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ABSTRACT  

With the advent of new mobility services and technologies, the complexity of 

understanding the mobility patterns has been gradually intensified.  The availability of 

large datasets, in conjunction with the transportation revolution, has been increased and 

incurs high computing costs. These two critical challenges require us to methodologically 

handle complex transportation problems with numerical performance: fast, high-precision 

solutions, and reliable structure under different impact factors. That is, it is imperative to 

introduce a new type of modeling strategy, advancing the conventional transportation 

planning models.  

 In order to do this, we leverage the backbone of the underlying algorithm behind 

machine learning (ML): computational graph (CG) and automatic differentiation (AD). 

CG is a directed acyclic graph (DAG) where each vertex represents a mathematical 

operation, and each edge represents data transfer.  AD is an efficient algorithm to 

analytically compute gradients of necessary functionality. Embedding the two key 

algorithms into the planning models, specifically parametric-based econometric models 

and network optimization models, we theoretically and practically develop different types 

of modeling structures and reformulate mathematical formulations on basis of the graph-

oriented representation.  

 Three closely related analytical and computational frameworks are presented in this 

dissertation, based on a common modeling methodology of CG abstraction. First, a two-

stage interpretable machine learning framework developed by a linear regression model, 

coupled with a neural network layered by long short-term memory (LSTM) shows the 

capability of capturing statistical characteristics with enhanced predictability in the context 
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of day-to-day streaming datasets. Second, AD-based computation in estimating for discrete 

choice models proves more efficiency of handling complex modeling structure than the 

standard optimization solver relying on numerical gradients, outperforming the standard 

methods, Biogeme and Apollo. Lastly, CG allows modelers to take advantage of a special 

problem structure for the feedback loops, a new class of problem reformulation developed 

through Lagrangian relaxation (LR), which makes CG based model well suited for reaching 

a high degree of the integrated demand-supply consistency. 

 Overall, the deep integration of the practically important planning models with the 

underlying computationally efficient ML algorithms can enhance behavioral understanding 

of interactions in real-world urban systems, and the proposed differentiable mathematical 

structures will enable transportation decision-makers to accurately evaluate different 

demand-side and supply-side scenarios with a higher degree of convergency and optimality 

in more complex transportation systems.  
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CHAPTER 1 

1. INTRODUCTION 

1.1. Motivation 

In recent years, the transportation system has been influenced greatly by emerging and 

disruptive technologies and socio-economic trends. The development of connected and 

autonomous vehicles (CAVs) and the new mobility services (ride-hailing), provided by 

transportation network companies (TNCs), have shown significant impacts on individual 

travel mobility patterns and capacity-limited transportation networks. Uber reported 

growth in nationwide market share from 9% to 29% whereas existing taxi services 

observed a decline in their market from 52% to 35% nationwide (Fischer, 2015). More 

recently, the covid 19 pandemic led to the rapid market growth of app-based food delivery 

services such as DoorDash or Uber Eats. In response to the influx, transportation agencies 

have been devoted to the development of modeling frameworks to deeply fathom emerging 

mobility patterns observed in the ride-hailing market and the app-based digital platforms. 

Furthermore, with the advent of self-driving vehicles (LeBeau, 2020), travelers now look 

forward to experiencing/adopting the advanced transportation services, which can 

potentially promise better transit accessibility and improved driving safety. Such disruption 

has encouraged scholars to explore the complexity of modeling the upcoming mobility 

services in built environments and study different transportation planning approaches.  

 On the one hand, faced with multiple data sources including travel surveys, mobile 

phone data records, GPS, or sensor data, and the increased bulk of the datasets, the 

transportation community has actively applied advanced computational methods, machine 
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learning (ML), to effectively compute the massive data sources and promptly detect unseen 

trends, helping alleviate traffic issues. Along this line, diverse ML algorithms/methods or 

deep learning architectures have been constructed to propose real-time management 

information for large fleets (Safikhani et al., 2017; Lin et al., 2018), find unobserved 

patterns in data sets (Ashraf et al., 2020), and enhance travel demand models (Wong and 

Farooq, 2019; Sifringer et al., 2020). The ML-oriented application in the transportation 

field has demonstrated excellent computational capabilities in enhancing predictive power, 

analyzing unobserved complex patterns, and dealing with large-scale datasets efficiently, 

thereby allowing planners and agencies to model patterns of emerging disruptions. 

 Although the advanced techniques have presented the aforementioned strengths of 

ML applications and the ability of computational efficiency in the contexts of estimating 

many model coefficients, as well as the flexibility of constructing complex composite 

functions, the data-driven methods still need to address challenges in transportation 

planning: illustration of casual relationships, avoidance of overfitted results, and generation 

of precise standard error estimates for hypothesis testing. Without meeting the above 

system-level requirements, it is difficult for researchers and decision makers to deeply 

understand the human decision-making process (Paredes et al., 2017; Brathwaite and 

Walker, 2018) and develop collaborative transportation systems. In other words, to ensure 

the robustness of modeling travelers’ behaviors under emerging environments and explore 

the impact of the disrupted technologies, a mutually beneficial framework of leveraging 

the advantages of machine learning algorithms and statistically-oriented models is required. 

In particular, reviewing four pillars of modeling: data, theory, methods, and computing 
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(Miller, 2020), this research aims to integrate the transportation planning models with 

machine learning techniques and address the following research questions in this 

dissertation. 

1. How to develop a unified modeling structure to seamlessly integrate traditional 

statistical inference models and new machine learning techniques? 

2. How to adapt automatic differentiation methods (which are building blocks of ML) 

to greatly enhance the computational efficiency of large-scale econometric model 

estimation to better uncover complex behavioral parameters and latent variables? 

3. How to theoretically define the consistency of transportation demand-side and 

traffic supply-side models, while providing numerically stable solutions consistent 

with multi-data sources from real-world systems?  

1.2. Objectives 

To address the stated challenges and offer general frameworks to integrate machine 

learning techniques and conventional transportation planning models, the objectives of 

this dissertation are listed as follows. 

1. Formulate and develop a hybrid framework that provides the statistical 

characteristics with enhanced predictability in the context of day-to-day streaming 

datasets. 

2. Incorporate discrete choice models with machine learning algorithms so as to not 

only improve computational performance for estimating large parameter sets, but 

also maintain the interpretability in the conventional models in accordance with the 

requirement of transportation planning applications. 
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3. Develop a mathematically rigorous framework capable of integrating travel 

demand and network models under multiple data sources, thereby ensuring the 

internal consistency of traveler patterns and traffic flows with hard road capacity 

constraints.   

 The first objective is intended to estimate the existing/emerging demand trends and 

identify the correlation of trends while controlling for other explanatory variables. This 

conceptual framework will help to resolve a number of challenges: proactively optimizing 

the usage of large fleets, properly understanding the dynamics of the demand trends, and 

capturing impactful factors of the patterns. Consequently, this conceptual framework is 

expected to lead to a systematic strategy for the effective activity demand management 

(ADM) system.  

 The second objective aims to establish efficient and extensible computational 

frameworks for transportation planning models. A flexible modeling framework that can 

interpret disruptive forces (e.g., automatous vehicles or electrification) will be constructed 

so that planners can simulate emerging environments. In addition, to promptly 

update/estimate transportation models involved with high-dimensional survey samples and 

big data sources, we will propose a new algorithm to formulate analytical models, which 

can enhance computational performance to process day-to-day streaming datasets in a short 

time.  

 The third objective is to introduce an analytical approach to integrate travel demand 

models and network models. Specifically, to illustrate travel demand dimensions 

corresponding to physical infrastructure, a new framework for the integrated modeling 
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structure will be developed. Furthermore, to explore more heterogeneous patterns in 

demand and supply, we will utilize multiple data sources in the proposed mathematical 

structure, enhancing accuracy of the model.    

 The overall objective of this research is to propose three types of approaches to 

demonstrate the procedure: (1) reconstructing conventional travel demand models, (2) 

reformulating hierarchical structures of illustrating sequential decision-making, and (3) 

improving computational efficiency, which enables us to design flexible and extensible 

frameworks, take advantages of big data sources, and respond to emerging trends in large-

scale transportation systems. 

1.3. Overview of Proposed Methods 

 To construct three different methodologies, the backbone of facilitating underlying 

architectures behind machine learning is incorporated, in terms of a form of computational 

graph (CG), which is a directed graph capable of defining mathematical formulations using 

nodes (elementary operations) and edges (directions). It should be noted that automatic 

differentiation (AD) and backpropagation (BP) which is a special case of reverse mode AD 

(Kelley et al., 1960; Rall., 1981) are applied to train and optimize graphically-defined 

structures. With this core algorithmic construct, this research advances transportation 

planning models by introducing a new set of modeling language, which can be flexible and 

extendable to interpret disruptive patterns in a statistical manner as well as can handle 

massive data sources.  

 Specifically, this paper has focused on three key algorithmic concepts, namely 

computational graph (CG), backpropagation (BP), and automatic differentiation (AD) to 
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develop the unified modeling framework, for the innovative combination of conventional 

transportation models and data-driven architectures. In order to integrate the two different 

modeling languages, the planning models (econometric models and network optimization 

problems) are driven by CG. Then, estimating behavioral units and finding optimal traffic 

flows are solved by the AD algorithm, eventually allowing planners to not only interpret 

human decision-making process, but also take advantages of machine learning techniques. 

This new set of modeling tools can further lead to a potential paradigm shift in the field of 

transportation. For instance, transportation planners can benefit from increased 

computational efficiency in estimating large-scale models and flexibility in capturing 

complex interactions in transportation planning.  

 To validate the advantages of using computational graphs (CGs) in transportation 

planning applications, three types of CG-based frameworks are introduced: A sequential 

framework using regression models and deep learning algorithms, econometric models 

formulated by machine learning algorithms, and integration of travel demand and network 

models. First, to develop the CG-based stepwise framework, we provide a two-stage 

interpretable machine learning modeling approach using a linear regression (LR) model 

and a neural network layered by long short-term memory (LSTM). Through the LR model, 

we interpret the correlation between explanatory variables and dependent variables. Then, 

LSTM captures the residuals from the LR model, enhancing predictive performance. To 

demonstrate the proposed model, New York City (NYC) taxi data is employed where the 

LR model interprets the correlation of yellow taxi demand and ride-hailing services, and 

LSTM focuses on capturing hidden patterns from the LR model’s residuals. This stepwise 
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modeling approach will help planners quantify the impact related to new mobility policies 

while maintaining the robustness of predicting demand.  

 Second, a computational graph-based framework is applied to the problem of 

parameter estimation for conventional econometric models and extended versions of 

choice models. We decompose econometric models with nodes and edges and reformulate 

them as computational graph-based models to take the full advantages of automatic 

differentiation (AD). In this paper, we present three different graph-oriented choice models; 

multinomial logit (MNL), nested logit (NL), and integrated choice and latent variable 

(ICLV). In order to validate the accuracy of estimated results of the proposed models, we 

use different datasets including the National Household Travel Survey (NHTS) 2017 

dataset, and a synthetic dataset provided by Hess and Palma (2019). Furthermore, the CG-

based choice models provide the estimated parameters and associated statistical properties 

such as standard errors.  

 Lastly, the integrative approach for capturing complex demand-supply interaction 

is introduced. This framework can describe human mobility patterns in “modeling” CG 

nodes and their state transition in CG links, mapping the mobility patterns into physical 

networks (e.g., mobility service networks) and fully integrate both layers seamlessly. The 

augmented Lagrangian relaxation (LR) algorithm, burrowed from the field of operations 

research, is used to solve the consistent representation of the demand-supply modeling 

structure. Furthermore, instead of finding optimal solutions through the first order methods 

(e.g., gradient descent) or gradient projection (GP), we implement the BFGS numerical 

optimizer, quasi-newton method to derive convergence in estimating both demand and 
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supply models partially through statistical properties such as standard errors. Using an 

illustrative use case, we combine multiple open-source datasets (e.g., household travel 

surveys, mobility phone sample data, and GPS) and expect to demonstrate this hierarchical 

modeling approach can efficiently analyze multi-dimensional (space, time, and states) 

trajectories and trips, properly forecasting human mobility patterns. 

 Overall, we establish the innovative modeling method to incorporate machine 

learning algorithms and the transportation planning models, which can help researchers 

and decision makers to better quantify the nature of complex transportation systems, 

specifically human mobility pattern changes and these impact on physical/cyber 

infrastructures.  

 

 
Figure 1.1. Development of Graph-Oriented Transportation Planning-Domain Specific 

Modeling Language/Platform for Interpretable Learning, Efficient Computation, and 

Tight Model Consistency 

  

 To achieve the proposed goals, this dissertation is organized by five chapters. 

Chapter 2 develops a stepwise formulation using linear regressions and long-short term 
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memory (LSTM) which can interpret significant factors affecting existing and emerging 

mobility demand and predict potential trip demand. Chapter 3 introduces computational 

graph-based choice models to meet standard requirements associated with statistical 

analysis and increase computational efficiency in estimating large-scale models. Chapter 4 

proposes an analytical mathematical framework to mathematically integrate travel demand 

and network models and establishes a graphically-oriented architecture to efficiently find 

optimal traffic flows and traveling costs. Chapter 5 summarizes previous chapters and 

addresses research contributions and future research plans. Chapter 6 presents prior work 

cited in this paper. Figure 1.2. aims to further illustrate how to extend our proposed 

methodologies along different research directions. The first axis, Adaptability & Flexibility, 

represents the hybrid modeling structure that can take advantages in the neural network 

structure and the econometric model to advance transportation planning models. The 

second axis, Demand-Supply Coupling, describes how to effectively design complex 

modeling structures with a large set of streaming data sources. Lastly, the third axis, 

Computing Efficiency, is advanced computing technologies of GPU and TPU can be 

applicable, efficiently handing large number of variables and constraints.   
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Figure 1.2. Extendibility of Computational Graph-Based Frameworks in Different 

Transportation Research Directions 
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CHAPTER 2 

2. A STEPWISE INTERPRETABLE MACHINE LEARNING FRAMEWORK 

BASED ON TIGHTLY COUPLED COMPUTATIONAL GRAPH 

REPRESENTATIONS 

Note: The substantial part of this chapter is followed by the publication: Kim, T., Sharda, 

S., Zhou, X. and Pendyala, R.M., 2020. A stepwise interpretable machine learning 

framework using linear regression (LR) and long short-term memory (LSTM): City-wide 

demand-side prediction of yellow taxi and for-hire vehicle (FHV) service. Transportation 

Research Part C: Emerging Technologies, 120, p.102786. 

As app-based ride-hailing services have been widely adopted within existing traditional 

taxi markets, researchers have been devoted to understand the important factors that 

influence the demand of the new mobility. Econometric models (EMs) are mainly utilized 

to interpret the significant factors of the demand, and deep neural networks (DNNs) have 

been recently used to improve the forecasting performance by capturing complex patterns 

in the large datasets. However, to mitigate possible (induced) traffic congestion and 

balance utilization rates for the current taxi drivers, an effective strategy of proactively 

managing a quota system for both emerging services and regular taxis is still critically 

needed. This paper aims to systematically design an explainable deep learning model 

capable of assessing the quota system balancing the demand volumes between two modes. 

A two-stage interpretable machine learning modeling framework was developed by a linear 

regression (LR) model, coupled with a neural network layered by long short-term memory 

(LSTM). The first stage investigates the correlation between the existing taxis and on-

demand ride-hailing services while controlling for other explanatory variables. The second 
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stage fulfills the long short-term memory (LSTM) network structure, capturing the 

residuals from the first estimation stage in order to enhance the forecasting performance. 

The proposed stepwise modeling approach (LR-LSTM) forecasts the demand of taxi rides, 

and it is implemented in the application of pick-up demand prediction using New York 

City (NYC) taxi data. The experiment result indicates that the integrated model can capture 

the inter-relationships between existing taxis and ride-hailing services as well as identify 

the influence of additional factors, namely, the day of the week, weather, and holidays. 

Overall, this modeling approach can be applied to construct an effective active demand 

management (ADM) for the short-term period as well as a quota control strategy between 

on-demand ride-hailing services and traditional taxis. 

2.1. Introduction 

The emergence of on-demand ride hailing services, such as Uber and Lyft, requires 

transportation planners to better design comprehensive transportation mobility solutions 

for informed transportation management and policy making. Uber reported a growth in 

nationwide market share from 9% to 29% whereas existing taxi services observed a decline 

in their market from 52% to 35% nationwide (Fischer, 2015). In response to the influx of 

on-demand services, for instance, New York City Rules announced a protective policy for 

yellow taxi and green taxi drivers in 2018, and the NYC Department of Transportation 

(DOT) imposed a congestion pricing, “a new electronic toll in place for drivers entering 

the busiest stretches of Manhattan” (Mckinley and Hu, 2019). In addition, Sanders and 

Guse (2019) reported that NYC imposed the new regulations to app-based companies and 

to protect hardworking drivers in Manhattan: at least 69% of the operating cars in 
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Manhattan below 96th St. must serve a passenger, and each company needs to set up a fare 

rate based on the frequency of carrying passengers.  

 As a result, the exponential growth of this mobility service and its impact on the 

transportation network lead to intensive research initiatives. In order to interpret the 

significant factors affecting the ride-hailing demand, diverse statistical modeling 

approaches were developed and introduced (Lavieri et al., 2017; Lam and Liu, 2018; Gerte 

et al., 2018). Forecasting approaches were also conducted to optimize the traffic network, 

dispersing the fleet of the ride-hailing service or yellow taxis within the network (Laptev 

et al., 2017; Chen et al., 2017; Zhao et al., 2019). Nevertheless, there are still challenges 

that need further exploration: 

(1) Since the numbers of FHV and yellow taxi drivers are closely correlated, if a cap 

is imposed for a transportation network company (TNC), what is the expected additional 

demand to be served by, or more precisely, to be shifted to, yellow taxi drivers?  

(2) Does the city traffic management agency need to apply a quota regulation during a 

rainy day or a snowy day?  

 A concept of the active demand management (ADM) strategy (FHWA, 2012) with 

respect to on-demand transit has been incorporated to address similar challenges: 

proactively optimizing the usage of both taxies and on-demand mobility city-wide (e.g., 

imposing a day-dependent cap for one type of vehicle (Kamga et al., 2015)). In other words, 

we aim to understand the dynamics of the competing ride hailing services to mitigate the 

traffic congestion and maintain the balance of the coexisting system for drivers by 

analyzing the correlation of both emerging and existing mobility services as well as 
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identifying their own explanatory variables under different situations such as day of the 

week, holiday, and weather.  

 The mobility data obtained from NYC is employed as a demonstration use case. A 

hybrid model developed integrates both multiple linear regression (LR) and long-short term 

memory (LSTM), a type of recurrent neural network (RNN). The analytical model in the 

first layer represents available time series data through a number of interpretable 

parameters.  In the second layer LSTM focuses on designing a data-driven approach to 

account for the hidden pattern from the first layer’s residuals. Combining the two-step 

process, LR-LSTM predicts taxi demand.   

 The remainder of this paper is organized as follows. Section 2.2 presents the 

literature review examining prior research that explores statistical models and neural 

network structures. Section 2.3 describes a real-world data set, namely, New York City 

(NYC) Taxi Records. In section 2.4, a stepwise framework is proposed to tackle modeling 

challenges. The application of the integrated (or coupled) model is demonstrated using the 

real-world dataset, in section 2.5. Lastly, section 2.6 provides conclusion and discusses the 

estimation results and future work.  

2.2. Literature Review 

This review section covers two aspects: (1) statistical approaches to understand demand 

for ride-hailing services and (2) recent modeling means using statistical modeling 

techniques as well as data-driven approaches. This is followed by a discussion of the 

motivations behind our proposed integrated approach.  
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2.2.1. Statistical Models for Demand Analysis of Ride-Hailing Services  

 Researchers used statistical models to calibrate unknown parameters and further 

interpret the factors influencing the taxi demand within the service area. In particular, Yang 

and Gonzales (2014) applied multivariate linear regression to estimate taxi trips by 

identifying significant explanatory variables, to name a few, population, age, education, 

income, transit accessibility time, and employment. Safikhani et al. (2017) designed the 

generalized spatial-temporal autoregressive (STAR) to understand spatial and temporal 

variations in taxi demand in New York City. Lavieri et al. (2017) utilized a multivariate 

count approach to study the number of trips generated in a specific zone and observed that 

different income groups preferred to use the services for different activity purposes. 

Recently, Lam and Liu (2018) used the discrete choice model to analyze the correlation 

between dynamic pricing and waiting time in densely populated areas of New York. Gerte 

et al. (2018) examined the demand for the ride hailing service using a panel based random 

effects model in order to capture both heteroscedasticity and autocorrelation effects. This 

study denoted that the highly educated young male group tended to use the ride hailing 

service frequently.  

 Overall, the above-mentioned statistical modeling approaches have demonstrated 

their strength in explaining and predicting the ride-hailing service demand which allows 

planners to identify significant parameters for informed decision making. Regarding the 

use of other big data sources, social media data sets have been utilized in a variety of 

applications to capture individual activity patterns (Gu et al., 2018; Zhang et al., 2017; 

Hasnat and Hasan, 2018) and detect traffic incidents (Wang et al.,2016; Kuflik et al., 2017). 

On the other hand, using app-based data (i.e., multi-sourced data with high variances in 
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both location accuracy and time of travel), He and Shen (2015) and Wang et al. (2019) 

have proposed conceptual frameworks to estimate the impact of the disruptive mobility 

services on taxi markets.   

Nevertheless, the major challenge of statistical approaches is a lack of predictive accuracy, 

particularly under a complex data environment with different data sources (Altman et al., 

1994; Sarle 1994; Paliwal and Kumar, 2009; Karlaftis and Vlahogianni, 2011). A number 

of case studies (Kumar et al., 2015; Al-Maqaleh et al., 2016; Golshani et al., 2018; Cui et 

al., 2018) demonstrated improved prediction accuracy by utilizing the neural network 

structures compared to statistical models.  

2.2.2. Hybrid Approaches Combining Statistical Models with Deep Neural Networks 

(DNNs) 

We first focus on papers in the area of causal inference and prediction, as well as two 

popular DNN modeling tools using convolutional neural network (CNN) and long short-

term memory (LSTM). CNN has demonstrated excellent capabilities in the visual data 

processing where its structure extracts the image features and classifies the images 

according to the extracted features (LeCun and Bengio, 1995). On the other hand, LSTM 

specializes in sequential data processing, and its structure stores significant information 

and forecasts the sequential data (Hochreiter and Schmidhuber, 1997).   

 Recently, many studies started to integrate more statistically-oriented modeling 

features in a deep learning framework. For example, Park et al. (2016) applied Bayesian 

neural network (BNN) to examine the uncertainty of dependent variables and further 

interpreted the unknown coefficients in traffic demand prediction models. They used an 

extracted decision tree approach to provide significant explanatory variables based on a 
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pedagogical rule extraction algorithm. A study by Ke et al. (2017) applied the random 

forest framework to select the exogenous variables, ranking these variables’ significance. 

Additionally, they examined the image intensity from map sequences of travel time rates 

using CNN and LSTM tools. Along this line, Laptev et al. (2017) utilized Bootstrap and 

Bayesian techniques with LSTM structure to detect abnormality of data and capture 

irregular patterns.  

 In the traffic demand estimation area, a recent study by Chen et al. (2017) employed 

the ensemble learning approach with the RelifF algorithm to identify the important factors. 

As a result, they were able to explore ride-splitting behavior of on-demand ride services in 

real-world data sourced from DiDi. More recently, Zhao et al. (2019) examined 

heterogeneity in mode-switching behavior by proposing a more systematically defined 

interpretable machine learning approach. To classify the mode-switching behavior, the 

model-agnostic interpretation tools were used to study the insights on the switching 

behaviors.  

 Overall, we observe two emerging research directions in the field of traffic demand 

modeling. First, researchers have devoted major efforts to develop hybrid modeling 

frameworks based on statistical and DNN approaches in order to improve the predictive 

performance. Second, many research teams have focused on developing interpretable 

models implemented by feature importance and data extraction algorithms to 

systematically explore the underlying traffic demand behavior and improve the lack of 

transparency observed in a nested non-linear structure (Samek et al., 2017; Gunning, 2017). 

Readers interested in the interpretable machine learning techniques can find more details 
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in prior work (Ribeiro et al., 2016; Lipton, 2018; Molnar, 2020). However, the following 

challenges still need to be addressed: how to analyze the correlation of both emerging and 

existing mobility services as well as identify each mode pattern with demand-side factors 

(i.e., weather, holidays, and day of the week). In order to tackle the challenges, we propose 

a conceptual interpretable structural decomposition approach as follows:  

 True demand = Linear explanatory components + Nonlinear pattern + Random 

fluctuations 

 To calibrate the different components in this framework, a two-step process is 

adopted. In the first step the multiple linear regression (LR) captures the primary linear 

components, and the estimated coefficients offer additional insights on each mobility 

pattern. The second step utilizes the forecasting capabilities of LSTM network to account 

for the residuals from the first step.  

2.3. Data Description 

Multiple data sources are utilized in this study: New York City Taxi & Limousine 

Commission (NYC-TLC) dataset containing daily mobility demand patterns for the two 

modes (i.e., For-Hire Vehicles (FHVs) and yellow taxi), weekday/weekend, holidays, and 

weather information available from National Climate Data Center (NCDC).  

2.3.1. New York City (NYC) Taxi Trip Records 

The input dataset, NYC-TLC, covers both FHV and yellow taxi trip records collected from 

2015 to 2017. In the yellow taxi records the available information includes the pick-

up/drop-off events on weekday/weekend, the trip fare, payment type, location ID, and the 

number of passengers. In the FHV records only the pick-up/drop-off events and location 
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ID are collected. To set up a fair comparison, we explored the data with an overlapping 

time period for pick-up/drop-off events. The number of pick-up events is used to 

investigate the dynamic trip demand with respect to FHV and yellow taxi. The study was 

done in Murray Hill, Manhattan located in Manhattan below 96th Street, and it is one of 

the highest taxi pick-up locations: the annual average pick-up demand is approximately 5.7 

million, and the total trips made are 17 million over the period of three years. 

 Figure 2.1 illustrates the volume of pick-ups and trends between yellow taxi and 

FHV over three years in Murray Hill, Manhattan. The land use of the study area shows a 

combination of residential and commercial districts. To be specific, Figure 2.1(a) explains 

the proportion of the annual pick-up volume between the two modes from 2015 to 2017. 

In addition, Figure 2.1(b) displays the weekly distribution of the pick-up volume between 

yellow taxi and FHV, where the overall demand gradually increases at the beginning of the 

week and tapers off as the weekend approaches. To further ensure the length of the data 

between two modes, we aggregate the event time series data in terms of the daily volume, 

with the day of the week as a binary indicator. 
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Figure 2.1. Illustrations of Yellow Taxi and FHV Pick-Ups for Murray Hill, Manhattan 

 Figure 2.2 clearly denotes a mode shifting trend between the yellow taxi and FHV 

where the transition has stabilized over the years. The percentage of the total trips and the 

level of usage of yellow taxis have gradually declined as the riders have significantly 

shifted their demand from yellow taxi to FHV as observed from Figure 2.2(a). The total 

demand of both modes is in fact, very stable, indicating the ride-hailing service has not 

further induced new demand for the study area as shown in Figure 2.2(b).  

 
Figure 2.2. Shifts in Pick-Up Demands between Yellow Taxi and FHV over Three Years 
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2.3.2. Weather and Holidays 

The prior study by Schneider (2015) and Guo et al. (2018) reported that the weather 

condition and holidays affect the usage level of yellow taxi and FHV. Accordingly, 

information collected by the National Climate Data Center (NCDC) is used in this study, 

which covers the daily average records of both precipitation (i.e., rain or melted snow) and 

snow in Central Park, Manhattan. Overall, there are 347 rainy days and 22 snowy days 

within the investigated years.  

 In addition, holidays observed by the Federal Holiday calendar are identified in the 

input data such as New Year’s Day, Martin Luther King, Jr. Day, George Washington’s 

Birthday, Memorial Day, Independence Day, Labor Day, Columbus Day, Veterans Day, 

Thanksgiving Day, and Christmas Day.   

2.4. Conceptual Modeling Framework and the Stepwise Procedure 

This section describes the system control architecture and the process of the stepwise 

modeling framework. The architecture is explained in terms of its structural equation 

formula, and the stepwise process is addressed through multiple linear regression (LR) and 

Long Short-term Memory (LSTM) neural network.   

2.4.1. System Architecture for Predicting Yellow Taxi Demand from FHV Quota to 

Be Controlled 

 The problem aims to predict the potential trip demand of yellow taxis during the 

day, with FHV volume as the exogenous input variable, as a function of the other factors 

such as weather, holidays, day of the week. Figure 2.3 displays the architecture composed 
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of the control variables, prediction, and a stepwise approach using two steps (i.e., LR-

LSTM). More specifically, we can consider the following use case of the proposed model: 

the transportation authority plans possible quota for FHV demand, in an effort to create a 

fair and equitable environment for yellow taxi drivers with reasonable drivers’ earning 

levels. 

 On day 𝑡 − 1, one can use the stepwise model to first estimate yellow taxi demand, 

briefly denoted as 𝑦𝑡−1, using the determined conditions, via LR and then integrate the 

estimation results with the predicted residuals �̂�𝑡 from LSTM, finally forecasting the total 

pick-up volumes served by yellow taxi, �̂�𝑡, at different conditions. On the next day 𝑡, we 

compare the ground truth values with predicted values from our model and then update 

parameters of LSTM for further use. By setting up a different FHV quota on different days, 

we hope to meet both system-wide goals of reducing congestion as well as ensuring 

sufficient taxi utilization rates.  

Table 2.1. 

Comparison of Characteristics of LR-LSTM with That of Different Time Series Models 

and Regression 

Model Predictor Prediction Quota 

control 

Level of 

Interpretability 

Prediction 

Accuracy 

ARIMA y𝑡−1 ŷ𝑡 No Medium Medium to High 

LSTM y𝑡−1 ŷ𝑡 No Low High 

Regression X𝑡 ŷ𝑡 Yes High Low to Middle 

LR-LSTM X𝑡, 𝑟𝑡−1 ŷ𝑡, �̂�𝑡 Yes High, presented in 

2.5.1 

High, presented 

in 2.5.2 



 

23 

 

 
Figure 2.3. Illustration of System Control Architecture to Estimate and Predict Yellow 

Taxi Pick-Ups 
  

 One can further extend this methodology to design personalized incentive schemes 

in future research, while this study still focuses on controlling the total of FHV or yellow 

taxi as individual parties. On the other hand, unlike time- series models (e.g., 

Autoregressive integrated moving average (ARIMA) or long short-term memory (LSTM)) 

using the historical (correlated) records of yellow taxi as only input data to predict the 

(unknown) yellow taxi demand, our proposed model seamlessly adds external variables for 

quota control. Table 2.1 compares the characteristics of the above models. The stepwise 

framework starting from Step I, the multiple linear regression to Step II, the recurrent 

neural network (RNN) – LSTM is written as follows:  

 Step I: 𝒚𝒕 =   𝜷𝐗𝒕
⊺ 

(2.1) 
 Step II: �̂�𝒕 =   𝐆(𝜣; 𝒚𝒕−𝟏 − 𝜷𝐗𝒕−𝟏

⊺ ) 

 Prediction: �̂�𝒕 =  𝜷𝐗𝒕
⊺ + �̂�𝒕 
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 The linearity between trip records of demand 𝑦 and explanatory coefficients 𝛽  is 

captured by (𝛽𝐗⊺), and the residuals 𝑟𝑡−1=(𝑦𝑡−1 − 𝛽𝐗𝑡−1
⊺ ) are fed forward in the residual 

LSTM function G(∙) to model the nonlinearity effect using the neural network parameters 

𝜣. By utilizing both linear and neural network components of 𝛽 and 𝜣, we can predict the 

demand of yellow taxi. 

 Figure 2.4 describes the sequential process of Eq. (2.1) with more details in the 

following subsection. 

 

 
Figure 2.4. Stepwise Calibration Process Using LR-LSTM Modeling 

2.4.2. Multiple Linear Regression for Capturing Correlations: LR  

To determine the linear correlation between the two modes and the demand-side factors, 

we now address the pursuit with the regression model, as shown in Eq. (2.2): 

 �̂�𝑛×1 =  𝐗𝑛×𝑝�̂�𝑝×1 = [

1 X1,1 X1,2

1 X2,1 X2,2
⋯

X1,𝑝−1

X2,𝑝−1

⋮ ⋱ ⋮
1 X𝑛,1 X𝑛,2 ⋯ X𝑛,𝑝−1

] ∙

[
 
 
 
 
�̂�0

�̂�1

⋮
�̂�𝑝]

 
 
 
 

 
 

(2.2) 

 �̂�𝑛×1 is the computed trip demand of the yellow taxi and 𝑛 is the total number of 

measurements. The matrix 𝐗𝑛×𝑝 indicates the explanatory variables: constant, the actual 

pick-up volumes of FHV, weekday/weekend, weather, and holidays. 𝑝 denotes the number 

of explanatory variables, and �̂�𝑝×1  is the calibrated coefficients corresponding to the 

independent variables.  
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 The ordinary least squares (OLS) method is utilized to calibrate the coefficients: 

�̂�𝑝×1 = (𝐗𝑛×𝑝
⊺ ⋅ 𝐗𝑛×𝑝)

−1
𝐗𝑛×𝑝 ⋅ 𝑦𝑛×1. The residuals 𝑟𝑛×1 between the estimated demand 

from OLS and the actual demand are calculated as follows, and LSTM extracts possible 

nonlinear trends of the residuals to improve the predictive accuracy (Goel and Banerjee, 

2017).  

 𝑟𝑛×1 = 𝑦𝑛×1 −  �̂�𝑛×1 (2.3) 

2.4.3. Residual LSTM for Capturing Non-Linear Patterns  

This subsection describes LSTM-NN approach (Hochreiter and Schmidhuber, 1997) as an 

extension version of RNN (Rumelhart et al., 1988), after introducing the principle of RNN 

and its limitation. Then, the residual LSTM is introduced within a computational graph 

(CG) framework (Olah, 2015; Baydin et al., 2018; Wu et al., 2018; Sun et al., 2019).   

2.4.3.1. Recurrent neural network (RNN)  

RNN can be essentially viewed as a non-linear optimization model to minimize the loss 

function in Eq. (2.4), where the residual term defined in Eq. (2.3) follows time dependent 

variables. 

 min𝐿𝑡 = min∑(𝑟𝑡 − �̂�𝑡)
2

𝑇

𝑡=1

 
 

(2.4) 

 ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑟ℎ𝑟𝑡−1 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ) 
  

(2.5) 

   

 �̂�𝑡 = 𝑊ℎ�̂�ℎ𝑡 + 𝑏ℎ   (2.6) 

 

 The defined function 𝑡𝑎𝑛ℎ(∙) in Eq. (2.5) is key to capture non-linear patterns, and 

Eq. (2.6) can be refined by different structural forms based on specific tasks (e.g., 

classification or regression). The parameters, 𝑊𝑟ℎ, 𝑊ℎℎ, and 𝑊ℎ�̂� are applied at every time 
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step and are shared in the entire structure of RNN. Table 2.2 lists the required components 

with definitions at time step 𝑡. The above optimization model is numerically solved by 

using the gradient descent algorithm. As discussed in the machine learning community, 

long data sequences in RNN architecture could lead to the issue of vanishing gradients for 

the information of updated parameters. That is, if the updated parameters are fractional 

values, the carried gradients from the long sequence become insignificant. In order to 

address this issue, the long short-term memory (LSTM) is implemented in this study 

(Hochreiter and Schmidhuber, 1997). 

Table 2.2.  

Definitions of Parameters and Variables for RNN Components 

RNN at time step t Parameters Definition 

Neural Network (NN) parameters 

to be estimated 

𝑊𝑟ℎ 
Weight from input layer to hidden 

state 

𝑊ℎℎ 
Weight from previous hidden to 

current hidden state 

𝑊ℎ�̂� Weight from hidden state to output 

𝑏ℎ Bias at hidden state 

𝑏�̂� Bias at output 

Variables 

𝑟𝑡−1 Input variable (Residuals from LR) 

ℎ𝑡−1 Hidden variable from the previous 

time step, t-1 

ℎ𝑡 Hidden variable at the current time 

step, t 

�̂�𝑡 Output variable (Prediction) 

Composite function �̂�𝑡 = 𝑊ℎ�̂�ℎ𝑡 + 𝑏�̂�  

2.4.3.2. Long Short-Term Memory (LSTM)  

A typical LSTM model consists of four gates (i.e., input, forget, output, and external input 

gates). The chained structure across the gates transmits not only a hidden state ℎ𝑡 but also 

previous cell 𝑠𝑡. The shared information of the hidden state and cell state can overcome the 

vanishing gradient descent effects; the detailed features of LSTM are explained in Olah 
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(2015) and Goodfellow et al. (2016), and the definition of each parameter used is shown in 

Table 2.3.  

 In brief, the first step starts from the forget gate 𝑓𝑡  helping to remove the 

unnecessary information by the sigmoid function 𝜎(∙), ranging from 0 to 1.  

 𝑓𝑡 =  𝜎(𝑏𝑓 + 𝑊𝑟𝑓𝑟𝑡−1 + 𝑊𝑓𝑓ℎ𝑡−1) (2.7)  
 

where 𝑏𝑓 is the forget gate bias term. 𝑊𝑟𝑓 and 𝑊𝑓𝑓 are weights, ℎ𝑡−1 is the previous hidden 

state, and 𝑟𝑡−1 is the time series data at current step 𝑡 − 1, defined in Eq. (2.3) from the LR 

model. The second step updates and decides the new information to be stored in the cell 

state through the input gate 𝑖𝑡 and the external input gate 𝑔𝑡.  

 𝑖𝑡 = 𝜎(𝑏𝑖 + 𝑊𝑟𝑖𝑟𝑡−1 + 𝑊𝑖𝑖ℎ𝑡−1) (2.8) 

 

 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑏𝑔 + 𝑊𝑟𝑔𝑟𝑡−1 + 𝑊𝑔𝑔ℎ𝑡−1) 

 

(2.9) 

 The input gate 𝑖𝑡 determines a gating value ranging from 0 to 1, and a value of 1 

means the input information will be fully stored. 𝑡𝑎𝑛ℎ(∙) generates a vector of  new 

candidate  values between -1 and 1 guiding the extent of updating the weights in Eq. (2.7) 

and Eq. (2.8). The multiplication of the input gate 𝑖𝑡 and the external gate 𝑔𝑡 identifies new 

significant information, storing it in the cell state, and the third step in Eq. (10) updates the 

old cell state. 

 

 𝑠𝑡 = 𝑓𝑡 ⊙ 𝑠𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡  (2.10)  

 Both 𝑠𝑡 and 𝑠𝑡−1 denote new and old cell states produced, and ⊙ is the Hadamard 

product, the element-wise products of vectors, matrices, or tensors. The final step is 

proceeded by the output gate 𝑜𝑡. 
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 𝑜𝑡 =  𝜎(𝑏𝑜 + 𝑊𝑟𝑜𝑟𝑡−1 + 𝑊𝑜𝑜ℎ𝑡−1)  (2.11) 

 

 ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ (𝑠𝑡)  (2.12) 

 𝑜𝑡 and ℎ𝑡 are the result of the output gate and a hidden state. Finally, a regression 

formula defined as the product of the parameter 𝑊ℎ�̂� and the hidden state ℎ𝑡 with bias term 

𝑏�̂� measures the residual �̂�𝑡: 

 �̂�𝑡 = 𝑊ℎ�̂�ℎ𝑡 + 𝑏�̂�  (2.13) 

 In order to compute the approximate residuals, the nonlinear optimization function 

applied in LSTM is utilized as follows: 

 min 𝐿𝑡  = ∑((𝑊ℎ�̂�(𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑓𝑡 ⊙ 𝑠𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡)) + 𝑏�̂�) − 𝑟𝑡)
2

𝑇

𝑡=1

 (2.14) 

     Eq. (2.14) is the objective function subject to Eqs. (2.7) to (2.13) and LSTM neural 

network parameters are adjusted to minimize the loss 𝐿𝑡 . The adjustment process is 

proceeded by the Adam optimizer, the gradient-based stochastic optimization algorithm 

proposed by Kingma and Ba (2014) with improved computational efficiency for handling 

a large data set and parameters. The estimating procedure of the neural network parameters 

conducts the feedforward and backward propagation process. A computational graph (CG) 

is shown in Figure 2.5 to illustrate the process in LSTM in which a feedforward step 

measures the residuals using the defined functions composed of weights and bias, and a 

backward propagation step minimizes the loss between the computed residuals and the 

actual residuals by adjusting the parameters.  
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Figure 2.5. Illustration of Inner LSTM Structure: Feedforward and Backward 

Propagation 

Table 2.3.  

Definitions of Parameters and Variables for LSTM Components 

LSTM at time step t Terms Definition 

Neural Network (NN) 

parameters 𝜣 to be estimated 

𝑊𝑟𝑓 Weight from input layer to forget gate 

𝑊𝑓𝑓 
Weight from previous forget gate to current 

forget gate 

𝑊𝑟𝑖 Weight from input to input layer gate 

𝑊𝑖𝑖 
Weight from previous input gate to current 

input gate 

𝑊𝑟𝑔 Weight from input to external input gate 

𝑊𝑔𝑔 
Weight from previous external gate to current 

external gate 

𝑊𝑟𝑜 Weight from input to output gate 

𝑊𝑜𝑜 
Weight from previous output gate to current 

output gate 

𝑊ℎ�̂� Weight from hidden state to output 

𝑏𝑓 Bias at forget gate 

𝑏𝑖 Bias at input gate 

𝑏𝑔 Bias at external input gate 

𝑏𝑜 Bias at output gate 

𝑏�̂� Bias at output 

Variables 

𝑟𝑡−1 Input variable (Residuals from LR) 

ℎ𝑡−1 Hidden variable from the previous time step, 

t-1 
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ℎ𝑡 Hidden variable at the current time step, t 

𝑠𝑡−1 Cell variable from the previous time step, t-1 

𝑠𝑡 Cell variable at the current time step, t 

�̂�𝑡 Output variable (Prediction) 

Composite functions �̂�𝑡 = 𝑊ℎ�̂�(𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑓𝑡 ⊙ 𝑠𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡)) + 𝑏�̂�  

2.4.4. Integrated Model on Trip Demand Forecasting: LR-LSTM 

Now we start examining the proposed integrated model LR-LSTM. The linear regression 

results explain the linearity pattern from variables (i.e., day of the week, holiday, weather, 

and FHV) so that the pattern learned from the model can help capture the proportional trend 

on two modes. The residual LSTM generates the unparameterized function to handle the 

left-over residuals. The mathematical form of the coupled architecture of forecasting the 

demand is written as: 

 �̂�𝑡 = �̂�𝐗𝑡
⊺ + 𝑊ℎ�̂�(𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑓𝑡 ⊙ 𝑠𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡)) + 𝑏�̂� (2.15) 

 That is, the yellow taxi demand is now estimated by FHV, and the other explanatory 

variables, together with the predicted residuals. This integrated model can use the 

regression model to control the pick-up volume of FHV to balance the demand for yellow 

taxis. Also, the low prediction results caused by traditional extrapolation method can be 

improved by the residual-oriented model.  

 Please note that, the input data used for estimating the trip demand is composed of 

binary variables such as weekday, weekend, and holiday, and the rest of the variables (i.e., 

FHV, yellow taxi, precipitation, and snow) are continuous, with FHV and yellow taxi 

values being normalized. In addition, to test the integrated model, the entire dataset is split 

into the training data, the validation data, and test data as shown in Figure 2.6. Using 800 

days (85%) out of 931 days, the hyperparameters used in LSTM are tuned. Then, the 
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underlying hyperparameters are determined based on the validation experiments shown in 

Eq. (2.14); the number of hidden units used was 10 to 12, the selected batch size was 10, 

the number of iteration times, training epoch, was up to 500, the learning rate of the Adam 

optimization was 0.001, and the input dimension was 8 (i.e., weekday/weekend and the 

prior pickup volume residual). It should be noted that if another set of explainable data is 

available for the model every day, then we re-execute the tuning process and updating the 

hyperparameters with the corresponding data-receiving frequency.    

 

Figure 2.6. Hybrid Model Architecture: Two-Step System Using NYC Taxi Records  

 The right end side of Figure 2.6 visualizes the two-step process of the coupled LR 

and LSTM. The input layer takes the residual data and transmits the data into the hidden 

layer at the feedforward step denoted as the straight-line arrows in LSTM. Then, a two-

layered LSTM expressed in the hidden layer combines the data with the weighted 
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parameters and bias values based on a basic arithmetic operation (e.g., multiplication and 

addition) and sends the driven values to the output layer. In this layer, the fully connected 

(FC) layer is added to arrange the output results as a one-dimensional structure, extracting 

the last output value. Lastly, using the mean squared error (MSE) function between the 

output and target data given by the learning layer, LSTM is trained and updated iteratively 

through backpropagation expressed as the dotted line arrows. The proposed structure is 

coded by TensorFlow developed by Abadi et al. (2016). To compare the performance to 

different time-series models, the results of RMSE (Root Mean Squared Error) and MAPE 

(Mean Absolute Percentage Error) are detailed in the following section. 

 RMSE =  √
1

𝑇
∑ (𝑟𝑡 − �̂�𝑡)2

𝑇

𝑡=1
 

(2.16) 

 MAPE =
1

𝑇
∑

|𝑟𝑡 − �̂�𝑡|

𝑟𝑡

𝑇

𝑡=1

× 100 

where 𝑟𝑡 is the residuals at time 𝑡 sent from LR model, and �̂�𝑡 is the predicted value by 

LSTM. 𝑇 is the total length of the test dataset (i.e., 165 days for the test set).  

2.5. Model Estimation Results 

This section examines the estimation and forecasting results for the pick-up demand. 

Specifically, the first section discusses individual and collective effects of different factors 

through the parameters estimated by LR. The second section then focuses on LSTM model 

validation, a sensitivity analysis of LR-LSTM, and the prediction results conducted by the 

coupled model. Lastly, we examine the forecasting capability of our proposed integrated 

model, compared to standard alone models such as regression, ARIMA, and LSTM.       
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2.5.1. Trip demand estimation: LR as Local Interpretable Model 

The LR model estimates the regular patterns of the yellow taxi and FHV demand, and the 

results of LR are presented in Table 2.4. When estimating the yellow taxi demand, the 

parameter estimates, associated with calendar week, snowy day, holidays, and FHV trips 

are statistically significant. On the other hand, the estimated FHV demand shows the 

statistical significance on the aforementioned coefficients as well as rainy day. In addition, 

the tested variance inflation factor (VIF), a way of measuring multicollinearity, shows a 

low correlation between independent variables. As shown in Sheather (2009), the generally 

acceptable range of VIF is less than 5.  

 According to Table 2.4, the coefficients corresponding to weekday display the 

positive sign, indicating that customers are more likely to ride yellow taxis or FHV during 

the day. On the other hand, as the weekend approaches, the pick-up demand volume of two 

modes decreases. The estimated day-specific coefficients with respect to Tuesday and 

Saturday are eliminated due to the statical insignificance and the multicollinearity effect. 

The model-based calibration findings reflect the expected characteristics of the current data 

set in Figure 2.1(b). The weather conditions affect the level of the taxi and ride-hailing 

service usage patterns, particularly under a snow event. The negative sign associated with 

this parameter indicates that the utilization rate of the rides is lower than the regular day. 

Under the rainy condition, this explanatory factor does not influence the pick-up volume 

of the taxi statistically. On the one hand, this factor increases the pick-up volume of the 

ride-hailing services. This noticeable pattern illustrates that travellers prefer to choose the 

convenient mobility (i.e., app-based ride services) and wait for the service in buildings 

without being drenched in rain. The coefficients of FHV and yellow taxi can be determined 
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by switching dependent variables in LR. Both coefficients have the expected negative sign, 

indicating the inverse relationship with the dependent variables used. This interesting 

finding explains the gradual decline of the yellow taxi demand, whereas FHV demand 

follows the opposite pattern, and the numerical difference of the coefficients indicates how 

much the demand of two modes would be changed when increasing the value of either 

FHV or yellow taxis. 

 In Table 2.4, the number of observations is 931 days ranging from 1/1/2015 to 

7/21/2017. The goodness of fit measure 𝑅2 denotes that the regression model can explain 

the variation for the response variable, in terms of an approximate rate at about 57% and 

37%. In order to validate if the added predictors truly enhance the interpretability of the 

model, the adjusted 𝑅2 is measured at 0.565 and 0.366. As the LR model can explain the 

yellow taxi demand better, we employ the estimated coefficients with respect to the taxi, 

forecasting the linear pattern. Overall, LR derives the extrapolation results of the yellow 

taxi volume and then obtains the residuals between the observed data and the estimated 

results. The statistics and the shape of the residuals derived are plotted in Figure 2.7 with 

the distributed residuals quantified by 𝜇𝑌 as the mean of residuals and the variance as 𝜎𝑌. 

As noticed in the figure, the distribution of the residuals generally follows a bell-shaped 

curve similar to the normal distribution. 

Table 2.4.  

Multiple Linear Regression (LR) Estimation Results for Yellow Taxi and FHV Demand 

Dependent Variable: Yellow Taxi Dependent Variable: FHV 

Predictors 
Coefficients 

(t-statistics) 
VIF 

Predictor

s 

Coefficients 

(t-statistics) 
VIF 

Constant 0.7640 (64.337) - Constant 0.9094 (30.62) - 

Mon -0.0362 (-2.89) 1.786 Mon -0.0949 (-5.7) 1.343 

Tue 0.0518 (4.20) 1.720 Tue - - 
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Figure 2.7. Yellow Taxi Residual Distribution and Measured Residuals at Training days 

2.5.2. Validation and Prediction: LR-LSTM 

Figure. 2.8(a) displays the learning process of the residual patterns and its evolution of the 

loss function employing the validation dataset with different prediction time steps (e.g., 

“step 1” indicates the one-step ahead prediction that forecasts the next one day). As noticed, 

the lowest error, RMSE, appears in the one-step short-term prediction (“step 1”). In 

addition, the evolutionary error falls rapidly after 10 training epochs, showing a high 

Wed 0.0951 (7.71) 1.725 Wed 0.0663 (4.011) 1.331 

Thu 0.1515 (7.71) 1.729 Thu 0.1415 (8.375) 1.392 

Fri 0.1445 (11.64) 1.744 Fri 0.1535 (9.169) 1.367 

Sat - - Sat - - 

Sun -0.1754 (-13.9) 1.783 Sun -0.2367 (-13.) 1.534 

Snow -0.8224 (-10.1) 1.021 Snow -1.2091 (-9.1) 1.161 

Rainy day - - Rainy day 0.2334 (-10.1) 1.158 

Holiday -0.3401 (-14.2) 1.058 Holiday -0.3857 (4.8) 1.119 

FHV  -0.3289 (-17.9) 1.155 Taxi -0.7628 (-18.) 1.713 

Goodness of fit  

(number of observations: 931 days) 

Goodness of fit  

(number of observations: 931 days) 

𝑅2(Adj.𝑅2) 0.573 (0.57) 
𝑅2 

(Adj.𝑅2) 
0.372 (0.37) 
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convergence speed of the model. Figure 2.8(b) further performs the sensitivity analysis for 

the proposed LSTM model. The test set error measured by RMSE gradually increases when 

the model predicts longer than the one-step forecasting period. The baseline of RMSE 

observed in “step1” is 0.1129, and the seven-step “medium term” prediction denotes that 

the error increases approximately 48% from the baseline. 

 Using the multiple linear regression estimators and the residuals measured by 

LSTM, the number of trips served by yellow taxis at Murray Hill in Manhattan is forecasted 

in Figure 2.8(c). The test dataset covers the time period from 7/22/2017 to 12/31/2017 (i.e., 

165 days), predicting the following day. The predicted demand is plotted along the y-axis 

as the normalized values with the look-ahead window of prediction on the x-axis. 

Specifically, Figure 2.8(c) describes the forecasts of the yellow taxi’s daily demand that 

follow the test pattern (i.e., true records) properly across the entire time horizon. This 

proposed process can be applicable in predicting the demand of the FHV volume by 

switching the identification of independent and dependent variables. 

2.5.3. Model Performance Comparison 

In this section we provide a comparison of the proposed model with the different time-

series modeling approaches under three different experiments predicting morning peak-

hour volumes collected from 6AM to 9AM, evening peak-hour volumes recorded from 

4PM to 8PM, and daily volumes of yellow taxis. Evaluating the performance errors (i.e., 

RMSE and MAPE), we examine the accuracy of LR-LSTM. Autoregressive integrated 

moving average (ARIMA) and LSTM models are representative of the performance 

benchmark. The measured RMSE and MAPE presented in Table 2.6 demonstrates the 
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prediction capability of LR-LSTM. This experiment is prepared by the hold-out strategy 

(Refaeilzadeh et al., 2009). Using the training and validation dataset, hyperparameters of 

each model were tuned in decreasing the error between the observed data and the estimated 

results.  

 We examine the performance of forecasting the daily volume of yellow taxis at first. 

According to the validation result (i.e., 931 days), LR-LSTM displays the lowest RMSE 

and MAPE values compared to other candidates such that the proposed model shows a 

better performance on the test dataset (i.e., 165 days); an improvement of 34.2% w.r.t MLR, 

19.5% w.r.t ARIMA, and 27.4% w.r.t univariate LSTM. On the other hand, the prediction 

results of multivariate LSTM are built on the basis of not only the historical yellow taxi 

data but also the explanatory variables such as weekday/weekend, holidays, and weather. 

It should be remarked that, although multivariate LSTM (M-LSTM) has an RMSE 4% 

lower than the LR-LSTM result, M-LSTM does not carry a clear interpretable model 

structure which prevents it from being used effectively in the active demand management 

application. In addition, the prediction error of the proposed LR-LSTM model is 15.04% 

in terms of MAPE, which is consistently lower than the the other models including ARIMA, 

univariate LSTM and within a similar range as multivariate LSTM.   

 In order to test whether the developed model is able to forecast well under possible 

oversaturated conditions (that is passenger demand larger than supply), we also examine 

the predicted results of the morning and evening peak-hour volumes in Table 6. For the 

morning peak-hour prediction, LR-LSTM presents the second-best performance on the 

validation dataset (931 days) as well as on the test dataset (165 days). Interestingly, the 
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multivariate LSTM structure shows the best performance for the validation dataset, but the 

univariate LSTM model derives the lowest RMSE in the test dataset. In other words, LR-

LSTM can maintain the robustness in forecasting validation and test datasets of the 

morning peak-hour volumes. However, due to the fact that the datasets still include a high 

variance and other unobserved factors, LR-LSTM and benchmark models display high 

MAPE errors. For instance, multiple linear regression (MLR) indicates MAPE of 50%. For 

the evening peak-hour prediction, LR-LSTM on the other hand demonstrates the 

robustness of predicting the evening peak-hour volumes and the measured RMSE and 

MAPE present the second-best result on both datasets. The parameter configuration of 

studied models is listed as follows: 

(a) MLR (multiple linear regression): The measured performance is only based on the 

extrapolation. The prediction on the yellow taxi trips is implemented using the defined 

coefficients in Table 2.4 and datasets consisting of the FHV trips, day of the week, 

weather, and holidays. Similarly, using coefficients estimated by the datasets of the 

morning and evening peak-hour volumes of the medallion taxi, MLR forecasts the taxis 

demand and proposes RMSE and MAPE shown in Table 2.6.  

(b) ARIMA: To determine ARIMA model parameters for the morning and evening peak-

hour, and the daily demand, the autocorrelation function (ACF) and the partial 

autocorrelation function (PACF) proposed by Box et al. (2015) are used to construct 

our ARIMA (2, 1, 1) model for the prediction of the daily volume. That is, two number 

of lag observations (AR), one number of times called the degree of difference (I), and 

the one size of moving average window (MA) are used in our experiment. The 
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constructed ARIMA (2, 1, 1) model is represented as follows: 

 

ŷ𝑡 = 𝑦𝑡−1 + 𝛼1(𝑦𝑡−1 − 𝑦𝑡−2) + 𝛼2(𝑦𝑡−2 − 𝑦𝑡−3) + 𝛽1(휀𝑡−1)

+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

(2.17) 

where the predicted yellow taxi demand is calculated by three observed data, namely, 

𝑦𝑡−1, 𝑦𝑡−2, and 𝑦𝑡−3 with the estimated parameters and constant; both 𝛼1 and 𝛼2 are 

the AR coefficients, and 𝛽1 is the MA coefficient. Also, the term, 휀𝑡−1, indicates the 

residuals between the observed data and the predicted result, 𝑦𝑡−1 − �̂�𝑡−1. Also, in the 

same manner, the order of the ARIMA model is defined by the proposed method such 

that the order of ARIMA to forecast the morning peak-hour demand follows ARIMA 

(2, 1, 3), and the defined configuration of ARIMA for predicting the evening peak-hour 

is ARIMA (3, 1, 4). The detailed description of calibrated coefficients and the goodness 

of fit are shown in Table 2.5. The model information-related criteria, AIC and BIC, 

informs that the lowest values of AIC/BIC are found in the daily volume prediction of 

yellow taxis, showing the lowest values of RMSE and MAPE in Table 2.6.  

(c) LSTM: Two different input features are considered for LSTM. Univariate LSTM is 

trained by the previous time steps of the yellow taxi only. For instance, the taxi demand 

for 7/20/2017 was only predicted by 7/19/2017 data. Multivariate LSTM employs 

weekday/weekend, holiday, weather, and the historical time steps of the taxi to train 

the model. Both LSTM model structures for predicting the daily taxi demand are 

configured as: 10-12 hidden units are used, the learning rate is set to 0.001, the training 

epoch covers 500 steps, and the network structure is one input layer, two hidden layers 

(LSTM), fully connected layer, and output layer. On the one hand, as the time series 
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data (i.e., morning and evening peak-hour volumes of yellow taxis) has the high 

variance, input data structures of training univariate and multivariate LSTM are 

adjusted. In other words, instead of predicting the demand for 7/20/2017 by the 

previous day data, it is predicted by the seven days of the yellow taxi demand 

(7/13/2017 to 7/19/2017). With the adjusted input data structure, we determine different 

configurations for both LSTM models: 15-17 hidden units are employed, the training 

epoch is between 500 to 1000 steps, and the network structure is similar to the previous 

network structure except for the number of stacked LSTM layers; 3-4 stacked layers 

are examined.  

Table 2.5.  

ARIMA Estimation Results for Yellow Taxi Demand 

 ARIMA (2, 1, 1) ARIMA (2, 1, 3)  ARIMA (3, 1, 4) 

Predictors Estimated coefficients (t-statistics) 

Constant -0.0003 (-1.841) -0.0002 (-9.416) -0.0001 (-2.222) 

𝛼1 (Auto 

Regressive) 

0.8095 (26.452) 

1.2386 (174.764) 0.8053 (5.058) 

𝛼2 (Auto 

Regressive) 

-0.4119 (-13.521) 

-0.9895 (-108.529) -0.4519 (-2.274) 

𝛼3 (Auto 

Regressive) 
- - 

-0.4358 (-2.713) 

𝛽1 (Moving 

Average) 

-0.9706 (-87.491) 

-2.2235 (-142.36) -1.9283 (-11.299) 

𝛽2 (Moving 

Average) 
- 

2.1683 (54.43) 1.5394 (4.037) 

𝛽3 (Moving 

Average) 
- 

-0.9448 (-38.402) -0.3166 (-0.823) 

𝛽4 (Moving 

Average) 
- - 

-0.2832 (-1.656) 

 Goodness of fit (number of observations: 931 days) 

Fit Criteria Daily Morning Peak-hour Evening Peak-

hour 

AIC -1724.612 -869.926 -1189.187 

BIC -1700.436 -836.079 -1145.670 
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Figure 2.8. Training Validation, Sensitivity Analysis, and Estimated Prediction of 

Yellow Taxi Pick-Up Demand 

Table 2.6. 

Comparisons of One-Step ahead Validation and Prediction Performance w.r.t Yellow 

Taxi Demand 

Daily  
Validation Dataset (931 days) Test Dataset (165 days) 

RMSE MAPE (%) RMSE MAPE (%) 

MLR 0.0998 14.54 0.1715 24.03 

ARIMA 0.1114 15.47 0.1404 19.52 

Univariate 

LSTM 

0.1110 17.52 0.1556 22.85 
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Multivariate 

LSTM 

0.0738 9.77 0.1081 14.26 

LR-LSTM 0.0620 8.69 0.1129 15.04 

Morning (6-

9AM) 

Validation Dataset (931 days) Test Dataset (165 days) 

RMSE MAPE (%) RMSE MAPE (%) 

MLR 0.1886 37.58 0.2058 50.63 

ARIMA 0.1608 32.74 0.1791 46.67 

Univariate 

LSTM 

0.1480 29.25 0.1499 37.42 

Multivariate 

LSTM 

0.1304 22.82 0.1766 41.97 

LR-LSTM 0.1478 29.57 0.1655 39.98 

Evening (4-

8PM) 

Validation Dataset (931 days) Test Dataset (165 days) 

RMSE MAPE (%) RMSE MAPE (%) 

MLR 0.1240 22.21 0.1237 27.25 

ARIMA 0.1272 22.73 0.1714 38.83 

Univariate 

LSTM 

0.1300 23.84 0.1233 27.14 

Multivariate 

LSTM 

0.1135 20.78 0.1217 27.10 

LR-LSTM 0.1189 20.99 0.1228 27.31 

2.6. Summary and Conclusions 

There are many studies using machine learning models for estimating ridership trends. 

However, the lack of ability, commonly observed in those data-fitting oriented models, of 

sensing and understanding the significantly influential factors for transportation service 

demand could cause difficulties in constructing proper ADM policies and decision tools. 

This paper proposes a hybrid modeling framework, LR-LSTM, to facilitate the planning 

effort for balancing the utilization rates of the emerging FHV service and regular taxis. Our 

developed model formulation integrates the multiple linear regression (LR) and LSTM to 
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forecast the daily and peak-hour taxi demand. With different data sources being used as 

explanatory variables such as FHV, weekday/weekend, snow/rain, weather conditions, and 

holidays, LR is employed to select the statistically important variables and interpret the 

correlation between the variables. LSTM helps improve the prediction accuracy by 

capturing the variance that the extrapolation model cannot measure.  

 Essentially, the proposed methodology shows the capability of maintaining the 

interpretability as well as predictability, indicating the positive potential of achieving the 

effective active demand management (ADM) system within a city-wide network.  To our 

limited knowledge, this study represents the first integrated modeling effort of the quota 

control applications between on-demand ride-hailing services and regular taxis, through a 

combination of the econometric formulation with the deep learning structure. This 

methodology is validated based on the real-world experiment obtained from New York 

City Taxi & Limousine Commission (NYC-TLC), particularly forecasting the pick-up 

demand of the yellow taxi in Murray Hill, Manhattan. The results of RMSE and MAPE 

outperform the multiple linear regression, ARIMA, and univariate LSTM fed exclusively 

with historical records. With the well calibrated LR-LSTM tool, we can examine different 

scenarios for policy analysis. For instance, if a policy starts regulating the FHV pick-up 

demand in New York City, this approach can estimate the impact of the regulation within 

the network.  Overall, by setting up different FHV quota on different days, we can 

accomplish both system-wide goals of reducing congestion as well as ensuring sufficient 
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taxi utilization rates. More detailed future research along this study can be built on the 

following premises in the current paper. 

 

(1) A stepwise modeling framework could further refine coupled modeling systems to 

balance the usage level of the yellow taxi demand and for-hire vehicle (FHV) in the 

coexisting environment with public transportation systems, so that a proper utilization 

rate of multiple modes can be achieved.   

(2) This structure can further quantify the expected additional demand to be shifted to 

yellow taxi rides when a cap is imposed for TNC in the real-world environment, and 

the city traffic management agency can eventually adapt this approach to achieve fair 

and dynamic quota regulation during a special holiday or weather conditions, thus 

distributing traffic volumes within the taxi service zones and reducing the likelihood of 

traffic accidents. 

(3) This methodology could examine potential impact on introducing shared micro-

mobility technologies (e.g., e-scooters or e-bikes) within pedestrian infrastructure 

(Harwood, 2020), proposing a process to integrate other app-based mobility services 

(i.e., FHV) or medallion taxis with the new mobility, particularly in a local community 

in order to ensure users’ safety and accessibility for the mobility service (Pineda, 2019).    

 Other medium-term future research tasks include exploring additional factors 

associated with the demand of yellow taxis or ride-hailing services. Particularly, taxi usage 

patterns recognized by many other explanatory variables such as socio-demographic or the 

spatial characteristics should be examined by employing either survey-based or social 
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media-based travel behaviour data sets. Then, fusing multi-sourced data (Wang et al., 

2019) to mitigate the variance of the time series data is required. Furthermore, constructing 

different types of neural networks to interpret the prediction results is interesting and 

beneficial. We can also better quantify the contribution of aforementioned features to the 

forecasting, selecting critical variables (Ribeiro et al., 2016; Lundberg and Lee, 2017). As 

an example, we could introduce logistic regression or discrete choice models to handle 

probabilities of utilizing yellow taxis or ride-hailing services by individuals. This 

interpretable machine learning techniques could lead to an enhanced conceptual modelling 

structure:  

True demand = Interpretable trend pattern + Structure deviation + Seasonal factors 

+ Random noise 

Therefore, in terms of broader application of the proposed method,  we also see other 

possibilities of quantifying the impact related to new urban mobility policies, e.g., the 

regulation of fleet sizes dynamically using the frequency of rides per day in a given time 

and space and the sustainability of deploying a specific number of vehicles within a service 

area, as well as ensuring the accessibility of emerging technologies (e.g., shared micro-

mobility or ride-hailing services) through income-based payment plans (NACTO, 2019). 

This data driven analytics approach could shed some light on understanding, modeling and 

systematically managing the relationship between emerging mobility and existing services, 

and potentially lead to a more optimized vehicle routing and supply system through pre-

trip scheduling and on-line dispatching for autonomous vehicles (Shen et al., 2019; Mao et 

al., 2020). 
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CHAPTER 3 

3. COMPUTATIONAL GRAPH-BASED EFFICIENT COMPUTING 

FRAMEWORK FOR INTEGRATING ECONOMETRIC MODELS AND 

MACHINE LEARNING ALGORITHMS 

Note: The substantial part of this chapter is followed by the publication: Kim, T., Zhou, X. 

and Pendyala, R.M., 2021. Computational Graph-based Framework for Integrating 

Econometric Models and Machine Learning Algorithms in Emerging Data-Driven 

Analytical Environments. Transportmetrica A: Transport Science, (just-accepted), pp.1-35. 

In an era of big data and emergence of new technologies such as app-based ride services, 

there are growing opportunities for better understanding human mobility patterns from 

newly available data sources. Statistical models have been mainly utilized to uncover and 

rigorously calibrate the influence of significant factors; and machine learning algorithms 

have been used to explore complex patterns through improved computing efficiency for 

large datasets. Focusing on discrete choice modeling applications, this research aims to 

introduce an open-source computational graph (CG)-based modeling framework for 

integrating the strengths of econometric models and machine learning algorithms. In 

particular, multinomial logit (MNL), nested logit (NL), and integrated choice and latent 

variable (ICLV) models are selected to demonstrate the performance of the proposed 

graph-oriented functional representation. Furthermore, the calculation of the gradient in 

the log-likelihood function and associated Hessian matrix is systematically accomplished 

using automatic differentiation (AD). Using the 2017 National Household Travel Survey 

data and an open-source dataset, we compare estimation results from the proposed methods 

with those obtained from two open-source packages, namely Biogeme and Apollo. The 

results indicate that the CG-based choice modeling approach can produce consistent 
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estimates of parameters and accurate calculations for the gradients of the estimated 

parameters with substantial computational efficiency.  

3.1. Introduction  

The emergence of massive datasets and widespread internet accessibility across the world 

have offered valuable opportunities for exploring interconnection between physical/cyber 

infrastructures and human mobility patterns. This has fostered development of techniques 

to fuse and analyze multiple data sources such as travel surveys, mobile phone data records, 

GPS, or sensor data (Hashem et al., 2016; Chen et al., 2016; Wu et al., 2018; Chen and 

Kwan., 2020). With growing interests to explore available data sources, many scholars 

have executed machine learning methods to efficiently estimate complex hidden patterns 

in large-scale datasets. In the field of transportation systems, data-driven approaches have 

been used to identify patterns of diverse traffic flows as well as assist decision makers to 

predict future trends (Bhavsar et al., 2017; Chang et al., 2019; Zhao et al., 2020). More 

recently, the research community has taken further steps to develop interpretable machine 

learning techniques while significant progress has been made in selecting significant 

variables that affect travel-related choices, enabling the explanation and testing of 

predicted results (Ribeiro et al., 2016; Lipton, 2018; Molnar, 2020). These research streams 

point to a potential paradigm shift in transportation demand modeling. 

 Transportation planners have also recognized that machine learning methods 

demonstrate high predictive performance and computing efficiency for large-scale mobility 

datasets, but those data-driven approaches still need to systematically meet standard 

requirements and expectations associated with modeling travel data sets (e.g., travel 
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surveys) in transportation planning. The desirable statistics-oriented features include 

illustrating causal relationships, avoiding overfitted results in relatively small data sets, as 

well as generating robust standard error estimates for hypothesis testing. If a model 

estimates only the correlation in a given data set, as pointed out by Mokhtarian (2018), the 

causation would be eliminated, impeding the ability to answer “why” and “what might 

happen if” questions. Importantly, incorporating these factors enables researchers and 

decision makers to deeply fathom the traveler’s behavioral patterns. In light of this, 

statistical modeling approaches have generally been applied in explaining the cause-and-

effect relationship and analyzing travel survey data (Paredes et al., 2017; Brathwaite and 

Walker, 2018b).  

 In order to bridge the gap between both modeling approaches (i.e., statistical 

models and machine learning algorithms), this research aims to present a computational 

framework that can leverage capabilities of existing machine learning platforms to tackle 

classical estimation problems for discrete choice models. Using a traditional household 

travel survey dataset and a synthetic dataset available in the Apollo econometric modeling 

R package, we show how to construct a flexible and efficient modeling framework that 

utilizes data-driven algorithms in estimating econometric models.  The suggested approach 

could be useful in tackling other estimation problems, such as analyzing multi-dimensional 

samples from passively collected big data (spatio-temporal dimensions) and enabling real-

time updates (predictions) in transportation systems (Nuzzolo and Comi, 2016). 

 The concept of computational graphs (CGs) is systematically introduced to 

establish an extended statistical modeling platform capable of covering large-scale datasets 
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and non-linear architectures (e.g., deep neural networks (DNNs)).  The computational 

graph (CG)-based choice models can take full advantage of automatic differentiation (AD) 

techniques, which have been widely used in machine learning fields (Abadi et al., 2016; 

Baydin et al., 2017; Paszke et al., 2017). Three different discrete choice models in 

transportation planning, namely, multinomial logit (MNL), nested logit (NL), and 

integrated choice and latent variable (ICLV) functions, are reformulated as computational 

graphs to estimate parameters and associated statistical properties such as standard errors. 

These three model forms are chosen because of their widespread use in the field of travel 

choice modeling. We also examine the flexibility of the modeling structure, and its 

capability of handling non-concave likelihood functions and simulation-based evaluation 

of multi-dimensional integrals in latent variable models. Open-source packages, Biogeme 

(Bierlaire, 2003) and Apollo (Hess and Palma, 2019) are used as test benchmarks, with the 

publicly accessible National Household Travel Survey (NHTS) 2017 dataset and the 

synthetic dataset available in the Apollo package serving as use cases.   

 The remainder of this paper is organized as follows. Section 3.2 presents the 

literature review with a particular focus on the integration of statistical models and machine 

learning methods. Section 3.3 describes the National Household Travel Survey (NHTS) 

2017 and the synthetic datasets. In section 3.4, the computational graph-based choice 

models are presented in detail with an emphasis on meeting estimation expectations in 

planning applications. The estimation and benchmarking results are discussed in section 

3.5. 
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3.2. Literature Review 

This section addresses three aspects: integration of discrete choice models and machine 

learning methods, optimization algorithms, and techniques for computing gradients in 

objective functions.  Focusing on the concept of computational graph (CG) and its example, 

we also provide a discussion of the motivations behind our proposed approach. 

3.2.1. Integration of Choice Models and Machine Learning Algorithms 

Recently, research communities have studied hybrid modelling approaches to integrate 

strengths of machine learning algorithms into discrete choice models (DCMs). For example, 

Sifringer et al. (2018) proposed a hybrid modeling framework for combining neural 

networks and multinomial logistic (MNL) models. Selecting the input features that are 

relatively uncorrelated with choice alternatives, dense neural network (DNN) learned 

hidden patterns were derived and the trained information was transmitted into the utility 

function defined in MNL. This methodology interpreted the specified parameters and led 

to higher log-likelihood values and improved predictive power. Han et al. (2020) further 

developed an extended framework to integrate MNL and the constrained data-driven 

structure (multi-layer perceptron (MLP)). Embedding MLP into the utility function of 

MNL, their approach demonstrated better predictive performance while maintaining the 

interpretability and preventing the model from over-fitting. More recently, Sifringer et al. 

(2020) showed the enhanced choice models by embedding neural networks into the 

specified utility functions of the MNL and NL models. In a residual logit (ResLogit) model 

proposed by Wong and Farooq (2019), recursive residual layers were constructed in the 

utility function of the standard MNL model to capture unobserved heterogeneity. Overall, 
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these above-mentioned modeling efforts aim to resolve overfitting while preserving the 

econometric interpretability.  

 Although significant progress has been made to integrate machine learning 

algorithms in DCM, there are still many challenges to be addressed. First, the existing 

hybrid models (Sifringer et al., 2018; Han et al., 2020; Sifringer et al., 2020) estimate 

parameters mainly based on the Adam optimizer proposed by Kingma and Ba (2014) or 

stochastic gradient descent (SGD) (Bottou, 2010). In terms of optimizing objective 

functions, the first order-based estimators can be computationally effective to analyze a 

large-scale dataset and calibrate numerous parameters. However, we have to recognize that 

there are various model structures in which we are dealing with non-concave functions 

(e.g., nested logit (NL) model (Williams, 1977)) or simulation-based models involving 

computation of high-dimensional integrals such as the integrated choice and latent variable 

(ICLV) model (Ben-Akiva et al., 2002) and the hybrid choice model with a nonlinear utility 

function (Kim et al., 2016). Second, the first order-based estimation might not be able to 

provide desirable statistical properties in computing the Hessian matrix. These challenges 

require a systematic and careful analysis for an effective combination of machine learning 

techniques and optimization algorithms in the context of statistically-oriented choice 

models for transportation applications. 

3.2.2. Optimization Algorithms for Discrete Choice Models  

In the area of discrete choice modeling, maximum likelihood estimation (MLE) is one of 

the fundamentally important estimation methods. By computing the first order (gradient) 

and second order (curvature) derivatives of the likelihood function, MLE furnishes values 
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of parameters by maximizing the likelihood function through the use of the Hessian matrix. 

The derivatives are computed by three approaches: manual/analytical, finite difference, and 

automatic differentiation (AD) (Bartholomew et al., 2000). Due to the difficulty of 

embedding/coding highly nonlinear forms in complicated functions, manual differentiation 

could be used for some very small cases. The numerical differentiation aims to approximate 

derivatives through the finite differencing, but the solution quality is greatly affected by 

the potential truncation and round-off errors associated with different finite difference 

formulas (Wright and Nocedal, 1999). On the other hand, the automatic differentiation (AD) 

technique utilizes the chain rule-based principle and intermediate variables to evaluate 

complex derivatives analytically (Wright and Nocedal, 1999; Griewank, and Walther, 

2008). Specifically, in the new generation of low-level computational graph libraries such 

as Tensorflow and PyTorch, the computing architecture can enable modelers to represent 

the analytical optimization model through a graph of simple elementary operations (i.e., 

addition, subtraction, multiplication, and division) and elementary functions (e.g., natural 

logarithm), and further execute a sequential and complex structure of computations easily. 

In new domain-specific languages (DSLs) for convex optimization such as CVXPY, 

progress has been made recently to convert standard convex optimization to detailed CG 

representations with low-level solver interfaces (Agrawal et al. 2018).  It should be noted 

that AD might still encounter the difficulty of computing piecewise rational functions, 

especially when estimating gradients of non-smooth composite functions (Beck and 

Fischer, 1994; Nocedal and Wright, 2006).  
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 In the machine learning area, the sequential structure and computational graph 

approach have been widely applied for large-scale datasets with numerous parameters to 

be calibrated. These applications have demonstrated the capability of these approaches in 

computing gradients and Hessians of non-linear optimization formulations efficiently and 

precisely (Baydin et al., 2017). From a specific system identification perspective, the AD 

technique has been utilized in the fields of machine learning and econometric modeling to 

estimate parameters, thanks to its computational efficiency and flexibility of designing 

diverse composite functions (Sifringer et al., 2018; Wong and Farooq, 2019; Sun et al., 

2019; van Kesteren and Oberski, 2019; Han et al., 2020). Furthermore, in the case of 

discrete choice modeling (DCM), by carefully selecting the underlying computing 

algorithms, AD holds the promise for more precise computation of derivatives of the log 

likelihood with respect to specified parameters through chain rules and back propagation. 

That is, simply using the popular first order methods (e.g., SGD or Adam) is often 

inadequate in estimating complicated modeling structures (e.g., NL or ICLV). Thus, our 

research combines the AD technique with quasi-second order methods, e.g., Broyden-

Fletcher-Goldfarb-Shanno (BFGS), to calibrate non-concave composite functions and 

deliver consistent statistical estimates through Hessians.  

3.2.3. Computational Graph (CG)  

Understanding computational graph (CG) approach is important for designing flexible 

modeling structures that integrate choice models and machine learning seamlessly. Using 

the binary logit model in Eq. (1) as an example, Wu et al., (2018) and Sun et al. (2019) 
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took a few initial steps to illustrate how CG can decompose complex composite functions 

as follows. 

 
P (𝑦 = 1) =

1

1 + 𝑒−𝑉
 (3.1) 

 Eq. (1) indicates the probability of choosing a binary alternative, and the term 𝑉 is 

a specified utility function (e.g., V = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+ 𝛽𝑛𝑥𝑛  where 𝛽𝑛  is the 

unknown parameter associated with the attribute 𝑥𝑛). Using the concept of computational 

graph (CG), this logistic function is now expressed as a directed graph which consists of 

nodes (elementary operations) and edges (directions): 

 Figure 3.1 clearly illustrates the logistic formulation written in Eq. (3.1) as a 

sequentially nested structure made up of nodes and edges. In particular, Figure 3.1(a) is the 

process of computing the probability of a given binary alternative, and Figure 3.1(b) 

represents the procedure of estimating parameters. For example, the parameter 𝛽1  is 

obtained by the defined nodes and links shown in Figure 3.1: 

 Eq. (3.2) presents the analytic derivative with respect to the parameter and the 

description of the chain rule-based computation. Furthermore, applying the gradients in the 

BFGS optimizer, this computed differentiation offers more precise Hessians.  In this 

context, it is helpful to compare the computed values in Eq. (3.2) with analytical 

sensitivities detailed in Koppelman and Bhat (2006) and Train (2009). 
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Figure 3.1. Computational Graph (CG) of the Binary Logit Model 
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 To calibrate a broader set of DCMs in transportation planning with rigorously 

defined standard error estimates, we will tackle three econometric models (i.e., multinomial 

logit,  nested logit , and integrated choice and latent variable) to demonstrate the capability 

of the enhanced choice modelling framework along three directions: the numerical 

efficiency of processing a high-dimension survey sample, greater flexibility in employing 

different composite functions (e.g., deep learning architectures), and realization of 

desirable statistical properties. A widely used machine learning platform, TensorFlow 

(Abadi et al., 2016), is selected to implement the proposed CG-based discrete choice 

models, and the source code can be downloaded at Kim et al. (2021). There are other 

computational graph-oriented programming platforms such as Theano (Bastien et al., 2012) 
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or Pytorch (Paszke et al., 2017). In addition, to systematically verify the estimated 

parameters and statistical properties, two leading open-source packages for estimating 

DCMs, namely Biogeme (Bierlaire, 2003) and Apollo (Hess and Palma, 2019), are used to 

serve as benchmarks.  

 It should be noted that the concept of computational graph has been adapted in the 

pioneering open-source DCM estimation package, Biogeme, in 2000, through the use of 

chain rule differentiation and analytical gradients.  In our proposed domain-specific 

languages (DSLs) for maximum likelihood estimation of various DCMs, we do not need 

to build the low-level computational graph manually through a general-purpose 

language (GPL); instead, we translate the corresponding DCM optimization to forms 

compatible to the interfaces of recent CG libraries (e.g., TensorFlow). By doing so, our 

approach can further fully utilize the backpropagation mechanism provided by 

differentiable optimization layers/pipelines. The DSLs for MLE-DCM helps modelers 

greatly reduce the computational redundancy by decomposing the computing units in a 

layered structure and enabling the use of dynamic programming for iteratively finding a 

solution. The development of domain-specific languages requires a deep understanding of 

the problem structure and domain knowledge, and we will further highlight the potential 

for integrating different transportation modeling elements of more complex estimation and 

planning problems in the conclusion of this paper.   

3.3. Data Preparation 

Two datasets are utilized in this research: the 2017 National Household Travel Survey 

(NHTS) dataset for estimating MNL and NL models, and a synthetic dataset provided by 

https://en.wikipedia.org/wiki/General-purpose_language
https://en.wikipedia.org/wiki/General-purpose_language
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Hess and Palma (2019) to estimate the extended integrated choice and latent variable or 

ICLV model. 

3.3.1. National Household Travel Survey (NHTS) Dataset 

The dataset used for the case study is derived from the National Household Travel 

Survey (NHTS 2017) conducted by the US Department of Transportation. This data set 

provides information about travel behavior, particularly associated with trip purposes and 

modes. In the current study, this large-scale dataset with 923,572 trips is explored.  To 

alleviate unobserved taste heterogeneity, we restrict the scope of the trip purpose and time-

dimension by selecting commuting trips (home to work trips) departing between 6 and 9 

AM.  

After filtering the dataset based on criteria and eliminating obviously erroneous 

observations or those with large amounts of missing data, the final subsample size used for 

the model estimation is 40,177 observations. Table 3.1 depicts the travelers’ socio-

economic and demographic information, as well as travel time and distance variables that 

are subsequently used as explanatory variables in the specification of the utility function. 

The five alternatives, namely drive alone (DA), shared ride (SR), transit (TR), bike, and 

walk, are considered as the choice elements in the proposed MNL and NL choice models. 

In terms of person characteristics, 84.3 percent of the commuting trips are accounted for 

by those age 30-74 years. The gender ratio of this subsample is nearly 51 percent male and 

49 percent female. In terms of educational attainment, travelers who earned the bachelor’s 

degree and graduate degree account for 29.8 percent and 26.1 percent of the commute tours, 

respectively. Among household attributes, individuals within the household income 
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categories ($50,000-$124,999 and $125,000 or above) account for 76.7 percent of the 

commute tours. Two-person households and individuals living with five persons or more 

account for the highest and lowest proportion of commute tours, respectively. Nearly 79 

percent of commuters travel from an urban area. According to travel characteristics, the 

average commute distance is 12.9 miles with a standard deviation of 15.8 miles, and the 

average time taken is 27.3 minutes with a standard deviation of 27.9 minutes. The 

distribution of commute mode choices is 79.3 percent of commute trips by drive alone 

(DA), 13.8 percent by shared ride, 3.8 percent by transit, and 3.1 percent by bike and walk. 

This mode choice distribution follows a similar pattern in a prior study by Paleti et al. 

(2013). 

Table 3.1. Description of the subsample (N=40,177)  

Person characteristics Frequency  Percentage (%) 

Age    

    Less than 18 years 111 0.3 

    18-24 years 2,259 5.6 

    25-29 years 3,549 8.8 

    30-44 years 11,502 28.6 

    45-59 years 15,094 37.6 

    60-74 years  7,270 18.1 

    75 years or above   392 1.0 

Gender     

    Male 20,387 50.7 

    Female 19,790 49.3 

Education attainment     

    Less than bachelor’s degree 17,723 44.1 

    Bachelor’s degree 11,976 29.8 

    Graduate degree 10,478 26.1 

Household characteristics Frequency Percentage (%) 

Household income     

    Under $25,000 2,812 7.0 

    $25,000 - $49,999 6,560 16.3 

    $50,000 - $124,999 10,491 26.1 

    $125,000 or above 20,314 50.6 

Household size     
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    1 (I am the only person) 6,284 15.6 

    2 people 17,468 43.5 

    3 people 7,270 18.1 

    4 people  6,032 15.0 

    5 people or more 3,123 7.8 

Travel characteristics Continuous (average) 

Trip distance in miles & Trip duration in 

minutes 

12.88 miles & 27.33 minutes 

Endogenous variable Frequency Percentage (%) 

Trip mode   

    Drive alone (DA) 31,872 79.3 

    Shared ride (SR) 5,530 13.8 

    Transit (TR)  1,543 3.8 

    Bicycle  386 1.0 

    Walk  846 2.1 

 

3.3.2. Synthetic Dataset 

The lack of attitudinal questions in the NHTS dataset renders it unsuitable for constructing 

ICLV components, i.e., structural models with latent variables and measurement equations. 

As a result, we utilized an alternative synthetic dataset that accompanies the Apollo 

package to estimate the ICLV model (instead of using the NHTS dataset). This dataset 

documents drug choices for 1,000 individuals; four alternative choices, three socio-

demographic characteristics, and four attitudinal questions are presented. The explanatory 

variables to construct the structural equation of a latent variable were binary in nature: 

regular drug users, university degree attainment, and age 50 years and above. In addition, 

the attitudinal questions to define the measurement equations followed a Likert scale from 

1 (strongly disagree) to 5 (strongly agree). Four attitudinal questions are selected as 

measurement equation indicators. The detailed description of the drug choice data is well 

documented in Hess and Palma (2019).   
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3.4. Modeling Framework and Methodology 

This section presents the mathematical formulations of MNL, NL, and ICLV models, the 

computational graph-based modeling frameworks, as well as the stepwise procedure of 

estimating the proposed graph-oriented functions. Using the travel survey dataset, we 

develop the systematic utility function and the probability of choice alternatives, namely 

drive alone (DA), shared ride (SR), transit (TR), bike, and walk, to estimate MNL and NL 

models. On the other hand, the ICLV components (i.e., the structural equation of the latent 

variable, measurement indicators, utility functions, as well as the probability of a drug 

choice between four alternatives) are constructed using the synthetic dataset.  

3.4.1. Mathematical Formulations of the MNL and NL Models 

With the fundamental assumptions that error components in the utility function are 

independently and identically distributed according to a Gumbel distribution, the 

functional formulation of the multinomial logit (MNL) model can be defined clearly. The 

probability that a decision maker 𝑛  chooses an alternative mode 𝑖  among a set of 𝐽 

alternatives (i.e., DA, SR, TR, bike, and walk) is as follows (McFadden, 1974): 

 
𝐏𝑛,𝑖 =

𝑒𝑉𝑛,𝑖

∑ 𝑒𝑉𝑛,𝑗
𝑗𝜖𝐽

 (3.3) 

where 𝑉𝑛,𝑖  denotes the systematic utility of the alternative mode 𝑖 𝜖 𝐽  selected by the 

decision maker 𝑛, and the structural utility function includes alternative specific constants 

and observed attributes with their parameters (i.e., 𝑉𝑛,𝑖 = 𝐴𝑆𝐶𝑖,𝑛 + ∑ 𝛽𝑘,𝑖𝑥𝑘,𝑖,𝑛
𝐾
𝑘=1 ). The 

index 𝐽 is the set of the specified alternative choices. 𝐾 represents the number of attributes 

used as choice predictors.  
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 By reformulating the MNL structure to relax the independence of irrelevant 

alternatives (IIA) property of MNL, the nested logit (NL) can be specified (Williams 1977; 

McFadden 1978). In particular, two layered structures are considered in this study. The 

upper level of NL includes drive alone (DA), shared ride (SR), transit (TR), and the non-

motorized group, and the two alternatives (i.e., bike and walk) included in the non-

motorized group are located in the lower level.  

 The functional formula of the choice probability is expressed by the product of the 

conditional probability and the marginal probability. For instance, the probability that a 

decision maker 𝑛 selects an alternative 𝑖 in the nest 𝑚 is formulated as: 

 
𝐏𝑛,𝑖 = 𝐏𝑛,𝑖|𝐽𝑚 × 𝐏𝑛,𝐽𝑚 =

𝑒𝑉𝑛,𝑖/𝜆𝑚

∑ 𝑒𝑉𝑛,𝑙/𝜆𝑚
𝑙∈𝐽𝑚

×
𝑒(𝑉𝑛,𝑚+𝜆𝑚Γ𝑛,𝑚)

∑ 𝑒(𝑉𝑛,𝑗+𝜆𝑗Γ𝑛,𝑗)𝑀
𝑗=1

 (3.4) 

  

 In Eq. (3.4) the first component is the conditional probability that the decision 

maker 𝑛 chooses either a bike or walk mode given that the non-motorized group 𝐽𝑚  is 

selected, and the second component is the marginal probability of choosing between drive 

alone, shared ride, transit, and the nested group. 𝜆𝑚 is the logsum parameter bounded by 

zero to one, an indicator of the correlation between bike and walk; the parameter is 

explained well in Koppelman and Bhat (2006). The inclusive value Γ𝑛,𝑚 (or often called 

log-sum term) is defined by Γ𝑛,𝑚 = log[∑ 𝑒𝑉𝑛,𝑙/𝜆𝑚
𝑙∈𝐽𝑚 ] where this term is associated with 

the nested group. Readers interested in the derivation of the mathematical formulations can 

find details in Koppelman and Bhat (2006) and Train (2009).  
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3.4.2. Mathematical Formulations of the ICLV Model 

ICLV incorporates a latent variable model into a multinomial discrete choice model. To 

enable this integrated model, four components are generally required to be specified; a 

latent variable, measurement indicators, utility functions, and choice probabilities (Ben-

Akiva et al., 2002). First, the latent variable formulated as a function of observable 

explanatory variables with a stochastic component is given by: 

 𝑋𝑛
∗ = 𝛾𝑧𝑛 + 휂𝑛 (5) 

  

 Eq. (3.5) indicates the structural equation for the latent variable 𝑋∗ influenced by 

explanatory variables 𝑧𝑛 including three socio-demographic characteristics (in this study) 

with parameters 𝛾 . The stochastic term 휂𝑛  follows a standard normal distribution  

휂𝑛~𝑁(0, 1). Second, the probability distribution function of the continuous measurement 

indicators is expressed as follows: 

 

𝑓𝑛(𝐼𝑛|𝑧𝑛, 𝑋𝑛
∗; 𝜻, 𝝈) =

1

√2𝜋𝜎𝑘
2
𝑒

−
(𝐼𝑛,𝑘−𝐼�̅�−𝜁𝑘𝑋𝑛

∗)
2

2𝜎𝑘
2

 (3.6) 

where the continuous measurement indicators are defined by 𝐼𝑛,𝑘 = 휁𝑘𝑋𝑛
∗ + 𝑣𝑛 . 𝐼𝑛,𝑘 

represents an indicator associated with an attitude 𝑘 ∈ 𝐾 and the continuous measurement 

model. 𝐼�̅� is the average of the indicator 𝑘. Subtracting it from 𝐼𝑛,𝑘, we avoid estimating 

the mean of the normal density. 휁𝑘 is the attitudinal coefficient for the latent variable 𝑋𝑛
∗ , 

and 𝑣𝑛  is the stochastic component characterized by a standard normal distribution 

𝑣𝑛~𝑁(0, 1). Third, the systematic utility function is specified by 𝑉𝑛,𝑖 = ∑ 𝛽𝑠,𝑖𝑥𝑠,𝑛,𝑖
𝑆
𝑠=1 +

𝜆𝑋𝑛
∗  , where 𝛽𝑠,𝑖  and 𝜆  are coefficients of choice predictors and the latent variable, 

respectively.  𝑉𝑛,𝑖 represents the utility function of the alternative drug 𝑖 selected by the 
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decision maker 𝑛. Lastly, the probability that a decision maker 𝑛 chooses a drug 𝑖 among 

a set of four products is defined by the multinomial logit formulation. Using the defined 

components above, we can obtain the joint choice probability as follows (Ben-Akiva et al., 

2002; Vij and Walker, 2016): 

 

𝐏𝑖 = ∫∏
1

√2𝜋𝜎𝑘
2
𝑒

−
(𝐼𝑛,𝑘−𝐼�̅�−𝜁𝑘𝑋𝑛

∗)
2

2𝜎𝑘
2

×
𝑒𝑉𝑛,𝑖

∑ 𝑒𝑉𝑛,𝑗
𝑗𝜖𝐽

× 𝜙(휂𝑛)𝑑휂𝑛

𝐾

𝑘=1𝜂𝑛

 (3.7) 

  In Eq. (3.7), the first component is the likelihood of the continuous 

measurement indicators, the second term is the multinomial logit model, and the third term 

is derived from the structural equation of the latent variable. Since Eq. (3.7) has no closed-

form solution, this joint choice probability function is conventionally approximated using 

a Monte Carlo simulation-based approach:  

 

𝐏𝑖 ≅
1

𝑇
∑∏

1

√2𝜋𝜎𝑘
2
𝑒

−
(𝐼𝑛,𝑘−𝐼�̅�−𝜁𝑘𝑋𝑛,𝑡

∗ )
2

2𝜎𝑘
2

×
𝑒𝑉𝑛,𝑖,𝑡

∑ 𝑒𝑉𝑛,𝑗,𝑡
𝑗𝜖𝐽

𝐾

𝑘=1

𝑇

𝑡=1

  (3.8) 

 Drawing the standard normal distribution function 휂𝑛 iteratively, we can simulate 

the multidimensional integrals, thus deriving Eq. (3.8); 𝑇 is the total number of draws. The 

detailed description of simulation-based approaches can be found in Train (2009). With the 

above-derived functions, we now present the procedure of constructing computational 

graph-based models.   

3.4.3. Illustration of the Computational Graph-Based Modeling Approach 

This subsection presents the CG-based modeling structures for MNL, NL, and ICLV. We 

present an illustrative example to demonstrate the sequential process of formulating the 

probability functions associated with mode choices and drug choices in the two datasets 
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respectively. In this description, the probability of choosing the walk mode is exemplified 

using MNL and NL, and the probability of selecting a drug between four alternatives is 

illustrated for the ICLV.   

3.4.3.1. CG-based Multinomial Logit Model 

Eq. (3.3) is decomposed and plotted into the directed graph, which includes elementary 

operations and elementary functions. As shown in Figure 3.2, there are 15 input nodes and 

16 intermediate nodes to link between input nodes and the output node; input nodes are 

comprised of the alternative specific constants (ASC) for each alternative and unknown 

parameters 𝛽 associated with the attributes 𝑥, and the intermediate nodes (𝑁𝑖 where 𝑖 =

1, 2, … , 16) play a role of decomposing functions. The output node is the probability of 

selecting the walk mode 𝐏𝑤𝑎𝑙𝑘. Based on the nodes interconnected by directed edges, we 

can produce the sequentially nested structure for the probability function so that Eq. (3.3) 

can be mapped as follows: 

              

 𝐏𝑤𝑎𝑙𝑘 
= 

𝑁15 𝑁16⁄  

(3.9) 
 = e𝑁10 (𝑁11 + 𝑁12 + 𝑁13 + 𝑁14 + 𝑁15)⁄  

 = 𝑒(𝑁5+𝐴𝑆𝐶𝑤𝑎𝑙𝑘)/(𝑒𝑁6 + 𝑒𝑁7 + 𝑒𝑁8 + 𝑒𝑁9 + 𝑒𝑁10) 

 = 𝑒(𝛽𝑤𝑎𝑙𝑘𝑥𝑤𝑎𝑙𝑘+𝐴𝑆𝐶𝑤𝑎𝑙𝑘) (𝑒(𝑁1+𝐴𝑆𝐶𝐷𝐴) + 𝑒(𝑁2+𝐴𝑆𝐶𝑆𝑅) + 𝑒(𝑁3+𝐴𝑆𝐶𝑇𝑅) + 𝑒(𝑁4+𝐴𝑆𝐶𝑏𝑖𝑘𝑒) + 𝑒(𝑁5+𝐴𝑆𝐶𝑤𝑎𝑙𝑘))⁄  

where the nodes from 𝑁16 to 𝑁5 are used to connect input nodes and the output node, and 

the index 𝑖 represents the labels of choice alternatives (DA, SR, TR, Bike, and Walk). It 

should be noted that in order to simplify the illustration, nodes associated with the 

availability of the given alternatives are excluded in this graph.  
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Figure 3.2. Illustration of CG-Based Multinomial Logit Model 

 

3.4.3.2 CG-Based Nested Logit Model 

A two-level nested structure is described in this subsection. Based on Eq. (3.4), the 

probability of selecting the walk mode is plotted in Figure 3.3. In contrast to the MNL 

model, this nested model is formulated using the conditional probability and marginal 

probability to account for the correlation between bike and walk. Figure 3.3 denotes 21 

input nodes including the nodes used in the MNL computational graph, the log-sum 

parameter 𝜆𝑚, as well as the log-sum function Γ𝑛𝑚. In addition, 27 intermediate nodes are 

embedded to express the decomposed components of NL. With the specified nodes and the 

directed edges, the product of the conditional probability and the marginal probability can 

be computed to derive the probability of selecting the walk mode 𝐏𝑤𝑎𝑙𝑘 as follows:  

 

 𝐏𝑤𝑎𝑙𝑘 = 𝐏𝑤𝑎𝑙𝑘|𝑛𝑜𝑛−𝑎𝑢𝑡𝑜𝐏𝑛𝑜𝑛−𝑎𝑢𝑡𝑜 = 𝑁26𝑁27 (3.10) 
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 The conditional probability 𝐏𝑤𝑎𝑙𝑘|𝑛𝑜𝑛−𝑎𝑢𝑡𝑜  is equal to 𝑁26 , and the term 𝑁27 

indicates the marginal probability of falling into the non-auto group. To be specific, the 

sequential steps of mapping the conditional probability 𝐏𝑤𝑎𝑙𝑘|𝑛𝑜𝑛−𝑎𝑢𝑡𝑜 are detailed below: 

 

𝐏𝑤𝑎𝑙𝑘|𝑛𝑜𝑛−𝑎𝑢𝑡𝑜 = 𝑁20 𝑁22⁄  

(3.11) 

 = 𝑒𝑁15 (𝑁19 + 𝑁20⁄ ) 

 = 𝑒𝑁9 𝜆𝑚⁄ (𝑒𝑁14 + 𝑒𝑁15)⁄  

 = 𝑒(𝑁4+𝐴𝑆𝐶𝑤𝑎𝑙𝑘) 𝜆𝑚⁄ (𝑒𝑁9 𝜆𝑚⁄ + 𝑒𝑁10 𝜆𝑚⁄ )⁄  

 = 𝑒(𝛽𝑤𝑎𝑙𝑘𝑥𝑤𝑎𝑙𝑘) 𝜆𝑚⁄ (𝑒𝛽𝑏𝑖𝑘𝑒𝑥𝑏𝑖𝑘𝑒 𝜆𝑚⁄ + 𝑒𝛽𝑤𝑎𝑙𝑘𝑥𝑤𝑎𝑙𝑘 𝜆𝑚⁄ )⁄  

 

 Eq. (3.11) illustrates a stepwise procedure for deriving the conditional probability. 

The detailed description of the CG nodes and links can be found in Figure 3.3. Similarly, 

the marginal probability 𝐏𝑛𝑜𝑛−𝑎𝑢𝑡𝑜 ,which is mapped by the forward propagation of the 

CG framework, can be written in the following stepwise manner:  

 𝐏𝑛𝑜𝑛−𝑎𝑢𝑡𝑜 = 𝑁24 𝑁25⁄  

(3.12) 

  = 𝜆𝑚𝑁23 (𝑁21 + 𝑁24)⁄  

  = 𝜆𝑚log (𝑁22) (𝑁16 + 𝑁17 + 𝑁18 + 𝜆𝑚𝑁23)⁄  

  = 𝜆𝑚log (𝑁19 + 𝑁20) (𝑒𝑁11 + 𝑒𝑁12 + 𝑒𝑁13 + 𝜆𝑚𝑁23)⁄  

   ⋮ 

  = 𝜆𝑚log (𝑒
𝑁9
𝜆𝑚 + 𝑒

𝑁10
𝜆𝑚 ) (𝑒

𝑁6
𝜆𝑚 + 𝑒

𝑁7
𝜆𝑚 + 𝑒

𝑁8
𝜆𝑚 + 𝜆𝑚log (𝑒

𝑁9
𝜆𝑚 + 𝑒

𝑁10
𝜆𝑚 ))⁄  

 

 
 = 

𝜆𝑚log(𝑒(𝛽𝑏𝑖𝑘𝑒𝑥𝑏𝑖𝑘𝑒)/𝜆𝑚 + 𝑒(𝛽𝑤𝑎𝑙𝑘𝑥𝑤𝑎𝑙𝑘)/𝜆𝑚)

(𝑒𝑁6/𝜆𝑚 + 𝑒𝑁7/𝜆𝑚 + 𝑒𝑁8/𝜆𝑚 + 𝜆𝑚𝑙𝑜𝑔(𝑒𝑁9/𝜆𝑚 + 𝑒𝑁10/𝜆𝑚))
 

 

 

 Eq. (3.12) is the marginal probability of falling into the non-auto nest. The 

expression log(𝑒(𝛽𝑏𝑖𝑘𝑒𝑥𝑏𝑖𝑘𝑒)/𝜆𝑚 + 𝑒(𝛽𝑤𝑎𝑙𝑘𝑥𝑤𝑎𝑙𝑘)/𝜆𝑚) corresponds to the log-sum function 

Γ𝑛𝑚. By computing the product of Eq. (3.11) and (3.12), we can now derive the probability 

function Eq. (3.10) through the graph-oriented function. Please note that the utility function 

𝑉𝑛𝑚 shown in Eq. (3.4) is assumed as zero. 
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Figure 3.3. Illustration of CG-Based Two-Level Nested Logit Model 

 

3.4.3.3 CG-Based Integrated Choice and Latent Variable (ICLV) Model 

In this subsection, the ICLV function comprising of one latent variable, the stochastic term, 

continuous measurement indicators, as well as the multinomial logit structure is 

decomposed and plotted in a series of nodes (elementary operations) and edges (directions). 

According to Figure 3.4, 17 input nodes and 22 intermediate nodes are used. 𝑁6, 𝑁14, 𝑁22, 

and 𝑁23 are used to denote the ICLV components, in order to develop the output node 𝐏𝐴1 

which is the joint choice probability of choosing a drug between four alternatives. With the 

CG-based structure, the exemplified choice probability can be written in the stepwise 

manner: 

 

 𝐏𝐴1 = 𝑁22 × 𝑁23 
 (3.13) 

  = (𝑁21/𝑁18) × (𝑁10/𝑁14) 
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  = 𝑒−𝑁20/𝜎√2𝜋 × 𝑒𝑁8/(𝑁10 + 𝑁11 + 𝑁12 + 𝑁13) 

   ⋮ 

  = 

1

𝜎√2𝜋
𝑒

−
(𝐼−𝜁𝑁6)2

2𝜎2

×
𝑒(𝑁1+𝜆𝑁6)

(𝑒(𝑁1+𝜆𝑁6) + 𝑒(𝑁2+𝜆𝑁6) + 𝑒𝑁3 + 𝑒𝑁4)
 

 

 Eq. (3.13) denotes the joint choice probability of falling into drug alternative 1. The 

first component corresponds to the measurement indicators, while 𝑁6  is the structural 

equation of the latent variable. The second term is the discrete choice formulation. In order 

to simplify the illustration shown in Figure 3.4, we only show the first iteration of the 

simulated choice model and exclude nodes associated with the availability of the given 

alternatives. 

 With the underlying knowledge of building the forward propagation of the CG-

based choice models, the following subsection discusses the automatic differentiation (AD) 

algorithm to estimate the proposed CG-based choice models in a backpropagation approach. 

We describe the backpropagation step by step using the plotted figures.   
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Figure 3.4. Illustration of CG-Based Integrated Choice and Latent Variable (ICLV) 

Model 

3.4.4. Parameter Estimation: Automatic Differentiation (AD) with BFGS 

In the CG-based architecture, the unknown parameters specified in Eq. (3), (4), and (8) can 

be estimated by minimizing the negative log-likelihood function, and the corresponding 

objective function leads to a particular type of the categorical cross-entropy function 

proposed by Shannon (1948). 

 

 𝐻𝑛(𝐏𝑛, 𝒚𝑛) =  −∑𝑦𝑛,𝑖 ln(P𝑛,𝑖(𝛽))

𝑖∈𝐽

 (3.14) 

 

where y𝑛,𝑖 is the discrete variable that denotes a choice 𝑖 ∈ 𝐽 selected by a decision maker 

𝑛. Eq. (3.14) is commonly expressed as 𝐿𝐿(𝛽), log-likelihood, in the discrete choice field. 

Using the second-order Taylor’s approximation of log-likelihood function 𝐿𝐿(𝛽𝑘+1) in a 
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neighborhood of 𝐿𝐿(𝛽𝑘), we can find the optimal value of parameters 𝛽𝑘+1 to maximize 

𝐿𝐿(𝛽𝑘+1) (Train, 2009). 

 

 𝜕𝐿𝐿(𝛽𝑘+1)

𝜕𝛽𝑘+1
=

𝜕𝐿𝐿(𝛽𝑘)

𝜕𝛽𝑘
+ 𝐵𝑘(𝛽𝑡+1 − 𝛽𝑡) = 0 (3.15) 

 

 The partial derivative of 𝐿𝐿(𝛽𝑘 ) with respect to 𝛽𝑘  and the numerically 

approximated Hessian matrix 𝐵𝑘 are determining the best value of 𝛽𝑘+1. More specifically, 

when solving Eq. (3.15), 𝛽𝑘+1 can be expressed as 𝛽𝑘 + (−𝐵𝑘)
−1(𝜕𝐿𝐿(𝛽𝑘)/𝜕𝛽𝑘). In order 

to compute the first-order gradients of the objective function with respect to each parameter, 

we utilize the automatic differentiation (AD) algorithm.  By utilizing the derived gradients 

in the BFGS optimizer, we can calculate the Hessian matrix which is used to evaluate 

statistical properties of estimated parameters. A detailed description of computing the 

numerical Hessian matrix is explained in Nocedal and Wright (2006). As illustrated in the 

study, the first-order gradient information is valuable for assisting the chain rule-based 

algorithmic differentiation procedure in deriving the gradients in each choice model.  

 Consider the estimation of the parameter 𝛽𝑤𝑎𝑙𝑘  shown in the equations. The 

numerical derivative of the parameter in MNL can be derived by the chain rule. 

 

 𝜕𝐿𝐿(𝛽𝑤𝑎𝑙𝑘)

𝜕𝛽𝑤𝑎𝑙𝑘
 = 

𝜕𝐿𝐿(𝛽𝑤𝑎𝑙𝑘)

𝜕P𝑤𝑎𝑙𝑘

𝜕P𝑤𝑎𝑙𝑘

𝜕𝑁16

𝜕𝑁16

𝜕𝑁15

𝜕𝑁15

𝜕𝑁10

𝜕𝑁10

𝜕𝑁5

𝜕𝑁5

𝜕𝛽𝑤𝑎𝑙𝑘
 

(3.16) 
  

= 
1

P𝑤𝑎𝑙𝑘

(𝑁16 − 𝑁15)

(𝑁16)2  
𝑒𝑁10𝒙𝑤𝑎𝑙𝑘 

  
= 

1

P𝑤𝑎𝑙𝑘

(𝑒𝑁6 + 𝑒𝑁7 + 𝑒𝑁8 + 𝑒𝑁9)

(𝑒𝑁6 + 𝑒𝑁7 + 𝑒𝑁8 + 𝑒𝑁9 + 𝑒𝑁10)2  
𝑒𝑁10𝒙𝑤𝑎𝑙𝑘 

 

 Eq. (3.16) further details the sequential procedure of computing the partial 

derivative of 𝐏𝑤𝑎𝑙𝑘  defined in Eq. (3.9) with respect to the parameter 𝛽𝑤𝑎𝑙𝑘 . The 
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description of the intermediate nodes (𝑁𝑖 where i = 6, 7, 8, 9, 10) is illustrated in Figure 

3.2. The rest of the parameters defined in the CG-based MNL model can be calculated 

similarly. Now, utilizing the computational graph for the NL model, we introduce the 

stepwise procedure for computing the partial derivative of the log-likelihood of 𝐏𝑤𝑎𝑙𝑘 with 

respect to the parameter 𝛽𝑤𝑎𝑙𝑘 in Eq. (3.17). 

 

 𝜕𝐿𝐿(𝛽𝑤𝑎𝑙𝑘)

𝜕𝛽𝑤𝑎𝑙𝑘
 = 

𝜕𝐿𝐿(𝛽𝑤𝑎𝑙𝑘)

𝜕P𝑤𝑎𝑙𝑘

𝜕P𝑤𝑎𝑙𝑘

𝜕𝑁26

𝜕𝑁26

𝜕𝑁20

𝜕𝑁20

𝜕𝑁15

𝜕𝑁15

𝜕𝑁10

𝜕𝑁10

𝜕𝑁5

𝜕𝑁5

𝜕𝛽𝑤𝑎𝑙𝑘
 

(3.17) 

 
 = 

1

P𝑤𝑎𝑙𝑘

𝑁27

𝑁22
𝑒𝑁15

1

𝜆𝑚
𝒙𝑤𝑎𝑙𝑘 

 
 = 

1

P𝑤𝑎𝑙𝑘

𝜆𝑚𝑁23

(𝑁16 + 𝑁17 + 𝑁18 + 𝜆𝑚𝑁23)

𝑒𝑁15

𝜆𝑚
𝒙𝑤𝑎𝑙𝑘 

 
 = 

1

P𝑤𝑎𝑙𝑘

log(𝑒𝑁14 + 𝑒𝑁15)

(𝑒𝑁11 + 𝑒𝑁12 + 𝑒𝑁13 + 𝜆𝑚 log(𝑒𝑁14 + 𝑒𝑁15))
𝑒𝑁15𝒙𝑤𝑎𝑙𝑘 

 

 In the nesting structure, we can observe the log-sum parameter 𝜆𝑚 and inclusive 

value term as log(𝑒𝑁14 + 𝑒𝑁15), and the probability of P𝑤𝑎𝑙𝑘 is as shown in Eq. (3.10). In 

a similar manner, the stepwise procedure of estimating the partial derivative of the log-

likelihood of P𝐴1, Eq. (3.13), with respect to the parameter 𝛽𝐴1 in the ICLV model can be 

expressed as: 

 

 𝜕𝐿𝐿(𝛽𝐴1)

𝜕𝛽𝐴1
 = 

𝜕𝐿𝐿(P𝐴1)

𝜕P𝐴1

𝜕P𝐴1

𝜕𝑁23

𝜕𝑁23

𝜕𝑁14

𝜕𝑁14

𝜕𝑁10

𝜕𝑁10

𝜕𝑁8

𝜕𝑁8

𝜕𝑁1

𝜕𝑁1

𝜕𝛽𝐴1
 

(3.18) 

 
 = 

1

P𝐴1
𝑁22 (−

𝑁10

(𝑁14)2
) 𝑒𝑁8𝒙𝐴1 

 
 = 

1

P𝐴1
𝑁22 (−

𝑒𝑁8

(𝑒𝑁8 + 𝑒𝑁9 + 𝑒𝑁3 + 𝑒𝑁4)2
)𝑒𝑁8𝒙𝐴1 

 
 = 

1

P𝐴1

1

𝜎√2𝜋
𝑒

−
(𝐼−𝜁𝑁6)2

2𝜎2 (−
𝑒𝑁8

(𝑒𝑁8 + 𝑒𝑁9 + 𝑒𝑁3 + 𝑒𝑁4)2
) 𝑒𝑁8𝒙𝐴1 
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 With the computed gradients of the log-likelihood function, the TensorFlow-based 

program starts from the initial settings of parameters and convergence criteria. Then these 

numerical tensors are transmitted into the optimizer of BFGS relying on an approximated 

Hessian matrix, with the goal of minimizing the negative log-likelihood function defined 

by the CG-based structure. Based on the iterative algorithm of the optimizer, the inverse of 

the Hessian matrix �̂�−1  is derived such that we can obtain the parameter variance-

covariance matrix as follows: 

 

 

SE(�̂�) = √
𝛔2(�̂�)

𝑁
= √

(�̂�−1)

𝑁
                                                                       

=

[
 
 
 

𝜎2(𝛽1) 𝜎(𝛽1)𝜎(𝛽2)

𝜎(𝛽2)𝜎(𝛽1) 𝜎2(𝛽2)
⋯

𝜎(𝛽1)𝜎(𝛽𝑛)

𝜎(𝛽2)𝜎(𝛽𝑛)

⋮ ⋱ ⋮
𝜎(𝛽𝑛)𝜎(𝛽1) 𝜎(𝛽𝑛)𝜎(𝛽2) ⋯ 𝜎2(𝛽𝑛) ]

 
 
 

𝑛×𝑛

 

(3.19) 

 

where 𝛔2(�̂�) is the variance-covariance matrix of the parameters, �̂�−1 is the approximated 

inverse of the Hessian matrix, and 𝑁 is the total number of observations. The diagonal 

elements of 𝝈2(�̂�) is the variances of parameters. Then, assuming the null hypothesis of 

𝛽𝑜=0, t-statistics of each parameter can be obtained. 

 

 
𝑡�̂�𝑛

=
�̂�𝑛 − 𝛽𝑜

SE(�̂�𝑛)
 (3.20) 

 

 Eq. (3.20) denotes t-statistics of a parameter �̂�𝑛 and 𝑛 ∈ 𝑁, the total number of 

estimated parameters. Detailed information on computing the robust t-ratio can be found 

in the documentation of Biogeme by Bierlaire (2016).  
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 Please note that, while finite differences (numerical differentiation) estimate the 

gradient (the first-order derivative) using the difference between a certain point and the 

point added by a small value, the chain rule-based differentiation (AD) produces the exact 

derivative values. That is, the computational graph-based structures can avoid truncation 

and round-off errors due to numerical differentiation and accordingly improve the 

computational efficiency (Chapra and Canale, 2010). Table 3.2 presents the different 

characteristics of three estimation models.  

Table 3.2. Attributes of Two Leading Estimation Packages and CG-Based Models 

 CG-based Models Biogeme Apollo 

Objective function Log-likelihood (ln𝑃𝑛𝑖(𝜷)) 
Starting values of 

the parameters 

(MNL and NL) 

𝛽𝑖 = 0 where 𝑖 = 0, 1, 2, … , 𝑛; 𝜆𝑁𝐿 = 0.95 

Starting values of 

the parameters 

(ICLV) 

𝛽𝑖 = 0 where 𝑖 = 0, 1, 2, … , 𝑛; 𝜆𝐼𝐶𝐿𝑉 = 1; 𝜎𝑖  and 휁𝑖 =
1 where  𝑖 = 1, 2, 3, 4  

Method of 

computing gradient 

derivative 

Automatic 

differentiation 

through integration 

of domain-specific 

language and low-

level CG layers 

Chain rule of 

differentiation with 

analytical gradient 

Numerical 

derivative using 

advanced 

extrapolation 

methods such as 

Richardson 

extrapolation 

Optimization 

method 

BFGS BFGS BFGS 

Programming 

language 

Python, C++ library  Python, C++ library R 

 

 In general, CG and both open-source packages use the log-likelihood function as 

the objective function, start from the same initial values for estimation, and implement the 

BFGS optimizer with an approximate second-order gradient. CG and Biogeme are coded 

based on the Python language with underlying C++ libraries, and Apollo (0.2.4 version) is 
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written in the R language (computational environment: Windows Intel(R) Core (TM) i7-

9750H CPU @2.60GHz, 6 Core(s), 32 GB RAM, and 500 GB SSD). 

3.5. Model Estimation Results 

This section provides the estimation results of MNL, NL, and ICLV models, and our focus 

is on the investigation of the accuracy and performance of computed gradients through 

various methods. The computational efficiency and numerical accuracy of the CG-based 

models are systematically compared to two established DCM estimation packages for 

MNL and NL models. Using the estimation results of ICLV, we demonstrate the ability of 

the proposed graph-oriented function to construct a simulation-based choice model and 

compare performance to the Apollo package. This research does not focus on the 

behavioral interpretation of the parameters (especially because NHTS data does not furnish 

level of service attributes critical to mode choice model specification, and the synthetic 

dataset is used solely for validating the CG-based models).  

3.5.1. Estimation of MNL and NL with Constants Only 

In Table 3.3, Part I shows the estimation results of MNL including alternative specific 

constants (ASCs) and their statistical properties. It is found that the graph-oriented 

approach shows identical estimation results when compared to Biogeme and Apollo; as 

noted earlier, both packages also implement the BFGS algorithm to derive the coefficients. 

 Part II of Table 3.3 compares numerical differences between the CG-based NL 

model and the benchmark packages. The calibrated coefficients (constants) from CG are 

consistent with the values estimated by the two packages, but the standard errors of the 

Walk constant and the logsum parameter 𝝀 show some numerical inconsistency.  
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 In order to check the source of this inconsistency, we investigate how the packages 

(Biogeme and Apollo) approximate the Hessian matrix of the log-likelihood function with 

respect to each parameter. Biogeme aims to approximate the elements of the Hessian 

matrix based on chain rule differentiation (CRD) and calculate the standard errors of the 

coefficients.  

 Unlike the estimation results through CRD, the proposed modeling approach in this 

paper uses automatic differentiation (AD) to obtain the first order gradient of the log-

likelihood function. Both approaches are based on the chain rule-based differentiation, but 

AD can implement intermediate variables in computing gradients, which enables the 

proposed model to find the analytic gradients efficiently. 
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6
 

 

Table 3.3. Model Estimation Results for MNL and NL 

Part I: MNL 
DSL- based CG Biogeme Apollo 

Coef. Std.err t-ratio Coef. Std.err t-ratio Coef. Std.err t-ratio 

Driving Alone (DA; base) 0 NA NA 0 NA NA 0 NA NA 

Shared Ride (SR) -1.36 0.016 -84.402 -1.36 0.016 -84.402 -1.36 0.016 -84.940 

Transit (TR) -2.93 0.044 -66.547 -2.93 0.044 -66.547 -2.93 0.044 -66.510 

Bike -3.40 0.068 -50.066 -3.40 0.068 -50.066 -3.40 0.068 -50.080 

Walk -3.28 0.051 -63.870 -3.28 0.051 -63.870 -3.28 0.051 -63.780 

LL (initial) // LL (final) -27031.930 // -16192.126 -27031.930 // -16192.126 -27031.940 // -16192.130 

AIC // BIC 32392.252 // 32426.656 32392.252 // 32426.656 32392.260 // 32426.670 

Part II: NL 
DSL-based CG Biogeme Apollo 

Coef. Std.err t-ratio Coef. Std.err t-ratio Coef. Std.err t-ratio 

Driving Alone (DA; base) 0 NA NA 0 NA NA 0 NA NA 

Shared Ride (SR) -1.36 0.016 -84.364 -1.36 0.016 -84.963 -1.36 0.016 -84.960 

Transit (TR) -2.92 0.044 -66.056 -2.92 0.044 -66.581 -2.92 0.044 -66.580 

Bike -3.10 0.072 -43.085 -3.10 0.073 -42.253 -3.10 0.073 -42.250 

Walk -3.12 0.059 -52.523 -3.12 0.062 -50.677 -3.12 0.062 -50.680 

Logsum (𝝀) 0.46 0.117 3.917 2.21* 0.622 3.556 0.45 0.127 3.560 

LL (initial) // LL (final) -27031.94 // -16183.793 -27031.94 // -16183.78 -27031.94 // -16183.78 

AIC // BIC 32377.586 // 32420.592 32377.56 // 32420.57 32377.56 // 32420.57 

*Note: The calculated 𝝀 in Biogeme is expressed as the inverse of 𝝀 (i.e., 1 2.21⁄ ≅ 0.45) 
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 Table 3.4 compares the numeric gradients extracted from two approaches (Biogeme 

and CG-based). In Table 3.4-Part I, we notice the gradients computed through both CRD 

and AD are approaching zero so that the approximated standard errors were closely 

identical to each other. However, as the gradient approximated by CRD in Part II (nested 

logit) is not sufficiently close to zero, the approximated Hessian matrix might yield 

different standard errors compared to the AD-based result. As shown in Eq. (3.15), the 

magnitude of the first-order gradients is a critical indicator for convergence, which is 

required to assure maximization of the log-likelihood functions (Train 2009). Please note 

that the approximation issue of CRD has been investigated and discussed by Brathwaite 

(2017) and Brathwaite and Walker, (2018a). According to Table 3.4-Part I, the absolute 

averages of gradients of CRD and AD are 1.32E-05 and 1.78E-09, respectively. Table 3.4-

Part II shows the absolute average of the gradients of CRD is 1.16E-04 while the 

corresponding value for AD shows 2.83E-07. The gradients produced from both methods 

are significantly small, and the differences depend on the selection of stopping criteria. In 

other words, if we use the same stopping criteria for the estimation of gradients in both 

methods, the discrepancy shown in Table 4 would be vanished.   
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Table 3.4. Estimated Gradients Computed by Chain Rule Differentiation and Analytical 

Gradient (CRD+AG) and Automatic Differentiation (AD) through DSL 

Part I:  

Gradients of 

MNL 

Chain rule differentiation and 

analytical gradient CRD+AG 

Automatic Differentiation 

(AD) through DSL 

Driving Alone 

(DA; base) 

0 0 

Shared Ride (SR)  -9.85144E-05 1.86265E-08 

Transit (TR) 9.86795E-05 -1.19908E-08 

Bike  -3.09112E-05 4.65661E-10 

Walk  -2.21991E-05 0 

Part II: 

Gradients of 

NL 

CRD+AG AD + DSL 

Driving Alone 

(DA; base) 

0 0 

Shared Ride (SR) 1.15E-03 1.86265E-09 

Transit (TR) 5.97E-04 4.08152E-07 

Bike  -2.57E-05 9.76317E-07 

Walk  -1.31E-03 -1.57219E-07 

Logsum (𝝀) 1.71E-04 1.86265E-07 

 

3.5.2. Estimation of MNL and NL with Constants and Explanatory Variables 

This subsection presents estimation results for a fully specified model including 

explanatory variables. Specifically, five categorical variables and one continuous variable 

were included. The utility function of each mode is influenced by the same explanatory 

variables; age groups, gender, education attainment, household income and size, as well as 

travel time. There are 33 estimated parameters, and the detailed description of each 

parameter is provided in Table 3.5 and Table 3.6. Based on the log-likelihood values 

obtained, all methods showed similarity in terms of the estimated coefficients. On the other 

hand, due to the fact that the two packages used different methods to derive the gradients 

(numerical differentiation and chain-rule differentiation, respectively) of the parameters 

while the CG-based structure utilized the analytical approach (i.e., AD), we see differences 
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in the numeric gradients. These differences likely explain the discrepancy in standard errors 

and t-ratio statistics.  

 The gradients computed by CRD and AD are presented in Table 3.7. As expected, 

the gradients computed by the algorithmic differentiation are significantly closer to zero 

compared to the counterpart by the chain rule-based approach with different stopping 

criteria. In terms of the final absolute average of gradients in MNL and NL, CRD provides 

values of 8.72E-05 in MNL and 1.86E-04 in NL. On the other hand, the estimated gradients 

using AD are 9.31E-07 in MNL and 1.07E-08 in NL.  
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Table 3.5. Model Estimation Results for Multinomial Logit (MNL) with Explanatory Variables 

Part III: MNL with explanatory variables 

DSLCG -based 

MNL 

Biogeme Apollo 

Coe

f. 

Std.er

r 

t-

ratio 

Coe

f. 

Std.er

r 

t-

ratio 

Coe

f. 

Std.er

r 

t-

ratio 

Drive Alone (DA; base) 0.00 NA NA 0.00 NA NA 0.00 NA NA 

Shared Ride (SR) -

1.25 

0.07 -

17.69 

-

1.25 

0.07 -

17.41 

-

1.25 

0.07 -

17.38 

Transit (TR) -

9.55 

0.33 -

29.02 

-

9.55 

0.33 -

29.12 

-

9.55 

0.33 -

29.07 

Bike -

3.66 

0.30 -

12.15 

-

3.67 

0.31 -

11.88 

-

3.67 

0.31 -

11.86 

Walk -

0.54 

0.16 -3.36 -

0.53 

0.18 -3.05 -

0.53 

0.18 -3.05 

SR 

Gender (Male=1, Female=0) -

0.10 

0.03 -3.21 -

0.10 

0.03 -3.18 -

0.10 

0.03 -3.17 

Aged 30-44 years (Yes=1, No=0) 0.12 0.04 2.85 0.12 0.04 2.80 0.12 0.04 2.79 

Aged 45-59 years (Yes=1, No=0) -

0.06 

0.04 -1.48 -

0.06 

0.04 -1.47 -

0.06 

0.04 -1.47 

Education attainment: Graduate degree (Yes=1, 

No=0) 

-

0.18 

0.04 -4.88 -

0.18 

0.04 -4.81 -

0.18 

0.04 -4.82 

Household income: $125,000 or more (Yes=1, 

No=0) 

-

0.06 

0.03 -1.83 -

0.06 

0.03 -1.82 -

0.06 

0.03 -1.82 

Household size: Three-person or more (Yes=1, 

No=0) 

0.11 0.03 3.38 0.11 0.03 3.32 0.11 0.03 3.32 

Natural logarithm of travel time (in minutes) -

0.02 

0.05 -0.43 -

0.02 

0.05 -0.43 -

0.02 

0.05 -0.43 

TR 

Gender (Male=1, Female=0) -

0.15 

0.04 -3.35 -

0.15 

0.10 -1.49 -

0.15 

0.10 -1.48 

Aged 30-44 years (Yes=1, No=0) 0.17 0.08 2.17 0.16 0.13 1.30 0.16 0.13 1.31 

Aged 45-59 years (Yes=1, No=0) -

0.20 

0.08 -2.66 -

0.21 

0.13 -1.63 -

0.21 

0.13 -1.63 
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Education attainment: Graduate degree (Yes=1, 

No=0) 

0.45 0.08 5.54 0.45 0.10 4.32 0.45 0.10 4.32 

Household income: $125,000 or more (Yes=1, 

No=0) 

-

0.17 

0.09 -1.90 -

0.17 

0.10 -1.67 -

0.17 

0.10 -1.67 

Household size: Three-person or more (Yes=1, 

No=0) 

-

0.04 

0.06 -0.59 -

0.04 

0.11 -0.34 -

0.04 

0.11 -0.34 

Natural logarithm of travel time (in minutes) 4.33 0.19 22.99 4.33 0.19 22.44 4.33 0.19 22.47 

Bike 

Gender (Male=1, Female=0) 0.62 0.11 5.39 0.61 0.15 3.97 0.61 0.15 3.96 

Aged 30-44 years (Yes=1, No=0) 0.13 0.07 1.83 0.13 0.17 0.74 0.13 0.17 0.74 

Aged 45-59 years (Yes=1, No=0) -

0.36 

0.07 -5.33 -

0.36 

0.18 -2.00 -

0.36 

0.18 -2.01 

Education attainment: Graduate degree (Yes=1, 

No=0) 

0.55 0.08 6.87 0.55 0.14 3.93 0.55 0.14 3.93 

Household income: $125,000 or more (Yes=1, 

No=0) 

0.06 0.08 0.80 0.06 0.14 0.41 0.06 0.14 0.41 

Household size: Three-person or more (Yes=1, 

No=0) 

-

0.16 

0.04 -4.04 -

0.16 

0.15 -1.08 -

0.16 

0.15 -1.08 

Natural logarithm of travel time (in minutes) -

0.25 

0.17 -1.46 -

0.24 

0.20 -1.16 -

0.24 

0.20 -1.16 

Wal

k 

Gender (Male=1, Female=0) -

0.17 

0.06 -3.02 -

0.17 

0.11 -1.60 -

0.17 

0.11 -1.61 

Aged 30-44 years (Yes=1, No=0) -

0.07 

0.07 -1.01 -

0.07 

0.14 -0.55 -

0.07 

0.13 -0.55 

Aged 45-59 years (Yes=1, No=0) -

0.46 

0.08 -5.45 -

0.45 

0.13 -3.44 -

0.45 

0.13 -3.45 

Education attainment: Graduate degree (Yes=1, 

No=0) 

0.27 0.07 3.88 0.26 0.11 2.32 0.26 0.11 2.32 

Household income: $125,000 or more (Yes=1, 

No=0) 

-

0.21 

0.05 -4.10 -

0.22 

0.11 -2.00 -

0.22 

0.11 -2.00 

Household size: Three-person or more (Yes=1, 

No=0) 

-

0.19 

0.04 -4.28 -

0.20 

0.12 -1.59 -

0.20 

0.12 -1.59 
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Natural logarithm of travel time (in minutes) -

2.20 

0.12 -

18.78 

-

2.20 

0.14 -

16.18 

-

2.20 

0.14 -

16.12 

LL (initial) // LL (final) -27031.94 // -

15553.39 

-27031.94 // -

15553.39 

-27031.94 // -

15553.39 

AIC // BIC 31170.78 // 

31446.02 

31170.78 // 

31446.02 

31170.78 // 

31446.02 

 

 

 

Table 3.6. Model Estimation Results for Nested Logit (NL) with Explanatory Variables 

Part IV: NL with explanatory variables 

DSLCG-based NL Biogeme Apollo 

Coef

. 

Std.er

r 

t-

ratio 

Coe

f. 

Std.e

rr 

t-

ratio 

Coe

f. 

Std.e

rr 

t-

ratio 

Drive Alone (DA; base) 0.00 NA NA 0.00 NA NA 0.00 NA NA 

Shared Ride (SR) 
-1.25 0.07 

-

17.61 

-

1.25 0.07 

-

17.43 

-

1.25 0.07 

-

17.43 

Transit (TR) 
-9.49 0.33 

-

29.06 

-

9.49 0.33 

-

28.97 

-

9.49 0.33 

-

28.97 

Bike 
-2.70 0.37 -7.32 

-

2.69 0.37 -7.26 

-

2.69 0.37 -7.26 

Walk 
-0.70 0.18 -3.97 

-

0.70 0.18 -3.96 

-

0.70 0.18 -3.96 

Logsum (𝛌) 
0.56 0.11 5.00 

1.80

* 0.37 4.84 0.56 0.12 4.84 

SR 

Gender (Male=1, Female=0) 
-0.10 0.03 -3.22 

-

0.10 0.03 -3.18 

-

0.10 0.03 -3.18 

Aged 30-44 years (Yes=1, No=0) 0.12 0.04 2.80 0.12 0.04 2.78 0.12 0.04 2.78 

Aged 45-59 years (Yes=1, No=0) 
-0.06 0.04 -1.47 

-

0.06 0.04 -1.46 

-

0.06 0.04 -1.46 

Education attainment: Graduate degree 

(Yes=1, No=0) -0.18 0.04 -4.93 

-

0.18 0.04 -4.85 

-

0.18 0.04 -4.85 
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Household income: $125,000 or more 

(Yes=1, No=0) -0.06 0.03 -1.83 

-

0.06 0.03 -1.82 

-

0.06 0.03 -1.82 

Household size: Three-person or more 

(Yes=1, No=0) 0.11 0.03 3.37 0.11 0.03 3.33 0.11 0.03 3.33 

Natural logarithm of travel time (in minutes) 
-0.02 0.05 -0.40 

-

0.02 0.05 -0.39 

-

0.02 0.05 -0.39 

TR 

Gender (Male=1, Female=0) 
-0.15 0.05 -3.23 

-

0.15 0.10 -1.52 

-

0.15 0.10 -1.52 

Aged 30-44 years (Yes=1, No=0) 0.16 0.08 2.11 0.16 0.13 1.30 0.16 0.13 1.30 

Aged 45-59 years (Yes=1, No=0) 
-0.21 0.09 -2.45 

-

0.21 0.13 -1.64 

-

0.21 0.13 -1.64 

Education attainment: Graduate degree 

(Yes=1, No=0) 0.44 0.05 8.34 0.44 0.10 4.30 0.44 0.10 4.30 

Household income: $125,000 or more 

(Yes=1, No=0) -0.18 0.08 -2.22 

-

0.17 0.10 -1.71 

-

0.17 0.10 -1.71 

Household size: Three-person or more 

(Yes=1, No=0) -0.04 0.04 -0.96 

-

0.04 0.11 -0.38 

-

0.04 0.11 -0.38 

Natural logarithm of travel time (in minutes) 4.30 0.18 23.46 4.30 0.19 22.38 4.30 0.19 22.38 

N
es

te
d

 G
ro

u
p

 

 

Bik

e 

Gender (Male=1, Female=0) 0.46 0.09 4.90 0.46 0.13 3.52 0.46 0.13 3.52 

Aged 30-44 years (Yes=1, No=0) 0.06 0.10 0.63 0.06 0.14 0.41 0.06 0.14 0.42 

Aged 45-59 years (Yes=1, No=0) 
-0.40 0.12 -3.46 

-

0.40 0.15 -2.73 

-

0.40 0.15 -2.73 

Education attainment: Graduate degree 

(Yes=1, No=0) 0.45 0.08 5.61 0.45 0.12 3.79 0.45 0.12 3.79 

Household income: $125,000 or more 

(Yes=1, No=0) 0.00 0.08 0.04 0.00 0.12 0.03 0.00 0.12 0.03 

Household size: Three-person or more 

(Yes=1, No=0) -0.10 0.07 -1.53 

-

0.10 0.13 -0.80 

-

0.10 0.13 -0.80 

Natural logarithm of travel time (in minutes) 
-0.68 0.22 -3.12 

-

0.68 0.22 -3.11 

-

0.68 0.22 -3.11 

Gender (Male=1, Female=0) 
-0.09 0.07 -1.31 

-

0.09 0.10 -0.91 

-

0.09 0.10 -0.91 
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Wal

k 

Aged 30-44 years (Yes=1, No=0) 
-0.01 0.11 -0.07 

-

0.01 0.12 -0.07 

-

0.01 0.12 -0.07 

Aged 45-59 years (Yes=1, No=0) 
-0.41 0.11 -3.77 

-

0.41 0.12 -3.39 

-

0.41 0.12 -3.39 

Education attainment: Graduate degree 

(Yes=1, No=0) 0.34 0.07 4.78 0.34 0.10 3.25 0.34 0.10 3.25 

Household income: $125,000 or more 

(Yes=1, No=0) -0.18 0.08 -2.27 

-

0.18 0.10 -1.78 

-

0.18 0.10 -1.78 

Household size: Three-person or more 

(Yes=1, No=0) -0.21 0.06 -3.28 

-

0.21 0.11 -1.88 

-

0.21 0.11 -1.88 

Natural logarithm of travel time (in minutes) 
-2.02 0.13 

-

15.04 

-

2.02 0.14 

-

14.23 

-

2.02 0.14 

-

14.23 

LL (initial) // LL (final) -26962.012 // -

15547.65 

-27107.14 // -

15547.65 

-26962.02 // -

15547.65 

AIC // BIC 31161.29 // 

31445.13  

31161.29 // 

31445.13  

31161.29 // 

31445.13  

*Note: The calculated logsum coefficient in Biogeme is expressed as the inverse of 𝝀 (i.e., 1 1.7968⁄ ≅ 0.56) 

Table 3.7. Gradients Estimated by Chain Rule Differentiation (CRD) and Automatic Differentiation (AD) through DSL-Based 

CG 

Estimated Gradients 

Part III: Gradients of MNL Part IV: Gradients of NL 

Chain Rule 

Differentiation 

AD+DSL CG Chain Rule 

Differentiation 

AD+DSL CG 

Drive Alone (DA; base) 0 0 0 0 

Shared Ride (SR) -4.54E-04 -3.04E-06 -4.25E-04 3.09E-07 

Transit (TR) -3.47E-03 -2.75E-06 -2.15E-03 8.67E-08 

Bike 1.43E-03 4.66E-07 -1.76E-03 1.12E-07 

Walk -8.73E-04 -6.45E-06 -4.12E-04 1.81E-07 

Logsum (𝛌) NA NA 1.30E-03 4.11E-07 

Shared Ride (SR)     

Gender  5.35E-04 2.84E-07 3.96E-04 1.70E-07 
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Aged 30-44 years  2.35E-03 1.05E-06 8.39E-04 3.11E-08 

Aged 45-59 years  2.48E-03 8.15E-07 4.98E-04 -7.12E-08 

Education attainment: Graduate 

degree  

8.36E-04 3.72E-07 9.26E-04 8.35E-08 

Household income: $125,000 or 

more  

5.04E-04 2.11E-07 6.06E-04 -6.84E-08 

Household size: Three-person or 

more  

-6.85E-04 1.18E-06 3.47E-04 -8.13E-08 

Natural logarithm of travel time  -2.93E-03 2.55E-06 1.30E-03 -2.36E-07 

Transit (TR)     

Gender -9.98E-04 2.25E-06 5.82E-04 1.29E-06 

Aged 30-44 years -5.99E-04 8.00E-06 1.39E-03 5.01E-07 

Aged 45-59 years  4.21E-04 6.02E-06 -5.89E-04 -1.55E-07 

Education attainment: Graduate 

degree 

-3.65E-04 1.22E-06 5.96E-04 -8.60E-07 

Household income: $125,000 or 

more 

-9.01E-04 9.93E-06 -5.88E-04 -6.74E-07 

Household size: Three-person or 

more  

-3.44E-04 9.02E-07 9.93E-04 -1.31E-06 

Natural logarithm of travel time -2.27E-03 -6.47E-06 -3.75E-04 2.17E-07 

Bike     

Gender  8.69E-04 4.04E-06 -7.97E-04 5.82E-07 

Aged 30-44 years 1.04E-03 9.75E-08 -3.04E-05 1.63E-06 

Aged 45-59 years  -6.08E-04 6.12E-07 -2.67E-03 8.69E-07 

Education attainment: Graduate 

degree 

2.07E-04 -3.88E-06 3.00E-03 7.30E-08 

Household income: $125,000 or 

more 

-9.84E-04 5.42E-06 -1.25E-03 1.53E-07 

Household size: Three-person or 

more 

1.35E-04 5.99E-06 5.50E-04 -2.74E-06 

Natural logarithm of travel time  -1.66E-03 -8.02E-06 -1.16E-04 -1.55E-07 
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Walk     

Gender 1.05E-03 -1.27E-06 5.64E-04 -2.08E-07 

Aged 30-44 years  -1.21E-04 6.23E-06 -7.54E-04 7.29E-07 

Aged 45-59 years  9.36E-04 -1.25E-05 2.96E-03 5.58E-07 

Education attainment: Graduate 

degree 

1.57E-03 4.72E-06 -1.02E-03 -2.80E-07 

Household income: $125,000 or 

more 

1.14E-03 1.30E-06 7.14E-04 5.81E-07 

Household size: Three-person or 

more 

1.05E-03 8.26E-06 2.43E-04 -1.15E-06 

Natural logarithm of travel time  -2.08E-03 2.29E-06 1.26E-03 -2.24E-07 



 

87 

3.5.3. Computational Efficiency: MNL and NL  

We now compare the computational efficiency across all methods. As seen in Figure 3.5, 

the CG-based models show the best computational performance, and a slight increase in 

running time is observed in both Figure 3.5 (a) and (b) when more parameters are added. 

Biogeme, which is written in Python, also provides excellent computational performance 

to compute a few parameters. However, for a larger number of parameters to be calibrated, 

the Biogeme package could yield a nonlinear increase in running time, particularly when 

models involve non-concave functions (two or multiple nested structures). The Apollo 

package coded in the R language demands significantly more computing resources. For 

instance, when estimating a large set of parameters (i.e., 89 parameters), the average 

running time of CG-based MNL and NL is 10.6 seconds. On the other hand, the average 

computing times for Biogeme and Apollo are 12 minutes and 35 minutes, respectively. In 

Figure 3.5 (b), it can be seen that the nested logit models estimated by Biogeme and Apollo 

packages require substantially more computational time when the set of variables becomes 

large.  

Figure 3.5. Comparison of Computation Time Between CG-Based Models, Biogeme, 

and Apollo 
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3.5.4. ICLV Model Estimation and Computational Efficiency 

In this subsection, experimental results for the ICLV model are presented. The graph-

oriented model and Apollo use the Monte Carlo simulation-based approach to numerically 

compute the ICLV function. By generating random numbers from a normal distribution, 

we can run the program 500 times. The specified utility function is defined by two 

explanatory variables and one latent variable constructed by the structural equation where 

it is defined by three socio-demographic characteristics. As we assume the indicators as 

continuous variables, components required in the normal distribution function are 

estimated. Table 3.8 demonstrates the ability of the CG-based approach to construct the 

simulation-based choice model, yielding simulated coefficients. Because the estimation 

involves the random sampling procedure and different methods to derive coefficients’ 

gradients, we observe slightly different results between the CG-based ICLV, Biogeme, and 

Apollo. For instance, the initial log-likelihood of CG-based ICLV displays -8405.706 while 

Biogeme and Apollo show values of -8404.603 and -8404.237, respectively. 
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Table 3.8. Model estimation results for ICLV: Monte Carlo experiment 

ICLV 

DSLCG-based ICLV Biogeme Apollo 

Coef. Std.err t-ratio Coef. Std.err 
t-

ratio 
Coef. Std.err t-ratio 

Parameters in the utility specification 

Drug: side-effect -0.002 0.0002 -11.03 -0.002 0.0002 -11.1 -0.002 0.0002 -11.05 

Drug: price -0.173 0.032 -5.45 -0.173 0.032 -5.42 -0.173 0.032 -5.42 

𝜆𝑙𝑎𝑡𝑒𝑛𝑡  0.567 0.089 6.33 0.565 0.089 6.37 0.569 0.089 6.39 

Parameters in the structural equation 

Regular user (Yes=1, No=0) -0.677 0.072 -9.47 -0.678 0.087 -7.78 -0.677 0.087 -7.81 

Education attainment: Bachelor’s 

degree (Yes=1, No=0) 
-0.253 0.054 -4.707 -0.249 0.079 -3.15 -0.248 0.079 -3.14 

Aged 50 or above (Yes=1, No=0) 0.675 0.076 8.92 0.677 0.085 8.01 0.674 0.084 7.99 

Parameters in measurement indicators 

휁Quality  0.562 0.044 12.7 0.557 0.045 12.3 0.564 0.046 12.4 

휁Ingredients  -0.565 0.043 -13.3 -0.564 0.046 -12.2 -0.564 0.046 -12.16 

휁Patent  0.613 0.047 13.1 0.608 0.047 13 0.609 0.047 12.89 

휁Dominance  -0.400 0.036 -11.21 -0.40 0.041 -9.78 -0.401 0.041 -9.78 

𝜎𝑄𝑢𝑎𝑙𝑖𝑡𝑦 1.053 0.032 33.13 1.05 0.03 34.6 1.051 0.031 34.29 

𝜎𝐼𝑛𝑔𝑟𝑒𝑑𝑖𝑒𝑛𝑡𝑠 1.08 0.030 37.4 1.08 0.031 34.8 1.079 0.031 34.89 

𝜎𝑃𝑎𝑡𝑒𝑛𝑡 1.091 0.033 32.74 1.09 0.033 33.6 1.093 0.033 33.51 

𝜎𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒 1.047 0.025 41.57 1.05 0.027 39.5 1.047 0.027 39.48 

LL (initial) // LL (final) -8405.706 // -7552.271 -8404.603 // -7553.033 -8404.237 // -7552.271 

AIC // BIC 15132.434 // 15201.143 15134.07 // 15202.77 15132.54 // 15201.25 
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 In Figure 3.6, the CG-based ICLV shows the best computational performance in 

running Monte Carlo simulation for estimating ICLV, when compared to Biogeme and 

Apollo.  The above limited experiments show that, when the number of simulation runs 

increases, the two-open source packages take more computational time than the CG-based 

approach using DSL. 

 

 
Figure 3.6. Comparison of Simulation Running Time for ICLV Estimation between 

DSLCG-Model, Biogeme, and Apollo   

 

3.6. Summary and Conclusions 

As the influx of real-time streaming data and new mobility technologies appears in the field 

of transportation, transportation planning communities are very interested in systematically 

integrating data-driven models and econometric models. In this paper, to bridge the gap 

between both methods, the functional formulation of discrete choice models is examined 
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in a computational graph framework, which is less known in the areas of discrete choice 

modeling and transportation planning, but has been widely used as underlying building 

blocks for deep learning packages. We hope to clearly show an implementable path to 

empower DCM estimation with the automatic differentiation algorithm embedded in CG, 

through three key findings below. 

(a) A computational graph-based framework offers a highly flexible modeling method 

for applying the emerging techniques of deep learning in econometric methods, 

especially for a wide class of discrete choice models. Furthermore, CG can cover a 

wide range of elementary operations in its graph-oriented model representation 

such that researchers can easily integrate standard econometric models with 

machine learning algorithms that deal effectively with large amounts of time series 

data.    

(b) In particular, for MNL and NL models, we demonstrate that CG-based learning 

process produces consistent estimation results compared to two leading packages, 

namely Biogeme and Apollo. In terms of estimating t-statistics, the chain rule of 

AD provides a robust analytical derivation, leading to converging computed 

gradients toward the optimality conditions. Compared to the other approximated 

gradient methods, the proposed approach generates high-quality estimators through 

a more precise Hessian matrix. Furthermore, by demonstrating the capability in the 

context of the ICLV modeling structure, we also show CG can be used as an 

effective framework in implementing extended choice models. 
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(c) For emerging transportation planning applications with high-dimensional survey 

samples and real-time big data streams, the proposed methodology holds the 

promise of achieving computational efficiency in handling large-scale datasets and 

producing rapid model updates in a cloud computing environment.  

 The computational graph-based architectures demonstrate the flexibility of 

decomposing diverse composite functions and redesigning the functions with a new 

functional form. In the application areas of transportation planning, researchers and 

planners can further use this method to improve the accuracy and time of 

computing/estimating systematic utility functions. As a representative example, one can 

better calculate the logsum term, which is widely used in practice to calculate a broad set 

of accessibility-oriented planning applications (Miller, 2018). One can further extend 

conventional modeling structures such as joint-choice models for modeling travelers’ 

multi-dimensional choice decision-making process.  

 On the one hand, by building choice models through computational graph-based 

domain-specific languages, modelers can integrate such models easily with external deep 

learning architectures, leading to enhanced representation of travelers’ complex activity 

patterns. With modeling structures capable of handling different data sources, 

computational graph-based modeling tools facilitate the estimation of more complex model 

structures, possibly improving interpretability and predictability. More precisely, the 

efficiency of the CG-based structures can help to rapidly estimate models that can be 

applied to synthetic population datasets, which are generated by microsamples and census-

based marginal distributions (Ye et al., 2009; Sun et al., 2018). Additionally, since the 
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graph-based structure can facilitate tensor decomposition (TD) efficiently, planners are 

able to utilize the synthesized data and different large datasets (e.g., mobility trajectories 

or smart-card records), for a better understanding of travelling patterns (Sun and Axhausen, 

2016).  
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CHAPTER 4 

4. COMPUTATIONAL GRAPH-BASED MATHEMATICAL PROGRAMMING 

REFORMULATION FOR INTEGRATED DEMAND AND SUPPLY MODELS 

As transportation systems grow in complexity, analysts need sophisticated tools to 

understand travelers’ decision-making and effectively quantify the benefits of proposed 

strategies. The transportation community has developed integrated demand-supply models 

to capture the emerging interactive nature of transportation systems and serve diverse 

planning needs and encompass broader solution possibilities. Recently, utilizing the 

advances of machine learning techniques, researchers have also recognized the need for 

different computational models capable of fusing/analyzing different data sources. Inspired 

by this momentum, this research aims to propose a new modeling framework to 

analytically bridge travel demand components and network assignment models with 

machine learning algorithms. Specifically, to establish a consistent representation of such 

aspects between separate system models, we introduce several important mathematical 

programming reformulation techniques, namely, variable splitting and the augmented 

Lagrangian relaxation, to construct a computationally tractable nonlinear unconstrained 

optimization program. Furthermore, to find equilibrium states, we apply automatic 

differentiation (AD) to compute gradients of decision variables in a layered structure with 

the proposed model represented on the basis of computational graphs (CGs). Thus, this 

reformulated model offers a theoretically consistent framework to express the gap between 

demand and supply components and lays the computational foundation for utilizing a new 

generation of numerically reliable optimization solvers. Using a small example network 
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and Chicago skeleton transportation network, we examine the convergency/consistency 

measures of this new differentiable programming-based optimization structure and 

demonstrate the computational efficiency of the proposed integrated transportation demand 

and supply models.  

4.1. Introduction 

In this study, we aim to develop a new theoretically sound and computationally efficient 

framework to couple transportation demand and network models for quantifying the 

interaction and the impact of a wide range of congestion mitigation strategies. In particular, 

this research adapts a new generation of computational methods and optimization paradigm 

from the machine learning community, namely computational graphs (CGs) and 

backpropagation, to uniquely capture the layered modeling structure in the integrated 

demand-supply model. Furthermore, this analytically driven formulation and resulting 

computational architecture would extend abilities to ensure a high degree of consistency 

between transportation demand and supply models while sufficient descriptive capability 

for the interactive transportation system maintains, answering pertinent questions asked by 

transportation decision-makers. In the subsequent section, we first address prior work of 

how the community has developed integrated transportation models.  

4.1.1. Integration of Transportation Demand and Network Models 

As increasing complexity of planning transportation infrastructure in urban areas, 

transportation modeling community has dedicated great efforts to the development of 

integrated transportation demand and network models. Demand components are generally 
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modeled by trip-based or activity-based approaches, and network model structures are 

represented through static user equilibrium or dynamic traffic assignment. Then, to reach 

a consistent representation for travel time measures across different steps, a feedback loop 

structure is constructed from the lower-level route assignment to upper-level trip 

generation, destination choice and mode choice layers. To capture the full spectrum of 

traveler dynamics and resulting time-varying traffic congestion, recent efforts in the last 

20 years have been actively devoted to integrating tour-based modeling approaches on the 

demand side and dynamic traffic assignment models, on the supply side (Esser and Nagel., 

2001; Lam and Huang, 2003; Raney et al., 2003).  

 As many implementations adopt a microsimulation approach to linking 

transportation demand and network models, various convergence criteria are defined based 

on a fixed-point formulation, and the software-oriented system coupling calls for iterative 

solution methods using computed travel time skim profiles (Lin et al., 2008; Hao et al., 

2010; Pendyala et al., 2012). For instance, Lin et al., (2008) proposed the fixed-point 

formulation within a variational inequality framework, with a solution based on commonly 

used method of successive averages (MSA). To further integrate travel demand and supply 

models with long-term land use evolution, Pendyala et al. (2012) developed a tightly 

coupled framework across three open-source packages, with various iterative processes 

accommodating different time updating resolutions, e.g., enroute real time decisions, post-

trip learning within a day, as well as year-by-year long-term decision adjustment. 

 Many other related studies have also implemented a similar system integration 

structure with a feedback loop system between underlying subcomponents, and those 
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research efforts with different defining systematic structures can be examined according to 

three aspects, as noted by Boyce et al. (2004), mathematical formulations, solution methods, 

and convergence criteria (Zhou et al., 2009; Yao et al., 2014; Verbas et al., 2016; Chu, 

2018). In the integration modeling studies, specifically developed for combined modal split 

and traffic assignment problem (CMSTA), researchers have developed different model 

formulations and corresponding solution algorithms to find sets of optimal path flow 

patterns and generalized travel costs under different criteria (e.g., user equilibrium and 

stochastic behavior) to quantify system behavior among system aspects and traveler choice. 

The recent representative studies linking travel demand and transportation supply is 

systematically reviewed and summarized in Table 4.1.
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Table 4.1. Recent Studies for Coupling Demand-Supply Models and Corresponding Solution Algorithms 

Publication 

 

Systematic 

flows  

Formulations for 

interactive systems 

Gradient 

Computati

on 

Step sizes for finding 

optimal flow patterns 

and travel costs 

Solution algorithms for 

the demand and supply 

variables 

Florian et al. 

(2002) 
flow → cost  

Variational 

inequality (VI) 
No 

Predetermined 

decreasing sequence 

External Block Gauss-

Seidel decomposition 

with MSA 

Boyce et al. (2008) flow → cost Fixed point (FP) No 
Predetermined 

decreasing sequence 

Averaging with fixed 

weights and MSA 

Lin et al. (2008) flow → cost  
Variational 

inequality (VI) 
No 

Predetermined 

decreasing sequence 

External sequential 

process with MSA 

Zhou et al. (2008) 

and Lu et al. 

(2009) 

flow ↔ cost Gap function No  
Predetermined 

decreasing sequence 

Internal circular process 

with MSA 

Zhou et al. (2009) flow → cost 
Variational 

inequality (VI) 
No  Rule-based algorithm 

External sequential 

process with the self-

adaptive GLP projection  

Cantarella et al. 

(2015) 
flow ↔ cost Fixed point (FP) No 

Predetermined 

decreasing sequence 

Internal circular process 

with MSA 

Ryu et al. (2017) flow → cost 
Mathematical 

program (MP) 
No 

Predetermined 

decreasing sequence 

External gradient 

projection (GP)  

This paper 

Behavior 

choice ↔ 

flow ↔ cost 

Gap function-based 

reformulation using 

LR 

Yes 

 

 

 

 

Analytic gradients via 

automatic 

differentiation (AD) 

Internal circular process 

with gradient-based 

numerical optimization 

(e.g., BFGS) 
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 Table 4.1 indicates systematic directions of coupling demand and supply, 

formulations for interactive modeling systems, presence of gradients’ information, step 

sizes used in updating the defined formulations, as well as the solution algorithms. Most 

of the existing studies on the integration of demand-supply have shown one direction or 

bi-directional systematic flows when finding optimal path flow patterns and generalized 

travel costs. In addition, different solution algorithms (e.g., MSA, gradient projection (GP), 

or self-adaptive gradient projection (GLP)) are proposed with predetermined step sizes or 

heuristic-based step sizes to find the optimal solutions in the interactive modeling systems 

built by VI, FP, or MP. In comparison, this paper focuses on formulating an analytically 

defined comprehensive framework to theoretically map between behavior choice, path 

flow patterns, and the travel costs and solve the optimization problem using analytic 

gradients obtained by automatic differentiation (AD).  

4.1.2. Contributions: Analytical Gradient-Based Optimization and Computational 

Algorithm  

While the existing literature covers a wide variety of mathematical frameworks and 

solutions for coupling travel demand and supply models, there are still two long-standing 

challenges from a mathematical modeling perspective, that is, how to efficiently evaluate 

and propagate derivatives of variables defined in different components, and how to 

recognize two essential modeling structures: (i) hierarchical layered process and (ii) 

complex feedback loop across different layers. Our recent work has used a CG based 

approach to describe various modeling elements; however, there are still two specific 

methodological issues to be addressed to fully utilize the new generation of optimization 

solvers (Wu et al., 2016; Kim et al., 2021).  
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• First, if a hierarchical system commonly expressed by a fixed-point approach as 

shown in Appendix A is computed by a feedforward approach, which calculates 

gradients of input variables and sends their information towards outputs, then the 

computational performance is significantly dependent on the number of variables 

to be estimated and optimized, eventually resulting in exponential computing time 

(Olah, 2015). In a transportation modeling perspective, a sequential structure 

layered by origin, origin-destination, and numerous paths and their link information 

includes different number of 𝑛 variables in this four-layered architecture. In this 

case, the number of possible paths to solve the decision variables is 𝑛4 . When 

dealing with a larger network and set of variables 𝑛, feedforward computation leads 

to a combinatorial explosion (Olah, 2015).  

• Second, a theoretical modeling framework for formulating an integrated supply-

demand model is needed. Particularly, gap function-based methods to find 

equivalent states for the two components, that is transportation demand and 

network assignment, are required to link transportation demand and supply tightly 

and measure the extent of inconsistency (Lu et al., 2009). 

 Motivated by these two key issues, feedforward computation and equivalent states, 

this research focuses on establishing a novel framework for minimizing the inconsistency 

gap of the submodels and enhancing convergence for interactively layered structures. In 

particular, the concept of backpropagation, which is a core algorithm of training machine 

learning models (LeCun et al., 2015), is leveraged; it has been recently applied in 

optimizing/estimating conventional transportation planning models (Wu et al., 2018; Kim 
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et al., 2021). According to LeCun et al., (2015) and Olah, (2015), the backpropagation 

algorithm (reverse-mode differentiation) enables reduction of computing time to get 

gradients. For instance, the computational complexity of finding optimality in the four-

layered structure with 𝑛 variables can be 4𝑛, decreasing the cost of calculation as well as 

solving the feedforward computation issue.  

 To execute this algorithm, the integrated modeling framework is reformulated by a 

graph-oriented programming language available to derive gradients of the decision 

variables using automatic differentiation (AD), where the gradients of given functions are 

computed based on the chain rule. In order to systematically describe the inherent 

connections between the chain rule and AD, we provide detailed explanations in Appendix 

B. The details of the advantages of this algorithm can be found in Wright and Nocedal, 

(1999) and Baydin et al., (2017). Furthermore, to achieve the top-down process and 

discover equivalent states, a new constraint for tightly bridging demand/supply 

components is identified using the variable splitting method (Ortuzar and Willumsen, 

2001). To find optimal values for network equilibrium states and the linking constraints, 

the objective function is formulated by the augmented Lagrangian relaxation with the 

computational graphs. 

 This research highlights the benefits of automated calculation of gradients in a 

complex and nonlinear structure with multiple layers of composite functions, and the 

iterative computing of step size is handled through the underlying solvers, namely 

TensorFlow (Abadi et al., 2016).  Thus, we shift more focus on model reformulation to 

comprehensively incorporate network flow, utility, choice probability at different choice 
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dimensions, while still taking advantage of emerging computing architecture. To 

demonstrate the unconstrained non-linear optimization program, a simple case study and a 

real network (Chicago transportation network) are examined.  

 The remainder of this paper is organized as follows. Section 4.2 presents the 

problem statement. Section 4.3 describes the formulation of variational inequality for DUE 

and fixed-point equations to sequentially link each interactive variable used in the model. 

The subsequent section shows the solution algorithm (variable splitting and Lagrangian 

relaxation applied in reverse-mode differentiation (i.e., AD)). In Section 4.5, the 

performance of the integrated transportation model is evaluated using examples of traffic 

networks. Lastly, Section 4.6 summarizes our contributions and introduces the extension 

of the current version.   

4.2. Problem Statement and Conceptual Reformulation Framework 

4.2.1. The Integrated Demand-Supply Framework 

The deep integration of travel demand and network models is of much interest, and 

interested readers are referred to a recent effort along this line as part of the SHRP II C10 

project (Smith et al., 2018). Typically, the demand side component shares a list of 

individual trips to the supply side model, and the aggregated level of service (LOS) in the 

form of travel time matrix (i.e., skim) for all possible trips across OD pairs are fed back 

from the supply side model to the demand side. Through multiple iterations of flow 

adjustment, the ultimate goal is to reduce inconsistent time-of-day outcomes between the 

experienced travel time from the demand side and the expected travel time from the supply 

side. Theoretically, the linkage between different components should be clearly defined, 
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within the temporal equilibrium for the demand side and behavioral consideration on the 

supply side. Without loss of generality, this research aims to find stable trip demand pattern 

and equilibrated path flows that minimize system-wide inconsistency measures. 

 Mathematically, given a transportation network with a set of nodes 𝑁, and a set of 

links 𝐴, the problem aims to find a consistent traveler behavior and network performance 

solution subject to several demand and supply constraints. In the demand-side network, 

nodes are designated as activity locations of traffic analysis zones for the high-level traveler 

behavioral model, and modeling links indicate the direction of the choice behavior. In the 

supply-side network, the system performance associated with link traveling costs and path 

flows is computed on a given physical road or multimodal network. The accessibility/travel 

costs between OD pairs are selected as the key consistency/convergence criterion in the 

demand-supply integration under consideration 

 The conceptual model structure is shown in Figure 4.1, which denotes the layered 

system with a set of physical nodes 𝑛 (𝑛 ∈ 𝑁), a set of physical links 𝑙 ∈ 𝐴, as well as a 

set of links related to the mode choice behaviors. This sequential modeling data flow starts 

from origin node 𝒐. Based on the scale of accessibility costs (𝑐𝑜𝑑(�̅�) and 𝑐𝑜𝑑(𝑚≠�̅�)), 𝑓𝑜𝑑(�̅�) 

denotes the number of trips, selected by trip makers with alternative modes �̅� . The 

distribution of path/link volumes can also be quantified in 𝑥𝑜𝑑𝑝𝑓(�̅�) and 𝑥𝑜𝑑𝑝𝑎(�̅�), path 

flows on freeway corridor 𝑓 and arterial corridor 𝑎; inside the path flows, the link flows 

are mapped by an incidence matrix, and the Bureau of Public Roads (BPR) function are 

applied to compute their link travel times. 𝑡𝑜𝑑𝑝𝑓
 and 𝑡𝑜𝑑𝑝𝑎

 are travel time variables 

corresponding to each path alternative. Travel cost 𝑐𝑜𝑑(�̅�) on a certain OD pair should be 
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computed to meet the DUE condition. Lastly, to minimize the gap of the shared variables 

𝑐𝑜𝑑(�̅�)  between both demand and supply side, the feedback loop system is activated, 

leading to a tightly coupled model system. This simplified connectivity aims to 

demonstrate a parsimonious structure to bridge behavioral elements and network 

performance elements.  

 
Figure 4.1. Conceptual Illustration of Integrated Supply-Demand System in a Simple 

Network 

 

 In the above small example, there are two essential decision variables: 

accessibility/travel costs 𝑐𝑜𝑑(�̅�) and path flow 𝑥𝑜𝑑𝑝𝑓(�̅�) and 𝑥𝑜𝑑𝑝𝑎(�̅�), dependent on the 

number of available paths and the number of OD pairs. It should be noted that, there exists 

a set of composite functions to compute travel cost 𝑐𝑜𝑑(�̅�), jointly determined by the choice 

model and the network models. Specifically, 𝑡𝑜𝑑𝑝𝑓
and 𝑡𝑜𝑑𝑝𝑎

 are determined by the volume 

delay or link performance function and a path-link incidence matrix. The generic 

formulation of the simplified demand-supply integration program is provided in the 

following subsection. The indices, variables, and parameters used in the formulation are 

listed in Table 4.2. Before discussing the equations for the demand side and the supply side, 
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we would like to first introduce a variable splitting method to reformulate the feedback 

loop system. 

Table 4.2. Notation 

Network information 𝐺 = (𝑁, 𝐴) and indices: 

𝑇𝑜 Total demand on origin node 𝑜 

𝑇𝐷𝑜𝑑 Total demand on destination node 𝑑 

𝑜 Subscript for an origin node, 𝒐 ∈ 𝑵 

𝑑 Subscript for a destination node, 𝒅 ∈ 𝑵 

𝑝 Subscript for a path, 𝑝 ∈ 𝑃(𝑜, 𝑑) 

�̅� 
Subscript for a path to represent the last path variable of a set of path 

variables 𝑝 ≠ �̅�  
(𝑚)  Alternative modes 𝑚 (a set of alternative modes); 𝑚 = �̅� (auto mode) 

and 𝑚 ≠ �̅� (transit)  

CAP𝑎 Link capacity on link 𝑎 

𝑎 Index for a link, 𝑎 = 1,2, … , |𝐴| 
(𝑙) Superscript for a layer index  

  

Input parameters/values: 

휃 Dispersion parameter 

𝜆, 𝜌 Lagrange multiplier and penalty term 

𝛿𝑜𝑑𝑝𝑎 Incidence matrix for the linkage between path layers and link layers 

𝛼, 𝛽 The BPR function parameters (e.g., 𝛼 = 0.15 and 𝛽 = 4) 

𝐹𝐹𝑇𝑇𝑎 Free flow travel time on a link, a   

  

Decision and intermediate variables: 

𝑓𝑜𝑑(�̅�) Number of trips from node 𝑜 to node 𝑑 by mode �̅�  

𝑃(𝑜, 𝑑) Set of all feasible paths for a given pair (𝑜, 𝑑) 

𝑥𝑜𝑑𝑝(𝑚) Number of trips from node 𝑜 to node 𝑑 in path 𝑝 by mode 𝑚 

𝑥𝑜𝑑𝑝(�̅�) Number of trips from node 𝑜 to node 𝑑 in path 𝑝 by mode �̅� 

𝑡𝑜𝑑𝑝 Path travel time cost from node 𝑜 to node 𝑑 in path 𝑝 

𝑐𝑜𝑑(𝑚) Common variable for supply side and demand side in a given 𝑜𝑑 pair 

with mode 𝑚  

𝑐𝑜𝑑(𝑚)
𝑠  Least travel cost, min 𝑡 in a given 𝑜𝑑 pair (supply side) with mode 𝑚 

𝑐𝑜𝑑(𝑚)
𝑑  Accessibility cost in selecting alternative modes (demand side) with 

mode 𝑚 

𝑣𝑎 Link flows on link 𝑎 

𝜏𝑎 Link travel time on link 𝑎 
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4.2.2. Variable Splitting Method for Enabling Problem Decomposition of Feedback 

Loops  

In general, successive feedback loops between different elements are used to model 

mutual-causal interaction in transportation networks and ensure equilibrium states (Lin et 

al., 2008; Pendyala et al., 2012; Chu, 2018). Specifically, the potential travel demand is 

estimated by econometric models, and it is sent to network models to measure network 

performance such as level of service (LOS). Then, the information returns to the demand 

side to re-generate the potential trips and their attributes. This iterative procedure is 

continuously performed until integrated models meet convergence criterion. From the 

perspective of problem decomposition, we highlight the need to mathematically “decouple” 

common variables (i.e., costs) used in both sub-problem models (demand and supply).  

 A key principle in many large-scale system optimization applications is to first 

decompose the constraints into “easy” vs. “difficult” constraints and then dualize the 

“difficult” constrains to enable the resulting components or subproblems can be efficiently 

solved (Fisher et al., 1997). On the other hand, variable splitting is another important 

problem decomposition method, which splits the common variables and create an 

additional coupling constraint between “duplicated” variables, and then dualize the newly 

introduced coupling constraint in the objective function to generate two “easy-to-solve” 

subproblems (Guignard, 2003). Mathematically, consider a general mathematical function 

to link the two demand and supply subsystems with essential constraints. The integration 

optimization problem can be described as min
𝑥

{𝐼(𝑥)|𝐴𝑥 ≤ 𝑏, 𝐶𝑥 ≤ 𝑑, 𝑥 ∈ 𝑋} where 𝐼(𝑥) 

indicates a function for the subsystem integration,  𝑥 is a vector of demand and supply 

variables that we need to find optimal solutions, and the constraints, 𝐴𝑥 ≤ 𝑏 and 𝐶𝑥 ≤ 𝑑, 
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are associated with the demand and supply sides respectively. Based on the concept of the 

variable splitting method, we can decompose part of common cost variable 𝑥 used in both 

subsystems/constraints as follows: 𝑥 → 𝑥𝑑  and 𝑥𝑠 , which leads to min
𝑥𝑑,𝑥𝑠

{𝐼(𝑥)|𝐴𝑥𝑑 ≤

𝑏, 𝐶𝑥𝑠 ≤ 𝑑, 𝑥𝑑 ∈ 𝑋 and 𝑥𝑠 ∈ 𝑋, 𝑥𝑑 = 𝑥𝑠}.      

4.3. Formulation of the Integrated Demand-Supply Optimization (IDSO) Program 

This section describes a sequence of reformulation steps for IDSO, with the augmented 

Lagrangian relaxation function as the core solution algorithm in a stepwise manner.  

M0: Original Form with Objective Functions and Constraints 

Without loss of generality, this paper uses a logistic regression model to compute the 

number of destination choices and the number of trips associated with alternative modes. 

For instance, the destination choices and the number of trips selecting auto mode are 

expressed as follows: 

 
𝑇𝐷𝑜𝑑 = 𝑇𝑜 ×

𝑒𝑈(𝑗)

∑ 𝑒𝑈(𝑘)
𝑘

, ∀𝑜 (4.1a) 

 
𝑓𝑜𝑑(�̅�) = 𝑇𝐷𝑜𝑑 ×

𝑒−𝜃𝑐𝑜𝑑(�̅̅̅�)+𝑈(�̅̅̅�)

𝑒−𝜃𝑐𝑜𝑑(�̅̅̅�) +𝑈(�̅̅̅�) + ∑ 𝑒−𝜃𝑐𝑜𝑑(𝑚) +𝑈(𝑚)
𝑚≠�̅�

, ∀𝑜, 𝑑 (4.1b) 

 

 Eq. (4.1a) represents the product of the total demand on origin 𝑜 and the choice 

probability of a destination and derives the number of the total demand on destination 𝑑, 

𝑇𝐷𝑜𝑑. 𝑈(𝑗) is the utility function, which can be defined by spatial separation between origin 

𝑜 and destination 𝑑 and attractions at 𝑑 (Fotheringham 1986).  

 Depending on the accessibility cost 𝑐𝑜𝑑(�̅�)  and dispersion parameter 휃 , the 

potential number of trips/riders in selecting auto modes can be computed. With the 

assumption that other behavioral parameters (i.e., socio-demographic characteristics) are 
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given by choice modeling estimators (e.g., Bierlaire 2003; Kim et al., 2021), systematic 

utility function 𝑈(�̅�), which measures the satisfaction in selecting the alternative mode, is 

assumed to be constant values for simplicity. Eq. (4.1b) denotes an essential form of the 

disutility/utility function, leading to the number of trips, 𝑓𝑜𝑑(�̅�) , from origin 𝑜  to 

destination 𝑑 with mode �̅�. It should be noted that in order to simplify the complexity of 

decision-making processes, we first consider the integration of Eq. (4.1b) with a network 

model. 

 Now, in order to assign the trip information in a network, the variational inequality 

(VI) condition is formulated to find DUE states (Zhou et al., 2009; Lu et al., 2009). With 

path flow 𝑥𝑜𝑑𝑝(�̅�) and path travel cost 𝑡𝑜𝑑𝑝(�̅�), optimal solutions that satisfy the Wardrop’s 

principle can be obtained: 

DUE condition:  

 𝑥𝑜𝑑𝑝(�̅�)(𝑡𝑜𝑑𝑝(�̅�) − 𝑐𝑜𝑑(�̅�)) = 0, ∀𝑜, 𝑑, 𝑝 ∈ 𝑃(𝑜, 𝑑) (4.2) 

 

Minimum cost definitional constraint:  

 𝑡𝑜𝑑𝑝(�̅�) − 𝑐𝑜𝑑(�̅�) ≥ 0, ∀𝑜, 𝑑, 𝑝 ∈ 𝑃(𝑜, 𝑑) (4.3) 

 

where 𝑐𝑜𝑑(�̅�) is the least travel time cost traveled from 𝑜 to 𝑑 with mode �̅�. The practical 

interpretation of Eq. (4.2) and (4.3) is that traffic path flows are assigned into least-cost 

paths until reaching equilibrium states across all possible paths (Lo and Chen, 2000). 

Moreover, to assure the path flow conservation and the non-negativity for path flows, the 

additional constraints are written as follows: 

Flow conservation and non-negativity constraints: 

 ∑ 𝑥𝑜𝑑𝑝(�̅�)

𝑝∈𝑃(𝑜,𝑑)

= 𝑓𝑜𝑑(�̅�), ∀𝑜, 𝑑 (4.4) 

 𝑥𝑜𝑑𝑝(�̅�) ≥ 0, ∀𝑜, 𝑑, 𝑝 ∈ 𝑃(𝑜, 𝑑) (4.5) 

 



 

109 

 Eq. (4.4) indicates the summation of the path flows is equal to the number of trips 

obtained from Eq. (4.1b). In order to clearly express the complex composite functions 

involved with the constraints, the fixed point-based approach is employed. Next, the path 

travel time costs, 𝑡𝑜𝑑𝑝(�̅�), are calculated, and an incidence matrix, which connects path 

layers and link layers, is embedded to derive link performances and path travel time costs.  

 
𝑣𝑎 = ∑∑ ∑ 𝑥𝑜𝑑𝑝(�̅�) × 𝛿𝑜𝑑𝑝𝑎

𝑝∈𝑃(𝑜,𝑑)𝑑𝑜

 
(4.6a) 

 𝜏𝑎 = 𝐹𝐹𝑇𝑇𝑎 (1 + 𝛼 (
𝑣𝑎

CAP𝑎
)
𝛽
), ∀𝑎 (4.6b) 

 𝑡𝑜𝑑𝑝(�̅�) = ∑𝛿𝑜𝑑𝑝𝑎 × 𝜏𝑎

𝑎

, ∀𝑜, 𝑑, 𝑝 ∈ 𝑃(𝑜, 𝑑) (4.6c) 

 𝑐𝑜𝑑(�̅�) = min
𝑝∈𝑃(𝑜,𝑑)

{𝑡𝑜𝑑𝑝(�̅�)} (4.6d) 

 

 Eqs. (4.6a) – (4.6d) illustrate the stepwise computation to obtain the final layer of 

supply-side variable as the path travel time costs. The first step computes the link volumes 

using the results of Eq. (4.1b) and the path-link incidence matrix, 𝛿𝑜𝑑𝑝𝑎 (if link 𝑎 is on path 

𝑝 , then 1 otherwise 0). The subsequent step uses the Bureau of Public Roads (BPR) 

function to obtain the link travel time 𝜏𝑎, from origin node 𝑜 to destination node 𝑑 along 

path 𝑝. Lastly, by multiplying the link-path incidence matrix 𝛿𝑜𝑑𝑝𝑎 and 𝜏𝑎, we can derive 

the path travel time costs. This layered composite function then evaluates the least travel 

time cost 𝑐𝑜𝑑(�̅�)  using min
𝑝∈𝑃(𝑜,𝑑)

{𝑡𝑜𝑑𝑝(�̅�)} , which can be explained as a fixed-point 

formulation (Appendix A). Furthermore, in order to convert constrained program with 

equality constraints to a unconstrainted program, a reduced gradient method for a typical 

path flow-based formulation (Jayakrishnan et al., 1994; Chen et al., 2001) is used in this 

study. Instead of expressing the flow conservation in Eq. (4.4), we consider non-shortest 
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path set as non-basic variable,  the shortest path flow as the basic variable, so that the 

number of variables can be reduced through the linear composition function 𝑥𝑜𝑑�̅�(�̅�) =

 𝑓𝑜𝑑(�̅�) − ∑ 𝑥𝑜𝑑𝑝(�̅�) 𝑝∈𝑃(𝑜,𝑑);𝑝≠�̅�
.  

 Thus, the constraints defined in Eqs. (4.1b) – (4.6d) in the original nonlinear 

optimization program is now expressed as a set of composite functions which are all 

embedded in the objective function. 

min Eq. (4.2) written as ∑ ∑ ∑ 𝑥𝑜𝑑𝑝(�̅�)(𝑡𝑜𝑑𝑝(�̅�) − 𝑐𝑜𝑑(�̅�))𝑝∈𝑃(𝑜,𝑑)𝑑𝑜  (4.7a) 

variable-

coupling 

equations 

Eq. (4.1b) = 𝑓𝑜𝑑(�̅�) (4.7b) 

Eq. (4.4) written as 𝑥𝑜𝑑�̅�(�̅�) = 𝑓𝑜𝑑(�̅�) − ∑ 𝑥𝑜𝑑𝑝(�̅�)𝑝∈𝑃(𝑜,𝑑)
𝑝≠�̅�

, ∀𝑜, 𝑑 (4.7c) 

Eq. (4.3)  

 Eq. (4.5)  

 Eq. (4.6a) – (4.6d)   

 

 In this optimization model, Eq. (4.7a) is the primal objective function with a 

number of variable-coupling functions to link the demand model and the network model. 

Eqs. (4.6a) – (4.6d) show link volume 𝑣𝑎 is defined by the summation of the corresponding 

path flows, 𝑥𝑜𝑑𝑝(�̅�)  with path-link incidence matrix 𝛿𝑜𝑑𝑝𝑎 . Then, link travel time 𝜏𝑎  is 

computed by the BPR function, and the path flow travel time 𝑡𝑜𝑑𝑝(�̅�) is obtained by the 

product of 𝜏𝑎 and the link-path incidence matrix. Please note that to fulfill the shortest path-

based assignment, we use the minimum function to find the lower cost in 𝑡𝑜𝑑𝑝(�̅�), finding 

the least travel cost 𝑐𝑜𝑑(�̅�) (Jayakrishnan et al., 1994). 

 It is important to remark that the proposed nonlinear model M0 can be extended to 

a rich set of demand and supply forms, in different ways of coding complex nonlinear 

functional forms. First, the relatively simple destination choice model (i.e., travel demand 
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component) can be extended into more realistic behavior models. For instance, the choice 

modeling structure can describe more details of travelers’ decision-making patterns on the 

basis of the activity-based framework studied by Bowman (1998). Using the concept of 

Downward (conditionality) and Upward (accessibility), the activity-based modeling 

structure can be designed by the top-down modeling formulation. Specifically, by 

synthesizing different utility functions defined in the hierarchically layered system (long-

term decision and daily scheduling decision including tours and trip/stop), modelers can 

handle the conditionality of each choice model. Then, defining log-sums variables (i.e., the 

expected maximum utility function), we can also design the accessibility between each 

layer. Such a nested system of discrete choice models can model travelers’ activity 

sequences theoretically where we can use the analytical behavioral models.  

 Second, the volume-delay function (VDF), expressed as the Bureau of Public Roads 

(BPR) function, can be formulated as queue-evolution based VDF (Belezamo, 2020) and 

other types of deterministic fluid based models using polynomial time-dependent arrival 

rates (Newell, 1968; Newell, 1982). According to the functional forms proposed, the closed 

form solutions from the deterministic fluid-based queuing models can be systematically 

defined, through computing the average system-wide delay as a function of queued demand 

and ultimate capacity, which can help us incorporate more realistic system performance 

models.  

 In a nutshell, the detailed examination of such nonlinear functional forms found in 

the travel demand modeling and the network modeling can be applicable in our approach 

and will be conducted.      
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M1: Variable Splitting 

In the M0 module, the common variable appears in both systems, which means 𝑐𝑜𝑑(�̅�) is 

indicated as accessibility cost in the choice model and travel cost in the network model. To 

handle the common variable simultaneously, the variable splitting method is used: 

𝑐𝑜𝑑(�̅�) → 𝑐𝑜𝑑(�̅�)
𝑑  and 𝑐𝑜𝑑(�̅�)

𝑠 .   

min Eq. (4.7a) written as ∑ ∑ ∑ 𝑥𝑜𝑑𝑝(�̅�)(𝑡𝑜𝑑𝑝(�̅�) − 𝑐𝑜𝑑(�̅�)
𝑠 )𝑝∈𝑃(𝑜,𝑑)𝑑𝑜  (4.8a) 

variable-

coupling 

equations 

Eq. (4.3) written as 𝑡𝑜𝑑𝑝(�̅�) − 𝑐𝑜𝑑(�̅�)
𝑠 ≥ 0, ∀𝑜, 𝑑, 𝑝 ∈ 𝑃(𝑜, 𝑑) (4.8b) 

Eq. (4.6d) written as 𝑐𝑜𝑑(�̅�)
𝑠 = min{𝑡𝑜𝑑𝑝(�̅�)} (4.8c) 

𝑐𝑜𝑑(�̅�)
𝑑 − 𝑐𝑜𝑑(�̅�)

𝑠 = 0: variable splitting constraint (4.8d) 

 Eq. (4.7b)  

 Eq. (4.7c)   

 Eq. (4.5)  

 Eq. (4.6a) – (4.6c)  

M2: Dualize the Constraints for the Unconstrained Optimization Program  

To find optimal solutions of the constrained optimization subject to equality and inequality 

constraints, we reformulate M1 as an unconstrained optimization problem using the 

augmented Lagrange relaxation method. The three components are dualized: the VI 

condition, the fixed-point formulations (demand-supply interaction functions), and the 

variable splitting constraints. Eq. (4.8d) and Eq. (4.5) are dualized using Lagrangian 

multipliers and quadratic penalty functions. Furthermore, in order to compute composite 

variables such as 𝑐𝑜𝑑(�̅�)
𝑠 , we use the constraints in Eqs. (4.6a) – (4.6c), and Eq. (4.8c).    

 

ℒ𝐴𝐿(𝑥𝑜𝑑𝑝(�̅�), 𝑐𝑜𝑑(�̅�)
𝑑 ; 𝝀, 𝝆) (4.9) 
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                           = ∑∑ ∑ 𝑥𝑜𝑑𝑝(�̅�)(𝑡𝑜𝑑𝑝(�̅�) − 𝑐𝑜𝑑(�̅�)
𝑠 )

𝑝∈𝑃(𝑜,𝑑)𝑑𝑜

+ ∑∑[𝜆𝑣(𝑐𝑜𝑑(�̅�)
𝑑 − 𝑐𝑜𝑑(�̅�)

𝑠 ) +
𝜌𝑣

2
(𝑐𝑜𝑑(�̅�)

𝑑 − 𝑐𝑜𝑑(�̅�)
𝑠 )

2
]

𝑑𝑜

+ ∑∑ ∑ [𝜆𝑥(𝑥𝑜𝑑𝑝(�̅�)) +
𝜌𝑥

2
(𝑥𝑜𝑑𝑝(�̅�))

2
]

𝑝∈𝑃(𝑜,𝑑)𝑑𝑜

 

 

M3: Computational graph-based framework for the sequential architecture 

Eq. (4.9) presents the variable splitting-based augmented Lagrange relaxation framework 

with multipliers. In order to find optimal solutions efficiently in this layered structure with 

a large set of decision variables, we employ the principle of dynamic programming (DP) 

through the backpropagation mechanism. Eq. (4.9) is now converted as a computational 

graph-based framework, translating the optimization problem into a sequentially layered 

architecture. The unconstrained program can be written as a system of nested composite 

functions (Recht, 2016): 

ℒ𝐶𝐺𝐴𝐿(𝑥𝑜𝑑𝑝(�̅�), 𝑐𝑜𝑑(�̅�)
𝑑 ; 𝝀, 𝝆) 

                           = ∑∑ ∑ 𝑥𝑜𝑑𝑝(�̅�)(𝑡𝑜𝑑𝑝(�̅�) − 𝑐𝑜𝑑(�̅�)
𝑠 )

𝑝∈𝑃(𝑜,𝑑)𝑑𝑜

+ ∑∑ ∑ [𝜆𝑣(𝑐𝑜𝑑(�̅�)
𝑑 − 𝑐𝑜𝑑(�̅�)

𝑠 )

𝑝∈𝑃(𝑜,𝑑)𝑑𝑜

+
𝜌𝑣

2
(𝑐𝑜𝑑(�̅�)

𝑑 − 𝑐𝑜𝑑(�̅�)
𝑠 )

2
]

+ ∑∑ ∑ [𝜆𝑥(𝑥𝑜𝑑𝑝(�̅�)) +
𝜌𝑥

2
(𝑥𝑜𝑑�̅�)2]

𝑝∈𝑃(𝑜,𝑑)𝑑𝑜

 

(4.10) 

 

subject 

to 
𝑓𝑜𝑑(�̅�) = 𝑔1(𝑐𝑜𝑑(�̅�)

𝑑 , 휃, 𝑇𝐷𝑜) (4.11a) 

𝑥𝑜𝑑𝑝′(�̅�) = 𝑔2(𝑓𝑜𝑑(�̅�)), 𝑝′ ∈ {𝑝, 𝑝′ ≠ �̅�} (4.11b) 

𝑥𝑜𝑑�̅�(�̅�) = 𝑔3(𝑓𝑜𝑑(�̅�), 𝑥𝑜𝑑𝑝′(�̅�)), �̅� ∈ {𝑝, �̅� ≠ 𝑝′} (4.11c) 

𝑣𝑎 = 𝑔4(𝑥𝑜𝑑𝑝′(�̅�), 𝑥𝑜𝑑�̅�(�̅�) , 𝛿𝑜𝑑𝑝𝑎) (4.11d) 

𝜏𝑎 = 𝑔5(𝑣𝑎, 𝐹𝐹𝑇𝑇𝑎, 𝛼, 𝛽, CAP𝑎) (4.11e) 

𝑡𝑜𝑑𝑝(�̅�) = 𝑔6(𝜏𝑎, 𝛿𝑜𝑑𝑝𝑎) (4.11f) 

𝑐𝑜𝑑(�̅�)
𝑠  = 𝑔7(𝑡𝑜𝑑𝑝(�̅�)) (4.11g) 
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where Eqs. (4.11a) – (4.11g) indicate the variable-linking functions to compute the 

dualized optimization problem, ℒ𝐶𝐺𝐴𝐿 , and these functions nicely enable the powerful 

capability of constructing feedforward and backward computations through automatic 

differentiation (AD). Thanks to this computational graph architecture, the gradients of Eq. 

(4.10), which help discover optimal solutions, can be calculated in a manner of dynamic 

programming (DP) and symbolical gradients. In other words, this critically important 

reformulation technique uses the backward propagation principle in widely available 

machine learning packages, further reducing the efforts of computing gradients. The details 

of computational graph-based functions expressed in Eqs. (4.11a) – (4.11g) are illustrated 

below. 

𝑔1(∙) = Eq. (4.1b) 

𝑔2(∙) = Fixed and non-shortest path flows, 𝑥𝑜𝑑𝑝′�̅� ≥ 0   

𝑔3(∙) = Fixed and shortest path flows, 𝑥𝑜𝑑�̅��̅� ≥ 0   

𝑔4(∙) = Eq. (4.6a)   

𝑔5(∙) = Eq. (4.6b)   

𝑔6(∙) = Eq. (4.6c) 

𝑔7(∙) = Eq. (4.8c)  
 

 The recent approaches of applying the machine learning algorithm to compute 

higher-order gradients efficiently can be found in studies (Wu et al., 2016; Kim et al., 2021) 

for different problems such as OD demand estimation and discrete choice model calibration. 
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Figure 4.2. Illustration of the Sequential Structure for the Composite Values and the 

Unconstrained Optimization Problem 

 As shown in Figure 4.2, the sequential structure to define the composite 

terminologies and the unconstrained optimization problem which presents the augmented 

Lagrangian expression in Eq. (4.10) is described. For the simplification of expressing the 

graph-oriented structure, we consider one OD pair with two paths. The number of the 

decision variables is one cost variable 𝑐𝑜𝑑(�̅�)
𝑑  and one path flow variable 𝑥𝑜𝑑𝑝(�̅�) when 

applying the reduced gradient algorithm, Eq. (4.7c). In this figure, the 𝒏𝟕 node defines the 

formulation defined in Eq. (4.1b), deriving the number of trips on the OD pair. 𝒏𝟏𝟒 and 

𝒏𝟏𝟓 nodes represent path travel time cost 𝑡𝑜𝑑𝑝(�̅�) and least travel time cost 𝑐𝑜𝑑(�̅�)
𝑠  and are 

substituted into Figure 4.2 – (b) as input variables.  
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Remark 1. In order to approximate the perfect traffic assignment solution through 

modeling the path selection, we use the minimum functional form in path travel time cost 

vectors 𝑡𝑜𝑑𝑝(�̅�), selecting the least travel time cost value 𝑐𝑜𝑑(�̅�)
𝑠 = min{𝑡𝑜𝑑𝑝(�̅�)}. Then, 

this computational graph-based augmented Lagrangian relaxation (CGLR) optimization 

function is expressed as: 

 

ℒ𝐶𝐺𝐴𝐿 = 𝑁2 + 𝑁4 + 𝑁6 + 𝑁8 + 𝑁9 

(4.12) 
 = 𝑥𝑜𝑑𝑝𝑁1 + 𝜆𝑣𝑁3 +

𝜌𝑣

2
𝑁5 + 𝜆𝑥𝑥𝑜𝑑𝑝(�̅�) +

𝜌𝑥

2
𝑁7  

  𝑥𝑜𝑑𝑝(�̅�)(𝑡𝑜𝑑𝑝(�̅�) − 𝑐𝑜𝑑(�̅�)
𝑠 ) + 𝜆𝑣(𝑐𝑜𝑑(�̅�)

𝑑 − 𝑐𝑜𝑑(�̅�)
𝑠 ) +

𝜌𝑣

2
(𝑐𝑜𝑑(�̅�)

𝑑 − 𝑐𝑜𝑑(�̅�)
𝑠 )

2
+ 𝜆𝑥𝑥𝑜𝑑𝑝(�̅�) +

𝜌𝑥

2
(𝑥𝑜𝑑𝑝(�̅�))

2
 ;  = 

4.4. Solution Algorithm  

After translating the proposed optimization problem into the directed computational graph, 

the partial derivatives of Eq. (4.12) are calculated. Please note that the simplified case is 

still used in order to intuitively explain the chain rules using gradients. With the following 

assumption mentioned below, we implement AD on the basis of the chain rule and 

intermediate nodes defined in the graph structure. As stated in Bartholomew-Biggs et al., 

(2000), AD operates the chain rule to generate analytic derivatives with respect to the given 

function, which guarantees the accuracy of computed gradients. In addition, by building 

intermediate nodes in the original function (e.g., nodes in Figure 4.2 such as 𝑁2, 𝑁4 or 𝑁6 

linking between input nodes and the output nodes), it can decompose functions and 

improve computing performance for the gradient-oriented optimization.  

Assumption 1. The function defined in Eq. (4.10) is a continuous function at any points.  

Assumption 2. The defined optimization problem has the local minimum.     
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 With Eq. (4.10) and its computation graph in Figure 4.2. The partial derivatives of 

augmented LR with respect to 𝑥𝑜𝑑𝑝(�̅�) can be expressed as follows: 

  
𝜕ℒ𝐶𝐺𝐴𝐿

𝜕𝑥𝑜𝑑𝑝(�̅�)
 = 

𝜕𝑁10

𝜕𝑁9

𝜕𝑁9

𝜕𝑥𝑜𝑑𝑝(�̅�)
+

𝜕𝑁10

𝜕𝑁8

𝜕𝑁8

𝜕𝑁7

𝜕𝑁7

𝜕𝑥𝑜𝑑𝑝(�̅�)
+

𝜕𝑁10

𝜕𝑁2

𝜕𝑁2

𝜕𝑥𝑜𝑑𝑝(�̅�)
  

(4.13) 
 = 𝜆𝑥 + 𝜌𝑥𝑥𝑜𝑑𝑝(�̅�) + 𝑁1 

 = 𝜆𝑥 + 𝜌𝑥𝑥𝑜𝑑𝑝(�̅�) + 𝑡𝑜𝑑𝑝(�̅�) − 𝑐𝑜𝑑(�̅�)
𝑠  

 

 Similarly, based on the chain rule method and the graph in Figure 4.2, we can 

compute the gradients with respect to 𝑐𝑜𝑑(�̅�)
𝑑 , and this computation is achieved by the 

backpropagation algorithm (reverse-mode automatic differentiation). Because of this 

feedforward expression and the backpropagation computation, the efficiency of computing 

a larger set of decision variables defined in the proposed model can be guaranteed (Olah, 

2015).  

 For the estimation of different econometric choice models defined as non-concave 

logistic formulations (e.g., nested logit model), a quasi-Newton method (BFGS) is 

employed. Now, once finding optimal solutions via the numerical optimizer, the primal 

problem and its constraints are computed to confirm consistency/convergence criterion. If 

not able to reach the satisfactory conditions, Lagrangian multipliers are updated. Using the 

exemplified equation, the updating process can be processed by: 

 𝜆𝑥
𝑘+1 = max{0, 𝜆𝑥

𝑘 + 𝜌𝑥(𝑥𝑜𝑑𝑝�̅�
𝑘 )} (4.14) 

  𝜆𝑣
𝑘+1 = max{0, 𝜆𝑣

𝑘 + 𝜌𝑣(𝑐𝑜𝑑(�̅�)
𝑑 − 𝑐𝑜𝑑(�̅�)

𝑠 )} (4.15) 

 Eqs. (4.14) – (4.15) denote the Lagrangian penalties involved with path flow 

positivity and demand-supply consistency, which can be renewed by the defined 

constraints and the quadratic penalty parameters, 𝜌𝑥 and 𝜌𝑣. Updating these variables, the 
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building block language-based program resolves the optimization problem by finding the 

minimum gap for UE condition, demand-supply, and positivity for path flows. This 

iterative process is completed when reaching the convergence criterion; the solving process 

for CGAL is illustrated below.  

Algorithm: Augmented Lagrangian method-based integration of demand and 

supply 

Step 1: Initialization 

 Load demand and network data 

Initialize iteration number 𝑘 = 0; 

Initialize variables 𝑐𝑜𝑑(�̅�)
𝑠(𝑘)

, 𝑡𝑜𝑑(�̅�)
(𝑘)

, 𝑥𝑜𝑑𝑝(�̅�)
(𝑘)

, and 𝑐𝑜𝑑(�̅�)
𝑑(𝑘)

 

Initialize Lagrangian multipliers 𝝀𝑘 and set up quadratic penalty parameters 𝝆 

Step 2: Minimize the augmented Lagrangian method over each component 

 Step 2.1: Call the function ℒ𝐶𝐺𝐴𝐿(𝑥𝑜𝑑𝑝(�̅�), 𝑐𝑜𝑑(�̅�)
𝑑 ; 𝝀, 𝝆) defined in Eq. (4.10) 

 Step 2.2: Compute gradients of Eq. (4.10) using the AD algorithm 

Step 2.3: Send the results of Step 2.2 to the BFGS optimizer to solve decision 

variables, 𝑥𝑜𝑑𝑝(�̅�)
(𝑘)

and 𝑐𝑜𝑑(�̅�)
𝑑(𝑘)

 

For each component   

 Find the optimal variable 𝑥𝑜𝑑𝑝(�̅�)
(𝑘)

 

Find the optimal variable 𝑐𝑜𝑑(�̅�)
𝑑(𝑘)

 

Compute the decision variables shown in Eqs. (4.11a) – (4.11g)  

 End for  

Step 3: Compute the defined constraints 

 Step 3.1: Compute the primal problem, Eq. (4.8a) with 𝑥𝑜𝑑𝑝(�̅�)
(𝑘)

  

 Step 3.2: Compute the constraints, Eq. (4.8d) and Eq. (4.5) with the optimal 

variables 𝑥𝑜𝑑𝑝(�̅�)
(𝑘)

  and 𝑐𝑜𝑑(�̅�)
𝑑(𝑘)

 

Step 3.3: Compute the dualized optimization function, Eq. (4.10) with 𝑥𝑜𝑑𝑝(�̅�)
(𝑘)

 and 

𝑐𝑜𝑑(�̅�)
𝑑(𝑘)

 

Step 4: Evaluate the convergence criterion and constraints 

 Set up the feasibility tolerance gap 휀𝑔𝑎𝑝 for BFGS (i.e., 1e-03) 

Check the relative gap 
ℒ𝐶𝐺𝐴𝐿

𝑘+1 −ℒ𝐶𝐺𝐴𝐿
𝑘

ℒ𝐶𝐺𝐴𝐿
𝑘 × 100% with 휀𝑔𝑎𝑝 

Check the satisfaction of the defined conditions 

Update the Lagrangian multipliers, Eq. (4.14) – (4.15) if constraints are not 

satisfied* 

*Note: If the solution does not satisfy the criterion defined in Step 4, then go back to Step 

2. 
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Remark 2. In order to have computational easiness for the quadratic penalties, 𝝆, we use 

constant values (small numbers). 

Remark 3. We set up the initial values of 𝝀 as zero.  

Remark 4. To generate the number of feasible paths and the travel time costs on those 

paths, we execute a traffic assignment package, DTALite published by Zhou and Taylor 

(2014). 

4.5. Numerical Experiments 

In this section, two sets of numerical experiments are conducted to demonstrate the 

feasibility of finding optimal solutions through the proposed computational graph-based 

optimization program and theoretically linking transportation demand and network models. 

The first experiment aims to prove the accuracy of the solutions obtained by the gradient-

based algorithm. The second experiment evaluates the performance of handling a real road 

network (Chicago skeleton network). Furthermore, we confirm that the algorithm can find 

network equilibrium states while fully linking travel demand models and network 

assignment models. Please note that in order to create the initial values of path flows and 

path travel times, we utilize the column generation-based DTALite package published by 

Zhou and Taylor (2014) and assume total demand in each origin node is given.  

4.5.1. A Small Network (Iterative Solution, MSA, and Gradient Descent Algorithm) 

This subsection examines the computational accuracy of the gradient-based optimization, 

compared to an iterative method and method of successive averages (MSA). Specifically, 

comparing reference values (path flows and travel costs) derived by an analytical 

formulation, we first check the performance accuracy of our approach and the number of 
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iterative steps to find optimal values. The simple corridor network includes two links (or 

paths) connecting one OD pair. The network attributes of the given corridor are described 

in Figure 4.3, and Eq. (4.1b) is used to catch travel mode choice behaviors.   

 
Figure 4.3. Small Network Illustrating the Configurations of Freeway and Arterial (Li et 

al., 2017) 
 

 In order to compute the true reference values, the analytical formulation of 

identifying user equilibrium (UE) conditions between two paths is derived. To readily 

derive the analytic expression, parameter values of 𝛼  and 𝛽  in the BPR function are 

assigned as 1. Then, Eq. (4.6b) can be expressed as: 𝜏𝑎 = 𝐹𝐹𝑇𝑇𝑎(1 + (𝑣𝑎/CAP𝑎)), ∀𝑎 

where 𝑣𝑎 can be expressed as 𝑥𝑜𝑑𝑝(�̅�), and the other path flow variable can be written as 

𝑓𝑜𝑑(�̅�) − 𝑥𝑜𝑑𝑝(�̅�)  through the reducing gradient algorithm. By considering the UE 

condition, 𝜏𝑎
𝐹 = 𝜏𝑎

𝐴, decision variables 𝑥𝑜𝑑𝑝(�̅�) are calculated, and travel time costs 𝑐𝑜𝑑(�̅�) 

are also obtained.  

 

 
𝐹𝐹𝑇𝑇𝑎

𝐹 (1 +
𝑥𝑜𝑑𝑝(�̅�)

CAP𝑎
𝐹

) = 𝐹𝐹𝑇𝑇𝑎
𝐹 (1 +

(𝑓𝑜𝑑(�̅�) − 𝑥𝑜𝑑𝑝(�̅�))

CAP𝑎
𝐴

) (4.16) 

 

 Solving Eq. (4.16), we can derive path flows 𝑥𝑜𝑑𝑝(�̅�) to find UE, which is 5333.33 

vehicles/hour, and travel time cost 𝑐𝑜𝑑(�̅�) is 46.67 minutes computed by the first order BPR 

function. With these true reference values, we check the convergence and the performance 
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accuracy of each benchmark method. To manage the common variable needed in both 

demand and supply, we split 𝑐𝑜𝑑(�̅�)  into 𝑐𝑜𝑑(�̅�)
𝑑  and 𝑐𝑜𝑑(�̅�)

𝑠 . With the gradient descent 

method, we compute 𝑐𝑜𝑑(�̅�)
𝑑 , and 𝑐𝑜𝑑(�̅�)

𝑠 . On the other hand, the benchmark follows the 

heuristic algorithm: 

Iterative method: 

 𝑐𝑜𝑑(�̅�)
𝑑 (𝑘 + 1) = 𝑐𝑜𝑑(�̅�)

𝑠 (𝑘) (4.17) 

 

MSA method:  

 
𝑐𝑜𝑑(�̅�)

𝑑 (𝑘 + 1) =
𝑘

𝑘 + 1
𝑐𝑜𝑑(�̅�)

𝑑 (𝑘) +
1

𝑘 + 1
𝑐𝑜𝑑(�̅�)

𝑠 (𝑘) (4.18) 

 

Analytical gradient descent method: 

 𝑐𝑜𝑑(�̅�)
𝑑 (𝑘 + 1) = 𝑐𝑜𝑑(�̅�)

𝑑 (𝑘) − 𝛼∇𝐹 (𝑐𝑜𝑑(�̅�)
𝑑 (𝑘)) (4.19) 

 

where  ∇𝐹(𝑐𝑜𝑑(�̅�)
𝑑(𝑘)

) is the gradient of the defined constraint function and 𝐹(𝑐𝑜𝑑(�̅�)
𝑑(𝑘)

) is 

defined as 
1

2
(𝑐𝑜𝑑(�̅�)

𝑑(𝑘)
− 𝑐𝑜𝑑(�̅�)

𝑠(𝑘)
)
2

, enhancing the convexity of the given equation. Based on 

an arbitrary constant value (i.e., training parameter 𝛼) and the gradient:𝛻𝐹(𝑐𝑜𝑑(�̅�)
𝑑(𝑘)

) =

(𝑐𝑑 − 𝑐𝑠(𝑐𝑑)) × (1 − 𝑇𝐷𝑜 × (
𝐹𝐹𝑇𝑇𝑎

𝐹

3CAP𝑎
𝐹 +

𝐹𝐹𝑇𝑇𝑎
𝐴

2CAP𝑎
𝐴 −

𝐹𝐹𝑇𝑇𝑎
𝐴

3CAP𝑎
𝐴) × (−

𝜃𝑒𝜃(𝑐𝑑+𝑐𝑡)

(𝑒𝜃𝑐𝑑+𝑒𝜃𝑐𝑇)
2)) , Eq. (4.19) 

can be updated. With 𝑐𝑜𝑑(�̅�)
𝑑 (𝑘), 𝑐𝑜𝑑(�̅�)

𝑠 (𝑘), Eq. (4.1b), and Eq. (4.6b), composite values 

are computed. In particular, 𝑓𝑜𝑑(�̅�)(𝑘 + 1)  is derived by Eq. (4.1b) with 𝑐𝑜𝑑(�̅�)
𝑑 (𝑘) , 

𝑥𝑜𝑑𝑝(�̅�)(𝑘 + 1) is given by Eq. (1) with 𝑓𝑜𝑑(�̅�)(𝑘 + 1), and the first order BPR function 

with 𝑥𝑜𝑑𝑝(�̅�)(𝑘 + 1) calculates 𝜏𝑎
𝐹(𝑘 + 1) and 𝜏𝑎

𝐴(𝑘 + 1) values. Lastly, computing the 

average of their path travel time, we can determine the travel cost 𝑐𝑜𝑑(�̅�)
𝑠 (𝑘 + 1).  
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 Figure 4.4 represents the convergence test between the three experiments. First, the 

iterative method shows the fluctuation in finding the solutions, and after 100 iterations, it 

derives the converged results, 5267.95 vehicles/hour and 46.34 minutes. On the one hand, 

the gradient descent method displays the similar shape in terms of finding optimal solutions, 

compared to MSA. The computed variables are 5268.75 vehicles/hour and 46.34 minutes, 

which are almost identical to the results of MSA, demonstrating the gradient-based 

methodology can find optimal solutions in different cases. It should be noted that due to 

the exemplified network and the linearly defined UE condition, we are able to establish 

analytical formulations which is not easy to show the effectiveness of the gradient-based 

algorithm. If link performance functions are defined as nonlinear functions and available 

paths increase, network problem can be extremely complicated (Saitz, 1999). Although this 

experiment demonstrates the major advantage of MSA is that it can avoid zigzagging 

displacements, and it does not reply on expensive line search operations such as Zhou et 

al. (2009) or Ryu et al. (2017), there are critical limitations in finding optimal path flow 

patterns and OD demand in a higher congestion level as well as a larger transportation 

network. Sbayti et al. (2007) stated that the MSA method, specifically applied in path-

based formulations for medium-size networks, results in explicit storage of the path sets 

and path assignments, thereby increasing the computing iterations to find converged 

variables. Furthermore, due to the absence of a mathematical formulation for minimizing 

relative gap of travel costs between inferior paths and current optimal (auxiliary) paths, 

MSA has low reliability of the convergence, at high congestion conditions. 
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Figure 4.4. Convergence Comparison Test (Iterative Method, MSA, and Gradient 

Descent Algorithm 

4.5.2. Real-World Case Study (Chicago Transportation Network) 

This subsection addresses the applicability of the computational graph-based optimization 

program in the Chicago transportation network, one of the highest transit ridership areas in 

the U.S. (Hughes-Cromwick and Dickens, 2018). Recognizing the importance of analyzing 

the impact of mode choice behaviors between personal vehicles and transit on the built 

network, we examine the capability of linking the behavior patterns and the network 

models for the temporal equilibrium while finding the optimal solutions for the flow 

equilibrium. According to Figure 4.5, the number of nodes and links is 933 and 2,950, 

respectively. In addition, under the congested traffic state, the number of generated paths 

is 285,959, and the number of origin-destination pairs is 142,890. That is, the total number 

of path flow variables 𝑥𝑜𝑑𝑝(�̅�) and travel costs  𝑐𝑜𝑑(�̅�)
𝑑  to link the demand model and the 

network model is 428,849, and the size of a path-link incidence matrix is 285,959×2,950. 

In this paper, to evaluate the feasibility of the proposed mathematical optimization program 

and avoid the computational burden of finding a large set of decision variables, we select 
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a few pairs of origin-destination matrices. Because of this, the number of 𝑥𝑜𝑑𝑝(�̅�)  to be 

computed is 3,835, and the number of 𝑐𝑜𝑑(�̅�)
𝑑  is 1,012 shown in Figure 4.5; the colored blue 

lines indicate path flow sequences. The dataset of this network can be downloaded from 

the website: https://github.com/asu-trans-ai-lab/Path4GMNS/tree/master/dataset.     

 
Figure 4.5. Chicago Skeleton Transportation Network 

 In this paper, five different origin nodes are selected, and we sequentially find 

optimal solutions of each origin-destination pair using computational graph-based 

augmented Lagrangian relaxation (CGLR) method. To validate this optimization algorithm, 

we test the convergence of the objective function defined in Eq. (4.10) and the satisfaction 

of defined constraints in Eq. (4.5), Eq. (4.7a), and Eq. (4.8d). In other words, the three 

https://github.com/asu-trans-ai-lab/Path4GMNS/tree/master/dataset
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components of minimizing the optimization problem are testified: the bridge gap, which 

assures the linkage constraint of demand-supply units, the user equilibrium gap, which 

presents network equilibrium states, and the path flow positivity. 

 In Figure 4.6, each subplot indicates results of the defined constraints and the 

convergence of the objective function. We first illustrate the result from the origin id 1 with 

multiple destination ids; the number of od pairs is 229, and paths are 639. Figure 4.6-(a) 

shows the relative gap between demand and supply. If the optimized variables (i.e., 𝑐𝑜𝑑(�̅�)
𝑑  

and 𝑐𝑜𝑑(�̅�)
𝑠 ) are not closely equal to each other, then the variance of the two variables is 

largely distributed. In this case, except for a few pairs, the proposed model is able to find 

the consistency solutions.  Figure 4.6-(b) represents the user equilibrium condition where 

most of the measured data points are found near to zero, displaying the equilibrium state. 

The average of the UE gap in this given scenario is 0.058. Furthermore, Figure 4.6-(c) 

demonstrates the positivity of path flows 𝑥𝑜𝑑𝑝(�̅�). Lastly, the convergence of the objective 

function is displayed in Figure 4.6-(d). The number of iterations of the BFGS algorithm is 

500, and we set the tolerance value as 0.001. That is, if the relative gap between previous 

step and current step is smaller than the tolerance, then we stop the numerical optimizer. 

Checking the satisfaction of the restraints, we decide whether or not to update Lagrangian 

multipliers. 
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Figure 4.6. CGLR Results of Origin Node 1. 

 

Assuming mutually exclusivity of each origin-destination pair, we execute numerical 

experiments of different OD pairs. The configuration setting for the BFGS algorithm 

follows the aforementioned values, and the average computing time of solving the 

objective function and obtaining optimal solutions is around 80 seconds. The average 

values of each constraint, namely the UE gap, the bridge gap, and the path flow positivity 

are provided in Table 4.3.  
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Table 4.3. Optimization Results: Five Different Origin Nodes 

I

D

s 

OD 

Pairs 

(Paths)  

Time 
User Equilibrium Gap Path Flow Positivity 

Demand-Supply 

Consistence gap  

Min Max Avg Min Max Avg Min Max Avg 

1 
229 

(639) 
75 s -0.04 11.02 0.06 -0.02 

392.7

1 
7.53 -2.79 32.49 -0.00 

2 
236 

(763) 
81 s -0.12 48.48 0.17 -0.03 

731.9

3 
8.66 -4.20 10.18 0.00 

3 
247 

(730) 
80 s -0.94 8.30 0.04 -0.16 

1422.

13 

13.0

7 
-3.71 55.18 0.00 

4 
250 

(902) 
83 s -1.03 9.68 0.06 -0.17 

990.5

8 
9.94 -10.9 61.75 0.00 

5 
279 

(801) 
77 s -0.48 22.98 0.08 -0.08 

3033.

68 

20.4

4 
-13.6 36.0 -0.00 

4.6. Summary and Conclusions 

In this study, by developing the analytical/gradient tractable structures with computational 

graphs, we proposed the augmented Lagrangian relaxation framework to find the primal 

and dual solutions for the consistent integration of demand-supply models and for the 

network equilibrium states. We first constructed a variational inequality formulation and 

constraints to follow the Wardrop’s principle. By splitting the common variable used in 

both demand side and supply side, we created the linking constraints that can minimize the 

gap of demand-supply components. Furthermore, the augmented Lagrangian relaxation 

method was introduced to dualize the defined constraints, deriving the unconstrained 

minimization problem. To compute gradients of decision variables (i.e., optimal path flows 

and traveling costs) of the objective function, automatic differentiation (AD), specifically 

the reverse-mode AD algorithm, was conducted. Transmitting the gradients into the 

numerical optimizer (BFGS), we found the optimal decision variables, and the program 

keeps updating the Lagrangian multipliers to minimize the UE gap and the bridge gap 
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(demand-supply consistence gap) while maintaining path flows positivity. To demonstrate 

the effectiveness of the proposed approach, numerical experiments were conducted, 

including a small network and Chicago skeleton transportation network. The measured 

results showed that the computational graph-based augmented Lagrangian relaxation 

(CGLR) method can find the optimal path flow patterns and decoupled variables 

(generalized costs and traveling costs) as shown in Figure 4.6 and Table 4.3.  

 Along with the numerical results given by CGLR, this research was able to validate 

the capability of computing the analytical gradients of the decision variables defined in the 

proposed mathematical modeling structure and deriving consistent level-of-service and 

flow values of the modal split and traffic assignment steps in the new mathematical 

formulation. Compared to prior study in Table 4.4, our proposed method including the 

consistent coupling constraint would be an ideal framework that can be as simple as 

possible while sufficient descriptive ability for interactive transportation systems, 

answering pertinent questions asked by transportation decision-makers. 

Table 4.4. Formulation for Interactive Variables (i.e., Costs in Demand Side and Supply 

Side) 

Solution 

algorithm 
Formulation Step size Publication 

Method of 

successive 

average 
𝑐𝑘+1

𝑑 =
𝑘 − 1

𝑘
𝑐𝑘

𝑑 +
1

𝑘
𝑐𝑘

𝑠 
Iterative steps (1/

𝑘) 

Florian et al. 

(2002), Lin et al. 

(2008), Zhou 

(2008) 

Constant 

weight 
𝑐𝑘+1

𝑑 = (1 − 𝑤)𝑐𝑘
𝑑 + 𝑤𝑐𝑘

𝑠 Fixed (𝑤) Boyce et al. (2008) 

Gradient 

projection 
𝑐𝑘

𝑑 = 𝑐𝑘
𝑠(𝑥𝑘) +

1

𝛽𝑟
ln(𝑥𝑘) Self-adaptive Zhou et al. (2009) 

Descent 

direction 
𝑐𝑘

𝑑 = 𝑡𝑘(𝑥(𝑓𝑘(∙)), 𝛿) Line search Ryu et al. (2017) 
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Analytical 

gradients 

using AD 
𝑐𝑘

𝑑 = 𝑐𝑘
𝑠 Lagrangian penalty This paper 

  

 That is, the coupling formulations, presented by previous literatures in Table 4.1, 

are not modelled explicitly as constraints (e.g., gradient projection or descent direction). 

Instead, they are indirectly enforced through the optimality conditions at the final stage, 

resulting in the insufficiency of establishing highly interactive transportation systems. In 

comparison, our proposed mathematic programming model specifically includes and 

further dualizes the coupling condition, to better measure the demand and supply 

interactions along the solution-finding process.   

 Overall, although transportation modelers have developed comprehensive 

modeling structures with heuristic algorithms and followed iterative sequential processes 

to solve mathematical objective functions, finding optimal path flows and travel costs to 

satisfy equilibrium states, our methodology advances the kernel of coupling/developing 

interactive transportation systems: (1) a consistent mechanism to mathematically integrate 

the generalized accessibility cost on the demand side and the travel cost computed by traffic 

assignment, (2) gradient-oriented approximation to solve complex objective functions 

composed of the costs, path flows, OD flow patterns, and choice probabilities, and lastly 

(3) the computational power of calibrating a large set of the decision variables in the real 

transportation network. In other words, determining step sizes on the basis of the analytical 

gradients could be numerically stable fashion, compared to “averaging” manner. 

Furthermore, the analytically modeled structure in terms of flow, cost, and choice 

probability would mitigate inconsistency between demand and supply variables. Lastly, 
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the solution algorithms designed to directly minimize and reduce the model gap measure 

iteratively could be alternative ways to meet the requirements in solving consistent 

integrated travel demand and network modelling architectures.     

 With this graphically-oriented mathematical modeling framework and its solution 

algorithm using automatic differentiation (AD), our research will further focus on the two 

aspects:  

• Extension of the modal split-traffic assignment modeling structure to consider more 

realistic scenarios (behavioral richness and spatio-temporal dimension): As stated 

in Zhou et al. (2009) and Ryu et al. (2017), in order to have more behavioral 

richness in a top-down sequential system, a hierarchical choice structure will be 

defined by satisfaction functions or log-sum terms and be constructed by 

computational graphs to calculate the analytical gradients with respect to decision 

variables. By doing so, we would generate more behavioral realistic coupling 

constraints in the model while ensuring the computational efficiency in dealing with 

the highly complex composite terminologies. Furthermore, for consistency in the 

representation of behavioral units, spatial relationships, and temporal scales 

(Pendyala et al., 2012), spatial-temporal constraints are to be dualized in a potential 

modeling framework.     

• Dynamic programming (DP) for a larger scale network experiment: With high-

performance computing techniques used for the calibration of a large set of decision 

variables, we will evaluable the applicability of a programming architecture in 

national-level scales, capturing a wide range of emerging patterns in transportation 
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ecosystem (Zhou, 2021). To improve the computing efficiency of finding optimal 

flow patterns, costs, and decision-maker’s choice probability while satisfying 

consistency in the representation listed above, we would study different types of 

quasi-newton methods such as limited-BFGS or a first-order method, the Adam 

optimization algorithm (Kingma and Ba, 2014). In consequence, we can further 

deal with more complex transportation problems, congestion, emergency response 

planning, or toll/incentive issues in built network environments.  

Appendix A. The Fixed-Point Formulation of the Interaction between Transportation 

Demand and Supply  

𝑥 
= feasible path flows obtained by 

Path4GMNS  
(A.3) 

𝜏(𝑥, 𝛼, 𝛽) = link traveling cost (A.2) 

𝑡(𝜏(𝑥, 𝛼, 𝛽)) = path traveling cost (A.3) 

MNL(𝑡(𝜏(𝑥, 𝛼, 𝛽)); 휃, 𝑈) 
= choice behavior resulting from 

(A.3) 
(A.4) 

𝑓(MNL(𝑡(𝜏(𝑥, 𝛼, 𝛽)); 휃, 𝑈), OD ) 
= path flows based on OD demand 

and (A.4) 
(A.5) 

𝛿 (𝑓(MNL(𝑡(𝜏(𝑥, 𝛼, 𝛽)); 휃, 𝑈), OD )) 
= path cost mapped by the incidence 

matrix 
(A.6) 

𝑡(𝜏(𝑥, 𝛼, 𝛽))

= 𝛿 (𝑓(MNL(𝑡(𝜏(𝑥, 𝛼, 𝛽)); 휃, 𝑈), OD )) 
= the fixed-point formulation (𝑥 ≥ 0 

and 𝑥 ∈ 𝐷) 
(A.7) 

 

Appendix B. Difference between Automatic Differentiation and the Chain Rule in 

Computing Gradients of a Composite Function 

 

 The fundamental process of decomposing differentials is similar to the chain rule 

approach, but there are two different features that distinguish AD from the chain rule. As 

stated in Bartholomew et al. (2000), AD carries floating point numerical values, instead of 

differentiating the symbolic expressions decomposed and reduces the complexity of 

computing the complex composite function. Furthermore, using intermediate variables as 

checkpoints, the AD algorithm can save the memory required. For instance, we provide a 
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simple example, ℎ(𝑥) = 𝑓 (𝑔(𝑘(𝑥)))  and show how the intermediate variables are 

defined. Defining intermediate variables, 𝑤𝑖, in each decomposed element, we can not only 

store the computed gradients but also carry numerical values. On the other hand, as the 

pure chain rule approach needs to compute the symbolic expressions without the stored 

variables (i.e., intermediate variables), the computational cost is much higher than AD.  

Automatic Differentiation (AD) Chain Rule 

𝜕ℎ(𝑥)

𝜕𝑥
=

𝜕𝑓(𝑤2)

𝜕𝑤2

𝜕𝑤2

𝜕𝑤1

𝜕𝑤1

𝜕𝑤0
  

𝜕ℎ(𝑥)

𝜕𝑥
= 𝑓′ (𝑔(𝑘(𝑥)))  𝑔′(𝑘(𝑥))𝑘(𝑥)  

where, 𝑤0 = 𝑥 

𝑤1 = 𝑘(𝑤0) 

𝑤2 = 𝑔(𝑤1) 

𝑤3 = 𝑓(𝑤2) = ℎ(𝑥) 
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CHAPTER 5 

5. CONCLUSION 

This chapter begins with a brief summary of the proposed methodologies and findings. 

Section 5.2 addresses the perspective on the contributions of this dissertation to the state 

of the art of computational graph-based frameworks. In addition, the following subsection 

discusses broader application of the innovative approaches in the transportation planning 

field.  

5.1. Research Overview 

With the development of three key components in the field of machine learning (ML), 

namely computing power, a large bulk of data sources, and new algorithms, planners and 

researchers have observed successful cases of analyzing multiple data sources efficiently, 

discovering unseen patterns in the big chunk of data, as well as enhancing predictability in 

transportation planning. Encouraged by the advantages of ML applications, this research 

explores the underlying algorithm behind ML: computational graph (CG) and automatic 

differentiation (AD), which enables defined mathematical models to be designed as graph-

oriented structures and to find analytical gradient information, finding optimal solutions.  

 Leveraging the two key algorithms, we propose the promising guidance to 

theoretically and practically embed them into transportation planning methods and the 

further direction of how to extend the applicability of ML in the transportation community 

using three different frameworks developed. First, we present the hybrid modeling 

structure that can combine the regression model with the advanced recurrent neural 

network (also known as Long-Short Term Memory (LSTM)). Second, we reformulate the 
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discrete choice models using the computational graphs, enhance the computation power of 

estimating parametric variables based on AD, and address the modeling flexibility that can 

efficiently be incorporated with ML methods. Lastly, we develop the analytically-driven 

mathematical formulation to integrate travel demand and network supply model through 

the graph-oriented method and propose the analytical gradient information with respect to 

the proposed structure.  

 Overall, through the proposed frameworks, the advantages of applying graph-

oriented planning models with AD are presented, we can potentially expect to see further 

benefits: The use of simple chain rules typically involves numerical computing of gradients, 

that is, perturbing each element of variables one by one. This type of finite difference 

method could be inefficient as it needs to perform a forward pass for each derivative. 

Additionally, the simple finite difference method might lead to infeasible solutions for 

large variable ranges, and it is typically subject to round-off errors. Most automatic 

differentiation software systems, including Autograd and TensorFlow, explicitly construct 

the computation graph. Thus, the modern automatic differentiation method can store the 

optimization algorithm symbolically, and its efficient implementation of the chain rule 

based on a dynamic programming principle can systematically carry out the forward and 

backward passes of Jacobian gradient vectors with nested operation. Furthermore, the 

integration of back propagation and computational graphs, through higher order of 

vectorization, can further improve the computational efficiency by providing a high-quality 

estimate of the deviation terms. 
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5.2. Research Contributions 

This subsection presents research contributions for the advancement of transportation 

planning models. As acknowledged in transportation planning projects, conventional 

modeling approaches have difficulty of systematically capturing emergent behaviors and 

network flow patterns, achieving computational efficiency in realistic networks, and 

incorporating big data sources.  

 Based on the computational graph-based frameworks and machine learning 

architectures (e.g., deep neural networks), this dissertation proposes the next generation 

tool to enhance conventional transportation planning methods, eventually introducing a 

hub-system that seamlessly incorporate multiple data sources, travel demand, and network 

models. This research provides the following key contributions. 

I. The hybrid modeling framework constructed by econometric models and deep 

learning techniques can not only interpret significant factors of potential trends 

but also sense heterogeneous patterns, enabling planners to manage dynamics 

of on-demand mobility services. 

II. The computational graph-based discrete choice models can show higher 

computational performance in dealing with numerous behavioral parameters 

and yield the flexibility of extending the computational structures to broaden a 

set of accessibility-oriented planning applications. 

III. The alternative mathematical formulation to integrate travel demand and 

network models using computational graphs can be capable of solving large-

scale transportation networks and can be compatible with existing modeling 
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software for activity-based model (ABM) and dynamic traffic assignment 

(DTA), reducing programming expenses.      

 This graph-oriented representation successfully embeds the underlying algorithms 

of ML (CG and AD) into transportation planning methods, specifically modeling structures, 

accuracy and efficiency of model estimation, and analytical solutions for network 

optimization algorithms. More importantly, this dissertation systematically introduces the 

way of establishing the modeling language consistency that can simultaneously use the 

strengths of machine learning algorithms and the theory-driven models. Accordingly, 

transportation planners and developers can efficiently manage/analyze massive datasets 

such as a large set of household surveys, large-scale networks, and passively collected data 

sources (e.g., GPS or mobile phone), understanding interactive transportation systems 

shaped by travelers’ behavioral patterns and transportation infrastructures in metropolitan 

areas. Furthermore, the computational graph-based models can have a significant potential 

to analytically extend different types of modeling structures that can discover causal 

inference relationships in a data-rich environment, helping planners to statistically interpret 

hidden patterns in the given datasets.  

To further illustrate our overarching modeling approach, we use the conceptual 

framework in in Figure 5.1 to highlight the needed consistency of modeling language to 

build behavioral models and machine learning architectures. We hope this CG-oriented 

perspective could allow us to seamlessly integrate traditional econometric traveler behavior 

models with new and emerging data-driven approaches. Overall, the proposed graph-based 

modeling framework not only offers the flexibility of expanding conventional modeling 



 

137 

approaches but also enables planners and policy makers to estimate the system-wide utility 

more precisely for different projects and demand management alternatives, potentially 

leading to better decisions for improved transportation systems.  

 

 
Figure 5.1. Illustration of Developing a Consistent Modeling Structure between Choice 

Models and Deep Learning (Using Examples from CNN in Alom et al. (2019) and LSTM 

in Kim et al. (2020)) 
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5.3. Future Research 

With advanced transportation planning models and the innovative algorithms, the graph-

oriented frameworks will be applicable in transportation projects and help to answer 

research questions. Specifically, the developed methodologies can be promising potential 

in the following lists.  

 (1) Supporting active demand management (ADM) system in response to 

mobility services/technologies: in efforts to reduce annual cost of congestion in the U.S. 

and achieve sustainable highways, community leaders and transportation planners have 

adapted active demand management (ADM) which dynamically controls traffic states 

using information and technologies. Aiming to enhance the strategy for developing useful 

decision support systems, this research will continue to focus on hybrid modeling 

frameworks constructed by econometric models and machine learning architectures to 

efficiently integrate multiple data sources (e.g., traffic images and travelers’ choices) while 

simultaneously interpreting significant factors of demand and predicting travel patterns. 

The combination of the statistical models and data-fitting models will help decision makers 

to properly quantify and balance traffic usage, establishing reliable transportation systems.  

 (2) Efficient estimation algorithms for measuring multi-modal accessibility in 

transportation: The development of new mobility technologies such as autonomous 

vehicles has the potential to reduce a travel-limiting disability that accomplishes daily 

activities. Particularly, people with disabilities can achieve the increased accessibility for 

their trips. In light of this, it is extremely imperative to develop a quantitative formulation 

to measure the accessibility with high performance computing. To establish theoretically 

reliable models that can model individuals’ choices while efficiently handling the complex 
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composite structures, this framework will define graph-oriented formulations that combine 

utility-based methodologies and automatic differentiation (AD).  

 (3) Deployment of the integrated models in cloud computing (CC):  Cloud 

Computing (CC) has represented a promising approach for real-time large-scale system 

modeling, ubiquitous communication, and diverse data synthesis by demonstrating the 

effectiveness in terms of cost and managing computers. In order to couple the technology, 

this project will implement open-standard and open-source based architecture, allowing 

them to be universally applicable in the domains of transportation planning, traffic analysis, 

network behavior, and demand forecasting. This connectivity can have a positive potential 

to enhance intelligent transportation system.  
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