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ABSTRACT

Social media has become a primary means of communication and a prominent

source of information about day-to-day happenings in the contemporary world. The

rise in the popularity of social media platforms in recent decades has empowered

people with an unprecedented level of connectivity. Despite the benefits social media

offers, it also comes with disadvantages. A significant downside to staying connected

via social media is the susceptibility to falsified information or Fake News. Easy ac-

cessibility to social media and lack of truth verification tools favored the miscreants

on online platforms to spread false propaganda at scale, ensuing chaos. The spread

of misinformation on these platforms ultimately leads to mistrust and social unrest.

Consequently, there is a need to counter the spread of misinformation which could

otherwise have a detrimental impact on society. A notable example of such a case is

the 2019 Covid pandemic misinformation spread, where coordinated misinformation

campaigns misled the public on vaccination and health safety.

The advancements in Natural Language Processing gave rise to sophisticated lan-

guage generation models that can generate realistic-looking texts. Although the cur-

rent Fake News generation process is manual, it is just a matter of time before this

process gets automated at scale and generates Neural Fake News using language

generation models like the Bidirectional Encoder Representations from Transform-

ers (BERT) and the third generation Generative Pre-trained Transformer (GPT-3).

Moreover, given that the current state of fact verification is manual, it calls for an

urgent need to develop reliable automated detection tools to counter Neural Fake

News generated at scale.

Existing tools demonstrate state-of-the-art performance in detecting Neural Fake
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News but exhibit a black box behavior. Incorporating explainability into the Neu-

ral Fake News classification task will build trust and acceptance amongst different

communities and decision-makers. Therefore, the current study proposes a new set

of interpretable discriminatory features. These features capture statistical and stylis-

tic idiosyncrasies, achieving an accuracy of 82% on Neural Fake News classification.

Furthermore, this research investigates essential dependency relations contributing

to the classification process. Lastly, the study concludes by providing directions for

future research in building explainable tools for Neural Fake News detection.
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Chapter 1

INTRODUCTION

There has been a massive increase in social media usage in recent times. Accord-

ing to the information provided by Statista, global social media users have increased

from 2.86 Billion in 2017 to 3.96 Billion in 2022, accounting for a 40% increase in five

years. Furthermore, the projected estimate for these numbers seems to climb up to

4.41 Billion in 2025, indicating a rising trend in social media usage. The active en-

gagement of nearly 50% of the world population on social media platforms has made

the Fake News problem increasingly relevant. Traditionally, the definition of Fake

News includes any piece of fabricated information intentionally created to deceive

people. Miscreants on social media platforms, also described as malicious actors by

Zellers et al. (2020), spread false propaganda and misinformation, misleading people

and influencing their opinions.

Pew Research Center, a non-partisan Think Tank, quantified the effects of Fake

News spread on society. The studies conducted by Pew Research Center indicated

that the number of users that often consumed news on social media increased from

18% in 2016 to 28% in 2019. Furthermore, they also reported that about 64% of

U.S. adults were confused about basic facts about contemporary events. About one

in four claimed to have shared made-up stories, and about 51% often encountered

inaccurate news. In addition to Pew Research Center’s detailed insights, the work

done by Himelein-Wachowiak et al. (2021) highlights the repercussions of Fake News

spread during the Covid-19 pandemic. Some of the real-world consequences include a

shortage of drugs misinformed as potential safeguards against Covid-19. Additionally,
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the propagation of conspiracy theories on online platforms misled people into disre-

garding WHO guidelines. Lastly, falsified information about vaccines’ ineffectiveness

led to campaigns against vaccines putting many lives in danger.

Another study conducted by Himelein-Wachowiak et al. (2021) demonstrates the

repercussions of misinformation spread through online bots during the Covid-19 pan-

demic. Some of the real-world consequences of spreading fake news included the

shortage of the Hydroxychloroquine drug. People believed that the drug would safe-

guard them against Covid-19 despite having no definitive evidence. Additionally, the

belief in conspiracy theories has led people to disregard standard WHO guidelines

during the Covid-19 pandemic. Lastly, spreading misinformation about vaccines has

affected many people to lose faith in vaccination, thereby putting lives in danger.

Based on these trends, it is fair to claim that fake news has a detrimental impact

on society. Therefore, it is crucial to develop robust methods to counter Fake News.

Zellers et al. (2020) state that the current fact-checking and verification methods are

primarily manual to keep the prediction process reliable and transparent. Unfortu-

nately, manual verification processes are not scalable, especially when advancements

in Natural Language Processing gave rise to models like BERT (Devlin et al. (2018))

and GPT-3 (Brown et al. (2020)) that can generate realistic text. The malicious

actors can leverage the capabilities of these models to generate misinformation, also

called Neural Fake News. The two dangers that Neural Fake News poses are: 1.)

Neural Fake News is virtually indistinguishable from real news without external aid

2.) The generation of Neural Fake News can happen at scale.

Accordingly, recent studies in Fake News detection have focused on developing au-
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tomated tools to identify and flag Neural Fake News. The progress in generated text

detection has also benefitted the Neural Fake News detection problem. A commonal-

ity between the two problems is the underlying actor-critic model for generating text

and distinguishing it from the original ones. For instance, the work done by Bakhtin

et al. (2019) discussed the possibilities of utilizing Energy-Based Models (EBMs) for

performing generated text detection. The authors used a generator-discriminator

model to generate negative samples from a set of human-written samples. Finally,

they used a discriminator model to classify text as machine-generated or human-

written. They also summarized their findings on the performance of EBMs in multi-

ple settings.

Additionally, Ippolito et al. (2019) studied the effects of sampling-based decoding

strategies applied during the text generation process in language models. They identi-

fied certain statistical artifacts generated during the language generation process and

used these artifacts to perform Neural Text classification. Furthermore, Zellers et al.

(2020) borrow the idea of threat modeling from computer security and re-introduce

the Neural News detection problem as a two-player adversarial game containing the

adversary and the verifier. They developed the GROVER model containing a gener-

ator and discriminator model. The generator model shares architectural similarities

with the Open-AI GPT-2 model Radford et al. (2019), and the discriminator model

constitutes one of the following: BERT, variant of GPT-2, variant of GROVER, Fast-

Text. An essential feature of the GROVER generator model is to learn over multiple

fields in a news document, such as Body, Author, Date, Headline, and Domain, and

generate fabricated articles accordingly. The authors concluded the study by analyz-

ing and comparing automated and human detection performances.
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The work done by Schuster et al. (2020) took a slightly different approach devi-

ating from the deep learning methods for Neural Fake News detection. Their work

derived inspiration from the early deception detection methodologies and uses a sty-

lometric approach for Neural Fake News detection. The authors also provided a

benchmark for Neural Fake News detection and discussed the limitations of Stylom-

etry in detecting machine-generated Fake News. They observed that the stylometric

approach falls short when the source of both fake and real news is a machine. For

instance, in the case of automated journalism, the real news is generated via Natural

Language Generation tools. Such articles tend to be closer to Neural Fake News in

style because they might use similar decoding strategies for text construction.

In addition to the deep learning and stylometric approaches, Gehrmann et al.

(2019) proposed GLTR, a visualization tool that can aid humans in detecting gener-

ated text. The authors developed three statistical tests that measure the probability

of a word, the absolute rank of the word, and the entropy of the predicted distribution

given the context. The first two tests determine whether the generated word occurs

from the head of the distribution. Furthermore, the last test verifies whether the

previously generated context is well known to the prediction system such that it is

sure of its next prediction. The authors demonstrated the validity of the statistical

tests using a case study. Lastly, the authors conclude by presenting a study on human

performance detecting machine-generated text. The authors claim an increase in the

detection accuracy of humans from 52% to 72% with help from the GLTR tool.

Existing methods focus primarily on delivering accuracy or interpreting predic-

tions. Moreover, applying discriminatory and explainable statistical features for per-

forming Neural Fake News detection is a first. Accordingly, we propose a new set
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of statistical features built from Dependency Parse Trees to perform Neural Fake

News Classification. We first assumed that the Dependency Parse Tree structures

capture stylistic information from the text. Based on the assumption, we hypothe-

sized that the decoding strategies employed by Neural Language Generation models

interfere with the Dependency Parse Tree structure of the text and, therefore, can

help distinguish Fake News from Factual News. Accordingly, we developed two types

of features: Bag-of-Relations (BoR) and Relation Frequency - Inverse Document Fre-

quency (RFIDF), based on Bag-of-Words and Term Frequency - Inverse Document

Frequency features.

Furthermore, we used the features to train Logistic Regression and Random Forest

models and observed a maximum accuracy of 82% on the Random Forest model

trained on the BoR features. We also identify the critical dependency relations that

contribute to the prediction process by examining each feature’s importance and

SHAP values. Lastly, we presented our insights from the experiments and concluded

by discussing future research directions.
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Chapter 2

RELATED WORK

The current study bases itself on observations and inferences obtained from various

research approaches to solve fake news detection. Based on our literature survey and

relevance to our research, we classified past work into three categories: Style, Deep

Learning, and Assistance-Based approaches. Each category represents the methodol-

ogy employed to perform fake news detection. We explore these categories in detail

because they provide a foundation for the core idea of our research.

2.1 Style Based

In recent studies, the usage of stylistic differences to identify fake news derives

inspiration from the stylometric analysis conducted to detect deception. Some of the

early attempts in deception detection relied on using style and language characteris-

tics as features. The work done by Hancock et al. (2007) and Vrij et al. (2007) used

shallow lexico-syntactic cues such as dictionary-based word counting using Linguistic

Inquiry and Word Count (Pennebaker (1993)) lexicon to identify duplicitous text.

Subsequent work done by Mihalcea and Strapparava (2009) , Ott et al. (2011) etc.,

used lexico-syntactic patterns like n-grams, part-of-speech (POS) tags to perform de-

ception detection.

The work done by Feng et al. (2012) investigated syntactic stylometry for decep-

tion detection. Their research described the feature engineering process using Words,

Shallow Syntax, and Deep Syntax. They built the Word features using text’s Uni-
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gram and Bigram word tokens. Furthermore, they built the Shallow Syntax features

using shallow syntactic information like Parts-Of-Speech (POS) tags combined with

unigram features. Lastly, the Deep Syntax features encoded the production rules of

Probabilistic Context-Free Grammar (PCFG). One of the key observations made by

Feng et al. (2012) is that the features built out of Context-Free Grammar parse trees

consistently improved the detection performance over several baseline methods that

were based on shallow lexico-syntactic features. They also demonstrated an improve-

ment on the best-published results on hotel review data of Ott et al. (2011) reaching

91.2% accuracy with a 14% error reduction. Additionally, they achieved accuracy up

to 85% over the essay data of Mihalcea and Strapparava (2009).

The work done by Schuster et al. (2020) discusses the limitations of stylometry for

detecting machine-generated fake news. According to the authors, stylometry is typi-

cally used for two purposes: (1) to detect the source of text to prevent impersonation

or (2) to detect misinformation in the text due to deception. Case (1) focuses on

identifying language features that correlate with a specific person or group, and case

(2) relies on idiosyncracies of false information to classify misinformation. Addition-

ally, the authors also built a benchmark model for detecting fake news produced by

language models based on the truthfulness of the content. They focused on automatic

false modifications of truthful news stories to keep them close to the actual content.

Lastly, the authors observed that the malicious text generated by a Language Model

might be harder to detect than hand-crafted malicious text.
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2.2 Deep Learning Based

The ability of Neural Language Generation models to generate realistic text has

enabled the development of sophisticated models to study and prevent machine-

generated fake news. Recent studies in this domain utilized the Generator-Discriminator

architectures to identify fake news. Researchers used current State-of-the-Art lan-

guage generation models like BERT, GPT-2, and GPT-3 as generators to generate

false content. They also used Discriminator models to distinguish between authentic

and machine-generated content.

One of the most comprehensive studies conducted in this direction is the work

pursued by Zellers et al. (2020). The authors defined fake news’s scope and described

the current state of fact-checking methods in their research. Additionally, the authors

developed an adversarial framework for Neural Fake News generation and detection.

In the adversarial setting, the authors built Generator and Discriminator models that

played the roles of adversary and verifier, respectively. The objective behind creating

GROVER was to develop a robust tool to safeguard against impending misinforma-

tion threats in the future.

The authors train the Generator model to jointly learn over different fields of

Neural Fake News, such as Domain, Date, Authors, Headline, and Body, by modeling

the conditional generation of Neural Fake News. For instance, the model generates

the body of an article when any of the other fields like Domain, Date, Authors, or

Headlines are given as inputs. The authors developed the GROVER Generator model

similar to the GPT-2 model in terms of architecture. Furthermore, the authors de-

veloped GPT-2, BERT, FastText, and a variant of GROVER, for the Discriminator
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to perform the classification task.

Based on the experimental results, the authors observed that a combination of

Grover Generator and Grover Discriminator performed best on both unpaired and

paired accuracies reaching 99.8% and 100%, respectively. Lastly, the authors draw

helpful insights into exposure bias and variance reduction algorithms and their con-

tribution to detecting machine-generated text.

The work done by Ippolito et al. (2019) emphasizes the sampling-based decod-

ing strategies that neural language models use in constructing coherent and cogent

text. They focus on three sampling strategies: top-K sampling, nucleus sampling,

and untruncated random sampling that aid in generating sensible text but introduce

statistical oddities that are difficult for a human to notice but easy for automatic de-

tection tools. The main contributions Ippolito et al. (2019) made through this study

are to firstly provide a comprehensive study of generated text detection systems’

sensitivity to model structure, decoding strategy, and excerpt length and, secondly,

analyze human rater’s ability to detect machine-generated text. Furthermore, they

used the web-text dataset and generated the corresponding negative samples using

a combination of the GPT-2 output and each decoding strategy for their experiments.

As per the research contributions mentioned earlier, the authors provided insights

into automatic detection and human detection. For automated detection, the authors

used the BERT model fine-tuned on each dataset variation described previously and

observed a maximum accuracy of 88% on the top-k sampling decoding strategy trun-

cated at 40 words. Furthermore, they also observed that the discriminators trained

on one decoding strategy did not generalize to the samples obtained from a different

9



decoding strategy. For the human detection task, the authors observed an overall

human performance of about 71% across all sampling methods. However, they noted

the best rating accuracy at about 85%, implying that humans had room for improve-

ment to detect machine-generated text better.

The work pursued by Bakhtin et al. (2019) explored the idea of using Energy-

Based Models (EBMs) to perform generated text detection. Since the EBMs cannot

directly mine negative samples using gradient-based methods for text data, the au-

thors resolved this issue by utilizing pre-trained language models to generate negative

samples for a given set of human-written text. Furthermore, they trained the EBMs

with a Binary Cross-Entropy loss function to output low scores for human-written

text and high scores for machine-generated text. In addition to training the EBMs,

the authors extensively evaluated the performance of multiple combinations of EBM

architectures and corpora in in-domain, cross-architecture, cross-corpus, and unseen

settings.

2.3 Assistance Based

In the current section, we explore the research work aimed at enhancing humans’

capabilities in detecting machine-generated text. These studies achieved this objec-

tive by developing tools that provide valuable insights to humans.

For instance, the work done by Gehrmann et al. (2019) in developing a Giant

Language model Testing Room abbreviated as GLTR. The GLTR framework is

a visualization tool that displays the statistical artifacts of the machine-generated

text. In this research, the authors hypothesized that the contemporary language
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models generate excessively from a constricted subset of the true distribution of the

natural language in order to keep the generated text coherent and cogent. For in-

stance, sampling strategies like the max sampling, k-max sampling, beam search,

and temperature-modulated sampling sampled the next word in the sequence from

the head of the distribution. They pick the most probable word to construct the

sequence. Consequently, these methods induce sampling bias into the generated text,

which the authors exploited to detect and attribute the source of text as human or

machine.

The authors presented a case study highlighting the differences between human-

written text and machine-generated text by visualizing the rank of the words in the

distribution. The authors built an interface to color-code words based on the oc-

currence in the top-K likely words given the context. Accordingly, they observed

higher occurrences of less like words (rarely used words) in human-written text than

in machine-generated text. Secondly, the authors also conducted an empirical analy-

sis to validate the features and observed better performance with the GLTR features

than with the baseline Bag-of-Words features. Lastly, the authors experimented with

a small population of student volunteers and observed an improvement in the detec-

tion of generated text from 54% to 72% with no prior training. Accordingly, they

argued that an assistive visualization tool with simple statistical tests significantly

enhanced machine-generated text’s human detection.
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Chapter 3

PROBLEM DEFINITION AND RESEARCH FOCI

One of the significant conundrums with Fake News detection is the inconsistent

definition of fake news. What constitutes fake news is highly contextual and sensitive

to the purpose. According to Zellers et al. (2020), fake news exists in multiple forms

ranging from Satire to Propaganda, with two broad goals in mind: Monetization and

Promotion. Therefore, it is essential to accurately define the constituents of fake news

within the scope of our research.

Conventionally, Fake News is any false information aimed to create confusion and

mistrust amongst people. However, this definition seems too general and ambitious

considering the scope of our research. Therefore, we limit ourselves to neural fake

news as described in Definition 3.0.1.

Definition 3.0.1 Any news article generated by a large Natural Language Generation

model is defined as Neural Fake News.

In the current study, we used a binary supervised classification approach to deal

with Neural Fake News classification because we only identify whether a given news

article is machine-generated or not. Accordingly, we used datasets containing news

articles and the information of their source (human-written or machine-generated) to

conduct our experiments. The subsequent sections discuss the hypothesis we devel-

oped based on our observations from Chapter 2. Furthermore, we use the hypothesis

to build interpretable features for our analysis. Lastly, we note down the challenges
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that occur as a consequence of our hypothesis.

3.1 Hypotheses

Circling back to our findings from Chapter 2, we observed that the Exposure Bias

and Decoding Strategy are significant factors causing peculiarities in the machine-

generated text. Consequently, we first introduce the definition of Exposure Bias and

Decoding Strategy below to build our hypotheses:

Definition 3.1.1 Exposure Bias arises when an autoregressive generative model

uses only ground-truth contexts at training time but generated ones at test time.

Definition 3.1.2 Sampling-based Decoding strategy in a Neural Text Gener-

ation model is an algorithm that effectively samples next word in the sequence to

generate cohesive text.

Furthermore, we utilize the following observations about decoding strategies and

exposure bias:

• The next word in the sequence is generated from the head of the distribution.

• A combination of Exposure Bias and the quirks of Decoding strategies introduce

statistical artifacts that can be used to distinguish human and neural text.

Accordingly, we base our research on the following hypotheses:

• Dependency parse tree structure captures stylistic information.

• Decoding Strategies affect dependency parse tree structures of generated text.

• The statistical features derived from dependency parse tree structures are in-

terpretable.
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Chapter 4

METHOD

Figure 4.1: Thesis Research Overview.

This chapter discusses the methodology that leverages significant findings from

Chapter 2 and Hypotheses from Chapter 3 and addresses the fundamental issue of

interpretability. Based on the image shown in Figure 4.1 that briefly summarizes

the overview of the current study, we first preprocess the news articles and obtain

the dependency parse tree structures. Second, we aggregate these dependency parse

trees and construct desired statistical features. Third, we classify the news samples

as authentic/fake using the features we built in the second step. Lastly, we use the

trained classification models to deduce essential features contributing to the classifi-

cation process.
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In the Feature Engineering section, we first present the motivation and challenge

of creating the desired features. Furthermore, we dive deep into the fundamentals of

Dependency Parsing and explore the metrics for evaluating the dependency parsing

models. We also elaborate on our assumptions while choosing the dependency parsing

model. Next, we describe our feature construction process in section 4.1.2, especially

the two novel features we developed using the dependency parse trees in the sections

4.1.3 and 4.1.4. Lastly, we look at the classification models we used to classify the

news articles in the sections 4.2 and 4.3. We also discuss our approaches to interpret-

ing the critical dependency relationships that contributed to the segregation of fake

and factual news articles in sections 4.2, 4.3 and 4.4.

4.1 Feature Engineering

Building explainable discriminatory features for the news articles can be chal-

lenging, requiring extensive feature engineering. One of the significant challenges we

face while building vector representations for text data is constructing fixed-length

feature vectors. Consequently, building feature representations for news articles is no

different and can be tricky in our case for three reasons.

Firstly, the number of nodes in a dependency parse tree, a Directed Acyclic Graph

(DAG) constituting the words and the relationships between them, is arbitrary. Sec-

ondly, the dependency parser works at a sentence level, which means we might get

multiple dependency parse trees for a news article. Lastly, the aggregation of the de-

pendency features across all the sentences in an article does not have a conventional

representation and requires an appropriate definition.
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To address these problems, we developed feature construction algorithms for the

two set of features that processes raw news articles and generates meaningful repre-

sentation for each news article. Section 4.1.2 provides a detailed explanation pertinent

to the features and the corresponding procedures for their construction.

4.1.1 Dependency Parser

Since our objective is to build features that are not just discriminatory but also

comprehensible, we adopted the idea of using a dependency parser to incorporate

the stylistic information into our features. In simple words, a dependency parser is

any model that, given a sentence, generates a directed acyclic graph where each node

represents a word in the sentence and the edges represent the dependency relationships

between the words. We leveraged the dependency relationships between the words to

derive statistical features and used them to explain our results. For our research, we

followed the dependency relationships standard provided by Choi and Palmer (2012).

Before delving into further details, let us first formally define a dependency parsing

model as described in Kübler et al. (2009):

Definition 4.1.1 A dependency parsing model consists of a set of constraints Γ that

define the space of permissible dependency structures for a given sentence, a set of

parameters λ (possibly null), and fixed parsing algorithm h. A model is denoted by

M = (Γ, λ, h).

We also introduce the formal definitions to a dependency graph and dependency

parse tree:

Definition 4.1.2 A dependency graph G = (V,A) is a labeled directed graph (di-

graph) in the standard graph-theoretic sense and consists of nodes, V , and arcs, A,
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such that for sentence S = w0w1...wn and label set R the following holds:

1. V ⊆∈ w0, w1, ..., wn

2. A ⊆ V ×R× V

3. if (wi, r, wj) ∈ A then (wi, r
′, wj) ∈ A for all r′ 6= r

Definition 4.1.3 A well-formed dependency graph G = (V,A) for an input sen-

tence S and dependency relation set R is any dependency graph that is a directed tree

originating out of node w0 and has the spanning node set V = VS . We call such

dependency graphs dependency trees.

Figure 4.2: Illustration of Dependency Parsing Model.

The literature on the Dependency Parsing domain not only contains a rich set

of algorithms and techniques to generate dependency parse trees but also specialized

metrics to evaluate dependency parsing. Traditionally, the performance of depen-

dency parsing models has been evaluated based on two metrics, namely the Unla-

belled Attachment Score (UAS) and Labelled Attachment Score (LAS). These scores

consider the head node (the node from which the relation edge originates) and its

dependent node (the node at which the relation edge terminates) and evaluate the

relationship’s correctness.

According to Nivre and Fang (2017), the LAS and UAS scores measure the per-

centage of correct head predictions with/without label respectively. The current
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Figure 4.3: Illustration Demonstrating Head and Dependent.

state-of-the-art dependency parsing models use deep learning techniques and score

high on the LAS and UAS metrics. Accordingly, we chose the Neural Dependency

Parser model built by Dozat and Manning (2016) for our research as it performs on

par with the state-of-the-art models.

(a) Definition of LAS Metric. (b) Definition of UAS Metric.

Figure 4.4: LAS and UAS Metrics.

Also, we would like to point out that we do not make any assumptions regarding

the dependency parsing model we used for our research. Therefore, any model that

performs reasonably well on the metrics mentioned above can replace the current

dependency model.

4.1.2 Feature Construction

We derived inspiration from the conventional count-based statistical features to

build our version of Bag-of-Words (BoW) and Term Frequence-Inverse Document

Frequency (TFIDF) features using the dependency relationships between the words.
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Adapting to the traditional definitions of Bag-of-Words and TFIDF, we replaced

the vocabulary of words with the vocabulary of relationships that can occur in a

dependency parse tree. Consequently, we built fixed-length feature vectors from the

dependency parse trees as the number of dependency relationships is constant. We

define these features as Bag-of-Relationships (BoR) and Relation Frequency-Inverse

Document Frequency (RFIDF) and explore them in the sections 4.1.3 and 4.1.4.

Reiterating and elaborating further on our Hypotheses mentioned in Chapter 3, we see

that Gehrmann et al. (2019) demonstrated in their paper that the sampling methods

used during neural text generation led the algorithm to sample words frequently from

the head of the distribution in order to generate coherent text. Sampling from the

head of the distribution limits the vocabulary that the model can choose from and

thereby creates statistical inconsistencies. Based on these findings, we hypothesized

that the statistical inconsistencies in the text would induce structural differences in a

dependency parse tree generated for human written and machine-generated text. We

hypothesized that the count-based features defined above would accommodate these

differences and aid in the classification task. It is important to note here that we only

include the relationships in a dependency parse tree and exclude any kind of word-level

information to build our features. The reason for this is that the vocabulary for news

articles can be vast, and the absence of a word in the vocabulary can potentially

disrupt the feature-building process. Therefore, we decided to consider only the

relationships between the words for this research.
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4.1.3 Bag-of-Relations (BoR)

Figure 4.5: Algorithm for Bag-of-Relations Features

To better understand algorithm 1, we first define the vocabulary V , which is the

vocabulary of all the relations occurring in a dependency parse tree and |V | refers to

the size of the vocabulary. Furthermore, the function zeros like accepts the vocabu-

lary size as an argument and generates a vector of zeros with the vector size equal to

the vocabulary size. The SentenceTokenizer function takes the textual content of a

news article and splits the text into sentences. Additionally, the DependencyParsing

function abstracts the dependency parsing model that generates a dependency parse

tree given a sentence. Lastly, the Count function first generates a vector of zeros with

the vector size equal to the vocabulary size and updates the count of the relation i in

V at the ith index of the vector. The Procedure shown in algorithm 1 is repeated for

every news article in the dataset to obtain the BoR matrix shown in Figure 4.5 and

algorithm 2.
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Algorithm 1 ALGORITHM FOR BAG-OF-RELATIONS FEATURES

1: procedure BagOfRelations(news article text)

2: input : news article text

3: output : BoR vector

4: BoR vector ← zeros like(|V |)

5: sentences← SentenceTokenizer(news article text)

6: for each sentence in sentences do

7: relations← DependencyParsing(sentence)

8: relations counts← Count(relations, |V |)

9: BoR vector ← BoR vector + relations counts

10: end for

11: return BoR vector

12: end procedure

Algorithm 2 ALGORITHM FOR BAG-OF-RELATIONS MATRIX

1: procedure GetBagOfRelationsMatrix(news articles texts)

2: input : news articles texts

3: output : BoR Matrix

4: BoR Matrix← [ ]

5: for each news article text in news article text do

6: BoR Matrix.append(BagOfRelations(sentence))

7: end for

8: return BoR Matrix

9: end procedure
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4.1.4 Relation Frequency Inverse Document Frequency (RFIDF)

Figure 4.6: Algorithm for Relation-Frequency Inverse-Document-Frequency Features

Algorithm 3 builds on top of algorithm 2 with an extra step that transforms count

features into TFIDF features. We define the TFIDF Transformer function as a

method to compute the TFIDF values given the counts of items in a vocabulary. In

this case, we compute the TFIDF values for the relations using the count matrix

obtained from algorithm 2 and return an RFIDF matrix.

Algorithm 3 ALGORITHM FOR RFIDF MATRIX

1: procedure RFIDF(news articles texts)

2: input : news articles texts

3: output : RFIDF Matrix

4: BoR Matrix← GetBagOfRelationsMatrix(news articles texts)

5: RFIDF Matrix← TFIDF Transformer(BoR Matrix)

6: return RFIDF Matrix

7: end procedure
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4.2 Logistic Regression

A Logistic Regression classifier models linear relationships between the indepen-

dent variables and the log-odds ratio of the probabilities positive class and negative

class. Eq 4.2 displays the mathematical definition of a Logistic Regression model.

y = σ(β ∗ x1 + β ∗ x2 + β ∗ x3 + ...+ β ∗ xn)

where the function σ(.) is the sigmoid function defined as :

σ(k) =
1

1 + e−k

The coefficients of the Logistic Regression model represented by βi quantify the

weights assigned to each feature while classifying data samples. We use these weights

to identify essential features contributing to the classification by sorting the weights

and picking the top-k corresponding features.

4.3 Random Forests

Restating the definition of Random Forest as described in Breiman (2001), A

Random Forest is a classifier consisting of a collection of tree-structured classifiers

h(x, θk), k = 1, ..., N where the θk are independent identically distributed random vec-

tors, and each tree casts a unit vote for the most popular class at input x.

In a Random Forest model, the Hypothesis function represented as h(x, θk) is

typically a Decision Tree classifier. The Random Forest models are trained using the

Bagging strategy, which contains two phases: 1.) Bootstrapping the data 2.) Aggre-

gating the results. Accordingly, each decision tree model is independently trained on
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bootstrapped data which contains a subset of the original data. The Bagging strategy

reduces the chances of overfitting the Decision Tree Classifiers to the data, thereby

enhancing the generalization capabilities of the model. To predict the output of a

given data sample, the Random Forest model obtains the outputs across all Decision

Tree classifiers and aggregates the result to provide the output.

The current study uses impurity-based feature importance scores to extract es-

sential features. The model tracks the drop in the criterion such as Gini Impurity,

Entropy, etc., caused by a feature and aggregates and normalizes these drops to derive

the feature importance value for a feature.

4.4 SHAP

The SHapley Additive exPlanantions, also known as SHAP, is a model inter-

pretability framework that uses a game-theoretic approach to calculate the feature

importance values for a particular prediction. The SHAP framework uses a simpler

explanation model g(z′), a linear function of binary variables.

g(z′) = φ0 +
M∑
i=1

φiz
′
i (4.1)

where z′ ∈ {0, 1}M , M is the number of simplified input features, and φi ∈ R. The

simplified input feature space maps to the original feature space using a mapping

function hx.

hx(x′) = x (4.2)

Furthermore, the Shapley regression values, represented by φi, correspond to fea-

ture importances for a linear model in the presence of multi-collinearity. To compute
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the effect a feature i produces on the prediction, two models fS∪{i} and fS are trained.

The former model includes feature i and the latter does not, and the predictions from

the two models are compared on the current input through the following equation.

diff = fS∪{i}(xS∪{i})− fS(xS) (4.3)

Lastly, this difference is computed and averaged across all possible subsets of

features through the following equation:

φi =
∑

S⊂F\{i}

|S|!(|F | − |S| − 1)!

|F |!
[fS∪{i}(xS∪{i})− fS(xS)] (4.4)

An interesting feature exhibited by the additive feature attribution methods is

a single solution with three desirable properties: Local Accuracy, Missingness, and

Consistency. The following describes the definitions for these properties:

• Local Accuracy: The explanation model g(x′) matches the original model

f(x) when x = hx(x′).

f(x) = g(x′) = φ0 +
M∑
i=1

φix
′
i (4.5)

• Missingness: Missingness constrains features where x′i = 0 to have no at-

tributed impact.

x′i = 0 =⇒ φi = 0 (4.6)

• Consistency: Let fx(z′) = f(h(z′)) and z′ \ i denote the setting z′i = 0. For

any two models f and f ′, if

f ′x(z′)− f ′x(z′ \ i) ≥ fx(z′)− fx(z′ \ i) (4.7)

for all inputs z′ ∈ {0, 1}M , then φi(f
′, x) ≥ φi(f, x)
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Chapter 5

DATA

For the current study, we confine the scope of our problem to just the textual

data, specifically data that contains news articles (and their fake counterparts) from

online sources. Furthermore, we approach the task of identifying human-written

and machine-generated news articles using supervised learning techniques. There-

fore, we use Articles and NeuralNews datasets that contain the news articles and the

corresponding labels indicating the authenticity of the articles. Table 5.1 contains

information about the distribution of classes in the datasets.

Dataset # human-written samples # machine-generated samples Total

Articles 15439 15434 30873

NeuralNews 32000 32000 64000

Table 5.1: Table denoting the number of real and fake news articles in the Articles

and NeuralNews dataset.

5.1 The NeuralNews Dataset

The NeuralNews dataset was created by Tan et al. (2020) as a benchmarking

dataset for the machine-generated news articles detection task. It constitutes a col-

lection of news articles sourced from the GoodNews dataset, which in turn is created

from the New York Times articles. Since the GoodNews dataset was initially intended

for the image-captioning task, the authors have refactored the contents and developed
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the NeuralNews dataset to suit the misinformation detection problem. As a part of

remodeling the dataset, the authors first defined four categories as listed below:

• Real Articles and Real Captions

• Real Articles and Generated Captions

• Generated Articles and Real Captions

• Generated Articles and Generated Captions

Second, the authors collected about 32K samples for the real category and gener-

ated their fake counterparts using the GROVER model built by Zellers et al. (2020).

They used the original titles and the article’s contents as seed context to generate per-

tinent fake articles. Third, the authors used real captions from the GoodNews dataset

and generated the fake captions using the entity-aware image captioning model built

by Biten et al. (2019). Lastly, the authors combined the real/fake news articles with

real/counterfeit captions. They generated four categories with 32K samples in each

leading to 128K samples in total.

To suit our research requirements, we took the NeuralNews dataset and modified

it accordingly. Firstly, we omitted the news captions from the dataset as we are

only interested in the contents of the news articles. This modification resulted in a

dataset containing 64K samples of the real and fake news articles from the Neural-

News dataset. We split the data into train, validation, and test sets, each containing

70%, 10%, and 20% data. Table 5.2 displays information about the number of sam-

ples in the real and fake categories in the NeuralNews dataset.
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Class #Train #Validation #Test Total

Fake 22309 2885 6806 32000

Real 22491 2875 6634 32000

Total 44800 5760 13440 64000

Table 5.2: Distribution of Fake and Real samples in NeuralNews dataset.

5.2 The Articles Dataset

The articles dataset was developed on-premise at the Data Mining and Machine

Learning lab to serve as a benchmark for the machine-generated text detection task.

It was built to extend the NeuralNews dataset and includes news articles broadly

classified into topics like Climate Change, Military Ground Vehicles, and Covid-19.

Additionally, the news articles can further be sub-categorized into more nuanced is-

sues like Floods, Fires, Military Capabilities, Death tolls, etc. Table 5.3 consists of all

the categories and the sub-categories of the topics that constitute the Articles dataset.

Topics Sub Topics

Climate Change Floods, Hurricanes, Fires, Agriculture

COVID-19 Death Tolls, Vaccination, Weakened Forces

Military Ground Vehicles Military Capability, Military Parades

Table 5.3: List of topics and sub topics in the Articles dataset

One of the primary motivations for creating the Articles dataset is to build upon

the current datasets for misinformation detection and include content based on re-

cent events in the world, especially significant events like the Covid-19 pandemic in

2019. As a result, we collected the news articles from multiple reputed news outlets
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like the BBC, Al-Jazeera, Canadian Dimension, etc., and generated fake counterparts

to these articles using the Grover generator model and created a dataset containing

about 14K samples of real and fake articles each. Table 5.4 displays information

about the number of samples in the real and fake categories in the Articles dataset.

Class #Train #Validation #Test Total

Fake 10106 1013 4320 15439

Real 10090 1007 4337 15434

Total 20196 2020 8657 30873

Table 5.4: Distribution of Fake and Real samples in Articles dataset.
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Chapter 6

EXPERIMENTS

We validate our methodology with a series of experiments that objectively analyze

the features built from the datasets and their capabilities in explaining the differences

between machine-generated and human-written texts. In Experiment 1, we assess

the validity of the proposed features by visualizing and analyzing the topology of

the data. In Experiment 2, we train the Logistic Regression and Random Forest

classification algorithms and classify the news articles as factual or fake. Experiment

3 identifies the crucial features for each classifier using the SHAP framework and the

feature importance scores. Lastly, we used the following packages for performing our

experiments:

• Supar library for dependency parsing.

• Scikit-Learn for Classification, Clustering.

• Pandas, Numpy, NLTK for data preprocessing.

• Matplotlib, Seaborn for data visualization.

6.1 Evaluation Metrics

Actual/Predicted Real Fake

Real True Positives (TP) False Negatives (FN)

Fake False Positives (FP) True Negatives (TN)

Table 6.1: Confusion matrix for Binary classification
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We use the following metrics to evaluate and compare the performance of our

models:

• Precision:

Precision =
TP

TP + FP

• Recall:

Recall =
TP

TP + FN

• F1:

F1 =
2 ∗ Precision ∗Recall
Precision+Recall
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6.2 Experiment 1

This experiment verifies the differences between the Fake and Real data samples

from the features we built. We first segregated the data into fake and real sam-

ples based on the labels to achieve this objective. After separating the fake and

real samples, we obtained the corresponding Bag-of-Words features for the articles

and performed Principal Component Analysis. We then obtained the top-3 principal

components from the first ten principal components for visualizing the data. Figure

6.1 displays the PCA plots for both NeuralNews and the Articles dataset. We also

looked at the explained variances to identify the amount of variance captured by each

principal component in Figure 6.2 and noted down the values in Table 6.2.

Data PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

NeuralNews 21.14 2.47 1.63 1.40 1.06 1.02 1.01 0.89 0.83 0.82

Articles 20.64 2.32 1.53 1.42 1.14 1.07 0.98 0.92 0.86 0.85

Table 6.2: Top 10 Principal Component of BoR and RFIDF Features

Based on the figure 6.1 that shows the PCA plots of NeuralNews and Articles

datasets, we observe that the variance in the real news samples differs from the vari-

ance observed in the fake news samples. These plots also demonstrate the discrimi-

natory behavior of the features that can be exploited to classify the news articles.
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(a) PCA Plot of NeuralNews Dataset with Top-3 Principal Components

(b) PCA Plot of Articles Dataset with Top-3 Principal Components

Figure 6.1: PCA Plots for NeuralNews and Articles Datasets.

33



(a) Explained Variance of Principal Components for NeuralNews Dataset

(b) Explained Variance of Principal Components for Articles Dataset

Figure 6.2: Explained Variance Plots for NeuralNews and Articles datasets.

34



6.3 Experiment 2

In this experiment, we examine the predictive capabilities of the classification mod-

els trained on our features to identify fake and authentic news. We first train each

combination of the (feature, classifier, dataset) where feature, classifier, and dataset

can be one of BoR, RFIDF, Logistic Regression, Random Forest, NeuralNews, Arti-

cles respectively. Additionally, we performed a grid search for each feature, classifier,

and model combination to arrive at the optimum set of hyperparameters to train our

models for the best performance. We kept the default parameters available in the

Scikit-Learn package constant during grid search and altered only a limited set of

parameters mentioned in the Tables 6.3 and 6.4.

Parameter Values

penalty none, l1, l2, elasticnet

solver newton-cg, lbfgs, liblinear

C 1e-5, 1e-4, 1e-3, 1e-2, 1

Table 6.3: Hyperparamters for training Logistic Regression Model.

Parameter Values

n estimators 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

criterion Gini, Entropy

max depth 2, 5, 10, 20, 50

min samples leaf 1, 5, 10

Table 6.4: Hyperparameters for training Random Forest Model.

After obtaining the eight combinations from the previous step, we compare the
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performances of these models with the baseline model using the F1 metric. We

selected a combination of the Logistic Regression model trained on the Trigram Bag-

of-Words features on both datasets for the baseline model. Table 6.5 displays the per-

formances of each combination of models we trained along with the baseline model.

Lastly, we identified the essential features contributing to the classification process via

the feature importance scores/model coefficients. We sorted these scores and picked

the features corresponding to the top ten scores. Tables 6.6 and 6.7 show the top

ten essential features sorted in descending fashion, appearing left to right in the table.

Data/model LR-BoR LR-RFIDF RF-BoR RF-RFIDF Baseline

NeuralNews 0.79 0.78 0.79 0.78 0.92

Articles 0.77 0.77 0.81 0.80 0.79

Table 6.5: F-1 scores of all the models.
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6.4 Experiment 3

This experiment primarily focuses on the interpretability aspect of the prediction

results. Firstly, we examined the feature importance scores/model coefficients of the

Random Forest and Logistic Regression models, respectively. We sorted these scores

in descending manner and extracted the features corresponding to the top ten scores.

Tables show the top ten essential features sorted in descending fashion, appearing

left to right. Furthermore, we also used the SHAP framework to identify important

features by computing the Shapley values. Figures 6.3, 6.4, 6.5 and 6.6 demonstrate

the mean Shapley values of top contributing features.

Model Top-10 features

LR-BoR conj, pobj, nsubj, dep, ccomp, nn, det, poss, advcl, cop

RF-BoR punct, nn, prep, pobj, nsubj, det, dobj, appos, ccomp

LR-RFIDF conj, dep, discourse, advcl, ccomp, cop, acomp, poss, expl, parataxis

RF-RFIDF punct, appos, nn, ccomp, conj, dep, nsubj, prep, xcomp, aux

Table 6.6: Top-10 features for each model based on the NeuralNews dataset.

Model Top-10 features

LR-BoR prep, nsubj, det, punct, aux, nsubjpass, cop, poss, csubjpass, nn

RF-BoR parataxis, num, prep, det, punct, pobj, dobj, dep, nsubj, nn

LR-RFIDF appos, cop, neg, expl, poss, cc, det, aux, nsubjpass, number

RF-RFIDF parataxis, num, dep, advcl, partmod, conj, dobj, advmod, mark, det

Table 6.7: Top-10 features for each model based on the Articles dataset.

37



(a) SHAP Values for LR-BoR

(b) SHAP Values for LR-RFIDF

Figure 6.3: SHAP Values Explaining Important Features With LR model for Articles

Dataset.
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(a) SHAP Values for RF-BoR

(b) SHAP Values for RF-RFIDF

Figure 6.4: SHAP Values Explaining Important Features With RF model for Articles

Dataset.
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(a) SHAP Values for LR-BoR

(b) SHAP Values for LR-RFIDF

Figure 6.5: SHAP Values Explaining Important Features With LR model for Neural-

News Dataset.
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(a) SHAP Values for RF-BoR

(b) SHAP Values for RF-RFIDF

Figure 6.6: SHAP Values Explaining Important Features With RF model for Neural-

News Dataset.

41



Chapter 7

RESULTS

We observed from Experiment 1 that the Random Forest model trained on Bag-

of-Relations performed the best amongst all the models on both NeuralNews and

Articles datasets. Furthermore, the Logistic Regression and Random Forest models

trained on both BoR and RFIDF performed better on the Articles dataset than the

baseline models. On the contrary, our models do not beat the baseline models for the

Neural News dataset. We investigated this issue by plotting the first three principal

components of the BoW and TFIDF features in Figures 7.1 and 7.2 and observed

minimal variance for the Real samples group. We theorized the cause for compact

packing of Real samples to be a similar writing style, which was true because all the

real samples in NeuralNews articles were collected using the NYTimes API.

On the other hand, we observed that the real samples are more spread out in the

TFIDF feature space resulting in lower accuracy scores. Explaining this phenomenon

requires further analysis and will be conducted in future research. On the other

hand, we compensate for this shortcoming by adding the interpretability aspect to

the features. For instance, the Trigram feature set is far from providing the kind

of insights obtained from Experiment 3. Therefore, we decided to proceed with the

proposed features despite the discrepancy.
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Figure 7.1: First Three Principal Components of Bag-of-Words Features for Neural-

News Dataset.

Figure 7.2: First Three Principal Components of TFIDF features for NeuralNews

Dataset.
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Chapter 8

CONCLUSION AND FUTURE WORK

We conclude our research by reiterating our contributions. Firstly, we demon-

strated the feasibility of utilizing dependency parse trees to build statistical features

and use them to classify neural fake news articles. Secondly, we provided insights into

essential features by analyzing the crucial relations in dependency parse trees that

contributed to the classification process.

Despite fulfilling the core objectives of our research, we believe we can improve the

current study to address its shortcomings and better understand the neural fake news

classification process. For instance, current research recognizes the relationships from

the dependency parse tree as individual entities. Instead, we can try incorporating

the structural information from the dependency parse tree into the feature construc-

tion process. Including the structural information will provide valuable insights, such

as the distinctive sub-structures in dependency parse trees that can help distinguish

neural fake news from actual news better. For instance, using sophisticated represen-

tation learning methods like Graph Neural Networks to learn structural information

is a desirable future direction.

In addition to learning better features, the current set of experiments can be

expanded to new datasets and modern news articles to verify the robustness of the

features. Seeing how stylistic features can fall short while segregating fake and factual

news content generated solely by machines, we can expand the current research scope

and develop a better set of features that can tackle this variant of fake news detection.
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We can also extend the current study to include Deep Neural Network models

and alternate interpretable methods like Saliency maps to interpret the predictions.

Using BERT to classify fake news can help improve the accuracy but might hinder

the interpretability aspect as the context of BERT is limited to 512 tokens. The

datasets used in the current set of experiments have multiple news articles spanning

beyond the context size of BERT. We could instead use the Longformer model that

can encode long documents. Lastly, we can create customized datasets using current

news articles and analyze the model performances on the set of features described in

this study.
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