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ABSTRACT

Demand for processing machine learning workloads has grown incredibly over

the past few years. Kubernetes, an open-source container orchestrator, has been

widely used by public and private cloud providers for building scalable systems for

meeting this demand. The data used to train machine learning workloads can be

sensitive in nature, and organizations may prefer to be responsible for their data

security and governance by housing it on on-premises systems. Hybrid cloud gives

organizations the flexibility to use both on-premises and cloud infrastructure together,

leveraging the advantages of both. While there is a long list of benefits, Kubernetes

has limitations by design that limit a user’s abilities in a hybrid cloud environment.

The Kubernetes control plane does not allow for the management of worker nodes

across cloud providers. This boundary puts new responsibilities on the end-user

when deploying a hybrid cloud workload. The end-user must create their clusters

and specify which cluster the workload will be scheduled to ahead of time. The

Kubernetes scheduler will not take the capacity of another cluster into account. To

address these limitations, this thesis presents a new hybrid cloud Kubernetes scheduler

that can create new clusters on-demand and burst machine learning workloads to a

public cloud when on-premises resources are insufficient.

Workloads begin scheduling on an on-premises Kubernetes cluster. When the

on-premises cluster’s capacity is exhausted, a new Kubernetes cluster is created on-

demand in a public cloud provider, and machine learning tasks waiting in the Ku-

bernetes scheduling queue are dynamically migrated to the public cloud provider’s

Kubernetes cluster. The public Kubernetes cluster is dynamically sized and auto

scaled based on the pending tasks’ demand. When migrating tasks, the data depen-

dencies among tasks are considered, and a region is dynamically chosen to reduce

migration time and cost.
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The scheduler is experimentally evaluated with real-world machine learning work-

loads, including predicting if a subscriber will stay with a subscription service, pre-

dicting the discount needed to retain a subscription customer, predicting if a credit

card transaction is fraudulent, and simulated real-world job arrival behavior in a real

hybrid cloud environment. Results show that the scheduler can substantially reduce

the workload execution time by dynamically migrating tasks from on-premises to

public cloud and minimizing the cost by dynamically sizing and scaling the public

cluster.

ii



DEDICATION

I dedicate this thesis work to my family. My loving wife, Lara Kieley who patiently

supported me throughout the entire learning process. My children expressed love and

praise during challenging moments. I am grateful for my parents, James and Gina

Kieley, and grandparents John and Candy Kieley, who encouraged me to pursue

postgraduate education.

iii



ACKNOWLEDGMENTS

I thank NortonLifelock for their financial support throughout my master’s program.

Special thanks to Alex Tran and Maria Dossin from NortonLifelock, who supplied

machine learning workloads. I acknowledge my committee chair, Professor Ming

Zhao, for helping me at every stage of this thesis.

iv



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Kubernetes Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Tiers of Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 STATE OF THE ART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Anthos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Kubernetes Federation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Layer 2 Schedulers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 HYBRID CLOUD SCHEDULER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Main Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Dynamic Cluster Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Descheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4 Overflow Watcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.5 Job Mover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.6 Data Dependency Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1 Machine Learning Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 Workload Baseline On-Premise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3 Hybrid Cloud Scheduler Baseline Naive Overflow . . . . . . . . . . . . . . . . . . 25

5.4 Hybrid Cloud Scheduler Improved Overflow. . . . . . . . . . . . . . . . . . . . . . . 28

6 FUTURE RESEARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

v



CHAPTER Page

6.1 Regional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 Cloud Provider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 CONCLUSIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vi



LIST OF TABLES

Table Page

1.1 Test Bed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

vii



LIST OF FIGURES

Figure Page

2.1 Problem Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Anthos Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 HCS Threads Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 HCS Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1 Workload Baseline Experiment - On-premise All Pod State . . . . . . . . . . . 24

5.2 Workload Baseline Experiment - On-premise Inference Pod State . . . . . . 24

5.3 Workload Baseline Experiment - On-premise Training Pod State . . . . . . 25

5.4 Workload Baseline Experiment - Model Performance . . . . . . . . . . . . . . . . . 25

5.5 HCS Baseline Naive Overflow - On-Premise Cluster All Pod State . . . . . 26

5.6 HCS Baseline Naive Overflow - Cloud Cluster All Pod State . . . . . . . . . . 26

5.7 HCS Baseline Naive Overflow - On-Premise Inference Pod State . . . . . . . 27

5.8 HCS Baseline Naive Overflow - On-Premise Training Pod State . . . . . . . 27

5.9 HCS Baseline Naive Overflow - Cloud Inference Pod State . . . . . . . . . . . . 27

5.10 HCS Baseline Naive Overflow - Cloud Training Pod State . . . . . . . . . . . . . 27

5.11 HCS Baseline Naive Overflow - Model Performance . . . . . . . . . . . . . . . . . . . 28

5.12 Scheduler Improved Experiment - On-premise All Pod State . . . . . . . . . . 29

5.13 Scheduler Improved Experiment - On Premise Inference Pod State . . . . 29

5.14 Scheduler Improved Experiment - On Premise Training Pod State . . . . . 29

5.15 Scheduler Improved Experiment - Cloud Inference Pod State . . . . . . . . . . 29

5.16 Scheduler Improved Experiment - Cloud Training Pod State . . . . . . . . . . 29

5.17 Scheduler Improved Experiment - Cloud Node Load . . . . . . . . . . . . . . . . . . 30

5.18 Scheduler Improved Experiment - Model Performance . . . . . . . . . . . . . . . . 30

5.19 Final Experiment Comparison, Average Turn Around Time (seconds) . . 31

5.20 Time Savings, Total Experiment Run time (seconds) . . . . . . . . . . . . . . . . . 31

viii



5.21 Regional Cost Savings, Total Cost Savings (USD/per hour) . . . . . . . . . . . 32

ix

Figure Page



Chapter 1

INTRODUCTION

With the rise of big data, machine learning, and cloud computing in the past

decade, the amount of data collected and the sensitive nature of that data have

increased. The multi-tenanted nature of the public cloud poses new security and pri-

vacy risks. In the past, researchers were able to exploit the multi-tenanted nature of a

cloud provider by observing and predicting scheduling behavior. They then were able

to successfully deploy an application on the same physical hardware as their attack

target. Finally, they were able to extract private data from their attack target, de-

spite the virtualization layers in-between the two applications Huang and Du (2014).

When an organization decides to process their data using a public cloud provider, they

entrust their data security, privacy, and governance to that cloud provider. Some or-

ganizations may prefer to own those responsibilities. Hybrid cloud gives organizations

the flexibility to own those responsibilities for the data they consider most sensitive

while still leveraging the public cloud’s elasticity.

Containers changed software forever by providing a new layer of virtualization.

This thin, inexpensive virtualization layer allows for more containers to be run on the

same hardware than traditional virtual machines. With this increased software den-

sity, having many containers run in the same environment created a need for a new

layer of management. Kubernetes addresses this need. Kubernetes provides APIs to

deploy and manage many containers. It is extensible and encourages infrastructure

and platforms to be container-centric instead of being machine or virtual machine-

centric. Kubernetes acts as an abstraction layer between the user and public cloud

provider, allowing them to deploy containerized workloads with the same APIs to
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on-premise or public cloud infrastructure with no changes. Kubernetes brings addi-

tional benefits to the hybrid cloud environment such as automatic retries, self-healing,

deployment history, rollbacks, workload replication, increased availability, and more.

Today it is not possible to enable hybrid cloud with a single Kubernetes clus-

ter. The Kubernetes control plane is responsible for managing the Kubernetes nodes

within the cluster. That logic has been written to explicitly exclude nodes in more

than one public or private cloud. Google Cloud Platforms (GCP)’s Anthos overcomes

this by providing a multi-cluster management layer. Kubernetes Federation over-

comes this by providing Federated Kubneretes Resources (Federated across multiple

clusters). While both Kubernetes Federation and GCP Anthos provide multi-cluster

management, they both lack scheduling workloads between clusters (with optimized

placement), they both require deployment to cluster mapping to be pre-defined, and

there is no cluster assignment change post-deployment. A subset of problems ad-

dressed by Kubernetes requires more than one Kubernetes cluster or a multi-cluster

configuration. Hybrid cloud represents a subset of the problem space address by

multi-cluster configurations. See Figure 2.1.

The proposed HCS is designed to start with a single on-premise Kubernetes clus-

ter. The cluster user begins scheduling workloads to the on-premise cluster. The

HCS will detect when the capacity of the on-premise cluster has been exhausted by

calling the Get Namespaced Pods REST API provided by the kube-apiserver. Then,

it will create a new Kubernetes cluster in the cloud on-demand using the open-source

cluster creator Kops. The cloud cluster’s AWS instance types are chosen based on

the total number of vCPUs and megabytes of memory required of the pending pods

returned from the Get Namespaced Pods endpoint. The cheapest AWS region (based

on the instance type) is chosen to save cost. After cluster creation, the HCS will

move pods from the on-premise cluster’s pending queue to the cloud cluster, thereby
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bursting workloads to the cloud. The HCS ensures that data dependencies for these

machine learning workloads are satisfied after migration by running pre-steps and

post-steps before and after every job. The post-steps for training jobs uploads the

trained model to AWS S3 and inserts a MongoDB MongoDB (2021) record with the

named model and timestamp. Pre-steps for an inference job fetch the latest model

by querying MongoDB for the latest trained model by name. The Pre-steps will also

cache the trained model on the local Kubernetes node and check if the model resides

there first before fetching it remotely from S3.

Three machine learning models named ARPU, Saved, and Credit Card Fraud

evaluate the HCS’s performance. Each machine learning model has two Kubernetes

jobs. One job contains machine learning tasks to train the model. One job contains

machine learning tasks to use the trained model to perform a prediction or inference.

The Saved machine learning model is a mache learning pipeline. It takes as input to

its training task the inference from the ARPU model. The Workload Deployer used

in the evaluation deploys the training jobs and regular intervals and the inference

jobs as random intervals to simulate real-world job arrival behavior. The on-premise

Kubernetes cluster uses Kubernetes version v1.20.7. The cloud cluster uses v1.18.20.

This difference in version is insignificant to our evaluation as the job deployment

Representational State Transfer (REST) Application Programming Interface (API)

and cluster capacity rules are the same between these two versions. Kubernetes

version v1.18.20 is supported by the Kops cluster creator tool used to create cloud

clusters dynamically. The on-premise Kubernetes cluster’s bare metal hardware has

32 cores and 64GB of RAM with 8 cores and 16GB of RAM dedicated to the master

node and 16 cores and 16GB of RAM dedicated to the worker node. For the baseline

experiment, the cloud cluster is provisioned with the same number of CPUs and GB of

RAM as the on-premise cluster. The HCS Improved experiment dynamically creates

3



ASU Servers, On-premise Kubernetes Cluster AWS, Cloud Kubernetes Cluster

Kubernetes Version v1.20.7 v1.18.20

Master Node

OS Ubuntu 18.04.5 Ubuntu 20.04

CPUs 8 2

Memory 16GB 4GB

Worker Node

OS Ubuntu 18.04.5 Ubuntu 20.04

CPUs 16 Dynamic

Memory 16GB Dynamic

Bare Metal

OS Ubuntu 18.04.5

CPUs 32

Memory 64GB

Table 1.1: Test Bed

the cloud cluster with hardware based on the needs at runtime. Table 1.1 provides

more information about the on-premise and cloud cluster configuration use.

The HCS results show that using dynamic region selection saved 16% of cloud

cost on the master node and 20% on the worker node. Dynamic cluster creation,

bursting to the cloud, and cloud auto-scaling saved 48% of the overall execution time

of our workload, which is a mixture of training and inference machine learning work-

load tasks. The average turnaround time was increased when bursting workloads

to the cloud as additional initialization tasks were needed to download docker im-

ages, download data dependencies and warm the local node cache already present

for other nodes. However, because these tasks were executed with a higher degree of

parallelism, overall execution time and cost were still reduced.

This thesis first reviews background information about Kubernetes, its architec-

ture, capabilities and limitations. Then the state of the art or how current solutions

4



address the problem statement is discussed. The proposed HCS’s behavior and im-

plementation is reviewed. The baseline, experiments and results used to evaluate

the HCS are reviewed. Potential future areas of research identified in this study are

reviewed. Finally the conclusions drawn from this thesis research is discussed.
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Chapter 2

BACKGROUND

Kubernetes is a distributed system. It comprises a set of processes that run on

two groups of machines: master or control plane nodes and worker nodes. These

collections of machines constitute a cluster. The six processes that make cluster-level

decisions, known as the control plane, are: kube-apiserver, kube-controller-manager,

kube-scheduler, and ectd. Two processes run on each of the worker nodes: kubelet

and kube-proxy. The kube-scheduler process or Kubernetes scheduler will schedule

application containers to worker nodes.

Depending on the cluster’s infrastructure, it may require other processes within

the control plane or worker nodes. When running on a public cloud provider, an addi-

tional control plane process runs the cloud-controller-manager. The cloud-controller-

manager has various control loops that are used to synchronize the state between

your cloud provider and your cluster et al. (2020a). The kube-apiserver facilitates

communication between all the components. It exposes a REST API over Hypertext

Transfer Protocol (HTTP) to interface with your cluster. Kubernetes uses Etcd for

its state management and as its persistence layer for all Kubernetes objects. Ectd is

a distributed persistent key-value store.

Kubernetes’s abstractions provide a standard interface to deploy and run soft-

ware independent of the underlying infrastructure. The proposed HCS will leverage

these abstractions to provide a standard interface to deploy across traditional deploy-

ment boundaries. The boundaries between public and private cloud, multiple cloud

providers, multiple regions, and availability zones within a cloud provider.

Kubernetes has a growing list of over fifty abstractions. The proposed HCS in

6



Figure 2.1: Problem Space

this thesis focuses on four: Cluster, Node, Job, and Pod. Every machine in the

cluster, whether virtual or physical, is a Kubernetes node. A pod executes code

within Kubernetes et al. (2020b). It differs from a container in that it can consist of

one or many containers that collaborate on the same node.

A deployment defines a non-terminating process ex: web service, monitor, con-

troller. A job is a parent object to a pod, a parent object to a container. It tracks

multiple software deployments. It can be used to roll back to previous versions of a

deployment, including the container image version. A deployment may parent many

pods through a replicaSet.

A job defines a terminating process with a finite start and stop time, ex: cron

job, batch job, machine learning workload. Like a deployment is a parent object of

a pod. It records the process start and stop time. A job may parent many pods

through multiple retries of a process failure.

Kubernetes’s design is heavily influenced by control theory et al. (2020e). In

control theory, there are two actors: an observer and a controller. The observer

monitors a chosen variable’s value. The controller first compares that value with

7



the desired value. Then, the controller chooses a corrective action to reconcile the

difference. A Kubernetes controller is a non-terminating process that continuously

monitors the cluster’s current state and compares it to the desired state. When there

is a discrepancy, it will choose from a list of actions to reconcile these differences. An

example of this is the replication controller. When a pod is deployed with a replica

set and a specified number of pods, it is the replication controller’s responsibility to

ensure that pod runs the given number of times. If the number of pods specified is

three, but only one is running, the controller will spawn two new pods. If the number

of pods specified is three and five runs, it will terminate two pods. It, therefore,

reconciles the difference between the number of pods specified and the number of

pods running et al. (2020f).

“A Kubernetes cluster can have no more than 5000 nodes. No more than 150000

pods. No more than 300000 total containers. No more than 100 pods per node”

et al. (2020d). A single cluster cannot run in more than one region of the same cloud

provider or in more than one cloud provider. There are even some limitations for

running a single cluster in multiple availability zones, increasing clusters’ availability

by being redundant in more than one data center. When referring to the handling

of multiple regions or cloud providers within a single cluster, one of the Kubernetes

authors stated: “I think that an argument can be made both ways here. It depends

on whether you prefer to weave the logic for handling nodes in multiple availability

zones and cloud providers within a single logical cluster into the existing Kubernetes

control plane codebase (which was explicitly not designed for this), or separate it

into a decoupled Federation system (with possible code sharing between the two via

shared libraries). The author prefers the latter”MacMillan and Saenger (2017)
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2.1 Kubernetes Scheduling

The Kubernetes scheduler source code is written in Go Meyerson (2014) and can be

found on GitHub under the Kubernetes Project et al. (2020c). When a pod definition

is created using the Kubernetes API, there is no node assignment. The scheduler’s

responsibility is to determine the best node where the pod is schedulable and then

assign that pod to the node. When the pod is assigned to a node, the scheduler

will populate the nodeName attribute on the pod definition. The kubelet for that

node will then detect that the pod definition has its nodeName and begin the pod

startup sequence on its node.Burns and Tracey (2018a) The Kubernetes scheduler

goes through a two-step process as it decides the placement of pods to nodes: It first

runs the list of nodes through a list of predicate functions. Predicate functions return

a true/false response if the pod is schedulable to that node Burns and Tracey (2018b).

2.2 Tiers of Scaling

Kubernetes provides several ways to scale today. The pod horizontal auto scaler

increases the number of containers dedicated to that application, thereby increasing

the number of processes and the amount of CPU and RAM dedicated. This is bounded

by the number of nodes or machines available to the Kubernetes cluster. With one

of two auto-scaling options, we overcome this limitation: The node vertical auto

scaler or the cluster auto scaler. The node vertical auto scaler will leverage the cloud

provider’s capability to vertically scale the hardware available to the virtual machine,

thereby increasing CPU and RAM or disc capacity without interruption to the node.

The cluster auto scaler will leverage the cloud provider’s capability to increase the

number of nodes or machines dedicated to the cluster. A single Kubernetes cluster,

however large, has its own set of limitations.
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Chapter 3

STATE OF THE ART

Anthos Google (2021a) and Kubernetes Federation GitHub (2021a) both provide

multi-cluster management. They do not provide scheduling behavior between clusters

or optimized placement, and the deployment to cluster mapping is required to be

predefined. Layer two schedulers do provide scheduling between clusters. They do

not address: bursting to the cloud, dynamic cluster creation, optimization of cloud

infrastructure based on pending queue needs, or provide data dependency migration

for machine learning workloads. These are the advances that set the HCS apart from

current solutions.

3.1 Anthos

Anthos refers to a collection of Google Cloud Platform (GCP)Google (2021b)

offerings that address the Kubernetes multi-cluster space of problems. Google Ku-

bernetes Engine (GKE) Google (2021d) creates managed Kubernetes clusters hosted

on-premise, with GKE (On-Premise) in GCP or other cloud providers like AWS. GCP

Fleets Google (2021c) define a logical group of Kubernetes clusters with an Appli-

cation Program Interfaces (APIs) or web console to add or remove new Kubernetes

clusters to the grouping. Anthos provides a centralized Kubernetes cluster monitor-

ing solution that aggregates data from Kubernetes clusters into a single monitoring

dashboard. GCP Fleets enables a user to define a multi-cluster deployment strategy

for a single application. Anthos offers a managed service mesh similar to Istio that

allows the user to specify network policies for intercluster and intracluster commu-

nication. The managed service mesh allows for additional network-level monitoring

10



of each cluster and intercluster communication secured by mTLS. Figure 3.1 shows

an example of a multi-cluster configuration managed by Anthos. However, none of

Anthos’s or GCP’s multi-cluster solutions provide a scheduler that will dynamically

move workloads at runtime. Anthos, through GKE on-premise, can auto scale the

number of Kubernetes worker nodes when additional on-premise resources are avail-

able. When on-premise resources are exhausted, it will take no action. The HCS will

automatically move workloads from the on-premise cluster to the cloud cluster when

on-premise resources have been exhausted. Anthos depends on the end-user to create

and register Kubernetes clusters ahead of time. The HCS will automatically create

a new Kubernetes cluster on-demand. By creating Kubernetes clusters on-demand,

it can tune the size of the Kubernetes worker nodes provisioned based on the needs

of the Kubernetes pending queue. Anthos does not inspect the Kubernetes pending

queue as it does not create Kubernetes clusters on-demand based on workload state.

Anthos does not automatically move data dependencies between clusters and instead

relies upon the end-user to ensure that each cluster has the dependencies for the

workloads. The HCS will move data dependencies between clusters to ensure that

each machine learning workload uses the most recently trained model regardless of

which cluster it runs. Deploying to an Anthos fleet requires the end-user to map

the deployment to a specific cluster. With HCS, the user need only deploy to the

on-premise cluster. The HCS will automatically move workloads and scale the cloud

cluster as needed.

3.2 Kubernetes Federation

Kubernetes Federation or KubeFed is part of the Kubernetes GitHub Project as

a sub-project. It provides an interface for federated Kubernetes resources (federated

across more than one Kubernetes cluster) It aims to provide new Kubernetes ab-
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Figure 3.1: Anthos Diagram

stractions that manage more than one cluster. This project is not as mature as the

Kubernetes Project.

Kubernetes Federation provides a way to spread a deployment across more than

one cluster with a predefined definition called a Replica Scheduling Preference. The

Replica Scheduling Preference supports use cases such as evenly distributing replicas

across every cluster or having a weighted distribution where one cluster may have

more replicas than another. The Kubernetes federation multi-cluster replica sched-

uler has one feature that schedules based on load called rebalance. However, it will

continuously attempt to schedule to the desired predefined cluster even if it is at

capacity. The Kubernetes federation user guide recommends that if this side effect is

unacceptable, to disable rebalancing for that deployment.

The HCS does not require the end-user to specify a deployment to cluster map-

ping. Instead, the end-user need only schedule workloads to the single on-premise

Kubernetes cluster. The HCS will then decide which workloads execute on the on-

premise cluster and which workloads burst to the cloud based on the on-premise

cluster’s capacity. This design eliminates the need for the end-user to decide which

12



cluster the job executes on and can make optimizations at run time based on the

workloads the on-premise cluster does not have the capacity to run.

3.3 Layer 2 Schedulers

A Kubernetes Layer two scheduler is a component that adds custom scheduling

behavior as layer one and then delegates to the Kubernetes scheduler as layer two

Youssef (2020). Several open-source layer two schedulers have been created to over-

come shortcomings in the existing Kubernetes scheduler. Volcano (2020), addresses

that the Kubernetes scheduler does not handle jobs in a (First In First Out) FIFO

pattern. In other words, if many jobs arrive when Kubernetes does not have the

capacity, it does not guarantee that the first job that arrived will be the first to be

scheduled Wang (2019). This behaves contrary to what many users would expect.

The proposed HCS is a layer two scheduler. It first checks the capacity of the

on-premise Kubernetes cluster, dynamically creates a Kubernetes cluster in the cloud

with optimizations, auto-scaling, and then bursts workloads from on-premise to the

cloud cluster. The dynamic cluster creation is what sets the HCS apart from other

layer two schedulers. By delaying cluster creation until its needed, it enables the

HCS to optimize for the needs of the pending Kubernetes Jobs and make cost-saving

decisions at the time of creation.
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Chapter 4

HYBRID CLOUD SCHEDULER

The proposed Hybrid Cloud Scheduler (HCS) accomplishes six optimizations and

enables hybrid cloud with a single Kubernetes cluster. When the on-premise Kuber-

netes cluster has no more capacity, workloads will burst to the cloud. The HCS will

create a Kubernetes cluster in AWS on-demand. This cluster’s worker node will be

sized based on the needs of the on-premise Kubernetes cluster’s pending queue. A

region for the on-demand Kubernetes cluster will be dynamically chosen to save cost

and reduce transfer time. The on-demand Kubernetes cluster will be auto scaled.

Each machine learning workload’s data dependencies will be automatically migrated

between clusters as needed.

The HCS’s main thread performs a series of checks and is responsible for cluster

creation. After cluster creation, it then spawns three control loops to accomplish its

tasks: a Scale Watcher, Descheduler, and Overflow Watcher. The Overflow Watcher

spawns groups of Job movers. Figure 4.1 shows a diagram of the control loops and

threads that are spawned. The following sections review each of these thread’s re-

sponsibilities below.

4.1 Main Thread

The main thread periodically pulls a list of pods from the pending queue by calling

the Kubernetes API server of the on-premise cluster. This is done by calling CoreV-

1ApiInstance.list pod for all namespaces from the python Kubernetes client li-

brary with a field selector of spec.nodeName==,metadata.namespace=default. The

Kubernetes REST API supports fields selectors to ensure the API response only con-
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Figure 4.1: HCS Threads Diagram
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tains the pods we need, thus reducing execution time and saving network bandwidth.

When pods exist in the scheduling queue, the HCS knows the on-premise cluster’s

capacity is exhausted. It then creates the Kubernetes cluster on-demand in the cloud

using Kops. Kops GitHub (2021b) is an open-source Kubernetes AWS cluster man-

agement Command Line Interface (CLI). After the cloud cluster has been successfully

created, the HCS spawns the Scale Watcher, Descheduler, and Overflow Watcher con-

trol loops.

4.2 Dynamic Cluster Creation

When creating the cloud cluster, the HCS performs four steps. First, it chooses

the AWS EC2 instance type based on need. Second, it chooses the AWS region and

availability zone based on cost. Third, it creates the cluster using Kops. Finally, it

downloads the authentication keys for the created cluster from AWS S3.

The HCS chooses the instance type by pulling the list of pods from the pending

queue by calling the Kubernetes API server of the on-premise cluster. Every container

within each pod definition will have a requested CPU and memory limit. Located here

on the pod definition: pod.spec.containers.[].resources.requests['cpu/me-

mory'] This is a requirement for the Kubernetes scheduler. If no value exists for the

request limit, then the Kubernetes scheduler will continue to schedule an unlimited

number of pods onto the node even after the node becomes overwhelmed, leading

to an unhealthy node and unhealthy set of pods on that node. By summing all the

containers request limits for CPUs, the HCS will know how many CPU cores it needs

to satisfy the pending queue’s demand. This is likewise done for the megabytes of

RAM needed. The HCS compares the CPU cores and megabytes of RAM needed for

each instance type from the c5 instance family, choosing the smallest instance type

that satisfies those needs.
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The HCS chooses the AWS region by querying the per region, per availability zone

cost for the given instance. This is done by calling the python AWS client library

boto client.get products(ServiceCode='AmazonEC2', Filters=filters). The

least expensive region and availability zone are chosen.

The instance type, region, and availability zone parameters are then passed to the

cluster creation operation. The cluster is created by calling kops create cluster

with the following parameters

kops create cluster \

--node-count 1 \

--node-size $CLUSTER_NODE_INSTANCE_TYPE \

--master-size t2.medium \

--zones=$AWS_ZONE \

$NAME

The final step taken by the HCS main thread is to download the authentication

keys for the AWS cluster from amazon S3. This is done with boto’s S3 download file

function

s3_client = boto3.client(‘s3’)

s3_client.download_file(...)

The HCS Scale Watcher watches the cloud cluster’s pending queue by calling Cor-

eV1ApiInstance.list pod for all namespaces from the python Kubernetes client

library with a field selector of spec.nodeName==,metadata.namespace=default.

When the Kubernetes API returns more than zero pods, the Scale Watcher starts

the cloud cluster horizontal scale operation. Then it waits for the scale operation to

complete. This control loop iterates every 60 seconds. The horizontal scaling opera-
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tion uses Kops to increase the size of the AWS instance group that backs the Kuber-

netes worker nodes. First the horizontal scaling operation downloads the Kops YAML

definition kops get --name $CLUSTER NAME -o yaml. Then the spec.minSize and

spec.maxSize of the Kubernetes node instance group is increment by one. Then the

horizontal scaling operation updates the remote configuration files in S3. Finally, the

horizontal scaling operation performs a kops update cluster call, adding the additional

node and waiting for the task to complete with a ten-minute timeout.

4.3 Descheduler

During multiple tests of the HCS Scale Watcher, it was discovered that the Kuber-

netes scheduler will overcommit a newly added Kubernetes worker node when there is

a large pending queue. See the following error when scheduling a pod 'phase': 'F-

ailed', 'reason': 'OutOfcpu', 'message': 'Pod Node didn't have enoug-

h resource: cpu, requested:'. The Kubernetes GitHub issue list shows that

there have been several issues raised like this error in past versions of the Ku-

bernetes scheduler. To overcome this issue, deleting the pod manually was nec-

essary. Otherwise, the Kubernetes scheduler would not attempt to reschedule the

pod, and it would remain in a non-scheduled, failed state. The HCS resolves this

issue by spawning the Descheduler. The Descheduler periodically pulls a list of

pods by calling the Kubernetes API server of the cloud cluster. This is done by

calling CoreV1ApiInstance.list pod for all namespaces from the python Kuber-

netes client library with a field selector of status.phase=Failed,metadata.name-

space=default. Any pods that are returned by the Kubernetes API are deleted,

retriggering the scheduling of those pods. The Descheduler captures and logs the

failure reason to ensure that other errors are not missed. The Descheduler control

loop repeats every five seconds.
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4.4 Overflow Watcher

The Overflow Watcher periodically pulls a list of pods from the pending queue

by calling the Kubernetes API server of the on-premise cluster. If pods exist, it will

spawn a Job Mover for every job. It will wait for the results of every job mover

joining the threads. The Overflow Watcher control loop repeats every sixty seconds.

The first iteration of the Overflow Watcher would move each job sequentially until all

jobs were moved. Due to the high number of blocking network calls needed to move

each job, moving all the jobs took far too long. By spawning a Job Mover for each

of the found pods, we ensure that these network calls are executed concurrently and

with the highest degree of parallelism. The Overflow Watcher will wait for all of the

Job Moves to complete before terminating its current loop. The Overflow Watcher

control loop repeats every sixty seconds.

4.5 Job Mover

First, each Job Mover will fetch the Kubernetes Job corresponding with the pend-

ing pod. This is done by fetching the pending pods as previously described. All the

jobs from the on-premise cluster are fetched using BatchV1ApiInstance.list na-

mespaced job(‘default’, timeout seconds=60, watch=False) from the python

Kubernetes client library. The pending pods are matched to their corresponding jobs

by checking that the job metadata name match the pending pod’s metadata label job

name.

pending_pod.metadata.labels[‘job-name’] == job.metadata.name

The job-name label is automatically set on the pod when the Kubernetes job controller

creates the pod for that job. The HCS then duplicates the job from the on-premise

cluster to the cloud cluster. The Job is duplicated by performing a python deepclone
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Figure 4.2: HCS Diagram

of the job object returned from the python Kubernetes client library. The cloned

job object is then passed to the create job operation BatchV1ApiInstance.creat-

e namespaced job(body=job, namespace=‘default’) Third, The HCS deletes any

pods associated with that job from the on-premise cluster. Finally, it deletes the

on-premise job.

4.6 Data Dependency Migration

The HCS ensures data dependencies are satisfied for machine learning workloads

regardless of where workloads have been migrated. When a machine learning model

training task is completed, the trained ML model is uploaded to S3, and a record is

inserted into a MongoDB instance with the name of the trained model, a timestamp,

and the S3 file location. An overview of this process is displayed in Figure 4.2.

When an ML inference task uses a trained model, it performs a lookup through

an exposed REST API of “what and where” is the most recently trained model. The
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REST API queries MongoDB and returns the name of the most recently trained

model, its timestamp, and its S3 location. Then a check is performed to see if that

trained model already exists on disk on the Kubernetes node. If the model exists on

disk already, it is used. If the model does not exist on disk, an operation is performed

to fetch the model from S3 and persist it to a hostDir Kubernetes Volume. Persisting

it to a hostDir Kubernetes Volume allows other pods running on that node to use the

same shared disk space.
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Chapter 5

RESULTS

Existing machine learning models with simulated real-world job arrival behavior

are used to evaluate the performance of the HCS. The Workload Deployer simulates

real-world job arrival behavior. It spawns one thread per Kubernetes Job that con-

tains machine learning tasks and deploys machine learning training jobs at regular

intervals and inference jobs at random intervals. The hardware and software used for

the On-premise and Cloud Kubernetes clusters can be found in Table 1.1.

The evaluation of the HCS consists of three experiments. First, the on-premise

cluster baseline runs the entire workload on the on-premise cluster without any inter-

vention. Second, the hybrid cloud naive baseline bursts workloads from the on-premise

cluster to the cloud cluster without dynamic cluster creation, horizontal cluster scal-

ing, or dynamic worker node sizing or region cost optimizations enabled. Finally, the

hybrid cloud improved scheduler experiment runs the same workload, starting with

only the on-premise cluster. Then, the HCS creates the cloud cluster on-demand with

all of the optimizations enabled.

5.1 Machine Learning Workloads

Three machine learning models are used to evaluate the HCS: ARPU, Saved, and

Credit Card Fraud. Each with its training and inference tasks. The ARPU Model

attempts to answer the business question: “How much of a discount do we need to

provide a customer to retain them?”. Retain refers to keeping a customer subscribed

who is currently paying for a subscription product. NortonLifelock provided this

model. As input, it takes records of offers made to customers and if they accepted
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or rejected those offers along with customer attributes such as what products they

purchased and how long they have been a customer. This model uses a Linear Re-

gression. It outputs the predicted discount they need to stay in United States Dollars

(USD).

The saved model attempts to answer the business question: “How likely will this

customer be retained if we reach out to them?” NortonLifelock also provided this

model. As input, it takes the ARPU model’s inference value, customer attributes,

and records of offers made to customers and if they are accepted or rejected. This

model uses a pipeline for training as it takes the inference of another model as input

and uses a Linear Regression. The output of this model is the predicted likelihood of

being retrained in a probability percentage.

The Credit Card Fraud model attempts to answer the business question: “Is this

a fraudulent transaction we should prevent?” This is a public model from Kaggle

Kaggle (2021). This model takes as input example fraudulent and legitimate credit

card transactions. This model uses a Logistic Regression for model training. The

output is the predicted likelihood of being fraudulent in a probability percentage.

5.2 Workload Baseline On-Premise

The workload baseline experiment is performed to establish the characteristics of

the workload to be scheduled in all of our experiments. What happens to a single

cluster when it is overwhelmed by machine learning workload jobs? Are the Jobs

eventually processed? How much longer does it take to process?

An overview of all running pods throughout the experiment can be seen in Fig-

ure 5.1.

The blue line represents the total number of running pods. It shows the running

pods’ count from its base number before any workloads are scheduled to their max-

23



Figure 5.1: Workload Baseline Experiment - On-premise All Pod State

Figure 5.2: Workload Baseline Experiment - On-premise Inference Pod State

imum number. The blue line’s maximum number represents the cluster’s maximum

capacity. When new jobs arrive, and the Kubernetes cluster is at its maximum ca-

pacity, pods will enter the pending queue. The yellow line in this figure shows the

pending queue. It shows that the cluster becomes overwhelmed at about 22:30, and

the pending queue size grows over time from this point. The orange line grows at

22:30. The orange line represents pods with the succeeded status or, in other words:

machine learning workloads that have been executed and completed. At 22:57, the

number of pods in the scheduling queue hit their climax. After this point, all jobs

have arrived at the Kubernetes cluster, and the pending queue slowly drains as jobs

are completed, shown by the growing orange line and declining yellow line.

The differences in arrival behavior between training and inference ML jobs can

be seen in Figures 5.2 and 5.3. The training ML jobs, shown in Figure 5.3 arrive

at regularly scheduled intervals. The inference ML jobs, shown in Figure 5.2 arrive

more frequently and arrive randomly instead of in regular intervals. This difference in

arrival behavior can be seen by comparing the yellow line between Figures 5.2 and 5.3

showing the total count of pending inference or training ML jobs, respectively.
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Figure 5.3: Workload Baseline Experiment - On-premise Training Pod State

Figure 5.4: Workload Baseline Experiment - Model Performance

This shows the simulated job arrival behavior implemented in the HCS’s workload

deployer. The workload deployer is not a part of HCS but is used to evaluate the

HCS’s effectiveness. If either CPU or memory utilization does not have enough free

space for the new pod’s memory or CPU request limits, it will mark the node as at

capacity and send the pod to the scheduling queue. Figure 5.4 shows the average

model performance with the +/- the standard deviation as error bars. The on-

premise cluster took 3244 seconds to process the entire workload, including queuing,

processing, and completing.

5.3 Hybrid Cloud Scheduler Baseline Naive Overflow

The hybrid cloud scheduler naive overflow baseline shows how this workload be-

haves when the HCS migrates workloads from on-premise to the cloud without opti-

mizations. Those optimizations are on-demand cluster migration, dynamic sizing of
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Figure 5.5: HCS Baseline Naive Overflow - On-Premise Cluster All Pod State

Figure 5.6: HCS Baseline Naive Overflow - Cloud Cluster All Pod State

the cloud cluster, and dynamically choosing a region to optimize transfer speed and

cost. This baseline demonstrates the time, and costs savings these HCS optimizations

provide. Without dynamic cluster creation, we must create the cloud cluster ahead of

time, as is the recommended action with many of the multi-cluster configurations and

tools available today. The cloud cluster is created in advance with a default worker

size of an AWS EC2 instance type of c5.4xlarge. A c5.4xlarge has the same amount

of memory and CPU cores as the on-premise cluster in the closest AWS region to our

location (us-west-1). Observing the yellow pending scheduling queue line in Figure

5.5 shows that pods no longer increasingly build up over time.

Instead, pods are moved from the on-premise cluster’s scheduling queue to the

cloud cluster’s scheduling queue, which can be seen in Figure 5.6.

This stands in contrast to Figure 5.1 from the experiment performed in Section

5.2. The differences in ML job arrival behavior can be seen both in the on-premise

and cloud cluster. This is shown in figures 5.7, 5.8, 5.9, 5.10.

The ARPU inference, ARPU train, credit card fraud train, and saved train jobs
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Figure 5.7: HCS Baseline Naive Overflow - On-Premise Inference Pod State

Figure 5.8: HCS Baseline Naive Overflow - On-Premise Training Pod State

Figure 5.9: HCS Baseline Naive Overflow - Cloud Inference Pod State

Figure 5.10: HCS Baseline Naive Overflow - Cloud Training Pod State
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Figure 5.11: HCS Baseline Naive Overflow - Model Performance

performed better on the cloud cluster, while the saved inference and credit card fraud

inference models performed better on the on-premise cluster. Figure 5.11 shows the

average model performance with the +/- the standard deviation as error bars.

The total time taken to process the workload between the on-premise and cloud

clusters was 1847 seconds. The cloud cluster was active the entire time.

5.4 Hybrid Cloud Scheduler Improved Overflow

The HCS improved overflow experiment is performed with the same workload

processed in the previous two experiments. However, all of the optimizations are

enabled.

The first optimization can be seen in the first 10mins of Figure 5.12. The yellow

line shows that the number of queued pods continues to grow until 8:50, when it drops

to zero. During this time, the HCS is dynamically creating the cloud cluster with a

worker node sized to meet the needs of the pods in the scheduling queue and in the

US-based region that will provide the most cost savings.

Figures 5.13 5.14 shows those pods broken into inference and training jobs. Figures

5.15 5.16 show the migrating jobs arriving in the cloud cluster for the first time.

Between 8:23 and 8:57, the yellow line shows that the pending queue of the cloud
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Figure 5.12: Scheduler Improved Experiment - On-premise All Pod State

Figure 5.13: Scheduler Improved Experiment - On Premise Inference Pod State

Figure 5.14: Scheduler Improved Experiment - On Premise Training Pod State

Figure 5.15: Scheduler Improved Experiment - Cloud Inference Pod State

Figure 5.16: Scheduler Improved Experiment - Cloud Training Pod State
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Figure 5.17: Scheduler Improved Experiment - Cloud Node Load

Figure 5.18: Scheduler Improved Experiment - Model Performance

cluster is huge. This is address by HCS’ auto-scaling. As the pending queue continues

to remain large, we can see two auto-scaling events. The addition of two new worker

nodes and their load is displayed in Figure 5.17. The yellow line represents the number

of pods scheduled to node 1, the blue line represents the number of pods scheduled

to node 2, and the green represents the number of pods scheduled to node 3. As

new nodes are added to the cluster, there are drastic drops in pending pods as they

transition to running pods.

Figure 5.18 shows the ML jobs performance.

The total time taken to process the workload between the on-premise and cloud

clusters was 1847 seconds. Node 1 is active for 1440 seconds, node 2 is active for 1080

seconds, and node 3 is active for 780 seconds.

The HCS Improved regional cost optimization saved 16% of the cost for the

t2.medium master node and 20% savings on the c5.4xlarge worker node as shown
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Figure 5.19: Final Experiment Comparison, Average Turn Around Time (seconds)

Figure 5.20: Time Savings, Total Experiment Run time (seconds)

in Figure 5.21. The HCS Improvements saved 48% execution time over the On-

Premise baseline and 8% over the HCS Naive as shown in Figure 5.20. The HCS

Naive experiment has the lowest average turnaround time per model, as shown in

Figure 5.19. Each of the machine learning tasks had the most significant average

turnaround time in the on-premise baseline experiment.

The HCS Improved experiment had a lower total execution time while having a

more significant average turnaround time due to the additional worker nodes added

during the cloud cluster’s horizontal auto scaling event. After each additional worker

node was added, additional initialization steps were needed, including downloading

the docker images for the first time and downloading the data dependencies for the
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Figure 5.21: Regional Cost Savings, Total Cost Savings (USD/per hour)

first time. These initialization tasks increased the total average turnaround time.

However, due to these expensive initialization tasks happening parallel to other worker

nodes executing machine learning tasks, the total experiment execution time was still

reduced.
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Chapter 6

FUTURE RESEARCH

6.1 Regional

What impacts could confining a cluster to a single region have? Cloud providers

today provide an ever-growing impressive list of services. Cloud providers bound

support for each of those services by region. One service may be available in region

A, while not available in region B. Users of Kubernetes bound to a single region

may find that they need a service not support in their region. A naive solution to

this problem would be to deploy a second cluster to the region where the desired

service is available. This introduces the problem of needing to specify which cluster

to deploy to. This challenge could be overcome by extending the proposed HCS.

The user could specify what needs the workload has ex: [connect-to-cloud-service-x]

the scheduler will be aware of n number of clusters, which clusters support cloud

service x and dynamically schedule them accordingly. This allows the user scheduling

workloads onto Kubernetes to specify the workload’s needs and allow the scheduler

to choose the appropriate cluster, just as the Kubernetes scheduler handles choosing

the appropriate worker node.

6.2 Cloud Provider

Just as regional boundaries can impact what services are available to us, the same

is valid with cloud providers. Kubernetes clusters deployed in AWS will have native

connectivity to AWS services like AWS DyanmoDB. This, however, would limit the

native connectivity to other cloud services such as Google Cloud Platform BigQuery.
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Native connectivity can be defined as inter-data-center communication and platform-

specific mechanisms to establish connectivity, authorization, and integration of the

service easily. While some workloads will require service A (from cloud provider D)and

others Service B (from cloud provider E), we can allow the multi-cluster scheduler to

handle the placement of these workloads such that their service and cloud provider

dependencies are met without the user manually specifying the exact cluster. This

allows room for further scheduling optimizations while still satisfying the workloads

requirements and no changes needed to the end Kubernetes user.

Suppose the HCS was enabled to review the cross-availability zone, cross-region,

even cross-cloud provider data points at the time of scheduling and at the time of scale.

Using these additional data points could make an additional optimized placement

decision.
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Chapter 7

CONCLUSIONS

This thesis’s public contributions include: open-sourcing the Hybrid Cloud Sched-

uler developed, the code used to execute and analyze the results of each experiment

Kieley (2021), reporting scheduling issues found to the Kubernetes GitHub project

and sharing the statistical findings of the experiments run.

The open-sourced GitHub project includes nine git repositories. The tsis-scheduler

repository contains the HCS scheduling logic. The tsis-orchestrator repository in-

cludes the automated steps of each experiment, including running the Workload De-

ployer and HCS. The tsis-create-cluster-build repository includes the source code of

automated cluster creation and build steps to create the needed docker image file. The

tsis-create-cluster repository includes the CircleCI CircleCI (2021) YAML to execute

a parameterized cluster creation CircleCI job. The tsis-workload-deployer repository

includes the source code of the Workload Deployer, including simulated job arrival

behavior. The tsis-rest-api repository houses the HCS REST API component used

to read and write to and from MongoDB the latest trained model information. The

tsis-grafana-terraform repository hosts the terraformed Grafana dashboard configura-

tion to reproduce the pod state over time charts. The tsis-reporter repository exports

data about jobs and pods to excel after an experiment run. The tsis-clearer repos-

itory clears out experiment-specific data captured between experiment runs. These

repositories could be used to rerun the experiments with different machine learning

workloads or apply the HCS in new ways. The HCS was able to save up to 48%

execution time by bursting to the cloud and up to 20% cost savings on cloud infras-

tructure.
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