accuracy. Compared to floating-point

representation, fixed-point training is more energy-efficient in FPGA implementation,

but requires more dedicated resolution/range assignment for different variables.

2.3 CNN Training Hardware

2.3.1 RTL Compiler and Algorithm Mapping

To map various CNN algorithms with user defined hardware constraints onto

FPGA, an RTL compiler for CNN training was developed. Fig. 3 shows the compiler

tool flow from high-level CNN description to CNN training accelerator. According

to the operations in each layer and FPGA design parameters (e.g. unroll and tiling

factors), optimized handwritten Verilog modules are chosen from the RTL library

to automatically generate a CNN training accelerator. The RTL library consists of

Verilog modules that are specially designed to support training operations. Only

the selected modules from the RTL library based on the training algorithm will be

synthesized. Execution of training operations in one iteration of a batch can be

scheduled sequentially similar to layer-by-layer execution of inference tasks. Each

training image in a batch is processed sequentially. The scheduling of layer execution

is done using the RTL compiler, and control logic parameters are generated.

16

Loop unrolling and tiling

factors

CNN architecture

• Layer details – conv,

pool, upsamp, scaling,

weight update, flatten,

loss

• Fixed point precision of

each layer parameters

• Layer scheduling

Initialize memory

• Initial weight and bias

• Training data, labels

• Base addresses for

gradients, activations and

weights

RTL model library

• Highly parameterized

flexible RTL files

supporting CNN

training operations

Configure hardware

• Generate parameters

based on CNN

Top level

RTL

integrated

with training

H/W

modules

DRAM init

files

RTL compiler for CNN

training

FPGA

synthesis

and

mapping

Figure 3. Proposed RTL compiler automatically generates FPGA training accelerator
from high-level CNN description and FPGA design variables.

2.3.2 Training Accelerator Architecture

Fig. 4 shows the top-level diagram and dataflow of the CNN training accelerator.
The global control logic governs all modules to ensure proper CNN functionalities
with layer-by-layer computation, and is controlled by the parameters generated by
the RTL compiler.

DRAM stores all the initial weight parameters, intermediate activations and

computed weight/loss gradients using 16-bit fixed-point precision. DMA control

generates the required DMA descriptors based on the layer type and tile sizes to read

from and write to DRAM. Convolution, max-pooling and upsampling operations are

considered as key layers, and ReLU, flatten, loss unit, and scaling unit are referred to

as affiliated layers.

On-chip buffers store activation gradients and max-pooling indices. The pooling

window size (e.g. 2x2) determines the bitwidth of max-pooling indices (e.g. 2-

bit). After FP, loss is computed using outputs and labels. Our RTL library currently

17

ReLU,

scale, loss

Output buffer

PE Array

Conv/FC

control

G
lo

b
a

l C
o

n
tro

l lo
g

ic

Data

Gather

Data scatter

Pooling

(comparator)
UPSA

(Demux/mult)

Weight

buffer
Input buffer

Data router

AG

buffer

Weight gradient

buffers/accumulator

Old weight buffer

Transposable

New weight

buffer

IDX

buffer

DMA DMA Manager

Weight

update

Pixel

data bus

Weight

data bus Index/AG bus Control Computing

modules

On-chip

buffers

Figure 4. Top-level block diagram of CNN training accelerator.

supports square hinge loss and euclidean loss functions, and this can be easily expanded

to support other loss functions. Data scatter and data gather modules are used to

convert the DRAM storage pattern to on-chip buffer storage pattern and vice versa.

Data router reads the data from input buffers and routes it to the selected key layer

according to the array sizes. Weight update unit and weight gradient buffers are used

to compute new weights based on SGD with momentum.

18

101 102 103 104

201 202 203 204

301 302 303 304

401 402 403 404

101 201 301 401

102 202 302 402

103 203 303 403

104 204 304 404

Inp Feat. Maps (L)

O
u

t
F

e
a
t.

 M
a
p

s
 (

L
+

1
)

In
p

F
e

a
t.

 M
a
p

s
 (

L
)

Out Feat. Maps (L+1)

101 102 103 104

201 202 203204

301 302303 304

401402 403 404

Training

stage
Read address

C0 C1 C2 C3

FP 0 0 0 0

BP 0 1 2 3

Transposable circulant matrix

C0 C1 C2 C3

FP weight access pattern BP weight access pattern

Figure 5. Proposed transposable weight buffer stores weights in a circulant matrix,
enabling both normal and transpose read.

2.3.3 MAC Array

Fig. 6 shows the 2D systolic MAC array used for the training accelerator. MAC

array size is determined by the RTL compiler based on the loop unroll factors

Pox, Poy, Pof . In Fig. 6, each MAC row has a different set of weights but share the

same input feature map data computing Pof output pixels. Each column shares the

same weights, but different input data computing Pox or Poy output pixels in parallel.

Data router reads the input data and routes it to MAC units considering pad and

stride sizes of the layer. Weight router distributes weights or local gradients based on

the training phase. Table in Fig. 6 summarizes how the MAC array is reused with

different inputs/outputs for training phases of FP, BP and WU.

19

MAC MAC MAC MAC

MAC MAC MAC MAC

MAC MAC MAC MAC

MAC MAC MAC MAC

Data router

W
e

ig
h

t
ro

u
te

r

Input pixel buffer

Pox

P
o

f

Pad, stride

kernel size

Inpx data

From DRAM

Training

phase

L
o

c
a

l
g

ra
d

b
u

ff
e

r

T
ra

n
s

p
o

s
a

b
le

w
e
ig

h
t

b
u

ff
e

r

Training phase Input Weights Output

FP Activations Normal Kernels Activations

BP Local gradients Flipped kernels Local gradients

WU Activations Local gradients Kernel gradients

Figure 6. Systolic MAC array is reused for training phases of FP, BP and WU, by
feeding different activations/gradients/kernels.

2.3.4 Transposable Weight Buffer

BP involves convolution of flipped kernels and the local gradients. Therefore, every

convolution kernel is used twice in one iteration: 1) normal weights are applied during

FP, and 2) rotated weights are used in BP (Fig. 2). To achieve this without duplicating

kernel storage, the kernels are stored in special transposable buffers that we propose,

where data can be read both in non-transpose and transpose modes. As shown in

Fig. 5, the proposed transposable buffer stores the kernels in the form of a circulant

matrix using column buffers. For 2D kernels, each Nkx ×Nky kernel is considered as

one block and each row has Pof blocks of kernels, where Pof represents the number of

20

Tile 1

DRAM

Control logic

DRAM

descriptors Start

WU

Tile 2

Tile 3

...

Tile N

old

wtgrad

buffer

current

wtgrad

buffer

new

wtgrad

buffer

Batch

done

DRAM

New wt

buffer

Data in

transposable format

Wt/wtgrad bus

Control

• Wtgradient

accumulation

• New wt

computation

Weight

update

unit

MAC

array

moment

gradient

buffer

old

weight

buffer

Figure 7. Block diagram of weight update unit.

output feature maps that can be computed in parallel. During backward convolution,

not only the kernel is rotated by 180 degrees but also the input and output feature

maps will be interchanged. In the proposed transposable buffer, every row of kernel

blocks is circularly rotated and stored in the form of a circulant matrix in the single-

port column buffers (Fig. 5). In the non-transpose mode, each column buffer shares

the same read address, and in transpose mode, each column buffer obtains shifted

addresses from the address translator unit. Address translator generates read/write

addresses for column buffers for every transposable block. In each transposable block,

the address vectors and the data are circularly shifted using shift registers.

2.3.5 Weight Update Unit

Weight gradients are calculated by convolving the feedforward activations with

the local gradients. Convolution control logic is configurable to support tile-by-tile

21

computation, intra-tile accumulation and large kernel sizes needed for weight gradient

computation. Fig. 7 shows the dataflow after the computation of weight gradients.

For every new training image in a batch, newly computed weight gradients are

accumulated with old weight gradients. This accumulation is done tile-by-tile for

efficient utilization of on-chip buffers. This process is repeated for the entire batch

of images and accumulated gradients are stored in DRAM. At the end of the batch,

while the weight gradients get accumulated, old weights and past weight gradients

are also read from DRAM, and new weights are computed simultaneously, following

Eq. (2.6).

Weights are initially stored in transposable format in DRAM as aforementioned.

The entire transposable weights of layer l are read from DRAM to the old weight

buffer. New weights are computed tile-by-tile and written back in transposable format

to the new weight buffer. After completing the last tile’s computation, the new weights

are written back to DRAM. Control logic translates the address for transposable

read/write operations, generates DRAM descriptors according to tile count and

generates addresses to read newly computed weight gradients. Fully-connected weight

update follows the same dataflow, but gradients are computed by outer product of local

gradient vector and activation vector. Constant learning rate is applied throughout the

training process, and 16-bit fixed-point precision is used for all weights and gradient

computation.

2.3.6 Efficient MAC Usage in Weight Update layers

During FP and BP, convolutions the MAC array is designed to compute Pox ×

Poy × Pof pixels in parallel. Pox, Poy, Pof are the loop unroll factors given by the user.

22

IF0

IF1

IF2

IF3

..

..

IF N

Input FIFO
Output buffer bank

K1

..

..

MAC cube

Input

image

data
Kernel gradients

stored pox-poy-

pof format

3x3x16X4 MAC’s

are utilized out of

8x8x16 MAC

blocks

POX=8

P
O

Y
=

8K2K1

K4K3

IF0

IF1

IF2

IF3

..

..

IF N

IF0

IF1

IF2

IF3

..

..

IF N

IF0

IF4

IF8

IF12

..

..

IF N/4

K2

K3 K4

K6

K7 K8

K5

K1

..

..

K2

K3 K4

K6

K7 K8

K5

K1

..

..

K2

K3 K4

K6

K7 K8

K5

K1

..

..

K2

K3 K4

K6

K7 K8

K5

MAC array

IF – Input feature map

K* - kernel gradients

Figure 8. Operation of MAC load balancing unit during convolution weight gradient
computation.

Regarding convolutions required for weight updates, however, the output feature map

size Nox, Noy is less as the the outputs are kernel gradients. This results in inefficient

usage of MAC units, since most of them will be idle. It also consumes more output

buffer storage in order to store Pox × Poy × Pof block of output data. To overcome

this, MAC load balance unit was designed to utilize the idle MAC units.

The MAC load balance unit employs additional input buffers to feed the data to

the MAC units in parallel. If buffer usage is critical, this optimization can be disabled

using the RTL compiler. Fig. 8 shows the basic operation of MAC load balancing

unit, when Pox = 8, Poy = 8, Pof = 16 and kernel size is Nox = 3, Noy = 3, Nof = 16.

In this example, four kernel gradients are computed in parallel, reducing the latency

by 4X without any additional MAC units. The output buffer is also efficiently used.

23

Index

buffer

D
a

ta
 R

o
u

te
r

Input

buffer

Activation

gradient

buffer

Output buffer

D
e

m
u

x
Index

In
p

u
t

g
ra

d
ie

n
ts

Upsampled

data

X

Activation

gradients

Upsamp

& scaled

data

UPSA

UPSA

UPSA

UPSA

UPSA

UPSA

UPSA

UPSA

UPSA

UPSA

UPSA

UPSA

UPSA

UPSA

UPSA

UPSA

UPSA

UPSA

UPSA

UPSA

UPSA

UPSA

UPSA

UPSA

U
p

s
a

m
p

lin
g

 u
n

it c
o

n
tro

lle
r

Pixel data bus

Activation gradient bus

Index bus

Output feature map 1

Output feature map 2

Output feature map 3

Start/ done

P
o

x
_

p
l

Pof_pl

Figure 9. The upsampling unit receives input from index buffer, activation gradient
buffer and input buffer.

2.3.7 Upsampling and Scaling module

During BP, the local gradient at the max-pooling node is propagated to convolution

layers only through the maximum pixel position selected in FP. The gradients of

unselected pixels are zero, as they do not contribute to the error. If the max-pooling

unit receives the input from ReLU node, then the upsampled gradients should also

be scaled by the feedforward activation gradients to compute the gradients of ReLU

node.

Fig. 9 shows the upsampling unit and input/output buffers. During FP, max-

pooling indices are stored tile-by-tile inside the on-chip index buffers. Each layer has

its own index and activation gradient buffers. The local gradients computed in the

previous iteration is read from DRAM and stored in input buffers. Data router unit

rearranges the data of index, input and activation gradient buffers and sends it to

the upsampling unit. Each processing element of the upsampling unit consists of a

24

Table 2. Evaluation of CNN training accelerator on Stratix 10 FPGA , using 16-bit
fixed point precision. CIFAR10-1X refers to network structure of 16C3-16C3-P-32C3-
32C3-P-64C3-64C3-P-FC, and 2X/4X designs refer to accordingly wider CNNs.

CNN network Resource Power (W) Latency per epoch (s) Throughput
DSP ALM BRAM DSP RAM Logic clock Pstatic BS-10 BS-20 BS-40 GOPs

CIFAR-10 1X 1699 (30%) 20.8K (19%) 10.6(4.4%) 0.58 5.7 2.4 1.68 10.28 18.19 18.07 18.01 163
CIFAR-10 2X 3363 (58%) 415K (44%) 22.8(9.5%) 1.05 11.2 6.6 2.97 11 41.7 41.30 41 282
CIFAR-10 4X 5760(100%) 720K(76.2%) 54.5(22.4%) 3.48 14.6 11 4.95 16.47 98.2 96.87 96.18 479

demultiplexer and a multiplier unit. The gradient is conveyed as the demultiplexer

input and the index serves as the select signal. For pooling window size of k, each

processing block produces k × k pixel data corresponding to k rows of the output

feature map. After each operation, k rows of activation gradients are read and the

demultiplexer outputs are scaled.

2.4 Results

2.4.1 Experimental Setup

The FPGA accelerator generated by the compiler was synthesized using Intel

Quartus 17.1 at 240MHz frequency. We used Stratix 10 GX FPGA as the target

hardware, which includes 240 Mbits of BRAM, 5,760 DSP blocks, and 93K ALMs. The

stratix-10 GX development kit is equipped with 4Gb DDR3 DRAM with 16.9Gb/s

bandwidth. Weights, weight gradients, activations, and local gradients use 16-bit fixed

point precision. We trained representative CNNs for CIFAR-10 dataset. ‘1X’ CNN

has the network structure of 16C3-16C3-P-32C3-32C3-P-64C3-64C3-P-FC. 2X and

4X CNN models exhibit 2X and 4X more input/output feature maps for each layer,

and were also explored to achieve higher accuracy on CIFAR-10 dataset. Unroll factor

of 8 was adopted for output image x and y dimensions. For output feature maps, 16,

25

I n p u t p x O u t p u t p x I n p u t w e i g h t s

N e w w e i g h t s W e i g h t g r a d i e n t s

L i n e b u f O t h e r

W U

B P

F P

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8

L o a d
b a l a n c e r

B R A M U s a g e (M b i t s)

Tra
ini

ng
 Ph

as
e

A c t . g r a d i e n t s &
p o o l i n g i n d i c e s

Figure 10. Buffer usage breakdown of CIFAR-10 4X CNN.

32, 64 was used as unroll factors for 1X, 2X and 4X CNNs, resulting in an 8x8x16

(1024), 8x8x32 (2048), 8x8x64 (4096) MAC arrays, respectively. Batch size (BS) of 40

and learning rate of 0.002 was used for training, towards achieving better accuracy.

The software results are obtained by PyTorch Paszke et al. (2017) based fixed-point

training model running on Nvidia Titan XP GPU.

2.4.2 Analysis of Results

Table 2 shows the comparison of CNN training performance and resource utilization

for three different CNNs for the classification for CIFAR-10 dataset. The FPGA

accelerator was generated from the RTL compiler using high-level description of

training parameters and design variables. FPGA power numbers are obtained after

routing stage from Quartus power analyzer and Intel Early Power Estimator tools

using the data toggling activity from functional simulation at the junction temperature

of 65C. Tiling of activations and weight gradients greatly reduces the on chip buffer

26

usage. BRAM utilization is low because of the tiling and size of the intermediate

activations and number of parameters. Training of each image in a batch is done

sequentially, larger batch sizes results in less number of weight updates in one epoch

resulting in improvement in latency.

To support deeper CNNs and aim good flexibility of hardware, all intermediate

outputs are stored in DRAM. Fig. 11 shows the latency breakdown in each layer

during different stages of training. Weight update layers will have large DRAM access

latency due to access of past weight gradients, weights and storing back the updated

values. 51% percent of the overall latency in one iteration of a batch is consumed in

weight update layers. By sacrificing the flexibility of the hardware, this latency could

be significantly reduced by using on-chip buffers for weight/gradient storage. The

latency of the weight update layers depends on the parameters associated with it.

Old weight gradients are read from DRAM tile-by-tile during computation of

current weight gradients. DRAM latency is hidden wherever logic latency is more

than the memory access latency. The latency of weight update layers is reduced by

11% by using the compute time to read next tile data. The logic latency in weight

i n p x / w e i g h t r e a d

i n p x / w e i g h t r e a d

o u t p x w r i t e

o u t p x w r i t e

M A C D R A M - w e i g h t g r a d i e n t s

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0

w e i g h t u p d a t e

M A C

M A C

B P

F P

L a t e n c y (m s)

Tra
ini

ng
 Ph

as
e

W U

i n p x / w e i g h t r e a d
D R A M
w e i g h t s

Figure 11. Latency breakdown of CIFAR-10 4X CNN for FP, BP and WU for the last
iteration of a batch.

27

update layers is reduced by 4X, using the load balancing technique for MAC arrays.

Logic in weight update layers refer to convolution operations to generate weight

gradients and weight update is referred to computation of new weights. Tile sizes are

carefully chosen to efficiently map compute-/memory-bounded layers. All buffers can

be controlled by tile sizes apart from weight buffers, where the entire weights are read

from transposable DRAM.

Fig. 10 shows the breakdown of buffer utilization for three different phases of

training. The size of the weight buffer is decided by the largest layer weights. Double

buffering technique is used for all other buffers, thereby hiding DRAM latency. The

1X design achieves 73% accuracy at 50 epochs with learning rate of 0.002 and batch

size of 40 (similar to baseline with floating-point precision). Higher accuracy will be

achievable with longer training time and deeper/wider CNNs.

2.5 Conclusion

In this chapter, we presented an automatic RTL compiler based end-to-end CNN

training accelerator. CNN training operations are implemented by optimized and

parameterized custom Verilog modules, and the accelerator is flexible to support

various FPGA design parameters. The training performance is evaluated on Intel

Stratix-10 GX FPGA for three different CNNs for CIFAR-10 dataset. The proposed

training accelerator achieves throughput of up to 479 GOPS at 240MHz for CNNs

with 2M parameters.

28

Chapter 3

FPGA-BASED LOW-BATCH TRAINING ACCELERATOR FOR MODERN CNNS

FEATURING HIGH BANDWIDTH MEMORY

Training convolutional neural networks (CNNs) requires intensive computations

as well as a large amount of storage and memory access. While low bandwidth

off-chip memories in prior FPGA works have hindered the system-level performance,

modern FPGAs offer high bandwidth memory (HBM2) that unlocks opportunities

to improve the throughput/energy of FPGA-based CNN training. This chapter

presents a FPGA accelerator for CNN training which (1) uses HBM2 for efficient

off-chip communication, and (2) supports various training operations (e.g. residual

connections, stride-2 convolutions) for modern CNNs. We analyze the impact of

HBM2 on CNN training workloads, provide a comprehensive comparison with DDR3,

and present the strategies to efficiently use HBM2 features for enhanced CNN training

performance. For training ResNet-20/VGG-like CNNs for CIFAR-10 dataset with low

batch size of 2, the proposed CNN training accelerator on Intel Stratix-10 MX FPGA

demonstrates 1.4/1.7X energy-efficiency improvement compared to Stratix-10 GX

FPGA with DDR3 memory, and 4.5/9.7 X energy-efficiency improvement compared

to Tesla V100 GPU.

3.1 Introduction

Convolutional neural networks (CNNs) are extensively adopted in computer vision

applications Krizhevsky et al. (2017); Long et al. (2015); Tateno et al. (2017). The

29

training tasks of CNNs are commonly performed with GPUs using a mini-batch

stochastic gradient descent (SGD) optimizer. To improve the CNN accuracy, higher

batch sizes are employed for CNN training with GPUs, but this demands an excessive

amount of memory and limits the capability to explore large models and tasks

with high input resolution Wu and He (2018). In addition, although GPUs provide

very high throughput on CNN training with large batch sizes, they suffer from low

utilization/throughput for smaller batch sizes Chundi et al. (2019). This can be

seen in Fig. 12, which reports the latency and Tesla V100 GPU utilization across

different batch sizes for the task of training ResNet-20 CNN He et al. (2016) for

CIFAR-10 Krizhevsky (2009) dataset. Recently, new CNN training algorithms that

efficiently support small batch sizes (e.g. 2, 4) have been proposed Wu and He (2018);

Masters and Luschi (2019); Ioffe (2017), which demonstrate on-par accuracy with

state-of-the-art CNN training using large batch sizes.

Low-batch training greatly reduces memory requirement and unlocks opportunities

for FPGAs, which provide higher configurability for custom architecture and better

energy-efficiency than high-power GPUs. Training on edge FPGA devices also reduces

latency overhead (due to limited data exchange with the cloud server), prevents

privacy/security problems, and is well-suited to exploit new features such as low

precision training, sparse weight updates, online learning, etc. However, training

CNNs on FPGAs is a challenging task for two reasons: (1) it demands high memory

bandwidth which is the primary limiting factor in many accelerators Wissolik et al.

(2017); Deo et al. (2017), and (2) complexity arises in implementing a generalized

flexible training accelerator supporting new advancements in CNN training algorithms.

Many prior works presented low-batch CNN inference on FPGAs and showed

large improvements in storage and latency Ma et al. (2017); Venieris and Bouganis

30

Figure 12. ResNet-20 CNN training performance for CIFAR-10 dataset on Tesla V100
GPU for different batch sizes.

(2016); Wei et al. (2017); Zhang et al. (2015); Qiu et al. (2016); Abdelouahab et al.

(2018); Guo et al. (2017). While there are new algorithmic approaches to support

low-batch training, FPGA hardware designs for CNN training tasks have been much

less explored. A framework to map DNN training on FPGA clusters was presented

in Geng et al. (2019), but an excessive amount of on-chip memory is required for

training on a single FPGA platform. Several prior works Ahmad and Pasha (2020);

Zhao et al. (2016); Choi et al. (2018) attempted to accelerate a part of CNN training

on FPGAs, while the remaining operations were performed by the host CPU. Training

accelerators for non-CNN applications were proposed in Zeng and Prasanna (2020);

Liu et al. (2018); Gomperts et al. (2011); Rafael et al. (2005); Zhou et al. (2020). Only

a few prior works presented a CNN training accelerator supporting all three phases of

training Venkataramanaiah et al. (2019a); Nakahara et al. (2019); Luo et al. (2020),

but these works still did not include back-propagation of either residual connections

or stride-2 convolutions that are necessary for modern CNNs. Furthermore, none of

31

the aforementioned FPGA works studied the use of high bandwidth memory, which is

critical for CNN training.

In this work, we present a programmable FPGA accelerator for CNN training, which

uses HBM2 for efficient off-chip communication, and supports residual connections

and stride-2 convolutions for modern CNNs. The key contributions of this work are:

• To the best of our knowledge, we present the first FPGA accelerator for CNN

training that fully utilizes high bandwidth memory (HBM2) and executes end-

to-end CNN training.

• Our programmable FPGA accelerator reads high-level descriptions of CNNs

(similar to TensorFlow/PyTorch) including those with residual connections and

stride-2 convolutions, and automatically generates RTL for synthesis.

• We analyze the impact of HBM2 on CNN training workloads, provide a compre-

hensive comparison with DDR3, and discuss the strategies to efficiently use the

HBM2 features for enhanced performance.

• Our accelerator using Intel Stratix-10 (S-10) MX FPGA with HBM2 is evaluated

for ResNet-20 and VGG-like CNNs for CIFAR-10 dataset, achieving up to 14X

improvement in energy-efficiency, compared to Tesla V100 GPU.

3.2 Background

Modern FPGAs, such as Intel Stratix-10 (S-10) MX Deo et al. (2017), are equipped

with new high-speed memory technologies like high bandwidth memory (HBM2) Stan-

dard (2013). HBM2 uses 3D stacked silicon dies connected through through-silicon

vias (TSVs). The main DRAM stack is placed as a top die and the base die is used

32

Figure 13. Intel S-10 MX device integrated with HBM2

CH6

AXI-4

3D DRAM

HBM2 Interface Intel FPGA IP

CH 6

CH 4

CH 2

CH 0

CH 7

CH 5

CH 3

CH 1

CNN Training Accelerator

Base Die

PC 0 PC 1

Figure 14. Eight independent physical channels (CH) and corresponding pseudo
channels (PC) of HBM2 connected to CNN training accelerator on the base die using
Intel HBM2 interface FPGA IP.

for I/O connections to the host device. Each die in the DRAM stack consists of two

independent physical channels, which are further divided into two pseudo channels.

As shown in Fig. 13, HBM2 is integrated with the Intel S-10 MX device using the

system-in-package (SiP) technology. Fig. 14 depicts the interface between the DRAM

stack and the base die. All the physical channels (CH) and corresponding pseudo

channels (PC) are connected to the base die using HBM2 interface Intel FPGA IP.

Dedicated customizable memory controllers are provided for each physical channel of

33

C1 C2 C3 C4 FC

C1 C2 C3 C4 FC

C1 C2 C2 C4 FC

Shortcut

connections

Stride 2

d

Input

dilation

Kernel

dilation
Weight gradients

Loss

Flipped

weights

Normal

weights

Weight

gradient

compute

WU

BP

FP

C1 C2 C3 C4 FC

C1 C2 C3 C4 FC

C1 C2 C2 C4 FC

Shortcut

connections

Stride 2

d

Input

dilation

Kernel

dilation
Weight gradients

Loss

Flipped

weights

Normal

weights

Weight

gradient

compute

WU

BP

FP

LossInput

Input

Figure 15. Training dataflow for CNNs involving stride-2 convolutions (C4) and
shortcut connections. Ci is ith convolution layer, d is the input pixel dilation, and
FC is the fully-connected layer.

HBM2. Overall, HBM2 provides higher bandwidth, I/O and capacity with a small

form factor, compared to traditional off-chip memories such as DDR3.

However, designing an architecture that can fully leverage high memory parallelism

provided by HBM2 is challenging. Large I/O capacity of HBM2 demands unique data

storage (a number of different parameters can be read in single access) and complex

on-chip buffer control logic to handle the incoming data from HBM2. Accessing

parallel and independent HBM2 channels requires separate memory controllers and

status monitoring for all channels.

3.2.1 Modern CNN Training

CNNs are majorly trained with SGD optimizer using backpropagation algorithm,

which is an iterative process used to find the best parameters of a network that

34

Forward Pass Backward Pass Weight Update

kernel

Input

feature map

Flipped

kernel Dilated local

gradients
FP activationsDilated local

gradients

Figure 16. Stride-2 convolutions in different training phases are shown. Blue cells
represent dilated positions of the activations (beige) or weights (grey).

minimizes the loss function. SGD-based training involves three phases, namely

forward pass (FP), backward pass (BP) and weight update (WU). In the FP phase,

the output activations are computed layer by layer in the forward direction and the FP

performance is estimated using a loss function. In the BP phase, the local gradients

are computed at every layer in the backward direction. During BP, convolution

operations use flipped kernels and the pooling (downsampling) operations are replaced

by upsampling units. In the WU phase, weight gradients are computed using the local

gradients and feed-forward activations, and weight updates are computed.

Modern CNNs involve residual connections Sandler et al. (2018); He et al.

(2016), and multi-stride convolutions to downsample the data and improve the stor-

age/throughput of CNN training. Fig. 15 illustrates the overall training flow of a

CNN with identity residual connections and convolutions with stride of 2. Identity

shortcut operations remain the same during FP and BP, but the flow direction and the

accumulation node are changed. During FP, we accumulate the shortcut connection

at the output of convolution layer C3, but during BP, we accumulate the output of

C2 (Fig. 15). For convolutions with stride larger than 1, local gradients are computed

by performing the convolution of the horizontally and vertically dilated gradients with

flipped kernels. In the WU phase, the weight gradients are computed by convolving

35

the FP activations with dilated BP local gradients, which is similar to dilating the

kernels during the convolution. Fig. 16 shows different dilations used in stride-2

convolutions.

In this work, we benchmark the training tasks of ResNet-20 CNN He et al. (2016)

and VGG-like CNN Venkataramanaiah et al. (2019a) for CIFAR-10 dataset, using

the proposed FPGA accelerator. ResNet-20 CNN has a convolution layer, followed by

three stacks of 6 convolution layers, 9 residual identity connections, a pooling layer,

and a fully-connected layer. The feature maps are downsampled at the output of

every stack using stride-2 convolutions. VGG-like CNN has 6 convolution layers (C),

3 max-pooling layers (MP) and a fully-connected layer (FC), with the structure of

16C3-16C3-MP-32C3-32C3-MP-64C3-64C3-MP-FC.

3.3 CNN Training Accelerator Design

3.3.1 Overall Architecture and Operation

Fig. 17 shows the top-level block diagram of the CNN training accelerator archi-

tecture. The architecture can be mainly divided into five blocks:

1. Compute block supports various operations required for FP, BP and WU phases

of training.

2. Buffer block stores input, output, weight and gradient data in on-chip buffers.

3. HBM2 configurator block generates signals to access HBM2, stores it to an

on-chip buffer and write the data back to HBM2.

36

HBM2 memory

Compute modules

Conv

FC

Pooling &

Upsampling

Weight

update

Loss, ReLU

Scaling, Bias

Element

wise

HBM2 interface Intel IP

Data scatter

module

Data gather

module

HBM2

configurator

Weight &

gradient

buffer

New

weight

 buffer

Global control logic

CH 0 CH 1 CH 2 CH 3 CH 4 CH 5 CH 6 CH 7

AXI-4

Control signals

HBM read data HBM write data

Input

pixel

 buffer

Output

pixel

 buffer

start/done signals

Figure 17. Top-level block diagram of the proposed CNN training hardware accelerator
using HBM2 memory.

4. HBM2 memory stores all CNN training parameters, and HBM2 interface Intel

IP communicates HBM2 memory and training accelerator.

5. Global control logic governs all the modules and performs layer scheduling.

The compute block consists of a systolic MAC array to support convolution and

fully-connected layers. A 8x8x16 MAC array is used to compute 8x8 pixels of 16

output feature maps in parallel. MAC array size is chosen to exhibit a high utilization

ratio. A MAC array of higher size, for example 32x32x16, will suffer under utilization

while computing convolution of deeper layers where the output feature map size is

small. Flexibility to choose the MAC array size also helps map the algorithm on

different sized FPGAs. The MAC array is used to support fully-connected layers,

normal convolutions during FP, transposed convolution during BP, and intra-tile

37

accumulation in WU phases. A data router module is tightly coupled with the MAC

array and distributes the parameters to the MAC array considering the padding and

stride values.

Before the computed data is sent to the output buffer, it goes through a series of

secondary layers including loss function, ReLU, bias and scaling unit. The scaling

unit is used during BP where the derivative of a node is either 1 or 0 (e.g. ReLU,

dropout layer). The secondary layers use outputs of key layers without any HBM

access. In each layer, any of these secondary operations can be enabled or disabled

based on the CNN structure.

Element-wise (Eltwise) module performs the element-wise addition of two input

layers supporting identity shortcut connections required for ResNet CNNs He et al.

(2016). If the volume of the input layers is different, then the smaller input layer is

padded with zeros. Eltwise module is enabled once all the output data of the current

layer are computed. Data from the other branch of the identity shortcut connection is

read from the HBM2 to the input buffers. Finally, the accumulated data is written

back to output buffers.

The pooling module is used during FP, and downsamples the input feature map

by taking the maximum value within a kernel window (e.g. 2x2). During BP, the

gradients will only flow through the selected pixel positions and non-selected pixel

positions are padded with zeros. This operation is carried out by the upsampling unit.

The compute array sizes of Eltwise, pooling, and upsampling modules are configurable.

The weight update module performs weight gradient accumulations, following the

SGD algorithm. The accumulation of weight gradients is carried out for all training

images in a batch. New weights are computed using the final weight gradient value

38

and is written back to HBM2. Data scatter/gather module rearranges the data for

HBM communication.

The global control logic governs the layer scheduling, enabling the secondary

operations and configures the modules as required for the given network. The global

control logic reads the detailed CNN structure through configuration registers. An

RTL compiler is developed to generate these configurations, where the CNN structure,

MAC array sizes and other control parameters are inputs to the compiler framework.

The compiler framework reads the high-level inputs and translates the layer by layer

execution schedule as parameters for the configuration registers, which is read by the

global control logic in run-time. The RTL compiler consists of a highly parameterized

hand-written RTL library which is optimized for CNN training. The overall accelerator

consisting of configurable modules is shown in Fig. 17. The RTL compiler only compiles

the required modules based on each CNN structure, without including any unused

modules.

CNN training involves various parameters such as activations, weights, weight

gradients, local gradients, momentum gradients, etc. The parameters required for a

given layer is read from the HBM2 and stored in on-chip buffers (Fig. 17). Input/output

pixel buffers are used to store the inputs/outputs of the compute blocks. Weight buffer

is designed to support efficient weight access in both non-transpose and transpose

directions (for FP and BP phases, respectively), following the schemes proposed in

Venkataramanaiah et al. (2019a); Yin and Seo (2020). Weight gradient buffers are

used during the WU phase to read the old gradients and momentum gradients. All

the parameters required for the entire CNN training are stored in HBM2 memory.

39

Weight router

Data

scatter

Weight buffer

CNN control

HBM

rdata

Dilate row

control

D
ila

te
 ro

w

c
o

n
tro

l

Dilated weights

0

Non

dilated

weights

Column dilated

weights

k11 k12 k13

k21 k22 k23

k31 k32 k33

k11 0 k12 0 k13

x x x x x

k21 0 k22 0 k23

x x x x x

k31 0 k32 0 k33

k11 0 k12 0 k13

0 0 0 0 0

k21 0 k22 0 k23

0 0 0 0 0

k31 0 k32 0 k33

MAC array

(supports

FP,BP, WU)

O
u

tp
u

t

b
u

ffe
r

P
ix

e
l ro

u
te

r

In
p

u
t b

u
ffe

r

D
ila

te
d

p
ix

e
ls

0

MAC array

(supports

FP,BP, WU)

O
u

tp
u

t

b
u

ffe
r

P
ix

e
l ro

u
te

r

In
p

u
t b

u
ffe

r

D
ila

te
d

p
ix

e
ls

0

(a)

(b)

(c)

Figure 18. Flexible MAC unit with a dilation control block for both weights and
activations. The non-dilated weights/activations from the HBM2 is rearranged by the
dilation control block and the data scatter unit.

3.3.2 Dilated Convolutions

The BP and WU phases of stride-2 convolutions require dilations in both weights

and input feature maps, (Fig. 16). Fig. 18 shows the design of control logic to support

BP and WU of stride-2 convolutions. The non-dilated data (a) is loaded from HBM2

to on-chip buffers. Storage of dilated images/kernels in HBM2 is avoided to reduce

latency. The non-dilated data is rearranged by the scatter unit according to the

on-chip buffer storage pattern requirement. During this data rearrangement, the data

scatter unit dilates the data (pixels or weights) in the x-dimension (b). Dilations in

y-dimension is performed by the address control logic by skipping the writes of every

dilated row. While reading the data to the convolution engine, every dilated row is

detected and padded with zeros (c). This dataflow is replicated for both weights and

input feature maps, and can be configured as needed using global control logic.

40

Pixel channels

group1/group2

Weights and

gradient

channels

Channel assignment block

Address

controller

Layer

decoder

Access config memory Read/write

access

done

HBM configuartion memory

Conv

layers

Pool

layers

Weight

update

layers

Element

-wise

layers

HBM configurator

CNN

compute

HBM

Layer

#

Tile

#

reads

Read

start

addr

#

writes

Write

start

addr

conv 1
T 1 256 0 256 1024

T 2 256 64 256 1088

conv 2
T 1 512 1024 512 2048

T N

..

conv N ..
HBM configuration of

conv N

Control signals

Start HBM access

Layer type

Num reads/writes

Start address

Done transaction

Figure 19. HBM2 configurator module generates HBM2 read and write configuration
signals based on the layer type.

3.3.3 HBM2 Configurator Module

Fig. 19 shows the HBM2 configurator, which generates HBM2 read/ write trans-

action details. The HBM2 configurator consists of a configuration memory that is

preloaded with the information of every transaction. The information in the configu-

ration memory includes the number of read/write transactions, and the read/write

start addresses. Each layer has its own configuration memory as depicted in Fig. 19.

Given the current layer details and tile count, the address controller generates the

read address for configuration memory selected by the layer decoder. Once the trans-

action information is read from the memory, it is assigned to channels in the channel

assignment block.

16 pseudo channels of HBM2 provide a high number of I/O data pins. To effectively

utilize this parallelism provided by HBM2, proper channel allocation and organized

41

Table 3. HBM channel allocation for training parameters. 16 pseudo channels of the
HBM2 is divided into four groups, for which input/output activations (in./out act),
local gradients (LG), transposable weights and weight gradients (Wt gradients) are
assigned.

Phase Layer
Activations & local gradients Weights Wt gradients

channel 0-3 channel 4-7 channel 8-11 channel 12-15

FP

C in./out. act in./out. act transposable weights NA

P,EW in./out. act in./out. act NA NA

FC NA NA transposable weights NA

BP

C in./out. LG in./out. LG transposable weights NA

P,EW in./out. LG in./out. LG NA NA

FC NA NA transposable weights NA

WU
C in. act in. LG

old/new weights

old, new

moment

gradientsFC NA NA

parameter storage become a necessity. For our application, 16 pseudo channels of

HBM2 are divided into four groups of four channels. Each CNN training parameter

that is stored in HBM2 is assigned with one of the four-channel groups. Table 3

provides the details of channel group allocation and the channel groups used in each

phase of training. Channels 0-3 (group 1) and channels 4-7 (group 2) are used to

store the local gradients and activations, channels 8-11 (group 3) are used to store the

weights, and channels 12-15 (group 4) are used to store the weight gradients (both

current weight gradients and momentum gradients). This channel allocation is done

to reduce the off-chip latency of the WU phase.

In the WU phase, we need to read both activations and the local gradients

to compute the weight gradients. To maximize the channel utilization, the local

gradients and activations are stored in the two channel groups in a ping-pong manner.

For example, if convolution layer 1 outputs are stored in channel group 2, then its

corresponding local gradients are stored in channel group 1, and during the WU phase,

42

CNN training accelerator

HBM2

transaction

controller

Intel HBMC + HBM2 IP

Read/write

address

generator

Transaction

ID generator

Ready

logic

AXI signal generator Intel IP

Address ID Request HBM

ready

Ready Rvalid
Rdata

Read/write transaction

details

AXI signals

Figure 20. CNN training accelerator integrated with HBM2, following AMBA AXI4
protocol.

we read channel groups 1 and 2 simultaneously. Using this channel allocation, all 16

channels will be active during the WU phase. The channel assignment block assigns

the transaction information read from the configuration memory to one of the channel

groups based on the request from the CNN compute module. The done logic module

monitors transactions of every channel and HBM2 status signals, and generates a

‘done’ signal when the transaction is complete.

3.3.4 HBM2 Integration

HBM2 communication uses the Intel HBM2 controller (HBMC) following the

AMBA AXI-4 protocol. HBMC provides independent AXI ports for each channel.

The read/write transaction information obtained from the HBM2 configurator is sent

to the HBM transaction controller (HTC). Fig. 20 shows the integration of HTC

and other modules with Intel HBM IPs, enabling successful HBM2 communication.

43

Figure 21. Training latency breakdown of
ResNet-20 CNN for (a) S-10 GX device
with DDR3 and (b) S-10 MX device with
HBM2, both running at 185 MHz.

Figure 22. Training latency breakdown
of VGG-like CNN for (a) S-10 GX device
with DDR3 and (b) S-10 MX device with
HBM2, both running at 185 MHz.

HTC monitors the request from the CNN training accelerator and the status of

HBM2 memory. Based on the read/write request from the training accelerator, HTC

enables corresponding address/transaction ID tag generators. The generated address

and transaction IDs are converted to AXI signals using the AXI signal generator.

Ready logic monitors the status of HTC, address generators, and HBM2 and indicates

whether the HBM is ready to accept the next transaction.

3.3.5 Data Scatter/Gather Unit

HBM2 demands complex and flexible data collection/gathering units as more data

is streamed in one cycle. To achieve this, customized data scatter/gather units were

designed which can collect/send the data based on the channel allocation. The storage

pattern of the parameters on on-chip buffers depends on the layer and parameter

44

Figure 23. Throughput and power comparison of training tasks using Intel i7-9800X
CPU, Tesla V100 GPU, Jetson Nano, S-10 GX FPGA with DDR3, and S-10 MX
FPGA with HBM2. (a) Throughput and (b) power for ResNet-20 CNN training and
(c) throughput and (d) power of VGG-like CNN training are shown

types. The continuous data stream from the HBM2 channels are collected by the

data scatter unit where the data is rearranged and distributed to the on-chip buffers.

The scatter unit also separates channels based on the parameter channel allocation

and processes all channel groups in parallel. The data gather unit collects the data

from output buffers (or new weight and weight gradient buffers in WU phase) and

reorganizes the data before sending it to HBM2 channels. Data scatter/gather unit

considers the channel allocations of different parameters, data precision, unroll factors

and layer type.

3.3.6 HBM2 Initialization

The HBM initialization module loads the HBM with training data and other initial

parameters. To initialize HBM with the training data, the data is loaded from the

host PC to the on-chip memory (M20K) of the FPGA. The on-chip memory (M20K)

works as an intermediate buffer for each pseudo-channel. Due to the limited on-chip

memory resources, we used small buffers, and these buffers will be used multiple times

45

to load a large amount of data to HBM. The HBM configurator and HBM control

modules of the CNN training accelerator is reused to perform the HBM initialization.

After loading all required training data, the CNN training accelerator is enabled. The

HBM initialization is controlled by the host system.

3.4 Experimental Results

3.4.1 Experimental Setup

We evaluate our FPGA accelerator on two CNNs (ResNet-20 and VGG-like CNN)

with CIFAR-10 as the training dataset. The control logic is also configurable to

support large dataset (ImageNet) training, but consumes more FPGA resources to

store and process larger input images. The initial weight parameters and config-

uration register values of benchmark CNNs are generated from our RTL compiler

framework developed in Matlab. Intel S-10 MX (1SM21BHU2F53E2VGS1) and S-10

GX(1SG280LU3F50E3VGS1) were used as the target FPGA hardware. S-10 MX is

equipped with 133 Mbits of M20K, 3,960 DSP blocks, 702K ALMs and 8GB HBM2

memory providing peak memory bandwidth of up to 512 GBps and S-10 GX includes

5,760 DSP blocks, 933K ALMs and 240 Mbits of M20K and 4GB DDR3 with 16.9GB/s

bandwidth. Identical design optimizations has been performed on both S-10 MX and

S-10 GX design for fair comparison.

All parameters use 16-bit floating-point precision to reduce the memory footprint

compared to 32-bit floating-point precision. Since the DSP units of Intel S-10 GX/MX

FPGAs only support 32-bit floating-point precision, 16-bit (32-bit) to 32-bit (16-bit)

floating-point precision converters are used before (after) DSP computation to utilize

46

the existing DSP blocks in S-10 FPGAs. The latency was measured using the functional

simulation of the training accelerator. Using Intel Quartus 19.4 FPGA software, the

accelerator was synthesized, placed/routed and the bitstream was uploaded to the

FPGA board. Intel(R) Core (TM) i7-9800X CPU is used as the host system. For

comprehensive comparison among FPGA, CPU, and GPU hardware for the same

training tasks, we measured the power of each actual hardware system. FPGA

board power consumption is measured using the Intel board test system (BTS) power

monitor. The Intel BTS power monitor reported junction temperature of 47°C. Intel(R)

Core (TM) i7-9800X CPU power is measured with the powerstat command using

RAPL domains. To evaluate the performance of GPUs, we developed a floating

point CIFAR-10 training model using PyTorch Paszke et al. (2017). Tesla V100 GPU

power measurements are done using CUDA nvidia-smi API and Jetson Nano power

measurements are done using Nvidia tegrastat utility. To minimize measurement

inaccuracy, 20 samples of power measurements are averaged over the duration of one

epoch training.

3.4.2 Results and Analysis

Table 4 shows the resource utilization of two CNN benchmarks (ResNet-20 and

VGG-like CNN) for the CIFAR-10 dataset. All the training images in a given batch

are processed sequentially. This greatly reduces the on-chip memory requirements

as we only read the data required to process one training image at a time from

HBM2. We achieved maximum operation frequency of 185 MHz for S-10 MX and GX

implementations.

47

Figure 24. Energy and accuracy comparison of low-batch CNN training on Tesla V100
GPU, Jetson Nano, S-10 MX and GX devices.

For S-10 GX (with DDR3) implementation, Fig. 21(a) and Fig. 22(a) show the

latency breakdown of the proposed accelerator for three training phases (FP, BP,

and WU) of the last training image of a batch (involving actual weight updates) for

Table 4. Resource utilization for training tasks of ResNet-20 and VGG-like CNNs on
Intel Stratix-10 MX and Stratix-10 GX FPGA.

CNN FPGA DSP ALM M20Ks Registers Freq.

ResNet-20 S10-MX
1040

(26%)

239k

(34%)

2558

(13.9M)
390k 185 MHz

VGG-like S10-MX
1046

(26%)

221k

(31%)

2998

(11.4M)
353k 185 MHz

ResNet-20 S10-GX
1043

(18%)

148k

(16%)

1779

(14M)
385k 185 MHz

VGG-like S10-GX
1044

(18%)

97k

(10.4%)

1297

(11M)
167k 185 MHz

48

ResNet-20 CNN and VGG-like CNN, respectively. The latency breakdown includes

the reading of input pixels and weights from off-chip memory (Inpx/wt rd), computing

the convolution outputs (MAC), writing the output pixels (oupx wr), wt gradients (wt

grads) and new weights (wts) back to HBM. In the overall training time, the off-chip

DDR3 memory consumes 47% of latency and logic consumes 53%. For memory-bound

CNNs, even with high hardware parallelism, the low bandwidth of DDR3 memory

will limit the performance Venkataramanaiah et al. (2019a). This critical memory

bandwidth bottleneck can be addressed using HBM2.

Fig. 21(b) and Fig. 22(b) provide the latency breakdown of the proposed FPGA

accelerator implemented on the S-10 MX device using HBM2. WU phase consumes

longer latency than FP/BP phases, as it involves weight gradient computation, gradient

accumulation and computation of new weights. The high off-chip memory bandwidth

provided by HBM2 significantly reduces the latency consumed to read/write the

activations and weights from/to the off-chip memory. As a result, the logic latency

dominates the total latency, compared to S-10 GX implementation with DDR3 in all

three phases of training. Further latency improvement could be achieved by increasing

the number of parallel MAC arrays or by increasing the operating frequency. Using

the proposed channel allocation scheme and HBM2 for the S-10 MX implementation,

we achieved ∼4X reduction in off-chip memory latency and ∼1.5X reduction in system-

level CNN training time, compared to those of the S-10 GX implementation with

DDR3.

Fig. 23(a) and Fig. 23(c) provide the low-batch training throughput of two CNN

benchmarks (ResNet-20 and VGG-like CNN) on Intel i7-9800X CPU, Jetson Nano

embedded platform, Tesla V100 GPU, S-10 GX FPGA and S-10 MX FPGA. The

overall training time of GPUs significantly increases with lower batch sizes. The

49

proposed FPGA training accelerator achieves better throughput compared all other

hardware platforms on both the benchmarks for small batch sizes of 2 and 4. Tesla

V100 provides better throughput for higher batch sizes (8 and 16) but at the cost of high

power consumption. The power consumption of all hardware platforms for different

batch sizes are shown in Fig. 23(b) and Fig. 23(d). The FPGA power consumption

is low because of less utilization (∼30%) of FPGA resources, operating frequency of

185MHz and junction temperature of 47°C reported by Intel BTS tool. Compared

to S-10 MX FPGA, Jetson Nano consumes less power (∼5W) but suffers from long

training latency. For ResNet-20/VGG-like CNNs, our FPGA implementation of CNN

training using S-10 MX with HBM2 is ∼4.5-9.7X more energy-efficient compared to

Tesla V100 GPU, ∼3-7X more energy-efficient compared to low-power Jetson Nano

embedded platform, and ∼1.7X more energy-efficient compared to implementation

on S-10 GX with DDR3. Our proposed S-10 MX design with HBM2 addresses the

critical memory bottleneck problem for CNN training and the custom architecture

enables efficient low-batch training.

Fig. 24 shows the overall energy-efficiency and accuracy comparison of Tesla

V100 GPU, Jetson Nano, S-10 MX, S-10 GX devices for ResNet-20 training across

different batch sizes. It can be seen that the low-batch training accuracy has minimal

degradation compared to high-batch training accuracy Masters and Luschi (2019). At

the same frequency and MAC array size, S-10 MX design provides 1.7X improvement

in energy-efficiency compared to S-10 GX design by greatly reducing the off-chip

communication latency.

50

3.5 Conclusion

This chapter presents a flexible CNN training accelerator on FPGA using HBM2,

which performs end-to-end training of modern CNNs involving residual connections

and stride-2 convolutions. The FPGA accelerator is implemented on Intel S-10 MX

(with HBM2) and S-10 GX (with DDR3) devices, demonstrating system-level benefits

of HBM2 over conventional DDR3 off-chip memory. The proposed accelerator achieves

4.5-9.7X energy-efficiency improvement compared to Tesla V100 GPU and 7-11X

improvement in throughput compared to that of Intel i7-9800X CPU for low-batch

training tasks of ResNet-20/VGG-like CNNs.

51

Chapter 4

EFFICIENT AND MODULARIZED TRAINING ON FPGA FOR REAL-TIME

APPLICATIONS

Training of deep Convolution Neural Networks (CNNs) requires a tremendous

amount of computation and memory and thus, GPUs are widely used to meet the

computation demands of these complex training tasks. However, lacking the flexibility

to exploit architectural optimizations, GPUs have poor energy efficiency of GPUs and

are hard to be deployed on energy-constrained platforms. FPGAs are highly suitable for

training, such as real-time learning at the edge, as they provide higher energy efficiency

and better flexibility to support algorithmic evolution. This chapter first develops a

training accelerator on FPGA, with 16-bit fixed-point computing and various training

modules. Furthermore, leveraging model segmentation techniques from Progressive

Segmented Training, the newly developed FPGA accelerator is applied to online

learning, achieving much lower computation cost. We demonstrate the performance of

representative CNNs trained for CIFAR-10 on Intel Stratix-10 MX FPGA, evaluating

both the conventional training procedure and the online learning algorithm. The

demo is available at https://github.com/dxc33linger/PSTonFPGA_demo.

4.1 Introduction

The recent development of machine learning algorithms and computing hardware

has enabled many modern edge applications, such as autonomous vehicles, surveillance

drones, and robots. Training of these ML-edge applications is typically performed on

52

cloud servers because of their high computing capability. Sending the data to the

cloud incur large latency overhead and raises privacy/security concerns. Training at

the edge enables limited data exchange with the cloud and helps in personalizing,

improving energy efficiency and protecting the private data. The edge devices are also

preferred to handle the learning from a data stream over time locally and in real-time,

i.e. online learning.

In order to enable online learning at the edge for real-time applications, several

major challenges need to be solved: (1) When new data arrives in a stream, there is

very limited or even no access to previously learned data. Yet the learned knowledge

(i.e. network parameters) from previous data should not be forgotten (i.e. overwritten

or deteriorated due to the learning of new observations) Kirkpatrick et al. (2017);

Chaudhry et al. (2018); Li and Hoiem (2017); Rebuffi et al. (2017b). (2) The network

should be able to update its parameters according to the incoming data stream. It

is preferred that such adaption is completed locally and in real-time for an edge

device Du et al. (2019a); Venkataramanaiah et al. (2019b). (3) Although GPUs

provide remarkably high parallelism and throughput making it a viable option for

real-time learning, they are not suitable for power constrained platforms. Hardware

design for flexible and energy efficient training at the edge is challenging due to

design complexity, large computation/memory/power requirement and other resource

budges Han et al. (2016b, 2015); Du et al. (2019b); Liu et al. (2015); Li et al. (2015).

FPGAs are well suited to exploit these algorithmic advances and tackle the above-

mentioned challenges as they provide high energy efficiency, good flexibility, and large

on-chip and off-chip memories. Several FPGA based training/inference accelerators

have been proposed Liu et al. (2018); Gomperts et al. (2011); Rafael et al. (2005); Liu

et al. (2017); Zhao et al. (2016); Choi et al. (2018); Guo et al. (2019) but they fail

53

to show end-to-end training capability. Venkataramanaiah et al. (2019b) proposes

an FPGA based fixed-point training accelerator capable of demonstrating end-to-

end training. An RTL generator is used to generate the architecture according to

the network structure and design requirements. The proposed accelerator can also

support novel training methodologies like PST and provides great flexibility to exploit

optimizations.

Figure 25. The demonstration system consists of Intel Straix-10 FPGA initialized
with pre-trainined model parameters. The new data is streamed to the FPGA and
learned locally in real-time using PST algorithm.

In this work, we demonstrate online CIFAR-10 CNN learning on an FPGA based

16-bit fixed-point training accelerator Venkataramanaiah et al. (2019b) on Intel Stratix-

10 MX FPGA Deo et al. (2016). The proposed accelerator is augmented to support

PST Du et al. (2019a) which further improves the performance of online CNN training.

We also demonstrate the PST algorithm by deploying the pretrained, segmented model

(i.e. selected weights are frozen in the network) on the FPGA and training the network

with new real-time data.

54

4.2 System Overview

4.2.1 Demo System

Figure 25 depicts the overall system setup to demonstrate training of CNNs using

PST algorithm. First, a large amount of knowledge is pretrained and important model

parameters are frozen in the network (Figure 25a) following the process described in

Du et al. (2019a). The pretrained model is sent to RTL generator which generates the

customized training accelerator and HBM2 memory initialization files (Figure 25b).

The generated training accelerator uses the frozen weights stored in HBM2 and

performs the inference. This forms an inherited model, which is used to acquire new

knowledge; the model is then exposed to a new unlearned data stream and the network

parameters are updated accordingly in real-time on the FPGA (Figure 25c). The entire

system is demonstrated on Intel Stratix-10 MX FPGA board (Figure 25d). Benefiting

from the model inheritance, the online training of new observations requires much

less computation cost and lower latency, as compared to traditional continual learning

scheme that learns from scratch. PST greatly aids in improving the computation cost

by updating only the required weights instead of updating all the network parameters

in the traditional training schemes. Latency breakdown graph (Figure 25e) shows the

latency benefit of using PST compared to conventional training in the weight update

(WU) phase.

55

4.2.2 CNN Training Hardware

The RTL generator generates the CNN training hardware using the high-level

network details given by the user. It uses a highly parameterized handwritten RTL

module library designed to support various layers of CNN training. The user can

also reconfigure the architecture by changing the FPGA design parameters such as

precision, MAC array size, tiling, and layer scheduling. To support novel training

algorithms like PST, the RTL generator is designed to read the pretrainied CNN

model and generate the HBM2 initialization files to load the frozen weights.

The CNN training hardware is flexible to support forward pass (FP), backward

pass (BP) and weight update (WU) phases of training. The hardware consists of a

global control logic that governs all the modules and enables layer by layer execution

by using the parameters generated by the RTL generator. The HBM2 stores all

the initial weight parameters (or weights from a pretrained model), activations and

computed weight gradients/new weights. The input/output on-chip buffer is used

to store the input/output parameters required for a given layer. For example, while

computing a convolution layer the input buffers stores the input activations, weights

and output buffers store the convolved outputs.

The core compute blocks reads the data from the input buffers and perform the

computation based on the layer type and the outputs are sent to output buffers. The

convolution block uses a 2D systolic MAC array flexible to support all three phases of

the training. The weight update block computes and accumulates the weight gradients.

At the end of the batch, the accumulated weight gradients are scaled and new weights

are computed using the stochastic gradient descent algorithm. To support PST where

we need to only update the selected weights, the control logic was augmented to skip

56

the HBM2 access if the frozen weights thereby reducing the off-chip communication.

The weight updates and weight gradient computation was performed only for the

selected weights.

4.2.3 Demonstration Setup

We showcase our system with CIFAR-10 Krizhevsky et al. (2009) dataset. The

CIFAR-10 dataset consists of 60,000 32× 32 color images in 10 classes, with 5,000

training images and 1,000 testing images per class. The classes include common

objects such as plane, bird, truck, etc. We demonstrate online learning on FPGA

with a CNN structure of 16C3-16C3-MP-32C3-32C3-MP-64C3-64C3-MP-FC, where

‘NCk’ represents convolution layer with ‘N’ output feature maps and kernel size of ‘k’,

‘MP’ represents max pooling layer and ‘FC’ represents a fully connected layer. The

accelerator was synthesized by Intel Quartus 19.2 at 150 MHz frequency. We used

Stratix-10 MX equipped with HBM2 as the target hardware and Intel(R) Core(TM)

i7-9800X as a host machine. All the parameters used 16-bit fixed point precision.

57

Chapter 5

FIXYNN: EFFICIENT HARDWARE FOR MOBILE COMPUTER VISION VIA

TRANSFER LEARNING

The computational demands of computer vision tasks based on state-of-the-art

Convolutional Neural Network (CNN) image classification far exceed the energy

budgets of mobile devices. This chapter proposes FixyNN, which consists of a fixed-

weight feature extractor that generates ubiquitous CNN features, and a conventional

programmable CNN accelerator which aprocesses a dataset-specific CNN. Image

classification models for FixyNN are trained end-to-end via transfer learning, with the

common feature extractor representing the transfered part, and the programmable

part being learnt on the target dataset. Experimental results demonstrate FixyNN

hardware can achieve very high energy efficiencies up to 26.6 TOPS/W (4.81× better

than iso-area programmable accelerator). Over a suite of six datasets we trained models

via transfer learning with an accuracy loss of < 1% resulting in up to 11.2 TOPS/W –

nearly 2× more efficient than a conventional programmable CNN accelerator of the

same area.

5.1 Introduction

Real-time computer vision (CV) tasks such as image classification, object detec-

tion/tracking and semantic segmentation are key enabling technologies for a diverse

range of mobile computing applications, including augmented reality, mixed reality,

autonomous drones and automotive advanced driver assistance systems (ADAS). Over

58

Fixed
Feature Extractor

(FFE)

Programmable
CNN Accelerator

Fully-Parallel
Fully-Pipelined
Zero DRAM BW

Weights Stored
in DRAM

PO
OL

Shared Front-End

Task Specific CNN Back-End

DRAM Memory

SRAM MemorySRAM Memory

Task 1

Weights Hard-Coded
in Fixed Datapath

Input

Shared

CO
NV

PO
OL FC

Task 2
Task N

FixyNN Hardware

CO
NV

PO
OL

CO
NV

PO
OL “CAT”

Figure 26. FixyNN proposes to split a deep CNN into two parts, which are implemented
in hardware using a (shared) fixed-weight feature extractor (FFE) hardware accelerator
for the shared front-end and a canonical programmable accelerator for the task-specific
back-end.

the past few years, convolutional neural network (CNN) approaches have rapidly

displaced traditional hand-crafted feature extractors, such as Haar Viola and Jones

(2004) and HOG Dalal and Triggs (2005). This shift in focus is motivated by a marked

increase in accuracy on key CV tasks such as image classification Simonyan and

Zisserman (2014). However, this highly desirable improvement in accuracy comes at

the cost of a vast increase in computation and storage Suleiman et al. (2017), which

must be met by the hardware platform. Mobile devices exhibit constraints in the

energy and silicon area that can be allocated to CV tasks, which limits the adoption

of CNNs at high resolution and frame-rate (e.g. 1080p at 30 FPS). This results in a

gap in energy efficiency between the requirements for real-time CV applications and

the power constraints of mobile devices.

Two key trends that have recently emerged are starting to close this energy efficiency

59

gap: more efficient CNN architectures and more efficient hardware. The first is the

design of more compact CNN architectures. MobileNetV1 Howard et al. (2017a) was

an early and prominent example of this trend, where the CNN topology is designed

to minimize both the number of multiply-and-accumulate (MAC) operations and the

number of parameters, which is essentially the compute and storage required of the

hardware platform. MobileNetV1 similar accuracy to VGG (top-5 ImageNet 89.9% vs.

92.7%), with only ∼3% of the total parameters and MACs. The second trend is the

emergence of specialized hardware accelerators tailored specifically to CNN workloads.

Typical optimizations applied to CPU, GPU and accelerators include: provision for

small floating-point and fixed-point data types, use of optimized statically-scheduled

scratchpad memories (as opposed to cache memories), and an emphasis on wide

dot-product and matrix multiplication datapaths.

In this chapter we describe FixyNN, which builds upon both of these trends, by

means of a hardware/CNN co-design approach to CNN inference for CV on mobile

devices. Our approach (Figure 26) divides a CNN into two parts. The first part of

the network implements a set of layers that are common for all CV tasks, essentially

producing a set of universal low-level CNN features that are shared for multiple different

tasks or datasets. The second part of the network provides a task-specific CNN back-

end. These two CNN parts are then processed on different customized hardware. The

front-end layers are implemented as a heavily optimized fixed-weight feature extractor

(FFE) hardware accelerator. The second part of the network is unique for each dataset,

and hence needs to be implemented on a canonical programmable CNN hardware

accelerator Nvidia (2019); Arm (2019). Following this system architecture, FixyNN

diverts a significant portion of the computational load from the CNN accelerator to

the highly-efficient FFE, enabling much greater performance and energy efficiency.

60

The use of highly aggressive hardware specialization in the FFE makes FixyNN a

significant step forward towards closing the energy efficiency gap on mobile devices.

At the same time, by leveraging transfer learning concepts, we are able to exploit

aggressively optimized specialized hardware without sacrificing generalization.

This chapter describes and evaluates FixyNN; the main contributions are listed

below:

• A description of a hardware accelerator architecture for the fixed-weight feature

extractor (FFE), including a survey of the potential optimizations.

• An open-source tool-flow DeepFreeze (2018) for automatically generating and

optimizing an FFE hardware accelerator from a TensorFlow description.

• Demonstration of the use of transfer learning to generalize a single common

FFE to train a number of different back-end models for different datasets.

• Present results that compare FixyNN against a conventional baseline at iso-area.

5.2 Related Work

CNN Hardware Accelerators. There is currently huge research interest in the

design of high-performance and energy-efficient neural network hardware accelerators,

both in academia and industry Barry et al. (2015); Arm (2019); Nvidia (2019);

Reagen et al. (2017a). Some of the key topics that have been studied to date include

dataflows Chen et al. (2016b); Samajdar et al. (2018), optimized data precision Reagen

et al. (2016), systolic arrays Jouppi et al. (2017a), sparse data compression and

compute Han et al. (2016a); Albericio et al. (2016); Parashar et al. (2017); Yu et al.

(2017); Ding et al. (2017); Whatmough et al. (2018), bit-serial arithmetic Judd et al.

(2016), and analog/mixed-signal hardware Chen et al. (2016a); LiKamWa et al. (2016);

61

Shafiee et al. (2016); Chi et al. (2016); Kim et al. (2016); Song et al. (2017). There is

also published work on hardware accelerators optimized for image classification for

real-time CV Buckler et al. (2018); Riera et al. (2018); Zhu et al. (2018), along with

simulation tools SCALE-Sim (2019).

Image Processing Hardware Accelerators. The hardware design of the

fixed feature extractor in FixyNN is reminiscent of image signal processing hardware

accelerators. In particular, the use of native convolution and line-buffering have been

explored in prior works including Ragan-Kelley et al. (2013); Hegarty et al. (2016,

2014); Lee and Messerschmitt (1987); Horstmannshoff et al. (1997).

Carry-
Propagate

Adder

3 x 3 x C
Pixels/Cycle

32-bit 8-bit

C Parallel Kernels
per Channel

C Parallel
Channels1 Pixel per

Channel

1 x 1 x C
Pixels/Cycle

W0 W1 W2

W3 W4 W5

W6 W7 W8

CS Adder Tree

CS Adder Tree
CS

CS
ReLUBN Q

Figure 27. A fully-parallel fixed-weight native convolution hardware datapath stage for
a 3× 3 CONV layer. Other CNN layer shapes are implemented in an identical fashion,
but with different dimensions. “CS” denotes carry-save arithmetic representation.
“BN” denotes batch normalization and incorporates the bias term. “Q” denotes a
programmable quantization function that converts from 32-bit to 8-bit. The multiplier
symbols actually represent fixed-weight shift-add scalers with a single input operand.
Grey multipliers and signals denote hardware removed due to pruned zero or small
non-zero weights.

Transfer Learning and Domain Adaptation. In FixyNN, we use transfer

learning techniques to share an optimized fixed feature extractor amongst multiple dif-

ferent back-end CNN models. Yosinski et al. (2014) first established the transferability

of features in a deep CNN, outlining that the early layers of a CNN learn generic

features that can be transferred to a wide range of related tasks. Fine-tuning the

model on the new task yields better performance Yosinski et al. (2014) than training

62

from scratch. Transfer learning has subsequently found a wide range of applications.

For example, a deep CNN trained on the ImageNet dataset Russakovsky et al. (2015)

was successfully transferred to detect pavement distress in roads Gopalakrishnan et al.

(2017). Interestingly, more recent work demonstrated it is also possible to fix the last

fully-connected layer in a CNN as a Hadamard matrix Hoffer et al. (2018).

Domain adaptation Tzeng et al. (2015) is a concept closely related to transfer

learning. It refers to learning adaptive models that work on different visual domains

(e.g. hand-written digits versus printed street numbers). The residual adapter

architecture Rebuffi et al. (2017a, 2018) marks the recent progress in this field to

efficiently learn parametrized models for several tasks and domains simultaneously.

FixyNN can benefit from future advances in transfer learning and domain adaptation

techniques.

Hardware Generators for CNN Accelerators. A number of previous works

have proposed solutions to automatically generate optimized hardware accelerator

designs Venieris et al. (2018); Mahajan et al. (2016); Sharma et al. (2016); Hernández-

Lobato et al. (2016); Reagen et al. (2017b). There are also some relevant contributions

from the image processing domain Ragan-Kelley et al. (2013); Hegarty et al. (2014)

that similarly generate high-performance convolution hardware. The DeepFreeze

tool we developed in this work was a necessity in order to explore fixed-weight

feature extractors, as hand-written Verilog modules containing millions of parameters

would have been impractical otherwise. We did not explore applying FixyNN on

FPGAs Umuroglu et al. (2017) in this chapter, but plan to look at this in future

work. We are also planning to explore heavily-constrained Internet-of-Things (IoT)

applications Kodali et al. (2017) in future work.

63

3 x 3 x C
Pixels/Cycle

1 x 1 x C
Pixels/Cycle

1 x 3 x C
Pixels/Cycle

Line Buffer
(Single-Ported SRAM)

Shift Reg.
(Flip-Flops)

CONV_2D
Datapath

CONV_2D
Datapath

4 x W x C
3 x 3 x C1Wr

3Rd

Figure 28. Overview of the fully-pipelined feature map buffering micro-architecture
between consecutive layers of fixed-weight fully-parallel CNN layers. This example
illustrates the case for two consecutive CNN layers with 3×3 kernels.

5.3 Fixed-Weight Feature Extractor Hardware Design

FixyNN combines two specialized hardware accelerators: a heavily-optimized

fixed-weight feature extractor (FFE), and a more conventional programmable CNN

accelerator. This combination provides very high energy efficiency without sacrificing

generalization across a range of datasets. Fixing the weights of a convolution (CONV)

layer in a fully-parallel, fully-pipelined FFE accelerator enables a number of aggressive

hardware optimizations in the FFE, and therefore results in significantly improved

throughput and energy efficiency, which cannot be matched by a programmable

accelerator. We emphasize five major optimizations stemming from fixing weights in

the hardware.

• Fixed Shift-Add Scalers. Hardware weight multipliers, which ordinarily have two

input operands, are transformed into simple fixed scalers with a single input operand.

Fixed scalers are formed by simply adding a series of hard-coded bit-wise shifts of

the input operands and are very cheap in hardware. The number of bit-shifts and

additions required per fixed multiplier is determined by the number of non-zero bits

in the binary representation of the weight (i.e. Hamming weight). This represents

a very significant strength reduction and results in substantial reduction in power

consumption, logic delay and silicon area Cooper et al. (2001).

64

• Zero-Overhead Weight Pruning. Weights with a zero or small non-zero value

are redundant and can be explicitly removed from the datapath hardware. This

results in a reduction in datapath area and power, linearly proportional to the

weight sparsity for the layer. In a programmable CNN accelerator, there is overhead

in exploiting sparsity, due to the requirement to encode the position in the matrix

of non-zero weights Parashar et al. (2017).

• Optimized Intermediate Precision The precision used for multipliers and

accumulators are typically set to the worst-case values in a programmable accelerator.

However, in the FFE, we know the weights and their magnitude a-priori, and can

therefore perform static analysis to optimize the product and accumulator bit-widths,

which further reduces the hardware cost.

• Zero DRAM Bandwidth. The weights for the CONV layers implemented in the

FFE are hard-coded in the datapath logic and do not need to be stored in memory.

Hence, unlike a programmable accelerator, there is no need to access expensive

off-chip DRAM when using the FFE.

• Minimal Activation Storage. By using native convolution that does not incur

storage overheads for IM2COL expansion Warden (2015), and also implementing

fully-pipelined hardware, we can reduce storage of activation feature maps to a

minimum. This is in contrast to programmable accelerators, which typically process

layers in a serial fashion, to maximize weight reuse, and therefore must buffer the

entire output feature map for each layer at once.

In the remainder of this section, we describe the hardware design of the FFE. We

first describe the arithmeric datapath stage, followed by the buffering stage, and finally

the tool flow to automatically implement and optimize the FFE from a high-level

model description.

65

5.3.1 Fully-Parallel Fixed-Weight CNN Datapath

The computation for each CONV layer is implemented as a flat, fully-parallel,

pruned fixed-weight arithmetic logic stage (Figure 27). The fixed scalars that replace

the multipliers are generated by the synthesis tool, as the weights are embedded

as literals in the Verilog hardware description language (HDL). These fixed scalars

are also subsequently optimized by the synthesis tool to reduce gate-count, using

techniques such as Booth recoding Booth (1951), canonical signed-digit encoding

and other well-known datapath optimizations Zimmermann (2009). The adder trees

following the multipliers are combined by the synthesis tool into a wide carry-save

(CS) addition tree with a single carry-propagate adder Zimmermann (2009). Following

the convolutions, there are operations in each layer for batch normalization (BN) 1,

which scale and shift activations (and integrates the bias term), rectified linear unit

(ReLU) activation function and a quantization step to convert from the wider precision

of the accumulator node back to the narrow representation for activation data. As we

will describe in Section 5.6.2, the BN parameters are important for transfer learning,

so we keep these programmable, using dedicated registers. This is not a big overhead

as there are a very small number of BN parameters. Simple max pooling layers are

also supported.

1A widely-adopted technique to improve performance and stability by ensuring layer outputs
have zero mean and unit variance Ioffe and Szegedy (2015).

66

5.3.2 Fully-Pipelined CNN Buffering

In contrast to programmable CNN accelerators that typically convert convolution

into Generic Matrix Multiplication (GEMM), computing the CNN in a serial fashion,

the FFE implements native convolution with fully-pipelined CONV layers. However,

buffering is required between consecutive datapath stages, because a typical 3× 3×C

CONV kernel, where C is the number of channels, consumes a 3× 3× C input pixel

tensor per cycle, but generates only a single small 1× 1× C output tensor, where C

is the number of output channels. Hence, we must buffer several 1× 1× C outputs

into a larger 3× 3× C input for the next layer.

This buffering function is achieved using the common approach of a line buffer,

which stores activations of each layer row by row until the required tensor size has

been built up. Figure 28 gives an overview of the arrangement for a simple CNN

layer with a 3× 3 kernel shape. In this case, due to the discrepancy in input/output

tensor dimensions, we need to buffer three full rows before we can start to generate

the larger tensors we need for the following layer. We implement the line buffer using

simple single-port SRAMs, and therefore actually require four independent SRAM

banks, such that we can write a single-row patch to one bank per cycle, and read the

three-row patch from three banks per cycle, concurrently. After reading/writing the

last pixel in a row, the four banks are rotated to overwrite the data associated with the

oldest row (double-buffer). This arrangement can be further optimized Hegarty et al.

(2014, 2016); Ragan-Kelley et al. (2013), for example, by using dual-port SRAMs,

which were not available to us in our process technology.

Following the SRAM line buffer, a flip-flop based shift-register is implemented

such that the convolution window moves efficiently over the feature map, without

67

PPA Report

Datapath RTL

High-Level
API

Buffer RTLLine Buffer & Shift
Reg. Template

Testbench

PPA Estimate

DeepFreeze

16nm Characterization
Data

Simulation
Verification

TensorFlow
Protobuf

ASIC/FPGA
Implementation

Figure 29. The DeepFreeze tool flow automatically generates Verilog HDL for optimized
fixed feature extractors from a high-level description of the model in a software
framework such as TensorFlow.

re-reading data. The shift-register consumes 1×3×C pixels per cycle from the SRAM

line buffer and outputs a 3 × 3 × C pixel volume per cycle. The advantage of the

shift-register stage is an SRAM bandwidth reduction of 3×. Larger CNN kernels, such

as 5× 5× C and 7× 7× C are arranged in a similar fashion, with dimensions scaled

appropriately. Strides of more than one are also supported. We also make a provision

to allow the activation data to be optionally streamed from any intermediate buffer

stage, to allow a smaller number of fixed layers to be utilized for models that are more

difficult to train via transfer learning.

5.3.3 DeepFreeze Tool Flow

To facilitate implementing FFE accelerators with possibly millions of hard-coded

weights, we developed an open-source tool called DeepFreeze. DeepFreeze generates

fixed CNN hardware accelerator designs for a specified set of layers from a model

described in a standard machine learning software framework, such as TensorFlow.

DeepFreeze first parses the network from a given framework into an internal

representation of that model. It then generates a fixed datapath from the model

68

description using a direct code generation step, which reads the model weights and

emits Verilog source code with the weights embedded as immediate values. Zero

weights are automatically removed entirely from the hardware (pruning is assumed to

be performed outside of the DeepFreeze tool-flow). During the datapath generation,

the bit-widths of the fixed scalars are optimized individually based on the scalar value.

The precision for the intermediate activations is specified as a hardware parameter,

along with the accumulator width. The final Verilog is constructed by connecting

consecutive combinational datapath stages with buffer stages, which are instantiated

from a parameterized Verilog template. The generated Verilog can be directly read in

by any synthesis tool for ASIC or FPGA implementation. DeepFreeze also generates a

validation suite with testbench for simulation. Finally, the tool generates an estimate

of power, performance and area (PPA) for the high-level model provided. This estimate

uses simple extrapolations from data derived from implementation experiments, and

is useful for rapid design space exploration.

5.4 Transfer Learning with a Fixed Feature Extractor

In the previous section, we described the hardware design of a fixed feature

extractor accelerator that offers substantially better throughput/latency and energy

compared to programmable CNN accelerators. However, we do not propose to fix

the whole network for two reasons. Firstly, for large models, the silicon area of the

fixed hardware accelerator would be prohibitive in most applications. Secondly, fixing

the whole network would make it impossible to change the task or dataset; it would

essentially result in a single-function hardware accelerator. Therefore, in FixyNN we

propose to fix only a portion of the front-end of the network, and use a canonical

69

programmable accelerator to process the remainder (Figure 26). The fixed portion

provides a set of more universal CNN features specific to the application domain of

vision tasks, whereas the programmable portion of the network specific to a given a

dataset. In this section, we briefly outline how to train arbitrary CNN vision models

that incorporate a fixed feature extractor implemented a-priori.

Transfer learning is a concept that we introduced in Section 5.2. Here, we highlight

transfer learning as a concept that suggests it is perfectly feasible to train a new model

that incorporates a fixed feature extractor, at least within the same application domain

of CV. As previously motivated, the central advantage is that the performance and

power efficiency of the fixed feature extractor are significantly superior. In addition,

there are a number of auxiliary advantages, such as a significantly smaller model to

store, maintain and update.

The CNN model architecture we use in this work is MobileNetV1 Howard et al.

(2017a), which is an efficient model designed for mobile computer vision. MobileNet

exploits the efficient depth-wise separable convolution layer, which is composed of

M 3× 3× 1 depth-wise convolution filters (M is the number of input channels) and

N 1 × 1 × M point-wise convolution filters (N is the number of output channels).

A depth-wise separable convolution layer costs between 8× to 9× less computation

than a traditional 3 × 3 kernel. Additionally, MobileNet is a suitable architecture

for FixyNN because the FFE can directly concatenate the depth-wise and point-wise

kernels without any buffering, as the output dimensions of the depth-wise layer are the

same as the input dimensions of the point-wise layer. MobileNet has 13 CONV layers

in total, with a fully connected layer for final classification. The first CONV layer

is a traditional convolution layer and the remaining 13 CONV layers are depth-wise

separable layers. A width multiplication factor α Howard et al. (2017a) is introduced

70

to explore different size models with the same basic architecture. For a given layer in

the baseline MobileNet that has M input channels and N output channels, the same

layer in MobileNet-α has αM input channels and αN output channels. The width

multiplier value of α reduces the computational cost and parameters by roughly α2.

The procedure for training an image classification model on a given dataset is as

follows. We start by assuming the fixed feature extractor has already been defined,

using the MobileNet architecture trained on the ImageNet data. The early-layer

weights are fixed for the feature extractor, while the remainder of the network is

fine-tuned on the target dataset. Further details of the training procedure can be

found in Section 5.5.2.

As discussed in Section 5.3, fixing the weights in the feature extractor leads to

a number of optimizations that cannot be as easily exploited in a programmable

accelerator. We may gain further benefits in latency, energy and silicon area through

more aggressive optimization of the CNN layers for the fixed feature extractor by

forcing more sparsity and Hamming weight reduction during training and fine-tuning.

5.5 Experimental Methodology

To evaluate FixyNN, we conduct experiments in both hardware modeling and

transfer learning. The hardware modeling experiments compare FixyNN against state-

of-the-art hardware accelerator designs. The transfer learning experiments evaluate

generalization of a fixed feature extractor across a set of tasks.

71

5.5.1 Hardware Modeling

FixyNN consists of two hardware components: the FFE, and a programmable

CNN accelerator. The FFE is generated using our DeepFreeze tool (Section 5.3.3).

We use 8-bit precision for weights and activation data, and 32-bit for accumulators.

For ASIC implementation experiments, we use Synopsys Design Compiler with TSMC

16nm FinFET process technology to characterize silicon area. Timing analysis for

throughput/latency is performed with Synposys PrimeTime. All simulations use a

clock frequency of 810 MHz. Power characterization is performed using Synopsys

PrimeTime PX with switching activity annotated from simulation trace data.

The programmable accelerator is based on published results for the NVIDIA Deep

Learning Accelerator (NVDLA) Nvidia (2019). NVDLA is a state-of-the-art open-

source neural network accelerator, with Verilog RTL for hardware implementation

and a TLM SystemC simulation model that can be used for software development,

system integration, and testing. NVDLA is configurable in terms of hardware re-

sources. Table 5 summarizes the published performance of NVDLA in six nominal

configurations.

Config. #MACs Buffer (KB) 16nm Area (mm2) TOPS TOPS/W
A 64 128 0.55 0.056 2.0
B 128 256 0.84 0.156 3.8
C 256 256 1.00 0.358 5.6
D 512 256 1.40 0.728 6.8
E 1024 256 1.80 1.166 6.3
F 2048 512 3.30 2.095 5.4

Table 5. Published NVDLA configurations, reproduced from NVDLA

To explore the final FixyNN design space (Section 5.6.1), we combine PPA models

of an FFE containing the first N layers of the network, along with the NVDLA

programmable accelerator drawn from the published configurations. DeepFreeze is

used to model the PPA of the fixed feature extractor. Since the hardware performance

72

of the FFE is heavily dependent on the sparsity of the network, we assume a cautious

50% sparsity across the model for simplicity. Prior work has demonstrated that 50%

of weights can be pruned from MobileNet with minimal accuracy loss Zhu and Gupta

(2017). The hardware modeling of NVDLA is from published data. Because the

latency of the FFE is much lower than that of the programmable NVDLA in the

configurations we tested, we assume perfect clock gating in FixyNN to eliminate FFE

power when idle. Finally, we do not model FC layers as they are heavily memory

bound and we would never be able to fix them anyway due to the huge number of

parameters.

5.5.2 Transfer Learning

The fixed feature extractor is constrained not only by silicon area considerations,

but also by the achievable model accuracy. The foundational work on transfer learning

showed that as more layers are transfered, the accuracy becomes limited due to change

in representational power and the later layers are more task specific than the early

layers Yosinski et al. (2014). In previous work, transfer learning is typically applied

on big models such as AlexNet, which is prohibitively expensive from a hardware

implementation point of view. Furthermore, it is arguably easier to perform transfer

learning when the model capacity is very high as more parameters are available to fit

the new dataset. In this chapter, we perform a set of transfer learning experiments

showing good performance with fixed weights on MobileNet, a much more constrained

model.

Inspired by the visual decathlon challenge Rebuffi et al. (2017a) introduced to

explore multiple-domain learning for image recognition, we choose seven different

73

image recognition tasks to design our experiments: ImageNet Russakovsky et al.

(2015), CIFAR-100 Krizhevsky (2009), CIFAR-10 Krizhevsky (2009), Street View

House Numbers (SVHN) Netzer et al. (2011), Flowers102 (Flwr) Nilsback and

Zisserman (2008), FGVC-Aircraft (Airc) Benchmark Maji et al. (2013), and The

German Traffic Sign Recognition (GTSR) Benchmark Stallkamp et al. (2012).

These datasets vary in number of images, resolution and granularity. For example,

ImageNet and CIFAR-100 are diverse datasets with a wide range of objects, while

Flwr and Airc are fine-grained recognition tasks for specific vision domains of flowers

and aircrafts respectively.

For the first set of experiments, we use MobileNet-0.25, an efficient model with

only 41 million MACs and 0.47 million parameters. The model is first trained on

ImageNet to an accuracy of 49.8% (state-of-the-art for this small MobileNet model)

and then transfered to the other six vision tasks. The baseline results are obtained by

performing full-fledged fine-tuning, where all the parameters of the model are updated

during fine-tuning on the new dataset. This is used as the baseline case for a model

running on a programmable DLA. Six different FixyNN topologies are explored in

these experiments, with different number of layers being fixed. In some topologies, all

batch normalization layer scaling and bias parameters in the model are retrained on

the new dataset. We call this configuration Adaptive Batch-Normalization (BN).

Stochastic gradient descent with an initial learning rate of 0.01 and momentum of

0.9 is used to perform fine-tuning (except for GTSR dataset, where an initial learning

rate of 0.001 is used for better convergence). The learning rate is decayed 10× every

100 epochs (200 epochs for GTSR). A batch size of 128 is used. The seven datasets

come with different resolutions. For the purpose of standardization, all images are

resized to 224× 224 using bilinear interpolation. Data augmentation preproccessing is

74

applied to all datasets. Random color distortion, flipping and cropping are applied.

Horizontal left-right flipping is turned off for SVHN and GTSR, cropping ratio

is also increased as these two datasets are street number and traffic sign photos.

MobileNet-0.25 is a limited capacity model so little regularization is required. Weight

decay of 4× 10−5 is used in fine-tuning (4× 10−4 for GTSR).

To demonstrate generalization of this approach, a second set of experiments are

carried out using MobileNet-1.0. MobileNet-1.0 has 569 million MACs and 4.24

million parameters, which is about 10× bigger than MobileNet-0.25. It is trained on

ImageNet to an accuracy of 70.9%. We only transfer this model to CIFAR100 to

showcase the similar trend of transfer learning performance for a bigger model.

5.6 Experimental Results

In this section, we first describe the hardware performance of FixyNN, then

explore the CNN generalization performance and finally draw the two together with a

discussion.

5.6.1 Hardware

To demonstrate the advantages of incorporating a FFE into a system, we begin

by comparing the two hardware components of FixyNN. Figure 30 compares the

throughput (TOPS) and energy efficiency (TOPS/W) for the FFE and programmable

NVDLA accelerators over each of the 13 layers of MobileNet-0.25. Clearly, FFE

outperforms NVDLA in all regards, showing an average improvement in TOPS and

75

0 1 2 3 4 5 6 7 8 9 10 11 12 13 avg
Layer

0

2

4

6

8

10

TO
PS

Fixed
PROG

(a) Throughput

0 1 2 3 4 5 6 7 8 9 10 11 12 13 avg
Layer

101

102

103
TO

PS
/W

Fixed
PROG

(b) Energy Efficiency

Figure 30. Per-layer throughput and energy efficiency of a fixed-weight feature
extractor vs programmable NVDLA on MobileNet-0.25.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of fixed layers

10 1

100

101

16
nm

 A
re

a
(m

m
2)

MobileNet-0.125
MobileNet-0.25
MobileNet-0.50
MobileNet-1.00

Figure 31. Cumulative area of a fixed feature extractor for MobileNets of varying
width.

TOPS/W of 8.3× and 68.5×, respectively. This healthy improvement is essentially the

motivation for exploring the fixed feature extractor. However, the silicon area required

by the FFE is a practical limitation on the number of layers we can reasonably fix in

the FFE. Figure 31 demonstrates how the area of the FFE scales with the number

of fixed layers for several different size MobileNet networks. In FixyNN, we want to

balance the distribution of layers between the FFE and the programmable accelerators

76

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
16nm Area (mm2)

0

1

2

3

4

5

TO
PS

Baseline
4 fixed layers
7 fixed layers
11 fixed layers

(a) Throughput

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
16nm Area (mm2)

5

10

15

20

25

TO
PS

/W

Baseline
4 fixed layers
7 fixed layers
11 fixed layers

(b) Energy Efficiency

Figure 32. Performance and energy efficiency of different FixyNN topologies. Each
line corresponds to a single size feature extractor being used with different sized
programmable accelerators.

Design Parameters FixyNN Baseline Improvement
Priority Area budget (mm2) Fixed layers NVDLA Config. Total Area (mm2) TOPS TOPS/W TOPS TOPS/W TOPS TOPS/W

Throughput
2 None E 1.80 1.17 6.30 1.17 6.30 1.00× 1.00×
3 7 E 2.59 2.14 11.20 1.66 5.83 1.29× 1.92×
4 11 E 3.48 5.64 25.01 2.21 5.29 2.55× 4.73×

Efficiency
2 7 C 1.79 0.66 9.99 1.15 6.31 0.57× 1.58×
3 11 C 2.68 1.73 22.69 1.71 5.77 1.01× 3.93×
4 11 D 3.08 3.52 26.62 1.96 5.53 1.80× 4.81×

Table 6. Pareto-optimal FixyNN configurations for a given area budget, with through-
put and efficiency priority. “Improvement” is relative to an NVDLA configuration of
comparable silicon area. All results shown are modeled in 16nm CMOS technology.

to maximize energy efficiency and generalization (Section 5.6.2), given silicon area

constraints.

Having demonstrated the advantages of the fixed feature extractor on single

individual layers, we now demonstrate a practical FixyNN system. We define a search

space of potential FixyNN systems by combining a fixed feature extractor of a given

size, and a programmable DLA of a given configuration (Table 5). The design space

is given in Figure 32 for throughput and energy efficiency. Each line in these plots

is a different number of fixed layers, while each marker on each line is a different

configuration of the programmable accelerator (Table 5). Our baseline for comparison

77

is a fully programmable NVDLA accelerator with no fixed layers, which represents

the current state-of-the-art.

In terms of throughput (Figure 32a), all configurations scale approximately linearly

with area. At small area budgets, the fully programmable baseline outperforms

FixyNN, because the FFE is heavily bottlenecked by the programmable NVDLA,

resulting in little benefit from the extra area consumed by the FFE. However at higher

area budgets, FixyNN can afford to fix more layers, resulting in reduced load on the

programmable DLA and large gains in throughput. In terms of energy efficiency

(Figure 32b), the baseline NVDLA scales well with area initially, due to an increase

in data re-use and other amortizations, however it saturates (and even falls off) as

limitations on utilization or memory bandwidth prohibit further gains. Due to the

exceptional energy efficiency of the FFE, as the load diverted from the NVDLA to

the FFE increases, so too does the energy efficiency. This becomes significant at area

budgets greater than 1mm2, at which point it becomes more efficient to utilize silicon

area to fix more layers of the network than it is to scaling up the programmable

accelerator.

An additional advantage of the FFE is the fact that it does not require access

to expensive off-chip DRAM memory for either weights or activations, since weights

are fixed in the datapath and activations are minimally pipelined in efficient and

compact line buffers on-chip. This saves power, and also sidesteps an important

system-level constraint; NVDLA rapidly becomes bottlenecked on DRAM bandwidth

as the accelerator is scaled up.

Table 6 gives pareto-optimal FixyNN configurations from the design space in

Figure 32, given different design constraints. In general, this table shows it is more

effective to implement a larger FFE at higher area budgets (above 1mm2), as scaling

78

the programmable NVDLA provides diminishing benefits beyond ∼1mm2. With an

area budget of 4mm2, FixyNN provides up to 2.55× and 5.84× improvement in TOPS

and TOPS/W respectively, at iso-area for MobileNet-0.25.

We chose to investigate the optimal configuration for energy efficiency at an area

budget of 2-3mm2 (11 fixed layers with NVDLA configuration C). Figure 33 shows a

breakdown of the PPA between the FFE and the programmable DLA. This figure

demonstrates how even though the fixed datapath performs a large majority of the

operations in the network, it only takes a small fraction of the energy and latency

that the programmable NVDLA requires.

The optimal configurations of FixyNN are dependent on the size of the model. We

repeated the experiment above, but using the larger MobileNet-1.00. FixyNN now

provides benfits at area budgets greater than 3mm2, compared to the 1mm2 break-even

point for MobileNet-0.25. At an area budget of 4mm2, fixing the first 4 layers of the

network provides a 1.28× improvement in energy efficiency. This improvement is

even greater at larger areas. The published results for NVDLA do not include any

configuration larger than 3.3mm2, and therefore it is difficult to make a fair evaluation

at larger area budgets. Nonetheless, we expect that as NVDLA scales up, memory

bandwidth will bottleneck the system, resulting in reduced throughput and energy

benefit. FixyNN solves this problem by reducing the load on DRAM.

5.6.2 Model Accuracy

Table 7 summarizes the accuracies for the first set of transfer learning experiments

with MobileNet-0.25, where the first row shows the baseline accuracy. As we go down

the table, a higher percentage of the network is fixed, hence a bigger FFE is used.

79

Fixed62.7%PROG 37.3%

(a) Area

Fixed77.0%PROG 23.0%

(b) Operations

Fixed3.3%

PROG
16.8%

DRAM
79.9%

(c) Energy

Fixed2.8%PROG 97.2%

(d) Latency

Figure 33. PPA breakdown of FixyNN for MobileNet-0.25 with 7 fixed layers and a
1.00mm2 NVDLA.

Adaptive Batch Normalization helps a transferred model to achieve better accuracy

with a relatively small hardware cost. Images in different datasets come from different

visual domains and have therefore very different statistical distributions, adaptive BN

helps the model better adapt to the new domain.

Our experiments show that for datasets CIFAR-100, CIFAR-10, SVHN and

Flwr, we can fix 77% of the network while suffering less than 2% loss in model

accuracy. For datasets Airc and GTSR, similar accuracy performance relative to the

baseline requires fixing a smaller percentage of the network in FFE (between 27% and

44%).

Transfer learning models are trained in floating-point datatype without forcing

sparsity. Pruning and quantization are orthogonal to transfer learning and will affect

model accuracy equally regardless of being transferred or not. Our observation for

accuracy loss will hold even after further pruning and quantization of the model.

In Table 8, we report transfer learning accuracies for MobileNet-1.0. Only results

on CIFAR-100 are shown here. Similar trend in transfer learning accuracy loss

80

is observed. Overall accuracies are improved as MobileNet-1.0 has a bigger model

capacity. Fixing the first 11 convolution layers of the network with adaptive BN

results in 1.6% accuracy drop.

Model Accuracy on datasets (%)
Fixed layers Adaptive BN Fixed Ops (%) ImageNet CIFAR100 CIFAR10 SVHN Flwr Airc GTSR

0 N 0.0 49.8 72.8 93.5 95.8 88.1 67.7 97.7
4 Y 27.1 49.8 72.5 93.3 95.7 88.3 66.7 97.8
7 Y 44.3 49.8 72.0 92.7 95.8 87.5 64.0 95.0
7 N 46.6 49.8 69.4 91.7 94.7 85.2 63.2 93.5
11 Y 77.0 49.8 71.1 91.7 94.6 86.9 56.7 89.2
14 Y 97.0 49.8 68.5 85.3 91.0 82.8 41.9 59.3
14 N 100.0 49.8 54.5 77.0 48.0 77.8 30.5 46.1

Table 7. Transfer learning results for MobileNet-0.25 with fixed feature extractor, the
model is trained on ImageNet and transferred to six different vision tasks.

Model Accuracy (%)
Fixed layers Adaptive BN Fixed Ops(%) ImageNet CIFAR100

0 N 0.0 70.9 81.7
4 Y 21.4 70.9 81.2
7 Y 39.9 70.9 80.7
7 N 40.6 70.9 80.2
11 Y 76.4 70.9 80.1
14 Y 99.1 70.9 76.7
14 N 100 70.9 61.6

Table 8. Transfer learning results for MobileNet-1.0 with fixed feature extractor. The
model is trained on ImageNet and transferred to CIFAR-100.

5.6.3 Discussion

Having presented the experimental results, we finally draw together some con-

clusions regarding the design of FixyNN systems. Summarizing Section 5.6.1, we

found that the hardware throughput and energy-efficiency gains of FixyNN outpaces

81

the baseline of an iso-area programmable NVDLA accelerator at the same silicon

area cost when we fix 7 or more layers of Mobilenet-0.25. The hardware throughput

and energy efficiency of FixyNN reach as high as 5.64 TOPS (2.55× better than

the iso-area NVDLA baseline) and 26.62 TOPS/W (4.81× better than the iso-area

NVDLA baseline) respectively, at an area budget of < 4mm2. On the other hand,

Section 5.6.2 demonstrates experimentally that as we fix more layers in the FFE, the

task of training a new network incorporating the FFE on a different dataset becomes

more challenging, and will generally incur an accuracy loss which depends on the

dataset. Therefore, in practice, the system designer must balance the requirements of

throughput/energy-efficiency and accuracy across a variety of datasets. While this is

obviously a nuanced trade-off, we offer a straightforward analysis to help emphasize

the potential benefit of the FixyNN.

We consider an arbitrary constraint that the maximum tolerable degradation in

accuracy is no greater than 2% on the suite of six transfered datasets we examined

in Section 5.6.2. We also specify a <3mm2 silicon area budget for accelerating CV

workloads. A FixyNN system that fixes 4 layers (27.1% Ops) with adaptive BN, a

0.38mm2 FFE and NVDLA config. E, can meet this specification, with a total area

of 2.18mm2. Over all six datasets we studied, this FixyNN configuration achieves a

maximum accuracy degradation of no more than 1.0%, with the most challenging being

Airc. If we compare this design to a baseline consisting of a larger NVDLA of the

same silicon area as the total FixyNN design (2.18mm2, we achieve an improvement

in throughput of 1.15× and in energy efficiency of 1.42×.

As discussed in Section 5.6.2, two of the six datasets are significantly less tolerant

to a large number of fixed layers, which limits the improvement we demonstrate in

the previous scenario. Therefore, to prioritize average performance across all datasets

82

while otherwise still meeting the same constraints, we modify the FixyNN design so

that the datasets with high accuracy degradation only use a portion of a larger FFE.

This allows us to define a FixyNN system that fixes 7 layers with adaptive BN (44.3%

Ops / 0.79mm2 FFE) and uses NVDLA config. E, for a total area of 2.59mm2. With

this configuration, four of the six datasets utilize the entire FFE as before, resulting

in an improvement in throughput of 1.29× (2.14 TOPS) and in energy-efficiency of

1.92× (11.19 TOPS/W) over a baseline design of the same area. The two datasets

with high accuracy degradation may opt to use only 4 layers of the FFE, resulting in

0.98× and 1.48× in throughput and energy-efficiency, respectively.

5.7 Conclusion

Real-time computer vision workloads on mobile devices demand extremely high

energy-efficiency for CNN computations, which can only be achieved with specialized

hardware. This chapter evaluates FixyNN as a solution derived from closer integration

of computer systems and machine learning. FixyNN achieves an optimal balance of

energy-efficiency from processing part of the network with heavily customized hardware

for CNN feature extraction, and generalization to different CV tasks by means of

a programmable portion that is trained using transfer learning. Our experimental

evaluation demonstrates that FixyNN hardware can achieve very high energy efficiency

of up to 26.6 TOPS/W (4.81× better than iso-area programmable accelerator). We

considered a suite of six image classification problems, and found we can train models

using transfer learning with an accuracy loss of < 1%, and achieving up to 11.2

TOPS/W, which is nearly 2× more efficient than a conventional programmable CNN

accelerator of the same area.

83

Chapter 6

FIXYFPGA: EFFICIENT FPGA ACCELERATOR FOR DEEP NEURAL

NETWORKS WITH HIGH ELEMENT-WISE SPARSITY AND WITHOUT

EXTERNAL MEMORY ACCESS

Convolutional neural networks (CNNs) have become very popular in real-time

computer vision systems. CNNs involve a large amount of computation and storage

and typically demand a highly efficient computing platform. Researchers have explored

a diverse range of software and hardware optimizations to accelerate CNN inference

in recent years. The high power consumption of GPUs and the lack of flexibility

with ASIC has promoted interest in FPGAs as a promising platform to efficiently

accelerate these CNN inference tasks. Various FPGA-based CNN accelerators have

been proposed to low precision weights and high-sparsity in various forms. However,

most of the previous work requires off-chip DDR memory to store the parameters

and expensive DSP blocks to perform the computation. In this work, we propose the

FixyFPGA, a fully on-chip CNN inference accelerator that naturally supports high-

sparsity and low-precision computation. In our design, the weights of the trained CNN

network are hard-coded into hardware and used as fixed operand for the multiplication.

Convolution is performed by streaming the input images to the compute engine in a

fully-paralleled, fully-pipelined manner. We analyzed the performance of the proposed

scheme with both image classification tasks and object detection tasks based on the

low precision, sparse compact CNN models. Compared to prior works, our design

achieved 2.34× higher GOPS on ImageNet classification.

84

6.1 Introduction

Convolutional neural networks (CNNs) have been successful in many practical

applications including image classification, object detection and segmentation, and

various algorithms and architectures have been proposed in a very fast pace Simonyan

and Zisserman (2015); He et al. (2016); Howard et al. (2017b); Tan and Le (2019).

GPUs are the de facto hardware platform for DNN training workloads, aided by the

highly-parallel computing with a massive number of processing cores. However, due to

the high price and the lack of reconfigurability, GPU is usually not an ideal solution

for DNN inference acceleration, especially for models with high sparsity or customized

architectures. ASICs such as the Google TPU Jouppi et al. (2017b) typically have the

highest energy-efficiency, but their limited configurability can introduce a significant

risk of premature obsolescence, as the model architectures evolve over time. With DNN

algorithms evolving at a fast pace, ASIC designs will always lag behind the cutting

edge due to the long design cycle. To that end, FPGAs have a unique advantage

with potentially higher throughput and efficiency than GPUs, while offering faster

time-to-market and potentially longer useful life than ASIC solutions.

Figure 34 (top) shows the categorization of different FPGA-based CNN accelerator

schemes. Most of the conventional FPGA-based CNN accelerators Ma et al. (2020);

Wu et al. (2019); Yu et al. (2020); Ye et al. (2020) in the literature use off-chip

DRAM to store the weights, and the FPGA accelerator performs computation for a

single-layer (or a subset of a single-layer) in a time-multiplexed manner. However, the

throughput of such designs is often limited by the DRAM bandwidth and the number

of multipliers constructed by DSPs. Furthermore, frequently accessing the off-chip

memory also introduces high energy consumption Horowitz (2014).

85

Figure 34. (Top) Categorization of DNN accelerators on FPGAs. (Bottom) Mapping
the entire MobileNet-V1 CNN onto FPGA requires a number of techniques employed
collectively in this work.

To eliminate DRAM access for DNN inference using a single FPGA, the entire DNN

model including weights and activations must be mapped onto the on-chip memory on

the FPGA. One of the most well-known compact DNN models for the ImageNet dataset

is MobileNet Howard et al. (2017b), which achieves a similar accuracy compared to

the conventional VGG-16 Simonyan and Zisserman (2015) (138M weights) or ResNet-

18 He et al. (2016) (11M weights) architectures with significantly less parameters

(4.2M weights) and MAC operations. A few prior FPGA designs have fully mapped

the compact MobileNet-V1 CNN to a single FPGA without DRAM access Zhao et al.

(2019); Hall and Betz (2020). This is possible because recent large-scale FPGAs such

as Intel Stratix-10 GX2800 or 10M Intel (2021) integrates up to >200Mb of on-chip

memory (M20K), which can comfortably hold all MobileNet-V1 weights (4.2M) either

in 8-bit or 16-bit precision. Both works Zhao et al. (2019); Hall and Betz (2020)

store MobileNet-V1 weights in on-chip M20K memory, and load the weights into

86

time-multiplexed multiply-and-accumulate (MAC) units to perform layer-by-layer

inference in a pipelined manner.

To fully map MobileNet-V1 onto existing FPGAs and maximize throughput, one

MAC unit per each weight (i.e. 4.2M MAC units) will be required. Typically DSP

blocks are employed for parallel MAC computation, but only thousands of DSP slices

exist in large FPGAs (e.g. 1,728 in Intel Stratix-10 10M), and all of these could be used

up for the high-precision channel-wise scaling factor computation (Section ??), which

is necessary in 8-bit or lower precision CNNs for better gradient estimation and lower

quantization error. This means that all 4.2M MAC units need to be implemented

with ALMs. Since the mapping of one 8-bit MAC needs 36 ALMs, a total of 151M

ALMs are needed for the fully-parallel baseline, which represents a ∼90× gap with the

FPGA that has the largest number of ALMs (1.73M), as shown in Fig. 34 (bottom).

To bridge this gap, lower precision quantization or pruning can be performed, but

previous work Zhao et al. (2019); Hall and Betz (2020) did not consider pruning and

only lowered the activation/weight precision down to 8-bit. For compact models such

as MobileNet, it has been difficult to quantize the activation/weight precision below

8-bit without considerable accuracy loss. A recent algorithm work Park and Yoo

(2020) presented new quantization techniques that lower the precision of MobileNets

to 4-bit with minimal accuracy degradation, but did not integrate pruning.

With respect to pruning, element-wise pruning achieves higher sparsity, but the

irregular memory access and the index storage overheads, especially for low-precision

DNNs, have hindered efficient hardware implementation Han et al. (2016c); Lee et al.

(2021). Structured pruning schemes Wen et al. (2016); Srivastava et al. (2019); Yang

et al. (2020) generate sparsity in a hardware-friendly manner, by removing a group

of parameters in row-/column-wise, block-wise, filter-wise, or channel-wise manner.

87

This leads to efficient hardware acceleration, but the amount of sparsity in structured

pruning schemes is typically much lower than element-wise pruning schemes Mao et al.

(2017).

On the other hand, FixyNN Whatmough et al. (2019) proposed a fixed-weight

feature extractor (FFE) design, where the weights are hard-coded in the datapath

logic and do not need to be stored in memory. LogicNets Umuroglu et al. (2020)

also proposed a similar technique to implement neural networks with look-up tables

in FPGAs, but the hardware design is only benchmarked for small neural networks

with unconventional datasets for jet substructure classification and network intrusion

detection.

While FixyNN Whatmough et al. (2019) only employed an FFE for the early layers

of CNNs for an ASIC design, in this work, we employ such fixed-weight scalers for the

entire CNN layers for an FPGA design. By mapping hard-coded weights in the ALMs

of the FPGA, we perform CNN inference of all layers in a fully-parallel, fully-pipelined

manner. Contrary to the notion that element-wise sparsity is inefficient for hardware

design, one important advantage of the fixed-weight FPGA design (FixyFPGA) is that,

element-wise pruning of DNNs can be seamlessly integrated with FixyFPGA design

with very high efficiency. This is because pruning out weight elements is equivalent

to removing the corresponding hardware operands without introducing any index

overhead. This enables us to exploit the high amount of sparsity achievable by the

element-wise pruning algorithms Lee et al. (2021).

Overall, the main contributions of this work are:

• We present FixyFPGA, a fully-parallel, fully-pipelined, and pruning-friendly

FPGA-based CNN accelerator design based on fixed hard-coded weights.

• We investigate implementing a number of DNN models with different widths and

88

compression ratios with the fixed-weight scheme onto a single Intel Stratix-10

FPGA chip without any DRAM access.

• We analyze the algorithm and hardware results of DNNs for both image classifi-

cation tasks (ImageNet, TinyImageNet, and CIFAR-10 datasets).

6.2 Fixed Weight Accelerator Design

FixyFPGA implements CNN models in a layer-parallel fashion, where every non-

zero parameter is encoded in the hardware design as a fixed-weight multiplier (scaler).

This layer-parallel approach leads to very high gains in latency and energy, by 1)

removing the energy and BW limitations of DRAM, and 2) increasing the number of

MACs that can be implemented on an FPGA by ∼1.7× using fixed-weight scalers.

6.2.1 Fixed-Weight CNN Datapath

Fixed-weight scalers are significantly smaller, faster and lower energy than full

multipliers. Fixed scalers are implemented with a series of hardwired shifts, which

are essentially free in hardware, and an adder. The hardware cost is essentially a

function of the input operand (activation) bitwidth, and the Hamming weight (i.e.

the number of non-zero bits) of the multiplier (weight), which determines the number

of partial products. The adder tree needed to process the flattened output feature

map is highly pipelined to achieve high clock frequency. The fixed-weight datapaths

are implemented in RTL by embedding the weights into the Verilog as literals. The

synthesis tool then generates highly optimized deep sum-of-product datapaths using

89

techniques such as Booth encoding and carry-save addition Zimmermann (2009). Zero

weights are simply ignored and do not generate any hardware.

Based on our actual implementation of 4-bit MobileNet-V1 on Intel Stratix 10

FPGA (Section 6.4), the FixyFPGA scheme consumes 5.87 ALMs per 4-bit scaler

on average (i.e. total ALM usage divided by the number of non-zero weights). In

comparison, by mapping a 4-bit MAC unit with real multipliers and accumulaters

onto the same FPGA, we found that one single non-fixed-weight 4-bit MAC consumes

10.0 ALMs. Therefore, this shows that the fixed design can at least achieve 1.7×

reduction in ALMs for each MAC implementation.

6.2.2 Fully-Pipelined Activation Buffering

Implementing direct convolution in a layer-parallel configuration requires buffering

of activation data flowing through the datapaths. A typical 3×3×C convolution,

where C is the number of channels, consumes a 3×3×C input pixel tensor per cycle,

but generates only a single small 1×1×C output tensor. Hence, we must buffer several

1×1×C outputs into a larger 3×3×C input for the next layer. Figure 28 shows how

this is implemented using a line buffer to store activations at each layer row by row

until the required tensor size has been buffered up. Due to the mismatch in input

and output tensor dimensions, we need to buffer three full rows before we can start

generating the larger output tensors for the following layer. The line buffer itself

is implemented on FPGA using on-chip M20K memory and ALMs, and therefore

actually requires four independent SRAM banks, so that we can write a single-row

patch to one bank per cycle, and read the three-row patch from three banks per cycle,

concurrently. After reading/writing the last pixel in a row, the four banks are rotated

90

to overwrite the data associated with the oldest row. Following the SRAM line buffer,

a shift-register shifts the convolution window over the feature map, without re-reading

data. The shift-register consumes 1×3×C pixels per cycle from the SRAM line buffer

and outputs a 3×3×C volume.

6.2.3 Deep Freeze Tool Flow

We implemented a tool called Deep Freeze to automatically generate a fixed-weight

CNN accelerator in Verilog RTL directly from a simple model description in a high-

level API. This tool is available as an open source project, which is not linked here for

the blind review process. A direct code generation step reads the integer model weights

and emits Verilog HDL logic with the weights embedded as immediate constants.

Zero weights are skipped entirely. The precision for the intermediate activations is

specified as a hardware parameter, along with the accumulator width. The final

Verilog is constructed by connecting consecutive combinational datapath stages with

buffer stages, which are instantiated from a parameterized Verilog template. The

generated Verilog can be directly read in by any synthesis tool for ASIC or FPGA

implementation. The generated code is optimized for size and helps reduce compile

time, which can be long for such a dense datapath dominated design. During the

datapath generation, the bit-widths of the fixed scalers are optimized individually.

Deep Freeze also generates a validation suite with testbench for simulation.

91

0 2 4 6 8 10 12 14 16 18 20 22 24 26 281 3 5 7 9 11 13 15 17 19 21 23 25 27
0

20

40

60

80

100

No
n-

ze
ro

 W
ei

gh
ts

 (%
)

Layers

 Depth-Wise
 Point-Wise
 Conv-1
 Fully-Connected

Figure 35. Percentage of non-zero weights in each layer of 4-bit MobileNet-V1 0.75
after element-wise pruning (total number of non-zero weights is 161K).

6.3 Experiment Results

6.4 Experiment Results

Table 9. Evaluation of CNN accelerators on Stratix 10 10M FPGA with various CNN
models and datasets.

Models # of
Params

Top-5
Acc. (%)

Input
Size DSP ALM M20K Freq.

(MHz) FPS TOPS Power
(W)

MobileNet-V1
1.0 Width 1 165K 73.32 224× 224 2 1.73K (100%) 1335.9K (77%) 1.39K (21%) 132.85 2.65K 3.01 30.36

71.59 64× 64 2 1.73K (100%) 1015.4K (59%) 1.32K (20%) 163.11 39.8K 3.74 27.30
MobileNet-V1
0.75 Width 1 161K 72.87 224× 224 2 1.73K (100%) 1099.1K (63%) 1.11K (17%) 172.92 3.45K 2.27 27.43

68.41 64× 64 2 1.73K (100%) 1024.6K (59%) 1.11K (17%) 177.43 43.3K 2.32 26.62
MobileNet-V1
0.5 Width 1 161K 71.47 224× 224 2 1.73K (100%) 824.43K (48%) 0.75K (12%) 163.91 3.27K 1.24 26.90

68.26 64× 64 2 1.73K (100%) 802.51K (46%) 0.75K (12%) 169.41 41.4K 1.02 26.10

VGG7-C 198K 99.58
(CIFAR-10) 32× 32 0.36K (21%) 814.98K (47%) 0.29K (4%) 137.29 134.07K 90.95 22.03

1Widths of 1.0/0.75/0.5 represent that the number of channels in MobileNet-V1
models are scaled accordingly.
2Input image size of 224×224 is for ImageNet dataset, and 64×64 is for
TinyImageNet dataset.

92

Figure 36. For fully-parallel implementation of MobileNet-V1 on FPGA, ALM usage is
reduced by 107× collectively by pruning, low-precision quantization, and fixed-weight
scalers.

6.4.1 Experiment Setup

All algorithm experiments are completed with Pytorch API, and the FPGA

accelerator generated by the compiler was synthesized using Intel Quartus 20.3. We

used Stratix 10 GX 10M FPGA as the target FPGA device, which includes 132 Mb

of M20K memory, 1,728 DSP blocks, and 1.73M ALMs. Given the pre-trained 4-bit

sparse PyTorch-trained model, we first extract the fixed-point parameters and then

generate the corresponding RTL files with the Deep Freeze tool.

93

Conv01

Conv02 DW

Conv02 PW

Conv03 DW

Conv03 PW

Conv04 DW

Image 1: 224 x 224

336

Conv14 DW

Conv14 PW

Pool

FC

Total cycles per output = 80675 cycles

672

840

336

Image 1: 50716 cycles

1477

1463

1449

Conv13 PW 1428

672

1449

Layers

Image 2: 224 x 224

Figure 37. Layer-wise timing analysis of MobileNet-V1 generated by RTL simulation
with 224×224×3 input image for ImageNet.

Table 10. Comparison to different FPGA accelerators for MobileNets for ImageNet.

Implementations Model W / A Platform DRAM Frequency
(MHz)

Latency
(ms) GOPS Frame

rate (fps) Sparsity

DPU Wu et al. (2019) MobileNet-V2 8 / 8 Xilinx Zynq US+ Yes 333 1.23 922 430 Dense
HPIPE Hall and Betz (2020) MobileNet-V1 16 / 16 Intel Stratix 10 No 430 0.65 - 5157 Dense

TuRF Zhao et al. (2018b) MobileNet-V1 8 / 8 Intel Stratix V No 150 4.33 264 231 Dense
TuRF Zhao et al. (2018a) MobileNet-V1 16 / 16 Intel Stratix V No 200 0.88 1287 1131 Dense
Tomato Zhao et al. (2019) MobileNet-V1 Mixed / 8 Intel Stratix 10 No 156 0.32 3536 3109 Dense

This work MobileNet-V1 4 / 4 Intel Stratix 10 No 133 0.37 3013 2648 96%

6.4.2 FPGA Implementation Results and Analysis

6.4.2.1 Image classification

Figure 36 shows the how the ∼90× gap pointed out in Section 6.1 is addressed in

this work, by a series of techniques including pruning with high sparsity (∼20×), 4-bit

quantization, and the usage of fixed-point scalers for the entire MobileNet-V1 model.

After applying all techniques, the total ALM usage of the proposed FixyFPGA design

94

for MobileNet-V1 model falls under the 1.73M available ALMs in the target FPGA

device. The elimination of the DRAM communication also leads to large savings in

energy and latency.

Figure 37 shows the timing diagram for the overall MobileNet-V1 inference, based

on RTL simulation. The fully-pipelined activation buffering maximized the computa-

tion efficiency by sending the basic 3× 3× C volume to the next layer rather than

waiting for the previous computation to complete.

Table 9 summarizes the resource utilization, throughput, operating frequency,

and power consumption with the various CNN models that are trained for different

datasets. Every layer of all implemented CNNs are quantized down to 4-bit precision

and fully hard-coded into the data logic on FPGA, without any DRAM access. Using

the Intel Early Power Estimator, we obtained the power consumption at the junction

temperature of 75°C. With the fully-pipelined and fully-parallel FixyFPGA scheme,

the latency per image was computed as: T = XH×XW

f
, where XH and XW represents

the height and width of the input image. Given the different input sizes of various

datasets, the proposed FixyFPGA achieves 3.01, 3.74, and 90.95 GOPS for ImageNet,

TinyImageNet, and CIFAR-10 classifications, respectively.

6.4.2.2 Comparison to Prior Works

We compared the hardware performance with previous fully on-chip FPGA-based

CNN accelerators with regards to operating frequency, latency, throughput, etc.

Unlike the prior works that used on-chip memory to store the weights, our design

fully embedded the CNN parameters onto the logic units, which enables us to apply

the element-wise pruning without any sparsity index. Therefore, compared with the

95

previous memory-based 8-bitZhao et al. (2019); Zhao et al. (2018b) or 16-bit Zhao et al.

(2018a) implementations, our design with 4-bit precision and high sparsity will have a

large potential for energy-efficiency improvements. Table 10 shows the comparison

results between our design and and other recent works. TuRF Zhao et al. (2018a)

performed the computation in a layer-by-layer fashion, where the next layer has to wait

until the current layer’s computation completes. In contrast, with the fully-pipelined

and fully-parallel design, our FixyFPGA achieved 3.01 TOPS, which is 2.34× higher

than TuRF Zhao et al. (2018a) along with 2.37× latency improvements. Similar to

TuRF Zhao et al. (2018a), Tomato Zhao et al. (2019) stores the power-of-two (POT)

weights inside the on-chip memory, streams into the compute engines in a pipelined

manner then keeps rolling the output channel to perform the BN multiplications

with the given factor. To support such computation, the MAC units should be time-

multiplexed. Also, restricting the weights to POT values can lead to considerable

accuracy loss in general, due to the rigid resolution of POT quantization Li et al.

(2020). Our proposed design achieved similar hardware performance in a fully-parallel

manner, which could be more beneficial to the practical scenarios with high throughput

and low-power demands.

In addition to the highly-efficient hardware design, our deployed model is also

highly sparse, and such high sparsity will improve the power efficiency even further.

On the other hand, it is true that such aggressive compression scheme will improve

the hardware efficiency with the cost of accuracy degradation. We will address such

tradeoff to alleviate the accuracy degradation in the future work.

96

6.5 Conclusion

In this chapter, we presented FixyFPGA, a fully-parallel and fully pipelined FPGA-

based CNN accelerator design with the objective of compact and high-throughput

hardware acceleration. For MobileNet and VGG models for ImageNet, TinyImageNet,

and CIFAR-10we performed low-precision quantization down to 4-bit, together with

high sparsity of >95%, towards mapping the entire CNN models onto the target

FPGA device and eliminating DRAM access. We achieved 3.01 TOPS for ImageNet

classification with a low end-to-end latency of 0.37ms. Compared to prior works, our

design achieved 2.34× higher GOPS on ImageNet classification.

97

Chapter 7

CONCLUSION

In this dissertation, we presented an automatic RTL compiler-based end-to-end

CNN training accelerator. Optimized and parameterized custom Verilog modules

implement CNN training operations, and the accelerator is flexible to support various

FPGA design parameters. The training performance is evaluated on Intel Stratix-10

GX FPGA for three different CNNs for the CIFAR-10 dataset. The proposed training

accelerator achieves a throughput of up to 479 GOPS at 240MHz for CNNs with 2M

parameters.

Furthermore, we presented a flexible CNN training accelerator on FPGA using

HBM2, which performs end-to-end training of modern CNNs involving residual

connections and stride-2 convolutions. The FPGA accelerator is implemented on Intel

S-10 MX (with HBM2) and S-10 GX (with DDR3) devices, demonstrating system-level

benefits of HBM2 over conventional DDR3 off-chip memory. The proposed accelerator

achieves 4.5-9.7X energy-efficiency improvement compared to Tesla V100 GPU and

7-11X improvement in throughput compared to that of Intel i7-9800X CPU for low-

batch training tasks of ResNet-20/VGG-like CNNs. This dissertation further presents

an online learning FPGA accelerator and demonstrated online learning on FPGA

with a CNN structure of 16C3-16C3-MP-32C3-32C3-MP-64C3-64C3-MP-FC, where

‘NCk’ represents convolution layer with ‘N’ output feature maps and a kernel size of

‘k’, ‘MP’ represents max-pooling layer and ‘FC’ represents a fully connected layer.

The accelerator was synthesized at 150 MHz frequency. Adapting model segmentation

techniques from Progressive Segmented Training(PST), the online learning accelerator

98

achieved a 4.2X reduction in training latency. The CIFAR-10 dataset consists of

60,000 32× 32 color images in 10 classes, with 5,000 training images and 1,000 testing

images per class. The classes include common objects such as planes, birds, trucks,

etc. We demonstrate online learning on FPGA with a CNN structure of 16C3-16C3-

MP-32C3-32C3-MP-64C3-64C3-MP-FC, where ‘NCk’ represents convolution layer

with ‘N’ output feature maps and a kernel size of ‘k’, ‘MP’ represents max-pooling

layer and ‘FC’ represents a fully connected layer. The accelerator was synthesized

by Intel Quartus 19.2 at 150 MHz frequency. We used Stratix-10 MX equipped with

HBM2 as the target hardware and Intel(R) Core(TM) i7-9800X as a host machine.

All the parameters used 16-bit fixed-point precision.

Next, we presented a prototype chip was fabricated in 28nm CMOS. Including the

skipped operations, peak throughput of 3.76 TFLOPS was achieved at 1.1V, and peak

energy-efficiency of 16.4 TFLOPS/W was achieved at 0.6V. We evaluated a number

of DNNs for both supervised training and self-supervised training tasks, and achieved

high FLOPs reduction (up to 7.3X) and training speedup (up to 4.7X) compared to

the dense models. The training speedup is >3.5X better than the speedup reported

in the state-of-the-art sparse training processor.

Finally, in addition to the CNN training accelerators, an ASIC (FixyNN) and

FPGA (FixyFPGA) CNN inference accelerator adopting fixed-feature extractors is

presented. FixyNN achieved an optimal balance of energy efficiency from the processing

part of the network with heavily customized hardware for CNN feature extraction

and generalization to different CV tasks using a programmable portion trained using

transfer learning. Our experimental evaluation demonstrated that FixyNN hardware

could achieve a very high energy efficiency of up to 26.6 TOPS/W (4.81× better than

iso-area programmable accelerator). We considered a suite of six image classification

99

problems. We found we can train models using transfer learning with an accuracy

loss of < 1%, and achieving up to 11.2 TOPS/W, which is nearly 2× more efficient

than a conventional programmable CNN accelerator of the same area.

Next, the FixyFPGA, a fully parallel and fully pipelined FPGA-based CNN

accelerator design with the objective of compact and high-throughput hardware

acceleration, is presented. MobileNet and VGG models for ImageNet, TinyImageNet,

and CIFAR-10 performed low-precision quantization down to 4-bit, together with

high sparsity of >95%, towards mapping the entire CNN models onto the target

FPGA device and eliminating DRAM access. We achieved 3.01 TOPS for ImageNet

classification with a low end-to-end latency of 0.37ms. Compared to prior works, our

design achieved 2.34× higher GOPS on ImageNet classification.

In summary, this dissertation comprehensively discusses novel architectures of high-

performance and energy-efficient ASIC/FPGA CNN inference/training accelerators.

100

REFERENCES

Abdelouahab, K., M. Pelcat, J. Serot and F. Berry, “Accelerating cnn inference on
fpgas: A survey”, arXiv preprint arXiv:1806.01683 (2018).

Ahmad, A. and M. A. Pasha, “Optimizing hardware accelerated general matrix-matrix
multiplication for cnns on fpgas”, IEEE Transactions on Circuits and Systems II:
Express Briefs (2020).

Albericio, J., P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger and A. Moshovos,
“Cnvlutin: Ineffectual-neuron-free Deep Neural Network Computing”, in “Proc. of
ISCA”, (2016).

Arm, “Arm Machine Learning Processor”, URL https://developer.arm.com/products/
processors/machine-learning/arm-ml-processor (2019).

Barry, B., C. Brick, F. Connor, D. Donohoe, D. Moloney, R. Richmond, M. O’Riordan
and V. Toma, “Always-on Vision Processing Unit for Mobile Applications”, IEEE
Micro (2015).

Booth, A., “A Signed Binary Multiplication Technique”, Quarterly Journal of Mechanics
and Applied Mathematics 4, 2, 236–240 (1951).

Buckler, M., P. Bedoukian, S. Jayasuriya and A. Sampson, “Eva2: Exploiting temporal
redundancy in live computer vision”, in “Proceedings of the 45th Annual Interna-
tional Symposium on Computer Architecture”, ISCA ’18, pp. 533–546 (IEEE Press,
Piscataway, NJ, USA, 2018), URL https://doi.org/10.1109/ISCA.2018.00051.

Chaudhry, A., M. Ranzato, M. Rohrbach and M. Elhoseiny, “Efficient lifelong learning
with a-gem”, arXiv preprint arXiv:1812.00420 (2018).

Chen, H. G., S. Jayasuriya, J. Yang, J. Stephen, S. Sivaramakrishnan, A. Veer-
araghavan and A. C. Molnar, “ASP vision: Optically computing the first layer of
convolutional neural networks using angle sensitive pixels”, CoRR abs/1605.03621,
URL http://arxiv.org/abs/1605.03621 (2016a).

Chen, Y.-H., J. Emer and V. Sze, “Eyeriss: A Spatial Architecture for Energy-efficient
Dataflow for Convolutional Neural Networks”, in “Proc. of ISCA”, (2016b).

Chi, P., S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang and Y. Xie, “PRIME:
A Novel Processing-in-Memory Architecture for Neural Network Computation in
ReRAM-Based Main Memory”, in “Proc. of ISCA”, (2016).

101

https://developer.arm.com/products/processors/machine-learning/arm-ml-processor
https://developer.arm.com/products/processors/machine-learning/arm-ml-processor
https://doi.org/10.1109/ISCA.2018.00051
http://arxiv.org/abs/1605.03621

Choi, S., J. Sim, M. Kang and L.-S. Kim, “TrainWare: A memory optimized weight
update architecture for on-device convolutional neural network training”, in “Pro-
ceedings of the International Symposium on Low Power Electronics and Design
(ISLPED)”, (2018).

Chundi, P. K., P. Liu, S. Park, S. Lee and M. Seok, “FPGA-based Acceleration
of Binary Neural Network Training with Minimized Off-Chip Memory Access”,
in “IEEE/ACM International Symposium on Low Power Electronics and Design
(ISLPED)”, pp. 1–6 (2019).

Cooper, K. D., L. T. Simpson and C. A. Vick, “Operator strength reduction”, ACM
Trans. Program. Lang. Syst. 23, 5, 603–625, URL http://doi.acm.org/10.1145/
504709.504710 (2001).

Dalal, N. and B. Triggs, “Histograms of Oriented Gradients for Human Detection”, in
“Proc. of CVPR”, (2005).

DeepFreeze, “RTL generation tool for CNNs”, URL https://github.com/ARM-software/
DeepFreeze (2018).

Deo, M., J. Schulz and L. Brown, “Intel stratix 10 mx devices solve the memory
bandwidth challenge”, Intel White Paper (2016).

Deo, M., J. Schulz and L. Brown, “Intel Stratix 10 MX Devices Solve the Memory
Bandwidth Challenge”, Intel Whitepaper (2017).

Ding, C., S. Liao, Y. Wang, Z. Li, N. Liu, Y. Zhuo, C. Wang, X. Qian, Y. Bai,
G. Yuan et al., “CirCNN: Accelerating and Compressing Deep Neural Networks
Using Block-Circulant Weight Matrices”, in “Proc. of MICRO”, (2017).

Du, X., G. Charan, F. Liu and Y. Cao, “Single-net continual learning with progressive
segmented training”, in “2019 18th IEEE International Conference On Machine
Learning And Applications (ICMLA)”, pp. 1629–1636 (2019a).

Du, X., Z. Li, Y. Ma and Y. Cao, “Efficient network construction through structural
plasticity”, IEEE Journal on Emerging and Selected Topics in Circuits and Systems
9, 3, 453–464 (2019b).

Geng, T., T. Wang, A. Li, X. Jin and M. Herbordt, “A Scalable Framework for
Acceleration of CNN Training on Deeply-Pipelined FPGA Clusters with Weight
and Workload Balancing”, arXiv preprint arXiv:1901.01007 (2019).

Gomperts, A., A. Ukil and F. Zurfluh, “Development and implementation of parame-
terized FPGA-based general purpose neural networks for online applications”, IEEE
Transactions on Industrial Informatics 7, 1, 78–89 (2011).

102

http://doi.acm.org/10.1145/504709.504710
http://doi.acm.org/10.1145/504709.504710
https://github.com/ARM-software/DeepFreeze
https://github.com/ARM-software/DeepFreeze

Gopalakrishnan, K., S. K. Khaitan, A. Choudhary and A. Agrawal, “Deep convolu-
tional neural networks with transfer learning for computer vision-based data-driven
pavement distress detection”, Construction and Building Materials 157, 322–330
(2017).

Guo, K., S. Liang, J. Yu, X. Ning, W. Li, Y. Wang and H. Yang, “Compressed cnn
training with fpga-based accelerator”, in “Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays”, pp. 189–189 (2019).

Guo, K., S. Zeng, J. Yu, Y. Wang and H. Yang, “A survey of fpga-based neural network
accelerator”, arXiv preprint arXiv:1712.08934 (2017).

Gupta, S., A. Agrawal, K. Gopalakrishnan and P. Narayanan, “Deep learning with
limited numerical precision”, in “Proceedings of the International Conference on
Machine Learning (ICML)”, pp. 1737–1746 (2015).

Hall, M. and V. Betz, “HPIPE: Heterogeneous Layer-Pipelined and Sparse-Aware
CNN Inference for FPGAs”, in “ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA)”, (2020).

Han, S., X. Liu, H. Mao, J. Pu, A. Pedram, M. Horowitz and W. Dally, “EIE: Efficient
Inference Engine on Compressed Deep Neural Network”, in “Proc. of ISCA”, (2016a).

Han, S., X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz and W. J. Dally, “Eie:
efficient inference engine on compressed deep neural network”, ACM SIGARCH
Computer Architecture News 44, 3, 243–254 (2016b).

Han, S., H. Mao and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding”, arXiv preprint
arXiv:1510.00149 (2015).

Han, S., H. Mao and W. J. Dally, “Deep Compression: Compressing Deep Neural Net-
works with Pruning, Trained Quantization and Huffman Coding”, in “International
Conference on Learning Representations (ICLR)”, (2016c).

He, K., X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition”,
in “IEEE Conference on Computer Vision and Pattern Recognition (CVPR)”, pp.
770–778 (2016).

Hegarty, J., J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen, S. Bell, A. Vasilyev,
M. Horowitz and P. Hanrahan, “Darkroom: Compiling High-Level Image Processing
Code into Hardware Pipelines”, in “Proc. of SIGGRAPH”, (2014).

Hegarty, J., R. Daly, Z. DeVito, J. Ragan-Kelley, M. Horowitz and P. Hanrahan,
“Rigel: Flexible Multi-Rate Image Processing Hardware”, in “Proc. of SIGGRAPH”,
(2016).

103

Hernández-Lobato, J. M., M. A. Gelbart, B. Reagen, R. Adolf, D. Hernández-Lobato,
P. N. Whatmough, D. Brooks, G.-Y. Wei and R. P. Adams, “Designing neural
network hardware accelerators with decoupled objective evaluations”, in “NIPS
workshop on Bayesian Optimization”, (2016).

Hoffer, E., I. Hubara and D. Soudry, “Fix your classifier: the marginal value of training
the last weight layer”, CoRR abs/1801.04540, URL http://arxiv.org/abs/1801.
04540 (2018).

Horowitz, M., “Computing’s energy problem (and what we can do about it)”, in “IEEE
International Solid-State Circuits Conference (ISSCC)”, pp. 10–14 (2014).

Horstmannshoff, J., T. Grotker and H. Meyr, “Mapping multirate dataflow to complex
rt level hardware models”, in “Proceedings IEEE International Conference on
Application-Specific Systems, Architectures and Processors”, pp. 283–292 (1997).

Howard, A. G., M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile
vision applications”, CoRR abs/1704.04861, URL http://arxiv.org/abs/1704.04861
(2017a).

Howard, A. G., M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto and H. Adam, “MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications”, arXiv preprint arXiv:1704.04861 (2017b).

Hu, J., L. Shen and G. Sun, “Squeeze-and-excitation networks”, in “Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)”, pp.
7132–7141 (2018).

Intel, “Intel Stratix 10 GX/SX Product Table”, URL https://www.intel.com/content/
dam/www/programmable/us/en/pdfs/literature/pt/stratix-10-product-table.pdf
(2021).

Ioffe, S., “Batch renormalization: Towards reducing minibatch dependence in batch-
normalized models”, in “Advances in neural information processing systems”, pp.
1945–1953 (2017).

Ioffe, S. and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift”, CoRR abs/1502.03167, URL http://arxiv.org/
abs/1502.03167 (2015).

Jouppi, N. P., C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin, C. Chao, C. Clark, J. Coriell,
M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gul-
land, R. Hagmann, R. C. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz,

104

http://arxiv.org/abs/1801.04540
http://arxiv.org/abs/1801.04540
http://arxiv.org/abs/1704.04861
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/ literature/pt/stratix-10-product-table.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/ literature/pt/stratix-10-product-table.pdf
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167

A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean,
A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni,
K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, A. Salek,
E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter,
W. Wang, E. Wilcox and D. H. Yoon, “In-Datacenter Performance Analysis of a
Tensor Processing Unit”, in “Proc. of ISCA”, (2017a).

Jouppi, N. P., C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati,
W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt,
J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch,
N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami,
R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross,
A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg,
A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox and D. H. Yoon, “In-Datacenter Performance
Analysis of a Tensor Processing Unit”, in “ACM/IEEE International Symposium on
Computer Architecture (ISCA)”, p. 1–12 (2017b).

Jouppi, N. P., C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter performance analysis of a
tensor processing unit”, in “Proceedings of the ACM/IEEE Annual International
Symposium on Computer Architecture (ISCA)”, pp. 1–12 (2017c).

Judd, P., J. Albericio, T. Hetherington, T. M. Aamodt and A. Moshovos, “Stripes:
Bit-serial Deep Neural Network Computing”, in “Proc. of MICRO”, (2016).

Kim, D., J. Kung, S. Chai, S. Yalamanchili and S. Mukhopadhyay, “Neurocube: A
Programmable Digital Neuromorphic Architecture with High-Density 3D Memory”,
in “Proc. of ISCA”, (2016).

Kim, D., T. Na, S. Yalamanchili and S. Mukhopadhyay, “Deeptrain: A programmable
embedded platform for training deep neural networks”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 37, 11, 2360–2370
(2018).

Kirkpatrick, J., R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,
K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska et al., “Overcoming catas-
trophic forgetting in neural networks”, Proceedings of the national academy of
sciences 114, 13, 3521–3526 (2017).

105

Ko, J. H., B. Mudassar, T. Na and S. Mukhopadhyay, “Design of an energy-efficient
accelerator for training of convolutional neural networks using frequency-domain
computation”, in “Proceedings of the ACM/EDAC/IEEE Design Automation Con-
ference (DAC)”, pp. 1–6 (2017).

Kodali, S., P. Hansen, N. Mulholland, P. Whatmough, D. Brooks and G. Wei,
“Applications of deep neural networks for ultra low power iot”, in “2017 IEEE
International Conference on Computer Design (ICCD)”, pp. 589–592 (2017).

Köster, U., T. Webb, X. Wang, M. Nassar, A. K. Bansal, W. Constable, O. Elibol,
S. Gray, S. Hall, L. Hornof, A. Khosrowshahi, C. Kloss, R. J. Pai and N. Rao,
“Flexpoint: An adaptive numerical format for efficient training of deep neural
networks”, in “Advances in Neural Information Processing Systems”, pp. 1742–1752
(2017).

Krizhevsky, A., “Learning multiple layers of features from tiny images”, Master’s thesis,
University of Tront (2009).

Krizhevsky, A., G. Hinton et al., “Learning multiple layers of features from tiny
images”, (2009).

Krizhevsky, A., I. Sutskever and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks”, Commun. ACM 60, 6, 84–90, URL https://doi.org/
10.1145/3065386 (2017).

Lee, E. A. and D. G. Messerschmitt, “Static scheduling of synchronous data flow
programs for digital signal processing”, IEEE Transactions on Computers C-36, 1,
24–35 (1987).

Lee, J., S. Park, S. Mo, S. Ahn and J. Shin, “A Deeper Look at the Layerwise
Sparsity of Magnitude-based Pruning”, in “International Conference on Learning
Representations (ICLR)”, (2021).

Li, Y., X. Dong and W. Wang, “Additive Powers-of-Two Quantization: A Non-uniform
Discretization for Neural Networks”, in “International Conference on Learning
Representations (ICLR)”, (2020).

Li, Z. and D. Hoiem, “Learning without forgetting”, IEEE transactions on pattern
analysis and machine intelligence 40, 12, 2935–2947 (2017).

Li, Z., C. Liu, Y. Wang, B. Yan, C. Yang, J. Yang and H. Li, “An overview on mem-
ristor crossabr based neuromorphic circuit and architecture”, in “2015 IFIP/IEEE
International Conference on Very Large Scale Integration (VLSI-SoC)”, pp. 52–56
(IEEE, 2015).

106

https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386

LiKamWa, R., Y. Hou, J. Gao, M. Polansky and L. Zhong, “RedEye: Analog ConvNet
Image Sensor Architecture for Continuous Mobile Vision”, in “Proc. of ISCA”, (2016).

Liu, C., B. Yan, C. Yang, L. Song, Z. Li, B. Liu, Y. Chen, H. Li, Q. Wu and
H. Jiang, “A spiking neuromorphic design with resistive crossbar”, in “2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC)”, pp. 1–6 (IEEE, 2015).

Liu, Q., J. Liu, R. Sang, J. Li, T. Zhang and Q. Zhang, “Fast neural network training
on FPGA using quasi-newton optimization method”, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 26, 8, 1575–1579 (2018).

Liu, Z., Y. Dou, J. Jiang, Q. Wang and P. Chow, “An FPGA-based processor for train-
ing convolutional neural networks”, in “Proceedings of the International Conference
on Field Programmable Technology (ICFPT)”, pp. 207–210 (2017).

Long, J., E. Shelhamer and T. Darrell, “Fully convolutional networks for semantic
segmentation”, in “IEEE Conference on Computer Vision and Pattern Recognition
(CVPR)”, pp. 3431–3440 (2015).

Luo, C., M.-K. Sit, H. Fan, S. Liu, W. Luk and C. Guo, “Towards efficient deep neural
network training by fpga-based batch-level parallelism”, Journal of Semiconductors
41, 2, 022403 (2020).

Ma, Y., Y. Cao, S. Vrudhula and J. Seo, “An automatic RTL compiler for high-
throughput FPGA implementation of diverse deep convolutional neural networks”,
in “Proceedings of the International Conference on Field Programmable Logic and
Applications (FPL)”, pp. 1–8 (2017).

Ma, Y., Y. Cao, S. Vrudhula and J. Seo, “Automatic Compilation of Diverse CNNs
Onto High-Performance FPGA Accelerators”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 39, 2, 424–437 (2020).

Mahajan, D., J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh, J. K. Kim and
H. Esmaeilzadeh, “TABLA: A Unified Template-based Framework for Accelerating
Statistical Machine Learning”, in “Proc. of HPCA”, (2016).

Maji, S., E. Rahtu, J. Kannala, M. Blaschko and A. Vedaldi, “Fine-grained visual
classification of aircraft”, arXiv preprint arXiv:1306.5151 (2013).

Mao, H., S. Han, J. Pool, W. Li, X. Liu, Y. Wang and W. J. Dally, “Exploring
the Granularity of Sparsity in Convolutional Neural Networks”, in “IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) Workshops”,
(2017).

Masters, D. and C. Luschi, “Revisiting small batch training for deep neural networks”,
arXiv preprint arXiv:1804.07612 (2019).

107

Nakahara, H., Y. Sada, M. Shimoda, K. Sayama, A. Jinguji and S. Sato, “FPGA-Based
Training Accelerator Utilizing Sparseness of Convolutional Neural Network”, in
“IEEE International Conference on Field Programmable Logic and Applications
(FPL)”, pp. 180–186 (2019).

Netzer, Y., T. Wang, A. Coates, A. Bissacco, B. Wu and A. Y. Ng, “Reading digits
in natural images with unsupervised feature learning”, in “NIPS workshop on deep
learning and unsupervised feature learning”, vol. 2011, p. 5 (2011).

Nilsback, M.-E. and A. Zisserman, “Automated flower classification over a large number
of classes”, in “Computer Vision, Graphics & Image Processing, 2008. ICVGIP’08.
Sixth Indian Conference on”, pp. 722–729 (IEEE, 2008).

Nurvitadhi, E., G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Ong Gee Hock, Y. T.
Liew, K. Srivatsan, D. Moss, S. Subhaschandra et al., “Can FPGAs beat GPUs in ac-
celerating next-generation deep neural networks?”, in “Proceedings of ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA)”, pp. 5–14
(2017).

Nvidia, “Nvidia Deep Learning Accelerator (NVDLA)”, URL http://nvdla.org/primer.
html (2019).

Parashar, A., M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer,
S. W. Keckler and W. J. Dally, “SCNN: An Accelerator for Compressed-sparse
Convolutional Neural Networks”, in “Proc. of ISCA”, (2017).

Park, E. and S. Yoo, “PROFIT: A Novel Training Method for sub-4-bit MobileNet
Models”, in “European Conference on Computer Vision (ECCV)”, pp. 430–446
(2020).

Paszke, A., S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga and A. Lerer, “Automatic differentiation in PyTorch”, in “NIPS 2017
Autodiff Workshop”, (2017).

Qiu, J., J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu, S. Song
et al., “Going deeper with embedded fpga platform for convolutional neural network”,
in “ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(FPGA)”, pp. 26–35 (2016).

Rafael, G., C. Ricardo, C. Joaquín, C. Angel and W. M. Maeda, “FPGA implementa-
tion of a pipelined on-line backpropagation”, Journal of VLSI Signal Processing 40,
2, 189–213 (2005).

Ragan-Kelley, J., C. Barnes, A. Adams, S. Paris, F. Durand and S. Amarasinghe,
“Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Re-
computation in Image Processing Pipelines”, in “Proc. of PLDI”, (2013).

108

http://nvdla.org/primer.html
http://nvdla.org/primer.html

Reagen, B., R. Adolf and P. Whatmough, Deep Learning for Computer Architects
(Morgan & Claypool Publishers, 2017a).

Reagen, B., J. M. Hernández-Lobato, R. Adolf, M. Gelbart, P. Whatmough, G. Wei
and D. Brooks, “A case for efficient accelerator design space exploration via bayesian
optimization”, in “2017 IEEE/ACM International Symposium on Low Power Elec-
tronics and Design (ISLPED)”, pp. 1–6 (2017b).

Reagen, B., P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. Hernández-
Lobato, G.-Y. Wei and D. Brooks, “Minerva: Enabling Low-Power, Highly-Accurate
Deep Neural Network Accelerators”, in “Proc. of ISCA”, (2016).

Rebuffi, S., H. Bilen and A. Vedaldi, “Learning multiple visual domains with residual
adapters”, CoRR abs/1705.08045, URL http://arxiv.org/abs/1705.08045 (2017a).

Rebuffi, S.-A., H. Bilen and A. Vedaldi, “Efficient parametrization of multi-domain
deep neural networks”, in “Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition”, pp. 8119–8127 (2018).

Rebuffi, S.-A., A. Kolesnikov, G. Sperl and C. H. Lampert, “icarl: Incremental classifier
and representation learning”, in “Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition”, pp. 2001–2010 (2017b).

Riera, M., J. Arnau and A. Gonzalez, “Computation reuse in dnns by exploiting
input similarity”, in “2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA)”, pp. 57–68 (2018).

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition challenge”,
International Journal of Computer Vision 115, 3, 211–252 (2015).

Samajdar, A., Y. Zhu, P. N. Whatmough, M. Mattina and T. Krishna, “Scale-sim:
Systolic CNN accelerator”, CoRR abs/1811.02883, URL http://arxiv.org/abs/
1811.02883 (2018).

Sandler, M., A. Howard, M. Zhu, A. Zhmoginov and L.-C. Chen, “Mobilenetv2:
Inverted residuals and linear bottlenecks”, in “Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR)”, pp. 4510–4520 (2018).

SCALE-Sim, “Arm CNN accelerator simulator”, URL https://github.com/ARM-
software/SCALE-Sim (2019).

Shafiee, A., A. Nag, N. Muralimanohar, R. Balasubramonian, J. Strachan, M. Hu, R. S.
Williams and V. Srikumar, “ISAAC: A Convolutional Neural Network Accelerator
with In-Situ Analog Arithmetic in Crossbars”, in “Proc. of ISCA”, (2016).

109

http://arxiv.org/abs/1705.08045
http://arxiv.org/abs/1811.02883
http://arxiv.org/abs/1811.02883
https://github.com/ARM-software/SCALE-Sim
https://github.com/ARM-software/SCALE-Sim

Sharma, H., J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra and
H. Esmaeilzadeh, “From High-Level Deep Neural Models to FPGAs”, in “Proc. of
MICRO”, (2016).

Simonyan, K. and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition”, arXiv preprint arXiv:1409.1556 (2014).

Simonyan, K. and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale
Image Recognition”, in “International Conference on Learning Representations
(ICLR)”, (2015).

Song, L., X. Qian, H. Li and Y. Chen, “Pipelayer: A pipelined reram-based accelerator
for deep learning”, in “Proc. of HPCA”, (2017).

Srivastava, G., D. Kadetotad, S. Yin, V. Berisha, C. Chakrabarti and J. Seo, “Joint
Optimization of Quantization and Structured Sparsity for Compressed Deep Neural
Networks”, in “IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP)”, pp. 1393–1397 (2019).

Stallkamp, J., M. Schlipsing, J. Salmen and C. Igel, “Man vs. computer: Benchmarking
machine learning algorithms for traffic sign recognition”, Neural networks 32, 323–
332 (2012).

Standard, J., “High bandwidth memory (HBM) DRAM”, JESD235 (2013).

Suleiman, A., Y.-H. Chen, J. Emer and V. Sze, “Towards Closing the Energy Gap
Between HOG and CNN Features for Embedded Vision”, in “Proc. of ISCAS”,
(2017).

Sun, X., X. Ren, S. Ma and H. Wang, “meProp: sparsified back propagation for accel-
erated deep learning with reduced overfitting”, in “Proceedings of the International
Conference on Machine Learning (ICML)”, pp. 3299–3308 (2017).

Tan, M. and Q. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks”, in “International Conference on Machine Learning (ICML)”, pp. 6105–
6114 (2019).

Tateno, K., F. Tombari, I. Laina and N. Navab, “CNN-SLAM: Real-time dense
monocular SLAM with learned depth prediction”, in “IEEE Conference on Computer
Vision and Pattern Recognition (CVPR)”, pp. 6243–6252 (2017).

Tzeng, E., J. Hoffman, T. Darrell and K. Saenko, “Simultaneous deep transfer across
domains and tasks”, in “Proceedings of the IEEE International Conference on
Computer Vision”, pp. 4068–4076 (2015).

110

Umuroglu, Y., Y. Akhauri, N. J. Fraser and M. Blott, “LogicNets: Co-Designed
Neural Networks and Circuits for Extreme-Throughput Applications”, in “IEEE
International Conference on Field-Programmable Logic and Applications (FPL)”,
pp. 291–297 (2020).

Umuroglu, Y., N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre and
K. Vissers, “Finn: A framework for fast, scalable binarized neural network inference”,
in “Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays”, FPGA ’17, pp. 65–74 (ACM, New York, NY, USA,
2017), URL http://doi.acm.org/10.1145/3020078.3021744.

Venieris, S. I. and C.-S. Bouganis, “fpgaConvNet: A framework for mapping con-
volutional neural networks on FPGAs”, in “IEEE International Symposium on
Field-Programmable Custom Computing Machines (FCCM)”, pp. 40–47 (2016).

Venieris, S. I., A. Kouris and C.-S. Bouganis, “Toolflows for mapping convolutional
neural networks on fpgas: A survey and future directions”, ACM Comput. Surv. 51,
3, 56:1–56:39, URL http://doi.acm.org/10.1145/3186332 (2018).

Venkataramanaiah, S. K., Y. Ma, S. Yin, E. Nurvithadhi, A. Dasu, Y. Cao and J.-s.
Seo, “Automatic compiler based fpga accelerator for cnn training”, in “2019 29th
International Conference on Field Programmable Logic and Applications (FPL)”,
pp. 166–172 (IEEE, 2019a).

Venkataramanaiah, S. K., Y. Ma, S. Yin, E. Nurvithadhi, A. Dasu, Y. Cao and J.-s.
Seo, “Automatic compiler based fpga accelerator for cnn training”, in “2019 29th
International Conference on Field Programmable Logic and Applications (FPL)”,
pp. 166–172 (IEEE, 2019b).

Viola, P. and M. J. Jones, “Robust Real-time Object Detection”, IJCV (2004).

Wang, E., J. J. Davis, R. Zhao, H.-C. Ng, X. Niu, W. Luk, P. Y. Cheung and G. A.
Constantinides, “Deep neural network approximation for custom hardware: Where
we’ve been, where we’re going”, arXiv preprint arXiv:1901.06955 (2019).

Warden, P., “Why GEMM is at the heard of deep learning”, URL https://petewarden.
com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/ (2015).

Wei, X., C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang and J. Cong,
“Automated systolic array architecture synthesis for high throughput CNN inference
on FPGAs”, in “IEEE/ACM Design Automation Conference (DAC)”, pp. 1–6 (2017).

Wen, W., C. Wu, Y. Wang, Y. Chen and H. Li, “Learning Structured Sparsity in
Deep Neural Networks”, in “Advances in Neural Information Processing Systems
(NeurIPS)”, (2016).

111

http://doi.acm.org/10.1145/3020078.3021744
http://doi.acm.org/10.1145/3186332
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Whatmough, P. N., S. K. Lee, D. Brooks and G. Wei, “Dnn engine: A 28-nm timing-
error tolerant sparse deep neural network processor for iot applications”, IEEE
Journal of Solid-State Circuits 53, 9, 2722–2731 (2018).

Whatmough, P. N., C. Zhou, P. Hansen, S. K. Venkataramanaiah, J. Seo and M. Mat-
tina, “FixyNN: Efficient Hardware for Mobile Computer Vision via Transfer Learn-
ing”, in “Conference on Machine Learning and Systems (MLSys)”, (2019).

Wissolik, M., D. Zacher, A. Torza and B. Da, “Virtex UltraScale+ HBM FPGA: A
revolutionary increase in memory performance”, Xilinx Whitepaper (2017).

Wu, D., Y. Zhang, X. Jia, L. Tian, T. Li, L. Sui, D. Xie and Y. Shan, “A High-
Performance CNN Processor Based on FPGA for MobileNets”, in “IEEE Inter-
national Conference on Field Programmable Logic and Applications (FPL)”, pp.
136–143 (2019).

Wu, Y. and K. He, “Group normalization”, in “European Conference on Computer
Vision (ECCV)”, pp. 3–19 (2018).

Yang, L., Z. He and D. Fan, “Harmonious Coexistence of Structured Weight Pruning
and Ternarization for Deep Neural Networks”, AAAI Conference on Artificial
Intelligence 34, 04, 6623–6630 (2020).

Yang, Y., Q. Huang, B. Wu, T. Zhang, L. Ma, G. Gambardella, M. Blott, L. Lavagno,
K. Vissers, J. Wawrzynek and K. Keutzer, “Synetgy: Algorithm-hardware co-design
for ConvNet accelerators on embedded FPGAs”, in “Proceedings of the ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA)”, pp. 23–32
(2019).

Ye, H., X. Zhang, Z. Huang, G. Chen and D. Chen, “HybridDNN: A Framework
for High-Performance Hybrid DNN Accelerator Design and Implementation”, in
“ACM/IEEE Design Automation Conference (DAC)”, pp. 1–6 (2020).

Yin, S. and J. Seo, “A 2.6 TOPS/W 16-bit Fixed-Point Convolutional Neural Network
Learning Processor in 65nm CMOS”, IEEE Solid-State Circuits Letters 3, 13–16
(2020).

Yosinski, J., J. Clune, Y. Bengio and H. Lipson, “How transferable are features in deep
neural networks?”, in “Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2”, NIPS’14, pp. 3320–3328 (MIT Press,
Cambridge, MA, USA, 2014), URL http://dl.acm.org/citation.cfm?id=2969033.
2969197.

Yu, J., A. Lukefahr, D. Palframan, G. Dasika, R. Das and S. Mahlke, “Scalpel:
Customizing DNN Pruning to the Underlying Hardware Parallelism”, in “Proc. of
ISCA”, (2017).

112

http://dl.acm.org/citation.cfm?id=2969033.2969197
http://dl.acm.org/citation.cfm?id=2969033.2969197

Yu, Y., T. Zhao, K. Wang and L. He, “Light-OPU: An FPGA-Based Overlay Processor
for Lightweight Convolutional Neural Networks”, in “ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA)”, p. 122–132 (2020).

Zeng, H., R. Chen, C. Zhang and V. Prasanna, “A framework for generating high
throughput CNN implementations on FPGAs”, in “Proceedings of the ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA)”, pp. 117–
126 (2018).

Zeng, H. and V. Prasanna, “GraphACT: Accelerating GCN Training on CPU-FPGA
Heterogeneous Platforms”, in “ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA)”, pp. 255–265 (2020).

Zhang, C., P. Li, G. Sun, Y. Guan, B. Xiao and J. Cong, “Optimizing FPGA-based
accelerator design for deep convolutional neural networks”, in “Proceedings of the
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays”, pp.
161–170 (2015).

Zhang, J. and J. Li, “Improving the performance of OpenCL-based FPGA accelerator
for convolutional neural network”, in “Proceedings of the ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA)”, pp. 25–34 (2017).

Zhang, Y., M. Pezeshki, P. Brakel, S. Zhang, C. Laurent, Y. Bengio and A. Courville,
“Towards end-to-end speech recognition with deep convolutional neural networks”,
in “INTERSPEECH”, (2016).

Zhao, R., H.-C. Ng, W. Luk and X. Niu, “Towards efficient convolutional neural network
for domain-specific applications on fpga”, in “IEEE International Conference on
Field Programmable Logic and Applications (FPL)”, pp. 147–1477 (2018a).

Zhao, R., X. Niu and W. Luk, “Automatic Optimising CNN with Depthwise Separable
Convolution on FPGA: (Abstact Only)”, in “ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays”, pp. 285–285 (2018b).

Zhao, W., H. Fu, W. Luk, T. Yu, S. Wang, B. Feng, Y. Ma and G. Yang, “F-CNN: An
FPGA-based framework for training convolutional neural networks”, in “Proceedings
of the IEEE International Conference on Application-specific Systems, Architectures
and Processors (ASAP)”, pp. 107–114 (2016).

Zhao, Y., X. Gao, X. Guo, J. Liu, E. Wang, R. Mullins, P. Y. K. Cheung, G. Constan-
tinides and C. Xu, “Automatic Generation of Multi-Precision Multi-Arithmetic CNN
Accelerators for FPGAs”, in “IEEE International Conference on Field-Programmable
Technology (ICFPT)”, pp. 45–53 (2019).

113

Zhou, S., R. Kannan and V. K. Prasanna, “Accelerating Stochastic Gradient De-
scent Based Matrix Factorization on FPGA”, IEEE Transactions on Parallel and
Distributed Systems 31, 8, 1897 – 1911 (2020).

Zhu, M. and S. Gupta, “To prune, or not to prune: exploring the efficacy of pruning
for model compression”, ArXiv e-prints (2017).

Zhu, Y., A. Samajdar, M. Mattina and P. Whatmough, “Euphrates: Algorithm-soc co-
design for low-power mobile continuous vision”, in “Proceedings of the 45th Annual
International Symposium on Computer Architecture”, ISCA ’18, pp. 547–560 (IEEE
Press, Piscataway, NJ, USA, 2018), URL https://doi.org/10.1109/ISCA.2018.00052.

Zimmermann, R., “Datapath synthesis for standard-cell design”, in “2009 19th IEEE
Symposium on Computer Arithmetic”, pp. 207–211 (2009).

114

https://doi.org/10.1109/ISCA.2018.00052

	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 INTRODUCTION
	2 Automatic Compiler Based FPGA Accelerator for CNN Training
	3 FPGA-based Low-Batch Training Accelerator for Modern CNNs Featuring High Bandwidth Memory
	4 Efficient and Modularized Training on FPGA for Real-time Applications
	5 FixyNN: Efficient Hardware for Mobile Computer Vision via Transfer Learning
	6 FixyFPGA: Efficient FPGA Accelerator for Deep Neural Networks with High Element-Wise Sparsity and without External Memory Access
	7 CONCLUSION

	References

