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ABSTRACT 

In this study, I used two computational models (state-space model and simple DIVA 

model) to determine the speech motor system’s sensitivity to auditory errors that are 

relevant vs. irrelevant and introduced gradually or suddenly. I applied formant 

perturbations (first and second formants of /ɛ/ were shifted toward formants of /æ/) to 

generate auditory errors. Then I measured subjects’ adaptive responses to the formant 

perturbations. I examined (a) the accuracy of models in explaining the adaptive responses 

(b) the relationship between the models’ parameters and the adaptive responses. My 

results showed that both models predict the adaptive responses to errors. However, the 

models’ parameters differently correlated with the adaptive responses, suggesting that 

while the models perform similarly, they provide different insights about adaptive 

responses to auditory errors. These results have important implications for speech motor 

learning and production models and shed light on neural processes involved in generating 

adaptive responses.  
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INTRODUCTION 

Suppose to put a Fresnel prism (displacing prism) on my friend’s eyes and ask her 

to reach a visual target. She would initially miss the target, but she would adapt and learn 

the process after some trials and errors. The angular difference that this prism makes is a 

perturbation, and after a while, she will adapt to this perturbation. If this prism being 

removed, she will displace the target’s direction angle as much as in the beginning but in 

the opposite direction. Motor adaptation as a form of motor learning is an error 

cancellation process in which the nervous system leans to ignore the constantly changing 

environment's effect while producing accurate movement. Speech motor control shares 

many features with other sensory-motor systems, such as limb motor control. There are 

several stages to make an idea into the final words that convey it to the listeners in 

acoustic waves for someone to speak. One stage is to translate thoughts into linguistic 

representation (the speech product). The second stage is how this representation is built 

(the speech production process). This message is transmitted to muscles, which activate 

the vocal tract and articulators to produce speech. (Berg & Levelt, 1990). During speech 

production, the target is to make an articulatory movement in order to produce a specific 

acoustic sound (Houde & Jordan, 1998). The speech motor system relies on the auditory 

and somatosensory systems to produce speech accurately. Studying the auditory and 

somatosensory feedback is essential to understand speech production and speech learning 

and adaptation systems in speakers with normal or disordered speech. For this purpose, 

computational models are an important, repeatable and testable mechanism, and by 

comparing different models, each model’s advantages and disadvantages would be 

highlighted and can be used for future investigations. (Parrell & Houde, 2019a).  
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Recent theories of speech (F. H. Guenther, 2016; Houde & Nagarajan, 2011) 

suggest that speech motor system employs two control mechanisms: feedforward and 

feedback. The feedforward control system produces motor commands aimed at desired 

sensory goals (auditory and somatosensory goals), and articulators perform the motor 

commands. The speech motor system also predicts the sensory consequences of the 

motor commands. The feedback control system scans the sensory outcomes of the motor 

commands to check production accuracy. After speech production, the speech motor 

system compares the previous sensory prediction to the sensory feedback to estimate the 

potential prediction errors (the mismatch between prediction and feedback). The speech 

motor system uses the prediction error to adapt its motor commands and modify its 

feedforward control system. Overall, prediction error plays an important role in ensuring 

the accuracy of speech production.  

In post-lingually deaf speakers, pitch and loudness control quickly decreases after 

hearing loss, but they still can produce intelligible speech for decades even though their 

auditory feedback is different (Cowie & Douglas-Cowie, 1992). However, we cannot 

assume speech production is solely relying on the feedforward process. For example, 

children who become deaf before learning to produce speech do not naturally learn how 

to speak (Oller & Eilers, 1988). This evidence and more similar evidence show that 

auditory feedback is crucial to learn speaking. In an early study, Lee discussed that 

auditory feedback is not ignored after the speaking skill has been learned. He showed that 

when a delay is heard in one’s speech (delayed auditory feedback), the speech becomes 

less fluent (B. S. Lee, 1950). Thus, one way to study how the sensory control 
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mechanisms working is to apply auditory feedback perturbation and generate an error 

(Ingo Titze, 1994).  

The vocal tract generates acoustic resonance that can be represented on the sound 

spectrum; formant is acoustic wave concentration around a particular frequency in the 

spectrum. Applying auditory perturbation can be through generating unexpected formant 

perturbation during the production of the prolonged word or by applying perturbations 

systematically and constantly over several words (Fuchs, S., Cleland, J., & Rochet-

Capellan, 2019). This experiment allows us to investigate the sensory-motor control 

system’s adaptive response to perturbations. In the prism experiment, when the 

participant reaches a visual target (the motor action), she adapts to the visual target’s 

shifted image through prisms (perturbed sensory feedback). This concept is called 

sensory-motor adaptation. In the speech domain, in the adaptation experiment, a formant 

is shifted along toward another formant (like wearing displacing prisms), and the sound 

has been perturbed. For instance, participants hear more /a/ when they produce /e/, so 

they change their production of /e/ to compensate for the altered feedback. At this 

moment, the participant feels a mismatch between what she expected to hear and what 

she hears, and as a response to this mismatch, she generates responses to correct it. This 

corrective feedback response does not happen after the first trial, since the error 

sensitivity is small (Daliri & Dittman, 2019a; Shadmehr & Mussa-Ivaldi, 2013), applying 

small changes in their adaptive feedforward control system leads to making small 

changes in ongoing trials so after some trials the change would be measurable.  

Although prediction error is an important factor for both feedforward and 

feedback control systems, it is not clear (1) how much error sensitivity each of these 
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control systems has, (2) whether the participant changes her corrective response based on 

the somatosensory feedback (since sensory feedback in speech is not limited to auditory 

domain and in these experiments, we only manipulate auditory feedback control system) 

and (3) although there is a little uncertainty on estimation from the different participant, 

but how much individual’s differences would affect the experimental study, for instance, 

individual’s learning rate. 

One way to study sensorimotor adaptation is to design an experimental study to 

examine motor control behavior; the other approach is to generate computational models 

and simulate the speech production system to 1) better understand motor control 

behavior, 2) conduct multiple simulated experiments. To validate computational models, 

we need to examine them to compare them to the experimental data to examine their 

accuracy. Daliri & Dittman adopted a computational model (state-space-model), initially 

used in limb motor control (Shadmehr & Mussa-Ivaldi, 2013), to estimate error 

sensitivity in the adaptation paradigm using feedforward and feedback control system. 

This model’s free parameter is associated with feedback sensitivity, error sensitivity, and 

feedback response magnitude (Daliri & Dittman, 2019a). Kearney et al. (Kearney et al., 

2020) tested a simple 3-parameter mathematical model that quantified feedback and 

feedforward contribution in sensory-motor adaptation. This model is a simplified version 

of the DIVA model, so this model is called Simple DIVA. In this model, the free 

parameters are associate with the gain for the auditory feedback control system, the gain 

for the somatosensory control system, and the learning rate. Both model’s parameters can 

be estimated by fitting the model to participants’ responses. To compare these two 

models, the state-space model defined parameters regarding feedforward and feedback 
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control systems and distinguished them in early and late time points, although it is 

focused on auditory feedback. On the other hand, the simple DIVA model focuses on 

sensory feedback (auditory and somatosensory). In the current study, we conducted an 

auditory perturbation experiment. We test whether the state-space model and simple Diva 

model can predict and estimate error sensitivity and sensory gain accurately; and whether 

these parameters can explain observed behavioral responses in the adaptation paradigm. 

The goal is to see how well these models can fit the real data.  

 

METHOD 

Participants 

All participants signed the Arizona State University IRB consent form. We 

recruited 28 (M = 23.4 years, SD = 4.3 years). All participants were native speakers of 

American English. Each session lasts 2 hours. Participants did not have a history of 

neurological, psychological, or speech-language disorders (self-reported). All participants 

had hearing thresholds of 20 dB HL or less at all octave frequencies of 250 Hz to 8000 

Hz.  

Apparatus 

The experimental apparatus is shown in figure 1. All experiments were conducted 

in a sound booth. Participants sat inside the sound booth in front of a computer monitor. 

Shure microphone (SM58) positioned 15 cm away from the moth corner at a 45-degree 

angle. The microphone signal was amplified via TubeOpto 8, ART preamplifier, and 

digitalized via an external audio interface, 8pre, MOTU soundcard with a sampling rate 

of 48 kHz, which transmitted the signal to the computer and transmitted back to the audio 
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interface. The signal was then amplified via S.phone, Samson Technologies Corp, and 

played back binaurally through the earphones (ER-1, Etymotic Research Inc.). The 

auditory feedback was amplified 5 dB higher than the microphone signal’s intensity, so 

we also calibrated the amplification levels of the microphone and earphone amplifiers 

before each session. 

We used the Audapter software package (MATLAB-based) for near real-time 

tracking and shifting formant frequencies. For this purpose, this package uses linear 

predictive coding (LPC); for female participants, we used an LPC order of 15, and for 

male participants, an LPC order of 17. We recorded the signal from the microphone and 

auditory feedback signal (the played back sound in earphones) simultaneously on two 

separate channels using a digital audio recorder, Tascam DR-680MKII. The delay 

between these two channels is about 16.4 ms. To measure this delay, we used a 2-cc 

coupler (Type 4946, Bruel & Kjaer Inc.) connected to a sound level meter (Type 2250A, 

Bruel & Kjaer Inc.)(Daliri & Max, 2015).  
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Figure 1. Experimental apparatus 

 

Procedure 

All participants completed the preparation task at the beginning, which included 30 

trials. On the monitor in front of the participant, we showed the participant CVC 

(consonant-vowel-consonant) one syllabic word in black font and on a grey background 

which lasted 2.5 s each, and between two sequential trials, there was a 1-1.5 s break. The 

words were “Head,” “Hep,” and “Heck”; each word was randomly presented ten times. We 

wanted the production speech to be in desired intensity and duration (70–80 dB SPL; 400–

600 ms), so feedback was shown on the monitor after each trial. There were two bars on 

the screen while producing speech; the top bar on the screen showed the speech duration, 

and the bottom bar showed its intensity. If they were too loud or long, they would get red 

bars, and if they were too soft or short, they would get blue bars. If participants were 

producing speech in the desired range, the bars would be green. This task lasted 2 minutes.  
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In the next task, the participant completed the vowel production task, which 

included 75 trials in which participants completed a word reading task in around 3.5 

minutes in duration. “Hip,” “Hep," and “Hap” were randomly presented on the screen (25 

times each), and participants received visual feedback only if they were out of range. This 

task aimed to identify each participant’s centroids (the middle of a vowel distribution in 

the F1-F2 coordinates) of /ε/ and /æ/. The Audapter software initially calculated first and 

second formant frequencies (F1 and F2); we also used a MATLAB script to get the first 

and second formants’ average for each production. Using mean formants, we detected 

each participant’s centroids of /ε/ and /æ/ and in the F1-F2 coordinates, we calculated ε-æ 

Euclidean distance (in Hz), and the angle between centroids. The ε-æ distance and angle 

were used in the adaptation task to determine participant-specific formant perturbations. 

In the last task (adaptation task), we applied auditory feedback perturbation in 

four conditions: sudden shift, gradual shift, sudden clamp, and gradual clamp. In sudden 

perturbation (step), the formant perturbation is introduced suddenly at once. In gradual 

perturbation (ramp), formant perturbation is gradually applied in sequence during trials. 

As mentioned above, we found each participants’ vowel centroids; in clamp conditions, 

the auditory feedback was fixed on the vowel centroids, but in shift, the auditory 

feedback depended on the participants’ F1 and F2 in each trial. Each condition consisted 

of 216 trials. Both sudden and gradual conditions consisted of a baseline phase (first 36 

trials, no perturbation), hold phase (144 trials of shift or clamp), and an end phase (36 

trials, no perturbation). Perturbations were designed based on participant’s /ε-ea/ distance 

and angle to shift the F1 and F2 of /ε/ to F1 and F2 of /ea/. 
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Data analysis 

In addition to Audapter formant tracking, we checked the formant’s accuracy in 

each production on the spectrogram using MATLAB scripts. We selected the beginning 

and the end of each trial’s vowels by demonstrating them on spectrogram and time-

domain waveform. Then, we used this clean data to extract F1 and F2. For each trial, we 

extracted F1 and F2 and showed them in F1-F2 coordinates. Adaptation responses are 

calculated based on each subject’s individual centroid of the reference point (here is /ɛ/). 

When the adaptation response is positive, the participant adapts to perturbed auditory 

feedback and changes her response toward /æ/. We did not include the deviation response 

in our analysis. Since the magnitude of perturbation for each participant was different, in 

order to compare responses among participants, we divided responses by the participant’s 

perturbation magnitude to normalize responses.  

Computational modeling 

In this study, we used two computational models: the state-space model and the 

simple DIVA. 

State-space model 

Daliri and Dittman proposed a state space model that estimates the feedforward 

control mechanism’s involvement in the adaptation paradigm (Daliri & Dittman, 2019b). 

The first premise in this model is that to create a feedforward motor command (FFF) in a 

trial, one utilizes her estimation of perturbation (XP) to produce an auditory target (FT). 

After the feedforward motor command has been sent, we receive auditory feedback (FAF). 

If we received any formant perturbation (FP), auditory feedback contains it. 

FFF(n) = FT - XP(n).         (1) 
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FAF(n) = FFF(n) + FP(n).       (2) 

Prediction error can be calculated by comparing auditory feedback and auditory 

target. We can simplify this equation using the equation 1 and 2. So prediction error 

would be the difference between the current trial estimation of perturbation and the actual 

formant perturbation. 

E(n) = FAF(n) - FT = FP(n) - XP(n)      (3) 

Using prediction error for the current trial, we can update the estimate of 

perturbation based on current trial information for the next trial. Prediction error for the 

next trial would be a weighted estimate of perturbation plus weighted prediction error. 

(βFF) corresponds to each individual’s sensitivity to prediction error; in some cases, it 

might be higher than others, which means they are more sensitive in predicting error. (α) 

corresponds to our estimation of perturbation, when α is higher, we can rely on the 

current perturbation estimation to update the estimated perturbation estimate for the next 

trial. 

XP(n+1) = α × XP(n) + βFF × E(n); 0 ≤ α ≤ 1, 0 ≤ βFF ≤ 1.    (4) 

To update the feedback control system and the feedforward control system's 

command, we use prediction error to update the feedback control system (equation 5) 

(Kearney et al., 2020; Parrell & Houde, 2019b). Feedback error sensitivity (β_(FB)) is 

similar to feedforward but for feedback control systems. 

FFB(n) = -βFB × E(n); 0 ≤ βFB ≤ 1.       (5) 

Since from the beginning of speech production, it takes around 150 ms for us to 

hear back our production; in the earlier time point for each trial, the effect of the feedback 

control system is minimal, and we have the maximum contribution of the feedforward 
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control system (F_(Early)). After 150 ms, we have the contribution of the feedback 

control system as well as feedforward (during the speech production, we constantly have 

a motor command from the feedforward control system, if it were at once, we would stop 

producing speech in the middle of trial), we call it FLate which shows the contribution of 

two control systems. (Frank H. Guenther, 2016; Kearney et al., 2020; Parrell & Houde, 

2019a). Since the feedforward does not immediately update during one trial, the 

difference between late and early responses would demonstrate the feedback control 

system. 

FEarly(n) = FFF(n).         (6) 

FLate(n) = FFF(n) + FFB(n).        (7) 

Simple DIVA model 

Kearney et al. 2020 revised the DIVA model (Frank H. Guenther, 2006, 2016) to 

demonstrate the feedforward control system’s contribution, auditory and somatosensory 

feedback control system. F1produced is the final motor command reaches speech 

articulators. In one trial, F1������	� is the sum of feedforward command (F1

) and 

correction of incoming sensory feedback (∆F1
� (n)). The simple DIVA model postulates 

that both somatosensory and auditory targets are equal to F1�, the mean of the target 

F1������	�. F1� assumed to be constant in a task, so there is no change in the correct 

sound production. The following equation characterizes the feedback-based correction on 

a current trial: 

F1������	� (n) = F1

 (n) +∆F1
� (n)     (1) 

∆F1
� (n) = α� ∗ (F1�− F1�
 (n)) + α�∗ (F1�− F1�
 (n))   (2) 
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F1�
 and F1�
 correspond to the current amount of auditory and somatosensory 

feedback before the feedback control system’s effect. Equations 3 and 4 demonstrate that 

F1�
 and F1�
 are made of the sum of perturbation size in each domain and F1

. Here 

α� and α� represent the gain of auditory and somatosensory feedback, respectively.  

F1�
= F1

+ auditory perturbation size      (3) 

F1�
= F1

+ somatosensory perturbation size     (4) 

While we apply perturbation, the participant intends to compensate the 

perturbation in the opposite direction using an auditory feedback control system, which 

means F1�
 will change. Meanwhile, compensating auditory feedback affects the 

somatosensory control system as well; there is no perturbation in the somatosensory 

domain, so it tries to keep the vocal track and articulators normal. So, change of gaining 

in both domains can affect the compensatory auditory and somatosensory responses. The 

next equation demonstrates the feedforward command’s updating process based on the 

previous trial: 

F1

 (n+1) = F1

 (n) + λ

∗  ∆F1
� (n)        (5) 

Here, λ

 represents feedforward learning rate parameter. To fit these two 

computational models to a particular dataset, we need to use an optimization tool to find 

the optimized value of 3 free parameters in both models (α, βFF, and βFB in state-space 

model and α� and α� and λ

 in diva model). We have four conditions in our 

experimental data; after getting the mean data for each condition, we used the “fmincon” 

function in MATLAB to fit each model to each individual’s response. At first, the 

function calculated early and late response simulation with a set of random numbers in 

the accepted range of the free parameters (0-1). Then we used the differences between 
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these simulated responses and the participant’s responses to make the optimization more 

accurate. We got the optimized parameters for each model, then we calculated the early 

and late simulated responses, and finally, we compared these responses to the actual data 

to see which model can optimize the data better (Daliri & Dittman, 2019a). 

 

RESULTS 

Figures 2 and 3 show the participant’s group-average adaptation responses in 

gradual and sudden perturbations. In these figures, the blue and pink lines indicate shift 

and clamp perturbation, respectively. In both gradual and sudden perturbation, there was 

a sudden change every 12 blocks (36 trials). Our analysis showed a statistical difference 

between shift and clamp perturbations at the end of the hold phase in blocks 48 to 60 for 

the sudden perturbations (p = .002). Similarly, we found a statistical difference between 

shift and clamp perturbations in blocks 48 to 60 for the gradual perturbations (p = .017).  

 

 

 

Figure 2, adaptation responses during 

gradual perturbation 

  Figure 3, adaptation responses during 

sudden perturbation 
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Modeling results 

We fitted the state-space model and simple DIVA model to the early responses of 

each participant to estimate each computational model’s parameters. For each individual, 

the average of early adaptation responses was calculated. Figure 4 shows the group 

average simulated for gradual and sudden perturbation in both shift and clamp conditions 

for the state-space model.  

 

 

Figure 4. Simulated adaptation responses for gradual and sudden perturbations of 

formant shift and formant clamp. These results are based on the simulation of the state-

space model.  

 

Based on the fitted model for each participant, we extracted the model’s 

parameters. These results are shown in Figure 5. Each grey line shows one participant, 

and the blue dots indicate the group average in each condition. Based on the fitted model 

for each participant, we extracted the model’s parameters. These results are shown in 

Figure 5. Each grey line shows one participant, and the blue dots indicate the group 

average in each condition. These results showed that the prediction sensitivity was higher 

for formant shift (gradual or sudden) than for formant clamp (p = .026). The results for 
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feedforward error sensitivity did not show statistically significant results as the parameter 

appeared to be the same in all conditions.  

 
Figure 5. Model parameters (prediction sensitivity and feedforward error sensitivity) of 

the state-space model for all participants and all conditions.  

 

We also fitted the simple DIVA to the data. Figures 6 and 7 show the average 

simulated data and model parameters in the four perturbation conditions. Similar to 

parameters of the state-space model, these model parameters were between 0 and 1, so 

we transformed the parameters using a logit transform to normalize the distribution. The 

simple DIVA model can accurately generate adaptive responses; however, this model did 

not generate adaptive responses for the formant-clamp as accurately as the responses for 

the formant-shift responses. 
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Figure 6. Simulated adaptation responses for gradual and sudden perturbations of 

formant shift and formant clamp. These results are based on the simulation of the 

simpleDIVA model.  

The simple DIVA, unlike the state-space model, includes both auditory and 

somatosensory feedback. Therefore, the model would allow us to estimate the sensitivity 

of both the auditory and somatosensory systems to errors. Figure 7 shows all three 

parameters of the simple DIVA in all conditions. As shown in this figure, the learning rate 

was lower for formant shift, and both auditory and somatosensory feedback has higher 

sensitivity in the formant clamp conditions. While the results for the auditory gain were 

statistically significant, these results were not significant for prediction sensitivity and 

somatosensory sensitivity.  

 

Figure 7. Model parameters (learning rate and somatosensory and auditory feedback 

gain) of the simple DIVA model for all participants and all conditions.  
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DISCUSSION 

In this study, two computational models were used to estimate different 

parameters attributed to the speech motor system by fitting each model to a particular 

data set. We used an auditory perturbation experiment to examine whether the state-space 

model’s and the simple DIVA model’s parameters can estimate the speech control 

system’s different attributes: feedforward error sensitivity, prediction sensitivity, learning 

rate, and somatosensory-auditory gains. Participants completed adaptation tasks in which 

their /ɛ/ formant was shifted toward their /æ/. In this paper, only early adaptive responses 

were measured, which is the main contributing factor to the feedforward control system. 

We fitted the state-space model and simple DIVA model to each participant’s adaptive 

responses and extracted all models’ parameters. To test whether each model accounts for 

its parameters, we examined the simulated adaptive responses based on the models. 

By examining the adaptation responses, we found that adaptation responses do not 

change in either clamp or shift condition in the gradual adaptation responses except in 

blocks 48-60, which has the highest perturbation magnitude. The mean adaptation 

response in the clamp condition was less than the formant shift condition in these trials 

(48-60). Since the amount of perturbation is highest in this block, participants might 

notice the difference between the clamp and shift. For example, they may evaluate the 

clamp feedback as less relevant feedback that is not their own production, and thus, they 

may respond less to the feedback perturbation. Moreover, in the formant shift 

perturbation, in these blocks, when the participants hear their shifted speech production, 

they may rely on the feedback more (e.g., evaluate it as their own). Examining the 

individual data showed that most participants adapt slightly more in the gradual shift than 



18 

 

the gradual, sudden condition in all six blocks. In the first 36 trials (blocks 1-12), the 

auditory prediction error is zero, but when the perturbation was applied in the 37th trial, 

the predicted error and received perturbation are not equal anymore. Thus, participants 

will have larger auditory prediction errors, and the feedback control system may change 

its prediction and generate a larger response. As we applied sudden/gradual perturbation 

throughout the trials, the feedforward commands are gradually updated to minimize 

auditory prediction errors. In the end phase (the last 36 trials, 60 to 72 blocks), there is a 

large prediction error when the perturbation is removed, leading to a large response. 

Our analysis of the state-space model showed that the model could predict 

adaptive responses in all perturbation conditions. However, a closer examination of the 

simulated responses showed that the model more closely predicted the responses in the 

gradual conditions and in the formant shift conditions. The model, similar to the 

empirical data, showed that simulated adaptation responses were higher in the shift 

condition than in the clamp condition in blocks 48-60. In general, the simulated gradual 

adaptation responses were closer to the empirical data than adaptation responses in the 

sudden condition. Examining the model parameters showed that feedforward error 

sensitivity remained the same across all four perturbation conditions. One interpretation 

of these results is that the speech motor system’s sensitivity to error does not change in 

different conditions, and thus, it responds to the errors in the same way. The prediction 

sensitivity parameter was different across conditions: (1) prediction sensitivity was higher 

for formant shift conditions than formant clamp conditions, and (2) prediction sensitivity 

was higher in gradual conditions than sudden conditions. We speculate that the speech 

motor system uses its evaluation of sensory feedback in previous trials more strongly to 
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determine the magnitude of its responses than its error sensitivity. One limitation of the 

state-space model is that it did not include somatosensory feedback. Another limitation of 

the model was that the simulated responses were only based on early adaptive responses 

and did not include the corrective responses during speech production. Overall, these 

limitations can be addressed in future studies by including feedback sensitivity and 

corrective responses in the analysis.  

Similar to the state-space model, the simple DIVA model could predict adaptive 

responses in all perturbation conditions; however, there were several noticeable 

differences between the performance of the two models. The first major difference is 

related to the accuracy of the simpleDIVA in predicting the formant clamp conditions. 

The model’s accuracy appears to be lower than its accuracy of predicting the formant 

shift conditions. We speculate that this difference is due to the structure of the 

simpleDIVA, as the model uses feedback responses to update the feedforward responses.  

Another major difference between the two models is related to how suddenly the 

simulated responses of the simple DIVA change in the sudden conditions. It appears that 

the simpleDIVA has a higher learning rate and is more sensitive to errors, and responds 

more quickly to the errors. Examining the parameters, we found that auditory feedback 

gain was the most sensitive measure and could differentiate the formant clamp from the 

formant shift. However, this was not the case for the somatosensory feedback gain. One 

explanation for this pattern of the results is that the experiment only included auditory 

feedback perturbation, and somatosensory feedback was not perturbed. As a result, the 

model’s parameter related to the somatosensory feedback was not influenced 

significantly. Interesting, the learning rate was similar across the perturbation conditions. 
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This result was similar to the result for the feedforward error sensitivity of the state-space 

model.  

Overall, the simple DIVA model accurately predicted the results, and the 

performance of the two models was similar. The models’ parameters provided additional 

insight into how the speech motor system responded to various auditory perturbations. 

These results have important implications for speech motor learning and production 

models and shed light on neural processes involved in generating adaptive responses. For 

example, by studying different parameters, we could determine how speech disorders 

influence the speech motor system and which components are more influenced by the 

disorders. Then we can develop behavioral or neural treatments to target those 

components more efficiently.  
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