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ABSTRACT

Multi-robot systems show great promise in performing complex tasks in areas ranging

from search and rescue to interplanetary exploration. Yet controlling and coordinating

the behaviors of these robots effectively is an open research problem. This research

investigates techniques to control a multi-drone system where the drones learn to act

in a physics-based simulator using demonstrations from artificially generated motion

data that simulate flocking behavior in biological swarms. Using these demonstrations

enables faster training than approaches where the agents start learning from scratch.

The Graph Neural Network (GNN) controller used for the drones learns an efficient

representation of low-level interactions in the system, allowing the proposed method

to scale to more agents than in training data. This work also discusses techniques to

improve performance in the face of real-world challenges such as sensor noise.
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Chapter 1

INTRODUCTION

The prevalence of multi-robot systems (MRS) has increased over the years across

many domains. These include logistics in manufacturing plants and warehouses, en-

vironmental monitoring, agriculture and many more (Cortés and Egerstedt (2017)).

The systems that are currently in use are often deployed in carefully controlled en-

vironments and work independently from humans. The behaviors that dictate the

motion of these robots are pre-specified functions and may use AI-based techniques

for perception. Lately, efforts have been made by researchers to bring the capabilities

of these systems to more dynamic environments where uncertainty and hence risk,

are increased. Efforts are also being made in the field of human-robot interaction

(HRI) to address the challenges that we need to overcome when humans are in the

loop (Kolling et al. (2016)).

With the advent of deep learning, the functions that specify robot behaviors can

be approximated using neural network based architectures. The benefit of being able

to do this approximation is that the data that the behaviors are learnt from can come

from multiple sources rather than just relying on human experts. Many solutions

using deep reinforcement learning (DRL) have been proposed where agents learn the

desired behaviors using a reward signal. The issue with these approaches is that they

are usually not sample efficient, with some requiring tens of millions of examples to

learn. This problem is further exacerbated in multi-agent learning where the non-

stationarity of the environment makes the task of reward assignment difficult (Foerster

et al. (2016)). The imitation learning (IL) paradigm that we use in this work takes

advantage of the fact that the learning process does not need to start from scratch.
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We can take advantage of expert demonstrations to capture the interaction dynamics

of a system. One such source of expert demonstrations, is the Boids model proposed

by Reynolds (1987). This model simulates the flocking pattern of birds and other

animals. A further improvement to this model was made by Reynolds (1999) which

added predator and prey dynamics and elaborated on steering behaviors.

After the initial success of fully connected deep neural networks, recent break-

throughs in many domains have been possible because of neural network architec-

tures that take a more structured approach. Here, the architecture depends on the

structure of the data that the network operates on. The most prominent examples

are convolutional neural networks (CNNs) that operate on spatially related data such

as images and recurrent neural networks (RNNs) that operate on temporally related

data such as time series. These architectures allow for a more expressive representa-

tion that enables efficient reasoning. The inductive biases in the structure help the

learning algorithm to prioritize good solutions in the solution space by decreasing

ambiguity. (Battaglia et al. (2018))

The class of structured neural networks that we use in this work are called graph

neural networks (GNNs). As the name suggests, GNNs explicitly model the inter-

actions that take place within data using a graph structure. This is useful to our

problem since graph representations of multi-robot systems allow us to capture not

only the interactions amongst the robots but also their interactions with entities

present in their surroundings. In this formalism, the nodes of a graph represent static

and non-static entities in the environment and the edges of the graph represent how

different entities influence each other. In particular, we use SwarmNet, the GNN ar-

chitecture proposed by Zhou et al. (2019) which explicitly models the different types

of edges in the system, allowing it to act as an efficient controller by understanding

the different interaction dynamics at play in the environment.

2



We use the terms multi-robot, multi-agent, and multi-drone systems interchange-

ably throughout this work. Chapter 2 introduces Graph Neural Networks and shows

how they take advantage of the graph structure inherent in multi-agent systems. In

Chapter 3, we show how a GNN model that learns only from demonstrations can be

used as the backbone of a controller for multiple drones coordinating with each other

in a physics-based simulator. Chapter 4 discusses the generalization capabilities of

the controller which enables it to scale to more drones than present in the training

data. For such a controller to work in the real world, it is paramount that it can act

optimally even with perception noise. This aspect is addressed in Chapter 4 as well.
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Chapter 2

GRAPH NEURAL NETWORKS AND HOW THEY MODEL MULTI-AGENT

SYSTEMS

2.1 Graph Neural Networks

Graph neural networks (Scarselli et al. (2008)) are a class of function approxi-

mators that operate on graph-based data structures while explicitly modeling the

interaction dynamics of the entities present in the graphs. Graphs as a structure

have high expressive power which enables modeling of problems across many do-

mains. Previous works have used graph networks in machine learning paradigms for

applications such as physical scene understanding (Sanchez-Gonzalez et al. (2018)),

predicting chemical properties of molecules (Gilmer et al. (2017)), predicting traffic

on roads (Cui et al. (2019)), and an application that is closely related to the work

in this thesis, modeling the interactions in multi-agent systems (Kipf et al. (2018)).

What makes GNNs attractive for these tasks are the properties of permutation invari-

ance and locality. Graph neural networks are a generalization of convolutional neural

networks (that operate on Euclidean spatial data) to non-Euclidean data which can

be modeled as graphs. Using this explicit modeling allows GNNs to take advantage

of inductive biases in the problem structure. This can help speed up learning and en-

able more efficient reasoning through a better internal representation than traditional

fully connected Neural Networks.

In the context of multi-agent systems (MAS), graphs can be used to model the

connections between the agents and other entities present in the environment. A

graph G which consists of a set of nodes N (which represent the agents) and a set
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of edges E (which represent the connections between the agents) can be written as

G = (N , E). Here, E = {(i, j)|i, j ∈ N , i 6= j} is the set of edges where (i, j) represents

the influence from agent i to agent j through interactions. The neighborhood of a

node i is denoted by Ni which is a set of nodes connected to i, i.e Ni = {j | (j, i) ∈ E}

2.1.1 Operations in Graph Neural Networks

The most basic form of operations in a GNN proposed by Scarselli et al. (2008)

is as follows:

vi = f(V i,Ei) (2.1)

oi = g(vi) (2.2)

vi is the state of node i and oi is the output of a read-out function. Eq. (2.1)

is applied till convergence starting from an initial state and then passed through the

read-out function in Eq. (2.2). V i represents the set of node states and Ei represents

the edge states of the edges connected to node i. f and g are both approximated

by neural networks. It is important to note that this version of the GNN update

equations did not allow for updating edge states.

More recently Battaglia et al. (2018) proposed a generalized version of the update

equations which allow for edge states to be updated in addition to the nodes. It also

includes a global level state vector u. Here vi represents the state vector for node i

and eij represents the state vector for edge (i, j).

e′ij = φe(eij ,vi,vj,u) (2.3)

v′i = φv(ē′i,vi,u) (2.4)

u′ = φu(ē′, v̄′,u) (2.5)
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φ{e,v,u} functions are usually approximated by neural networks. e′ij, v
′
i and u′ are

the updated edge, node and global states respectively.

ē′i = ρe(E′i) (2.6)

ē′ = ρv(E′) (2.7)

v̄′ = ρu(V ′) (2.8)

ρ{e,v,u} functions here are generally chosen to be simple reduction functions such

as summation or average. ē′i, ē
′ and v̄′ are the aggregated messages which are the

result of these functions.

In our work, we use a variant of GNN which is known as a Message Passing Neural

Network (MPNN). More specifically, the GNN update operations used by Zhou et al.

(2019) in the SwarmNet architecture are used, for which the update equations are as

follows:

eij = φe(vi,vj), (2.9)

ēi = ψē(
∑
j∈Ni

eji), (2.10)

v′i = φv(vi, ēi), (2.11)

Eq. 2.9 is the edge update equation where each edge pulls information from the

two edges that it is connected to. After the edge is updated, each node aggregates the

messages received from its in neighbors in Eq. 2.10. After edge aggregation, the node

update step shown in Eq. 2.11 updates each node according to the current state of

the node and the aggregated messages received from its neighbors. Fig. 2.1 illustrates

the concepts shown in these equations. For a more complete survey of Graph Neural

Networks, we refer the reader to Zhou et al. (2018).
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Figure 2.1: Illustration of concepts used in operations in message passing neural
networks

2.2 The Boids Model

Reynolds (1987) proposed the Boids model as a way to simulate the aggregate

motion of a flock of animals (such as birds) where the behavior of each member of the

flock is the result of interactions with their neighbors. The high-level behavior of such

a system can be described as emergent, which means that the behavior of the entire

system depends on the relationships each of the members have with each other rather

than their individual properties. This model was developed as a way to simulate

a natural flock in computer animation as an alternative to scripting the behavior

of individual members of the flock. The original paper referred to these simulated

bird-like or ”bird-oid” objects as ”boids”. In this model, different behaviors influence

the acceleration of each boid at a particular time step. These behaviors (shown in

Fig. 2.2) are separation, alignment, cohesion, goal-seeking, and obstacle avoidance.

The superposition of the acceleration given by each of these behaviors produces the

7



final acceleration that a boid will have. This combination can either be a summation

of the different behaviors or can be determined by prioritized acceleration allocation

where acceleration from each component is treated in priority order and added into

an accumulator. We use the first approach in our work. While other models of

particle-based simulation like Helbing et al. (2000), Balch and Hybinette (2000) and

Vicsek et al. (1995) exist, it can be argued that the flocking model of Boids is the

most generic one and subsumes the interaction dynamics in these models.

Figure 2.2: The different boid behaviors: The green circles represent boids, the grey
circle represents an obstacle and the red dot is the goal location

We consider three types of entities in our system – boids, obstacles, and goals.

Since the boids are the only non-static entities in the system, we assign separate

function approximators (represented by φe in Eq. 2.9) for the interactions from all

entities to boids: φeo→b, φ
e
g→b and φeb→b. Here x→ b, x ∈ {o, g, b} denotes the directed

8



edge from an obstacle (o), goal (g) or another boid (b) to the central boid of the

neighborhood respectively. We expect the GNN to learn a unique function for each

type of interaction. This separation of functions is what allows for a more efficient

internal representation and is similar to the filter functionality in convolution neural

networks (CNNs).
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Chapter 3

LEARNING TO FLY BY IMITATING A SWARM

3.1 Imitation Learning

Developing a distributed controller for multi-robot motion and behavior is a chal-

lenging task. Early approaches relied on handcrafting algorithms to program the

robots to complete the desired objective. More recently, control strategies that in-

volve the robots learning the desired behavior have emerged where the learning takes

place either through the use of expert demonstrations or self-exploration guided by a

signal that tells the agents how well they are doing. This work uses the first approach

with the expert demonstrations being provided by the Boids model discussed in the

previous chapter. We train a GNN controller to imitate the behaviors demonstrated

by the Boids model. The end goal here is to directly use a controller trained on these

trajectories to provide desired velocity inputs to a PID controller for drones. This

allows us to focus on learning high-level behaviors while letting the PID controller

take care of the finer details of drone flight dynamics.

The trajectories generated by the Boids model are of the form T × N ×D where T

is the length of the time series, N is the number of entities in the environment and

D is the dimension of the space in which these entities exist. A graph which repre-

sents how the entities influence each other is associated with each step of a trajectory.

The state of each entity is given by the vector si(t) = [xi(t), ẋi(t)] where xi(t) is the

coordinate vector of an entity and ẋi(t) is the velocity vector. The square brackets

denote concatenation. In our experiments, we use trajectories from boids that exist

in a two-dimensional world, which means that s ∈ R4. Fig 3.1 shows a sample of the

10



Figure 3.1: Visualization of the trajectories generated by the Boids model

trajectories generated by the Boids model.

3.1.1 Training Process

In order to train our GNN controller to imitate the behaviors from the trajectories,

we use the supervised loss function given in Eq. 3.1 . Here, s∗i (t) denotes the ground

truth trajectory.

L =
1

2DNTs

Ts∑
t=1

N∑
i=1

(si(t)− s∗i (t))2 (3.1)

L̄ =
1

2DN(T − 1)

T−1∑
t=1

N∑
i=1

(s∗i (t+ 1)− s∗i (t))2 (3.2)

Since we sample states discretely using the Boids model, the error in Eq. 3.1 is

dependent on the sampling frequency. To alleviate this dependency, we normalize the

error using the normalization factor L̄ which is the mean squared error (MSE) of the

state vectors between two consecutive steps in ground truth data. The normalized

error is given by Lnorm =
L

L̄
. Fig. 3.2 shows the network architecture of our graph

neural network.

When using the trained GNN model as a controller, it is asked to predict the

11



Figure 3.2: The architecture of the Graph Neural Network

next step given the current state of the entities in the system, where the predicted

velocity serves as the input to a PID controller. In the work by Zhou et al. (2019)

on the SwarmNet framework, multi-step prediction capability for the GNN model

was achieved by gradually training the model for an increasing number of prediction

steps. This is necessary to enable the model to reduce the single step prediction error

and learn collision avoidance, both of which are crucial to our use case.

3.2 Bullet Physics Based Simulator as a Testbed

We use a Bullet physics-based simulator 1 for multi-agent quadcopter control

introduced by Panerati et al. (2021) to test our GNN controller’s effectiveness in an

environment that is closer to the real world than simple boid trajectories. Fig. 3.3

shows a screenshot from the simulator. This simulator was developed to provide a

standardized environment for comparing reinforcement learning results for a multi-

quadcopter scenario. We take advantage of the fact that reinforcement learning’s

paradigm of observation-action-reward is similar to the feedback loop in control theory

and test our imitation learning based controller using this simulator as a testbed. The

1https://github.com/utiasDSL/gym-pybullet-drones
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use of Bullet physics engine provides support for realistic collisions and aerodynamics

effects. The environments used in this simulator are parallelizable and can run in GUI

or headless mode unlike simulators such as AirSim (Shah et al. (2018)) which has tight

integration between rendering and its dynamics. Other simulators like Flightmare

(Song et al. (2020)) do not provide multi-agent Gym-like APIs like the simulator we

use. These APIs streamline the development process and facilitate quicker iteration

between solutions. The simulator also provides access to a PID controller to which

we supply the velocity that each drone should target. The dynamics for the drones

that are used in the experiments are based on Bitcraze’s Crazyflie 2.x nano-quadrotor

2 .

Figure 3.3: A screenshot of the PyBullet simulator

2https://www.bitcraze.io/documentation/hardware/crazyflie_2_1/crazyflie_2_
1-datasheet.pdf

13

https://www.bitcraze.io/documentation/hardware/crazyflie_2_1/crazyflie_2_1-datasheet.pdf
https://www.bitcraze.io/documentation/hardware/crazyflie_2_1/crazyflie_2_1-datasheet.pdf


3.3 Experiments and Results

We start by training the GNN controller to learn to imitate the behavior demon-

strated in the trajectories from the Boids model. Our goal is to directly use this

controller with the simulator and thus it is necessary to match the parameters in

demonstrations to what the controller expects to see in the simulator. Table 3.2 lists

the parameters for the boids trajectories and the PyBullet environment. The value of

a key parameter - the stepping frequency for the simulator is set to 240 Hz to make

the simulation as realistic as possible. Setting the same high frequency for the boids

trajectories means that we would need more steps (higher value of T ) in a single

trajectory since it is important to ensure that the trajectories generated by the Boids

model are long enough such that all the boids can reach the goal from their start-

ing positions. This would result in a higher number of steps being required for the

GNN controller to learn about the interactions that result in motion patterns in the

demonstrations. Our trials with matching the simulation frequency between the two

environments resulted in the GNN not being able to learn the correct behaviors due

to the size of the data involved. Choosing a low simulation frequency (5Hz) meant

that the value of T was substantially reduced but the trajectories still contained the

behaviors we would like our GNN to learn.

In the Boids model, the the boid is considered to be a point particle with the

size attribute being a ”comfortable distance” that the boid should maintain from

other physical entities rather than a hard-shell value. Thus, to avoid collisions in the

PyBullet environment, it is important to set the value of size in the Boids trajectories

to be much larger than the actual size of the drones. The values of maximum speed

and acceleration were picked by empirical analysis and adjusted by observing the

performance of the GNN controller with the drones. Fig. 3.4 presents the architecture

14



Epochs Prediction
steps

Training loss
at end

Normalized test error for
single step prediction

80 1 0.0844 0.58

40 2 0.0510 0.27

20 4 0.0767 0.25

10 8 0.1442 0.25

5 16 0.3960 0.26

160 1 0.0100 0.06

Table 3.1: Curriculum training on Boids trajectories: The GNN controller is trained
on an increasing prediction step horizon so that it can learn to imitate the motion
patterns in the trajectories. The training loss specified here is the loss at the end of
training epochs with specified prediction steps. The ultimate goal is to reduce the test
error for single-step prediction which is why we train again for single-step prediction
at the end.

Figure 3.4: System architecture of the drone controller

of the full controller and Fig. 3.5 shows the drones in the PyBullet simulator being

controlled by the GNN controller. Table 3.1 shows the training method followed to

train a controller using 2048 trajectories of 35 steps each. These trajectories contain

five boids and a single obstacle which are randomly placed at initialization.

15



Parameter Boids trajectories PyBullet environment

Agent size (radius) 1 unit 0.16 units

Obstacle size (radius) 1.5 units 1.5 units

Max speed 10 units per unit time unbounded

Max acceleration 5 units per unit time2 unbounded

Stepping frequency 5 Hz 240 Hz

Table 3.2: Parameter comparison between Boids trajectories and PyBullet environ-
ment

16



(a) The drones maneuver to avoid obstacles

(b) The drones reach the goal and hover near it

(c) Top view of the drones hovering near the goal

Figure 3.5: The drones flying in the PyBullet simulator using the GNN controller

17



Chapter 4

SCALABILITY AND ROBUSTNESS

We saw in the previous chapter how a GNN controller trained only on demonstration

data can be used to control multiple drones in a physics-based simulator, giving an

insight into the effectiveness of GNNs. In this chapter, we present further results

on their generalization capabilities as we test the scalability and robustness of the

trained controller.

4.1 Reward Function as Evaluation Metric

To evaluate the performance of the controller as we test its scalability and robust-

ness, we need a metric that can gauge the relative performance for different scenarios

or training methods. Since the task of the drones is to navigate towards the goal

as efficiently as possible while maintaining a tight formation and avoiding collisions

amongst each other or with the obstacle, we define a reward function with three

components that capture these aspects:

rd(dij) =


−c, dij < 2ad

−ρdij, dij ≥ 2ad

, ro(dio) =


−c, dij < ad + ao

0, dij ≥ ad + ao

, rg(dig) =
γ

dig + α
+β

(4.1)

Here, rd is a function of dij (distance between a drone i and another drone j),

ro is a function of dio (distance between an drone i and the obstacle o), and rg is a

function of dig (distance between a drone i and the goal g). c > 0 is a large cost

for collision, ad and ao are the radii of the drone and the obstacle. ρ, α, β, γ > 0 are

18



coefficients that shape the relative importance of the subtasks. Finally, the reward

collected in the environment from all the three sources is combined to get the final

reward for each agent at a particular time step:

ri = ro(dio) + rg(dig) +
∑
j∈Ni

rd(dij) (4.2)

4.2 Experiments on Scalability

The scalability of the GNN controller is tested by deploying it on more drones

than the number of boids in the trajectories it was trained on. This scaling up is

possible since the size of the graph is not a part of the update equations presented

in Chapter 2 (Eq. 2.9 - 2.11). The results are shown in Fig. 4.1 where a controller

trained for N = 5 drones is tested on N = 5, 6, 7, 8, 9 drones. Fig. 4.2 shows the

normalized reward received by the drones for the instances shown in the figures.

As expected, we see a decline in the reward received as the number of drones is

increased. When N = 6, the drones reach the goal from their starting position but

do not hover near the goal in a regular pattern as seen for N = 5. When N = 7, the

drones do not reach the goal but still do better than N = 8 and N = 9 where the

drones congregate together but are unable to reach the goal. The drones still move

around together and show cohesion, separation and alignment behaviors of the Boids

model. More importantly, the drones do not collide with the obstacle or each other,

meaning that the control is still stable when scaled up. The most likely explanation

for why the drones are not able to reach the goal is that with a higher number of

drones, the arbitration between the different behaviors is not scaled up. This can be

attributed to the poor extrapolation abilities of the multi layer perceptrons (MLPs)

that encode and decode information as part of the GNN controller. A possible solution

to this problem is using padded trajectory data with a varying number of boids with

a maximum equal to target upper limit on number of drones.
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(a) N = 5 (b) N = 6 (c) N = 7

(d) N = 8 (e) N = 9

Figure 4.1: Controller trained with N = 5 boids trajectories tested with more
drones

4.3 Experiments on Robustness

Until now, we have used a centralized controller in our experiments that has

access to the perfect states for all entities present in the environment. However, our

GNN controller is decentralizable since a controller running on each drone only needs

access to the state of drones in its neighborhood and other entities in its vicinity. We

consider a scenario where a decentralized controller running on each of the drones can

perceive its state perfectly but receives noisy readings for other entities due to a noisy

communication channel or due to perception error. Randomly sampled Gaussian

noise is introduced at each time step in the observations each drone receives about the
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Figure 4.2: Normalized reward received by the drones for a controller trained on
N = 5

position and velocity of other drones as well as other static entities in the environment,

such as the goal and obstacles.

To make the controller robust to noise, we add randomly sampled Gaussian noise

to the Boids trajectories while training. Since training becomes more difficult on

these noisy trajectories, we limit the amount of noise introduced during training to

a random sample from N (0, 0.1) for each data point. Fig. 4.3 compares the results

between the controller trained with and without noise, averaged over 10 trials for

each data point. We find that while the controller trained without noise does better

when the noise is low, it fails when the noise becomes high. Whereas, the controller

trained with noise learns to take more conservative paths, avoiding obstacles and thus

decreasing the number of collisions even at high noise. Although the second controller
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does take a performance hit since the drones take longer to reach the goal. Given

this difference in performance between the two controllers, it would be appropriate

for the drones to switch control strategies when noise is high rather than just using

one controller all the time. Fig. 4.4 shows the two controllers being tested in the

PyBullet simulator.

To determine if the trend in behavior seen for controller trained without noise is

introduced due to the approximation done by GNN or is inherent in the Boids model,

we also test the Boids model as a controller in noisy environments. We found that

the Boids model shows a similar dip in performance when the noise is increased. This

dip is not as sharp as the controller trained without noise but still sharper than the

controller trained on noisy trajectories. This result also goes to show that the GNN

is faithfully able to generalize to the trajectories learned from the Boids model.

4.3.1 Discussion: Reinforcement Learning after Imitation Learning

To combat the issue of noise, we also tried reinforcement learning as a solution

using the reward function discussed earlier to train the GNN controller in an environ-

ment with noisy observations after it has been trained using imitation learning. The

idea here is to take advantage of the function separation property of GNNs. Since we

aim to reduce the chance of collisions amongst the drones as well as between drones

and obstacles, we tune the parameters for φeo→b and φeb→b MLPs during reinforcement

learning while keeping the parameters for φeg→b MLP locked. For our experiments,

we chose the Proximal Policy Optimization (PPO) (Schulman et al. (2017)) algo-

rithm due to its versatility and ability to prevent drastic change in parameters during
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Figure 4.3: Comparison between controllers: The controller trained without noise
degrades completely, crashing at early time steps but the controller trained with noise
gives a more consistent performance even at higher noise. The Boids model performs
similarly to the controller trained without noise.

on-policy learning. The objective function for PPO is as follows:

L(s, a, θ′, θ) = min

(
πθ(a|s)
πθ′(a|s)

Aπθ′ (s, a), clip

(
πθ(a|s)
πθ′(a|s)

, 1− ε, 1 + ε

)
Aπθ′ (s, a)

)
,

(4.3)

Here πθ′(a|s) is the old policy and πθ(a|s) is the current policy. A(s, a) is the advantage

function which is an estimation of how much better it is to take action a in state s

rather than randomly selecting an action from policy π. ε is a hyperparameter which

dictates how far the new policy is allowed to go away from the current policy.

We pre-train the value function for PPO through self-play using the imitation

learning trained GNN as the control policy. During pre-training, only the added MLP
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(a) Imminent collision for controller trained
without noise

(b) An instance where controller trained with
noise avoids collision for the same initial con-
ditions

Figure 4.4: Controller trained without and with noise tested in the PyBullet simu-
lator at N (0, 0.8) test noise

for value function is trained. After pre-training, the φeg→b MLP is still kept locked

while other parameters are free to be trained. We found that this approach to training
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Figure 4.5: Reward during reinforcement learning training

the controller using RL after training it with Imitation Learning results in a rather

quick degradation in performance with RL working to erode the behaviors learned

during imitation learning. This results in a sharp decline in the reward obtained per

episode (shown in Fig. 4.5) which is initially high after IL training. This leads to

the conclusion that directly switching to reinforcement learning after training using

imitation learning is not ideal for our use case. This is because:

1. Since reinforcement learning erodes behaviors learned during training on expert

demonstrations, it is counter-intuitive to let the controller forget and learn new

behaviors according to the reward signal.

2. For use cases such as flying drones which is non-ergodic, it is imperative that

the initial training performance is not poor so as to avoid failure when training
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in the real world.

An intuitive reason why RL training gives poor results is that the supervised learning

loss and the reward signal during RL are two fundamentally different mathematical

signals. The switch to the latter from the former results in the degradation in the

behavior that is described earlier. This result is in line with the findings in works

from the Learning from Demonstration (LfD) literature such as Gao et al. (2018)

and Hester et al. (2017). These works propose using a unified reinforcement and

imitation learning algorithm that uses a joint objective function for demonstrations

and experiences collected through self-play. We leave investigating the use of these

techniques to our application for future work.
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Chapter 5

CONCLUSION AND FUTURE WORK

We showed that Graph Neural Networks can be used to leverage the problem

structure inherent in multi-agent systems to effectively control and coordinate be-

tween multiple agents. This thesis presented results on using a GNN-based controller

for a multi-drone system in a physics-based environment. Through the use of expert

demonstrations, GNNs can learn efficient internal representations that enable robust

control capabilities. The generalization capabilities of a GNN can be used to scale to

more agents than the model is exposed to during training. This upscaling shows a

graceful degradation in performance and avoids catastrophic events such as collisions.

We also presented results on the robustness of the controller, including a discussion of

techniques to decrease susceptibility to perception noise that is bound to be present

in real-world environments.

In the future, we would like to implement the controller on actual drones to test the

effectiveness of the proposed method in the real world. A promising direction is testing

and adapting the GNN controller for specific application scenarios (such as search and

rescue). This would also open up the possibilities of adding perception capabilities

(such as vision) and exploring communication techniques that work well with the

decentralized controller. The Boids model is just one source of expert demonstrations

that can be used for training. Other models that are more specialized for individual

task domains may perform better for different applications. Finally, we would also

like to explore the possibility of boosting performance during reinforcement learning

by using a mix of demonstration data and self-exploration guided by a combined

objective function. It is worth exploring if this method can prevent the erosion of
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behaviors that happens due to the dissimilar nature of supervised loss and reward

signals during training as seen in the previous chapter.
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APPENDIX A

CODE REPOSITORY
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Experiments and other code: https://github.com/parthkhopkar/drone_swarm
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