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ABSTRACT

The notion of the safety of a system when placed in an environment with humans and

other machines has been one of the primary concerns of practitioners while deploying

any cyber-physical system (CPS). Such systems, also referred to as safety-critical

systems, needs to be exhaustively tested for erroneous behavior. This generates the

need for coming up with algorithms that can help ascertain the behavior and safety

of the system by generating tests for the system where they are likely to falsify.

In this work, three algorithms have been presented that aim at finding falsifying

behaviors in cyber-physical Systems. Part-X intelligently partitions while sampling

the input space to provide probabilistic point and region estimates of falsification.

PySOAR-C and LS-emiBO aims at finding falsifying behaviors in gray-box systems

when some information about the system is available. Specifically, PySOAR-C

aims to find falsification while maximising coverage using a two-phase optimization

process, while LS-emiBO aims at exploiting the structure of a requirement to find

falsifications with lower computational cost compared to the state-of-the-art. This

work also shows the efficacy of the algorithms on a wide range of complex cyber-

physical systems. The algorithms presented in this thesis are available as python

toolboxes.
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Chapter 1

INTRODUCTION

“Automation may be a good thing, but don’t forget that it began with Frankenstein.”

-Anonymous

Today, automation has found its place in tasks as trivial as switching on a light

bulb to non-trivial tasks like exploring the unknown parts of the universe. Whether

we realize it or not, it has become an indispensable part of our lives. This widespread

and rapid automation has been possible, in part, due to the ever-growing scale and

complexity of embedded systems and code. Today, it is pretty normal to see a few

million lines of code spread across hundreds of microprocessor-based electronic control

units (ECUs) in even a low-end car. Features like Adaptive cruise control and emer-

gency braking, which were once considered a luxury, are now becoming an integral

part of cars [2].

Any physical system which can be controlled by a computer is considered a cyber-

physical system (CPS). For instance, here are two examples of CPS: (i) consider

an automatic thermostat installed in a room that can sense temperatures and auto-

matically switch to heating or cooling. In this case, we have sensors that sense the

environment, an onboard processor that processes the information and controls the

thermostat (the physical system) to heat or cool the room in order to maintain the

optimal temperature [3], and (ii) consider an adaptive cruise control in a car, where

the sensors sense the environment (distance to the car and speed, etc) and the on-

board computer uses this information to accelerate or decelerate the car to maintain

a safe distance and follow the speed limit [4]. Both of these are examples of physical
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systems that are controlled by computers and thus are cyber-physical systems.

CPS is being increasingly deployed in a variety of fields including manufacturing,

healthcare, smart grids, transportation, etc [5]. Safety-critical CPS is a system whose

safety is of utmost importance, and failure of which can lead to catastrophic damage

to human lives and infrastructure. In the context of safety-critical systems, CPS

has found immense application in various fields including healthcare, aerospace, and

transportation. Some examples include safety-critical CPS including implantable

artificial pancreas and Pacemaker, F16 - Ground Collision Avoidance System (GCAS),

and Boeing Maneuvering Characteristics Augmentation System (MCAS), which are

described below.

1. Artificial Pancreas: The artificial pancreas CPS aims at partially or fully

automating the process of delivering insulin to the body. A continuous glucose

sensor periodically senses blood glucose levels subcutaneously and the deliv-

ery of insulin by an insulin pump is controlled using an onboard closed-loop

controller to control the glucose levels to a certain target [6].

2. Pacemakers: Pacemakers are often implanted to enable efficient functioning

of the heart. The core goal is to deliver timely electrical pulses to the heart to

maintain an appropriate heart rate and Atrial-Ventricular synchrony [7].

3. F16-GCAS: Put into force in 2014 on the F-16 platform, GCAS is another

example of CPS, which takes over the control of an aircraft when it predicts

an imminent collision with the ground. Once detected, a fly-up maneuver is

initiated to deviate the flight away from danger. Once the danger is mitigated,

the control is given back to the user. [8, 9]

4. Boeing-MCAS: Boeing 737 MAX was the successor of Boeing 737, where

larger fuel-efficient engines were introduced on the wings. This however led to a
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change in the aircraft’s characteristics, such that accelerating the aircraft would

lead to an increasing angle of attack eventually leading to a stall. In order to

mitigate the risks, Boeing 737 MAX was fitted with the MCAS system, which

took control of the aircraft when it detected an imminent threat, and lowered

the angle-of-attack to avoid a stall [10].

The growing adoption of CPS implies increased interaction of humans with them.

It is obvious that failure of any of these systems can lead to catastrophic disasters

to both human life and infrastructure. This, along with the growing code complexity

and increasing interaction with CPS calls for developing frameworks to evaluate the

safety of a CPS.

The safety of a system can be ascertained through three methods: (i) verification,

(ii) testing, and (iii) falsification [11]. Consider a model M and a requirement φ

(often related to safety). First, verification refers to proving that the model M is

robust against the requirement φ. Second, testing refers to finding parameters and

inputs to model M such that the system is robust against the requirement φ. And

third, falsification refers to finding parameters and inputs to model M that can

produce a failure of the system to follow the requirement φ. While the difference

between verification and testing is apparent, the difference is subtle when comparing

them to falsification. The objective of testing is to find inputs and parameters that

can satisfy the requirement from a finite set, while falsification aims to find inputs

and parameters that can invalidate the requirement, from a possibly infinite set.

Verification and falsification, on the other hand, are complementary to each other

[11]. To put it simply, finding falsifying behaviors can show that the system cannot

be verified (wrt the definition above).

In this thesis, the focus is on coming up with falsification algorithms and showing

their efficacy and efficiency by exhaustively experimenting with various benchmarks.
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Based on the information available about the system, a CPS can be viewed as a

black-box system when no information is available about the dynamics of the system,

or as a gray-box system when some information is available.

In the case of black-box systems, while coming up with inputs that lead to falsi-

fying behavior is useful, often nothing can be said about the system if no such inputs

are found. While one can argue in favor of a more exhaustive search, it is important

to note that simulating such systems is often an expensive task. Thus, providing

probabilistic estimates of a smaller subregion can help a practitioner, even if no falsi-

fying inputs are found. One straightforward application is that the practitioner can

utilize subregion with a higher probability of falsification and then run an exhaus-

tive search to find falsifying behaviors. We tackle these kinds of problems using the

Part-X algorithm, which is an adaptive branch-and-bound-based level-set estima-

tion algorithm. On the other hand, if we have some knowledge about the structure

of the problem, it becomes helpful to use this prior information to find falsifications.

The information can be available in two forms. First, knowledge about the hybrid

automaton modeling of the system can often help in exploring areas of the state-space

that are less accessible and might possibly contain falsification, thus giving an advan-

tage to the search method to find falsifying inputs. With respect to this problem, the

thesis utilizes the PySOAR-C algorithm, a modified version of the algorithm pro-

posed in [12, 13] to incorporate hybrid distances. Second, if we know the structure of

the requirements, we can utilize this information to exploit and direct the sampling

process. With respect to this problem, the thesis utilizes the Large Scale Extended

Minimum Bayesian Optimization (LS-emiBO) algorithm that exploits the structure

of conjunctive requirements and provides an efficient heuristic to the sample points.
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1.1 Research Questions

This thesis seeks to answer three major research questions.

RQ1. In black-box systems, when no information is available, can we find falsifying

behaviors, while also providing probabilistic estimates of a point leading to

falsification as well as regions that can lead to finding inputs that produce a

falsifying behavior?

RQ2. In gray-box systems, when we have some knowledge about the dynamics of

the system-under-test, can we come up method that can utilize this information

in order to find inputs that lead to falsifying behaviors?

RQ3. If we have some knowledge of the structure of the requirement, can we exploit

the structure in order to efficiently come up with faster falsification?

1.2 Contributions

This work outlines and proposes three different algorithms:

1. When no information is available about the underlying system, the Part-X

algorithm is able to estimate the 0´level set of the robustness function against

a certain requirement by adaptively branching and intelligently sampling in the

search space.

2. When information about the dynamics of the system is known, the PySOAR-C

algorithm proposes to find falsifying behaviors with respect to a certain require-

ment by minimizing robustness and maximizing state coverage.

3. When the structure of the requirement is in the form of a conjunctive require-

ment, the LS-emiBO algorithm tends to find falsifying behaviors by sampling

over the likely minimum sub-requirements.
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In this thesis, the proposed algorithms are tested on a variety of problems, includ-

ing the benchmarks utilized in the friendly ARCH Competition [14].

Part-X, PySOAR-C, and LS-emiBO are provided as both stand-alone packages

as well as add-on packages to the PSY-TaLiRo SBTG tool.

• Part-X is available at https://gitlab.com/bose1/part-x.

• PySOAR-C is available at https://gitlab.com/sbtg/pysoar-c.

• LS-emiBO is available at https://gitlab.com/sbtg/LS-emiBO.

1.3 Structure

The organization of the thesis is as follows. Chapter 2 gives a brief overview of

the background of the thesis and introduces some key concepts that will be used

extensively. Chapter 3 gives an exhaustive overview of the research happening in the

literature along with a comparison with the methods proposed. This is followed by

three chapters on three different algorithms where the working is described along with

a numerical experiment, such that: Chapter 4 talks about the Part-X, Chapter 5

talks about the PySOAR-C, and Chapter 6 talks about the LS-emiBO algorithm.

The thesis then shows the results from using Part-X and LS-emiBO on complex

cyber-physical systems from [14] in Chapter 7 followed by the conclusion in Chapter 8.
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Chapter 2

BACKGROUND

2.1 System-under-test and Falsification

System-under-test (SUT) can be defined as a complete system, a cyber-physical

system in our case, which is the target of a performance measurement or a bench-

marking test. Based on the information available about the internal dynamics of the

SUT, it can be classified into three types of models: (i) a white box model, where we

have complete information about the system, (ii) a black-box model, where we do not

have any information about the internal working of the model except the inputs and

corresponding output of the system, and (iii) a gray-box model, where we have partial

information about the system. The falsification task, as discussed in chapter 1, refers

to finding inputs to the SUT such that the corresponding output violates a certain

requirement. This thesis introduces algorithms that deal with the falsification task

for both black-box and gray-box models.

This chapter gives a brief overview of black-box models and how a specification

is written and evaluated to obtain a degree of satisfaction with the requirement.

Since gray-box models can have different interpretations depending on the informa-

tion available, we discuss the gray-box models in the context of algorithms in their

respective chapters. The chapter then gives a brief overview of the PSY-TaLiRo

toolbox followed by a discussion on Search-Based Test Generation (SBTG) methods.
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2.1.1 Black-box Models

Formally, the SUT in the form of a black-box model can be represented as an

input/output function such that, given a black-box modelMBB, it can be represented

as:

MBB :
`

u : pr0, T s Ñ Rd
q
˘

Ñ pv : pr0, T s Ñ Rn
qq , (2.1)

where u : pr0, T s Ñ Rdq is a real-valued input signal. Upon simulation of the MBB, a

real-valued output signal v : pr0, T s Ñ Rnq, which could have a different dimension-

ality compared to the input signal. The input signal u is sampled from a bounded

convex region S Ď Rd, i.e., u P S, which in this work is considered to be a hyper-

cube. Throughout the thesis, the inputs and outputs refer to timed-trajectory signals

or just signals.

2.1.2 Requirement and Metrics of Distance

In order to express the requirement against which the system is being tested,

Signal Temporal Logic [15] is used throughout. The syntax of an STL formula is

given by

φ ::“ ␣φ | φ^ φ | φ_ φ | φ UI φ | lI φ | ♢Iφ (2.2)

In the given syntax, the logical connectives and the temporal operators have their

classical Boolean interpretation and equivalences. I represents the interval of time

over which the associated temporal operator is checked for. Qualitatively, x ( φ

signifies that the requirement is satisfied with respect to a signal x, while x * φ

signifies the violation. Quantitatively, the degree of satisfaction or violation is referred

to as the robustness [16] of the system against a certain specification. Fundamentally,

the robustness is a distance metric between a point y P Y and a set S Ă Y [17]. Given
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a certain model M and a requirement φ, the robustness of a signal u can be denoted

as ρφ : pr0, T s Ñ Rnq Ñ RYt´8,8u, where robustness is a real-valued quantity. The

signal u is said to violate a requirement φ when the robustness ρφ ď 0. Otherwise,

the specification is satisfied [11]. Thus the task of finding falsifying inputs to a model,

at least in the black-box setting, reduces to solving

u “ argmin
u

ρφpMpuqq (2.3)

In practice, there are multiple off-the-shelf libraries that can be used to calculate

the robustness when provided the timed trajectory and the requirement. In this

work, RTAMT [18] and TLTk [19] were used, which are available as a part of the

Search Based Generation Tool (SBTG) PSY-TaLiRo. To read more about how the

robustness is calculated with respect to different logical and temporal operators, the

reader is directed towards [16, 15, 17].

Example

Consider a black-box model of an automatic transmission controller which takes as

input the throttle and brake at a certain time t and returns the current speed of the

car. The requirement of the system is such that the in the first 20 seconds, the speed

should never exceed 120kmph. This can be defined in STL as φ “ lr0,20spspeed ă“

120q. The task of falsification in this case would be to find an input signal from time

t “ 0s to t “ 50s, such that the speed goes over 120kmph in the first 20 seconds. On

observing the signals in fig. 2.1, it can be observed that on giving the input signal

to the black-box model as shown in fig. 2.1a, the corresponding output signal output

does not go above the 120kmph mark during the first 20s. The behavior after 20s

does not affect the value of robustness. This is a non-falsifying behavior since the

requirement is satisfied. On the other hand, in fig. 2.1b, the output signal denoting
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(a) An input which satisfies the requirement: ρφpMpxqq “ 59.250

(b) An input which falsifies the requirement: ρφpMpxqq “ ´0.213
Figure 2.1: Examples of two input signals and their corresponding output. Fig-
ure 2.1a is a non-falsifying input such that it produces an output that satisfies the
requirement φ “ lr0,20spspeed ă“ 120q. However, fig. 2.1b is a falsifying input be-
cause the corresponding output signal falsifies the requirement.

the speed corresponding to the input signal exceeds 120kmph right before 20s. This

is a case when the input signal led the system to produce a falsifying behavior. This

can also be validated by noticing the corresponding robustness values: the falsifying

output signal has a non-positive robustness while non-falsifying output signal has a

positive robustness value.

2.2 SBTG Methods

Search-based Test Generation (SBTG) Methods are a class of methods that aim

at searching for falsifying inputs. Concretely, given a SUT M and a requirement φ,

the aim is to find an input signal u such that the robustness is ď 0 as defined in

eq. (2.3).
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A variety of methods for SBTG have been developed to solve eq. (2.3) that range

from tree exploration to black-box optimization based methods and related variations

of these techniques. More recently, reinforcement learning methods are also being

explored for SBTG. The basic idea behind SBTG is to find a falsifying inputs in as

less simulation as possible. If no falsifications are found, the algorithm is terminated

after an allotted budget of evaluations is exhausted. However, these methods lack

in reasoning about the falsification if no falsifications are found. We discuss this in

detail in chapter 5.

2.2.1 PSY-TaLiRo

Figure 2.2: PSY-TaLiRo Architecture

PSY-TaLiRo [20], the python version of S-TaLiRo [21], is an open-source toolbox

for temporal logic robustness-guided falsification of Cyber-Physical Systems (CPS).

The architecture1 of PSY-TaLiRo is visually shown in Figure 2.2. The user de-

1https://sbtg.gitlab.io/psy-taliro/architecture.html
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fines the model (black-box or gray-box), specification in STL and the optimizer. The

optimizer then computes sample points using which the system is simulated. The gen-

erated trajectories from the model are sent back to evaluate their robustness againt

the STL specification. The optimizer then produces the next sample to repeat the

process. RTAMT [18] and TLTk [19] are used for parsing and computing the ro-

bustness against a certain specification. This completely modular toolbox helps in

the generation of test cases for falsification of a SUT using a common interface for

temporal logic monitors. While the toolbox provides inbuilt optimizers (DA, Uni-

form Random etc.), one can also pass custom optimizers to PSY-TaLiRo. The tool

box is publicly available on-line under General Public License (GPL) 2. In this the-

sis, the algorithms are integrated with PSY-TaLiRo to develop end-to-end python

toolboxes.

2https://gitlab.com/sbtg/psy-taliro
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Chapter 3

REVIEW

3.1 Introduction

In this chapter, the initial part exhaustively discusses the methods proposed in the

falsification community and then discusses the relationship to the work algorithms in

this thesis.

As mentioned before, cyber-physical systems (CPS) are usually hybrid systems

that are an intermix of continuous and discrete dynamics [22]. These hybrid systems

can be treated as black-box systems when we do not have any information about the

system-under-test (SUT). On the other hand, if we have some prior knowledge about

the dynamics or the structure of the requirement, we can utilize such knowledge to

test these gray-box systems. In both cases, our goal is to find falsifying behaviors of

the SUT.

The robustness of the continuous state of a CPS against a certain specification can

be quantitatively measured using Signal Temporal Logic (STL) [16]. To measure the

robustness of a certain specification from the discrete state, if known, is computed in

order to give information about both the continuous and discrete state present in the

system [17]. In both cases, the system is considered to be falsified against a certain

requirement when the robustness is less than or equal to zero. Thus, the task of

finding falsifying behaviors in a CPS corresponding to a certain requirement is equiv-

alent to solving global optimization problems, where the objective is to minimize the

robustness of the system corresponding to that requirement. However, it is important

to note that when looked at from the perspective of optimization, the surfaces are
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notoriously known to have highly non-linear, non-convex, and often discontinuous

optimization surfaces. Several methods were proposed to find falsifying behaviors,

and the following is an attempt to categorize the research that has taken place in the

falsification community.

3.2 Global Optimization Methods

The first set of approaches solves the global optimization problem using an opti-

mization procedure. The tricky optimization surface can yield various local minima

which might not exhibit a falsifying behavior, and thus it becomes important that

there is a balance between exploration and exploitation. Various algorithms have been

proposed that used meta-heuristic algorithms like Ant Colony Optimization (ACO)

[23, 21], Monte-Carlo Approaches [24, 21], Nelder-Meads [15], and Tabu Search [25]

to successfully solve the problem. However, these algorithms can only provide a range

of test points where falsifying behaviors can be seen, but not comment upon the falsi-

fiability if no falsifying behaviors are found. A combination of global and local search

algorithms has also been used to find falsifying behavior. The two phase-method

for general global optimization [26] was modified to find the falsifying behaviors in

[27]. This approach searches for various segments of trajectories that could produce

falsifying behaviors in the global search phase. These segments of trajectories were

then joined using a derivative-based continuous local search. The peculiarity of this

proposed approach was in its ability to find signals of arbitrary length that could pro-

duce falsifying behaviors. In [28], the global search phase iteratively divides regions

based on a classifier and then samples in these subregions using biased sampling and

singularity sampling. If no falsifications are found in the global phase, local search

methods search for falsifying inputs using the CMA-ES algorithm. Several gradient-

based methods were also proposed that could solve the global optimization problem.
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[29] proposed an algorithm where they find points in the system trajectory that affect

the robustness corresponding to a certain specification. They then proposed to find

falsifying behaviors by providing theoretical proofs of descent direction that could re-

duce the robustness of the trajectory. As we discussed before, SA offers the advantage

of balancing exploration and exploitation efficiently, however, the tricky optimization

surface can lead to slow convergence. Finding gradients of the robustness can also

be a challenging task due to the inaccessibility of information about the SUT. [30]

proposed a method where they find approximated descent direction by linearizing

the system and show that these descent directions can closely approximate the com-

puted descent directions without the need for information about the structure of the

problem. These descent directions along with the points of interest (found using SA)

are used to form a mixture of global and local searches. [31] was an improvement

over [30] where they computed the local descent direction in the local search phase.

Similarly, [32] proposed an approach where the time-varying inputs to the signal were

parameterized in both space and time, and the gradient descent (GD) was employed

to change the amplitude and the switching time of the input signal to find falsifying

behaviors.

3.3 Meta-Model Based Approaches

The second set of approaches solves the global optimization problem by employing

meta-models. [33] aimed at solving the problem of parameter mining where the goal

was to find parameters (either in models or requirements), in order to ascertain the

robust functioning of the system. In other words, this corresponded to maximizing

the robustness (in expectation). They successfully used the GP-UCB algorithm where

they fit a surrogate model over the true points and then sample points from a grid

using the GP-UCB strategy and demonstrated its usefulness on three different CPS
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benchmarks. However, GP-UCB suffered from the problem of exploration due to

the presence of only the covariance term. [34] solved this problem by introducing a

normalization term to propose the GP-ACB method. While [33, 34] solved problems

not related to the scope of the thesis, these works were included as they were the initial

approaches to purely use gaussian processes as meta-models in the context of CPS.

Coming back to the falsification procedure, GP-UCB along with domain estimation

was used as a strategy to find falsifying behaviors [35]. The problem is posed in

a way such that the satisfiability of an antecedent requirement implies satisfaction

of safety constraint. GP-UCB was used to guide the search toward the antecedent

constraint in order to find normal and falsifying behaviors. Another approach was

to construct the probabilistic semantics of the specification, thus identifying parts of

the specification that falsify with higher probability [36]. GP-UCB was then used in

order to find falsifying behaviors.

Bayesian Optimization (BO) methods have also been widely used in finding falsi-

fying behaviors of SUT. [37] introduced model reduction techniques and coupled them

with BO in order to find falsifying behaviors on a wide range of industrial problems.

[38, 39] are some other works on similar lines. [40] proposed an approach to use parti-

tioning to identify the falsifying level sets. The partitioning and sampling parameters

are provided as inputs, and the algorithm iteratively uses conformal regression to

obtain an estimate of the maximum and minimum robustness with respect to a cer-

tain specification within a subregion. Based on such predictions, a subregion can be

deemed unsafe, safe, or unknown. If a region is deemed unsafe, it is further branched.

The proposed method allows deriving a probabilistic guarantee over a subregion when

it is classified as safe or unsafe. [12, 13] came up with an approach that utilized a

combination of global and local sampling algorithms in order to find falsifying be-

haviors. In the global search phase, the algorithm fused the expected improvement
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acquisition function and the crowding distance function in order to generate a point

proposal that was not seen before and further away from the points already sam-

pled. Using this proposal, an iterative trust region-based method was employed to

guide the search toward falsifying behaviors in the local phase. An adaptive restart

mechanism is also provided in the local phase in order to ensure that the evaluation

of the systems does not waste the simulation budget. Another approach was also

developed that exploited the structure in conjunctive requirements. In conjunctive

requirements, sub-requirements can be generated by taking all the components joined

with a conjunction operator, and falsifying even one of these sub-requirements cor-

responds to falsifying the entire requirement. [41] proposed an approach called the

minBO where the pairwise Expected Improvement (EI) acquisition function was de-

vised to look at pairs of sub-requirements and samples a point with respect to the

pair with minimum EI. This helps the algorithm in looking at components from a

finer point of view and avoids the masking effect of certain sub-requirements. In an-

other related work, a method was proposed to estimate the confidence measure of the

system not falsifying [42]. The method first collects the samples and their computed

robustness values and then models a surrogate over this data. They then estimate

the points with a high probability of lower robustness values using a global search

algorithm and run a local search from these points. If no falsification is found, the

method still returns an estimate of the confidence measure.

3.4 Tree Exploration Methods

The third set of approaches uses tree exploration methods to find falsifying behav-

iors. Motion Planning algorithms often utilize tree exploration to sample trajectories

in the context of robotic applications [43]. Computation of falsifying behaviors can

also be considered as a task of finding trajectories from a certain set to an unsafe set.
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This notion has been used in a variety of papers to find falsifying behaviors. Motion

Planning algorithm was combined with discrete search to create a multi-layered al-

gorithm to find falsifying behavior in [44]. Algorithms based on Rapidly-exploring

Random Tree (RRT) with coverage-based guided sampling were proposed as a tool

to find falsifying behaviors in [45, 46]. Monte-Carlo Tree Search (MCTS) was in-

terleaved with hill climbing optimization, where MCTS along with hill-climbing was

first used to find promising trajectories and another hill climbing optimization was

performed on these trajectories to find falsifying behaviors [47]. FalStar [48] uses a

tree-exploration-based method in a rather different way. It uses the adaptive Las

Vegas Search tree (aLVTS) to develop an input signal gradually by first defining and

exploring coarse signal and then moving towards finer-grained trajectories, thus ex-

ploiting the time-causal dependencies for a given SUT. Something peculiar about [48]

is that it considers the structure of the problem into account, but neither relies on any

insight into the model nor uses any sophisticated optimization algorithms. Another

algorithm that exploits the structure of the requirement is the ForeSee tool [49], where

the authors define a new robustness measure called the QB robustness and combine it

with MCTS and hill-climbing to find falsifications. The QB robustness measure com-

bines quantitative robustness and classical Boolean satisfaction, thus eliminating the

need to compute minimums and maximums typically used during robustness calcula-

tion. In [50], the authors propose latent action Monte Carlo Tree Search (LA-MCTS)

which drives the simulation budget by iteratively splitting the input space to identify

safe and unsafe regions. Various approaches that use Reinforcement Learning (RL)

have been proposed as well to find falsifying behaviors [51, 52].
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3.5 Model Abstraction Methods

The fourth set of approaches deals with using model abstraction paired with an

optimization algorithm to find falsifying behaviors. Model abstraction and approxi-

mation have been studied and shown to produce accurate approximations, which can

be used for model checking and verification [53]. A common theme amongst such

methods is to create an abstraction and find counterexamples. If these counterex-

amples turn out to be spurious, the abstract models are refined, and if not, they are

reported back to the user. [54] constructs an abstract graph that approximates the

underlying system. Counterexamples are found on this abstract graph and checked

on the true system to verify if these samples are spurious or not. If they are spurious,

the graph is refined and the process is repeated again. In the case that no coun-

terexamples are found on the abstract graph, a new abstract graph is created, and

the process is repeated again. ARIsTEO [55] on the other hand approximates the

model by creating a surrogate of true inputs and outputs. Falsifying behaviors on this

abstraction are then found, and if none or spurious falsifying behaviors are found, the

surrogate model is refined. The surrogate modeling is done using the System Iden-

tification toolbox [56] in MATLAB. Another automated testing tool based on active

automata learning and model checking is FalCAuN [39], where the model-under-test

is converted into a black-box Mealy machine. FalCAuN learns this mealy machine

and runs optimization procedures to find falsifying behaviors.

Research within the falsification community has also fostered a number of tools

to find falsifying behaviors. The friendly ARCH Competition [14] witnesses the par-

ticipation of various tools ([21, 15, 55, 39, 49, 48, 51]) on wide range benchmarks and

requirements with a wide range of difficulties.

19



3.6 Comparison

With respect to our algorithm Part-X, while the aim is to find falsifying behaviors,

we also want to provide probabilistic estimates of finding falsifying behavior, both in

terms of points as well as regions. This problem is essentially trying to estimate the

level set of the objective function (robustness in our case). Within the falsification

community, the work closely resembles the second set of approaches mentioned in

section 3.3. [40] as discussed above attempts to find probabilistic bounds on sub-

regions using conformal regression. However, they are unable to produce estimates

of the probability of a certain point falsifying, which we believe is important to the

practitioner. In [42], the method provides probabilistic point estimates of a finding

non-falsifying behaviors, however, they lack in providing information at the subre-

gion level, which is also of high importance to a practitioner. With respect to our

algorithms related to gray-box testing, PySOAR-C and LS-emiBO are introduced.

PySOAR-C is based on the work proposed in [12, 13] to incorporate hybrid distances

and show that the algorithm can quickly produce falsification in a complex system.

LS-emiBO, on the other hand, exploits the information available in the requirement,

specifically the conjunctive requirements. LS-emiBO looks at the individual com-

ponents of the conjunctive requirement in order to sample the next promising point.

The closest work that compares with LS-emiBO is the work in [41]. However, the

difference is from the fact that while minBO samples point based on maximizing the

expected improvement from the component with minimum robustness, the work in

LS-emiBO considers a weighted version of the expected improvement, which yields

faster falsification with less computational resources.
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Chapter 4

PARTITIONING WITH X-DISTRIBUTED SAMPLING (PART-X)

4.1 Introduction

This chapter discusses Part-X, a partitioning-based algorithm that relies on lo-

cal gaussian processes for generating surrogates over the subsets of input space and

searching for falsifying behavior. The critical contributions of the algorithm are:

1. Using local surrogate models instead of a single global surrogate model allows

the calculation of point estimates within the subregions. This helps in calcu-

lating estimates of both the best and the worst inputs to the system, as well as

the volume of the falsifying input sets.

2. Presence of a branching criterion to branch the (sub)region allows for keeping

the growth of the associated tree in check.

3. Ability to integrate Part-X with other Test Generation Methods in order to

find falsifications in regions with a higher probability of falsification.

Complete paper for the Part-X is available at [57].

Given a model M and a requirement φ, the robustness can be defined as fpxq “

ρφpMpxqq : Rd Ñ R. Part-X aims at minimizing this function while also returning

an estimate of the level set associated with robustness function fpxq ď 0 and the

corresponding falsification volume L0. Using the local surrogate models, the Part-X

algorithm also produces a model that can predict the robustness at each input in the

input space. Thus, Part-X can help in estimating the probability of the existence of
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a falsifying input when no falsifications are found as well as the associated normalized

falsification volume. In the remainder of this chapter, the algorithm is explained.

Figure 4.1 provides an overview of the algorithm. The core idea of the algorithm

is to sequentially sample points (step 1) and adaptively branch the active subregion

using estimates from the surrogate model (step 2), particularly the Gaussian Process

Regressor. The Gaussian Process Regressor (discusssed in section 4.3) provides the

sampling distribution, which can be used in classifying the region into either positive

class, negative class, or undecided (step 3). If a region is classified into positive or

negative class, it can be reclassified into either positive, negative or undecided. If a

region is classified as undecided or reclassified, the region is branched further in the

next iteration, provided the volume after being branched is greater than the mini-

mum branchable volume (step 4). If not, it is not further branched. The algorithm

terminates when the budget is exhausted or all the leaf nodes reach the minimum

branchable volume.

4.2 Tree Notation and Definitions

Through various iterations in the Part-X algorithm, the most basic structure is

the node of a Part-X tree. The ith node of the tree at jth level obtained during

the kth iteration of the algorithm having a class γ P t`,´, r`, r´, r, uu is denoted

by σγ
i,j,k. In the context of the algorithm, σγ

i,j,k denotes a region of the input space

with volume ě 0 along with the samples that belong to the subregion and their

corresponding robustness values. This also means we indirectly have access to the

surrogate model in the form of a gaussian process for every subregion. In general, we

will refer to σγ
i,j,k as a subregion. At the kth iterations of the algorithm, there will

be Nk “ pN
`
k `N r`

k `N´
k `N r´

k `N r
k `Nu

k q number of new subregions. During each

iteration k, the leaf nodes can assume the following classes:
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Figure 4.1: Overview of Part-X.

Figure 4.2: An example of partitioning tree generated by Part-X at iteration k “ 3.
Subregions in red are classified as violating, while those in green are satisfying, the
orange region is being reclassified from violating to remaining (it would be light green
if reclassified from satisfying to remaining). In figure i, j, k indexes refer to the index
of leaf i located at the hth

j level of the tree, at the kth iteration of the algorithm.
Each leaf is a set σγ

i,j,k with locations sampled up to iteration k, and the associated
robustness values. Thus, each subregion has an associated Gaussian process.
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1. New satisfying region pσ`
j,kq: The set of new subregions classified as satisfy-

ing/positive regions is denoted as σ`
j,k “

Ť

i σ
`
i,j,k@j “ t1, 2, . . . , ku at iteration

k formed by the N`
j,k new subregions. In fig. 4.2, the leaf of the tree σr

1,3,3 at

iteration k “ 3 is branched in the subsequent iteration to obtain a satisfying

region σ`
2,4,4 (shown in dark green color).

2. New Positive Reclassified Regions pσr`
j,k q: The set of new regions reclassified

from positive are denoted as σr`
j,k “

Ť

i σ
r`
i,j,k@j “ t1, 2, . . . , ku at iteration k

formed by the N r`
j,k new subregions.

3. New Violating Regions σ´
j,k: The set of new subregions classified as violating

is denoted as σ´
j,k “

Ť

i σ
´
i,j,k@j “ t1, 2, . . . , ku at iteration k formed by the

N´
j,k new subregions. In fig. 4.2, the leaf of the tree σr´

2,1,4 at iteration k “ 4 is

branched in the subsequent iteration to obtain a violating region σ´
2,5,5 (shown

in dark red color).

4. New Negative Reclassified Regions pσr´
j,k q: The set of new subregions reclassified

from violating are denoted as σr´
j,k “

Ť

i σ
r´
i,j,k@j “ t1, 2, . . . , ku at iteration

k formed by the N r´
j,k new subregions. In fig. 4.2, the leaf of the tree σ´

2,1,3

at iteration k “ 3 is reclassified from violating (shown in orange color in the

subsequent iteration). Notice that if a region is reclassified (either from violating

or satisfying), it is branched further (look at σ´
2,1,4 and σ´

2,1,5).

5. New Remaining Regions pσr
j,kq: The set of new subregions classified as remaining

is denoted as σr
j,k “

Ť

i σ
r
i,j,k@j “ t1, 2, . . . , ku at iteration k formed by the

N rk
j,k new subregions. These subregions are neither satisfying nor violating the

property. In fig. 4.2, all those regions that are branched in the subsequent

iteration are the new remaining regions (for eg: σr
1,3,3 at iteration k “ 3 is
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branched in iteration k “ 4, where the new branched region σr
1,4,4 is classified

as remaining).

6. New Unclassified Regions pσu
j,kq: The set of new subregions classified as unclas-

sified are denoted as σr
j,k “

Ť

i σ
r
i,j,k@j “ t1, 2, . . . , ku at iteration k formed by

the N rk
j,k new subregions. Similar to the remaining regions, these subregions have

not been classified into satisfying or violating. However, these subregions are

also not branchable in any direction since they reached the minimum branch-

able threshold. In fig. 4.2, σr
1,4,4 at iteration k “ 4 cannot be branched further

and is unclassified in the subsequent iteration.

Following this discussion, it can be easily inferred that: (i) the root of the tree rep-

resents the entire search space; (ii) the union of areas denoted by all leaf nodes during

any iteration will be the entire search space, and (iii) the intersection of areas denoted

by all leaf nodes during any iteration will be the null space. Let us define the set of

classified subregions at level j and at iteration k as Θ`
j,k,Θ

r`
j,k,Θ

´
j,k,Θ

r´
j,k,Θ

r
j,k,Θ

u
j,k for

satisfying, reclassified from satisfying, violating, reclassified from violating, remain-

ing, and unclassified. If we drop the index j, the result will lead to the notation for

the same sets at each iteration k.

4.3 Modelling the Robustness as a Gaussian Process

As shown in fig. 4.2, every subregion has an associated gaussian process. Gaussian

Processes are statistical methods used for regression or classification. They can be

defined as a collection of random variables of which every finite subset has a Gaussian

distribution [58]. Given a set of noise-free observations for the function fpxq, where

x P S, a gaussian process Y pxq will interpolate the true function at the evaluated

points. The gaussian process produces a conditional density P pY px0q|Xnq, whereXn
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is a set of observations x1,x2, . . . ,xn. Given the constant process mean µ, constant

process variance τ 2, and the correlation matrix R, the gaussian process

Y pxq “ µ` Zpxq ,

where Zpxq „ GPp0, τ 2Rq

If we are given n points, under the gaussian correlation assumption, the correlation

matrix Rhm “ Πl“d
l“1 exppθlpxhl´xmlq

2q where h,m “ 1, 2, . . . , n and d “ dimensional-

ity. The smoothing intensity of the predictors in different dimensions is controlled by

the d-dimensional vector θ. The parameters µ and τ 2 can be estimated using MLE

to get the followings estimates [59, 60]:

pµ “
1T
nR

´1fpXnq

1T
nR

´11n

(4.1)

τ 2 “
pfpXnq ´ 1npµgq

TR´1pfpXnq ´ 1npµgq

n
(4.2)

And, the Best Linear Unbiased Predictor pY pxq and the associated model variance to

the predictor s2pxq is [59, 60]:

pY pxq “ pµ` rTR´1
pfpXnq ´ 1npµq (4.3)

s2pxq “ τ 2
ˆ

1´ rTR´1r `
p1´ 1T

nR
´1rq2

1T
nR

´1r

˙

, (4.4)

where r is the n-dimensional vector that contains the guassian correlation between

locations x0 P S and the n elements of Xn, i.e., ripx0q “ Πl“d
l“1 exp p´θl px0l ´ x2

hlqq.

In the context of Part-X, we use the model in eq. (4.1) as a meta-model for

the unknown robustness function. Given the inputs in every subregion and their

associated evaluations txi, fi
n
i“1u, we can predict the robustness at pY γ

i,j,kpxn`1q and

the associated model variance s2pxn`1q at a new, unsampled location xn`1 in the

associated subregion σγ
i,j,k
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Algorithm 1 Sequential subregion sampling with Bayesian optimization (SampleBO)

1: Input: Subregion σγ
ijk Ă Rd, objective function fpxq, initialization budget n0, total

budget nBO, njk locations sampled so far
´

xγ
ijk,f

γ
ijk

¯

;

2: Output: best location and value x˚
ijk P σγ

ijk, f
´

x˚
ijk

¯

, final Gaussian process model
´

pY γ
ijkpxq, s2,γijkpxq

¯

.;

3: Step 1: Compute the initial required evaluation budget:
4: if njk ě n0 then
5: Use njk sampled points within the subregion as initializing points for the Gaussian

process estimation; t Ð 0;
6: else
7: Sample n0 ´ njk points using a Latin Hypercube design. Return xtrain P σγ

ijk;

f pxq ,@x P xtrain; t Ð n0 ´ njk;
8: end if
9: while t ă nBO do
10: Step 2.1: Estimate the GP using the training data txtrain,ytrainu, return

´

pY γ
ijkpxq, s2,γijkpxq

¯

for all x P σγ
ijk;

11: Step 2.2: Select the next location x˚
EI Ð argmaxxPX EI pxq; Evaluate and store

fpx˚
EIq.

12: Step 2.3: t Ð t ` 1
13: end while

4.3.1 Sequential Conditional Branching with Classification

Part-X starts by looking at the entire space, S, and then keeps branching adap-

tively until the allotted budget is exhausted or all the leaf nodes have been classified

as either satisfying, violating, or unbranchable. The first step is to sample points in

the subregion and then classify the new subregions. The branching of subregions that

meet the branching conditions are then branched and the process is repeated again.

Sampling

Part-X samples differently depending upon the class of the subregion. Primarily,

there are two types of sampling mechanisms dependent on if the subregion σγ
i,j,k has

γ P tr`, r´, r, uu or γ P t`,´u. If the subregion belongs to classes in the first group,

each subregion is required to have n0 points in the subregions before the estimation
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of the Gaussian process. Then, nBO points are sampled using bayesian optimization.

The core idea is to bias the search toward finding falsifying inputs. Formally, consider

the inputs and their evaluations in region σγ
i,j,k where γ P tr`, r´, r, uu, txn, fpxnqu.

By choosing an appropriate gaussian process prior, we can estimate the predictor and

its associated variances by using eq. (4.3) and eq. (4.4). Using these, we can build

an acquisition function, which is an inexpensive function that can be evaluated at

any given point such that it shows what the evaluation function f will be for a given

observation x for a minimization problem. In this thesis, the Expected Improvement

(EI)[59] acquisition function and a new point is generated by finding the point which

maximizes the EI, namely [59]:

xt`1 P argmax
xPS

EIpxq

“ max

"

0,
”

f˚
´ pY pxq

ı

Φ

˜

f˚ ´ pY pxq

ps pxq

¸

` ps pxqϕ

˜

f˚ ´ pY pxq

ps pxq

¸

*

, (4.5)

where f˚ is the best function value sampled so far, pY pxq is the estimated predictor,

pspx2q is the estimated model variance associated with the predictor, Φ is the normal

distribution function, and ϕ the normal probability density function. Once the point is

sampled, the gaussian process is updated and another point is sampled. This process

is repeated until nBO evaluations are made. This step is shown in algorithm 1.

If the subregion belongs to the class γ “ t´,`u, an overall budget of nc evaluations

is distributed across the set of violating subregions Θ´
jk and satisfying subregions Θ`

jk.

The distribution of budgets across the subregions is calculated by the gaussian process

predictor pY γ
i,j,k using the metric:

Iγijk “
1

υ
`

σγ
i,j,k

˘

ż

x0Pσγ
i,j,k

ˆ
ż 0

´8

fγ
i,j,k

`

pyγi,j,kpx0q
˘

dy

˙

dx0. (4.6)

where υ
`

σγ
i,j,k

˘

is a constant used to normalize in order to keep the metric in the

range r0, 1s. The metric described in Equation (4.6) corresponds to sampling from a
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Algorithm 2 Gaussian process based min-max quantiles estimation (MCstep)

1: Input: subregion σγ
ijk Ă Rd, objective function fpxq, Gaussian process model

´

pY γ
ijkpxq, s2,γijkpxq

¯

. Number of Monte Carlo iterations R, number of evaluations per

iteration M ;
2: Output: Estimates for the minimum and maximum δC-quantiles of the minimum and

maximum function value p

sQj pδCq ,Var
´

p

sQj pδCq

¯

; pQj pδCq ,Var
´

pQj pδCq

¯

;

3: for r “ 1, . . . , R do
4: for m “ 1, . . . ,M do

5: Sample xmr, evaluate
´

pY γ
ijkpxmrq, s2,γijkpxmrq

¯

;

6: end for
7: Minimum and maximum quantile:

sqr pδCq “ max
m“1,...,M

´

pY γ
ijk pxr,mq ` Z

1´
δC
2

b

s2,γijk pxr,mq

¯

,

qr pδCq “ min
m“1,...,M

´

pY γ
ijk pxr,mq ´ Z

1´
δC
2

b

s2,γijk pxr,mq

¯

8: end for
9: Minimum and maximum δC-quantile:

p

sQj pδCq “ 1
R

R
ř

i“1
sqr pδCq ,Var

´

p

sQj pδCq

¯

“
VarpsqrpδCqq

R ,

pQj pδCq “ 1
R

R
ř

i“1
qr pδCq ,Var

´

pQj pδCq

¯

“
VarpqrpδCqq

R

subregion σγ
i,j,k proportionally to the cumulative distribution ď 0.

Classification Scheme

Once we have sampled the subregions corresponding to the trees based on their

classes, the next step is to estimate the δc-quantiles for the minimum and maximum

function values. This is done using a Monte Carlo estimation method as outlined in

algorithm 2. Gaussian Processes can help to estimate the function values and the

associated variances for any location within a subregion and these point estimates

follow the normal distribution, the mean being the predictor and variance being the

model variance. Finding the quantiles of M locations helps in obtaining the point
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estimates for psqr pδCq , qr pδCqq. Repeating this process R times provides estimates of

the mean and variance of the same quantiles. δC refers to the significance at which

the quantile metric is estimated.

Table 4.1: Classification of a subregion based on the lower and upper bound of
quantiles as defined in algorithm 3

Current Class Lower δC Bound Upper δC Bound New Class Comments

γ “ r ą 0 ą 0 γ “ ` Not branched Further
γ “ r ă 0 ă 0 γ “ ´ Not branched Further
γ “ r ď 0 ě 0 γ “ r Branched Further
γ “ ` ď 0 ď 0_ ě 0 γ “ r` Treated as γ “ r
γ “ ´ ď 0_ ě 0 ě 0 γ “ r´ Treated as γ “ r

Once we have the minimum and maximum quantile estimates, one can now use

these to classify a subregion. This process is outlined in algorithm 3, as well as the

classification update is shown in table 4.1. If the region is currently remaining and

the estimated lower bound of a minimum quantile ą 0 (upper bound of a maximum

quantile ă 0), then the region is classified as satisfying (violating). If the region is

currently satisfying (violating) and the estimated lower bound of minimum quantile ď

0 (upper bound of a maximum quantile ě 0), then the region assumes γ “ r` pγ “ r´q

class. The regions with γ P tr`, r´, ru are branched further in a random direction,

provided it does go lower than the minimum branchable volume.

As we described above, the parameters R and M help in obtaining the estimates

of the mean and variance of quantiles. We call the R ˆ M as the grid size, and

the choice of parameters mainly stems from the computational resources available at

hand. Later, through numerical experiments, we show that Part-X is in fact robust

against the grid size.

The Part-X continues to adaptively branch the input space until the budget is

exhausted or all the leaves are classified as unbranchable. Finally, once the algo-

rithm terminates, the falsification volume is computed and returned. The Part-X

algorithm keeps track of the tree which can be accessed by the user to extract fal-
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Algorithm 3 Classification of a subregion (Classify)

1: Input: subregion σγ
ijk Ă Rd, current subregion type γ P p`,´, rq, Gaussian process

model
´

pY γ
ijkpxq, s2,γijkpxq

¯

;

2: Output: Return region type pr`, r´,`,´, r, uq ;

3: if v pσjq ď
śD

d“1 δv ¨ Xd then
4: γ “ u;
5: else if γ “ ` then

6: if pQj pδCq ´ Z1´δC{2Var
´

pQj pδCq

¯

ď 0 then

7: γ “ r`;
8: else
9: γ “ `;
10: end if
11: else if γ “ ´ then

12: if p

sQj pδCq ` Z1´δC{2Var
´

p

sQj pδCq

¯

ě 0 then

13: γ “ r´;
14: else
15: γ “ ´;
16: end if
17: else if γ “ r then

18: if p

sQj pδCq ` Z1´δC{2Var
´

p

sQj pδCq

¯

ă 0 then

19: γ “ ´;

20: else if pQj pδCq ´ Z1´δC{2Var
´

pQj pδCq

¯

ą 0 then

21: γ “ `;
22: else
23: γ “ r;
24: end if
25: end if

sifying regions and other crucial information. The complete algorithm is shown in

algorithm 4.

4.4 Numerical Experiments

4.4.1 Detailed Example: Himmelblau Function

Let us discuss the Part-X algorithm to estimate 0-level set of the Himmelblau

Non-Linear Function (defined in eq. (4.9)). The robustness landscape and its 0-level

set are shown in fig. 4.3. Let us walk through the Part-X algorithm. The input

region first receives the initial samples and then computes nbo for both the region
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(a) Robustness Landscape of Himmel-
blau’s Function

(b) 0-level set of Himmelblau’s Function.

Figure 4.3: Himmelblau’s Function as Described in eq. (4.9)

at iteration 1 (see fig. 4.4a), and the regions are classified as remaining. The same

process repeats in the subsequent iteration. Now, at iteration 3, some of the regions

have been classified as satisfying (see fig. 4.4b). Through the next iterations, these

regions are not reclassified. As we discussed before, these do not branch as well.

Stepping through iterations 7 and 8, one can notice that regions are being classified

into satisfying and violating such that regions where the values of the function ď 0

(see fig. 4.3b), have been classified into violating and other have turned satisfying.

The areas on the boundary are still remaining, which when branched further will

produce branches such that it follows the actual 0-level set. However, the algorithm

is terminated at iteration 8 since the budget has been exhausted.

4.4.2 Non-Linear Non-Convex Optimization Examples

The Part-X is tested on three different non-linear and non-convex optimization

examples with the intention to find the 0-level set and find the volume of the region

that is inside this level set. The three functions are the Rosenbrock, Goldstein, and

Himmelblau’s function, which is defined as follows:
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(a) Iteration k “ 1, the S is
branched into two subregions:
σr
1,1, σ

r
2,1. Each subregion re-

ceives n0 ` nBO samples.

(b) teration k “ 3, the re-
maining regions are branched
resulting into 8 subregions:
σr
1,3, . . . , σ

r
8,3. Each subregion

receives max tn0 ´ njk, 0u `nBO

samples.

(c) Iteration k “ 7, the remain-
ing regions (blue) are branched
resulting into various subre-
gions. Each subregion receives
max tn0 ´ njk, 0u`nBO samples.

(d) Iteration k “ 8, the remain-
ing regions (blue) are branched
resulting into various subre-
gions. Each subregion receives
max tn0 ´ njk, 0u`nBO samples.

Figure 4.4: Various iterations of the Part-X algorithms. We start with the initial
regions as remaining and iteratively branch and classify the remaining regions. One
can also notice that with more samples, the reclassification of classified regions takes
place (see top-left region in fig. 4.4c and fig. 4.4d).

• Rosenbrock’s function p´1 ď xi ď 1, i “ 1, . . . dq:

f pxq “
d´1
ÿ

i“1

!

100
`

xi`1 ´ x2
i

˘2
` p1´ xiq

2
)

´ 20. (4.7)

For d “ 2 (2D), it has a symmetric level set in the region: S “ r´1, 1sˆr´1, 1s .

• Goldstein-Price function p´1 ď x, y ď 1q:

f px, yq “
␣

1` px` y ` 1q2
`

19´ 14x` 3x2
´ 14y ` 6xy ` 3y2

˘(

␣

30` p2x´ 3yq2
`

18´ 32x` 12x2
` 48y ´ 36xy ` 27y2

˘(

´ 50. (4.8)
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The Goldstein function has a smaller zero level set L0 volume compared to the

Rosenbrock function.

• Himmelblau’s function p´5 ď x, y ď 5q

f px, yq “
`

x2
` y ´ 11

˘2
`
`

x` y2 ´ 7
˘2
´ 40. (4.9)

The level set L0 for the Himmelblau is disconnected.

(a) Grid Size RˆM “

10 ˆ 100, Rosenbrock
function.

(b) Grid Size RˆM “

10 ˆ 100, Goldstein
function.

(c) Grid Size RˆM “

10ˆ100, Himmelblau’s
function.

(d) Grid Size RˆM “

10 ˆ 500, Rosenbrock
function.

(e) Grid Size RˆM “

10 ˆ 500, Goldstein
function.

(f) Grid Size R ˆ M “

10ˆ500, Himmelblau’s
function.

(g) Grid Size RˆM “

20 ˆ 500, Rosenbrock
function.

(h) Grid Size RˆM “

20 ˆ 500, Goldstein
function.

(i) Grid Size R ˆ M “

20ˆ500, Himmelblau’s
function.

Figure 4.5: Level Set Estimation by Part-X on Non-Linear, Non-Convex Functions.
Solid lines represent the true 0-level set of the function. Satisfying (with positive)
regions are denoted by green areas, Violating (with negative) regions are denoted by
red areas, and the Remaining regions are denoted by blue areas.

Part-X was run with an initialization budget n0 “ 10, per-subregion budget of

unclassified subregions nBO “ 10, classified subregions budget nc “ 100, maximum
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budget T “ 5000, number of Monte Carlo iterations R “ 10, number of evaluations

per iterations M “ 100, number of cuts B “ 2, and classification percentile δC “ 0.05.

Also, we used δv “ 0.001 to identify dimensions that should not be branched. Part-X

was run for 50 microreplication with these settings.

Figure 4.5a - Figure 4.5i shows the partitioning obtained from Part-X for the

three test functions function from a randomly chosen macro-replication. The true

0-level set is denoted by the solid black lines, while the red areas are the violating

regions (a region where the function has negative values), green areas are the satisfying

regions (a region where the function has negative values) and the blue areas denote

the regions classified as remaining. From all plots in fig. 4.5, it can be observed that

the Part-X algorithm correctly identifies the satisfying and violating regions. Also,

it can be seen that even with lowers values of the grid size (RˆM), the performance of

the algorithm is unaffected. As we pointed out before, the Part-X is robust against

the values of the grid size and thus it solely depends on the choice of the user. Also,

on observing the sampled locations, a pattern can be seen where sampling is biased

toward the 0-level in comparison to other areas.

Table 4.2 shows the results for falsification volume. For Part-X, we estimate the

falsification volume using: (1) the sum of violating and remaining regions, and (2) the

estimate at δq-quantile using Gaussian process prediction. The mean and standard

errors of the falsification volumes are over 50 macro-replications. The Monte Carlo

estimates of the falsification volume are generated using the same budget, i.e, 50

macro-replications with 5000 budget each, and are treated as the oracle for the true

0-level set. Thus, the closer the estimates are to Monte Carlo estimates, the better

the estimates. In table 4.2, the estimates produced using gaussian processes are

more accurate and robust with respect δc´quantile because of the particularly high

density of sampling in the remaining regions producing low model variance at the
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Table 4.2: Falsification volume obtained with various grid sizes. We estimate the
falsifying volume as the volume of the remaining and violating hyperboxes (P-X).
P-X (δq) algorithm variants use the Gaussian processes δq-quantiles to estimate the
falsifying volume. Monte Carlo uses the same number of evaluations (5000 ˆ 50)
to perform a one-shot estimation of the falsifying volume, so no standard error is
provided.

Grid Size Algorithm
Rosenbrock Goldstein Himmelblau

Mean std err Mean std err Mean std err

R ˆM “ 10ˆ 100

P-X 2.866 7.627E-04 1.410 2.705E-03 34.313 1.836E-02
P-X (δq “ 0.5) 1.629 3.900E-08 0.305 1.536E-08 17.647 1.806E-05
P-X (δq “ 0.95) 1.633 4.180E-08 0.307 2.278E-08 17.756 1.724E-05
P-X (δq “ 0.99) 1.635 4.462E-08 0.308 2.604E-08 17.803 1.747E-05

R ˆM “ 10ˆ 500

P-X 2.798 6.475E-04 0.700 2.198E-03 34.555 2.369E-02
P-X (δq “ 0.5) 1.628 6.494E-09 0.305 1.582E-09 17.652 4.340E-06
P-X (δq “ 0.95) 1.634 9.389E-09 0.307 1.598E-09 17.776 5.417E-06
P-X (δq “ 0.99) 1.636 1.179E-08 0.308 4.269E-09 17.829 5.855E-06

R ˆM “ 20ˆ 500

P-X 2.799 8.035E-04 0.655 3.256E-04 34.500 2.459E-02
P-X (δq “ 0.5) 1.629 4.159E-09 0.305 4.154E-10 17.651 2.477E-06
P-X (δq “ 0.95) 1.634 5.169E-09 0.307 7.526E-10 17.780 2.822E-06
P-X (δq “ 0.99) 1.637 8.092E-09 0.308 1.090E-09 17.835 3.241E-06

Monte Carlo 1.626 0.302 17.030

corresponding level set. On comparing the estimates across all the grid sizes, it can

be observed that results are consistent with each other as well as the Monte Carlo

estimate with a single exception. The higher estimate of P-X falsification volume

mean on the Goldstein function for the grid size R ˆM “ 10 ˆ 100 appears to be

an exception, however, it can be verified from fig. 4.5b that some of the partitions in

r´1, 0s ˆ r0.75, 1s are not classified yet which impacts the P-X estimate.
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Algorithm 4 Partitioning with Continued X-distributed Sampling

1: Input: Input space S, function f pxq, initialization budget n0, Bayesian optimization
budget, nBO, and unclassified subregions budget nc, total number of evaluations T .
Define branching operator P : A Ñ pAiqi :

Ť

iAi “ A,
Ş

iAi “ H. Number of Monte
Carlo iterations R, number of evaluations per iterationM ; number of cuts per dimension
per subregion B, classification percentile δC, δv;

2: Set the iteration index k Ð 1, Initialize the sets xΘ´
k “ xΘ`

k “ zΘr,`
k “ zΘr,´

k “ xΘu
k “

H, Θr
k Ð S;

3: Output: xΘ´, xΘ`,zΘr,`,zΘr,´, xΘr, xΘu;

4: while Tk ě 0 do
5: Branching

6: for σγ
ijk P

´

zΘr,`
k Y zΘr,´

k Y xΘr
k

¯

do

7: Return
´

σr
i,j`1,k

¯B

i“1
“ P

´

σγ
ijk

¯

;

8: end for
9: Count N

sC
k Ð number of non-classified leaves of the partitioning tree at iteration k;

NC
k Ð number of classified leaves of the partitioning tree at iteration k;

10: if Tk ě nBO ¨ N
sC
k `

ř

σγ
ijk:γPtr`,r´,ru max pnjk ´ n0, 0q then

11: for All unclassified subregions σr
i,j,k,@j, ipjq do

12: Execute SampleBO
´

σr
i,j,k, nBO, n0, njk

¯

;

13: Return the quantiles for the minimum and maximum function value executing

MCstep
´

R,M, σr
i,j,k,

pY γ
ijk, s

2,γ
ijk

¯

;

14: Update subregions type:

γ Ð Classify
´

σr
i,j,k,

pY γ
ijk, s

2,γ
ijk

¯

, xΘγ
k Ð xΘγ

k
Ť

σj , xΘr
k Ð xΘr

kzσj ;

15: Nγ
jk Ð Nγ

jk ` 1;

16: Tk Ð Tk ´ nBO ´ max pnjk ´ n0, 0q;
17: end for
18: for j “ 1, . . . , N`

k Y N´
k do

19: Allocate nc across the subregions proportional to the metric in eqn. (4.6);
20: Return the quantiles for the minimum and maximum function value executing

MCstep
´

R,M, σγ
i,j,k,

pY γ
ijk, s

2,γ
ijk

¯

;

21: Update subregions type:

γ Ð Classify
´

σr
i,j,k,

pY γ
ijk, s

2,γ
ijk

¯

, xΘγ
k Ð xΘγ

k
Ť

σγ
ijk,

xΘr
k Ð xΘr

kzσγ
ijk;

22: end for
23: Tk Ð Tk ´ nc;
24: else
25: Allocate Tk to the subregions proportionally to the volume;
26: Evaluate the function at the sampled point and update the Gaussian processes;
27: Tk Ð 0;
28: end if
29: k Ð k ` 1;
30: end while

31: Return Vf “
v
´

yΘ´
k´1

¯

vpSq
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Chapter 5

STOCHASTIC OPTIMIZATION WITH ADAPTIVE RESTART FOR

COVERAGE (PYSOAR-C)

5.1 Introduction

In this chapter, the Stochastic Optimization with Adaptive Restart for Coverage

(PySOAR-C) is discussed in the context of the gray-box system, wherein we exploit

the information available from the dynamics of the system-under-test (SUT) in the

form of hybrid automata. A hybrid automata is an automata that consists of both

a continuous and a discrete component. First, let us establish the background with

respect to hybrid systems and their robustness computation. Then, the PySOAR-C

is described followed by preliminary results on a small-scale example.

5.2 Hybrid Systems

Hybrid systems can be represented as Hybrid Automaton (HA) (as defined in

[17]).

Definition 1 (Hybrid Automaton) A Hybrid Automata Ψ consists of components

xV,L, T ,Θ,D, I, ℓ0y, where V “ tx1, x2, . . . , xnu is the set of continuous variables, L

is a finite set of locations (modes), T is a set of (discrete) transitions such that for

each τ : xℓ1 ÝÑ ℓ2, gτy P T , we move from location ℓ1 P L to location ℓ2 P L and

the relation gτ over V Y V
1

is satisfied, H0 “ tℓ0u ˆΘ is the set of initial conditions

with ℓ0 P L to a vector field Dpℓq; and I is a mapping of each ℓ P L to a location

invariant set Ipℓq Ď Rn.
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The locations and continuous state spaces together form the hybrid state space

H “ L ˆ Rn. Following definition 1, the timed trajectory of a hybrid automaton

can be defined as an infinite sequence of states xℓ,ÝÑx y P H “ L ˆ Rn represented as

xℓ0,ÝÑx 0y, xℓ1,ÝÑx 1y, xℓ2,ÝÑx 2y, . . . such that starting from initial location ℓ0 and ÝÑx 0 P Θ,

we move to state xℓi,ÝÑx iy such that we either make a discrete transition from ℓi to

ℓi`1 or evolve from ÝÑx i to ÝÑx i`1 under the continuous state dynamics Dpℓiq.

Thus, a gray-box model where we have information about the underlying hybrid

automaton can be represented as an input/output function:

MGB : pr0, T s Ñ Rd
q Ñ pr0, T s Ñ H “ Lˆ Rn

q, (5.1)

where symbols have the same meaning as in definition 1 and eq. (2.1).

Unlike the black-box models we discussed earlier, the hybrid automaton returns

a timed trajectory of hybrid states. To incorporate this information quantitatively,

a different metric is needed to define the distance between two locations in a hybrid

trajectory. A generalized quasi-distance δ metric given in [17] can be used. Given two

hybrid locations h “ xℓ,ÝÑx y and h
1

“ xℓ
1

,ÝÑx
1

y, the quasi-distance metric is defined as:

δph, h
1

q “

$

’

’

&

’

’

%

x0, dpx, x1qy if ℓ “ ℓ
1

xπpℓ, ℓ
1

q,minℓ2
PBNπpℓ,ℓ1

q distdp
ÝÑx

1

,Gt
pℓ, ℓ

2

qqy otherwise

(5.2)

where π is the shortest path metric, d is a metric on Rn, and BNπpℓ, ℓ
1

q is the ”bound-

ary” of all locations which are closer to location ℓ
1

than location ℓ and may be visited

from ℓ within one transition if the associated guard set Gt, which may be changing

with time, is satisfied. Therefore, if the two states h, h
1

are in the same location, the

distance computation reduces to computing the distance between two points ÝÑx ,ÝÑx
1

in the continuous state-space. Else, the distance is the path between the two states

weighted by their distance to the closest guard set that can enable the transition from

the first state to another and reduces the path distance.
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Figure 5.1: Overview of PySOAR-C Algorithm

5.3 PySOAR-C Intuition

Considering that we have the hybrid automata available at our disposal, the ques-

tion that one may ask is how to exploit the structure to find falsifications. The most

intuitive way to do this is to explore the hybrid automata to get an idea of the falsifica-

tion surface and states that are being accessed. Consider a 2´ state hybrid automaton

ř

1 shown in Figure 5.2a. If the initial state x0 “ px01, x02q P S “ r0.85, 0.95s
2, shown

as yellow box in Figure 5.2b, then
ř

1 follows the dynamics in location l2. On the

other hand, if the initial system state x0 “ px01, x02q P S
1

“ r1, 1s2\S, then
ř

1 follows
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(a) Dynamics of a 2-State Hybrid Au-
tomaton

(b) Trajectories of HA at time t P r0, 2s

for different initial points x0
Figure 5.2: Example of 2 state Hybrid automaton from [1]. Figure 5.2a shows the
dynamics of a 2-state Hybrid Automaton. Figure 5.2b shows trajectories followed by
the hybrid automata from different initial points. Notice that location l1 is represented
by the area inside the yellow box and location l2 is represented by the green box apart
from the yellow box.

the dynamics in location l1. It is important to note that if the system is operating at

a certain location l1 and enters the set S at any time, the system switches to use the

dynamics in l2. This becomes clearer from the plots of trajectories at times t P r0, 2s

shown in Figure 5.2b. The system is considered to be safe when it never enters the

unsafe regions Opaq “ r´1.8,´1.4sˆr´1.6,´1.4s and Opbq “ r3.7, 4.1sˆr´1.6,´1.4s.

A falsifying behavior in this toy example is when the trajectory enters the Opbq (Fig-

ure 5.2b). Formally, this can be defined in STL by:

φ “ lr0,2s␣pπ1 _ π2q (5.3)

where π1 “ xt1 P r´1.8,´1.4s ^ xt2 P r´1.6,´1.4s

π1 “ xt1 P r3.7, 4.1s ^ xt2 P r´1.6,´1.4s

When this system is treated as a black-box, we provide the system input and the

black-box simulates for the next 2 seconds to give a timed trajectory in the continuous

state space. The corresponding robustness ρϕ can be computed using robustness

monitors. Positive values of robustness indicate safe behavior and negative values
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indicate that the system has been falsified. The corresponding robustness surface

and its contour plots are shown in Figure 5.3.

(a) 3 ´ d plot of robustness surface (b) Contour plot of robustness surface

Figure 5.3: Robustness Landscape of the 2-State HA.

On closely observing the trajectories taken by the 2´state HA in fig. 5.2b, one can

notice that while sampling from the areas in r´1, 1sˆ r´1,´0.5s leads to trajectories

passing closely from the unsafe set and yielding low robustness values, none of them,

however, enter the regions Opbq. On the other hand, the falsifications are caused

by trajectories originating from S “ r0.85, 0.95s2. This can also be observed in the

robustness landscape shown in fig. 5.3a. While this might appear to be a simple

example, the consequence is that if an algorithm treated this system as a black-box,

it very unlikely to find falsifications due to the structure of the problem. However, if

one could embed requirements that force the algorithm to explore other states finding

falsifications seem to be much more possible. In this particular problem, exploring

the l1 state will lead to much higher chances of finding falsifying inputs such that

the trajectory enters the red areas. Hybrid distance to the explored set S can be

visualized from fig. 5.4. Figure 5.4a shows the closest distance that a trajectory can

get to the region S, while fig. 5.4b shows the distance of the initial point from the
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region S.

(a) Distance of trajectory to S (b) Distance to unexplored state

Figure 5.4: Hybrid Distance

5.4 PySOAR-C

With all the necessary intuition and background to the problem, we are finally

ready to present the PySOAR-C algorithm. The key idea of this gray-box falsifi-

cation algorithm is a 2´phase strategy where the first phase looks at the robustness

of the evaluated system and samples global points adaptively, while the local search

uses gaussian process based trust region optimization, which aims at exploring the

various states of the hybrid automaton. The overview of the algorithm is provided in

fig. 5.1.

The algorithm starts by initializing n0 samples over the entire search space and

evaluating their robustness. The global search phase begins by forming a surro-

gate over the samples and their evaluations and finding a point that maximizes the

crowding-distance based Expected Improvement pEIcq. This is also called a restart

point. Using this restart point as a reference, a trust region is generated around the

sampled point. Starting from this trust region, the model looks at the number of
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points nlp already evaluated inside the trust region. If this is lesser than the number

of required samples nlr, the algorithm samples the additional points nlr ´ nlp points

inside the trust region and evaluates their hybrid distances. A surrogate model over

the nlr points is generated using gaussian processes and a location that maximizes

the Expected Improvement is sampled and robustness and hybrid distances are evalu-

ated and stored. After this, the trust regions are updated using the ratio-comparison

test. This process is repeated for nl iterations unless the stopping criterion is met.

Upon exiting the local search, either due to completing all iterations or meeting the

stopping criterion, a new restart point is generated and the entire process is repeated

again. This is shown in Algorithm 5.

5.4.1 Global Search - Generating a Restart Point

At a certain iteration k during the algorithm, we always have a dataset of ro-

bustness values Dr : tX, Yru where X P Rd and Yr P R. This allows us to generate

a surrogate pY pxq, ps2pxq (eq. (4.3), eq. (4.4)). We have already discussed how we

can use Expected improvement eq. (4.5) to generate new samples. However, it has

been shown that using EI to sample new points tend to bias exploitation more than

exploration over the input space [61]. In order to alleviate this issue, [13] introduced

the crowded expected improvement EIc. Given an unsampled location x such that

x R X, the EIc is defined as:

EIc “

$

’

’

&

’

’

%

řd
l“1minxjPXk | xl ´ xj,l | EIk ě αEI˚

k

0 EIk ă αEI˚
k

(5.4)

Fundamentally, EIc uses the p1´αq´level set with respect to EI˚ ” maxxPXEIppxq.

This means that the EIc is guaranteed to be at least p1 ´ αq times the EI˚. Note

that in normal EI, if the EI˚ “ 0, a random point is sampled. In the EIc, however,
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Algorithm 5 Stochastic Optimization with Adaptive Restart for Coverage
(PySOAR-C)

1: Input: Input space S, Requirement φG, coverage Requirement φL, initialization budget
n0, Total budget nmax

2: Output: Sample that falsifies the requirement x;

3: STOP = False
4: D Ð txn0 , yn0u : Initialize dataset with n0 P S points and their evaluation values for

requirement φG

5: if Falsified Point Found then
6: return Falsified Point
7: end if
8: t Ð n0

9: while t ď nmax do
10: Global Search Phase:
11: txrestart, ρφGpxrestartqu : Generate a Restart point by maximising eq. (5.4) for re-

quirement φG, and evaluating it.
12: t Ð t ` 1
13: if ρφGpxrestartq ď 0 then
14: Return xrestart Ð Falsifying Input found during global search phase.
15: end if
16: Local Search Phase:
17: while Local Search Stopping Criterion not met do
18: Perform Local Search to maximize coverage by minimizing the robustness for re-

quirement φL and update t
19: if Falsified Point Found then
20: return Falsified Point
21: end if
22: Update Trust Region and Centroid
23: end while
24: end while

when EI˚ “ 0, the problem reduces to argmaxxPX

řd
l“1minxjPXk | xl ´ xj,l |, thus

ensuring that previous sampled location is not re-sampled.

5.4.2 Local Search

At a certain iteration k, when the restart point is generated, the trust region is

generated such that the restart location is the centroid. The algorithm then enters a

local search. The local search is simple in the sense that the number of points and

their evaluated hybrid distances are obtained to create a dataset Dl : tX, YHDu. If

the number of samples in Dl is less than the required number of points nlr, additional
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points are randomly sampled in the trust region and are evaluated to obtain hybrid

distances. These are then added to Dl, after which a surrogate is generated and the

EI is maximized to obtain a new sample location. Using this sampled location, a

ratio-comparison test is performed in order to update the trust regions. The test

statistic ρs is as follows [62, 13]:

ρs “
fpx̃cq ´ fpx̃˚q

fGPpx̃cq ´ fGPpx̃˚q
(5.5)

where the numerator is the difference between the true function of the restart point

and the sampled point from the local search and the denominator is the prediction of

the restart location and the sampled location from the local search using the gaussian

process model. If the test statistic ρs ą 1, then a better point has been generated,

while ρs ă 0 indicates inadequate improvement over the trust region. The intuition

is that if we have better points sampled, we are optimistic about the model and thus

increase the trust-region size and update the centroid. On the other hand, if we are

not optimistic, we reduce the trust region size. Given the user-defined parameters

η1andη2 such that 0 ă η1 ď η2 ă 1 the trust region is updated based on the following

three cases:

(Case 1.) ρs ď η1: Keep the current centroid and reduce the trust region size.

(Case 2.) η1 ă ρs ď η2: Update the centroid with the new sample location and

maintain the current trust region size.

(Case 3.) ρs ă η2: Update the centroid with the new sample location and expand

the current trust region size.

The local search is exited when either the a falsification is found, or the current

trust region size reduces. While the former is easier to track, the latter cannot be

predicted pre-execution of the algorithm. For that reason, we generate a random
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number in p0, 1q and exit if the ratio of of the current trust region and two furthest

away points in the subregion is less than the random numbers sampled.

5.5 Preliminary Results

In this section, we compare the performance of PySOAR-C with the PySOAR

and the uniform random sampler. The uniform random sampler is run for 50 macro-

replications with a budget of 300 each and is considered the oracle. Both PySOAR

and PySOAR-C were run with with initialization samples n0 “ 20, maximum budget

nmax “ 300, required points in local regions nlr “ 15, local iterations nl “ 15,

user-defined constants η1 “ 0.25, η2 “ 0.75, δ “ 0.75, γ “ 1.25. Like the uniform

random sampler, each experiment was run for 50 macro-replications. Figure 5.6 and

Table 5.1: Results of PySOAR and PySOAR-C on the 2 state HA. FR refers to the
Falsification Rate (calculated out of 50), S refers to the mean number of simulations

to find a falsification, and rS refers to the median number of simulations to find a
falsification.

Uniform Random PySOAR-C PySOAR-C

Benchmark FR S rS FR S rS FR S rS

2 State HA 17 254.3 300.0 11 258.7 300.0 39 170.5 146.00

fig. 5.5 shows plots of sampled locations and their corresponding trajectories when

both falsifications are found and not found. In addition to sampled locations, figures

for PySOAR and PySOAR-C show the global points and the corresponding local

points beginning from the search. Qualitatively, PySOAR-C is expected to produce

samples such that it is biased towards exploring the closest state. This behavior

can be observed in fig. 5.5e and fig. 5.6e, where the local samples tend to move

towards minimizing the distance between the closest next states. On the other hand,

PySOAR is expected to behave such that the global point is at a point further away

from the existing samples, which can be observed in fig. 5.5c and fig. 5.6c. Since
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PySOAR just looks at the robustness values with respect to the specification, the

search is biased towards the lower areas of the search space S
1

. Table 5.1 compares

the PySOAR-C with uniform random sampler and PySOAR. PySOAR-C has a

higher falsification rate along with fewer samples to find falsification, which is what

we expected.

(a) Uniform Random Sampler (b) Uniform Random Sampler

(c) PySOAR (d) PySOAR

(e) PySOAR (f) PySOAR
Figure 5.5: Random replications in which no falsifications were Found. Global points
and their corresponding local searches are shown for PySOAR and PySOAR-C.
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(a) Uniform Random Sampler (b) Uniform Random Sampler

(c) PySOAR (d) PySOAR

(e) PySOAR (f) PySOAR
Figure 5.6: Random replications in which falsifications were Found. Global points
and their corresponding local searches are shown for PySOAR and PySOAR-C.
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Chapter 6

LARGE SCALE EXTENDED MINIMUM BAYESIAN OPTIMIZATION

(LS-EMIBO)

6.1 Introduction

In this chapter, the Large Scale Extended Minimum Bayesian Optimization (LS-

emiBO) is introduced which helps in gray-box testing, where the information from

the structure of the requirement is exploited in order to find falsifying inputs to the

System-under-Test (SUT). Specifically, the algorithm deals with conjunctive require-

ments where a requirement is the conjunction of multiple sub-requirements. The

quantitative definition of robustness says that violating a conjunctive requirement is

equivalent to violating at least one of the sub-requirement. Formally, a conjunctive

requirement φ pxq is:

φ pxq “ φ1 pxq ^ φ2 pxq ^ . . .^ φh pxq . (6.1)

If ρφh
pxq refers to robustness corresponding to hth sub-requirement φh pxq and ρφ pxq

corresponds to the robustness in eq. (6.1), then we have the following:

x ( φ if min pρφ1 pxq , ρφ2 pxq , ..., ρφh
pxqq ą 0 (6.2)

x * φ if min pρφ1 pxq , ρφ2 pxq , ..., ρφh
pxqq ď 0 (6.3)

Thus, with this in mind, finding a falsifying input boils down to solving the following

problem:

x˚
P arg min

xĂRd
pρφpxqq (6.4)

with ρφ pxq “ min pρφ1 pxq , ρφ2 pxq , ..., ρφh
pxqq
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The state-of-the-art minBO algorithm was proposed in [41] which aimed at solving

the problem described in eq. (6.4). Specifically, they solved the problem by employing

a surrogate model for all the sub-requirements by using Gaussian Process (described

in eq. (4.3) and eq. (4.4)) and calculating the Expected Improvement (described in

eq. (4.5)) for every component of the requirement. The requirement which produced

the best EI over all the components was chosen in order to sample the next location,

and the process was repeated. One of the key advantages of the minBO algorithm was

it avoided the masking effect that occurs while considering the entire requirement.

However, there was no way to model the dependencies that certain components might

have between each other. The LS-emiBO algorithm aims at modeling the dependen-

cies between the various components of the requirement.

The overview of the algorithm is shown in fig. 6.1. The algorithm starts by sam-

pling n0 location in the input space S and computing the corresponding robustness

for all the components of the requirement φ. This can formatted to form a dataset

txn; ρφ1pxq, ρφ2pxq, . . . , ρφh
pxqu. Next, a classifier is trained to predict the component

having the minimum value for a given input x. Subsequently, the probability distri-

bution of component φh having the minimum robustness can be computed. Surrogate

models for Top-k components are then generated and the probability distribution is

used to compute the emi-EI. The subsequent testing location which maximizes the

emi-EI is generated and added to the dataset. If the generated test is a falsifying

one or the budget for evaluation is exhausted, the algorithm terminates. If not, the

algorithm is repeated again. The detailed discussion of the algorithms is shown in

algorithm 6.
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Figure 6.1: LS-emiBO Algorithm Overview

6.2 Extended Minimum Expected Improvement Function

Consider the eq. (6.4) where we have a set of samples and the robustness for h

components of the requirements. With this, we can build a dataset of inputs and

outputs such that the inputs are the sampled locations, and outputs are a one-hot

encoding where the index of the component having the minimum robustness is 1,

while others are 0.

pIpxq “

$

’

’

&

’

’

%

1 if ρφi
pxq “ minj ρφj

pxq

0 otherwise

@ i P r1, 2, . . . , hs (6.5)
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A classifier can then be trained in order to learn the unknown function that maps in-

puts to components with minimum robustness. Such a surrogate allows us to compute

the component prior as:

pi “
1

V pXq

ż

X

pIipxqdx , i “ 1, 2, . . . , h. (6.6)

From this distribution is the algorithm samples k ď h models for which surrogates

are generated (using eq. (4.1), and eq. (4.2)). Assuming that pYi, ps
2
i are the predictors

and model variance associated with the surrogate model of ith component such that

i P r1, ks, the extended minimum EI is then computed as follows.

emi-EI “
k
ÿ

i“1

EIipxqppi “ i˚
t`1 | xq (6.7)

where i˚
t`1 is the index of model with lowest robustness at location x, formally:

i˚
t`1 | x P argmin

i
ρφi
pxq. (6.8)

Denoting the best value obtained from the evaluated samples by y˚
t , the ppi “ i˚

t`1 | xq

can estimated using:

p
`

i “ i˚
t`1|x

˘

“

P
´

pYi pxq ă y˚
t

¯

řk
j“1 P

´

pYj pxq ă y˚
t

¯ (6.9)

While the closed form for calculation of the probability P p.q in eq. (6.9) is not readily

available, the desired probability can be estimated using monte-carlo approximation.

Finally, the EIp.q in eq. (6.7) is computed using:

EIi pxq “ py
˚
t ´

pYipxqqΦ

˜

py˚
t ´

pYipxqq

psipxq

¸

` psipxqϕ

˜

py˚
t ´

pYipxqq

psipxq

¸

(6.10)

With all the components of the eq. (6.7), the new testing locations can be sampled

by solving the following optimization problem.

xt`1 P argmax
x

emi-EIpxq (6.11)
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6.3 Numerical Experiment

To show the various aspects of the LS-emiBO algorithm, let’s solve a simple

numerical example that imitates the problem we try to solve in eq. (6.4). Specifically,

consider the following optimization problem and the parameters in table 6.1:

x P argmin
xPX
pminph1pxq, h2pxq, h3pxqqq (6.12)

where hjpxq “ Aj psin pajx1 ` bjq ` sin pajx2 ` bjqq `Bj @ j P r1, 2, 3s

The landscape for the various components h1pxq, h2pxq, h3pxq is shown in fig. 6.2b and

Table 6.1: Parameters Corresponding to Aj, Bj, aj, bj in eq. (6.12)

Component A B a b

h1 1.00 2.00 0.50 0.00

h2 1.00 4.00 0.50 ´1.50

h3 0.50 2.00 0.50 ´3.00

(a) Optimization landscape of
min ph1pxq, h2pxq, h3pxqq.

(b) Optimization landscape for Compo-
nent 1 ph1pxqq, Component 2 ph2pxqq and
Component 3 ph3pxqq.

Figure 6.2: Optimization Surface of eq. (6.12) and Table 6.1.

the min ph1pxq, h2pxq, h3pxqq is shown in fig. 6.2a. It can be observed that component

54



2 is never the minimizer of out of the three components. Out of components 1 and

3, component 3 achieves the minimum function values.

Starting with n0 “ 20 initial samples, nBO “ 130 samples, and selecting Top-k “ 2

components every time, the problem is framed such that the algorithm reaches the

minimizer of the function, but never falsifies. This allows us to look at the quality

of samples generated by the algorithm. While the algorithm is able to find the

minimizer, it is critical to compare how the classifier performs over various iterations

and evaluate the quality of samples generated by the algorithm. Figure 6.3a shows

(a) Empirical surface

(b) Iteration 20 (c) Iteration 50

(d) Iteration 80 (e) Iteration 150
Figure 6.3: The classifier decision surface evolving over multiple iterations. Fig-
ure 6.3a denotes the empirical classification surface.
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Figure 6.4: Samples generated using LS-emiBO.

the empirical decision surface over 108 points in the S
1

. fig. 6.3b - fig. 6.3e shows how

the classifier evolves over various iterations of the algorithm. Figure 6.4 shows the

samples generated (represented by blue dots) which tend to minimize the function.
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Algorithm 6 Large Scale Extended Minimum Bayesian Optimization

1: Input: Input space S, function f pxq, initialization budget n0, Bayesian optimization
budget, nBO, Top´k Models k, Requirements φi, Monte-Carlo Estimation R

2: Output: Sample that produces falsifies the conjunctive requirement x;

3: D Ð H : Initialize empty dataset of sampled and evaluated the robustness of all
components

4: t Ð 0
5: while t ď n0 do
6: x Ð Sample x P S
7: for i = 1, . . . , h do
8: ρφipxq Ð Evaluate Robustness of ith component.
9: if ρφipxq ď 0 then
10: Return x Ð Falsifying Input found during Initialization Phase
11: end if
12: end for
13: D Ð D Y tx; ρφipxqu, i “ 1, . . . h : Add input and robustness of all components to

dataset D
14: t Ð t ` 1
15: end while
16: t Ð 0
17: while t ď nBO do
18: D1

Ð Build dataset of inputs and one-hot encoding output vector using eq. (6.5).

19: Train Classifier with dataset D1

to component prior (eq. (6.6)) and sample top-k
models.

20: pYipxq, ps2i pxq, i P 1, . . . , k Ð Estimate GP for the top-k sampled components.
21: num Ð H, den Ð 0
22: for i “ 1, . . . , k do
23: for r “ 1, . . . , R do

24: xr P S: Sample random samples and evaluate pYipxq, ps2i pxq

25: num Ð num Y P
´

pYi pxq ă y˚
t

¯

, den Ð den ` P
´

pYi pxq ă y˚
t

¯

26: end for
27: Compute ppi “ i˚t`1 | xq using num and den.
28: end for
29: xt`1 Ð argmaxx emi-EIpxq

30: for i = 1, . . . , k do
31: ρφipxt`1q Ð Evaluate Robustness of ith component.
32: if ρφipxt`1q ď 0 then
33: Return xt`1 Ð Falsifying Input found.
34: else
35: D Ð DYtxt`1; ρφipxqu, i “ 1, . . . k : Add input and robustness of all components

to dataset D
36: t Ð t ` 1
37: end if
38: end for
39: end while
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Chapter 7

EXPERIMENTS ON ARCH BENCHMARKS

Part-X and LS-emiBO have been implemented as Python libraries that be used

as a part of the PSY-TaLiRo tool or as standalone packages in order to integrate

them with other System-in-the-loop testing frameworks. In this chapter, we discuss

the experiments that were conducted with the proposed algorithms and their results.

Due to the similarity in Part-X and LS-emiBO, we compare both of them in the

chapter on the set of experiments that have conjunctive experiments. This chapter is

structured such that we first discuss the experimental setup and discussion of results

for both Part-X and LS-emiBO followed by their comparison.

7.1 Experimental Setup

In order the convey the efficacy and efficiency of the Part-X on engineering

applications, an add-on Part-Xmodule is developed which integrates with the SBTG

Python package PSY-TaLiRo [20] (as discussed in section 2.2.1). This section will

first discuss the experimental setup followed by the results of Part-X applied to find

falsifying (0´level) sets for various multiple against various cyber-physical systems.

7.1.1 Cyber-Physical Systems Models

In order to test the algorithms on complex cyber-physical systems, with various

requirements, benchmarks from the ARCH-COMP 2021 [14] are selected. A brief

overview of the systems is as follows:

1. Automatic Transmission (AT): The AT model [63] is a Simulink model

of an automatic transmission controller with hybrid dynamics. The model is
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deterministic in nature. At any time t, the AT model takes in two inputs:

throttle and brake, and outputs the speed of the vehicle, rotations-per-minute

(RPM), and the gear of the system.

2. Chasing Cars (CC): The CC model is a Simulink model of automatic chasing

car [64]. The model consists of five cars, one of which is driven by the inputs:

throttle and brake, while the other 4 are driven by the algorithm in [64]. At

any time t, the model takes in these inputs and outputs a 5-dimensional vector

denoting the locations of the cars.

3. Neural-Network Controller (NN): The NN model is a Simulink-based neu-

ral network controller for a system that levitates a magnet over an electromagnet

at a certain reference position [14]. At any time t, the model takes the reference

position (ref ) as input and returns the current position of the magnet.

4. Steam Condenser (SC): The SC model is a simulink-based model that con-

sists of a neural network controller for energy and cooling water mass balance

[65]. At a certain time t, the input is the Steam Flow Rate and the system out-

puts Circulating Water Outlet Temperature, Steam Flow, Cooling water Flow,

and Condenser Pressure. However, the requirements for this system are based

only on the condenser pressure.

5. Fuel Control of an Automatic Powertrain (AFC): The AFC model is

a Simulink model that models the automotive air-fuel control model [66]. The

system takes as input the throttle and the engine speed, and the system outputs

the mode. The system is tested against requirements involving the throttle and

the mode of the system.

Black-box models for all these models are generated by calling MATLAB engine from
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Table 7.1: These tables summarize the inputs and their corresponding ranges along
with the simulation time horizon. The input type refers to the kind of the model must
receive in order to model them. Time-varying input is a time trajectory (signal) that
is passed to the model in order to get a timed trajectory of their outputs over which
requirements are evaluated. Time invariant inputs are static inputs in the form of
initial conditions, using which the model simulates itself and return a timed trajectory
of the states. NN is used for experiments with non-conjunctive requirements while
NNx is used for experiments with conjunctive requirements.

Model Inputs Input Ranges
Sim. Time
Horizon (s)

Input Type Instance 1 Instance 2

AT
Throttle r0, 100s

50 Time Varying Input
7 7

Brake r0, 325s 3 3

CC
Throttle r0, 1s

100 Time Varying Input
10 10

Brake r0, 1s 10 10

NN Reference r1, 3s 40 Time Varying Input 13 3

NNx Reference r1.95, 2.05s 3 Time Inariant 3 3

SC Steam Flow Rate r3.99, 4.01s 35 Time Varying Input 18 20

AFC
Throttle r0, 61.2s

50 Time Varying Input
- 10

Engine r900, 1100s - 1

python which is then attached to the PSY-TaLiRo tool for finding falsifications

against various requirements. As per the definition of black-box models, they take

in a timed trajectory of input signals (in the case of time-varying inputs) and/or

the initial conditions (in the case of time-invariant inputs) and returns the timed

trajectory of outputs.

7.1.2 Input Parametrization

For every model we describe above, the objective while performing a falsification

search can be: (1) finding the initial conditions that falsify a system, (2) finding

timed trajectories (signals) that lead to falsifications, or (3) both of the above. In the

first case, the objective reduces to finding a combination of initial input values that

lead to violating a requirement against a specification. It is important to note that

the dimensionality of the problem in Part-X is equal to the number of inputs that

form the initial conditions. In the second case, the objective is to generate a signal

that is passed as an input to the black-box model, and output signals are generated.
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These input signals are often discretized at a small time step leading to trajectories

of length in the order of 103 even for simpler benchmarks. While we can theoretically

use Part-X to find falsifying inputs at all the discretized time steps, it is practically

very hard. A way to deal with the situation is to provide the control points of the

signal at different time steps and use interpolation methods to estimate the signal at

the required discretization. We stick to piecewise continuous and piecewise constant

(as used in [14]) methods which are described as follows:

1. Arbitrary piece-wise continuous input signals: These input signals are gener-

ated using the Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) [67]

methods, such that a set of control points at different time steps produces the

interpolated signal.

2. Constrained input signals: These input signals are generated using Piecewise

Constant Interpolation methods such that the signal values take the same value

as the control point until the next control point.

An example of the control points over 100 seconds is described in table 7.2 and

resulting signals are shown in fig. 7.1.

Table 7.2: A signal can be defined by describing the control points at various time
steps. This is an example of one such signal, and the generated signal for both PCHIP
and PCONST is shown in fig. 7.1

Time (s) 0.00 11.11 22.22 33.33 44.44 55.55 66.66 77.77 88.88 99.99
Control Points 2 50 10 20 25 75 100 10 8 15

7.1.3 Specifications

The specifications are picked up from the ARCH-COMP 2021 [14]. They are

stated here for reader’s convenience.
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(a) PCHIP Signal (b) PConst Signal
Figure 7.1: Signals generated using controls points described in table 7.2

Table 7.3: Requirement formulas for the benchmarks

Key STL formula Remarks/Constraints

AT1 lr0,20sv ă 120
AT2 lr0,10sω ă 4750
AT51 lr0,30spp␣g1^ ˝ g1q Ñ ˝ lr0,2.5sg1q where ˝ ϕ ” ♢r0.001,0.1s ϕ
AT52 lr0,30spp␣g2^ ˝ g2q Ñ ˝ lr0,2.5sg2q
AT53 lr0,30spp␣g3^ ˝ g3q Ñ ˝ lr0,2.5sg3q
AT54 lr0,30spp␣g4^ ˝ g4q Ñ ˝ lr0,2.5sg4q
AT6a plr0,30sω ă 3000q Ñ plr0,4sv ă 35q
AT6b plr0,30sω ă 3000q Ñ plr0,8sv ă 50q
AT6c plr0,30sω ă 3000q Ñ plr0,20sv ă 65q

AT6abc AT6a^ AT6b^ AT6c cojunctive requirement

AFC27 lr11,50spprise _ fallq Ñ plr1,5s|µ| ă βqq 0 ď θ ă 61.2 (normal mode)
AFC29 lr11,50s|µ| ă γ 0 ď θ ă 61.2 (normal mode)
AFC33 lr11,50s|µ| ă γ 61.2 ď θ ď 81.2 (power mode)

where β “ 0.008, γ “ 0.007

rise “ pθ ă 8.8q ^ p♢r0,0.05spθ ą 40.0qq
fall “ pθ ą 40.0q ^ p♢r0,0.05spθ ă 8.8qq

NN lr1,37s

`

|Pos ´ Ref | ą α ` β|Ref | Ñ ♢r0,2slr0,1s␣pα ` β|Ref | ď |Pos ´ Ref |q
˘

where α “ 0.005 and β “ 0.03

NNx ♢r0,1spPos ą 3.2q ^ ♢r1,1.5splr0,0.5sp1.75 ă Pos ă 2.25qq ^lr2,3sp1.825 ă Pos ă 2.175q
conjunctive requiremet
1.95 ď Ref ď 2.05

CC1 lr0,100sy5 ´ y4 ď 40
CC2 lr0,70s♢r0,30sy5 ´ y4 ě 15
CC3 lr0,80spplr0,20sy2 ´ y1 ď 20q _ p♢r0,20sy5 ´ y4 ě 40qq
CC4 lr0,65s♢r0,30slr0,20sy5 ´ y4 ě 8
CC5 lr0,72s♢r0,8spplr0,5sy2 ´ y1 ě 9q Ñ plr5,20sy5 ´ y4 ě 9qq
CCx

Ź

i“1..4 lr0,50spyi`1 ´ yi ą 7.5q conjunctive requirement

F16 lr0,15saltitude ą 0

SC lr30,35sp87 ď pressure ^ pressure ď 87.5q
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7.2 Results

There are mainly two sets of experiments depending upon the input parameter-

ization. Instance 1 experiment refers to models whose inputs are parameterized by

PCHIP interpolation, while Instance 2 refers to those whose inputs are parameter-

ized by PCONST interpolation. Technically, since our task is to come up with control

points, the dimensionality of the problem is equal to the number of control points that

we are predicting. The summary of experiments and their control points is shown in

table 7.1.

Part-X was run with an initialization budget n0 “ 20, per-subregion budget of

unclassified subregions nBO “ 10, classified subregions budget nc “ 100, maximum

budget T “ 2000, number of Monte Carlo iterations R “ 20, number of evaluations

per iterations M “ 500, number of cuts B “ 2, and classification percentile δC “ 0.05.

Also, we used δv “ 0.001 to identify dimensions that should not be branched. Part-X

was run for 10 microreplication with these settings. Results shown in table 7.4 show

the falsification rate out of 10, the mean and median number of simulations to find the

first falsifying point, and the simulation time ratio for both instances. Along with this,

the falsification volume is also reported. Results for Part-X are discussed in table 7.4.

It can be seen that we get probabilistic estimates of falsifications at 95% confidence

bounds. In some cases, like Steam Condenser for Instance 2, it can observed that

even though no falsificiations are found, estimates for falsification volume still show

up. In cases where do not get any probabilistic estimates (like AFC33 for Instance 2),

the probabilistic estimates show up as we got to we increase our confidence bounds.

Next, the LS-emiBO was run with an initialization budget n0 “ 20 along with

bayesian optimization budget nBO “ 1880 and top-k “ 2 in case of conjunctive

requirements. When LS-emiBO is run on the non-conjunctive requirement, it re-
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Table 7.4: Part-X results for piecewise continuous input signals (instance 1) and
constrained input signals (instance 2). FR: falsification rate, S: mean number of

simulations, rS: median (rounded down) number of simulations, LCB : Lower Confi-
dence Bound at 95% confidence, UCB : Upper Confidence Bound at 95% confidence,
R: pSimulationT ime

TotalT ime
q ˚ 100 (%).

Tool PSY-TaLiRo PSY-TaLiRo
Approach Part-X Part-X
Instance 1 1

Property FR S rS LCB UCB R FR S rS LCB UCB R

AT1 10 34.9 28.5 0.00E+00 7.03E-04 70.71 10 30.5 25.5 0.00E+00 5.58E-04 85.71
AT2 10 6.7 5.5 9.45E-02 1.80E-01 52.78 10 6.5 5.0 1.16E-01 2.77E-01 50.64
AT51 0 2000.0 2000.0 0.00E+00 0.00E+00 93.88 10 13.3 11.5 2.22E-01 5.86E-01 64.31
AT52 10 5.6 2.0 1.81E-01 9.02E-01 62.53 10 66.5 53.5 0.00E+00 0.00E+00 93.46
AT53 10 15.7 15.5 2.45E-02 4.26E-01 59.72 10 2.2 2.0 8.38E-01 1.00E+00 57.05
AT54 3 1658.8 2000.0 0.00E+00 3.60E-05 90.97 10 85.0 65.0 0.00E+00 7.68E-02 76.17
AT6a 10 134.3 51.5 1.18E-01 2.47E-01 58.18 10 153.7 72.0 5.75E-02 1.94E-01 53.09
AT6b 10 212.2 150.0 9.45E-02 2.88E-01 57.83 10 307.9 111.5 3.40E-02 1.97E-01 56.44
AT6c 10 200.5 138.0 9.94E-02 2.86E-01 58.08 10 334.4 249.5 4.34E-02 1.98E-01 59.32
AT6abc 10 126.1 50.0 1.02E-01 2.67E-01 68.69 10 106.9 67.5 5.72E-02 2.06E-01 69.38

CC1 10 19.0 16.5 2.71E-01 8.31E-01 69.15 10 17.6 21.0 2.83E-01 8.86E-01 68.65
CC2 10 23.9 12.0 4.82E-01 1.00E+00 68.61 10 17.8 12.0 2.27E-01 1.00E+00 66.34
CC3 10 23.1 24.0 1.28E-01 4.58E-01 69.87 10 13.5 12.0 1.18E-01 1.00E+00 69.53
CC4 0 2000.0 2000.0 0.00E+00 0.00E+00 95.33 0 2000.0 2000.0 0.00E+00 0.00E+00 94.51
CC5 10 45.8 29.0 3.83E-02 7.10E-01 79.43 10 29.9 22.5 2.09E-01 5.90E-01 73.84
CCx 9 813.7 703.0 0.00E+00 0.00E+00 95.96 10 607.1 156.0 0.00E+00 0.00E+00 96.17

NN 10 15.2 16.0 4.84E-01 8.80E-01 83.54 10 145.8 89.5 0.00E+00 1.36E-01 87.31
NNx - - - - - - 10 190.7 40.0 0.00E+00 1.20E-02 66.43
SC 0 2000.0 2000.0 0.00E+00 0.00E+00 78.87 0 2000.0 2000.0 0.00E+00 2.70E-05 45.48

F16 0 2000.0 2000.0 0.00E+00 0.00E+00 39.22 - - - - - -

AFC27 - - - - - - 10 34.3 27.0 5.90E-01 7.27E-01 89.44
AFC29 - - - - - - 10 12.1 11.0 2.31E-01 5.36E-01 87.88
AFC33 - - - - - - 0 2000.0 2000.0 0.00E+00 0.00E+00 96.14

duces to the vanilla Bayesian optimization (BO). LS-emiBO was run for 10 macro-

replications. The results for instance 1 are reported in table 7.5 and instance 2 are

reported in table 7.6. These are also compared with their respective counter part,

the uniform random, which was also run for 10 microreplication with a budget of

2000 each. We can see that LS-emiBO works efficiently when compared to their

respective counterparts. One of the most significant results is the CCx experiment

in both instances, where the LS-emiBO algorithm finds a falsifying input in about

a quarter of the simulations performed by the uniform random.
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While comparing Part-X and LS-emiBO, one might notice that the LS-emiBO

tends to find falsifications quickly in comparison to Part-X. However, not much can

be said in Part-X, we do not have a criterion on which node of the Part-X tree

should be explored first.

Table 7.5: LS-emiBO results for piecewise continuous input signals (instance 1).

FR: falsification rate, S: mean number of simulations, rS: median (rounded down)
number of simulations, LCB : Lower Confidence Bound at 95% confidence, UCB :
Upper Confidence Bound at 95% confidence, R: pSimulationT ime

TotalT ime
q ˚ 100p%q.

Tool:
Uniform Random

PSY-TaLiRo
Approach: LSemiBO

Benchmark FR S rS R FR S rS R

AT1 0 2000.0 2000.0 99.96 10 106.3 105.5 72.73
AT2 10 7.6 5.0 99.95 10 15.5 12.5 57.48
AT51 1 1892.3 2000.0 99.96 1 1802.2 2000.0 91.99
AT52 10 4.1 2.0 99.95 10 3.2 2.5 61.69
AT53 10 18.6 15.0 99.95 10 28.0 21.0 60.25
AT54 4 1648.5 2000.0 99.96 7 1100.7 973.0 90.63
AT6a 10 74.4 41.5 99.96 10 76.6 89.0 58.08
AT6b 10 251.3 189.0 99.96 7 898.3 373.0 58.24
AT6c 10 185.2 86.0 99.96 9 495.4 167.5 53.27
AT6abc 10 58.8 33.5 99.97 10 34.2 29.5 37.02

NN 10 38.6 27.5 99.98 10 36.4 35.5 84.56

CC1 10 10.4 9.5 99.98 10 13.1 8.5 71.55
CC2 10 15.4 15.0 99.97 10 16.4 11.0 65.45
CC3 10 77.9 54.5 99.98 10 21.5 15.0 71.75
CC4 0 2000.0 2000.0 99.98 1 1925.3 2000.0 93.58
CC5 10 28.5 14.5 99.98 10 47.3 39.0 84.76
CCx 9 801.0 472.5 99.98 10 210.6 70.0 20.82

F16 0 2000.0 2000.0 99.90 - - - -

SC 0 2000.0 2000.0 99.88 - - - -
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Table 7.6: LS-emiBO results for piecewise constrained input signals (instance 1).

FR: falsification rate, S: mean number of simulations, rS: median (rounded down)
number of simulations, LCB : Lower Confidence Bound at 95% confidence, UCB :
Upper Confidence Bound at 95% confidence, R: pSimulationT ime

TotalT ime
q ˚ 100p%q.

Tool:
Uniform Random

S-TaLiRo
Approach: LSemiBO

Benchmark FR S rS R FR S rS R

AT1 0 2000.0 2000.0 99.95 10 105.4 105.0 86.77
AT2 10 18.8 13.5 99.95 10 11.6 11.0 50.26
AT51 10 20.5 16.5 99.96 10 13.7 8.5 69.32
AT52 10 74.1 65.0 99.96 10 79.1 95.0 92.88
AT53 10 1.5 1.0 99.95 10 2.7 2.0 57.06
AT54 10 47.9 42.0 99.96 10 37.7 32.0 79.63
AT6a 10 156.6 138.0 99.96 9 429.5 252.5 61.66
AT6b 10 472.2 588.0 99.96 9 722.0 523.5 49.41
AT6c 10 326.8 176.0 99.96 8 689.2 248.5 54.73
AT6abc 10 149.0 125.5 99.97 10 240.5 74.0 7.76

AFC27 10 2000.0 2000.0 99.99 10 113.2 109.5 97.75
AFC29 10 25.1 19.0 99.99 10 19.6 19.0 100.00
AFC33 10 2000.0 2000.0 99.99 0 2000.0 2000.0 35.01

NN 10 277.2 158.5 99.99 10 155.5 100.0 88.79
NNx 10 712.7 488.0 99.95 10 46.8 48.0 37.25

CC1 10 16.4 9.5 99.97 10 10.8 8.0 73.94
CC2 10 12.4 13.0 99.97 10 9.6 7.0 68.30
CC3 10 19.6 21.0 99.98 10 11.7 8.0 70.54
CC4 0 2000.0 2000.0 99.98 3 1882.4 2000.0 96.94
CC5 10 37.4 22.0 99.98 10 28.3 27.0 75.33
CCx 7 1029.8 735.0 99.98 10 240.5 74.0 35.38

SC 0 2000.0 2000.0 99.99 - - - -
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Chapter 8

CONCLUSION

With this chapter, we come to the conclusion of the thesis. The thesis started by

stating the three research questions:

RQ1. In black-box systems, when no information is available, can we find falsifying

behaviors, while also providing probabilistic estimates of a point leading to falsi-

fication as well as regions that can lead to finding inputs that produce a falsifying

behavior?

Response: Through the work in chapter 4, it was shown that the Part-X

algorithm is indeed able to find structure in the problem and provide point and

region-wide probability estimates. These can be of use to practitioners when

trying to find falsifications in a complex system, and further investigate the

probably falsifying regions with other SBTG methods.

RQ2. In gray-box systems, when we have some knowledge about the dynamics of the

system-under-test, can we come up method that can utilize this information in

order to find inputs that lead to falsifying behaviors?

Response: In chapter 5, we show that global restart points with aim of min-

imizing robustness coupled with local search to move towards exploring new

states can lead to utilizing the information from the dynamics to find falsifying

behaviors. This is shown through an example of the 2-state hybrid automaton

in [1] where PySOAR-C is compared with the uniform random sampler and

PySOAR. Extensive experimentation will be shown in the future idea where

we explore this idea and prove it efficacy through experimentation on complex
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cyber-physical systems.

RQ3. If we have some knowledge on the structure of the requirement, can we exploit

the structure in order to efficiently come up with faster falsification?

Response: In chapter 6, finding falsifications in conjunctive requirements is

formulated such that we consider the requirements individually and utilize the

emi ´ EI to get the next best sample locations. Results on this are shown

through extensive experiments on numerical experiments as well as on complex

cyber-physical systems from [14].

This thesis has explored various algorithms that can be applied to different dy-

namic systems depending upon the type of information available. While these are

just initial results, we plan to test these algorithms extensively on more complex

cyber-physical systems.
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qing Jin. Classification and coverage-based falsification for embedded control
systems. In International Conference on Computer Aided Verification, pages
483–503. Springer, 2017.

[29] Houssam Abbas, Andrew Winn, Georgios Fainekos, and A Agung Julius. Func-
tional gradient descent method for metric temporal logic specifications. In 2014
American Control Conference, pages 2312–2317. IEEE, 2014.

[30] Shakiba Yaghoubi and Georgios Fainekos. Hybrid approximate gradient and
stochastic descent for falsification of nonlinear systems. In 2017 American Con-
trol Conference (ACC), pages 529–534, 2017.

[31] Shakiba Yaghoubi and Georgios Fainekos. Local descent for temporal logic falsi-
fication of cyber-physical systems. In International Workshop on Design, Mod-
eling, and Evaluation of Cyber Physical Systems, pages 11–26. Springer, 2017.

[32] Shakiba Yaghoubi and Georgios Fainekos. Falsification of temporal logic require-
ments using gradient based local search in space and time. IFAC-PapersOnLine,
51(16):103–108, 2018.

71



[33] Ezio Bartocci, Luca Bortolussi, Laura Nenzi, and Guido Sanguinetti. System
design of stochastic models using robustness of temporal properties. Theoretical
Computer Science, 587:3–25, 2015. Interactions between Computer Science and
Biology.

[34] Gang Chen, Zachary Sabato, and Zhaodan Kong. Active requirement mining
of bounded-time temporal properties of cyber-physical systems. arXiv preprint
arXiv:1603.00814, 2016.

[35] Takumi Akazaki. Falsification of conditional safety properties for cyber-physical
systems with gaussian process regression. In Yliès Falcone and César Sánchez,
editors, Runtime Verification, pages 439–446, Cham, 2016. Springer International
Publishing.

[36] Simone Silvetti, Alberto Policriti, and Luca Bortolussi. An active learning ap-
proach to the falsification of black box cyber-physical systems. In Nadia Po-
likarpova and Steve Schneider, editors, Integrated Formal Methods, pages 3–17,
Cham, 2017. Springer International Publishing.

[37] Jyotirmoy Deshmukh, Marko Horvat, Xiaoqing Jin, Rupak Majumdar, and
Vinayak S. Prabhu. Testing cyber-physical systems through bayesian optimiza-
tion. ACM Trans. Embed. Comput. Syst., 16(5s), sep 2017.

[38] Shromona Ghosh, Felix Berkenkamp, Gireeja Ranade, Shaz Qadeer, and Ashish
Kapoor. Verifying controllers against adversarial examples with bayesian opti-
mization. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 7306–7313. IEEE, 2018.

[39] Masaki Waga. Falsification of cyber-physical systems with robustness-guided
black-box checking. In Proceedings of the 23rd International Conference on Hy-
brid Systems: Computation and Control, HSCC ’20, New York, NY, USA, 2020.
Association for Computing Machinery.

[40] Chuchu Fan, Xin Qin, and Jyotirmoy Deshmukh. Parameter searching and par-
tition with probabilistic coverage guarantees. arXiv preprint arXiv:2004.00279,
2020.

[41] Logan Mathesen, Giulia Pedrielli, and Georgios Fainekos. Efficient optimization-
based falsification of cyber-physical systems with multiple conjunctive require-
ments. In 2021 IEEE 17th International Conference on Automation Science and
Engineering (CASE), pages 732–737, 2021.

[42] Zhenya Zhang and Paolo Arcaini. Gaussian process-based confidence estimation
for hybrid system falsification. In International Symposium on Formal Methods,
pages 330–348. Springer, 2021.

[43] Mohamed Elbanhawi and Milan Simic. Sampling-based robot motion planning:
A review. Ieee access, 2:56–77, 2014.

72



[44] Erion Plaku, Lydia E Kavraki, and Moshe Y Vardi. Hybrid systems: from
verification to falsification by combining motion planning and discrete search.
Formal Methods in System Design, 34(2):157–182, 2009.

[45] Tarik Nahhal and Thao Dang. Test coverage for continuous and hybrid systems.
In International Conference on Computer Aided Verification, pages 449–462.
Springer, 2007.

[46] Tommaso Dreossi, Thao Dang, Alexandre Donzé, James Kapinski, Xiaoqing Jin,
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