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ABSTRACT

Efficient visual sensing plays a pivotal role in enabling high-precision applications

in augmented reality and low-power Internet of Things (IoT) devices. This dissertation

addresses the primary challenges that hinder energy efficiency in visual sensing: the

bottleneck of pixel traffic across camera and memory interfaces and the energy-intensive

analog readout process in image sensors.

To overcome the bottleneck of pixel traffic, this dissertation proposes a visual

sensing pipeline architecture that enables application developers to dynamically adapt

the spatial resolution and update rates for specific regions within the scene. By

selectively capturing and processing high-resolution frames only where necessary, the

system significantly reduces energy consumption associated with memory traffic. This

is achieved by encoding only the relevant pixels from the commercial image sensors

with standard raster-scan pixel read-out patterns, thus minimizing the data stored in

memory. The stored rhythmic pixel region stream is decoded into traditional frame-

based representations, enabling seamless integration into existing video pipelines.

Moreover, the system includes runtime support that allows flexible specification of

the region labels, giving developers fine-grained control over the resolution adaptation

process. Experimental evaluations conducted on a Xilinx Field Programmable Gate

Array (FPGA) platform demonstrate substantial reductions of 43-64% in interface

traffic, while maintaining controllable task accuracy.

In addition to the pixel traffic bottleneck, the dissertation tackles the energy

intensive analog readout process in image sensors. To address this, the dissertation

proposes aggressive scaling of the analog voltage supplied to the camera. Extensive

characterization on off-the-shelf sensors demonstrates that analog voltage scaling can

significantly reduce sensor power, albeit at the expense of image quality. To mitigate
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this trade-off, this research develops a pipeline that allows application developers to

adapt the sensor voltage on a frame-by-frame basis. A voltage controller is integrated

into the existing Raspberry Pi (RPi) based video streaming pipeline, generating the

sensor voltage. On top of that, the system provides a software interface for vision

applications to specify the desired voltage levels. Evaluation of the system across

a range of voltage scaling policies on popular vision tasks demonstrates that the

technique can deliver up to 73% sensor power savings while maintaining reasonable

task fidelity.
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Chapter 1

INTRODUCTION

The rapid advancement of visual computing systems has revolutionized the way we

interact with the world through cameras, enabling a wide range of applications in the

mobile devices, e.g., Oculus Quest, and Internet of Things (IoT). These systems have

the remarkable ability to detect faces, understand spatial scene geometry, capture high-

resolution images and videos, and provide security through video surveillance. With

the continuous improvement of image sensor technology, such as higher resolutions and

faster frame rates, the precision and capabilities of visual systems have significantly

improved, opening up new possibilities for augmented reality, navigation, and other

visually intensive applications.

While higher resolutions and faster frame rates enable high precision visual com-

puting, they also pose challenges to visual systems on mobile and IoT devices in

terms of energy-efficiency. Specifically, higher resolution captures result in high pixel

traffic across memory interfaces, which hampers energy-efficiency. Additionally, higher

resolution captures require more sensor power due to the costly analog readout process.

To mitigate power consumption, existing systems often reduce the spatial resolution

and frame rate of image capture, leading to energy savings but sacrificing visual

precision and task accuracy. This tradeoff between power consumption and task

fidelity highlights the need for innovative approaches that can enhance the capabilities

of continuous mobile vision systems while optimizing energy efficiency.

This dissertation addresses the energy-efficiency challenge by proposing two novel

approaches: Rhythmic Pixel Regions and Squint Imaging. These approaches aim to
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trasnform visual computing systems by offering improved precision, energy efficiency,

and task adaptability, while taking into account the unique characteristics of different

visual features and the power limitations of mobile and IoT devices.

The first approach, Rhythmic Pixel Regions, challenges the traditional paradigm

of capturing and processing entire image frame streams at uniform spatial resolutions

and frame rates. Instead, it introduces the concept of region-specific spatiotempo-

ral resolutions, allowing for fine-grained configurability based on the properties of

visual features. By leveraging encoded data representations, this approach enables

the simultaneous capture of hundreds of rhythmic pixel regions, each with its own

independently defined resolution. This selective configurability empowers develop-

ers to allocate higher spatiotemporal resolution to regions requiring precise visual

features, such as augmented reality overlays or facial recognition, while allocating

lower resolution to other parts of the frame. By dynamically adjusting the resolution

based on task requirements, the rhythmic pixel region architecture eliminates the

wasteful processing and memory traffic associated with unproductive pixels, leading

to significant energy savings without compromising overall task accuracy.

The second approach, Squint, focuses on the dynamic voltage scaling (DVS) of

image sensors to achieve energy savings. Image sensors are known to consume a

significant amount of power in visual computing systems, and DVS allows for the

adaptive variation of the analog voltage supplied to the sensor on a frame-by-frame

basis. The Squint framework addresses the challenge of maintaining imaging fidelity

in the face of voltage scaling by thoroughly characterizing the energy and fidelity

implications on commercial off-the-shelf image sensors. This characterization reveals

that, in most situations, the degradation in imaging fidelity caused by aggressive voltage

scaling does not significantly impact the accuracy of modern neural network-based
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vision workloads. However, precise scene feature detection, especially in challenging

conditions such as low-light or crowded scenes, still benefits from higher fidelity. To

enable dynamic voltage scaling, the Squint framework introduces a lightweight and

fully programmable voltage controller hardware interface, complemented by a runtime

system that seamlessly integrates with vision applications. This integration empowers

application developers to specify voltage schedules directly, allowing for precise control

over power consumption while balancing imaging fidelity requirements.

By combining the Rhythmic Pixel Regions based architecture and the Squint

framework, this dissertation presents a comprehensive solution to enhance the ca-

pabilities and energy efficiency of visual computing systems. The Rhythmic Pixel

Regions architecture enable developers to finely tune spatiotemporal resolutions based

on the specific requirements of different visual features, offering an unprecedented

level of task adaptability while optimizing power consumption. Meanwhile, the Squint

framework provides a dynamic voltage scaling mechanism for image sensors, enabling

significant power savings without compromising overall imaging fidelity.

Through extensive evaluations, the proposed approaches have demonstrated re-

markable improvements in energy efficiency, extending the battery life of mobile and

IoT devices. By striking a delicate balance between task accuracy, power consumption,

and imaging fidelity, these approaches pave the way for advanced mobile and IoT

vision applications with prolonged operation times.

In summary, this dissertation introduces two groundbreaking approaches to address

the challenges of energy efficiency and imaging fidelity in visual computing systems.

• Rhythmic Pixel Regions offers a new paradigm for selective spatiotemporal

resolution configurations for AR/VR use-cases
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• Squint enables dynamic voltage scaling in image sensors to leverage image quality

- power trade-offs for IoT and XR use-cases

The rest of the dissertation is organized as follows. §2 presents Rhythmic Pixel

Regions, §3 presents Squint framework, and §4 concludes this work.
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Chapter 2

RHYTHMIC PIXEL REGIONS: MULTI-RESOLUTION VISUAL SENSING

SYSTEM TOWARDS HIGH-PRECISION VISUAL COMPUTING AT LOW

POWER

High spatiotemporal resolution can offer high precision for vision applications,

which is particularly useful to capture the nuances of visual features, such as for

augmented reality. Unfortunately, capturing and processing high spatiotemporal visual

frames generates energy-expensive memory traffic. On the other hand, low resolution

frames can reduce pixel memory throughput, but reduce also the opportunities of

high-precision visual sensing. However, our intuition is that not all parts of the

scene need to be captured at a uniform resolution. Selectively and opportunistically

reducing resolution for different regions of image frames can yield high-precision visual

computing at energy-efficient memory data rates.

To this end, we develop a visual sensing pipeline architecture that flexibly allows

application developers to dynamically adapt the spatial resolution and update rate of

different “rhythmic pixel regions” in the scene. We develop a system that ingests pixel

streams from commercial image sensors with their standard raster-scan pixel read-out

patterns, but only encodes relevant pixels prior to storing them in the memory. We

also present streaming hardware to decode the stored rhythmic pixel region stream

into traditional frame-based representations to feed into standard computer vision

algorithms. We integrate our encoding and decoding hardware modules into existing

video pipelines. On top of this, we develop runtime support allowing developers to

flexibly specify the region labels. Evaluating our system on a Xilinx FPGA platform
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over three vision workloads shows 43− 64% reduction in interface traffic and memory

footprint, while providing controllable task accuracy.

2.1 Introduction

Through the lens of their cameras, mobile devices can visually observe a user’s

environment for detecting faces, understanding spatial scene geometry, and capturing

images and videos. This has yielded a wide range of benefits, especially as image

sensors have grown to support increasingly higher resolutions and frame rates. With

such precision, it is now possible to position augmented reality (AR) overlays over

users’ faces or spatial living environments for social entertainment. Virtual AR media

can also annotate physical environmental surfaces, including for navigational guidance

for walking directions Google (2019). Wirelessly connected camera devices on the

Internet-of-Things can provide home security, such as through video doorbells.

(a) Frame-based (b) ROI-based (c) Rhythmic pixels

Figure 1: Traditional Frame-Based Computing Captures and Processes Entire Frames.
ROI-Based Computing Samples Regions of Interest, but at Uniform Spatial and
Temporal Resolution. With Rhythmic Pixel Regions, Different Regions Are Captured
at Different Spatio-Temporal Resolutions.

Unfortunately, visual systems on mobile systems are limited in their spatial preci-

sion, computational performance, and energy efficiency while performing continuous
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visual tasks. Mobile systems are constrained by their small form factors with limited

battery sizes and heat management requirements. To reduce the power consumption,

recently proposed systems reduce the spatial resolution and frame rate of image cap-

ture LiKamWa et al. (2013); Hu et al. (2018) to receive commensurate energy savings,

especially by reducing the memory traffic of the DRAM-based frame buffers. Thus,

resolution provides a tradeoff mechanism to dynamically configure systems for low

power consumption or high visual task fidelity. However, downscaling or windowing a

frame forces the application to reduce the resolution of the entire frame. Reducing

the frame rate similarly reduces the temporal resolution of the entire frame stream.

This reduced spatiotemporal resolution across the entire frame stream can lead to

suboptimal visual precision.

This work aims to improve the capabilities of continuous mobile vision systems,

based on a key insight: The precision, performance, and efficiency of visual computing

systems are limited by the current pattern of capturing and processing entire image

frame streams at uniform spatial resolutions and uniform frame rates. This as-

sumption of frame-based computing (Fig. 1a) presents an inflexibly coarse granularity

of tradeoff between task accuracy and energy efficiency. Most natural scenes do not

have the same resolution needs across the entire image frame. Precise AR placement

requires high spatial resolution for visual features on tracked surfaces, but would

suffice with a relatively lower resolution for the rest of the frame. The detection and

tracking of faces, hands, and objects could use a higher temporal resolution to capture

quick motions, while the rest of a relatively static scene would suffice with a lower

frame rate. Such tradeoffs are unavailable with the current model of frame-based

computing.
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To address this, we present a fundamental shift away from frame-based visual

computing and towards rhythmic pixel regions (Fig. 1c), which we define as

neighborhoods of pixels with region-specific spatiotemporal resolutions. Unlike visual

computing based on a few Regions-of-Interest (ROIs) Iqbal et al. (2020), rhythmic

pixel regions leverage encoded data representations that scalably allow for the capture

of hundreds of regions, with independently defined spatiotemporal resolutions. By

supporting the simultaneous capture of a diversity of rhythmic pixel regions, our

visual computing architecture allows the developer to selectively specify regions where

higher spatiotemporal resolution is needed and where lower spatiotemporal resolution

will suffice (Table 1), e.g., dynamically guided by the properties of the visual features.

The fine-grained configurability will allow developers to extend their existing visual

computing algorithms and applications for high energy efficiency. This creates the

illusion of high spatiotemporal resolution capture at low power consumption by

eliminating the wasteful DRAM traffic of unproductive pixels.

To design the rhythmic pixel region abstraction and the architecture to support it,

we introduce two hardware sensor data interfaces: an encoder to selectively reduce

sets of pixels before they are stored in memory, and a decoder to reconstruct the

pixels from memory into traditional frame-based addressing for standard application

use. Together, the rhythmic pixel region encoder and decoder work to reduce the

significant DRAM traffic of writing and reading visual data, leading to system energy

savings. These interfaces, which integrate into the System-on-Chip, support existing

and future high-resolution image sensors, allowing for a revolutionary upgrade to

evolutionary mass-market-scale image sensors.

To evaluate our system, we design our implementation on a Xilinx ZCU102

FPGA SoC platform. We support various visual workloads, including hardware-
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Table 1: Opportunities for Rhythmic Pixel Regions

Trad. uniform frame-based vision Rhythmic pix region-based vision

Spatial Resolution

If any part of the frame needs to be
captured at a high resolution, e.g., to
resolve complex texture or distant ob-
jects, the entire frame will need to be
captured at a high resolution.

Regions with small, detailed, and/or
distant features can be captured with
the precision of high resolution. Frame
regions with large, static, close visual
features can be captured with the effi-
ciency of low resolution.

Temporal Resolution

If any part of the frame needs to be
captured at a high frame rate, e.g., to
track substantial motion, the system
will need to capture a sequence of entire
frames of pixels at high frame rate.

Regions can be captured at different
intervals. The entire frame can be
scanned to update spatial understand-
ing at a lower rate, e.g., 1 fps. Regions
of moving objects/surfaces can be cap-
tured at higher rates, e.g., 60 fps.

accelerated neural network processing for face and object tracking, and OpenCV-based

visual simultaneous localization and mapping (V-SLAM). Through our evaluation,

we demonstrate the opportunity of rhythmic pixel regions to decrease pixel memory

traffic by 43− 64% while only minimally degrading the visual task accuracy, e.g., only

increasing absolute trajectory error of V-SLAM from 43 ± 1.5 mm to 51 ± 0.9 mm

in our case study. Through reduction in memory traffic, rhythmic pixel region based

techniques can significantly increase the energy-efficiency of battery-backed mobile

systems.

In summary, we make the following contributions:

• To the best of our knowledge, we are the first to propose a visual comput-

ing paradigm where different parts of the scene are captured at different spa-

tiotemporal resolutions – before the frame enters memory – for overall system

energy-efficiency while respecting task needs.

• We develop two lightweight and scalable IP blocks – rhythmic pixel encoder and

decoder – which decimates the incoming pixel stream while writing to memory

and reconstructs the pixel stream on-the-fly while reading from memory.
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• We develop a library and runtime to coordinate vision tasks with encoder/decoder

operation.

• We augment our architecture and runtime support on top of an existing com-

mercial mobile vision pipeline built around a FPGA platform. We evaluate the

augmented architecture on a variety of vision tasks to demonstrate significant

reduction in memory traffic with controllable accuracy loss.
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2.2 Background and Related Work

A primer on vision pipelines: The ecosystem of visual computing sensors,

devices, systems, and algorithms on mobile devices have rapidly evolved to provide

high-performance platforms for multitude of vision tasks such as augmented reality

on smartphones, tablets, and headsets Höllerer and Feiner (2004).

Image sensors collect digital readings of visual pixels in a frame Richard Szeliski

(2010). The sensor sends values over a streaming MIPI interface, which enacts a

serial transmission over multiple lanes MIPI Alliance (2020). The MIPI receiver

inside the SoC receives the frame information from camera. In the sensor or on the

system-on-chip, there is often an image signal processor (ISP) inserted into the visual

computing pipeline, performing image improvement operations, e.g., white balance,

and format changes, e.g., YUV conversion. Regardless of the placement and operation

of the ISP, the visual hardware pipeline eventually writes the frame into DRAM and

signals to the operating system that a frame is ready for readout from the memory.

Data movement across the off-chip MIPI and DDR interfaces entails significant

energy consumption Ghose et al. (2018). While tasks such as AR could significantly

benefit from high spatiotemporal resolutions, e.g., 4K at 60 fps, these resolutions

generate high datarates across the camera and memory interfaces. For example, the

system expends 2.8 nJ to move a pixel Pandiyan and Wu (2014); Ho et al. (2001);

Raghunathan et al. (2003); Magen et al. (2004); Meindl et al. (2002) across the DDR

interface, whereas it expends only 4.6 pJ for performing a multiply-and-accumulate

(MAC) operation Hameed et al. (2010) around that pixel.

For AR, the software processes the frame through visual computing frameworks,

extracting visual features to feed into SLAM algorithms Mur-Artal, Raúl, Montiel, J.
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M. M. and Tardós, Juan D. (2015). These algorithms form a spatial understanding

of the scene to estimate the pose of the camera. The pose of the virtual camera

is precisely updated to the estimated pose of the physical camera. This allows the

system to overlay virtual objects over the physical environment, achieving the AR

illusion.

Multi-ROI sensors: Many image sensors are capable of selecting a region-of-

interest (ROI) for readout ximea (2019). There are also sensors that allow for multiple

ROIs to be read out Stemmer Imaging (2019). As region selection is performed

at the sensor level, it offers efficiency and speed by reducing sensor readout time.

However, there are significant limitations to adopting these sensors for mobile systems.

In particular, the expressiveness of sensor-based region selection is limited by the

footprint of additional circuitry. For example, in one such sensor, the region selection

is limited to 4 regions, regions cannot overlap, and only full resolution and frame rate

are available ximea (2019). In contrast, our support for rhythmic pixel regions provides

extensive configurability and composability through the inherent scalability of the

encoded data representation. This allows a much larger number of regions (hundreds),

and grants each region independent resolution and rhythm/interval control. Moreover,

we implement region selection in the SoC, which allows any conventional image sensor

to employ multi-ROI benefits, including emerging high resolution and high framerate

sensors.

Event-driven cameras: Event-driven cameras, also known as dynamic vision

sensors, focus their sampling on pixels that change their value Gallego, Guillermo and

Delbruck, Tobi and Orchard, Garrick and Bartolozzi, Chiara and Taba, Brian and

Censi, Andrea and Leutenegger, Stefan and Davison, Andrew and Conradt, Jörg and

Daniilidis, Kostas and others (2019). This allows for a significant reduction in sensor
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bit rate and allows microsecond time resolution. However, the circuitry is spatially

expensive due to per-pixel motion detection module, reducing frame resolution, e.g., to

128 x 128 pixels. This limits the scalability of these sensors to support high resolutions.

More fundamentally, the logic of deciding what pixels to read out is limited at hardware

design time, disallowing high-level and/or semantic knowledge from governing the pixel

selection process. Thus, while our work shares similar motivations and inspirations –

reducing data rate for efficiency and performance – we uniquely allow the expressive

ability to dynamically use knowledge of visual feature extraction needs to selectively

sample pixels as needed.

Image/Video Compression: Decades of work in image processing has gone

towards compressing images and videos to reduce the bit rate of storing and transmit-

ting media. Many of these techniques are inspiring to this work. For example, JPEG

and other image compression standards reduce information at spatial frequencies

with less perceptual priority Richard Szeliski (2010). MPEG-H Part 2 / HEVC /

H.265 reduce redundant information by leveraging estimated motion information from

frame-to-frame Iaian Richardson (2004). However, such entropy-coding compression

techniques require the frame – or multiple copies of the frame – in memory before

compression can be done. This incurs the memory overhead of visual computing

that rhythmic pixel regions strives to avoid; we perform encoding before the frame

enters the DRAM. Traditional video codecs also employ sophisticated techniques such

as discrete cosine transform (DCT) and motion compensation for data reduction,

increasing their design complexity. In contrast, we use simple pixel discard based

strategy for data reduction.

Foveated Rendering: To improve graphical rendering capabilities under limited

computing resources, foveated rendering focuses rendering effort where users are likely
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to notice. Foveated rendering Wikipedia (2020) uses eye tracking to estimate user

gaze and renders content near the gaze target at higher spatial resolutions. We apply

similar motivation, increasing spatiotemporal resolution where it is needed, but with

a distinctly different goal: to only capture necessary visual information. Among other

differences, our work involves multiple simultaneous regions, as opposed to the singular

region in foveated rendering.

Flexible spatio-temporal sampling algorithms: Computer vision researchers

propose different algorithms that modulate different regions in an image with different

spatio-temporal resolutions for computational photography and video prediction use-

cases. Flexible voxels Gupta et al. (2010) proposes an efficient space-time sampling

scheme that enables per-pixel temporal modulation and a motion-aware reconstruction

scheme for artifact-free videography. More advanced techniques Reddy et al. (2011)

have been proposed for space-time sampling and interpolation for video compressive

sensing and high-speed imaging.

More recently, researchers proposed neural networks Lu et al. (2017) to generate

high frame rate videos from low frame rate counterparts. These networks analyze

spatiotemporal patterns across frames in a video to create interpolated frames. While

we use similar spatiotemporal sampling mechanisms, we focus on providing the

architecture and runtime support to enable spatiotemporal rhythmic capture on an

embedded system.

Energy-efficient visual systems To reduce energy consumption and bandwidth

utilization, some systems offload only interesting frames to the cloud, discarding

the rest Chen et al. (2015). Determining which frames to discard itself is often an

expensive task. To this end, other systems Naderiparizi et al. (2017) implement a

dedicated hardware/software subsystem using an array of gating sensors and imagers.
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Other hardware-software co-design techniques reuse computation for energy-efficient

visual computing. Euphrates Zhu et al. (2018) reuses the motion vector information

from the ISP to extrapolate bounding box results for object detection to avoid

extraneous vision processing on certain frames. EV A2 Buckler et al. (2018) exploits

temporal redundancy between frames and uses motion compensation techniques to

approximate CNN results. ASV Feng et al. (2019) applies stereo-specific algorithmic

and computational optimizations to increase the performance with minimum error

rate. Instead of approximating computation, our work primarily focuses on reducing

the memory traffic of sensing by discarding pixels early in the vision pipeline. As such,

rhythmic pixel regions can be complementary to the aforementioned visual processing

techniques, with approximate computing filling in the visual gap of unsampled pixel

data.
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Figure 2: The Process of Encoding and Decoding. The Encoder Packs Pixels Within
the Regions from the Original Image, Maintaining Raster-Scan Order. The Decoder
Reconstructs Data from the Encoded Frame, Per-Row Offsets, and Encoding Mask.

2.3 Visual Computing with Rhythmic Pixel Regions

The overarching concept of rhythmic pixel regions is to encode visual information

captured by conventional sensors such that the encoded visual data: (i) meets real-

time visual requirements specified by application developers, (ii) reduces the pixel

memory throughput and footprint of pixel stream data into DRAM, and (iii) can be

reconstructed into visual frames for application usage. Here, we introduce key data
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structures that specify the region labels, the encoded pixels, and associated meta-data,

and how these data structures are used to perform pixel sampling and interpolation

to satisfy visual needs. We also illustrate the effect of this new paradigm on a case

study based on visual SLAM.

2.3.1 Developer-Specified Region Labels

To mark the regions to be captured, as well as their spatiotemporal qualities, the

system allows developers to specify a set of region labels (Fig. 2a) to define a capture

workload. Each region label includes the following attributes:

- The coordinates of the top-left corner of the region

- The width and height of the region

- The stride resolution of the region, i.e., the density of pixels

- The skip rate, i.e., the time interval of consecutive sampling

We do not yet support movement, resize, or other temporal dynamics of regions in

this work.

2.3.2 Encoded Frame

The encoder uses the region labels to selectively store a reduced set of pixels into

memory, forming the encoded frame. Pixels within any of the region labels are stored

in original raster-scan order, while omitting any pixels that do not fall within regions,

or are not within the rhythm of the stride or skip. This results in a tightly packed

encoded frame (Fig. 2a).
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Figure 3: For ORB-SLAM, Rhythmic Pixel Regions Can Discard Irrelevant Pixels
Early in the Pipeline for Memory Efficiency, While Preserving Relevant Regions at
Sufficient Resolutions for Accuracy.

Notably, traditional ROI-based computing typically adopts a different memory

representation, storing each region of pixels as a grouped sequence in memory. For

the small number of regions that ROI-based computing typically supports, this may

suffice, but when scaled to hundreds of regions, this creates unfavorable random access

patterns into DRAM and/or buffering of large portions of the frame into local SRAM

when writing pixels into memory. Furthermore, overlapping regions will duplicate the

storage of pixels that appear in multiple regions. Instead, by preserving raster scan

order, the rhythmic encoded frame representation instead retains sequential write

patterns. This allows for highly efficient scalability to raised number of regions with

minimal resource overhead.

2.3.3 Metadata: Per-Row Offset, Encoding Mask (EncMask)

To service pixel requests from the vision applications, the decoder will need to

translate pixel addresses in the original frame into pixel offsets in the encoded frame
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before retrieving the pixel value. However, this would limit decoder scalability, as the

complexity of the search operation quickly grows with additional regions.

Thus, instead of using region labels, we propose an alternative method that uses

two forms of metadata for the decoder to reconstruct the original pixel stream (Fig. 2a).

First, a per-row offset counts the number of encoded pixels prior to that row in

the image. Second, an encoding sequence bitmask (EncMask) helps the decoder to

reconstruct a pixel stream without the need for region labels. For each pixel in the

original (pre-encoding) frame, the EncMask uses a two-bit status that indicates how a

pixel is sampled in space and time:
N (00): Non-regional pixel

St (01): Regional pixel but strided

Sk (10): Regional pixel but temporally skipped

R (11): Regional pixel
Together, the per-row offset and EncMask allow the decoder to find the relevant pixel

address in the encoded frame, and access the appropriate values from the current

encoded frame or previous encoded frames to decode the pixel. We provide more

information about this process in Section 2.4.2.

2.3.4 A Case Study Around ORB-SLAM

ORB-SLAM Mur-Artal, Raúl, Montiel, J. M. M. and Tardós, Juan D. (2015)

is a popular real-time V-SLAM algorithm, highly centered around tracking visual

“features”, creating a map of localized features, and finding matches to previously

mapped features for continual positioning. Visual features – key for scene under-

standing – are scattered throughout a scene and carry different spatiotemporal needs.

While running ORB-SLAM for augmented reality, for example, the feature extractor
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routinely detects several hundreds of features (e.g., 1500 features in a 1080p frame)

at varying distances from the camera. This motivates the need to sample hundreds of

regions around hundreds of features with need-specific resolutions. Features can be

grouped into a smaller number of regions, but this reduces task accuracy and memory

efficiency, as we demonstrate in §3.5.

In the context of rhythmic pixel regions, ORB features will be located in the

decoded pixel streams. Regions covering the entire frame can be captured at a slower

skip rate to maintain coverage of features as the device moves around the space.

In between full captures, detected features in both full and partial captures can

guide region label selection for the subsequent frame, defining regions around feature

locations and with properties based on feature characteristics. Specifically, our policy

uses the feature’s “size” attribute to guide the width and height of the region. Along

similar lines, it uses other feature attributes such as “octave” for stride and feature

movement between frames for temporal rate. The encoder uses these feature-based

region labels to selectively store pixels of interest and metadata into memory. The

decoder uses these to reconstruct the frames for the algorithm to access and use for

ORB-SLAM and further region selection.

We evaluate the efficacy over the TUM dataset Sturm et al. (2012) of 480p videos,

capturing full frames every 10 frames and feature-based regions for other frames. As

shown in Fig. 3, we find that using rhythmic pixel regions can eliminate the memory

storage of 66% of the pixels of the original stream, while only increasing absolute

trajectory error from 43 ± 1.5 mm to 51 ± 0.9 mm. We further explore the

applicability of rhythmic pixel regions to visual workloads in our evaluation.
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2.4 Design

The rhythmic pixel region architecture centers around the idea of: (i) encoding

pixel streams to reduce the pixel data stored in memory, and (ii) decoding the pixel

streams for vision application usage. Here, we outline the design aspirations that guide

our architecture. We then describe the design of two hardware units – a rhythmic

pixel encoder and a rhythmic pixel decoder – and their integration with the existing

mobile SoC vision pipeline, as shown in Fig. 4. We also discuss the software runtime

for vision application developers to leverage these hardware extensions through policy

specification.

Design aspirations: We set four goals that guide the design of our hardware

and software extensions.

• Lightweight: Our encoding/decoding techniques should be lightweight (unlike

traditional video codecs) so that they can be designed and integrated with

minimal resource overhead.

• Scalable: Our system should scale to support the capture of many regions with

minimal resource overhead.

• Memory friendly: Our hardware extensions should perform encoding/decoding

tasks with efficient memory access patterns and minimal DRAM traffic

• Flexible: Our runtime should allow developers to flexibly and independently

specify resolution and update rate needs on a per-region basis.
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2.4.1 Rhythmic Pixel Encoder Architecture

The rhythmic pixel encoder module, shown in Fig. 5, intercepts the incoming pixel

stream from an image sensor pipeline and uses developer-specified region labels to

encode pixels into an encoded frame. The encoder also generates associated metadata

(per-row offset is a count of the number of regional pixels in a row, and EncMask

is the output of the region comparison process), which is stored with the encoded

frame in DRAM. The app specifies region labels using the designed runtime support

in Section 2.4.3.

We design our encoder as a fully streaming based module that avoids the need

for partitions to store individually addressed regions. Instead, our encoder directly

operates on a dense raster-scan based pixel stream, produces a sparse encoded stream

based on the region labels, and writes the encoded stream to the DRAM, all with

on-the-fly streaming operation.
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2.4.1.1 Raster-Scan Optimized Sampling:

The sampling block operates on the pixel stream and decides whether to sample a

pixel in space and time based on whether the pixel is in any of the regions or not. A

naive approach could sequentially compare a pixel’s location against every region label.

This would be time consuming and would hinder pipeline performance. Although

parallelizing the region label checking process would solve performance issues, we find

that this exponentially increases the number of resources to support more regions,

limiting encoder scalability.

Instead, our approach is to exploit the raster-scan patterns of the incoming pixel

stream to reduce and reuse the work of the region search. The Sequencer keeps track

of row and pixel location. For a given row, there is a smaller subset regions that are

relevant – where the y-index of the pixel is inside of the y-range of the region and

matches the vertical stride. The RoI Selector performs this search space reduction,

i.e., converting from the region list to a sublist, once per row. Then, from pixel to

pixel, the encoder’s Comparison Engine only needs to check whether the x-index of

the pixel is inside any of the regions in the sublist and matches the horizontal stride.

As the sublist is much smaller than the original list, this design choice substantially

reduces the level of region-based parallelism needed for the Comparison Engine, saving

hardware complexity.

In addition, we perform further optimizations for the comparison engine based

on spatial locality. Within a row, if we find that if a pixel belongs to a region, the

Sampler can apply the same comparison result for the next region width number of

pixels. We also simplify the process of finding relevant regions for a row through
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sorting the regions by their y-indices. This can be done by the rhythmic pixel region

app runtime.

2.4.1.2 Integration with ISP Output

The placement of the encoder has implications on the efficiency of the visual

capture. The most energy-efficient integration of the encoder would be on the sensor

itself, reducing pixel traffic over the sensor interface and potentially reducing ISP

computations. However, this would need a re-design of the ISP, which conventionally

expects pixels in frame-based ordering in its algorithms. Thus, for this work, we

instead integrate the encoder at the output of the ISP to seamlessly work with existing

commercial ISPs.
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As with typical ISP operation, the encoder collects a line of pixels before committing

a burst DMA write to a framebuffer in the DRAM for efficient and performant memory

transaction. Using a framebuffer allows asynchronous access to frame pixels. In the

case of the rhythmic pixel architecture, the framebuffer also allows the system to

collect multiple frames of data, which the decoder can use to extrapolate regional

pixels over a sequence of frames for regions with temporal skip rate. The metadata

(per-row offset and EncMask) of the frame is also stored alongside the framebuffer in

DRAM. As the EncMask occupies 2 bits per pixel, we note that it occupies 8% of the

original frame data (e.g., 500 KB for a 1080p frame). As explored in our evaluation,

this amounts to a minimal memory overhead compared to the memory savings.

2.4.2 Rhythmic Pixel Decoder Architecture

The rhythmic pixel decoder fulfills pixel requests from the vision app, which seek

groups of sequential pixels from a decoded framebuffer. While the app forms its

request around pixel locations in the decoded address space, the decoder uses the

metadata and encoded frames to translate decoded pixel addresses to the DRAM

addresses of the encoded frame pixels. This request path is managed by a pixel

memory management unit (PMMU), as described below and shown in Fig. 6.

The response path returns the pixel values to the vision application through a

FIFO Sampling Unit. If required by spatial stride or temporal skip situations, the

FIFO Sampling Unit interpolates encoded data to create decoded pixel values, which

it provides to the requesting processor. Otherwise, the decoder returns the pixel value,

or a black pixel, if the pixel was not within any of the specified region labels. As

described below, the metadata is used to make such determinations.
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2.4.2.1 Pixel Memory Management Unit for Pixel Address Translation:

The PMMU works in the same spirit as a traditional memory management unit

(MMU); while MMUs perform virtual to physical address conversion, our PMMU

translates pixel transactions from decoded to encoded space. Similar to the exception

handler of an MMU, the PMMU’s Out-of-Frame Handler examines a memory request

and determines if it is a valid pixel request, i.e., if the requested memory address is

in the decoded framebuffer address space. The Out-of-Frame Handler forwards the

transaction if it’s a pixel-based one; otherwise, it will bypass for standard memory

access.
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Meanwhile, the Metadata Scratchpad loads the per-row offset and EncMask

information pertaining to the transaction for the four most recent encoded frames.

The Transaction Analyzer analyzes the EncMasks of the transaction and generates

different sub-requests based on where the encoded pixels are present. Based on the

stride (St) and skip (Sk) values of the EncMask bits, the pixel may be in the most

recent encoded frame, or one of the recently stored encoded frames. Thus, similar to

a virtual memory request, translation of these pixel requests creates sub-requests that

are characterized by a base address (of the encoded frame), offset (row and column),

and a tag index of which frame hosts the desired pixels.

These sub-requests are fed to a translator. For intra-frame requests, the base

address remains the same, whereas for inter-frame requests, the translator modifies it

to the appropriate base address. The per-row offset is read from the metadata. The

column offset is the count of the number of full regional pixels from the start of the

row until that pixel (The number of “11” entries in the EncMask). The translator

sums this information to generate the new encoded pixel request corresponding to

each sub-request, which will be sent to DRAM.

2.4.2.2 FIFO Sampling Unit:

A FIFO buffers data packets received from a pixel-based DRAM transaction. To

prepare a pixel value to service the original request, the engine either dequeues pixel

data from the FIFO, re-samples the previous pixel (in the case of stride), or samples

a black pixel, based on the EncMask. The unpacker also relays the RLAST control

signal to indicate the last transfer in the transaction for proper handshake with the

processing unit for the memory request.

27



2.4.2.3 Integration with DDR Controller

We integrate the decoder module with the existing DDR controller inside the SoC.

By doing so, the decoder can intercept memory traffic coming from any processing

element and service requests.

2.4.3 Developer Support for Rhythmic Pixel Regions

From the point of view of the processing unit – CPU, visual processing unit, or

GPU – the rhythmic pixel region architecture preserves the addressing scheme of the

original frame-based computing through the decoded framebuffer address. This allows

fully transparent use of existing software libraries and hardware accelerators, with no

modification needed.

We develop runtime support to allow the developers to flexibly specify region

labels. This consists of a RegionLabel struct and a SetRegionLabels() function for

developers to set a list of regions. Region label lists can be set on a per-frame basis or

persist across frames. A runtime service receives these calls to send the region label

list to the encoder.

struct RegionLabel {

int x, y, w, h, stride, skip;

};

SetRegionLabels(list<RegionLabel>);
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2.4.3.1 Policy-Based Usage of Rhythmic Pixel Regions

Developers can build various policies that autonomously guide the region selection,

in the similar spirit to issuing frame configurations with the Frankencamera API Adams

et al. (2010) or Android’s Camera API Android (2019). Policies can incur different

system overheads, leading to system trade-offs. A policy should predict region

progression with time as well as a region quality requirements to maximize task

performance. A feature-based policy (such as that in our case study of Section 2.3.4)

can use proxies, such as feature scale and feature displacement to estimate spatial and

temporal resolutions of regions. Developers can also introduce improved application-

specific proxies with other prediction strategies, e.g., with Kalman filters Iqbal et al.

(2020).

The process of policy generation and modifying the app around that policy could

be cumbersome for an app developer. To reduce the burden, we propose two tiers of

developers

Policy Makers: The first tier of developers can specialize in policy development.

They can write a wide variety of policies that employ a feature-based approach and/or

sophisticated motion-vector based techniques, such as those found in Euphrates or

EVA2 to guide region selection.

Policy Users: The second tier of developers could select a policy directly from a

pool based on their app needs.

This dichotomy of policy makers/users follows a typical stratified development

paradigm, where high-level developers can simply employ domain-specific libraries

(e.g., cuDNN, cuFFT, cuBLAS) that are developed to take advantage of architectural

complexity (e.g., with CUDA) by a different set of low-level developers.
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cycle length

Figure 7: With Rhythmic Pixel Regions, Policies Can Define How Different Regions
in the Image Can Be Captured at Non-Uniform Spatial and Temporal Resolutions. In
This Illustrated Policy, Regions Shaded in Black Are Not Sampled. To Track Objects
Entering/Leaving the Scene, the System Performs a Full-Frame Capture on a ’Cycle
Length’ Periodicity.

Example policy: As described in the case study, policies can center rhythmic pixel

regions around features, ensuring that features are captured at sufficient resolution.

We define an example policy (Fig. 7) around the concept of a cycle length, which is

the number of consecutive frames between two full frame captures. These occasional

full frame captures can provide contextual information of the entire scene at a slower

temporal rate, while feature-based region tracking in the intermediate frames can

provide continual coverage of important regions.

The visual features processed by the app – readily available in memory – can be

used to determine the pixel regions for the next subsequent frame, centering around

the features. For example, as discussed in §2.3.4, an ORB feature’s “size” (or scale)

attribute OpenCV (2015) can guide the width and height of its corresponding region,

ensuring that the meaningful neighborhood of pixels around the feature is captured

(with extra margin to allow for frame-to-frame feature displacement). Furthermore,

the “octave”OpenCV (2015) attribute, which describes the texture of the feature, can

determine the stride (resolution) parameter for each region. Through the displacement

of matched features from frame to frame and measuring the displacement, the system

can estimate the movement of a region. The policy can use this feature velocity to
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determine the temporal rate parameter of pixel regions, sampling fast moving regions

more frequently and slow-moving regions less frequently.

We use and adapt this example policy to various visual workloads in our implemen-

tation and evaluation. We evaluate different cycle lengths, finding that as the cycle

length increases, system efficiency improves, but the errors due to tracking inaccuracy

also accumulate, and vice-versa. Cycle length thus becomes an important parameter

to govern the tradeoff to meet application needs. The cycle length could also be

adaptive, for example, by using the motion in the frame or other semantics to guide

the need for more frequent or less frequent full captures. We envision that future

policies developed by a wider community of policy makers could substantially improve

the opportunities of rhythmic pixel regions.
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Table 2: System Components in the Video Pipeline

Component Specification
Camera Sony IMX274, 4K @ 60 fps
ISP Demosaic and Gamma correction, 2 Pixels Per Clock
CPU ARM Cortex-A53 quad-core
GPU ARM Mali-400 MP2
NPU Deephi DNN co-processor
DRAM 4-channel LPDDR4, 4 GB, 32-bit

2.5 Implementation

2.5.1 FPGA-Based Encoder and Decoder Integration

Platform: We use Xilinx’s reVISION stack platform Xilinx (2018) which im-

plements a end-to-end video pipeline that emulates a standard mobile embedded

vision pipeline. As shown in Table 7, we use Sony’s IMX274 camera, a mobile class

imager used in many smartphones for high fidelity capture, i.e., 4K @ 60fps. For the

ISP, we use Xilinx’s IP modules for performing demosaicing, gamma correction, and

color-space conversion. These ISP blocks operate at a throughput of 2 pixels per clock

for real-time performance. The processing subsystem comprises heterogeneous set

of computing elements, similar to a mobile SoC. Specifically, the device contains an

ARM Cortex-A53 quad-core CPU and an ARM Mali-400 MP2 graphics processing

unit (GPU). In addition, we integrate a Deephi DNN co-processor Xilinx (2020b)

into the FPGA fabric to emulate a neural network accelerator. Finally, the entire

system is provisioned with 4 GB LPDDR4 DRAM in the processing subsystem, which

we partially leverage for frame buffer capacity. The fully functional pipeline delivers

real-time performance of up to 60 fps for video pass-through and up to 30 fps for

certain vision tasks, such as face detection. We build our system around Xilinx’s

32



reVISION platform Xilinx (2018), which implements an end-to-end video pipeline

with major components shown in Table 7.

Encoder and Decoder: We design our encoder IP module with Vivado HLS

as a fully-streaming block with AXI-stream interfaces. In our encoder, input/output

buffers are FIFO structures with a depth of 16. We find that this depth is enough to

meet the 2 pixel-per-clock performance to match ISP performance and to avoid any

pipeline stalls.

We also design our decoder with Vivado HLS, utilizing AXI memory-mapped

interfaces on the input and output for integration with controllers and processing

units. Our decoder operates within the timing budget without introducing extra

latency. Both encoder and decoder functionally work in HLS simulations and the entire

video pipeline passes Vivado FPGA post-layout timing. In addition to the hardware

decoder, we design a software decoder using C++ and OpenCV. The software decoder

runs in real-time for a 1080p video stream.

As Xilinx packages the system DDR controller as a part of its Zynq CPU IP

module, we could not integrate the decoder between the DDR controller and the xPU

as shown in Fig. 4. Instead, we integrate our decoder as a memory-mapped peripheral

slave to Zynq SoC. In this integration, the system passes the pointers to the encoded

frame and metadata to the decoder to reconstruct the original frame.

2.5.2 Runtime

Our runtime comprises a standard software stack with a user-space API, a kernel-

space driver, and a set of low-level physical registers. We implement region parameters

as registers in the encoder/decoder modules inside the SoC. Upon invoking any setter
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Table 3: Vision Tasks and Benchmarks

Task Algorithm Resolution Benchmark #Frames
Visual
SLAM

ORB-
SLAM2 Mur-Artal, Raúl, Montiel, J. M. M. and Tardós, Juan D. (2015)

4K@
30 fps

In-house
dataset 6000

Pose
estimation PoseNet Cao et al. (2019) 720p@

30 fps
PoseTrack
2017 3792

Face
detection RetinaNet 1996scarlet (1996) SVGA@

30 fps
ChokePoint
dataset 22099

function from the application, the user-space API passes parameters to the kernel-

space driver. The driver then writes these parameters to the appropriate registers in

the hardware units over an AXI-lite interface.

2.5.3 Workloads

We study three widely-used vision tasks: (i) Visual SLAM, determining camera

position with respect to its surroundings while constructing the map of surroundings.

(ii) Human pose estimation, tracking person movement. (iii) Face detection, tracking

faces over time. For each task, as shown in Table 3, we choose state-of-the-art

algorithms with different input, memory, and computational requirements.

Notably real-time performance of the V-SLAM workload is not attainable on

the FPGA’s CPU due to the compute-intensive nature of ORB-SLAM2. Therefore,

we resort to a simulation-based approach where we run the V-SLAM workload on a

desktop computer, generate the region labels, and feed them to the encoder. That said,

there are commercial V-SLAM IP cores Synopsys (2020); EETimes (2020) available

in the market that offer real-time performance. We plan to integrate them into our

FPGA platform for future studies.

Benchmarks: We use popular publicly available benchmarks for each of these

tasks to evaluate their accuracy. Each of these datasets comprise videos with different
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visual attributes, including illumination variation and occlusion that mimic the real-

time scenarios in the wild. In addition, these videos cover a wide range of settings,

e.g., indoor/outdoor, crowded/dispersed, and fast/slow motion of objects making

them realistic candidates for evaluating rhythmic pixel regions.

To evaluate the potential of rhythmic pixel regions on high-precision visual com-

puting, we also evaluate visual SLAM on a 4K dataset. Since there are no ready-made

4K datasets available for visual SLAM, we create a dataset of 6000 frames spanning a

total of 7 indoor video sequences with varying user movement. For portability, we use

the 4K camera on a Microsoft Azure Kinect DK Microsoft (2020). We use an HTC

Vive tracker setup to obtain the ground truth pose. The obtained ground truth pose

has an offset compared to the original pose since the tracker is at a different location

from the camera. We use the information from Kinect’s IMU sensor to correct the

offset.

For human pose estimation, we use the famous PoseTrack Max Planck Institute

for Informatics, University of Bonn (2018) with 3792 frames across all video sequences.

Finally, for face detection, we use the ChokePoint NICTA (2015) dataset which

comprise 20 video sequences and 22,099 face images.

Baselines: We tested the workloads against the following baselines. (a) Frame-

based computing: The system captures frames at high resolution (FCH: 4K for

V-SLAM) or low resolution (FCL: 1080p for V-SLAM) (b) Rhythmic pixel regions

(RPx): The system implements rhythmic pixel regions of cycle length "x" (c) Multi-

ROI cameras: The system simulates off-the-shelf multi-ROI cameras (d) H.264: The

system performs H.264 video compression with the "Baseline" profile and the "5.2

(2160p60)" level for the codec.
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(a) Visual SLAM
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(b) Human Pose Est
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(c) Face Detection

FCH: Frame-based with high res.
[(a) 4K, (b) 720p, (c) SVGA]
FCL: Frame-based with low res.
[(a) 480p, (b) 240p, (c) 240p]
RPx: Rhythmic pixel regions with 
a cycle length of x
H.264: MPEG-4 compression
Multi-ROI: ≤ 16 regions

Figure 8: Rhythmic Pixel Regions Reduces Pixel Memory Traffic by Generating
Sparser Pixel Streams and Reduces the Memory Footprint by Generating Smaller
Frame Buffers. The Reduction Is More with Higher Cycle Lengths.

As far as we’ve seen, commercial multi-ROI cameras only support up to 16

regions, likely due to architectural unscalability. For workloads that use more regions,

we combine smaller regions into 16 larger regions through k-means clustering. To

accurately represent the capabilities of multi-ROI cameras, we do not implement stride

or skip adaptations. As an H.264 compression implementation is inaccessible on our

FPGA board, we instead use a codec datasheet to form estimations Xilinx (2020a).

As compression needs multiple frames to be stored in the memory, the pixel memory

footprint and throughput scale accordingly.
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Figure 9: There Is a Trade-Off Between Cycle Length and Task Accuracy. In V-
SLAM, We Observe High Standard Deviation. This Indicates Future Opportunity to
Adaptively Reduce Cycle Length to Improve Accuracy for Scenes with High Motion.
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2.5.3.1 Metrics:

Here we discuss about different evaluation metrics.

Task Accuracy: We choose standard accuracy metrics from computer vision literature

for all of our tasks. For visual SLAM, we use absolute trajectory error and relative

pose error metrics as discussed in §2.3.4. For human pose estimation/face detection,

we use the intersection over union (IoU) score as the metric. IoU measures the amount

of overlap between the predicted and ground truth bounding boxes. A detection is a

true positive (TP) if the IoU score is greater than a certain threshold; otherwise, it is

considered as a false positive (FP). Final detection accuracy is the number of true

positives among all detections, i.e., TP/(TP + FP), across all the frames, which is

known as mean average precision (mAP).

Datarate and Memory Footprint: We build a throughput simulator which

takes the region label specification per frame from the application and uses it to

generate the memory access patterns of pixel traffic. The simulator counts the number

of pixel transactions and directly reports the read/write pixel throughput in bytes/sec.

For memory footprint, we measure the size of encoded frame buffers over time.

Overhead: We use Xilinx Vivado Xilinx (2019a) to determine the area and power

overhead of our encoder and decoder modules. We use the resource utilization from

the post-layout design as a proxy to report the area overhead; For power overhead,

we use the numbers from Vivado power analysis tool.
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Table 4: Observed Statistics of Task and Benchmark

Task Avg. Number
of regions Region size Stride Rate

Visual
SLAM 973 Min: 70x70

Max: 230x230
Min: 1
Max: 4

Min: 100 ms
Max: 33 ms

Face
detection 3 Min: 70x63

Max: 270x228
Min: 1
Max: 2

Min: 67 ms
Max: 33 ms

Human Pose
estimation 4 Min: 161x248

Max: 324x512
Min: 2
Max: 4

Min: 100 ms
Max: 33 ms

2.5.3.2 Policy/Parameter Choices:

We outline our choices below.

Region selection: As outlined in §2.4.3, we use feature characteristics to guide the

selection of region labels to evaluate our tasks. For V-SLAM, region size is derived

directly from the feature size attribute, while spatial and temporal resolutions are

derived from the octave attribute and feature displacement respectively. We use face

trajectory for face detection and skeletal pose joints for human pose estimation for

determining the regions. Spatial and temporal resolutions are calculated based on the

region’s size and motion, respectively.

Cycle length: We evaluate the effectiveness of the example cycle-based policy

with cycle lengths of CL=5, 10, and 15.
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2.6 Evaluation

2.6.1 The Use of Rhythmic Pixel Regions Is Flexible

Our runtime successfully allows apps to express region labels without any restric-

tions on the number, size, and resolution of the regions, as shown in Table 4. The

size of these regions vary based on the semantics, e.g., nearness/farness of a face with

respect to the camera. These regions are also sampled at different spatio-temporal

resolutions based on their content.

Algorithms/Apps are still reliable: With flexible region specification, the app

now deals with only the pixels within the regions as opposed to the pixels in the entire

frame. As shown in Fig. 9, we find that apps can still reliably perform their tasks

with a slight accuracy loss compared to frame-based computing at high resolutions

on uncompressed (FCH) or compressed (H.264) frames. Comparatively, frame-based

computing at low resolutions (FCL) performs poorly, with significantly raised errors

for all of the visual workloads.

For our workloads, we observe a trade-off between cycle length and accuracy. As

shown in Fig. 9, while higher cycle lengths help discard more pixels, they also take a

toll on the task accuracy. Moderate cycle lengths, e.g., CL=10, strike a reasonable

balance between energy savings and task accuracy.

This raises a question: How much accuracy loss is acceptable? There is no set

standard in the vision community, as it depends on the app context. To that end, the

flexibility of policy choice allows developers to heuristically set accuracy expectations

for their specific apps. Our evaluated workloads result in roughly 5% accuracy loss

39



for moderate cycle lengths, i.e., CL=10. Future investigation into region selection

policies and adapted algorithms could further improve accuracy.

We can also observe a higher standard deviation for raised cycle lengths, especially

for V-SLAM. This indicates scene-based variability in accuracy loss. We analyze the

scenes to find that the scenes reporting low accuracy loss are fairly static in nature,

whereas the scenes with high accuracy loss have rapid scene motion. Other scenes in

our benchmark resulted in an average accuracy loss. Ideally, in future integrations, this

information could be leveraged, e.g., using accelerometer data and/or scene knowledge

to guide the region selection policy.

2.6.2 The Use of Rhythmic Pixel Regions Is Memory Friendly

Discarding pixels relieves memory interfaces: Rhythmic pixel regions

substantially reduce the data traffic across DDR interfaces, as shown in Fig. 8. With

higher cycle lengths, the system discards more pixels, leading to further reduction in

memory bandwidth. Specifically, we find that memory traffic decreases by 5-10% with

every 5 step increase in cycle length.

Notably, we find that the work saving techniques such as search-space reduction

in our encoder works for a broad spectrum of videos Our evaluated datasets, which

contain different videos captured in the wild, comprise images with regions spread

across the entire image as well as images with regions confined to a few areas within

the image. The encoder saves work in both cases. In the former case, our encoder

saves work by reducing the number of region comparisons for each row. In the latter

case, the encoder saves work by skipping region comparison entirely for those rows

where there are no regions.
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The pixel memory throughput for the multi-ROI baseline is larger than that

of rhythmic pixel regions for face detection and pose estimation workloads and

substantially higher for visual SLAM. Video compression generates a substantially

higher amount of memory traffic since it operates on multiple frames.

Discarding pixels reduces memory footprint: Rhythmic pixel regions not

only relieve the memory interfaces but also helps reduce the pixel memory footprint

of the vision pipeline, with similar trends, also shown in Fig.8. Specifically, with

our paradigm, the average frame buffer size reduces by roughly 50% compared to

frame-based computing. Frame buffers are storage intensive components in the vision

pipeline; with smaller frame buffers, a system can not only reduce storage energy, but

also potentially afford to store buffers locally inside the SoC itself, thereby reducing

reliance on DRAM. Metadata produced by the encoder incurs minimal memory

overhead. Specifically, EncMask and row offsets amount to 8% of pixel buffer storage

for a 1080p frame.

Energy efficiency implications of rhythmic pixel regions: Memory efficiency

begets energy efficiency; as is widely acknowledged in the computer architecture

community, systems expend significant energy to move data in and out of memory.

Based on first order modeling (see Appendix), with an assumption of 300 pJ to read

a pixel and 400 pJ to write a pixel, the reduced interface traffic of rhythmic pixel

regions reduces energy consumption by 18 mJ per frame for RP10 on V-SLAM at 4K

and 30 fps. This reduces power consumption by 550 mW. The precise energy savings

will depend on system characteristics that are highly specific to the device, operating

system, and application usage pattern. We leverage the coarse model to contextualize

the benefits of reducing pixel memory throughput.
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Further energy reduction could result from deeper investigation in tuning vision

algorithms and architectures to reduce their computational workload on lower resolu-

tion workloads, e.g., avoiding computation on zeroed pixels. Power reduction through

sparse computing has been shown to be effective strategy Chen et al. (2019); Zhang

et al. (2020); Gondimalla et al. (2019), which is a focus of future work.

2.6.3 The Hardware Extensions Are Lightweight and Scalable

Since real-estate is a precious resource on the SoC, our hardware extensions need

to be lightweight and scalable to support a multitude of regions without taking too

many resources.

Encoder scales well with number of regions: As shown in Table 5, the

encoder is able to support additional regions without needing significantly more

transistors. This is because our encoder utilizes a hybrid architecture that uses the

processor for pre-sorting at the OS level and specialized architecture for shortlisting

regions. This significantly reduces the number of comparisons needed, thereby favoring

scalability. On the other hand, resource footprint for a fully-parallel based encoder

design substantially increases with more regions to such an extent that they cause

synthesis issues on the FPGA.

Decoder is agnostic to number of regions: As the decoder uses bitmasks

(EncMask) instead of region labels, our decoder design is agnostic to the number of

regions. Specifically, it needs 699 LUTS, 1082 FFs, and 2 BRAMs (18Kb) for 1080p

decoding, regardless of the number of supported regions.

Encoder/decoder are performant: Encoder and decoder designs do not affect

the pipeline performance. Our end-to-end system with encoder and decoder runs

in real-time; our encoder meets the 2 PPC constraint of the capture pipeline. For
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Table 5: Resource Utilization for Different Encoder Designs

Type #Regions Resources

#LUTs #FFs #BRAMs

Parallel 100 4644 5935 6
Parallel 200 8635 10935 6
Parallel 400 16251 20685 6
Parallel 1600 No Synth No Synth No Synth
Hybrid 100 942 1189 11
Hybrid 200 949 1190 11
Hybrid 400 944 1191 11
Hybrid 1600 952 1186 11

the decoder, since it intercepts every pixel transaction and appropriately modifies

the transaction response, it will add a few clock cycles of delay when returning the

response. We find that this delay is the order of a few 10s of ns and is negligible

compared to the frame compute time – typically 10s of ms – of vision workloads.

Our alternative software decoder also runs in real time, consuming a few ms of

CPU time for a 1080p frame where 30% of the pixels are regional pixels. The software

decoder linearly scales in time to the amount of regional pixels.

Encoder/decoder are power-efficient: Our hardware extensions need to be

power-efficient so as not to outweigh potential energy savings. Our encoder consumes

45 mW for supporting 1600 regions, which entails less than 7% of standard mobile

ISP chip power (650 mW). Our decoder consumes < 1 mW of power. These power

consumption estimates are based off of FPGA targets; power-efficiency improves for

ASIC targets, which we will study as future work.
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2.7 Future Directions

In this section, we first discuss the next research direction that we would like to

explore deeply and then talk about other broad research avenues that we wish to

study.

Rhythmic pixel regions through clock and voltage scaling on camera:

Dynamic voltage and frequency scaling (DVFS) has been a popular thermal man-

agement technique for regulating temperature of microprocessors. Different from

microprocessors, we would like to study the implication of clock and voltage scaling on

camera readout. Our key insight is that the system could read frames at higher speeds

by clocking the camera electronics faster. On top of that, we could apply sub-voltage

thresholding to reduce the power consumption of analog power rails while keeping the

digital power rails fully powered. Built on these insights, we bounce the clock and

voltage of image sensor to modulate different pixel region readouts.

We intend to study this phenomenon around OnSemi’s rolling shutter camera that

has a programmable clock. We plan to modify clock frequency and voltage level using

National Instruments Data Acquisition Control (NI DAC) and collect different images

to study different region readout patterns.

Edge - cloud scenario: In this work, we explore the idea of rhythmic pixel

regions for embedded vision, where both capture and processing happen on the same

device. We will extend the idea of rhythmic pixel regions in edge - cloud scenario. We

believe that edge - cloud use-cases will significantly benefit from early pixel discard as

wireless data movement is at least three orders of magnitude more expensive than

wired data movements. Specifically, in IoT kind of use-cases, the camera captures
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high-resolution data and sends all the data wirelessly to cloud. The cloud processing

units perform vision and sends back the results to edge for display.

With rhythmic pixel regions, the system will send much lesser pixels, only the

interesting ones, to the cloud. By doing so, we not only save the on the communication

energy but also on the network latency. To realize this, we will build a low-power

FPGA platform and place the encoder on the platform. We will place the decoder

on the cloud which will decipher the encoded pixels and sends them to processing

units for performing vision. The results of the vision will be sent back to the edge for

guiding the selection of next pixel regions.

Camera to display pass-through: In this work, we did not explore the

display element of the vision pipeline. Vision tasks such as AR would need a fully

captured frame to be always sent to the display for overlaying digital animations on

top of it. To this end, we will plan to design a dedicated data path which seamlessly

sends data from camera to display without having to go through the memory. The

raster-scan based design of mobile cameras and displays makes it possible to design

such a memory-free data path. In parallel to this data path, we will have a vision

data path which will perform localization on the camera frames to identify places of

overlay. Based on the localization information, the rendering engine usually placed on

the GPU will pull the appropriate content. Finally, we will mix the full frame from

the first data path with the rendered animations from the second data path before

pushing it to the display. DRAM-less Computing: The paradigm of rhythmic

pixel regions significantly reduces the average size of the frame buffer. This presents

an opportunity to store frame buffers in the local SoC memory when not dealing with

full frame captures. By doing so, the system would be less dependent on DRAM,
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thereby significantly reducing data movement. In the future, we will study such an

integrated memory-compute system and its effectiveness in reducing memory datarate.

Rhythmic Pixel Camera: In this work, we place our encoder after the camera

capture inside the SoC. However, the MIPI interface which sends the pixels from

camera to SoC is still burdened with data movement. To this end, we plan to study an

integration of our encoder inside the camera module to reduce MIPI interface traffic

for further energy savings.

Pixel Region Selection Policies: We will further explore potential policy

tradeoffs of rhythmic pixel regions. We will study motion estimation techniques in

guiding the region label selection. Machine learning, e.g., reinforcement learning,

could also autonomously guide region selection. We believe these will unlock the

potential of rhythmic pixel regions for high-precision visual computing with efficient

memory use.
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Chapter 3

SQUINT: A FRAMEWORK FOR DYNAMIC VOLTAGE SCALING OF IMAGE

SENSORS TOWARDS LOW POWER IOT VISION

Energy-efficient visual sensing is of paramount importance to enable battery-backed

low power IoT and mobile applications. Unfortunately, modern image sensors still

consume hundreds of milliwatts of power, mainly due to analog readout. This is

because current systems always supply a fixed voltage to the sensor’s analog circuitry

leading to higher power profiles. In this work, we propose to aggressively scale the

analog voltage supplied to the camera as a means to significantly reduce sensor power

consumption. To that end, we characterize the power and fidelity implications of

analog voltage scaling on three off-the-shelf sensors. Our characterization reveals

that analog voltage scaling reduces sensor power but also degrades image quality.

Furthermore, the degradation in image quality situationally affects the task accuracy

of vision applications.

We develop a visual streaming pipeline that flexibly allows application developers

to dynamically adapt sensor voltage on a frame-by-frame basis. We develop a voltage

controller that programmatically generates desired sensor voltage based on applica-

tion request. We integrate our voltage controller into the existing RPi-based video

streaming IoT pipeline. On top of this, we develop runtime support for flexible voltage

specification from vision applications. Evaluating the system over a wide range of

voltage scaling policies on popular vision tasks reveals Squint imaging can deliver up

to 73% sensor power savings, while maintaining reasonable task fidelity.
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Figure 10: Existing Systems Supply a Fixed Voltage to the Image Sensor Regardless of
the Frame. Squint Adapts the Camera Supply Voltage per Frame for Energy-Efficiency.

3.1 Introduction

Visual computing systems sense and perceive the world using cameras enabling a

variety of IoT and mobile applications. IoT systems use cameras to perform tasks such

as predicting irrigation patterns in AI-enabled farms Vasisht et al. (2021), detecting

wildfires in forests Delbracio et al. (2021), and monitoring animal movements in

wildlife sanctuaries Bick et al. (2021); Iyer et al. (2020). Energy-efficient sensing is

of utmost importance for such IoT systems as they are deployed in the wild and

typically operate on miniscule batteries. Energy-efficient sensing is also important for

multi-camera mobile systems, such as augmented reality headsets, wherein several

cameras, e.g., 18 cameras on Magic Leap v2 headset Tom’s guide (2022), perform

tasks such as world tracking, eye tracking, and body tracking, quickly draining the

system’s battery.

Unfortunately, modern image sensors are limited in their energy-efficiency due

to analog readout and consume hundreds of milliwatts of power while performing
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continuous visual tasks. This is because existing systems (Fig. 10a) always supply

a fixed voltage to the sensor’s analog circuitry regardless of the frame. This work

aims to improve the capabilities of visual computing systems by allowing them to

dynamically vary the analog voltage supplied to the sensor on a frame-by-frame basis

(Fig. 10b) for significant efficiency gains.

While dynamic voltage scaling of image sensors leads to large power savings, it

also degrades the sensor’s imaging fidelity due to reduced ADC output swing and

increased pixel noise (§3.2). To assess fidelity issues, we characterize the energy and

fidelity implications of analog voltage scaling of three popular off-the-shelf cameras.

In addition to confirming the large sensor power savings created by aggressive voltage

scaling, our characterization reveals a useful insight: degradation in imaging fidelity

due to aggressive voltage scaling does not significantly affect the task accuracy of

modern neural network based vision workloads in most situations. That said, we find

that high fidelity is still sporadically needed to precisely detect scene features for

tracking tasks, especially under challenging situations such as low-light and crowded

scenes.

The idea to dynamically scale a component’s voltage for reduced energy usage is

inspired by the CPU power savings technique of dynamic voltage scaling (DVS) Weiser

et al. (1994). However, unlike CPU’s DVS, analog voltage scaling here introduces

unique noise considerations, due to the direct reliance on the analog circuitry’s

fidelity for image readout. Sensor manufacturers have been moving towards designing

sensors Image Sensors World (2021a,b,c); Choi et al. (2015b) with lower pixel supply

voltage. These sensors need explicit design changes to overcome the fidelity issues

caused due to lower pixel voltage.
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To design the system support (§3.3) to allow sensor dynamic voltage scaling, we

introduce a simple voltage controller hardware interface that can programmatically

generate desired sensor voltage requested by applications. On top of that, we introduce

the Squint runtime that includes a software API allowing application developers to

seamlessly specify voltage schedules directly from the vision applications on a frame-by-

frame basis. These interfaces integrate well with existing and future visual computing

systems, allowing for an easier upgrade.

To evaluate our system, we design our implementation (§3.4) around a RPi based

streaming pipeline. We support various visual workloads, including neural network-

based people detection and OpenCV-based camera pose estimation. Through our

evaluation (§3.5) across a range of voltage scheduling policies, we demonstrate the

opportunity of Squint based imaging to decrease sensor power by up to 73%, while

only minimally degrading the visual task accuracy. Through reduction in sensor power,

Squint imaging techniques can significantly extend the battery life of IoT and mobile

systems.

In summary, we make the following contributions:

• We explore the idea of dynamic voltage scaling for image sensors, where different

frames are captured at different fidelities for overall system energy-efficiency,

while respecting task needs.

• We characterize the energy and fidelity implications of analog voltage scaling on

off-the-shelf commercial image sensors.

• We develop a lightweight and fully programmable voltage controller to generate

desired analog supply voltage for the camera. On top of that, we develop a

library and runtime to coordinate vision applications with voltage controller

operation.
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• We augment our hardware and software support on top of an existing com-

mercial IoT streaming pipeline built around the RPi platform. We evaluate

the augmented system on a variety of vision tasks to demonstrate significant

reduction in sensor power with controllable accuracy loss.
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(a) Pixel Design (b) ADC Design

Figure 11: Analog Voltage Variation Affects Pixel and ADC Circuits. A Lower Voltage
(VDD) for Pixels Would Affect Transistor Settling Times, Resulting in Noise. A Lower
Reference Voltage (VREF) for ADC Would Decrease the Dynamic Range, Resulting
in Reduced Contrast.

3.2 Background and Motivation

3.2.1 Analog Readout Is The Bottleneck for Sensor Energy-Efficiency

Modern IoT and mobile systems employ CMOS image sensors for video analytics

and photography. CMOS image sensors are more efficient than their CCD counter-

parts, but still consume hundreds of milliwatts, due to their power-hungry analog

readout LiKamWa et al. (2013).

Modern image sensors comprise three major elements: pixel array, analog readout,

and digital logic. The pixel array converts light into voltages, consuming little

energy Kitamura et al. (2012). Analog readout amplifies analog signals from the pixel

array and converts them into digital values. Finally, digital logic maintains sensor
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operation, including timing generation and preparing data to send to the outside

world.

Notably, the analog readout consumes 50%-75% of overall energy in recent sensor

designs Kitamura et al. (2012); Choi et al. (2015a); Takayanagi et al. (2005). This

is due to two factors: (i) Analog circuits need to operate all the time, making them

power hungry compared to their digital counterparts which operate only on the active

clock edge. (ii) Technology scaling improvements for energy efficiency have been much

slower for analog components compared to digital.

3.2.2 Effects of Analog Voltage Variations on Image Sensor Circuitry

Existing systems supply higher analog voltage, typically 2.8 V, for high fidelity

imaging Lin et al. (2004). Higher analog voltage (VDD) is needed to maintain sufficient

drive strength of the photodiode, source follower, and bitline components in the pixel

design, shown in Fig. 11a, for smoother charge transfer. Lowering analog voltage

would weaken the drive strength of those components affecting transistor settling

times Fossum and Hondongwa (2014); Lin et al. (2004), resulting in image noise.

Lowering analog voltage would also slow down Image Sensors World (2021b,c) the

charge transfer process. This would not significantly affect the imaging process if the

photodiode accumulates enough charge, e.g., well-lit scenes. However, this would make

the images dimmer in low-lit scenes where photodiodes do not accumulate enough

charge.

Higher analog voltage (VREF) is also needed for high fidelity ADC operation

for maintaining high dynamic range. Image sensors typically have a successive-

approximation (SAR) ADC (Fig. 11b) that performs a binary search for generating
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Table 6: Characterized Image Sensors. Sensors Can Be Undervolted Way Beyond the
Voltage Specification Mentioned in Their Datasheets.

Camera
system Sensor Max.

res
Voltage range
(datasheet)

Actual
lower limit

RPi cam Sony
IMX219 Sony (2022b) 4K 2.8 +/- 10% 1.2 - 1.5

Pixycam OmniVision
OV5647 OmniVision (2022a) 1080p 2.8 +/- 10% 1.8

Python1300 OnSemi
Python1300 OmniVision (2022b) SXGA 2.8 +/- 10% 1.7

digital output by successively comparing input voltage (VIN) against reference voltage

(VREF) Baker (2019). A higher VREF would enable higher precision output support-

ing a wider range of pixel intensity values leading to high dynamic range images. A

lower VREF, on the other hand, would decrease the dynamic range forcing the pixels

to saturate early and decreasing the overall image contrast.

While the exact pixel and ADC designs might vary for different image sensors, the

fundamental underlying phenomenon of how the circuits behave at different analog

voltage levels would remain the same. Furthermore, the underlying phenomena is

agnostic to the shutter type, rolling or global, of the image sensor as the shutter type

does not affect the charge transfer process and ADC operating mechanism.

3.2.3 Analog Voltage Scaling for Energy-Efficiency

Towards addressing the energy-efficiency bottleneck, we propose to scale analog

voltage to promote camera energy efficiency. We study the energy and fidelity

implications of voltage scaling by characterizing three different image sensors from

three popular manufacturers, as shown in Table 6. These image sensors vary in

terms of resolution, shutter type, and pixel designs, and are representative of cameras
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available in typical IoT and mobile systems. In this section, we mainly present the

findings of RPi camera characterization; while other cameras revealed similar insights.

We observe that image sensor manufacturers usually take a conservative approach

when it comes to specifying the recommended operating analog voltage for stable

camera operation. They typically recommend a 10% tolerance band around nominal

voltage in the datasheets. In reality, however, we find that we can undervolt the

analog power rail to a value that is far beyond the recommended limit, as shown in

Table 6, without affecting basic camera functionality. For instance, we can aggressively

undervolt the RPi’s analog power rail by up to 50% of its nominal value with the

camera still streaming pixels.

The extent to which we can undervolt a camera strongly depends on sensor design

and the sensor’s sensitivity to analog voltage changes. Among the three sensors we

characterize, we notice the RPi camera can be undervolted by a large extent compared

to other ones. In addition to variability across cameras from different vendors, we also

notice variability across cameras from the same vendor, as shown in Table 6. This

is due to the silicon lottery Hennessey and Patterson (2018): One RPi camera can

undervolt slightly better than the other and vice versa.

3.2.3.1 Energy Implications of Voltage Scaling

Aggressive undervolting leads to significant energy savings, as dynamic power

quadratically varies with voltage (P ∝ V 2). Since analog circuits are slow on technology

scaling, dynamic power still dominates the overall power consumption by contributing

to about two thirds of total power. On the other hand, static power, which is the less

dominant power source in analog electronics, is largely unaffected by voltage scaling.
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Figure 12: Sensor Power Significantly Reduces by Lowering Its Supply Voltage. The
Flat Portion Above 2.4 V Is Due to Strong Voltage Regulation Inside the Sensor.

To understand how camera power varies with analog voltage scaling, we intercept

the analog power rail of the RPi camera and instead connect it to an external variable

power supply. To compute overall power, we measure the current drawn from different

power rails, while we vary analog voltage. We find that undervolting the camera

voltage by 50%, i.e. from 2.8 V to 1.4 V, yields more than 50% of camera power

savings, as shown in Fig. 12.

3.2.3.2 Image Fidelity Implications of Voltage Scaling

While aggressively reducing analog voltage helps significantly reduce camera power,

it also impairs image quality by making images brighter and noisier. Increased

brightness is due to reduction in ADC dynamic range. That is, image sensors usually

have a SAR ADC and lowering the ADC’s reference voltage results in lowering the
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Figure 13: Sensor’s Brightness and Noise Levels Increase with Lower Analog Voltage.
Increased Brightness Is Due to Decreased ADC Output Swing and Increased Noise
Due to Elevated Shot Noise Levels.
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Figure 14: Images Captured at Different Sensor Voltages and Their Histograms. Low
Voltage Image Is Brighter and Grainier Than Its High Voltage Counterpart. This Is
Also Reflected in the Shift in Mean and Variance Width in the Histogram. Images
Appear More Greenish Because They Are Captured RAW Turning Off White Balance.

output signal swing. This forces pixels to saturate early, brightening the image and

decreasing the overall contrast.
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Figure 15: Brighter and Noisier Images Do Not Significantly Affect Task Fidelity of
Vision Applications in Well-Lit Scenes.

Increased noise is due to more pixel shot noise triggered by reduction in pixel

bias voltage as shot noise exponentially varies with the negative of bias voltage. In

addition to brightness and noise artifacts, we also notice pixelation artifacts appearing

in images. This is due to pixels randomly getting turned off possibly due to timing

errors caused by insufficient supply voltage.

We experimentally validate these claims by measuring the standard dark signal Al-

bert Theuwissen (2012) and temporal noise Albert Theuwissen (2011) of the RPi

camera, while we vary sensor analog voltage. We capture 25 frames per voltage setting

and average pixel values across frames to determine the average frame. We average

the pixel values of the average frame to compute the dark signal. For temporal noise,

we compute variance of pixel values across frames to determine the variance frame.

Then we average all the values in the variance frame to compute the temporal noise.

As shown in Fig. 13, we notice the dark signal and the temporal noise substantially

increase as we decrease the sensor voltage. We also noticed the sensor being insensitive
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Figure 16: High Fidelity Is Still Needed for Precise Object Detection in Challenging
Scenarios. Low Fidelity Would Suffice Otherwise.
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Figure 17: Phases of Squint. During Calibration, Squint Sweeps Voltage Supplied to
the Camera to Determine the Undervolting Limit as well as to Profile Noise, and This
Information Is Stored in a Configuration File. During Execution, the System Uses
the Configuration File to Translate Developer’s High-Level Fidelity Input to Actual
Low-Level Camera Voltage Using Standard Camera System Stack.

to voltage changes until a certain point, which could be due to strong voltage regulation

inside the sensor. The brightness and noise increase is also reflected in the histograms

of actual images, as shown in Fig. 14. We can see that the peaks shift rightwards and

the distribution spreads outwards as we switch from high voltage to low voltage.

On a side note, we can also see that the actual images in Fig. 14 appear more green

because they are captured RAW by turning off most image signal processing (ISP)

stages. Notably, we turn off automatic white balance (AWB) to avoid color based

artifacts produced by AWB. AWB algorithms Ebner (2003, 2007); Cheng et al. (2014);
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Van De Weijer et al. (2007) estimate color temperature of a scene based on average

image intensity in order to determine appropriate gains that need to be applied for

individual color channels of an image. As a result, AWB perceives brightness increase

due to undervolting as change in scene brightness and apply more gain to the blue

color channel resulting in bluish artifacts.

3.2.3.3 Task Fidelity Implications of Voltage Scaling

While aggressive undervolting impairs image fidelity by adding brightness and

noise, we find that brightness and noise increases do not affect visual task fidelity

in most situations. However, we see a noticeable degradation in task fidelity under

challenging scene environments, e.g., low-light scenes, as shown in Fig. 15. This creates

an opportunity to situationally adapt camera voltage based on scene illumination

needs. That is, we can aggressively undervolt the camera most of the time for rapid

power savings and occasionally bring the voltage back to nominal under poor lighting

conditions.

The insensitivity of vision tasks to brightness and noise increase in most situations

stems from the fact that neural networks running behind these tasks are usually

trained to make themselves immune to intensity and noise changes Ziyadinov and

Tereshonok (2022). That being said, vision tasks still need high fidelity for performing

precise object detection, especially under challenging conditions such as dimly-lit

scenes, as shown in Fig. 16a. For less challenging scenes, we observe that low-fidelity

images provide comparable task performance to their high-fidelity counterparts, as

shown in Fig. 16b. For this analysis, we experimentally capture images at different

voltage settings from the RPi camera for three different lighting conditions. We then
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feed the images to a YOLO-based people detection task and compare the detection

results against ground truth to determine accuracy.

3.2.4 Motivational Observations

To summarize, we have the following insights for image sensor voltage scaling:

• We can aggressively undervolt image sensors far beyond specified operating

ranges in the datasheets.

• Aggressive undervolting results in significant camera power savings.

• Aggressive undervolting also makes images brighter and noisier due to the

reduced upper bound of the analog voltage range

• Raised brightness and noise levels in images does not significantly affect vision

task accuracy in most situations

These observations motivate the need for dynamic voltage scaling strategies for image

sensors to save energy at sufficient task fidelity.
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3.3 Design

Design aspirations: We set three goals that guide the design of system support

for sensor dynamic voltage scaling through our hardware and software extensions.

• Seamless: Vision applications should be able to reconfigure camera voltage on a

frame-to-frame basis without any frame drops

• Lightweight: Our hardware extension should be lightweight with minimal system

overhead

• Flexible: Our runtime should allow developers to flexibly specify camera voltage

needs on a per-frame basis.

Calibration and Execution Phases: We propose two phases for Squint to

seamlessly work with existing and future visual computing systems, as shown in

Fig. 17.

1. To account for variations across sensors, the system goes through a one-time

calibration phase to determine the actual voltage limits and noise profile of the

image sensor.

2. The system then enters an execution phase to guide policy based voltage selection

based on the calibration information.

(1) Calibration phase: During this phase, the system runs a script that automati-

cally sweeps through different camera voltages and determines what set of voltages are

usable. The script starts with the default nominal voltage specified in the datasheet

and keeps decreasing the voltage in steps of one tenth of a volt until the camera

freezes, at which point the camera voltage is restored to nominal. While it does so,
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Figure 18: Different System Incarnations for Squint. In Server-Based, Vision Apps
Running on Server Issue Voltage Request to the Voltage Controller, Whereas in
Edge-Based, Vision Apps Run on the Edge Device Itself and Directly Issue Requests
to the Voltage Controller.

the script also captures several frames for noise assessment. The system commits the

voltage limits and noise data into a configuration file, which could be stored in the

hardware abstraction layer of the system stack.

(2) Execution phase: During this phase, the system uses the configuration file

generated during the calibration step to translate the application’s high-level fidelity

requirements into actual set of voltages that needs to be applied to the camera. These

voltages are sent to the voltage controller which enacts them on the camera using

standard device-driver mechanisms.

System support for Squint: To efficiently run the calibration and execution

phases, we build system support for Squint by extending the existing IoT pipeline with

necessary hardware and software extensions. These extensions could be integrated
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into different system incarnations, such as server-based and edge-based, depending on

where the vision application runs in the system, as shown in Fig. 18. The resulting

Squint system architecture centers around the idea of adaptively scaling camera voltage

for vision application usage. We describe the design of our voltage controller and its

integration with the existing IoT streaming pipeline, as shown in Fig. 18. We also

discuss the software runtime for vision application developers to leverage the voltage

controller through policy specification.

3.3.1 Programmable Voltage Controller

The voltage controller module, shown in Fig. 19, intercepts the incoming voltage

reconfiguration command from a server and produces appropriate analog voltage to

power the camera. The vision application specifies voltage needs using the designed

runtime support in §3.3.2.

We design a fairly simple voltage controller comprising a digital to analog converter

(DAC) and a voltage buffer. The DAC programmatically takes desired voltage from

vision application and converts that into equivalent analog voltage to power the

camera. The DAC is supported by the voltage buffer which is a unity-gain amplifier

that generates sufficient current for stable camera operation.

3.3.1.1 Integration with Edge Device

The voltage controller could be easily integrated as a standalone integrated circuit

on top of the edge device. Alternatively, we could repurpose existing DVFS controllers
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Figure 19: Voltage Controller Comprises a DAC to Translate Digital Voltage Requests
into Corresponding Analog Voltage, and a Voltage Buffer to Generate Sufficient
Current Flow for Reliable Camera Operation.

inside SoCs of edge devices to generate desired voltages for the camera. That would

entail adding a few extra power modes to meet camera power supply requirements.

3.3.2 Developer Support

We develop runtime support to allow the developers to flexibly specify voltages.

This consists of a SetCamVoltage() function for developers to set a voltage. Voltage

can be set on a per-frame basis or persist across frames. A runtime service receives

these calls to send the voltage to the voltage controller.

SetCamVoltage(float val, string spec="SNR/Rel/Abs")

In order to facilitate development, we provide multiple levels of abstraction for

voltage specification. We provide sensor-agnostic ways to configure voltage such as

through "SNR" and relative voltage specification ("Rel"), allowing developers to be

unconcerned with the intricacies of imaging and power trends. Additionally, we also

provide sensor-specific ways to configure voltage to allow developers to directly set

absolute ("Abs") camera voltages.

For relative voltage specification, we let developers specify their desired voltage in

[0, 1] range with 0 denoting the low voltage limit and 1 denoting the high voltage limit,
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Figure 20: Timing Different Voltages in Tandem with Camera Capture Schedule Leads
to Different Fidelity Patterns Across the Frames and Within a Frame.

regardless of the camera. Our decision to abstract this information is grounded in the

observation of the monotonicity of imaging (Fig. 13) and power (Fig. 12) trends.

Our runtime service translates the specification into appropriate hardware voltage

with the help of the configuration file generated during the calibration phase of the

system. The final voltage is then enacted to the sensor hardware through device driver,

similar to how it is done in standard Android and iOS mobile systems architecture.

66



3.3.2.1 Integration with CameraAPI and Sysfs Interface

Our voltage configuration method could be easily integrated as part of standard

CameraAPI. The CameraAPI is an application programming interface that allows

software developers to interact with a device’s camera hardware, including controlling

camera settings such as exposure, focus, and zoom, in a platform agnostic manner.

By integrating voltage control into the existing CameraAPI, developers can easily

configure voltage through a familiar interface.

VideoCapture cap(0);

cap.set(cv::CAP_PROP_EXPOSURE, 0.0167);

cap.set(cv::CAP_PROP_VOLTAGE, 0.5);

The above snippet shows an example integration using the popular OpenCV-based

Linux CameraAPI. In this approach, voltage can be defined as a camera property and

set to a desired value, similar to other camera settings such as exposure. This method

of integration can also be adapted to Android and iOS cameraAPIs.

Alternatively, voltage control can be integrated as part of sysfs interface to allow

developers to configure and query sensor voltage through a standardized interface

controlled by the operating system. This approach involves modifying the camera

device driver to create voltage as a sysfs file node, which can then be exported

to userspace using the sysfs interface. Developers can also directly specify voltage

scheduling policy, instead of voltage, to enable automatic voltage control by OS,

reducing developer burden.

echo 0.5 > /sys/devices/camera/sensor/voltage

echo "Perf" > /sys/devices/camera/sensor/policy
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3.3.2.2 Voltage Scheduling Policies

Developers can build various policies that autonomously guide the voltage configu-

ration, in the similar spirit to issuing voltage configurations with the Linux DVFS

API on desktop systems and Android’s Frequency API on mobile systems. Policies

can incur different system overheads, leading to system trade-offs.

A policy should predict voltage progression with time as well as image quality

requirements to maximize task accuracy. A simple policy could occasionally operate a

camera at high voltage to detect frames and undervolt the camera for tracking the

detected objects across frames. Developers can also introduce improved application-

specific proxies with other prediction strategies, e.g., with optical flow based voltage

reconfiguration.

Notably, depending on how the voltage schedule is aligned with the camera’s

capture schedule, different fidelity granularities could be achieved within a single

image, as shown in Fig. 20. Modern cameras employ a rolling shutter mechanism that

exposes and streams one line of pixels at a time. For coarse-grained fidelity control,

the system should sustain the voltage for the entirety of the active frame capture

duration. On the other hand, for fine-grained fidelity control, the system could apply

different voltages to different parts of the frame.
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Table 7: System Components in the IoT Streaming Pipeline

Component Specification
Camera RPi Cam v2.1, Sony IMX219, 4K @ 60 fps
Edge device RPi v 3B, quad-core Cortex-A53, 1GB RAM
Network 300 Mbps Ethernet
Server Intel Xeon CPU E5-1620, 32 GB RAM
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RPi 
board

Pi Cam

(a) Squint

Volt. Buffer

ADC

Meas. 
Ports

DAC

Vout

GPIO Pins

(b) Voltage Controller

Figure 21: Our System Setup

3.4 Implementation

3.4.1 RPi-based System Integration

Platform: We build our IoT system (Fig. 21a) as a gstreamer pipeline around

RPi to be representative of a standard video streaming system. As shown in Table 7,

we use RPi v2 camera Sony (2022a) as the capture device, connected to a RPi v3B.

The RPi forms the edge device that consumes the incoming pixel stream from the

camera and compresses the stream into a compact representation using standard H264

compression techniques. We run a real-time streaming protocol (RTSP) server Micheal
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Promonet (2022) on the Pi that transmits the compressed pixel stream from the edge

device over Ethernet to the server. Finally, we utilize a server class Intel Xeon CPU

desktop that decompresses the compressed pixel stream for performing video analytics,

e.g., people detection. The entire pipeline runs in real-time at 24 fps.

Voltage controller: We design our voltage controller (Fig. 21b) as a fully

programmable module using off-the-shelf components. Specifically, we use Microchip’s

MCP4725 12-bit DAC Microchip (2022) as our digital-to-analog converter and Texas

Instruments OPA551PA operational amplifier Texas Instruments (2022) to build

the voltage buffer that generates sufficient current for stable camera operation. We

integrate the voltage controller as a standalone module, powered and interfaced

through the I2C interface of the Pi. The voltage controller takes voltage configuration

commands from the Pi and generates the desired voltage to power the camera’s analog

voltage rail.

Runtime: We implement our runtime as a filesystem interface (§3.3.2) us-

ing a stateless networking service protocol. Specifically, we implement a RESTful

API Wikipedia (2022); Fielding (2000) to handle voltage configuration requests from

the vision applications running on the server. A simple web service running on the Pi

forwards these voltage configuration requests to the voltage controller over the I2C

interface.

3.4.2 Workloads

We study YOLO-based people detection that localizes and tracks people in a

scene to allow for counting analytics and potential security responses. This would be

representative of multiple IoT video analytics applications such as counting people
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entering and leaving a trail entrance and analyzing shoppers’ buying activity for

automated checkout. Additionally, we perform a preliminary investigation of OpenCV

marker based camera pose estimation that is the backbone for augmented reality

tracking tasks. This would be representative of multi-camera AR systems such as

Microsoft Hololens.

3.4.2.1 Benchmarks

Since existing datasets contain images taken at nominal camera voltage and the

undervolting image artifacts are difficult to simulate, we construct our own dataset

based on real image captures at different camera voltages. Specifically we stage our

dataset representing two real-life scenarios:

• Entrance detection: people entering and leaving a scene

• Person tracking: people randomly standing around in a room holding casual

discussions in places such as office cafeterias

Our dataset contains variations in lighting, object density, and object proximity,

making it a viable proxy for real life scenarios. We recruit five people and take their

consent for staging the dataset. We instruct the participants to move in specific

patterns that emulate the entrance detection and the person tracking in cafeteria

scenarios mentioned above. During the movements, we vary the ambient light using a

controllable analog light source. Specifically, each capture consists of six minutes with

two minutes of high light, then two minutes of medium light, and finally two minutes

of low light.

We use our experimental RPi camera to stage the dataset at different voltages,

while the participants emulate the scenarios. In addition to the experimental camera,
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we also use a ground truth camera that always operates at nominal voltage for ground

truth captures. We place the experimental and ground truth cameras in close proximity

so that they see the same scene with negligible parallax. Overall, the dataset includes

73,066 images. We plan to release the dataset at the time of publication.

For the marker based pose estimation, we construct a limited dataset using the

same setup as above. For this workload, we place the marker at three different

distances and three different orientations with respect to the camera.

3.4.2.2 Baselines

We test our workloads against the following baselines:

• Squint (Sq-X): The system supplies the desired voltage to the camera based

on the vision application’s fidelity needs. Here “X” denotes the policy used for

voltage scaling. Notably, the system operates the camera at extreme voltages,

i.e., 2.8 V and 1.4 V, for RPi camera, since there is no incentive to operate in

between, as discussed in §3.2..

• Reduced resolution (RR): Instead of modulating voltage, the system changes

capture resolution based on the fidelity needs. Analogous to Squint, the system

configures the camera at 1080p for high fidelity and at 480p for low fidelity.

3.4.2.3 Metrics

Here we discuss different evaluation metrics.

Task accuracy: We use the standard metrics from computer vision literature to

evaluate the workloads. For the people detection workload, we use intersection over
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Figure 22: Bright Light Voltage Schedules Generated by Different Policies for Entrance
Detection Dataset.
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Figure 23: Bright Light Voltage Schedules Generated by Different Policies for Person
Tracking Dataset.

union (IoU) as the metric. IoU measures the amount of overlap between estimated

and ground truth detections. A detection is considered a true positive (TP), if the IoU

score is above a certain threshold. Otherwise, it is considered a false positive (FP).

The final detection accuracy is obtained by determining the number of true positives

among all the detections, i.e., TP/(TP + FP), for each frame, which is known as mean

average precision (mAP). The final mAP is obtained by averaging individual mAP

scores across all frames. On the other hand, for marker-based camera pose estimation

workload, we use translational error and rotational error as the metrics. These are

derived by computing the L2 norm of estimated pose against ground truth pose.

Power: We sample different camera power rails every 0.1 ms to measure their

respective current draws. We multiply the current draw with the voltage of each rail

and sum them over all the rails to get the sensor power. We analyze the sensor power

readings across different samples to report power trends.
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Overhead: We measure the voltage reconfiguration time of our API by measur-

ing the time difference between voltage reconfiguration request sent by the vision

application and acknowledgement notification received from the Pi’s web service. We

measure the reconfiguration time across multiple voltage requests to report trends.

On the other hand, to report power overhead of the voltage controller module, we use

worst case power estimates from the component datasheets.

3.4.2.4 Policies/Parameter Choices

We evaluate the following policies, in a similar spirit as CPU’s DVFS poli-

cies Dehmelt (2014); Elgebaly and Sachdev (2007).

Performance (Perf): The system sets the sensor voltage to the highest possible

setting, providing maximum task performance but potentially consuming more power

and generating more heat. This is representative of status-quo.

Powersave (Pwr): The system sets the sensor voltage to the lowest possible

setting to save power.

Random (Rand): To demonstrate the effectiveness of flexible voltage reconfig-

uration, we map a random policy whereby the system generates a random number

from 1.4 to 2.8, and supplies that voltage to the image sensor.

Lightutil (Light): The system uses ambient light sensor’s reading to determine

the optimal voltage setting for the current workload. The system uses a lighting -

voltage lookup table that is obtained from sensor characterization to guide the voltage

selection process.

For our evaluation, the system occasionally captures a high fidelity image, computes

its average pixel intensity, and uses it as a proxy to estimate the ambient lighting of a
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scene. If the light estimate is greater than a certain threshold, the system supplies

1.4 V to the sensor; otherwise it supplies 2.8 V to the sensor, as guided by our

characterization curves.

On-Demand (OD): The system sets the sensor voltage to the lowest possible

setting when the scene is idle and scale the voltage up as scene complexity increases.

Specifically, the system computes IoU score across detection results of previous frames

to determine the staticness/dynamism of a scene’s objects and uses the IoU score to

appropriately determine the desired sensor voltage.

A larger IoU score across frames indicates that the scene is fairly static. In such

scenarios, the system supplies 1.4 V to the camera to continue to track the existing

objects. On the other hand, a lower IoU score across frames indicates large motion

in the scene, including people entering and exiting the scene. In such scenarios, the

system supplies 2.8 V to the camera for high quality detections.

Distance based (Dist): We use a distance based policy for marker based camera

pose estimation workload, whereby the system adapts voltage based on proximity of

marker with respect to the camera. The system supplies a low voltage (1.4 V) to the

camera when the marker is close to the camera, and supplies a high voltage (2.8 V)

when the marker is located far from the camera for precision.
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Figure 24: People Detection Task

3.5 Evaluation

3.5.1 The Usage of Squint Is Flexible, Seamless, and Performant

Our runtime flexibly allows apps to configure full swing of sensor voltages on a

frame-to-frame basis without any restrictions. The voltage schedule for random policy

shown in Fig. 22 indicates that the API is flexible enough to randomly configure sensor

voltage anywhere from 1.4 V to 2.8 V. On the other hand, the system operates the

image sensor at extreme voltages, either 1.4 V or 2.8 V, for Lightutil and On-Demand

policies, as shown in Fig. 22, because there is no power/performance incentive to

operate at an intermediate voltage, as mentioned in Section 2.

We find that the system chooses a different voltage schedule for different policies

for a given scenario. For instance, we can see On-Demand policy schedule has a

denser schedule than Lightutil, because it’s motion adaptive, and motion changes are

frequent in both the entrance detection and the office cafeteria scenes. Lightutil on
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the other hand has a sparser schedule because it’s light adaptive and light changes

are less frequent in the scenes.

In addition to variation across policies, we find that the same policy selects a

different voltage schedule for different scenarios. For instance, we can see On-Demand

having a denser schedule for the entrance detection scenario (Fig. 22) compared to

the person tracking in cafeteria scenario (Fig. 23), as there is large motion involved in

the former due to people constantly entering and leaving the scene as opposed to the

cafeteria one where people are fairly static.

While the runtime configures different voltages for different policies, we find that

Squint is able to stream frames seamlessly without any noticeable frame drops. By

doing so, Squint is able to provide a consistent real-time pipeline performance of 24

fps for all the evaluated workloads.

Notably, we find that voltage configuration requests executed while the sensor is

actively capturing an image results in different parts of the frame possessing different

qualities. This is due to rolling shutter sensor operation whereby different lines of

pixels are read at different voltage configurations. We notice such artifacts during the

dataset collection with more artifacts appearing when rapidly changing voltages. This

opens up an opportunity to design more fine-grained voltage scheduling policies that

can sample different parts of a frame, as mentioned in §3.3.2. We plan to study the

fidelity effects of such policies deeply in a future work.

Algorithms Are Still Reliable We find that task accuracy is fairly maintained

for people detection workload, while policies choose different voltage schedules during

system execution, as shown in Fig. 24a. Notably, On-Demand has slightly better

accuracy than Lighutil because it’s adaptive to both light and motion in the scene.

Random policy has comparable performance to Lightutil because the system randomly

77



Sq
-Pe

rf
Sq

-Ra
nd

Sq
-D

ist
Sq

-Pw
r RR

Baseline

0.0
0.2
0.4
0.6
0.8
1.0

L2
 N

or
m

(a) Task Accuracy

Sq
-Pe

rf
Sq

-Ra
nd

Sq
-D

ist
Sq

-Pw
r RR

Baseline

0

50

100

150

Av
g.

 P
ow

er
 (m

W
)

(b) Power

Figure 25: Camera Pose Detection Task.

modulates the sensor supply voltage with an average operating voltage landing in the

middle. At this average intermediate voltage, the frame quality is comparable to the

frame quality at a nominal voltage. Lower accuracy for Powersave policy is due to

continuous low voltage operation, regardless of scene dynamics. On the other hand,

reduced resolution (RR) baseline also provides consistent accuracy as neural networks,

by design, are typically trained to perform well at low input resolutions, e.g., 300x300

for YOLO.

From Fig. 24a, we also notice that the accuracy varies quite a lot within a policy

as indicated by the large error bars. This variation is mainly because of varying scene

dynamics pertaining to occlusion, object proximity, and contrast difference in the

dataset. Specifically, we notice the difficult scene situations such as people occluding

one another, people standing far from the camera, and natural contrast differences due

to non-uniform illumination in the room result in lower task accuracy, and vice-versa.

For marker based pose estimation workload, we find the accuracy is also maintained

for distance based policy, "Sq-Dist", as the system adapts sensor voltage based on the

marker’s proximity with respect to the camera, as shown in Fig. 25a. On the other
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hand, reduced resolution baseline adapts sensor resolution based on marker distance

from the camera. We can see that reduced resolution baseline has a slightly larger

error than Squint, mainly because higher resolution does not help with pose tracking

in dimly-lit office environments unlike Squint based imaging which helps with tracking

by adding brightness to the signal.

3.5.2 The Usage of Squint Is Energy-Efficient

We find that Squint imaging leads to significant camera power savings, up to

73% for our evaluated policies, due to aggressive undervolting. The actual amount of

power saved directly depends on the voltage schedule chosen by a policy. A sparser

voltage schedule with more low voltage operation, such as the one with Lightutil

policy under "Bright" light, results in more savings, whereas a denser voltage schedule

with more high voltage operation, such as the one with On-Demand policy under

"Bright" light, results in relatively less savings. However, if we consider all lighting

conditions, Lightutil has an overall higher power consumption than On-Demand, as

shown in in Fig. 24b. This is because Lightutil always selects high voltage under

low-light conditions, whereas On-Demand selects both high and low voltage based on

scene dynamics. We observe similar trends for camera pose estimation workload as

can be seen from Fig. 25b.

Fig. 26 shows the experimental power trace corresponding to two different voltages.

As we can see, for a given supply voltage, the image sensor alternates between active

and idle states with different timing and power profiles for each of those states. While

the system switches the sensor’s supply voltage, we notice only the power profiles of

active/idle states getting shifted keeping their timing intact. Decreasing the active
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Figure 26: Power Trace for Different Sensor Voltage Modes.
state duration through aggressive standby techniques LiKamWa et al. (2013) would

lead to even more savings and we will deeply study such mechanisms as future work.

Substantial camera power savings would significantly extend the battery life of

battery-backed IoT systems. Specifically, for ultra-low power IoT systems such as the

ones built around Cortex-M processors ARM (2022), sensing contributes to a major

chunk of system energy. In such systems, a large sensor power savings resulting from

Squint imaging techniques could potentially extend the battery life from a few hours to

a few days. Such low power profile systems could be powered from energy harvesting

sources, e.g., solar cells, and this would eventually pave the way for battery-less

systems.

Meanwhile, we find that reducing capture resolution (RR) baseline also results in

noticeable sensor power savings. This is because the sensor samples fewer pixels at

lower resolutions, thereby reducing burden on analog readout. Image sensors typically

adopt a binning mechanism for image subsampling, whereby low-resolution images

are achieved by averaging pixels over a window. This means all pixels in the imaging
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array are activated, typically at a higher resolution, but only a few of them are

readout after an averaging process based on the desired resolution. Since readout is far

more power hungry than pixels, reducing resolution helps with energy-efficiency. Our

voltage scaling techniques could be combined with resolution adaptation techniques

to compound energy savings.

3.5.3 The Hardware and Software extensions Are Lightweight

Voltage controller is power and area efficient: Our voltage controller con-

sumes < 1 mW of power during system operation, which is negligibly small in

comparison to the camera power savings. We built our voltage controller as a stan-

dalone PCB module mainly with three components, which could be easily integrated

into existing camera systems. Miniaturization efforts such as building the voltage

controller into an integrated circuit form factor using the state-of-the-art fabrication

technology would lead to much higher power and area efficiency.

Voltage configuration API is performant: We find that our API takes about

10 ms for switching the camera voltage. Since 10 ms is within a frame period ( 33 ms),

the API enables the system to seamlessly switch sensor voltages on a frame-by-frame

basis.
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3.6 Related Work

Dynamic voltage scaling in CPUs: The idea to dynamically scale a compo-

nent’s voltage has been extensively used in microprocessors since the early 1990s Weiser

et al. (1994); Chandrakasan et al. (1992); Horowitz (1993). In case of CPUs, un-

dervolting helps conserve processor power Nakai et al. (2005) and cools down the

chip, but at the cost of performance. Overvolting, on the other hand, helps increase

processor performance allowing for higher frequency operation. CPU voltage scaling

is usually combined with clock frequency scaling for power and performance gains,

and the mechanisms to enable such gains are popularly referred to as DVFS Rabaey

et al. (1996); Kim et al. (2008) in the architecture community.

Similar to CPU undervolting, we undervolt image sensors to conserve power. Fur-

thermore, while undervolting CPUs degrades application’s performance, undervolting

image sensors degrades application’s imaging fidelity. Finally, unlike CPU voltage

scaling techniques which adapt the voltage of digital circuits, our sensor voltage scaling

techniques adapt the voltage of analog circuits for significant power savings.

Sensors for power efficiency: Designing image sensors that can operate

on lower analog power supplies has been an emerging trend in the image sensors

community to promote sensor’s power efficiency. Samsung recently designed two such

imagers Image Sensors World (2021c,b) with different resolution and pixel sizes Image

Sensors World (2021a), which use 2.2 V supply to power all their analog circuitry.

Since lowering pixel voltage causes fidelity issues stemming from decreased voltage

swing and backflow of charge into photodiodes, several circuit level changes have been

done to compensate for those issues.
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Many researchers in academia designed power-efficient sensors as well. Choi et

al Choi et al. (2015b) designed a dual voltage-mode camera that can operate in

high-fidelity imaging mode (3.3 V) and low-power vision mode (0.9 V) to save power.

Osawa et al Osawa et al. (2018) designed a low-power IoT camera that has power

consumption proportional to frame rate, using a hierarchical column multiplexer and

variable capacitance buffer. LiKamWa et al LiKamWa et al. (2013) explore clock

scaling and aggressive standby techniques for sensor energy-efficiency. Murakami et

al Murakami et al. (2022) proposes an approach to dynamically scale frequencies and

voltages of image sensor’s digital circuits within a frame to save power during vertical

blanking period.

Similar to these imagers, we also lower the sensor’s analog voltage to save power

consumption. Different from these imagers, our undervolting mechanisms do not

need explicit changes to the sensor design and can be directly applied on off-the-shelf

cameras.

Systems for efficient visual computing: Many researchers proposed visual

systems that can programmatically configure different sensors’ parameters to achieve

desirable system trade-offs. Stagioni Kodukula et al. (2021a) adapts the temperature of

a 3D stacked sensor by varying the amount of near-sensor processing, to trade thermal

noise with system energy. Stagioni migrates the vision task between near-sensor and

far-sensor VPU in a duty-cycled fashion to regulate temperature.

Banner Hu et al. (2019) adapts sensor resolution on a frame-level granularity to

trade task accuracy with system energy, by avoiding repeated memory allocation.

Rhythmic Pixel Regions Kodukula et al. (2021b) adapts sensor resolution on a region-

level granularity for fine-grained accuracy-energy trade-offs, through a encoder-decoder

83



architecture. Our work is in the similar spirit as these works but we reconfigure the

sensor’s analog voltage to trade sensor energy with imaging fidelity.
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3.7 Future Directions

Network friendliness: Many IoT systems deployed in the wild are constrained

by network bandwidth and use ultra-low bandwidth protocols such as LoRA to

communicate between edge device and server. Our voltage reconfiguration API

requires only a few bytes of data per request, thereby not burdening the network

interface. To make our system even more network friendly, we will explore better

data transmission protocols and intelligent ways to configure voltage. For instance,

the system could occasionally send voltage requests that hold for a bunch of frames

instead of sending requests on a per-frame basis.

Voltage scheduling policies: While we mainly explore policies that generate

coarse-grained voltage schedules enabling fidelity control on a per-frame basis, our

system allows generating fine-grained voltage schedules enabling fidelity control on

a per-line basis within a frame. Such fine-grained schedules have to be generated

in tandem with rolling shutter based camera capture schedules to allow sampling

different parts of the frame at different desirable fidelities, which could be interesting

for applications such as semantic segmentation. This fine-grained voltage scheduling

would also lead to more sensor power savings, and we will investigate policies that

would enable such control as future work.

Our policies also operate the sensor at extreme voltage levels as there is no incentive

to operate the sensor at an intermediate voltage level for vision task. However, as

mentioned in the characterization section, intermediate voltage level might be useful

in low-light situations whereby undervolting adds brightness to the signal without

adding too much noise. We will investigate the usefulness of intermediate voltage

control in applications that can tolerate some accuracy loss as future work.
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Dynamic frequency scaling: While we exclusively focus on studying the effects

of voltage scaling on the sensor’s analog circuitry in this work, as a natural extension,

we would like to study the power and performance implications of clock frequency

scaling on the sensor’s digital circuitry. Notably, we would want to explore how analog

voltage scaling would work in tandem with digital clock scaling to provide desired

fidelity and frame rate needed for vision applications.

Voltage scaling on other camera types: In this work, we extensively studied

the implications of voltage scaling on 2D image sensors. We will extend this study to

other sensor modalities such as depth cameras and event cameras. Specifically, we

will study how voltage scaling would affect different sensing and readout patterns of

off-the-shelf depth and event cameras in the context of emerging 3D vision and eye

tracking applications, respectively.
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Chapter 4

CONCLUSION

In conclusion, our research on frame-based computing limitations and energy-

efficiency has led to the development of two innovative approaches. The first approach

introduces an architecture that samples regions with different spatiotemporal rhythms

and incorporates a runtime for region selection control. By efficiently encoding and

decoding these regions before writing them to memory, we alleviate interface traffic and

reduce the memory footprint, ultimately achieving improved system energy-efficiency.

Moreover, our second approach addresses the energy-efficiency limitations imposed

by fixed voltage supply to power the analog circuitry of visual computing systems.

Through the Squint framework, we enable aggressive undervolting of the sensor’s

analog voltage, resulting in significant efficiency gains. This is achieved through the

integration of a programmable voltage controller hardware and a voltage configuration

API software, allowing dynamic adaptation of sensor voltage from vision applications.

By pushing the energy-efficiency boundaries in visual computing, our research has

significant implications for various domains such as drones, smartphones, AR, and

VR systems. These advancements extend the battery life of these devices, enabling

new forms of low-power visual computing. Additionally, our hardware and software

interfaces pave the way for imaging-aware voltage scheduling techniques, benefiting

IoT and AR systems.
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APPENDIX A

FRAME STACKS AND ENERGY MODEL
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A.1 Rhythmic Pixel Regions in Action

In Figs. A.1-A.6, we show the progression of frames for different workloads in
action.

(a) Frame 1
(100%)

(b) Frame 2
(37%)

(c) Frame 3
(31%)

(d) Frame 4
(34%)

(e) Frame 5
(27%)

(f) Frame 6
(35%)

(g) Frame 7
(100%)

Figure 27: Task: Visual SLAM; Benchmark: TUM freiburg1-xyz

(a) Frame 1
(100%)

(b) Frame 2
(42%)

(c) Frame 3
(36%)

(d) Frame 4
(39%)

(e) Frame 5
(33%)

(f) Frame 6
(40%)

(g) Frame 7
(100%)

Figure 28: Task: Visual SLAM; Benchmark: TUM freiburg1-floor

(a) Frame 1
(100%)

(b) Frame 2
(44%)

(c) Frame 3
(41%)

(d) Frame 4
(37%)

(e) Frame 5
(32%)

(f) Frame 6
(35%)

(g) Frame 7
(100%)

Figure 29: Task: Visual SLAM; Benchmark: TUM freiburg2-360-kidnap-secret

(a) Frame 1
(100%)

(b) Frame 2
(31%)

(c) Frame 3
(24%)

(d) Frame 4
(29%)

(e) Frame 5
(23%)

(f) Frame 6
(33%)

(g) Frame 7
(100%)

Figure 30: Task: Human pose estimation; Benchmark: PoseTrack 2017 024575-mpii
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(a) Frame 1
(100%)

(b) Frame 2
(39%)

(c) Frame 3
(23%)

(d) Frame 4
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(e) Frame 5
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(g) Frame 7
(100%)

Figure 31: Task: Human pose estimation; Benchmark: PoseTrack 2017 015301-mpii

(a) Frame 1
(100%)

(b) Frame 2
(28%)

(c) Frame 3
(26%)

(d) Frame 4
(22%)

(e) Frame 5
(37%)

(f) Frame 6
(31%)

(g) Frame 7
(100%)

Figure 32: Task: Face detection; Benchmark: Chokepoint dataset P2E-S5

Table 8: Energy-per-Pixel of Various Components in the Vision Pipeline. As Is Widely
Acknowledged, Communication Cost Is At Least Three Orders of Magnitude More
Than Compute Cost.
Component Energy (pJ/pixel)
Sensing 595 LiKamWa et al. (2013); Choi et al. (2015a)
Communication (SoC - DRAM) 2800 Xilinx (2019b); Pandiyan and Wu (2014); Ho et al. (2001); Raghunathan et al. (2003); Magen et al. (2004); Meindl et al. (2002)
Storage 677 Micron technologies (2019); Ghose et al. (2018); Malladi et al. (2012); Vogelsang (2010)
Computation (per MAC) 4.6 Hameed et al. (2010)

A.2 Energy Model

The power measurements directly taken off from the Xilinx Zynq FPGA board,
which consumes power on the order of tens of watts, are not representative of mobile
systems, which consume only a few watts of power for typical vision tasks. There-
fore, we construct a coarse energy model based on reported numbers in component
datasheets and computer architecture literature to estimate system power. Precise
energy savings will depend on system characteristics that are highly specific to the
device, operating system, and application usage pattern. We construct the first-order
linear model to approximate power consumption so as to contextualize the benefits of
reducing pixel memory throughput in a mobile system.

In particular, we break down the system energy into four components: sensing,
computation, storage, and communication, as shown in Table 8. Sensing requires an
energy of roughly 600 pJ/pixel LiKamWa et al. (2013); Choi et al. (2015a), mostly
drawn from three components: pixel array, read-out circuits, and analog signal chain.
DRAM storage on standard mobile-class memory chips (8 Gb, 32-bit LPDDR4) draws
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677 pJ/pixel for writing and reading a pixel value Micron technologies (2019). This
roughly divides into 300 pJ/pixel for reading and 400 pJ/pixel for writing Ghose et al.
(2018); Malladi et al. (2012); Vogelsang (2010). Communication over DDR interfaces
incur 4 nJ/pixel, mostly due to operational amplifiers on transmitters and receivers.
We measure the interface power dissipation Xilinx (2019b) on 4-lane CSI interfaces
and LPDDR4 interfaces by inputting several datarates. From this information, we
construct a linear-regression model to estimate the energy per pixel to be 1 nJ/pixel
over CSI and 3 nJ/pixel Pandiyan and Wu (2014); Ho et al. (2001); Raghunathan
et al. (2003); Magen et al. (2004); Meindl et al. (2002) over DDR. We use 5 pJ per
MAC operation Hameed et al. (2010) to estimate compute energy.

We use FPGA measurements of pixel memory read/write throughput and compu-
tation patterns to apply the runtime behavior of the system to our energy model. For
communication and storage, we take memory traffic/footprint values from Fig 7 and
apply them to the model. We obtain sensing energy by applying frame resolution from
Table 3 on our model. For compute energy, we take the number of MAC operations
for our CNN workloads and apply them to the model.
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