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ABSTRACT

This thesis presents the development of idiographic models (i.e., single subject or

N = 1) of walking behavior as a means of facilitating the design of control systems

to optimize mobile health (mHealth) interventions for sedentary adults. Model-on-

Demand (MoD), an adaptive modeling technique, is demonstrated as an ideal method

for modeling nonlinear systems with noise on a simulated continuously stirred tank

reactor (CSTR). Comparing MoD to AutoRegressive with eXogenous input (ARX)

estimation, MoD outperforms ARX in terms of addressing both nonlinearity and noise

in the CSTR system. With the CSTR system as an initial proof of concept, MoD

is then used to model individual walking behavior using intervention data from par-

ticipants of HeartSteps, a walking intervention that studies the effect of within-day

suggestions. Given the number of possible measured features from which to design

the MoD models, as well as the number of model parameters that influence the

model’s performance, optimizing MoD models through exhaustive search is infeasi-

ble. Consequently, a discrete implementation of simultaneous perturbation stochastic

approximation (DSPSA) is shown to be an efficient algorithm to find optimal models

of walking behavior. Combining MoD with DSPSA, models of walking behavior were

developed using participant data from Just Walk, a day-to-day walking intervention;

MoD outperformed ARX models on both estimation and validation data. DSPSA

was also applied to ARX modeling, highlighting the use of DSPSA to not only search

over model parameters and features but also data partitioning, as DSPSA was used to

evaluate models under various combinations of estimation and validation data from a

single participant’s walking data. Results of this thesis point to ARX with DSPSA as

a routine means for dynamic model estimation in large-scale behavioral intervention

settings.
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NOMENCLATURE

The following list defines several acronyms used throughout this thesis. 

AIC Akaike Information Criterion

AICN Akaike Information Criterion according to Loader’s Definition 

ARX AutoRegressive with eXogenous Input

CSTR Continuously Stirred Tank Reactor

DSPSA Discrete Simultaneous Perturbation Stochastic Approximation 

GCV Generalized Cross Validation

GoF Goodness of Fit criterion

mHealth Mobile Health

MoD Model-on-Demand

MPC Model Predictive Control

NRMSE Normalized Root Mean Squared Error

PA Physical Activity

SCT Social Cognitive Theory

SPSA Simultaneous Perturbation Stochastic Approximation



Chapter 1

INTRODUCTION

The unprecedented availability of data made possible today by advances in tech-

nology and increased use of mobile devices has allowed dynamic modeling to become

a primary source of data-driven solutions to problems in many fields, including be-

havioral medicine. However, moving from data to dynamical models presents many

challenges, as the informative utility of data is limited by its ability to be operational-

ized in both an explanatory and predictive sense. This means that special attention

must be given to (1) experimental design for obtaining quality data and (2) estimat-

ing useful models that inform decision-making in interventions. This thesis focuses

on the latter.

Despite the availability of data (or the relative ease by which we are able to collect

data), distilling a comprehensive and useful model often requires exhaustive search

and high computational power. These challenges arise from (1) the large number

of measured features that are potential model inputs and (2) the presence of noise.

To more efficiently find optimal models, this thesis demonstrates the use of discrete

simultaneous perturbation stochastic approximation (DSPSA) to optimize models of

individual walking behavior. DSPSA is a simulation-based technique that optimizes

models through stochastic search (Spall, 1998; Wang and Spall, 2014). It is especially

useful when a closed-form objective function is not available and when measurements

may be noisy. Here, the results of DSPSA as a tool for feature selection, model order

selection, and parameter estimation, are illustrated, which will allow users to more

easily obtain models from large volumes of data and utilize more computationally-

demanding models. This will be shown thorough the use and optimization of Model-
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on-Demand (MoD) and AutoRegressive with eXogenous (ARX) input existimation.

The former is an appealing approach for modeling noisy, nonlinear systems (Stenman,

1999; Braun et al., 2001) and the latter is a classical and commonly used dynamic

modeling technique.

Behavioral medicine presents a rich field of opportunities to study novel modeling

methods as there has been a push for idiographic (i.e., “single subject”) approaches

to understand each individual’s specific barriers to health-promoting behavior and

personalized behavior-change interventions. While the benefits of increased physi-

cal activity (PA) are well-documented, there remains an issue in how to promote

sustained increases. Providing individuals with information about improving their

health through increased PA, alone, is not enough to benefit at-risk populations.

Significant improvement requires that participants both respond to suggestions to

increase PA and sustain engagement at higher levels of PA over extended periods

of time, beyond that of an intervention. Personalized interventions designed from

idiographic models may be able to bridge these gaps by directly delivering helpful

suggestions to increase physical activity within the particular individual’s day and

better their attitude and habits towards physical activity to create sustained im-

provements over time. However, the framework for idiographic modeling is still being

developed, as it has not yet been explored as deeply as nomothetic approaches (i.e.,

to find generalizable knowledge or scientific laws), which have been widely practiced

across many fields.

HeartSteps and Just Walk are interventions that address physical inactivity through

individualized physical activity (PA) interventions delivered to participants via mo-

bile health (mHealth) technologies. Both aim to also study the dynamical nature of

behavior to better account for psychosocial, contextual, and environmental factors

and how the effects of these change with time, to improve upon traditional theories
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of behavior change (Spruijt-Metz et al., 2022). HeartSteps is a microrandomized trial

that studies within-day decisions on participants’ walking behavior. Participants were

sent up to five contextually-tailored activity suggestions per day, and their walking

behavior following the suggestions was measured (Klasnja et al., 2019). Combining

control systems theory, behavioral science, and informatics, Just Walk utilized sys-

tem identification principles to design goal setting and positive reinforcement models

(Phatak et al., 2018; Freigoun et al., 2017; Rivera et al., 2018). Through this trans-

disciplinary approach, Just Walk not only highlights the improvements from taking

an individualized approach, but also demonstrates the benefit of system identifica-

tion principles in the development of personalized interventions. These studies both

account for the complexity of physical activity and its dependence on environmental

and mental factors, addressing the importance of idiographic modeling in overcoming

the limitations of nomothetic approaches, which are the current dominant paradigm,

to successfully model individual participant behavior.

An individual’s walking behavior is complex and idiosyncratic, influenced by a

variety of factors that themselves may be context dependent. To develop a useful

model of behavior, it is necessary to capture this complexity and nonlinearity. While

dynamic models for behavior have been developed with linear AutoRegressive with

eXogenous input (ARX) modeling, these may be too simple to provide sufficient ex-

planation and prediction of an individual’s PA behavior, which is necessary to produce

an effective intervention. The simplicity of ARX restricts its capacity to capture non-

linearity in individual behavior and may not allow for prediction or explanation of

behavior as an individual’s environment or mental state changes. Consequently, MoD

presents an appealing approach, as it fits a local model at each operating point, al-

lowing it more flexibility and adaptability to build models “on demand.” While MoD

may provide a better method to model PA, it is more computationally-demanding
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than ARX and requires greater prior knowledge, as there are additional parameters

that need to be specified. However, this increase in the complexity of implementa-

tion can be mitigated by DSPSA, making MoD more accessible and applicable in a

broader set of application settings.

One drawback of using a small data approach to behavioral medicine, is that

there is limited data that can be used for modeling, as there are constraints to the

amount of data that researchers are able to obtain from individual participants. A

specific issue that arises from this, is that the choice of estimation and validation

data can influence the accuracy of the model, especially in its ability to predict an

individuals future behavior under different conditions. For example, using the first

half of an individual’s data to estimate a model may result in a model that does

not capture certain influences such as notification fatigue. This model might then

overestimate the individual’s response to future intervention notifications, resulting

in suggestions with unattainable goals that discourage the individual from partici-

pating in the intervention. To address this, DSPSA will also be used to optimize

and validate models given varying sets of estimation and validation data formed by

combining different segments of an individual’s walking behavior. Since partitioning

an individual’s data into estimation and validation data presents another parameter

that might influence the success of a model, it is another opportunity to demonstrate

DSPSA as an optimization method.

The results presented in this thesis contribute to a more recent development of

control-oriented approaches to the study of behavioral systems and the design of be-

havioral interventions. Prior research have demonstrated that control systems engi-

neering provides a useful framework to develop and optimize individualized interven-

tions that adapt to a person’s evolving needs and environment. Using mathematical

models of physical behavior, a controller can be designed to provide decision rules
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that govern when and what kinds of walking suggestions (i.e. the magnitude of a

step goal) are provided to intervention participants (Hekler et al., 2018). Aside from

the controller itself, control systems principles can be used in all parts of intervention

development, including data gathering. One example of this is the use of a control-

oriented dynamical systems model of social cognitive theory (SCT) based on fluid

analogies, which was used for system identification (Martin et al., 2018). However,

the research demonstrated in this thesis contributes specifically to developing idio-

graphic models from an individual’s data with respect to (1) modeling technique and

(2) the scalability of model specification. As mentioned previously, behavioral sys-

tems are nonlinear and noisy, as human behavior is highly contextual and difficult to

measure (i.e. variability in self-reported measures, step count errors, etc.). To ad-

dress this, we demonstrate that Model-on-Demand estimation can better handle both

nonlinearity and noise than ARX estimation. With a modeling technique in mind,

however, there still remains the issue of feature selection and parameter specification,

which can be tedious depending on the number of measured variables available for

model inputs. This problem grows as we consider that models will need to be spec-

ified many individuals, since the interventions are personalized. DSPSA is proposed

as an optimization technique to quickly and efficiently specify parameters and select

features that are most important to the individual’s walking behavior. This makes

the process of defining an individual’s model routine and efficient so that it can be

performed on a much larger scale.

This thesis is organized as follows: Chapter 2 presents the advantages of MoD

over ARX, demonstrated on both a simulated continuously-stirred tank reactor (a

nonlinear system with noise) and HeartSteps, a walking intervention that studies

within-day decisions. Chapter 3 combines MoD with discrete simultaneous perturba-

tion stochastic approximation (DSPSA) to optimize behavioral models with respect
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to feature selection and parameter specification, using individual walking data pro-

vided by the Just Walk study. Chapter 4 addresses the issue of partitioning individual

participants’ walking data into estimation and validation data by applying DSPSA

to ARX models obtained and tested with different sets of estimation and validation

data. Chapter 5 summarizes the results and contributions of this thesis, as well as

potential future work.

1.1 Publication Summary

Research from this thesis that has been published thus far as refereed conference

papers are listed below.

[1] Kha, R. T., Rivera, D. E., Klasnja, P., Hekler, E. (2022), “Model Personal-

ization in Behavioral Interventions using Model-on-Demand Estimation and Discrete

Simultaneous Perturbation Stochastic Approximation,” in Proceedings of 2022 Amer-

ican Control Conference (ACC), Altanta, pp. 671-676.

Chapter 4 is being prepared for submissions to the 2023 American Control Con-

ference in San Diego.
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Chapter 2

MODEL-ON-DEMAND ESTIMATION

2.1 Model-on-Demand Overview

Model-on-Demand (MoD) is a hybrid modeling technique that combines both local

and global modeling. At each operating point, MoD fits a local model by solving a

weighted regression problem. Unlike global models, which fit a model to the entire

estimation data set and then discard the data, Model-on-Demand does not discard

the data set after a model is defined. Instead, MoD uses a subset of the data to fit

a local model and returns to a stored estimation data set, repeating the process, as

it computes local models at each operating point. The neighborhood size of the data

used is adjusted at each operating point to minimize the local model’s error, making

MoD an adaptive modeling technique (Stenman, 1999).

One of the primary advantages of Model-on-Demand, compared to traditional

global estimation methods, is that the model is optimized locally. MoD applies a

weighted regression to generate local estimates, adjusting the neighborhood size from

a stored database of observations to build models ‘on demand.’ This optimizes the

bias/variance trade-off locally, allowing MoD to achieve lower errors for a fixed model

structure. This is particularly useful as the number of observations increases, as it

becomes more difficult to obtain a global model that is optimal over an entire data

set (Stenman, 1999). MoD is also advantageous, as it is simple to use in selecting a

local model and computes estimates relatively fast.

The MoD modeling formulation can be described with a single input single output

(SISO) process as demonstrated by the approach of Braun et al. (2001). Consider a
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SISO process with nonlinear ARX structure,

y(t) = m(φ(t)) + e(t) (2.1)

in which m(·) is an unknown nonlinear mapping and e(t) is an error term. The error

is modeled as a random signal with zero mean and variance σ2
k. The MoD predictor

attempts to estimate output predictions, ŷ(i), based on a local neighborhood of the

regressor space φ(t). The regressor vector takes on the form of a linear ARX structure

as shown in Equation 2.2.

φ(t) = [y(t− 1) . . . y(t− na) u(t− nk) . . . u(t− nb − nk)]
T (2.2)

where na denotes the number of previous lags in the output, nb denotes the number

of previous lags in the input, and nk denotes the delay in the model. Note that for

multi-output systems, na is specified for each output, and for a multi-input system,

nb and nk are specified for each input. The applications used to demonstrate MoD in

later parts of this thesis are multi-input single output.

A local estimate ŷ(i) is then obtained at each operating point from the solution

of the weighted regression problem, shown in Equation 2.3:

β̂ = argmin
β̂

N∑
i=1

ℓ(y(i)− m̂(φ(i), β̂))×W

(
∥φ(i)− φ(t)∥M

h

)
(2.3)

in which ℓ(·) is a quadratic norm function, ∥u∥M ≜
√
uTMu is a scaled distance

function on the regressor space, h is a bandwidth parameter controlling the size of

the local neighborhood, and W (·) is a window function (also referred to as the kernel)

assigning weights to each remote data point based on its distance from φ(t) (Braun

et al., 2001). N is the total number of observations available for model estimation,

and the weights control the “locality” of the data points, influencing the size of the

local neighborhood for each operating point. The window is typically a bell-shaped
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function with bounded support. MoD users specify kmin, kmax, and a goodness-of-fit

criterion, which then affect the bandwidth parameter and the window function. Two

common goodness-of-fit criteria include the Akaike Information Criterion (AIC) and

Generalized Cross Validation (GCV), but many others may also be considered (Sten-

man, 1999). Assuming a local model structure,

m(φ(t), β) = β0 + βT
1 (φ(i)− φ(t)) (2.4)

which is linear in the unknown parameters, a MoD estimate can be computed using

least squares methods. Denoting β0 and β1 as the minimizers of Equation 2.3 using

the model from Equation 2.4, a one-step ahead prediction is given by

ŷ(i) = α + βT
1 φ(i) (2.5)

where α = β0 − βT
1 φ(t). Each local regression problem produces a single prediction

ŷ(i) corresponding to the current regression vector φ(t). To obtain a prediction at

other operating points in the regressor space, MoD adapts both the relative weights

and the selection of data to optimize a new local model at the next operating point.

This diverges from global modeling techniques in which the model is estimated from

the data once, and then the data is discarded. The bandwidth h, which is computed

adaptively at each prediction, controls the neighborhood size governing the trade-off

between the bias and variance errors of the estimated model.

In application, users can specify the regressor structure used in φ(t), the local

polynomial order that approximates m(·), kmin, kmax, and the goodness-of-fit crite-

rion; these variables impact the size of the neighborhood chosen to fit the local model.

The window function is also user-specified, but in most cases (including the results

presented in this thesis), a tricube window function is used, since its derivative is

continuous and it goes to zero at the boundaries (Braun, 2001).

9



The MoD model is then evaluated using Normalized Root Mean Square Error

(NRMSE). The formulation is defined in Equation 2.6, in which θ represents the

model parameters, ŷ is the model output, y is the actual value of the data, and ȳ is

the average of the data. A good model has higher fit percentages (J(θ)), in which a

perfect model has a fit of 100%.

J(θ) = 100%×
(
1− ||y − ŷ||2

||y − ȳ||2

)
(2.6)

This fit is distinct from the goodness-of-fit criterion used in the MoD formulation

(i.e. GCV, AIC, AICN, etc.), as the goodness-of-fit used in the MoD algorithm is

used to evaluate the minimization problem, which calculates the local model at each

operating point. The NRMSE fit is used to evaluate the MoD model as a whole.

The NRMSE fit will be used throughout this thesis to evaluate both MoD and ARX

models.
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2.2 Continuously-Stirred Tank Reactor Application

To demonstrate the advantages of Model-on-Demand (MoD) in a well-defined

setting, MoD was compared to a linear AutoRegressive with eXogenous input (ARX)

model in its ability to handle both nonlinearity and noise with respect to a simulated

continuously-stirred tank reactor (CSTR) as per Bequette (1998). The CSTR system

model evaluated here was created in Simulink (see Appendix A). Using an exothermic

reaction with reactant A producing product B,

A −→ B (2.7)

the CSTR simulation assesses the influence of jacket temperature as the manipulated

variable available for control. This is shown in Figure 2.1. The feed stream is a source

of disturbances, in terms of both temperature (Tf ), and the inlet concentration of A

(CAf ). Two outputs of interest were measured: (1) tank temperature T and (2) outlet

concentration CA.

Figure 2.1: Continuously Stirred Tank Reactor (reprinted)

The CSTR simulation, was also modified to account for both process and measure-

ment noise. Noise was introduced by adding values produced by a random number
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generator with zero mean and nonzero variance. Various noise levels were imple-

mented and used to compare MoD to a simpler modeling technique, namely ARX.

The noise level was controlled by adjusting the variance of the number generator (i.e.

larger variance, higher level of noise).

To run the simulation, the output variables of interest were subjected to changes

in the jacket temperature, as per a multi-sinusoidal (multisine) signal designed using

the Input Design GUI (Bailey and Rivera, 2020). The multisine signal was designed

such that there was persistent excitation (see Appendix B). From the open loop

response (Figure 2.2), the dominant time constant was specified with a low value of

3 hours and a high value of 5 hours, as determined from the response of the outlet

stream (CA).
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Figure 2.2: CSTR Open Loop Response to a Step Increase (5◦C) in Jacket Temper-

ature

Separate estimation and validation datasets were obtained using distinct realiza-

tions of the same input signal (Figure 2.3). These signals were designed with an

amplitude of ±1. When implemented in the simulation, this signal was multiplied by
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a user-specified gain and added to the initial jacket temperature to provide sufficient

variation to produce data for modeling. Each realization was run through the simula-

tion, and the responses of the output variables were measured. The input and output

dynamics were then used to test both MoD and ARX estimation. Responses from one

signal were reserved for estimation data, while responses from the second realization

were used as validation data. Additional information is available in Appendix B.
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Figure 2.3: CSTR: Input Signals for Jacket Temperature to Produce Estimation and

Validation Data

The results of the CSTR case study are summarized in Table 2.1. They demon-

strate MoD’s ability to handle both nonlinearity and noise better than ARX. Despite

increases in noise, MoD is able to obtain a higher fit to the validation data and the

MoD model also achieves this with lower RMS and maximum error. Although two

controlled variables are measured (CA, T ), only output concentration was be used to

evaluated MoD. More detail about these results are also presented in the next sections

of this chapter.
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NRMSE Fit (%) RMS Error (kgmol/m3) Max Error (kgmol/m3)

MoD ARX MoD ARX MoD ARX

Noise-Free 94.56 71.27 0.0723 0.3821 0.2190 0.7083

Low Noise 65.39 47.85 0.5758 0.8677 2.3028 3.3736

High Noise 13.10 8.52 1.3974 1.4712 3.8587 3.9620

Table 2.1: CSTR Simulation: MoD and ARX Results Summary

In Table 2.1, the noise cases refer to differences in measurement noise introduced

to the outputs of interest. In Simulink, this was modeled by adding a random number

generator to the calculated values. The level of noise was then controlled by specifying

the variance of the random number generator. For “low noise,” the variance was set

to 0.001, while for “high noise,” the variance was set to 0.1. The “noise free” case

does not have any measurement noise.
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2.2.1 CSTR, Noise-Free Conditions

In the noise-free case, MoD’s ability to better model nonlinearity than ARX is

highlighted in Figure 2.4. Neither process nor measurement noise were implemented.

This is also a single input single output (SISO) system, in which the measured output

is concentration of A and the input is jacket temperature. Both disturbances were

considered at steady-state.

The modeling results from this simulation were obtained using the MoD parameter

specifications outlined in Table 2.2. The ARX regressor structure was used common

to both the MoD and ARX models.

Parameter Value

Polynomial order 1

ARX Regressor Structure, [na nb nk] [2 2 1]

Goodness of Fit AICN

kmin, kmax 55, 320

Table 2.2: CSTR: Noise Free Model Parameters

From Figure 2.4, MoD achieved a higher percent fit to the validation data, mea-

sured in terms of normalized root mean squared error (NRMSE), at ≈ 94%. This is

about 23% higher than the NRMSE fit obtained by ARX estimation, which is ≈ 71%.

The difference in performance between MoD and ARX is also illustrated by the root

mean square error (RMS) and the maximum error (MAX), which are both lower for

MoD.

From the middle and bottom subplots, additional features of the MoD estimation

model are shown. The middle subplot illustrates the neighborhood size used to es-

timate the local model at each operating point, which varies between kmin =55, and
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kmax =320. Most local models were computed in the vicinity of 300 data points for

estimation, but at a few operating points, MoD used less, about 200 data points.

The difference between the MoD predicted output and the actual system output

(in terms of output concentration) at each operating point is demonstrated in the

bottom subplot. There are four large peaks, at which MoD underestimates the output

concentration (y−yest > 0), but the difference between the MoD predicted and actual

outputs is no more than 0.25 kgmol/m3.
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2.2.2 CSTR, Low Noise Conditions

The low noise case was assessed by running the CSTR simulation with noisy input

and output signals as per the variance values in Table 2.3.

Measurement Noise Signal Variance

Tank Temperature 0.001

Outlet Concentration 0.001

Process Noise Signal Variance

Jacket Temperature 0

Feed Concentration 10

Feed Temperature 10

Table 2.3: CSTR: Low Noise Process and Measurement Noise Variance

Using the MoD parameters outlined in Table 2.4 and the ARX orders, [2 2 1], the

results in Figure 2.5 were obtained.

Parameter Value

Polynomial order 1

ARX Regressor Structure, [na nb nk] [2 2 1]

Goodness of Fit AIC

kmin, kmax 55, 500

Table 2.4: CSTR: Low Noise Model Parameters

From Figure 2.5, once again MoD provided a better model than ARX, measured

in terms of NRMSE percentage fit. The MoD model had a fit of ≈ 65%, while ARX

resulted in a fit of ≈ 48%, which is a difference of about 17%. MoD’s ability to
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Figure 2.5: CSTR: Low Noise MoD and ARX Estimation. Output is CA, measured

in kgmol/m3.

better predict the concentration of A in the output stream of the CSTR system is

also highlighted by its lower RMS error, 0.5758, and lower maximum error, 2.3028.

ARX had a RMS error of 0.8677 and a maximum error of 3.3736.

Unlike the noise-free case, under low noise, the size of the neighborhood used to

estimate a MoD model at each operating point displays a lot more variability, using

between 150 and 500 data points. The magnitude of the residuals were also larger

than in the noise-free case.
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2.2.3 CSTR, High Noise Conditions

In the high noise case, the measurement noise for the tank and output concen-

trations were increased by increasing the variance of the random number generator

by two orders of magnitude from the low noise case (0.1 versus 0.001). Process noise

was kept the same between the two cases.

Measurement Noise Signal Variance

Tank Temperature 0.1

Outlet Concentration 0.1

Process Noise Signal Variance

Jacket Temperature 0

Feed Concentration 10

Feed Temperature 10

Table 2.5: CSTR: High noise Process and Measurement Noise Variance

Parameter Value

Polynomial order 1

ARX Regressor Structure, [na nb nk] [2 2 1]

Goodness of Fit GCV

kmin, kmax 55, 320

Table 2.6: CSTR: High Noise Model Parameters

Both the fit provided by MoD and ARX are lower in the high noise case than

the low noise case, which was expected (Figure 2.6). However, MoD still provides

a better fit than ARX, althought the difference here is about 5%, unlike prior cases

where the difference was closer to 20%. In terms of the RMS error and maximum
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Figure 2.6: CSTR: High Noise MoD and ARX Estimation. Output is CA, measured

in kgmol/m3.

error, the difference between the two models is also smaller than in previous cases.

However, based on these measures, MoD still performs better than ARX, since the

errors calculated from the MoD model are smaller than those from the ARX model.

This degradation in MoD’s outperforming ARX as noise increases is likely due to noise

dominating the system, rather than nonlinearity. One of MoD’s primary advantages

is its ability to model nonlinearity, as it is an adaptive method that fits a local model

at each operating point. However, as noise increases in the system, the modeling

complications that arise from nonlinearity become dominated by complications due

to noise, and so using MoD over ARX has diminishing benefits at higher noise levels.
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Compared to the low noise case, the high noise case also has larger residuals and

there is a lot of variance in the size of the neighborhood used to estimate a model at

each operating point.

From the three CSTR cases presented, MoD outperforms ARX despite both no-

linearity and noise, which suggests that it may be more appropriate than ARX to

model other nonlinear, noisy systems such as human behavior. As such, MoD and

ARX will also be assessed in terms of their ability to model walking behavior for

developing personalized interventions.
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2.3 Behavioral Intervention Applications

In this thesis, data from two behavioral intervention studies will be used to demon-

strate the use of Model-on-Demand (MoD) as a method to estimate idiographic mod-

els of walking behavior. Both studies, HeartSteps and Just Walk, aim to provide

sedentary adults with personalized interventions to increase physical activity. To do

this, both study the impact of walking suggestions sent to participants via mobile

health devices, such as a Fitbit and mobile apps. These suggestions are tailored to

individuals, accounting for local environmental factors such as weather and time of

day, as well as idiosyncratic factors such as the individual’s mental state, which may

influence the individual’s responsiveness and therefore the effectiveness of the study.

These interventions are designed to be dynamic and adapt to changes in real-time,

to maximize the impact of each suggestion. Both studies collected data of the par-

ticipants’ environmental context and mental state to study the participants’ respon-

siveness to the intervention, measured in terms of the participants’ step count. These

data are then used in this chapter to illustrate the effectiveness of Model-on-Demand

as a modeling technique to understand individuals’ walking behavior and inform the

interventions that provide walking suggestions. In later chapters of this thesis, the

same behavioral data will also be used to assess Discrete Simultaneous Perturbation

Stochastic Approximation (DSPSA) to optimize models developed from participants’

individual data. In the following sections HeartSteps data is used to compare MoD

with ARX estimation and show that MoD is better suited for behavioral interventions.

Just Walk will be discussed in the next chapter.
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2.3.1 HeartSteps Overview

The first study, HeartSteps studies the impact of within-day walking decisions. It

is a micro-randomized trial used to inform just-in-time adaptive interventions (JITAI).

Variable Description

z30 log of step count in the last 30 minutes

z60 log of step count in the last 60 minutes

d(t) day of the decision point

d25 number of notifications in the past 25 decision points

d30 number of notifications in the past 30 decision points

A(t) a suggestion (any) at decision point t (1 if any suggestion is sent)

A1 binary (1 if active suggestion)

A2 anti-sedentary suggestion (1 if anti-sedentary suggestion)

Home binary (1 if location = home)

Work binary (1 if location = work)

Other binary (1 if location = other)

Weekday binary (0 if weekday, 1 if weekend)

Weather binary (1 if outdoor weather, 0 if indoor weather)

Morning binary (1 if time = morning)

Afternoon binary (1 if time = afternoon)

Mid-Day binary (1 if time = mid-day)

Evening binary (1 if time = evening)

Night binary (1 if time = night)

Table 2.7: HeartSteps : Input Variable Definitions

The adaptive intervention framework accounts for the participant’s current con-
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text (environmental and mental) to decide whether an intervention should be delivered

and if so, what kind of intervention suggestion should be sent (Klasnja et al., 2019).

‘Micro-randomization’ refers to trial structure of the study, which randomly assigns

a treatment to participants. These treatments are the types of interventions, which

vary between active suggestions and anti-sedentary suggestions. The former directly

encourages walking, while the latter suggest general movement such as stretching or

standing up and are sent to increase engagement with the intervention, reinforcing

future responsiveness.

HeartSteps was a six week microrandomized trial in which participants received

up to five interventions per day (from five intervention decision points), and 44 adults

participated in the study. As such, there are about 200 data points per individual.

The variables measured in this study are listed in Table 2.7. Only one output variable

is measured: y(t+1), which is the log of the individual’s step count in the 30 minutes

after decision point t. From the other measured variables, which are also potential

features include in modeling, most relate to notifications (total amount and type),

measured walking (step count in the 30 and 60 minutes prior to a notification), and

environmental factors (location, time of day, and weather). Note that the Weather

variable is not a measure of temperature, but instead ‘indoor’ or ‘outdoor’ weather.
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2.3.2 HeartSteps MoD Case Studies

Model-on-Demand (MoD) was able to provide better idiographic models of walk-

ing behavior compared to ARX on data from the HeartSteps intervention. This is

illustrated using walking data provided by Participant 7. This will further be demon-

strated by three MoD implementations, which illustrate MoD’s performance (relative

to ARX) under various modeling parameters.

In these cast studies, ‘estimation’ results denote when both the estimation data

and validation data are the same (the same dataset is used to estimate the model

and to validate the model). This is different from ‘prediction’ results in which sep-

arate datasets were used for estimation and validation. Unlike the CSTR case, each

participant only has one set of data, and so two distinct datasets are not available

to be used as estimation and validation data. Consequently, for the predictive cases,

a separate validation dataset was created by reserving a subset of the individual’s

walking data.

NRMSE Fit (%) RMS Error (kgmol/m3) Max Error (kgmol/m3)

MoD ARX MoD ARX MoD ARX

Case 1 54.74 24.78 1.359 2.258 5.793 6.182

Case 2 37.15 23.52 1.887 2.296 5.606 6.065

Case 3 35.64 32.98 1.780 1.855 4.965 4.878

Table 2.8: HeartSteps : MoD and ARX Comparisons for Participant 7

Three case studies will be shown using Participant 7 of the HeartSteps intervention

(Figure 2.7). Each case study will compare MoD models with ARX models obtained

under various modeling conditions. The first case compares the two techniques on

the participant’s whole data set, as used for both model estimation and validation.
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The MoD and ARX models both use all measured variables as features. The second

case compares the two modeling methods on the participant’s whole data set (used

as both estimation and validation data) given only a subset of features from the

available measured variables. This demonstrates that MoD can still outperform ARX

even with limited features. The last case split’s the participant’s data into estimation

and validation, and compares MoD and ARX models on the validation set, while

using a subset of variables as model features. The results from each case study are

outlined in Table 2.8.
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Figure 2.7: HeartSteps : Participant 7 Data
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Case Study 1

In Figure 2.8, MoD and ARX were compared with respect to their ability to model a

given participant’s walking behavior. The results shown are with respect to estimation

data – the data used to inform the model and the validate the model are the same.

All 18 inputs were used, and the ARX orders for the models is [1 1 0] ([na nb nk]), in

which the same nb and nk values were used for all inputs. The parameters are further

outlined in Table 2.9 and the features are listed in Table 2.10.
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Figure 2.8: HeartSteps : Participant 7 MoD and ARX Model Comparison on Estima-

tion Data with All Features

The MoD model produces a fit that is almost twice as high as that of the ARX

model (54.7% versus 24.7%). The RMS and maximum MoD errors are also smaller

than those of the ARX model. From the second subplot in Figure 2.8, the neighbor-

hood size required to fit each local model is often small, around 40-50 data points.
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Parameter Value

Polynomial Order, P 1

ARX Regressor Structure, [na nb nk] [1 1 0]

Goodness of Fit AICN

kmin, kmax 5, 500

Table 2.9: HeartSteps : Model Parameters for Figure 2.8

Feature Included in Model? Feature Included in Model?

z30 X Work X

z60 X Other X

d(t) X Weekday X

d25 X Weather X

d30 X Morning X

A(t) X Afternoon X

A1 X Mid-Day X

A2 X Evening X

Home X Night X

Table 2.10: HeartSteps : Feature Selection for Figure 2.8

Case Study 2

Figure 2.9 demonstrates MoD’s application to the same participant’s walking behavior

as in Figure 2.8, except the model uses a smaller subset of features. This case study

further illustrates MoD’s ability to model behavioral data, as the NRMSE fit from

the MoD model still outperforms the ARX model on the estimation data by about

14%, even when using only 10 of the total 18 features. Both the RMS and maximum
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errors of the MoD model are also smaller than the errors from the ARX model. The

parameters and features that lead to these results are specified in Tables 2.11 and 2.12

respectively.
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Figure 2.9: HeartSteps : Participant 7 MoD and ARX Model Comparison on Estima-

tion Data with a Subset of Features (10), per Table 2.12

Although the model using all 18 features has a better fit than the model using only

10 features, including all features may not be necessary or possible, when developing

models for personalized interventions. A smaller set of features may be required to

reduce computational complexity. Also, including all features may lead to overfitting

or be redundant.

Reducing the number of features further sheds light on the relative significance

of each feature to the individual’s walking behavior. Specifically, the features used
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Parameter Value

Polynomial Order, P 1

ARX Regressor Structure, [na nb nk] [1 1 0]

Goodness of Fit AICN

kmin, kmax 55, 500

Table 2.11: HeartSteps : Model Parameters for Figure 2.9

Feature Included in Model? Feature Included in Model?

z30 X Work -

z60 - Other X

d(t) - Weekday X

d25 - Weather X

d30 - Morning X

A(t) - Afternoon X

A1 X Mid-Day -

A2 X Evening X

Home X Night -

Table 2.12: HeartSteps : Feature Selection for Figure 2.9

in the reduced model play an important role in the individual’s physical activity,

and together provide some significant explanation of the individual’s behavior. The

individual contributions of each feature are unclear, and the contributions relative

to the features not included in the model need further explanation. However, this

demonstrates that all features may not be necessary. The threshold (i.e. in terms

of NRMSE fit) by which a set of features may be evaluated may also need to be

specified, but this will need to be determined by further studies.
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Case Study 3

Using the same participant, Figure 2.10 illustrates the use of MoD and ARX in a

predictive case, in which the models are evaluated on validation data rather than the

same estimation data used to inform the models. In this case, the validation data

was the last 25% of the participant’s data, while the first 75% of their data was used

as estimation data.
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Figure 2.10: HeartSteps : Participant 7 MoD and ARX Model Comparison on Vali-

dation Data (25%) with a Subset of Features, per Table 2.13

After searching across many combinations of features, it was found that for the

predictive case, the highest NRMSE fits (for both MoD and ARX) were obtained

with smaller subsets of features (i.e. usually 3 features or less). This is the opposite

relationship found with the estimation data, in which more features generally lead
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to a higher NRMSE fit. The results in Figure 2.10 were obtained using only two

features : z60 and d(t), which denote the log of the step count in the prior 60 minutes

and the day of the decision point, respectively. The MoD parameters are specified in

Table 2.14.

Feature Included in Model? Feature Included in Model?

z30 - Work -

z60 X Other -

d(t) X Weekday -

d25 - Weather -

d30 - Morning -

A(t) - Afternoon -

A1 - Mid-Day -

A2 - Evening -

Home - Night -

Table 2.13: HeartSteps : Feature Selection for Figure 2.10

Parameter Value

Polynomial Order, P 1

ARX Regressor Structure, [na nb nk] [0 1 0]

Goodness of Fit GCV

kmin, kmax 55, 500

Table 2.14: HeartSteps : Model Parameters for Figure 2.10

The difference between the MoD and ARX NRMSE fit is about 2%, which is a

much narrower difference than in the previous cases on estimation data. For the
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predictive case, it was much more difficult to find parameters in which MoD pro-

vided a significantly better model. Of the set of parameters that were searched over,

many resulted in MoD and ARX being comparable at best. However, only a limited

set of possible combinations of features and parameters were assessed. An improved

search mechanism is presented in the next chapter, in which simultaneous perturba-

tion stochastic approximation (SPSA) is used to search over parameter values and

features to find optimal MoD conditions.

Seeing as these results were found through exhaustive or “brute force” search

over MoD parameters and feature selection, it is unclear whether there are sets of

parameters and features that would lead to even better models, especially for the

predictive case. But since there are so many combinations of both parameters and

features to be searched over, exhaustive search seems infeasible or at least inefficient.

Consequently, to better search over parameters, simultaneous perturbation stochastic

approximation (SPSA) will be used to optimize the MoD models. Since many of

the parameters use discrete values, and the feature selection can be viewed as a

binary problem (1 if the feature is used in the model, 0 if it is not used), a discrete

implementation of SPSA was used. This is shown in the next chapter.
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2.4 Summary and Conclusions

Using Model-on-Demand to estimate models of both a simulated nonlinear CSTR

with noise and a real participant’s walking data from HeartSteps, obtained higher

fit percentages than ARX, a traditionally-used global linear modeling technique. On

the CSTR system, MoD models outperformed ARX models under both no noise and

noisy conditions. This suggests that MoD is a better modeling method for nonlinear,

noisy systems than ARX. MoD was then compared to ARX in behavioral systems,

which are nonlinear and noisy, using data from HeartSteps. Since HeartSteps was an

intervention performed with human participants, distinct estimation and validation

data sets could not be obtained, so participants’ data were split into the first 75%

used as estimation data and the latter 25% used as validation data. MoD outper-

formed ARX on the estimation data and was marginally better than ARX on the

validation data. However, the parameters used in these MoD models were defined

by manually searching over both model parameters and features, so not all possible

models were evaluated. As such, it is possible that other MoD models could have

been obtained with different parameter values and features that significantly out-

performs ARX models on both estimation and validation data. However, the model

performance may also be limited due to characteristics of the data itself. Parameter

and feature choice will be addressed in the next chapter, which discusses discrete si-

multaneous perturbation stochastic approximation (DSPSA) as a search mechanism.

Nonetheless, the results demonstrated in this chapter show that MoD is an effective

modeling technique for behavioral studies and produces models that perform compa-

rably or better than ARX. The rest of this thesis will focus on methods to optimize

idiographic models.
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Chapter 3

MODEL-ON-DEMAND WITH SPSA

3.1 Motivations

While Model-on-Demand provides a method to estimate models for noisy, non-

linear dynamics, choosing the parameters that produce an optimal model presents a

separate challenge. The MoD parameters include choices of local polynomial order,

ARX structure, and goodness-of-fit criterion, in addition to the features or inputs used

to estimate the model, giving rise to a large number of combinations, across which an

exhaustive “brute force” search would be impractical. For example, a case with 18

features available, such as HeartSteps, would require a search over 218 − 1 = 262, 143

combinations. Accounting for model parameters (i.e. regressor orders, etc.) increases

the number of combinations even further. To estimate optimal model parameters

and bypass the need for exhaustive search, we propose the use of a discrete form of

Simultaneous Perturbation Stochastic Approximation (DSPSA), a simulation-based

optimization technique. The results shown in later sections of this chapter were also

published as a conference paper, presented the 2022 American Control Conference

(Kha et al., 2022).

SPSA is a popular technique that is useful in contexts where a closed-form objec-

tive function is not available and where noise may be present (Spall, 1998). It provides

a non-deterministic approach to typical gradient descent methods. For feature selec-

tion, binary SPSA was found to outperform other methods, including Binary Genetic

Algorithms, and conventional feature selection methods such as Sequential Forward

Selection, Sequential Backward Selection, and Sequential Forward Floating Selection.
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These methods were evaluated on multiple datasets, in which binary SPSA was found

to perform at least comparably in small datasets (less than 100 features) and highly

favorably in large datasets (over 100 features), as measured by cross-validation er-

ror (Aksakalli and Malekipirbazari, 2016).

3.2 SPSA Overview

To use SPSA, we start with a guess of the model parameter values θ̂, which are

updated with each iteration. To obtain an estimated gradient, all model parameters

are subjected to a random, two-sided simultaneous perturbation, which are then

used to evaluate the objective function, J(θ̂). These two evaluations are then used

to approximate the gradient, which is subsequently used to update the parameter

values. This is repeated for a user-specified number of iterations k.

The objective function chosen for the optimization problem often takes on the

form of a loss function, L, which is not readily available or explicit and can instead

be approximated by noisy measurements, J(θ) = L(θ) + ϵ(θ). SPSA then minimizes

the loss function through a process that resembles gradient descent, iterating and

updating θ.

SPSA has been used in many problems spanning a diverse set of fields, includ-

ing supply chain management and public health (Wang and Spall, 2014; Schwartz

et al., 2006). As will be demonstrated in this thesis, SPSA is also useful in behavioral

medicine, providing model parameter estimations and feature selection for individu-

alized health interventions. SPSA can be used to search simultaneously across both

continuous and discrete parameter values. Discrete SPSA (DSPSA) will be shown

here, used to optimize both model parameters and feature selection.

The following summarizes the DSPSA process for k iterations, as described in

Wang and Spall (2014) and Aksakalli and Malekipirbazari (2016):
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1. Initialize the Input Vector and Gain Sequences. Specify an initial p-dimensional

input vector, θ̂, in which p corresponds to the number of features or parameters

subject to stochastic search. The gain sequences ak and ck define the step size

of each iteration and perturbation, respectively.

2. Generate the Perturbation Vector. Generate a perturbation vector (∆k) of di-

mension p using a Bernoulli ±1 distribution with probability 1/2.

3. Create Two Input Vectors for Gradient Approximation. From the input vector,

create a new vector, π(θ̂k) = ⌊θ̂k⌋+ 1p/2, in which ⌊·⌋ is the floor operator and

1p is a p-dimensional vector of ones. From π(θ̂k), create two input vectors for

gradient approximation, θ̂+k = π(θ̂k) + ck∆k and θ̂−k = π(θ̂k) − ck∆k. Apply

bounds to limit between discrete values and round θ̂+k and θ̂−k .

4. Approximate the Gradient. Evaluate the objective function J(·) at the bounded

and rounded input vectors, θ+k and θ−k . Use these two evaluations to approximate

the gradient using a finite difference approximation:

ĝk =
J(θ̂+k )− J(θ̂−k )

2ck∆k

(3.1)

5. Update the Input Vector. Using the gradient approximation, update the input

vector:

θ̂k+1 = θ̂k − akĝk (3.2)

Apply bounds to limit between discrete values and round the new input vector.

6. Report the Best Solution Vector. Once the SPSA search has reached its final

iteration, report the best solution.

In a binary application of DSPSA (where the parameter choices are limited to

only 0 and 1), it is necessary to correspondingly limit the input vector between 0 and

1 at each iteration (i.e. at steps 3 and 5).

37



3.3 Behavioral Applications: Just Walk

While the former chapter used data from HeartSteps to demonstrate the use of

Model-on-Demand (MoD), this chapter will use Just Walk to illustrate how MoD

models can not only be applied to behavioral interventions but also be optimized

efficiently by using a stochastic search mechanism, discrete simultaneous perturbation

stochastic approximation (DSPSA).

3.3.1 Just Walk Overview

The second study, Just Walk is a between-day intervention, in which individuals

are sent a daily step count goal via mobile device, and the participants’ actual step

count, as well as other contextual variables (i.e. self-reported variables, environmental

factors), are measured (Phatak et al., 2018). Just Walk was designed using a system

identification approach, instead of a microrandomized trial like in HeartSteps.

Variable Definition

Step Goal Pseudo-random Multisine Signal Centered around Baseline PA

Expected Points Pseudo-random Multisine Signal, 100 to 500 points

Granted Points Raw Score, 0 to 500

Weekday/Weekend 0 = weekday, 1 = weekend

Predicted Stress 1 - 5 scale (self-reported)

Predicted Busyness 1 - 4 scale (self-reported)

Predicted Typicality 1 - 4 scale (self-reported)

Table 3.1: Just Walk : Variable Definitions

Step goals and expected points (which are rewarded upon achieving their step

goals), were designed as pseudo-random multisine signals. These were delivered
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to participants and used to study walking behavior as an open loop system. The

point values translate to dollar amounts (100 points is $0.20 and 500 points is $1.00)

awarded as $5.00 electronic Amazon gift cards after every 2500 points. The total

length of the study was 14 weeks, of which the first two weeks were used to measure

baseline physical activity (PA) to inform the input pseudo-random multisine signals.

Twenty individuals participated in the study, and for each participant and idiographic

model was studied using ARX modeling. The predictors (variables) measured in this

study are in Table 3.1. The output variable of interest is measured in actual steps

per day.

While models based on behavioral theory have been used to inform the decision

rules which govern if and what kind of intervention suggestions should be sent, these

theories have been insufficient to optimize the impact of the intervention. Further

research into how the behavioral data should be used to inform the intervention is

studied here by using Model-on-Demand as an empirical method to better understand

an individual’s walking behavior and predict the effectiveness of the interventions.

These models could then be used to design control systems that can be further used

to optimize the impact of these interventions.
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3.3.2 Just Walk with MoD and Discrete SPSA

Applying discrete SPSA to Participant 073 of the Just Walk study, the following

parameters were subjected to stochastic search: features (i.e. inputs), ARX orders

(i.e. na, nb, nk) for each input/output, and local polynomial order (per Equation 2.4).

The features vector consisted of 9 inputs: all 8 inputs from the Just Walk study and

an interaction term between expected points and predicted busyness.

All features were initialized in a single vector, θ̂w ∈ R9. The input vector is binary

(0: the input is not used in the model, 1: the input is used in the model), and so the

vector was bound between 0 and 1 and rounded such that it can only take on values

of 0 or 1 when used to evaluate a model. Between iterations, the vector was allowed

to take on values between 0 and 1, as it was updated using the estimated slope, but

it was then rounded before being used to define the inputs being used for a specific

model. The convergence of these values was not demonstrated as clearly as in cases

with continuous-valued input vectors, as demonstrated in Schwartz et al. (2006).

The ARX orders (na, nb, nk) were each initialized as individual vectors, θ̂na ∈ R1,

θ̂nb ∈ R9, and θ̂nk ∈ R9. The values of θ̂na and θ̂nb were both bound between 0 and 3,

while θ̂nk was bound between 0 and 1. These orders could take on higher values, but

we chose to limit them to keep the regressor structure simple. The local polynomial

order was also initialized as its own vector (θ̂P ∈ R1), and was restricted between 0

and 2.

Similar to the input vector, the ARX orders and local polynomial order values

were allowed take on any value between their respective bounds. However, they were

rounded before evaluating the model.

The gain sequences were specified for each input vector (Table 3.2). These were

determined by the relative size of approximated gradient compared to the values
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of the input vectors as well as the relative size of the perturbation. While these

have to be determined by the user, they are typically not difficult to narrow down.

The same ck and ak values were used for the input vectors corresponding to na,

nb, and nk, but this does not have to be the case. These gains were sufficient to

allow the search to span the full range of values for each of the parameters across the

iterations. All values of ck and ak were kept constant between SPSA iterations, which

is not the case for all SPSA implementations, but is used in binary applications of

SPSA Aksakalli and Malekipirbazari (2016). The following fixed parameters were

chosen for MoD: kmin = 40, kmax = 400, and the goodness of fit criterion was

generalized cross validation (GCV).

Input Vector ck ak

θw 0.1 0.0002

θna , θnb , θnk 0.1 0.005

θP 0.2 0.004

Table 3.2: Just Walk MoD-DSPSA Gain Sequence Specification

As noted previously, the DSPSA algorithm is set up to maximize the weighted

average of the MoD model’s ability to fit (1) validation data, Jv(θ̂), (2) estimation

data, Je(θ̂), and (3) overall data, Jo(θ̂), where J{v,e,o} corresponds to the Normalized

Root-Mean-Square Error (NRMSE), which is calculated at each iteration by Eqn. 3.3

J{v,e,o}(θ) = 100%×
(
1− ||y − ŷ||2

||y − ȳ||2

)
(3.3)

in which ŷ is the model output, while ȳ is the average of the data, and || · ||2 is the

2-norm. The fit percentages were then weighted as 4/6, 1/6, and 1/6, respectively.

The predictive fit was weighted heavier than both the estimation and overall fits,
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since the predictive fit is typically much lower than the other two (and sometimes

negative) and since the predictive ability of the model serves a significant purpose in

future behavioral health interventions, namely to predict whether a participant is in

a state or environment conducive towards their behavioral goals (i.e. walking more).

These weights and fits then give us our objective function, which in this case takes on

the form of a maximization problem (or minimization of the negative of the weighted

fit):

max
θ∈Z+

J(θ) (3.4)

J(θ) =
4

6
Jv(θ) +

1

6
Je(θ) +

1

6
Jo(θ) (3.5)

in which θw, θna , θnb , θnk , θP ∈ θ, and the optimized solution found by SPSA is θ∗.

As shown by Eqn. 3.4 and 3.5, all input vectors are used to simultaneously update

the same objective function. They are not evaluated independently.

3.3.3 Just Walk Application Results

The NRMSE fit for both MoD and ARX model’s evaluated at the kth iteration of

inputs (features, ARX orders, local polynomial order) are shown in Figure 3.1. The

largest weighted average of the MoD fits occurs at k = 22. The exact fits of the

model evaluated at the optimal iteration are listed in Table 3.3. In each evaluation,

the fit provided by the MoD model is just under double that of the ARX model. The

model evaluations on each data set outlined in Table 3.3 are shown in further detail

in Figures 3.2, and 3.3.
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Figure 3.1: Just Walk : NRMSE Fit (%) Per DSPSA Iteration

NRMSE Fit (%) RMS Error (steps) Max Error (steps)

MoD ARX MoD ARX MoD ARX

Prediction 25.73 13.35 1877.42 2192.41 5585.31 4289.08

Estimation 63.89 35.52 837.01 1499.33 3876.73 4208.57

Overall 50.03 27.55 1189.39 1724.26 5536.66 4807.34

Table 3.3: Just Walk : MoD and ARX Comparisons for θ∗

The features used in the optimal iteration as well as their respective nb and nk

orders are outlined in Table 3.4. These are also the features used in the model

evaluated in Figures 3.2 and 3.3. The na value is common to all inputs, so there is

only one value of na being optimized. In this case, the optimal na value found by

DSPSA is na = 2, which means that two prior lags of the output (steps) are being

used in the model.

In Figures 3.2 and 3.3, the validation data is taken from the last 25% of the
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Initialized Features Selected Features nb nk

Goals Goals 1 1

Expected Points Expected Points 2 0

Granted Points Granted Points 2 0

Predicted Busyness Predicted Busyness 1 0

Predicted Stress Predicted Stress 0 1

Predicted Typical Predicted Typical 2 1

Weekend Weekend 1 1

Temperature - - -

Expected Points/Predicted Busyness - - -

Table 3.4: Just Walk : MoD-DSPSA Feature Selection and nb, nk orders for θ∗ (na =

2, P = 1)

participant’s data, while the former 75% is used to estimate the model. The changes

in neighborhood size, used by MoD to estimate a local model, is also shown in the

middle plot of both figures.

Figure 3.4 illustrates the features used in both the MoD and ARX models at each

iteration. The features used in the optimal iteration and demonstrated in Figures 3.2

and 3.3 are: goals, expected points, granted points, predicted busyness, predicted stress

and weekend, which is a reduced set of features from the original nine.

The local polynomial order used in each iteration is shown in Figure 3.5. The

bottom plot shows the exact value of the polynomial order after being updated by

the gradient approximation after each iteration. These values are then rounded to be

used in each model iteration. The rounded values are shown in the upper plot. The

local polynomial order is only used in the MoD models.
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Figure 3.2: Just Walk : MoD and ARX Model Comparison on Validation Data (25%

of Participant Data). Output Measured in Steps.
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Figure 3.3: Just Walk : MoD and ARX Models Comparison on Estimation Data (75%

of Participant Data). Output Measured in Steps.
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Figure 3.4: Just Walk : MoD-DSPSA Features Used at Each Iteration (θ̂wk )
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Figure 3.5: Just Walk : MoD-DSPSA Local Polynomial Order at Each Iteration (θ̂Pk )

The na, nb, and nk values evaluated at each iteration, shown in Figures 3.6, 3.7,

and 3.8, are updated for all initialized inputs, regardless of which inputs are used in
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Figure 3.6: Just Walk : MoD-DSPSA na (θ̂
na
k ) Values at Each Iteration (Rounded and

Bound Between 0 and 3)

the model at that same iteration. However, the ARX orders are only used in the

model if its corresponding feature is also used in the model (which can be identified

in Figure 3.4). An additional constraint was placed on the DSPSA search regarding

nb and nk values, since they cannot simultaneously be zero in the regressor structure.

So, nk values were set to 1 whenever nb values were 0.
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Figure 3.7: Just Walk : MoD-DSPSA nb (θ̂
nb
k ) Values at Each Iteration (Rounded and

Bound Between 0 and 3)

3.4 Summary and Conclusions

The results obtained from the Just Walk case study show that Model-on-Demand

estimation can provide better individualized models than ARX, with both more expla-

native and predictive power. Though the challenge of choosing the right parameters to

estimate the MoD model can be tedious and require a search over many combinations,

DSPSA provides an efficient means to determine the inputs of the highest-performing

models. DSPSA can be used not only for feature selection but can also provide in-

sights into additional model parameters such as the MoD local polynomial order and

ARX orders. DSPSA also bridges the gap between using MoD and using ARX in

terms of modeling expertise required to tune MoD’s adjustable parameters. The case

shown here only searched over regressor orders and the local polynomial order, but

DSPSA can readily be used to search over other MoD parameters (i.e. goodness of fit
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Figure 3.8: Just Walk : MoD-DSPSA nk (θ̂nk
k ) Values at Each Iteration (Rounded

and Bound Between 0 and 1)

criterion). With DSPSA as a tool to quickly define and evaluate MoD models, these

models can then be used to design controllers such as in the form of model predictive

control (MPC), as shown in Nandola and Rivera (2010).

While the parameters during DSPSA do not appear to clearly converge as it

performs ‘gradient descent,’ DSPSA still allows users to obtain an optimized set of

model parameters efficiently and with modest effort, while avoiding a brute force

search. However, this highlights one limitation in SPSA, in that there is no ‘natural

stopping point’ as the algorithm runs until it hits a stall limit or finishes the iterations

defined by the user (common to both continuous and discrete applications). With

DSPSA, the inability to observe a clear convergence also prevents users from readily

inferring whether the model identified is the best model (or the near best model). Due

to the discrete inputs (and lack of an explicit function), there is also already a limit

to our ability to infer how combinations of features contribute to model proficiency
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(i.e. whether taking one feature away or adding one will help or hurt the model,

given the other features already being implemented); this problem is not unique to

the SPSA framework. Visualization of the exact iterations or parameter values in

continuous space may still be useful for analyses. These may allow DSPSA users to

observe the step size taken at each iteration, to better understand the approximated

gradient resulting from the particular simultaneous perturbation.

Despite these limitations, using DSPSA in conjunction with MoD has demon-

strated that MoD can provide better models than ARX for behavioral health inter-

ventions. This also highlights the need for more robust modeling for individualized

solutions, which is better achieved by MoD than ARX. Given the ease by which

DSPSA can be set up and the efficiency by which it finds near-optimal models, using

DSPSA also provides a method to find idiographic dynamic models for personalized

interventions for a large number of participants, making the concept of personalized

interventions scalable.

Though this chapter demonstrates the effectiveness of MoD coupled with DSPSA,

the next chapter will address the choice of estimation and validation data from a given

individual’s walking data. The results demonstrated here partitioned the participant’s

80-days of data by reserving the first 75% for estimation data and the latter 25% for

validation data, which (1) may not be the optimal choice to maximize the predictive

and explanatory power of the MoD models and (2) may introduce other sources of

bias into the models, including those related to the progress of the intervention itself

(i.e. notification fatigue, habituation, etc.). In the next chapter, DSPSA will be used

with ARX modeling to study how segmenting an individual’s data into estimation

and validation sets can influence model development.
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Chapter 4

ARX ESTIMATION WITH DSPSA

4.1 Motivations

Chapter 3 demonstrated that Model-on-Demand (MoD) models optimized with

DSPSA can efficiently provide improved models of walking behavior. While DSPSA

was used to search over combinations of various parameter values and features, an

important issue in developing behavioral models is the choice of estimation and val-

idation data. As previously explained, behavioral interventions result in one data

set per individual, rather than multiple data sets that can be used for estimation

and validation data as was done in the CSTR case studies in Chapter 2. In the re-

sults shown in Chapter 3, the individual’s data was split 75%/25%, in which the first

75% of the data was reserved as estimation data for MoD and the latter was used

as validation data. However, this may not be the best way to split the data. Some

reasons include notification fatigue, habituation, or general influences related to time

or the progression of the study, which can introduce bias into the model. There also

little to no a priori justification for any other partitioning (i.e. 50%/50%, validation

first/estimation last, etc.).

The Just Walk study used repeating cycles of a pseudo-random multisine signal

for each of the two input features, Goals and Expected Points. Each cycle was 16 days

long, which was repeated five times to provide the full intervention data set. So, rather

than using the last 25% of the individual’s data as validation data and the former

75% as estimation data, it is possible to mix and match data from each of the five

cycles to form the estimation and validation data sets. A similar strategy was done
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in a previous study by Freigoun et al. (2017), which assessed various combinations

of the five cycles as estimation and validation data on the model fit achieved by

ARX estimation. Only combinations of two or three cycles for each estimation or

validation were considered, for a total of twenty possible cycle combinations. The

optimal ARX order for each combination was determined through exhaustive search

with fixed inputs, in a procedure that took days and relied on high performance

computers. In this chapter, the procedure was repeated but instead with DSPSA to

find the optimal ARX orders and features as a more efficient and less computationally-

demanding alternative.

4.2 Just Walk : Participant Walking Data

In the following sections, data from select participants will be used to demon-

strate the combination of DSPSA as a search technique with various combinations of

estimation and validation data. The participant shown for the results demonstrated

in Freigoun et al. (2017), Participant 230, is known as the ‘operant learning’ partici-

pant, as they were particularly attentive to the goals set by the intervention resulting

in behavior that was especially favorable for modeling. This is not the case with every

Just Walk participant, as demonstrated in following sections.

The input-output data for Participant 230 is shown in Figure 4.1. This data is

segmented into five sections corresponding to the five units of the repeated input

signal (multi-sinusoidal signals for goals and expected points).

Walking data from two additional participants, Participant 008 and Participant

057, will also be used to demonstrate DSPSA as an optimization technique to find

ARX orders and features that best explain and predict their respective behavior. The

input-output data for Participant 008 is shown in Figure 4.2, and the input-output

data for Participant 057 is shown in Figure 4.3. Note that while the first four cycles
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of data are each 16 days, the fifth cycle is slightly longer for all three participants.

All data shown is mean subtracted.
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Figure 4.1: Just Walk : Participant 230 Mean-Subtracted Input-Output Data Seg-

mented into Five Cycles
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Figure 4.2: Just Walk : Participant 008 Mean-Subtracted Input-Output Data Seg-

mented into Five Cycles
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Figure 4.3: Just Walk : Participant 057 Mean-Subtracted Input-Output Data Seg-

mented into Five Cycles

4.3 Just Walk Participant 230: 4-Input ARX Models with DSPSA

In this section, discrete SPSA is used to optimize the regressor orders for ARX

estimation models of walking behavior using various combinations of estimation and

validation data from the Just Walk study. This is be compared with the results

from Freigoun et al. (2017), which used exhaustive search to obtain the optimal ARX

orders; these results are shown in Figure 4.4.

The results in Figure 4.4 were computed for a 4-input model for a select partic-

ipant. The four inputs are: Goals, Expected Points, Granted Points, and Predicted

Busyness. Only na and nb values were searched over, and nk for each input was kept

constant at nk = 1. Bounds were placed on both na and nb values, such that neither

could take on values less than 1 or greater than 3. These search conditions were also

used for the SPSA search.

Unlike the previous chapter, only na and nb, were be optimized by SPSA. These

were initialized as separate input vectors, and the gains for each are listed in Table 4.1.
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Figure 4.4: Just Walk: Participant 230 4-Input ARX Model Exhaustive Search Re-

sults (Reprinted from Freigoun et al. (2017))

Input Vector ck ak

θna 0.1 0.005

θnb 0.1 0.005

Table 4.1: Just Walk : ARX-DSPSA Gain Sequence Specification for na, nb

To implement SPSA in this context, separate input vectors were initialized for

each na and nb. The na vector has length equal to the number of outputs, while the

vector for nb each has length equal to the number of outputs. The SPSA algorithm

was then run for each set of estimation and validation data.

Using SPSA, 70 iterations were run for each set of estimation and validation

cycle. The total time for 70 iterations to be completed for all 20 possible sets was

approximately 9.2 minutes. These were computed on a Lenovo Yoga ThinkPad with
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Figure 4.5: Just Walk : Participant 230 4-Input ARX Model Results found by DSPSA

The models with the highest SPSA objective function values are highlighted in yellow.

an Intel Core i7-10510U processor. The objective function to assess each set of ARX

parameters was a weighted average of the ARX NRMSE fit to the validation data

(60%) and and overall data (40%):

J(θ) = 0.6Jv(θ) + 0.4Jo(θ) (4.1)

in which each NRMSE fit term (Jv, Jo) is calculated by Equation 4.2, where y corre-

sponds to the data from each respective partition of data (i.e. validation or overall,

respectively).

J{v,o}(θ) = 100%×
(
1− ||y − ŷ||2

||y − ȳ||2

)
(4.2)

Equation 4.1 is different from the criterion used in Chapter 3, in which a weighted

average of all three fits to validation, estimation, and overall data was used. Here,

only validation and overall fits (with higher weight placed on the validation fit) were

used to more closely match the process used in Freigoun et al. (2017) to determine

the best models. In Freigoun et al. (2017), the researchers first looked at the models
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with the highest validation fits, and then from that set focused on those which had

the highest overall fits. The overall fit accounts for the estimation data, which does

not need to be considered separately.

The results of applying DSPSA to search over na and nb of the four fixed inputs are

summarized in Figure 4.5. Comparing the “best” models found by DSPSA with the

results found by exhaustive search in Figure 4.4, DSPSA was able to obtain similar

NRMSE fit percentages for each set of estimation and validation data, but in much

less time.

From Freigoun et al. (2017), the set of estimation and validation data that led

to the best model was determined to be set #18, which used three cycles of data

for estimation (cycles 1,2, and 5) and two cycles of data for validation (cycles 3 and

4). The results of both methods (exhaustive search and discrete SPSA) are shown

in Table 4.2, and the DSPSA results are comparable to those found by exhaustive

search.

Method Avg. Est. Avg. Val. Avg. Overall ARX Order

NRMSE % NRMSE % NRMSE % [na, nb,1, nb,2, nb,3, nb,4]

Exhaustive Search 50.97 56.63 46.03 [2,3,1,2,3]

DSPSA 52.66 53.72 46.93 [1,1,1,2,3]

Table 4.2: Just Walk : 4-Input ARX Model Comparison for Est/Val Set # 18, with

Estimation Cycles 1, 2, and 5; Validation Cycles 3 and 4

The best model for the estimation/validation set #18 was found at the 14th

iteration of SPSA (out of 70 iterations for the given set). This is shown in Figure 4.6.

As mentioned in the table in Figure 4.5, the ARX orders found by DSPSA are na =

1, meaning that only one previous lag of the output of interest (step count) was
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used. The nb orders for each feature (Goals, Expected Points, Granted Points, and

Predicted Busyness) were 1, 1, 2, 3, respectively; for Goals and Expected Points

only one prior input was needed. For Granted Points and Predicted Busyness, two

and three prior inputs were used, respectively.
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Figure 4.6: Just Walk: Participant 230 4-Input ARX Model Objective Function

DSPSA Iterations, Est/Val Set #18

This model on the overall data (estimation and validation combined) is shown in

Figure 4.7. The NRMSE fit % of the model is 46.9%. This model applied to the

estimation and validation data sets is shown in Figure 4.8, in which the fit to the

estimation data is 52.6% and the fit to the validation data is 53.7%. Since only na

and nb were subjected to DSPSA, the values used at each iteration are shown in

Figures 4.9 and 4.10. The values at iteration 14 of the DSPSA search are the ones

used in the best model found, as noted in Figure 4.5.
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Figure 4.7: Just Walk : Participant 230 4-Input ARX Model on Overall Data #18
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4.4 Just Walk Participant 230: Feature Selection with na, nb, and nk Search in

ARX Model Estimation with DSPSA

In this section, Participant 230 is again examined as in Section 4.3. Discrete

simultaneous perturbation stochastic approximation (DSPSA) was used to search

over both features and all three ARX orders na, nb, and nk. Previously, both the

input features and nk values were fixed. For feature selection, all 8 inputs were

included in the search. Here, nk is allowed to take on values of either 0 or 1. An

nk value of zero denotes that there is no delay, that is, the impact of changes to a

respective feature occur at the same sampling time; whereas an nk value of 1 denotes

that there is a delay of 1, meaning that the impact develops one sampling time later.

In this application, the sampling time is 1 day, and so nk = 0 refers to a within-day

effect, while nk = 1 refers to a day after effect.

Figure 4.11: Just Walk : Participant 230 Results for ARX Models found by Discrete

SPSA with Feature Selection and na, nb and nk Search (Best cases highlighted in

yellow)
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For this search, the number of DSPSA iterations was increased from 70 to 110 per

set of estimation and validation data. The total time for search was 13.6 minutes.

Allowing for search of nk led to much higher NRMSE fit percentages on average, than

either of the prior searches (4-input fixed model, feature selection). The results for

each set of data are tabulated in Figure 4.11. The three models with the largest

objective function value (as per Equation 4.1) are highlighted in yellow. These are

the models for data sets #11, #13, and #16.

The features used in each of the best models (for the 20 sets of estimation and

validation data) are shown in Figure 4.12, along with their corresponding na, nb and

nk values. The most commonly used features were Goals, Expected Points, Granted

Points, and Predicted Typical, which were used in all 20 models.

Figure 4.12: Just Walk : Participant 230 Feature Selection for Each Set of Estimation

and Validation Data with Corresponding na, nb and nk Values

To compare with the prior section, the DSPSA search and best model found for set

#18 can be found in Appendix C. However, it is important to note that based on the
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objective function defined in Equation 4.1, set #18 was not found to be in the three

“best” models, however the model for set #18, though not the best among the other

models found in the same search, still outperformed the models for set #18 found

through the prior DSPSA searches, which either fixed the inputs and/or fixed the nk

values. Directly comparing the models found by exhaustive search and DSPSA with

feature selection and nk search for set #18 (Table 4.3), allowing for both expanded

searches increased the best model’s NRMSE fits by about 20% or more for each part

of the objective function (estimation, validation, and overall data).

Method Avg. Est. Avg. Val. Avg. Overall

NRMSE % NRMSE % NRMSE %

Exhaustive Search 50.97 56.63 46.03

DSPSA w/ feature selection and nk 83.02 76.09 76.85

Table 4.3: Just Walk : Participant 230 “Full Search” ARX Model Comparison for

Est/Val Set # 18

Step responses for the three best models (sets 11, 13, and 16) demonstrating the

behavior response (steps) for Participant 230 given a step increase in goals are shown

in Figure 4.13. All three models show similar step responses, with little variation in

terms of time constant and gain. Each model has a gain of about 1, meaning that

the participant is expected to increase their step count by about 1 for every 1 step

increase in their daily goals.

Additional plots to further demonstrate the results of DSPSA, additional plots for

the model with the highest fits can be found in Appendix C. This model is demon-

strated on the overall data and the estimation and validation data in Figures C.1

and C.2, respectively. The fits of each model tested at each DSPSA iteration for set
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Figure 4.13: Just Walk : Participant 230 Behavior Response (steps) to a Step Increase

in Goals

#18 are also shown in Figure C.3. The feature selection is shown in Figure C.4. Un-

like the prior cases, the features quickly converged, as most models after the first few

iterations used the same three inputs: Goals, Expected Points and Granted Points.

The iterations for the regressor structure search are demonstrated in Figures C.5

- C.7.
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4.5 Just Walk Participant 008: Feature Selection with na, nb, and nk Search in

ARX Models with DSPSA

Although the full search (na, nb, and nk with feature selection) produces fits of

about 70-80% for Participant 230 (the operant learner), such is not the case with

most participants. Other participants have shown much greater variability in their

behavioral responses, which is reflected in the low fit of models created using their

data. Despite the lower fits, using DSPSA to optimize models of walking behavior is

still a structured technique to quickly find the parameters of best or near-best models,

given an individual’s data. In this section, a full search is illustrated for Participant

008.

Figure 4.14: Just Walk : Participant 008 Results for ARX Models found by Discrete

SPSA with Feature Selection and na, nb and nk Search (Best cases highlighted in

yellow)

As for Participant 230, all eight original inputs were initialized for feature selection.

All three regressor structure orders were also initialized for all outputs (na: 1) and all
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inputs (nb, nk: 8). The same bounds were used, and so na and nb were constrained

between 1 and 3, while nk was bound between 0 and 1. For each set of estimation

and validation data, 110 iterations of DSPSA were implemented. The total search

took 17.9 minutes.

Figure 4.15: Just Walk : Participant 008 Feature Selection for Each Set of Estimation

and Validation Data with Corresponding na, nb and nk Values

From the table in Figure 4.14, top three models (as evaluated by the objective

function in Equation 4.1) were the models obtained in sets 15, 16, and 18, as high-

lighted in yellow. The model obtained in set 18 demonstrated the highest weighted fit

at 49.9%. All three models used five features, as outlined in Figure 4.15. They each

used Goals, Expected Points, Granted Points, Predicted Stress and Weekend. The

corresponding na, nb and nk values are also shown in the same figure.

The step response for Participant 008’s behavior (steps) to a step increase in goals

is also shown in Figure 4.16 for the top three models. Compared to Participant 230,

there is more variability in the magnitude of the step responses across the three mod-

els. However, all three step responses are positively valued, meaning that Participant

008 is expected to increase their step count given an increase in their goals, although
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Figure 4.16: Just Walk : Participant 008 Behavior Response (steps) to a Step Increase

in Goals

the increase will not be one to one. Additional plots to illustrate the use of DSPSA

to find models of walking behavior for Participant 008 are available in Appendix D.
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4.6 Just Walk Participant 057: Feature Selection with na, nb, and nk Search in

ARX Models with DSPSA

To demonstrate this method on a third participant, the data from Participant

057 was also used to show the use of DSPSA to optimize personalized ARX models

of their individual behavior. The models were obtained using the same full search

procedure that was performed for Participant 230 and Participant 008. This includes

the same initialized features and regressor orders, as well as the same bounds. For

Participant 057, 110 iterations per set of estimation and validation data were used,

which took a total of 16.8 minutes to compute.

Figure 4.17: Just Walk : Participant 057 Results for ARX Models found by Discrete

SPSA with Feature Selection and na, nb and nk Search (Best cases highlighted in

yellow)

The results of this search are shown in Figure 4.17, with the top three models,

corresponding to data sets 9, 11, and 19, highlighted in yellow. The inputs and

regressor orders for each model are also outlined in Figure 4.18. These models were
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evaluated based on the weighted fit as described in Equation 4.1. The best models

obtained by the algorithm are the ones for sets 11 and 19, which have the same

weighted fit (25.7%).

The models fits obtained for Participant 057 are generally lower than the fits

obtained for both Participant 230 and Participant 008. However, this is due to limi-

tations within the data provided by the participant during the Just Walk intervention

and not a result of poor parameter value assignment or choice of features.

Figure 4.18: Just Walk : Participant 057 Feature Selection for Each Set of Estimation

and Validation Data with Corresponding na, nb and nk Values

Figure 4.19 illustrates the step responses for the best three models which were the

ones obtained for sets 9, 11, and 19. Like the previous two participants all three step

responses are positive valued, suggesting that Participant 057 increases their steps in

response to an increase in step goals. However, the amplitude of these step responses

are the lowest of the three participants, which suggests that Participant 057 is the

least responsive of the three. Additional plots to further illustrate the DSPSA results

for Participant 057 are in Appendix E.
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Figure 4.19: Just Walk : Participant 057 Behavior Response (steps) to a Step Increase

in Goals

4.7 Summary and Conclusions

This chapter has demonstrated the use of DSPSA to simultaneously search over

regressor structures and features, to find the near-optimal ARX models of individual

walking behavior given intervention data. The method presented not only illustrates

the influence of data selection on model structure, but further highlights that DSPSA

is much more efficient than exhaustive search.

First, by using DSPSA to search over na and nb orders for a fixed 4-input model

with nk = 1 for all inputs, DSPSA found models comparable to the models for

the same participant (230) as found by exhaustive search from a previous published
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study Freigoun et al. (2017). Not only did DSPSA find models with comparable

fits, but it was also able to find these models within 10 minutes with 70 iterations

per data set, being run on a local computer, which is much more computationally

efficient than the exhaustive search, which can take hours to days, depending on the

size of the search space. For the search parameters used in Freigoun et al. (2017)

(na and nb search only), the exhaustive search was estimated to take about 25 to

30 minutes. However, this time increases drastically as the search space increases

in size. Adding search over nk ∈ {0, 1} increases the number of regressor order

combinations to 3,888, which is 16 times the number of combinations with a search

over only na, nb ∈ {1, 3}. With searching over 3,888 regressor order combinations

for 20 possible sets of data, this increases the total number of models to evaluate by

72,900. Running an exhaustive search over na, nb, and nk with four fixed inputs on

the same laptop used to perform the DSPSA searches illustrated in this chapter took

8.7 hours. To also search over features, this process would then have to be repeated

for every combination of fixed inputs. Using the same participant data, the DSPSA

application addressed this expanded search by allowing for both feature selection and

search over nk. However, allowing nk to be 0 and for search over features, DSPSA was

able to find models for every set of estimation and validation data that outperformed

the original search. This search was also faster than exhaustive search, requiring only

13.6 minutes, highlighting both the efficiency and flexibility of DSPSA, especially as

the search space increases.

Additional demonstrations were shown for other participants of Just Walk includ-

ing Participant 008 and Participant 057, which which although obtained lower fits

than for Participant 230, further highlight the efficiency of using DSPSA to optimize

model parameters and features. The difference in the fits obtained by models across

participants is likely due to limitations of the data itself. Further research should be
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done to translate these models into control systems to then optimize the interventions

themselves.

Although MoD was explored in previous chapters as a modeling alternative to

ARX, using DSPSA to optimize ARX models in this chapter demonstrates a valuable

“near-optimal” estimation framework to assess model parameters and features faster

than exhaustive search. This framework is necessary for future studies that implement

these models to determine interventions (i.e. when a participant would be most

responsive, what goals they would be responsive to, etc.), such as in the YourMove

study, which is currently underway at UCSD and ASU and has about 400 participants.

This would require estimating models for large numbers of participants within a short

time span, which can be addressed with DSPSA.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

This thesis has presented the development of idiographic models of walking be-

havior for personalized mHealth interventions using Model-on-Demand (MoD) and

ARX estimation with Discrete Simultaneous Perturbation Stochastic Approximation

(DSPSA) as a selection technique. MoD estimation outperformed classical linear

ARX models on both simulated systems with noise (CSTR) and real data obtained

from participants of Just Walk and HeartSteps. As an adaptive modeling technique,

MoD is better able to address the nonlinearity of walking behavior as well as the

presence of noise, which may arise from a number of sources including participant

self-reported measures and disturbances or unmeasured influences. This is especially

significant as idiographic modeling demonstrated in this thesis is a “small data” prob-

lem, which has distinct obstacles to generalizing models, even for a given individual’s

behavior. Despite the availability of data-gathering technologies, there still remains

limitations to the amount of data available and restrictions to our ability to obtain

data for a single individual.

Although Model-on-Demand estimation obtains better models of individual walk-

ing behavior than ARX (evaluated by the normalized root mean squared error), MoD

is more difficult to implement, as there are more parameters that must be specified,

which requires either a priori knowledge or exhaustive search. So, to overcome the

“barriers to use” of MoD, DSPSA was used to efficiently and simultaneously search

over model parameters and features to obtain near-optimal models. DSPSA is simple

to implement and presents a structured method to optimize MoD models. By si-

multaneously searching over model features and MoD parameters, MoD models that
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outperformed ARX were obtained within a few minutes and without a priori knowl-

edge necessary from the MoD user (i.e. researchers or intervention developers). As

such, coupling MoD with DSPSA makes the technique scalable in the sense that (1)

it can be used by many individuals without significant training and (2) it can find

models quickly, reducing both user and computational effort, so that MoD models

can be developed for many individuals simultaneously.

Given the small data approach taken in this research, another issue becomes how

we evaluate the models, especially since there is limited data available modeling. As

discussed in Chapters 2 and 3, the behavior data was initially split into the first 75% as

estimation data and the last 25% validation data. However, this may be insufficient to

evaluate the accuracy of the model, especially given the evolving and time-dependent

nature of behavior. So, to address this, we explored variations of partitioning an indi-

vidual’s data into estimation and validation data and the corresponding development

of models from that data. While the focus of this study was ARX modeling, using

discrete SPSA to search over ARX regressor orders and feature selection for models

using the Just Walk data demonstrated that traditional segmentation of data into

estimation and validation regions may not be optimal. Multiple models with high fit

percentages were found using DSPSA on the Just Walk data from various partitions

of estimation and validation data. Since Just Walk is an intervention designed using

system identification principles in the form of a repeated multisinusoidal signal (a

16 day signal, repeated for 5 cycles, for a total of 80 days), this demonstrates how

an intervention designed using system identification can be used to produce quality

data, which can then be used to create more accurate models of participant behavior.

The modeling results shown in this thesis using the data produced from Just Walk

also shows much promise for the development of more accurate idiographic models

from data obtained using system identification principles. These models could then
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be used to design more effective control systems for personalized interventions.

The application of MoD and DSPSA to data from both HeartSteps and Just Walk

demonstrates that models of individual walking behavior can be efficiently produced

to then be used for designing control systems to optimize the impact of the interven-

tion for its participants. This is done by personalization, as control systems would

then be developed using models of behavior created from the individual’s own behav-

ior, thereby tailoring the intervention to their particular habits and idiosyncrasies to

maximize receptivity and responsiveness. Further studies should be performed using

models developed through MoD and DSPSA to confirm whether or not MoD models

can provide better interventions than simpler, ARX models. As mentioned previ-

ously, using DSPSA also makes the process of developing MoD models for individuals

scalable. However, further research should also be done to improve the objective func-

tion used in DSPSA and consider what objectives should be met to ensure effective

intervention design and what practical constraints should be accounted for.

But despite the continued research that should be done to further explore the use

of DSPSA as well as the implementation of DSPSA-optimized models in intervention

design, the use of DSPSA presents a novel approach to model development for per-

sonalized interventions. Other considerations such as modeling technique (i.e. the

use of Model-on-Demand or AutoRegressive with eXogenous input) and partitioning

the individual’s data into estimation and validation data sets, also highlight the ben-

efits of implementing DSPSA, as the simulation-based stochastic search mechanism

is able to efficiently and simultaneously search over model features and parameters to

find optimal models, addressing many design aspects that researchers must consider

when deriving models from data. DSPSA may also become more necessary as search

spaces expand, since there may be many other measured factors to include or model

parameters to be defined as future studies collect more environmental and physiolog-
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ical data or explore other modeling techniques. However, with DSPSA as an efficient

search algorithm to quickly define and evaluate idiographic models, research should

also be done to translate these models into control systems to optimize the impacts

of the intervention.
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APPENDIX A

CSTR SIMULINK MODEL
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This CSTR simulation was set up as per Bequette (1998). In this model, there
two measured outputs were considered (1) CA, the concentration of reactant A in the
tank, and (2) T , the temperature of the contents within the tank. The concentration
of reactant A, CA, evolves as:

dCA

dt
=

F

V
(CAf − CA)− r (A.1)

in which F is the volumetric flow of both the feed and exit streams, V is the volume
of the tank, CAf is the concentration of A in the feed stream, and r is the rate of
reaction, defined as:

r = ko exp
−∆E

RT
CA (A.2)

where T is the temperature inside the tank. The differential equation describing tank
temperature is:

dT

dt
=

F

V
(Tf − T )− ∆H

Cpρ
r − UA

CpρV
(T − Tj) (A.3)

in which Tf is the temperature of the feed stream, ∆H is the change in enthalpy, Cp

is the heat capacity, ρ is the density, and Tj is the jacket temperature.
These differential equations were implemented in Simulink as per Figure A.1.

Figure A.1: CSTR Differential Equations Modeled in Simulink

To introduce noise into the system, random number generator blocks were im-
plemented with zero mean and a variance of one. Gain blocks were also added and
used to vary the amount of noise relative to the inputs and outputs of interest. Both
process and measurement noise were added to the feed temperature and feed con-
centration. Only measurement noise was added to the jacket temperature, output
concentration, and tank temperature.
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Figure A.2: CSTR Measurement and Process Noise Modeled in Simulink

The reactor parameters are provided in Table A.1, and the steady state values are
noted in Table A.2.

Parameter Value/Type
F 1 m3/hr
V 1 m3

ko 14825×3600 1/hr
∆H -5215 kcal/kgmol
∆E 11843 kcal/kgmol
ρCp 500 kcal/(m3 C)
UA 250 kcal/(m3 C hr)
R 1.98589 kcal/(kgmol K)

Table A.1: CSTR Reactor Parameters

Parameter Value/Type
CA,s 7.5709 m3/hr
Ts 315.0402 K

Table A.2: CSTR Steady State Values
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APPENDIX B

CSTR JACKET TEMPERATURE SIGNAL DESIGN
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The parameters used to create the multisine input signal for the jacket tempera-
ture in the CSTR simulation are documented in Table B.1. Two realizations of the
signal with these same parameters were used to obtain distinct sets of estimation
and validation data. These signals were created using the Input Design GUI created
by Daniel Bailey and Daniel E. Rivera. One realization of the signal is shown in
Figure B.1.

Parameter Value/Type
Type Multi Sinusoidal

Sampling Time 0.5
Amplitude (±) 1

Cycles 2
α 2
β 3
τlow 2.5 hr
τhigh 3.5 hr

Generation Method Minimum Crest Factor

Table B.1: CSTR Signal Design Parameters
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Figure B.1: Signals Produced in the Input Design GUI for CSTR Simulation
(reprinted)

The signal in Figure B.1 was multiplied by a user-specified gain to provide suffi-
cient variation in jacket temperature. Additional plots to further document properties
of this signal are shown in Figures B.2 - B.4, which include the power spectral density,
the autocorrelation, and a histogram of the frequency of the signal amplitudes.
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Figure B.2: Power Spectral Density of the Input Signal for CSTR Simulation

Figure B.3: Autocorrelation of the Input Signal for CSTR Simulation
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Figure B.4: Histogram of the Input Signal for CSTR Simulation

All plots were provided by the Input Design GUI (Bailey and Rivera, 2020).
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APPENDIX C

ARX ESTIMATION WITH DSPSA: PARTICIPANT 230 FULL SEARCH
ADDITIONAL PLOTS
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The following plots are the DSPSA results for set #13 from Figure 4.11 and 4.12,
which had the highest weighted fit of 82.16%. To reiterate, the inputs of this model
are outlined in Table C.1.

Initialized Features Selected Features nb nk

Goals Goals 2 1
Expected Points Expected Points 2 1
Granted Points Granted Points 1 0

Predicted Busyness - - -
Predicted Stress - - -
Predicted Typical - - -

Weekend - - -
Temperature - - -

Table C.1: Feature Selection and nb, nk orders (na = 2)
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Figure C.1: Participant 230: ARX Models with Feature Select on Overall Data for
Set #13
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Figure C.2: Participant 230: ARX Models with Feature Select on Estimation and
Validation Data for Set #13
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Figure C.3: Participant 230: Fit (%) Iterations for ARX Models with Feature Select
and nk search, Set #13
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Figure C.4: Participant 230: Feature Select Iterations for ARX Models with Feature
Select and nk search, Set #13
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Figure C.5: Participant 230: na Iterations for ARX Models with Feature Select and
nk search, Set #13
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Figure C.6: Participant 230: nb Iterations for ARX Models with Feature Select and
nk search, Set #13
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Figure C.7: Participant 230: nk Iterations for ARX Models with Feature Select and
nk search, Set #13
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ARX ESTIMATION WITH DSPSA: PARTICIPANT 008 FULL SEARCH
ADDITIONAL PLOTS
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The following plots are the DSPSA results for set #18 from Figure 4.14 and 4.15,
which had the highest weighted fit. To reiterate, the inputs of this model are outlined
in Table D.1.

Initialized Features Selected Features nb nk

Goals Goals 3 0
Expected Points Expected Points 2 0
Granted Points Granted Points 3 0

Predicted Busyness - - -
Predicted Stress Predicted Stress 3 0
Predicted Typical - - -

Weekend Weekend 2 0
Temperature - - -

Table D.1: Participant 008: Feature Selection and nb, nk orders (na = 3)
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Figure D.1: Participant 008: ARX Model with Feature Select on Overall Data for
Set #18
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Figure D.2: Participant 008: ARX Model with Feature Select on Estimation and
Validation Data for Set #18

0 20 40 60 80 100 120

Iteration

0

50

F
it
 %

NRMSE Predictive Fit % (Set #18)

0 20 40 60 80 100 120

Iteration

0

20

40

F
it
 %

NRMSE Estimation Fit % (Set #18)

0 20 40 60 80 100 120

Iteration

0

10

20

30

F
it
 %

NRMSE Overall Fit % (Set #18)

0 20 40 60 80 100 120

Iteration

0

50

F
it
 %

Weighted Combined Fit % (Set #18)

Figure D.3: Participant 008: Fit (%) Iterations for ARX Models with Feature Select
and nk search, Set #18
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Figure D.4: Participant 008: Feature Select Iterations for ARX Models with Feature
Select and nk search, Set #18
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Figure D.5: Participant 008: na Iterations for ARX Models with Feature Select and
nk search, Set #18
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Figure D.6: Participant 008: nb Iterations for ARX Models with Feature Select and
nk search, Set #18

0.5Goals

n
k
 Values per Iteration for Est/Val Cycle Set #18

0.5Expected Points

0.5Granted Points

0.5PredBusy

0.5PredStress

0.5PredTypical

0.5Wknd

10 20 30 40 50 60 70 80 90 100 110

0.5Temperature

Figure D.7: Participant 008: nk Iterations for ARX Models with Feature Select and
nk search, Set #18
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ARX ESTIMATION WITH DSPSA: PARTICIPANT 057 FULL SEARCH
ADDITIONAL PLOTS
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The following plots are the DSPSA results for set #19 from Figure 4.14 and 4.15,
which had the highest weighted fit. To reiterate, the inputs of this model are outlined
in Table E.1.

Initialized Features Selected Features nb nk

Goals Goals 2 0
Expected Points - - 0
Granted Points Granted Points 3 0

Predicted Busyness Predicted Busyness 1 1
Predicted Stress - - -
Predicted Typical - - -

Weekend Weekend 3 0
Temperature Temperature 2 0

Table E.1: Participant 057: Feature Selection and nb, nk orders (na = 2)
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Figure E.1: Participant 057: ARX Model with Feature Select on Overall Data for Set
#13

97



0 10 20 30 40 50 60 70 80 90

Time

-10000

-5000

0

5000

O
u
tp

u
t

Avg Estimation Fit= 35.8325   Avg Validation Fit= 27.9913

Participant Data

ARX on Estimation Data

ARX on Validation Data

Figure E.2: Participant 057: ARX Model with Feature Select on Estimation and
Validation Data for Set #13
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Figure E.3: Participant 057: Fit (%) Iterations for ARX Models with Feature Select
and nk search, Set #13
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Figure E.4: Participant 057: Feature Select Iterations for ARX Models with Feature
Select and nk search, Set #13
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Figure E.5: Participant 057: na Iterations for ARX Models with Feature Select and
nk search, Set #13
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Figure E.6: Participant 057: nb Iterations for ARX Models with Feature Select and
nk search, Set #13
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Figure E.7: Participant 057: nk Iterations for ARX Models with Feature Select and
nk search, Set #13
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