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ABSTRACT

The goal of this thesis research is to contribute to the design of set-valued methods,

i.e., algorithms that leverage a set-theoretic framework that can provide a powerful

means for control designs for general classes of uncertain nonlinear dynamical sys-

tems, and in particular, to develop set-valued algorithms for constrained reachability

problems and estimation.

I propose novel fixed-order hyperball-valued observers for different classes of

nonlinear systems, including Linear Parameter Varying, Lipschitz continuous and

Decremental Quadratic Constrained nonlinearities, with unknown inputs that simulta-

neously find bounded sets of states and unknown inputs that contain the true states

and inputs and are compatible with the measurement/outputs. In addition, I provide

sufficient conditions for the existence and stability of the estimates, convergence of

the estimation errors and optimality of the observers.

Moreover, I design state and unknown input observers as well as mode detectors

for hidden mode switched linear and nonlinear systems with bounded-norm noise and

unknown inputs. To address this, I propose a multiple-model approach to obtain a

bank of mode-matched set-valued observers in combination with a novel mode observer,

based on elimination. My mode elimination approach uses the upper bound of the

norm of to-be-designed residual signals to remove inconsistent modes from the bank

of observers. I also provide sufficient conditions for mode detectability.

Furthermore, I address the problem of designing interval observers for partially

unknown nonlinear systems, using affine abstractions, nonlinear decomposition func-

tions and a data-driven function over-approximation approach to over-estimate the

unknown dynamic model. The proposed observer recursively computes the correct

interval estimates. Then, using observed measurement signals, the observer iteratively

shrinks the intervals. Moreover, the observer updates the over-approximation model

i



of the unknown dynamics.

Finally, I propose a tractable family of remainder-from decomposition functions for

a broad-range of dynamical systems. Moreover, I introduce a set-inversion algorithm

that along with the proposed decomposition functions have several applications, e.g.,

in approximation of the reachable sets for bounded-error, constrained, continuous

and/or discrete-time systems, as well as in guaranteed state estimation. Leveraging

mixed-monotonicity, I provide novel set-theoretic approaches to address the problem

of polytope-valued state estimation in bounded-error discrete-time nonlinear systems,

subject to nonlinear observations/constraints.
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Chapter 1

INTRODUCTION

Many problems in control systems and decision making can be naturally formulated,

analyzed, and solved in a set-theoretic framework [16]. The reason for this is because

control systems design often involve constraints, uncertainties, and design specifications,

which can be naturally described using sets. Moreover, sets provide an appropriate

framework to characterize system performance, e.g., for determining the domain

of attraction, for computing reachable sets or for quantifying tracking/regulation

control errors in feedback loops and estimation errors in inference and estimation

problems. Thus, set-valued methods, i.e., algorithms that leverage a set-theoretic

framework, can provide a powerful means for control designs for very general classes

of uncertain nonlinear dynamical systems, and the goal of this thesis research is

to contribute to the design of these tools, and in particular, to develop set-valued

algorithms for constrained reachability problems and estimation (cf. Figure 1.1).

In several engineering applications such as aircraft tracking, fault detection, attack

(unknown input) detection and mitigation in Cyber-Physical Systems (CPS) and

urban transportation [72, 136, 131], algorithms for unknown input reconstruction

and state estimation have become increasingly indispensable and crucial to ensure

their smooth and safe operation. Specifically, in safety-critical bounded-error systems,

set/interval membership/reachability analysis methods have been applied to guarantee

hard accuracy bounds. Further, in adversarial settings with potentially strategic

unknown inputs that can be injected as counterfeit data signals by malicious agents

into the sensor measurements and actuator signals to cause damage, steal energy etc

[21, 44, 100, 109, 139], it is critical and desirable to simultaneously derive compatible
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Figure 1.1: Some Set-theoretic Approaches in Control/Reachability Analysis
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estimates of states and unknown inputs, without assuming any a priori known

bounds/intervals for the input signals. Given the strategic nature of these false data

injection signals, they are not well-modeled by a zero-mean, Gaussian white noise

nor by signals with known bounds. Hence, traditional Kalman filtering and unknown

input observers do not apply. Nevertheless, reliable set-valued estimates of states

and unknown inputs are indispensable and useful for the sake of attack identification,

resilient control, etc. Similar state and input estimation problems can be found across

a wide range of disciplines, from input estimation in physiological systems [36], to

fault detection and diagnosis [91], to the estimation of mean areal precipitation [68].

Much of the research focus has been on simultaneous input and state estimation

for stochastic systems with unknown inputs, assuming that the noise signals are

Gaussian and white, via minimum variance unbiased (MVU) estimation approaches

(e.g., [46, 47, 133, 135]), modified double-model adaptive estimation methods (e.g, [74]),

or robust regularized least square approaches as in [3]. However, such Kalman filtering

inspired approaches are not applicable for set-membership estimation problems in

bounded-error settings, as is considered in this research, where set-valued uncertainties

are considered and sets of states and unknown inputs that are compatible with

measurements are desired (cf. [131] for a comprehensive discussion). In the context

of attack-resilient estimation, numerous approaches were proposed for deterministic

systems (e.g., [28, 45, 90, 107]), stochastic systems (e.g., [67, 134, 136]) and bounded-

error systems [86, 89, 132], against false data injection attacks. However, these

approaches mainly yield point estimates, i.e, the most likely or best single estimate, as

opposed to set-valued estimates. On the other hand, the work in [89] only computes

error bounds for the initial state and [86] assumes zero initial states and does not

consider any optimality criteria.

In addition, unknown input observer designs for different classes of discrete-time
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nonlinear systems are relatively scarce. The method proposed in [123] leverages

discrete-time sliding mode observers for calculating state and unknown input point

estimates, assuming that the unknown inputs have known bounds and evolve as

known functions of states, which may not be directly applicable when considering

adversaries in the system. The authors in [69] proposed an LMI-based state estimation

approach for globally Lipschitz nonlinear discrete-time systems, but did not consider

unknown input reconstruction. An LMI-based approach was also used in [51] for

simultaneous estimation of state and unknown input for a class of continuous-time

dynamic systems with Lipschitz nonlinearities, but the authors did not address

optimality nor stability properties for their observer, as well as only considered point

estimates. The work in [4] designed an asymptotic observer to calculate point estimates

for a class of continuous-time systems whose nonlinear terms satisfy an incremental

quadratic inequality property. Similar work was done for the same class of discrete-time

nonlinear systems in [23], while the set-valued state estimation approach in [99] uses

mean value and first-order Taylor extensions to efficiently propagate constrained

zonotopes through nonlinear mappings. However, none of them addressed unknown

input estimation. Moreover, the restrictive assumption of bounded unknown inputs is

needed in order to obtain convergent estimates.

Considering bounded unknown inputs, but with unknown bounds, the work in [25]

applied second-order series expansions to construct observer for state estimation in

nonlinear discrete-time systems. The authors also provided sufficient conditions for

stability and optimality of the designed estimator. However, their method does not

compute unknown input estimates. On the other hand, in a recent and interesting

work in [22], the authors designed an observer for reconstruction of unknown exogenous

inputs in nonlinear continuous-time systems with unknown and potentially unbounded

inputs, providing sufficient LMI conditions for L∞-stability of the observer. However,
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their observer does not simultaneously estimate the state, the unknown input estimates

are point estimates and the optimality of their approach was not analyzed.

The author in [131] and references therein discussed the advantages of set-valued

observers (when compared to point estimators) in terms of providing hard accuracy

bounds, which are important to guarantee safety [17]. In addition, the use of fixed-order

set-valued methods can help decrease the complexity of optimal observers [82], which

grows with time. Hence, a fixed-order set-valued observer for linear time-invariant

discrete time systems with bounded errors, was presented in [131], that simultaneously

finds bounded sets of compatible states and unknown inputs that are optimal in

the minimum H∞-norm sense, i.e., with minimum average power amplification. In

chapter 2 of this thesis, ([115]), we extend the approach in [131] to linear parameter-

varying systems, while in chapters 3 and 5 ([116, 121]), we generalize the method

to switched linear and nonlinear systems with unknown modes and sparse unknown

inputs (attacks), respectively, in order to design simultaneous mode, state and input

observers, and in chapter 4 ([118]), we further design novel set-valued observers for

broader classes of nonlinear systems, where in all of them, the considered sets are

hyper-balls in n-dimensional Euclidean space.

Moreover, considering interval-valued uncertainties, interval observer design has also

been extensively studied in the literature [54, 66, 83, 14, 97, 96, 76, 77, 125, 41, 140].

However, relatively restrictive assumptions about the existence of certain system

properties were imposed to guarantee the applicability of the proposed approaches, such

as cooperativeness [97], linear time-invariant (LTI) dynamics [76], linear parameter-

varying (LPV) dynamics that admits a diagonal Lyapunov function [125], monotone

dynamics [83, 14], and Metzler and/or Hurwitz partial linearization of nonlinearities

[96, 77]. The problem of designing an L2/L∞ unknown input interval observer for

continuous-time LPV systems is studied in [42], where the required Metzler property
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is formulated as a part of a semi-definite program. However, this approach is not

directly applicable for general discrete-time nonlinear systems. Moreover, in their

setting, the unknown inputs do not affect the output (measurement) equation.

Leveraging bounding functions, the design of interval observers for a class of

continuous-time nonlinear systems without unknown inputs has been addressed in

[41]. However, no necessary and/or sufficient conditions for the existence of bounding

functions or how to compute them have been discussed. Moreover, to conclude

stability, somewhat restrictive assumptions on the nonlinear dynamics have been

imposed. On the other hand, the authors in [140] studied interval state estimation

for a class of uncertain nonlinear systems, by extracting a known nominal observable

subsystem from the plant equations and designing the observer for the transformed

system, but without providing guarantees that the derived functional bounds have

finite values, i.e., are bounded sequences. Moreover, the derived conditions for the

existence and stability of the observer are not constructive. More importantly, none of

the aforementioned works consider unknown inputs (without known bounds/intervals)

nor the reconstruction/estimation of the uncertain inputs. In chapter 6 of this research

([117]) , we design an observer that simultaneously returns interval-valued estimates

of states and unknown inputs for a broad range of nonlinear systems [129], in contrast

to existing interval observers in the literature that to the best of our knowledge, only

return either state [54, 66, 83, 14, 97, 96, 76, 77, 125, 41, 140] or input [42] estimates.

Furthermore, dynamic models of many practical systems are often only partially

known. Thus, the development of algorithms that can combine model learning and

set membership estimation approaches is a critical and interesting problem. In such

settings, set-valued data-driven approaches that use input-output data to abstract or

over-approximate unknown dynamics or functions have gained increased popularity

over the last few years [81, 20, 138, 13, 19], where the objective is to find a set

7



of dynamics that frame/bracket the unknown system dynamics [81, 20], under the

assumption that the unknown dynamics is univariate Lipschitz continuous [138],

multivariate Lipschitz continuous [13] or Hölder continuous [19]. Nonetheless, to

our knowledge, set-valued or interval observers for such data-driven models have not

been considered in the literature. This, is the main focal point of chapter 7 in this

document.

On the other hand, aiming to apply set-membership approaches to constrained non-

linear safety-critical systems and considering very useful and fundamental properties of

monotone systems [52, 11], the significant idea of embedding the system dynamics into

a higher dimensional monotone system [70, 43, 49], raised huge attention. One property

that if satisfied, provides powerful means to obtain this goal is mixed-monotonicity

(cf. Definition 6.1.7), that enables a system to admit decomposition functions and

consequently higher dimensional dynamical embedding systems, which can be applied

to extract properties of the original system. For instance, if mixed-monotonicity holds,

by proving the nonexistence of equilibria of the embedding system except in a certain

lower dimensional subspace, global asymptotic stability for the original system can be

concluded [110, 29], by analyzing equilibria in the embedding space, forward invariant

and attractive sets of the original system can be identified [1] and by evaluating

the trajectory of the embedding system, reachable sets of the original system can

be efficiently approximated, that is widely applicable e.g., in state estimation and

abstraction-based control synthesis [1, 33, 32, 127]. Hence, finding a broad range of

nonlinearities that satisfy mixed-monotonicity, as well as computing tractable and

tight decomposition functions for such systems, along with considering uncertainties

and constraints are all of great interest and critical problems.

Due to non-uniqueness of decomposition functions, several seminal studies have

been done to address the critical challenge of constructing/identifying appropriate
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decomposition functions, when applying the theory of mixed-monotone systems, pro-

viding slightly different -but highly related- definitions and useful sufficient conditions

for mixed-monotonicity [129, 128, 2, 79, 80, 32, 34, 29]. Moreover, the profound

existing literature on interval arithmetic [57, 35, 84, 7, 65], equips us with the notion

of inclusion functions and provides specific types of them e.g., natural, centered-

form and mixed-form inclusions, which all of them, as well as their refinements

[130, 5, 6, 102, 105] can be interpreted and applied as specific forms of decomposition

functions. Particularly, the pioneer work in [35] studies the over-approximation of

range of functions with higher than second order accuracies, using modifications of

natural inclusions along with subdivision principle. The important study in [65] -to the

best of our knowledge- establishes the applicability of natural inclusions to guaranteed

state estimation. Later, several profound work have been done to propose refined

interval arithmetic-based state bounding approaches, using new sources of information

about the system such as state constraints, measurements/observations, manufactured

redundant variables, second-order derivatives, etc, e.g. in [130, 5, 6, 102].

Concerning tightness of decomposition functions, the interesting and recent studies

in [129, 2] provide tight decomposition functions for unconstrained mixed-monotone

discrete and continuous-time dynamical systems, respectively, where the existence

and computability of such tight decomposition functions rely on global solvability

of nonlinear optimization programs, which is guaranteed in specific cases such as

when the vector field is Jacobian sign-stable, or if all the critical points of the vector

field can be precisely computed. On the other hand, the fascinating study in [128]

provides sufficient conditions for mixed-monotonicity of (not necessarily Jacobian

sign-stable) unconstrained discrete-time systems, along with proposing computable

and constructive -but not necessarily tight- decomposition functions for differentiable

and mixed-monotone vector fields, with a prior known bounds for their derivatives. In

9



chapter 8 of this thesis, we further generalize the work in [128] to obtain computable

and possibly tighter mixed-monotone remainder-form decomposition functions for not

necessarily differentiable/smooth, constrained, continuous and discrete-time systems,

affected by external and/or internal uncertainties such as bounded disturbance and/or

uncertain parameters. We also study the applications of decomposition and inclusion

functions to reachability analysis and state estimation.

In particular, A well-known strategy, which is common to most of the set-theoretic

state estimation approaches is finding an enclosing set to the image set of the dy-

namics vector field, i.e., propagation/prediction step, as well as refining the obtained

propagated set by finding an enclosure to its intersection with the set of states that

are compatible/consistent with the observation/measurements, i.e., update step.

In case of linear systems with polytopic initial set, it is theoretically shown that

tight (exact) enclosures can be obtained [48]. However, even for linear systems, the

computational complexity of polytopic propagation is extensive and grows dramatically

with time [104]. Hence, simpler sets such as parallelotopes [124, 27], ellipsoids [115,

93, 60], intervals [140, 61, 125, 62] or zonotopes [71, 31] have been used to characterize

the enclosures. However, structural limitations of these sets sometimes leads to

conservative enclosures. To address this, the work in [103] introduced constrained

zonotopes to ease some of the limitations imposed by zonotopes, while zonotope

bundles were proposed in [9] to describe the intersection of zonotopes without explicit

computations.

Regarding nonlinear systems, obtaining efficient set-valued estimates is still very

challenging, contrary to the linear case. A classical approach to tackle this problem

has been to use interval arithmetic-based inclusion functions [84] to propagate the

current enclosing sets through the nonlinear dynamics and then to apply interval-

based set inversion techniques (e.g., SIVIA) to find upper approximations for the
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set of compatibles states with the current measurements [55, 56]. These approaches

are computationally very efficient, but unfortunately, due to the nature of interval

arithmetic, the resultant bounds are mostly conservative.

Alternatively, given linear observation functions, zonotopic propagation methods

have been developed in [30, 5, 6], based on the first order Taylor expansion, the mean

value extension or DC programming. However, significant errors are caused in update

step due to the symmetry of zonotopes, even for linear measurements [103]. More

recently, the interesting work in [99] proposed constrained zonotopic propagation and

update algorithms for discrete-time nonlinear systems with linear observation functions,

based on mean value and first order Taylor extensions. In chapter 9, we conclude

this thesis, by addressing the problem of guaranteed state estimation of nonlinear

systems in the presence of general convex set-valued, i.e., polytopic uncertainties,

using mixed-monotonicity.

1.1 Contributions of the Research

In chapter 2, we propose a novel fixed-order set-valued observer for linear parameter-

varying systems with unknown input and bounded noise signals that simultaneously

finds bounded sets of states and unknown inputs that contain the true state and

unknown input and are compatible/consistent with the measurement outputs. Specifi-

cally, we consider linear parameter-varying system dynamics that can be presented as

a convex combination of linear time-invariant constituent dynamics. In addition, we

provide necessary conditions for the boundedness of the set-valued estimates. We fur-

ther prove the optimality of the filter in the minimum H∞-norm sense, i.e., minimum

average power amplification, by converting the corresponding problem into a tractable

formulation using semi-definite programming with LMI constraints that is readily

implementable using off-the-shelf optimization solvers. We also show that strong
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detectability of each constituent system is a necessary condition for the existence of

such an H∞-observer. Then, we provide some sufficient conditions for the convergence

of upper bounds of the state and input estimation errors to steady state and for

obtaining these steady state bounds. Finally, we demonstrate the effectiveness of our

proposed set-valued observer through an illustrative example.

The goals of chapters 3 and 5 are to simultaneously consider state and unknown

input estimation as well as mode detection for hidden mode switched linear and

nonlinear systems with bounded-norm noise and unknown inputs, respectively. To

address these, we propose a multiple-model approach that leverages the optimally

designed set-valued state and input H∞ observers in chapters 2 and 4 to obtain a bank

of mode-matched set-valued observers in combination with a novel mode observer

based on elimination. Our mode elimination approach uses the upper bound of the

norm of to-be-designed residual signals to remove inconsistent modes from the bank

of observers. Moreover, we provide sufficient conditions to guarantee that all false

modes will be eventually eliminated.

Chapter 4 aims to bridge the gap between set-valued state estimation without

unknown inputs and point-valued state and unknown input estimation for a broad

range of nonlinear dynamical systems. In particular, we propose fixed-order set-valued

observers for nonlinear discrete-time bounded-error systems that simultaneously find

uniformly bounded sets of states and unknown inputs that contain the true state and

unknown input, are compatible/consistent with measurement outputs and are optimal

in the minimum H∞-norm sense, i.e., with minimum average power amplification.

First, we introduce a novel class of nonlinear vector fields, Decremental Quadratic

Constraint (DQC) systems, and show that they include a broad range of nonlinearities.

We also derive some results on the relationship between DQC functions with some

other classes of nonlinearities, such as incremental quadratic constraint, Lipschitz
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continuous and linear parameter-varying (LPV) functions. Then, we present our three-

step recursive set-valued observer for nonlinear discrete-time systems. In particular,

we derive sufficient conditions for the stability of the observer (i.e., the estimation

errors are uniformly bounded) in the form of LMIs for general nonlinear systems,

as well as less restrictive sufficient LMI conditions for stability of the observer for

three classes of nonlinearities: (I) DQC, (II) Lipschitz continuous and (III) LPV

systems. Furthermore, we design H∞ observers, using additional LMIs for each of

the aforementioned classes of systems. Finally, we derive sufficient conditions for

convergence of the estimation errors for each class of functions.

In chapter 6, by leveraging a combination of nonlinear decomposition mappings

[128, 32] and affine abstraction (bounding) functions [108], we design an observer that

simultaneously returns interval-valued estimates of states and unknown inputs for a

broad range of nonlinear systems [129], in contrast to existing interval observers in the

literature that to the best of our knowledge, only return either state [54, 66, 83, 14,

97, 96, 76, 77, 125, 41, 140] or input [42] estimates. Moreover, we consider arbitrary

unknown input signals with no assumptions of a priori known bounds/intervals, being

stochastic with zero mean (as is often assumed for noise) or bounded. Further, we relax

the assumption of a full-rank feedthrough matrix in [117], and extend the observer

design by including a crucial update step, where starting from the intervals from the

propagation step, the framers are iteratively updated by intersecting it with the state

and input intervals that are compatible with the observations. As a result, the updated

framers have decreased widths, i.e., tighter intervals can be obtained. In addition, we

derive sufficient conditions for the existence of our observer that can be viewed as

structural properties of the nonlinear systems, as an extension of the rank condition

that is typically assumed in linear state and input estimation, e.g., [72, 136, 131]. We

also provide several sufficient conditions in the form of Linear Matrix Inequalities
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(LMI) for the stability of our designed observer (i.e., the uniform boundedness of

the sequence of estimate interval widths). In addition, we show that given the state

intervals and specific decomposition functions, our input interval estimates are tight

and further provide upper bound sequences for the interval widths and derive sufficient

conditions for their convergence and their corresponding steady-state values.

Chapter 7 bridges the gap between model-based set membership observer design

approaches, e.g., [54, 66, 83, 14, 97, 96, 76, 77, 125, 41, 140, 78, 42, 131, 115, 116, 118],

and data-driven function approximation methods (i.e., model learning methods),

e.g., [81, 20, 138, 13, 19], to design interval observers for partially known nonlinear

dynamical systems with bounded noise, where the state and observation vector fields

belong to a fairly general class of nonlinear functions and the vector field of the

unknown (input) dynamics is an unknown function. Our approach builds upon and

extends the observer design approach in [117] by including a crucial update step, where

starting from the intervals from the propagation step, the framers are iteratively

updated by computing their intersection with the augmented state intervals that are

compatible with the observations, resulting in tighter intervals (i.e., with decreased

interval width) for the updated framers. In addition, our design incorporates a

data-driven function approximation/abstraction approach based on [59] to recursively

over-approximate the unknown dynamincs function from noisy observation data and

interval estimates from the update step. Furthermore, by leveraging the combination of

nonlinear decomposition/bounding functions [128, 32, 129, 117] and affine abstractions

[108], we prove that our observer is correct, i.e., the framer property [77] holds and

our estimation/abstraction of the unknown dynamics model becomes more precise

and tighter over time. More importantly, we provide sufficient conditions, in the form

of a finite number of constraint satisfaction checks, for the stability of our observer

(i.e., for the uniform boundedness of the sequence of interval estimate widths), and
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compute the upper bounds for the interval widths of the sequence of estimates and

derive their steady-state values.

Chapter 8 provides sufficient conditions for mixed-monotonicity of a broad range of

nonlinear, bounded-error, constrained, discrete or continuous-time dynamical systems.

The range of systems that we consider is broader compared to the ones consid-

ered in the literature in certain directions. Particularly, we relax the smoothness

(differentiability) and bounded gradients requirements to one-sided boundedness of

generalized Clarke sub-differentials, that basically holds for every locally Lipschitz

vector field, we consider discrete-time as well as continuous-time systems together,

the system can include bounded-error internal or external uncertainties in the form

of uncertain parameters and/or process/measurement noise/disturbance and can be

constrained under any locally Lipschitz nonlinear mapping between states, inputs

and outputs/observations. Our sufficient conditions are constructive, i.e. we propose

tight and computable remainder-form decomposition functions for such systems. The

proposed decomposition functions are proven to be the best/tightest among the family

of remainder-form decomposition functions that we construct. We show that the

introduced decomposition function in [128] belongs to this family, but is not necessarily

the tightest of them. Moreover, we obtain upper and lower bounds for the errors

of approximation of range of a function using our proposed family of decomposition

functions, showing that the best of them minimizes the lower bound, while the one

given in [128], minimizes an upper bound of the errors. Further, we show that the

error of the approximation could decay exponentially fast, using subdivision principle.

We also slightly generalize the notion of decomposition functions to one-sided upper

and lower decomposition functions. Furthermore, to deal with constraints, we develop

a set-inversion algorithm applying our decomposition functions, where given the prop-

agated interval of states, the constraint/measurement mapping and the measurement

15



interval, the proposed algorithm returns the refined/updated interval of the states

which is compatible/consistent with the measurements/observations. We then show

that our decomposition functions along with the proposed set-inversion algorithm

is applicable to solve constrained reachability as well as state estimation problems

and hence is capable to improve further some of our existing results in state and

input estimation [115, 116, 117, 113]. Moreover, the proposed set-inversion algorithm

can be used with any applicable inclusion functions or the best of them, replacing

our proposed decomposition functions. Finally, we illustrate the effectiveness of the

proposed decomposition functions and set-inversion approach, using several examples,

including discrete and continuous-time, constrained and unconstrained systems, where

we compare our approach with multiple other inclusion/decomposition functions.

Finally, chapter 9 proposes novel methods for recursive state estimation (consisting

of propagation and update steps) using polytopes (equivalently, constrained zonotopes

or zonotope bundles) for nonlinear bounded-error discrete-time systems with nonlinear

observation functions. Leveraging remainder-form mixed-monotone decomposition

functions [63] and following the standard propagation and update approach, this

chapter bridges the gap between constrained zonotope (CZ)/zonotope bundle (ZB)-

based set-valued state estimation and nonlinear observation/constrained functions. In

particular, for the propagation step, we transform the prior ZB/CZ’s into the space

of CZ/ZB generators, which are interval-valued, and further transform the vector

field into two components, one that is proven to attain tight image sets, as well as

a linear remainder function, for which a family of remainder-form mixed-monotone

decomposition functions [63] can be obtained. Each of the decomposition functions

produce enclosures of the state trajectories and thus, we can intersect them to obtain

the desired propagated ZB/CZ enclosures.

Moreover, we show that a similar idea, i.e., transformation from the “state +

16



uncertainty” space to the space of generators of CZ/ZB’s, can be used for the update

step to find a family of enclosures to the generalized nonlinear intersection of the

propagated set with the set of states that is compatible with the observations, where

the final enclosures are proven to be ZB/CZ’s. Furthermore, we prove that the

mean value extension approach used in [99] to enclose a multiplication of an interval

matrix to a constrained zonotope, can also be leveraged for the update step when

the observation function is nonlinear. Finally, we compare our proposed approaches

together and with the mean value extension-based approach in [99], implementing

it on two examples, one with a linear and the other with a nonlinear observation

function.
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1.4 Notation

N, Na, R++, Rnz , Rn×m and Dn×n ⊂ Rn×n denote the set of positive integers, the

first a positive integers, the set of positive real numbers, the nz-dimensional Euclidean

space, the space of n by m real matrices and the space of square diagonal matrices,

respectively. Moreover, ∀z, z, z ∈ Rnz , z ≤ z ⇔ zi ≤ zi,∀i ∈ {1, . . . , nz}, where zi

denotes the i’th argument of the vector z. Further, Z = [z, z] , [z ∈ Rnz |z ≤ z ≤ z]

and ‖z − z‖∞ are called an interval/box in Rnz and the diameter of Z, accordingly,
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where ‖z‖∞ , max
i
|zi| denotes the infinity norm of z ∈ Rnz . The set of all intervals

in Rnz is denoted by IRnz .

Further, for vectors v, w ∈ Rn and a matrix M ∈ Rp×q, ‖v‖ ,
√
v>v and ‖M‖

denote their (induced) 2-norm, and v ≤ w is an element-wise inequality. Moreover,

the transpose, Moore-Penrose pseudoinverse, (i, j)-th element and rank of M are

given by M>, M †, Mi,j and rk(M). M(r:s) is a sub-matrix of M , consisting of

its r-th through s-th rows, and we call M a non-negative matrix, i.e., M ≥ 0,

if Mi,j ≥ 0,∀i ∈ {1 . . . p},∀j ∈ {1 . . . q}. We also define M+,M++ ∈ Rp×q as

M+
i,j = Mi,j if Mi,j ≥ 0, M+

i,j = 0 if Mi,j < 0, M++ = M+−M and |M | ,M+ +M++.

Furthermore, r = rowsupp(M) ∈ Rp, where r(i) = 0 if the i-th row of A is zero and

r(i) = 1 otherwise, ∀i ∈ {1 . . . p}. For a symmetric matrix S, S � 0 and S ≺ 0 (S � 0

and S � 0) are positive and negative (semi-)definite, respectively.

Moreover, for Z,W ⊂ Rn, R ∈ Rm×n,Y ⊂ Rm, and µ : Rn → Rm, RZ ,

{Rz|z ∈ Z},Z ⊕ W , {z + w|z ∈ Z, w ∈ W}, Z 	 W , {z − w|z ∈ Z, w ∈

W}, µ(Z) , {µ(z)|z ∈ Z} and Z ∪µ Y , {z ∈ Z|µ(z) ∈ Y} denote the linear

mapping, Minkowski sum, set subtraction, general (nonlinear) mapping and generalized

(nonlinear) intersection, respectively. Furthermore, Bn∞ , {z ∈ Rn|‖z‖∞ ≤ 1} and 0n

denote the ∞-norm hyperball and the zero vector in Rn, respectively. For z ∈ Rn,

diag(z) is a diagonal matrix in Rn×n, with its diagonal elements being the corresponding

elements of z. 〈·, ·〉 denotes the inner product operator.
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Chapter 2

SIMULTANEOUS INPUT AND STATE SET-VALUED H∞-OBSERVERS FOR

LINEAR PARAMETER-VARYING SYSTEMS

In this chapter a , we propose a novel fixed-order set-valued observer for linear

parameter-varying systems with unknown input and bounded noise signals that

simultaneously finds bounded sets of states and unknown inputs that contain the

true state and unknown input and are compatible/consistent with the measurement

outputs. Specifically, we consider linear parameter-varying system dynamics that can

be presented as a convex combination of linear time-invariant constituent dynamics.

In addition, we provide necessary conditions for the boundedness of the set-valued

estimates. We further prove the optimality of the filter in the minimum H∞-norm

sense, i.e., minimum average power amplification, by converting the corresponding

problem into a tractable formulation using semi-definite programming with LMI

constraints that is readily implementable using off-the-shelf optimization solvers. We

also show that strong detectability of each constituent system is a necessary condition

for the existence of such an H∞-observer. Then, we provide some sufficient conditions

for the convergence of upper bounds of the state and input estimation errors to

steady state and for obtaining these steady state bounds. Finally, we demonstrate the

effectiveness of our proposed set-valued observer through an illustrative example.

aThe content of this chapter is documented as a published paper in [115].
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2.1 Problem Statement

System Assumptions. Consider the following linear parameter-varying discrete-

time bounded-error system:

xk+1 =
∑N

i=1 λi,k(A
ixk +Biuk + wik) +Gdk,

yk = Cxk +
∑N

i=1 λi,k(D
iuk + vik) +Hdk,

(2.1)

where λi,k is known and satisfies 0 ≤ λi,k ≤ 1,
∑N

i=1 λi,k = 1,∀k. xk ∈ Rn is the state

vector at time k ∈ N, uk ∈ Rm is a known input vector, dk ∈ Rp is an unknown

input vector, and yk ∈ Rl is the measurement vector. The process noise wik ∈ Rn and

the measurement noise vik ∈ Rl are assumed to be bounded and `∞ sequences, with

‖wik‖ ≤ ηw and ‖vik‖ ≤ ηv.We also assume an estimate x̂0 of the initial state x0 is

available, where ‖x̂0 − x0‖ ≤ δx0 . The matrices Ai, Bi, C, Di, G and H are known

for i ∈ {1, 2, . . . , N} and of appropriate dimensions, where G and H are matrices

that encode the locations through which the unknown input or attack signal can

affect the system dynamics and measurements and N is the number of constituent

systems. Note that no assumption is made on H to be either the zero matrix (no direct

feedthrough), or to have full column rank when there is direct feedthrough. Without

loss of generality, we assume that rk[G> H>] = p, n ≥ l ≥ 1, l ≥ p ≥ 0, m ≥ 0

and each (Ai, Bi, C,Di, G,H), i ∈ {1, 2, . . . , N} represents a linear time-invariant

constituent system:

xik+1 = Aixik +Biuk +Gdk + wik,

yik = Cxk +Diuk +Hdk + vik.
(2.2)

Unknown Input (or Attack) Signal Assumptions. The unknown inputs dk are

not constrained to be a signal of any type (random or strategic) nor to follow any

model, thus no prior ‘useful’ knowledge of the dynamics of dk is available (independent
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of {d`} ∀k 6= `, {w`} and {v`} ∀`). We also do not assume that dk is bounded or has

known bounds and thus, dk is suitable for representing adversarial attack signals.

The simultaneous input and state set-valued observer design problem can be stated

as follows:

Problem 2.1.1. Given a linear parameter-varying discrete-time bounded-error system

with unknown inputs (2.1) , design an optimal and stable filter that simultaneously

finds bounded sets of compatible states and unknown inputs in the minimum H∞-norm

sense, i.e., with minimum average power amplification.

2.2 Preliminary Material

2.2.1 System Transformation

In order to decouple the output equation into two components, first a transformation

is carried out for each of the constituent subsystems, one with a full rank direct

feedthrough matrix and the other without direct feedthrough. Note that this similarity

transformation is similar to the one in [131] and is not the same as the one in [135],

which is no longer applicable as it was based on the noise error covariance.

Let pH , rk(H). Using singular value decomposition, we rewrite the direct

feedthrough matrix H as H =

[
U1 U2

]Σ 0

0 0


V >1
V >2

, where Σ ∈ RpH×pH is a

diagonal matrix of full rank, U1 ∈ Rl×pH , U2 ∈ Rl×(l−pH), V1 ∈ Rp×pH and V2 ∈

Rp×(p−pH), while U ,

[
U1 U2

]
and V ,

[
V1 V2

]
are unitary matrices. When there

is no direct feedthrough, Σ, U1 and V1 are empty matrices b , and U2 and V2 are

arbitrary unitary matrices.

b Based on the convention that the inverse of an empty matrix is an empty matrix and the
assumption that operations with empty matrices are possible.
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Then, we decouple the unknown input into two orthogonal components:

d1,k = V >1 dk, d2,k = V >2 dk. (2.3)

Considering that V is unitary, we obtain

dk = V1d1,k + V2d2,k, (2.4)

and hence, we can represent the system (2.1) as:

xk+1 =
∑N

i=1 λi,k(A
ixk +Biuk + wik) +G1d1,k +G2d2,k,

yk = Cxk +
∑N

i=1 λi,k(D
iuk + vik) +H1d1,k (2.5)

where G1 , GV1, G2 , GV2 and H1 , HV1 = U1Σ. Next, the output yk is decoupled

using a nonsingular transformation T =

[
T>1 T>2

]>
, U> =

[
U1 U2

]>
to get

z1,k ∈ RpH and z2,k ∈ Rl−pH given by

z1,k , T1yk = U>1 yk

= C1xk + Σd1,k +
∑N

i=1 λi,kD
i
1uk +

∑N
i=1 λi,kv

i
1,k

z2,k , T2yk = U>2 yk

= C2xk +
∑N

i=1 λi,kD
i
2uk +

∑N
i=1 λi,kv

i
2,k

(2.6)

where C1 , U>1 C, C2 , U>2 C, Di
1 , U>1 D

i, Di
2 , U>2 D

i, vi1,k , U>1 v
i
k and vi2,k , U>2 v

i
k.

This transform is also chosen such that ‖
[
vi1,k

>
vi2,k

>
]>
‖ = ‖U>vik‖ = ‖vik‖.

2.3 Fixed-Order Simultaneous Input and State Set-Valued Observers

2.3.1 Set-Valued Observer Design

We consider a recursive three-step set-valued observer design. This design utilizes

a similar framework as in [131] and contains an unknown input estimation step that

uses the current measurement and the set of compatible states to estimate the set of
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compatible unknown inputs, a time update step which propagates the compatible set

of states based on the system dynamics, and a measurement update step that uses the

current measurement to update the set of compatible states. To sum up, our target is

to design a three-step recursive set-valued observer of the form:

Unknown Input Estimation: D̂k−1 = Fd(X̂k−1, uk),

Time Update: X̂?
k = F?x(X̂k−1, D̂k−1, uk),

Measurement Update: X̂k = Fx(X̂?
k , uk, yk),

where Fd, F?x and Fx are to-be-designed set mappings, while D̂k−1, X̂
?
k and X̂k are

the sets of compatible unknown inputs at time k − 1, propagated, and updated states

at time k, correspondingly. It is important to note that d2,k cannot be estimated

from yk since it does not affect z1,k and z2,k. Thus, the only estimate we can obtain

in light of (2.6) is a (one-step) delayed estimate of D̂k−1. The reader may refer to

a previous work [133] for a complete discussion on when a delay is absent or when

we can expect further delays. Similar to [26],[17],[131], as the complexity of optimal

observers increases with time, only the fixed-order recursive filters will be considered.

In particular, we choose set-valued estimates of the form:

D̂k−1 = {d ∈ Rp : ‖dk−1 − d̂k−1‖ ≤ δdk−1},

X̂?
k = {x ∈ Rn : ‖xk − x̂?k|k‖ ≤ δx,?k },

X̂k = {x ∈ Rn : ‖xk − x̂k|k‖ ≤ δxk}.

In other words, we restrict the estimation errors to balls of norm δ. In this setting,

the observer design problem is equivalent to finding the centroids d̂k−1, x̂?k|k and x̂k|k

as well as the radii δdk−1, δ
x,?
k and δxk of the sets D̂k−1, X̂

?
k and X̂k, respectively. In

addition, we limit our attention to observers for the centroids d̂k−1, x̂?k|k and x̂k|k that

belong to the class of three-step recursive filters given in [47] and [135], defined as

follows for each time k (with x̂0|0 = x̂0):
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Unknown Input Estimation:

d̂1,k = M1(z1,k − C1x̂k|k −
∑N

i=1 λi,kD
i
1uk), (2.7)

d̂2,k−1 = M2(z2,k − C2x̂k|k−1 −
∑N

i=1 λi,kD
i
2uk), (2.8)

d̂k−1 = V1d̂1,k−1 + V2d̂2,k−1. (2.9)

Time Update:

x̂k|k−1=
∑N

i=1λi,k−1(A
ix̂k−1|k−1+B

iuk−1)+G1d̂1,k−1, (2.10)

x̂?k|k = x̂k|k−1 +G2d̂2,k−1. (2.11)

Measurement Update:

x̂k|k = x̂?k|k + L(yk − Cx̂?k|k −
∑N

i=1 λi,kD
iuk)

= x̂?k|k + L̃(z2,k − C2x̂
?
k|k −

∑N
i=1 λi,kD

i
2uk),

(2.12)

where L ∈ Rn×l, L̃ , LU2 ∈ Rn×(l−pH), M1 ∈ RpH×pH and M2 ∈ R(p−pH)×(l−pH) are

observer gain matrices that are designed according to Theorem 2.3.3. The main result

in Theorem 2.3.3 is derived by minimizing the “volume” of the set of compatible

states and unknown inputs, quantified by the radii δdk−1, δ
x,?
k and δxk . Note also

that we applied L = LU2U
>
2 = L̃U>2 from Lemma 2.3.1 into (2.12). The state and

input estimation errors are defined as x̃k|k , xk − x̂k|k, d̃k−1 , dk−1 − d̂k−1, d̃1,k−1 ,

d1,k−1 − d̂1,k−1, d̃2,k−1 , d2,k−1 − d̂2,k−1 respectively. In Lemmas 2.3.1 and 2.3.2, we

will provide necessary conditions for boundedness of estimation errors and sufficient

conditions for stability of the observer. All the proofs are provided in the Appendix.

Lemma 2.3.1 (Necessary Conditions for Boundedness of Set-Valued Estimates [131,

Lemma 1]). The input and state estimation errors, (d̃k−1 and x̃k|k), are bounded for

all k (i.e., the set-valued estimates are bounded with radii δdk−1, δ
x,?
k , δxk < ∞), only

if M1Σ = I, p ≤ l, M2C2G2 = I and LU1 = 0 . Consequently, rk(C2G2) = p − pH ,

M1 = Σ−1, M2 = (C2G2)† and L = LU2U
>
2 = L̃U>2 .
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Lemma 2.3.2 (Sufficient Conditions for Observer Stability). A sufficient condition

for the stability of the set-valued observer is that (Ak, C2) is uniformly detectable c

for each k, where Ak , (I −G2M2C2)Âk and Âk ,
∑N

i=1 λi,kA
i −G1M1C1.

2.3.2 Optimal H∞-Observer

In this section, we provide sufficient conditions for the existence of a set-valued

observer for system (2.1) with any sequence {λi,k}∞k=0 for all i ∈ {1, 2, . . . , N} that

satisfies 0 ≤ λi,k ≤ 1,
∑N

i=1 λi,k = 1,∀k in the sense of H∞ (i.e., minimizing the sum of

squares of the state estimation error sequence). Furthermore, we introduce a relatively

simple approach to find such an observer, which involves solving a semi-definite

program with Linear Matrix Inequalities (LMI) as constraints. We will also show that

given some structural conditions for the system, the upper bounds of the estimation

errors for both states and unknown inputs are guaranteed to converge to steady state.

Theorem 2.3.3 (H∞-Observer Design). Suppose Lemma 2.3.1 holds and there exist

matrices Y and S � 0 with appropriate dimensions such that

S (Ai)>(S − C>2 Y >) 0 I

∗ S

[
S − Y C2 −Y

]
0

∗ ∗ ηI 0

∗ ∗ ∗ ηI


� 0

for all i ∈ {1, 2, . . . , N} . Then, there exists an η performance bounded H∞-observer

for system (2.1) with any sequence {λi,k}∞k=0 for all i ∈ {1, 2, . . . , N} that satisfies

0 ≤ λi,k ≤ 1,
∑N

i=1 λi,k = 1,∀k when using L̃ = S−1Y , i.e., ‖Tx̃,w,v‖ ≤ η2, where Tx̃,w,v

is the transfer function matrix that maps the noise signals
∑N

i=1 λi,k

[
wi>k vi>k

]T
to

the updated state estimation error x̃k|k , xk − x̂k|k.
cFor conciseness, the readers are referred to [10, Section 2] for the definition of uniform detectability.

A spectral test can be found in [92].
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Furthermore, the optimal filter gain L̃ = S?−1Ỹ ? with η? H∞-performance can be

obtained from the following semi-definite programming with LMI constraints:

(η?, S?, Y ?) ∈ arg min
η,S,Y

η

s.t



S (Ai)>(S − C>2 Y >) 0 I

∗ S
[
S − Y C2 −Y

]
0

∗ ∗ ηI 0

∗ ∗ ∗ ηI


� 0,

∀i ∈ {1, 2, .., N} . (2.13)

Although Theorem 2.3.3 equips us with an approach for designing an H∞-observer

for the linear parameter-varying system in (2.1) when one exists, it would still be

valuable to find a structural and conveniently testable property for the constituent

linear time-invariant systems in (2.2) that is necessary for the existence of such an

observer. Knowing such conditions would be beneficial in the sense that if they are

not satisfied, the designer knows a priori that there does not exist any H∞-observer

for such an attacked system. This will be the goal of Theorem 2.3.4.

Theorem 2.3.4 (Necessary Conditions for the Existence of an H∞-observer). There

exists a simultaneous state and unknown input H∞-observer for system (2.1) with any

sequence {λi,k}∞k=0 for all i ∈ {1, 2, . . . , N} that satisfies 0 ≤ λi,k ≤ 1,
∑N

i=1 λi,k = 1,∀k,

only if each (Ai, G, C,H) is strongly detectable d for all i ∈ {1, 2, . . . , N}.

Next, we characterize the resulting radii δxk and δdk−1 when using the proposed

H∞-observer.

Theorem 2.3.5 (Radii of Set-Valued Estimates). The radii δxk and δdk−1 can be

dFor brevity, the readers may refer to [131] for the definition of strong detectability.
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obtained as:

δxk = δx0θ
k + η

∑k
i=1 θ

i−1,

δdk−1=βδxk−1+‖V2M2C2‖ηw+
[
‖(V2M2C2G1−V1)M1T1‖+‖V2M2T2‖

]
ηv,

where

β , maxi∈{1,2,...,N} ‖V1M1C1 + V2M2C2Ae,i‖,

Ψ , I − L̃C2, Φ , I −G2M2C2,

Ae,i , ΨΦ(Ai −G1M1C1), θ , max
i∈{1,2,...,N}

‖Ae,i‖.

The resulting fixed-order set-valued observer is summarized in Algorithm 1.

So far, we have designed an H∞-observer for our linear parameter-varying system

and provided necessary conditions for the boundedness of the set-valued estimates. It

is worth mentioning that for the linear time-invariant case in [131], strong detectability

of the system is also a sufficient condition for the convergence of the radii δxk and

δdk−1 to steady state. In our parameter-varying case, even if all constituent linear

time-invariant systems are strongly detectable, there is no guarantee that the radii

converge. The reason is that the convergence hinges on the stability of the product

of time-varying matrices (cf. proof of Theorem 2.3.6), which is not guaranteed even

if all the multiplicands are stable. In the next theorem, we discuss some sufficient

conditions for the convergence of the radii to steady state.

Theorem 2.3.6 (Convergence). Suppose the conditions of Theorem 2.3.3 hold. Then,

the radii δxk and δdk−1 are convergent if ‖Ae,i‖ < 1 for all i ∈ {1, 2, . . . , N}, where Ae,i

is defined in Theorem (2.3.5). Moreover, the steady state radii is given by:

lim
k→∞

δxk =
η

1− θ
,

lim
k→∞

δdk =
ηβ

1− θ
+ ηw‖V2M2C2‖+ ηv(‖V2M2T2‖+ ‖R‖),
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where η , (‖Γ‖ηv + ‖ΨΦ‖ηw), R , V2M2C2G1M1T1 − V1M1T1,Γ , −(ΨΦG1M1T1 +

ΨG2M2T2 + L̃T2).

Remark 2.3.7. Alternatively, we can trade off between “optimality” of the observer

and “convergence” of the radii. We can iteratively find η (e.g., by line search) that

satisfies the following feasibility problem:

Find (S, Y )

s.t



S ∗ 0 I

(S − Y C2)A
i
S

[
S − Y C2 −Y

]
0

∗ ∗ η0I 0

∗ ∗ ∗ η0I


� 0,∀i ∈ {1, 2, .., N} ,

as well as the sufficient condition in Theorem 2.3.6, i.e., ‖Ae,i‖ < 1 for all i ∈

{1, 2, . . . , N}. Although the designed observer may not be optimum in minimum H∞

sense when using this alternative method, we can guarantee the steady state convergence

of the radii instead.
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Algorithm 1 Fixed-Order Input & State Set-Valued Observer

1: Initialize: M1 = Σ−1; M2 = (C2G2)†;

Φ = I −G2M2C2;

Compute L̃ via Theorem 2.3.3;

Ψ = I − L̃C2;

θ , maxi∈{1,2,...,N} ‖ΨΦ(Ai −G1M1C1)‖;

x̂0|0 = x̂0 = centroid(X̂0);

δx0 = min
δ
{‖x− x̂0|0‖ ≤ δ, ∀x ∈ X̂0};

d̂1,0 = M1(z1,0 − C1x̂0|0 −D1u0);

2: for k = 1 to K do

. Estimation of d2,k−1 and dk−1

3: x̂k|k−1 =
∑N

i=1 λi,kA
ix̂k−1|k−1 +

∑N
i=1 λi,kB

iuk−1

+G1d̂1,k−1;

4: d̂2,k−1 = M2(z2,k − C2x̂k|k−1 −
∑N

i=1 λi,kD
i
2uk);

5: d̂k−1 = V1d̂1,k−1 + V2d̂2,k−1;

6: δdk−1 = δxk−1‖V1M1C1 + V2M2C2Âk‖

+ηv(‖(V2M2C2G1 − V1)M1T1‖+ ‖V2M2T2‖)

+ηw‖V2M2C2‖;

7: D̂k−1 = {d ∈ Rl : ‖d− d̂k−1‖ ≤ δdk−1};

. Time update

8: x̂?k|k = x̂k|k−1 +G2d̂2,k−1;

. Measurement update

9: x̂k|k = x̂?k|k + L̃(z2,k − C2x̂
?
k|k −

∑N
i=1 λi,kD

i
2uk);

10: δxk = δx0θ
k + η

∑k
i=1 θ

i−1;

11: X̂k = {x ∈ Rn : ‖x− x̂k|k‖ ≤ δxk};

. Estimation of d1,k

12: d̂1,k = M1(z1,k − C1x̂k|k −
∑N

i=1D
i
1uk);

13: end for

31



2.4 Simulation Results

In this section, we consider a convex combination of two constituent linear time-

invariant strongly detectable subsystems that have been used in the literature as a

benchmark for some state and input filters (e.g., [26]):

A1 =

 0.9 .5

−0.3 1

;A2 =

 0.85 .55

−0.35 1

;C =

 1 .2

1.1 1.9

;

G =

−0.02 0.04

0.01 −0.05

;H =

1.1 2

2.2 4

;B1 = B2 = I2×2;D = 02×2.

The unknown inputs used in this example are as given in Figure 2.1, while the initial

state estimate and noise signals (drawn uniformly) have bounds δx0 = 0.5, ηw = 0.02

and ηv = 10−4. We also picked uniformly random coefficients, λi,k, that satisfies

0 ≤ λi,k ≤ 1,
∑N

i=1 λi,k = 1,∀k. Based on the results of Theorem 2.3.3 and by

solving the corresponding semi-definite programming problem using YALMIP [73]

and MOSEK [12] as the solver, we find S? =

0.2745 0.1933

0.1933 0.4200

, Y ? =

0.0010

0.1613

 and

the H∞-observer gain as L̃ = S?−1Y ? =

−0.3946

0.5656

. Then, applying Algorithm 1, we

summarized the set-valued state and unknown input results in Figures 2.1 and 2.2.

The radii are observed to be convergent to steady state in Figure 2.2.
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Figure 2.1: Actual States x1, x2 and Their Estimates, as Well as Unknown Inputs d1

and d2 and Their Estimates

Figure 2.2: Actual Estimation Errors and Radii of Set-valued Estimates of States,

‖x̃k|k‖, δxk , and Unknown Inputs,‖d̃k‖, δdk.

2.5 Conclusion

We presented a fixed-order set-valued H∞-observer for linear parameter-varying

bounded-error discrete-time dynamic systems, which can be expressed as a convex

combination of strongly detectable linear time-invariant constituent systems. We
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provided sufficient conditions for the optimality of the designed observer, which can

be obtained from a semi-definite programming problem with LMI constraints. We also

showed that the strong detectability of the constituent linear time-invariant systems is

necessary for the existence and stability of such an observer and for the boundedness of

the set-valued estimates. In addition, we came up with sufficient structural conditions

for the convergence of the radii of the set-valued state and input estimates and derived

the steady state radii. Finally, we demonstrated the effectiveness of our proposed

approach using an illustrative example.
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Chapter 3

SIMULTANEOUS MODE, INPUT AND STATE SET-VALUED OBSERVERS

WITH APPLICATIONS TO RESILIENT ESTIMATION AGAINST SPARSE

ATTACKS

The goal of this chapter a is to simultaneously consider state and unknown input

estimation as well as mode detection for hidden mode switched linear systems with

bounded-norm noise and unknown inputs. To address this, we propose a multiple-

model approach that leverages the optimally designed set-valued state and input H∞

observers in our previous work [131] to obtain a bank of mode-matched set-valued

observers in combination with a novel mode observer based on elimination. Our mode

elimination approach uses the upper bound of the norm of to-be-designed residual

signals to remove inconsistent modes from the bank of observers. In particular, we

provide a tractable method to calculate an upper bound signal for the residual’s norm

and prove that the upper bound signal is a convergent sequence. Moreover, we provide

sufficient conditions to guarantee that all false modes will be eventually eliminated.

3.1 Problem Statement

Consider a hidden mode switched linear system with bounded-norm noise and

unknown inputs (i.e., a hybrid system with linear and noisy system dynamics in each

mode, and the mode and some inputs are not known/measured):

xk+1 = Axk+Bu
q
k+G

qdqk+wk,

yk = Cxk+Du
q
k+H

qdqk+vk,
(3.1)

aThe content of this chapter is documented as a published paper in [116].
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where xk ∈ Rn is the continuous system state and q ∈ Q = {1, 2, . . . , Q} is the hidden

discrete state or mode. For each (fixed) mode q, uqk ∈ U
q
k ⊂ Rm is the known input,

dqk ∈ Rp the unknown but sparse input or attack signal, i.e., every vector dqk has

precisely ρ ∈ N nonzero elements where ρ is a known parameter, yk ∈ Rl is the

output, whereas wk ∈ Rn and vk ∈ Rl are process and measurement 2-norm bounded

disturbances with known parameters ηw and ηv as their 2-norm bounds respectively.

The matrices A ∈ Rn×n, B ∈ Rn×m, Gq ∈ Rn×p, C ∈ Rl×n, D ∈ Rl×m and Hq ∈ Rl×p

are known and no prior ‘useful’ knowledge or assumption of the dynamics of dqk, except

sparsity is assumed.

More precisely, Gq and Hq represent the different hypothesis for each mode q ∈ Q,

about the sparsity pattern of the unknown inputs, which in the context of sparse

attacks corresponds to which actuators and sensors are attacked or not attacked. In

other words, we assume that Gq = GIqG and Hq = HIqH for some input matrices

G ∈ Rn×ta and H ∈ Rl×ts , where ta and ts are the number of vulnerable actuator and

sensor signals respectively. Note that ρqa ≤ ta ≤ m and ρqs ≤ ts ≤ l, where ρqa (ρqs) is

the number of attacked actuator (sensor) signals and clearly cannot exceed the number

of vulnerable actuator (sensor) signals, which in turn cannot exceed the total number

of actuators (sensors). Furthermore, we assume that the total number of unknown

inputs/attacks in each mode is known and equals ρ = ρa + ρs (sparsity assumption).

Moreover, the index matrix IqG ∈ Rta×ρ (IqH ∈ Rts×ρ) represents the sub-vector of

dk ∈ Rρ that indicates signal magnitude attacks on the actuators (sensors).

Note that the approach in our paper can be easily extended to handle mode-

dependent A, B, C, D, wk, vk, ηw and ηv but is omitted to simplify the notation.

Moreover, throughout the paper, we assume, without loss of generality, that for each

possible mode q, the system (A,Gq, C,Hq) is strongly detectable [131, Definition 1],

since this is a necessary and sufficient condition for obtaining meaningful set-valued
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state and input estimates when the mode is known.

Using the modeling framework above, the simultaneous state, unknown input and

hidden mode estimation problem is threefold and can be stated as follows:

Problem 3.1.1. Given a switched linear hidden mode discrete-time bounded-error

system with unknown inputs (3.1),

1. Design a bank of mode-matched observers that for each mode optimally finds the

set estimates of compatible states and unknown inputs in the minimum H∞-norm

sense, i.e., with minimum average power amplification, conditional on the mode

being true.

2. Develop a mode observer via elimination and the corresponding criterion to

eliminate false modes.

3. Find sufficient conditions for eliminating all false modes.

3.2 Prpposed Observer Design

In this section, we propose a multiple-model approach for simultaneous mode,

state and unknown input estimation for (3.1), where the goal of the observer is to

find compatible set estimates D̂k, X̂k and Q̂k for unknown inputs, states and modes

at time step k, respectively.

3.2.1 Overview of Multiple-Model Approach

The multiple-model design approach consists of three components: (i) designing

a bank of mode-matched set-valued observers, (ii) designing a mode observer for

eliminating incompatible modes using residual detectors, and (iii) a global fusion

observer that outputs the desired set-valued mode, input and state estimates.
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Mode-Matched Set-Valued Observer

First, we design a bank of mode-matched observers, which consists of Q simul-

taneous state and input H∞ set-valued observers based on the optimal fixed-order

observer design in [131], which we briefly summarize here. For each mode-matched

observer corresponding to mode q, following the approach in [131, Section 3.1], we

consider set-valued fixed-order estimates of the form:

D̂q
k−1 = {dk−1 ∈ Rp : ‖dk−1 − d̂qk−1‖ ≤ δd,qk−1}, (3.2)

X̂q
k = {xk ∈ Rn : ‖xk − x̂qk|k‖ ≤ δx,qk }, (3.3)

where their centroids are obtained with the following three-step recursive observer

that is optimal in H∞-norm sense:

Unknown Input Estimation:

d̂q1,k = M q
1 (zq1,k − C

q
1 x̂

q
k|k −D

q
1u

q
k)

d̂q2,k−1 = M q
2 (zq2,k − C

q
2 x̂

q
k|k−1 −D

q
2u

q
k)

d̂qk−1 = V q
1 d̂

q
1,k−1 + V q

2 d̂
q
2,k−1

(3.4)

Time Update:

x̂qk|k−1 = Ax̂qk−1|k−1 +Buqk−1 +Gq
1d̂
q
1,k−1

x̂?,qk|k = x̂qk|k−1 +Gq
2d̂
q
2,k−1

(3.5)

Measurement Update:

x̂qk|k = x̂?,qk|k + L̃q(zq2,k − C
q
2 x̂

?,q
k|k −D

q
2u

q
k) (3.6)

where L̃q ∈ Rn×(l−pHq ), M q
1 ∈ RpHq×pHq and M q

2 ∈ R(p−pHq )×(l−pHq ) are observer gain

matrices that are chosen in the following theorem from [131] to minimize the “volume”

of the set of compatible states and unknown inputs, quantified by the radii δd,qk−1 and

δx,qk .
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Theorem 3.2.1. [131, Lemma 2 & Theorem 4] Suppose the system (A,Gq, C,Hq) is

strongly detectable, M q
1 Σq = I and M q

2C
q
2G

q
2 = I. Then, for each mode q, there exists

a stable and optimal (in H∞-norm sense) observer with gain L̃q, where the input and

state estimation errors, d̃qk−1 , dqk−1− d̂
q
k−1 and x̃qk|k , xk − x̂qk|k, are bounded for all k

(i.e., the set-valued estimates are bounded with radii δd,qk−1, δ
x,q
k <∞), and the observer

gains and the set estimates are given in [131, Theorem 2 & Algorithm 1].

Mode Estimation Observer

To estimate the set of compatible modes, we consider an elimination approach

that compares residual signals against some thresholds. Specifically, we will eliminate

a specific mode q, if ‖rqk‖2 > δ̂qr,k, where the residual signal rqk is defined as follows and

the thresholds δ̂qr,k will be derived in Section 5.2.3.

Definition 3.2.2 (Residuals). For each mode q at time step k, the residual signal is

defined as:

rqk , zq2,k − C
q
2 x̂

?,q
k|k −D

q
2u

q
k.

Global Fusion Observer

Then, combining the outputs of both components above, our proposed global

fusion observer will provide mode, unknown input and state set-valued estimates at

each time step k as:

Q̂k = {q ∈ Q ‖rqk‖2 ≤ δ̂qr,k},

D̂k−1 = ∪q∈Q̂kD
q
k−1, X̂k = ∪q∈Q̂kX

q
k .

The multiple-model approach is summarized in Algorithm 2.
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Algorithm 2 Simultaneous Mode, State and Input Estimation

1: Q̂0 = Q;

2: for k = 1 to N do

3: for q ∈ Q̂k−1 do

. Mode-Matched State and Input Set-Valued Estimates

Compute T q2 ,M
q
1 ,M

q
2 , L̃

q, x̂?,qk|k, X̂
q
k , D̂

q
k−1 via Theorem 3.2.1;

zq2,k = T q2 yk;

. Mode Observer via Elimination

Q̂k = Q̂k−1;

Compute rqk via Definition 3.2.2 and δ̂qr,k via Theorem 3.2.7;

4: if ‖rqk‖2 > δ̂qr,k then Q̂k = Q̂k\{q};

5: end if

6: end for

. State and Input Estimates

7: X̂k = ∪q∈Q̂kX̂
q
k ; D̂k = ∪q∈Q̂kD̂

q
k;

8: end for

3.2.2 Mode Elimination Approach

The idea is simple. If the residual signal of a particular mode exceeds its upper

bound conditioned on this mode being true, we can conclusively rule it out as

incompatible. To do so, for each mode q, we first compute an upper bound (δ̂qr,k) for

the 2-norm of its corresponding residual at time k, conditioned on q being the true

mode. Then, comparing the 2-norm of residual signal in Definition 3.2.2 with δ̂qr,k, we

can eliminate mode q if the residual’s 2-norm is strictly greater than the upper bound.

This can be formalized using the following proposition and theorem.

Proposition 3.2.3. Consider mode q at time step k, its residual signal rqk (as defined

in Definition 3.2.2) and the unknown true mode q∗. Then,
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rqk = r
q|∗
k + ∆r

q|q∗
k , where

r
q|∗
k , zq∗2,k − C

q
2 x̂

?,q
k|k −D

q
2u

q
k = T q∗2 yk − Cq

2 x̂
?,q
k|k −D

q
2u

q
k,

∆r
q|q∗
k , (T q2 − T

q∗
2 )yk,

where r
q|∗
k is the true mode’s residual signal (i.e., q = q∗), and ∆r

q|q∗
k is the residual

error.

Proof. This follows directly from plugging the above expressions into the right hand

side term of Definition 3.2.2.

Theorem 3.2.4. Consider mode q and its residual signal rqk at time step k. Assume

that δq,∗r,k is any signal that satisfies ‖rq|∗k ‖2 ≤ δq,∗r,k , where r
q|∗
k is defined in Proposition

3.2.3. Then, mode q is not the true mode, i.e., can be eliminated at time k, if

‖rqk‖2 > δq,∗r,k .

Proof. To use contradiction, suppose q is the true mode. By uniqueness of the

true mode q = q∗, so T q2 = T q∗2 and by Proposition 3.2.3, ∆r
q|q∗
k = 0 and hence

‖rqk‖2 = ‖rq|∗k ‖2 ≤ δq,∗r,k , which contradicts with the assumption.

3.2.3 Tractable Computation of Thresholds

Theorem 3.2.4 provides a sufficient condition for mode elimination at each time

step. To apply this sufficient condition, we need to compute an upper bound for

‖rq|∗k ‖2, i.e., our δq,∗r,k signal (cf. Theorem 3.2.7) and show that it is bounded in the

following lemmas.

Lemma 3.2.5. Consider any mode q with the unknown true mode being q∗. Then, at

time step k, we have

r
q|∗
k = Cq

2 x̃
?,q
k|k + vq2,k = Aq

ktk, (3.7)
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where tk,

[
x̃>0|0 w>0 . . . w>k−1 v>0 . . . v>k

]>
∈ R(n+l)(k+1),

Aq
k ,[Cq

2A
q
Aqe

k−1Cq
2A

q
Aqe

k−2Bq
e,wC

q
2A

q
Aqe

k−2Bq
e,w . . .

Cq
2A

q
Aqe

k−1−iBq
e,w . . . C

q
2A

q
AqeB

q
e,wC

q
2B

?,q
e,w

Cq
2A

q
Aqe

k−2Bq
e,v1

Cq
2A

q
Aqe

k−2(Bq
e,v1

+ AqeB
q
e,v2

) . . .

Cq
2A

q
Aqe

k−1−i(Bq
e,v1

+ AqeB
q
e,v2

) . . .

Cq
2A

q
Aqe(B

q
e,v1

+ AqeB
q
e,v2

)Cq
2(Bq,?

e,v1
+ A

q
Bq
e,v2

)

Cq
2B

q,?
e,v2

+ T q2 ] ∈ R(l−pHq )×(n+l)(k+1),

with A
q
, (I −Gq

2M
q
2C

q
2)(A − Gq

1M
q
1C

q
1),Aqe , (I − L̃qCq

2)A
q
, B?,q

e,w , (I−Gq
2M

q
2C

q
2),

B?,q
e,v1,−(I−Gq

2M
q
2C

q
2)(Gq

1M
q
1T

q
1 ),Bq

e,w, (I − L̃qCq
2)B?,q

e,w, B
q
e,v1, (I−L̃qCq

2)B?,q
e,v1 and

Bq
e,v2,(I−L̃qCq

2)B?,q
e,v2−L̃qT

q
2 , B

?,q
e,v2,−G

q
2M

q
2T

q
2 .

Proof. Considering (3.7), the first equality comes from Definition 3.2.2 and zq2,k =

Cq
2xk + Dq

2,ku
q
k + vq2,k from [131], assuming that q is the true mode, and the second

equality is implied by the first equality and the fact in [131, Appendix C] that

x̃?,qk|k = A
q
Aqe

k−1x̃0|0 + A
q
Aqe

k−2

[
Bq
e,wB

q
e,v1

]
~w0

+B?,q
e,wwk−1 + (B?,q

e,v1 + A
q
Bq
e,v2)vk−1 +B?,q

e,v2vk

+
∑k−2

i=1 A
q
Aqe

k−1−i
[
Bq
e,w Bq

e,v1 + AqeB
q
e,v2

]
~wi,

~wk ,

[
w>k v>k

]>
.

Lemma 3.2.6. For each mode q at time step k, there exists a generic finite valued

upper bound δqr,k <∞ for ‖rq|∗k ‖2.

Proof. Consider the following optimization problem for ‖rq|∗k ‖2 by leveraging Lemma

3.2.5:
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δqr,k , max
tk
‖Aq

ktk‖2 (3.8)

s.t. tk =

[
x̃>0|0 w>0 . . . w>k−1 v>0 . . . v>k

]>
,

‖x̃0|0‖2 ≤ δx0 , ‖wi‖2 ≤ ηw, ‖vj‖2 ≤ ηv,

i ∈ {0, ..., k − 1}, j ∈ {0, ..., k}.

The objective 2-norm function is continuous and the constraint set is an intersection

of level sets of lower dimensional norm functions, which is closed and bounded, so

is compact. Hence, by Weierstrass Theorem [15, Proposition 2.1.1], the objective

function attains its maxima on the constraint set and so a finite-valued upper bound

exists.

Clearly δqr,k in Lemma 3.2.6 is the tightest possible residual norm’s upper bound

and potentially can eliminate the most possible number of modes, so is the best choice

if we can calculate it. But, notice that although it was straight forward to show that

a finite-valued δqr,k exists, but since the optimization problem in Lemma 3.2.6 is a

norm maximization (not minimization) over the intersection of level sets of lower

dimensional norm functions, i.e., a non-concave maximization over intersection of

quadratic constraints, it is an NP-hard problem [18]. To tackle with this complexity,

we provide an over-approximation for δqr,k in the following Theorem 3.2.7, which we

call δ̂qr,k.
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Theorem 3.2.7. Consider mode q. At time step k, let

δ̂qr,k , min{δq,infr,k , δq,trir,k },

δq,infr,k , ‖Aq
kt
?
k‖2,

δq,trir,k , δx,q0 ‖C
q
2A

q
Aqe

k−1‖2 + ηw‖Cq
2A

q
Aqe

k−2‖2+∑k−2
i=1 [ηw‖Cq

2A
q
Aqe

iBq
e,w‖2+ηv‖Cq

2A
q
Aqe

i(Bq
e,v1

+AqeB
q
e,v2

)‖2]

+ ηv(‖Cq
2A

q
Aqe

k−2Bq
e,v1
‖2 + ‖Cq

2(Bq,?
e,v1

+ A
q
Bq
e,v2

)‖2)

+ ‖Cq
2B

q,?
e,v2

+ T q2 ‖2) + ηw‖Cq
2B

?,q
e,w‖2,

where t?k is a vertex of the following hypercube:

X q
k ,

{
x ∈ R(n+l)(k+1)

|x(i)| ≤


δx0 , 1 ≤ i ≤ n

ηw, n+ 1 ≤ i ≤ n(k + 1)

ηv, n(k + 1) + 1 ≤ i ≤ (n+ l)(k + 1)

}
,

i.e.,

t?k(i) ∈


{−δx0 , δx0}, 1 ≤ i ≤ n,

{−ηw, ηw}, n+ 1 ≤ i ≤ n(k + 1),

{−ηv, ηv}, n(k + 1) + 1 ≤ i ≤ (n+ l)(k + 1).

Then, δ̂qr,k is an over-approximation for δqr,k in Lemma 3.2.6.

Proof. Consider the optimization problem

δq,infr,k , max
tk
‖Aq

ktk‖2 (3.9)

s.t. tk =

[
x̃>0|0 w>0 . . . w>k−1 v>0 . . . v>k

]
,

‖x̃0|0‖∞ ≤ δx0 , ‖wi‖∞ ≤ ηw, ‖vj‖∞ ≤ ηv,

∀i ∈ {0, ..., k − 1}, ∀j ∈ {0, ..., k}.
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Comparing (A.61) and (3.9), the two problems have the same objective functions,

while since ‖.‖∞ ≤ ‖.‖2, the constraint set for (A.61) is a subset of the one for (3.9).

Hence δqr,k ≤ δq,infr,k . Also, it is easy to see that δ̂qr,k ≤ δq,trir,k , using triangle and sub-

multiplicative inequalities. Moreover, (3.9) is a maximization of a convex objective

function over a convex constraint (hypercube X q
k ). By a famous result [101, Corollary

32.2.1], in such a problem, the objective function attains its maxima on some of

the extreme points of the constraint set, which in this case are the vertices of the

hypercube X q
k .

It can be easily seen as a corollary of Theorem 3.2.7 that:

Corollary 3.2.8. ηtk , ‖t?k‖2 =
√
nδxo

2 + knη2
w + (k + 1)lη2

v.

Theorem 3.2.7 enables us to obtain an upper bound for ‖rq|∗k ‖2, by enumerating the

objective function in (3.9) at vertices of the hypercube X q
k and choosing the largest

value as δq,infr,k . Moreover, we can easily calculate δq,trir,k ; then, the upper bound is

chosen as the minimum of the two as δ̂qr,k.

Remark 3.2.9. Although simulation results indicate that especially in earlier time

steps, δq,infr,k may have smaller values than δq,trir,k , but if we only consider δq,infr,k as the

over-approximation and do not use δq,trir,k , then we will face two difficulties. First, as time

increases, the number of required enumerations (i.e., the number of hypercube’s vertices

which is 2(n+l)(k+1)) increases with an exponential rate. Second and more importantly,

as Lemma 3.3.4 will indicate later, δq,infr,k goes to infinity as time increases, so it will

be unlikely to eliminate any mode when the time step is large, i.e., asymptotically

speaking, δq,infr,k will be useless. In contrast, again by Lemma 3.3.4, δq,trir,k converges to

some steady-state value, so it can be always used as an over-approximation for δqr,k in

the mode elimination process.
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3.3 Mode Detectability

In addition to the nice properties regarding the stability and boundedness of the

mode-matched set estimates of state and input obtained from [131], we now provide

some sufficient conditions for the system dynamics, which guarantee that regardless

of the observations, after some large enough time steps, all the false (i.e., not true)

modes can be eliminated, when applying Algorithm 1. To do so, first, we define the

concept of mode detectability as well as some assumptions for deriving our sufficient

conditions for mode detectability.

Definition 3.3.1 (Mode Detectability). System (3.1) is called mode detectable if

there exists a natural number K > 0, such that for all time steps k ≥ K, all false

modes are eliminated.

Assumption 3.3.2. There exist known Ry, Rx ∈ R such that ∀k, yk ∈ Y , {y ∈

Rl ‖y‖2 ≤ Ry} and xk ∈ X , {x ∈ Rn ‖x‖2 ≤ Rx}, i.e., there exist known bounds for

the whole observation/measurement and state spaces, respectively.

Assumption 3.3.3. The unknown input/attack signal has an unlimited energy, i.e.,

lim
k→∞
‖dq∗0:k‖2 =∞,

where dq∗0:k ,

[
dq∗>k dq∗>k−1 . . . dq∗>0

]>
.

Note that Assumption 3.3.3 is not restrictive because otherwise, the unknown

input/attack signal must vanish asymptotically, which means that the true mode

(with no unknown inputs) can be inferred asymptotically.

In order to derive the desired sufficient conditions for mode detectability in Theorem

3.3.7, we first present the following Lemmas 3.3.4–3.3.6. For the sake of clarity, the

proofs of these results are given in the Appendix.
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Lemma 3.3.4. For each mode q,

lim
k→∞

δq,infr,k =∞. (3.10)

lim
k→∞

δ̂qr,k = lim
k→∞

δq,trir,k ≤ lim
k→∞

δ
q,tri

r,k = δ
q,tri

r <∞, (3.11)

where

δ
q,tri

r,k , δx,q0 ‖C
q
2A

q
Aqe

k−1‖2 + ηw‖Cq
2A

q
Aqe

k−2‖2

+ ηw[‖Cq
2A

q
Aqe‖2‖Bq

e,w‖2

k−3∑
i=0

(‖Aqe‖i2) + ‖Cq
2B

?,q
e,w‖2]

+ ηv[‖Cq
2A

q
Aqe‖2‖Bq

e,v1
+ AqeB

q
e,v2
‖2

k−3∑
i=0

‖Aqe‖i2]

+ ηv[‖Cq
2B

q,?
e,v2

+ T q2 ‖2+‖Cq
2(Bq,?

e,v1
+A

q
Bq
e,v2

)‖2] + ηv‖Cq
2A

q
Aqe

k−2Bq
e,v1
‖2,

δ
q,tri

r , ηw[‖Cq
2B

q,?
e,w‖2 +

‖Cq
2A

q
Aqe‖2

(1− θq)
+ ‖Bq

e,w‖2] + ηv[‖Bq
e,v1

+ AqeB
q
e,v2
‖2

+ ‖Cq
2B

q,?
e,v2

+ T q2 ‖2 + ‖Cq
2(Bq,?

e,v1
+ A

q
Bq
e,v2

)‖2], θq , ‖Aqe‖2,

with A
q
, Aqe, B

q
e,w, Bq,?

e,w, Bq
e,v1

, Bq,?
e,v1

, Bq
e,v2

and Bq,?
e,v2

given in Lemma 3.2.5.

Lemma 3.3.5. Suppose that Assumption 3.3.2 holds. Consider two different modes

q 6= q′ ∈ Q and their corresponding upper bounds for their residuals’ norms, δqr,k and

δq
′

r,k, at time step k. At least one of the two modes q 6= q′ will be eliminated if

‖Cq
2 x̂

?,q
k|k − C

q′

2 x̂
?,q′

k|k +Dq
2u

q
k −D

q′

2 u
q′

k ‖2>δ
q
r,k+δ

q′

r,k+R
q,q′

z (3.12)

where Rq,q′
z , Ry‖T q2 − T

q′

2 ‖2.

Lemma 3.3.6. Consider any mode q with the unknown true mode being q∗. Then, at

time step k, we have

rqk =

[
Tq,q

∗

k Bq,q
∗

k Dq,q∗

k

] [
t>k uq

∗>
0:k dq∗>0:k

]>
,
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where uq
∗

0:k ,

[
uq∗>k uq∗>k−1 . . . uq∗>0

]>
,

Tq,q
∗

k , (T q
∗

2 − T
q
2 )

[
CAk CAk−1 . . . C I

]
+ Aq

k,

Bq,q
∗

k , (T q
∗

2 − T
q
2 )

[
D CB CAB . . . CAk−1B

]
,

Dq,q∗

k , (T q
∗

2 − T
q
2 )

[
H CG CAG . . . CAk−1G

]
,

with tk given in Lemma 3.2.5 and dq∗0:k in Assumption 3.3.3.

Theorem 3.3.7 (Sufficient Conditions for Mode Detectability). System (3.1) is mode

detectable, i.e., all false modes will be eliminated after some large enough time step K,

using Algorithm 1, if the assumptions in Theorem 3.2.1 and either of the following

hold:

i. Assumption 3.3.2 and ∀q, q′ ∈ Q, q 6= q′,

σmin(W q,q′) >
δ
q,tri

r + δ
q′,tri

r +R
′q,q′
y√

R2
x + η2

v

;

ii. Assumption 3.3.3 and T q2 6= T q
′

2 holds ∀q, q′ ∈ Q, q 6= q′,

where W q,q′,

[
(Cq

2 − C
q′

2 ) (T q2 − T
q′

2 ) −I I Dq
2 −D

q′

2

]
.
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3.4 Simulation Results

We consider a system that has been used as a benchmark for many state and input

filters/observers (e.g.,[137]):

A =



0.5 2 0 0 0

0 0.2 1 0 1

0 0 0.3 0 1

0 0 0 0.7 1

0 0 0 0 0.1


;G =



1

0.1

0.1

1

0


;H =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


;

B = 05×1;C = I5;D = 05×1.

The unknown inputs used in this example are as given in Figure 3.2, while the

initial state estimate and noise signals have bounds δx = 0.5, ηw = 0.02 and ηv = 10−4.

We assume possible attacks on the actuator and four of five sensors, i.e., ta = 1 and

ts = 4. Moreover, we assume that there are ρ = 4 attacks, so we should consider

Q =
(

5
4

)
= 5 modes. Table 3.1 indicates different modes, their attack location(s) and

the matrix T q2 for each mode q, where, as can be observed, the second set of sufficient

conditions in Theorem 3.3.7 holds, i.e., T q2 6= T q
′

2 for all q 6= q′, so we expect that after

some large enough time, all the false modes be eliminated, i.e., at most one (true)

mode remains at each time step, which can be seen in Figure 3.1, where the number

of eliminated modes at each time step is exhibited.

Moreover, for each specific mode q, the signals ‖rqk‖2, ‖rq|∗k ‖2, δ
q,tri
r,k and δq,infr,k are

depicted in Figure 3.1. As can be seen, up to some large enough time, at different time

intervals for different modes, one of the upper bounds may be tighter than the other,

or vice-versa, so it is reasonable that we consider a minimum of them as the computed

upper bound in our mode elimination algorithm. Furthermore, for all modes, δq,trir,k is

eventually convergent while δq,infr,k diverges, as we proved in Lemma 3.3.4. So, after
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some large enough time, δq,trir,k can be used as our upper-bound, while δq,infr,k becomes

useless. The corresponding set-valued estimates are provided in Figure 3.2.

Table 3.1: Different Modes and Their T q2

Mode Attack location(s) T q2

q = 1 Actuator & Sensors 1,2,3 [0.2518 -0.1068 -0.2409 -0.5862 0.7236]>

q = 2 Actuator & Sensors 1,2,4 [0.0080 0.7604 -0.1522 -0.5862 -0.6313]>

q = 3 Actuator & Sensors 1,3,4 [-0.5357 0.7289 0.1984 -0.3774 0.0009]>

q = 4 Actuator & Sensors 2,3,4 [0.7092 -0.5570 -0.1797 -0.3295 0.2143]>

q = 5 Sensors 1,2,3,4 [0.1679 -0.5682 0.5198 -0.4883 0.3747]>
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Figure 3.1: ‖rqr,k‖2,‖rq|∗r,k‖2 and Their Upper Bounds for Different Modes, as Well as

the Number of Eliminated Modes in Time

Figure 3.2: State and Unknown Input Set-valued Estimates
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3.5 Conclusion

We proposed a residual-based approach for hidden mode switched linear systems

with bounded-norm noise and unknown attack signals. The proposed approach at each

time step, removes the inconsistent modes and their corresponding observers from

a bank of estimators, which includes mode-matched observers. Each mode-matched

observer, conditioned on its corresponding mode being true, simultaneously finds

bounded sets of states and unknown inputs that include the true state and inputs.

Our mode elimination criterion required a bounded upper bound for the residual’s

norm, for which we proved its existence and computed it by over-approximating the

value function of a non-concave NP-hard norm-maximization problem by expanding

its constraint set and converting it into a convex maximization over a convex set

with finite number of extreme points. Such a problem can be solved by enumerating

the objective function on the extreme points of the constraint set and comparing

the corresponding values. Moreover, we proved the convergence of the upper bound

signal and derived sufficient conditions for eventually eliminating all false modes using

our mode elimination algorithm. Finally, we demonstrated the effectiveness of our

observer using an illustrative example.
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Chapter 4

SIMULTANEOUS STATE AND UNKNOWN INPUT SET-VALUED OBSERVERS

FOR NONLINEAR DYNAMICAL SYSTEMS

In this chapter a , we propose fixed-order set-valued observers for nonlinear

bounded-error dynamical systems with unknown input signals that simultaneously

find bounded sets of states and unknown inputs that include the true states and inputs.

Sufficient conditions in the form of Linear Matrix Inequalities (LMIs) for the stability

of the proposed observers are derived for general nonlinear systems and furthermore,

less restrictive sufficient conditions are provided for three classes of nonlinear systems:

(I) Linear Parameter-Varying (LPV), (II) Lipschitz continuous, and (III) Decremental

Quadratic Constrained (DQC) systems. This includes a new DQC property that is

at least as general as the incremental quadratic constrained property for nonlinear

systems. In addition, we design the optimal H∞ observer among those that satisfy the

stability conditions, using semi-definite programs with additional LMIs constraints.

Furthermore, sufficient conditions are provided for the upper bounds of the estimation

errors to converge to steady state values and finally, the effectiveness of the proposed

set-valued observers is demonstrated through illustrative examples, where we compare

the performance of our observers with some existing observers.

aThe content of this chapter is documented as a submitted and under review paper in [118].
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4.1 Preliminary Material

4.1.1 Structural Properties

Here, we briefly introduce the structural properties that we will consider for our

different classes of systems, so that we will be able to refer to them later when needed.

Definition 4.1.1 (Strong Detectability [131]). The following bounded-error Linear

Time Invariant (LTI) system:

xk+1 = Axk +Buk +Gdk + wk,

yk = Cxk +Duk +Hdk + vk,
(4.1)

i.e., the tuple (A,G,C,H), is strongly detectable if yk = 0 ∀ k ≥ 0 implies xk → 0 as

k →∞, for all initial states and input sequences {di}i∈N, where A,B,G,C,D,H are

known constant matrices with appropriate dimensions, and xk, uk, yk, dk, wk and vk

are system state, known input, output, unknown input, bounded norm process noise

and measurement noise signals, respectively.

Remark 4.1.2. Several necessary and sufficient rank conditions are provided in

[131, Theorem 1] to check the strong detectability of system (4.1), in other words,

(A,G,C,H), including

rkRS(z) , rk

zI − A −G

C H

 = n+ p,∀z ∈ C, |z| ≥ 1.

It is worth mentioning that all the aforementioned conditions are equivalent to the

system being minimum-phase (i.e., the invariant zeros of RS(z) are stable). Moreover,

strong detectability implies that the pair (A,C) is detectable, and if l = p, then strong

detectability implies that the pair (A,G) is stabilizable (cf. [131, Theorem 1] for more

details).
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Definition 4.1.3 (Lipschitz Vector Fields). A vector field f(·) : Df → Rm is globally

Lf -Lipschitz continuous on Df ⊆ Rn, if there exists Lf ∈ R++, such that

‖f(x1)− f(x2)‖ ≤ Lf‖x1 − x2‖, ∀x1, x2 ∈ Df .

Definition 4.1.4 (LPV Functions). A vector field f(·) : Rp → Rq is Linear Parameter-

Varying (LPV), if at each time step k, f(xk) can be decomposed into a convex com-

bination of linear functions with known coefficients, i.e., ∀k ≥ 0,∃N ∈ N such that

∀i ∈ {1, . . . , N}, there exist known λi,k ∈ [0, 1] and Ai ∈ Rp×q such that
∑N

i=1λi,k = 1

and f(xk) =
∑N

i=1λi,kA
ixk. Each linear function Aix is called a constituent function

of the original nonlinear function.

Definition 4.1.5 (δ-QC Vector Fields [4]). A symmetric matrix M ∈ R(nq+nf )×(nq+nf )

is an incremental multiplier matrix (δMM) for f(·) if the following incremental

quadratic constraint (δ-QC) is satisfied for all q1, q2 ∈ Rnq :[
(∆f)> (∆q)>

]
M

[
(∆f)> (∆q)>

]>
≥ 0,

where ∆q , q2 − q1 and ∆f , f(q2)− f(q1).

Next, we introduce a new class of systems we call decremental quadratic constrained

(DQC) that is at least as general as δ-QC and includes a broad range of nonlinearities.

Definition 4.1.6 (DQC Functions). A vector field f(·) : Rp → Rq is (M, γ)-

Decremental Quadratic Constrained ((M, γ)-DQC), if there exist symmetric matrix

M∈ R(p+q)×(p+q) and γ ∈ R+ such that[
(∆f)> (∆x)>

]
M
[
(∆f)> (∆x)>

]>
≤ γ, (4.2)

for all x1, x2 ∈ Rp, where ∆x , x2 − x1 and ∆f , f(x2) − f(x1). We call M a

decremental multiplier matrix for function f(·).
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First of all, we show that a vector field may satisfy DQC property with different

pairs of (M, γ)’s. For clarity, all proofs are provided in the Appendix.

Proposition 4.1.7. Suppose f(·) is (M, γ)-DQC. Then it is also (κM, κγ)-DQC,

(νM, γ)-DQC, (M, ρ)-DQC and (M′, γ)-DQC for every κ ≥ 0, 0 ≤ ν ≤ 1, ρ ≥ γ and

M′ �M.

Moreover, we next show that the DQC property includes Lipschitz continuity

and is at least as general as the incremental quadratic constrained (δ-QC) property

(cf. Definition 4.1.5), which recently has received considerable attention in nonlinear

system state and input estimation (e.g., in [4, 22, 23]). Consequently, the class of

DQC functions is a generalization of several types of nonlinearities (cf. Corollary

4.1.10).

Proposition 4.1.8. Every globally Lf -Lipschitz continuous function is δ-QC with

multiplier matrix M =

−I 0

0 L2
f

.

Proposition 4.1.9. Every nonlinearity which is δ-QC with multiplier matrix M is

(−M,γ)-DQC for any γ ≥ 0.

Corollary 4.1.10. Lipschitz nonlinearities, incrementally sector bounded nonlineari-

ties and nonlinearities with matrix parameterizations, etc., which are δ-QC (cf. Figure

4.1 and [4, Sections 5.1–5.2]), are also DQC (the reader is referred to [4, 22, 23] for

definitions, demonstrations and more detailed examples).

Next, we provide some instances of nonlinear DQC vector fields, that to our best

knowledge, have not been shown to be δ-QC.

Example 4.1.11. Consider any monotonically increasing vector-filed f(·) : Rn → Rn,

which is not necessarily globally Lipschitz. By monotonically increasing, we mean that
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∆f>∆x ≥ 0, for all x1, x2 ∈ Df , where ∆f and ∆x are defined in Definition 4.1.6.

As simple examples, the reader can consider g(x) = x5 with Dg = R or h(x) = tan(x)

with Dh = (−π
2
, π

2
). It can be easily validated that such functions are (M, γ)-DQC

with M =

 0n×n −In×n

−In×n 0n×n

 and any γ ≥ 0. Similarly, any monotonically decreasing

vector field is (−M, γ)-DQC.

Example 4.1.12. Now, consider f(x) = x2 with Df = [−x, x] ∈ R, x ≥ 0.5,

which is not a monotone function. Let M0 =

 1 −1

−1 1

. It can be verified that

[
(∆f)> (∆x)>

]
M0

[
(∆f)> (∆x)>

]>
= ‖∆f −∆x‖2 = ‖(∆x)2−∆x‖2 ≤ [2x(2x+

1)]2 = 9, for x1, x2 ∈ Df . Hence, f(x) = x2 for all x ∈ [−x, x] ∈ R with x ≥ 0.5 is

(M0, 9)-DQC.

Furthermore, considering a specific structure for the decremental multiplier matrix

M, we introduce a new class of functions that is a subset of the DQC class.

Definition 4.1.13 (DQC* Functions). A vector field f(·) is a DQC* function, if it

is (M, γ)-DQC for some known M ∈ R2n×2n and γ ≥ 0, and there exists a known

A ∈ Rn×n, such that

 In×n −A

−A> A>A

 �M.

Now we present some results that establish the relationships between the afore-

mentioned classes of nonlinearities.

Proposition 4.1.14. Suppose f(·) is globally Lf -Lipschitz continuous and the state

space, X , is bounded, i.e., there exists r ∈ R+ such that for all x ∈ X , ‖x‖ ≤ r. Then,

f(·) is a DQC* function with A = In×n,

In×n 0n×n

0n×n 0n×n

 =M and γ = 4r2L2
f .
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Lemma 4.1.15. Suppose vector field f(·) can be decomposed as the sum of an affine

and a bounded nonlinear function g(.), i.e., f(x) = Ax+ h+ g(x), where A ∈ Rn×n,

h ∈ Rn and ‖g(x)‖ ≤ r ∈ R+ for all x ∈ Dg. Then, f(·) is a DQC* function with

A = A, M =

 In×n −A

−A> A>A

 and any γ ≥ (2r)2.

Note that some DQC systems are also DQC*. The following Proposition 4.1.16

helps with finding such an A for some specific structures of M.

Proposition 4.1.16. Suppose f(·) : R2n → R2n is a (M, γ)-DQC vector field, with

M =

M11 M12

M>
12 M22

, where M11,M12,M22 ∈ Rn×n, M11 − In×n � 0 and M22 −

M>
12M12 � 0. Then, f(·) is a DQC* function with A = −M12.

The reader can verify that such sufficient conditions in Proposition 4.1.16 hold for

the function in Example 4.1.12.

Proposition 4.1.17. Every LPV function f(·) with constituent matrices Ai,∀i ∈

1 . . . N , is ‖Am‖-globally Lipschitz continuous, where ‖Am‖ = maxi∈1...N ‖Ai‖.

Corollary 4.1.18. As a direct corollary of Propositions 4.1.14 and 4.1.17, any bounded

domain LPV function is a DQC* function.

Figure 4.1 summarizes all the above results on the relationships between several

classes of nonlinearities b . We end this section with restating a result from [126], that

will be used frequently later in deriving some of our main results.

bLipschitz, LPV, δ-QC, DQC and DQC* nonlinearities are defined in Definitions 4.1.3–4.1.13.
Incrementally sector bounded nonlinearities can be characterized by four fixed matrices K11, K12,
K21, and K22, and a set of matrices, X . In particular, they satisfy (K11∆x+K12∆f)>X(K21∆x+
K22∆f) ≥ 0, ∀X ∈ X . Matrix parametrized nonlinearities can be characterized by some known
set of matrices, =. Specifically, for any ∆x and corresponding ∆f , there exists a Θ ∈ = such that
∆f = Θ∆x. The reader is referred to [4, Sections 5.1 and 5.2] for detailed discussions about these
two classes of nonlinearities, which are omitted here for the sake of brevity.
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Lemma 4.1.19. [126, Lemma 2.2] Let D, S and F be real matrices of appropriate

dimensions and F>F � I. Then, for any scalar ε > 0 and x, y ∈ Rn,

2x>DFSy ≤ ε−1x>DD>x+ εy>S>Sy.

LPV

Lipschitz DQC

δ-QC

Incrementally Sector Bounded Matrix Parametrized

DQC*

Prop. 4.1.8–4.1.9

+Bounded DomainProp. 4.1.17 +Prop. 4.1.16

[4, Section 5.2][4, Section 5.1]

Prop. 4.1.9Prop. 4.1.8

+Bounded Domain

Figure 4.1: Relationships Between Different Classes of Nonlinearities: ⇒ Denotes

Direct Implication, While → Denotes Implication with Addition Assumptions

4.2 Problem Statement

In this section, we describe the system, vector field and unknown input signal

assumptions as well as formally state the observer design problem.

System Assumptions. Consider the nonlinear discrete-time bounded-error system

xk+1 = f(xk) +Buk +Gdk +Wwk,

yk = Cxk +Duk +Hdk + vk,
(4.3)
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where xk ∈ Rn is the state vector at time k ∈ N, uk ∈ Rm is a known input vector,

dk ∈ Rp is an unknown input vector, and yk ∈ Rl is the measurement vector. The

process noise wk ∈ Rn and the measurement noise vk ∈ Rl are assumed to be bounded,

with ‖wk‖ ≤ ηw and ‖vk‖ ≤ ηv (thus, they are `∞ sequences). We also assume an

estimate x̂0 of the initial state x0 is available, where ‖x̂0 − x0‖ ≤ δx0 . The vector field

f(·) : Rn → Rn and matrices B, C, D, G, W and H are known and of appropriate

dimensions, where G and H are matrices that encode the locations through which the

unknown input or attack signal can affect the system dynamics and measurements.

Note that no assumption is made on H to be either the zero matrix (no direct

feedthrough), or to have full column rank when there is direct feedthrough. Without

loss of generality, we assume that rk[G> H>] = p, n ≥ l ≥ 1, l ≥ p ≥ 0 and m ≥ 0.

Vector Field Assumptions. Here, we formally state the classes of nonlinear

systems, related to the assumptions about the nonlinear vector field f(·) : Rn → Rn =[
f>1 (.) . . . f>j (.) . . . f>n (.)

]>
∀j ∈ {1, . . . , n}, that we consider in this paper.

Class 0. Nonlinear systems without any additional assumptions.

For this general case of Class 0 systems, we expect to derive conservative sufficient

conditions for stability and optimality of the designed observers. However, to enable

the computation of upper bounds for the estimation errors, we need some assumptions

on the variations of the vector field in terms of state variations.

Class I. Globally Lf -Lipschitz continuous systems.

Class II. DQC* systems, with some known M∈ R2n×2n, γ ≥ 0, and A ∈ Rn×n.

Class III. LPV systems with constituent matrices Ai ∈ Rn×n,∀i ∈ {1, . . . , N}.

For Class III of systems, the system dynamics is governed by an LPV system with

known parameters at run-time. We call each tuple (Ai, C, C,H),∀i ∈ {1 . . . N}, an

LTI constituent of system (4.3).
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Unknown Input (or Attack) Signal Assumptions. The unknown inputs dk are

not constrained to be a signal of any type (random or strategic) nor to follow any

model, thus no prior ‘useful’ knowledge of the dynamics of dk is available (independent

of {d`} ∀k 6= `, {w`} and {v`} ∀`). We also do not assume that dk is bounded or has

known bounds and thus, dk is suitable for representing adversarial attack signals.

The simultaneous input and state set-valued observer design problem is twofold

and can be stated as follows:

Problem 4.2.1. Given the nonlinear discrete-time bounded-error system with unknown

inputs (4.3),

1) Design stable observers that simultaneously find bounded sets of compatible states

and unknown inputs for the four classes of nonlinear systems.

2) Among the observers that satisfy 1, find the optimal observer in the minimum

H∞-norm sense, i.e., with minimum average power amplification.

4.3 More General Nonlinear System Model

Note that the proposed observer in this paper can also apply to more general

nonlinear systems than (4.3) with some minor modifications; however, throughout the

paper, we will mainly focus on the system model given by (4.3) for the sake of notation

simplicity and understandability. In particular, we can generalize our framework to

the following nonlinear discrete-time time-varying dynamical system:

xk+1 = fk(xk) +Bkuk + Ĝgk(xk, uk, d
s
k) +Wwk,

yk = Cxk +Dkuk + Ĥhk(xk, uk, d
o
k) + vk,

(4.4)

where fk(.) : Rn → Rn is a known time-varying nonlinear function, dsk ∈ Rp
s and

dok ∈ Rp
o can be interpreted as arbitrary (and different) unknown inputs effecting the
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state and observation equations through the known time-varying nonlinear vector

fields gk(., .) : Rn×Rm×Rps → RnĜ and hk(., .) : Rn×Rm×Rpo → RnĤ , respectively

and Ĝ ∈ Rn×nĜ and Ĥ ∈ Rl×nĤ are known matrices. Moreover, Bk ∈ Rn×m and

Dk ∈ Rl×m are time-varying known matrices.

Courtesy of the fact that the unknown input signal in (4.3) can be completely

arbitrary, we can lump the nonlinear functions with the unknown inputs in (4.4) into

a newly defined unknown input signal to obtain an equivalent representation of the

system (4.4) in the form of (4.3), where instead of vector field f , matrices G, H

and unknown input dk, we have fk, Ǧ ,

[
Ĝ 0n×nĤ

]
, Ȟ ,

[
0l×nĜ Ĥ

]
and ďk ,gk(xk, uk, dsk)

hk(xk, uk, d
o
k)

, correspondingly. Moreover, to deal with the time-varying fk, a slight

modification to the definition of the function increment can be considered, i.e., with

∆fk , fk(x2)−fk−1(x1) for all x1, x2 instead of the time-invariant ∆f , f(x2)−f(x1)

within the structural properties and assumptions in Section 4.1.1 c . Furthermore,

time-varying Bk and Dk do not change the design process and results, since they

cancel out during the procedure (cf. Section 4.5). Therefore, all our results still hold

for the state estimates of the more general system (4.4), using the new matrices Ǧ

and Ȟ. As for the unknown inputs, where the proposed observer returns set-valued

estimates for ďk ,

gk(xk, uk, dsk)
hk(xk, uk, d

o
k)

, we can apply any pre-image set computation

techniques in the literature such as [87, 106, 24] to find set estimates for dsk and dok

using the set-valued estimate for xk and the known uk.

4.4 Fixed-Order Simultaneous Input and State Set-Valued Observer Framework

cFor instance, a time-varying vector field fk(.) is Lipschitz if there exists Lf ∈ R++ such that
for any time step k, ‖fk(x1)− fk−1(x2)‖ ≤ Lf‖x1 − x2‖, ∀x1, x2 ∈ Dfk and similarly for the LPV,
δ-QC, DQC and DQC* properties.
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In this paper, we propose recursive set-valued observers that consist of three steps:

(1) an unknown input estimation step that returns the set of compatible unknown

inputs using the current measurement and the set of compatible states, (2) a time

update step in which the compatible set of states is propagated based on the system

dynamics, and (3) a measurement update step where the set of compatible states

is updated according to the current measurement. Since the complexity of optimal

observers increases with time, we will only focus on fixed-order recursive filters, similar

to [17, 26, 131], and in particular, we consider set-valued estimates of the form:

D̂k−1 = {d ∈ Rp : ‖dk−1 − d̂k−1‖ ≤ δdk−1},

X̂?
k = {x ∈ Rn : ‖xk − x̂?k|k‖ ≤ δx,?k },

X̂k = {x ∈ Rn : ‖xk − x̂k|k‖ ≤ δxk},

where D̂k−1, X̂
?
k and X̂k are the sets of compatible unknown inputs at time k − 1,

propagated, and updated states at time k, correspondingly. In other words, we restrict

the estimation errors to balls of norm δ. In this setting, the observer design problem

is equivalent to finding the centroids d̂k−1, x̂?k|k and x̂k|k as well as the radii δdk−1, δx,?k

and δxk of the sets D̂k−1, X̂?
k and X̂k, respectively. In addition, we limit our attention

to observers for the centroids d̂k−1, x̂?k|k and x̂k|k that belong to the class of three-step

recursive filters given in [47] and [135], with x̂0|0 = x̂0.

4.4.1 System Transformation

To aid the observer design, we first carry out a transformation to decompose the

unknown input signal dk into two components d1,k and d2,k, as well as to decouple

the output equation into two components, z1,k and z2,k, one with a full rank direct
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feedthrough matrix and the other without direct feedthrough, as follows:

xk+1 = f(xk) +Buk +G1d1,k +G2d2,k +Wwk,

z1,k = C1xk + Σd1,k +D1uk + v1,k,

z2,k = C2xk +D2uk + v2,k.

(4.5)

For the sake of increasing readability and completeness, the reader is referred to

Section 2.2.1 for details of this similarity transformation, where the transformed

system matrices G1, G2, C1, C2, D1, D2 and noise signals v1,k, v2,k are defined.

Remark 4.4.1. It is important to note that d2,k cannot be estimated from yk since it

does not affect z1,k and z2,k. Thus, in light of (4.5), we can only obtain a (one-step)

delayed estimate of D̂k−1. The reader may refer to [133] for a complete discussion on

when a delay is absent or when we can expect further delays.

4.4.2 Observer Structure

Using the above transformation, we propose the following three-step recursive

observer structure to compute the state and input estimate sets:

Unknown Input Estimation (UIE):

d̂1,k = M1(z1,k − C1x̂k|k −D1uk), (4.6)

d̂2,k−1 = M2(z2,k − C2x̂k|k−1 −D2uk), (4.7)

d̂k−1 = V1d̂1,k−1 + V2d̂2,k−1. (4.8)

Time Update (TU):

x̂k|k−1 = f(x̂k−1|k−1) +Buk−1 +G1d̂1,k−1, (4.9)

x̂?k|k = x̂k|k−1 +G2d̂2,k−1. (4.10)

Measurement Update (MU):
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x̂k|k = x̂?k|k + L(yk − Cx̂?k|k −Duk)

= x̂?k|k + L̃(z2,k − C2x̂
?
k|k −D2uk),

(4.11)

where L ∈ Rn×l, L̃ , LU2 ∈ Rn×(l−pH), M1 ∈ RpH×pH and M2 ∈ R(p−pH)×(l−pH) are

observer gain matrices that are designed according to Lemma 4.5.1 and Theorem

4.5.8, to minimize the “volume” of the set of compatible states and unknown inputs,

quantified by the radii δdk−1, δx,?k and δxk . Note also that we applied L = LU2U
>
2 = L̃U>2

from Lemma 4.5.1 into (4.11), where U2 is defined in Section 2.2.1.

4.5 Observer Design and Analysis

In this section we derive LMI conditions for designing observers that are stable, i.e.,

the estimation errors are uniformly bounded (Section 4.5.1) and optimal in the H∞

sense (Section 4.5.2). Moreover, we derive the resulting radii of the state and input

estimates (Section 4.5.3). To do so, first, we will derive our observer error dynamics

through the following Lemma 4.5.1. For conciseness, all proofs are provided in the

Appendix.

Lemma 4.5.1. Consider system (4.3) and the observer (4.6)-(4.11). Suppose rk(C2G2) =

p− pH , where C2 and G2 are given in Section 2.2.1. Then, designing observer matrix

gains as M1 = Σ−1, M2 = (C2G2)†, LU1 = 0 and L = LU2U
>
2 = L̃U>2 , with U1 and U2

given in Section 2.2.1, yields M1Σ = I and M2C2G2 = I, and leads to the following

difference equation for the state estimation error dynamics (i.e., the dynamics of

x̃k|k , xk − x̂k|k):

x̃k+1|k+1 = (I − L̃C2)Φ(∆fk −Ψx̃k|k) +W(L̃)wk, (4.12)
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where

∆fk , f(xk)− f(x̂k),Φ , I −G2M2C2,

wk ,

[
( 1√

2
)v>k w>k ( 1√

2
)v>k+1

]>
,

R ,

[
−
√

2ΦG1M1T1 −ΦW −
√

2G2M2T2

]
,

Q ,

[
0(l−pH)×l 0(l−pH)×n −

√
2T2

]
,

Ψ , G1M1C1, W(L̃) , (I − L̃C2)R + L̃Q.

Note that wk is chosen such that lim
k→∞

1
k+1

∑k
i=0w

>
i wi = lim

k→∞
1

k+1

∑k
i=0w

>
i wi + v>i vi.

The result in (4.12) shows that we successfully decoupled/canceled out dk from the

error dynamics, otherwise there would be a potentially unbounded and unknown term

in the error dynamics.

4.5.1 Stable Observer Design

We first study the stability of the observer in the sense of Lyapunov. For the sake

of clarity, we first formally define the considered notion of stability.

Definition 4.5.2. [Lyapunov Stability] A simultaneous state and input set-valued

observer is Lyapunov stable, if its estimation error norm sequences {‖x̃k|k‖ , ‖xk −

x̂k|k‖, ‖d̃k−1|k−1‖ , ‖dk−1 − d̂k−1‖}∞k=1 are uniformly bounded.

Now, we are ready to provide our first set of main results on sufficient conditions

for bounded-error stability of the observer (4.6)–(4.11), by supposing for the moment

that there is no exogenous bounded noise wk and vk.

Theorem 4.5.3 (Observer Stability). Consider system (4.3) and the observer (4.6)–

(4.11). Suppose there is no bounded noise wk and vk and all the conditions in Lemma

4.5.1 hold. Then, the observer error dynamics is Lyapunov stable, if there exist
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matrices 0 ≺ P ∈ Rn×n, Y ∈ Rn×(l−pH) and 0 ≺ Γ ∈ R(l−pH)×(l−pH), such that the

following LMIs hold:

Π , %


I − Γ 0 0

0 Γ Y >

0 Y P

 � 0,Υi ,

 Θ Λi

Λi> Ξ

 � 0,

∀i ∈ {1 . . . N}, (4.13)

where % ∈ {0, 1}, Θ, Λi, Ξ and N are defined for different cases as follows:

0. If f(·) is a Class 0 function, then % , 1, N , 1 and

Θ , Φ>(F − C>2 C2)Φ,

Λi , Φ>(P − C>2 Y > − Y C2)ΦΨ, (4.14)

Ξ , P + Ψ>Φ>FΦΨ− Φ>C>2 C2Φ.

I. If f(·) is a Class I function, then % , 1, N , 1 and

Θ , Φ>(F − C>2 C2)Φ+I,

Λi , Φ>(P − C>2 Y > − Y C2)ΦΨ, (4.15)

Ξ , P + Ψ>Φ>FΦΨ− Φ>C>2 C2Φ− L2
fI.

II. If f(·) is a Class II function, then % , 1, N , 1 and

Θ , Φ>(F − C>2 C2)Φ,

Λi , Φ>(P − C>2 Y > − Y C2)Φ(Ψ−A), (4.16)

Ξ , P + (Ψ−A)>Φ>FΦ(Ψ−A)− Φ>C>2 C2Φ.

III. If f(·) is a Class III function, then % , 0, N is the number of constituent LTI

systems and ∀i ∈ {1 . . . N}:

Θ , P,Ξ , P,Λi , (Ai −Ψ)>Φ>(P − C>2 Y >), (4.17)

67



with F , Y C2 +C>2 Y
> − P −C>2 ΓC2. Moreover, the corresponding observer gain for

all four classes can be obtained as L̃ = P−1Y .

It is worth mentioning that for Class I functions, i.e., when the nonlinear vector field

f(·) is globally Lipschitz continuous, stability of the observer can also be demonstrated

using more succinct LMIs in the following Lemma 4.5.4.

Lemma 4.5.4 (Alternative LMIs (Class I)). Consider system (4.3) and the observer

(4.6)–(4.11). Suppose all the conditions in Lemma 4.5.1 hold, f(·) is a Class I

function and there is no bounded noise wk and vk. Then, the observer error dynamics

is Lyapunov stable with the observer gain L̃ = P−1Y , if ∃ 0 ≺ P ∈ Rn×n and

Y ∈ Rn×(l−pH) such that 
I (P − Y C2) 0

(P − Y C2) P 0

0 0 ∆

 � 0, (4.18)

where ∆ , P − 2L2
fλmax(Φ>Φ)I − 2Ψ>Φ>ΦΨ, with Φ and Ψ defined in Lemma 4.5.1.

Moreover, if f(·) is a Class III function, then we can provide necessary and

sufficient conditions for the existence of stable observers. The necessary conditions

are conveniently testable. They are also beneficial in the sense that if they are not

satisfied, the designer knows a priori that there does not exist any H∞-observer for

such modified systems with unknown inputs/attacks. The conditions are formally

derived in the following Lemma 4.5.5.

Lemma 4.5.5 (Existence of Stable Observers). Suppose f(·) is a Class III function

and all the conditions in Lemma 4.5.1 hold. Then, there exists a stable observer for

the system (4.3), with any sequence {λi,k}∞k=0 for all i ∈ {1, 2, . . . , N} that satisfies

0 ≤ λi,k ≤ 1,
∑N

i=1 λi,k = 1,∀k, if (Ak, C2) be uniformly detectable d for each k, and

dThe readers are referred to [10, Section 2] for the concise definition of uniform detectability. A
spectral test can be found in [92].
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only if all constituent LTI systems (Ai, G, C,H), ∀i ∈ {1 . . . N}, are strongly detectable

(cf. Definition 4.1.1), where Ak , Φ(
∑N

i=1 λi,kA
i − Ψ), with Φ and Ψ defined in

Lemma 4.5.1.

Corollary 4.5.6. There exists a stable simultaneous state and input set-valued

observer for the LTI system (4.1), through (4.6)–(4.11), if and only if the tuple

(A,G,C,H) is strongly detectable and only if rk(C2G2) = p − pH . Moreover, the

observer gain matrices can be designed as M1 = Σ−1, M2 = (C2G2)
† and L = L̃U>2

and L̃ = P−1Y , where P � 0 and Y solve the following feasibility program with LMI

constraints:

Find (P � 0, Y )

s.t.

 P Λ

Λ> P

 � 0,

with Λ , (A−Ψ)>Φ>(P − C>2 Y >) and Φ and Ψ defined in Lemma 4.5.1.

4.5.2 H∞ Observer Design

The goal of this section is to provide additional sufficient conditions to guarantee

optimality of the observers in the H∞ sense. We first define our considered notion of

optimality via the following Definition 4.5.7.

Definition 4.5.7 (H∞-Observer). Let Tx̃,w,v denote the transfer function matrix that

maps the noise signals ~wk ,

[
w>k v>k

]>
to the updated state estimation error x̃k|k ,

xk − x̂k|k. For a given “noise attenuation level” η ∈ R+, the observer performance

satisfies H∞ norm bounded by η, if ‖Tx̃,w,v‖∞ ≤ η, i.e., the maximum average signal

power amplification is upper-bounded by η2:

limk→∞
1

k+1

∑k
i=0 x̃

>
i|ix̃i|i

limk→∞
1

k+1

∑k
i=0 ~w

>
i ~wi

, ‖Tx̃,w,v‖2
∞ ≤ η2. (4.19)
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Now we present our second set of main results, on designing stable and optimal

observers in the minimum H∞ sense.

Theorem 4.5.8 (H∞-Observer Design). Consider system (4.3), the observer (4.6)–

(4.11) and given η > 0. Suppose all the conditions in Theorem 4.5.3 hold, consider

Φ, Ψ, Q and R defined in Lemma 4.5.1 and let Ω , C2R−Q. Then, with the gain

L̃ = P−1Y , we obtain a stable observer with H∞ norm bounded by η, if (4.13) holds

and

N ,



N11 ∗ ∗ ∗

N i
21 N22 ∗ ∗

N31 N32 N33 ∗

N41 N42 N43 N44


�0,∀i ∈ {1 . . . N}, (4.20)

where N11, N i
21, N22, N31, N32, N33, N41, N42, N43, N44 and N are defined for

different cases as follows:

0. If f(·) is a Class 0 function, then N , 1 and

N11,η
2I+R>Y Ω+Ω>Y >R−R>PR−Ω>(Γ+2I)Ω

N i
21 , Ψ>Φ>(PR− Y Ω− C>2 Y >R), (4.21)

N22 , −I −Ψ>Φ>C>2 C2ΦΨ,N44 , I,

N31 , Y Ω + C>2 Y
>R− PR,N33 , −Φ>C>2 C2Φ,

and N32, N41, N42, N43 are zero matrices with appropriate dimensions.

I. If f(·) is a Class I function, then N , 1,

N11,η
2I+R>Y Ω+Ω>Y >R−R>PR−Ω>(Γ+2I)Ω,

N i
21, Ψ>Φ>(PR− Y Ω− C>2 Y >R), (4.22)

N22 ,−I−Ψ>Φ>C>2 C2ΦΨ−L2
fλmax(Φ

>C>2 C2Φ)I,

N31 , Y Ω + C>2 Y
>R−PR,N33 , 0,N44 , I,
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and N32, N41, N42, N43 are zero matrices with appropriate dimensions.

II. If f(·) is a Class II function, then N , 1,

N11,η
2I+R>Y Ω+Ω>Y >R−R>PR−Ω>(Γ+2I)Ω,

N i
21,−(A−Ψ)>Φ>(PR− Y Ω− C>2 Y >R), (4.23)

N22 , −I − (A−Ψ)>Φ>C>2 C2Φ(A−Ψ),N44,I,

N31 , Y Ω + C>2 Y
>R− PR,N33 , −Φ>C>2 C2Φ,

and N32, N41, N42, N43 are zero matrices with appropriate dimensions.

III. If f(·) is a Class III function, then N is the number of constituent LTI systems,

N11,N22 , P, N32 , ((P − Y C2)R + Y Q)>,

N i
21 , (P − Y C2)Φ(Ai −Ψ),N44 , η2I, (4.24)

N41 , I,N33 , η2I,

and N31, N42 and N43 are zero matrices with appropriate dimensions.

Finally, the minimum H∞ bound can be found by solving the following semi-definite

program with LMI constraints:

(η?)2 = min
P�0,Γ�0,Y,η2>0

η2

s.t. (4.13), (4.20) hold,

where η2 is a decision variable. Solving this Semi-Definite Program (SDP), we have

‖Tx̃,w,v‖∞ ≤ η?. This bound is obtained by applying the observer gain L̃? = P ?−1Y ?,

where (P ?, Y ?,Γ?) solves the above SDP.
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4.5.3 Radii of Estimates and Convergence of Errors

In this section, we are interested in computing closed form expressions for the

estimation radii and sufficient conditions for their convergence, as well as their steady

state values (if they exist). Notice that considering the general case of Class 0 functions,

i.e., without imposing any additional assumption on f(·), to the best of our knowledge,

there is no guarantee that any closed form expressions for the radii can be found using

(4.12), since there is no means to relate the state error x̃k|k to the function increment

∆fk, whereas when f(·) belongs to either of the classes I, II or III, it is possible to

relate function variations to the estimation errors and to find closed form expressions

for the radii (cf. Theorem 4.5.9).

It is worth mentioning that for linear time-invariant systems, strong detectability

of the system is a sufficient condition for the convergence of the radii δxk and δdk−1

to steady state [131], but it is less clear for general nonlinear systems. Notice that

if f(·) is a Class III function, i.e., in the LPV case, even strong detectability of all

constituent LTI systems does not guarantee that the radii converge. The reason is

that the convergence hinges on the stability of the product of time-varying matrices

(cf. proof of Theorem 4.5.9), which is not guaranteed even if all the multiplicands are

stable. In the following, we discuss some sufficient conditions for the convergence of

the radii to steady state, where first we characterize the resulting radii δxk and δdk−1

when using our proposed observer.

Theorem 4.5.9 (Radii of Estimates). Consider system (4.3) along with the observer

(4.6)–(4.11). Suppose the conditions of Theorem 4.5.8 hold. Let < , −(ΨΦG1M1T1 +

ΨG2M2T2 + L̃T2), α , ‖V2M2C2‖ηw +
[
‖(V2M2C2G1− V1)M1T1‖+ ‖V2M2T2‖

]
ηv and

η̃ , ‖<‖ηv + ‖ΨΦW‖ηw, with Φ and Ψ defined in Lemma 4.5.1 and T1, T2 given in
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Section 2.2.1. Then, the radii δxk and δdk−1 can be obtained as:

δxk = min(

√
x̃>0|0Px̃0|0

λmin(P )
, δx0θ

k + η
∑k

i=1 θ
i−1), (4.25)

δdk−1 =βδxk−1 + α, (4.26)

where P is derived in Theorem 4.5.3 for different classes of systems by solving the

LMIs in (4.13) and θ, η, β and α are defined for the different function classes as

follows:

I. If f(·) is a Class I function, then

θ , (Lf + ‖Ψ‖)‖(I − L̃C2)Φ‖,

η , η̃, (4.27)

β , ‖V1M1C1 − V2M2C2Ψ‖+ Lf‖V2M2C2‖,

α , α.

II. If f(·) is a Class II function, then

θ , ‖(I − L̃C2)Φ(A−Ψ)‖,

η , η̃ + ‖(I − L̃C2)Φ‖γ, (4.28)

β , ‖V1M1C1 + V2M2C2(A−Ψ)‖,

α , α + ‖V2M2C2‖γ.

III. If f(·) is a Class III function, then

θ , maxi∈{1,2,...,N} ‖Ae,i‖,

η , η̃, (4.29)

β , maxi∈{1,2,...,N} ‖V1M1C1 + V2M2C2Ae,i‖,

α , α.
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with Ae,i , (I − L̃C2)Φ(Ai−Ψ), for all i ∈ {1 . . . N} and V1, V2 given in Section

2.2.1.

Hence, the sequences of the error radii {δxk}∞k=1 and {δdk−1}∞k=1 are uniformly bounded

by δ ,

√
x̃>
0|0P x̃0|0

λmin(P )
and βδ + η, respectively. Furthermore, they are convergent if θ < 1

and if so, the steady state radii are given by:

lim
k→∞

δxk = min(

√
x̃>0|0Px̃0|0

λmin(P )
,

η

1− θ
),

lim
k→∞

δdk = βmin(

√
x̃>0|0Px̃0|0

λmin(P )
,

η

1− θ
) + α.

The resulting fixed-order set-valued observer is summarized in Algorithm 3.

Remark 4.5.10. Note that according to (4.25) and (4.26), if the sufficient condi-

tions in Theorem 4.5.9 hold, i.e., when the observer is stable, the sequences of radii,

{δxk , δdk−1}∞k=1, are uniformly bounded, regardless of the value of θ. Consequently, the

sequences of errors, {x̃k|k, d̃k−1|k−1}∞k=1, are uniformly bounded and do not diverge.

Moreover, if θ > 1, the sequences of radii may be non-convergent (albeit uniformly

bounded), but the the sequences of errors may still converge.

Corollary 4.5.11. If f(·) is a Class III function and the conditions of Theorem 4.5.8

hold, then, the radii δxk and δdk−1, computed in (4.25) and (4.26), are convergent if

‖Ae,i‖ < 1 for all i ∈ {1, 2, . . . , N}, where Ae,i , (I − L̃C2)Φ(Ai −Ψ), with Φ and Ψ

defined in Lemma 4.5.1.

Remark 4.5.12. Alternatively, we can trade off between observer “optimality” (i.e.,

the noise attenuation level) and “convergence” of the error radii (i.e., the steady state

values). We can find η (e.g., by a line search) that satisfies the following feasibility

problem:

Find (P, Y,Γ)

s.t. (4.13), (4.20) hold,
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and θ < 1, with θ defined in Theorem 4.5.9. Although the designed observer may not

be optimum in the minimum H∞ sense when using this method, we can guarantee the

steady state convergence of the radii instead.

Algorithm 3 Simultaneous Input and State Observer

1: Initialize:

Compute M1,M2, L̃ via Theorem 4.5.8 and θ, η, β, α via Theorem 4.5.9; Φ = I−G2M2C2;

x̂0|0 = x̂0 = centroid(X̂0);

d̂1,0 = M1(z1,0 − C1x̂0|0 −D1u0);

δx0 = min
δ
{‖x− x̂0|0‖ ≤ δ, ∀x ∈ X̂0};

2: for k = 1 to K do

. Estimation of d2,k−1 and dk−1

3: x̂k|k−1 = f(x̂k−1|k−1) +Buk−1 +G1d̂1,k−1;

4: d̂2,k−1 = M2(z2,k − C2x̂k|k−1 −D2uk);

5: d̂k−1 = V1d̂1,k−1 + V2d̂2,k−1;

6: δdk−1 = β(δx0θ
k−1 + η

∑k−1
i=1 θ

i−1) + α;

7: D̂k−1 = {d ∈ Rl : ‖d− d̂k−1‖ ≤ δdk−1};

. Time update

8: x̂?k|k = x̂k|k−1 +G2d̂2,k−1;

. Measurement update

9: x̂k|k = x̂?k|k + L̃(z2,k − C2x̂
?
k|k −D2uk);

10: δxk = δx0θ
k + η

∑k
i=1 θ

i−1;

11: X̂k = {x ∈ Rn : ‖x− x̂k|k‖ ≤ δxk};

. Estimation of d1,k

12: d̂1,k = M1(z1,k − C1x̂k|k −D1uk);

13: end for
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4.6 Simulation Results and Comparison with Benchmark Observers

Two simulation examples are considered in this section to demonstrate the per-

formance of the proposed observer. In the first example, where the dynamic system

belongs to Classes I and II, we consider simultaneous input and state estimation

problem and design observers for each class to study their performances. Our second

example is a benchmark dynamical Lipschitz continuous (i.e., Class I) system, where

we compare the results of our observer with two other existing observers in the lit-

erature, [23, 25]. We consider two different scenarios, one with a bounded unknown

input, and the other with an unbounded unknown input. The results show that in

the unbounded input scenario, when applying the observers in [23, 25], the estimation

errors diverge, while as expected from our theoretical results, the estimation errors of

our proposed observer converge to steady state values.

4.6.1 Single-Link Flexible-Joint Robotic System

We consider a single-link manipulator with flexible joints [3, 95], where the system

has 4 states. We slightly modify the dynamical system described in [3], by ignoring the

dynamics for the unknown inputs (different from the existing bounded disturbances)

to make them completely unknown input signals. We also consider bounded-norm

disturbances (instead of stochastic noise signals in [3, 95]). So, we have the dynamical

system (4.3) with n = 4, f(x) = Ax+

[
0 2.16Ts 0 −3.33Ts sin(x3)

]>
, p = m = 1,

A =



1 Ts 0 0

−48.6Ts 1− 1.25Ts 48.6Ts 0

0 0 1 Ts

19.5Ts 0 −19.5Ts 1


, l = 2, B = 04×1, G = Ts

[
5 5 2 1

]>
,
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C =

1 0 0 0

0 1 0 0

, W = I, D = 02×1, Ts = 0.01, H = Ts

[
1.1 2

]>
and ηw = ηv = 0.1.

The unknown input signal is depicted in Figure 4.3. Vector field f(·) is a Class I

function with Lf = 3.33Ts‖diag{0, 0, 0, 1}‖ = 3.33Ts (cf. [3]), as well as a Class II

function, with A = A and γ = 0.56 (cf. Lemma 4.1.15). Considering Theorem 4.5.8,

cases I and II of the sufficient conditions are satisfied. Solving the corresponding SDPs

returns

P ?
Lip =



1.3347 −1.4121 −0.2308 −0.1154

−1.4121 2.4642 −0.1435 −0.0717

−0.2308 −0.1435 1.1048 −0.0364

−0.1154 −0.0717 −0.0364 1.1594


,Γ?Lip = 0.6391,

(Y ?
Lip)

> =

[
0.3237 0.2261 0.0265 0.0132

]>
, η?Lip = 1.0560

and consequently, (L̃?Lip)
> =

[
1.1360 0.7694 0.3672 0.1836

]>
for case I, and

P ?
DQC =



2.8641 −2.9917 −1.0025 −0.5012

−2.9917 4.9445 −0.7205 −0.3602

−1.0025 −0.7205 4.5920 −0.1786

−0.5012 −0.3602 −0.1786 4.8599


,Γ?DQC = 1.1473,

(Y ?
DQC)> =

[
−0.3234 1.0288 0.0453 0.0227

]>
, η?Lip = 0.9641,

and (L̃?DQC)> =

[
0.8205 0.7619 0.3147 0.1573

]>
for case II. We observe from

Figures 4.2 and 4.3 that our proposed observer, i.e., Algorithm 1 is able to find

set-valued estimates of the states and unknown inputs, for Lipschitz continuous (Class

I) and DQC* (Class II) functions. The actual estimation errors are also within

the predicted upper bounds (cf. Figure 4.4), which converge to steady state values
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as established in Theorem 2.3.5. Furthermore, Figures 4.2–4.4 show that for this

specific example system, estimation errors and their radii are tighter when applying

the obtained observer gains for Class I (i.e., Lipschitz) functions, when compared to

applying the ones corresponding to the Class II (i.e, DQC*) functions.

Figure 4.2: Actual States x1,x2, as Well as Their Class 0 Estimates (i.e., the Obtained

Estimates by Applying the Corresponding Gains for Case (0) in Theorem 4.5.8), Class

I Estimates (i.e., the Obtained Estimates by Applying the Corresponding Gains for

Case I in Theorem 4.5.8) and Class II Estimates (i.e., the Obtained Estimates by

Applying the Corresponding Gains for Case II in Theorem 4.5.8)
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Figure 4.3: Actual States x3,x4 and Input d, as Well as Their Class 0 Estimates

(i.e., the Obtained Estimates by Applying the Corresponding Gains for Case (0) in

Theorem 4.5.8), Class I Estimates (i.e., the Obtained Estimates by Applying the

Corresponding Gains for Case I in Theorem 4.5.8) and Class II Estimates (i.e., the

Obtained Estimates by Applying the Corresponding Gains for Case II in Theorem

4.5.8)
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Figure 4.4: Estimation Errors and Their Upper Bounds for Class 0 (General Nonlinear),

Class I (Lipschitz) and Class II (DQC*) Functions

4.6.2 Comparison with Benchmark Observers

In this section, we illustrate the effectiveness of our Simultaneous Input and State

Set-Valued Observer (SISO), by comparing its performance with two benchmark

observers in [23] and [25]. The designed estimator in [23] calculates both (point)

state and unknown input estimates, while the observer in [25], only obtains (point)

state estimates. For comparison, we apply all the three observers on a benchmark

dynamical system in [23], which is in the form of (4.3) with n = 2, m = l = p = 1,

f(x) =

[
−0.42x1 + x2 −0.6x1 − 1.25 tanh(x1)

]>
, G =

[
1 −0.65

]>
,B = D =

H = 01×1, C =

[
0 1

]
, W = I, ηw = 0.2 and ηv = 0.1. The vector field f(·) is

Lipschitz continuous (i.e., Class I) with Lf = 1.1171. We consider two scenarios for

the unknown input. In the first, we consider a random signal with bounded norm, i.e.,

‖dk‖ ≤ 0.2 for the unknown input dk, while dk in the second scenario is a time-varying

signal that becomes unbounded when time increases. As is demonstrated in Figures

4.5 and 4.6, in the first scenario, i.e., with bounded unknown inputs, the set estimates

of our approach (i.e., SISO estimates) converge to steady state values and the point
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estimates of the two benchmark approaches [23, 25] are within the predicted upper

bounds and exhibit a convergent behavior for all 50 randomly chosen initial values (cf.

Figure 4.6). In this scenario, the two benchmark approaches result in slightly better

performance than SISO, since they benefit from the additional assumption of bounded

input.

More interestingly, considering the second scenario, i.e., with unbounded unknown

inputs, Figures 4.7 and 4.8 demonstrate that our set-valued estimates still converge,

i.e., our observer remains stable for all 50 randomly chosen initial values, with P ? =1.9543 1.2561

1.2561 5.1084

, Y ? =

[
−0.1196 0.3887

]>
, L̃? =

[
−0.1307 0.1082

]
, Γ? = 0.6360

and η? = 1.9093, while the estimates of the two benchmark approaches exceed the

boundaries of the compatible sets of states and inputs after some time steps of our

approach and display a divergent behavior for all the initial values (cf. Figure 4.8).
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Figure 4.5: Actual States x1, x2, and Their Estimates, as Well as Unknown Input d

and Its Estimates in the Bounded Unknown Input Scenario, Obtained by Applying the

Observer in [25] (Chen-Hu Estimate), the Observer in [23] (Chak-Stan-Shre Estimate)

and Our Designed observer (SISO Estimate)
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Figure 4.6: Estimation Errors in the Bounded Unknown Input Scenario for 50 Different

Initial Values (Using Box Plots), Obtained by Applying the Observer in [25] (Chen-Hu

Err.), the observer in [23] (Chak-Stan-Shre Err.) and Our Designed Observer (SISO

Err.), as Well as the Computed Upper Bounds for the State and Input Errors (δxk and

δdk)
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Figure 4.7: Actual States x1, x2, and Their Estimates, as Well as Unknown Input d and

Its Estimates in the Unbounded Unknown Input Scenario, Obtained by Applying the

Observer in [25] (Chen-Hu Estimate), the Observer in [23] (Chak-Stan-Shre Estimate)

and Our Designed Observer (SISO Estimate)
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Figure 4.8: Estimation Errors in the Unbounded Unknown Input Scenario for 50

Different Initial Values (Using Box Plots), Obtained by Applying the Observer in

[25] (Chen-Hu Err.), the Observer in [23] (Chak-Stan-Shre Err.) and Our Designed

Observer (SISO Err.), as Well as the Computed Upper Bounds for the State and Input

Errors (δxk and δdk)

4.7 Conclusion

We presented fixed-order set-valued H∞-observers for nonlinear bounded-error

discrete-time dynamic systems with unknown inputs. Sufficient Linear Matrix In-

equalities for Lyapunov stability of the designed observer were derived for different

classes of nonlinear systems, including general nonlinear systems, Lipschitz continuous

systems, Decremental Quadratic Constrained systems and Linear Parameter-Varying

systems. Moreover, we derived additional LMI conditions and corresponding tractable

semi-definite programs for obtaining the minimum H∞ norm for the transfer function

that maps the noise signal to the state error of the stable observers.

In addition, we derived sufficient conditions for the convergence of the radii of the
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set-valued state and input estimates and derived their steady state values. Finally,

using two illustrative examples, we demonstrated the effectiveness of our proposed

design, as well as its advantages over two existing benchmark observers. For future

work, we plan to generalize this framework to hybrid and switched nonlinear systems

and consider other forms of CPS attacks.
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Chapter 5

SIMULTANEOUS MODE, STATE AND INPUT SET-VALUED OBSERVERS FOR

SWITCHED NONLINEAR SYSTEMS

In this chapter a , we study the problem of designing a simultaneous mode, input

and state set-valued observer for a class of hidden mode switched nonlinear systems

with bounded-norm noise and unknown input signals, where the hidden mode and

unknown inputs can represent fault or attack models and exogenous fault/disturbance

or adversarial signals, respectively. The proposed multiple-model design has three

constituents: (i) a bank of mode-matched set-valued observers, (ii) a mode observer

and (iii) a global fusion observer. The mode-matched observers recursively find the

sets of compatible states and unknown inputs conditioned on the mode being the

true mode, while the mode observer eliminates incompatible modes by leveraging a

residual-based criterion. Then, the global fusion observer outputs the estimated sets

of states and unknown inputs by taking the union of the mode-matched set-valued

estimates over all compatible modes. Moreover, sufficient conditions to guarantee

the elimination of all false modes (i.e., mode detectability) are provided and the

effectiveness of our approach is demonstrated and compared with existing approaches

using an illustrative example.

5.1 Problem Formulation

Consider a hidden mode switched nonlinear system with bounded-norm noise and

unknown inputs (i.e., a hybrid system with nonlinear and noisy system dynamics in

aThe content of this chapter is documented as a submitted and under review paper in [121].
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each mode, where the mode and some inputs are not known/measured):

xk+1 = f q(xk) +Bquqk +Gqdqk +W qwqk,

yk = Cqxk +Dquqk +Hqdqk + vqk,
(5.1)

where xk ∈ Rn is the continuous system state and q ∈ Q = {1, 2, . . . , Q} ⊂ N is the

hidden discrete state or mode. For each q ∈ Q, yk ∈ Rl is the measurement output

signal and wqk ∈ Rn and vqk ∈ Rl are external process and measurement disturbances

with known `2-norm bounds, i.e., ‖wk‖2 ≤ ηw and ‖vk‖2 ≤ ηv, respectively. Moreover,

uqk ∈ Uk ⊂ Rm is the known input and dqk ∈ Rp the unknown input signal (representing,

e.g., the input of other agents/robots or adversarially injected data signal). It is worth

mentioning that no prior ‘useful’ knowledge or assumption of the dynamics of dqk is

assumed. For each (fixed) mode q, the mapping f q(·) : Rn → Rn and the matrices

Bq ∈ Rn×m, Gq ∈ Rn×p, Cq ∈ Rl×n, Dq ∈ Rl×m and Hq ∈ Rl×p are the corresponding

mode-dependent known state vector field and system matrices, respectively.

The above modeling framework can capture a very broad range of problems,

including intention estimation, fault detection and resilient state estimation against

sparse data injection and switching/mode attacks. Specifically, in the context of

intention estimation or fault diagnosis, each mode represents an intent or fault model

and the unknown inputs can model the inputs of other agents/robots or exogenous

fault signals. On the other hand, with regard to resilient state estimation, the

switching/mode attacks (e.g., attacks on circuit breakers) can be represented with

a set of different f q(·), Bq, Cq and Dq, while the unknown attack location of sparse

data injection attacks can be modeled by a set of different Gq and Hq that represent

the different hypotheses for which actuators and sensors are attacked or not attacked.

Further, the attack signal magnitudes can be modeled as the unknown inputs in this

scenario.

In addition, we assume the following:
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Assumption 5.1.1. There is only one “true” mode, i.e. the true mode q∗ is constant

over time.

Assumption 5.1.2. For each q ∈ Q, f q(·) is twice continuously differentiable and

Lipschitz continuous on its domain with a known Lipschitz constant Lqf > 0.

Using the above modeling framework, the simultaneous state, unknown input and

hidden mode estimation problem based on a multiple-model framework can be stated

as follows:

Problem 5.1.3. Given a hidden mode switched nonlinear discrete-time system with

unknown inputs and bounded-norm noise in the form of (5.1),

(i) Design a bank of mode-matched observers, where each mode-matched observer,

conditioned on the mode being true, optimally returns the set-valued estimates

of compatible states and unknown inputs in the minimum H∞-norm sense, i.e.,

with minimum average power amplification.

(ii) Find a threshold criterion to eliminate false modes and subsequently, develop a

mode observer via elimination.

(iii) Derive sufficient conditions for the elimination of all false modes.

5.2 Proposed Observer Design

In this section, we propose a multiple-model approach for simultaneous mode, state

and unknown input estimation for the system in (5.1), with the goal of recursively

finding the sets of states X̂k, unknown inputs D̂k and modes Q̂k that are compatible

with observed outputs yk.
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5.2.1 Overview of Multiple-Model Approach

The multiple-model design approach consists of three steps: (i) designing a bank

of mode-matched set-valued observers, (ii) developing a mode observer for eliminating

incompatible modes using a residual-based threshold, and (iii) devising a global fusion

observer that returns the desired set-valued mode, input and state estimates.

Mode-Matched Set-Valued Observer

First, based on the optimal fixed-order observer design in [118], we develop a bank

of mode-matched observers, which includes Q ∈ N simultaneous state and input H∞

set-valued observers, which can be briefly summarized as follows. For each mode-

matched observer corresponding to mode q, following the approach in [118, Section 4],

we consider set-valued fixed-order estimates in the form of `2-norm balls:

D̂q
k−1 = {dk−1 ∈ Rp : ‖dk−1 − d̂qk−1‖2 ≤ δd,qk−1}, (5.2)

X̂q
k = {xk ∈ Rn : ‖xk − x̂qk|k‖2 ≤ δx,qk }, (5.3)

where their centroids x̂qk|k and d̂qk−1 are obtained with the following three-step recursive

observer that is optimal in H∞-norm sense (cf. [118, Section 4.2] for more details):

Unknown Input Estimation:

d̂q1,k = M q
1 (zq1,k − C

q
1 x̂

q
k|k −D

q
1u

q
k),

d̂q2,k−1 = M q
2 (zq2,k − C

q
2 x̂

q
k|k−1 −D

q
2u

q
k),

d̂qk−1 = V q
1 d̂

q
1,k−1 + V q

2 d̂
q
2,k−1;

(5.4)

Time Update:

x̂qk|k−1 = f q(x̂qk−1|k−1) +Bquqk−1 +Gq
1d̂
q
1,k−1,

x̂?,qk|k = x̂qk|k−1 +Gq
2d̂
q
2,k−1;

(5.5)
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Measurement Update:

x̂qk|k = x̂?,qk|k + L̃q(zq2,k − C
q
2 x̂

?,q
k|k −D

q
2u

q
k), (5.6)

where Cq
1 , Cq

2 , Dq
1, Dq

2, Gq
1, G

q
2, V

q
1 , V q

2 , zq1,k and zq2,k can be computed by applying

a similarity transformation described in Section 4.4.1 and L̃q ∈ Rn×(l−pHq ), M q
1 ∈

RpHq×pHq and M q
2 ∈ R(p−pHq )×(l−pHq ) are observer gain matrices that are chosen via

the following Proposition 5.2.1. This proposition is a restatement of the results in

[118] that is tailored to the setting considered in this paper, where the main idea is to

minimize the “volume” of the set of compatible states and unknown inputs, quantified

by the radii δd,qk−1 and δx,qk .

Proposition 5.2.1. [118, Proposition 5.16, Lemma 5.1 & Theorem 5.13] Consider

system (5.1) and a bank of Q mode-matched observers in the form of (5.4)–(5.6).

Suppose that ∀q ∈ Q , {1, . . . , Q}, rk(Cq
2G

q
2) = p − pHq and M q

1 ,M
q
2 are chosen

as M q
1 = (Σq)−1 and M q

2 = (Cq
2G

q
2)
†, where Σq is obtained by applying singular

value decomposition on Hq (cf. Section 4.4.1 for more details). Then, the following

statements hold:

(a) Given mode q ∈ Q, the following difference equation governs the state estimation

error dynamics (i.e., the dynamics of x̃qk|k , xk − x̂qk|k):

x̃qk+1|k+1 = (I − L̃qCq
2)Φq(∆f qk −Ψqx̃qk|k) +Wq(L̃q)wqk, (5.7)

91



where

∆f qk , f q(xk)− f q(x̂qk), Φq , I −Gq
2M

q
2C

q
2 ,

wqk ,

[
( 1√

2
)vq>k wq>k ( 1√

2
)vq>k+1

]>
,

Rq ,

[
−
√

2ΦqGq
1M

q
1T

q
1 −ΦqW q −

√
2Gq

2M
q
2T

q
2

]
,

Qq ,

[
0(l−pHq )×l 0(l−pHq )×n −

√
2T q2

]
,

Ψq , Gq
1M

q
1C

q
1 , Wq(L̃q) , (I − L̃qCq

2)Rq + L̃qQq.

(b) Solving the following mixed-integer SDP for each mode q:

(ρ?q)
2 = min
{P�0,Γ�0,Γ̃�0,Q̆�0,Y,Z̆,ρ2>0,0≤α≤1,ε1>0,ε2>0,κ>0,κ1>0,κ2>0}

ρ2

s.t.

 P Ỹ q
1

Ỹ q>
1 M̃q

1

 � 0,

 P Ỹ q
2

Ỹ q>
2 M̃q

2

 � 0,

 P Ỹ q
1

Ỹ q>
1 M̃q

3

 � 0,

 P Ỹ q
2

Ỹ q>
2 Z̆

 � 0,

 Γ̃ Z̆

Z̆> Ψq>Q̆Ψq

 � 0,


I − Γ 0 0

0 P Y

0 Y > I

 � 0,


N q

11 ∗ ∗

N q
21 N

q
22 ∗

N q
31 0 N q

33

 � 0,

κ1I � P � κ2I, ∧ ((κ1 ≥ 1, κ2 − κ1 < 1) ∨ (κ2 ≤ 1, κ1 > 0.5)),

we obtain an observer in the form of (5.4)–(5.6) with the observer gain L̃q =

(P q)−1Y q, where (P q, Y q) are solutions to the above mixed-integer SDP, that

• is quadratically stable, and

• guarantees that

θq , ‖(I − L̃qCq
2)Φq‖2 < 1, (5.8)
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and consequently, the upper bound sequences for the radii {δx,qk , δd,qk−1}∞k=1,

which are computed as:

δx,qk , δx0 (θq)k + ηq 1−(θq)k

1−θq ,

δdk−1 , βqδx,qk−1 + αq,
(5.9)

are convergent to some steady state value δx,q∞ , δd,q∞ , where

Ỹ q
1 , (P − Y Cq

2)Φq, Ỹ q
2 , −(P − Y Cq

2)ΦqΨq,

M̃1 , −κI − Q̆, M̃2 , −κ(Lqf )
2I + (1− α)P − Γ̃, M̃3 , κI,

N q
21 , Ψq>Φq>(PRq − Y Ωq − Cq>

2 Y >Rq),

N q
11 , ρ2I + 2Rq>Y Ωq −Rq>PRq − Ωq>(Γ + (ε−1

1 + ε−1
2 )I)Ωq,

N q
31 , Φq>(Y Ωq + Cq>

2 Y >Rq − PRq),

N q
33 , −ε2Φq>Cq>

2 Cq
2Φq + I,

N q
22 , −I + αP − ε1Ψq>Φq>Cq>

2 Cq
2ΦqΨq − Lqf

2I,

δx∞ ,


δx,q∞,1, if θq1 < 1, θq2 ≥ 1,

δx,q∞,2, if θq1 ≥ 1, θq2 < 1,

min(δx,q∞,1, δ
q,x
∞,2), if θq1 < 1, θq2 < 1,

,

δx,q∞,1 , ρ?q

√
ηqw

2 + ηqv
2

λmin(P q)(1− θq1)
, δx,q∞,2 ,

ηq

1− θq2
, δd,q∞ , βqδx,q∞ + αq,

θq1 ,
|λmax(P q)−1|
λmin(P q)

, θ2
q , (Lqf + ‖Ψq‖2)‖(I − L̃qCq

2)Φq‖2,

Ωq , Cq
2R

q −Qq, ηq , ‖<q‖2η
q
v + ‖ΨqΦqW q‖2η

q
w,

<q , −(ΨqΦqGq
1M

q
1T

q
1 + ΨqGq

2M
q
2T

q
2 + L̃qT q2 ),

βq , ‖V q
1 M

q
1C

q
1 − V

q
2 M

q
2C

q
2Ψq‖2 + Lqf‖V

q
2 M

q
2C

q
2‖2,

αq , ‖V q
2 M

q
2C

q
2‖2η

q
w +

[
‖(V q

2 M
q
2C

q
2G

q
1 − V

q
1 )M q

1T
q
1 ‖2 + ‖V q

2 M
q
2T

q
2 ‖2

]
ηqv.
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5.2.2 Mode Observer

To estimate the set of compatible modes, we consider an elimination approach that

compares the `2-norm of residual signals against some thresholds. Specifically, we will

eliminate a specific mode q, if ‖rqk‖2 > δ̂qr,k, where the residual signal rqk is defined as

follows and the thresholds δ̂qr,k will be derived in Section 5.2.3.

Definition 5.2.2 (Residuals). For each mode q at time step k, the residual signal is

defined as:

rqk , zq2,k − C
q
2 x̂

?,q
k|k −D

q
2u

q
k.

Global Fusion Observer

Finally, combining the outputs of both components above, our proposed global

fusion observer will provide mode, unknown input and state set-valued estimates at

each time step k as:

Q̂k = {q ∈ Q ‖rqk‖2 ≤ δ̂qr,k},

D̂k−1 = ∪q∈Q̂kD
q
k−1, X̂k = ∪q∈Q̂kX

q
k .

The multiple-model approach is summarized in Algorithm 4.

5.2.3 Mode Elimination Approach

We leverage a relatively simple idea to develop a criterion for elimination of false

modes, as follows. We rule out a particular mode as incompatible, if the `2-norm of

its corresponding residual signal exceeds its upper bound conditioned on this mode

being true. To do so, for each mode q, we first compute an upper bound (δ̂qr,k) for the

`2-norm of its corresponding residual at time k, conditioned on q being the true mode.

Then, comparing the `2-norm of residual signal in Definition 5.2.2 with δ̂qr,k, mode q
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Algorithm 4 Simultaneous Mode, State and Input Estimation of Nonlinear Systems

1: Q̂0 = Q;

2: for k = 1 to N do

3: for q ∈ Q̂k−1 do

. Mode-Matched State and Input Set-Valued Estimates

Compute T q2 ,M
q
1 ,M

q
2 , L̃

q, x̂?,qk|k, X̂
q
k , D̂

q
k−1 via Proposition 5.2.1;

zq2,k = T q2 yk;

. Mode Observer via Elimination

Q̂k = Q̂k−1;

Compute rqk via Definition 5.2.2 and δ̂qr,k via Theorem 5.2.7;

4: if ‖rqk‖2 > δ̂qr,k then Q̂k = Q̂k\{q};

5: end if

6: end for

. State and Input Estimates

7: X̂k = ∪q∈Q̂kX̂
q
k ; D̂k = ∪q∈Q̂kD̂

q
k;

8: end for

can be eliminated if the residual’s `2-norm is strictly greater than the upper bound.

The following proposition and theorem formalize this procedure.

Proposition 5.2.3. Consider mode q at time step k, its residual signal rqk (as defined

in Definition 5.2.2) and the unknown true mode q∗. Then,

rqk = r
q|∗
k + ∆r

q|q∗
k ,

with

r
q|∗
k , zq∗2,k − C

q
2 x̂

?,q
k|k −D

q
2u

q
k = T q∗2 yk − Cq

2 x̂
?,q
k|k −D

q
2u

q
k,

∆r
q|q∗
k , (T q2 − T

q∗
2 )yk,
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where r
q|∗
k is the true mode’s residual signal (i.e., q = q∗), and ∆r

q|q∗
k is the residual

error.

Theorem 5.2.4. Consider mode q and its residual signal rqk at time step k. Assume

that δq,∗r,k is any signal that satisfies ‖rq|∗k ‖2 ≤ δq,∗r,k , where r
q|∗
k is defined in Proposition

5.2.3. Then, mode q is not the true mode, i.e., can be eliminated at time k, if

‖rqk‖2 > δq,∗r,k .

By the above theorem, our approach guarantees that the true mode is never

eliminated. However, Theorem 5.2.4 only provides a sufficient condition for mode

elimination at each time step and the capability of our proposed mode observer to

eliminate as many false modes as possible is dependent on the tightness of the upper

bound, δq,∗r,k .

5.2.4 Tractable Computation of Thresholds

To apply the sufficient condition in Theorem 5.2.4, we need a tractable approach

to compute the upper bound δq,∗r,k that is finite-valued. This procedure is derived and

described in the following.

Lemma 5.2.5. Consider any mode q with the unknown true mode being q∗. Then, at

time step k, we have

r
q|∗
k = Cq

2 x̃
?,q
k|k + vq2,k = Aq

ktk, (5.10)
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where

tk ,

[
x̃>0|0 v

q>
0 . . . vq>k wq>0 . . . wq>k−1 ∆f q>0 . . .∆f q>k−1

]>
∈ R(n+l)(k+1)+nk,

Aq
k , [Aqk Jq,1k−1 (Jq,2k−1 + Jq,1k−2) · · · (Jq,21 + Jq,10 ) Jq,20 Jq,3k−1 . . . J

q,3
0 F q

k−1 . . . F
q
0 ],

Aqk , (−1)k((I − L̃qCq
2)ΦqΨq)k,

Jqi ,


Yq, if i = 0,

−Cq
2ΦqGq

1M
q
1C

q
1(I − L̃qCq

2)i−1Wq, if 1 ≤ i ≤ k − 1,

F q
i ,


Cq

2Φq, if i = 0,

(−1)iCq
2ΦqGq

1M
q
1C

q
1((I − L̃qCq

2)Ψq)i−1(I − L̃qCq
2)Φq, if 1 ≤ i ≤ k − 1,

Yq ,
[
−
√

2Cq
2ΦqGq

1M
q
1T

q
1 Cq

2ΦqW q
√

2(I − Cq
2G

q
2M

q
2 )T q2

]
,

Jq,1i , Jqi (1 : l), Jq,2i , Jqi (l + 1 : 2l), Jq,3i , Jqi (2l + 1 : 2l + n), i = 1, . . . , k − 1.

Lemma 5.2.6. For each mode q at time step k, there exists a finite-valued upper

bound δqr,k <∞ for ‖rq|∗k ‖2.

Clearly, δqr,k in Lemma 5.2.6, if computable, is the tightest possible upper bound

for the norm of the residual signal and using this as the threshold can eliminate the

most possible number of false modes. However, note that although the existence proof

of a finite-valued δqr,k is straightforward, the optimization problem in Lemma 5.2.6 is

NP-hard [18], since it is a norm maximization (not minimization) over the intersection

of level sets of lower dimensional norm functions, i.e., it is a non-concave maximization

over intersection of quadratic constraints. To tackle this complexity, through the

following Theorem 5.2.7, we propose a tractable over-approximation/upper bound for

δqr,k, which we call δ̂qr,k and is used instead as the elimination threshold.
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Theorem 5.2.7. Consider mode q. At time step k, let

δ̂qr,k , min{δq,trir,k , δq,infr,k },

δq,trir,k ,
k−2∑
i=0

Lqf‖F
q
i ‖2δ

x,q

k−1−i +
1√
2
ηqv(‖J

q,1
i ‖2 + ‖Jq,3i ‖2) + ηqw‖J

q,2
i ‖2 (5.11)

+ (‖Aqk‖2 + Lqf‖F
q
k−1‖2)δx0 +

1√
2
ηqv(‖J

q,1
k−1‖2 + ‖Jq,3k−1‖2) + ηqw‖J

q,2
k−1‖2,

δq,infr,k , ‖Aq
kt
?
k‖2,

where t?k , arg maxtk∈Tk ‖A
q
ktk‖2 and Tk is the set of all vertices of the following

hypercube:

X q
k ,

{
x ∈ R(n+l)(k+1)+nk

|x(i)| ≤



δx0 , 1 ≤ i ≤ n,

ηqv, n+ 1 ≤ i ≤ n+ l(k + 1),

ηqw, n+ l(k + 1) + 1 ≤ i ≤ (n+ l)(k + 1),

Lqfδ
x
0 , (n+ l)(k + 1) + 1 ≤ i ≤ (n+ l)(k + 1) + n,

...

Lqfδ
x,q

j , (n+ l)(k + 1) + jn+ 1 ≤ i ≤ (n+ l)(k + 1) + n(j + 1),

...

Lqfδ
x,q

k−1, (n+ l)(k + 1) + (k − 1)n+ 1 ≤ i ≤ (n+ l)(k + 1) + nk.

}
.

Then, δ̂qr,k is an over-approximation for δqr,k in Lemma 5.2.6, i.e., δ̂qr,k ≥ δqr,k.

Theorem 5.2.7 enables us to obtain an upper bound for ‖rq|∗k ‖2, by enumerating the

objective function in (A.62) (cf. Proof of Theorem 5.2.7 in Appendix) for all vertices

of the hypercube X q
k and choosing the largest value as δq,infr,k . Moreover, we can easily

calculate δq,trir,k ; then, the upper bound is chosen as the minimum of the two as δ̂qr,k.
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Remark 5.2.8. The reason for not only using δq,infr,k is two-fold. First, as time

increases, the number of required enumerations for δq,infr,k (i.e., the cardinality of Tk)

can be shown to be |Tk| = 2(n+l)(k+1)+kn, which increases at an exponential rate. Second

and more importantly, as will be shown later in Lemma 5.3.4, δq,infr,k goes to infinity as

time increases, which renders it ineffective in the limit. On the other hand, Lemma

5.3.4 will show that δq,trir,k converges to some steady-state value, so it can always be used

as an over-approximation for δqr,k in the mode elimination process. Nonetheless, we

chose to use the minimum of the two bounds, since our simulation results in Section

5.4 show that δq,infr,k is generally smaller than δq,trir,k in the initial time steps.

Further, the following result that we will make use of later can be easily obtained

as a corollary of Theorem 5.2.7.

Corollary 5.2.9. t?k (defined in Theorem 5.2.7) has the following norm:

ηtk , ‖t?k‖2 =

√√√√n((1 + Lqf
2)δx0

2 + kηqw
2 + Lqf

2
k−1∑
j=1

δ
x,q

j

2
) + l(k + 1)ηqv

2.

5.3 Mode Detectability

In addition to the nice properties regarding the quadratic stability and boundedness

of the mode-matched set-valued estimates of the state and unknown input obtained

from [118], we are interested in guaranteeing the effectiveness of our mode elimination

algorithm. Thus, in the following, we search for some sufficient conditions based on

the properties/structures of the system dynamics and/or unknown input signals for

guaranteeing that the application of Algorithm 1 can eliminate all false (i.e., not true)

modes after some large enough number of time steps.

To achieve this, we first define the concept of mode detectability.
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Definition 5.3.1 (Mode Detectability). System (5.1) is called mode detectable if

there exists a natural number K > 0, such that for all time steps k ≥ K, all false

modes are eliminated.

Moreover, we consider two different sets of assumptions that we will use for deriving

our sufficient conditions for mode detectability.

Assumption 5.3.2. There exist known Ry, Rx ∈ R such that ∀k, yk ∈ Y , {y ∈

Rl ‖y‖2 ≤ Ry} and xk ∈ X , {x ∈ Rn ‖x‖2 ≤ Rx}, i.e., there exist known bounds for

the whole observation/measurement and state spaces, respectively.

Assumption 5.3.3. The state space X is bounded and the unknown input signal has

unlimited energy, i.e., lim
k→∞
‖dq∗0:k‖2 =∞, where dq∗0:k ,

[
dq∗>k dq∗>k−1 . . . dq∗>0

]>
.

Note that the unlimited energy condition in Assumption 5.3.3 is not restrictive if

f(·), B, C and D are mode-independent, since otherwise, the unknown input signal

must vanish asymptotically, which means that we effectively have a non-switched

system in the limit and the mode estimation would be trivial.

Next, in order to derive the desired sufficient conditions for mode-detectability in

Theorem 5.3.7, we first present the following Lemmas 5.3.4–5.3.6.

Lemma 5.3.4. For each mode q,

lim
k→∞

δq,infr,k =∞. (5.12)

lim
k→∞

δ̂qr,k = lim
k→∞

δq,trir,k <∞, (5.13)

Lemma 5.3.5. Suppose that Assumption 5.3.2 holds. Consider two different modes

q 6= q′ ∈ Q and their corresponding upper bounds for their residuals’ norms, δqr,k and

δq
′

r,k, at time step k. At least one of the two modes q 6= q′ will be eliminated if

‖Cq
2 x̂

?,q
k|k − C

q′

2 x̂
?,q′

k|k +Dq
2u

q
k −D

q′

2 u
q′

k ‖2 > δqr,k + δq
′

r,k +Rq,q′

z , (5.14)

where Rq,q′
z , Ry‖T q2 − T

q′

2 ‖2.
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Lemma 5.3.6. Consider any mode q with the unknown true mode being q∗. Suppose

without loss of generality that f q(0) = 0. Then, at time step k, we have

rqk = Aq
kt
q
k + αq

∗

k + εq
∗

k , (5.15)

with εq
∗

k being an error term that satisfies

∃ξ1, . . . , ξk ∈ X, s.t. ‖εq
∗

k ‖2 ≤
1

2

k∑
i=1

‖Jq
∗

f,0‖
k−i
2 ‖xi−1‖2

2‖H
q∗

f (ξi)‖2, (5.16)

where

αq
∗

k , (T q2 − T
q∗

2 )(Cq∗

f,kx0 + Cq∗

d,kd
q∗

0:k + Cq∗

u,ku
q∗

0:k + Cq∗

w̃,kw̃
q∗

0:k)

Cq∗

d,k ,

[
Hq∗ Cq∗Gq∗ Cq∗Jq

∗

f,0G
q∗ . . . Cq∗(Jq

∗

f,0)k−1Gq∗

]
,

Cq∗

u,k ,

[
Dq∗ Cq∗Bq∗ Cq∗Jq

∗

f,0B
q∗ . . . Cq∗(Jq

∗

f,0)k−1Bq∗

]
,

Cq∗

w̃,k ,

[
I Cq∗W q∗ Cq∗Jq

∗

f,0W
q∗ . . . Cq∗(Jq

∗

f,0)k−1W q∗

]
,

dq
∗

0:k ,

[
dq
∗>
k . . . dq

∗>
0

]>
, uq

∗

0:k ,

[
uq∗>k . . . uq∗>0

]>
, Cq∗

f,k , Cq∗(Jq
∗

f,0)k,

w̃q
∗

0:k ,

[
vq
∗>
k wq

∗>
k−1 . . . wq

∗>
0

]>
, εq
∗

k , (T q2 − T
q∗

2 )εq
∗

k ,

and Jq
∗

f,0 and Hq∗

f (ξ) are the Jacobian and Hessian matrices of the vector field f q
∗
(·)

at 0 and ξ, respectively.

Theorem 5.3.7 (Sufficient Conditions for Mode Detectability). System (5.1) is mode

detectable, i.e., by applying Algorithm 4, all false modes will be eliminated at some

large enough time step K, if the assumptions in Proposition 5.2.1 and either of the

following hold:

i. Assumption 5.3.2 holds and ∀q, q′ ∈ Q, q 6= q′,

σmin(W q,q′) >
δ
q,tri

r + δ
q′,tri

r +R
′q,q′
y√

R2
x + η2

v

,

where W q,q′,

[
(Cq

2 − C
q′

2 ) (T q2 − T
q′

2 ) −I I Dq
2 −D

q′

2

]
.
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ii. Assumption 5.3.3 holds and T q2 6= T q
′

2 holds ∀q, q′ ∈ Q, q 6= q′. Moreover, Hq∗

f (·)

is bounded on X and ‖Jq
∗

f,0‖2 < 1.

5.4 Simulation Results

In this section, we evaluate the effectiveness of our Simultaneous Mode, Input,

and State Set-Valued Observer (SMIS), by comparing its performance with the LMI-

based H∞-observer in [141] that obtains point state estimates. For comparison, we

apply the two observers on a modified version of the discrete-time nonlinear switched

system in [141], where we increase the number of modes (subsystems) to five, i.e.,

Q = 5. The considered system is in the form of (5.1), with the following parameters:

n = l = 2,m = p = 1 and ∀q = 1, . . . , 5:

Bq = Dq = 02×1, f
q(x) = Ãqγ(x) + Âqx,

where γ(x) , 1
2

[
sin(x1) sin(x2)

]>
. Moreover,

Â1=

0.3 0

0.4 −0.7

, Ã1=

0.8 −0.4

0.4 −0.8

, C1=

0.8 0.1

0.8 0.1

, H1=

0.5

0.5

, G1=

 0.4

−0.1

,
Â2=

−0.5 0

1 −0.5

, Ã2=

0.6 −0.1

0.1 −0.6

, C2=

0.5 −0.1

0.6 −0.1

, H2=

 0.6

−0.5

, G2=

−0.2

0.1

,
Â3=

 0.6 −0.2

−0.4 0.7

, Ã3=

 0.4 −0.8

−0.2 −0.4

, C3=

 0.2 0.7

−0.8 0.2

, H3=

−0.5

0.5

, G3=

0.5

0.2

,
Â4=

−0.6 −0.2

0.4 0.7

, Ã4=

−0.4 0.9

0.2 −0.3

, C4=

0.3 −0.7

0.8 −0.6

, H4=

−0.4

0.9

, G4=

0.9

0.3

,
Â5=

−0.2 0.9

−0.1 0.3

, Ã5=

−0.8 0.1

0.3 −0.7

, C5=

−0.3 −0.1

−0.8 1

, H5=

−0.1

0.1

, G5=

0.6

0.1

.
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The initial state estimate and noise signals satisfy ‖x0‖2 ≤ δx = 0.5, ‖wk‖2 ≤ ηw = 0.02

and ‖vk‖2 ≤ ηw = 0.02. Furthermore, we assume that x̂0|0 =

[
0.4 0.4

]>
.

We consider two scenarios for the unknown input. In the first (Scenario I), the

unknown input is a random signal with bounded norm, i.e., ‖dk‖2 ≤ 0.4, while dk in

the second scenario (Scenario II) is a time-varying signal that becomes unbounded

as time increases. As is demonstrated in Figure 5.1, in the first scenario, i.e., with

bounded unknown inputs, the set estimates of our approach (i.e., SMIS estimates)

converge to steady-state values and the point estimates of the approach in [141] are

within the predicted upper bounds and exhibit convergent behavior. More interestingly,

considering the second scenario, i.e., with unbounded unknown inputs, Figure 5.2

shows that our set-valued estimates still converge, i.e., our observer remains stable,

while the estimates of the approach in [141] exceed the boundaries of the compatible

sets of states and inputs of our approach after some time steps and display a divergent

behavior (cf. Figure 5.2).

Further, Tables 5.1 and 5.2 show the matrix T q2 for each mode q for Scenarios I

and II, respectively. It can be verified that the second set of sufficient conditions in

Theorem 5.3.7 holds, i.e., T q2 6= T q
′

2 for all q 6= q′, for both scenarios. Hence, we expect

that all false modes are eliminated, i.e., exactly one (true) mode remains, after some

large enough time in both scenarios, which is indeed what we observe in Figures 5.1

and 5.2, where the number of non-eliminated modes at each time step is shown.

Moreover, for each mode q, the signals ‖rqk‖2, ‖rq|∗k ‖2, δq,trir,k and δq,infr,k are depicted

in Figures 5.3 and 5.4 for Scenarios I and II, respectively. In both scenarios, we observe

that δq,infr,k is smaller than δq,trir,k up until approximately 40 time steps, after which

δq,trir,k is smaller/tighter. This is one of the main reasons we considered the minimum

of both as the threshold in our mode elimination algorithm (also see Remark 5.2.8).

Furthermore, for all modes, δq,trir,k is eventually convergent while δq,infr,k diverges, as
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Figure 5.1: Actual states x1, x2, and their estimates, as well as the unknown input d

and its estimates, and the number of non-eliminated modes at each time step in the

bounded unknown input scenario (Scenario I), when applying the observer in [141]

(Zhen-Xu-Zhang Estimate) and our proposed observer (SMIS Estimate)

Figure 5.2: Actual States x1, x2, and Their Estimates, as Well as the Unknown Input

d and its Estimates, and the Number of Non-eliminated Modes at Each Time Step in

the Unbounded Unknown Input Scenario (Scenario II), When Applying the Observer

in [141] (Zhen-Xu-Zhang Estimate) and Our Oroposed Observer (SMIS Estimate)
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Table 5.1: Different Modes and Their T q2 in Scenario I (i.e., with Bounded dk)

Mode T q2

q = 1 [0.3629 -0.2179 ]>

q = 2 [0.1191 0.8715 ]>

q = 3 [-0.6468 0.8390 ]>

q = 4 [0.8103 -0.6681 ]>

q = 5 [0.2780 -0.6793 ]>

Table 5.2: Different Modes and Their T q2 in Scenario II (i.e., with Unbounded dk)

Mode T q2

q = 1 [0.4730 -0.3280 ]>

q = 2 [0.2202 0.9826 ]>

q = 3 [-0.7579 0.9401 ]>

q = 4 [0.9214 -0.7792 ]>

q = 5 [0.3891 -0.7804 ]>

proven in Lemma 5.3.4. So, after some large enough time, δq,trir,k can be used as our

upper bound threshold, while δq,infr,k becomes ineffective.
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Figure 5.3: ‖rqr,k‖2,‖rq|∗r,k‖2 and Their Upper Bounds for Different Modes in the Bounded

Unknown Input Scenario (Scenario I)

Figure 5.4: ‖rqr,k‖2,‖rq|∗r,k‖2 and Their Upper Bounds for Different Modes in the Un-

bounded Unknown Input Scenario (Scenario II)

106



5.5 Conclusion

This paper introduced a novel multiple-model approach for simultaneous mode,

unknown input and state estimation for hidden mode switched nonlinear systems with

bounded-norm noise and unknown inputs. The proposed approach consists of a bank

of mode-matched state and unknown input observer that is optimal in the H∞ sense

and a mode observer, which eliminates inconsistent modes and their corresponding

observers at each time step. The proposed mode elimination criterion is based on

the use of a provably finite-valued upper bound for the norm of a residual signal as

the threshold. Moreover, we provided a tractable approach to compute the threshold

signal and proved the convergence of the upper bound/threshold signal as well as

derived sufficient conditions for eventually eliminating all false modes when using

our mode elimination algorithm. Finally, we demonstrated the effectiveness of our

observer using an illustrative example, where we compared our approach with an

existing H∞ observer in the literature under two different scenarios.

107



Chapter 6

SIMULTANEOUS INPUT AND STATE INTERVAL OBSERVERS FOR

NONLINEAR SYSTEMS

In this chapter a , we address the problem of designing simultaneous input and state

interval observers for Lipschitz continuous nonlinear systems with unknown inputs

and bounded noise signals. Benefiting from the existence of nonlinear decomposition

functions and affine abstractions, our proposed observer recursively computes the

maximal and minimal elements of the estimate intervals that are proven to contain

the true states and unknown inputs, and leverages the output/measurement signals

to shrink the intervals by eliminating estimates that are incompatible with the mea-

surements. Moreover, we provide sufficient conditions for the existence and stability

(i.e., uniform boundedness of the sequence of estimate interval widths) of the designed

observer, and show that the input interval estimates are tight, given the state intervals

and decomposition functions.

6.1 Preliminary Material

Definition 6.1.1 (Interval, Maximal and Minimal Elements, Interval Width). An

(multi-dimensional) interval I ⊂ Rn is the set of all real vectors x ∈ Rn that satisfies

s ≤ x ≤ s, where s, s and ‖s − s‖ are called minimal vector, maximal vector and

width of I, respectively.

Next, we will briefly restate our previous result in [108], tailoring it specifically for

intervals to help with computing affine bounding functions for our vector fields.

aThe content of this chapter is documented as a published paper in [117] and an accepted paper
in [120].
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Proposition 6.1.2. [108, Affine Abstraction] Consider the vector field f(.) : B ⊂

Rn → Rm, where B is an interval with x, x,VB being its maximal, minimal and set of

vertices, respectively. Suppose AB, AB, eB, eB, θB is a solution of the following linear

program (LP):

min
θ,A,A,e,e

θ (6.1)

s.t Axs + e+ σ ≤ f(xs) ≤ Axs + e− σ,

(A− A)xs + e− e− 2σ ≤ θ1m, ∀xs ∈ VB,

where 1m ∈ Rm is a vector of ones and σ can be computed via [108, Proposition 1]

for different function classes. Then, Ax+ e ≤ f(x) ≤ Ax+ e, ∀x ∈ B. We call A,A

upper and lower affine abstraction slopes of function f(.) on B.

Corollary 6.1.3. By taking the average of upper and lower affine abstractions and

adding/subtracting half of the maximum distance, it is straightforward to parallelize

the above upper and lower abstractions as Ax + (1/2)(e + e − θ1m) ≤ f(x) ≤ Ax +

(1/2)(e+ e+ θ1m), where A = (1/2)(A+ A).

Proposition 6.1.4. [41, Lemma 1] Let A ∈ Rm×n and x ≤ x ≤ x ∈ Rn. Then,

A+x−A++x ≤ Ax ≤ A+x−A++x. As a corollary, if A is non-negative, Ax ≤ Ax ≤

Ax.

Lemma 6.1.5. Suppose the assumptions in Proposition 6.1.4 hold. Then, the returned

bounds for Ax is tight, in the sense that sup
x≤x≤x

Ax = A+x − A++x and inf
x≤x≤x

Ax =

A+x− A++x, where sup and inf are considered element-wise.

Definition 6.1.6 (Lipschitz Continuity). function f(·) : Rn → Rm is Lf -Lipschitz

continuous on Rn, if ∃Lf ∈ R++, such that ‖f(x1)− f(x2)‖ ≤ Lf‖x1 − x2‖, ∀x1, x2 ∈

Rn.
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Definition 6.1.7 (Mixed-Monotone Mappings and Decomposition Functions). [128,

Definition 4] A mapping f : X ⊆ Rn → T ⊆ Rm is mixed monotone if there exists a

decomposition function fd : X × X → T satisfying:

1. fd(x, x) = f(x),

2. x1 ≥ x2 ⇒ fd(x1, y) ≥ fd(x2, y) and

3. y1 ≥ y2 ⇒ fd(x, y1) ≤ fd(x, y2).

Proposition 6.1.8. [32, Theorem 1] Let f : X ⊆ Rn → T ⊆ Rm be a mixed

monotone mapping with decomposition function fd : X × X → T and x ≤ x ≤ x,

where x, x, x ∈ X . Then fd(x, x) ≤ f(x) ≤ fd(x, x).

Due to non-uniqueness of the decomposition function of a function, a specific one

is given in [128, Theorem 2]: If a vector field q =

[
h>1 . . . q>n

]>
: X ⊆ Rn → Rm

is differentiable and its partial derivatives are bounded with known bounds, i.e.,

∂qi
∂xj
∈ (aqi,j, b

q
i,j),∀x ∈ X ∈ Rn, where aqi,j, b

q
i,j ∈ R, then h is mixed monotone with

a decomposition function qd =

[
q>d1 . . . q>di . . . q>dn

]>
, where qdi(x, y) = qi(z) +

(αqi − βqi )
>(x − y),∀i ∈ {1, . . . , n}, and z, αqi , β

h
i ∈ Rn can be computed in terms

of x, y, aqi,j, b
q
i,j as given in [128, (10)–(13)]. Consequently, for x = [x1 . . . xj . . . xn]>,

y = [y1 . . . yj . . . yn]>, we have

qd(x, y) = q(z) + Cq(x− y), (6.2)

where Cq ,

[
[αq1 − β

q
1 ] . . . [αqi − β

q
i ] . . . [αqm − βqm]

]>
∈ Rm×n, with αqi , β

q
i given in

[128, (10)–(13)], z = [z1 . . . zj . . . zm]> and zj = xj or yj (dependent on the case, cf.

[128, Theorem 1 and (10)–(13)] for details). Moreover, if exact values of ai,j, bi,j are

unknown, their approximations can be obtained using Proposition 6.1.2 with the

slopes set to 0.
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Corollary 6.1.9. As a direct implication of Propositions 6.1.2–6.1.8, for any Lipschitz

mixed-monotone vector-field q(.) : Rn → Rm, with a decomposition function qd(., .), we

can find upper and lower vectors q, q such that q ≤ q(x) ≤ q,∀x ∈ [x, x], and

q = max(qd(x, x), q̂), q = min(qd(x, x), q̂),

q̂ = (Aq)+x− (Aq)++x+ eq, q̂ = (A
q
)+x− (A

q
)++x+ eq,

where (A
q
, Aq, eq, eq) is a solution of (6.1) for the function q.

Finally, we derive a Lipschitz-like property for the bounding functions in Corollary

6.1.9, which will be used later for determining observer stability.

Lemma 6.1.10. Let q(.) : [x, x] ⊂ Rn → Rm be the Lipschitz mixed-monotone vector-

field in Corollary 6.1.9, with its decomposition function qd(., .) constructed using (6.2).

Then, ‖q − q‖ ≤ ‖qd(x, x)− qd(x,x)‖ ≤ Lqd‖x− x‖, where Lqd , Lq + 2‖Cq‖, with Cq

given in (6.2).

6.2 Problem Formulation

System Assumptions. Consider the nonlinear discrete-time system with unknown

inputs and bounded noise

xk+1 = f(xk) +Buk +Gdk + wk,

yk = g(xk) +Duk +Hdk + vk,
(6.3)

where at time k ∈ N, xk ∈ Rn, uk ∈ Rm, dk ∈ Rp and yk ∈ Rl are the state

vector, a known input vector, an unknown input vector, and the measurement vector,

correspondingly. The process and measurement noise signals wk ∈ Rn and vk ∈ Rl

are assumed to be bounded, with w ≤ wk ≤ w, v ≤ vk ≤ v, and the known lower

and upper bounds, w, w and v, v, respectively. We also assume that lower and upper

bounds for the initial state, x0 and x0, are available, i.e., x0 ≤ x0 ≤ x0. The vector
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fields f(·) : Rn → Rn, g(·) : Rn → Rl and matrices B, D, G and H are known and of

appropriate dimensions, where G and H encoding the locations through which the

unknown input (or attack) signal can affect the system dynamics and measurements.

Note that no assumption is made on H to be either the zero matrix (no direct

feedthrough), or to have full column rank when there is direct feedthrough (in contrast

to [117]). Moreover, we assume the following, which is satisfied for a broad range of

nonlinear functions [129]:

Assumption 6.2.1. Vector fields f(·) and g(·) are mixed-monotone with decompo-

sition functions fd(·, ·) : Rn×n → Rn and gd(·, ·) : Rn×n → Rl and Lf -Lipschitz and

Lg-Lipschitz continuous, respectively.

Unknown Input (or Attack) Signal Assumptions. The unknown inputs dk

are not constrained to follow any model nor to be a signal of any type (random

or strategic), hence no prior ‘useful’ knowledge of the dynamics of dk is available

(independent of {d`} ∀k 6= `, {w`} and {v`} ∀`). We also do not assume that dk is

bounded or has known bounds and thus, dk is suitable for representing adversarial

attack signals.

Next, we briefly introduce a similar system transformation as in [131], which will

be used later in our observer structure.

System Transformation. Let pH , rk(H). Similar to [131], by applying singular

value decomposition, we have H =

[
U1 U2

]Σ 0

0 0


V >1
V >2

 with V1 ∈ Rp×pH , V2 ∈

Rp×(p−pH), Σ ∈ RpH×pH (a diagonal matrix of full rank), U1 ∈ Rl×pH and U2 ∈ Rl×(l−pH).

Then, since V ,

[
V1 V2

]
is unitary:

dk = V1d1,k + V2d2,k, d1,k = V >1 dk, d2,k = V >2 dk. (6.4)
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Finally, by defining T1 , U>1 , T2 , U>2 , the output equation can be decoupled as:

z1,k = g1(xk) +D1uk + v1,k + Σd1,k, (6.5)

z2,k = g2(xk) +D2uk + v2,k, (6.6)

g1(x, k) , T1g(xk), g2(xk) , T2g(xk). (6.7)

The observer design problem can be stated as follows:

Problem 6.2.2. Given a nonlinear discrete-time system with unknown inputs and

bounded noise (6.3), design a stable observer that simultaneously finds bounded intervals

of compatible states and unknown inputs.

6.3 General Simultaneous Input and State Interval Observers (GSISIO)

6.3.1 Interval Observer Design

We consider a recursive three-step interval-valued observer design, composed of

a state propagation (SP) step, which propagates the previous time state estimates

through the state equation to find propagated intervals, a measurement update (MU)

step, which iteratively updates the state intervals using the observation, and an

unknown input estimation (UIE) step, which computes the input intervals using state

intervals and observation. We design the observer in the following form:

State Propagation: Ixpk = Fpx(Ixk−1, yk−1, uk−1),

Measurement Update: Ixk = Fx(Ix
p

k , yk, uk),

Unknown Input Estimation: Idk−1 = Fd(Ixk , yk−1, uk−1),

where Fpx , Fx and Fd are to-be-designed interval mappings, while Ixpk , Ixk and Idk−1

are intervals of compatible propagated states, updated states and unknown inputs at

time steps k, k and k− 1, respectively. Note that we are constrained with obtaining a
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one-step delayed estimate of Idk−1, because in contrast with [117], the matrix H is not

necessarily full-rank, and hence dk cannot be estimated from the current measurement,

yk. However, in Lemma 6.3.6 and Remark 6.3.7, we will discuss a way of obtaining

the current estimate of a component of the input signal, i.e., d1,k in (6.5).

Considering the computational complexity of optimal observers [82], as well as

nice properties of interval sets [42], we consider set estimates of the form:

Ixpk = {x ∈ Rn : xpk ≤ x ≤ xpk},

Ixk = {x ∈ Rn : xk ≤ x ≤ xk},

Idk−1 = {d ∈ Rp : dk−1 ≤ d ≤ dk−1},

i.e., we restrict the estimation errors to be closed intervals. In this case, the observer

design problem boils down to finding xpk, x
p
k, xk, xk, dk−1 and dk−1. Our interval

observer can be defined at each time step k ≥ 1 as follows (with known x0 and x0

such that x0 ≤ x0 ≤ x0):

State Propagation (SP):[
xp>k xp>k

]>
=Mf

[
f
>
k f>

k

]>
+Mg

[
g>k g>

k

]>
+ωp+

Mv

[
v> v>

]>
+Mw

[
w> w>

]>
+Myyk−1+Muuk−1;

(6.8)

Measurement Update (MU):

xk = lim
i→∞

x∗,ik , xk = lim
i→∞

x∗,ik ; (6.9)

Unknown Input Estimation (UIE):

dk−1 = N11hk +N12hk, dk−1 = N21hk +N22hk, (6.10)

where ∀q ∈ {f, g}, qk and q
k

are upper and lower vector values for the function q(.)

on the interval [xk−1, xk−1], which can be recursively computed using Corollary 6.1.9.

Moreover,
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hk=

[
x>k y>k−1

]
>−
[
f>
k
g>
k

]
>−
[
B> D>

]
>uk−1−

[
w> v>

]
>, (6.11)

hk=

[
x>k y>k−1

]
>−
[
f
>
k g>k

]
>−
[
B> D>

]
>uk−1−

[
w> v>

]
>. (6.12)

Furthermore, {x∗,ik , x
∗,i
k }∞i=0 are the sequences of updated state framers, iteratively

computed in the following form

x∗,0k = xpk, x∗,0k = xpk, ∀i ∈ {1 . . .∞} : (6.13)

x∗,ik = max(x∗,i−1
k , xu,ik ), x∗,ik = min(x∗,i−1

k , xu,ik ), (6.14)

where

xu,ik = (A†i,k)
+αik − (A†ik)

++αik − ωui,k,

xu,ik = (A†i,k)
+αik − (A†ik)

++αik + ωui,k,

αik = max
j∈{1...3}

{αi,jk }, α
i
k = min

j∈{1...3}
{αi,jk }, α

i,1
k = tk − cik, α

i,1
k = tk − cik,

αi,2k = A+
i,kx

∗,i−1
k − A++

i,k x
∗,i−1
k , αi,2k =A+

i,kx
∗,i−1
k − A++

i,k x
∗,i−1
k ,

αi,3k = g2,d(x
∗.i
k−1, x

∗.i
k−1)− cik, α

i,3
k = g2,d(x

∗.i
k−1, x

∗.i
k−1)− cik,

tk = z2,k −D2uk − v2, tk = z2,k −D2uk− v2, (6.15)

cik , (1/2)(eik + eik + θik), c
i
k , (1/2)(eik + eik − θik). (6.16)

Finally, ωpk, Ms, Nnm, ∀s ∈ {f, g, u, w, v, y}, n,m ∈ {1, 2}, ωui,k, Ai,k, eik, eik, θik, ∀i ∈

{1 . . .∞} and g2d(., .) are to-be-designed observer parameters, matrix gains (with

appropriate dimensions) and bounding function, at time k and iteration i with the

purpose of achieving desirable observer properties.

Note that the measurement update step is iterative (see proof of Theorem 6.3.4 for

a more detailed explanation) because the tightness of the upper and lower bounding

functions for the observation function g2 (cf. Propositions 6.1.2 and 6.1.8) is dependent

on the a priori interval B. Thus, starting from the compatible intervals from the
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Algorithm 5 Generalized Simultaneous Input and Sate Interval Observer (GSISIO)

1: Initialize: maximal(Ix0 ) = x0; minimal(Ix0 ) = x0;

.Observer Gains Computation

ComputeMs,Nij ,∀s∈{f, g, u, v, w}, i, j∈{1, 2}via Theorem 6.3.4;

2: for k = 1 to K do

.Estimation of xk

Compute xpk, x
p
k via (6.8); Compute {x∗,i, x∗,i}∞i=0 via (6.13),(6.14);

3: (xk, xk) = (x∗,∞k , x∗,∞k ); Ixk={x ∈ Rn : xk≤ x≤ xk};

Compute δxk through Lemma 6.3.10;

.Estimation of dk−1

Compute dk−1, dk−1, δ
d
k−1 via (6.10)–(6.12) and Lemma 6.3.10;

4: Idk−1={d ∈ Rp: dk−1≤ d ≤dk−1};

5: end for

propagation step, if we obtain tighter updated intervals, they can be used as the

new B to obtain better bounding functions for g2, which in turn may lead to even

tighter updated intervals. This process can be repeated and results in a sequence of

monotonically tighter updated intervals, where its limit (that exists by the monotone

convergence theorem) is chosen as the final interval estimate at time k. Algorithm 5

summarizes GSISIO.

6.3.2 Observer Design

The objective of this section is to design observer gains such that the GSISIO

returns correct and tight intervals. We first define these properties through the

following definitions.

Definition 6.3.1 (Correctness (Framer Property [77])). Given an initial interval

x0 ≤ x0 ≤ x0, the GSISIO observer returns correct interval estimates, if the true
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states and unknown inputs of the system (6.3) are within the estimated intervals

(6.8)–(6.10) for all times. If the observer is correct, we call {xpk, x
p
k}∞k=0, {xk, xk}∞k=0

and {dk−1, dk−1}∞k=1 the propagated state, updated state and input framers, respectively.

Definition 6.3.2 (Tightness of Input Estimates). The input interval estimates, i.e.,

{Idk−1(Ixk , yk−1, uk−1)}∞k=1, are tight, if at each time step k, given the state estimate

Ixk , the input framers dk−1, dk−1, coincide with supremum and infimum values of the

set of compatible inputs.

We begin by using the result in Lemma 6.1.5 to conclude the correctness and

tightness of the input estimates, assuming that the state estimates are given. To

increase readability, all proofs will be provided in the appendix.

Lemma 6.3.3 (Correctness and Tightness of Input Estimates). Consider the system

(6.3) along with the GSISIO in (6.8)–(6.10), let J , (

[
G> H>

]>
)† and suppose that

Assumption 6.2.1 holds, N11 = N22 = J+, and N12 = N21 = −J++. Then, given any

pair of state framer sequences {xk, xk}∞i=0, the input interval estimates given in (6.10),

are correct and tight.

Next, we state our first main result on the existence of the GSISIO and correctness

of the state estimates.

Theorem 6.3.4 (Existence of Correct Framers). Consider the system (6.3), the

transformed output equations (6.5)-(6.7) and the GSISIO introduced in (6.8)-(6.10).

Suppose all the assumptions in Lemma 6.3.3 hold and there exists a pair of slope

matrices (A,A), which construct affine upper and lower abstractions for the vector

field g2(.) on the entire state space (cf. Proposition 6.1.2). Suppose that the observer

gains are chosen as follows. Then, at each time step k, the GSISO returns finite and

correct framers, i.e., finite correct interval estimates for the system (6.3), if

r>((A1 + A2)r + r̃) = 0, (6.17)
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with A1 , A†+A+ + A†++A++, A2 , A†+A++ + A†++A+, A = (1/2)(A + A), r̃ ,

rowsupp(I − A†A), r , rowsupp(I − A†xAx)(1:n) and Ax given below:

∀s ∈ {f, g, u, w, v, y} : Ms = A†xAs, Au ,

[
F> F>

]>
, Aw = Af ,

Ax ,

I −K1 L1

L1 I −K1

 , Af ,
I + L1 −K1

−K1 I + L1

 , Ag ,
 L2 −K2

−K2 L2

 ,
Av = Ag, L , G++J+ +G+J++, K , G++J++ +G+J+,

K1 , K(1:n), K2 , K(n+1:n+l), L1 , L(1:n), L2 , L(n+1:n+l),

F , (I + L1 −K1)B + (L2 −K2)D,Ai,k =
1

2
(Ai,k + Ai,k).

Further, ωp = µ[r> − r>]>, g2d(., .) is a decomposition function of g2(.) and µ is a

very large positive real number (infinity), while ωui,k = µ rowsupp(I − A†i,kAi,k), where

{Ai,k, Ai,k, eik, eik, θik} is a solution of the LP (6.1) for the corresponding vector field

g2(x) on the interval B∗,ik = [x∗,i−1
k , x∗,i−1

k ] with the following extra constraints:

(Ai,k − A)xis,k + eik − e ≤ 0 ≤ (Ai,k − A)xis,k + eik − e, (6.18)

for all xis,k ∈ VB∗,ik at time k and at iteration i ∈ {1 . . .∞}.

Corollary 6.3.5. In the case that only the state propagation step is considered, the

existence conditions boil down to rk(I −K1 − L1) = rk(I −K1 + L1) = n.

Note that we can only obtain a one-step delayed estimate of dk in (6.10), since

we can find an estimate for d1,k at current time k, but not d2,k. We formalize this as

follows.

Lemma 6.3.6. Suppose all the assumptions in Theorem 6.3.4 hold. Then, at time step

k, d1,k ≤ d1,k ≤ d1,k, where d1,k = Σ−1(z1,k−T1Duk)+`k, d1,k = Σ−1(z1,k−T1Duk)+`k,
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with

`k , (Σ−1T1)++(g(xk, xk) + v)− (Σ−1T )+(g(xk, xk) + v),

`k , (Σ−1T1)++(g(xk, xk) + v)− (Σ−1T1)+(g(xk, xk) + v).

(cf. (6.4)–(6.7)). Moreover, no current estimate of d2,k can be computed.

Remark 6.3.7. The result in Lemma 6.3.6 is particularly helpful in the special case

when the feedthrough matrix has full rank. In this case, dk = d1,k and hence, dk can be

estimated at current time k. Thus, this can be considered as an alternative approach

to the one in [117] for the full-rank H case.

6.3.3 Uniform Boundedness of Estimates (Observer Stability)

In this section, we derive several sufficient conditions for the stability of GSISIO

via Theorem 6.3.8.

Theorem 6.3.8 (Observer Stability). Consider the system (6.3) and the GSISIO

(6.8)–(6.10). Suppose all the assumptions in Theorem 6.3.4 hold, the decomposition

functions fd, gd are constructed using (6.2) and A,A are the upper and lower affine

abstraction slopes for g2(x) on the entire state space. Then, the observer is stable, in the

sense that interval width sequences {‖∆d
k−1‖ , ‖dk−1 − dk−1‖, ‖∆x

k‖ , ‖xk − xk‖}∞k=1

are uniformly bounded, and consequently, interval input and state estimation errors

{‖d̃k−1‖ , max(‖dk−1− dk−1‖, ‖dk−1− dk−1‖), ‖x̃k‖ , max(‖xk − xk‖, ‖xk − xk‖)}∞k=1

are also uniformly bounded, if either one of the following conditions hold:

(i) L̂ , min
D∈D∗

Lfd‖T̂f‖+ Lgd‖T̂g‖ ≤ 1,

(ii) min
D∈D∗

λmax(T̂ ) ≤ 0,

(iii) ∃P � 0,Γ � 0,D ∈ D∗such that PD � 0,
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where D̂ , (D+(I−D)(A1+A2)), D∗ = {D∗ ∈ D D∗jj = r′(j) if r(j) 6= r′(j),∀j ∈

{1 . . . n}}, T̂ ,



Q 0 0 0 0

∗ T̂>g T̂g T̂>g T̂f T̂>g T̂f T̂>g T̂g

∗ ∗ T̂>f T̂f T̂>f T̂f T̂>f T̂g

∗ ∗ ∗ 0 T̂>f T̂g

∗ ∗ ∗ ∗ 0


, PD ,


P + Γ− I 0 P

0 L2
DI − P 0

P 0 P

,

T̂f , D̂Tf , D̂(I−K1−L1)†(I−K1+L1), T̂g , D̂Tg , D̂(I−K1−L1)†(K2+L2), Q ,

λmax(T̂>f T̂f)L
2
fd

+ λmax(T̂>g T̂g)L
2
gd
− 1, LD , Lfd‖T̂f‖+ Lgd‖T̂g‖, J,A1,A2, r, Lfd , Lgd

are given in Lemmas 6.1.10–6.3.3 and Theorem 6.3.4, D ∈ Rn×n is the set of all

diagonal matrices whose diagonal elements are 0 or 1 and λmax(A>A) is the maximum

eigenvalue of A>A.

Remark 6.3.9. The optimization and feasibility problems in (i)-(iii) are all (mixed-

)integer programs with finitely countable feasible sets (|D∗| ≤ 2n), which can be easily

solved by enumerating all possible solutions and comparing the values.

Finally, we will provide upper bounds for the interval widths and compute their

steady-state values, if they exist.

Lemma 6.3.10 (Upper Bounds of the Interval Widths and their Convergence). Con-

sider the system (6.3) and the GSISIO observer (6.8)–(6.10). Suppose all assumptions

in Theorem 6.3.4 hold and Condition (i) in Theorem 6.3.8 holds with strict inequality.

Then, the interval width sequences {‖∆x
k‖, ‖∆d

k−1‖}∞k=1 are uniformly upper bounded

by the convergent sequences {δxk , δdk−1}∞k=1, as follows:

‖∆x
k‖ ≤ δxk = L̂kδx0+ ‖D̃∆z‖

(
1− L̂k

1− L̂

)
k→∞−−−→ ‖D̃∆z‖

1− L̂
,

‖∆d
k−1‖ ≤ δdk−1 = G(δx(k))

k→∞−−−→ δ
d

= G(δ
x
),
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where D̃ is a solution to min
D∈D∗∗

‖D∆z‖, D∗∗ is the solution set of the optimization

problem in (i), G(x) , ((1 + Lfd)‖Ĵ1‖+ Lgd‖Ĵ2‖)x+ ‖Ĵ1∆w + Ĵ2∆v‖, ∆z = Tf∆w +

Tg∆v, ∆w , w − w, ∆v , v − v, Ĵ ,

[
Ĵ1 Ĵ2

]
, J+ + J++ and Lfd, Lgd, Tf , Tg

are given in Lemma 6.1.10 and Theorem 6.3.8. On the other hand, if Condition

(ii) or (iii) in Theorem 6.3.8 hold, then the interval widths ‖∆x
k‖ and ‖∆d

k‖ are

uniformly bounded by min{‖∆x
0‖,∆P

0 } and min{G(‖∆x
0‖),G((∆P

0 )}, respectively, with

∆P
0 , min

P∈P

√
(∆x

0 )>P∆x
0

λmin(P )
, where P is the set of all P that solve the LMI in Condition

(iii).

6.4 Simulation Results

We consider a slightly modified version of a nonlinear system in [37], without the

uncertain matrices, with the inclusion of unknown inputs, and with the following

parameters (cf. (6.3)): n = l = p = 2, m = 1, f(xk) =

[
f1(xk) f2(xk)

]>
, g(xk) =

[
g1(xk) g2(xk)

]>
, B = D = 02×1, G =

 0 −0.1

0.2 −0.2

, H =

−0.1 0.3

0.25 −0.75

, v =

−v = w = −w =

[
0.2 0.2

]>
, x0 =

[
2 1.1

]>
, x0 =

[
−1.1 −2

]>
with

f1(xk) = 0.6x1,k − 0.12x2,k + 1.1 sin(0.3x2,k − .2x1,k),

f2(xk) = −0.2x1,k − 0.14x2,k,

g1(xk) = 0.2x1,k + 0.65x2,k + 0.8 sin(0.3x1,k + 0.2x2,k),

g2(xk) = sin(x1,k),

while the unknown input signals are depicted in Figure 6.1.

Note that rk(H) = 1< 2 = p, thus the feedthrough matrix is not full rank and

hence, the approach in [117] is not applicable. Moreover, applying [108, Theorem 1],

we can compute finite-valued upper and lower bounds for partial derivatives of f(·)
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and g(·) as:af11 af12

af21 af22

 =

 0.38 −0.52

−0.2− ε −0.14− ε

 ,
bf11 bf12

bf21 bf22

 =

 0.82 0.21

−0.2 + ε −0.14 + ε

 ,
ag11 ag12

ag21 ag22

 =

−0.04 0.49

−1 −ε

 ,
bg11 bg12

bg21 bg22

 =

0.44 0.81

1 ε

 ,
where ε is a very small positive value, ensuring that the partial derivatives are

in open intervals (cf. [128, Theorem 1]). Moreover, Lf = 0.35 and Lg = 0.74

and Assumption 6.2.1 holds by [128, Theorem 1]). Furthermore, computing K =[
K1 K2

]
=

0.0267 0 0.0666 0.1061

0.4177 2.1203 1.0817 2.0209

 and

L =

[
L1 L2

]
=

 0 0.1017 0 0

0.5194 1.1814 1.2787 1.9302

, we obtain rk(I − K1 − L1) =

rk(I −K1 + L1) = 2. Therefore, by Corollary 6.3.5 and Theorem 6.3.4, the existence

of correct framers is guaranteed, i.e., the true states and unknown inputs are within

the estimate intervals. This, can be verified from Figure 6.1 that depicts interval

estimates as well as the true states and unknown inputs.
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Figure 6.1: Actual states and inputs, x1,k, x2,k, d1,k, d2,k, as well as their estimated

maximal and minimal values

Figure 6.2: Estimation Errors, Estimate Interval Widths and Their Upper Bounds for

the Interval-valued Estimates of States, ‖x̃k|k‖, ‖∆x
k‖, δxk , and Unknown Inputs, ‖d̃k‖,

‖∆d
k‖, δdk
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In addition, from [128, (10)–(13)]), we obtain Cf =

 0.251 0

0.0029 0.201

,

Cg =

 0 0.225

−.374 −.045

 using (6.2), which implies that Lfd = 0.852 and Lgd = 1.19 by

Lemma 6.1.10. Consequently, L̂ = 0.643 is the smallest one that satisfies Condition

(i) in Theorem 6.3.8 with D =

1 0

0 0

. So, we expect to obtain uniformly bounded

estimate errors with convergent upper bounds. This is shown in Figure 7.3, where at

each step, the actual error is less than or equal to the interval width, which in turn is

less than or equal to the predicted upper bound for the interval width and the upper

bounds converge to some steady-state values. Note that, despite our best efforts, we

were unable to find interval-valued observers in the literature that simultaneously

return both state and unknown input estimates for comparison with our results.

6.5 Conclusion

In this section, a simultaneous input and state interval-valued observer for bounded-

error mixed monotone Lipschitz nonlinear systems with unknown inputs was proposed.

We derived sufficient conditions for the existence of our observer, proved that the

observer recursively outputs the correct state and unknown input framers and proved

the tightness of the input interval estimates, given the state intervals and a specific

pair of decomposition functions. Further, several conditions for the stability of the

observer, i.e., the uniform boundedness of the interval widths were derived. Finally,

we demonstrated the effectiveness of the proposed approach with an example. For

future work, we seek to find tighter decomposition (bounding) functions and to provide

necessary conditions for the existence and stability of the observer.
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Chapter 7

INTERVAL OBSERVERS FOR SIMULTANEOUS STATE AND MODEL

ESTIMATION OF PARTIALLY KNOWN NONLINEAR SYSTEMS

This chapter a addresses the problem of designing interval observers for partially

unknown nonlinear systems with bounded noise signals that simultaneously estimate

the system states and learn a model of the unknown dynamics. Leveraging affine

abstraction methods and nonlinear decomposition functions, as well as a data-driven

function over-approximation/abstraction approach to over-estimate the unknown

dynamic model, our proposed observer recursively computes the maximal and minimal

elements of the interval estimates that are proven to frame the true augmented states.

Then, using observed output/measurement signals, the observer iteratively shrinks

the intervals by eliminating estimates that are not compatible with the measurements.

Moreover, given new interval estimates, the observer updates the over-approximation

model of the unknown dynamics. Finally, we provide sufficient conditions for uniform

boundedness of the sequence of interval estimate widths, i.e., for the stability of the

designed observer.

7.1 Problem Formulation

System Assumptions. Consider a partially unknown nonlinear discrete-time system

with bounded noise

xk+1 = f(xk, dk, uk, wk),

yk = g(xk, dk, uk, vk),
(7.1)

aThe content of this chapter is documented as a published paper in [113] and an accepted paper
in [122].
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where xk ∈ X ⊂ Rn is the state vector at time k ∈ N, uk ∈ U ⊂ Rm is a known input

vector, yk ∈ Rl is the measurement vector and dk ∈ D ⊂ Rp is an unknown (dynamic)

input vector whose dynamics is governed by an unknown b vector field h(·):

dk+1 = h(xk, dk, uk, wk). (7.2)

Moreover, we refer to zk ,

[
x>k d>k

]>
as the augmented state. The process noise

wk ∈ Rnw and the measurement noise vk ∈ Rl are assumed to be bounded, with

w ≤ wk ≤ w and v ≤ vk ≤ v, where w, w and v, v are the known lower and upper

bounds of the process and measurement noise signals, respectively. We also assume that

lower and upper bounds, z0 and z0, for the initial augmented state z0 ,

[
x>0 d>0

]>
are available, i.e., z0 ≤ z0 ≤ z0.

The vector fields f(·) : Rn×Rp×Rm×Rnw → Rn and g(·) : Rn×Rp×Rm×Rl → Rl

are known, while the vector field h(·) =

[
h>1 (·) . . . h>p (·)

]>
: Rn×Rp×Rm×Rnw → Rp

is unknown, but each of its arguments hj(·) : Rn×Rp×Rm×Rnw → R, ∀j ∈ {1 . . . p}

is known to be Lipschitz continuous. For simplicity and without loss of generality,

we assume that the Lipschitz constant Lhj is known; otherwise, we can estimate the

Lipschitz constants with any desired precision using the approach in [59, Equation

(12) and Proposition 3]. Moreover, we assume the following:

Assumption 7.1.1. The vector field f(·) is mixed-monotone with decomposition

function fd(·, ·) : Rn × Rp × Rm × Rnw × Rn × Rp × Rm × Rnw → Rn.

Assumption 7.1.2. The entire space X , Z × U is bounded, where Z , X ×D and

U are the spaces of the augmented states zk ,

[
x>k d>k

]>
and the known inputs uk,

∀k ∈ {0 . . .∞}, respectively.

bNote that if the vector field h(·) is partially known (i.e., consists of the sum of a known component

ĥ(·) and an unknown component h̃(·)), we can simply consider dk+1 − ĥ(·) as the output data for the

model learning procedure to learn a model of the (completely) unknown function h̃(·).
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Note that Assumption 7.1.1 is satisfied for a broad range of nonlinear functions

[129], while Assumption 7.1.2 is reasonable for most practical systems.

The observer design problem can be stated as follows:

Problem 7.1.3. Given a partially known nonlinear discrete-time system (7.1) with

bounded noise signals and unknown dynamics (7.2), design a stable observer that

simultaneously finds bounded intervals of compatible augmented states and learns an

unknown dynamics model for (7.2).

7.2 State and Model Interval Observers (SMIO)

Recursive Interval Observer In this section, we introduce a three-step recursive

interval observer that combines model-based estimation and data-driven model learning

approaches. The observer structure is composed of a State Propagation (SP), a

Measurement Update (MU) step and a Model Learning (ML) step. In the state

propagation step, the interval estimate for the augmented states (consisting of the

state and the unknown input) is propagated for one time step through the nonlinear

state equation and the estimated model of the unknown dynamics function obtained

in previous time step. In the update step, compatible intervals of the augmented

states are iteratively updated given new measurements and the nonlinear observation

function, and finally, the model learning step estimates the upper and lower framer

functions (abstractions) for the unknown dynamics function. More formally, the three

observer steps have the following form (with zk , [x>k d>k ]>, zpk , [xp>k dp>k ]>):

SP: Izpk = Fp(Izk−1, yk−1, uk−1, hk−1(.), hk−1(.)),

MU: Izk = Fu(Izpk , yk, uk),

ML: [h>k (.) h
>
k (.)]> = F l({Izk−t, uk−t}kt=0),
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with Fp and Fu being to-be-designed interval-valued mappings and F l a to-be-

constructed function over-approximation procedure (abstraction model), while Izpk

and Izk are the intervals of compatible propagated and estimated augmented states,

respectively, and {hk(·), hk(·)} is a data-driven abstraction/over-approximation model

for the unknown function h(·), at time step k, i.e.,

∀ζk ∈ Dh : hk(ζk) ≤ h(ζk) ≤ hk(ζk),

where Dh is the domain of h(·) and ζk , [z>k u>k w>k ]>.

To leverage the properties of intervals [42] while avoiding the computational

complexity of optimal observers [82], we consider the following form of interval

estimates in the propagation and update steps:

Izpk = {z ∈ Rn+p : zpk ≤ z ≤ zpk},

Izk = {z ∈ Rn+p : zk ≤ z ≤ zk},

where the estimation boils down to finding the maximal and minimal values of Izpk

and Izk , i.e., zpk, z
p
k, zk, zk. Further, at the model learning step, given the sequence

of interval estimates up to the current time, we plan to leverage the data-driven

function abstraction/over-approximation approach developed in our previous work [59]

to update and refine the learned/estimated model of the unknown dynamics function

h(·) at the current time step.

Specifically, our interval observer at each time step k ≥ 1 is given as follows (with

the augmented state zk ,

[
x>k d>k

]>
, ζk ,

[
z>k u>k w>k

]>
and known x0 and x0

such that x0 ≤ x0 ≤ x0):
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State Propagation (SP):xpk
xpk

=

min(fd(zk−1, uk−1, w, zk−1, uk−1, w), xa,pk )

max(fd(zk−1, uk−1, w, zk−1, uk−1, w), xa,pk )

, (7.3a)

dpk
dpk

=Ah
k

zpk−1

zpk−1

+Bhkuk−1 + Wh
k

w
w

+ ẽhk, (7.3b)

zpk=

[
xp
>

k d
p>

k

]>
, zpk =

[
xp
>

k dp
>

k

]>
, (7.3c)

Measurement Update (MU):[
zk zk

]
= lim

i→∞

[
zui,k zui,k

]
, (7.4a)xk xk

dk dk

 =

 zk,(1:n) zk,(1:n)

zk,(n+1:n+p) zk,(n+1:n+p)

 , (7.4b)

Model Learning (ML):

hk,j(ζk) = min
t∈{0,...,T−1}

(dk−t,j+L
h
j ‖ζk−ζ̃k−t‖)+ε

j
k−t, (7.5a)

hk,j(ζk) = max
t∈{0,...,T−1}

(dk−t,j−Lhj ‖ζk−ζ̃k−t‖)+ε
j
k−t, (7.5b)

where j ∈ {1 . . . p}, {ζ̃k−t = 1
2
(ζk−t + ζ

k−t)}
k
t=0 and {dk−t, dk−t}kt=0 are the augmented

input-output data set. At each time step k, the augmented data set constructed from

the estimated framers gathered from the initial to the current time step, is used in

the model learning step to recursively derive over-approximations of the unknown

function h(·), i.e., {hk(.), hk(.)} by applying [59, Theorem 1]. In addition,xa,pk
xa,pk

 = Af
k

zpk−1

zpk−1

+Bfkuk−1 + Wf
k

w
w

+ ẽfk . (7.6)

Moreover, the sequences of updated framers {zui,k, zui,k}∞i=1 are iteratively computed as

129



follows: [
zu0,k zu0,k

]
=

[
zpk zpk

]
, ∀i ∈ {1 . . .∞} : (7.7)zui,k

zui,k

=

min(Ag†+i,k αi,k−A
g†++
i,k αi,k+ωi,k, z

u
i−1,k)

max(Ag†+i,k αi,k−A
g†++
i,k αi,k−ωi,k, zui−1,k)

, (7.8)

where ti,k
ti,k

=

yk −Bg
i,kuk

yk −Bg
i,kuk

+
W g++

i,k −W g+
i,k

−W g+
i,k W g++

i,k


v
v

−
egi,k
egi,k

, (7.9)

αi,k
αi,k

 =

min(ti,k, A
g+
i,k z

u
i−1,k − A

g++
i,k zui−1,k)

max(ti,k, A
g+
i,k z

u
i−1,k − A

g++
i,k zui−1,k)

 . (7.10)

Furthermore, ωi,k, A
g
i,k, B

g
i,k, W

g
i,k, e

g
i,k, e

g
i,k, B

q
k, J

q
k, ẽ

q
k, ε

j
k−t, ∀q ∈ {f, h}, J ∈ {A,W},

i ∈ {1, . . . ,∞}, j ∈ {1, . . . , p}, are to-be-designed observer parameters, matrix gains

of appropriate dimensions at time k and iteration i (given in Theorem 7.2.2), while

fd(., ., ., .) is the bounding function (based on (6.2)), with the purpose of achieving

desirable observer properties. Algorithm 6 summarizes the SMIO observer.

Note that since the tightness of the upper and lower bounding functions for the

observation function g (cf. Propositions 6.1.8 and 6.1.2) depends on the a priori

interval B, the measurement update step is done iteratively (see proof of Theorem 7.2.6

for more explanation). Hence, if tighter updated intervals are obtained starting from

the compatible intervals from the propagation step, we can use them as the new B to

obtain better abstraction/bounding functions for g, which in turn may lead to even

tighter updated intervals. Repeating this process results in a sequence of monotonically

tighter updated intervals, that is convergent by the monotone convergence theorem,

and its limit is chosen as the final interval estimate at time k.

Further, building upon our previous result in [59, Theorem 1], in the model

learning step with the history of obtained compatible intervals up to the current
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Algorithm 6 State and Model Interval Observer (SMIO)

1: Initialize: maximal(Iz0 ) = z0; minimal(Iz0 ) = z0;

.Observer Gains Computation

∀q ∈ {f, h}, J ∈ {A,W}, i ∈ {1 . . .∞}, j ∈ {1 . . . p} compute ωi,k, A
g
i,k, B

g
i,k, W

g
i,k, e

g
i,k,

egi,k, B
q
k, J

q
k, ẽ

q
k, ε

j
k−t via Theorem 7.2.2 and (7.14)–(7.15) ;

2: for k = 1 to K do

.Augmented State Estimation

Compute zpk, z
p
k via (7.3a)–(7.3c) and {zui,k, zui,k}∞i=0 via (7.7)–(7.10);

3: (zk, zk) = (zu∞,k, z
u
∞,k); Izk={z ∈ Rn : zk≤ z≤ zk};

Compute δzk through Lemma 6.3.10;

.Model Estimation

Compute hk(·), hk(·) via (7.5a)–(7.5b);

4: end for

time, {[zs, zs]}ks=0 as the noisy input data and the compatible interval of unknown

inputs, [dk, dk], as the noisy output data, we recursively construct a sequence of

abstraction/over-approximation models {hk(·), hk(·)}∞k=1 for the unknown input func-

tion h(·), that by construction satisfy (7.16), i.e., our model estimation is correct (i.e.,

is guaranteed to frame/bracket the true function) and becomes more precise with time

(cf. Lemma 7.2.3).

7.2.1 Correctness of the Observer

The objective of this section is to design the SMIO observer gains such that the

framer property [77] holds, i.e., we desire to guarantee that the observer returns correct

interval estimates, in the sense that starting from the initial interval z0 ≤ z0 ≤ z0,

the true augmented states of the dynamic system (7.1) are guaranteed to be within

the estimated intervals, given by (7.3a)-(7.5b). If the observer is correct, we call
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{zk, zk}∞k=0 an augmented state framer sequence for system (7.1).

Before deriving our main first result on correctness of the observer, we state a

modified version of our previous result in [108, Theorem 1], in a unified manner that

enables us to derive parallel global and local affine bounding functions for our known

f(·), g(·) and unknown h(·) vector fields. For clarity, all proofs will be provided in the

appendices.

Proposition 7.2.1 (Parallel Affine Abstractions). Let the entire space be defined as

X and suppose that Assumption 7.1.2 holds. Consider the vector fields q(.), q(.) : X ⊂

Rn′ → Rm′, where ∀ζ ∈ X, q(ζ) ≤ q(ζ), along with the following Linear Program (LP):

min
θqB,A

q
B,e

q
B,e

q
B

θqB (7.11a)

s.t AqBζs + eqB + σq ≤ q(ζs) ≤ q(ζs) ≤ AqBζs + eqB − σ
q,

eqB − e
q
B − 2σq ≤ θq1m′ ,

eq − eqB ≤ (AqB − Aq)ζs ≤ eq − eqB,∀ζs ∈ VB, (7.11b)

where B is an interval with ζ, ζ and VB being its maximal, minimal and set of vertices,

respectively, 1m ∈ Rm is a vector of ones, σq is given in [108, Proposition 1 and

(8)] for different classes of vector fields and (Aq, eq, eq) are the global parallel affine

abstraction matrices for the pair of functions q(.), q(.) on the entire space X, i.e.,

Aqζ + eq ≤ q(ζ) ≤ q(ζ) ≤ Aqζ + eq,∀ζ ∈ X. (7.12)

Using the above proposition, we first solve (7.11a) on the entire space X, i.e., with

B = X (where the constraint (7.11b) is trivially satisfied and is thus redundant) and

obtain a tuple of (θq,Aq, eq, eq) that satisfies (7.12), i.e., we construct a global affine

abstraction model for the pair of functions q(.), q(.) on the entire space X.
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Next, given the (global) tuple (Aq, eq, eq) computed as described above, we solve

(6.1) on B subject to (7.11b) to obtain a tuple of local parallel affine abstraction

matrices for the pair of functions {q(·), q(·)} on the interval B, satisfying the following:

∀ζ ∈ B,

Aqζ+eq≤AqBζ+e
q
B≤ q(ζ)≤ q(ζ)≤AqBζ+e

q
B≤A

qζ+eq. (7.13)

Now, equipped with all the required tools, we state our first main result on the

framer property of the SMIO observer.

Theorem 7.2.2 (Correctness of the Observer). Consider the system (7.1) with its

augmented state defined as z ,

[
x> d>

]>
, along with the SMIO observer in (7.3a)–

(7.5b). Suppose that Assumptions 7.1.1 and 7.1.2 hold, fd(·) is a decomposition

function of f(·) and observer gains and parameters are designed as follows. ∀J ∈

{A,W}, q ∈ {f, h}, J ∈ {A,W}, i ∈ {1 . . .∞}:

Jqk=

 Jq+k −Jq++
k

−Jq++
k Jq+k

,Bqk=

[
Bq>
k Bq>

k

]>
, ẽqk=

[
eq>k eq>k

]>
, (7.14)

ωi,k=κrowsupp(I − Ag†i,kA
g
i,k), ε

j
k−t=2Lhj ‖ζk−t − ζk−t‖. (7.15)

In addition, (Aqk, B
q
k,W

q
k , e

q
k, e

q
k) for q ∈ {f, h} and (Agi,k, B

g
i,k,W

g
i,k, e

g
i,k, e

g
i,k) are so-

lutions to the problem (7.11a) for the corresponding functions {g(·) = g(·) = g(·)},

{f(·) = f(·) = f(·)} and {hk(·), hk(·)}, on the intervals

[

[
zu>i−1,k u>k−1 v>

]>
,

[
zu>i−1,k u>k−1 v>

]>
]

for g and

[

[
z>k−1 u>k−1 w>

]
,

[
z>k−1 u>k−1 w>

]>
]

for f, hk, hk, respectively, at time k and iteration i, while κ is a very large positive real

number (infinity).
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Then, the SMIO observer estimates are correct, i.e., the sequences of intervals

{zk, zk}∞k=0 are framers of the augmented state sequence of system (7.1) that satisfy

zk ≤ zk ≤ zk for all k.

Next, we show that given correct interval estimates, the abstraction model of the

unknown dynamics function becomes tighter (i.e., more precise) over time, so our

model estimate of the unknown dynamics becomes more accurate over time.

Lemma 7.2.3. Consider the system (7.1) and the SMIO observer in (7.3a)–(7.5b)

and suppose that all the assumptions in Theorem 7.2.2 hold. Then, the following holds:

h0(ζ0) ≤ · · · ≤ hk(ζk) ≤ · · · ≤ limk→∞ hk(ζk) ≤ h(ζk)

h(ζk) ≤ limk→∞ hk(ζk) ≤ · · · ≤ hk(ζk) ≤ · · · ≤ h0(ζ0),
(7.16)

i.e, the unknown input model estimations/abstractions are correct and become more

precise or tighter with time.

7.2.2 Observer Stability

In this section, we investigate the stability of the designed observer in the following

sense:

Definition 7.2.4 (Stability). The observer SMIO (7.3a)-(7.5b) is stable, if the se-

quence of interval widths {‖∆z
k−1‖ , ‖zk−1−zk−1‖}∞k=1 is uniformly bounded, and conse-

quently, the sequence of estimation errors {‖z̃k−1‖ , max(‖zk−1−zk−1‖, ‖zk−1−zk−1‖)

is also uniformly bounded.

Next, we derive a property for the decomposition function given in (6.2), which

will be helpful in deriving sufficient conditions for the observer stability.

Lemma 7.2.5. Let q(ζ) : X ⊂ Rn → Rm be a mixed-monotone vector-field with a

corresponding decomposition function qd(., .) constructed using (6.2). Suppose that
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Assumption 7.1.2 holds and let (Aq, eq, eq) be the parallel affine abstraction matrices

for function q(·) on its entire domain X (can be computed via Proposition 7.2.1).

Consider any ordered pair ζ ≤ ζ ∈ X. Then, ∆qζ ≤ (|Aq| + 2Cq)∆ζ + ∆eq, with

∆qζ , qd(ζ, ζ)− qd(ζ, ζ), ∆ζ , ζ − ζ and Cq given in (6.2).

We are now ready to state our next main result on the SMIO observer stability in

the following theorem.

Theorem 7.2.6 (Observer Stability). Consider the system (7.1) along with the SMIO

observer in (7.3a)–(7.5b). Let Dm be the set of all diagonal matrices in Rm×m with

their diagonal arguments being 0 or 1. Suppose that all the assumptions in Theorem

7.2.2 hold and the decomposition function fd is constructed using (6.2). Then, the

observer is stable if there exist D1 ∈ Dn+p, D2 ∈ Dl, D3 ∈ Dn that satisfy D1,i,i = 0 if

r(i) = 1, i.e., if there exist

(D1, D2, D3) ∈ D∗ , {(D1, D2, D3) ∈ Dn+p × Dl × Dn D1,iir(i) = 0}

such that

L∗(D1, D2, D3) , ‖Ag(D1, D2)Af,h(D3)‖ ≤ 1, (7.17)

with

Ag(D1, D2) , (I −D1) +D1|Ag†|(I −D2)|Ag|,

Af,h(D3) ,

[
(|Af |+ 2(I −D3)Cf

z )> |Ah|>
]>

,

{Aq , Aq
(1:n+p)}q∈{f,g,h}, Aq given in Proposition 7.1.2, r , rowsupp(I − Ag†Ag), and

Cf ,

[
Cf
z Cf

u Cf
w

]
from (6.2).

Remark 7.2.7. The sufficient condition in Theorem 7.2.6 has a finitely countable

feasible set (|D∗| ≤ 22n+p+l); hence, the condition can be easily checked by enumerating

all possible cases and checking the satisfaction of (7.17).
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Finally, we conclude this section by providing upper bounds for the interval widths

and compute their steady-state values, if they exist.

Lemma 7.2.8 (Upper Bounds of the Interval Widths and their Convergence). Con-

sider the system (7.1) and the observer (7.3a)–(7.5b) and suppose all the assumptions

in Theorem 7.2.6 hold. Then, the sequence of {∆z
k , zk − zk}∞k=0 is uniformly upper

bounded by a convergent sequence as:

∆z
k ≤ A

k
∆z

0 +
k−1∑
j=0

Aj∆ k→∞−−−→ eA∆, (7.18)

where

A = A(D∗1, D
∗
2, D

∗
3) , Ag(D∗1, D∗2)Af,h(D∗3),

∆ = ∆g(D∗1, D
∗
2) +Ag(D∗1, D∗2)∆f,h(D∗3),

Ag(D1, D2) , D1|Ag†|D2|Ag|+ (I −D1),

Af,h(D3) ,

[
(|Af |+ 2(I −D3)Cf

z )> |Ah|>
]>

,

∆g(D1, D2) , D1|Ag†|D2(|W g|∆v + ∆eg), ∆f,h(D3),[
((|W f |+2(I−D3)Cf

w)∆w+∆f
e )
> (|W h|∆w+∆h

e )
>

]>
,

and (D∗1, D
∗
2, D

∗
3) is a solution of the following problem:

min
D1,D2,D3

‖eA(D1,D2,D3)(∆g(D1, D2)+Ag(D1, D2)∆f,h(D3))‖

s.t.(D1, D2, D3)∈{(D1, D2, D3)∈D∗ L∗(D1, D2, D3) < 1}.

Consequently, the sequence of interval widths {‖∆z
k‖}∞k=1 is uniformly upper bounded

by a convergent sequence as:

‖∆z
k‖ ≤ δzk , ‖A

k
∆z

0 +
k−1∑
j=0

Aj∆‖ k→∞−−−→ ‖eA∆‖. (7.19)
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7.3 Simulation Results

We consider a slightly modified version of the continuous-time predator-prey system

in [94]:

ẋ1 = −x1x2 − x2 + u+ d+ w1,

ẋ2 = x1x2 + x1 + w2,

ḋ = 0.1(cos(x1)− sin(x2)) + wd,

where the (unknown input) dynamics ḋ is an unknown function, and the output

equations are given by:

y1 = x1 + v1, y2 = x2 + v2, y3 = sin(d) + v3,

We use the forward Euler method to discretize the system and the system can be

described in the form (7.1)–(7.2) with the following parameters: n = l = p = 2, m = 1,

f(.) =

[
f1(.) f2(.)

]>
, g(.) =

[
g1(.) g2(.) g3(.)

]>
, uk = 0, wk = [w1,k w2,k wd,k]

>,

vk = [v1,k v2,k v3,k]
>, v = −v = w = −w =

[
0.1 0.1 0.1

]>
, x0 =

[
0 0.6

]>
,

x0 =

[
−0.35 −0.1

]>
, where

f1(·) = x1,k + δt(−x1,kx2,k − x2,k + uk + dk + w1,k),

f2(·) = x2,k + δt(x1,kx2,k + x1,k + w2,k),

h(·) = dk + δt(0.1(cos(x1,k)− sin(x2,k)) + wd,k)

g1(·) = x1,k + v1,k,

g2(·) = x2,k + v2,k,

g3(·) = sin(dk) + v3,k,

with sampling time δt = 0.01s. Moreover, using Proposition 7.2.1 with abstraction

slopes set to zero, we can obtain finite-valued upper and lower bounds (horizontal
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abstractions) for the partial derivatives of f(·) as:af11 af12 af12

af21 af22 af23

 =

0.994 −0.01 1− ε

0.009 0.9965 −ε

 ,
bf11 bf12 bf13

bf21 bf22 bf23

 =

1.006 −0.0065 1 + ε

0.016 1 ε

 ,
where ε is a very small positive value, ensuring that the partial derivatives are in

open intervals (cf. [128, Theorem 1]). Therefore, Assumption 7.1.1 holds by [128,

Theorem 1]). Hence, we expect that the true states and unknown inputs are within

the interval estimates by Theorem 7.2.2, i.e., the interval estimates are correct. This

can be observed from Figures 7.1 and 7.2, where the true states and unknown inputs

as well as interval estimates are depicted.

Figure 7.1: Actual States, as Well as Their Estimated Maximal and Minimal Values
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Figure 7.2: Actual Unknown Input, dk, as Well as Its Estimated (Learned) Maximal

and Minimal Values

Furthermore, solving the optimization problem in Proposition 7.2.1 for the global

abstraction matrices, we obtained

Af =

0.6975 −0.0083 0.01

0.0125 0.9982 0

 ,

Ag =


1 0 0

0 1 0

0 0 0.995

 , Ah =

[
0 −0.0015 .6

]
,

and from [128, (10)–(13)]), we obtained Cf =

0 0 0

0 0 0

 when using (6.2). Conse-

quently, (7.17) is satisfied and so, the sufficient condition in Theorem 7.2.6 holds.

Moreover, as can be seen in Figure 7.3, we obtain uniformly bounded and convergent

interval estimate errors when applying our observer design procedure, where at each

time step, the actual error sequence is upper bounded by the interval widths, which

converge to steady-state values. Further, Figure 7.4 shows the framer intervals of the

learned/estimated unknown dynamics model (depicted by the “kinky” red and blue

meshes) that frame the actual unknown dynamics function h(·), as well as the global
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abstraction that is computed via Proposition 7.2.1 at the initial step.

Figure 7.3: Actual Estimation Errors, Interval Estimate Widths and Their Upper

Bounds for the Interval Estimates of States and Unknown Inputs

Note that as discussed in the proof of Theorem 7.2.6, since we need to check

an a priori condition (i.e., offline or before starting to implement the observer) for

observer stability, we use global abstraction slopes for stability analysis. However, for

the implementation, we iteratively update the framers and consequently, obtain the

updated local abstractions, which, in turn, lead to updated local intervals that by

construction are tighter than the global ones, as shown in the proof of Theorem 7.2.6.

Hence, for a given system, it might be the case that the (relatively conservative) global

abstraction-based sufficient conditions for the observer stability given in Theorem

7.2.6 do not hold, while the implemented local-abstraction-based intervals are still

uniformly bounded. This is the main benefit of using iterative local affine abstractions,

but at the cost of more extensive computational effort.

140



Figure 7.4: Actual Unknown Dynamics Function h(ζ), Its Upper and Lower Framer

Intervals at Time Step k = 250, as Well as Its Global Abstraction

7.4 Conclusion

This paper proposed an interval observer for partially unknown nonlinear sys-

tems with bounded noise that simultaneously estimates the augmented states and

learns the unknown dynamics. By leveraging a combination of nonlinear bound-

ing/decomposition functions, affine abstractions and a data-driven function abstraction

method (to over-estimate the unknown dynamics model from noisy input-output data),

we introduced a recursive interval observer design whose interval estimates are correct

in the sense that the maximal and minimal elements of the interval estimates are

guaranteed to frame/bracket the true augmented states. Moreover, using observed

output/measurement signals at run time, the observer also iteratively shrinks the

intervals by eliminating estimates that are not compatible with the measurements.

Further, tractable sufficient conditions for uniform boundedness of the sequence of

interval estimate widths, i.e., for stability of the designed observer were provided.
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Chapter 8

TIGHT REMAINDER-FORM DECOMPOSITION FUNCTIONS (WITH

APPLICATIONS TO CONSTRAINED REACHABILITY AND INTERVAL

OBSERVER DESIGN)

In this chapter a , we propose a tractable family of remainder-from decomposi-

tion functions, that their existence is proven to be sufficient conditions for mixed-

monotonicity of a broad-range of not necessarily smooth, constrained and uncon-

strained, continuous and discrete-time bounded-error dynamical systems. We provide

achievable lower and upper bounds for the error of over-approximating the true

range of a mapping, using the proposed remainder-form decomposition functions and

specify the best/tightest of them. Moreover, we develop a set-inversion algorithm

that along with the proposed decomposition functions have several applications, e.g.,

approximation of the reachable sets for bounded-error, constrained, continuous and/or

discrete-time systems, as well as guaranteed state estimation.

8.1 Preliminary Material

Definition 8.1.1 (Inclusion Functions). [57, Chapter 2.4] Consider a function f :

Rnz → Rnx. The interval function T f : IRnz → IRnx is an inclusion function for f(·),

if

∀Z ∈ IRnz , f(Z) ⊂ T f (Z),

where f(Z) is the true range of f(·) applying on Z.

aThe content of this chapter is documented as a submitted and under review paper in [119].
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Proposition 8.1.2 (Natural (TN) Inclusion Functions). [57, Theorem 2.2] Consider

Z , [z, z] ∈ IRnz and f , [f1 . . . fnx ]
> : Z → Rnx, where each fj, j = 1, . . . , nx,

expressed as a finite composition of the operators +,−,×, / and elementary func-

tions (sine, cosine, exponential, square root, . . . ). A natural inclusion function

T fN : IRnz → Rnx for f(·) is obtained by replacing each real variable zi, i = 1, . . . , nz by

its corresponding “interval variable” [zi] , Zi = [zi, zi], and each operator or function

by its interval counterpart.

Proposition 8.1.3 (Centered (TC) and Mixed Centered (TM) Inclusion Functions).

[57, Sections 2.4.3–2.4.4] Let f , [f1 . . . fnx ]
> : Rnz → Rnx be differentiable over the

box Z , [z, z] ∈ IRnz . Then the interval function

T fC(Z) , f(m) + [J>f ](Z)(Z −m)

is an inclusion function for f(·) and is called the centered inclusion function, where

m , z+z
2

, Jf is the Jacobian matrix of f(·) and [Jf ] is its interval counterpart (natural

inclusion). Moreover,

T fM(Z) , [T fi (Z) . . . T fnx(Z)]>, where ∀i ∈ {1, . . . , nx} :

T fi (Z),fi(m)+
nz∑
j=1

[Jf ]i,j(Z1,. . .,Zj,mj+1,. . .,mnz)(zj−mj)

is also an inclusion function for f(·) and is called the mixed-centered inclusion function.

Next, inspired by the work in [35, Section 3], we introduce the notion of remainder-

form (additive) inclusion functions.

Definition 8.1.4 (Remainder-Form (Additive) Inclusion Functions). Consider a

function f : Rnz → Rnx. The interval function T fR : IRnz → IRnx is an additive

(remainder-form) inclusion function for f(·), if there exist two constituent mappings

g, h : Rnz → Rnx, such that for any Z ∈ IRnz :

f(Z) ⊆ T fR(Z) , g(Z) + h(Z).
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Definition 8.1.5 (Mixed-Monotonicity, Decomposition Functions). [2, Definition

1],[128, Definition 4] Consider the dynamical system

x+ = f(z), (8.1)

where f : Z ∈ Rnz → Rnx, z , [x> u> w>]> ∈ Z , X × U ×W with state x ∈ X ,

[x, x] ⊂ Rnx, known input u ∈ U ⊂ Rnu and disturbance input w ∈ W , [w,w] ⊂ Rnw .

Suppose (8.1) is a discrete-time system and there exists a mapping fd : Z × Z → Rnx

such that:

1. f(·) is embedded on the diagonal of fd(·, ·), i.e., fd(z, z) = f(z).

2. fd is monotone increasing in its first and monotone decreasing in its second

argument, i.e., ẑ ≥ z =⇒ fd(ẑ, z
′) ≥ fd(z, z

′) & fd(z
′, ẑ) ≤ fd(z

′, z).

Then, the mapping f(·) and consequently system (8.1) is mixed-monotone with respect

to fd, which is a decomposition function for f .

Moreover, if (8.1) is a continuous-time system, then everything holds with the

slight modification that in 2), fd(·, ·) needs to be monotone increasing on its first and

monotone decreasing on its second argument, only for “off-diagonal” arguments, i.e.,

only if j 6= i, ∀i ∈ {1, . . . , nx},∀j ∈ {1, . . . , nz}.

Corollary 8.1.6 (Decomposition-Based Inclusion Functions). As a direct conclusion

of Definition 8.1.5, given Z , [z, z] and any decomposition function fd for f , f(Z) ⊂

T fd(Z) , [fd(z, z), fd(z, z)]. Hence by Definition 8.1.1, the interval function T fd(Z)

is a (decomposition-based) inclusion function for f over Z and is called the inclusion

function “ induced by” fd.

Next, we extend the concept of decomposition functions into “one-sided decompo-

sition functions”, which will be used later in our results.
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Definition 8.1.7 (One-Sided Decomposition Functions). Consider f : Z , [z, z] ∈

IRnz → Rnx and suppose there exist two mappings fd, fd, : Z × Z → Rnx such that

for any z∗, z, z∗ ∈ Z, the following statement holds:

z∗ ≤ z ≤ z∗ =⇒ f
d
(z∗, z∗) ≤ f(z) ≤ fd(z

∗, z∗).

Then, fd and f
d

are called upper and lower decomposition functions for f over Z,

respectively.

Corollary 8.1.8. Similar to Corollary 8.1.6, As a direct conclusion of Definition

8.1.7, f(Z) ⊂ T
fd
f
d

(Z) , [f
d
(z, z), fd(z, z)] and hence T

fd
f
d

is an inclusion function for

f over Z.

Corollary 8.1.9. By slightly generalizing the notion of “embedding system with respect

to fd” in [2, (7)], to the “embedding system with respect to fd, fd, we conclude through

the lines of proof of [2, Proposition 2], that if (8.1) is a continuous-time system,

then at time t, xt ≤ xt ≤ xt, where xt and xt are the solutions to the following

“continuous-time generalized embedding system”:ẋ
ẋ

 =

fd(x, x, u, w, w)

f
d
(x, x, u, w, w)

 ,
with the initial values x(0) = x0 and x(0) = x0. Moreover, if (8.1) is a continuous-time

system, then the bounds for xk at time step k, i.e., xk and xk such that xk ≤ xk ≤ xk,

can be found by iteratively solving the following “discrete-time generalized embedding

system”: xk+1

xk+1

 =

fd(xk, xk, u, w, w)

f
d
(xk, xk, u, w, w)

 .
Corollary 8.1.10. Suppose f

1

d(·, ·) and f
2

d(·, ·) are two upper decomposition functions

for f(·). Then, min{f 1

d, f
2

d}(·, ·) is also an upper decomposition functions for f(·).
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Similarly, Suppose f 1

d
(·, ·) and f 2

d
(·, ·) are two lower decomposition functions for f(·).

Then, max{f 1

d
, f 2

d
}(·, ·) is also a lower decomposition functions for f(·)

Proof. The results are implied by the fact that if two mappings with the same domains

and image spaces, are both monotone increasing or decreasing in their i’th arguments,

then their “point-wise” minimum and maximum are also monotone increasing or

decreasing on their i’th arguments.

Definition 8.1.11 (Clarke Generalized Gradient). [40, Definitions 3.1–3.2] Let f :

Rn → R be locally Lipschitz. Then, the Clarke generalized gradient or the Clarke

sub-differential of f(·) at x ∈ Rn is denoted as ∂of(x) and is given as

∂of(x) , {ξ ∈ Rn|νf (x, v) ≥ ξ>v,∀v ∈ Rn},

where

νf (x, v) , lim sup
y→x,λ→0

f(y + λv)− f(y)

λ

is called the Clarke generalized directional derivative of f(·) at x in the direction v.

The set ∂of(x) b is nonempty, convex and compact for each x ∈ Rn. Moreover, when

f(·) is differentiable, then ∇f(x) ∈ ∂of(x). If f(·) is continuously differentiable or

strictly differentiable, then ∂of(x) = {∇f(x)}. Furthermore, it is important to observe

that νf (x, v) is the “support function” of the set ∂of(x), i.e., νf (x, v) = sup
ξ∈∂of(x)

ξ>v.

Next, we slightly generalize the definition of Jacobian sign-stability, compared to

the one used in [128], using Clarke sub-differentials instead of partial derivatives.

brelying on the fact that a locally Lipschitz function f(·) is differentiable “almost everywhere”, i.e.
the set of points where f(·) is not differentiable is a set of zero measure, the Clarke sub-differential
can be given in the following equivalent way:

∂of(x) = co{ξ ∈ Rn|ξ = lim
k→∞

∇f(xk), xk → x, xk ∈ D},

where D is the set of points over which f(·) is differentiable.
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Definition 8.1.12 (Jacobian Sign-Stability). Mapping f : Z ⊂ Rnz → Rnx is called

Jacobian sign-stable (J.S.S.) over Z, if ∀i ∈ {1, . . . , nz}, ∀j ∈ {1, . . . , nx},

νi ≤ 0,∀ν ∈ ∂ofj(z),∀z ∈ Z (positive J.S.S.) or (8.2)

νi ≥ 0,∀ν ∈ ∂ofj(z),∀z ∈ Z (negative J.S.S.), (8.3)

where ∂ofj(z) is the Clarke generalized gradient (sub-differential) of f(·) at z, defined

in Definition 8.1.11.

Proposition 8.1.13 (TL Inclusion Functions). [128, Theorem 2] Assume f : Rnz →

Rnx is differentiable and
∂fj
∂zi

(z) ∈ (aji, bji)∀z ∈ Z ⊆ Rnz . Then, f is mixed-monotone

on Z with respect to decomposition function fLd = [fLd,1 . . . f
L
d,nx

], which is computed as

follows. ∀j = 1, . . . , nx:

fLd,j(z, ẑ) = fj(ζ) + (αj − βj)>(z − ẑ) (8.4)

where ζ = [ζ1, . . . , ζnz ]
>, αj = [αj1, . . . , αjnz ]

>, βj = [βj1, . . . , βjnz ]
>, ζi =


zi case 1, 2

ẑi case 3, 4

,

αji =


0 case 1, 3, 4

|aji|+ ε case 2

, βji =


0 case 1, 2, 4

−|bji| − ε case 3

, case 1 : aji ≥ 0, case 2 : aji ≤

0, bji ≥ 0, |aji| ≤ |bji|, case 3 : aji ≤ 0, bji ≥ 0, |aji| ≥ |bji| and case 4 : bji ≤ 0.

Furthermore, TL is the inclusion function induced by fLd (cf. Corollary 8.1.6).

Definition 8.1.14 (Hausdorff Distance). [35] The Hausdorff Distance function q(·, ·) :

IR× IR→ R+, between two real intervals X1 = [x1, x1] and X2 = [x2, x2], both in IR,

is defined as follows:

q(X1,X2) , max{|x1 − x2|∞, |x1 − x2|∞}. (8.5)
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Definition 8.1.15 (Tightness of Decompositions). [2, Definition 2] A decomposition

function f 1
d for system 8.1 is tighter than decomposition function f 2

d , if ∀z ≤ ẑ:

f 2
d (z, ẑ) ≤ f 1

d (z, ẑ) & f 1
d (ẑ, z) ≤ f 1

d (ẑ, z). (8.6)

Then, f ∗d is tight, i.e., is the tightest possible decomposition function for f , if (8.6)

holds with f ∗d and any other decomposition function fd for 8.1.

Proposition 8.1.16 (Tight Decomposition Functions for Mixed-Monotone Systems).

[129, Theorem 2],[2, Theorem 1] Any system of the form of (8.1)-discrete-time or

continuous-time- is mixed-monotone with respect to a tight decomposition function,

which can be described as follows. If (8.1) is a continuous-time system, then ∀i =

1, . . . , nx:

fd,i(z, ẑ) =


min

ζ∈[z,ẑ],ζi=xi
fi(ζ) if z ≤ ẑ,

max
ζ∈[ẑ,z],ζi=xi

fi(ζ) if ẑ ≤ z.

(8.7)

Moreover, if (8.1) is a discrete-time system, then everything holds with relaxing ζi = xi

in the constraint sets in (8.7).

We call the inclusion function induced by the tight (optimal) decomposition

functions in (8.7), the TO.

Corollary 8.1.17 (Tight Decompositions for J.S.S. Vector Fields). As a corollary

of Proposition 8.1.16, if f is J.S.S., then the optimization programs in (8.7) can be

easily and exactly solved by enumerating fi(·) on the vertices of the interval constraint

(fixing ζ in dimension i at xi in continuous-time case) and choosing the minimum and

maximum of the obtained values.
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8.2 Problem Statement

Consider the following constrained nonlinear dynamical system:

x+ = f(x,w), s.t. µ(x, y, v) ∈ G, (8.8)

where x+ = ẋ if (8.8) is a continuous-time and x+ = xk+1 if (8.8) is a discrete-time

system. Moreover, x ∈ X , [x, x] ⊂ Rnx is the state and w ∈ W , [w,w] ⊂

Rnw is the augmentation of all the exogenous inputs, e.g., known input, bounded

disturbance/noise and internal uncertainties such as uncertain parameters, with known

bounds x, x, w, w. Furthermore, y ∈ Rny , v ∈ V , [v, v] ⊂ Rnv and G , [g, g] ⊂ Rng

are the observation (measurement) signal, the measurement noise signal and the

enclosing interval of the observation/constraint set, respectively, with v, v, g, g being

known a prior. Further, the nonlinear vector field f , [f1, . . . , fnx ]
> : Z , X ×W ⊂

Rnz → Rnx and the observation/constraint mapping c µ , [µ1, . . . , µnµ ]> : T ,

X × {y} × V ⊂ Rnt → Rnµ are locally Lipschitz continuous, with their Clarke sub-

differentials (cf. Definition 8.1.11) being bounded from one side, i.e., with known

af , [af1 , . . . , afnx ], af , [af1 , . . . , afnx ] ∈ Rnz×nx and aµ , [aµ1 , . . . , aµnµ ], aµ ,

[aµ1 , . . . , aµnµ ] ∈ Rnt×nµ such that

afj ≤ ν or ν ≤ afj ,∀ν ∈ ∂ofj(z),∀z ∈ Z,∀j ∈ J ,

aµs ≤ ξ or ξ ≤ aµs ,∀ξ ∈ ∂oµs(τ),∀τ ∈ T ,∀s ∈ S,
(8.9)

where J , {1, . . . , nx}, S , {1, . . . , nµ}, and ∂f oj (z) and ∂oµs(τ) are the Clarke

sub-differentials of fj(·) and µs(·) at z and τ , accordingly, which are always non-empty,

compact and convex sets (cf. Definition 8.1.11).

Given the setting in (8.8), we are interested in finding tight and tractable remainder-

form upper and lower decomposition functions and their induced inclusion functions

cNote that mapping µ(·) describes all the existing and a prior known or even manufac-
tured/redundant constraints over the the states, observations and measurement noise signals or
uncertain parameters
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(cf. Definitions 8.1.1, 8.1.4, 8.1.7 and corollary 8.1.6) for a wide class of nonlinear

(not necessarily J.S.S) vector fields (including f(·) and µ(·) in (8.8)), as well as

developing set-inversion/refinement algorithms, which together can be applied to

several applications, e.g., reachability analysis as well as set-valued state estimation

for the constrained nonlinear systems in the form of (8.8).

The problem of constructing remainder-form decomposition functions is three fold

and can be stated as follows:

Problem 8.2.1. Given the nonlinear (not necessarily Jacobian sign-stable) vector

field f : Z , [z, z] ⊂ IRnz → Rnx, find sufficient conditions for mixed-monotonicity

of f(·), by constructing a family of remainder-form (i.e., additive) decomposition

functions for f(·).

Problem 8.2.2. Derive lower and upper bounds for over-estimation of interval range

of f(·) over Z, using the remainder-form decomposition functions obtained in Problem

8.2.1.

Problem 8.2.3. Find the tightest decomposition function(s) in the family of remainder-

form decomposition functions obtained in Problem 8.2.1 and compare them with the

decomposition function proposed in [128] (recalled in Proposition 8.1.13), as well as

natural, centered and mixed-centered natural inclusions (cf. Proposition 8.1.3 for their

definitions).

Further, the problem of decomposition function based set-inversion (refinement)

can be cast as follows:

Problem 8.2.4. Given the observation/constraint function µ(·), the observation

interval G, the initial sets of states X0 and observation noise V, and/or the observation

signal y, develop an algorithm to refine X0 and find an interval superset of all the
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states in X0 which are compatible with the constraint set G and/or with the observation

signal y.

8.3 Main Results

8.3.1 Remainder-Form Decomposition Functions

In this section, we describe our approach to construct remainder (additive)-form

decomposition functions for a given locally Lipschitz vector field f , [f1 . . . fnx ]
> :

Z , [z, z] ⊂ IRnz → Rnx , that satisfies (8.9).

The idea is simple. We decompose each fj(·) into two function components gj(·)

and hj(·), i.e., fj(x) = gj(x)+hj(x),∀j ∈ J , {1, . . . , nx}, in a way that gj(·) becomes

a Jacobin sign-stable function in the sense of Definition 8.1.12. Doing this, it is shown

(cf. Proposition A.0.4 in Appendix) that the remainder function hj(·) is also turns

out to be Jacobian sign-stable by construction, in the opposite direction of gj(·), i.e.,

(8.2) holds for gj(·), if and only if (8.3) holds for hj(·) and (8.3) holds for gj(·), if and

only if (8.2) holds for hj(·) (cf. Definition 8.1.12). Moreover, both gj(·) and hj(·) have

tight decomposition functions (cf. Definition 8.1.15 and Corollary 8.1.17).Taking these

facts into consideration, we can construct bounding/embedding functions for fj(·) by

tightly bounding hj(·) and gj(·) , fj(·)− hj(·), via evaluating them in the extreme

(corner) points of the box Z = [z, z] and comparing the values (cf. Corollary 8.1.17).

The following theorem summarizes this procedure and demonstrates that there are

infinite number of remainder functions hj(·) that can be used for our purpose in each

dimension j ∈ J . This, provides us a “family of decomposition functions” for f(·) in

Z, in the sense of Definition 8.1.5.

To increase readability, all proofs will be provided in Appendix.

Theorem 8.3.1 (A Family of Remainder-Form Decomposition Functions). Consider
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the locally Lipschitz continuous vector field f = [f1 . . . fnx ]
> : Z , [z, z] ⊂ IRnz → Rnx

that satisfies (8.9) and governs the dynamics of the state trajectory of the system (8.8).

Then, f(·) is mixed monotone with respect to the following family of remainder-form

decomposition functions:
fd(z, ẑ; {mj}|J |j=1) ,[f 1

d (z, ẑ; m1) . . .fnxd (z, ẑ; mnx)]>

f jd(z, ẑ; mj) = hj(z
c
mj(ẑ, z)) + fj(z

c
mj(z, ẑ))− hj(zcmj(z, ẑ)),

{mj}|J |j=1 ∈ {Mj}|J |j=1, j ∈ J , {1, . . . , nx},

(8.10)

where mj ∈ Mj is called a “supporting vector” and Mj is the corresponding set of

supporting vectors for

Hj
Mj
, {h̃j(·) : Z → R|∂oh̃j(z) ⊆Mj,∀z ∈ Z}, (8.11)

which is the family of appropriate locally Lipschitz “remainder” functions, i.e. all the

locally Lipchitz functions whose Clarke sub-differential set over Z is a subset of Mj.

Moreover, {hj(·)}|J |j=1 ∈ {H
j
Mj
}|J |j=1 and ∀j ∈ J :

Mj , {m ∈ Rnz |mi ≤ min(a
fj
i , 0) or mi ≥ max(a

fj
i , 0),∀i ∈ {1, . . . , nz}}, (8.12)

if (8.8) is a discrete-time system and

Mj , {m ∈ Rnz |mi ≤ min(a
fj
i , 0) or mi ≥ max(a

fj
i , 0),∀i ∈ {1, . . . , nz} ∧ i 6= j,

mj = 0},

(8.13)

if (8.8) is a continuous-time system. Finally,

zcmj(z, ẑ) = Dmj
z + (Inz −Dmj

)ẑ,

Dmj

i,i = sgn(min(a
fj
i , 0)−mj

i),∀i ∈ {1, . . . , nz},
(8.14)

with a diagonal Dmj ∈ Dnz×nz , Inz being the identity matrix in Rnz×nz and sgn(t) ,

1, if t ≥ 0 and 0 otherwise.
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It may worth mentioning that the small difference in the definition of the corre-

sponding set of supporting vectors, Mj , between discrete-time versus continuous-time

cases in Theorem 8.3.1, i.e., the difference between (8.12) and (8.13), originates from

the subtle difference between the definitions of decomposition functions in discrete-

time and continuous-time cases (cf. Definition 8.1.5), where in the former case, the

decomposition function for each dimension does not need to be monotone in the

corresponding diagonal variable, and hence no “compensation” term/remainder is

needed when i = j.

Although Theorem 8.3.1, “theoretically” introduces a family of decomposition

functions in (8.10), but the results are not tractable yet, since to build such a family,

we have to search over {Mj}|J |j=1, a collection of unbounded sets of corresponding

support vectors (cf. (8.12) and (8.13)). Hence, through the following lemma, we

consider a “finite” sub-family of (8.10), to construct “computable” upper and lower

decomposition functions (cf. Definition 8.1.7), by means of intersection, where we also

show that considering such a sub-family is “equivalent” to consider the whole family

(8.10) in terms of what will be obtained as the resultant decomposition functions.

Lemma 8.3.2 (Upper and Lower decomposition Functions). Suppose Theorem 8.3.1

holds. Then,

fd(x, y) = max
{mj}|J |j=1∈{Mj}

|J |
j=1

fd(x, y; {mj}|J |j=1) = max
{mj}|J |j=1∈{Mc

j}
|J |
j=1

fd(x, y; {mj}|J |j=1)

(8.15)

is an “upper decomposition function” for f(·) on Z, and

f
d
(x, y) = min

{mj}|J |j=1∈{Mj}
|J |
j=1

fd(x, y; {mj}|J |j=1) = min
{mj}|J |j=1∈{Mc

j}
|J |
j=1

fd(x, y; {mj}|J |j=1)

(8.16)
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is a “lower decomposition function” for f(·) on Z. In other words, every ordered tuple

z ≤ z ≤ z in Z, satisfies f
d
(z, z) ≤ f(z) ≤ fd(z, z) and f

d
(z, z) = f(z) = fd(z, z),

where fd(x, y; {mj}|J |j=1 is given in (8.10). Moreover, Mc
j is the corresponding set

of supporting vectors for Hj
Mc
j
, that is a “sub-family” of locally Lipschitz remainder

functions in (8.11). More precisely, ∀j ∈ J :

Hj
Mj
⊃Hj

Mc
j
,{hj(·) : Z → R|∂ohj(z)⊆Mc

j,∀z ∈ Z}, (8.17)

and Mc
j ⊂Mj, with

Mc
j , {m ∈Mj|mi = min(a

fj
i , 0) or mi = max(a

fj
i , 0), ∀i ∈ {1, . . . , nz}}, (8.18)

if (8.8) is a discrete-time system,

Mc
j , {m ∈ Rnz |mi = min(a

fj
i , 0) or mi = max(a

fj
i , 0),∀i ∈ {1, . . . , nz} and i 6= j,

mj = 0},

(8.19)

if (8.8) is a continuous-time system and Hj
Mj
,Mj defined in Theorem 8.3.1.

As can be observed, to derive upper and lower decomposition functions in (8.15)

and (8.16), we can “equivalently” search over {Mc
j}
|J |
j=1, which is a collection of finitely

and countable sets (cf. (8.18) and (8.19)). This makes our computation tractable.

8.3.2 Error Bounds

Next, we evaluate the tightness of our proposed remainder-form decomposition

functions, where we use the standard notion of Hausdorff distance-function, q(., .) :

X1 ×X2 → R+, defined in Definition 8.1.14.

In particular, we are interested to derive lower and upper bounds for the error

of approximation (over-estimation) of the range of function f(·), using our proposed
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family of remainder-form decomposition functions given in (8.10). We first provide a

lower bound, as well as two upper bounds, a smaller and a bigger one, via Theorem

8.3.3. Then, through Lemma 8.3.4, we show that the lower bound is indeed achievable

using some specific form of decomposition functions in (8.10). Furthermore, we prove

that the decomposition function given in [128] belongs to the family in (8.10) and if

used, minimizes the bigger upper bound given in Theorem 8.3.3.

Theorem 8.3.3 (Error Bounds). Suppose that all the assumptions in Theorem 8.3.1

and Lemma 8.3.2 are satisfied. Let H , {hj(·)}j∈J ∈ {Hj
Mj
}j∈J be a set of remainder

functions (cf. Theorem 8.3.1), Vf(Z) , [vfZ , v
f
Z ] be the tightest enclosing interval

to the true range (image) of f(·) over Z = [z, z] ∈ IRnz , and for any correspond-

ing pair of sets of supporting vectors Ml , {mj
l }
|J |
j=1 and Mu , {mj

u}
|J |
j=1, both in

{Mj}|J |j=1, WMl,Mu

f (Z) is an over-approximation interval for Vf(Z), using the family

of decomposition functions in (8.10), (cf. Corollary 8.1.8), i.e.,

Vf (Z) ⊆ WMl,Mu

f (Z) , [fd(z, z;Ml), fd(z, z;Mu)]. (8.20)

Then, the following series of inequalities hold:

q(W,V ;H)≤ q(WMl,Mu

f (Z), Vf (Z)) (8.21)

q(WMl,Mu

f (Z), Vf (Z))≤ q(W,V ;H)≤ q̂(W,V ;H), (8.22)
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where s(W,V ;H) = max
j∈J

sj(W,V ;hj),∀s ∈ {q, q̂, q} and

q
j
(W,V ;hj) ,

1

2
[ min
m∈Mc

j

lj1(m) + min
m∈Mc

j

lj2(m)+∆f true
j ],

q̂j(W,V ;hj) , min
m∈Mc

j

∆hcj;m, (8.23)

qj(W,V ;hj) ,min
m∈Mc

j

min{∆hcj;m,∆hcj;m + ∆f cj;m}, (8.24)

lj1(m) , ∆hcj;m + fj(z
c
j;m),

lj2(m) , ∆hcj;m − fj(zcj;m),

zcj;m , zcm(z, z), zcm;j , zcm(z, z),

∆f cj;m , fj(z
c
j;m)− fj(zcj;m),

∆hcj;m , hj(z
c
j;m)− hj(zcj;m),

∆f true
j , f true

j
− f true

j ,

with zcm(., .) defined in Theorem 8.3.1, f true

j
, min

z∈Z
fj(z), f

true

j , max
z∈Z

fj(z) and q(·, ·)

is the Hausdorff distance function defined in Definition 8.1.14.

As mentioned before, we show later that “the best of” the remainder-form decompo-

sition functions in (8.10) minimizes the lower bound q(·, ·; ·) derived in Theorem 8.3.3

and attains the lowest value of them and so is tighter than TL (cf. Proposition 8.1.13)

that will be shown that minimizes q̂(·, ·; ·), which is an upper bound (as opposed to

q(·, ·; ·) that is a lower bound), and also, is less tight than the smaller upper bound

q(·, ·; ·) by (8.22).

8.3.3 Linear Remainders

In this section, the problem of finding the best/tightest decomposition functions

among the ones in the family (8.10) is considered. Particularly, through lemma

8.3.4 we show that no set of remainder functions H = {hj(·)}|J |j=1 ∈ {H
j
Mj
}|J |j=1 along
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with any set of corresponding supporting vectors {mj}|J |j=1 ∈ {Mj}|J |j=1, can make a

decomposition function that achieves better (i.e smaller) lower bound q(., .;H), than

the set of linear remainders {h̃j(x)}|J |j=1 = {m̃jx}|J |j=1, for some m̃j ∈Mc
j,∀j ∈ J . This,

enables us to restrict our search to “linear” remainder functions (with their slopes

belongs to the finite and countable set Mc
j), when finding the best remainder-form

decomposition functions from the family (8.10).

Lemma 8.3.4 (Remainder Form Decomposition Functions with Linear Remainders).

Consider f : Z , [z, z] ⊂ Rnz → Rnx that satisfies (8.9), as well as the family of

remainder functions in (8.11), and let J , {1, . . . , nx}. Then, no set of remainder

functions H , {hj(·)}|J |j=1 ∈ {H
j
Mj
}|J |j=1 along with any set of corresponding supporting

vectors {mj}|J |j=1 ∈ {Mj}|J |j=1 can construct a remainder-form decomposition function

in the form of (8.10) that achieves a smaller lower bound q(., .;H), than the set

of linear remainders {h̃j(x)}|J |j=1 = {m̃jx}|J |j=1 ∈ {H
j
Mc
j
}|J |j=1, where m̃j ∈ Mc

j and

∀j ∈ J , ∀i ∈ {1, . . . , nz}

m̃j
i =


min(a

fj
i , 0), if mj

i ≤ min(a
fj
i , 0),

max(a
fj
i , 0), if mj

i ≥ max(a
fj
i , 0),

(8.25)

with Hj
Mj

, Mj, Hj
Mc
j
, Mc

j and q(., .;H) given in (8.11)–(8.14), (8.17)–(8.19) and

Theorem 8.3.3, respectively.

Lemma 8.3.4 guarantees that in order to obtain the tightest possible decomposition

function in the form of (8.10), it is sufficient to only search over “linear” remainders

hj(z) = mj>z,∀mj ∈ Mc
j -where the search space is the finite and countable set

Mc
j- and to find the one that returns the tightest possible lower bound. Hence, the

optimal search is computable/tractable. This, leads us to Algorithm ??, which by

Theorems 8.3.1–8.3.3 and Lemma 8.3.4, results in the tightest possible remainder-form

157



decomposition function that can be obtained from the family of linear remainder-form

Jacobian sign-stable decomposition functions, (8.10). For the sake of simplicity and

clarity, from now on, we call the optimal remainder-form decomposition functions

resulted from Algorithm 7, the TR inclusion functions.
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Algorithm 7 Remainder-Form Decomposition Functions

1: function TR(f(·), af , af , z1, z2)

2: for j = 1 to nx do

3: Initialize: f j ←∞, f j ← −∞; gj ← −∞, gj ←∞;

4: if (8.8) is a discrete-time system then

Mc
j,{m ∈Mj |mi = min(a

fj
i , 0) ∨mi = max(a

fj
i , 0)

∀i ∈ {1, . . . , nz}}.

5: end if

6: if (8.8) is a continuous-time system then

Mc
j,{m ∈Mj |mi = min(a

fj
i , 0) ∨mi = max(a

fj
i , 0)

∀i ∈ {1, . . . , nz} and i 6= j,mj = 0},

7: end if

8: for m ∈Mc
j do

h(z1, z2)← max(m,0nz)
>z1 + min(m,0nz)

>z2;

h(z1, z2)← max(m,0nz)
>z2 + min(m,0nz)

>z1;

9: for i = 1 to nz do

10: if mi = min(a
fj
i , 0) then

zci ← z1,i; zci ← z2,i;

11: else

zci ← z2,i; zci ← z1,i;

12: end if

g(z1, z2)← max(g(z1, z2), fj(z
c)−m>zc);

g(z1, z2)← min(g, fj(z
c)−m>zc);

13: end for

f j(z1, z2)← min(f j(z1, z2), g(z1, z2) + h(z1, z2));

f
j
(z1, z2)← max(f

j
(z1, z2), g(z1, z2) + h(z1, z2));

14: end for

15: return f j(z1, z2), f
j
(z1, z2);

16: end for

17: end function
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8.3.4 Convergence Rate and Further Refinement

In this subsection, considering the approximation of the range of a locally Lipschitz

function using the TR, we study the convergence rate at which the approximation error

goes to zero, when the domain interval width/diameter shrinks. We show that using

the TR, the error converges at least linearly, i.e., as good as natural inclusions [84,

Chapter 6]. Moreover, applying the “subdivision principle” [7], we show that we can

further refine the convergence rate of our approximation from linear to exponential by

subdividing the interval domain of the function into sub-intervals, applying TR on all

the sub-intervals and taking the union of all the resultant over-approximations of the

sub-intervals. We first introduce the notions of convergence rate, inspired by the work

in [7].

Definition 8.3.5 (Convergence Rate). The generic inclusion function T : IRnz →

IRnx has a convergence rate of α > 0, if for any locally Lipchitz vector field f ,

[f1 . . . fnx ]
> : Z , [z, z] ⊂ IRnz → Rnx, there exists β > 0, such that

q(W T
f (Z), V f (Z)) ≤ β‖d(Z)‖α∞, (8.26)

where W T
f (Z) is the interval over-approximation of the range of f(·), using T , V f (Z)

is the tightest interval enclosure to the true range of f(·), q(·, ·) is the Hausdorff

distance function (cf. Definition 8.1.14), d(Z) , z − z and ‖d(Z)‖∞ is the diameter

of Z.

Next, similar to [7], we can apply the subdivision principle to further refine the

convergence rate. To this end, we can represent Z ∈ IRnz as the union of knz interval

vectors Z l, l = 1, . . . , knz , such that d(Z li) = d(Zi)
k

for i = 1, . . . , nz and l = 1, . . . , knz .

Then, defining V f(Z; k) ,
knz⋃
l=1

V f(Z l) and W f
T (Z; k) ,

knz⋃
l=1

W f
T (Z l), the following

results hold.
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Theorem 8.3.6 (Convergence Rate and Subdivision Principle for TR). For any locally

Lipchitz vector field f , [f1 . . . fnx ]
> : Z , [z, z] ⊂ IRnz → Rnx, there exists βfR > 0

such that:

q(W TR
f (Z), V f (Z)) ≤ βfR‖d(Z)‖∞. (8.27)

Moreover, applying subdivision principle and with N 3 k ≥ 1 number of divisions in

each dimension, there exists γfR > 0 such that

q(W TR
f (Z; k), V f (Z; k)) ≤ γfR

k
. (8.28)

The results in Theorem 8.3.6 imply that without subdivision, the approximation

converges to the true tightest enclosing interval at least linearly, and with subdivisions

and by adding the number of divisions, the convergence rate can increase exponentially.

8.3.5 Set-Inversion

The remainder-form decomposition functions returned by Algorithm 7 can be

used directly to over-approximate unconstrained reachable sets of a dynamic sys-

tem governed by the vector field f(·). However, when additional state constraint

information is available (e.g. sensor observations/measurements in state estimation

problems, known safety constraints from system design and manufactured constraints

[130, 5, 6, 102, 105]), an extra set-inversion (i.e., update or refinement) step will allow

us to take the advantage of the constraints to shrink/update the propagated sets, i.e.,

to obtain a tighter subset of the propagated set that is compatible/consistent with the

given constraints. Mathematically speaking, given the constraint/observation function

µ(·), constraint/observation maximal and minimal values y, y and the propagated

interval Zp = [zp, zp], we need to find the following updated/refined interval Z∗ ⊆ Zp,
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where

Zp ⊇ Z∗ , [z∗, z∗] ⊇ {z ∈ Zp|y ≤ µ(z) ≤ y}. (8.29)

Finding Z∗ in (8.29) is called the “set-inversion” problem [57]. To the best of our

knowledge, existing set-inversion algorithms/operators are either using (conservative)

natural inclusions (SIVIA [57, Chapter 3]) or are only applicable if relatively restrictive

monotonicity assumptions hold (IG [130, Algorithm 1]). In this section, leveraging

our proposed decomposition functions, we develop a set-inversion algorithm that is

applicable for some general class of locally Lipschitz continuous systems. It is also

notable that as opposed to SIVIA and IG, our set-inversion algorithm can also be

used with any applicable inclusion functions (such as TN , TC , TM , TL, TO) or the best

of them (by intersecting the returned reachable sets by all of them) replacing the TR.

Our developed set-inversion algorithm based on TR is summarized in Algorithm 8.

The main idea behind Algorithm 8 is simple and intuitive. Starting form the

propagated interval and using bisection, for each dimension, it shrinks the compatible

interval form below and/or above, if µ, the minimal value of the interval approximation

of the range of the observation/constraint mapping µ(·), is strictly greater than y, the

maximal value of the observations/measurements interval, or, if µ, the maximal value

of the interval approximation of the range of the observation/constraint mapping µ(·),

is strictly smaller than y, the minimal value of the observations/measurements interval

(cf. lines 5 and 10 in Algorithm 8). Repeating this procedure along with the bisection,

the boxes that are determined as ”inconsistent” with the observation set are being

ruled out. Lemma 8.3.7 shows that this algorithm indeed returns Z∗ in (8.29).
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Algorithm 8 Set-Inversion Based on Mixed-Monotone Inclusion Functions

1: function Set-Inv(µ(·), aµ, aµ, zp, zp, y, y, ε)

2: Initialize: z∗ ← zp, z∗ ← zp;

3: for i = 1 to nz do

zl ← z∗i ; zu ← z∗i ;

4: while zu − zl > ε do

zm ← 1
2(zu + zl); ξ ← z∗; ξ ← z∗; ξ

i
← zm;

(µ, µ)← TR(µ(·), ξ, ξ, aµ, aµ);

5: if (µ < y) ∨ (µ > y) then

zu ← zm; z∗i ← zu;

6: else

zl ← zm;

7: end if

8: end while

zl ← z∗i ; zu ← z∗i ;

9: while zu − zl > ε do

zm ← 1
2(zu + zl); ξ ← z∗; ξ ← z∗; ξi ← zm;

(µ, µ)← TR(µ(·), ξ, ξ, aµ, aµ);

10: if (µ < y) ∨ (µ > y) then

zl ← zm; z∗i ← zl;

11: else

zu ← zm;

12: end if

13: end while

14: end for

15: return z∗, z∗;

16: end function
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Lemma 8.3.7. Consider function µ : Zp , [zp, zp] ⊂ Rnz → [y, y] ⊂ Rny that satisfies

(8.9) with its upper and lower values for its Clarke generalized gradients being aµ and

aµ, respectively. Then the pair (z∗, z∗) returned by Algorithm ?? satisfies (8.29).

8.4 Comparison with Other Inclusion Functions

8.4.1 Comparison with the TL Inclusion Functions

In this subsection we compare the performances of TR and TL (cf. Proposition

8.1.13) through the following Theorem 8.4.1. We show that the decomposition function

fLd introduced in [130] and recalled in Proposition 8.1.13, belongs to the family of the

remainder-form decomposition functions (8.10) and hence, TL cannot be tighter than

TR, which is the tightest decomposition function that belongs to (8.10)

Theorem 8.4.1 (TL vs TR). Suppose all the assumptions in Theorem 8.3.1 hold.

Then, the following statements are true.

(i) There exists a set of supporting vectors {mj
L}
|J |
j=1 ∈ {Mc

j}
|J |
j=1 such that the

decomposition function fLd (·, ·) (introduced in [128, Theorem 2] and recalled in

Proposition 8.1.13), coincides with a remainder-form decomposition function in

the form of (8.10) with the linear remainder functions hj(z) = mj
Lz,∀j ∈ J . In

other words, fLd (·, ·) belongs to the family of decomposition functions (8.10).

(ii) {hLj (x)}|J |j=1 = {mj
Lx}

|J |
j=1 is a minimizer of the error upper bound q̂(W,V ;H),

introduced in (8.23) in Theorem 8.3.1, among all the sets of remainder functions

{hj(·)}|J |j=1 ∈ {H
j
Mj
}|J |j=1, i.e., q̂(W,V ; {mj

Lx}
|J |
j=1) = min

H∈{HjMj
}|J |j=1

q̂(W,V ;H).

(iii) The optimal remainder-form decomposition function TR is always tighter than

(at least as good as) the inclusion function TL, induced by the decomposition

function fLd .
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8.4.2 Comparison with TN , TC and TM Inclusion Functions

In this section we compare the performance of natural inclusions and their modifi-

cations, i.e., TN , TC , TM with TR, via computing the over-approximation for the range

of some example functions. It is worth mentioning that we were not able to derive

any theoretical results for these comparisons and in fact our simulation results showed

that depending on function and its corresponding considered domain, one of them

can be tighter than the other or vice versa. However, in some cases, reflected in the

following examples, the TR most likely returns tighter intervals.

Composition of Non-Elementary Functions.

In case that the considered vector field is not a composition of “elementary

functions” (e.g., simple monomials, sin(·), cos(·), monotone functions, etc), then it is

either impossible to compute corresponding natural inclusion functions or conservative

over approximations for bounds of constituent functions are expected, which lead to

poor inclusion functions, i.e., large errors. In these cases, it is most likely that TR

returns better bounds. The following example describes one of such functions.

Example 8.4.2. Consider the vector field f : [1, 3] ⊂ R → R, where f(x) =

x arctan (x2 − 2x+ 5), which is a composition of non-elementary functions. In this

case, TN , TC , TM , TL and TR return [−4.7124, 4.7124], [1.3258, 4.3393], [1.3187, 4.2475],

[1.2835, 2.9461] and [1.1760, 2, 7468], respectively.

“Almost” Sign-Stable Functions.

In case that f(·) can be decomposed into a Jacobian sign-stable constituent and a

relatively small additive perturbation, most likely TR returns tighter bounds than TN ,

TC and TM . For instance, consider the following example.
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Example 8.4.3. Consider the vector field f : [−1, 3] ⊂ R → R, where f(x) = x3 −

0.1x, that is a monotone increasing ( and hence Jacobian sign-stable) function on its

domain, except on the short interval [−
√

0.1
3
,
√

0.1
3

]. For this example, TN , TC , TM , TL

and TR return

[−8.9000, 27.0100], [−49.9000, 54.7000], [−49.9000, 54.7000], [−1.0300, 26.0100],

and [-1.0300,26.0100], accordingly.

Vector Fields with Several Additive Terms.

It is well-known in the literature that natural, centered and mixed-centered in-

clusions perform worse for the functions with several additive terms, compared to

the ones with the lesser additive terms [57, 84]. This is not necessarily true for the

performance of TR. The following example illustrates this fact, where a function with

several additive terms is considered.

Example 8.4.4. Consider the vector field f : [−2, 2] × [−2, 2] × [−2, 2] ⊂ R3 → R,

where f(x) = x1x2x3 + x2
1x2 + x2

2x3 + x2
3x1 + x2

1x3 + x2
3x2 + x2

2x1 + x3
1 + x3

2 + x3
3. For

this function, TN , TC , TM , TL and TR result in

[−80, 80], [−76.45, 76.45], [−73.62, 73.62], [−176, 176]

and [−54.4, 54.4], respectively.

Existence of Closed-form Decomposition Functions.

Finally, using our approach, we are able to provide closed form formulation for

a family of decomposition and inclusion functions for a wide class of vector fields.

This can be analytically beneficial, e.g., in convergence analysis for reachable sets or

stability analysis in interval observer design. This is in contrast with natural, centered
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and mixed-centered inclusions, where a closed form general formulation, which is

independent of the considered function, is not available.

8.5 Applications

8.5.1 Application to Constrained Reachability Analysis

Consider the following constrained bounded-error system:

x+ = f(xt, ut, wt),

µ(xt, ut, vt) ∈ Gt, at t = 0, T, 2T, . . .
(8.30)

where xt ∈ Rnx with x0 ∈ [x0, x0] and ut ∈ Rnu are state and known input signals, wt ∈

[w,w] ⊂ Rnw and vt ∈ [v, v] ⊂ Rnv are bounded process disturbance and noise signals,

Gt = [g
t
, gt] ∈ Rng is the time-varying state interval constraint, f(·) : Rnx+nu+nw →

Rnx , µ(·) : Rnx+nu+nv → Rng are known vector fields and T is the sampling time at

which the constraints are measured/observed. The following proposition shows how

to apply Algorithms 7–8, i.e. the mixed-monotone decomposition functions and the

set-inversion algorithm, to compute approximations of the reachable sets of the states

for system (8.30).

Proposition 8.5.1. Consider the system (8.30) and suppose that f, g are mixed-

monotone and satisfy (8.9) with (af , af ), (ag, ag), respectively, and ε is a small positive

chosen threshold. Then, the upper and lower bounds for the state intervals, i.e., xt, xt,

such that xt ≤ xt ≤ xt, can be found at time t, as follows:

xt = zut (1 : nx), xt = zut (1 : nx),

where zut (1 : nx) and zut (1 : nx) are two vectors, consisting of the first nx arguments of
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zt and zt, respectively,

(zut , z
u
t ) = SET-INV(µ(·), aµ, aµ, z

p
t , z

p
t , gt, gt, ε),

zpt = [xp>t u>t v
>]>, zpt = [xp>t u>t v

>]>,

and

(xpt , x
p
t ) = TR(f(·), af,af, [x>t−1u

>
t−1w

>]>,[x>t−1u
>
t−1w

>]>),

if (8.30) is a discrete-time system and (xpt , x
p
t ) is the solution of the following so-called

dynamical “embedding system”, with the initial values (xp0, x
p
0) = (x0, x0), at time t:ẋp

ẋp

 =

fd(xp, xp, u, w, w)

f
d
(xp, xp, u, w, w)

 ,
if (8.30) is a continuous-time system, where (fd(z1, z2), f

d
(z1, z2)) = TR(f(·), af , af , z1, z2).

8.5.2 Application to State Estimation

Now, consider the following bounded-error system:

x+ = f(xt, ut, wt),

yt = µ̃(xt, ut) + V vt, at t = 0, T, 2T, . . .
(8.31)

where its state equation is similar to the system (8.30), but instead of state constraint,

an observation/measurement signal yt ∈ Rny is known/measured and given at time

steps kT , which is a function of the state xt, through the known observation function

µ̃(·) : Rnx+nu → Rny , known matrix V ∈ Rny×vv and measurement noise signal

vt ∈ [v, v] ⊂ Rnv . It can be easily verified that the observation equation can be

equivalently written as µ̃(xt, ut) ∈ G̃t , [yt − s, yt − s], where s = V +v − V −v,

s = V +v−V −v, V + , max(V,0nv) and V − , V +−V , with 0nv being a zero vector in

Rnv . This, transforms the system (8.31) into the form of (8.30) and hence, Proposition

8.5.1 is applicable, which returns xt and xt.

168



8.6 Simulation Results

In this section, we compare the performance of TN (natural inclusions, cf. Proposi-

tion 8.1.2), TC , TM (centered and mixed-centered inclusions, cf. Proposition 8.1.3),

TL (decomposition functions proposed in [128], cf. Proposition 8.1.13), TR (our pro-

posed remainder-form decomposition function in Algorithm 7), TS1 (the first proposed

bounding approach in [130], if applicable), TS2 (the second proposed approach in [130],

if applicable) and TO (the tight decomposition functions proposed in [129, Theorem

2] for discrete-time and in [2, Theorem 1] for continuous-time syatems, if applicable,

cf. Proposition 8.1.16) in computing the reachable sets of several unconstrained and

constrained dynamical systems in the form of (8.8).

8.6.1 The Van Der Pol System

Consider the following discretized well-known Van der Pol system [105]:

x1,k+1 = x1,k + δtx2,k,

x2,k+1 = x2,k + δt((1− x2
1,k)x2,k − x1,k),

(8.32)

where δt = 0.1, 1.15 ≤ x1,0 ≤ 1.4 and 2.05 ≤ x2,0 ≤ 2.3. Starting form these

initial intervals, the results for computing reachable intervals, using several applicable

inclusion functions, are depicted in Fig. 8.1. Unfortunately, TS1 and TS2 are not valid

(applicable) here, due to the lack of required monotonicity assumptions (cf. [130,

conditions (6) and (16)]). Moreover, as expected, TO (that is computable here since the

corresponding optimization problems can be analytically solved due to computability

of all the critical points of the vector fields) returns the tightest bounds. Our proposed

TR returns tighter bounds compared to the ones returned by all the other remaining

applicable ones except the TO and seems to be a significant refinement for natural,

centered and mixed-centered inclusions as well as the TL. We also computed the
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reachable sets using the best of all approaches except the tightest one to see how close

we can reach into the tight bounds, without using the tight TO.

Figure 8.1: Upper and Lower Bounds on x1 and x2 in System (8.32) (the Van Der Pol

System), Applying TN(−−), TC (◦), TM (�), TL (�), TR (∗), the Best of TN–TR (·-)

and TO (+), as Well as the True Trajectory (–)

8.6.2 Example 3 in [130]

Now consider the following discrete-time dynamical system [5, 130], with bounded

noise:

xk+1 =

0 −0.5

1 1 + 0.3vk

xk + 0.02

−6

1

wk, (8.33)

where wk, vk ∈ [−0.001, 0.001] and x0 ∈ [−0.55,−0.445]× [0.145, 0.248]. The approx-

imated reachable sets are depicted in Fig. 8.2. Here, TS1 is applicable and valid

and returns the exact same bounds as TN (natural inclusion) does, but TS2 is not
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applicable due to the lack of monotonicity condition (cf. [130, (23)]). The tight TO is

again computable and as expected returns the tightest possible intervals. Again, our

proposed approach, TR, dominates all the other applicable ones, except for the tight

TO. To further improve our results and inspired by what is proposed in the literature,

e.g. in [130], we considered a manufactured redundant state zk as:

zk = x1,k + 6x2,k, (8.34)

which implies that:

zk+1 = zk + 5x1,k + (1.8vk − 0.5)x2,k. (8.35)

Augmenting (8.35) with the original system (8.33), we considered the approximation

of reachable sets for the augmented system, constrained to (8.34). We used our

proposed TR for the propagation step, as well as Algorithm 8 for set-inversion (refine-

ment/update). The results in Fig. 8.2 demonstrate an improvement in applying TR

when considering manufactured redundant variable along with an update step through

Algorithm 8, compared to using TR on the original system without considering any

redundancies (cf. Figure 8.2). However, developing a principled approach of defining

redundant variables is a subject of our future work.

171



Figure 8.2: Upper and Lower Bounds on x1 and x2 in System (8.33), Applying TN (−−),

TS1 (4), TC (◦), TM (�), TL (�), TR (∗), TR with Manufactured Redundancies (×·)

and TO (+), as Well as the True Trajectory (–)

Next, consider the following system, which is the system in (8.33) as well as an

extra set of information, in the form of observation equation. In other words:

xk+1 =

0 −0.5

1 1 + 0.3vk

xk + 0.02

−6

1

wk,
yk = 1.6x1,k + 0.3x2,k,

(8.36)

where yk is a known measurement/observation signal at time step k. Fig. 8.3 shows

the approximated upper and lower bounds for the states of the system (8.36), using

the same inclusion functions that we applied to the system (8.33), as well as applying

Algorithm 8 for the set-inversion/refinement procedure. As expected and can be seen

by comparing Figures 8.2 and 8.3, using the additional measurement information

tightens the resultant intervals from all the inclusion functions.
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Figure 8.3: Upper and Lower Bounds on x1 and x2 in System (8.36), (i.e., (8.33) Plus

Observations), Applying TN(−−), TS1 (4), TC (◦), TM (�), TL (�), TR (∗), TR with

Manufactured Redundancies (×·) and TO (+), as Well as the True Trajectory (–).

8.6.3 Example 2.11 in [57]

Next, we consider the following discrete-time dynamical system, e.g., in [57,

Example 2.11]:

x1,k+1 = x2
1,k + x1,ke

x2,k − x2
2,k,

x2,k+1 = x2
1,k − x1,ke

x2,k + x2
2,k,

(8.37)

where x0,k ∈ [0.12, 0.121] × [0.182, 0.185]. Here, non of the TS1 and TS2 approaches

are applicable, due to lack of the required monotonicity conditions. Further, the tight

TO is not computable, since the corresponding nonlinear equations to find the critical

points are not exactly solvable. On the other hand, our proposed remainder-form

inclusion function, TR, is valid and computable. Fig. 8.4 shows the results, where as
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can be observed, TR dominates all the other applicable and computable approaches.

The corresponding intervals to the best of all the approaches via intersection, is also

computed.

Figure 8.4: Upper and Lower Bounds on x1 and x2 in System (8.37), Applying

TN(−−), TC (◦), TM (�), TL (�), TR (∗) and the Best of TN–TR (·-), as Well as the

True Trajectory (–)

8.6.4 Continuous-Time System in [2]

As the next example, we consider the following continuous-time dynamical system

from [2]: 
ẋ1

ẋ2

ẋ3

 =


w1x

2
2 − x2 + w2

x3 + 2

x1 − x2 − w3
1

 , (8.38)
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with X0 = [−1
2
, 1

2
]3 andW = [−1

4
, 0]× [0, 1

4
]. Figure 8.5, depicts the approximations for

the reachable sets applying TN , TC , TM , TL, TR, best of TN–TR and TO. As expected,

TO (implemented using the corresponding embedding functions given in [2, Section

VI]), returns the tightest approximations. However, among the others, TR has the the

best performance and it can be slightly improved, using the best of TN–TR.

Figure 8.5: Upper and Lower Bounds for x1, x2 and x3 in System (8.38), applying

TN (−−), TC (◦), TM (�), TL (�), TR (∗), the Best of TN–TR (·-) and TO (+), as Well

as the True Trajectory (–)

8.6.5 The Unicycle System

We are interested in computing the reachable sets for the well-known continuos-

time system, the unicycle-like mobile robot, e.g., in [25, 58], with two driving wheels,

mounted on the left and right sides of the robot, with their common axis passing

through the center of the robot. The dynamics of such a system can be described as
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[58]:

ṡx(t) = φω(t) cos θ(t) + wx(t),

ṡy(t) = φω(t) sin θ(t) + wy(t), (8.39)

θ̇(t) = φθ(t) + wθ(t),

where sx(t) and sy(t) are the coordinates of the main axis mid-point between the

two driving wheels, θ(t) is the angle between the robot forward axis and the X-

direction, φω(t) and φθ(t) are the displacement and angular velocities of the robot,

respectively and w(t) = [wx(t) wy(t) wθ(t)]
> is the process noise vector. Setting

φω(t) = 0.3, φθ(t) = 0.15, x(t) , [sx(t) sy(t) θ(t)]
>, x(0) = [0.1 0.2 1]>, wx(t) =

0.2(0.5ρx1(t)− 0.3), wy(t) = 0.2(0.3ρx2(t)− 0.2) and wθ(t) = 0.2(0.6ρx3(t)− 0.4), with

ρxl(t) ∈ [0, 1](l = 1, 2, 3), Figure 8.6 shows the over-approximations of the reachable

sets for system (8.39), using different methods. As can be observed, TO- which is

computable for this example- returns the tightest intervals. Moreover, in some intervals

natural inclusions and their modifications, return tighter bounds than TR. However,

by taking intersection and computing the best of TN–TR, we make an improvement

we respect to all of them.
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Figure 8.6: Upper and Lower Bounds on x1 and x2 in System (8.39) (the Unicycle

System Without Observation), Applying TN(−−), TC (◦), TM (�), TL (�), TR (∗),

the Best of TN–TR (·-) and TO (+), as Well as the True Trajectory (–)

Then, to better illustrate the effectiveness of our proposed set-inversion algo-

rithm for continuous-time systems, we consider observations/measurements similar

to [25], as follows. In X–Y plane, it is considered that two known points, de-

noted as (sxi , syi)(i = 1, 2), are chosen as the markers. Then, the distance from the

robot’s planner Cartesian coordinates (sx(t), sy(t)) to each marker (sxi , syi) can be

expressed as di(t) =
√

(sxi − sx(t))2 + (syi − sy(t))2. Furthermore, the azimuth φi(t)

at time t can be related to the current system state variables sx(t), sy(t) and θ(t)

as φi(t) = θ(t)− arctan(
syi−sy(t)

sxi−sx(t)
). Treating both the distance di(t) and φi(t) as the

measurements, as well as considering the unpredicted measurement disturbances v(t),
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the nonlinear observation/measurement equation can be written as:

y(t) = [d1(t) φ1(t) d2(t) φ2(t)]> + v(t), (8.40)

with y(t) being sampled and measured at every T = 1 second, v1(t) = 0.02ρy1(t)−0.01,

v2(t) = 0.03ρy2(t) − 0.01, v3(t) = 0.03ρy3(t) − 0.02, v4(t) = 0.05ρy4(t) − 0.03 and

ρyk(t) ∈ [0, 1](k = 1, 2, 3, 4). Now, applying all the methods along with the set-

inversion approach in Algorithm ?? to the constrained system (8.39)–(8.40), one can

observe that taking the advantage of observations, the reachable set approximations

have been significantly improved in the Figure 8.7 (with observation) compared to the

Figure 8.6 (without observation).

Figure 8.7: Upper and Lower Bounds on x1 and x2 in System (8.39)–(8.40) (the

Unicycle System with Observation), Applying TN(−−), TC (◦), TM (�), TL (�), TR

(∗), the Best of TN–TR (·-) and TO (+), as Well as the True Trajectory (–)

178



8.6.6 Generic Transport Longitudinal Model

Finally, we consider NASA’s Generic Transport Model (GTM) [112], that is a

remote-controlled commercial aircraft [85], with the following main parameters: wing

area S = 5.902 ft2, mean aerodynamic chord c = 0.9153 ft, mass m = 1.542 slugs,

pitch axis moment of inertia Iyy = 4.254 slugs/ft2, air density ρ = 0.002375 slugs/ft3

and gravitational acceleration g = 32.17 ft/s2. The longitudinal dynamics of the GTM

can be described as the following continuous-time dynamical system:

V̇ = −D−mg sin(θ−α)+Tx cosα+Tz sinα
m

,

α̇ = q + −L+mg cos(θ−α)−Tx sinα+Tz cosα
mV

,

q̇ = M+Tm
Iyy

,

θ̇ = q,

(8.41)

where V, α, q and θ are air speed (ft/s), angle of attack (rad), pitch rate (rad/s) and

pitch angle (rad), respectively. Moreover, Tx (lbs), Tz (lbs), Tm (lbs–ft), D (lbs), L (lbs)

and M (lbs) denote the projection of the total engine thrust along the body x-axis, the

projection of the total engine thrust along the body z-axis, the pitching moment due

to both engines, the drag force, the lift force and the aerodynamic pitching moment,

respectively, with their nominal values given in [111]. Defining x , [V α q θ]> with

X0 = [147, 158]× [0.04, 0.05]× [0.1, 0.2]× [0.04, 0.05], Figure 8.8 depicts the reachable

set approximations for x1 and x2 in the system (8.41). For this system TO is not

computable, since the critical points of the vector fields cannot be obtained precisely.

As can be observed from Figure 8.8, the TR results in tighter approximations than the

TN , TC and TM , and the best of TN–TR, still shows an improvement compared to all

of them.
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Figure 8.8: Upper and Lower Bounds on x1 and x2 in System (8.41) (the GTM System

Without Observation), Applying TN(−−), TC (◦), TM (�), TL (�), TR (∗) and the

Best of TN–TR (·-), as Well as the True Trajectory (–)

Next, we consider an additional set of measurements, in the form of a linear

observation equation as:

y(t) = x1(t) + x2(t)− x3(t), (8.42)

with y(t) being sampled and measured at every T = 1 second. Then applying TN–TR

along with the set-inversion (update) approach in Algorithm 8 to the constrained

system (8.41)–(8.42), we observe considerable tighter approximations for all approaches

in Figure 8.9 (with observation) compared to the approximations of reachable sets in

Figure 8.8 (without observation) .
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Figure 8.9: Upper and Lower Bounds on x1 and x2 in System (8.41)–(8.42) (the GTM

System with Observation), Applying TN(−−), TC (◦), TM (�), TL (�), TR (∗) and

the Best of TN–TR (·-), as Well as the True Trajectory (–)

8.7 Conclusion

A tractable family of remainder-from decomposition functions was proposed, that

their existence is proven to be sufficient conditions for mixed-monotonicity of a broad-

range of not necessarily smooth, constrained and unconstrained, continuous and

discrete-time bounded-error dynamical systems. Specifying the tightest decomposition

function belong to the above family, attainable lower and upper bounds for the

error of over-approximating the true range of a mapping, applying the proposed

remainder-form decomposition functions were provided. Furthermore a set-inversion

algorithm was developed that along with the proposed decomposition functions can

be effectively applied to several applications, such as reachable set over-approximation

for bounded-error, constrained, continuous and/or discrete-time systems, as well as
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guaranteed state estimation.
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Chapter 9

GUARANTEED STATE ESTIMATION VIA INDIRECT POLYTOPIC SET

COMPUTATION FOR NONLINEAR DISCRETE-TIME SYSTEMS

This chapter a proposes novel set-theoretic approaches for recursive state estima-

tion in bounded-error discrete-time nonlinear systems subject to nonlinear observa-

tions/constraints. By transforming the polytopes that are characterized as zonotope

bundles (ZB) and/or constrained zonotopes (CZ), from the state space to the space

of the generators of ZB/CZ, we leverage a recent result on remainder-form mixed-

monotone decomposition functions to compute the propagated set, i.e., a ZB/CZ that

is guaranteed to enclose the set of the state trajectories of the considered system.

Further, by applying the remainder-form decomposition functions to the nonlinear

observation function, we derive the updated set, i.e., an enclosing ZB/CZ of the

intersection of the propagated set and the set of states that are compatible/consistent

with the observations/constraints. In addition, we show that the mean value extension

result in [99] for computing propagated sets can also be extended to compute the

updated set when the observation function is nonlinear.

9.1 Preliminaries

In this section, we briefly introduce some of the main concepts that we use

throughout the paper, as well as some important existing results that will be used for

deriving our main results and for comparison.

Definition 9.1.1 (Intervals, H-Polytopes, Constrained Zonotopes (CZ) and Zono-

aThe content of this chapter is documented as a submitted and under review paper in [114].

183



tope Bundles (ZB)). A set Z ⊂ Rn is (i) an interval, (ii) a polytope in hyperplane

representation (H-polytope), (iii) a polytope in constrained zonotope representation

(CZ), or (iv) a polytope in zonotope bundle representation (ZB), if

(i) ∃z, z ∈ Rn such that Z = [z, z] , {z ∈ Rn | z ≤ z ≤ z}. An interval matrix can

be defined similarly, in an element-wise manner;

(ii) ∃Ap ∈ Rnp×n, bp ∈ Rnp such that Z = {Ap, bp}P , {z ∈ Rn | Apz ≤ bp};

(iii) ∃G̃ ∈ Rn×ng , c̃ ∈ Rn, Ã ∈ Rnc×ng , b̃ ∈ Rnc such that Z = {G̃, c̃, Ã, b̃}CZ ,

{G̃ξ + c̃ | ξ ∈ Bng∞ , Ãξ = b̃}. ng and nc are called the number of generators and

constraints of the CZ, respectively;

(iv) Z can be represented as an intersection of S ∈ N zonotopes, i.e., ∃{Gs ∈

Rn×n̂s , cs ∈ Rn}Ss=1 such that Z =
S⋂
s=1

{Gs, cs}Z ,
S⋂
s=1

{Gsζ + cs | ζ ∈ Bn̂g}, with

n̂s, s = 1, . . . , S, being called the number of generators for each zonotope.

It is worth mentioning that a polytope Z can be equivalently given in the H-polytope,

CZ or ZB representations and can be exactly transformed among these representations

using off-the-shelf tools, e.g., CORA 2020 [8]. This is represented throughout this

paper as:

Z = {Ap, bp}P ≡ {G̃, c̃, Ã, b̃}CZ ≡
S⋂
s=1

{Gs, cs}Z .

Proposition 9.1.2. Consider an interval vector IZ , [z, z] ⊂ IRn and an interval

matrix J ∈ IRn×m. Then, IZ and J can be equivalently represented as

IZ , [z, z] ≡ mid(IZ)⊕ 1
2
diag(diam(IZ))Bn∞, (9.1)

J , [J, J ] ≡ mid(J)⊕ J∆, (9.2)

where for q ∈ {IZ, J}, mid(q) , 1
2
(z + z), diam(q) , (z − z), and J∆ ∈ IRn×m is an

interval matrix that is defined as [J∆]ij , 1
2
[−diam(J)ij diam(J)ij],∀i ∈ Nn,∀j ∈ Nm.
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Proposition 9.1.3. [99, Theorem 1] Let X = {G, c, A, b}CZ ⊂ Rm be a constrained

zonotope with ng generators and nc constraints, and J ∈ IRn×m be an interval matrix.

Consider the set S = JX , {Jx|J ∈ J, x ∈ X} ⊂ Rn. Let X = {G, c}Z be a

zonotope satisfying X ⊆ X and c ∈ Rng . Let m ∈ Rn be an interval vector such that

m ⊃ (J−mid(J))c and mid(m) = 0n. Let P ∈ Rn×n be a diagonal matrix defined as

follows. ∀i = 1, . . . , n:

Pii =
1

2
diam(mi) + 1

2

∑ng
j=1

∑m
k=1 diam(Jik)|Gkj|. (9.3)

Then, S ⊆ mid(J)X ⊕ PBn∞

= {
[
mid(J)G P

]
,mid(J)c,

[
A 0ng×n

]
, b}CZ . (9.4)

Proposition 9.1.4 (RRSR Propagation Approach). [99, Theorem 2] Let f : Rn ×

Rnw → Rn be continuously differentiable and ∇xf denote the gradient of f with respect

to its first argument. Let X = {Gx, cx, Ax, bx}CZ ⊂ Rn and W ⊂ Rnw be constrained

zonotopes. Choose any h ∈ X . If Z is a constrained zonotope such that f(h,W) ⊆ Z

and J ∈ IRn×n is an interval matrix satisfying ∇>x f(X ,W) ⊆ J, then

f(X ,W) ⊆ Z ⊕mid(J)(X 	 {h})⊕ P̃Bn∞, (9.5)

where P̃ can be computed using (9.3) with J and an enclosing zonotope X = {G, c}Z

of X 	 {h} ⊆ X .

Definition 9.1.5 (Mixed-Monotone (One-Sided) Decomposition Functions For Dis-

crete-Time Systems). [63, Definitions 3,4] A mapping fd : Z × Z ⊂ R2n → Rm

is a discrete-time mixed-monotone decomposition function with respect to f : Z ⊂

Rn → Rm, over the set Z, if it satisfies the following: (i) fd(x, x) = f(x), (ii)

x ≥ x′ ⇒ fd(x, y) ≥ fd(x
′, y), and (iii) y ≥ y′ ⇒ fd(x, y) ≤ fd(x, y

′),∀x, y, x′, y′ ∈ Z.

Further, if there exists two mixed-monotone mappings fd, fd : Z × Z → Rm, such
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that for any z, z, z ∈ Z, the following holds: z ≤ z ≤ z ⇒ f
d
(z, z) ≤ f(z) ≤ fd(z, z),

then fd and f
d

are called upper and lower decomposition functions for f over Z,

respectively.

It is trivial to see that ∀x ∈ [x, x], f
d
(x, x) ≤ f(x) ≤ fd(x, x), where f

d
, fd are

lower and upper decomposition functions of f .

Proposition 9.1.6 (Tight and Tractable Remainder-Form Upper and Lower De-

composition Decomposition Functions). [63, Theorems 1,2,3 ] Consider a locally

Lipschitz vector field fi : IZ , [z, z] ⊆ IRnz → R. Let Nnz , {1, . . . , nz} and

J
f̃

i , J
f̃
i ∈ Rnz denote the upper and lower bounds for the Jacobian matrix (vector)

of fi over IZ. Suppose that Assumption 9.2.2 in Section 9.2 holds. Then, fi(·) ad-

mits a family of mixed-monotone remainder-form decomposition functions denoted as

{fd,i(z, ẑ;m,h(·))}m∈Mi,h(·)∈HMc
i
, that is parametrized by a set of supporting vectors

m ∈Mc
i

m ∈Mc
i , {m ∈ Rnz |mj = min(Jfij, 0) ∨mj = max(J

f

i,j, 0),∀j ∈ Nnz}, (9.6)

and a locally Lipschitz remainder function h(·) ∈ HMc
i
, where

fd,i(z, ẑ; m, h(·)) = h(ζm(ẑ, z)) + fi(ζm(z, ẑ)))− hi(ζm(z, ẑ)), (9.7)

ζm(z, ẑ) = [ζm,1(z, ẑ), . . . , ζm,nz(z, ẑ)]>, ∀j ∈ Nnz :

ζm,j(z, ẑ)=


ẑj, if mj=max(J

f

i,j, 0)

zj, if mj=min(Jfi,j, 0)

, (9.8)

and HMi
, {h : IZ→ R|[Jh(z), JhC(z)] ⊆Mi, ∀z ∈ IZ}. Moreover, the search for the

tightest mixed-monotone upper and lower remainder-form decomposition functions

in the form of (8.10) can be equivalently restricted to the set of “linear remainders”,

parametrized by m ∈Mc
i , i.e., linear remainders {h(·)}m∈Mc

i
= {〈mi, ·〉}m∈Mc

i
.
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Corollary 9.1.7. Consider a locally Lipschitz mapping f̃(·) : IΞ , [ξ, ξ] ⊆ IRnξ →

Rnx that satisfies the assumptions in Proposition 9.1.6. Let us define: Nnx ,

{1, . . . , nx} and

Hf̃ , {H ∈ Rnx×nξ |H>i,: ∈Mc
i ,∀i ∈ Nnx}, (9.9)

where Mc
i is defined in (8.12). Then, ∀ξ ∈ IΞ,∀H ∈ Hf̃ , g̃H(ξ) , f̃(ξ) − Hξ is

proven to be a Jacobian sign-stable (JSS) function, i.e., ∀i ∈ Nnx ,∀j ∈ Nnz , J
H
ij (ξ) ,

∂g̃Hi
∂ξj

(ξ) ≥ 0,∀ξ ∈ IΞ or JHij (ξ) , ∂g̃Hi
∂ξj

(ξ) ≤ 0, ∀ξ ∈ IΞ.. Consequently, g̃H(·) can be

tightly bounded in each dimension i ∈ Nnx by remainder-form decomposition functions

g̃d,i(·, ·;H>i,:, 〈H>i,:, ·〉), constructed using (9.7)–(9.8), as follows:

g̃d,i(ξ, ξ;H
>
i,:, 〈H>i,:, ·〉) ≤ g̃i(ξ) ≤ g̃d,i(ξ, ξ;H

>
i,:, 〈H>i,:, ·〉),

where, by [63, Lemma 3] and defining m , H>i,:, we obtain g̃d,i(ξ, ξ;m, 〈m, ·〉) =

f̃i(ζ
+
m) + m>(ζ−m − ζ+

m), g̃d,i(ξ, ξ;m
>, 〈m, ·〉) = f̃i(ζ

−
m) + m>(ζ+

m − ζ−m), ζ+
m , ζm(ξ, ξ),

ζ−m , ζm(ξ, ξ), with ζm(·, ·) given in (9.8).

9.2 Problem Formulation

System Assumptions. Consider the following bounded-error nonlinear constrained

discrete-time system:

xk+1 = f̂(xk, wk, uk) = f(zk),

µ̂(xk, uk) = µ(xk) ∈ Yk, x0 ∈ X̂0, wk ∈ Wk,
(9.10)

where zk , [x>k w
>
k ]>, xk ∈ Rnx is the state vector, wk ∈ Wk ⊂ Rnw is the augmentation

of all exogenous uncertain inputs, e.g., bounded process disturbance/noise and system

uncertainties such as uncertain parameters and uk ∈ Uk ⊆ Rnu is the known input

signal. Furthermore, f : Rnz → Rnx (with nz , nx + nw) and µ : Rnx → Rnµ are

nonlinear state vector field and observation/constraint mapping, respectively, which
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are well-defined, given f̂(·, ·) and µ̂(·, ·), as well as the fact that uk is known. Note that

the mapping µ(·) along with the set Yk characterize all existing and known or even

manufactured/redundant constraints over the states, observations and measurement

noise signals or uncertain parameters at time step k..

The unknown initial state x0 is assumed to be in a given set X̂0 and moreover, we

assume the following:

Assumption 9.2.1. The initial state set X̂0, as well as Wk,Uk,∀k ≥ 0 are prior

known H-polytopes, or equivalently constrained zonotopes or zonotope bundles (cf.

Definition 9.1.1).

Assumption 9.2.2. The nonlinear vector fields f(·) and µ(·) are locally Lipschitz

on their domains. Consequently, they are differentiable and have bounded Jacobian

matrix elements, almost everywhere. We further assume that given any Z ⊂ Rnz

and X ⊂ Rnx, some upper and lower bounds for all elements of Jacobian matrices

for f(·) and µ(·) over Z and X are available or can be computed. In other words,

∃Jf , Jf ∈ Rnx×nz , Jµ, J
µ ∈ Rnµ×nx, such that: Jf ≤ Jf(z) ≤ J

f
, Jµ ≤ Jµ(x) ≤

J
µ
,∀z ∈ Z,∀x ∈ X , where Jf(z) and Jµ(x) denote the Jacobian matrices of the

mappings f(·) and µ(·) at the points z and x, respectively.

In this chapter, we aim to propose novel set-membership approaches for obtaining

polytope-valued state estimates for bounded-error nonlinear systems (9.10), using indi-

rect polytope representations, namely using zonotope bundles (ZBs) and constrained

zonotopes (CZs). More formally, given the initial state set estimate X̂0, where x0 ∈ X̂0,

we consider a two-step approach for recursive state estimation by solving the following

problems for the propagation and update steps, respectively, at each time step k ∈ N:

Problem 9.2.3 (Propagation). Given the ‘updated set’ X u
k−1 from the previous time
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step and Wk−1 (with Zk−1 , X u
k−1 ×Wk−1), find the ‘propagated set’ X p

k that satisfies

f(Zk−1) , {f̂(x,w, uk−1) | x ∈ X u
k−1, w ∈ Wk} ⊆ X p

k . (9.11)

Problem 9.2.4 (Update). Given the ‘propagated set’ X p
k and the uncertain observa-

tion/constraint set Yk at time step k, find the ‘updated set’ X u
k that satisfies

X p
k ∩µ Yk , {x ∈ X

p
k | µ(x) ∈ Yk} ⊆ X u

k . (9.12)

9.3 Indirect Polytopic Set Computation

We consider a recursive two-step state estimation approach consisting of state

propagation (prediction) and measurement update (refinement) steps, by solving

Problems 9.2.3 and 9.2.4 in Sections 9.3.1 and 9.3.2, respectively. Our recursive

algorithm can be either initialized at time step 0 with the initial polytopic state

estimate X0 as X u
0 = X0 or if Y0 is available/measured, with X p

0 = X̂0 and the

application of the update step by solving Problem 9.2.4 at time 0 to obtain X u
0 .

9.3.1 Decomposition-Based ZB/CZ Propagation Step

In this section, we address Problem 9.2.3, assuming that the state estimate set

from the previous time step is a zonotope bundle (Lemma 9.3.1) or a constraint

zonotope (Lemma 9.3.2). The main idea is to “transform” the ZBs/CZs from the

z-space, i.e., the space of augmented state x and process uncertainty w, to intervals in

the ξ-space, i.e., the space of ZB/CZ generators. Then, based on our recent results in

[63], we decompose the transformed vector fields in the ξ-space into two components,

a Jacobian sign stable (JSS) and a linear remainder mapping (cf. Corollary 9.1.7).

Finally, we apply our recently developed approach to find a family of mixed-monotone

remainder-form decomposition functions to compute enclosures to the JSS components,

which are proven to be tight by Corollary 9.1.7 for interval domains. Using these tight
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bounds and thanks to the linearity of the remainders, we show that by augmenting

and intersecting all the obtained enclosures, the resultant set is a ZB/CZ. We formally

summarize our proposed Decomposition-Based ZB/CZ approaches in the following

Lemmas 9.3.1 and 9.3.2.

Lemma 9.3.1 (Decomposition-Based ZB Propagation). Suppose f : Z ⊂ Rnz → Rnx

satisfies Assumption 9.2.2. Let Z be a ZB in Rnz , i.e., Z =
S⋂
s=1

{Gs, cs}Z, and

∀s ∈ NS , {1, . . . , S}, ns be the number of generators of the corresponding zonotope.

Then, the following set inclusion holds:

f(Z) ⊆ ZBf ,
S⋂
s=1

⋂
Hs∈Hf̃s

{GHs
s , cHss }Z , (9.13)

where GHs
s , [Hs

1
2
diag(gHss − gHss )], cHss ,

1
2
(gHss + gHs

s
),

gHss,i , gsi,d(1ns ,−1ns ;H
>
s (i,:), 〈H

>
s (i,:), ·〉), (9.14)

gHs
s,i
, gsi,d(−1ns ,1ns ;H

>
s (i,:), 〈H

>
s (i,:), ·〉), (9.15)

while gsi,d(·, ·;H>s (i,:), 〈H>s (i,:), ·〉) is the tight mixed-monotone decomposition function

(cf. Proposition 9.1.6) for the JSS mapping gHss,i (ξ) , f̃s,i(ξ)− 〈H>s (i,:), ξ〉 : Bns∞ → Rnx,

Hf̃s
is defined in Corollary 9.1.7 (with the corresponding function being f̃s) and

f̃s(ξ) , f(cs +Gsξ).

Lemma 9.3.2 (Decomposition-Based CZ Propagation). Suppose f : Z ⊂ Rnz → Rnx

satisfies Assumption 9.2.2 and let Z be a CZ in Rnz , i.e., Z = {G̃, c̃, Ã, b̃}CZ, and ng

be the number of generators of Z. Then, the following set inclusion holds:

f(Z) ⊆ CZf ,
⋂

H∈Hf̃

{G̃H , c̃H ,A, b̃}CZ , (9.16)

where G̃H , [H 1
2
diag(gH − gH)],A , [Ã 0ng×nx ],

gHi , g̃i,d(lng , lng ;H
>
i,:, 〈H>i,:, ·〉), c̃H,

1

2
(gH + gH), (9.17)

gH
i
, g̃i,d(lng , lng ;H

>
i,:, 〈H>i,:, ·〉), (9.18)
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lng , min(1ng , Ã
†b̃ + κrng), lng , max(−1ng , Ã

†b̃ − κrng), g̃i,d(·, ·;H>i,:, 〈H>i,:, ·〉) is the

tight mixed-monotone decomposition function (cf. Proposition 9.1.6) for the JSS

mapping g̃i(ξ) , f̃i(ξ) − 〈H>i,:, ξ〉 : Bng∞ → Rnx, Hf̃ is defined in Corollary 9.1.7,

f̃(ξ) , f(c̃+G̃ξ), rng , rowsupp(Ing− Ã†Ã) and κ is a very large positive real number

(infinity).

Finally, for further improvement, we can take the intersection of the resulting

propagated sets in Lemmas 9.3.1 and 9.3.2. This is formally summarized in the

following Theorem 9.3.3.

Theorem 9.3.3 (Decomposition-Based ZB/CZ Propagation). Suppose all the assump-

tions in Lemmas 9.3.1 and 9.3.2 hold. Then, f(Z) ⊆ ZBf ∩ CZf , where ZBf , CZf

are computed in Lemmas 9.3.1 and 9.3.2, respectively.

9.3.2 Decomposition-Based CZ/ZB Update Step

In this section, we address Problem 9.2.4 for a given a locally Lipschitz nonlinear vec-

tor field µ(·) and assuming that the initial propagated and the observation/constraint

sets at each time step k are zonotope bundles (Lemma 9.3.4) or constraint zonotopes

(Lemma 9.3.5). Using a similar idea as in Section 9.3.1, i.e, considering the space of

generators, decomposing the transformed observation function into a JSS and a linear

component, applying the tight remainder-form decomposition functions [63] to bound

the JSS component, augmenting and intersecting, as well as taking the advantage of

linear remainder functions, we obtain ZB/CZ enclosures to the nonlinear generalized

intersection in (9.12). The results of this section are summarized in Lemmas 9.3.4 and

9.3.5 and Theorem 9.3.6.

Lemma 9.3.4 (Decomposition-Based ZB Update). Suppose µ : Rnx → Rnµ satisfies

Assumption 9.2.2. Let Zf ⊂ Rnx and Zµ ⊂ Rnµ be two ZB sets, i.e., Zf = ZBf =
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R⋂
r=1

{Gr
f , c

r
f}Z and Zµ = ZBµ =

T⋂
t=1

{Gt
µ, c

t
µ}Z, and ∀r ∈ NR , {1, . . . , R},∀t ∈ NT ,

{1, . . . , T}, let nr, nt be the number of generators of the corresponding zonotopes,

respectively. Then, the following set inclusion holds:

ZBf ∩µ ZBµ ⊆ ZBu ,
R⋂
r=1

T⋂
t=1

⋂
Qr∈Qµ̃r

{Ĝt
r, ĉr, Â

Qr
r,t , b̂

Qr
r,t }CZ , (9.19)

where Ĝt
r , [Gr

f 0t], ĉr , crf , b̂
Qr
r,t , ctµ − 1

2
(pQrr + pQr

r
),

ÂQrr,t ,

[
Qr −Gt

µ
1
2
diag(pQrr − pQrr )

]
,

pQrr,i , pri,d(1nr ,−1nr ;Q
>
r(i,:), 〈Q>r(i,:), ·〉), (9.20)

pQr
r,i
, pri,d(−1nr ,1nr ;Q

>
r(i,:), 〈Q>r(i,:), ·〉), (9.21)

pri,d(·, ·;Qr, 〈Q>r(i,:), ·〉) is the tight mixed-monotone decomposition function (cf. Propo-

sition 9.1.6) for the JSS mapping pQrr,i (α) , µ̃r,i(α) − 〈Q>r(i,:), α〉 : Bnr∞ → Rnµ, Qµ̃r

is defined similar to Hf in Corollary 9.1.7 (with the corresponding function being

µ̃r(α) , µ(crf +Gr
fα)) and 0t is a zero matrix in Rnx×(nt+nµ).

Lemma 9.3.5 (Decomposition-Based CZ Update). Suppose µ : Rnx → Rnµ satisfies

Assumption 9.2.2. Let Zf ⊂ Rnx and Zµ ⊂ Rnµ be two CZ sets, i.e., Zf = CZf =

{G̃f , c̃f , Ãf , b̃f}CZ and Zµ = CZµ = {G̃µ, c̃µ, Ãµ, b̃µ}CZ, and nc, nτ be the number of

generators of Zf ,Zµ, respectively. Then, the following set inclusion holds:

CZf ∩µ CZµ ⊆ CZu ,
⋂

Ω∈Ωλ

{G, c̃f ,AΩ, b̃Ω}CZ , (9.22)
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where G , [G̃f 0 0], b̃Ω , [b̃>f b̃>µ (c̃f − 1
2
(νΩ + νΩ))>]>,

AΩ ,


Ãf 0 0

0 Ãµ

Ω −G̃µ
1
2
diag(νΩ − νΩ)

 ,
νΩ
i , νi,d(lnc , lnc ; Ω>(i,:), 〈Ω>(i,:), ·〉), (9.23)

νΩ
i , νi,d(lnc , lnc ; Ω>(i,:), 〈Ω>(i,:), ·〉), (9.24)

lnc , min(1nc , Ã
†
f b̃f + κrnc), lnc , max(−1nc , Ã

†
f b̃f − κrnc), νi,d(·, ·; Ω>(i,:), 〈Ω>(i,:), ·〉) is

the tight mixed-monotone decomposition function (cf. Proposition 9.1.6) for the

JSS mapping νΩ
i (β) , λi(β) − 〈Ω>(i,:), β〉 : Bnc∞ → Rnµ, Ωλ is defined similar to

Hf in Corollary 9.1.7 (with the corresponding function being λ(β) , µ(c̃f + G̃fβ)),

rnc , rowsupp(Inc − Ã
†
f Ãf ) and κ is a very large positive real number (infinity).

We conclude this subsection by combining the results in Lemmas 9.3.4 and 9.3.5

via the following Theorem 9.3.6.

Theorem 9.3.6 (Decomposition-Based ZB/CZ Update). Suppose all the assumptions

in Lemmas 9.3.4 and 9.3.5 hold. Then

Zf ∩µ Zµ ⊆ ZBu ∩ CZu,

where ZBu, CZu are given in Lemmas 9.3.4 and 9.3.5, respectively.

9.3.3 Modifications to the Approach in [99]

The purpose of this subsection is twofold. i) We propose a potential refine-

ment/improvement to the propagation approach in [99, Theorem 2] (recapped in

Proposition 9.1.4) through the following Proposition 9.3.7, by applying our previously

developed remainder-form decomposition functions to compute potentially tighter

193



enclosing intervals to Jacobian matrix of f(·); ii) We propose an update method via

Lemma 9.3.8, that is based on the “CZ-inclusion” introduced in [99, Theorem 1]

(recapped in Proposition 9.1.3). The proposed update method is applicable to general

nonlinear observation functions (similar to the proposed methods in Lemmas 9.3.4

and 9.3.5), as opposed to the update (i.e, linear intersection) approach in [99] that is

only applicable when the observation function is linear.

Proposition 9.3.7 (Refinement to the Propagation Approach in [99]). Suppose all the

assumptions in Proposition 9.1.6 (i.e, [99, Theorem 2]) hold. Then the set inclusion in

(9.5) also holds when replacing J with J̃ (or the best (tightest) of them), where J̃ is an

enclosing interval to g(x) , ∇>x f(X,W ) that can be computed by applying Proposition

9.1.6 to the function g(·).

Lemma 9.3.8 (Update Based on “CZ-Inclusion” in [99]). Suppose all the assumptions

in Lemma 9.3.5 hold. Let x0 ∈ CZf and Jµ, Jµ∆ ∈ Rnµ×nx be interval matrices satisfying

Jµ(CZf) ⊆ Jµ and ∀i ∈ Nnµ ,∀j ∈ Nnx , [J
µ
∆]ij , 1

2

[
−diam(Jµ)ij diam(Jµ)ij

]
, where

Jµ denotes the Jacobian of µ(·). Let Zf = {Gf
, cf}Z be a zonotope satisfying CZf 	

{x0} ⊆ Zf , with cf ∈ Rn, let mµ ∈ Rnµ be an interval vector such that mµ ⊃ Jµ∆cf

and mid(mµ) = 0nµ and let P µ ∈ Rnµ×nµ be a diagonal matrix defined as follows:

∀i = 1, . . . , nµ:

P µ
ii =

1

2
diam(mµ)i + 1

2

∑n
j=1

∑nx
k=1 diam(Jµ∆)ik|G

f

kj|. (9.25)

Then, the following set inclusion holds:

CZf ∩µ CZµ ⊆ CZRu , {Gu, cu, Au, bu}CZ , (9.26)
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where

Au ,



mid(Jµ)G̃f −G̃µ GR

Ãf 0 0

0 Ãµ 0

0 0 AR


, bu ,



c̃µ − µ(x0)− cR + mid(Jµ)(x0 − c̃f )

b̃f

b̃µ

bR


,

GR , [0 P µ], cR , 0, AR , [Ãf 0], bR , b̃f , Gu , [G̃f 0 0]. (9.27)

9.4 Simulation Results

In this section we compare the performance of five approaches to guaranteed state

estimation: i) RRSR, i.e., the mean value extension-based propagation introduced in

[99] (recapped in Proposition 9.1.4) in addition to the update approach in [99] for the

case when the observation function is linear (for Example I below) and its extension

in Lemma 9.3.8 to nonlinear measurements (for Example II below), ii) D-RRSR, i.e, a

modification to RRSR where the bounds for Jacobian matrices are computed using

the reminder-form decomposition functions (cf. Proposition 9.3.7), iii) D-ZB, i.e.,

decomposition-based propagation and update with ZBs (cf. Lemmas 9.3.1 and 9.3.4),

iv) D-CZ, i.e., decomposition-based propagation and update with CZs (cf. Lemmas

9.3.2 and 9.3.5) and v) COMB, i.e., a combination of i)–v) via intersection (based on

a similar idea as Theorems 9.3.3, 9.3.6). All simulations are performed on a 1.8 GHz

(8 CPUS) i5-8250U, using MATLAB version 2020a and CORA 2020 [8].
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9.4.1 Example I

Consider the following nonlinear discrete-time system from [99, Example 1]

x1,k = 3x1,k−1 −
x21,k−1

7
− 4x1,k−1x2,k−1

4+x1,k−1
+ w1,k−1,

x2,k = −2x2,k−1 +
3x1,k−1x2,k−1

4+x1,k−1
+ w2,k−1,y1,k

y2,k

 =

 1 0

−1 1


x1,k

x2,k

+

v1,k

v2,k

 ,
(9.28)

with ‖wk‖∞ ≤ 0.1, an unknown initial state x0 ∈ X0 =


0.1 0.2 −0.1

0.1 0.1 0

 ,
0.5

0.5


and Yk , {yk− vk | ‖vk‖∞≤ 0.4}.

Figure 9.1: Results for Example I from the First Five Time Steps of Set-valued State

Estimation, Using Five Different Approaches: Black Dots Are Obtained from Uniform

Sampling of the Initial State and Noise Signals, and Propagating Through the System

Dynamics

As can be seen from Figure 9.1, D-ZB provides less conservative enclosures com-
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pared to the other individual approaches, and further, the COMB approach results

in significant improvement by taking advantage of all approaches via intersection.

Moreover, a more systematic comparison of the average computation times and en-

closure set volumes of the five approaches is given in Table 9.1. It can be observed

that D-ZB is the fastest computationally, while the combination of all approaches,

i.e., COMB, took the longest, as expected. Furthermore, RRSR and D-RRSR took

approximately the same time on average. In terms of average set volumes, D-ZB and

D-RRSR generate the least conservative (smallest) enclosures when compared to the

other approaches, while a further improvement is obtained using the intersection of

all approaches (COMB).

Table 9.1: Average Total Times (Seconds) and Average Total Volumes at Each

Time Step for Five State Estimators in Example I: Each Average Is Taken Over 50

Simulations with Uniformly Sampled Noise and Initial State

Methods: k = 0 k = 1 k = 2 k = 3 k = 4

RRSR
Time: 0.0869 0.2496 0.1926 0.1960 0.2042

Vol.: 0.2012 0.5002 0.6205 0.4811 0.3340

D-RRSR
Time: 0.0866 0.2251 0.1809 0.1977 0.2005

Vol.: 0.2012 0.4758 0.6008 0.4385 0.1472

D-ZB
Time: 0.0882 0.0949 0.0906 0.0907 0.1226

Vol.: 0.2012 0.4518 0.5729 0.32721 0.3175

D-CZ
Time: 0.0869 2.8245 2.9200 2.1183 3.3176

Vol.: 0.2012 0.5673 0.6310 0.5061 0.4169

COMB
Time: 0.0872 6.1929 6.8815 6.2782 6.908

Vol.: 0.2012 0.4485 0.5659 0.2841 0.1465
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9.4.2 Example II (The Unicycle System)

Now consider the following discretized unicycle-like mobile robot system [25]:

sx,k+1 = sx,k + T0φw cos(θk) + w1,k,

sy,k+1 = sy,k + T0φw sin(θk) + w2,k,

θk+1 = θk + T0φθ + w3,k,

yk = [d1,k φ1,k d2,k φ2,k]
> + vk,

(9.29)

where xk , [sx,k sy,k θk]
>, wk = [wx,k wy,k wθ,k]

>, φω,k = 0.3, φθ,k = 0.15, wx,k =

0.2(0.5ρx1,k − 0.3), wy,k = 0.2(0.3ρx2,k − 0.2) and wθ,k = 0.2(0.6ρx3,k − 0.4), with

ρxl,k ∈ [0, 1] (l = 1, 2, 3) and initial state x0 = [0.1 0.2 1]>. Moreover, ∀i ∈ {1, 2},

di,k =
√

(sxi − sx,k)2 + (syi − sy,k)2 and φi,k = θk−arctan(
syi−sy,k
sxi−sx,k

), with sxi , syi being

two known values. Furthermore, Yk , {yk − vk | v1,k = 0.02ρy1,k − 0.01, v2,k =

0.03ρy2,k − 0.01, v3,k = 0.03ρy3,k − 0.02, v4,k = 0.05ρy4,k − 0.03, ρyk,k ∈ [0, 1],∀k =

{1, 2, 3, 4}}.

Applying all methods i) through v), one can observe from Figure 9.2 that the

resulting set estimates appear comparable for all approaches. Upon closer examination,

Table 9.2 shows that D-CZ takes the least average computation time followed by

RRSR, D-RRSR, COMB and D-ZB, while in terms of average set volumes, the COMB

approach results in the smallest volume followed by D-ZB, D-CZ, RRSR and D-RRSR.

Note that the computation time for D-ZB is exceptionally large, presumably because

of the specific implementation in CORA 2020 [8] for converting a polytope to its ZB

representation that could result in a higher number of zonotopes than the minimal

needed to exactly represent the same polytope. Thus, the reduction of the number of

zonotopes in the bundle could be an interesting future topic, which could significantly

decrease the computation time of the D-ZB approach.
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Figure 9.2: Results for Example II from the First Five Time Steps of Set-valued State

Estimation, Using Five Different Approaches: Black Dots Are Obtained from Uniform

Sampling of the Initial State and Noise Signals, and Propagating Through the System

Dynamics

9.5 Conclusion

Novel methods were presented in this chapter for guaranteed state estimation

in bounded-error discrete-time nonlinear systems subject to nonlinear observations

and/or constraints using indirect polytopic representations, i.e., using ZBs/CZs. By

considering polytopes in the space of ZB/CZ’s generators, our recent results on

remainder-form mixed-monotone decomposition functions can be applied to compute

enclosures that are guaranteed to enclose the set of all possible state trajectories.

Further, the decomposition functions were leveraged to bound the nonlinear observation

function to derive the updated set, i.e., to return enclosures to the intersection of

the propagated set and the set of states that are consistent with noisy measurements.

Finally, the mean value extension-based approach in [99] was also generalized to
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Table 9.2: Average Total Times (Seconds) and Average Total Volumes (10−5) at Each

Time Step for Five State Estimators in Example II: Each Average Is Taken Over 20

Simulations with Uniformly Sampled Noise and Initial State

Methods: k = 0 k = 1 k = 2 k = 3 k = 4

RRSR
Time: 0.7719 4.2557 4.1883 2.9950 3.6747

Vol.: 4.2924 3.7834 1.6171 4.5738 4.5558

D-RRSR
Time: 1.6690 42.905 45.571 28.642 50.539

Vol.: 4.0527 3.2943 1.6600 5.1036 4.8001

D-ZB
Time: 1.3967 34.207 163.08 147.75 131.94

Vol.: 4.2551 2.9697 1.3248 4.2917 4.2519

D-CZ
Time: 0.6020 2.1824 2.0195 2.2281 2.5908

Vol.: 4.2551 3.0793 1.4337 4.6017 4.4564

COMB
Time: 0.2361 34.902 65.501 62.371 57.728

Vol.: 4.0527 2.7726 1.2220 3.9126 3.9914

compute the updated set when the observation functions are nonlinear.
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Proof of Lemma 2.3.2

(2.6)-(2.10) and plugging M1 = Σ−1 into (2.7) imply that

d̂1,k = M1(C1x̃k|k + Σd1,k +
∑N

i=1λi,kv
i
1,k), (A.1)

d̂2,k−1 = M2(C2(
∑N

i=1λi,k−1A
ix̃k−1|k−1 +G1d̃1,k−1

+G2d2,k−1 +
∑N

i=1λi,k−1w
i
k−1) +

∑N
i=1λi,kv

i
2,k). (A.2)

d̃1,k = d1,k − d̂1,k = −M1(C1x̃k|k +
∑N

i=1λi,kv
i
1,k). (A.3)

(A.3) and setting M2 = (C2G2)† (Lemma 2.3.1) in (A.2), return

d̃2,k−1 = −M2(C2Âk−1x̃k−1|k−1 − C2G1M1

∑N
i=1λi,k−1v

i
1,k−1

+C2

∑N
i=1λi,k−1w

i
k−1 +

∑N
i=1λi,kv

i
2,k).

(A.4)

Defining x̃?k|k , xk − x̂?k|k, from (2.1), (2.10) and (2.11) we obtain

x̃?k|k =
∑N

i=1λi,k−1(Aix̃k−1|k−1 + wik−1) +G1d̃1,k−1 +G2d̃2,k−1 (A.5)

In addition, from (2.6) and (2.12) and (A.3)-(A.5) we conclude:

x̃k|k = (I − L̃C2)x̃?k|k − L̃
∑N

i=1λi,kv
i
2,k. (A.6)

x̃?k|k = Ak−1x̃k−1|k−1 − (I −G2M2C2)(G1M1

∑N
i=1 λi,k−1(vi1,k−1 − wik−1))

−G2M2

N∑
i=1

λi,kv
i
2,k. (A.7)

Now, defining wk−1 , −G2M2

∑N
i=1λi,kv

i
2,k − (I −G2M2C2)(G1M1

∑N
i=1λi,k−1(vi1,k−1−

wik−1)) and vk−1 ,
∑N

i=1 λi,kv
i
2,k, (A.6)-(A.7) imply that

x̃?k|k = Ak−1x̃k−1|k−1 + wk−1,

x̃k|k = (I − L̃C2)Ak−1x̃k−1|k−1 + (I − L̃C2)wk−1 − L̃vk−1.
(A.8)

Now, consider the following linear time-varying system:

xk+1 = Akxk + wk, yk = C2xk + vk. (A.9)

Systems (A.8) and (A.9) are equivalent from the viewpoint of estimation, since the
estimation error equations for both problems are the same, hence they both have the
same objective. Therefore, the pair (Ak, C2) needs to be uniformly detectable such
that the observer is stable [10, Section 5].
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Proof of Theorem 2.3.3

Starting from (A.8), we have

x̃k|k = (I − L̃C2)Ak−1x̃k−1|k−1+(I − L̃C2)wk−1 − L̃vk−1,

from which we can define a system with x̃k|k as its state and z̃k|k = x̃k|k as the output:

x̃k|k = (I − L̃C2)Ak−1x̃k−1|k−1 +
[
I − L̃C2 −L̃

] [wk−1

vk−1

]
,

z̃k|k = x̃k|k.

By [38, Lemma 3], this system has an H∞ performance bounded by η, if there exists
a symmetric positive definite matrix P with rank n such that:P (I − L̃C2)AiP

[
I − L̃C2 −L̃

]
0

∗ P 0 P
∗ ∗ ηI 0
∗ ∗ ∗ ηI

� 0, ∀i ∈ {1, 2, . . . , N} . (A.10)

Notice that the referenced lemma requires the existence of a bounded matrix sequence,
which in our case is a sequence of time-invariant matrices (P is the same for each k),
that is obviously bounded. By plugging S = P−1 � 0 and applying some similarity
transformations, we obtain0 S 0 0

∗ 0 0 0
∗ ∗ I 0
∗ ∗ ∗ I


P (I − L̃C2)AiP

[
I − L̃C2 −L̃

]
0

∗ P 0 P
∗ ∗ ηI 0
∗ ∗ ∗ ηI


0 S 0 0
∗ 0 0 0
∗ ∗ I 0
∗ ∗ ∗ I



=


S Ai

>
(I − C>2 L̃>)S 0 I

∗ S
[
I − L̃C2 −L̃

]
0

∗ ∗ I 0
∗ ∗ ∗ ηI

�0 ∀i∈{1, 2, . . . , N}.

Setting Y , SL̃ completes the proof.

Proof of Theorem 2.3.4

Suppose, for contradiction, that there exists an H∞-observer for system (2.1) with

any sequence {λi,k}∞k=0 for all i ∈ {1, 2, . . . , N} that satisfies 0 ≤ λi,k ≤ 1,
∑N

i=1 λi,k =
1,∀k, but one of the constituent linear time-invariant systems (e.g., (Aj, G, C,H))
is not strongly detectable. Since the H∞-observer exists for any sequence of λi,k,
particularly it exists when λj,k = 1 and λij,k = 0, ∀i 6= j for all k. However, we
know from [131] that strong detectability is necessary for the stability of the linear
time-invariant system (Aj, G, C,H), which is a contradiction.
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Proof of Theorem 2.3.5

To prove Theorem 2.3.5, we first find closed form expressions for the state and
input estimation errors in the following:
Lemma A.0.1. The state and input estimation errors are

x̃k|k = (
∏k−1

j=0 Ae,k−j)x̃0|0 +
∑k

i=1(
∏i−2

j=0Ae,k−j)(Ψwk−i − L̃vk−i),
d̃k−1 =

∑N
i=1 λi,k−1(−V1M1C1 − V2M2C2Ae,i)x̃k−1|k−1

+ (−V1M1 + V2M2C2G1M1)T1

∑N
i=1 λi,k−1v

i
k−1

− V2M2C2

∑N
i=1 λi,k−1w

i
k−1 − V2M2T2

∑N
i=1 λi,kv

i
k.

Proof. From (A.8), we have

x̃k|k = ΨAkx̃k−1|k−1 + Ψwk−1 − L̃vk−1. (A.11)

We use induction and (A.11) to obtain

x̃1|1 = ΨA1x̃0|0 + Ψw0 − L̃v0 = Ae,1x0|0 + Ψw1−1 − L̃v1−1

x̃k|k = (
k−1∏
j=0

Ae,k−1)x̃0|0 +
k∑
i=1

(
i−2∏
j=0

Ae,1−j)(Ψwk−1 − L̃v1−i)x̃k+1|k+1

= ΨAk+1x̃k|k + Ψwk − L̃vk
= ΨAk+1

[
(
k−1∏
j=0

Ae,k−j)x̃0|0 +
k∑
i=1

(
i−2∏
j=0

Ae,k−j)(Ψwk−i − L̃vk−i)
]

+ Ψwk −L̃vk

= (Ae,k+1Ae,k...Ae,1)x̃0|0 + Ψwk − L̃vk
+

k∑
i=1

(Ae,k+1Ae,k...Ae,k−(i−2))(Ψwk−i − L̃vk−i))

= (
k+1∏
j=0

Ae,k+1−j)x̃0|0 +
∑k

i=0(
i−2∏
j=0

Ae,k−j)(Ψwk−i − L̃vk−i)

= (
k+1∏
j=0

Ae,k+1−j)x̃0|0 +
∑k+1

i=1 (
i−2∏
j=0

Ae,k+1−j)(Ψwk+1−i − L̃vk+1−i).

As for d̃k−1, (A.3)-(A.4) imply

d̃k−1 = V1d̃1,k−1 + V2d̃2,k−1 =
N∑
i=1

λi,k−1(−V1M1C1 − V2M2C2Ae,i)x̃k−1|k−1

+(V2M2C2G1M1 − V1M1)T1

N∑
i=1

λi,k−1v
i
k−1

−V2M2C2

N∑
i=1

λi,k−1w
i
k−1 − V2M2T2

N∑
i=1

λi,kv
i
k.

(A.12)

Now, we are ready to prove Theorem 2.3.5. First, we define

Be,k ,
k−1∏
j=0

Ae,k−j, C
i
e,k ,

i−2∏
j=0

Ae,k−j, tk , Ψwk − L̃vk (A.13)
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for 1 ≤ i ≤ k. Then, from Lemma A.0.3, it follows that

‖x̃k|k‖ = ‖Be,kx̃0|0 +
k∑
i=1

Ci
e,ktk−i‖ ≤ ‖Be,k‖‖x̃0|0‖+ ‖

k∑
i=1

Ci
e,ktk−i‖. (A.14)

Moreover, by similar reasoning, we obtain:

‖Be,k‖ = ‖
k−1∏
j=0

Ae,k−j‖ ≤
k−1∏
j=0

‖Ae,k−j‖ =
k−1∏
j=0

‖ΨΦÂk−j‖

=
k−1∏
j=0

‖ΨΦ
N∑
i=1

λik−j(A
i −G1M1C1)‖ =

k−1∏
j=0

‖
N∑
i=1

λik−jΨΦ(Ai −G1M1C1)‖

≤
k−1∏
j=0

N∑
i=1

λik−j‖ΨΦ(Ai −G1M1C1)‖ ≤
k−1∏
j=0

θ = θk, (A.15)

‖
k∑
i=1

Ci
e,ktk−i‖ ≤

k∑
i=1

‖Ci
e,ktk−i‖ ≤

k∑
i=1

‖Ci
e,k‖‖tk−i‖, (A.16)

‖Ci
e,k‖ = ‖

i−2∏
j=0

Ae,k−j‖ ≤
i−2∏
j=0

‖Ae,k−j‖ =
i−2∏
j=0

‖
N∑
s=1

λs,k−jAe,s‖ ≤
i−2∏
j=0

θ ≤ θi−1.

(A.17)

Furthermore, from the definition of wk and (A.13) we have

wk−i = −Φ(G1M1

N∑
s=1

λs,k−iv
s
1,k−i −

N∑
s=1

λs,k−iw
s
k−i)−G2M2

N∑
s=1

λs,k−iv
s
2,k−i,

‖tk−i‖ = ‖Ψwk−i − L̃vk−i‖

= ‖ −ΨΦG1M1T1

N∑
s=1

λs,k−iv
s
k−i + ΨΦ

N∑
s=1

λs,k−iw
s
k−i

−ΨG2M2T2

∑N
s=1 λs,k−iv

s
k−i − L̃T2

N∑
s=1

vsk−i‖

= ‖
N∑
s=1

λs,k−i(Γv
s
k−i + (ΨΦ)wsk−i)‖ ≤ η,

from which, as well as (A.14)-(A.17), we conclude that

‖x̃k|k‖ ≤ ‖x̃0|0‖θk + η
k∑
i=1

θi−1 = ‖x̃0|0‖θk + η 1−θk
1−θ , δxk . (A.18)

As for δdk−1, using Lemma A.0.3 and (A.12), triangle inequality and the facts that

0 ≤ λi,k ≤ 1,
∑N

i=1 λi,k = 1 and submultiplicativity of matrix norms, we obtain the
result.

Proof of Theorem 2.3.6

Notice that 0 ≤ ‖Ae,i‖ ≤ θ < 1 for all i ∈ {1, 2, . . . , N} by assumption. So,
θk in (A.18) vanishes in steady state, which gives us the following steady state
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estimation radius: limk→∞ δ
x
k = limk→∞

(
‖x̃0|0‖θk + η 1−θk

1−θ

)
= η

1−θ . Using this and

starting from the expression for δdk−1 in Theorem 2.3.5, it converges to steady state, as
follows: limk→∞ δ

d
k−1 = (limk→∞ βδ

x
k−1)+‖V2M2C2‖ηw + (‖(V2M2C2G1 − V1)M1T1‖+

‖V2M2T2‖)ηv = ηβ
1−θ + ηw‖V2M2C2‖+ ηv(‖V2M2T2‖+ ‖R‖).

Proof of Lemma 3.3.4

To show (3.10), we first find a lower bound for δq,infr,k . Then, we show that the

lower bound diverges and so does δq,infr,k . Define t̃?k , t?k/η
t
k, where ηtk is defined in

Corollary 3.2.8. Now consider

ηtkσmin(Aq
k) = σmin(ηtkA

q
k) = min

‖t‖2≤1
‖ηtkA

q
kt‖2 ≤ ‖ηtkA

q
k t̃
?
k‖2 = ‖Aq

kt
?
k‖2 = δq,infr,k ,

where σmin(A) is the least non-trivial singular value of matrix A, the first equality
holds since σmin(.) is a linear operator, the second equality is a special case of a matrix
lower bound [50] when 2-norms are considered, the inequality holds since ‖t̃?k‖2 = 1 by
Corollary 3.2.8, so t̃?k is a feasible point for the minimization in the third statement
and the last equality holds by Theorem 3.2.7. So far we have shown that ηtkσmin(Aq

k)

is a lower bound for δq,infr,k . Next, we will prove that ηtkσmin(Aq
k) is unbounded. First,

it is trivial that ηtk is unbounded by its definition in Corollary 3.2.8. Second, consider
the block matrix Aq

k in Lemma 3.2.5. By the strong detectability assumption, matrix
Aqe is stable [131, Theorem 3 and Appendix C], so all the block matrices of Aq

k, except
three of them which are constant matrices with respect to time, converge to zero
matrices when time goes to infinity. Hence Aq

k converges to an infinite dimensional
sparse matrix, with only three non-zero finite dimensional constant blocks and so the
limit matrix has a finite rank and clearly has a bounded minimum non-trivial singular
value. Henceforth, ηtkσmin(Aq

k) is unbounded, since the product of the bounded and
non-zero σmin(Aq

k) and unbounded ηtk is unbounded. As for (3.11), the first equality

holds by definition of δ̂qr,k (cf. Theorem 3.2.7) and (3.10), the first inequality holds

since δq,trir,k ≤ δ
q,r

r,k by triangle and sub-multiplicative inequalities and the last equality,

i.e., convergence of δq,trir,k , follows from strong detectability assumption which implies
the stability of Aqe [131, Theorem 3].

Proof of Lemma 3.3.5

Suppose, for contradiction, that none of q and q′ are eliminated. Then

‖Cq
2 x̂

?,q
k|k +Dq

2u
q
k − C

q′

2 x̂
?,q′

k|k −D
q′

2 u
q′

k ‖2 = ‖rq
′

k − r
q
k + zq2,k − z

q′

2,k)‖2

≤ ‖rq
′

k ‖2 + ‖rqk‖2 + ‖zq2,k − z
q′

2,k‖2 ≤ δqr,k + δq
′

r,k +Ry‖T q2 − T
q′

2 ‖2,

where the equality holds by Definition 3.2.2, the first inequality holds by triangle
inequality and the last inequality holds by the assumption that none of q and q′ can be
eliminated, as well as the boundedness assumption for the measurement space. This
last inequality contradicts with the inequality in the lemma, thus the result holds.
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Proof of Lemma 3.3.6

The result can be obtained by applying Proposition 3.2.3, (3.7) and the closed-form
output signal:

yk =




(CAk)>

(CAk−1)>

...
C>

I


> 

H>

(CG)>

(CAG)>

...
(CAk−1G)>


> 

D>

(CB)>

(CAB)>

...
(CAk−1B)>


>
 tk

dq∗0:k

uq∗0:k

 ,
which can be derived by using (3.1) and simple induction.

Proof of Theorem 3.3.7

To show that (iii) is sufficient for asymptotic mode detectability, consider Lemma
3.3.5 with δq,trir,k as the upper bound. It suffices to show ∃K ∈ N, such that (3.12) holds

for k ≥ K, ∀q 6= q′ ∈ Q. Notice that by Definition 3.2.2, Cq
2 x̂

?,q
k|k = Cq

2xk + T q2 vk − r
q|∗
k .

Plugging this into (3.12), we need to show ∃K ∈ N such that:

‖W q,q′sq,q
′

k ‖2 > δq,trir,k + δq
′,tri
r,k +Rq,q′

z ,∀k ≥ K, (A.19)

sq,q
′

k ,
[
x>k v>k r

q|∗>
k r

q′|∗>
k uq>k uq

′>
k

]>
, ∀q 6= q′ ∈ Q.

A sufficient condition to satisfy (A.19) is that ∃K ∈ N such that ∀k ≥ K, (A.19)

holds for all sq,q
′

k . Equivalently, it suffices

min
xk,vk,r

q
k,r

q′
k

‖W q,q′sq,q
′

k ‖2 > δq,trir,k + δq
′,tri
r,k +Rq,q′

z

s.t. ‖xk‖2 ≤ Rx, ‖vk‖2 ≤ ηv, ‖rq|∗k ‖2 ≤ δq,trir,k , ‖rq
′|∗
k ‖2 ≤ δq

′,tri
r,k , ∀k ≥ K, ∀q 6= q′ ∈ Q.

By expanding the constraint set, it is sufficient to require that ∃K ∈ N such that:

min
sq,q
′

k

‖W q,q′sq,q
′

k ‖2 > δq,trir,k + δq
′,tri
r,k +Rq,q′

z

s.t. ‖sq,q
′

k ‖
2
2 ≤ R2

x+η
2
v+(δq,trir,k )2+(δq

′,tri
r,k )2 + (uqk)

2 + (uq
′

k )2, ∀k ≥ K, ∀q 6= q′ ∈ Q.

Now, by matrix lower bound theorem [50] and similar argument as in the proof of
Lemma 3.3.4, it is sufficient to be satisfied that ∃K ∈ N s.t. ∀k ≥ K, ∀q 6= q′ ∈ Q :

σ2
min(W q,q′)>

(δq,trir,k + δq
′,tri
r,k +Rq,q′

z )2

R2
x+η

2
v+(δq,trir,k )2+(δq

′,tri
r,k )2+(uqk)

2+(uq
′

k )2
. (A.20)

(A.20) provides us a time-dependent sufficient condition for mode detectability. In

order to find a time-independent sufficient condition, notice that
(δ
q,tri
r,k +δ

q′,tri
r,k +Rq,q

′
z )2

R2
x+η2v

is
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an upper bound for the right hand side of (A.20), since the latter’s denominator is
smaller than the former’s and the numerator of the latter is an upper bound signal for
the former’s by triangle and sub-multiplicative inequalities. So a sufficient condition
for (A.20) is ∃K ∈ N s.t. ∀k ≥ K, ∀q 6= q′ ∈ Q :

σ2
min(W q,q′) >

(δ
q,tri

r,k + δ
q′,tri

r,k +Rq,q′
z )2

R2
x + η2

v

. (A.21)

Then, for the above to hold, it suffices that

σ2
min(W q,q′) > lim

k→∞

(δ
q,tri

r,k + δ
q′,tri

r,k +Rq,q′
z )2

R2
x + η2

v

,

which is equivalent to (iii) by (3.11). As for the sufficiency of (i), notice that by
Theorems 3.2.4 and 3.2.7, Lemma 3.2.5 and Definition 3.3.1, for mode detectability, it
suffices that for any specific mode q, the true mode q∗ and large enough k,

‖rqk‖2 = ‖
[
Tq,q

∗

k Bq,q
∗

k Dq,q∗

k

] [
t>k uq

∗>
0:k dq∗>0:k

]> ‖2 > δq,trir,k ,

with tk given in (3.9). Since q∗ is unknown, a sufficient condition to satisfy the above
equality is ∀q′ 6= q ∈ Q :

‖rqk‖2 = ‖
[
Tq,q

′

k Bq,q
′

k Dq,q′

k

] [
t>k uq

′>
0:k dq∗>0:k

]> ‖2 > δq,trir,k .

So, it suffices that ∀q′ 6= q ∈ Q, ∃d ∈ R, such that:

min
t′k

‖
[
Tq,q

′

k Bq,q
′

k Dq,q′

k

]
t′k‖2 > δq,trir,k

s.t. t′k =
[
t>k uq

′>
0:k dq∗>0:k

]>
, tk =

[
x̃>0|0 w>0 . . . w>k−1 v>0 . . . v>k

]
,

‖dq∗0:k‖2 ≥ d, ‖x̃0|0‖∞ ≤ δx0 , ‖wi‖∞ ≤ ηw, ‖vj‖∞ ≤ ηv,

∀i ∈ {0, ..., k − 1}, ∀j ∈ {0, ..., k}. (A.22)

Again by matrix lower bound theorem, a sufficient condition for the above inequality
to hold is that ∃d ∈ R, such that:

min
tk,d0:k

‖t′k‖2 >
δq,trir,k

σmin
[
Tq,q

′

k Bq,q
′

k Dq,q′

k

] (A.23)

s.t. t′k =
[
t>k uq

′>
0:k dq∗>0:k

]>
, ‖dq∗0:k‖2 ≥ d,

tk =
[
x̃>0|0 w>0 . . . w>k−1 v>0 . . . v>k

]
,

‖x̃0|0‖∞ ≤ δx0 , ‖wi‖∞ ≤ ηw, ‖vj‖∞ ≤ ηv,

∀i ∈ {0, ..., k − 1}, ∀j ∈ {0, ..., k}.

Finally, since δq,trir,k ≤ δ
q,tri

r,k and

‖t′k‖2 = ‖
[
t>k uq

′>
0:k dq∗>0:k

]
‖2 ≥

√
02 + 02 + ‖dq∗>0:k ‖2

2 = ‖dq∗>0:k ‖2,
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then a sufficient condition for (A.23) is that

‖dq∗>0:k ‖2 >
δ
q,tri

r,k

σmin(
[
Tq,q

′

k Bq,q
′

k Dq,q′

k

]
)
. (A.24)

Now suppose that T q2 6= T q
′

2 (otherwise the matrix in the denominator of (A.24) is zero
and it never holds). Asymptotically speaking, the right hand side of (A.24) converges

to δ̃ , max{0, (δq,trir /σq,q
′
)}, since δ

q,tri

r,k converges to δ
q,tri

r and the least singular value

in the denominator either diverges or converges to some steady value σq,q
′
. So we set

d equal to any real number strictly grater than δ̃. By unlimited energy assumption for
attack signal, after some large enough time step K, the monotone increasing function
‖dq∗0:k‖2, exceeds d and so the system will be mode detectable.

Proof of Proposition 4.1.7

The results follow from the facts that an inequality in R is preserved by multiplying
the both sides by a non-negative number, or by multiplying the left hand side by a
non-negative number that is not greater than 1, or by increasing the right hand side,
as well as A � B =⇒ x>(A−B)x � 0.

Proof of Proposition 4.1.8

Considering M =

[
−I 0
0 L2

f

]
, we have

[
(∆f)> (∆q)>

]
M
[
(∆f)> (∆q)>

]>
=

−(∆f)>∆f + L2
f(∆q)

>∆q ≥ 0, where the inequality is implied by the Lipschitz
continuity of f(·).

Proof of Proposition 4.1.9

By definition, f is δ-QC with multiplier matrix M means that
[
(∆f)> (∆q)>

]
M
[
(∆f)> (∆q)>

]> ≥ 0. Then, it follows in a straightforward manner that[
(∆f)> (∆q)>

]
(−M)

[
(∆f)> (∆q)>

]> ≤ γ

for every γ ≥ 0.

Proof of Proposition 4.1.14

We observe that
[
(∆f)> (∆x)>

]
M
[
(∆f)> (∆x)>

]>
= (∆f)>(∆f)≤ L2

f‖∆x‖2≤
L2
f (2r)2 = 4r2L2

f , where the second and third inequalities hold by Lipschitz continuity
of f(·) and boundedness of the state space, respectively.

Proof of Lemma 4.1.15

First, notice that ∆f = A∆x + ∆g. Given this and ‖g(x)‖ ≤ r, we can con-

clude that
[
(∆f)> (∆x)>

]
M
[
(∆f)> (∆x)>

]>
= (∆f)>(∆f)− 2(∆x)>A>(∆f) +
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(∆x)>A>A(∆x) = (∆f − A∆x)>∆f − A∆x) = (∆g)>(∆g) ≤ (2r)2.

Proof of Proposition 4.1.16

By construction, we have the following condition:

M−
[
In×n −A
−A> A>A

]
=

[
M11 − I 0

0 M22 −M>
12M12

]
� 0,

since both submatrices on the diagonal are positive semi-definite by assumption.

Proof of Proposition 4.1.17

The global Lipschitz continuity of LPV systems can be shown as follows:

∆fk , ‖f(x1 − x2)‖ = ‖
N∑
i=1

λi,kA
i∆xk‖ ≤

N∑
i=1

λi,k‖Ai∆xk‖

≤
N∑
i=1

λi,k‖Ai‖‖∆xk‖ ≤ ‖Am‖‖∆xk‖,

with ‖Am‖ = maxi∈1...N ‖Ai‖, where the first and second inequalities hold by sub-
multiplicative inequality for norms and positivity of λi,k, the third inequality holds by

the facts that 0 ≤ λi,k ≤ 1 and
∑N

i=1λi,k = 1.

Proof of Lemma 4.5.1

Aiming to derive the governing equation for the evolution of the state errors, from
(4.5) and (4.6), we obtain

d̂1,k = M1(C1x̃k|k + Σd1,k + v1,k). (A.25)

Moreover, from (4.3), (4.5) and (4.7)–(4.10), we have

d̂2,k−1 = M2[C2(∆f(xk−1) +G1d̃1,k−1 +G2d2,k−1 +Wwk−1) + v2,k], (A.26)

and by plugging M1 = Σ−1 into (A.25), we obtain

d̃1,k = d1,k − d̂1,k = −M1(C1x̃k|k + v1,k), (A.27)

where ∆f(xk) , f(xk)− f(x̂k). Then, by setting M2 = (C2G2)† in (A.26) and using
(A.27), we have

d̃2,k−1 = −M2[C2(∆f(xk−1)−G1M1(C1x̃k−1|k−1 + v1,k−1) +Wwk−1) + v2,k]. (A.28)

Furthermore, it follows from (4.3),(4.9) and (4.10) that

x̃?k|k=∆f(xk−1)+G1d̃1,k−1 +G2d̃2,k−1 +Wwk−1. (A.29)
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In addition, by plugging d̃k−1 and d̃k−2 from (A.27) and (A.28) into (A.29), by (4.5)
and (4.11), we obtain

x̃k|k = (I − L̃C2)x̃?k|k − L̃ṽk. (A.30)

x̃?k|k = Φ[∆f(xk−1)−G1M1C1x̃k−1|k−1] + w̃k, (A.31)

where ṽk , v2,k, w̃k , −Φ(G1M1v1,k−1 −Wwk−1)−G2M2v2,k and Φ , I −G2M2C2.
Finally, combining (A.30) and (A.31) returns the results.

Proof of Theorem 4.5.3

Consider the state error dynamics (4.12) without bounded noise signals wk and vk

x̃k+1|k+1 = (I − L̃C2)Φ(∆fk −Ψx̃k), (A.32)

and the positive definite candidate Lyapunov function V wn
k = x̃>k|kPx̃k|k for some

P � 0. We will show that (4.13) implies that ∆V wn
k , V wn

k+1 − V wn
k � 0, where

∆V wn
k = ∆f>k Φ>(I − L̃C2)>P (I − L̃C2)Φ∆fk

+ x̃>k|k(Ψ
>Φ>(I − L̃C2)>P (I − L̃C2)ΦΨ− P )x̃k|k (A.33)

− 2∆f>k Φ>(I − L̃C2)>P (I − L̃C2)ΦΨx̃k|k, (A.34)

for each case. First, notice that for cases (0)–II and considering Y = PL̃, Π � 0 ⇐⇒

I − Γ � 0 and

[
Γ Y >

Y P

]
� 0, which by pre- and post-multiplication by

[
I 0
0 P−1

]
, is

equivalent to I − Γ � 0 and

[
Γ L̃>

L̃ P−1

]
� 0. Applying Schur complement to the latter,

Π � 0 is equivalent to

0 � L̃>PL̃ � Γ � I. (A.35)

On the other hand, defining S , P − C>2 Y > − Y C2, (A.33) becomes

∆V wn
k = ∆f>k Φ>(S + C>2 L̃

>PL̃C2)Φ∆fk
+x̃>k|k(Ψ

>Φ>(S + C>2 L̃
>PL̃C2)ΦΨ− P )x̃k|k

−2∆f>k Φ>SΦΨx̃k|k − 2∆f>k Φ>C>2 L̃
>PL̃C2ΦΨx̃k|k.

(A.36)

Now we consider each of the four cases, separately.

• Case (0): Applying Lemma 4.1.19 to (A.36), we obtain

∆V wn
k ≤ −(∆f>k Θ∆fk + x̃>k|kΞx̃k|k + 2∆f>k Λix̃k|k) (A.37)

= −
[
∆f>k x̃>k|k

]
Υi
[
∆f>k x̃>k|k

]>
, (A.38)

with Θ, Ξ and Λi defined in (4.14) and Υi in (4.13). Finally, (A.37) and (4.13)
imply that ∆V wn

k ≤ 0.
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• Case I: Adding and subtracting ∆f>k ∆fk from the right hand side of (A.36), as
well as from the Lipschitz continuity of f(·), we have

∆V wn
k ≤ ∆f>k Φ>(S + C>2 L̃

>PL̃C2 − I)Φ∆fk

+ x̃>k|k(Ψ
>Φ>(S + C>2 L̃

>PL̃C2)ΦΨ− P + L2
f )x̃k|k

− 2∆f>k Φ>SΦΨx̃k|k − 2∆f>k Φ>C>2 L̃
>PL̃C2ΦΨx̃k|k. (A.39)

Now, applying Lemma 4.1.19 to (A.39) results in (A.37) with Θ, Ξ and Λi

defined in (4.16) and Υi defined in (4.13), which implies that ∆V wn
k ≤ 0.

• Case II: To prove this, we first derive the following lemma.

Lemma A.0.2. Suppose f(·) is a Class II function. Then, at each time step
k, ∆fk can be decomposed into a linear function of x̃k|k and a bounded norm
uncertain nonlinear term, i.e., ∆fk = Ax̃k|k + sk, where ‖sk‖ ≤ γ.

Proof. Define sk , ∆f(xk)−Ax̃k|k. Then, notice that

‖sk‖2 = s>k sk = (∆f(xk)−Ax̃k|k)>(∆f(xk)−Ax̃k|k)
= ∆f(xk)

>∆fk − 2x̃>k|kA>∆f(xk) + x̃>k|kA>Ax̃k|k
=
[
(∆f(xk))

> x̃>k|k
]
M
[
(∆f(xk))

> x̃>k|k
]> ≤ γ2,

where the last inequality holds since f(·) is a DQC* function.

Now, from Lemma A.0.2 and (A.32), we have x̃k+1|k+1 = (I − L̃C2)Φ(sk − (Ψ−
A)x̃k). Comparing this with (A.32), the rest of the proof is similar to the one
for case (0), with the only difference being the use of ∆fk and Ψ in the place of
sk and Ψ−A, respectively.

• Case III: By f(·) being an LPV function as well as (A.32), we obtain

x̃k+1|k+1 = (I − L̃C2)ΦÂkx̃k, (A.40)

where Âk ,
∑N

i=1λi,k(A
i −Ψ). Then, the result follows directly from applying

[88, Lemma 1].

Proof of Lemma 4.5.4

We define a similar candidate Lyapunov function V wn
k as in the proof of Theorem

4.5.3, and we show that (4.18) implies ∆V wn
k ≤ 0. First, notice that (4.18) is equivalent
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to ∆ � 0 and

[
I (I − L̃C2)>P

P (I − L̃C2) P

]
� 0, which by pre- and post-multiplication

by

[
P (− 1

2
) 0

0 P−1

]
is, in turn, equivalent to[

P−1 P (− 1
2

)(I − L̃C2)>

(I − L̃C2)P (− 1
2

) P−1

]
� 0 and ∆ � 0.

Applying Schur complement, we obtain equivalently that ∆ � 0 and P−1 − P (− 1
2

)(I −
L̃C2)>P (I− L̃C2)P (− 1

2
) � 0. Pre- and post-multiplication by P

1
2 returns, equivalently,

∆ , P − 2L2
fλmax(Φ>Φ)I − 2Ψ>Φ>ΦΨ � 0, (A.41)

(I − L̃C2)>P (I − L̃C2) ≺ I. (A.42)

Finally, by (A.33), (A.42), Lemma 4.1.19, Lipschitz continuity of f(·) and (A.41), we
obtain

∆V wn
k ≤ ∆f>k (2Φ>Φ)∆fk + x̃>k|k(2Ψ>Φ>ΦΨ− P )x̃k|k

≤ 2λmax(Φ>Φ)∆f>k ∆fk + x̃>k|k(2Ψ>Φ>ΦΨ− P )x̃k|k

≤ x̃>k|k(2L
2
fλmax(Φ>Φ)I + 2Ψ>Φ>ΦΨ− P )x̃k|k ≤ 0.

Proof of Lemma 4.5.5

To show that uniform detectability is sufficient for existence of an observer, notice
that for a Class III function f(·), (4.12) can be written as

x̃k|k = (I − L̃C2)Ak−1x̃k−1|k−1 + (I − L̃C2)w̃k−1 − L̃ṽk−1, (A.43)

where w̃k−1 , −(I−G2M2C2)(G1M1v1,k−1−wk−1)−G2M2v2,k, Ak , Φ(
∑N

i=1 λi,kA
i−

Ψ) and ṽk−1 , v2,k. Now, consider the following linear time-varying system without
unknown inputs:

xk+1 = Akxk + w̃k, yk = C2xk + ṽk. (A.44)

Systems (A.43) and (A.9) are equivalent from the viewpoint of estimation, since the
estimation error equations for both problems are the same, hence they both have the
same objective. Therefore, the pair (Ak, C2) needs to be uniformly detectable such
that the observer is stable [10, Section 5].

Moreover, as for the necessity of the strong detectability of the constituent LTI
systems, suppose for contradiction, that there exists a stable observer for system
(4.3) with any sequence {λi,k}∞k=0 for all i ∈ {1, 2, . . . , N} that satisfies 0 ≤ λi,k ≤
1,
∑N

i=1 λi,k = 1,∀k, but one of the constituent linear time-invariant systems (e.g.,
(Aj, G, C,H)) is not strongly detectable. Since the observer exists for any sequence of
λi,k, that means that an observer also exists when λj,k = 1 and λi,k = 0, ∀i 6= j for all
k. However, we know from [131] that strong detectability is necessary for the stability
of the linear time-invariant system (Aj, G, C,H), which is a contradiction. Hence, the
proof is complete.
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Proof of Theorem 4.5.8

We use a similar approach as in the proof of Theorem 4.5.3 for Class 0, I and
II systems and a different approach for Class III systems. First, for Class 0, I and
II systems, consider the error dynamics with bounded noise signals (4.12) and the
candidate Lyapunov function V n

k , x̃>k|kPx̃k|k. Observe that

∆V n
k , V n

k+1 − V n
k = ∆V wn

k + ∆rk, (A.45)

where V wn
k is the Lyapunov function for the error dynamics without noise signals,

defined in (A.33), and

∆rk , 2(∆f>k − x̃>k|kΨ>)Φ>(I − L̃C2)>PW(L̃)wk + w>kW(L̃)>PW(L̃)wk, (A.46)

with Φ,Ψ, wk and W(L̃) defined in Lemma 4.5.1. We will show for each of the cases
(0), I and II that

∆rk , ∆rk − η2w>k wk + x̃>k x̃k ≤ 0. (A.47)

Then, by (A.45) and (A.47) in addition to the fact that ∆V wn
k ≤ 0 (follows from

Theorem 4.5.3), we have

∆V n
k ≤ η2w>k wk − x̃>k|kx̃k|k. (A.48)

Summing up both sides of (A.48) from zero to infinity, returns V n
∞−V n

0 ≤ η2
∑∞

k=0w
>
k wk−∑∞

k=0x̃
>
k|kx̃k|k = η2

∑∞
k=0 ~w

>
i ~wi −

∑∞
k=0x̃

>
k|kx̃k|k, where at each time step k, ~w>k =[

w>k v>k
]>

. Then, it follows from setting the initial conditions to zero that∑∞
k=0x̃

>
k|kx̃k|k ≤ η2

∑∞
k=0 ~w

>
i ~wi

.
Thus, it remains to show that (A.47) holds for each case (0)–II. Plugging the

expression for W(L̃) from Lemma 4.5.1 into (A.46), we obtain

∆rk = x̃>k|kx̃k|k + 2(∆fk −Ψx̃k|k)
>Φ>(PR− Y Ω− C>2 Y >R + C>2 L̃

>PL̃Ω)wk

+ w>k (R>PR−R>Ω− Ω>Y >R + Ω>ΓΩ− η2I)wk,

which by (A.35) and Lemma 4.1.19, implies that:

∆rk ≤ w>k (R>PR−R>Y Ω− Ω>Y >R+Ω>ΓΩ−η2I + 2Ω>Ω)wk
+x̃>k|k(I + Ψ>Φ>C>2 C2ΦΨ)x̃k|k + 2∆f>k Φ>(PR− Y Ω− C>2 Y >R)wk
−2x̃>k|kΨ

>Φ>(PR− Y Ω− C>2 Y >R)wk + ∆f>k (Φ>C>2 C2Φ)∆fk.
(A.49)

Now, we separately consider each of the cases (0)–II:
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• Case (0): It directly follows from (A.49) that ∆rk ≤ −ζ>N ζ ≤ 0, where

ζ ,
[
w>k x̃>k ∆f>k

]>
and N is the matrix in (4.20) with its elements defined

in (4.21).

• Case I: First, notice that

∆f>k (Φ>C>2 C2Φ)∆fk ≤ λmax(Φ
>C>2 C2Φ)∆f>k ∆fk

≤ x̃>k|k(L
2
fλmax(Φ

>C>2 C2Φ)I)x̃k|k,
(A.50)

where the second inequality is implied by Lipschitz continuity of f(·). Then,
it can be concluded from (A.49) and (A.50) that ∆rk ≤ −ζ>N ζ ≤ 0, where

ζ ,
[
w>k x̃>k ∆f>k

]>
and N is the matrix in (4.20) with its elements defined

in (4.22).

• Case II: By Lemma A.0.2 and (A.46) we have

∆rk = w>kW(L̃)>PW(L̃)wk + 2(x̃>k|k(A−Ψ)> + s>k )Φ>(I − L̃C2)>PW(L̃)wk,

(A.51)

where sk = ∆fk −Ax̃k|k. Comparing (A.51) with (A.46), the rest of the proof
is similar to the one for case (0),by replacing ∆fk and Ψ with sk and Ψ − A,

respectively, which results in ∆rk ≤ −ζ>N ζ ≤ 0, where ζ ,
[
w>k x̃>k ∆f>k

]>
and N is the matrix in (4.20) with its elements defined in (4.23).

• Case III: For this case, we consider a different approach compared to the previous
cases. By f(·) being LPV and (4.12), we can define a system with x̃k|k as its
state and z̃k|k = x̃k|k as the output:

x̃k|k = (I − L̃C2)Ak−1x̃k−1|k−1 + [(I − L̃C2)R + L̃Q]wk−1,
z̃k|k = x̃k|k,

(A.52)

where Ak , Φ
∑N

i=1λi,k(A
i −Ψ), each Ai is a constituent matrix of f(·) and Φ

and Ψ are defined in Lemma 4.5.1. Now, by [38, Lemma 3], system (A.52) has
an H∞ performance bounded by η, if there exists a symmetric positive definite
matrix S such that:

S ,

S (I − L̃C2)AiS (I − L̃C2)R + L̃Q 0
∗ S 0 S
∗ ∗ ηI 0
∗ ∗ ∗ ηI

 � 0,

∀i ∈ {1, 2, . . . , N} , (A.53)

where A
i
, Φ(Ai −Ψ). Notice that the referenced lemma requires the existence

of a bounded matrix sequence, which in our case is a sequence of time-invariant
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matrices (S is the same for each k), that is obviously bounded. By plugging

P = S−1 � 0, defining P = P> ,

0 P 0 0
P 0 0 0
0 0 I 0
0 0 0 I

 and applying some similarity

transformations, we obtain

PSP =


P Ai

>
(I−C>2 L̃>)P 0 I

∗ P (I− L̃C2)R + L̃Q 0
∗ ∗ I 0
∗ ∗ ∗ ηI

 � 0,∀i ∈ {1, 2, . . . , N} .

Setting Y , PL̃ completes the proof.

Proof of Theorem 4.5.9

To obtain (4.25) and (4.26), we will show that x̃k|k ≤
√

x̃>
0|0P x̃0|o

λmin(P )
and x̃k|k ≤

δx0θ
k + η

∑k
i=1 θ

i−1. The former inequality follows from the non-increasing Lyapunov
function defined in the proof of Theorem 4.5.3, as well as the fact that λmin(A)‖x‖2 ≤
x>Ax,∀x ∈ Rn, A ∈ Rn×n. The following shows that the latter inequality holds for
each of the different system classes.

(I) If f(·) is a Class I function, then, the result in (4.25) with θ and η defined in
(4.27), directly follows from Lipschitz continuity of f(·), as well as applying
triangle and sub-multiplicative inequalities for norms on (4.12). Moreover, the
result in (4.26) with β and α defined in (4.27), is obtained by triangle and
sub-multiplicative inequalities, (A.27) and (A.28).

(II) If f(·) is a Class II function, by Lemma A.0.2, (4.12), (A.27), (A.28) and triangle
and sub-multiplicative inequalities, we obtain the results in (4.25) and (4.26)
with θ, η, β and α defined in (4.28).

(III) If f(·) is a Class III function, we first need to find closed form expressions for
the state and input estimation errors through the following lemma.

Lemma A.0.3. The state and input estimation errors are

x̃k|k =
k∑
i=1

i−2∏
j=0

Ae,k−j(Ψw̃k−i − L̃ṽk−i) +
k−1∏
j=0

Ae,k−jx̃0|0,

d̃k−1 =−
N∑
i=1

λi,k−1(V1M1C1 + V2M2C2Ae,i)x̃k−1|k−1

+ (V2M2C2G1M1 − V1M1)T1vk−1

− V2M2C2wk−1 − V2M2T2vk.
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Proof. Starting from (A.43) and applying simple induction return the results
for the state errors. Then, the expression for the input errors follows from
(A.27), (A.28) and (2.4).

Now, we are ready to prove Theorem 2.3.5 for LPV functions. First, we define

Be,k ,
k−1∏
j=0

Ae,k−j,

Ci
e,k ,

i−2∏
j=0

Ae,k−j, t̃k , Ψw̃k − L̃ṽk,
(A.54)

for 1 ≤ i ≤ k. Then, from Lemma A.0.3, we have

‖x̃k|k‖ ≤ ‖Be,k‖‖x̃0|l0‖+ ‖
k∑
i=1

Ci
e,ktk−i‖, (A.55)

by triangle inequality and submultiplicativity of norms. Moreover, by similar
reasoning, we find

‖Be,k‖≤‖
k−1∏
j=0

N∑
i=1

λik−jΨΦ(Ai −G1M1C1)‖≤θk,

‖
k∑
i=1

Ci
e,ktk−i‖≤

k∑
i=1

‖Ci
e,k‖‖tk−i‖, (A.56)

‖Ci
e,k‖ ≤

i−2∏
j=0

‖
N∑
s=1

λs,k−jAe,s‖ ≤ θi−1.

Moreover, from (A.13),

‖t̃k−i‖ = ‖<vk−i + ΨΦwk−i‖ ≤ η, (A.57)

with < , −(ΨΦG1M1T1 + ΨG2M2T2 + L̃T2). Then, from (A.55)–(A.57), we
obtain (4.25) with θ and η defined in (4.29). Furthermore, the result in (4.26)
with β and α defined in (4.29), follows from applying Lemma A.0.3, as well

as triangle inequality, the facts that 0 ≤ λi,k ≤ 1,
∑N

i=1 λi,k = 1 and sub-
multiplicativity of matrix norms.

Finally, the steady state values are obtained by taking the limit from both sides of
(4.25) and (4.26), assuming θ < 1.

Proof of Corollary 4.5.11

Clearly ‖Ae,i‖ < 1 implies that θ < 1, which is a sufficient condition for the
convergence of errors by Theorem 4.5.9.
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Proof of Proposition 5.2.3

The result follows directly from plugging the corresponding expressions into the
right hand side term of Definition 5.2.2.

Proof of Theorem 5.2.4

To use contradiction, suppose that ‖rqk‖2 > δq,∗r,k and let q be the true mode,

i.e., q = q∗ and thus, T q2 = T q∗2 . By Proposition 5.2.3, ∆r
q|q∗
k = 0 and hence,

‖rqk‖2 = ‖rq|∗k ‖2 ≤ δq,∗r,k , which contradicts with the assumption.

Proof of Lemma 5.2.5

The first equality in (5.10) comes from Definition 5.2.2 and zq2,k = Cq
2xk +Dq

2,ku
q
k +

vq2,k from (4.5) in Section 4.4.1, assuming that q is the true mode. To obtain the
second equality, note that [118, (A.11)] returns

x̃?,qk|k = Φq[∆f qk−1 −G
q
1M

q
1C

q
1 x̃

q
k−1|k−1] + w̃qk, (A.58)

w̃qk , −Φq(Gq
1M

q
1v

q
1,k−1 −W

qwqk−1)−Gq
2M

q
2v

q
2,k.

Now, from the first equality and (5.5), we have

r
q|∗
k = Cq

2Φq(∆f qk−1 −G
q
1M

q
1C

q
1 x̃

q
k−1|k−1) + Yqwqk−1. (A.59)

On the other hand, by iteratively applying (5.7), we obtain:

x̃qk|k =
i−1∑
i=1

[((I − L̃qCq
2)Ψq)i−1(I − L̃qCq

2)Φq∆f qk−i + (I − L̃qCq
2)i−1Wqwqk−i+1]

+ (−1)k((I − L̃qCq
2)ΦqΨq)kx̃q0|0. (A.60)

Combining (A.59) and (A.60) yields

r
q|∗
k = Aqkx̃

q
0|0 +

k−1∑
i=0

F q
i ∆f qk−1−i + Jqi w

q
k−i,

which is equivalent to the second equality in (5.10).

Proof of Lemma 5.2.6

Consider the following optimization problem for ‖rq|∗k ‖2 by leveraging Lemma 5.2.5:

δqr,k , max
tk
‖Aq

ktk‖2 (A.61)

s.t. tk =
[
x̃>0|0 vq>0 . . . vq>k wq>0 . . . wq>k−1 ∆f q>0 . . .∆f q>k−1

]>
,

‖x̃0|0‖2 ≤ δx0 , ‖v
q
i ‖2 ≤ ηqv, ‖w

q
j‖2 ≤ ηqw, ‖∆f

q
j ‖2 ≤ Lqfδ

x,q

j ≤ Lqfδ
x,q
,

i ∈ {0, ..., k}, j ∈ {0, ..., k − 1}.
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The objective `2-norm function is continuous and the constraint set is an intersection
of level sets of lower dimensional norm functions, which is closed and bounded, so is
compact. Hence, by the Weierstrass Theorem [15, Proposition 2.1.1], the objective
function attains its maxima on the constraint set and so a finite-valued upper bound
exists.

Proof of Theorem 5.2.7

Consider the following optimization problem:

δq,infr,k , max
tk
‖Aq

ktk‖2 (A.62)

s.t. tk = tk =
[
x̃>0|0 vq>0 . . . vq>k wq>0 . . . wq>k−1 ∆f q>0 . . .∆f q>k−1

]>
,

‖x̃0|0‖∞ ≤ δx0 , ‖v
q
i ‖∞ ≤ ηqv, ‖w

q
j‖∞ ≤ ηqw, ‖∆f

q
j ‖∞ ≤ Lqfδ

x,q

j

∀i ∈ {0, ..., k}, ∀j ∈ {0, ..., k − 1}.

Comparing (A.61) with (A.62), the two problems have the same objective functions.
Then, since ‖.‖∞ ≤ ‖.‖2, the constraint set for (A.61) is a subset of the one for (A.62).

Hence δqr,k ≤ δq,infr,k . Also, it is easy to see that δqr,k ≤ δq,trir,k , which is obtained using
triangle inequality and the sub-multiplicative property of norms. Moreover, (A.62) is
a maximization of a convex objective function over a convex constraint (hypercube
X q
k ). By a famous result [101, Corollary 32.2.1], in such a problem, the objective

function attains its maxima on some of the extreme points of the constraint set, which
in this case are the vertices Tk of the hypercube X q

k .

Proof of Corollary 5.2.9

The result follows directly from plugging the above expressions into the right hand
side term of Definition 5.2.2.

Proof of Lemma 5.3.4

To show (5.12), we first find a lower bound for δq,infr,k . Then, we prove that the lower

bound diverges and so does δq,infr,k . Define t̃?k ,
t?k
ηtk

, where ηtk is defined in Corollary

5.2.9. Now consider

ηtkσmin(Aq
k) = σmin(ηtkA

q
k) = min

‖t‖2≤1
‖ηtkA

q
kt‖2 ≤ ‖ηtkA

q
k t̃
?
k‖2 = ‖Aq

kt
?
k‖2 , δq,infr,k ,

where σmin(A) is the smallest non-trivial singular value of matrix A. The first equality
holds since σmin(.) is a linear operator and the second equality is a special case of the
matrix lower bound [50] when `2-norms are considered. The inequality holds since
‖t̃?k‖2 = 1 by Corollary 5.2.9, so t̃?k is a feasible point for the minimization problem
(i.e., min

‖t‖2≤1
‖ηtkA

q
kt‖2) and the last equality holds by Theorem 5.2.7. So far we have

shown that ηtkσmin(Aq
k) is a lower bound for δq,infr,k . Next, we will prove that ηtkσmin(Aq

k)
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is unbounded. First, it is trivial to observe that ηtk grows unbounded by its definition
in Corollary 5.2.9. Second, σmin(Aq

k) ≤ σmin(Aq
k+1), since the latter is an augmentation

of the former with additional columns. Hence, ηtkσmin(Aq
k) grows unbounded, since

the product of the unbounded and positive σmin(Aq
k) and the unbounded and positive

ηtk is unbounded.

To prove (5.13), we show that {δq,trir,k }∞k=1 is a convergent sequence. Then, this fact,

as well as (5.12) and the fact that δ̂qr,k , min{δq,trir,k , δq,infr,k } by Theorem 5.2.7, imply

(5.13). To show the convergence of {δq,trir,k }∞k=1, starting from (5.11), we first show that

∀q ∈ Q, Sq1,k ,
∑k−2

i=0 L
q
f‖F

q
i ‖2δ

x,q

k−1−i+
1√
2
ηqv(‖J

q,1
i ‖2 +‖Jq,3i ‖2)+ηqw‖J

q,2
i ‖2 on the right

hand side of (5.11) converges to some steady state value. Note that ‖F q
i ‖2 ≤ Rqθqi

by the sub-multiplicative property of norms, where

Rq , Lqf‖C
q
2ΦqGq

1M
q
1C

q
1‖2‖Ψq‖2‖Φq‖2

and θq is given in (5.8). Combining this and (A.79) implies that

k−2∑
i=0

Lqf‖F
q
i ‖2δ

x,q

k−1−i ≤ Rq

(
(δx0 −

ηq

1− θq
)(k − 1)(θq)k−1 +

ηq

1− θq
1− (θq)k−1

1− θq

)
,

and the upper bound tends to Rq ηq

(1−θq)2 as k tends to ∞, since 0 < θq < 1 (cf. (5.8))

and limk→∞ k(θq)k = 0 when 0 < θq < 1. Moreover, it follows from the definitions of
Jqi and θq (cf. Proposition 5.2.1 and Lemma 5.2.5), as well as the sub-multiplicative
property of norms that:

1√
2
ηqv(‖J

q,1
i ‖2 + ‖Jq,3i ‖2) + ηqw‖J

q,2
i ‖2 ≤

{
Oq, i = 0,

Sqθqi, i ≥ 1,

where

Oq , ηqw(‖Cq
2ΦqGq

1M
q
1T

q
1 ‖2 + ‖(I − Cq

2G
q
2M

q
2 )T q2 ‖2) + ηqv‖C

q
2ΦqW q‖2,

Sq , (ηqw‖C
q
2ΦqGq

1M
q
1C

q
1‖2(‖ΦqGq

1M
q
1T

q
1 ‖2 + ‖Gq

2M
q
2T

q
2 ‖2) + ηqv‖ΦqW q‖2).

Combining these and (5.8) results in

k−2∑
i=0

1√
2
ηqv(‖J

q,1
i ‖2 + ‖Jq,3i ‖2) + ηqw‖J

q,2
i ‖2 ≤ Oq + Sq

θq − θqk−1

1− θq
,

where the upper bound tends to Sqθq

1−θq as k tends to ∞. Next, it is straightforward to

observe that all constitutent terms in Sq2,k , (‖Aqk‖2 +Lqf‖F
q
k−1‖2)δx0 + 1√

2
ηqv(‖J

q,1
k−1‖2 +

‖Jq,3k−1‖2) + ηqw‖J
q,2
k−1‖2 (on the right hand side of (5.11)) are all decreasing to zero

as k increases, since they are all upper bounded by some terms involving (θq)k by
their definitions (cf. Lemma 5.2.5) and the sub-multiplicative property. Hence,
limk→∞ δ

q,tri
r,k = limk→∞(Sq1,k + Sq2,k) = limk→∞ S

q
1,k <∞.
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Proof of Lemma 5.3.5

Suppose, for contradiction, that none of q and q′ are eliminated. Then

‖Cq
2 x̂

?,q
k|k +Dq

2u
q
k − C

q′

2 x̂
?,q′

k|k −D
q′

2 u
q′

k ‖2 = ‖rq
′

k − r
q
k + zq2,k − z

q′

2,k)‖2

≤ ‖rq
′

k ‖2 + ‖rqk‖2 + ‖zq2,k − z
q′

2,k‖2 ≤ δqr,k + δq
′

r,k +Ry‖T q2 − T
q′

2 ‖2,

where the equality holds by Definition 5.2.2, the first inequality holds by triangle
inequality and the last inequality holds by the assumption that none of q and q′ can be
eliminated, as well as the boundedness assumption for the measurement space. This
last inequality contradicts with the inequality in the lemma, thus the result holds.

Proof of Lemma 5.3.6

Recall from Proposition 5.2.3, Lemma 5.2.5 and (5.1) that:

rqk = Aq
kt
q
k + (T q2 − T

q∗

2 )(Cq∗xk +Hq∗dq
∗

k +Dq∗uq
∗

k + vq
∗

k ). (A.63)

On the other hand, by applying Taylor series expansion to (5.1) we obtain:

xk = Jq
∗

f,0xk−1 +Bq∗uq
∗

k−1 +Gq∗dq
∗

k−1 +W q∗wq
∗

k−1 + (H.O.T )q
∗

k , (A.64)

where (H.O.T )q
∗

k is an error term that satisfies ‖(H.O.T )q
∗

k ‖2 ≤ 1
2
Hq∗

f (ξk) for some
ξk ∈ X. Then, by applying (A.64) at time steps k, k − 1, . . . , 1, plugging them into
(A.63) and augmentating the results, we obtain (5.15).

Proof of Theorem 5.3.7

To show that (iii) is sufficient for asymptotic mode detectability, consider Lemma
5.3.5 with δq,trir,k as the upper bound. It suffices to show that ∃K ∈ N, such that

(5.14) holds for k ≥ K, ∀q 6= q′ ∈ Q. Notice that by Definition 5.2.2, Cq
2 x̂

?,q
k|k =

Cq
2xk +T q2 vk− r

q|∗
k . Hence, by plugging this into (5.14), we need to show that ∃K ∈ N

such that:

‖W q,q′sq,q
′

k ‖2 > δq,trir,k + δq
′,tri
r,k +Rq,q′

z ,∀k ≥ K, ∀q 6= q′ ∈ Q, (A.65)

where sq,q
′

k ,
[
x>k v>k r

q|∗>
k r

q′|∗>
k uq>k uq

′>
k

]>
. A sufficient condition to satisfy

(A.65) is that ∃K ∈ N such that ∀k ≥ K, (A.65) holds for all sq,q
′

k . Equivalently, it
suffices that:

W q,q′

k > δq,trir,k + δq
′,tri
r,k +Rq,q′

z ,∀k ≥ K, ∀q 6= q′ ∈ Q,
where

W q,q′

k , min
xk,vk,r

q
k,r

q′
k

‖W q,q′sq,q
′

k ‖2

s.t. ‖xk‖2 ≤ Rx, ‖vk‖2 ≤ ηv, ‖rq|∗k ‖2 ≤ δq,trir,k , ‖rq
′|∗
k ‖2 ≤ δq

′,tri
r,k .

231



Finally, by expanding the constraint set, it suffices to require that ∃K ∈ N such that:

W q,q′

k
> δq,trir,k + δq

′,tri
r,k +Rq,q′

z ,∀k ≥ K, ∀q 6= q′ ∈ Q,

where

W q,q′

k
,min

sq,q
′

k

‖W q,q′sq,q
′

k ‖2

s.t. ‖sq,q
′

k ‖
2
2 ≤ R2

x + η2
v + (δq,trir,k )2 + (δq

′,tri
r,k )2 + (uqk)

2 + (uq
′

k )2.

Now, by the matrix lower bound theorem [50] and a similar argument to the proof of
Lemma 5.3.4, it is sufficient to require that ∃K ∈ N such that ∀k ≥ K, ∀q 6= q′ ∈ Q :

σ2
min(W q,q′)>

(δq,trir,k + δq
′,tri
r,k +Rq,q′

z )2

R2
x+η

2
v+(δq,trir,k )2+(δq

′,tri
r,k )2+(uqk)

2+(uq
′

k )2
. (A.66)

The result in (A.66) provides us a time-dependent sufficient condition for mode
detectability. In order to find a time-independent sufficient condition, notice that
(δ
q,tri
r,k +δ

q′,tri
r,k +Rq,q

′
z )2

R2
x+η2v

is an upper bound for the right hand side of (A.66), since the

latter’s denominator is smaller than the former’s and the numerator of the latter is an
upper bound signal for the former’s by triangle inequality and the sub-multiplicative
property of norms. So, a sufficient condition for (A.66) is that ∃K ∈ N such that
∀k ≥ K, ∀q 6= q′ ∈ Q :

σ2
min(W q,q′) >

(δ
q,tri

r,k + δ
q′,tri

r,k +Rq,q′
z )2

R2
x + η2

v

. (A.67)

Then, for the above to hold, it suffices that

σ2
min(W q,q′) > lim

k→∞

(δ
q,tri

r,k + δ
q′,tri

r,k +Rq,q′
z )2

R2
x + η2

v

,

which is equivalent to (iii) by (5.13).
As for the sufficiency of (i), we show that the sufficient conditions in (i) imply

that if q 6= q∗, then the residual signal rqk grows unbounded. Then, since we showed

in Lemma 5.3.4 that the computed upper bound signal δ̂qr,k is bounded, so there

must exist a time step K such that rqk > δ̂qr,k for k ≥ K, and hence, mode q will be
eliminated after time step K and therefore, mode detectability holds. To do so, we
show that if (i) holds, then the right hand side of (5.15) grows unbounded, and so
does rqk. First, note that by Lemma 5.3.4, the first term in the right hand side of
(5.15), i.e., Aq

kt
q
k, is bounded. Moreover, (5.16) and the facts that the state space is

bounded and ‖Jq
∗

f,0‖2 < 1 imply that εq
∗

k , i.e., the third term in the right hand side of
(5.15), is bounded.

Next, we show that the second term in the right hand side of (5.15), i.e. αq
∗

k ,
grows unbounded. Consequently, the summation of the two bounded terms Aq

kt
q
k and
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εq
∗

k as well as the unbounded term αq
∗

k will be unbounded. To show that αq
∗

k grows
unbounded, it suffices to show that for any c > 0, any specific mode q with the true
mode being q∗, there exists a large enough K such that:

‖αq
∗

K ‖2 =
∥∥∥[Tq,q∗K Cq,q∗

u,K Cq,q∗

d,K

] [
ζ>K uq

∗>
0:k dq∗>0:K

]>∥∥∥
2
> c,

with Tq,q
∗

K , (T q−T q∗)
[
Cq∗

x,K Cq∗

w̃,K

]
, Cq,q∗

u,K , (T q−T q∗)Cq∗

u,K , Cq,q∗

d,K , (T q−T q∗)Cq∗

d,K

and ζK ,
[
x>0 w̃q

∗>
0:K

]>
. Since q∗ is unknown, a sufficient condition to satisfy the

above equality is that ∀c > 0,∀q′ 6= q ∈ Q, ∃K ∈ N such that:∥∥∥[Tq,q′K Cq,q′

u,K Cq,q′

d,K

] [
ζ>K uq

′>
0:K dq∗>0:k

]>∥∥∥
2
> c.

So it suffices that ∀c > 0,∀q′ 6= q ∈ Q, ∃d ∈ R,∃K ∈ N, such that:

T q,q
′

k > c,

where

T q,q
′

k ,min
ζ′k

∥∥∥[Tq,q′K Cq,q′

u,K Cq,q′

d,K

]
ζ ′K

∥∥∥
2

s.t. ζ ′K =
[
x>0 w̃q

∗>
0:K uq

′>
0:K dq∗>0:K

]>
, ‖dq∗0:K‖2 ≥ d,

‖wi‖∞ ≤ ηw, ‖vj‖∞ ≤ ηv, i ∈ {0, ..., K − 1}, j ∈ {0, ..., K}.

Once again, by the matrix lower bound theorem, a sufficient condition for the above
inequality to hold is that ∃d ∈ R,∃K ∈ N, such that:

T q,q
′

k
>

c

σmin(
[
Tq,q

′

K Cq,q′

u,K Cq,q′

d,K

]
)
,

where

T q,q
′

k
, min

w̃q
∗

0:K ,d
q∗
0:K

‖ζ ′K‖2 (A.68)

s.t. ζ ′K =
[
x>0 w̃q

∗>
0:K uq

′>
0:k dq∗>0:K

]>
, ‖dq∗0:K‖2 ≥ d,

‖wi‖∞ ≤ ηw, ‖vj‖∞ ≤ ηv, i ∈ {0, ..., K − 1}, j ∈ {0, ..., K}.

Finally, since

‖ζ ′K‖2 =
∥∥[x>0 w̃q

∗>
0:k uq

′>
0:K dq∗>0:K

]∥∥
2
≥
√

02 + 02 + 02 + ‖dq∗>0:K‖2
2 = ‖dq∗>0:K‖2,

then a sufficient condition for (A.68) to hold is that

‖dq∗>0:K‖2 >
c

σmin(
[
Tq,q

′

K Cq,q′

u,K Cq,q′

d,K

]
)
. (A.69)
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Now, suppose that T q2 6= T q
′

2 (otherwise the matrix in the denominator of (A.69) is zero
and it never holds). Then, the right hand side of (A.69) converges asymptotically to

δ̃ , max{0, c

σq,q
′ }, since the smallest singular value in the denominator either diverges,

or converges to some steady value σq,q
′
. So we set d to be equal to any real number

that is strictly greater than δ̃. By the unlimited energy assumption for the unknown
input signal, at some large enough time step K, the monotonely increasing function
‖dq∗0:k‖2 will exceed d and so, the system will be mode detectable.

Proof of Lemma 6.1.5

For j ∈ {1 . . .m}, consider the problem of sj = max
x≤x≤x

[Ax]j, where [Ax]j =∑n
i=1Aj,ixi is the j-th component of the vector Ax. It is easy to verify that the

solutions of this linear program are x∗i = xi if Ai,j ≥ 0, and x∗i = −xi if Ai,j < 0,
for i ∈ {1 . . . n}. Consequently, sj = [A]+j x − [A]++

j x, where [A]j is the j-th row of

A. By similar reasoning, sj = minx≤x≤x[Ax]j = [A]+j x − [A]++
j x. Thus, considering

that supx≤x≤xAx = [s1 . . . sm]
>

and infx≤x≤xAx = [s1 . . . sm]
>

, the proof is
complete.

Proof of Lemma 6.1.10

Starting from (6.2), we obtain fd(x, x) = f(x1) + Cf(x − x) and fd(x, x) =
f(x2) + Cf (x− x), which together imply

fd(x, x)− fd(x, x) = f(x1)− f(x2) + 2Cf (x− x), (A.70)

where ∀i ∈ {1 . . . n}, x1,i and x2,i are either xi, or xi, depending on the case (cf. [128,
Theorem 1; (10)–(13)]). Moreover, x ≤ x and x ≤ x1, x2 ≤ x. This implies that

−(x− x)≤x1−x2 ≤ x− x⇒ ‖x1 − x2‖≤‖x− x‖. (A.71)

On the other hand, applying triangle inequality to (A.70) and by the Lipschitz
continuity of f , we obtain

‖fd(x, x)−fd(x, x)‖≤Lf‖x1−x2‖+2‖Cf‖‖(x−x)‖. (A.72)

Combining (A.71) and (A.72) yields the result.

Proof of Lemma 6.3.3

Augmenting the state and output equations in (6.3) and from Corollary 6.1.9, we
obtain

hk ≤ [G>H>]>dk−1 ≤ hk,

with hk, hk defined in (6.11),(6.12). Then, the input framers in (6.10) can be obtained
by using Propositions 6.1.2–6.1.8 and considering the fact that J is full rank. Finally,
tightness is implied by Lemma 6.1.5 (where the A matrix equals J).
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Proof of Theorem 6.3.4 and Corollary 6.3.5

From the state equation in 6.3, Corollary 6.1.9 and Proposition 6.1.4, we have
xpk ≤ xk ≤ xpk, where, xpk = f

k
+Buk−1 +w +G+dpk−1 −G++d

p

k−1, xpk = fk +Buk−1 +

w +G+d
p

k−1 −G++dpk−1, where d
p

k−1, d
p
k−1 are the corresponding input framers, which

can be obtained as affine functions of xpk, x
p
k from (6.10) by Lemma 6.3.3. Doing so

and plugging them back into the above expressions for xpk, x
p
k yields the following linear

system of equations

Ax
[
xp>k xp>k

]>
=Af

[
f
>
k f>

k

]>
+ Ag

[
g>k g>

k

]>
+ Auuk−1

+Aw
[
w> w>

]>
+ Av

[
v> v>

]>
+ Ayyk−1, pk,

(A.73)

with As,∀s ∈ {x, f, g, u, w, v, y} given in the statement of the theorem and qk, qk,∀q ∈
{f, g} obtained from Corollary 6.1.9 with the corresponding interval [xk−1, xk−1]. By
[53], the set of all solutions of (A.73) lies in an interval with the following maximal
and minimal elements

xp>k = xp,fk + µr, xp>k = xp,fk − µr, (A.74)

where µ is a very large positive real number (infinity), xp,fk , (A†xpk)(1:n), x
p,f
k ,

(A†xpk)(n+1:2n)), and r , rowsupp(I − A†xAx)(1:n), which also equals to rowsupp(I −
A†xAx)(n+1:2n) by [75, Corollary 4.7] and the fact that Ax is a block real centro-Hermitian
matrix by its definition. Now, the fact that xk ∈ [xpk, x

p
k], existence of affine parallelized

abstraction matrix A = (1/2)(A + A) for g2(.) (cf. Proposition 6.1.2 and Corollary
6.1.3) and Proposition (6.1.4) imply that:

αk , A+xpk − A
++xpk ≤ Axk ≤ A+xpk−A

++xpk , αk. (A.75)

Multiplying (A.75) by A† and applying Proposition 6.1.4, (A.74) and [53] yield
xuk ≤ xk ≤ xuk , where

xuk = min(xp,fk + µr,A†+αk − A†++αk +µr̃),

xuk = max(xp,fk − µr,A†+αk− A†++αk − µr̃),
(A.76)

with r̃ , rowsupp(I −A†A). Note that for the implementation of the update step, we
iteratively find new local parallel abstraction slopes Ai,k by iteratively solving the LP

(6.1) for g2 on the intervals obtained in the previous iteration, B∗,ik = [x∗,i−1
k , x∗,i−1

k ],

to find local framers x∗,ik , x
∗,i
k (cf. (6.13)–(6.16)), with additional constraints given in

(6.18) in the optimization problems, which guarantees that the iteratively updated
local intervals obtained using the local abstraction slopes are inside the global interval
[xuk x

u
k ], computed in (A.76) using the global parallel affine abstraction slope A. This,

in addition to (6.9), (6.13)–(6.14) and (A.76) ensure that

xuk ≤ x∗,0 ≤ · · · ≤ x∗,i ≤ · · · ≤ limi→∞ x
∗,i , xk,

xk , limi→∞ x
∗,i ≤ x∗,0 ≤ · · · ≤ x∗,i ≤ · · · ≤ xuk ,
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∀i ∈ {1 . . .∞}, where xk, xk are the returned updated state framers by the observer.
Since our goal is to obtain sufficient existence conditions that can be checked a priori
instead of for each time step k, we use (A.74) and (A.76) with the global interval (that
includes all local intervals), which result in

xk ≤ min(xp,fk + µr,A1x
p,f
k − A2x

p,f
k + ((A1 + A2)r + µr̃)),

xk ≥ max(xp,fk − µr,A1x
p,f
k − A2x

p,f
k − ((A1 + A2)r + µr̃)),

(A.77)

where A1 , A†+A+ + A†++A++ and A2 , A†+A++ + A†++A+. Considering (A.77)
and given the facts that µ is infinite and r(j), r′(j) ∈ {0, 1},∀j ∈ {1 . . . n}, where
r′ , (A1 + A2)r + r̃, it suffices for the finiteness of the right hand sides of (A.77)
that ∀j ∈ {1 . . . n} : r(j)r′(j) = 0. This is equivalent to (6.17). Moreover, since
{x∗,ik } and {x∗,ik } for all i are, by construction, computed with over-approximations

of the observation function g2, x
∗,i
k ≤ xk ≤ x∗,ik holds by (6.13)–(6.14). Further,

(x∗,ik , x
∗,i
k )

i→∞−−−→ (xk, xk), hence correctness follows for the state framer, while correctness
for the input framer holds by Lemma 6.3.3. Finally, without the update step in (6.9),
(6.17) reduces to r = rowsupp(I−A†xAx) = 0, which is equivalent to the rank condition
in Corollary 6.3.5 by [75].

Proof of Lemma 6.3.6

The bounds for d1,k can be obtained by applying Propositions 6.1.4 and 6.1.8 to
(6.5). Moreover, since d2,k does not appear in (6.5) and (6.6), it cannot be estimated
at the current time.

Proof of Theorem 6.3.8

Let ∆x
k , xk − xk, (similarly for ∆xp,fk ). Then, by (A.77),

∆x
k ≤ min(∆xp,fk + 2µr, (A1 + A2)∆xp,fk + 2((A1 + A2)r + µr̃))).

From this and using the fact that min(a, b) ≤ Da + (I −D)b, ∀a, b ∈ Rn, ∀D ∈ D,
where D is the set of all diagonal matrices that their diagonal elements are 0 or 1, we
obtain

∆x
k ≤ (D + (I −D)(A1 + A2))∆xp,fk + 2µ(Dr + (I −D)r′),

where r′ , (A1+A2)r+r̃. Since (6.17) holds (equivalently r(j)r′(j) = 0,∀j ∈ {1 . . . n}),
choosing any D ∈ D∗ ⊆ D, with D∗ = {D∗ ∈ D D∗jj = r′(j) if r(j) 6= r′(j),∀j ∈
{1 . . . n}} eliminates the second term on the right hand side of the above inequality
and returns

∆x
k ≤ (D +(I −D)(A1 + A2))∆xp,fk , ∀D ∈ D∗. (A.78)

On the other hand, from (A.73), (A.74) and Corollary 6.1.9, we obtain

∆xp,fk ≤ ∆f̃xk−1 + ∆z, (A.79)
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where ∆f̃xk , Tf∆f
x
k + Tg∆g

x
k , ∆fxk , fd(xk, xk) − fd(xk, xk), ∆gxk , gd(xk, xk) −

gd(xk, xk), ∆z , Tf∆w+Tg∆v, ∆w , w−w, ∆v , v−v, Tf , (I−K1−L1)†(I−K1+L1)

and Tg , (I−K1−L1)
†(K2 +L2). Next, by (A.78), (A.79), non-negativity of D̂ ,

(D+(I−D)(A1+A2)) and Proposition 6.1.4, an upper bound sequence for the interval
widths holds:

∆x
k ≤ D̂∆f̃xk−1 + D̂∆z ∀D ∈ D∗. (A.80)

Below, we will show that either of the three conditions in the theorem implies uniform
boundedness of {∆x

k}∞k=0.

Condition (i): Since Assumption 6.2.1 holds, the application of triangle inequality
to (A.80) yields

‖∆x
k‖ ≤ LD‖∆x

k−1‖+ ‖D̂∆z‖ ∀D ∈ D∗, (A.81)

with LD , Lfd‖D̂Tf‖+ Lgd‖D̂Tg‖ and Lfd , Lgd obtained from Lemma 6.1.10. Since
L∗ ≤ 1 (by Condition (i)), the sequence {‖∆x

k‖}∞k=0 is uniformly bounded. Therefore,
the interval width dynamics is stable.

Condition (ii): To show that Condition (ii) implies stability, with slightly abuse
of notation, let D be a specific member of D∗ and suppose we show the stability
of the dynamical system ∆x

k+1 = D̂∆f̃xk +D̂0∆z, where D̂, (D+(I−D)(A1 +A2)).

Then, by Comparison Lemma [64], the dynamical system ∆x
k+1 ≤ D̂∆f̃xk + D̂0∆z

is stable. To do so, consider a candidate Lyapunov function Vk = ∆x>
k ∆x

k and let

T̂f , D̂Tf , T̂g , D̂Tg. Then, it can be shown that ∆Vk , Vk+1 − Vk ≤ ∆ζ>
k T̂ ∆ζ

k, with

∆ζ
k ,

[
∆x>
k ∆v> ∆w> ∆fx>k

]>
and T̂ defined in the statement of the theorem, as

follows:

∆Vk = ∆fx>k T̂>f T̂f ∆fxk +∆gx>k T̂>g T̂g∆g
x
k +∆v>T̂>g T̂g∆v +∆w>T̂>f T̂f∆w

+ 2(∆fx>k T̂>f T̂g∆g
x
k + ∆fx>k T̂>f T̂g∆v+∆fx>k T̂>f T̂f∆w + ∆gx>k T̂

>
g T̂g∆v

+ ∆gx>k T̂>g T̂f∆w + ∆v>T̂>g T̂f∆w)−∆x>
k ∆x

k ≤ (λmax(T̂>f T̂f )L
2
fd

+λmax(T̂>g T̂g)L
2
gd
− 1)∆x>

k ∆x
k+∆v>T̂>g T̂g∆v+∆w>T̂>f T̂f∆w

+2(∆fx>k T̂>f T̂g∆g
x
k + ∆fx>k T̂>f T̂g∆v + ∆fx>k T̂>f T̂f∆w + ∆gx>k T̂>g T̂g∆v)

+ 2(∆gx>k T̂>g T̂f∆w + ∆v>T̂>g T̂f∆w) = ∆ζ>
k T̂ ∆ζ

k,

where the first inequality holds because ∆fx>k ∆fxk = ‖∆fxk ‖2 ≤ L2
fd
‖∆x

k‖2 (and simi-

larly for ∆gx>k ∆gxk) by Lemma 6.1.10 and ∆gx>k T̂>g T̂g∆g
x
k ≤ λmax(T̂>g T̂g)∆g

x>
k ∆gxk =

λmax(T̂>g T̂g)‖∆gxk‖2 ≤ L2
gd
λmax(T̂>g T̂g)‖∆x

k‖2 by using the Rayleigh Quotient and

Lemma 6.1.10. Now, by the Lyapunov Theorem, stability is satisfied if T̂ � 0
or equivalently λmax(T̂ ) ≤ 0 and hence ∆Vk ≤ ∆ζ>

k T̂ ∆ζ
k ≤ 0. This, and given that in

system (A.80), D can be any member of D∗ (not a specific member), it suffices for

stability that ∃D ∈ D∗ such that λmax(T̂ ) ≤ 0, i.e., Condition (ii) should hold.
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Condition (iii): Similarly, we consider a candidate Lyapunov function Vk = ∆x>
k P∆x

k,

where P � 0, which can be shown to satisfy ∆Vk , Vk+1 − Vk ≤ 0 under Condition

(iii). To show this, let ∆̂f̃x>k , D̂∆f̃x>k , ∆̂z , D̂∆z, ∆̂ζk ,
[
∆̂f̃x>k ∆x>

k ∆̂z>
]>

and note that ∆̂f̃x>k Λ∆̂f̃xk ≤ ∆̂f̃x>k ∆̂f̃xk ≤ L2
D∆̂x>

k ∆̂x
k, where the inequalities hold by

choosing Γ such that Γ , I − Λ � 0 and Lemma 6.1.10, respectively. Consequently,
L2

D∆x>
k ∆x

k − ∆̂f̃x>k Λ∆̂f̃xk ≥ 0. Then, inspired by a simplifying trick used in [39, Proof

of Theorem 1] to satisfy ∆Vk ≤ 0, it suffices to guarantee that Ṽk , ∆Vk+L2
D∆x>

k ∆x
k−

∆̂f̃x>k Λ∆̂f̃xk = ∆Vk + L2
D∆x>

k ∆x
k − ∆̂f̃x>k (I − Γ)∆̂f̃xk ≤ 0, where

Ṽk = ∆̂f̃x>k P ∆̂f̃xk+∆̂z>P ∆̂z+2∆̂z>P ∆̂f̃xk−∆x>
k P∆x

k + L2
D∆x>

k ∆x
k − ∆̂f̃x>k (I − Γ)∆̂f̃xk

= ∆̂f̃x>k (P + Γ− I)∆̂f̃xk + ∆x>
k (L2

DI − P )∆x
k + ∆̂z>P ∆̂z + 2∆̂z>P∆f̃xk

= ∆̂ζ>k PD∆̂ζk ≤ 0,

with PD given in the statement of the theorem. This, along with Γ � 0, is equivalent
to Condition (iii).

Proof of Lemma 6.3.10

Applying (A.81) repeatedly, for all D ∈ D∗∗, we have

‖∆x
k‖≤ L̂k‖∆x

0‖+
∑k−1

i=0 L̂k−i‖∆̂z‖= L̂kδx0 +‖∆̂z‖1−Lk
1−L̂ .

Further, from (6.10)–(6.12) we obtain ∆d
k−1 ≤ Ĵ1(∆

x
k + ∆fxk ) + Ĵ2∆g

x
k + Ĵ1∆w +

Ĵ2∆v, where Ĵ ,
[
Ĵ1 Ĵ2

]
, J+ + J++. Applying Lemma 6.1.10 and triangle

inequality returns the upper bound for ‖∆d
k−1‖, while taking the limit of k → ∞

results in the steady-state values. The rest of the results follow from the non-increasing
Lyapunov functions defined in the proof of Theorem 6.3.8 and the use of the Rayleigh
Quotient.

Proof of Proposition 6.1.2

Consider the case when the global affine abstraction matrices are unknown. Then,
by setting B = X, AqB = Aq and θqB, constraint (6.18) is redundant and so, the LP
(6.1) boils down to a special case of the LP in [108, (16)], with only one considered
partition. Then, (7.12) follows from [108, Theorem 1]. Moreover, given the global
affine abstractions, solving the LP in (6.1) is equivalent to solving the the LP in [108,
(16)] on the corresponding interval (set) of B, with the extra (non-trivial) constraint
(6.18). This constraint along with the result in [108, Theorem 1] lead to (7.13).

Proof of Theorem 7.2.2

We will prove this by induction. For the base case, by assumption, z0 ≤ z0 ≤
z0 holds. Now, for the induction step, suppose that zk−1 ≤ zk−1 ≤ zk−1. Then,
Propositions 6.1.4–6.1.2 as well as (6.3),(7.6)–(7.3c) and [59, Theorem 1] imply that
zpk ≤ zk ≤ zpk. Given this, iteratively obtaining upper and lower abstraction matrices
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for the observation function g(.) based on Proposition 6.1.2 and applying Proposition
6.1.4, we have

αi,k ≤ Agi,kzk ≤ αi,k, (A.82)

where αi,k, αi,k are given in (7.10) and Agi,k is a solution of the LP in (6.1), i.e.,
the parallel abstraction slope for function g(.) at iteration i in the corresponding

compatible interval [zui−1,k, z
u
i−1,k]. Then, multiplying (A.82) by Ag†i,k, Proposition 6.1.4

and using the fact that zui−1,k, z
u
i−1,k are framers for the augmented state zk at time k

and [53], we obtain zui,k ≤ zk ≤ zui,k, with zui,k, z
u
i,k given in (7.8). Now, note that by

construction, the sequences of updated upper and lower framers, {zui,k}∞i=0 and {zui,k}∞i=0

with zu0,k = zpk and zu0,k = zpk, are monotonically decreasing and increasing, respectively,
and hence are convergent by the monotone convergence theorem. Consequently, their
limits zk, zk are the tightest possible framers, i.e., ∀i ∈ {1 . . .∞}:

zu0,k ≤ · · · ≤ zui,k ≤ · · · ≤ limi→∞ z
u
i,k , zk,

zk , limi→∞ z
u
i,k ≤ · · · ≤ zui,k ≤ · · · ≤ zu0,k,

where zk, zk are the returned updated augmented state framers by the observer. This
completes the proof.

Proof of Lemma 7.2.3

It directly follows from [59, Theorem 1] and Theorem 7.2.2 that the model estimates
are correct, i.e, ∀k ∈ {0 . . .∞} : hk(ζk) ≤ h(ζk) ≤ hk(ζk). Moreover, considering the
data-driven abstraction procedure in the model learning step, note that by construction,
the data set used at time step k is a subset of the one used at time k + 1. Hence, by
[59, Proposition 2] the abstraction model satisfies monotonicity, i.e., (7.16) holds.

Proof of Lemma 6.1.10

Starting from (6.2), it is not hard to verify that

∆qζ = q(ζ1)− q(ζ2) + 2Cq∆ζ, (A.83)

for some ζ1, ζ2 that satisfy ζ ≤ ζ1, ζ2 ≤ ζ. On the other hand, by Proposition 6.1.2 in
addition to Proposition 6.1.4, ∀j ∈ {1, 2}:

Aq+ζ − Aq++ζ + eq ≤ q(ζj) ≤ Aq+ζ − Aq++ζ + eq,

which implies that q(ζ1)− q(ζ2) ≤ |Aq|∆qζ + ∆eq. Combining this and (A.83) yields
the result.

Proof of Theorem 7.2.6

Note that our goal is to obtain sufficient stability conditions that can be checked
a priori instead of for each time step k. On the other hand, for the implementation
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of the update step, we iteratively find new local parallel abstraction slopes Agi,k by
iteratively solving the LP (6.1) for g on the intervals obtained in the previous iteration,
Bui,k = [zui−1,k, z

u
i−1,k], to find local framers zui,k, z

u
i,k (cf. (7.7)–(7.10)), with additional

constraints given in (6.18) in the optimization problems, which guarantees that the
iteratively updated local intervals obtained using the local abstraction slopes are inside
the global interval, i.e.,

zuk ≤ zu0,k ≤ · · · ≤ zui,k ≤ · · · ≤ limi→∞ z
u
i,k , zk,

zk , limi→∞ z
u
i,k ≤ · · · ≤ zui,k ≤ · · · ≤ zu0,k ≤ zuk ,

where we apply (7.8) for just one iteration (dropping index i) with zuk,0 = zpk, z
u
k,0 = zpk

to obtain: [
zuk
zuk

]
=

[
min(Ag†+αk−Ag†++αk+ω, z

p
k)

max(Ag†+αk−Ag†++αk−ω, zpk)

]
, (A.84)

This allows us to use the global parallel affine abstraction slope Ag for the stability
analysis as follows. Dropping index i in (7.9)–(7.10) and defining ∆z

k , zk − zk (and
similarly for ∆zp

k ,∆
g
e,∆

f
e ,∆

h
e ,∆

α
k , ∆t

k), (7.8) implies that ∀D1 ∈ Dn+p

∆z
k ≤ min(|Ag†|∆α

k + 2κr,∆zp

k ) ≤ D1(|Ag†|∆α
k + 2κr) + (I −D1)∆zp

k , (A.85)

where the second inequality follows from generalization of the fact that min(a, b) ≤
λa+(1−λ)b,∀a, b ∈ R, λ ∈ [0, 1]. Moreover, from (7.9)–(7.10) and a similar reasoning,
we observe that ∀D2 ∈ Dl:

∆α
k ≤ min(|W g|∆v + ∆g

e, |Ag|∆zp

k ) ≤ D2(|W g|∆v + ∆g
e) + (I −D2)|Ag|∆zp

k . (A.86)

On the other hand, by similar arguments, it follows from (7.3a)–(7.3c) that ∀D3 ∈ Dn,

∆zp

k ≤
[
D3(|Af |∆z

k−1+|W f |∆w+∆f
e )+(I−D3)∆f

k−1

|Ah|∆z
k−1+|W h|∆w+∆h

e

]
, (A.87)

where ∆f
k−1 , fd(ζk−1, ζk−1

)− fd(ζk−1
, ζk−1). Furthermore, by Lemma 6.1.10, ∆f

k−1 ≤
(|Af |+ 2Cf

z )∆z
k−1 + (|W f |+ 2Cf

w)∆w + ∆f
e , with Cf =

[
Cf
z Cf

u Cf
w

]
given in (6.2).

This, in addition to (A.85)–(A.87), Proposition 6.1.4 and non-negativity of both sides
of all the inequalities, lead to:

∆z
k ≤ Ag(D1, D2)Af,h(D3)∆z

k−1 + ∆g(D1, D2) +Ag(D1, D2)∆f,h(D3) + 2κD1r,
(A.88)

for (D1, D2, D3) ∈ Dn+p × Dl × Dn, where we define

Ag(D1, D2) , D1|Ag†|D2|Ag|+ (I −D1),

Af,h(D3) ,
[
(|Af |+ 2(I −D3)Cf

z )> |Ah|>
]>
,

∆g(D1, D2) , D1|Ag†|D2(|W g|∆v + ∆g
e),

∆f,h(D3) ,
[
((|W f |+ 2(I −D3)Cf

w)∆w + ∆f
e )
> (|W h|∆w + ∆h

e )
>]> .

240



Since κ can be infinitely large, in order to make the right hand side of (A.88) finite
in finite time, we choose D1 ∈ Dn+p such that D1r = 0, i.e., D1,i,i = 0 if r(i) =
1,∀i ∈ {1 . . . n + p}. Then, by the Comparison Lemma [64], it suffices for uniform
boundedness of {∆z

k}∞k=0 that the following dynamic system be stable:

∆z
k = Ag(D1, D2)Af,h(D3)∆z

k−1 + ∆̃(D1, D2), (A.89)

where the error term ∆̃(D1, D2) , ∆g(D1, D2)+Ag(D1, D2)∆f,h(D3) is a bounded dis-
turbance. This implies that the system (A.89) is stable (in the sense of uniform stability
of the interval sequnces) if and only if the matrix A(D1, D2, D3) , Ag(D1, D2)Af,h(D3)
is (non-strictly) stable for at least one choice of (D1, D2, D3), equivalently (7.17) should
hold.

Proof of Lemma 6.3.10

The proof is straightforward by applying Proposition 6.1.4, computing (A.88)
iteratively, using the fact that by Theorem 7.2.6, A(D1, D2, D3) is a stable matrix for
the tuple of (D1, D2, D3) that is a solution of (7.17), and from triangle inequality.

Proof of Theorem 8.3.1

We need to show that for all j ∈ J , f jd(ζ, ζ̂; mj) given in (8.10), satisfies all the

conditions in Definition 8.1.5. Starting from (8.10), f jd(ζ, ζ̂; mj) = hj(z
c
mj(ζ̂ , ζ)) +

fj(z
c
mj(ζ, ζ̂)) − hj(z

c
mj(ζ, ζ̂)), with zcmj(ζ, ζ̂) given in (8.14). Then defining gj(·) ,

fj(·)− hj(·), we have f jd(ζ, ζ̂; mj) = hj(z
c
mj(ζ̂ , ζ)) + gj(z

c
mj(ζ, ζ̂)).

We will show that hj(x
c
mj(ζ̂ , ζ)) and gj(x

c
mj(ζ, ζ̂)) are both non-decreasing in ζ

and non-increasing in ζ̂ and so is f jd(ζ, ζ̂; mj). First, since mj ∈Mj, by construction
of Mj, (cf. (8.12)–(8.13)), hj(·) ∈ HMj is a Jacobian sign-stable function. Next, in
order to proceed, we need the following proposition.

Proposition A.0.4. The Jacobian sign-stable functions hj(·) ∈ HMj (as introduced

in the statement of Theorem 8.3.1) and gj(·) , fj(·)− hj(·) are (hj(·),−gj(·)) aligned,
i.e., given i ∈ {1, . . . , nz}:

(8.2) holds for gj ⇔ (8.3) holds for hj, and equivalently, (8.3) holds for gj ⇔ (8.2)
holds for hj.

Proof : First, note that gj(·) = fj(·) − hj(·) and (8.9) imply that ∀z ∈ Z and
∀νg ∈ ∂ogj(z), there exists ξh ∈ ∂hj(z) such that:

afj − ξhj ≤ νgj ≤ afj − ξhj . (A.90)

Now, ∀i ∈ {1, . . . , nz}, consider the two following possible cases:

• mj
i ≥ max(a

fj
i , 0) → hj(·) is Jacobian positive sign-stable in the i’th dimen-

sion. Moreover, since hj(·) ∈ HMj , then ∀z′ ∈ Z, ∂ohj(z′) ⊆ Mj by (8.11).
Particularly, considering z′ = z and given the fact that in the i’th dimension
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mj
i ≥ max(a

fj
i , 0), we conclude that ∀ξhj ∈ ∂ohj(z), a

fj
i − ξ

hj
i ≤ 0. This and

(A.90) imply that ν
gj
i ≤ 0,∀νgj ∈ ∂ogj(z), which means that gj(·) is Jacobian

negative sign-stable in the ith dimension, since z has been taken arbitrarily in
the domain of gj(·).

• mj
i ≤ min(a

fj
i , 0) → hj(·) is Jacobian negative sign-stable in the ith dimen-

sion. Moreover, since hj(·) ∈ HMj , then ∀z′ ∈ Z, ∂ohj(z′) ⊆ Mj by (8.11).
Particularly, considering z′ = z and given the fact that in the i’th dimension

mj
i ≤ min(a

fj
i , 0), we conclude ∀ξhj ∈ ∂ohj(z), a

fj
i − ξ

hj
i ≥ 0. This and (A.90)

imply that ν
gj
i ≥ 0,∀νgj ∈ ∂ogj(z) which means that gj(·) is Jacobian positive

sign-stable in the i’th dimension, since z has been taken arbitrarily in the domain
of gj(·).

Now consider z1 ≥ z2, z0 all in Z and hence ∀s ∈ {1, 2}:

zcmj(zs, z0) = Dmj
zs + (Inz −Dmj

)z0,

zcmj(z0, zs) = Dmj
z0 + (Inz −Dmj

)zs,
(A.91)

by (8.14). So, for each i ∈ {1, . . . , nz}, we can consider two cases:

• mj
i ≥ max(a

fj
i , 0) → hj(·) is Jacobian positive sign-stable in the i’th dimension

and also Dmj

i,i = 0 ↔ gj(·) is Jacobian negative sign-stable in the i’th dimension
by Proposition A.0.4 and zcmj ,i(z1, z0) ≤ zcmj ,i(z2, z0), zcmj ,i(z0, z1) ≥ zcmj ,i(z0, z2),

by (A.91) and the fact that Dmj

i,i = 0.

• mj
i ≤ min(a

fj
i , 0) → hj(·) is Jacobian negative sign-stable in the i’th dimension

and also Dmj

i,i = 1 ↔ gj(·) is Jacobian positive sign-stable in the ith dimension
by Proposition A.0.4 and zcmj ,i(z1, z0) ≥ zcmj ,i(z2, z0), zcmj ,i(z0, z1) ≤ zcmj ,i(z0, z2).

Considering these two cases together, we observe that whenever

zcmj ,i(z1, z0) ≤ zcmj ,i(z2, z0)

holds, then hj(·) is Jacobian positive sign-stable in dimension i and whenever

zcmj ,i(z1, z0) ≥ zcmj ,i(z2, z0)

holds, hj(·) is Jacobian negative sign-stable in dimension i. Similarly, whenever
zcmj ,i(z0, z1) ≤ zcmj ,i(z0, z2), gj(·) is Jacobian positive sign-stable in dimension i and

whenever zcmj ,i(z0, z1) ≥ zcmj ,i(z0, z2), gj(·) is Jacobian negative sign-stable in dimension

i. These facts imply that hj(z
c
mj(z1, z0)) ≤ hj(z

c
mj(z2, z0)) and gj(z

c
mj(z0, z1)) ≤

gj(z
c
mj(z0, z2)), which means that h(xcmj(ζ̂ , ζ)) and gj(z

c
mj(ζ, ζ̂)) are non-decreasing

in ζ. Precisely similar arguments imply that hj(z
c
mj(ζ̂ , ζ)) and gj(z

c
mj(ζ, ζ̂)) are non-

increasing in ζ̂. Finally, it is easy to observe that if ζ = ζ̂, zcm(ζ, ζ) = ζ and so
f jd(ζ, ζ; mj) = fj(ζ).
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Proof of Lemma 8.3.2

The first equalities in (8.15) and (8.16) are implications of sequentially applying
Corollary 8.1.10 on all the decomposition functions in the family (8.10). As for the
second inequalities in (8.15) and (8.16), consider mj ∈Mj and construct m̃j ∈Mj

c

as follows. m̃j
i = max(a

fj
i , 0) if mj

i ≥ max(a
fj
i , 0) and m̃j

i = min(a
fj
i , 0) if mj

i ≤
min(a

fj
i , 0). Then, it can be easily verified from (8.14) that zcmj (z1, z2) = zcm̃j (z1, z2) and

so by (8.10), fd(z1, z2;m
j}|J |j=1) = fd(z1, z2; m̃

j}|J |j=1). Hence, for any mj ∈Mj,∃m̃j ∈
Mj

c that admits an equivalent decomposition function as the one that mj admits. So,
the serch, i.e., the minimization and maximization operations can be equivalently
done over Mj

c, instead of over Mj. This fact, results in the second equalities in (8.15)
and (8.16) and so completes the proof.

Proof of Theorem 8.3.3

First, note that since for any {hj(·)}|J |j=1 ∈ {HMj}|J |j=1 and any pair of corresponding

Ml,Mu ∈ {Mj}|J |j=1, WMl,Mu

fj
(Z) ⊇ Vfj(Z),∀j ∈ J , then (8.20) and (8.5) imply that:

q(WMl,Mu

fj
(Z), Vfj(Z)) = max{l1(mj

u)− f
true

j , f true

j
+ l2(mj

l )}
≥ 1

2
(l1(mj

u) + l2(mj
l ) + ∆f truej )

(A.92)

with l1(m
j
u) , hj(z

c
mju

) − hj(zcmju) + fj(z
c
mju

), l2(m
j
l ) , hj(z

c
mjl

) − hj(zcmjl
) − fj(zcmjl

),

zc
mju
, zc

mju
(z, z), zc

mjl
, zc

mjl
(z, z), ∆f truej , f true

j
− f true

j and the inequality in (A.92)

holds by max(a, b) ≥ 1
2
(a+ b). Next, consider the following proposition.

Proposition A.0.5. The following programs are equivalent, in the sense that they
attain equal sets of solutions and optimal values:

min
m∈Mj

ls(m) ≡ min
m∈Mc

j

ls(m), ∀s ∈ {1, 2},

min
m∈Mj

[l1(m) + l2(m)] ≡ min
m∈Mc

j

[l1(m) + l2(m)],

where Mj , {m ∈ Rnz |mi ≤ min(a
fj
i , 0) or mi ≥ max(a

fj
i , 0)} and Mc

j , {m ∈
Mj|mi = min(a

fj
i , 0) or mi = max(a

fj
i , 0)}.

Proof : We will show that for each m′ ∈Mj, there exists an m0 ∈Mc
j such that

ls(m
′) = ls(m

0), ∀s ∈ {1, 2}. To do this, consider m′ ∈ Mj and construct m0 as

follows: m0
i = min(a

fj
i , 0) if m′i ≤ a

fj
i and m0

i = max(a
fj
i , 0) if m′i ≥ a

fj
i . Clearly

m0 ∈ Mc
j. Moreover, if m′i ≥ a

fj
i , then by (8.14), Dm′

i,i = sgn(min(a
fj
i , 0) − m′i) =

0 = sgn(0) = sgn(min(a
fj
i , 0) − m0

i ) = Dm0

i,i and if m′i ≤ a
fj
i , then again by (8.14),

Dm′
i,i = sgn(min(a

fj
i , 0)−m′i) = 1 = sgn(min(a

fj
i , 0)−m0

i ) = Dm0

i,i . Hence, Dm′ = Dm0

and by (8.14), zcm′(z1, z2) = zcm0(z1, z2),∀z1, z2 ∈ Z. This implies that zcm′ = zcm0 and
zcm′ = zcm0 , which result in ls(m

′) = ls(m
0), ∀s ∈ {1, 2}.
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Now, (A.92) and Proposition A.0.5 imply (8.21). Moreover, the inequalities in
(8.22) are direct implications of [35, Theorem 4-(b)], where in the second inequality,
only the function hj(·) has been considered as the remainder function, but in the

third inequality, both of the hj(·) and gj(·) , fj(·) − hj(·) have been considered as
remainders, separately, and the minimum of the obtained values has been taken.

Proof of Lemma 8.3.4

Consider lj1(m) , ∆hcj;m + fj(z
c
j;m) in the expression for the error lower bound

q
j
(W,V ;hj) , 1

2
[ min
m∈Mc

j

lj1(m)+ min
m∈Mc

j

lj2(m)+∆f true
j ], in Theorem 8.20, with hj(·) ∈ HMj

being an arbitrary remainder function with the corresponding set of supporting vectors
Mc

j. Now, applying the Mean Value Theorem, ∀m ∈ Mc
j,∃ζ ∈ Z such that the

following holds:

∆hcj;m = hj(z
c
j;m)− hj(zcj;m)=∇>hj(ζ)(zcj;m − zcj;m). (A.93)

Recall that zcj;m , zcm(z, z) = Dmz + (Inz − Dm)z, zcm;j , zcm(z, z) = Dmz + (Inz −
Dm)z,Dm

i,i = sgn(min(a
fj
i , 0)−mi),∀i ∈ {1, . . . , nz} and ∇>hj (ζ) = [

∂hj
∂z1
· · · ∂hj

∂znz
]. Given

these, for i = 1, . . . , nz, we can consider two cases (similar to the cases in the proof of
Proposition A.0.4):

• mi ≤ min(a
fj
i , 0) and hence, mi ≤ ∂hj

∂zi
≤ 0 and also Dm

i,i = 1 and so zcj;m(i) =

zi ≥ zi = zcj;m(i), that implies zcj;m(i)− zcj;m(i) = zi − zi ≥ 0. Therefor,

mi(zi − zi) ≤
∂hj
∂zi

(zcj;m(i)− zcj;m(i)).

• mi ≥ max(a
fj
i , 0), and hence, mi ≥ ∂hj

∂zi
≥ 0 and also Dm

i,i = 0 and so zcj;m(i) =

zi ≤ zi = zcj;m(i), that implies zcj;m(i)− zcj;m(i) = zi − zi ≤ 0. Therefor,

mi(zi − zi) ≤
∂hj
∂zi

(zcj;m(i)− zcj;m(i)).

Considering the above two cases for i = 1, . . . , nz, we conclude that lj1(m) ≥ m>(z −
z) + fj(z

c
j;m), where the right hand side of the inequality, is the error that is achieved

using the linear remainder h̃j(z) = m>(z− z). Hence, given m, no remainder function

can attain smaller value for lj1(m) than a linear one. Similar reasoning shows the same
conclusion for lj2(m) , ∆hcj;m − fj(zcj;m), which concludes the proof.

Proof of Theorem 8.3.6

The result in (8.27) is obtained by (8.24) and the fact that the remainder function
hj(·) is locally Lipschitz, i.e, is bounded gradient. Particularly, for linear remainder

h(z) = Mz, with M>
(j,:) = mj, it can be easily verified that with choosing βfR =

max
j∈J
‖mj‖∞, (8.27) holds. The proof of (8.28) goes along the lines of the proof of [98,

Theorem 4.1].
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Proof of Lemma 8.3.7

Obviously Z∗ ⊆ Zp, since by construction (cf. Algorithm 8), zp ≤ z∗ and zp ≥ z∗.

We are required to show that Z∗ ⊇ Ẑ , {z ∈ Zp|y ≤ µ(z) ≤ y}. To use contradiction,

suppose not. Then, ∃ζ ∈ Ẑ such that ζ /∈ Z∗, i.e., ∃i ∈ {1, . . . , nz} such that ζi > z∗i
or ζi < z∗i . Without loss of generality, suppose the first case holds, i.e., ζi > z∗i (the
reasoning for the other case would be similar). Then, ζ ∈ [zm, zp], where zmi = z∗i and
zms = zps,∀s 6= i. Hence,

µ
d,R

(zm, zp) ≤ µ(ζ) ≤ µd,R(zp, zm), (A.94)

where µd,R(·, ·) and µ
d,R

(·, ·) are the proposed upper and lower remainder-form decom-

position functions in Algorithm 7. On the other hand, note that Z∗ ∩ [zm, zp] = ∅,
hence the interval [zm, zp] has been “ruled out” by the Algorithm 8. In other words,
one of the “or” conditions in the line 5 of the Algorithm 8 must hold for this interval,
i.e.,

µd,R(zp, zm) < y or µ
d,R

(zm, zp) < y. (A.95)

From (A.94) and (A.95) we have µ(ζ) < y or µ(ζ) > y. This contradicts ζ ∈ Ẑ ⇔
y ≤ µ(ζ) ≤ y.

Proof of Theorem 8.4.1

(i) By choosing hj(z) = mj>z and

mj
i=

{
min(a

fj
i , 0) if |afji | ≤ |a

fj
i |

max(a
fj
i , 0) if |afji | > |a

fj
i |

, ∀i = 1, . . . , nz, (A.96)

one can observe that ζ and (αj −βj)>(z− ẑ) in (8.4) coincide with zcmj (z, ẑ) and
hj(z

c
mj(ẑ, z)) − hj(zcmj(z, ẑ)) = mj>(zcmj(ẑ, z) − zcmj(z, ẑ)) in (8.10) and hence

the decomposition function in Proposition 8.1.13, coincides with one of the
decomposition functions in the family (8.10).

(ii) The proof goes along the lines of the proof of Lemma 8.3.4, showing that
∆hcj;m = hj(z

c
j;m)− hj(zcj;m) ≥mj>(zcmj (ẑ, z)− zcmj (z, ẑ)), when mj is chosen as

in (A.96).

(iii) The result is a direct implication of (i) and Lemma 8.3.4.

Proof of Proposition 8.5.1

The results directly follow form combining corollaries 8.1.6–8.1.9, Theorem 8.3.1,
Lemmas 8.3.4–8.3.7 and applying algorithms 7–8.
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Proof of Proposition 9.1.2

To prove (9.1), consider z ∈ IZ ⇔ z ≤ z ≤ z ⇔ z − mid(IZ) ≤ z − mid(IZ) ≤
z −mid(IZ)⇔ −1

2
diam(IZ) ≤ z −mid(IZ) ≤ 1

2
diam(IZ)⇔ mid(IZ)− 1

2
diam(IZ) ≤

z ≤ 1
2
diam(IZ) + mid(IZ) ⇔ ∃ξ ∈ Bn∞, s.t. z = mid(IZ) + 1

2
diag(diam(IZ))ξ ⇔ z ∈

mid(IZ)⊕ 1
2
diag(diam(IZ))Bn∞. The result in (9.2) is a straightforward extension of

(9.1).

Proof of Corollary 9.1.7

The proof follows the lines of the proof of [63, Lemma 1, Proposition 10 and
Corollary 2].

Proof of Lemma 9.3.1

To show (9.13), ∀s ∈ NS, consider the zonotope Zs , {Gs, cs}Z , {z = Gsξ+cs|ξ ∈
Bns∞} and let us define f̃s(ξ) : Bns∞ → Rnx , f(Gsξ + cs) which implies that

f(Zs) ⊆ f̃s(Bns∞), ∀s ∈ NS. (A.97)

On the other hand, note that by Corollary 9.1.7, ∀Hs ∈ Hf̃s
, f̃s(·) can be decomposed

as

f̃s(ξ)=gHss (ξ)+Hsξ, ∀s ∈ NS,∀ξ ∈ Bns∞ ,∀Hs ∈ Hf̃s
(A.98)

where gHss (ξ) is a JSS function in Bns∞ and Hf̃s
can be computed from (9.9), with the

corresponding function being f̃s. Now (A.97) and (A.98) together imply:

f(Zs) ⊆ gHss (Bns∞)⊕HsBns∞ ,∀s ∈ NS,∀Hs ∈ Hf̃s
. (A.99)

Again, it follows from Corollary 9.1.7 and the fact that gHss (ξ) is a JSS function that in
each dimension i ∈ Nnx , g

Hs
s,i (ξ) can be tightly bounded as gHs

s,i
≤ gHss,i (ξ) ≤ gHss,i ,∀ξ ∈

Bns∞ , ∀Hs ∈ Hf̃s
, with gHss,i , g

Hs
s,i

given in (9.14) and (9.15), respectively. Augmenting all

these Nnx one-dimensional inequalities yields the following set inclusion for all s ∈ NS

and all Hs ∈ Hf̃s
: gHss (Bns∞) ⊆ [gHs

s
, gHss ] = 1

2
((gHs

s
+gHss )⊕diag(gHss −gHss )Bnx∞ ), where

the last equality follows from Proposition 9.1.2. Combining this, (A.99) and the fact
that the inclusion in (A.99) holds for all s ∈ NS and all Hs ∈ Hf̃s

and hence for the
intersection of all of them, we obtain (9.13).

Proof of Lemma 9.3.2

To prove the inclusion in (9.16), consider the constrained zonotope representation

of the set Z, i.e., Z , {G̃, c̃, Ã, b̃}CZ , {z = G̃ξ + c|ξ ∈ Bng∞ , Ãξ = b̃}. Using similar

notation as in the proof of Lemma 9.3.1, let us define f̃(ξ) : Bng∞ → Rnx , f(G̃ξ + c̃)
that consequently returns

f(Z) ⊆ {f̃(ξ) | ξ ∈ Bng∞ , Ãξ = b̃}. (A.100)
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Note that by [53, Theorem 2], Ãξ = b̃ ⇒ ξ ∈ IΞ , [Ã†b̃ − κrng , Ã
†b̃ − κrng ], where

rng , rowsupp(Ing − Ã†Ã) and κ is a very large positive real number. Combining this

with the fact that ξ ∈ Bng∞ (cf. (A.100)), imply that ξ ∈ IΞ̃ , IΞ ∩ Bng∞ = [lng , lng ],

where lng , lng are defined below (9.18). On the other hand, similar to the proof of

Lemma 9.3.1, we conclude by Corollary 9.1.7 that ∀H ∈ Hf̃ , f̃(·) can be decomposed
as

f̃(ξ) = g̃H(ξ) +Hξ, ∀H ∈ Hf̃ ,∀ξ ∈ IΞ̃,
⇒ f̃(IΞ̃) ⊆ g̃H(IΞ̃)⊕HIΞ̃,∀H ∈ Hf̃ ,

(A.101)

where g̃H(ξ) is a JSS function in IΞ̃ and Hf̃ is given in (9.9). By Corollary 9.1.7, in each

dimension i ∈ Nnx , g̃
H
i (ξ) can be tightly bounded as gH

i
≤ g̃Hi (ξ) ≤ gHi ,∀ξ ∈ IΞ̃, ∀H ∈

Hf̃ , with gHi , g
H
i

given in (9.17) and (9.18), respectively. Augmenting all these Nnx

one-dimensional inequalities and applying Proposition 9.1.2 yield the following set
inclusion:

∀H ∈ Hf̃ , g̃
H(IΞ̃)⊆[gH , gH ]=

1

2
((gH + gH)⊕ diag(gH − gH)Bnx∞ ).

Combining this, (A.100), (A.101) and the fact that the inclusion in (A.101) holds
for all H ∈ Hf̃ and hence for the intersection of all of them, we obtain f(Z) ⊆
{Hξ + diag(gH − gH)θ + 1

2
((gH + gH) | ξ ∈ Bng∞ , θ ∈ Bnx∞ , Ãξ = b̃},∀H ∈ Hf̃ , where

the set on the right hand side of the inclusion is equivalent to the intersection of the
CZs on the right hand side of (9.16).

Proof of Theorem 9.3.3

It follows from Lemmas 9.3.1 and 9.3.2 that f(Z) ⊆ ZBf and f(Z) ⊆ CZf , and
so f(Z) ⊆ ZBf ∩ CZf .

Proof of Lemma 9.3.4

Suppose z ∈ ZBf ∩µ ZBµ. Then, by definition of the operator ∩µ (cf. (9.12)),
z ∈ ZBf and µ(z) ∈ ZBµ. The former implies that ∀r ∈ NR,∃α ∈ Bnr∞ such that

z = Gr
fα + crf , while it follows from the latter that µ(z) = µ(Gr

fα + crf) , µ̃r(α) ∈
ZBµ ⇒ ∀t ∈ NT ,∃ζ ∈ Bnt∞, such that µ̃r(α) = ctµ +Gt

µζ. Putting these two results in
a set representation form, we obtain:

z ∈
R⋂
r=1

T⋂
t=1

{Gr
fα + crf |µ̃r(α) = ctµ +Gt

µζ, α ∈ Bnr∞ , ζ ∈ Bnt∞}. (A.102)

On the other hand, using Corollary 9.1.7, µ̃r(·) can be decomposed into a JSS and a
linear mapping as follows: ∀r ∈ NR, ∀Qr ∈ Qµ̃r ,∀α ∈ Bnr∞ :

µ̃r(α) = pQrr (α) +Qrα. (A.103)
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Moreover, by the same corollary, the JSS component pQrr (·) is tightly bounded as

follows: ∀i ∈ Nnµ ,∀Qr ∈ Qµ̃r , p
Qr
r,i
≤ pQrr.i (α) ≤ pQr

r,i
,∀α ∈ Bnr∞ , with pQr

r,i
, pQrr,i given in

(9.20) and (9.21), respectively. Combining this, as well as (A.103) and Proposition
9.1.2 results in: ∀r ∈ NR,∀Qr ∈ Qµ̃r ,∀α ∈ Bnr∞ ,∃θ ∈ Bnµ∞ such that µ̃r(α) = 1

2
(pQr
r,i

+

pQrr,i ) + 1
2
diag(pQrr,i − pQrr,i )θ +Qrα. Further, putting this together with (A.102) returns

z ∈
R⋂
r=1

T⋂
t=1

⋂
Qt∈Qµ̃t

{Gr
fα + crf |12(pQr

r,i
+ pQrr,i ) + 1

2
diag(pQrr,i − pQrr,i )θ +Qrα = ctµ +Gt

µζ, α ∈

Bnr∞ , ζ ∈ Bnt∞, θ ∈ Bnµ∞ }, where the set on the right hand side is equivalent to the one
on the right hand side of (9.19).

Proof of Lemma 9.3.5

Suppose z ∈ CZf ∩µ CZµ. Then, by definition of the operator ∩µ (cf. (9.12)),

z ∈ CZf and µ(z) ∈ CZµ. The former implies that ∃β ∈ Bnc∞ such that Ãfβ = b̃f ∧z =

G̃fβ + c̃f , while it follows from the latter that µ(z) = µ(G̃fβ + c̃f ) , λ(β) ∈ CZµ ⇒
,∃γ ∈ Bnτ∞ , such that Ãµγ = b̃µ and λ(β) = c̃µ + G̃µγ. Putting these two results into
a set representation form, we obtain:

z ∈ {G̃fβ + c̃f |λ(β) = c̃µ + tildeGµγ, Ãfβ = b̃f , Ãµγ = b̃µ, β ∈ Bnc∞ , γ ∈ Bnτ∞ }
(A.104)

On the other hand, using Corollary 9.1.7, λ(·) can be decomposed into a JSS and a
linear mapping as follows:

∀Ω ∈ Ωλ,∀β ∈ Bnc∞ : λ(β) = νΩ(β) + Ωβ. (A.105)

Further, note that by [53, Theorem 2], Ãfβ = b̃f ⇒ β ∈ IB , [Ã†f b̃f−κrnc , Ã
†
f b̃f−κrnc ],

where rnc , rowsupp(Inc − Ã
†
f Ãf) and κ is a very large positive real number. Then,

since β ∈ Bnc∞ , we have β ∈ IB ∩ Bnc∞ = [lnc , lnc ]. Putting this and Corollary 9.1.7
together results in the JSS component νΩ(·) being tightly bounded, i.e., ∀i ∈ Nnµ ,∀Ω ∈
Ωλ, ν

Ω
i ≤ νΩ

i (β) ≤ νΩ
i ,∀β ∈ Bnc∞ , with νΩ

i , ν
Ω
i given in (9.23) and (9.24), respectively.

Combining this, (A.105) and Proposition 9.1.2 leads to: ∀Ω ∈ Ωλ,∀β ∈ Bnc∞ ,∃ρ ∈ Bnµ∞
such that λ(β) = 1

2
(νΩ +νΩ)+ 1

2
diag(νΩ−νΩ)ρ+Ωα, which along with (A.104) returns

z ∈
⋂

Ω∈Ωλ

{G̃fβ + c̃f |12(νΩ + νΩ) + 1
2
diag(νΩ− νΩ)ρ+ Ωβ = c̃µ + G̃µγ, Ãfβ = b̃f , Ãµγ =

b̃µ, β ∈ Bnc∞ , γ ∈ Bnτ∞ , ρ ∈ Bnµ∞ }, where the set on the right hand side is equivalent to
the one on the right hand side of (9.19).

Proof of Theorem 9.3.6

By Lemmas 9.3.4 and 9.3.5: Zf ∩µ Zµ ⊆ ZBu and Zf ∩µ Zµ ⊆ CZu, and hence
Zf ∩µ Zµ ⊆ ZBu ∩ CZu.

Proof of Proposition 9.3.7

This directly follows from Proposition 9.1.6.
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Proof of Lemma 9.3.8

Let z ∈ CZf ∩µ CZµ. Then by definition of the operator ∩µ (cf. (9.12)), z ∈ CZf
and µ(z) ∈ CZµ. Further, by Proposition 9.1.2 and the mean value theorem, z ∈ CZf
implies that µ(z) ∈ µ(CZf ) ⊆ µ(x0)⊕ Jµ(CZf 	 x0), where

µ(x0)⊕ Jµ(CZf 	 x0)
= µ(x0)⊕ (mid(Jµ) + Jµ∆)(CZf 	 x0)
= (µ(x0)−mid(Jµ)x0)⊕mid(Jµ)CZf ⊕ Jµ∆(CZf 	 x0).

(A.106)

On the other hand, by Proposition 9.1.3 :

Jµ∆(CZf 	 x0) ⊆ CZR , {GR, cR, AR, bR}CZ , (A.107)

with GR, cR, AR, bR given in (9.25) and (9.27) (note that mid(Jµ∆) = 0 by its definition)

and where CZR has nR generators. Then, the facts that z ∈ CZf , {G̃fβ + c̃f |Ãfβ =

b̃f , β ∈ Bnc∞}, µ(z) ∈ CZµ , {G̃µγ + c̃µ|Ãµγ = b̃µ, γ ∈ Bnτ∞ }, along with (A.106) and

(A.107) imply that z ∈ {G̃fβ + c̃f |c̃µ + G̃µγ = µ(x0) + mid(Jµ)(c̃f − x0) + mid(Jµ)β +

CR +GRξR, Ãfβ = b̃f , Ãµγ = b̃µ, ARξR = bR, β ∈ Bnc∞ , γ ∈ Bnτ∞ , ξR ∈ BnR∞ }, where the
set on the right hand side is equivalent to the CZ on the right hand side of (9.26).
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