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ABSTRACT 

   

In convective heat transfer processes, heat transfer rate increases generally with a 

large fluid velocity, which leads to complex flow patterns. However, numerically analyzing 

the complex transport process and conjugated heat transfer requires extensive time and 

computing resources. Recently, data-driven approach has risen as an alternative method to 

solve physical problems in a computational efficient manner without necessitating the 

iterative computations of the governing physical equations. However, the research on data-

driven approach for convective heat transfer is still in nascent stage. This study aims to 

introduce data-driven approaches for modeling heat and mass convection phenomena. As 

the first step, this research explores a deep learning approach for modeling the internal 

forced convection heat transfer problems. Conditional generative adversarial networks 

(cGAN) are trained to predict the solution based on a graphical input describing fluid 

channel geometries and initial flow conditions. A trained cGAN model rapidly 

approximates the flow temperature, Nusselt number (Nu) and friction factor (f) of a flow 

in a heated channel over Reynolds number (Re) ranging from 100 to 27750. The optimized 

cGAN model exhibited an accuracy up to 97.6% when predicting the local distributions of 

Nu and f.  

Next, this research introduces a deep learning based surrogate model for three-

dimensional (3D) transient mixed convention in a horizontal channel with a heated bottom 

surface. Conditional generative adversarial networks (cGAN) are trained to approximate 

the temperature maps at arbitrary channel locations and time steps. The model is developed 

for a mixed convection occurring at the Re of 100, Rayleigh number of 3.9 × 106, and 
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Richardson number of 88.8. The cGAN with the PatchGAN based classifier without the 

strided convolutions infers the temperature map with the best clarity and accuracy.  

Finally, this study investigates how machine learning analyzes the mass transfer in 

3D printed fluidic devices. Random forests algorithm is hired to classify the flow images 

taken from semi-transparent 3D printed tubes. Particularly, this work focuses on laminar-

turbulent transition process occurring in a 3D wavy tube and a straight tube visualized by 

dye injection. The machine learning model automatically classifies experimentally 

obtained flow images with an accuracy > 0.95.  
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1. INTRODUCTION 

1.1.Traditional Methods of Modeling Heat and Mass Convection Processes 

To model convective heat transfer mathematically, the conservation laws of mass, 

momentum, and energy are introduced. These laws can be expressed as formulas. First, the 

law of conservation of mass is expressed by Equation (1.1), where V is velocity. 

∇ ∙ 𝑉⃗ = 0     (1.1) 

𝜌
𝜕𝑉𝑖

𝜕𝑡
+ 𝜌𝑉⃗ ∙ ∇ 𝑉𝑖⃗⃗ = −∇𝑝 + 𝜇∇2 𝑉𝑖⃗⃗ + 𝜌𝑔        (1.2) 

Second, the law of conservation of momentum is expressed by Equation (1.2), where Vi is 

the components of V, ρ is density, p is pressure, and g is acceleration due to gravity. This 

is Newton's second law, and the sum of external forces acting on a fluid particle equals the 

rate of change of linear momentum. The fluid velocity can be obtained by solving the 

conservation laws of mass and momentum together. Third, the law of conservation of 

energy is expressed as Equation (1.3), where α is thermal diffusivity, and T is temperature. 

This equation consists of the advection term, which explains a net rate where thermal 

energy leaves the control volume due to bulk fluid motion, and the other term is a net inflow 

of thermal energy through conduction. Here, viscous dissipation is ignored. Fluid 

temperature distribution can be obtained by solving the law of conservation of energy. 

∇(𝑉⃗ ∙ 𝑇) − 𝛼∇2𝑇 = 0               (1.3) 

The physical properties of the fluid are changed according to the temperature in the 

heating and cooling process. During this process, density is changed with temperature, and 

the difference in density between fluids causes the fluid move, which is buoyancy-driven 

flow. The change in buoyancy with temperature can be approximated using the Boussinesq 
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approximation. Many modeling methods use Boussinesq approximation. However, when 

the temperature difference is greater than 2°C for water and 15°C for air, the errors are 

increased by more than 1% (Ferziger, Perić, and Street 2020). 

If there is an imbalance of concentration between species during the convection 

process, heat and mass transfer occur simultaneously. The mass transfer is proportional to 

a concentration gradient of substance. It can be expressed by Fick's law, as expressed in 

Equation (1.4), where DAB is the diffusion coefficient of the species in the mixture and CA 

is the concentration of species.  

𝑚̇𝑑𝑖𝑓𝑓 = −𝐷𝐴𝐵𝐴
𝑑𝐶𝐴

𝑑𝑥
           (1.4) 

To model the transport equations, computational techniques have been introduced, 

such as finite difference, finite elements, and finite volume methods. First, the finite 

difference method (FDM) is the oldest and most direct approach to discretizing partial 

differential equations. However, it is not frequently used in commercial software due to 

difficulties in handling irregular geometry. Thus, now commercial software widely uses 

unstructured meshing because this technology can generate meshes up to complex 3D 

geometry. The finite element method (FEM) has been mainly hired in structural analysis. 

In FEM, the mesh quality is very important because it is directly proportional to the 

accuracy of the analysis result and greatly influences the calculation time. In specific cases, 

one-dimensional (1D) and two-dimensional (2D) are preferred over three-dimensional (3D) 

mesh. Although this method was initially developed for analyzing solid materials, it 

extended to thermofluids. The finite volume method (FVM) replaced the integral of the 

transport equation to the conservation form, and the spatial integral to the area integral 

using Gauss's divergence. This change made it possible to apply control volume analysis 



  3 

to the problem. Engineers have widely employed FVM in heat transfer. These numerical 

modeling methods can solve heat transfer equations and fluid transport equations with high 

accuracy and be applied to arbitrary nonlinear physical problems and complex geometries, 

whereas these methods provide approximate solutions and require a large computational 

cost. 

 

1.2. General Concepts of Machine Learning and Deep Learning 

Machine learning (ML) has been employed in a wide range of areas such as 

medicine, health care, robotics, stock market where useful information (e.g., patterns) must 

be extracted out of large-sized data in a rapid fashion (Erickson et al. 2017; Bell 2015; 

Smart and Kaelbling 2002; Beam and Kohane 2018). Algorithms hired in ML are classified 

as supervised learning, unsupervised learning, and reinforcement learning. These 

algorithms contributed to offering considerable promise to classification and regression 

works in terms of accuracy. Figure 1.1 briefly illustrates the five stages of the machine 

learning process. The first stage of feature preparation preprocessing requires the 

preparation of the qualified dataset. Here the dimensionality and noise in datasets are 

removed by normalization, and then proper labels are attached to datasets. In the second 

stage, various ML models can be hired to choose a proper model to increase its accuracy 

and then, while the selected ML model is being trained, comparing predictions can be 

adjusted by updating weight and biases at each iteration. In the testing model, the trained 

ML model evaluates how well it predicts outputs. Following testing the ML model, the 

parameters are adjusted to improve its accuracy in the parameter tuning. At the final stage, 

the tuned ML model is applied to classify new or unseen similar data. 
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Figure 1. 1. Machine Learning 

 

Deep learning is a class of machine learning algorithms that uses multiple stacked 

layers of processing units to learn high-level representation from nonlinear patterns of data 

(Lecun, Bengio, and Hinton 2015; Deng and Yu 2013) as shown in Fig. 1.2. Unlike the 

conventional machine learning techniques, deep learning algorithms allow us to readily 

discover features from high-dimensional data, e.g. images, which contributed to processing 

a large amount of data, including image recognition (Krizhevsky, Sutskever, and Hinton 

2017), speech recognition (Mikolov et al. 2011), science (Brunton, Noack, and 

Koumoutsakos 2020; Gawehn, Hiss, and Schneider 2016; S. Kang and Cho 2019), business 

and government (Valter, Lindgren, and Prasad 2018; Tien Bui et al. 2020). Lately, more 

attention toward deep learning has been increasingly growing in the fields of fluid 

mechanics and heat transfer, where nonlinear patterns of data are frequently encountered 

due to complex physics. Thermo-fluidic problems usually consist of governing physical 

equations that require iterative calculations to attain accurate solutions with conventional 

numerical simulation techniques, e.g., a finite difference method, finite volume method, 

and finite element method. This iterative calculation for governing physical equations 

causes expensive computational cost and time.  
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Figure 1. 2. Machine Learning Neural Network 

 

1.3. The Emergence and Growth of Deep Learning for Engineering 

Deep learning model is able to be classified into discriminative and generative 

model. The discriminative model finds the y that maximizes conditional probability p(y|x) 

to determine the label y that classifies data x. That is, y is determined by learning p(y|x) 

directly from the model. Conversely, the generative model indirectly learns the joint 

probability P(x,y) to determine the label y of the data x or learns p(x) if no label exists. In 

other words, if the discriminative model discovers data labels by learning the decision 

boundary, it properly classifies the difference in labels. The generative model learns the 

distribution of data to determine its type. A model then determines the probability of 

belonging to a distribution. This model has been developed from the basic generative 

model known as Naïve Bayes, which attempts to learn joint probability distribution P(x,y) 

of the input x and the label y. It can be transformed from P(y|x) using the Bayes rule. 

Although a discriminative model attempts to learn the conditional probability distribution 

P(y|x), generative models can use the joint distribution P(x,y) to generate likely (x,y) 

samples. The Naïve Bayes model has its merits as follows: it is simple and easy to 
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implement without requiring much training data, in addition, it can handle both continuous 

and discrete data fast and is less sensitive to irrelevant features. However, the problem is 

that it assumes that features are independent; and thus, it fails to handle images. Another 

generative model that has been widely adopted in ML is Gaussian mixture model (GMM) 

and Hidden Markov Model (HMM). However, due to its weakness in generating images, 

it has been mostly applied in classification work. 

To overcome all these traditional generative models with limits in generating 

images, neural networks were adopted to generative models. As a class of reinforcement 

learning methods, deep neural networks were distinguished because of their substantial 

merit of automatically discovering features from raw data for pattern analysis or 

classification (Lecun, Bengio, and Hinton 2015; Deng and Yu 2013). These deep learning 

achievements made critical components large labeled datasets, the growth of 

computational power (Brenner, Eldredge, and Freund 2019; Brunton, Noack, and 

Koumoutsakos 2020), and the power of a multi-layer (deep) architecture- possible. In the 

past few years, GAN research and utilization among various generative models have been 

actively conducted. Therefore, I would like to take a detailed look at variational 

autoencoders (VAE) (Kingma and Welling 2013), convolutional neural networks (CNNs) 

(Dai, Lu, and Wu 2014) (used as generative models), and GANs (Goodfellow et al. 2014). 

Although VAE has the same structure as an autoencoder (AE), VAE is a generative 

model. In latent space, AE expresses output as a set of simple numbers, whereas VAE 

expresses output as a distribution with a learned mean and standard deviation. The VAE's 

loss function comprises the total reconstruction errors between the original and loss 

function images and the Kullback-Leibler (KL) divergence. The KL divergence compares 
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the probability distribution of the latent space with the standard Gaussian distribution. Thus, 

VAE is a technique based on Bayesian theory, which learns distribution. The extracted 

distribution from the latent space is decoded, potentially generating a copy of the original 

image. Adjusting the vectors in latent space is attempted to generate objective images. VAE 

estimates one distribution mode by applying the maximum likelihood estimation, and a 

normal distribution close to the mean of the distributions is estimated to minimize the error. 

However, it is impossible to easily estimate the center of the images, and a safe middle 

zone is selected. This causes the eyes, nose, and mouth to be well expressed in portraits 

while the background is blurred. 

CNNs introduce convolutional kernels to automatically extract features and 

expressions from high-dimensional data such as images. The number of dimensions to 

learn is reduced by reducing the number of parameters by having the same parameter value. 

Introducing this method has the advantage of extracting useful features while preventing 

overfitting. Also, it showed excellent performance in the image classification task. Because 

of these advantages of a CNN, it has been hired in structures similar to VAE. By adding an 

adversarial loss to the reconstruction loss of the CNN generative model, it is now possible 

to realistically reconstruct the background part, which was blurred in VAE. However, in 

the generative model, calculation loss and backpropagation learning are difficult, and there 

is no formal method to increase the similarity, so it did not receive much attention until the 

advent of GANs. 

GAN is introduced as a generative model. GAN hires two architectures, a generator 

and a discriminator. Both architectures train competitively in the training process. This 

causes GAN to generate realistic images. In the discriminator, a high-quality image 
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produced from the generator is judged real or fake. Through this adversarial training, GAN 

can generate many more realistic images than any other generative model. However, it 

showed the problems of mode collapse and instability in the training process. To stabilize 

GAN training process, Wasserstein GANs (WGAN) (Arjovsky, Chintala, and Bottou 2017) 

that substitutes binary cross-entropy loss to Wasserstein loss and adds the Lipschitz 

Constraint using weight clipping to the discriminator was suggested. This enabled the 

gradient to converge more stable. However, sometimes, WGAN produced worse samples 

and failed to converge due to the weight clipping. To solve this, the Wasserstein GANs - 

Gradient Penalty (WGAN-GP) (Gulrajani et al. 2017) changed weight clipping into 

gradient-penalty in the discriminate loss function to provide more stable GAN training. 

Since then, many interesting studies using GAN with regard to image generation have 

appeared. After CNN was introduced to GAN, it provided a stable model, and it has been 

actively studied. 

One of the newly suggested was the Image-to-image translation method using 

conditional GAN (cGAN) (Isola et al. 2016) that trains the network to predict images from 

paired images consisting of both ground truth images and input images. Also, by employing 

L1 distance as a loss function, it provides less blurry images than L2 distance. On the other 

hand, unlike cGAN, the CycleGAN (Zhu et al. 2017) did image translation, e.g., image 

style, patterns, seasons, and painting styles without requiring paired-images. In general, 

GAN has been widely hired for modifying images, e.g., by putting on glasses or changing 

hairstyle or skin color (Choi et al. 2017; Karras, Laine, and Aila 2018) and improving the 

resolutions of images by modifying the structures of networks based on GAN structure 

(Karras et al. 2017; 2019).  
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1.4. Research Objectives 

This research attempts to develop time-efficient and accurate modeling method 

using machine learning for heat and mass convection processes. Although existing 

traditional methods of modeling have shown excellent accuracy, there is still a possibility 

to advance them when it comes to time, and cost aspects caused by iterative calculation. 

The data-driven approaches using machine learning are more advantageous in calculation 

time and reduced efforts for updating the designs without numerical calculations. Most 

importantly, it leads data-driven approaches to a time-efficient process by omitting the 

iterative calculation and updating design process. The objectives of this work are as follows: 

1. A data-driven model for 2D convection heat transfer in steady-state is developed 

based on a generative model that can rapidly infer the temperature fields and 

convection properties of channel heat sinks from given boundary conditions, 

geometries, and flow conditions. 

2. Test and investigate the potential of the deep conditional generative adversarial 

networks that can predict for the 3D transient laminar mixed convection phenomena. 

3. Analysis and prediction methodologies of various flow regimes based on machine 

learning are developed to provide comprehensive information for accurate 

prediction of heat transfer characteristics and pressure drop in geometrically 

complex flow devices. 
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2. DEEP GENERATIVE MODELING FOR 2D STEADY STATE HEAT 

CONVECTION PROCESS 

2.1. Introduction 

 Deep learning is a class of machine learning methods that automatically discovers 

features from raw data for pattern analysis or classification (Lecun, Bengio, and Hinton 

2015; Deng and Yu 2013). Unlike the conventional machine learning techniques, deep 

learning algorithms allow us to readily discover features from high-dimensional data, e.g. 

images, and have been impacting various areas dealing with a large amount of data such as 

image recognition (Krizhevsky, Sutskever, and Hinton 2017), speech recognition (Mikolov 

et al. 2011), science (Brunton, Noack, and Koumoutsakos 2020; Gawehn, Hiss, and 

Schneider 2016; S. Kang and Cho 2019), business and government (Valter, Lindgren, and 

Prasad 2018; Tien Bui et al. 2020). Recently, the interest in deep learning has been growing 

in the fields of fluid mechanics and heat transfer where nonlinear patterns of data are 

frequently encountered due to complex physics. Efforts are underway to develop deep 

learning techniques that can infer the patterns of thermofluidic processes from provided 

conditional information, e.g., system geometry, boundary and initial conditions. Previous 

studies show that the deep learning techniques are able to predict the patterns of flows 

(Raissi, Yazdani, and Karniadakis 2020; Lee and You 2019; Farimani, Gomes, and Pande 

2017; McClure and Carey 2021) or temperature distributions (Farimani, Gomes, and Pande 

2017; Sharma et al. 2018; Edalatifar et al. 2020; Cai et al. 2021) of thermofluidic processes 

if physical conditions are prescribed. When predicting the solutions of physics problems, 

the deep learning techniques approximate the output without iteratively calculating the 

governing physical equations, thus they demand lower computational costs than the 
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conventional numerical simulation techniques, e.g., finite difference method, finite volume 

method, and finite element method. Although the conventional numerical approaches can 

offer accurate solutions to the intricate problems, e.g., transient, two-dimensional, three-

dimensional, or conjugate problems, the computational costs are often tremendous 

particularly when requiring high-resolution, large-scale, or long-period solutions. Thus, 

researchers have been investigating the deep learning techniques as an alternative modeling 

approach for thermofluidic processes. 

 Several recent publications explored how to cost-effectively infer the thermofluidic 

processes using deep learning techniques (Raissi, Yazdani, and Karniadakis 2020; Yang et 

al. 2019; Sharma et al. 2018; Edalatifar et al. 2020; Farimani, Gomes, and Pande 2017; Lee 

and You 2019). Some studies employed conditional generative adversarial networks 

(cGAN) (Farimani, Gomes, and Pande 2017), fully convolutional encoder-decoder 

network (Sharma et al. 2018), or autoencoder (Edalatifar et al. 2020) to generate the 

solutions for steady-state two-dimensional (2D) heat conduction problems. When the 

temperature along the boundary of the model domain was given in a 2D image format, the 

deep learning model inferred the corresponding temperature distribution within the domain 

similar to the conventional numerical techniques without solving the heat diffusion 

equation. Another demonstration used the cGAN model to predict the cooling effectiveness 

distributions of an effusion cooling technique while varying the design of a porous plate 

(Yang et al. 2019). The deep learning techniques based on generative adversarial networks 

(GAN) (Lee and You 2019), cGAN (Farimani, Gomes, and Pande 2017), or convolutional 

neural networks (CNN) (Lee and You 2019) also succeeded in approximating the solutions 

for fluid mechanics problems. When the input data were three-channel images describing 



  12 

the 2D velocity vectors and pressure fields along the 2D domain boundary, the cGAN 

model was able to predict the corresponding flow and pressure fields within the domain 

(Farimani, Gomes, and Pande 2017). For the unsteady flow over a cylinder, GAN and CNN 

models predicted the flow fields around the cylinder during a short period of time, if the 

flow fields during the past moment were provided (Lee and You 2019). More recently, a 

physics-informed deep neural network was developed that was capable of inferring the 

flow and pressure fields from several snapshots of solute concentration fields (Raissi, 

Yazdani, and Karniadakis 2020). While the early works demonstrate the potential of deep 

learning for heuristic modeling, still many questions remain regarding how to leverage the 

potential of deep learning to solve complex thermofluidic problems. Some questions are 

related to the sizes of training data required for different problems, settings in algorithms 

to avoid underfitting and overfitting issues, and methods of generating sufficient amount 

of training data. 

 This chapter presents a heuristic model for forced convection heat transfer problems 

based on cGAN that rapidly infers the convection properties and temperature fields from 

boundary conditions. The cGAN model learns forced convection heat transfer through 

provided numerical simulation solutions, and predicts the solutions for unseen boundary 

conditions. To improve the accuracy of the cGAN model, the influence of important factors 

is investigated such as the size of training set, training epoch, and hyperparameters, e.g., 

the trade-off parameter λ, and learning rate. 
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2.2. Convection Problem  

  A simple internal forced convection problem occurring in a 2D straight channel is 

considered where the channel width (w) is 66.6mm and length (l) is 153mm as shown in 

Fig. 2.1a. At an inlet, water at 20C enters with a uniform velocity distribution while the 

wall temperature is constantly 60C. At the inlet, the Reynolds number (Re) varies from 

100 to 27750.  

 

 

Figure 2. 1. (a) Structures of Input and Output Images. (b) Conditional Generative 

Adversarial Networks Architecture 
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2.3. Deep Learning Methodology 

2.3.1. Conditional Generative Adversarial Networks 

A modern deep learning model is trained, conditional generative adversarial 

networks (cGAN), to generate the property fields of interest from graphical inputs. Due to 

the ability to generate data that own similar characteristics to the input data, the cGAN has 

been one of the popular deep learning methods. Figure 2.1a illustrates the structures of 

input and output images that are employed for our cGAN convection model. Conditional 

inputs are two-dimensional (2D), 256  256-resolution, three-channel images representing 

the boundary and initial conditions of the convection problem. The pixel values in the first 

channel represent Re. In wall region (colored in blue), Re is an arbitrary constant, i.e., 0, 

while Re is calculated by the flow properties in fluid region (colored in dark red). The pixel 

values in the second channel correspond to Prandtl number (Pr) distribution. In wall region 

(colored in dark red), Pr is an arbitrary constant 50000 while in fluid region (colored in 

blue) Pr is that of liquid water, 7. The pixel values in the third channel are the temperature 

distribution at an initial moment. The trained cGAN model approximates an output image 

by statistically learning a possible output data group for input images. The outputs are 2D, 

256  256-resolution, three-channel images. The pixel values along the fluid domain 

boundary (colored in blue) are friction factor (f) in the first channel and are Nusselt number 

(Nu) in the second channel. The pixel values of the third channel represent the temperature 

distribution at steady state. Figure 2.1b shows a cGAN architecture. The cGAN algorithm 

uses two neural networks: a generator neural network (G) and a discriminator neural 

network (D). The generator creates an output image (Y) when a random noise vector (z) 

and a conditional input (c) are provided.  
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The discriminator learns to distinguish the ground truth images from the generator 

outputs. The ground truth images contain numerically calculated Nu, f, and the temperature. 

The discriminator receives batches of both ground truth images (X) and generated images 

(Y), and classifies the images into real and fake classes. During the training, the 

discriminator learns to maximize the probability that it correctly classifies the images, 

while the generator tries to minimize the probability by generating realistic samples. Thus, 

the objective of a cGAN is formulated as  

𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) = 𝐸𝑐,𝑋[log𝐷(𝑐, 𝑋)] + 𝐸𝑐,𝑌[log{1 − 𝐷(𝑐, 𝑌)}]           (2.1) 

where D(c, X or Y) is the probability that the discriminator classifies X or Y as ground truth 

for a given c. Ec,X or Y is the expected value over the entire group of X or Y. The generator 

attempts to minimize LcGAN while an adversarial discriminator tries to maximize LcGAN. The 

cGAN algorithm also considers a traditional loss function such as L1 distance that estimates 

the errors in Y against X. 

𝐿𝐿1(𝐺) =  𝐸𝑐,𝑋,𝑌[‖𝑌 − 𝑋‖]            (2.2) 

Thus, the final objective becomes 

𝐺∗ = arg  𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) + 𝜆𝐿𝐿1(𝐺)         (2.3) 

where the hyperparameter λ is a weight for LL1(G). 

To train the neural networks, a finite volume model (FVM) was used to prepare a 

dataset. A commercial software, ANSYS 19.0 was used to developed the FVM that 

simulated the steady-state flow and heat transfer in the internal forced convection problem. 

A dataset consisting of N pairs of conditional inputs and outputs were prepared by changing 

Re of flow. As Re was linearly varied from 100 to 27750, the data for transition and 
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turbulent flow regimes were five times more than the data for laminar flow regime. Then, 

the dataset was split into training and testing sets with a ratio of 9:1.  

 

2.4. Optimization 

To optimize the networks, the effects of dataset size N, training epoch and the 

hyperparameter λ were studied. Generally, deep neural networks require N to be greater 

than 1000. However, if generating such a large dataset is not practical, it is necessary to 

examine an appropriate N that ensures a sufficient accuracy level. Figure 2.2 compares the 

temperature maps inferred by the cGAN and a ground truth image calculated by the FVM 

for Re = 300. During training, the input and output pair for Re = 300 was not provided to 

cGAN, indicating that Fig. 2.2 shows the test result with an unseen input. When N = 60, 

the cGAN did not correctly approximate the wall temperature, exhibiting dark spots near 

the channel exit and thin thermal boundary layer. However, as N increased to 180, the 

cGAN accurately produced the thermal boundary layers as well as temperature in other 

regions. To quantitatively examine the effect of N, the root mean square error (RMSE) was 

evaluated, i.e., the standard deviation of the prediction error of the cGAN model against 

the ground truth, and maximum absolute error (MAX), i.e., the maximum absolute 

temperature difference between the ground truth and cGAN output. The RMSE and MAX 

were calculated in the thermal boundary layer region, i.e., fluid domain spanning 33 

vertical pixels both from the top and bottom walls, since the difference between the ground 

truth and cGAN output was the most profound in this region due to a large temperature 

gradient. The RMSE and MAX were 3.71C and 22.3C, respectively, with N = 60, but 

RMSE and MAX drastically reduced to 0.31C and 2.74C with N = 180.  
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Figure 2. 2. Temperatures Maps Predicted by (a) FVM and (b-d) cGAN. The Dataset Size 

N Was Selected as (b) 60, (c) 120, and (d) 180. 

 

Figures 2.3a and 2.3b show the local Nu generated by the cGAN along with the 

ground truth for Re = 300 and 23500. During training, the input and output pairs for Re = 

300 and 23500 were not provided to cGAN, indicating that Fig. 2.3 presents the test result 

with unseen inputs. When N = 60 and Re = 300, the cGAN predicted Nu distribution with 

an accuracy of 32.4%. Here, the accuracy is defined as 100% – percentage error that is 

averaged over all channel locations, i.e., accuracy = ∑(1− | NuX – NuY | ∕ NuX) ∕ n where 

NuX is true Nu obtained from the FVM, NuY is Nu inferred by the cGAN model and n is 

the total number of nodes along the channel. As N increased to 180, the accuracy improved 

to 95.9% for Re = 300. In turbulent regime (Re > 10000), the cGAN exhibited higher 

accuracies probably because there were five times more training data as compared to the 

laminar flow regime. When N = 60 and Re = 23500, the accuracy was 97.2%. When N = 
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180 and Re = 23500, the accuracy was 97.6%. Figures 2.3c and 2.3d present f predicted by 

the cGAN when Re = 300 and 23500. Similar to Nu prediction, the cGAN approximated 

more accurately for the turbulent regime than the laminar regime. 

 

 

Figure 2. 3. Local Nusselt Number and Friction Factor Predicted by cGAN when the 

Dataset Size N Was Varied from 60 to 180: (a) Nu at Re = 300, (b) Nu at Re = 23500, (c) 

f at Re = 300 and (d) f at Re = 23500. 
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The epoch of neural networks training is raised until the loss functions and errors 

become sufficiently small. With an epoch of 500, MAX was 3.8 – 13.9C and training 

duration was 1.5 hours. However, with an epoch of 2000, MAX reduced to 3.3 – 6.3C and 

the training duration increased to 9.6 hours. To balance the error and training duration, the 

epoch as 1000 was selected in the subsequent cGAN trainings, resulting in a training 

duration of 3.3 hours. 

The hyperparameter λ balances the mismatch in the orders of magnitudes of LcGAN 

and LL1. Figures 2.4a and 2.4b show LcGAN and LL1 as a function of epoch for λ = 105. In 

our trainings, LcGAN was on the order of 10 while LL1 was on the order of 10-2. Thus, when 

λ was varied from 104 to 5105, the total generator loss G* was adjusted to the order of 102 

– 103 (Fig. 2.4c).  
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Figure 2. 4. Losses as a Function of Epoch: (a) Generator Loss, (b) L1 Distance Loss, and 

(c) Total Generator Loss. 

 

To understand the influence of dataset size N and hyperparameter λ, MAX and 

accuracies of Nu and f were evaluated as a function of both parameters. In Tables 2.1 and 

2.2, the cGAN model accuracies are shown for laminar flow data (Re = 300, Table 1) and 

turbulent flow data (Re = 23500, Table 2.2). Overall, the cGAN model exhibited greater 

accuracy for the turbulent flow than the laminar flow. In general, a large N improves the 

model accuracy. However, a simple relation was not observed between λ, N and accuracies. 
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It seems that λ should be tuned for a specific N. Considering MAX and accuracies of Nu 

and f at the same time, N = 180 and λ = 105 were selected to minimize MAX and maximize 

the accuracies in both flow regions.  

Table 2. 1. The Maximum Absolute Error (MAX, °C) of Temperature Maps and 

Accuracies of Nu and f at Re = 300 as a Function of N and λ. 

  λ 

N  104 5×104 105 5×105 

60 

MAX 24.2 22.55 22.34 17.8 

Nu 0.67 0.4 0.32 0.93 

f 0.15 0.6 0.4 0.55 

120 

MAX 12.14 11.04 10.73 7.67 

Nu 0.87 0.71 0.9 0.74 

f 0.81 0.6 0.6 0.74 

180 

MAX 13.71 7.1 2.74 10.99 

Nu 0.92 0.84 0.96 0.79 

f 0.66 0.62 0.93 0.63 

 

 

Table 2. 2. The Maximum Absolute Error (MAX, °C) of Temperature Maps and 

Accuracies of Nu and f at Re = 23500 as a Function of N and λ. 

  λ 

N  104 5×104 105 5×105 

60 

MAX 3.24 2.08 2.45 1.5 

Nu 0.99 0.99 0.97 0.99 

f 0.95 0.95 0.94 0.96 

120 

MAX 1.58 1.75 0.81 1.44 

Nu 0.99 0.99 0.96 0.96 

f 0.88 0.98 0.97 0.84 

180 

MAX 16.65 1.14 1.4 1.27 

Nu 0.99 0.99 0.98 0.93 

f 0.95 0.97 0.99 0.91 
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2.4.1. Test and Cross-validation 

The cGAN model trained with optimally selected parameters is tested and validated 

with the dataset unseen during training. Figures 2.5a and 2.5b compare the temperature 

maps for a developing laminar flow at Re = 300 that are obtained by the FVM (denoted as 

ground truth) and the cGAN. Despite a large temperature variation across the thermal 

boundary layer region, the RMSE and MAX of the cGAN prediction are merely 0.36C 

and 2.74C, respectively. Figures 2.5c and 2.5d depict a ground truth image and cGAN 

prediction for a transition flow at Re = 10875. Due to the flow mixing in the transition flow, 

the temperature is much more uniform than in the laminar flow with significantly reduced 

RMSE (0.17C) and MAX (0.79C). Figures 2.5e and 2.5f illustrate the temperature maps 

for a turbulent flow at Re = 23500. For the turbulent flow, RMSE is 0.19C and MAX is 

1.4C.  
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Figure 2. 5. Comparison of the Temperature Maps Obtained by cGAN and FVM (Ground 

truth): (a, b) Re = 300 (MAX = 2.74°C, RMSE = 0.36°C), (c, d) Re = 10875 (MAX = 

0.79°C, RMSE = 0.17°C), and (e, f) Re = 23500 (MAX = 1.4°C, RMSE = 0.19°C). 

 

The optimally trained cGAN model accurately predicts the local distribution of 

convection properties. Figure 2.6a shows the predicted Nu at three Re. Note that the cGAN 

model directly infers the distribution of Nu from provided input without requiring 

additional calculations with the predicted temperature distribution. Although the Nu 

distribution dramatically and nonlinearly changes with Re and the location in channel, the 

predicted Nu is highly accurate. Figure 2.6b shows the predicted f. Across the flow regimes 
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and along the channel, f changes more than an order of magnitude, but the cGAN was able 

to infer such trends. 

 

Figure 2. 6. (a) Local Nusselt Number and (b) Friction Factor Predicted by an Optimized 

cGAN at Unseen Re = 300, 10875, and 23500. 

 

To further validate the accuracy of the cGAN model, a 10-fold cross-validation has 

been performed. The total dataset including 180 images was divided into ten subsets with 

each subset containing the same numbers of laminar-flow, transition-flow, and turbulent-

flow samples. For each round of validation, one of the subsets was retained as testing data, 

and the other nine subsets were used as training data (Bowles et al. 2018; Kiyasseh et al. 

2020; Cirillo, Abramian, and Eklund 2020; Maleki et al. 2020; Ghassemi, Shoeibi, and 

Rouhani 2020). Figure 2.7a shows the variation of MAX for different test datasets. The 
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box-and-whisker plot provides the median (50%), lower, upper, first-quartile (25%), and 

third quartile (75%) values of MAX. The red symbol indicates the mean value of MAX for 

each test dataset. Although the maximum values of MAX vary from 0.52C to 10.12C, 

the average of mean MAX is merely 1.6C. Figures 2.7b and 2.7c present the variation of 

accuracies for Nu and f. The average of mean accuracy is 0.975 for Nu and 0.958 for f. The 

cross-validation shows that the accuracy of the cGAN model may vary with different 

training data, but the accuracy would be sufficient as long as an adequate size of training 

data is provided.  
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Figure 2. 7. Cross-validations for (a) MAX, (b) Accuracy of Inferred Nu, and (c) 

Accuracy of Inferred f with Different Test Datasets. 

  

2.5. Model Testing with Unseen Geometries 

 The trained cGAN is able to infer the solution for unseen input geometries at a 

certain extent. To understand the capability of the cGAN, the cGAN with several modified 

input geometries including narrowed and widened channels were tested, and a 90-degree 

rotated channel (Fig. 2.8). The narrowed channel width is 70% of the original width and 

the widened channel width is 130% of the original width.  
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Figure 2. 8. Inputs, Ground Truths and Outputs for Unseen Channel Geometries with Re = 

300: (a) Non-rotated Narrowed Channel, (b) Non-rotated Widened Channel, (c) Rotated 

Narrowed Channel, and (d) Rotated Widened Channel. 
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 To facilitate the prediction of unseen geometries, the training data for the cGAN 

model via a simple image transformation technique was amplified. Data augmentation for 

GAN has been widely hired in previous research (Cheng et al. 2015; Frid-Adar et al. 2018; 

Ghassemi, Shoeibi, and Rouhani 2020) as an auxiliary method to enrich the training 

datasets in classification works. Figure 2.9 illustrates how an original input image was 

transformed into new data via three possible ways. At each training epoch, randomly 

selected original input and output images may be simply rotated 90 with probability. An 

image may be cropped and combined with its mirror image segment. The mirrored image 

may be also rotated 90. If all the images in the training dataset are transformed and added 

to the dataset, 162 new samples, with either or both different channel widths and 90- 

rotated channels, can be created at every training epoch. Thus, the total number of training 

samples may increase up to 162000 at an epoch of 1000. Through the data augmentation, 

amplifying the number of training samples without additional data preparations with the 

FVM was possible. Note that the computation time for image transformation is less than 1 

second which is significantly shorter than the FVM runtime. However, randomly mirrored 

images may contain physically incorrect information depending on how the image is 

cropped and how an actual flow field is. Thus, to improve the cGAN accuracy, the data 

augmentation method must be refined. 
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Figure 2. 9. Data Augmentation Process. 

 

 Figure 2.8 shows the temperature maps inferred by the cGAN for unseen channel 

geometries, i.e. narrowed, widened, and 90-degree rotated channel geometries at Re = 300. 

Overall, the cGAN predictions are close to the ground truth while exhibiting RMSE ≤ 3C 

and MAX ≤ 15C for the narrowed and widened channels, and RMSE ≤ 3C and MAX ≤ 

13C for the rotated channels. When training the cGAN with an original dataset, MAX was 

as large as 44.5C. However, after employing the dataset augmented by the simple image 

transformations, the cGAN provided 66% reduced MAX.  
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 Figure 2.10 compares Nu and f of narrowed channels produced by the cGAN with 

the ground truth data. The accuracies for Nu and f predictions are 63.6% and 65%, 

respectively. If the narrowed channel is rotated, the accuracy for Nu reduces to 47.8%, but 

the accuracy for f maintains at a similar level (68.52%). Figure 2. 11 shows predicted Nu 

and f of widened channels. The accuracies for Nu and f approximations are 87.3% and 54%, 

respectively. However, if the widened channel is rotated, the accuracy for Nu reduces to 

75%, but the accuracy for f increases to 63.79%.  

 

 

Figure 2. 10. (a) Local Nusselt Number and (b) Friction Factor Predicted for Unseen 

Narrowed Channels. 
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Figure 2. 11. (a) Local Nusselt Number and (b) Friction Factor Predicted for Unseen 

Widened Channels. 

 

Even with the simple data augmentation, the cGAN was able to approximate the 

convection properties for unseen geometrical inputs with an accuracy > 50%. Especially, 

the augmentation by image rotations enabled the cGAN to predict even for the channels 

with arbitrary angular orientations. Although the accuracy for new geometries is greatly 

smaller than the accuracy for trained geometry, the cGAN predictions seem still useful for 

a rough and rapid estimation without solving a numerical model.  

 

2.6. Conclusions 

 A deep learning model for forced convection heat transfer problems based on 

conditional generative adversarial networks (cGAN) was developed. The cGAN was 
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trained by a set of graphical inputs containing the geometric and flow conditions and 

graphical outputs representing the convection properties. A single, trained cGAN model 

successfully predicted the distributions of temperature, Nu and f of a heated internal 

channel flow over a wide range of Re (Re = 100 to 27750). To achieve a high accuracy, 

the dataset size, training epoch and the hyperparameter λ of the cGAN were optimized. The 

optimized cGAN model exhibited an accuracy ≤ 97.6% for the Nu estimation and root 

mean square error (RMSE) < 0.3C maximum absolute error (MAX) ≤ 2.7C for the 

temperature approximation. The inference ability of the cGAN model was further validated 

through a 10-fold cross-validation test. When combined with a data augmentation 

technique, the capability of cGAN model for unseen channel geometries also demonstrated. 

After trained with an amplified dataset, the cGAN was able to predict unseen channel 

geometries such as widened, narrowed, and rotated channels. For the new channel 

geometries, the cGAN inferred Nu and f with an accuracy ≤ 87.3% and temperature 

distribution with RMSE ≤ 3C and MAX ≤ 13C.  

 The presented cGAN convection model will enable to rapidly approximate the 

spatial distributions of convection properties, e.g., temperature, Nu, f, in a 2D domain, if 

the input information is provided in a 2D image format. Although this method was 

demonstrated for a simple 2D steady-state convection problem, this approach can be 

readily extended to a variety of problems involving complex surfaces like rough surfaces 

and extended surfaces. Moreover, if rapid and repetitive estimations of convection 

properties in geometrically complex systems are needed over a wide range of flow 

conditions, the cGAN convection model can serve as a good alternative to the traditional 

numerical simulation techniques.  
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3. DEEP GENERATIVE MODELING OF 3D UNSTEADY STATE HEAT 

CONVECTION PROCESS 

3.1. Introduction 

  Recently, there is a growing interest to explore the deep learning approaches for 

modeling transport processes, which has been mostly carried out using computational fluid 

dynamics (CFD). Deep learning algorithms can readily identify the features embedded in 

unstructured data such as images, texts, and signals, which eliminates the feature extraction 

processes in data-driven modeling. CFD techniques are widely used and effective, but 

extensive computational resources and computation time are required to solve for the large-

scale, spatiotemporal dynamic problems. If simulation and/or experimental data for 

transport processes are available, the deep learning models are expected to be trained to 

solve for the complex transport problems without necessitating significant computational 

costs, and serve as surrogate models. 

  Various deep learning techniques have been used to model heat transfer processes. 

Conditional generative adversarial networks (cGAN) were first used to infer the steady-

state temperature fields in a two-dimensional (2D) domain when conduction was the only 

heat transfer mechanism (Farimani, Gomes, and Pande 2017). In this work, the training 

dataset was prepared using a finite difference method. The cGAN model was able to 

generate resulting temperature fields when the model inputs, which were 2D images 

representing the initial temperature distributions, were given. The cGAN was also trained 

to simultaneously approximate the temperature, velocity, and pressure fields of a natural 

convection process occurring in a 2D square cavity when the model input was provided as 

five-channel 2D images containing the initial and boundary conditions (Jiang and Farimani 



  34 

2020). Recently, the cGAN technique was used to infer the 2D distributions of temperature, 

Nusselt number, and friction factor of a channel in a heated channel over Reynolds number 

ranging from 100 to 27750 (M. Kang and Kwon 2022). When combined with a data 

augmentation technique, the cGAN model was able to predict for unseen fluid channel 

geometries such as narrowed, widened, and rotated channels, which demonstrated the 

nonlinear interpolation and extrapolation capabilities of the cGAN technique. The previous 

demonstrations used the cGAN to generate images containing physical properties that are 

resulted from certain input conditions. Traditionally, convolutional neural network (CNN) 

has been a common deep learning technique for image processing and analysis, but CNN 

requires a careful design of a loss function to accomplish a good performance (Isola et al. 

2016). To facilitate the deep learning based image generation tasks and to increase the 

accuracy, GAN was proposed to automatically adapt the loss function to the data 

(Goodfellow et al. 2014), and has gained popularity. 

  Apart from the cGAN technique, several other deep learning techniques have been 

employed for heat transfer modeling. CNN (Sharma et al. 2018) and autoencoder (AE) 

(Edalatifar et al. 2020) were trained to predict the steady-state temperature distributions in 

a 2D domain when conduction was the only heat transfer mechanism. Similar to GAN, 

both models successfully reconstructed the input images containing boundary conditions 

to output images. In these works, the CNN model employed a 2D heat equation as a loss 

function (Sharma et al. 2018) and the autoencoder model used mean squared errors or mean 

of maximum squared errors as its loss function (Edalatifar et al. 2020). In another 

demonstration, CNN was trained to predict the 2D distribution of local heat flux in a fully 

developed turbulent channel flow when the model inputs were the 2D images of wall-shear 
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stresses and pressure fluctuations (Kim and Lee 2020). In this work, the loss function was 

defined as the sum of mean squared error and regularization loss. Recently, physics-

informed neural networks (PINN) for one-dimensional (1D) and 2D heat conduction 

problems were reported (Zobeiry and Humfeld 2021). By defining the loss function as the 

errors in conduction heat transfer equation, boundary and initial conditions, deep neural 

networks (DNN) were able to predict the temperature distributions in a 2D domain without 

the need of the pre-generated training dataset. DNN are also commonly used for regressing 

discrete numeric outputs from discrete numeric inputs. In a previous work (Sundar et al. 

2020), two-layer artificial neural networks learned to predict the fouling resistances of a 

cross-flow heat exchanger when six operating condition parameters were provided. 

  Despite the recent progress in deep learning techniques for modeling the heat 

transfer processes, it is unclear if the deep learning techniques will still be effective for 

inferring complex phenomena such as transient, multi-mode conjugate, or various 

turbulent-flow heat transfer processes. If the deep learning surrogate models are able to 

solve for the complex heat transfer processes faster than numerical simulations, those 

models will be useful when designing and optimizing the 2D or three-dimensional (3D) 

transport systems. Therefore, to test the potential of deep learning, this chapter investigates 

the deep conditional generative adversarial networks that can predict for the 3D transient 

laminar mixed convection phenomena. In mixed convection, free and forced convection 

effects are comparable to each other, leading to buoyancy-driven secondary flows, as well 

as unstable and inhomogeneous property fields. The flow characteristics of mixed 

convection are known to enhance heat transfer up to 4 to 5 folds as compared to pure forced 

convection (Osborne and Incropera 1985; Ostrach and Kamotani 1975; Yasuo and Yutaka 
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1966; Bergles and Simonds 1971; McComas and Eckert 1966), thereby drawing substantial 

attention for use in engineering and scientific applications such as heat exchangers (Oztop 

and Al-Salem 2012; Andrzejczyk and Muszynski 2017; Ghorbani et al. 2010), radiation 

energy collectors (Selmi, Al-Khawaja, and Marafia 2008; Edalatpour and Solano 2017), 

plants (Banna, Pietri, and Zeghmati 2004), groundwater and geothermal systems (Smith 

2004; Kumari 2001). 

 

3.2. Mixed Convection Problem and Data Generation 

A mixed convection flow in a 3D channel with a width (W) of 60mm, height (H) of 

15mm and length (L) of 130mm is considered as shown in Fig. 3.1. At an inlet, water at 

35°C (Ti) enters the channel with a uniform velocity distribution and the Reynolds number 

(Re) of 100. The bottom wall temperature (Tb) is maintained at 43°C, and the other walls 

are thermally insulated. Under the prescribed boundary conditions, the Rayleigh number 

(Ra) is 3.9 × 106 and the Richardson number (Ri) is 88.8. 

 

Figure 3. 1. Temperature Distribution at Selected Cross-sections in a Rectangular Channel 

Induced by Mixed Convection Heat Transfer. 

 

The transient flow and temperature fields are simulated by a finite volume model 

(FVM) implemented in commercial CFD software (ANSYS Fluent). To reduce the 
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computational cost, only the half-section of the channel is modeled by employing the yz-

plane at x = 0 as a symmetric plane. In this work, the residual for convergence is 10-4 for 

the continuity equation, 10-5 for the momentum and energy equations. The simulation 

model employs a time step size of 0.05s and the number of time steps of 7200. The model 

determines the density (ρ) and dynamic viscosity (μ) of water as a function of the 

temperature without employing the Boussinesq approximation. Other water properties such 

as specific heat (Cp), Prandtl number (Pr), and thermal conductivity (k) are assumed as 

constants at the mean temperature of the water inlet and bottom wall. 

The solutions of the FVM are the temperature distributions in the simulation 

domain at discrete time steps, which are employed to create training and testing datasets 

for the cGAN model. The datasets consist of 4320, 2D, 64 × 128-resolution temperature 

images obtained across xy-planes at 360 time steps. Two types of datasets are tested with 

different bit depths: one with 8-bit RGB images (256 colors with 3 channels) and the other 

with 16-bit grayscale images (thousands of colors with a single channel). In the 8-bit RGB 

images, the jet colormap is used for mapping the temperature distribution between 35°C 

and 43°C. In the grayscale images, the intensity corresponds to the absolute temperature. 

For each dataset, randomly selected 90% images are used for training and 10% images are 

employed for testing. 

 

3.3. Deep Learning Methodology 

 The cGAN (Mirza and Osindero 2014) was trained to rapidly predict the flow 

temperature distribution. Among various deep learning algorithms for image processing 

such as CNN (Dai, Lu, and Wu 2014) and variational autoencoder (VAE) (Kingma and 
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Welling 2013), cGAN is selected due to its superior capability in image generation. CNN 

is the class of artificial neural networks that has been popular for classifying, recognizing, 

analyzing, or segmenting images. However, it is not easy to generate high-quality target 

images using CNN without designing sophisticated loss functions. VAE is an artificial 

neural network that maps the characteristics of input images into a latent space and 

reconstructs images from vectors in the latent space. Despite the stability in training, the 

outputs of VAE are not as close to the ground truth images as the outputs of the cGAN. 

The generator network (GN) of cGAN learns to create an image close to the ground 

truth image for fooling the discriminator network (DN). Figure 3.2(a) presents the GN 

architecture. The input to GN is a 1 × 8 conditional vector that describes the channel 

geometry, thermal and hydraulic boundary conditions, fluid properties, time (t), and the z 

location in channel, i.e., input (c) = [channel aspect ratio (AR), Re, Pr, Ri, Ti, Tb, t, z]. The 

fully-connected layer (G1) feeds and reshapes the input vector into an input layer with a 

shape of 1 × 1 × 512 tensor. Then, the input layer goes through seven blocks (i.e., from G2 

to G8) where each block consists of three layers including transpose convolutional, batch 

normalization, and ReLU (Rectified Linear Unit) (Krizhevsky, Sutskever, and Hinton 2017) 

activation layers. The transpose convolutional layer performs an inverse convolution 

operation, and generates an output feature map that has greater dimensions than the input. 

The batch normalization (Ioffe and Szegedy 2015) layer transforms the means and 

variances of the layer inputs to make the learning process stable and fast. In this work, a 

batch normalization layer is not included in G1, since GN performs well by doing this. 

Among various available activation functions such as sigmoid, ReLU, and leaky ReLU, 

GN employs ReLU due to computation efficiency. Finally, the output layer (G9) uses the 
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Tanh activation function, and generates a flow temperature image with a desired size of 64 

× 128.  

 

Figure 3. 2. cGAN Architectures. (a) Generator Architecture. (b) Discriminator 

Architectures with Strided Convolutions. (c) Discriminator Architectures without Strided 

Convolutions. 
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The discriminator network (DN) learns to distinguish ground truth images from the 

fake images that GN creates. There are several common types of DN developed for GANs. 

In the original GAN (Goodfellow et al. 2014), the DN is defined by multilayer perceptrons, 

which provides the classifier with a scalar probability that the input image is from the 

ground truth group rather than the GN. In recent GANs, the multilayer perceptrons were 

replaced by CNN to improve stability in training. In the deep convolutional GAN (DCGAN) 

(Radford, Metz, and Chintala 2016), the DN uses a modified CNN that replaces the pooling 

layers with strided convolutions, and uses the batch normalization. In PatchGAN (Isola et 

al. 2016), the classifier receives small patches of images, and classifies the images, which 

requires a smaller number of parameters in DN than the traditional GAN classifier.  

In this work, four types of discriminator architectures are tested to identify a DN 

suitable for the data obtained from complex convection phenomena. Figure 3.2(b) presents 

the first and second architectures that reduce the input image into an output tensor. The 

first DN architecture, denoted as a CNN classifier, generates a single probability value by 

employing a flatten and fully-connected layer in the last block (D7). The second DN 

architecture, denoted as a PatchGAN classifier, generates a 4 × 4 image (D8) with each 

pixel representing the guess for a 64 × 128 patch of the input image. Figure 3.2(c) illustrates 

the third and fourth DN architectures that do not employ strided convolutions in order to 

maintain the feature map size after D1. The third architecture generates a single probability 

(D7), and the fourth architecture generates a 64 × 64 image (D8) as an output. By 

combining the GN and prescribed DNs, four different types of cGAN models are created 

and compare their performances to understand the effect of DN architecture. The cGAN 

models are denoted as Models 1 to 4 where Model 1 uses the CNN classifier with strided 
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convolutions; Model 2 uses the CNN classifier without strided convolutions, Model 3 uses 

the PatchGAN classifier with strided convolutions; and Model 4 uses the PatchGAN 

classifier without strided convolutions. In addition, Model 5 is prepared to understand the 

effect of L1 loss. All the models employ the ADAM (adaptive moment estimation) 

optimizer (Kingma and Ba 2014) with a learning rate of 0.0002 and β1 of 0.5.  

 The objective of a cGAN combines the objectives of the GN and DN. The GN 

produces a flow temperature map (Y) from a provided input vector (c) that looks similar to 

the CFD simulation result (X), and tries to deceive the DN. The DN tries to distinguish X 

from Y. Thus, one of the cGAN objectives is formulated as 

LcGAN(GN,DN) = Ec,X[logDN(c,X)] + Ec,Y[log{1-DN(c,Y)}]         (3.1) 

where DN(c, X) represents the probability that the DN receives c and X, then classifies the 

input image as X. DN(c, Y) represents the probability that the DN receives c and Y, and 

classifies the input image as X. The DN tries to maximize the expectation values of DN(c, 

X) and 1 - DN(c, Y). However, the GN tries to minimize the expectation values in Eq. (3.1). 

To improve the ability of GN, L1 loss is often added as a GN objective. The L1 loss 

measures the mean absolute pixel difference between X and Y. Thus, if the GN is trained 

to minimize the L1 loss, the produced images become clearer than the results without the 

L1 objective. The L1 loss is formulated as below. 

LL1(GN) = Ec,X,Y[ǁY - Xǁ]       (3.2) 

Thus, the final objective of a cGAN is described as 

LTotal = minGNmaxDNLcGAN(GN,DN) + λLL1(GN)                                (3.3) 

where the hyperparameter λ is a weight for LL1(GN). Note that for Model 5, the objective 

is LTotal is equal to LcGAN only. 
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 The hyperparameters are optimized such as training epoch and λ for balancing the 

training quality and computation duration. The training epoch needs to be sufficiently large 

to reduce the training losses to the desirable levels. The training results obtained with 

epochs of 500, 1000, 2000, and 3000 were compared. For Model 4, with the increase of 

epoch, the training duration increased from 1.5 hours to 8.8 hours, and the mean 

temperature difference (ΔT) between the ground truths and generated images decreased 

from 0.22K to 0.093K. Figure 3.3 shows the training losses of Models 2 and 4 as a function 

of epoch. For both models, LDN gradually decreases and reaches 10-3 over the epoch. 

However, LcGAN is slightly smaller in Model 4 than Model 2, indicating that the DN 

architectures with or without strided convolutions train the GN to different levels. For both 

models, LL1 and LTotal continue to decrease with the increase of epoch. Considering the 

training duration and ΔT, All the subsequent model training was conducted with an epoch 

of 3000. The details of hyperparameter optimization are in the supplementary material.  
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Figure 3. 3. Convergence of Loss Functions During Training: (a) Discriminator Loss, (b) 

Generator Loss, (c) L1 Loss, and (d) Total Losses in Generator Training. 

 

The hyperparameter λ balances the two objectives for the generator training. If λ 

increases, the GN focuses on minimizing the mean absolute difference between X and Y, 
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and improving the low-frequency accuracy. Many temperature images in our convection 

problem include low-frequency features, i.e., small temperature gradients across unit image 

pixels. Thus, in this study, λ is raised to sufficiently weigh L1 loss over LcGAN and to 

minimize the model errors. The value of λ that minimizes ΔT is identified as 5 × 105 for 

Model 1 and 4, and 106 for Model 2 and 3. For Model 5, λ is 0. With the optimal values of 

λ, the mean prediction error ΔT that is averaged over all the channel locations and time 

steps is less than 0.1K for all the models except Model 5.  

 

3.4. Model Testing 

The trained cGANs serve as surrogate models for the mixed convection that can 

infer the temperature map at an arbitrary channel location z and time t. Figure 3.4 shows 

the temperature maps at an early stage, t = 12s, for selected z locations, which are not seen 

by the models during training. Models 1 - 4 successfully generate the characteristic 

development of convection transverse rolls in mixed convection flow. The temperature 

maps show similar features raised by buoyancy driven secondary flows at an early stage. 

However, Model 5 fails to approximate correct temperature maps owing to the incomplete 

objective of the GN. At t = 12s, the prediction error ΔT that is averaged over all the channel 

locations ranges merely 0.15 - 0.24K for Models 1 to 4, but is 1.91K for Model 5. 
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Figure 3. 4. Temperature Distributions at Selected Cross-sections in a Heated Channel 

Predicted at t = 12s by cGAN Models and FVM (Denoted as Ground Truth). 

 

 The image contrast determined by the temperature gradient affects the model 

accuracy. Figure 3.5 shows the model predictions during a stable stage, t = 342s. The 

trained models are able to infer the elongated transverse convection rolls and the secondary 

flow development over the entire channel region. As compared to the initial stage of the 

mixed convection, the spatial temperature variation during a stable stage is apparently 

small due to the flow mixing induced by the secondary flows. For example, at z = 60 mm, 

the Michelson image contrast reduces from 0.0128 to 0.0113 when comparing the ground 

truths at t = 12s and 342s. The Michelson image contrast of each temperature map is 

calculated by (Tmax - Tmin)/(Tmax + Tmin), where Tmax and Tmin are the maximum and 

minimum temperatures. I observe that the models tend to generate blurred features, e.g., 

indistinct boundaries of convection rolls at z = 60 mm if the Michelson image contrast is 
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approximately below 0.011. Overall, the PatchGAN classifier performed better than the 

CNN classifier. At t = 342s, the prediction error ΔT that is averaged over all the channel 

locations is 0.135K for Model 1, 0.125K for Model 2, 0.106K for Model 3, and 0.132K for 

Model 4. Qualitatively, Model 4 generates the image features with the best clarity. Based 

on the quantitative and qualitative comparison, Model 4 is considered as the most suitable 

one for our convection problem.  

 

 
Figure 3. 5. Temperature Distributions at Selected Cross-sections in a Heated Channel at t 

= 342s Predicted by cGAN Models and FVM (Denoted as Ground Truth). 

 

 When the cGAN is trained with the identical training hyperparameters, the depth 

and the number of channels of input images can become important factors. The two 

columns for Model 4 in Fig. 3.4 and 3.5 compare the model predictions when the model is 
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trained either with 8-bit, 3-channel RGB images or 16-bit, 1-channel grayscale images. 

Qualitatively, the model trained with the single-channel images sharply produces the image 

features even for the temperature maps with low contrasts, i.e., temperature maps at z ≥ 

40mm. The single-channel image-based training would be easier to achieve a higher 

accuracy, since it requires a substantially smaller number of training parameters than the 

three-channel image-based training. The single-channel image-based training required 

merely 513 parameters for the generator training whereas the three-channel image-based 

training required 1539 parameters. Moreover, the single-channel images required 1.6% 

smaller data space than the three-channel images.  

The cGAN exhibits higher accuracy for the simpler temperature maps occurring 

during the stable stage. Figure 3.6 compares the temperature predicted by Models 2, 4 and 

FVM at all pixels of the selected temperature maps. Figures 3.6(a) and 3.6(b) correspond 

to Model 2 and Fig. 3.6(c) and (d) correspond to Model 4. The coefficient of determination 

R2 tends to be greater at a smaller z, i.e., near the channel entrance region, where the image 

features are simpler with higher contrast than at a greater z. When the temperature ranges 

are not consistent between the temperature maps, the model accuracy can be more fairly 

evaluated by R2 than the absolute scale error such as ΔT. R2 is greater at t = 342s where the 

image feature variation over time is less than the initial flow development stage at t = 12s. 

The time-averaged R2 for entire time steps at z = 50mm is 0.952 for Model 2 and 0.953 for 

Model 4. At several time steps as shown in Fig. 3.6, Model 4 exhibits lower R2 than Model 

2. According to the time-averaged R2, the PatchGAN classifier and the CNN classifier 

without strided convolutions present a similar accuracy. 
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Figure 3. 6. Comparison of Temperature Predicted by cGAN and FVM. (a) Model 2 

Prediction at t = 12s, (b) Model 2 Prediction at t = 342s, (c) Model 4 Prediction at t = 12s, 

and (d) Model 4 Prediction at t = 342s. 

 

Figure 3.7 shows the temperature maps predicted by Model 4 at unseen channel 

locations from z = 5mm to z = 55mm. Figures 3.7(a) and 7(b) present the model predictions 
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either during the early unstable stage at t = 12s and the stable stage at t = 342s. Even for 

the unseen channel locations, the trained cGAN successfully approximates the 

development of convection rolls at all time steps. Similar to the previous model test 

conducted for various t, the model predicts better for the temperature maps with a higher 

contrast. The Michelson image contrast in the ground truth, that is averaged for all selected 

channel locations, is 0.0114 at t = 12s and 0.0109 at t = 342s, indicating that the image 

contrast is poor when the temperature field has been mixed and homogenized. 

Consequently, Model 4 exhibited greater location-averaged R2 at t = 12s (R2 = 0.907) than 

at t = 342s (R2 = 0.862). Based on the dependence of the cGAN accuracy on the image 

contrast, I can expect that the cGAN will perform better if the color range of the 

temperature maps are adjusted for the different stages of the convection process.  

 
Figure 3. 7. Temperature Distributions at Unseen Cross-sections in a Heated Channel 

Predicted by Model 4 and FVM (Denoted as Ground Truth). 
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3.5. Conclusions 

 This study investigated a cGAN based surrogate model for rapidly approximating 

the temperature maps of a 3D transient mixed convection process. The trained cGAN was 

able to infer the temperature map at an arbitrary channel location and time when an input 

conditional vector provided the numerical information about the channel geometry, 

thermal and hydraulic boundary conditions, location and time. For the training of the cGAN, 

four architectures of the discriminator network were compared, i.e., PatchGAN classifier 

and CNN classifier with or without strided convolutions. All four cGAN models accurately 

predicted the temperature maps with a mean prediction error ΔT less than 0.1K. When 

comparing the model outputs qualitatively, Model 4 produced the image features, i.e., 

shapes of convection rolls, with the best clarity, indicating that the PatchGAN classifier 

without the strided convolutions is suitable for generating the complex temperature features 

of the unstable mixed convection processes. The cGAN accuracy depended on the image 

contrast, rate of spatiotemporal variation of the temperature, and the number of channels. 

When the Michelson image contrast was less than 0.011 and when the temperature features 

rapidly varied over a time step, the model tended to generate blurred features. Training the 

model with single-channel images helped to sharply produce the complex image features 

even for the temperature maps with low contrasts. This chapter demonstrated the potential 

of a deep learning approach as a rapid surrogate model for complex transport processes. 

The developed cGAN surrogate model may cover a wider range of flow conditions and 

channel geometries if additional training data is provided. The cGAN surrogate model will 

help the researchers who need to design and optimize the heat transfer systems without 

using the expensive and compute-intensive numerical simulations.  
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4. MACHINE LEARNING CLASSIFICATION OF THE MASS CONVECTION 

PROCESS 

4.1. Introduction 

 Understanding the laminar-turbulent transition process in flow channels or tubes is 

one of fundamental problems in fluid dynamics. In 1883, Reynolds conducted experiments 

to investigate the critical Reynolds number related to where and when eddies start to 

appear(Reynolds 1883). In practice, such information is important, because the flow 

properties such as pressure drop, mass transfer coefficient, or convective heat transfer 

coefficient radically change in different flow regimes. However, an accurate analysis of 

the laminar-turbulent transition process in custom-designed, geometrically complicated 

channels or tubes has been very difficult task due to the issues in device fabrication and 

data analysis. Flow visualization has been mostly limited to tubes or channels made of 

glass or highly transparent plastic. Due to the difficulty and cost, manufacturing of fluidic 

devices with complex geometries or small-scale features has been challenging. 

Furthermore, even when the internal flows are successfully visualized, extracting and 

analyzing the information from the flow videos have been time-consuming and inaccurate 

tasks. Mostly people analyze merely a few image frames out of the entire video. Such data 

extraction method usually results in significant loss of information embedded in the raw 

data, but has been inevitably adopted for the efficiency in data analysis. 

 Recently, machine learning (ML) has been employed in a wide range of areas such 

as medicine, health care, robotics, stock market where useful information (e.g., patterns) 

must be extracted out of large-sized data in a rapid fashion(Erickson et al. 2017; Bell 2015; 

Smart and Kaelbling 2002; Beam and Kohane 2018). Now the impact of ML has also been 
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growing over scientific research due to the reduced computation cost required to perform 

ML(Brenner, Eldredge, and Freund 2019; Brunton, Noack, and Koumoutsakos 2020). 

Particularly, fluid mechanics is one of the fields that start to rigorously adopt ML. In fluid 

mechanics, a challenge has been to effectively and accurately analyze massive amount of 

data acquired from experiments, field measurements, and numerical simulations. As many 

fluid systems exhibit complex dynamic phenomena, large amount of data is inevitably 

produced while investigating the systems.  

Several recent publications explore how ML is able to assist data analysis and to 

tackle challenging tasks in fluid mechanics field. Previous studies employed artificial 

neural network (ANN) (Kreitzer, Hanchak, and Byrd 2013; Rosa et al. 2010) or deep 

learning algorithm (Du et al. 2018) to identify the flow regime of two-phase flows. For 

modeling the hydraulic or thermal properties of two-phase flows, prior knowledge of the 

flow regime is essential, which, however, can mostly be determined by analyzing multiple 

parameters. By simultaneously processing more than 100 input parameters, ANN was able 

to achieve 99% accuracy for determining the regimes of two-phase R-134a flow(Kreitzer, 

Hanchak, and Byrd 2013). Artificial neural network was also useful when regressing 

nonlinear correlations involving multiple variables. In a previous work(Joss and Müller 

2019), ANN was used to obtain a correlation that predicted the normal boiling point of 

organic compounds from a dataset for more than 6000 compounds. The ANN model 

accomplished the coefficient of correlation R2 of 0.89 while R2 of normal linear regression 

was 0.84(Joss and Müller 2019). More recently, deep-learning algorithm performed a 

challenging task that was to extract the velocity and pressure fields directly from qualitative 

flow images(Raissi, Yazdani, and Karniadakis 2020). Navier-Stokes equations were 
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encoded into the neural network algorithm, which enabled to convert the qualitative 

information (i.e., fluid concentration) to quantitative information (i.e., velocity and 

pressure). While the previous works show that ML offers considerable promise to fluid 

mechanics, the field of ML for fluid mechanics is yet considered very immature and there 

remain many unresolved problems. So far, only a few ML algorithms has been tested for 

fluid mechanics problems such as neural network. Neural network is a powerful and 

versatile algorithm but requires relatively large-size dataset and sophisticated settings. In 

common experiments, simple ML algorithms such as random forests(Breiman 2001) and 

support vector machine, would be adequate, since they exhibit robust performance while 

necessitating tuning of a small number of hyperparameters and comparatively small-size 

dataset. 

 This chapter explores how ML improves the interpretation of the unsteady flow 

phenomena by automating the flow image analysis. Particularly, this study focuses on the 

laminar-turbulent transition process occurring in three-dimensionally (3D) printed tubes. 

The random forests (RF) algorithm is first trained by the flow images taken of the tubes, 

and predicts the stages of the laminar-turbulent transition process or the onset locations of 

flow regime transition. The hyperparameters of RF are tuned to enhance the prediction 

accuracy. 

 

4.2. Methodology Overview 

 Figure 4.1 briefly illustrates the overview of ML assisted flow analysis combined 

with 3D printing sample preparation. First, transparent flow devices of interest are 

prototyped by 3D printing. Then, ML dataset, flow images, are acquired through flow 
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visualization. To reduce the dimensionality and noise in datasets, image preprocessing is 

often necessary. When employing a supervised ML algorithm, the flow images need to be 

manually classified and labeled considering the objectives of flow analysis. Once datasets 

and data labels are properly formatted for an ML algorithm, those information is used for 

model training and testing. During training and testing hyperparameters are tuned such that 

ML model exhibits reasonable performance. Finally, the ML model is further validated 

through the test on a secondary, unbiased dataset. 

 

 
Figure 4. 1. Methodology Flowchart 

 

 Figure 4.2 shows an experimental setup that was used to acquire the flow images. 

Water at 25oC first was flown through a filter that removed particles greater than 5µm. A 

flowmeter with an accuracy of ± 4% controlled the volumetric flow rate from 0.063 liters 

per minute (lpm) to 0.505 lpm (equivalent range of Re = 230 - 1843). To visualize the flow, 

a syringe pump injected dye solution (blue food coloring 91%, isopropyl alcohol 9%) with 

the same velocity into the water flow. For the dye injection, a needle was inserted into the 

water line. The needle tip was bent horizontally and aligned to the water center line. Then, 
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a high-speed camera acquired flow images at a resolution of 1280 × 720 pixels with 240 

frames per second (fps).  

 

 

Figure 4. 2. Flow Visualization Setup. 

 

For the flow visualization, two semi-transparent tubes were fabricated by a 

commercially available digital light processing (DLP) 3D printer (Perfactory P4K, 

EnvisionTEC). Polymer 3D printing is capable of prototyping parts of high geometric 

complexity with smooth surfaces(Kwon et al. 2020; 2019). When combined with a 

transparent material, it is possible to print a variety of transparent fluidic devices with 

extremely low costs(Shallan et al. 2014; Romanov et al. 2018; Aycock, Hariharan, and 

Craven 2017). Figure 4.3(a) shows a 3D printed, circular straight tube with diameter, D, of 

6.5mm, wall thickness, t, of 0.5mm, and length, L of 140mm. Figure 4.3(b) shows another 

tube with sinusoidally wavy profile in circular cross-section. The wavy tube has minimum 

diameter, Dmin, of 3mm, average diameter, Davg, of 6.5mm, wavelength, λ, of 14mm, wave 

amplitude, A, of 1.75mm, t of 0.5mm, and L of 140mm. Such aspect ratio of the wavy tube 

has been widely used in literature, since it was empirically demonstrated to offer balanced 

heat transfer augmentation and pressure drop penalty(Wang and Vanka 1995; Tatsuo 

Nishimura, Ohori, and Kawamura 1984; Tatsuo Nishimura et al. 1985; Guzmán and Amon 
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1994; T. Nishimura et al. 2003). The 3D printer successfully replicated the CAD models 

while there were slight differences in size (< 0.7%). For each tube, consumed printing 

material was merely around $2 and printing time was about 45 hours under in-house setup, 

which were extremely cheap compared to other fabrication techniques. Figure 4.3(c) shows 

the moment when the 3D printer finalizes the printing of a wavy tube. 

 

Figure 4. 3. Images of (a) 3D printed Straight Tube, (b) Wavy Tube, and (c) DLP Printer. 

The Scale Bar Represents 5cm. 

 

4.3. Machine Learning 

4.3.1. Data Preparation 

 Preprocessing of data, i.e., dimensionality reduction and data cleaning, is an 

essential step to efficiently run ML(Brenner, Eldredge, and Freund 2019). Figure 4.4 shows 

the preprocessing steps. First, flow images were sampled at every 1/30 seconds from the 

videos originally taken at 240 fps. With the flow speed range used in this work, the fact 
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that the change of flow pattern was not significant per every 1/240 seconds was observed. 

In such situation, downsampling reduces the data amount, and leads to filtering out flow 

images with different flow patterns. Then, the images were cropped to cover only the tube 

regions [Fig. 4.4(a)]. This step not only eliminates the noise in data that would exist outside 

the tube region, but also reduces the data dimension. The cropped images contained 

reduced number of pixels (1280 × 122 pixels). The dimensionality of the data can be further 

reduced by converting the images to grayscale [Fig. 4.4(b)]. Original images had color 

composed of red, green, and blue values. In grayscale images, the vector information 

contained per pixel are reduced to a scalar value, i.e., grayscale magnitude between 0 and 

255. Last, the contrast between dye and surroundings was raised by whitening the pixels 

corresponding to the dye flow [Fig. 4.4(c)]. The fact that the pixels of dye region had much 

lower grayscale magnitudes than the surroundings was observed. Thus, the dye pixels were 

readily filtered, and their grayscale magnitudes were set to 255. After the preprocessing, 

an image matrix with a size of 1280 × 122 was transformed to a 1 × 156160 single-row 

array. Then, a ML feature matrix was created by stacking a series of image arrays. For 

example, if dataset was containing 210-image information, then the size of feature matrix 

became 210 × 156160. 
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Figure 4. 4. Image Pre-processing for Machine Learning Modeling. (a) Cropped, (b) Gray-

scaled, and (c) High-contrast Images of a Wavy Tube. 

 

4.3.2. Data Labeling 

The images were classified based on either the stages of the laminar-turbulent 

transition process or the locations where the transition started to occur. For the flow 

transition stage classification, the stages were split to five types based on the flow regimes 

presented in the tube: laminar regime only (label 0), laminar and transitional regimes (label 

1), laminar, transitional, and turbulent regimes (label 2), transitional and turbulent regimes 

(label 3), and turbulent regime only (label 4). Figure 4.5 shows the representative label 

images of the straight tube. In label-0 images, dye flows straightly without fluctuations. In 

label-1 images, flow is laminar near the entrance, and oscillatory flow intermittently 

appears from the middle region. In label-2 images, turbulent flow is shown near the tube 

exit, where dye spreads throughout the tube entirely. In label-3 images, the flow is unsteady 

and unstable from the tube entrance. Lastly, in label-4 images, the flow is completely 

turbulent anywhere in the tube. Similarly, Fig. 4.6 shows the label images of the wavy tube. 

(a) Cropped image

(b) Gray-scaled image

(c) High-contrast image

Dye
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In wavy tube, the flow transition occurred at lower Re (Re = 691) than the straight tube 

(Re = 1152). Such early flow transition is characteristic of the wavy tubes(T. Nishimura et 

al. 2003). Due to the strong flow instability, label-1 images were not found in the wavy 

tube.  

 

 

Figure 4. 5. Flow Regime Labels for Straight Channel. 
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Figure 4. 6. Flow Regime Labels for Wavy Channel. 

 

For the wavy tube, another type of classification was performed based on the 

transition onset location as shown in Fig. 4.7. The label number corresponds to the wave 

section where the flow transition starts to occur. For example, label 0 means that transition 

does not occur. Label n refers to the transition occurring from n-th section. All 

classification labels are summarized in Table 1.  
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Figure 4. 7. Labels for Transition Onset Location in a Wavy Channel. (a) Label 0: 

Transition Does Not Occur; (b) Label 1: Transition Occurs from 1st Section; (c) Label 3: 

Transition Occurs from 3rd Section; (d) Label 4: Transition Occurs from 4th Section. 
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Table 4. 1. Two Label Systems Used for Image Classification: (a) Flow Regime Labels 

(Top) and (b) Labels for Flow Transition Onset Location (Bottom). 

 (a) Flow regime labels 

0 Laminar flow only 

1 Laminar and transitional flow 

2 Laminar, transitional, and turbulent flow 

3 Transitional, and turbulent flow 

4 Turbulent flow only 

(b) Labels for flow transition onset location 

0 Laminar flow only 

1 Transition starts from 1st section 

3 Transition starts from 3rd section 

4 Transition starts from 4th section 

 

4.3.3. Classifiers 

 For the image classification, this work particularly employed a general-purpose 

classifier, random forests (RF) algorithm(Breiman 2001). This algorithm operates as an 

ensemble of several randomized decision trees, and makes decision by averaging the 

predictions made by the trees. Important hyperparmeters for RF include the depth of each 

tree (max_depth), seed number used by a random number generator (random_state), and 

the number of trees in the forest (n_estimator). Due to the simplicity of the algorithm and 

an open-source implementation in scikit-learn(Pedregosa et al. 2011), RF has been one of 

the popular ML algorithms.  

 To understand how the training dataset affects the performance of the RF algorithm, 

3 different datasets were employed to train the classifiers based on the flow transition stage 
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labels. Three datasets correspond to the flow images acquired from 1) the straight tube only, 

2) the wavy tube only, and 3) both the straight and wavy tubes. Table 2 lists the information 

of training and testing datasets. The RF classifier trained by each dataset was denoted as 

classifier 1, 2, or 3 (see Table 2). In addition, the RF classifier was also trained for the 

transition onset locations. This classifier was denoted as classifier 4.  

 

Table 4. 2. Training and Testing Datasets, and Accuracy Scores of RF Classifiers. 

  Classifier 1 Classifier 2 Classifier 3 Classifier 4 

 
Classification 

criterion 
Flow transition stage 

Transition 

onset 

location 

Tube type of datasets Straight tube Wavy tube 
Straight, 

wavy tubes 
Wavy tube 

I.
T

ra
in

in
g
 

Size of dataset  

(frames) 
630 630 1260 630 

Accuracy score 1 1 1 0.97 

II
.T

es
t Size of dataset  

(frames) 
210 210 420 210 

Accuracy score 1 0.95 0.97 0.96 

 

4.3.4. Model Training and Testing 

A protocol for model training and testing is as follows. The image dataset is 

randomly divided into training (75%) and testing (25%) sets. After training, the RF 

classifier is evaluated by the accuracy score(Pedregosa et al. 2011) that represents the ratio 

of correct predictions to the total number of predictions. A confusion matrix is also 

inspected to visualize the performance, and to understand where the errors originate from. 
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If the training result is not satisfactory, then hyperparameters are tuned to improve the 

accuracy score. Once the training result becomes well-fitting, the RF classifier is again 

assessed with the testing dataset. 

Following the aforementioned protocol, all classifiers were evaluated on training 

datasets, resulting in accuracy scores greater than 0.96 (Table 2). Among all the classifiers, 

classifier 4 was the most challenging to achieve high accuracy. Table 3 shows the confusion 

matrix of classifier 4 on the training dataset. The confusion matrix shows that the classifier 

4 mislabelled some of the label-3 and label-4 images. To improve the classification 

accuracy, two hyperparameters, i.e., max_depth and random_state, were tuned while fixing 

n_estimator as 11. Figure 4.8(a) shows how the accuracy score of classifier 4 on training 

dataset varies with hyperparameters. It was observed that max_depth  3 was required to 

accurately classify label-3 images. Although large max_depth is likely to give a high 

accuracy score, it must be also considered that increasing max_depth leads to extended 

computation time and increasing the risk of overfitting. After the tuning, the accuracy score 

of classifier 4 was enhanced to 0.97 on training dataset and 0.96 on testing dataset.  
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Figure 4. 8. Hyperparameter Tuning of Classifier 4 on (a) Training and (b) Validation 

Datasets. Accuracy Scores Are Measured as a Function of Max_depth and Random_state. 

 

Table 4. 3. Confusion Matrix of Classifier 4 on Training Dataset 

         Predicted label 

A
ct

u
a
l 

la
b

el
 

 0 1 3 4 

0 157 0 0 0 

1 0 158 0 0 

3 0 0 89 5 

4 0 0 15 206 

 

4.3.5. Validation 

 To understand the versatilities of the trained RF classifiers, models were validated 

using a second, unbiased datasets. Table 4 lists the validation datasets for all classifiers, 

where ST and WT represent straight tube and wavy tube, respectively. To acquire 

validation data, flow images were taken at different Reynolds numbers as compared to 

training data. Each validation dataset consisted of 210 flow images. Furthermore, wavy 

tube images were used to evaluate classifier 1, that is trained by straight tube only. 
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Similarly, the validation dataset for wavy tube classifier 2 contained straight tube images. 

As expected, the accuracy score of classifier 1 on transitional flows in the wavy tube was 

extremely low, 0, because the image patterns of transitional flows in straight and wavy 

tubes apparently differ. Due to the same reason, the accuracy score of classifier 2 on 

transitional flows in the straight tube was extremely low, 0.23. To overcome such 

underfitting issue, sufficient amount of data for various tube shapes must be added in 

training set. For instance, classifier 3, trained by both straight and wavy tube images, was 

highly accurate for all validation datasets. 

 

Table 4. 4. Validation Datasets and Accuracy Scores of RF Classifiers. 

  Classifier 1 Classifier 2 Classifier 3 Classifier 4 

D
a
ta

se
t 

Tube 

type 
ST WT ST WT ST WT WT 

Re 691 230 691 1152 230 1843 691 230 1843 230 691 1843 

Accuracy 

score 
1 1 0 0.23 1 0.98 0.99 1 1 1 0.97 1 

 

 

Validation may lead to a second round of hyperparameters tuning. The accuracy 

score of classifier 4 on validation set was sensitive to hyperparameters, which necessitated 

another round of hyperparameter tuning as shown in Fig. 4.8(b). The fact that reducing 

max_depth increased the accuracy score was obwerved, indicating that the trained model 

was overfitting. To avoid the overfitting problem and to achieve high accuracy from both 

training and validation sets, a best combination of max_depth and random_state was 
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searched from Fig. 4.8(a) and (b). Consequently, max_depth of 3 and random_state of 166 

were chosen, and improved the accuracy score on the validation set to 0.97. 

 

4.4. Discussion  

ML model is capable of analyzing the flow images faster and more accurately than 

humans. Such capability of ML classifier may unlock new opportunities in fluid research 

or flow system applications. For example, Fig. 4.9(a) and (b) show flow regime label 

variations over time in straight and wavy tubes that are automatically identified by RF 

classifiers. Classifier 1 predicted for the straight tube and classifier 2 predicted for the wavy 

tube. Each curve contains information of 210 flow images which were classified up to 2.4 

seconds only. These plots finely show how flow pattern dynamically varies along time at 

a certain flow condition. At Re =1382 in the straight tube [Fig. 4.9(a)], flow regime 

switches between laminar, transitional and turbulent, and eventually maintains transitional 

turbulent flow. At Re = 1382 in the wavy tube [Fig. 4.9(b)], flow regime frequently 

switches between transitional turbulent and turbulent, indicating that the flow is more 

unstable than the one in straight tube. Figure 4.9(c) shows how the label for transition onset 

location in the wavy tube changes with time. Classifier 4 revealed that the transition onset 

location oscillates between the 3rd and 4th sections at Re = 921. Such high-rate, time-

dependent analysis on flow images is a challenging and extremely time-consuming task, if 

this task is done manually. The automated and high-throughput flow analysis enables to 

accurately understand the transient flow physics in fluidic devices.  
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Figure 4. 9. Machine Learning Classification of Flow Images by RF Models. Flow Regime 

Variation with Time in (a) Straight Tube (Classifier 1), and (b) Wavy Tube (Classifier 2), 

(c) Transition Onset Location Variation with Time in Wavy Tube (Classifier 4). 

 

Despite the great potential of the RF algorithm, ML assisted flow analysis can 

become further autonomous or will be able to extract new perspective information if 

advanced ML techniques are employed. For example, unsupervised deep learning 

algorithms such as neural network, generative adversarial network, are able to 
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autonomously extract features and identify unknown complex patterns, although they 

require larger amount of dataset and greater effort in structure settings than other simple 

algorithms. This effort will make ML assisted flow analysis smarter and more practical by 

reducing the required efforts in feature engineering and data labeling process. 

 

4.5. Conclusions 

 This work explored a high-throughput and accurate flow analysis method enabled 

by ML with 3D printing technology. Laminar-turbulent transition process was analyzed in 

a semi-transparent 3D wavy tube and a straight tube, which were prepared by DLP 3D 

printing with low cost. Flow images were recorded by dye injection technique, and used 

for ML datasets. Simple random forests models classified the images based on the flow 

regime and transition onset location. With both straight and wavy tubes flow images, the 

trained RF classifier exhibited an accuracy of > 0.97 on training datasets and > 0.95 on 

testing datasets. However, when completely different tube designs, e.g., wavy tube images 

for the classifier trained only by straight tube images or vice versa, were provided, the RF 

model showed low accuracy < 0.23, indicating the importance of sufficient and appropriate 

dataset. When classifying the images based on transition onset location, efforts for tuning 

hyperparameters, i.e, max_depth and random_state, were crucial to avoid underfitting or 

overfitting issues. Finally, the trained RF models demonstrated high-throughput flow 

analysis by automatically classifying flow images within ~0.01 second per an image. This 

study demonstrates the potential of ML approach combined with 3D printing that enables 

to gather and process a large amount of fluid mechanics data. 
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5. CONCLUSION AND FUTURE WORK 

5.1. Conclusions 

This work explored the potential of machine learning in heat and mass convection 

phenomena. The machine learning model automatically inferred the thermal properties 

(e.g., Nusselt number, friction factor, and temperature distributions) without iterative 

numerical calculation under various boundary conditions and unseen geometries. 

Moreover, the fluidic devices were printed by the 3D printer for experiments, then the fluid 

images attained from the experiments automatically classified by flow transition stage and 

transition onset location.   

First, this research developed the first deep learning model for forced convection 

heat transfer problems based on conditional generative adversarial networks (cGAN). To 

train cGAN networks, a set of graphical inputs containing the geometric and flow 

conditions and graphical outputs representing the convection properties were prepared. A 

trained cGAN model successfully inferred the distribution of temperature, Nu, and f with 

various widths of the channel and over a wide range of Re (Re = 100 to 27750) at the inlet. 

The cGAN was optimized through hyperparameter tuning, e.g., the data size, training 

epoch, and λ to attain high accuracy. It achieved an accuracy ≤ 0.97 for the Nu estimation 

and a maximum absolute error (MAX) ≤ 3.3K for the temperature approximation. A simple 

data augmentation process also was added in the training process to apply this trained 

cGAN to unseen various channel geometries, e.g., widened, narrowed, and rotated. This 

process resulted in improving the model accuracy by 70%. 
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For identify the cGAN architecture that works for transient convection, this study 

investigated a cGAN based surrogate model for rapidly approximating the temperature 

maps of a 3D transient mixed convection process. The trained cGAN was able to infer the 

temperature map at an arbitrary channel location and time when an input conditional vector 

provided the numerical information about the channel geometry, thermal and hydraulic 

boundary conditions, location and time. For the training of the cGAN, four architectures of 

the discriminator network were compared, i.e., PatchGAN classifier and CNN classifier 

with or without strided convolutions. All four cGAN models accurately predicted the 

temperature maps with a mean prediction error ΔT less than 0.1K. When comparing the 

model outputs qualitatively, Model 4 produced the image features, i.e., shapes of 

convection rolls, with the best clarity, indicating that the PatchGAN classifier without the 

strided convolutions is suitable for generating the complex temperature features of the 

unstable mixed convection processes. The cGAN accuracy depended on the image contrast, 

rate of spatiotemporal variation of the temperature, and the number of channels. When the 

Michelson image contrast was less than 0.011 and when the temperature features rapidly 

varied over a time step, the model tended to generate blurred features. Training the model 

with single-channel images helped to sharply produce the complex image features even for 

the temperature maps with low contrasts. This work demonstrated the potential of a deep 

learning approach as a rapid surrogate model for complex transport processes. 

Lastly, machine learning was hired to analyze and predict flow characteristics in 

the 3D printed tube experimentally. The flow regimes and locations where the transition 

started in the printed fluidic devices were analyzed and predicted by the machine learning, 

random forests models. The 3D printed tubes with great dimensional accuracy were 
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prepared for flow visualization, and flow images were captured by a high-speed camera. 

Three kinds of classifiers were hired according to their purpose, e.g., classifying flow 

regimes in a straight tube, a wavy tube, and classifying the location of the onset transition 

in the wavy tube. The maximum accuracy score increased up to 0.97 through 

hyperparameter tuning. 

 

5.2. Future Work 

 The following work will discuss how combining machine learning and 

optimization algorithms can result in a new design methodology. Optimization algorithms 

enabled reliable predictions in the prescribed physical conditions. Machine learning proved 

to have a strong inference ability in predicting the output with the aid of multiple stacked 

convolutional neural networks without iterative numerical computations. Thus, a new 

design methodology will combine the advantages of optimization algorithms and machine 

learning to suggest time-efficient and automated design algorithms. It can also be applied 

to various design problems to find optimal designs for things such as heat exchangers, 

electronics in satellites, or spacecraft, which require reliable thermal management to handle 

a large amount of heat while keeping tight control of the temperature under limited space. 

In the optimization algorithm process with machine learning, it is possible to generate 

designs close to optimum designs using machine learning rather than the randomly 

generated technique used in the conventional optimization algorithm.  
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The new design methodology, combined optimization algorithms, and machine learning 

will lead to the generation of nearly optimal designs in a timely and automated manner, as 

shown in Fig. 5.1. 

 

Figure 5. 1. Machine Learning Based Optimization Algorithm 

 

 Next, machine learning could quickly provide purpose-built nanofluids. 

Nanofluid is a fluid dispersed by adding nanoparticles with great thermal conductivity to 

the fluid. It can provide greater thermal conductivity than pure fluid. However, since the 

thermal conductivity of nanofluids does not always proportionally increase with the 

concentration of nanoparticles, the concentration of nanoparticles with the greatest thermal 

conductivity is important. Moreover, this concentration varies depending on the material 

and shape of the nanoparticles, and it can only be found through repeated experiments. 

Therefore, if we use machine learning, we will be able to quickly find the shape and 

concentration of nanoparticles with the greatest thermal conductivity.  

 Lastly, machine learning will make it possible to infer the boundary conditions 

inversely from the temperature distributions. If the temperature distributions are 

continuously monitored in precision production processes such as those with 

semiconductors, pharmaceuticals, chemicals, and food production, when an abnormal 
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temperature occurs, it can help to quickly find and repair the part where temperature control 

has failed. 
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