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ABSTRACT

Due to the large scale of power systems, latency uncertainty in communica-

tion can cause severe problems in wide-area measurement systems. To resolve the

issue, a significant amount of past work focuses on using emerging technology

which is machine learning methods such as Q-learning to address latency issues

in modern controls. Although such a method can deal with the stochastic charac-

teristics of communication latency in the long run, the Q-learning methods tend to

overestimate Q-values, leading to high bias. To solve the overestimation bias issue,

the learning structure is redesigned with a twin-delayed deep deterministic policy

gradient algorithm to handle the damping control issue under unknown latency

in the power network. Meanwhile, a new reward function is proposed, taking into

account the machine speed deviation, the episode termination prevention, and the

feedback from action space. In this way, the system optimally damps down fre-

quency oscillations while maintaining the system’s stability and reliable operation

within defined limits. The simulation results verify the proposed algorithm in var-

ious perspectives including the latency sensitivity analysis under high renewable

energy penetration and the comparison with other machine learning algorithms.

For example, if the proposed twin-delayed deep deterministic policy gradient al-

gorithm is applied, the low-frequency oscillation significantly improved compared

to existing algorithms.

Furthermore, under the mentorship of Dr. Yang Weng, the development of a
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big data analysis software project has been collaborating with the Salt River Project

(SRP), a major power utility in Arizona. After a thorough examination of data for

the project, it is examined that SRP is suffering from a lot of smart meters data

issues. An important goal of the project is to design big data software to moni-

tor SRP smart meter data and to present indicators of abnormalities and special

events. Currently, the big data software interface has been developed for SRP,

which has already been successfully adopted by other utilities, research institutes,

and laboratories as well.
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Chapter 1

INTRODUCTION

The inter-area low-frequency oscillations cause significant challenges to reliable

control and economic operation in a typical cyber-physical system such as trans-

mission networks. For example, if the inter-area oscillation has a poor damping,

it will cause catastrophic disturbances, such as forming multiple outages, leading

to widespread oscillation [1]. The failure to control frequency oscillation can cause

severe damage to the stability and reliability of the power system. In the worst

case, it can cause large-scale power outages, in other words, blackouts. There have

been several incidents of low-frequency inter-area oscillation. The most notable

incident occurred on August 14, 2003 at the Eastern Interconnection located in the

United States [2]. This incident caused 45 million people to lose their power sup-

ply for periods of up to three hours. This was caused by poor damping of low-

frequency oscillations. Also, the another most notable incident took place in the

southern region, where the power system broke down on September 15, 2011. The

incident was a result of poor frequency oscillation damping of the power system.

Such events are harder to avoid with traditional solutions because the maximum

available transfer capability is limited [3, 4, 5]. For example, traditionally power

engineering approaches damp oscillations with power system stabilizers (PSSs),
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dependent on local measurements. However, such inter-area modes are neither al-

ways controllable nor observable from local measurement signals [6]. Fortunately,

the observability of inter-area modes improves due to the advent of wide-area

measurement systems (WAMS) and the implementation of phasor measurement

units (PMUs) [7, 8, 9, 10, 11]. Due to the communication delay in modern Infor-

mation and Communication Technologies (ICT), the associated issue, therefore,

becomes the battle with its uncertainty [12].

Since the communication delay significantly affects the damping control perfor-

mance, researchers have proposed various methods to solve this issue. The work

in [13] designs a fuzzy logic wide-area damping controller to damp the inter-area

oscillations compensating for the continuous latency. By selecting suitable stabiliz-

ing devices and input signal and taking variable latency into account, [14] presents

an inter-area oscillation damping controller design considering the impact of vari-

able latency. Meanwhile, [15] incorporates a series of integral methods, including

average assignment, phase tracking, and magnitude attenuation, to overcome the

limitations of the adaptive phasor power oscillation damping method operating in

varying-latency situations.

Moreover, a variable loop gain controller was proposed based on the exces-

sive regeneration for system stability, limiting the delay range up to 250 ms [16].

Also, [17] identifies a low-order transfer function model using a multi-input multi-

output autoregressive moving average exogenous model. From the device per-
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spective, the static VAR compensators are adopted under different operating con-

ditions and renewable energy sources [18, 19, 20]. Although these methods have

merits from a different perspective, some of them neglect communication delay

and some assume correct network topology and system parameters. Unfortu-

nately, such assumptions are hard to achieve in reality due to their accessibility,

the network growth, and the instantaneous communication congestion condition,

even though in 5G networks.

Targeting these issues, learning methods that are physically model-free are pro-

posed. For example, [21] uses a deep learning WADC, but such a method relies ex-

tensively on the past data and was unable to adapt to the changes in transmission

networks. One observation from such work is that the exploration of the system

does help in capturing such transformations. Therefore, reinforcement learning

(RL) provides a platform to explore the environment and learn the control strat-

egy accordingly. Among different RL methods, Q-learning can handle problems

with stochastic transitions and rewards using a value function. [22] leverages

this capability of learning a stochastic control through exploring the network by

using Q-learning. However, Q-learning fails where there is a large state space

[23, 24, 25, 26].

To overcome such challenges of large state space, we can combine the advan-

tage of RL and deep learning to provide a stochastic and robust control through

WAMS, so that both the uncertainties and time-varying delays can be taken into ac-
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count through interactive learning. The contribution of this thesis is the novel de-

sign of a policy-based RL method to address the damping control due to unknown

latency in inter-area oscillation. Specifically, we build a power system testbed for

RL’s interactive environment. Then, we define the state and action that are suit-

able for damping control. In the end, a reward function that considers the physical

measurements and the sustainability of RL is proposed.

This thesis is organized as follows: Section 2 explains the background knowl-

edge of the RL and policy gradient method. Section 3 elaborates on the specific

design of the RL-based controller, including the design of state, action, and reward

to maximize the control benefits and merge them into the power system concept.

Further simulation results and shortcomings of the proposed method are described

in Section 4, followed by the conclusion in Section 10.
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Chapter 2

BACKGROUND

2.1 Reinforcement Learning and Policy Gradient Method

Power systems damping control has to deal with uncertainties and ambiguities

in the entire system. RL is a perfect tool to solve such issues. RL is an area of ma-

chine learning concerned with how agents ought to take actions in an environment

in order to maximize the notion of cumulative reward. Essentially, Markov deci-

sion process (MDP) is formally used to describe RL problems [27]. It is modelled

with a tuple (S, A, E, r) which consists of a state space S; an action space A; a

transition function

E[St+1|st, at]

that predicts the next state st+1, given a current state-action pair (st, at). Each of

this pair (st, at) is corresponding to the immediate reward achieved at each state-

action pair. In power systems, the state-action pair means the control action taken

under present operating conditions, whereas the reward means the score obtained

after a control action. The policy of an RL problem is a function π which maps the

state space to the action space. An RL algorithm tries to find an optimal policy π

to maximize the expected total reward. To achieve the optimal policy, we typically

use gradient-based methods, where the policy is parameterized by a parameter
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vector θ. Such a vector is updated along the gradient direction of the expected total

rewards. The corresponding RL operational principle diagram is shown in Fig. 2.1,

which clearly displays the relationship between environment and agent. The agent

observes the state of the environment through measurement and communication

devices. Based on the observations, the agent takes the corresponding action to

control the state of the environment through the calculation of the reward. To

improve control performance, the agent updates its policy that defines the learning

agent’s way of behaving at a given time.

Figure 2.1: The Agent-environment Interaction in Reinforcement Learning. At the

Time t, the Agent Perceives State St and Reward Rt from the Environment Then

Takes an Action At, Which Will Affect the State of the Environment. The Agent

Receives a Reward rt+1 and a New State st+1 from the Resulting Environment.
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2.2 Deep Deterministic Policy Gradient Algorithm

Lots of researches in the past focus on using machine learning methods such as

deep Q-network (DQN) to address latency issues in modern controls. Although

DQN has achieved huge success in higher dimensional problems, its action space

is still discrete. However, many tasks of interest, especially in the task of damping

control, the action space is continuous. Therefore, the Deep Deterministic Policy

Gradient (DDPG) algorithm seems a promising solution. DDPG is very popular

in RL control. It chooses an actor-critic model, where a critic-network might help

to suppress the bad decisions made by an actor-network. The details of continu-

ous control through the actor-critic model are presented in [28]. DDPG agent not

only works with continuous action space, but also has a good accuracy in learning

under complex environments, proved in [29]. Its value function is expressed as

follows:

Q(st, at) = E[r(st, at) + γmax
a
E[Q(st+1, at+1)]. (2.1)

The function approximator Q for the critic network samples states from the

WAMS and follows a specific distribution [28]. It estimates the effectiveness of the

action taken. In power systems damping control, the action can be the reference

value for the generator terminal voltage. An actor-network µ(st+1) takes only the

states as input features and directly estimates the actions. But, such estimation

requires critical evaluation. So, we define the approximator yi for critic network,

yi = ri + γQ′(si+1, µ
′(si+1|θµ

′
)|θQ′

). (2.2)
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Since both of the function approximators are characterized as deep layers of

neural networks, we parameterize them with θQ and θµ as presented in [28]. In

power systems, they are the parameters for the control performance models. So,

the loss function for M samples becomes

Loss =
1

M

M∑
i=1

(yi −Q(si, ai))
2, (2.3)

where i = 1, · · · ,M is the number of samples in mini-batch. The parameters of

critic-network are obtained by iteratively minimizing the above loss function [28].

The goal in RL is to learn a policy that maximizes the expected return from the

start distribution J . To achieve the maximized expectation, we update the actor-

network by applying the chain rule to the expected return from J concerning the

actor parameters,

∇θµJ ≈
1

M
∇aQ(si, ai|θQ)∇θµµ(si|θµ). (2.4)

Then, we update the target actor Q′ and target critic µ′ parameters using a peri-

odic approach, so that after each iteration the target actor becomes the initial actor

and target critic becomes the initial critic as proposed in [28]

θQ
′
= θQ, (2.5)

θµ
′
= θµ, (2.6)

respectively. It is natural to expect policy-based methods are more useful in con-

tinuous space. Because there are an infinite number of actions and (or) states to

estimate the values for and hence value-based approaches are way too expensive
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computationally in the continuous space. For example, in generalized policy iter-

ation, the policy improvement step

argmax
a∈A

Qπ(s, a) (2.7)

requires a full scan of the action space, suffering from the curse of dimensional-

ity. This is true power system stability control issues where the action space is

continuous. However, using gradient ascent, we can move θ toward the direction

suggested by the gradient

∇θJ(θ)

to find the best θ for πθ that produces the highest return.
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Chapter 3

REINFORCEMENT LEARNING BASED CONTROLLER

In this section, we discuss the detailed design of the state, the action, and the

reward. Importantly, based on the DDPG algorithm, we further realize the Twin-

delayed deep deterministic policy gradient (TD3) algorithm to avoid the overesti-

mation bias of DDPG. Fig. 3.1 gives a complete account of the mechanism, along

with the inputs and outputs for the model. The proposed framework of the over-

all scheme is motivated by the wide-area monitoring system, where the phasor

data concentrator (PDC) collects the data from PMUs. The PMUs connected to the

remote buses send data (voltage and current phasors) to the PDC over different

communication channels. The data helps in determining state and reward at every

time step. The goal of this setup is to achieve good state observability of the whole

system for RL control.

Furthermore, we design a controller that can produce accurate control action

when the states and rewards are fed as input. Fig. 3.2 shows the zoomed-in struc-

ture of the controller, based on TD3. We utilize the neural networks for the rep-

resentation of the actor and the critic. The backpropagation of the networks is

realized by minimizing the loss function in Fig. 2.3. To mitigate the oscillations

and prevent the overestimation of Q-values, we use a pair of actors and critics to

10



Figure 3.1: Framework of the Overall Scheme. The Dotted Lines Indicate the

Communication Lines with Delays. The Inputs to the Controller Are the States

and Reward, Whereas the Output is the Action.

form a TD3 algorithm. However, further work is needed for defining the states

and the actions. In such a design, one of the challenges is the creation of the re-

ward function that guides the agent to learn well. In the following subsections, we

demonstrate how we design the RL controller.

3.1 State of the Controller

We start with the design of the states. The generator voltage, current, and phase

angle are monitored through PMUs [30]. We define all the states st in the power

system for all observable generators g = 1, · · · , G to be controlled. The generator

speeds are represented as ωt,g, the deviations of generator speeds are ∆ωt,g, the

11



Figure 3.2: Zoomed-in Illustration of the Proposed Algorithm. The Dotted Lines

Represent the Inputs and Output of the Controller.

phase angles are θt,b for the voltage of the bus b = 1, · · · , B at time t = 1, · · · , T . As

the speed of generators varies upon the occurrence of the disturbance, we define

the speed deviations as

∆ωt,g = ωt,g − ωt−1,g. (3.1)

The states are summarized as follows:

st,1 = {ωt,1, ωt,2, ωt,3, · · · , ωt,G},

st,2 = {∆ωt,1,∆ωt,2,∆ωt,3, · · · ,∆ωt,G},

st,3 = {θt,1, θt,2, θt,3, · · · , θt,B},

sT = st,1 ∪ st,2 ∪ st,3.

(3.2)

We design the state to directly capture the rotor speed, therefore, we include st,1.

Meanwhile, we hope to be aware of the rotor speed deviation to monitor the direct

results after an action. So, st,2 is designed. Since voltage angle is another significant

factor that quantifies the state of the generators, we incorporate st,3 in the state.

12



3.2 Action of the Controller

After designing the controller’s state, it is important to identify the control ac-

tion. The power system stabilizer (PSS) is a device that measures improvements

in system stability when added to a generator’s automatic voltage regulator. The

modern-day PSSs are responsible for damping down low-frequency oscillations

by adjusting the voltage applied at the field windings vt,g of all the synchronous

generators g. So, the output of the controller will essentially be an action vector at

for all the generators g at time t. The action vector at, defined in equation (3.3), is

a stabilizing voltage parameter that alters field voltage of synchronous generators.

vt−1 in equation (3.4) is the variable where the action vector can get feedback from

the previous time steps. This variable will help to have higher reward values and

reduce system oscillation. Therefore, we identify the action space as follows:

at = {vt,1, vt,2, vt,3, · · · , vt,G}. (3.3)

By grouping the voltage signals, the learning agent can easily process and deliver

the control signal to the automatic voltage regulator of each generator.

3.3 Reward Design for Enhanced Control Results

With states, actions, and policies clearly defined, we require a reward function,

which helps in deciding the extent of the constancy of generated control action.

We design a reward that can help maximize the information obtained from the

wide-area-based observations from synchrophasors and local measurements from
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the generators. The goal is to minimize the frequency oscillations of wide-area sys-

tems. Therefore, we capture the variables like the rotor speed, its deviation, and

phase angle variation between remote buses as well. To solve the high dimension-

ality and complexity of stability problems, we not only use variables for the power

system but add more control effort from RL into the reward function to improve

the performance. The form of reward function is shown in the following:

rt =− c1
G∑
g=1

(ωt,g)
2 − c2

G∑
g=1

(∆ωt,g)
2

− c3
B∑

i,j∈B
i 6=j,i<j

(θt,i − θt,j)2

− c4
Ts
Tf
− c5

G∑
g=1

(vt−1,g)
2.

(3.4)

The five terms in equation (3.4) range from physical quantity associated reward

(the first three terms) to the episode control (the fourth term) and the feedback

of actions (the fifth term). The first term helps to bring the control ability of the

speed of generators ωt,g. The second term overcomes the sustaining deviations in

the speeds of the generators. The third term incorporates the difference between

the phase angles of voltages at remote buses. We use the difference of the phase

angles of remote buses to have better observation, because angle differences of

remote buses were not observable without wide-area damping controls. We intend

to reduce such a difference so that deviations of speeds of generators connected

to remote buses are limited. The fourth term refers to the constant reward for

preventing the termination of the episode due to zero reward. The fifth term in

14



the equation (3.4) refers to the feedback for the action spaces from previous time

steps. As we capture the major variables that impact the system stability, we add

them into one reward function. A quadratic relationship among them is suitable

since we want to have large enough differences for the learning agent to gain a

reasonable reward and learn fast. The reward design is novel, since it quantifies

the physical values, includes the episode control, and adds the feedback from the

RL agent’s action. Together, these innovations help to achieve superior control

performance.

3.4 Twin-Delayed Deep Deterministic Policy Gradient Method

Conventional solutions for damping control are usually model-based. How-

ever, the parameter variation over time and the communication latency are two

major issues for model-based solutions. Under this circumstance, RL algorithms

are gaining popularity. But, some RL algorithms like Q-learning suffer from the

overestimation issue in the Q-values. Therefore, based on the DDPG algorithm, we

solve the overestimation issue by proposing a TD3 algorithm (refer to Algorithm

1), which is a model-free, off-policy RL method that uses deep neural networks to

compute an optimal policy that maximizes the long-term reward.

In the RL-based controller design, we expect the RL-based controller to have

some salient features. Firstly, the control should maintain a copy for each network,

e.g., copies of the actor network and critic network. The copies keep on improv-

ing stability during the learning process. To achieve this, the algorithm inherits
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Algorithm 1: TD3 [31]

Initialize critic networks Qθ1 , Qθ2 and actor network πφ with random

parameters θ1, θ2, φ ;

Initialize target networks θ′
1← θ1, θ

′
2← θ2, φ′ ← φ ;

Initialize replay buffer B ;

for t = 1 to T do
Select action with exploration noise a ∼ πφ(s) + ε, ε ∼ N (0, σ) and

observe reward r and new state s′ ;

Store transition tuple (s, a, r, s
′
) in B ;

Sample mini-batch of N transitions (s, a, r, s
′
) from B ;

ã ∼ πφ′ (s) + ε, ε ∼ clip (N (0,σ̃), −c, c);

y ∼ r + γ mini=1,2Qθ′i
(s′,ã);

Update critics θi←minθi
1
M

∑
(y −Qθi(s, a))2 ;

if t mod d then

Update φ by the deterministic policy gradient ;

∇φJ(φ) ≈ 1
M
∇a Qθ1(s, a)|a=πφ(s)∇φπφ(s) ;

Update target networks;

θ
′
i ← τ θi + (1− τ) θ

′
i

φ
′ ← τ φ + (1− τ) φ

′

end

end
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an actor-critic framework. This means that there are two components in the algo-

rithm, the actor and the critic. The actor takes responsibility for a policy, which

receives a state as the input and generates action. The critic estimates the action

value function, which is used to assess the goodness of the actor.

Secondly, the controller should maintain a replay memory that stores all of the

sample data during interaction with the environment. To store a certain amount of

“experience”, we randomly sample a batch of data from the replay memory and

use them to train the networks at each time step. The replay memory removes

the correlation in the sequence of the data sample. Using a deterministic policy is

more stable than a stochastic policy where the actions are drawn from a distribu-

tion. Consequently, we design the controller using two deep neural networks, one

each for the actor and the critic. Therefore, such a framework is powerful enough

to work on tasks such as controlling communication delays in highly non-linear

power systems.

Lastly, it is better for the controller to directly optimize the quantity of interest

while remaining stable under function approximation (given a sufficiently small

learning rate). This is easy to fulfill since we can use a deterministic policy gradient

to train the actor network as follows:

∇θµJ ≈
1

M
∇aQ(si, ai|θQ)∇θµµ(si|θµ). (3.5)

Notably, the first feature maintains a copy for each network, e.g., copies of the

actor network and critic network. The copies keep on improving the stability dur-
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ing the learning process. The second feature maintains a replay memory that stores

all of the sample data during interaction with the environment. To store a cer-

tain amount of “experience”, we randomly sample a batch of data from the replay

memory and use them to train the networks at each time step. The replay memory

removes the correlation in the sequence of the data sample. Using a deterministic

policy is more stable than a stochastic policy where the actions are drawn from a

distribution. The last feature indicates that TD3 directly optimizes the quantity of

interest while remaining stable under function approximation (given a sufficiently

small learning rate).

• The algorithm inherits an actor-critic framework. This means that there are

two components in the algorithm, the actor and the critic. The actor takes

responsibility for a policy, which receives a state as the input and generates

action. The critic estimates the action value function, which is used to assess

the goodness of the actor.

• The algorithm uses two deep neural networks, one each for the actor and the

critic. Therefore, such a framework is powerful enough to work on tasks such

as controlling communication delays in highly non-linear power systems.

• The algorithm uses a deterministic policy gradient to train the actor network

as follows:

∇θµJ ≈
1

M
∇aQ(si, ai|θQ)∇θµµ(si|θµ). (3.6)
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3.5 Avoid the Overestimation Bias

To make sure the control tasks are in a continuous action space, an actor-critic

setting is adopted. In Double DQN, the authors propose using the target network

as one of the value estimates, and obtain a policy by greedy maximization of the

current value network rather than the target network. Unfortunately, if we bor-

row the above idea, the present and target value estimates are similar to each other

since the policy in an actor-critic setting changes slowly, resulting in high bias.

This should be avoided in the damping control. To address this issue, we utilize

a clipped Double Q-learning variant which leverages the notion that a value es-

timate suffering from overestimation bias can be used as an approximate upper

bound to the true value estimate [31]. This method is inspired by Double DQN

[32], where the target network is used as one of the value estimates, and obtain a

policy by greedy maximization of the current value network rather than the target

network. When translated into the actor-critic environment, we update the present

policy instead of the target policy with a pair of actors (πφ1 , πφ2), critics (Qθ1 , Qθ2),

and the objective y:

y1 = r + γQθ′2
(s′, πφ1(s

′)), (3.7)

y2 = r + γQθ′1
(s′, πφ2(s

′)). (3.8)

To prevent the propagation of the overestimation when the smaller Qθ has al-

ready overestimated the true value, the strategy to be taken is to use the biased Qθ

value as the upper bound of the less biased one [31]. This results in the clipped
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double Q-learning algorithm – the value function target is the sum of the experi-

ence reward r and the minimum discounted future reward from the critics:

y1 = r + γ min
i=1,2

Qθ′i
(s′, πφ1(s

′)). (3.9)
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Chapter 4

NUMERICAL VALIDATION

In this section, we will firstly discuss the validation setup. Then, we demon-

strate the performance of the proposed control agent with validation on the latency.

In the end, a detailed comparison with the DDPG method is shown.

4.1 Benchmark System

Various simulation studies were carried out in benchmark systems like the 2-

area and 4-generator Kundur system and the IEEE 39-bus 10-generator system.

The performances are similar. Due to the space limit, we use mainly the Kundur’s

system in Fig. 4.1 as illustration. The test system consists of two fully symmetrical

areas linked together by two 230 kV lines of 220 km length. This benchmark sys-

tem was extensively used for low-frequency electromechanical oscillations study

in large interconnected power systems because it mimics very closely the behavior

of typical systems in actual operation [33].

Table 4.1 summarizes the benchmark system parameters. Both area 1 and 2

share an identical generator except for the inertia value. The benchmark system

presents a stressed operating condition, where 413 MW is exported from area 1 to

area 2. Meanwhile, the surge impedance loading of a single line is 140 MW.

21



Figure 4.1: A Modified Kundur Four-machine Two-area Power System. In This

System, to Represent the Deep Renewable Generation, Two Aggregated

Residential PV Generation – PV1 and PV2 Are Added.

4.2 TD3 Control Agent: Fast Learning Curve

Since the reward functions are highly dependent on the existence of the os-

cillations, we aim to show the performance of a well-learned model when there

are low-frequency oscillations, in case of different communication channel delays.

With the proposed controller design in Section 3, we achieve the learning curve, as

shown in Fig. 4.2. By looking at the average reward, it shows that the agent has

good and bad attempts in the first five episodes. After that, the average reward

is gradually increasing. As observed in the figure, after 100 episodes, the episode

reward of the TD3 agent is observed to reach a value close to 0 – the highest value

in the whole learning curve.

The high penalty is enforced in scenarios where the system loses synchroniza-
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Table 4.1: Parameters of the Benchmark System under Study

Name Value

Generator 20 kV/900 MVA

Synchronous machine inertia 6.5 s, 6.175 s

Thermal plant exciter gain 200

Solar capacity (PV1, PV2) 100 MW

Power exporting from area 1 to 2 413 MW

Area 2 power generation 700 MW

tion since such a case will be responsible for the collapse of the system. When the

system loses synchronization in an episode, the agent learns associated parame-

ters so that the system does not explore the outage of the system and learns what

parameters to avoid next time. We consider such scenarios as game-over for the

model and there is no further evaluation performed so that the training time can be

curtailed. From episodes 0 to 40 in Fig. 4.2, we observe the process that the agent

creates an appropriate policy that reflects proper damping of the low-frequency

oscillations in the system. The model achieves a high average reward after suffi-

cient exploration. After 40 episodes, the model converges to a very high reward.

The effect of learning can also be observed from another perspective of implement-

ing a control policy that maintains system synchronization for stable operation of

the whole power system. Fig. 4.2 shows that after 100 episodes that high fidelity
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Figure 4.2: A Learning Curve That Shows the Individual Episode Reward and

Average Reward. The X-axis and the Y-axis Are the Number of Episodes and the

Reward Respectively. The Blue Line Means Episode Reward (the Reward for Each

Episode). The Red Line Is an Average Reward (a Running Average Reward

Value). And, the Yellow Line Is Episode Q0 (the Critic’s Estimate of the

Discounted Long-term Reward at the Start of Each Episode). The Setup Behind

This Figure Is in Table 4.2.

control action enables the system to maintain stability.

The advantage of this reward function design is presented in Fig. 4.3, which

clearly shows the necessity of the five terms in the reward equation. When there

are less than three terms in the reward function design, the learning curve cannot

be accomplished. With exactly the first three terms in equation (3.4), we can see
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that the learning curve in green in Fig. 4.3 is much worse than that in blue – with

five terms. The proposed TD3 technique with five terms reward function gains

higher reward values in general, which means the system gets into the stabilization

condition faster than TD3 with three terms only.

Figure 4.3: Result Comparison Using the Proposed TD3 Algorithm under 3 terms

and 5 terms Reward Function, Where 3 Terms Refer to the First Three Terms in

Equation (3.4), and 5 Terms Refer to the Entire Equation (3.4). The Reward Here

Refers to the Running Average Reward Value.

4.3 Control Agent: Robust to Communication Latency

We analyze the performance based on the variation of average communication

delay in the system. The communication delays in wide-area power systems can

range from tens to several hundred milliseconds or more. Appendix A shows the

delay range under different types of communication media. Based on this range,
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four scenarios that fully capture the delay range are created between 0.13 ∼ 0.19

seconds. The details of the four testing scenarios are shown in Appendix B.

If the mean and variance are changed inside the system and if a large num-

ber of signals are to be routed, then there is a potential to experience long delays

and considerable variability (or uncertainty) in these delays. Fig. 4.4 shows that

not only the TD3 agent with the proposed controller has achieved a high fidelity

in controlling the generators, but also the performance based on the variation of

average communication delay successfully damps down the oscillations.

Figure 4.4: The Control Performance Based on the Variation of Average

Communication Delay. Due to the Stochastic Nature of the Proposed RL

Algorithm, the Results under Different Time Delays Are Not Always the Same.

This Figure Is a Representative Result Selected Among Extensive Simulations.

However, the Largest Speed Deviation Is Always Well Contained in All Test

Cases.
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As discussed in the literature, conventional methods suffer from the latency is-

sue during their control efforts. Through multiple simulations, we observe that the

performance of the proposed control agent is no longer dependent on the commu-

nication delay due to the fact that the largest time latency is not always associated

with highest speed deviation. Fig. 4.4 shows one of the selected control results,

where, unlike conventional methods, the shortest time delay does not result in the

least amount of speed deviation. Here, the yellow line with 0.18 seconds of time

delay presents the smallest speed deviation. The results show that the proposed

RL agent decouples its performance with the time latency in communication. It is

the hyper-parameters in the RL algorithm that affect the damping performance.

4.4 Performance Comparison with DDPG

The compared results between TD3 and DDPG agents are demonstrated in Fig.

4.5, including all the agent discount factors and batch sizes in Table 4.2. Evidently,

the TD3 agent achieves the optimal policy faster than the DDPG agent has. DDPG

agent could not converge into the stabilization condition in limited episodes. How-

ever, it has only several explorations before reaching out to the optimal policy. In

other words, there could be the case that the agent might not learn the parameters.
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Figure 4.5: Result Comparison Between DDPG and TD3 Agents. The Parameters

of Both Agents Are Presented in Table 4.2. The Reward Here Refers to the Reward

for Each Episode.

Table 4.2: Parameters of TD3 and DDPG Agents

Name Value

Input dimension 12 states

Output dimension 4 actions

Discount factor 0.75

Sample time 0.1 (sec)

Experience memory capacity 500, 000

Batch size 64 samples
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Chapter 5

BIG DATA ANALYSIS TO SMART METER STATUS MONITORING

The goal aims at developing a new tool that utilizes machine learning algo-

rithms to visualize the big data, dig into the hidden values, and identify the per-

formance trends. Specifically, utility is interested in developing software to give

indications to mismatch records, meter communication issues, special (suspect)

events and cluster the customers based on the load profiles and various sources

of other information. For instance, some meters are suspected to be connected re-

versely, some customers are categorized in the wrong group, some meters lost their

communication and some smart meters are suspected to be connected to the wrong

place. The most severe and difficult to detect are the meters that are connected in

a reverse way or the wrong place.

To solve this issue, supervised and unsupervised machine learning methods

are integrated into the software for load forecasting, customer behavior analysis

and event type differentiation. The other main contribution of the thesis is to in-

tegrate various cutting-edge machine learning methods into the software to help

utility handle their data and understand the demands of their customers. Data

integration techniques are aimed to sort out the data from different sources. Cor-

relation analysis is used to reduce the redundancy of the data and reduce the size
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of the data. A rational check utilizing machine learning methods based on the con-

straints of professional knowledge applied to the abnormal data to provide indica-

tions of the possible reasons for the abnormality. For the missing values, the users

can choose to fill the blanks by zero or most frequency constant value, the mean or

median of the data, or the K-nearest neighbor (KNN) method. The pre-processed

data can later be used to predict load, solar generation and cluster different types

of customers. Support vector regression (SVR), polynomial regression, long-short

term memory (LSTM) and other machine learning methods are selected to predict

renewable generation and load forecasting which help utilities to better manage

the grid and prepare for unexpected severe two-way power flows. K-means clus-

tering and density-based spatial clustering of applications with noise (DBSCAN)

are used on the load profile to give the utility a comprehensive understanding of

current energy management and tariff structure. The regularity and irregularity of

customer energy consumption were analyzed in depth.

Therefore, in this thesis, the four different main functions which are data visu-

alizations, distribution visualization, bad data indicator and behavior analysis are

developed in the software to visualize smart meter data in time series.
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Chapter 6

DATA VISUALIZATIONS

The abundance of smart meters enables utilities to gain more visualizations of

the smart meter readings. By monitoring the time series data, people have a high-

level overview of the data and can quickly locate obvious problems. However, the

smart meter data are mostly used for billing and there is a lack of an adaptable tool

for utilities or customers to visualize the time series data. Therefore, in this section,

we developed a section in the software to visualize the time series data from the

smart meters. We show the times series visualization result.

Figure 6.1: The Location Number at 231731005 in Time Series

In the data visualization section, the visualization of the smart meter data from

user-selected properties is demonstrated. The user chose to visualize the solar me-

ter ”kWh - Delivered” readings from the customer with location number ”231731005”.
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Chapter 7

DISTRIBUTION VISUALIZATIONS

With the abundance of smart meters, it becomes more important for utilities to

handle and analyze the information refined from the smart meter readings. Such

information can be used to check the correctness of the model and quickly locate

the suspicious events, which is critical for the utility to run a safer and more reliable

grid. However, the raw data often contain a lot of bad data. Directly using the

raw data for analysis will result in inaccurate results. Therefore, in this section,

the insights into the existence of bad data from the statistical point of view are

demonstrated. Specifically, the data distribution is analyzed.

The statistical analysis of the data distribution is not always consistent with our

understanding. By examining the data distribution, we can determine if the data

distribution obeys the normal distribution which determines the model we plan

to use for other analyses. Histogram and boxplot are two types of graphical tools

that are frequently used for analyzing the distribution of the data. The two types

of the plot provide information of the median, quantile, upper limit, lower limit,

overall data variability and outliers, etc. This information is of great importance to

understand the data.

In order to show the overall distribution of the smart meter data, the user chose
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the ”CHNM” to be kWh - Delivered. Hence, the histogram in Fig. 7.1 and boxplot

in Fig. 7.2 are showing the distribution information of all the ”kWh - Delivered”

measurements from all the smart meters.

Figure 7.1: Histogram of Kwh - Delivered Smart Meter Data Distribution

As can be seen from Fig. 7.1, the range with the highest frequency is the most

common value in the dataset, this information can help us to determine if most of

the voltage values are lying in the specified range. We can also check if the data is

skewed. When most of the data is located on the left side, we call the distribution

left-skewed distribution, which means that the mean value of the voltage is smaller

than the median value. This indicates that there is a portion of low voltage values

we should pay attention to. When most of the data is located on the right side, we
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Figure 7.2: Boxplot of Kwh - Delivered Smart Meter Data Distribution

call the distribution right-skewed distribution, which means that the mean value

of the voltage is larger than the median value. This indicates that there is a portion

of high voltage values we should pay attention to. We can also roughly observe

if there are abnormal values from the histogram. If we observe the boxplot there

are any isolated bars at two ends that are far away from the peak, we can consider

them as abnormal data. The abnormal data and the spread of the data can be better

examined and visualized in Fig. 7.2. All the points that are marked with dots can

be considered as abnormal data. For the small violations, we can see if we need

to strengthen the regulation. For a large violation, we need to extract the case and

figure out the reason. This distribution visualization section tries to provide the
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distribution information of the raw data. One can quickly know if there exists bad

data by checking if there are any data that are far away from the mean or median

value.
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Chapter 8

BAD DATA INDICATOR

Data can be divided into two classes, one is descriptive data, the other is numer-

ical data. The software tries to find the bad data separately for these two classes.

Specifically, for the descriptive data, we consider two cases, data inconsistency and

data duplication. Detailed explanations for the two cases can be found in Section

8.1 and Section 8.2. For the numerical data, we consider two different types of

data, voltage and usage data. We tried to find the violations for the two types of

data. Details are illustrated in Section 8.3 and Section 8.4.

8.1 Incorrect Battery Configuration from Database

In this section, we pulled out inconsistent information on the battery configu-

ration from the database file. As we know, for battery configuration, ”1B” is AC

coupled system (DER only, with backup load panel), ”1C” is AC coupled system

(DER only, with no backup load panel), ”2A” is AC coupled system (DER storage

& DER generation, with no backup load panel), ”2B” is AC coupled system (DER

storage & DER generation, with backup load panel), ”3A” is DC coupled system

(DER storage & DER generation, with backup load panel), ”3C” is DC coupled sys-

tem (DER storage & DER generation, with no backup load panel). We compare the

”BatteryConfig” in file ”Battery Info.xlsx” with the definitions in the last sentence
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and pulled out all the records that do not match. The results are summarized in Ta-

ble 8.1. We take the first row as an example to illustrate the results. As can be seen

from the first row Table 8.1, the customer with location number ”659250008” and

with battery configuration ”2B” is documented to be ”DC-Coupled”. However, it

should be ”AC-Coupled” by definition.

Table 8.1: Inconsistent Battery Configurations in the Database File

LocationNumber EssDerConfiguration BatteryConfig

659250008 2B DC-Coupled

291630003 4A AC-Coupled

As can be seen from the table, there are two inconsistent battery configuration

records.

8.2 Duplicated Battery Meter Records

In this section, we pulled out all the duplicated smart meter readings of the

battery meter from the uploaded file. The duplicated smart meter readings mean

that there are at least two records from the same customer, the same meter, the

same parameter (”kWh - Delivered”, ”kWh - Received”, or ”Voltage Phase A”)

on the same date, but with different values of the readings. We print out all the

information about the duplicated readings except the data themselves in Table 8.2.

In Table 8.2, the first column of the table shows the location number of the

customer being measured. The third column is an explanation for the code in
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Table 8.2: Duplicated Battery Meter Readings Table Information

LOCATN APCODE METER CHNM DATE

40111006 B DER STORAGE kWh - Delivered 2019-05-11

40111006 B DER STORAGE kWh - Received 2019-05-11

40111006 B DER STORAGE Voltage Phase A 2019-05-11

40111006 B DER STORAGE kWh - Received 2019-05-12

40111006 B DER STORAGE kWh - Delivered 2019-05-12

40111006 B DER STORAGE Voltage Phase A 2019-05-12

the second column, which shows the name of the meter. There are three options

for column ”CHNM” (”kWh - Delivered”, ”kWh - Received”, or ”Voltage Phase

A”), which give the parameter that the meter measures. Finally, the last column

shows the date that has duplicated smart meter readings. As can be seen from the

table, there are 66 duplicated records. The customer who has the most frequent

duplicated battery meter records is the customer with ”Location K”: 40111006.

8.3 Voltage Violation

The last two sections have discussed the bad data for descriptive data. Next, in

the following two sections, we focus on indicating the bad data for numerical data.

Specifically, we try to find voltage violations in this section. As we know, one of

the main responsibilities of the everyday operation of utilities is to ensure voltages

within regulations when supplied to customers. However, in the new regime with

38



renewable and battery systems, the voltage limits are frequently violated. The

voltage fluctuations will cause a life span shortage of most electrical and electronic

equipment, which decreases the economic effects. A too low voltage will lead

to a high current which increases the loss of the system. Therefore, it is of great

importance for a utility to know when and where the voltage violates. To locate

the voltage violations, we determine that the voltage should be within a certain

range of its mean value. By preliminary studying the voltage data, we found the

mean value of the voltage is around 980 (V). Hence, we set the voltage in the range

[980 - threshold, 980 + threshold] to be normal, any value that exceeds the upper

bound or the lower bound is considered to be abnormal. Currently, the threshold

is set to be 160(V) by the user, therefore, the normal range is between [820, 1140]

(V). We showed the results in two ways, one is a plot of the time series data shown

in Fig. 7.1, and the other is a table of the necessary information other than the

data shown in Fig. 7.1. The x-axis represents the time index of a day. There are

96 indices, which means that the data is measured with 15-minute-interval. The

y-axis represents the voltage value and the unit is (V). The different curves show

the daily smart meter readings that have at least one violation. There are also two

dashed lines showing in the plot to indicate the area of the normal range. The

legend contains the information of the smart meter reading, which is also given in

Table 8.3.

The first column of the table shows the location number of the customer being
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Figure 8.1: Voltage Violation Visualization of Smart Meter Data in Time Series

Table 8.3: Voltage Violations Table Information

LOCATN APCODE METER CHNM DATE

297701002 B DER STORAGE Voltage Phase A 2019-05-01

763621004 S DER GEN Voltage Phase A 2019-05-08

156820000 B DER STORAGE Voltage Phase A 2019-05-12

156820000 B DER STORAGE Voltage Phase A 2019-05-13

156820000 B DER STORAGE Voltage Phase A 2019-05-11

156820000 B DER STORAGE Voltage Phase A 2019-05-23

measured. The third column is an explanation for the code in the second column,

which shows the name of the meter. The fourth column verifies that all the meters

are measuring the voltage phase A. Finally, the last column shows the date the

violation happens.

As can be seen from Table 8.3, there are 174 smart meter readings that violate the

voltage threshold. Most of the violations happen on the customer with ”Location
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K”: 521460009 and on meter:”BILLING”.

8.4 Battery Kwh Violation

In the last section, we check the violations of voltages that have potential risks

to the power systems. In this section, we examine the battery usage value to check

if there are meters that lose connection, are under maintenance, or are damaged,

or if the batteries of the customers are damaged. Specifically, we pulled out all

the daily smart meter readings whose readings never exceed the threshold. The

threshold and the measurement type are set by the user and the threshold is set to

be 0.06(kWh) and the measurement type is set to be ”kWh - Delivered”. The results

are presented in two ways, one is a plot of the time series data shown in Fig. 7.2 the

other is a table of the necessary information other than the data shown in Table 8.4 .

In Fig. 7.2 the x-axis represents the time index of a day. There are 96 indices, which

means that the data is measured with 15-minute-interval. The y-axis represents the

usage value and the unit is (kWh). The different curves show the daily smart meter

readings that are always under the threshold. There are dashed lines indicating

the threshold in the figure. The legend contains the information of the smart meter

reading, which is also given in Table 8.4.

Table 8.4 provides the information of the daily smart meter readings that never

exceed the threshold. The first column of the table shows the location number of

the customer being measured. The third column is an explanation for the code

in the second column, which shows the name of the meter. The second and third
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Figure 8.2: Battery Kwh Violation Visualization of Smart Meter Data in Time

Series

Table 8.4: Low Usage Readings Table Information

LOCATN APCODE METER CHNM DATE

776740009 B DER STORAGE kWh - Delivered 2019-06-01

776740009 B DER STORAGE kWh - Delivered 2019-05-26

776740009 B DER STORAGE kWh - Delivered 2019-05-18

776740009 B DER STORAGE kWh - Delivered 2019-05-25

776740009 B DER STORAGE kWh - Delivered 2019-05-27

776740009 B DER STORAGE kWh - Delivered 2019-05-19

columns can also be used to verify that we are examining the value of the battery

meter. The fourth column verifies that all the meters are measuring the ”kWh

- Delivered”. Finally, the last column shows all the dates that the battery meter

readings never exceed the threshold.

As can be seen from Table 8.4, there are 171 battery meter readings never exceed
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the threshold. Most of them happen on the customer with ”Location K”: 659250008

This report presents the bad data detected by the software. The bad data are

determined from two aspects, one is from the descriptive information, the other

is from the numerical information. For the descriptive information, we identified

the inconsistent information from the database and found the duplicated readings

with different values. For the numerical data, we found the battery voltage vio-

lations and battery kWh violations. The results show that there are 2 inconsistent

battery configuration records and 66 duplicated records. The customer who has

the most frequent duplicated battery meter records is the customer with ”Location

K”: 40111006. Among all the readings, 174 smart meter readings violate the volt-

age threshold. Most of the violations happen on the customer with ”Location K”:

521460009 and on meter: ”BILLING”. There are 171 battery meter readings never

exceed the threshold. Most of them happen on the customer with ”Location K”:

659250008.
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Chapter 9

BEHAVIOR ANALYSIS

Understanding the customer behavior pattern can help utilities to determine

the customers with abnormal behaviors and design demand response programs

for targeted behavior patterns. The auxiliary work can help utilities to manage

the demand peak and balance the dynamic supply and demand. Therefore, in this

section, we tried to detect the customers with abnormal behavior patterns from the

perspective of behavior analysis. The results are shown in the following sections

In this section, we showed the results of clustering the behavior patterns of

customers with a specific battery configuration and rate plan in summer or winter

season. Specifically, the user chose to analyze the behavior pattern in summer of

customers with battery system configuration being ”2B” and rate plan being ”E-

27”. We grouped the behavior patterns into three clusters, which are shown in

Fig 9.1, 9.2, and 9.3. The x-axis represents the time index of a day. There are 96

indices, which means that the data is measured with 15-minute-interval. The y-

axis represents the usage value. The positive y-axis means the battery received

kWh, the negative y-axis means the battery delivered kWh. The dashed curves

summarize the typical pattern of the group.

The algorithm integrated into the software will automatically select the first
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Figure 9.1: The First Most Typical Behavior Pattern Analysis

Figure 9.2: The Second Most Typical Behavior Pattern Analysis

Figure 9.3: The Third Most Typical Behavior Pattern Analysis

three most abnormal customers out of each behavior pattern to visualize. The

abnormal behaviors are determined by calculating the distance of the 10 percent
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quantile of the usage readings of each customer to the cluster center of the corre-

sponding behavior pattern. If there are enough customers for us to conduct the

analysis, in other words, the number of the customers in the behavior pattern is

larger than 8, we choose the three with the largest distance to be the customers

with abnormal behaviors. The daily readings from the three customers for each

behavior pattern will be shown separately in the following figures. If there are not

enough customers for analysis, we will print out the number of customers in the

behavior pattern below. First, we show the results for the first behavior pattern.

If there are figure results, the x-axis represents the time index of a day. There are

96 indices, which means that the data is measured with 15-minute-interval. The

y-axis represents the usage value. The positive y-axis means the battery received

kWh, the negative y-axis means the battery delivered kWh. The dashed curves

summarize the typical pattern of the group.

Figure 9.4: The First Abnormal Customer Analysis in the First Behavior Pattern

Next, we show the results for the second behavior pattern. If there are fig-

ure results, the x-axis represents the time index of a day. There are 96 indices,
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Figure 9.5: The Second Abnormal Customer Analysis in the First Behavior Pattern

Figure 9.6: The Third Abnormal Customer Analysis in the First Behavior Pattern

which means that the data is measured with 15-minute-interval. The y-axis rep-

resents the usage value. The positive y-axis means the battery received kWh, the

negative y-axis means the battery delivered kWh. The dashed curves summarize

the typical pattern of the group. The results showed that the data is insufficient

for analysis. The number of customers in the second behavior pattern is 1. The

location number of the customers is: [’40111006,’]. Finally, we show the results

for the third behavior pattern. If there are figure results, the x-axis represents the

time index of a day. There are 96 indices, which means that the data is measured
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with 15-minute-interval. The y-axis represents the usage value. The positive y-axis

means the battery received kWh, the negative y-axis means the battery delivered

kWh. The dashed curves summarize the typical pattern of the group. The results

showed that the data is insufficient for analysis. The number of customers in the

third behavior pattern is 5. The location number of the customers are: [’231731005,’

’372150007,’ ’393550001,’ ’40111006,’ ’952721004,’].

This section first showed the behavior analysis results for the selected battery

configuration, rate and season. Next, when data is sufficient for analysis, by us-

ing the information concluded in the behavior analysis, we detect the abnormal

customers in each behavior and showed the daily battery meter readings
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Chapter 10

CONCLUSION

There is a rising interest in the stability of power systems in order to balance the

distribution model and offer reliable electricity to customers. The idea is to take

a power system with uncertain communication latency and then create successful

damping by optimally anticipating load imbalances in the power system. This is

investigated through the insight of machine learning, which can solve problems of

instability in large systems. This ability is studied by implementing a twin-delayed

deep deterministic policy gradient algorithm which takes all the uncertainties of

the unbalanced systems into account. In this way, the system is optimally ex-

plored to damping down frequency oscillations while keeping the system’s bal-

ance within defined limits. We show that if a twin-delayed deep deterministic

policy gradient algorithm is used then low-frequency oscillation can be signifi-

cantly improved in comparison to existing algorithms. The simulation results are

presented to verify the validity and effectiveness of the proposed control strategy.

Also, after conducting data visualization, data analytics and evaluation of all

the cutting edge machine learning methods, we built the interface and structure

of the software. The regularity and irregularity of customer energy consumption

were analyzed in depth.
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APPENDIX A

DELAYS DUE TO DIFFERENT COMMUNICATION LINKS
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Delays due to different communication links are provided in Table A.1. This
table includes fiber-optic cables, microwave links, power line carriers, telephone
lines, and satellite links. The one-way delay ranges from 100 ms to 700 ms.

Table A.1: Delays Due to Different Communication Links

Communication Link One-way delay (ms)
Fiber-optic cables ≈ 100-150
Microwave links ≈ 100-150

Power line carriers ≈ 150-350
Telephone lines ≈ 200-300
Satellite links ≈ 500-700
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APPENDIX B

THE PARAMETERS OF FOUR TESTING SCENARIOS

56



Four testing scenarios that are used in the result section are listed here. They
include four representative latency cases under different mean and variance of the
signals.

Table B.1: Mean and Variance Communication Delay Using the Gaussian
Distributed Random Signal

Mean (s) Variance
Scenario 1 0.13 0.195
Scenario 2 0.16 0.024
Scenario 3 0.18 0.027
Scenario 4 0.19 0.0285
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