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ABSTRACT

As technological advancements in silicon, sensors, and actuation continue, the

development of robotic swarms is shifting from the domain of science fiction to reality.

Many swarm applications, such as environmental monitoring, precision agriculture,

disaster response, and lunar prospecting, will require controlling numerous robots

with limited capabilities and information to redistribute among multiple states, such

as spatial locations or tasks. A scalable control approach is to program the robots

with stochastic control policies such that the robot population in each state evolves

according to a mean-field model, which is independent of the number and identities

of the robots. Using this model, the control policies can be designed to stabilize the

swarm to the target distribution. To avoid the need to reprogram the robots for

different target distributions, the robot control policies can be defined to depend only

on the presence of a “leader” agent, whose control policy is designed to guide the

swarm to a particular distribution.

This dissertation presents a novel deep reinforcement learning (deep RL) approach

to designing control policies that redistribute a swarm as quickly as possible over a

strongly connected graph, according to a mean-field model in the form of the discrete-

time Kolmogorov forward equation. In the leader-based strategies, the leader deter-

mines its next action based on its observations of robot populations and shepherds

the swarm over the graph by probabilistically repelling nearby robots. The scalabil-

ity of this approach with the swarm size is demonstrated with leader control policies

that are designed using two tabular Temporal-Difference learning algorithms, trained

on a discretization of the swarm distribution. To improve the scalability of the ap-

proach with robot population and graph size, control policies for both leader-based

and leaderless strategies are designed using an actor-critic deep RL method that is

trained on the swarm distribution predicted by the mean-field model. In the leader-
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less strategy, the robots’ control policies depend only on their local measurements of

nearby robot populations. The control approaches are validated for different graph

and swarm sizes in numerical simulations, 3D robot simulations, and experiments on

a multi-robot testbed.
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Chapter 1

INTRODUCTION

As technology for robotic sensing, actuation, and fabrication advances and the

price of low-power computing devices continues to decrease, the robotics community

recognizes the increasing viability of robotic swarms for a multitude of applications.

The emphasis on scalability and hardware redundancy in robotic swarms, however,

makes it challenging to develop robust and stable management and control tools for

these systems. In this dissertation, we develop approaches to controlling a robotic

swarm through the influence of an entity designated as a leader, without requir-

ing explicit communication with the robots or direct control of individual robots.

This leader-follower control approach can be used to redistribute a swarm of low-

cost robots with limited capabilities and information using a single robot with so-

phisticated sensing, localization, computation, and planning capabilities, in scenarios

where the leader lacks a model of the swarm dynamics. Such a control strategy is

useful for many applications in swarm robotics, including exploration, environmen-

tal monitoring, inspection tasks, disaster response, and targeted drug delivery at the

micro-nanoscale.

Specifically, we look at Deep Reinforcement Learning (deep RL) algorithms trained

on a mean-field model approach for finding an optimal leader control policy. This

methodology is then expanded to a leaderless approach where robots utilize a deep

RL control policy pre-trained on a modification of the mean-field model. We address

this problem in multiple scenarios, each of which entails a different mechanism of

control depending on the type of robots deployed, the type of environment, and the

nature of the interaction between the leader and the swarm. Here, we summarize
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these control approaches and discuss their potential applications and related work

from the literature.

1.1 Contributions

The contributions of this dissertation are as follows:

1. A methodology for designing leader-based or leaderless control strategies that

quickly redistribute a swarm of robots among a set of states, e.g. tasks or

spatial locations, using deep reinforcement learning algorithms that are trained

on mean-field models of the swarm population dynamics, rather than on models

or observations of the behaviors of individual robots.

2. Insight into the effects of the neural network configuration, optimal hidden

network depth, and number of network parameters in these deep reinforcement

learning algorithms on the performance of the resulting leader-based control

strategies for swarm redistribution.

3. Validation of the control approaches for different numbers of robots and states

using 2D point-robot simulations, 3D robot simulations, and physical robot

experiments.

1.2 Literature Review

There has been a considerable amount of work on leader-follower multi-agent con-

trol schemes in which the leader has an attractive effect on the followers (Ji et al.,

2008; Mesbahi and Egerstedt, 2010). Several recent works have presented models for

herding robotic swarms using leaders that have a repulsive effect on the swarm (Pier-

son and Schwager, 2017; Elamvazhuthi et al., 2016; Paranjape et al., 2018). Using

such models, analytical controllers for herding a swarm have been constructed for
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the case when there is a single leader (Elamvazhuthi et al., 2016; Paranjape et al.,

2018) and multiple leaders (Pierson and Schwager, 2017). The controllers designed

in these works are not necessarily optimal for a given performance metric. To design

optimal control policies for a herding model, the authors in (Go et al., 2016) consider

a reinforcement learning (RL) approach. While existing herding models are suitable

for the objective of confining a swarm to a small region in space, many applications

require a swarm to cover an area according to some target probability density. If the

robots do not have spatial localization capabilities, then the controllers developed in

(Ji et al., 2008; Mesbahi and Egerstedt, 2010; Pierson and Schwager, 2017; Elam-

vazhuthi et al., 2016; Paranjape et al., 2018; Go et al., 2016) cannot be applied for

such coverage problems. Moreover, these models are not suitable for herding large

swarms using RL-based control approaches, since such approaches would not scale

well with the number of robots. This loss of scalability is due to the fact that the

models describe individual agents, which may not be necessary since robot identities

are not important for many swarm applications.

We consider a mean-field or macroscopic model that describes the swarm of fol-

lower agents as a probability distribution over a graph, which represents the config-

uration space of each agent. Previous work has utilized similar mean-field models

to design a set of control policies that is implemented on each robot in a swarm in

order to drive the entire swarm to a target distribution, e.g. for problems in spatial

coverage and task allocation (Elamvazhuthi and Berman, 2019). In this prior work,

all the robots must be reprogrammed with a new set of control policies if the target

distribution is changed. In contrast, our approach can achieve new target swarm dis-

tributions via redesign of the control policy of a single leader agent, while the control

policies of the swarm agents remain fixed. The follower agents switch stochastically

out of their current location on the graph whenever the leader is at their location; in
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this way, the leader has a “repulsive” effect on the followers. The transition rates out

of each location are common to all the followers, and are therefore independent of the

agents’ identities. Using the mean-field model, herding objectives for the swarm are

framed in terms of the distribution of the followers over the graph. The objective is

to compute leader control policies that are functions of the agent distribution, rather

than the individual agents’ states, which makes the control policies scalable with the

number of agents.

We apply RL-based approaches to the mean-field model to construct leader control

policies that minimize the time required for the swarm of follower agents to converge

to a user-defined target distribution. The RL-based control policies are not hindered

by curse-of-dimensionality issues that arise in classical optimal control approaches.

Additionally, RL-based approaches can more easily accommodate the stochastic na-

ture of the follower agent transitions on the graph. There is prior work on RL-based

control approaches for mean-field models of swarms in which each agent can localize

itself in space and a state-dependent control policy can be assigned to each agent

directly (Šošić et al., 2018; Hüttenrauch et al., 2019; Yang et al., 2018). Other work

by Nguyen et al. apply hierarchical deep RL to simplify the shepherding task by

decomposing interactions between an aerial UAV and a small group of ground robot

in order to simplify learning (Nguyen et al., 2019). Later work by the group Nguyen

et al. (2020) extended this approach to maintaining swarm formations between the

UAV and ground robots while minimizing UAV traversal of the space. Similarly, Zhi

et al. enabled a leader to herd three agents through obstacles to reach a goal point

using a deep RL approach (Zhi and Lien, 2020). However, to our knowledge, there

are no applications of deep RL to mean-field models for herding a swarm using a

leader agent, aside from our work Zahi M Kakish et al. (2020).
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Chapter 2

LEADER-BASED CONTROL OF A ROBOTIC SWARM USING MEAN-FIELD

MODELS: DESCRIPTION AND IMPLEMENTATION

2.1 Summary

In this chapter, we introduce a model and a control approach for herding a swarm

of “follower” agents to a target distribution among a set of states using a single

“leader” agent. The follower agents evolve on a finite state space that is represented

by a graph and transition between states according to a continuous-time Markov

chain, whose transition rates are determined by the location of the leader agent. The

control problem is to define a sequence of states for the leader agent that steers the

probability density of the forward equation of the Markov chain. We demonstrate

this control approach through numerical simulations with varied numbers of follower

agents that evolve on graphs of different sizes, through a 3D multi-robot simulation

in which a quadrotor is used to control the spatial distribution of eight ground robots

over four regions, and through a physical experiment in which a swarm of ten robots

is herded by a virtual leader over four regions.

2.2 Leader-Based Control Strategy Overview and Implementation

This section contains results from Elamvazhuthi et al. (2020).

Overview In this formulation, we use a single “leader” agent to herd a swarm of

“follower” agents to a target distribution among a set of states. This control approach

aims to drive the swarm of follower agents to the target distribution based on a

5



repulsive effect of the leader on the followers. Two leader controllers are developed:

an open-loop controller, ue(t), and a closed-loop controller defined as ue(x(t)), where

x(t) is the vector of probability distributions of the random variable Xk(t) at time t.

When a leader repulses the agents, the location of each follower agent evolves on the

state space V according to the conditional probabilities

P(Xi(t+ h) = T (e)|Xi(t) = S(e)) = ue(t)h+ o(h), (2.1)

which is a continuous-time version of (3.1). The author worked on two experimental

setups to validate the open-loop and closed-loop controllers, which are elaborated on

in Elamvazhuthi et al. (2020). The first setup is an experimental implementation of

the open-loop controller on the Robotarium (Wilson et al., 2020) with 10 robots and

a virtual leader whose motion and state are projected on the testbed surface. The

second setup is a Gazebo (Koenig and Howard, 2004) simulation with eight Pheeno

robots (Wilson et al., 2016) and a generic quadrotor in a 2.4 m× 2.4 m testbed and

was used to simulate the closed-loop controller.

Physical Robot Experiments A multi-robot experiment was implemented using

the Robotarium (Wilson et al., 2020) to validate the closed-loop controller. The Rob-

otarium is a swarm robotics testbed that users can remotely access to validate their

controllers and algorithms on physical hardware. The experiment was conducted in

a centralized manner, in that the robot population in each state was measured from

images taken from multiple VICON motion capture cameras, and the robots initi-

ated and completed their transitions between states when commanded by a central

computer.

The environment was modeled as an undirected 4-vertex grid graph G, and N = 10

robots were used as follower agents. The robots move on the testbed surface shown in

Figure 2.1, which is divided into four regions of equal size, each of which corresponds to
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Figure 2.1: Initial setup of a physical experiment on the Robotarium swarm robotics
testbed, with the graph G superimposed

a vertex of the graph G (superimposed on the testbed). A virtual leader agent, shown

as the blue circle in Figure 2.1, and the boundaries of the four regions were projected

onto the testbed using an overhead projector. The initial and target follower agent

distributions were defined asNx0 = [4 1 1 4]T andNxeq = [1 4 4 1]T , respectively. The

leader moves along the path W∞ = ((1, 2), (2, 4), (4, 3), (3, 1), (1, 2), ...). The leader

remains stationary in its current state, repelling followers in that state, until the

follower population in the leader’s state is less than or equal to the target population;

then, the leader transitions to the next state in its path.

During the experiment with the closed-loop controller, the leader is red if it is

stationary at its current state, and blue if it is moving to the next state in its path.

The current time step k and leader action (either Stay if it is stationary, or the

direction of its motion) are displayed at the top of the testbed. The leader was able

to herd the robots into the target distribution in 20 iterations, as shown in Figure

2.2, which plots the distribution of follower robots in each state over time.

Gazebo Simulation Results We also validated the closed-loop controller in a 3D

physics simulation with realistic leader and follower robot dynamics. We used the
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Figure 2.2: Follower distribution over time in the Robotarium experiment with the
closed-loop controller.

Robot Operating System (ROS) to program the low-level and high-level control of

the simulated robots in a completely decentralized manner, meaning that all robots

take sensor measurements and decide on their next action autonomously, without the

input of a supervisory agent or global observer. Additionally, each robot performs its

computation and control independently of one another, with no inter-robot communi-

cation. We used Gazebo (Koenig and Howard, 2004) for 3D simulation and rendering.

The graph G and leader path W∞ were the same as in the numerical simulations.

In the simulation, a quadrotor acts as the leader, and N = 8 Pheeno robots

(Wilson et al., 2016) act as the followers. Pheeno is a customizable, low-cost mobile

robot developed by our laboratory. Each simulated Pheeno is equipped with an

upward-facing sonar sensor and a ground-facing IR sensor. These sensors model the

functionality of the HC-SR04 Ultrasonic Sensor and the QRE1113 Digital IR Sensor,

respectively.

The robots move within a 2.4 m × 2.4 m bounded arena, shown in Figure 2.3,
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that is divided into four black or white regions of equal size. Each region corresponds

to a vertex of the graph G. The regions contain different colored blocks that are used

by the quadrotor to assist with its localization and to identify the region (state) over

which it is flying: state 1 is green, state 2 is blue, state 3 is red, and state 4 is orange.

The visual servo approach in Chaumette and Hutchinson (2006) is used to localize the

quadrotor with respect to the colored blocks in this way. The quadrotor determines

the number of followers in its current state by counting the yellow circles on top of

the Pheenos below. The eight pillars surrounding the arena are labeled with ArUco

fiducial markers Romero-Ramirez et al. (2018), which the Pheenos use to determine

the heading to the next state in their transition. The two pillars that are adjacent

to each region (state) have the same marker. Each Pheeno uses its ground-facing IR

sensor to recognize when it has crossed into a new region by sensing the change in

reflection that occurs when it travels from a white surface to a black surface, or vice

versa. Each Pheeno also uses its upward-facing sonar sensor to detect the quadrotor

when it is hovering at a low altitude above the Pheeno.

The closed-loop controller is implemented in the simulation as follows. The

quadrotor moves according to a series of equations in Elamvazhuthi et al. (2020)

that are a function of the current density of robots in the leader’s current state. If

this number is less than or equal to the target number, then the quadrotor moves to

the next state in the path. If the number exceeds the target number, then the quadro-

tor descends, which triggers the sonar sensors on the Pheenos in that state. These

Pheenos then transition to adjacent states, following (2.1). The quadrotor repeats

these actions until the number of agents in each state equals the target number.

We performed two simulations of the closed-loop controller, each with different

initial and target distributions. In Scenario 1, Nx0 = [4 4 0 0]T and Nxeq = [2 2 2 2]T .

In Scenario 2, Nx0 = [2 2 2 2]T and Nxeq = [1 1 3 3]T . Figures 2.4a and 2.4b plot
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Figure 2.3: The Gazebo simulation testbed. Each pair of pylons located near a corner
color block contains a fiducial marker with the state ID. These serve as guideposts for
the Pheeno to locate their next transition state. The checker pattern on the testbed
floor is used by a downward facing IR sensor located on each Pheeno detects the
change from one state to another. The quadrotor uses the four colored blocks to
localize itself within a state.

the distribution of followers over time for both scenarios. The figures show that the

closed-loop controller successfully drove the followers to the target distribution in

each scenario.
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Figure 2.4: Follower distribution over time in the 3D simulation with the closed-loop
controller. (a) Scenario 1; (b) Scenario 2.
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Chapter 3

LEADER-BASED STRATEGIES FOR SWARM CONTROL DESIGNED USING

TABULAR REINFORCEMENT LEARNING (RL) ALGORITHMS

3.1 Summary

In this chapter, we present a reinforcement learning approach to designing a con-

trol policy for a “leader” agent that herds a swarm of “follower” agents, via repulsive

interactions, as quickly as possible to a target probability distribution over a strongly

connected graph. The leader control policy is a function of the swarm distribution,

which evolves over time according to a mean-field model in the form of an ordinary

difference equation. The dependence of the policy on agent populations at each graph

vertex, rather than on individual agent activity, simplifies the observations required

by the leader and enables the control strategy to scale with the number of agents. Two

Temporal-Difference learning algorithms, SARSA and Q-Learning, are used to gener-

ate the leader control policy based on the follower agent distribution and the leader’s

location on the graph. Both learning algorithms use a tabular approach to storing

the trained state-action values Q. Therefore, agent population fractions are trans-

formed to discretized representations of the robot populations for indexing within a

multi-dimensional matrix. A simulation environment corresponding to a grid graph

with 4 vertices was used to train and validate the control policies for follower agent

populations ranging from 10 to 1000. Finally, the control policies trained on 1000 and

100 simulated agents were used to successfully redistribute a physical swarm of 10

small robots to a target distribution among 4 spatial regions. This provides evidence

of the existence of a “mean-field” effect, whereby the time evolution of populations of
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agents whose states evolve according to a discrete-time Markov chain becomes more

deterministic as the number of agents in the swarm increases.

3.2 Problem Statement

We first define some notation from graph theory and matrix analysis that we use

to formally state our problem. We denote by G = (V , E) a directed graph with a set of

M vertices, V = {1, ...,M}, and a set of NE edges, E ⊂ V ×V , where e = (i, j) ∈ E if

there is an edge from vertex i ∈ V to vertex j ∈ V . We define a source map σ : E → V

and a target map τ : E → V for which σ(e) = i and τ(e) = j whenever e = (i, j) ∈ E .

Given a vector X ∈ RM , Xi refers to the ith coordinate value of X. For a matrix

A ∈ RM×N , Aij refers to the element in the ith row and jth column of A.

We consider a finite swarm of N follower agents and a single leader agent. The

locations of the leader and followers evolve on a graph, G = (V , E), where V =

{1, ...,M} is a finite set of vertices and E = {(i, j) | i, j ∈ V} is a set of edges that

define the pairs of vertices between which agents can transition. The vertices in V

represent a set of spatial locations obtained by partitioning the agents’ environment.

We will assume that the graph G = (V , E) is strongly connected and that there is a

self-edge (i, i) ∈ E at every vertex i ∈ V . We assume that the leader agent can count

the number of follower agents at each vertex in the graph. The follower agents at a

location v only decide to move to an adjacent location if the leader agent is currently

at location v and is in a particular behavioral state. In other words, the presence

of the leader repels the followers at the leader’s location. The leader agent does not

have a model of the follower agents’ behavior.

The leader agent performs a sequence of transitions from one location (vertex)

to another. The leader’s location at time k ∈ Z+ is denoted by `1(k) ∈ V . In

addition to the spatial state `1(k), the leader has a behavioral state at each time k,
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defined as `2(k) ∈ {0, 1}. The location of each follower agent i ∈ {1, ..., N} is defined

by a discrete-time Markov chain (DTMC) Xi(k) that evolves on the state space V

according to the conditional probabilities

P(Xi(k + 1) = τ(e) | Xi(k) = σ(e)) = ue(k) (3.1)

For each v ∈ V and each e ∈ E such that σ(e) = v 6= τ(e), ue(k) is given by

ue(k) =


βe if `1(k) = σ(e) and `2(k) = 1,

0 if `1(k) = σ(e) and `2(k) = 0,

0 if `1(k) 6= σ(e),

(3.2)

where βe are positive parameters such that
∑

e∈E
v=σ(e)6=τ(e)

βe < 1. Additionally, for each

v ∈ V , u(v,v)(k) is given by

u(v,v)(k) = 1 −
∑
e∈E

v=σ(e)6=τ(e)

ue(k) (3.3)

For each vertex v ∈ V , we define a set of possible actions Av taken by the leader

when it is located at v:

Av =
⋃
e∈E

v=σ(e)

{e} × {0, 1} (3.4)

The leader transitions between states in V ×{0, 1} according to the conditional prob-

abilities

P(`1(k + 1) = τ(e), `2(k + 1) = d | `1(k) = σ(e)) = 1 (3.5)

if p(k), the action taken by the leader at time k when it is at vertex v, is given by

p(k) = (e, d) ∈ Av.

The fraction, or empirical distribution, of follower agents that are at location

v ∈ V at time k is given by 1
N

∑N
i=1 χv(Xi(k)), where χv(w) = 1 if w = v and 0

otherwise. Our goal is to learn a policy that navigates the leader between vertices
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using the actions p(k) such that the follower agents are redistributed (“herded”) from

their initial empirical distribution 1
N

∑N
i=1 χv(Xi(0)) among the vertices to a desired

empirical distribution 1
N

∑N
i=1 χv(Xi(T )) at some final time T , where T is as small

as possible. Since the identities of the follower agents are not important, we aim

to construct a control policy for the leader that is a function of the current empir-

ical distribution 1
N

∑N
i=1 χv(Xi(k)), rather than the individual agent states Xi(k).

However, 1
N

∑N
i=1 χv(Xi(k)) is not a state variable of the DTMC. In order to treat

1
N

∑N
i=1 χv(Xi(k)) as the state, we consider the mean-field limit of this quantity as

N →∞. Let P(V) = {Y ∈ RM
≥0;

∑M
v=1 Yv = 1} be the simplex of probability densi-

ties on V . When N →∞, the empirical distribution 1
N

∑N
i=1 χv(Xi(k)) converges to a

deterministic quantity Ŝ(k) ∈ P(V), which evolves according to the following mean-

field model, a system of difference equations that define the discrete-time Kolmogorov

Forward Equation:

Ŝ(k + 1) =
∑
e∈E

ue(k)BeŜ(k), Ŝ(0) = Ŝ0 ∈ P(V), (3.6)

where Be are matrices whose entries are given by

Bij
e =


1 if i = τ(e), j = σ(e),

0 otherwise.

The random variable Xi(k) is related to the solution of the difference equation (3.6)

by the relation P(Xi(k) = v) = Ŝv(k).

We formulate an optimization problem that minimizes the number of time steps

k required for the follower agents to converge to Ŝtarget, the target distribution. In

this optimization problem, the reward function is defined as

R(k) = −1 · E||Ŝ(k)− Ŝtarget||2. (3.7)

Problem 3.2.1. Given a target follower agent distribution Ŝtarget, devise a leader

control policy π : P(V)×V → A that drives the follower agent distribution to Ŝ(T ) =
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Ŝtarget, where the final time T is as small as possible, by minimizing the total reward∑T
k=1R(k). The leader action at time k when it is at vertex v ∈ V is defined as

p(k) = π(Ŝ(k), `1(k)) ∈ Av for all k ∈ {1, ..., T}, where A = ∪v∈VAv.

3.2.1 Design of Leader Control Policies using Temporal-Difference Methods

Two Temporal-Difference (TD) learning methods (Sutton and Barto, 2018), SARSA

and Q-Learning, were adapted to generate an optimal leader control policy. These

methods use of bootstrapping provides the flexibility needed to accommodate the

stochastic nature of the follower agents’ transitions between vertices. Additionally,

TD methods are model-free approaches, which are suitable for our control objective

since the leader does not have a model of the followers’ behavior. We compare the

two methods to identify their advantages and disadvantages when applied to our

swarm herding problem. Our approach is based on the mean-field model (3.6) in the

sense that the leader learns a control policy using its observations of the population

fractions of followers at all vertices in the graph.

Sutton and Barto (2018) provide a formulation of the two TD algorithms that

we utilize. Let S denote the state of the environment, defined later in this section;

A denote the action set of the leader, defined as the set Av in Equation (3.4); and

Q(S,A) denote the state-action value function. We define α ∈ [0, 1] and γ ∈ [0, 1]

as the learning rate and the discount factor, respectively. The policy used by the

leader is determined by a state-action pair (S,A). R denotes the reward for the

implemented policy’s transition from the current to the next state-action pair and

is defined in Equation (3.7). In the SARSA algorithm, an on-policy method, the

state-action value function is defined as:

Q(S,A)← Q(S,A) + α[R + γQ(S ′, A′)−Q(S,A)] (3.8)
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where the update is dependent on the current state-action pair (S,A) and the next

state-action pair (S ′, A′) determined by enacting the policy. In the Q-Learning algo-

rithm, an off-policy method, the state-action value function is:

Q(S,A)← Q(S,A) + α[R + γmax
a
Q(S ′, a)−Q(S,A)] (3.9)

Whereas the SARSA algorithm update (3.8) requires knowing the next action A′

taken by the policy, the Q-learning update (3.9) does not require this information.

Both algorithms use a discretization of the observed state S and represent the

state-action value function Q in tabular form as a multi-dimensional matrix, indexed

by the leader actions and states. The state S is defined as a vector that contains a

discretized form of the population fraction of follower agents at each location v ∈ V

and the location `1(k) ∈ V of the leader agent. The leader’s spatial state `1(k) must

be taken into account because the leader’s possible actions depend on its current

location on the graph. Since the population fractions of follower agents are continuous

values, we convert them into discrete integer quantities serving as a discrete function

approximation of the continuous fraction populations. Instead of defining Fv as the

integer count of followers at location v, which could be very large, we reduce the

dimensionality of the state space by discretizing the follower population fractions

into D intervals and scaling them up to integers between 1 and D:

Fv = round
(
D
N

∑N
i=1 χv(Xi(0))

)
,

where Fv ∈ [1, . . . , D], v ∈ V .
(3.10)

For example, suppose D = 10. Then a follower population fraction of 0.24 at location

v would have a corresponding state value Sv = 2. Using a larger value of D provides

a finer classification of agent populations, but at the cost of increasing the size of the

state S. Given these definitions, the state vector S is defined as:

Senv = [F1, . . . , FM , `1] (3.11)
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The state vector Senv contains many states that are inapplicable to the learning

process. For example, the state vector for a 2 × 2 grid graph with D = 10 has

10 × 10 × 10 × 10 × 4 possible variations, but only 10 × 10 × 10 × 4 are applicable

since they satisfy the constraint that the follower population fractions at all vertices

must sum up to 1 (note that the sum
∑

v Fv may differ slightly from 1 due to the

rounding used in Equation (3.10).) The new state Senv is used as the state S in the

state-action value functions (3.8) and (3.9).

The leader’s control policy for both functions (3.8) and (3.9) is the following ε-

greedy policy, where X ∈ [0, 1] is a uniform random variable and ε is a threshold

parameter that determines the degree of state exploration during training:

π(Senv) = arg max
A

Q(Senv, A) if X > ε (3.12)

3.3 Simulation Results

An OpenAI Gym environment (Brockman et al., 2016) was created in order to

design, simulate, and visualize our leader-based herding control policies (Zahi M

Kakish, 2019). This open source virtual environment can be easily modified to

simulate swarm controllers for different numbers of agents and graph vertices, making

it a suitable environment for training leader control policies using our model-free

approaches. The simulated controllers can then be implemented in physical robot

experiments. Figure 3.1 shows the simulated environment for a scenario with 100

follower agents, represented by the blue × symbols, that are herded by a leader,

shown as a red circle, over a 2 × 2 grid. The OpenAI environment does not store

the individual positions of each follower agent within a grid cell; instead, each cell is

associated with an agent count. The renderer disperses agents randomly within a cell

based on the cell’s current agent count. The agent count for a grid cell is updated

whenever an agent enters or leaves the cell according to the DTMC (3.1), and the
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k = 0 k = 50

Figure 3.1: Visual rendering of a simulated scenario in our OpenAI environment for
iterations k = 0 and 50. The environment simulates a strongly connected 2× 2 grid
graph such as the one shown in Figure 3.2. The leader (red circle) moves between
grid cells in a horizontal or vertical direction. It may not move diagonally. Follower
agents (blue × symbols) are randomly distributed in each cell. The borders of each
cell are represented by the grid lines. The histogram to the right of each grid shows
both the target (red) and current (blue) agent population fractions in each vertex at
iteration k.

environment is re-rendered. Recording the agent counts in each cell rather than their

individual positions significantly reduces memory allocation and computational time

when training the leader control policy on scenarios with large numbers of agents.

The graph G that models the environment in Figure 3.1, with each vertex of G

corresponding to a grid cell, was defined as the 2 × 2 graph in Figure 3.2. In the

graph, agents transition along edges in either a horizontal or vertical direction, or

they can stay at the current vertex. The action set is thus defined as:

A = [ Left, Right, Up, Down, Stay ] (3.13)

Using the graph in Figure 3.2, we trained and tested a leader control policy for

follower agent populations of N = 10–100 at 10-agent increments. Both the SARSA

and Q-Learning paradigms were applied and trained on 5000 episodes with 5000

iterations each. In every episode, the initial distribution Ŝinitial and target distribution
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Figure 3.2: The bidirected grid graph G used in our simulated scenario. The leader
agent (red × symbol) is at vertex 3. The movement options for the leader are Left to
vertex 2 or Up to vertex 1. The leader can also Stay at vertex 3, where its presence
triggers follower agents at the vertex to probabilistically transition to vertex 1 or
vertex 2.

Ŝtarget of the follower agents were defined as:

Ŝinitial =

[
0.4 0.1 0.1 0.4

]T
(3.14)

Ŝtarget =

[
0.1 0.4 0.4 0.1

]T
(3.15)

The initial leader location, `1, was randomized to allow many possible permutations of

states Senv for training. During training, an episode completes once the distribution of

N follower agents reaches a specified terminal state. Instead of defining the terminal

state as the exact target distribution Ŝtarget, which becomes more difficult to reach

as N increases due to the stochastic nature of the followers’ transitions, we define

this state as a distribution that is sufficiently close to Ŝtarget. The learning rate and

discount factor were set to α = 0.3 and γ = 0.9, respectively. The follower agent

transition rate βe was defined as the same value β for all edges e in the graph and

was set to β = 0.025, 0.05, or 0.1. We use the mean squared error (MSE) to measure

the difference between the current follower distribution and Ŝtarget. The terminal
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Figure 3.3: Number of iterations until convergence to Ŝtarget (plotted on a log scale)
versus the MSE threshold value µ for leader control policies that were learned using
Q-Learning (left) and SARSA (right) with β = 0.05 and N = 100 follower agents.
Each circle on the plots marks the mean number of iterations until convergence over
1000 test runs of a leader policy in the simulated grid graph environment in Figure
3.2. The shaded regions indicate the range of ±1 standard deviation about the mean
numbers of iterations (blue for D = 10; orange for D = 20.)

state is reached when the MSE decreases below a threshold value µ. We trained our

algorithms on threshold values of µ = 0.0005, 0.001, 0.0025, and 0.005.

After training the leader control policies on each follower agent population size

N , the policies were tested on scenarios with the same environment and value of N .

The policy for each scenario was run 1000 times to evaluate its performance. The

policies were compared for terminal states that corresponded to the four different MSE

threshold values µ, and were given 1000 iterations to converge within the prescribed

MSE threshold of the target distribution (3.15) from the initial distribution (3.14).

Figure 3.3 compares the performance of leader control policies that were designed

using each TD algorithm as a function of the tested values of µ. The leader control

policies were trained on N = 100 follower agents, using the parameters β = 0.05 and

D = 10 or 20, and tested in simulations with N = 100. The plots show that for both

policies, the mean number of iterations required to converge to Ŝtarget decreases as

the threshold µ increases for constant D, and at low values of µ, the mean number
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Figure 3.4: Number of iterations until convergence to Ŝtarget versus number of fol-
lower agents N for leader control policies that were learned using Q-Learning with
D = 20 and µ = 0.0025. Each circle on the plots marks the mean number of iterations
until convergence over 1000 test runs of a leader policy in the simulated grid graph
environment in Figure 3.2 with the same value of N that the policy was trained on.
The plot for each β value in the top two figures are reproduced individually in the
three figures below them, along with shaded regions that indicate the range of ±1
standard deviation about the mean numbers of iterations.
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Figure 3.5: Number of iterations until convergence to Ŝtarget versus number of fol-
lower agents N for leader control policies that were learned using SARSA with D = 20
and µ = 0.0025. Each circle on the plots marks the mean number of iterations until
convergence over 1000 test runs of a leader policy in the simulated grid graph envi-
ronment in Figure 3.2 with the same value of N that the policy was trained on. The
plot for each β value in the top two figures are reproduced individually in the three
figures below them, along with shaded regions that indicate the range of ±1 standard
deviation about the mean numbers of iterations.
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Figure 3.6: Number of iterations until convergence to Ŝtarget versus number of fol-
lower agents N for leader control policies that were learned using Q-Learning with
D = 10 and µ = 0.0025. Each circle on the plots marks the mean number of iterations
until convergence over 1000 test runs of a leader policy in the simulated grid graph
environment in Figure 3.2 with the same value of N that the policy was trained on.
The plot for each β value in the top two figures are reproduced individually in the
three figures below them, along with shaded regions that indicate the range of ±1
standard deviation about the mean numbers of iterations.
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Figure 3.7: Number of iterations until convergence to Ŝtarget versus number of fol-
lower agents N for leader control policies that were learned using SARSA with D = 10
and µ = 0.0025. Each circle on the plots marks the mean number of iterations until
convergence over 1000 test runs of a leader policy in the simulated grid graph envi-
ronment in Figure 3.2 with the same value of N that the policy was trained on. The
plot for each β value in the top two figures are reproduced individually in the three
figures below them, along with shaded regions that indicate the range of ±1 standard
deviation about the mean numbers of iterations.
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of iterations decreases when D is increased. In addition, as µ increases, the variance

in the number of iterations decreases (note the log scale of the y-axis in the plots) or

remains approximately constant, except for the D = 20 case of SARSA.

Figures 3.4 and 3.5 compare the performance of leader control policies that were

designed using each algorithm as a function of N , where the leader policies were

tested in simulations with the same value of N that they were trained on. The other

parameters used for training were µ = 0.0025, D = 20, and β = 0.025, 0.05, or 0.1.

The figures show that raising β from 0.05 to 0.1 does not significantly affect the mean

number of iterations until convergence, while decreasing β from 0.05 to 0.025 results

in a higher mean number of iterations. This effect is evident for both Q-Learning

and SARSA trained leader control policies for N > 50. Both leader control policies

result in similar numbers of iterations for convergence at each agent population size.

Therefore, both the Q-Learning and SARSA training algorithms yield comparable

performance for these scenarios.

The results in Figures 3.4 and 3.5 shows that as N increases above 50 agents, the

mean number of iterations until convergence decreases slightly or remains approxi-

mately constant for all β values and for µ = 0.0025. Moreover, from Figure 3.3, we

see that MSE threshold values µ < 0.0025 for N = 100 result in a higher number

of iterations than the N = 100 cases in Figures 3.4 and 3.5.This trend may be due

to differences in the magnitude of the smallest possible change in MSE over an it-

eration k relative to the MSE threshold µ for different values of N . For example,

for N = 10, a similarity in iteration counts for all four MSE thresholds µ can be

attributed to the fact that the change in the MSE due to a transition of one agent,

corresponding to a change in population fraction of 1/N = 1/10, is much higher than

the four MSE thresholds (i.e., (1/10)2 > 0.005, 0.0025, 0.001, and 0.0005). Compare

this to the iteration count for N = 50, which would have a corresponding change in
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MSE of (1/50)2; this quantity is much smaller than 0.005 and 0.0025, but not much

smaller than 0.001 and 0.0005. The iteration counts for N = 100 are much lower,

since (1/100)2 is much smaller than all four MSE thresholds.

Finally, Figure 3.8 compares the performance of leader control policies that were

designed using each algorithm as a function of N , where the leader policies were

trained with N = 10, 100, or 1000 follower agents and tested in simulations with

N = 10–100 (at 10-agent increments) and N = 1000 agents. This was done to

evaluate the robustness of the policies trained on the three agents populations to

changes in N . The other parameters used for training were µ = 0.0025, D = 20,

and β = 0.025, 0.05, or 0.1. As the plots in Figure 3.8 show, policies trained on

the smallest population, N = 10, yield an increased mean number of iterations until

convergence when applied to populations N > 10. The reverse effect is observed,

in general, for policies that are trained on higher values of N than they are tested

on. An exception is the case where the policies are trained on N = 100 and 1000

and tested on N = 10, which produce much higher numbers of iterations than the

policies that are both trained and tested on N = 10. This is likely a result of the

large variance, and hence greater uncertainty, in the time evolution of such a small

agent population. The lower amount of uncertainty in the time evolution of large

swarms may make it easier for leader policies that are trained on large values of N

to control the distribution of a given follower agent population than policies that are

trained on smaller values of N . We thus hypothesize that training a leader agent

with the mean-field model (3.6) instead of the DTMC model would lead to improved

performance in terms of a lower training time, since the policy would only need to

be trained on one value of N , and fewer iterations until convergence to the target

distribution.

27



Figure 3.8: Number of iterations until convergence to Ŝtarget versus number of fol-
lower agents N (plotted on a log scale) for leader control polices that were trained
using Q-Learning (left column) and SARSA (right column) with D = 20; µ = 0.0025;
and β = 0.025, 0.05, or 0.1; and N = 10, 100, or 1000 agents. Each circle on the
plots marks the mean number of iterations until convergence over 1000 test runs of a
leader policy in the simulated grid graph environment in Figure 3.2.
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Figure 3.9: Number of iterations until convergence to Ŝtarget versus number of fol-
lower agents N (plotted on a log scale) for leader control polices that were trained
using Q-Learning (left column) and SARSA (right column) with D = 10; µ = 0.0025;
and β = 0.025, 0.05, or 0.1; and N = 10, 100, or 1000 agents. Each circle on the
plots marks the mean number of iterations until convergence over 1000 test runs of a
leader policy in the simulated grid graph environment in Figure 3.2.
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Figure 3.10: Initial setup of a physical experiment as seen from the fish-eye camera
of the Robotarium testbed (Wilson et al., 2020).

3.4 Experimental Results

We also conducted experiments to verify that our herding approach is effective in

a real-world environment with physical constraints on robot dynamics and inter-robot

spacing. Two of the leader control policies that were generated in the simulated envi-

ronment were tested on a swarm of small differential-drive robots in the Robotarium

(Wilson et al., 2020), a remotely accessible swarm robotics testbed that provides an

experimental platform for users to validate swarm algorithms and controllers. Exper-

iments are set up in the Robotarium with MATLAB or Python scripts. The robots

move to target locations on the testbed surface using a position controller and avoid

collisions with one another through the use of barrier certificates (Wang et al., 2017),

a modification to the robots’ controllers that satisfy particular safety constraints. To

implement this collision-avoidance strategy, the robots’ positions and orientations in

a global coordinate frame are measured from images taken from multiple VICON

motion capture cameras.
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A video recording of our experiments is shown in Zahi M Kakish et al. (2020).

The environment was represented as a 2× 2 grid, as in the simulations, and N = 10

robots were used as follower agents. The leader agent, shown as the blue circle, and

the boundaries of the four grid cells were projected onto the surface of the testbed

using an overhead projector. As in the simulations, at each iteration k, the leader

moves from one grid cell to another depending on the action prescribed by its control

policy. Both the SARSA and Q-Learning leader control policies trained with N = 100

follower agents, D = 10, µ = 0.0025, and a β = 0.1 were implemented, and Zahi M

Kakish et al. (2020) shows the performance of both control policies. In the video,

the leader is red if it is executing the Stay action and blue if it is executing any of

the other actions in the set A (i.e., a movement action). The current iteration k and

leader action are displayed at the top of the video frames. Actions that display ε next

to them signify a random action as specified in (3.12). Each control policy was able to

achieve the exact target distribution (3.15). The SARSA method took 59 iterations

to reach this distribution, while the Q-Learning method took 23 iterations.
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Chapter 4

LEADER-BASED STRATEGIES FOR SWARM CONTROL FROM DEEP RL

ALGORITHMS TRAINED ON MEAN-FIELD MODELS

4.1 Summary

In this chapter, we present a novel deep reinforcement learning (RL) approach to

designing a control policy for a leader agent that herds a swarm of “follower” agents,

via repulsive interactions, as quickly as possible to a target swarm distribution over

a strongly connected graph. The leader control policy is a function of the swarm

distribution, which evolves over time according to a mean-field model in the form of

an ordinary difference equation. The dependence of the policy on agent populations at

each graph vertex, rather than on individual agent activity, simplifies the observations

required by the leader and enables the control strategy to scale with the number of

agents. The leader control policy is devised using an actor-critic RL model and a

neural network function approximator trained on outputs of a modified Kolmogorov

Forward Equation, which removes the requirement to specify numbers of agents by

instead using population fractions. A 3D simulation environment corresponding to a

grid graph with 4 vertices and 20 robots is used to validate the approach.

4.2 Problem Statement

We first define some notation from graph theory and matrix analysis that we use

to formally state our problem. We denote by G = (V , E) a directed graph with a set of

M vertices, V = {1, ...,M}, and a set of NE edges, E ⊂ V ×V , where e = (i, j) ∈ E if

there is an edge from vertex i ∈ V to vertex j ∈ V . We define a source map σ : E → V
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and a target map τ : E → V for which σ(e) = i and τ(e) = j whenever e = (i, j) ∈ E .

Given a vector X ∈ RM , Xi refers to the ith coordinate value of X. For a matrix

A ∈ RM×N , Aij refers to the element in the ith row and jth column of A.

We consider a finite swarm of N follower agents and a single leader agent. The

locations of the leader and followers evolve on a graph, G = (V , E), where V =

{1, ...,M} is a finite set of vertices and E = {(i, j) | i, j ∈ V} is a set of edges that

define the pairs of vertices between which agents can transition. The vertices in V

represent a set of spatial locations obtained by partitioning the agents’ environment.

We will assume that the graph G = (V , E) is strongly connected and that there is a

self-edge (i, i) ∈ E at every vertex i ∈ V . We assume that the leader agent can count

the number of follower agents at each vertex in the graph. The follower agents at a

location v move to an adjacent location with a predefined probability if the leader

agent is currently at location v and is in a particular behavioral state; otherwise, the

followers remain at v. In other words, the presence of the leader repels the followers at

the leader’s location. The leader agent does not have a model of the follower agents’

behavior.

The leader agent performs a sequence of transitions from one location (vertex)

to another. The leader’s location at time k ∈ Z+ is denoted by `1(k) ∈ V . In

addition to the spatial state `1(k), the leader has a behavioral state at each time k,

defined as `2(k) ∈ {0, 1}. The location of each follower agent i ∈ {1, ..., N} is defined

by a discrete-time Markov chain (DTMC) Xi(k) that evolves on the state space V

according to the conditional probabilities

P(Xi(k + 1) = τ(e) | Xi(k) = σ(e)) = ue(k) (4.1)

33



For each v ∈ V and each e ∈ E such that σ(e) = v 6= τ(e), ue(k) is given by

ue(k) =


βe if `1(k) = σ(e) and `2(k) = 1,

0 if `1(k) = σ(e) and `2(k) = 0,

0 if `1(k) 6= σ(e),

(4.2)

where βe are positive parameters such that
∑

e∈E
v=σ(e)6=τ(e)

βe < 1. Additionally, for each

v ∈ V , u(v,v)(k) is given by

u(v,v)(k) = 1 −
∑
e∈E

v=σ(e)6=τ(e)

ue(k) (4.3)

For each vertex v ∈ V , we define a set of possible actions Av taken by the leader

when it is located at v:

Av =
⋃
e∈E

v=σ(e)

{e} × {0, 1} (4.4)

The leader transitions between states in V × {0, 1} according to the conditional

probabilities

P(`1(k + 1) = τ(e), `2(k + 1) = d | `1(k) = σ(e)) = 1 (4.5)

if p(k), the action taken by the leader at time k when it is at vertex v, is given by

p(k) = (e, d) ∈ Av, where d ∈ [0, 1] is the leader’s behavioral state.

The fraction, or empirical distribution, of follower agents that are at location

v ∈ V at time k is given by 1
N

∑N
i=1 χv(Xi(k)), where χv(w) = 1 if w = v and 0

otherwise. Our goal is to learn a policy that navigates the leader between vertices

using the actions p(k) such that the follower agents are redistributed (“herded”) from

their initial empirical distribution 1
N

∑N
i=1 χv(Xi(0)) among the vertices to a desired

empirical distribution 1
N

∑N
i=1 χv(Xi(T )) at some final time T , where T is as small

as possible. Since the identities of the follower agents are not important, we aim
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to construct a control policy for the leader that is a function of the current empir-

ical distribution 1
N

∑N
i=1 χv(Xi(k)), rather than the individual agent states Xi(k).

However, 1
N

∑N
i=1 χv(Xi(k)) is not a state variable of the DTMC. In order to treat

1
N

∑N
i=1 χv(Xi(k)) as the state, we consider the mean-field limit of this quantity as

N →∞. Let P(V) = {Y ∈ RM
≥0;

∑M
v=1 Yv = 1} be the simplex of probability densi-

ties on V . When N →∞, the empirical distribution 1
N

∑N
i=1 χv(Xi(k)) converges to a

deterministic quantity Ŝ(k) ∈ P(V), which evolves according to the following mean-

field model, a system of difference equations that define the discrete-time Kolmogorov

forward equation:

Ŝ(k + 1) =
∑
e∈E

ue(k)BeŜ(k), Ŝ(0) = Ŝ0 ∈ P(V), (4.6)

where Be are matrices whose entries are given by

Bij
e =


1 if i = τ(e), j = σ(e),

0 otherwise.

The random variable Xi(k) is related to the solution of the difference equation (4.6) by

the relation P(Xi(k) = v) = Ŝv(k). We define Zi(k) as the set of edges e = (i, j) ∈ E

for which i = `1(k), the leader’s location at time k. For the example 2× 2 grid graph

in Fig. 4.1, in which the leader is currently at vertex `1(k) = i = 3, this edge set

is Zi(k) = {(3, 3), (3, 2), (3, 1)} (note the inclusion of a self-edge). We introduce a

matrix Hi(k), defined as

Hi(k) =
∑

z∈Zi(k)

Bz, (4.7)

and a vector ui(k), defined as

ui(k) =
∑

z∈Zi(k)

uz(k), (4.8)

where uz(k) is given by (4.2) for each z ∈ Zi(k).

35



Figure 4.1: A strongly connected grid graph G. The leader, shown as a red star,
is located at vertex `1(k) = 3. It can either stay at this vertex, where its presence
triggers follower agents at the vertex to probabilistically transition to vertex 1 or
vertex 2, or move in the direction of a red arrow to one of these vertices.

The modified discrete-time Kolmogorov forward equation is defined as

Ŝ(k + 1) =
∑

z∈Zi(k)

ui(k)HiŜ(k), Ŝ(0) = Ŝ0 ∈ P(V), (4.9)

where i is the leader’s current location `1(k). This model now incorporates the effect

of the leader’s presence at a given sequence of vertices on the time evolution of the

follower agent distribution over the graph.

We formulate an optimization problem that minimizes the number of time steps

k required for the follower agents to converge to Ŝtarget, the target distribution:

Problem 4.2.1. Given a target follower agent distribution Ŝtarget, and defining A =

∪v∈VAv, devise a leader control policy π : P(V) × V → A that drives the follower

agent distribution to Ŝ(T ) = Ŝtarget, where the final time T is as small as possible,

by maximizing the total reward
∑T

k=1 R(k). The leader action at time k ∈ {1, ..., T}

when it is at vertex v ∈ V is defined as p(k) = π(Ŝ(k), `1(k)) ∈ Av.
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4.3 Design of Leader Control Policy using an Actor-Critic Method

Our previous work in Chapter 3 tested two tabular Temporal-Difference (TD)

algorithms, Q-Learning and SARSA Sutton and Barto (2018), that learned the leader

control policy from the follower agent state dynamics generated by the DTMC defined

in (4.1). This work demonstrated that RL is a viable optimization technique for

leader-based swarm herding. In contrast to this model-free learning approach, here we

apply a model-based deep RL approach that learns the leader control policy from the

solution to the mean-field model (4.9), which consists of the follower agent populations

at each location (vertex) over time. We modify the mean-field model to incorporate

the effect of the leader’s presence on the follower agents’ movement over the vertices

of the graph.

Our model-based approach uses an Actor-Critic policy gradient algorithm Sut-

ton and Barto (2018), which has certain advantages over analogous value-based deep

RL variants such as Deep Q-Learning Mnih et al. (2013). In tabular value-based

RL approaches, the state-action value function Q(s, a) can be artificially modified

to implement out-of-bound action conditions. However, this is not possible in Deep

Q-Learning algorithms, since they rely on a function approximator instead of a multi-

dimensional matrix for estimating state-action Q values. Since here we use a model-

based approach with a bilinear system model, we utilize Actor-Critic policy opti-

mization, which can be easily applied to models in this form Kamalapurkar et al.

(2018).

We begin by reviewing the basics of a policy-based reinforcement learning algo-

rithm before defining an Actor-Critic algorithm. Consider a Markov decision process

(MDP) M(S,A,P ,R) with a set of states S; a set of actions A; a state transition

function P : S × A → S, which may be deterministic or stochastic; and a reward
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function R : S × A → R. In our scenario, a leader agent in a particular state st ∈ S

at time t undergoes an action at ∈ A dictated by a policy π : S → A, which is

a mapping of the state space to action probabilities, i.e. the probability of doing

action a given the state, typically denoted as π(a|s). The leader then transitions

to state st+1 at time t + 1 according to the transition function P(st+1|st, at). Upon

transitioning to the new state st+1, the leader acquires a reward rt = R(st, at) and

records its experience, defined as the tuple (st, at, rt). The leader repeats this process

at each time step until a final time T . The sequence of tuples from time t = 0 to

t = T is defined as the trajectory τ . For a given trajectory, the sum of the rewards

is defined as the return G(τ) =
∑T

t=0 rt. We can choose to weight the rewards at

times t = 1, ..., T as follows, where γ ∈ [0, 1] is a discount factor, making our return

a discounted sum:

G(τ) = r0 + γr1 + γ2r2 + . . .+ γT rT =
T∑
t=0

γtrt

Values of γ that are close to 0 place greater weight on older rewards than newer

ones. A return with γ = 1 is considered a Monte Carlo return, since it weights all

rewards of the trajectory equally. Given a policy parameterized by the learnable

vector of parameters θ ∈ R2, a policy-based RL algorithm computes θ as the vector

that maximizes the following cost function J(πθ),

J(πθ) = Eτ∼πθ [G(τ)].

Thus, our algorithm computes the vector θ that produces a policy πθ which maxi-

mizes the expected return for a trajectory τ . This optimization problem is solved

using stochastic gradient descent with a learning rate α ∈ R. At each step of the

optimization procedure, θ is computed as

θ ← θ + α∇θJ(πθ). (4.10)
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The policy gradient used in Sutton and Barto (2018) is defined as follows:

∇θJ(πθ) = Eτ∼πθ

[
T∑
t=0

Gt(τ)∇θ log πθ(at|st)

]
, (4.11)

where Gt(τ) is the discounted return from time t to T for the trajectory τ , defined as

Gt(τ) = rt + γrt+1 + γ2rt+2 + . . .+ γT rT =
T∑
t′=t

γt
′−trt′ . (4.12)

Observe that the discount factor γ has a power raised to begin at time t. Equa-

tion (4.11) is the basis for the REINFORCE policy gradient algorithm Sutton and

Barto (2018); Williams (1992). However, defining the discounted return Gt(τ) as the

weighted sum of accumulated rewards per trajectory τ can produce significant vari-

ance in the policy gradient ∇θJ(πθ) Graesser and Keng (2019). We can reduce the

variance in ∇θJ(πθ) by subtracting an action-independent baseline value or function

from Gt(τ). A commonly used baseline is a policy-dependent state value function

V π : S → R. Thus, the policy gradient becomes

∇θJ(πθ) = Eτ∼πθ

[
T∑
t=0

(Gt(τ)− V π(st))∇θ log πθ(at|st)

]
.

The selection of a baseline guides the definition of the Actor-Critic algorithm

Sutton and Barto (2018). The discounted return for the leader agent’s trajectory is

considered an estimate of a state-action value function, Qπ(st, at) = E[Gt|st, at], for

which each reward received during the trajectory is action-dependent. The difference

between the state-action value function Qπ (the actor) estimated from the trajectory

resulting from a given policy πθ and the state value function V π (the critic) of the

policy π is defined as the advantage function,

Aπ(st, at) = Qπ(st, at)− V π(st). (4.13)

Thus, our policy gradient algorithm becomes an Advantage Actor-Critic (A2C) algo-

rithm Mnih et al. (2016); Graesser and Keng (2019), in which

∇θJ(πθ) = Et
[
Aπt (st, at)∇θ log πθ(at|st)

]
. (4.14)
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To calculate the return of a trajectory, we use a full-rollout Monte Carlo estimate

instead of an n-step Temporal Difference (TD) estimate of Qπ, as we did in our prior

work Zahi M Kakish et al. (2020). In Amiranashvili et al. (2018), it was shown

that for certain reward attributes such as noisy rewards, sparse rewards, or delayed

rewards, RL-trained policies with returns calculated using Monte Carlo estimates

outperform policies with returns calculated using TD estimates. As shall be discussed

in Section 4.3.1, to train the leader control policy with our particular action set, we use

a reward function with characteristics similar to those of sparse and delayed rewards.

Suppose that at time k, the leader agent can measure the population fraction

Fv(k) of follower agents at P locations v in some set Vf ⊆ V , where

Fv(k) =
1

N

N∑
i=1

χv(Xi(k)). (4.15)

The system state Senv(k) at time k is defined as a vector that contains the location

`1(k) ∈ V of the leader and the population fractions Fv(k) of follower agents at the

P observed locations v ∈ Vf ≡ {v1, ..., vP}:

Senv(k) = [Fv1(k), . . . , FvP (k), `1(k)]. (4.16)

The leader’s spatial state `1(k) must be included because the leader’s possible actions

over the next time step depend on its current location on the graph. In the case where

Vf = V , the system state is considered fully observable since it includes the follower

agent population fractions at every vertex and the leader’s position:

Senv(k) = [F1(k), . . . , FM(k), `1(k)]. (4.17)

In the case where the population fraction of follower agents can only be measured at

the leader’s current spatial state `1(k), we refer to the system state, defined below,

as locally observable:

Senv(k) = [F`1(k)(k), `1(k)]. (4.18)
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The leader can perform an action from the following action set:

A = [ Left, Right, Up, Down, Stay ]. (4.19)

The first four actions indicate that the leader moves to an adjacent vertex on the

graph in the specified direction (see Fig. 4.1 for an example), and the Stay action

indicates that the leader remains at its current vertex and changes its behavioral state

to `2 = 1. If the next action following a Stay action is a motion action, the leader

changes its behavioral state back to `2 = 0 and proceeds to move to the next state.

4.3.1 Reward Function Definition

Our objective is to solve the optimization problem in Problem 1, which minimizes

the number of time steps k required for the follower agents to converge to the target

distribution Ŝtarget. We define the reward function in the optimization problem such

that it outputs a negative number. In our previous work Zahi M Kakish et al.

(2020), we defined the reward function as the Mean-Squared Error (MSE),

R(k) = −1 · E||Ŝ(k)− Ŝtarget||2. (4.20)

The MSE reward function outputs increasing rewards as the distribution at k con-

verges towards Ŝtarget.

In this paper, the distribution of follower agents over the graph at time k is

characterized as the follower population fraction Fv(k) at each vertex v ∈ V . This

set of population fractions can alternatively be viewed as the probability density of a

single follower agent’s location on the graph at time k, which allows us to define the

reward function using relative entropy statistical measures. In particular, we use the

negative Kullback–Leibler (KL) divergence Kullback and Leibler (1951) as the reward

function. The choice of logarithm used in the KL divergence modifies the scale of
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the calculated reward. Therefore, we investigate two versions of this measure, which

differ in the base of the logarithm. We will refer to the measure with the natural

logarithm as the KL Divergence,

R(k) = −1 ·DKL(Ŝ(k)||Ŝtarget) = −1 ·
∑
v∈V

Ŝv(k) · log

(
Ŝv(k)

Ŝv,target

)
, (4.21)

and the measure with the base-10 logarithm as the log10 KL Divergence,

R(k) = −1 ·DKL(Ŝ(k)||Ŝtarget) = −1 ·
∑
v∈V

Ŝv(k) · log10

(
Ŝv(k)

Ŝv,target

)
. (4.22)

Figure 4.2 plots the values of each of the three reward functions above over the

same leader trajectory spanning 100 iterations within a single trajectory. Both the

MSE and the log10 KL Divergence return nearly equivalent rewards. The KL Di-

vergence has the largest difference in returned rewards, but it trends toward similar

rewards as the other two reward functions as Ŝv converges to Ŝv,target. The MSE

and KL Divergence rewards are approximately 2.2 times lower than the log10 KL

Divergence rewards. Consequently, we hypothesize that the three reward functions

will result in similar control policy performance, holding all other parameters of the

training procedure constant.

4.3.2 Stopping Criteria

In addition to testing the MSE and the two versions of the KL Divergence as

reward functions, we will test their effectiveness as metrics for defining stopping cri-

teria for ending an episode. Since the reward functions are measures of the distance

between the current and target follower agent distributions, their absolute value can

be used to define stopping criteria that determine when the agent distribution is suf-

ficiently close to the target distribution. We specify that the stopping criterion is

met if |R(k)| ≤ µ, where µ is a positive constant and R(k) is defined by Eq. (4.20),

(4.21), or (4.22).

42



Figure 4.2: Reward dynamics of different reward functions, given the same leader
trajectory and the action set (4.19).

4.4 Neural Network Function Approximation for Control Policy

Our Actor-Critic algorithm uses a dual multi-layer perceptron (MLP) neural net-

work to approximate the value function V π and the policy πθ defined in Section 4.3.

Figures 4.3 and 4.4 illustrate the neural networks and their respective input and

output variables. In the fully observable policy network, both the Actor and Critic

networks have the input Senv defined in (4.17). The output of the Actor network is

the policy’s probability of doing action a ∈ A given the current system state Senv,

and the output of the Critic network is the inferred state value for Senv. In the locally

observable policy network, the Actor and Critic networks both have the input Senv

defined in (4.18), and the network outputs are the same as for the fully observable

policy networks.
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(a) Fully Observable Actor Network

(b) Fully Observable Critic Network

Figure 4.3: Function approximators for the Actor-Critic fully observable control
policy, consisting of the Actor neural network model at left and the Critic neural
network model at right.
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(a) Locally Observable Actor Network

(b) Locally Observable Critic Network

Figure 4.4: Function approximators for the Actor-Critic locally observable control
policy, consisting of the Actor neural network model at left and the Critic neural
network model at right.
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4.4.1 Training

We employ an asynchronous Actor-Critic approach to train the fully observable

and locally observable control policies. An asynchronous approach benefits from

higher throughput data for updating the gradient by utilizing multiple agents to gen-

erate trajectories thus leading to increased traversal of the policy space. Another

benefit is reduced training time compared to a single actor, since multiple actors can

cover a single policy space more efficiently than one actor. The Actor-Critic control

policies are trained asynchronously using a deep RL training framework that we de-

veloped, called multi robot trainer Zahi M Kakish (2020a). This flexible framework

can parallelize the training of user-defined controllers based on state-space models or

learning model-free policies for agents in OpenAIGym environments Brockman et al.

(2016) using a variety of deep RL algorithms such as Deep Q-Learning, Double Deep

Q-learning, REINFORCE, and shared and dual neural network Actor-Critic variants.

We built the framework on top of TensorFlow Abadi et al. (2015) and ROS 2 Thomas

et al. (2014), using the built-in Data Distribution Service (DDS) communication

middleware of ROS 2 to set up a Server-Worker parallelization structure resembling

similar asynchronous and synchronous deep RL frameworks defined in Mnih et al.

(2016). Our platform extends the capabilities of current widely-used asynchronous

deep RL training implementations Babaeizadeh et al. (2017) by allowing for hybrid

GPU/CPU device configurations and multi-device support, although it lacks dynamic

scheduling and advanced queuing.

Figure 4.5 provides an overview of the framework’s parallelization procedure using

a shared global neural network, with a learnable vector of weights θG, and local

gradient calculations. For an asynchronous setup, a server node distributes the initial

neural network weights θG to each worker. The workers then generate a trajectory
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using the controller or RL environment with the network weights θG and compute the

gradients (4.14), which are then sent back to the server to compute θG at the next

step of the optimization procedure. Finally, any worker that computed the gradient

gets the updated network weights θG from the server for the next iteration. This

process differs slightly for synchronous parallelization. The workers still receive the

weights from the server, generate trajectories, and calculate gradients to send back

to the server; however, the server only sends the updated network weights θG to a

worker upon receiving the gradients from all of the workers. Once all the gradients

have been used to update the network weights, a synchronizer sends the weights to

the workers and a new episode begins.

The training episodes are executed with three worker nodes and an asynchronous

update server containing the Actor and Critic global network parameters θ. Each

worker generates a trajectory over a 2 × 2 grid graph G using the mean-field model

(4.9). The initial distribution of follower agents over the graph was defined as

Ŝinitial =

[
0.1 0.4 0.4 0.1

]T
, (4.23)

and the target distribution was set to

Ŝtarget =

[
0.4 0.1 0.1 0.4

]T
. (4.24)

An episode is considered complete when either the stopping criterion defined in Sec-

tion 4.3.2 is met, or the time step k of the trajectory exceeds the final time T = 400

time steps. Training is complete once the server node has tracked 5000 episodes across

the three worker nodes.

The Critic neural network loss function for both the fully observable and locally

observable control policies is defined as the Huber Loss Huber (1964), in order to

reduce the chance that outlier Critic network inference values will derail the gradient
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Figure 4.5: Asynchronous (left) and synchronous (right) gradient worker implemen-
tations for deep RL training using the multi robot trainer Zahi M Kakish (2020a).
The solid lines indicate the transfer of the weights θG of the global network to indi-
vidual worker nodes. Upon completing the simulation of a trajectory and calculating
the gradient with the network weights received from the server, each worker sends
the gradient back to the server, as indicated by the dashed lines, for optimization of
the global network weights θG.

descent towards an optimal policy. This loss function is tuned by a hyperparameter

δ, which determines the point at which loss is considered quadratic. We set the jump

rate parameter to β = 0.1, the threshold value to µ = 0.0025, the discount factor to

γ = 0.99, and the loss function hyperparameter to δ = 1.0 in all the training runs.

Both the fully observable and locally observable control policies were trained on a

commercial-grade desktop computer with a 4th-generation Intel i7 8-core CPU with

32GB of RAM running Ubuntu 20.04. Each worker node and the server node were run

in individual Docker containers with their networks configured to allow the transfer

of gradients and network weights.

4.5 Simulation Results

In this section, we investigate the effect of network size (Section 4.5.1), learning

rate (Section 4.5.2), and reward function (Section 4.5.3) on the performance of fully

and locally observable control policies that were designed using the asynchronous
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Actor-Critic approach. We also compare these control policies to those designed in

our prior work Zahi M Kakish et al. (2020) using Temporal-Difference learning

approaches (Section 4.5.4). The control policies evaluated in Sections 4.5.1, 4.5.2,

and 4.5.4 were trained using the MSE (4.20) as the reward function R(k) in both

the objective function
∑T

k=1R(k) and the stopping criterion |R(k)| ≤ µ. In Sections

4.5.1–4.5.4, we validated the control policies in 2D agent-based simulations run in

gym-herding Zahi M Kakish (2019), an open-source OpenAI Gym environment

that we developed and used in our previous work Zahi M Kakish et al. (2020) to

train, simulate, test, and visualize leader-based control policies for herding swarms

of follower agents whose locations evolve on a graph according to the DTMC (4.1).

Section 4.6 describes our validation of the control policies in 3D simulations of a real-

world testbed environment with physical constraints on robot movement. For the

control policies in all sections, the graph G was defined as the grid graph in Fig. 4.1.

4.5.1 Effect of Network Size

We investigated the effect of the number of hidden layers and layer units in the

MLP neural network configuration on its robustness and efficacy. We tested networks

with depths of 1 to 4 hidden layers, each with a width of 16, 32, or 64 units. All

layers in each tested network had the same width, and each hidden layer used a

Rectified Linear Unit (ReLU) activation function Nair and Hinton (2010). We tested

the trained policies in agent-based simulations with the graph G defined as the 2× 2

grid graph in Fig. 4.1 and the initial and target follower agent distributions defined

in (4.23) and (4.24), respectively. The same training procedure was repeated for each

network width and depth.

Figures 4.6 and 4.7 plot the total reward
∑
R(k) received by the leader given

its trajectory per training episode for the fully observable and locally observable
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control policies, respectively. Each subfigure plots the total reward from each of the

three asynchronous worker nodes associated with the leader during training. The

total reward initially varies considerably as the policy space is explored; as training

progresses, the reward tends to increase in most of the trials to an approximately

steady-state value with relatively small variation. This variability tends to decrease

with increasing width or depth of the hidden layers of the neural network. Certain

network sizes result in large erratic spikes in total rewards during training of the

fully observable control policy, likely reflecting performance collapse due to unstable

Q value estimation in the Actor loss calculations Lipton et al. (2018); Anschel et al.

(2017); Graesser and Keng (2019). As Fig. 4.6 shows, the network of depth 4 and

width 64 displayed the most severe performance collapse. Smaller fluctuations in

total reward occur during training of the locally observable control policy, as shown

in Fig. 4.7, and thus are less likely to derail the policy optimization. Compared

to other network depths, a depth of 3 yields a sufficient increase in total reward for

control policy optimization without producing erratic variations in reward that lead

to performance collapse.

To evaluate their performance, the fully observable and locally observable leader

control policies that were trained using each network were implemented on simulations

of the mean-field model (4.9). Each control policy was tested on 100 simulations of this

model, and its performance was measured in terms of the mean reward accumulated

by the leader over all simulations and the mean number of time steps (iterations)

during all simulations until the follower agents were herded to the target distribution.

For the fully observable controller, the mean reward and mean number of iterations

are plotted in Fig. 4.8 for each neural network depth and width. The lower the

mean number of iterations, the closer the total reward metric is to 0. The leader

control policies that were optimized using networks of depth 4 and widths 16 and
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64 performed poorly compared to the control policies optimized using networks of

lower depth. These deeper networks results in a more negative total reward and an

increased number of iterations In addition, the performance degradation and collapse

observable with the deeper networks are reflected in their respective training results

shown in Fig. 4.8, where the breakdowns in training are prominent. The network

with depth 4 and width 32 resulted in good performance likely due to the training

quickly correcting itself upon subsequent episodes, as evident by earlier spikes and

corrections. Judging by the breakdowns and corrections in episodes prior to training

ended, the performance may have degraded again if the number of training episodes

were increased. The network with depth 3 and width 32 produced acceptable mean

rewards and number of iterations. During training, this network trended more stable

and resulted in less overall variability in our metrics than networks of other sizes. In

essence, deeper networks tended to fail after three hidden layers while larger network

widths affected performance negatively at shorter network depths.

The locally observable controller tests on the mean-field model show a more con-

sistent trend in average reward and iterations when utilizing different network depths

and widths. As can be seen in Fig. 4.9, every network size performed better than

its fully observable counterpart in both metrics. The performance improved with in-

creased network depth and width. The severe performance degradation and collapse

present in the fully observable policy that was optimizing using a network of depth 4

is greatly diminished in comparison to the same network depth on the locally observ-

able policy. A network of depth 4 and width 32 produces the best results in terms

of average reward and iterations; however, the total reward for this network varies

erratically (see Fig. 4.7). The control policy for this network configuration may be

susceptible to performance degradation if trained for additional episodes. While the

network with depth 3 and width 64 yields adequate performance, it too suffers from
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erratic behavior during training. Given its mean reward and number of iterations, as

well as its low variability in total reward during training, we expect that a network

of depth 3 and width 32 would likely optimize the locally observable control policy.

4.5.2 Effect of Learning Rate

In addition to network size, we investigated the effect of the learning rate α on

the performance of the optimized control policies. We implemented the optimization

procedure with α ∈ {0.0001, 0.00025, 0.000375, 0.0005, 0.000625, 0.00075, 0.001} and

tested the performance of the resulting leader control policies on 100 simulations of

the mean-field model for each value of α, and on 100 runs of agent-based simulations

with each value of α and with N = 10, 100, or 1000 follower agents.

Figure 4.10 plots the total reward from each worker during training of the fully ob-

servable control policy with each tested value of α. Training with α = 0.0005, 0.000625,

and 0.00075 yielded the lowest variability in total reward during the later training

episodes. Training with α = 0.001 produced significant spikes in total rewards, possi-

bly due to overly large changes in θ during the optimization procedure (Eq. (4.10)).

Figure 4.11 plots the total reward during training of the locally observable control

policy with each value of α. These plots display similar trends to the plots in Fig. 4.10,

except for α = 0.001, which has smaller fluctuations in reward than the corresponding

plots for the fully observable control policy. The reward plot for α = 0.000625 shows

the lowest variability during the later training episodes.

Figures 4.12 and 4.13 plot the mean number of iterations until convergence to the

target distribution that resulted from both control policies when implemented on the

mean-field model and on agent-based simulations, for the tested values of α and for

N = 10, 100, and 1000 agents. For the fully observable control policy, α = 0.000625

yielded the minimum number of iterations (13.9) in the mean-field model, but not
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Figure 4.6: Total rewards from the three worker nodes, plotted in green, blue,
and orange, during 5000 training episodes of the fully observable control policy for
different network sizes. The subfigures in rows 1, 2, 3, and 4 correspond to networks
of depth 1, 2, 3, and 4, respectively. The subfigures in columns 1, 2, and 3 correspond
to networks of width 16, 32, and 64, respectively.
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Figure 4.7: Total rewards from the three worker nodes, plotted in green, blue,
and orange, during 5000 training episodes of the locally observable control policy for
different network sizes. The subfigures in rows 1, 2, 3, and 4 correspond to networks
of depth 1, 2, 3, and 4, respectively. The subfigures in columns 1, 2, and 3 correspond
to networks of width 16, 32, and 64, respectively.

54



Figure 4.8: Mean reward and mean number of iterations resulting from the fully
observable leader control policy trained with networks of different sizes. The mean
reward (−91.65) for a network of depth 4 and width 64 is not displayed, since the
control policy trained using this network failed to achieve the herding objective during
training.

Figure 4.9: Mean reward and mean number of iterations resulting from the locally
observable leader control policy trained with networks of different sizes.
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in the agent-based simulations with N = 10 or 100. Training this control policy

with α = 0.000375 resulted in the minimum number of iterations in the agent-based

simulations with all values of N , with a slightly higher number of iterations (16.5)

in the mean-field model than for α = 0.000625. For the locally observable control

policy, the number of iterations in the mean-field model decreased with increasing

α until α = 0.00075, with a slight increase at α = 0.001. Although α = 0.000625

yielded a higher number of iterations in the mean-field model than α = 0.00075 and

α = 0.001, this value of α produced the minimum, or close to the minimum, number

of iterations in the agent-based simulations. Therefore, we used α = 0.000625 as the

learning rate to train control policies for comparison to the control policies that we

designed in our previous work Zahi M Kakish et al. (2020).

4.5.3 Effect of Reward Function

We explored the effect of different reward functions R(k), defined by the MSE

(4.20), KL Divergence (4.21), or log10 KL Divergence (4.22), on the performance of

the leader control policies. We tested different combinations of these definitions of

R(k) for both the objective function
∑T

k=1 R(k) and the stopping criterion |R(k)| ≤ µ.

We set µ = 0.0025 for R(k) defined by (4.20) in the stopping criterion. To maintain

equivalent stopping criteria for the other two definitions of R(k), we set µ = 0.0075

for R(k) defined by (4.21) and µ = 0.0033 for R(k) defined by (4.22). The control

policy training procedure for all three value of µ was the same as for the control

policies in the previous two subsections. In all tests, we defined the learning rate

as α = 0.000375 for the fully observable control policy and α = 0.000625 for the

locally observable control policy, which we found to produce the best performance

(see Section 4.5.2.)

Figure 4.14 plots the mean number of iterations until convergence to the target
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Figure 4.10: Total reward from the three worker nodes, plotted in green, blue,
and orange, during 5000 training episodes of the fully observable control policy for
different values of the learning rate α.
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Figure 4.11: Total reward from the three worker nodes, plotted in green, blue,
and orange, during 5000 training episodes of the locally observable control policy for
different values of the learning rate α.
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Figure 4.12: Mean number of iterations resulting from the fully observable leader
control policy, trained using 7 different values for the learning rate α, when run on
the mean-field model (top) and on agent-based simulations with N = 10, 100, and
1000 follower agents (bottom).

Figure 4.13: Mean number of iterations for the locally observable leader control
policy, trained using 7 different values for the learning rate α, when run on the mean-
field model (top) and on agent-based simulations with N = 10, 100, and 1000 follower
agents (bottom).
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distribution for the fully observable control policy with different definitions of R(k) in

the objective function and stopping criterion, for 100 runs of agent-based simulations

with N = 10, 100, or 1000 follower agents. The plots show that the convergence

time decreases monotonically with population size N for all cases, and in general,

the choice of R(k) in the objective function and stopping criterion produces little

to no effect on the convergence time, regardless of N . When R(k) was the same in

both the objective function and stopping criterion, defining it as the KL Divergence

produced slower convergence for all values of N than defining it as the MSE or log10

KL Divergence. This variability in performance can be attributed to the differences

in reward dynamics of the three definitions of R(k), illustrated in Fig. 4.2, with the

KL Divergence yielding the lowest rewards.

Figure 4.15 plots the same results as Fig. 4.14 for 100 runs of agent-based sim-

ulations of the locally observable control policy with N = 10, 100, or 1000, with the

same R(k) definitions. Again, convergence time generally decreases monotonically

with N . For each stopping criterion, the definition of R(k) in the objective function

significantly affected convergence for lower agent populations (N = 10, 100) but not

for higher populations (N = 1000), which all had similar convergence times regardless

of stopping criterion. In contrast to the fully observable policy, when R(k) was the

same in both the objective function and stopping criterion, defining it as the KL Di-

vergence produced faster convergence for all values of N than defining it as the MSE

or log10 KL Divergence. We hypothesize that the larger magnitude of R(k) when

defined as the KL divergence rewards given by the KL divergence provided better

information on the entropy of the follower agent population distribution. This more

accurate estimate of the system’s state resulted in considerable performance gains by

the locally observable control policy.
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Figure 4.14: Mean number of iterations until convergence versus number of follower
agents N when run on agent-based simulations of the fully observable control policy,
with R(k) in the objective function defined as the MSE (4.20), KL Divergence (4.21),
or log10 KL Divergence (4.22) (indicated by the legend). In the stopping criterion,
R(k) is defined as (top left) the same function as the objective function; (top right)
the MSE (4.20); (bottom left) the log10 KL Divergence (4.22); or (bottom right) the
KL Divergence (4.21).

4.5.4 Comparison with Policies Designed using Temporal-Difference Methods

After choosing a suitable network size and learning rate α, we compared the

performance of fully and locally observable control policies designed using the Actor-

Critic algorithm presented here to the performance of control policies designed in our

previous work Zahi M Kakish et al. (2020) using two tabular Temporal-Difference

learning approaches, SARSA and Q-Learning. Both learning algorithms in Zahi

M Kakish et al. (2020) used a discretization of the system state: the population
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Figure 4.15: Mean number of iterations until convergence versus number of follower
agents N when run on agent-based simulations of the locally observable control policy,
with R(k) in the objective function defined as the MSE (4.20), KL Divergence (4.21),
or log10 KL Divergence (4.22) (indicated by the legend). In the stopping criterion,
R(k) is defined as (top left) the same function as the objective function; (top right)
the MSE (4.20); (bottom left) the log10 KL Divergence (4.22); or (bottom right) the
KL Divergence (4.21).

fractions of follower agents at the vertices of G were divided into D intervals and

scaled up to integers between 1 and D. For example, for D = 10, a population

fraction of 0.33 would be represented as 3. Using a higher value of D yields a finer

discretization of agent populations, but increases the size of the system state.

We test the Q-Learning and SARSA control policies Zahi M Kakish et al. (2020)

against our Actor-Critic trained deep RL policy in the agent-based simulation. For

each test, 100 runs each were performed with N = 10–100 agents, at 10-agent in-

crements, and with N = 1000 agents. As N increases, the fluctuations around the
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Figure 4.16: Comparison of our Q-Learning (left) and SARSA (right) algorithms
trained on 1000 agents following a DTMC from Zahi M Kakish et al. (2020) at both
population fraction interval values D = 10 and 20 to our asynchronous actor-critic
trained fully-observable control policy. Each test is run on a N = 10− 100 and 1000
agent populations.

mean-field model solution decrease, so the time evolution of populations in each state

can be described more accurately by this model. Therefore, the controller tests for

our Actor-Critic approaches are only analogous to the case of N ≥ 1000 utilizing our

earlier Q-learning or SARSA leader controllers since they exhibit a mean-field effect

for larger agent populations on a DTMC. For smaller N , the Actor-Critic controller

was tested on agent-based simulations to adequately compare its performance to that

of our earlier controllers.

Figures 4.16 and 4.17 compare the mean number of iterations until convergence to

the target distribution versus agent population N for the fully and locally observable

control policies designed in this work and those from Zahi M Kakish et al. (2020),

trained with D = 10 and D = 20. The fully and locally observable control policies

outperform the control policies from Zahi M Kakish et al. (2020) for all values of

N and both values of D. The locally observable control policy outperforms the fully

observable policy by a small margin at low populations N .
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Figure 4.17: Comparison of our Q-Learning (left) and SARSA (right) algorithms
trained on 1000 agents following a DTMC from Zahi M Kakish et al. (2020) at both
population fraction interval values D = 10 and 20 to our asynchronous actor-critic
trained locally-observable control policy. Each test is run on a N = 10 − 100 and
1000 agent populations.

4.6 Validation of Control Policies in a 3D Simulation of a Real-World Testbed

We conducted additional simulations using a program that we developed in Gazebo

Aguero et al. (2015) and ROS 2 called ros2 robotarium Zahi M Kakish (2020b), a

3D simulation of the Georgia Tech Robotarium Wilson et al. (2020). These simula-

tions were developed to verify that the control policies are effective in a real-world

environment with physical constraints on robot dynamics and inter-robot spacing.

The simulated testbed was designed to be similar to the setup of the physical Rob-

otarium testbed that we used in our previous work Zahi M Kakish et al. (2020)

(a video recording of the experiments is shown in Zahi M Kakish et al. (2020)).

The leader agent in these simulations was virtual, and the follower agents were mod-

eled after the Robotarium GritsBotX robots. The robots avoid obstacles and one

another using barrier certificates Wang et al. (2017), a modification to the robots’

controllers that satisfies particular safety constraints. The environment is represented

as a 2× 2 grid, in which the grid cells correspond to the vertices of the graph in Fig.

4.1. The robots can move between pairs of grid cells that are connected by an edge
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in this graph. Figure 4.18 shows overhead and isometric views of the initial robot

configuration in the simulation.

Experiments run on the physical Robotarium have a 6–7 minute time limit, after

which the robots must be recharged. This constraint limited the number of robots

we could use in our experiments in Zahi M Kakish et al. (2020), since larger robot

populations took longer to reach a target distribution due to the increased time

required for robots to avoid collisions with other robots. The simulated testbed did

not have this constraint, which allowed us to increase the robot population to 20.

Using the optimal learning rate, network size, and reward function supported in

the previous sections, we trained the fully observable and locally observable control

policies to herd N = 20 simulated robots from Ŝinitial and Ŝtarget, defined in (4.23)

and (4.24). In the simulation, we set the initial robot distribution to

Ŝinitial =

[
0.25 0.25 0.25 0.25

]T
,

different from (4.23), in order to evaluate the robustness of control policies to changes

in Ŝinitial from the initial distribution on which they were trained. The leader agent

was able to herd the 20 robots to the target distribution in 13 iterations using the

fully observable control policy, and in 12 iterations using the locally observable policy.

Both of these convergence times are well below the mean number of iterations until

convergence for N = 20 robots in the 2D agent-based simulations of the control

policies (see Figs. 4.16 and 4.17, Asynch AC plots).
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Figure 4.18: A 3D Gazebo simulation of a leader-based herding experiment using the
ros2 robotarium package developed by our laboratory. Spatial states are represented
as either black or white squares on the testbed and are labeled similar to the vertex
labels in Figure 4.1. Follower agents modeled after the Robotarium GritsBotX are
in the Ŝinitial configuration. An overhead camera above the simulated Robotarium
testbed publishes video (window on the left) of the current testbed along with labels
of the current iteration, individual vertex agent population fractions, and a virtual
leader.
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Chapter 5

IMPROVING THE SCALABILITY OF LEADER-BASED STRATEGIES FROM

DEEP RL ALGORITHMS TRAINED ON MEAN-FIELD MODELS

5.1 Summary

In this chapter, we analyze and discuss the effects of scaling the graph size used

by the mean-field model to train the leader-based deep RL control policy. Scaling the

graph leads to difficulty converging on certain solutions within an adequate number

of iterations or under a stopping criteria µ (defined in Section 4.3.2), which reflects

the distance the agent population over the graph is from the target population dis-

tribution. We investigate the effects that a state and action set have on the fully

and locally observable control policies at larger graph sizes and present a new control

policy that has improved scaling properties with the graph size.

5.2 Scalability with the Number of Follower Agent States

Our previous work in Chapter 3 represented the state-action value function Q in

tabular form as a multi-dimensional matrix. Tabular methods for training limited

the scalability of our control policies with the the number of follower agent states, i.e.

the order |V| of the graph G, due to the intractability and impracticality of searching

a large matrix or database for an optimal control policy. Additionally, increasing the

order of G required larger values of D, the number of intervals used to discretize the

follower agent population fractions, since distributing a swarm of agents among more

vertices can reduce the population fractions at each vertex. Using neural network

function approximators alleviates these issues by allowing us to scale the number of
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parameters of the neural network to fit the number of vertices in the graph.

We tested the robustness of our fully observable and locally observable control

policies on 3×3 and 4×4 grid graphs. We trained the control policies using the same

method as the previous chapter with changes to the hyperparameters, number of

episodes, and final time T . The reward function R(k) in both the objective function

and stopping criterion was defined as the MSE (4.20), with the stopping criteria

threshold set to µ = 0.0025. Rewriting the vector Ŝ as a matrix, in which each

element is the agent population fraction at the corresponding vertex on the grid

graph, the initial and target distributions for the 3× 3 and 4× 4 graphs were defined

as:

Ŝinitial =


0.92 0.01 0.01

0.01 0.01 0.01

0.01 0.01 0.01

 , Ŝinitial =



0.85 0.01 0.01 0.01

0.01 0.01 0.01 0.01

0.01 0.01 0.01 0.01

0.01 0.01 0.01 0.01


,

Ŝtarget =


0.15 0.05 0.15

0.05 0.2 0.05

0.15 0.05 0.15

 , Ŝtarget =



0.01 0.01 0.01 0.01

0.01 0.22 0.22 0.01

0.01 0.22 0.22 0.01

0.01 0.01 0.01 0.01


.

These initial follower agent distributions differ from those for the 2 × 2 graph in

that most of the agents start at a single vertex on the graph. Three worker nodes

were used, with 5000 training episodes. In each episode, the leader agent had 4000

iterations to herd the swarm within the prescribed µ threshold. In Chapter 3, we did

not test the control policies designed using Temporal-Difference Methods in agent-

based simulations. Therefore, we only tested our control policies on the mean-field

model.
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The initial training of the fully observable control policy, with α = 0.00037 and

a network depth of 3 and width 32, failed to yield convergence within the stopping

criterion threshold µ = 0.0025 for either the 3×3 or 4×4 graph. Increasing the width

of the network from 32 to 256 produced convergence within a threshold of about 0.05

for the 3× 3, as shown in Fig. 5.1. Training with multiple learning rates values used

in previous sections resulted in the same or worse convergence performance. Similar

results occurred during the training runs for the 4×4 grid graph, for which the mean

µ was approximately 0.075, as shown in Fig. 5.2. Unlike the fully observable control

policy, the locally observable control policy did not require increasing the network

width to reach a steady-state µ value. The 3×3 grid graph stabilized around µ = 0.03

during training, while the 4× 4 grid graph converged to µ = 0.08 before performance

collapse toward the end of training. In both control policies, approximately 500 to

1000 of the 4000 iterations per episode resulted in invalid actions, i.e., the leader’s

attempt to transition to a vertex resulted in an out-of-bounds condition.

These failures can be attributed to the Actor-Critic algorithm’s relatively limited

exploration of the policy space, whose dimensionality increases significantly with the

number of vertices. Moreover, a 2 × 2 grid graph was small enough for the control

policy to quickly learn effective ways to herd the agents; larger grid graphs have more

edges, and thus more possible agent transitions between pairs of vertices. As we

investigate in the next section, the leader’s choice of actions from the action set A

determines the scalability of the policy with the number of vertices.

5.3 Redefining the action set on a fully-connected graph

Of the five possible actions for the leader agent, only the Stay action results

in an increase or decrease in total reward. In Section 4.3.1, we discuss how the

reward function generates returns resembling sparse reward characteristics, since only
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Figure 5.1: Total reward (left) and threshold value µ (right) per episode during
training of the fully observable control policy on a 3× 3 grid graph.

Figure 5.2: Total reward (left) and threshold value µ (right) per episode during
training of the fully observable control policy on a 4× 4 grid graph.

Figure 5.3: Total reward (left) and threshold value µ (right) per episode during
training of the locally observable control policy on a 3× 3 grid graph.
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Figure 5.4: Total reward (left) and threshold value µ (right) per episode during
training of the locally observable control policy on a 4× 4 grid graph.

the repulsion of follower agents results in any change in reward. Thus, large policy

gradient magnitudes computed during the optimization procedure can? frequently

be attributed to the Stay action. In addition, the action space can result in invalid

leader movements, in which the leader attempts to move out-of-bounds on the grid

graph. For instance, a leader agent at `1 = 3 in Fig. 4.1 can only move Up, move Left,

or Stay. If the leader decides to move Down or Right, it remains at the same vertex

since these are invalid actions, yet is given the same reward as a valid action. For

example, a DQN algorithm would result in the state-action value function repeatedly

learning that the best action a leader can take is to stay at its current vertex and repel

follower agents, since that is the only valid action for all vertices. As mentioned in the

previous section, many of the actions taken by both the fully and locally observable

control polices were invalid.

We modify the action set from the original set (4.19) to include only valid actions.

Defining `i1 as the leader position on the ith vertex, the new action set is:

Afc = [ `1
1, `

2
1, `

3
1, . . . , `

M
1 ]. (5.1)

This requires the leader to be able to transition from any vertex to any other vertex;

i.e., the edge set of the graph must be expanded to make the graph fully-connected,
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as shown in Fig. 5.5. While the leader follows a fully-connected graph, the individual

agents remain evolving according to the strongly connected graph. Motivation for

this redefinition of the action set is illustrated by a scenario in our previous work

Elamvazhuthi et al. (2020), in which we developed a 3D Gazebo simulation of a

quadrotor that “herds” a group of Pheeno robots Wilson et al. (2016) over a 2×2 grid

graph whose vertices correspond to spatial regions as in Fig. 4.18. The limited field-

of-view of the quadrotor’s onboard downward-facing camera required the quadrotor

to increase its altitude in order to count the number of robots in each region, which

it used to determine its next location on the graph. Although the quadrotor was

constrained to move along the edges of the grid graph, in practice it needed to leave

its current location towards the center of the graph and increase altitude to obtain

the population counts. Hence, implementing our control policies on a real robotic

system may require relaxing constraints on the leader’s motion so that it can obtain

the sensor information necessary to determine its next action. Changing the edge set

of the graph that defines the leader’s possible movements allows us to remove the

leader’s current position from the system state Ŝenv for the fully observable control

policy since the policy output is no longer dependent on the leader’s position. Thus,

the redefined state becomes

Ŝenv(k) = [ F1(k), F2(k), . . . , FM(k) ].

Our modified function approximators for the Actor-Critic fully observable control

policy are shown in Fig. 5.6.

Modifying the locally observable control policy based on the new action set Afc

only required changing the neural network to output the same control output as the

fully observable control policy. However, in our tests training the locally observable

control policy, adjusting the learning rate, network size (depth and width), and reward
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Figure 5.5: Our original approach defined the possible agent transitions according
to a strongly-connected grid graph (left); however, limitations in the scalability of
this approach with the number of vertices prompted us to redefine possible agent
transitions according to a fully-connected graph (right).

function definition did not produce convergence to the target distribution on the fully-

connected 3× 3 and 4× 4 graphs within the specified threshold. This is likely due to

the increased dimensionality of the policy space in the system, since the number of

outputs increases with the number of vertices. Therefore, we did not pursue further

use of the locally observable control policy with the modified action set.

5.4 Training the fully observable control policy with the new network

Using the new network described in the previous section with G defined as a 3× 3

or 4 × 4 fully-connected graph, we trained the fully observable control policy with

the new action set Afc over 5000 episodes, with 4000 iterations per episode. The

network was defined to have depth 3 and width 256. We reduced the learning rate

to α = 0.0001 and continued using the Huber loss for our gradient descent. The

discount factor γ was again set to 0.99. As shown in Figs. 5.7 and 5.8, the resulting

fully observable control policy was able to reach the threshold µ = 0.0025, which our

previous fully observable and locally observable policies could not attain or sustain

for extended periods.
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(a) New Fully Observable Actor Network

(b) New Fully Observable Critic Network

Figure 5.6: Function approximators for the modified Actor-Critic fully observable
control policy, consisting of the Actor neural network model at the top and the Critic
neural network model below, with new state and action spaces for improved scalability
with the number of vertices in the graph.
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Figure 5.7: Total reward (left) and threshold value µ (right) per episode during
training of the modified fully observable control policy on a 3× 3 grid graph. The µ
plot is shown over only 1000 episodes, due to the rapid convergence and stability of
the new method.

Figure 5.8: Total reward (left) and threshold value µ (right) per episode during
training of the modified fully observable control policy on a 4× 4 grid graph.
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Chapter 6

LEADERLESS SWARM CONTROL STRATEGIES DESIGNED USING DEEP

RL ALGORITHMS TRAINED ON MEAN-FIELD MODELS

6.1 Summary

In this chapter, we extend the work done in (Zahi M Kakish et al., 2020, 2021) by

exploring a leaderless approach to controller design based on the mean-field model, in

which a set of control policies that depend on the target robot distribution is trained

and then implemented on all the robots. In particular, we consider the problem of

stabilizing a swarm of robots evolving on a Discrete-Time Markov Chain (DTMC)

on a graph without the use of a leader, as done in our previous work (Deshmukh

et al., 2018). We extend the leader-based approach by designing a multi actor, global

critic controller architecture for training. We first begin with a review of work done

in Deshmukh et al. (2018) and then formulate the new problem using our deep RL

controller trained on a modification of the mean-field model. We validate the new

control policy using a range of simulations with various bidirected graph sizes and

agent populations.

6.2 Mean-Field Stabilization of Markov Chain Models for Robotic Swarms

This work presents two computational approaches for synthesizing density feed-

back laws to stabilize the population densities of a robotic swarm to a strictly positive

target equilibrium distribution from an initial distribution. The approach is based on

a continuous-time version of the problem statement that is elaborated on in Section

3.2. The evolution of probability distributions is determined by the Kolmogorov for-
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ward equation, which can be cast in an explicitly control-theoretic form as a bilinear

control system,

ẋ(t) =
∑
e∈E

ue(t)Bex(t), x(0) = x0 ∈ P(V), (6.1)

where Be, e ∈ E , are control matrices with entries

Bij
e =


−1 if i = j = S(e),

1 if i = T (e), j = S(e),

0 otherwise.

(6.2)

Equation (6.1) is a continuous-time version of (3.6) defined in Section 3.2. With the

problem defined, a linear (solved through Linear Matrix Inequality methods) and a

nonlinear (solved using a MATLAB Sum-of-Squares Toolbox) controller, ue(t), were

designed to stabilize a positive probability distribution on V (Deshmukh et al., 2018).

The contribution of the author was to implement the computed density feedback

laws on a testbed of physical robots. The following sections are an overview of the

experimental testbed, procedure, and results.

6.2.1 Experimental Testbed

We evaluated our linear and nonlinear controllers in a scenario in which a group

of small differential-drive robots must reallocate themselves among four regions. For

these experiments, we used ten Pheeno mobile robots (Wilson et al., 2016), each

equipped with a Raspberry Pi 3 computer, a Teensy 3.1 microcontroller board, a

Raspberry Pi camera, six IR sensors around its perimeter, and a bottom-facing IR

sensor. Pheeno is compatible with ROS, the Robot Operating System, which facilities

the implementation of advanced algorithms with our multi-agent system.

For the experiments, we used a 2 m × 2 m confined arena, shown in Fig. 6.1, that

was divided into four regions of equal size. These regions were labeled 1, 2, 3, and 4
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Figure 6.1: Multi-robot experimental testbed.

according to the green numbers in Fig. 6.2. Each region corresponds to a vertex of

a bidirected graph that defines the robots’ possible transitions between the regions.

Robots can move between adjacent regions but not diagonally; i.e., there are no edges

between vertices 1 and 4 and between vertices 2 and 3. The walls along the borders of

regions 1, 2, 3, and 4 are colored purple, cyan, green, and red, respectively, as shown

in Fig. 6.1. In addition, regions 1 and 4 have a black floor, and regions 2 and 3 have

a white floor. These color features were included to enable each robot to identify its

current state (region) through image processing and IR measurements.

A Microsoft LifeCam camera was mounted over the testbed to obtain overhead

images of the experiments. The robots were marked with identical yellow square

tags, which were detected using the camera (see the red circles in Fig. 6.2). A central

computer processed images obtained by the camera and communicated with all the

robots over WiFi. The robots did not have access to information about their positions

in a global frame.

6.2.2 Pheeno Robot ROS Projects

A series of ROS packages (Zahi M Kakish, 2018) were developed in order to

streamline physical experimentation and simulation of multi-agent control strategies.
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Figure 6.2: Overhead camera view of the testbed during an experimental trial.

These packages allow a user to easily conduct experiments using a single or multiple

Pheeno robots (Wilson et al., 2016) in Gazebo simulation, RViz, and physical envi-

ronments. Documentation provided for each package makes the Pheeno platform a

good beginner’s guide for people wishing to learn more about robotics and ROS. In

the following table, each package is labeled along with its respective use-case with the

Pheeno robot.

6.2.3 ROS Setup

The entire setup utilized ROS middleware. The central computer runs the ROS

Master and two ROS nodes: an overhead camera node to process images of the testbed

from the overhead camera, and a transition control node to initiate or end an iteration.

The overhead camera node calculates the number of robots in each region. This
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Table 6.1: Pheeno ROS packages along with their respective use-cases. The third
column designates the ROS version for which these packages are available.

Package Description Release

pheeno_ros Executables for run-

ning a Pheeno

Kinetic,

Indigo

pheeno_ros_sim Gazebo simulation

launch files and

simulation files

Kinetic,

Indigo

pheeno_ros_description Gazebo and Rviz sim-

ulation model files

Kinetic

pheeno_arduino Microcontroller ROS

drivers for Pheeno

N/A

calculation does not require the identification of individual robots; instead, the node

uses color detection to count the number of yellow identification tags inside each

region on the testbed. These numbers are then converted into robot densities in each

state and are published on a ROS topic. The transition control node monitors the

state transition iterations. The node ends an iteration when every robot has reached

its desired state.

Each robot runs three ROS nodes: a sensor node, a camera node, and a controller

node. The sensor node publishes data from all the robot’s IR sensors on their corre-

sponding topics and drives the robot’s motors by subscribing to movement command

topics. The camera node publishes raw images from the robot’s onboard cameras.

Finally, the controller node runs the motion control scheme for the robot, described

in Section 6.2.4. This node receives the state densities from the central computer’s

overhead camera node. The robot computes the next desired state using the controller
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(b) Nonlinear controller with N = 10 robots

Figure 6.3: Trajectories of the mean-field model (thick lines) and the robot popu-
lation fraction in each state, averaged over five experimental trials (thin lines).

input and has to decide whether to stay in its current region or transition to another

one.
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6.2.4 Robot Motion Controller

Each robot starts in one of the four regions (states), according to the specified

initial condition, and is programmed with the desired equilibrium distribution xeq and

the set of transition rates ke(x) that have been designed by the central computer using

one of the procedures described in Section 6.2. The robots know their initial region

and update their region after each iteration. At the start of each iteration, the robots

receive state feedback x, the current robot densities in each region, from the overhead

camera node. Using this information, each robot computes its probability ke(x)δt,

where δt = 0.1, of transitioning to an adjacent spatial region T (e) within the next

iteration. This stochastic decision policy is executed by the robot using a random

number generator. If a robot decides to transition to another region, it searches for

the color on the wall of that region. As soon as it finds the color, it moves ahead

along a straight path. If an encountered object obstructs its path, the robot avoids

it and reorients itself toward the target region. Since the robot’s onboard camera is

unable to detect changes in depth, we assigned each region to have a white or black

floor, which can be identified by a bottom-facing IR sensor on each robot. The robot

detects that it has entered the target region when it identifies a change in the floor

color. The robot then moves forward a small distance, which prevents robots from

clustering on the region boundaries, and stops moving. Finally, the robot sends a

True signal to the transition control node. This node initiates the next iteration once

it receives a True signal from all the robots. The entire process is repeated until the

desired distribution is reached by the robots.

82



6.2.5 Results

The controllers were designed to redistribute a population of N = 10 robots

on the four-vertex bidirected graph corresponding to the arena. The initial distri-

bution was defined as x0 = [0.5 0.5 0 0]T . For the linear controller, the desired

distribution was xeq = [0.2 0.3 0.3 0.2]T , and for the nonlinear controller, it was

xeq = [0.3 0.2 0.2 0.3]T .

Figure 6.3 shows the solution of the mean-field model defined in 6.1 with each

of the two controllers and the corresponding robot populations in each state from

the experiments, averaged over five trials. For ease of comparison, the total robot

populations were normalized to 1. The plots show that the robots successfully redis-

tribute themselves to the target distribution, as predicted by the mean-field model.

The nonlinear controller produces a slower convergence rate to equilibrium than the

linear controller.

6.3 Centralized Deep Reinforcement Learning Agent Controller

6.3.1 Problem Statement

The notation in Sections 3.2 and 4.2 guide our definitions of this problem state-

ment. However instead of the Kolmogorov forward equation (3.6) and the “leader”

modified version (4.9), we define the agent state evolution according to a single time-

dependent matrix K comprised of the sum of our Be matrix and our transition rates

ue as follows:

K(t) =
∑
e∈E

ue(t)Be (6.3)
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This leads us to define our bilinear control system as the following discrete-time linear

ordinary differential equation (ODE) mean-field model

ẋ = −K(t)x (6.4)

where K ∈ RM×M . Theoretical justification of the linear ODE is given in Gillespie

(2007) and Berman et al. (2009). The K matrix has the properties

KT (t)1 = 0 (6.5)

Kij(t) ≤ 0 ∀(i, j) ∈ E (6.6)

which result in the following structure:

Kij =


−kji if i 6= j, (j, i) ∈ E ,

0 if i 6= j, (j, i) /∈ E ,∑
(i,l)∈E kil if i = j.

Each element k is a reaction rate that models the agent population inflow and outflow

of a vertex. Figure 6.4 illustrates the bidirected graphs with edges associated with the

their respective rate k. Instead of using an ij subscript to denote the source vertex i

and target vertex j, we label them with a value 0 to NE , where NE is the number of

edges within a graph. The associated source and target, i and j, can be inferred from

the graph due to the directional arrow. Equation (6.4) models the state evolution of

x over time t if each reaction rate k is known. Compared to our work in Chapter

4, we do not train a single control policy using data generated from the mean-field

model. Instead, we train NE control policies which output individual k reaction rates

that compose the K matrix. The outputs of the linear ODE model are then used

to train and optimize the policies which output the reaction rates k. Therefore, our

problem becomes:
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Problem 6.3.1. Given a target agent distribution Ŝtarget, and defining Ae = N (µe, σe),

devise NE control policies πe : P(V) × V → A that drives the agent distribution to

Ŝ(T ) = Ŝtarget, where the final time T is as small as possible, by minimizing the total

reward
∑T

t=1 Re(t).

6.3.2 Leaderless Controller Design

Our devised leaderless controller draws on the advantage actor-critic defined in

Section 4.3 but modifies it into a multi actor, global critic framework. Each reaction

within the K matrix defined in (6.4) represents a particular edge e and will have

associated with it an actor that takes the population fractions at vertices σ(e) = i

and τ(e) = j as inputs. Instead of each actor paired with a critic with similar inputs,

we rely on a single global critic that is a function of the agent population fractions

at all M vertices. Therefore, gradient estimations of individual actors are taken with

respect to the global critic. The overall controller architecture using the multi-actor,

global-critic design is illustrated in Figure 6.5.

In Section 4.3, we presented our control policy inferring discrete actions a ∈ A.

Therefore, We represent the transition rates ke as samples from a normal distribution

with mean φe and standard deviation λe,

ke ∼ N (φe, λe). (6.7)

To enable our control policy to learn the transition rates, we modify our actor networks

to output the continuous parameters φe, λe for each edge e ∈ E . Both the mean and

standard deviation are clipped between 0.2 to 0.8 and 0 to 0.1, respectively. The

reaction rate ke is thus a sampled random variable from the normal distribution:

Ne(φe, λe) ∼ ke (6.8)
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which modifies our actor gradient estimation from our original policy

5θJ(πθ) = Et
[
Aπt 5θ log πθ(at|st)

]
to a policy that is the log of the normal distribution

5θJ(πθ) = Et
[
Aπt 5θ log πθ(N (φ, λ))

]
(6.9)

However, we cannot use the advantage function when calculating the policy gradient

as defined in Section 4.3 since it requires calculating the difference between an es-

timated state-action value Q(s, a) and the critic value V (s) for the same s used by

both actor and critic. In our leaderless approach, the state used by the each actor is

Sp ⊂ Senv, where p is an edge of the graph, p = {1, . . . , NE}, defined as

Sp = [ xi, xj ] if p = (i, j) ∈ E . (6.10)

The state subset Sp is composed of only two agent population densities since an

edge only connects two vertices within a graph. The global critic uses the full state

Senv = [x0, . . . , xM ] when calculating the state value V (Senv). Therefore, we employ

two separate reward functions to train our actors and global critic. The first is the

difference between the desired population fraction at a vertex xd,m and the current

population faction at a vertex xm

r(Sp) = xd,m − xm if σ(p) = m (6.11)

which is used by the multiple actors. The value m refers to the source vertex within

the edge p for the reaction ke, i.e. σ(e) = m. There are M actor reward functions

since multiple edges can have the same source vertex. The discounted return for the

actor of edge p with source vertex m is as follows:

Gp(t) = rt(Sp,t) + γrt+1(Sp,t+1) + γ2rt+2(Sp,t+2) + . . .+ γT rm,T =
T∑
t′=t

γt
′−trt′(Sp,t′)

(6.12)
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The global critic maintains the use of the negative mean-squared error as defined

previous in Sections 3.2 and 4.3.1 since it provides an adequate measure of the distance

the overall agent population Senv is to Ŝtarget. One major drawback from the actor’s

reward function is that it does not provide a value pertaining to the full system since

the actor only uses the locally observable information of the vertex m. Therefore,

we modify our policy gradient estimation to include returns from the actor and the

global critic

5θJ(πθ) = Et
[
Cπ
p (t) 5θ log πθ(N (φ, λ))

]
(6.13)

where Cπ
p (t) is a globally-scaled local return function

Cπ
p (t) = Gp(t)Vt(Senv,t) (6.14)

By multiplying the actor return Gp(t) by the state value estimate of the fully ob-

servable global critic, we ensure that the gradient estimation will scale depending on

how close the system is to the desired population density. Having our global critic

trained on the MSE of system will predictably make smaller valued outputs if the

system is close to the target population density Starget. Thus, the actor’s return Gp

acts as a guide for the individual actor loss in relation to its distance from the target

population fraction at the source vertex xd,m.

6.3.3 Training

The control policies are trained using TensorFlow (Abadi et al., 2015) on 2, 4, and

6 node bidirected graphs shown in Figure 6.4. Each neural network for the L actors

and global critic consist of two hidden layers of 32 units. Each hidden layer uses

an ReLU activation function (Nair and Hinton, 2010). The actor’s output layer use

two different activation functions: a sigmoid function for the mean φ and a softplus

function for the standard deviation λ. Each training cycle is comprised of 2500
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(a) 2 Node Graph (b) 4 Node Graph

(c) 6 Node Graph

Figure 6.4: 2, 4, and 6 vertex bidirected graphs.

episodes with 100 iterations of the linear ODE (6.4). At every iteration the actors

populate the K matrix with the reaction rates ke. Predictably, the larger the graph

G the larger the number of forward passes of the actor’s neural network are required

to infer the reaction rate per iteration. The initial agent population fraction used by

the mean-field model to reach a target population fraction during training are

Ŝinitial = [ 0.8, 0.2 ] Ŝtarget = [ 0.2, 0.8 ]

for the 2 node bidirected graph,

Ŝinitial = [ 0.4, 0.1, 0.1, 0.4 ] Ŝtarget = [ 0.1, 0.4, 0.4, 0.1 ]
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Figure 6.5: Our centralized linear controller composed of M local actor MLPs and a
single global critic. The output of each actor are the parameters µ and σ of a Normal
distribution. The random variable sampled from the distribution corresponds to the
reaction rate kM on the 4 node bidirected graph. The global critic provides insight
into the whole system by inputting the population densities within every vertex.

for the 4 node bidirected graph, and

Ŝinitial = [0.2, 0.1, 0.2, 0.15, 0.2, 0.15] Ŝtarget = [0.1, 0.2, 0.05, 0.25, 0.15, 0.25]

for the 6 node bidirected graph. We use an Mean-Squared Error stopping criteria

µ = 0.005 to provide the policy feedback that population densities in the graph have

converged to Ŝtarget similar to the one employed in Chapters 3, 4, and 5. The discount

factor for both actor and critic reward functions are γ = 0.99. The learning rates for

the global critic and the edge dependent actors are αC = 0.0001 and αA = 0.00001.

The actor learning rate is dropped to 0.000001 when training the control policy on the

6 node bidirected graph. The global critic neural network loss function is the Huber

Loss (Huber, 1964) to help minimize the chance of outlier data points impeding the

gradient descent towards an optimal policy. We use an Adam optimizer (Kingma and
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Ba, 2017) for both the global critic and edge dependent actors. The control policies

are trained on a desktop with a 4th-generation Intel i7 4-core CPU with 32GB of

RAM running Ubuntu 20.04. The code is run in an Docker container to keep the

software environment consistent between training runs.

6.3.4 Simulations

After training, the leaderless policy is tested on a 2, 4, and 6 node bidirected

graph with N = 100 and N = 1000 agents simulated using matplotlib (Hunter, 2007).

Figure 6.6 presents the simulated bidirected graphs representations with N = 1000

robots. Each trained policy is run on their respective trained graph size for t = 100

iterations. At every time step, an individual agent will perform a forward pass on the

leaderless policies whose source edge is the vertex the agent currently resides σ(e) = i.

The agent will then sample a random variable from a uniform distribution between 0

and 1. If the variable is greater than the reaction rate ke from the leaderless policy,

the agent will transition to the vertex that is the target vertex of τ(e). The variable is

compared to cumulative sum of reaction rates for cases where more than one edge is a

source σ(e) sharing the agents current vertex position. For example, an agent located

in vertex 0 in a 4 node graph computes two reaction rates: k0 for edge e = (0, 1) and

k2 for edge e = (0, 2). A random variable Y from a uniform distribution is compared

to the rates as the following piecewise function:

D(t) =


1 if Y < k0,

2 if Y < k0 + k1,

0 otherwise

(6.15)

where D is a piecewise function that specifies which state the agent will transition to

given the random variable Y . The simulation will move to the next time step after
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(a) 2 Node Simulation (b) 4 Node Simulation

(c) 6 Node Simulation

Figure 6.6: Python simulation displaying the 2, 4, and 6 vertex bidirected graphs
at t = 0 for agent populations N = 1000. At each time step, an agent may transfer
to an adjacent vertex or stay within the same vertex depending on the output of the
centralized linear controller.

all the agents have either transitioned to a new spatial state or remained within their

current one. In addition, the current agent population fractions within the graph are

recorded along with the MSE used during training as the stopping criteria µ.

6.3.5 Results

The resultant agent population fraction evolution over time for each simulated

test runs are presented in Figures 6.7, 6.9, and 6.11. For the 2 and 4 node graph
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case, we notice that the leaderless deep RL controller provides a quick transient

response of approximately 7 − 10 seconds for both N = 100 and N = 1000 agent

cases. The lower agent number for these cases tended to oscillate above and below

the desired population densities xd at higher frequency in comparison to stability

seen when N = 1000. The 6 node graph provided degraded performance at the lower

agent populations in terms of stability and transient response. For both N agent

population cases, we see roughly 10− 15 second steady-state response. The stability

is worse in terms of maintaining the xd for each vertex. We believe this is likely

due to poor choice of hyperparameters during training. In addition to measuring the

population fractions of agents per time step, we plotted the stopping criteria µ as

shown in Figures 6.8, 6.10 and 6.12. In previous chapters, µ acted as a measure of

convergence towards the desired population densities xd. All three bidirected graph

sizes at both agent populations showed proper convergence to or below our desired

µ = 0.005. The 6 node graph at an N = 100 showed more erratic behavior once it

reached the µ = 0.005; however, it still did maintain an average steady state around

our desired µ value.

6.4 Robot Simulation

We test the applicability of our approach on a simulated 4 node bi-directed graph

testbed using 10 simulated GRITSBotX robots. The simulated environment is pro-

vided by the ros2 robotarium package: a ROS 2 Thomas et al. (2014) and Gazebo

Aguero et al. (2015) recreation of the Georgia Tech Robotarium Wilson et al. (2020)

developed by our laboratory. Figure 6.13 shows the simulated testbed onto which

10 GRITSBotX robots are distributed according to Ŝinitial. The bi-directed graph is

represented as a checkered pattern on the surface of the testbed. A robot is consid-

ered to have transitioned from one vertex to the next by crossing the barrier between
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(a) Deep RL controller with N = 100 robots

(b) Deep RL controller with N = 1000 robots

Figure 6.7: Agent population fraction simulated results per time step on a 2 node
bidirected graph at (a) N = 100 and (b) N = 1000. Agent populations started at

Ŝinitial = [0.8, 0.2] to an Ŝtarget = [0.2, 0.8]. Two red lines are plotted at 0.2 and 0.8
to assist in visualizing the transient response of the agent population fractions to the
target distribution over time due to the deep RL leaderless controller.
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Figure 6.8: System MSE response of N = 100 and N = 1000 agents on a 2 node
bidirected graph to the baseline stopping criteria µ = 0.005 used during training.

the colored grid boxes. A camera object placed above the testbed was added for

an overhead view to display pertinent information such as the current iteration and

the current population density within each vertex. The simulation is run until the

population is distributed on the graph according to Ŝtarget.

At each iteration, individual robot receive the population fraction within it’s cur-

rent state and the two adjacent vertices. The robot then select the two proper actor

control policies for edges that link the current vertex to the adjacent target vertex. A

forward pass from both networks will results in two reaction rates. The robot samples

a random number from a uniform distribution X ∈ [0, 1) which it will then compare

to the reaction rates inferred by the two control policies as in (6.15).
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(a) Deep RL controller with N = 100 robots

(b) Deep RL controller with N = 1000 robots

Figure 6.9: Agent population fraction simulated results per time step on a 4 node
bidirected graph at (a) N = 100 and (b) N = 1000. Agent populations started at

Ŝinitial = [0.4, 0.1, 0.1, 0.4] to an Ŝtarget = [0.1, 0.4, 0.4, 0.1]. Two red lines are plotted
at 0.1 and 0.4 to assist in visualizing the transient response of the agent population
fractions to the target distribution over time due to the deep RL leaderless controller.
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Figure 6.10: System MSE response of N = 100 and N = 1000 agents on a 4 node
bidirected graph to the baseline stopping criteria µ = 0.005 used during training.
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(a) Deep RL controller with N = 100 robots

(b) Deep RL controller with N = 1000 robots

Figure 6.11: Agent population fraction simulated results per time step on a 4 node
bidirected graph at (a) N = 100 and (b) N = 1000. Agent populations started

at Ŝinitial = [0.2, 0.1, 0.2, 0.15, 0.2, 0.15] to an Ŝtarget = [0.1, 0.2, 0.05, 0.25, 0.15, 0.25].
Red lines to aid in visualizing the target distribution are not provided to prevent
over-complicating figure.
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Figure 6.12: System MSE response of N = 100 and N = 1000 agents on a 6 node
bidirected graph to the baseline stopping criteria µ = 0.005 used during training.

Figure 6.13: Gazebo testbed for a 4 node bidirected graph represented as a checkered
pattern. 10 GRITSBotX robots are distributed evenly over the graph. A small
window on the left gives an overhead view of the testbed and a superimposed text
displaying the iteration and population fraction within each vertex.
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Chapter 7

APPLICATIONS FOR RL-BASED SWARM CONTROL STRATEGIES

TRAINED ON MEAN-FIELD MODELS

7.1 Summary

In this chapter, we explore two applications of multi-robot systems using different

control paradigms that may benefit from using a mean-field model based approach

towards controlling multiple robots. Both the applications we shall discuss involve

human operators that have an overall control over a number of robots within a partic-

ular system, yet these systems become unreasonable for a single operator to complete

or allocate tasks when robot population scales too much. The work in previous chap-

ters is capable of alleviating these problems for an operator wishing to delegate tasks

or spatial states on-the-fly by providing optimal control policies that can be trained

with the mean-field model thereby limiting time to implementation and increasing

usability at population scale.

The first application is an open-source AI assistant to coordinate multiple agents

on a lunar pole for ice prospecting. In this application, sites-of-interest are allocated

by a human operators to areas where they believe ice may be found. However, the

areas where the robots traverse in search of water contain numerous hazardous en-

vironmental hurdles that can ruin a mission. Communication delays, coupled with

interference from the harsh lunar topology at the poles, limits the spatial areas that

a rover can traverse. We present an AI assistant that can keep multiple science rovers

within safe communication distance of one another to reach sites-of-interest.

Second, we investigated human-in-the-loop approaches for managing a swarm of
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robots to prevent cognitive overload, which can impair a human operator’s ability

to continue supervising the swarm (Chen and Barnes, 2014). Various approaches

have been attempted to control multi-robot systems by other physical means, in-

cluding wearable devices using haptic feedback (Music et al., 2017; Ferrer, 2018) and

electroencephalogram (EEG) brain-computer interfaces (BCI) (Karavas et al., 2017).

However, both these approaches are hindered by the necessity of wearable hardware

to function and cumbersome solvent application process to read noisy EEG signals

from the cranium, respectively. We present an initial design and validation of an

approach to human-swarm interaction based on robot recognition of sequential hand

gestures. While not a fully decentralized control approach, it demonstrates the ability

to leverage recent improvements in the object classification abilities of Convolutional

Neural Networks (CNN) that run on small, low-cost, low-powered computational de-

vices that are typically used on swarm robotic platforms.

7.2 Open-source AI Assistant for Cooperative Multi-agent Systems for Lunar

Prospecting Missions

This section contains results from Zahi M Kakish et al. (2019).

7.2.1 Prospecting Mission Overview

The Resource Prospector (RP) mission aimed to perform “In-Situ resource uti-

lization” (ISRU) using a rover on the Lunar surface. However, the inclusion of ISRU

instruments on the rover increases the complexity of classical navigation and explo-

ration tasks. Thus, the process for controlling a rover during a prospecting mission

is composed of two Mission Control systems: the Mission Control located on Earth

surface (MCoE) and the Mission Control located on the rover vehicle (MCoR). The
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former is the one managed by a mission team (human operators) facing a front-end

interface and selecting the best driving distances and areas using available informa-

tion from rover sensors. As a result of this process, they will command the rover to

visit a new position or to perform ISRU. The latter is the one deployed on the robot,

and allows manual control, teleoperated by a human operator, and semi-autonomous

control, where the robot is running with partial supervision. The MCoR would be

seen as the control unit for the localization, navigation, and prospecting systems. The

robot generates actions and gathers information from its sensors for relaying to the

MCoE. Nevertheless, current missions entail several major challenges: 1) Moon-to-

Earth communications and interactions with human operators in the loop, 2) harsh-

ness and unpredictability of the environment, and 3) the limitations and lack of

robustness of single-robot missions.

Given the Earth-Moon geometry, communication between a rover on the Moon

and mission control on Earth is not a straightforward process. The round-trip com-

munication latency for a mission on the Moon is significantly shorter (varying between

6 seconds to over 25 seconds for RP) than Mars, which could expect a response time

of 28 minutes for a software ping or to perform a rover operation (Gordon, 2012).

This scenario discourages real-time command and control. Thus, any action under-

gone by the rover is prepared and meditated by a team that decomposes each task

to fine-grained steps. The idea is to define decision cycles for providing near real-

time command and control by means of driving the rover using a waypoint approach

Andrews (2015).

The Moon’s environment (Heiken et al., 1991) is composed of numerous imped-

iments to simple operations which operators are accustomed to on Earth. It has a

solid-surface body made up of a rocky surface covered with regolith. Consequently, the

regolith material and spectral properties make traversal difficult using conventional
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platforms. Regolith covering the surface varies between 3 meters and 20 meters. The

Moon presents (Besancon, 2013) a crust size of 60 to 100 kilometers thick. In addi-

tion, the Moon has other properties (Berkelman et al., 1995) such as dust constraints,

thermal properties, and vacuum conditions which make operation difficult.

Figure 7.1: Overview of a mission control. Expected goals (supported on AI) vs
current scenarios (supported on Earth surface mission control).

In the RP mission, the single rover lacks autonomy, traversal versatility, commu-

nication capabilities and characteristics for reaching the goal in an expected amount

of time. These challenges can be significantly reduced by multi-robot operations,

which can improve mission efficacy and lower risks by autonomously coordinating the

agents. Despite continual advances in the field, there are still numerous challenges to

reduce the complexities associated with the coordination of multi-robot systems and

mission planning strategies, which motivates further research.

We propose a set of tools capable of enhancing the planning capabilities of the

102



Mission Control Team on Earth during the decision making process of prospecting and

exploration missions. In addition to providing operators with important information,

the system assists with the control of a multi-agent configuration of rovers. The

first iteration of development presents a mission generator that provides multiple

possible plans for conducting a prospecting mission on the Moon. Figure 7.1 presents

the overview and contributions of our project and the current status of a mission

definition.

Before explaining the MARMOT solution, it is necessary to identify the main

features associated with MCoE and MCoR. The Moon context clearly bounds the

possibilities available for offering a guidance system for Mission Control on Earth. In

addition, current data acquisition capabilities of rover sensors and satellites limits the

information available to make the best decision. Thus, this project is split into three

main elements: 1) Cost Map Generation, 2) Waypoint Generation and Guidance, and

3) Multi-agent Strategy.

7.2.2 Cost Map Generation

To produce a usable cost map, a blank grid-graph containing vertices and edges

the size of the operational area is generated. Next, each vertex is associated with

it information about the environment. The information is used to generate a cost

associated with that vertex for eventual use in path planning strategies. For example,

the distance of a vertex to an obstacle is assigned a low value if the vertex is far from

obstacle, but a high value is assigned if it is closer. The values given to vertices on the

grid-graph are taken from fusing multiple maps in layers of the same area containing

different information (Lu et al., 2014; Boumghar et al., 2011). In the case of a Lunar

environment, the fusion entailed layering terrain, slope, shadows, and communication

maps.
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Lunar Terrain and Slope Maps Currently, there are no publicly available high-

resolution, finely-detailed maps of the Lunar surface. A terrain map must thus be

made utilizing information that is publicly available. Moon Trek (JPL, 2018), a

website hosting publicly available Moon data organized by NASA JPL, provides easy

and free access to Lunar surface data. We focused our efforts on the crater Hermite

A located on the Moon’s North Pole since this was the tentative operational area

of the Resource Prospector (Mahoney, 2018) mission. Inspired by images from the

Lunar Orbiter Laser Altimeter on board the Lunar Reconnaissance Orbiter (LRO)

of the area, an artificial Lunar surface was created with the help of a 3D open source

creation suite, Blender (Community, 2019).

From the LRO mission, Digital Elevation Models (DEM) and other surface in-

formation provided approximate values of the Moon’s topological surface, which was

used for creating mock Lunar area called the terrain-slope map. Figure 7.2 is one such

example of real data topological surface where each pixel represents terrain inclina-

tion. In the image, black pixels correspond to flat surfaces while white pixels are steep

slopes. The grayscale variations in-between black and white scale from shallow (dark

grey pixels) to steep (light grey pixels) surfaces. Figure 7.3 demonstrates the original

image DEM converted and modified to a similar artificial surface using Blender.

Shadow Map The 1.5◦ tilted position of the Moon causes different shadow periods

on surface. Near the poles, some craters have local depressions in continual permanent

shadow while, on the other hand, we can find craters with the outer edge remaining

sunlit throughout the year. There are identified four different areas on Lunar surface:

Sunlit, Short Duration Sunlit, Shadowed Near Sunlit, and Permanently Shadowed

Regions (PSR). It is important to highlight that data obtained by Lunar Reconnais-

sance Orbiter suggest it is possible to find thick ice and other volatiles on the top
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Figure 7.2: Terrain slope representing terrain inclination at each pixel.

Figure 7.3: Moon surface digital elevation model DEM (left) and a generated view
in Blender from this DEM (right).

1-2 meters of regolith on shadowed regions at the lunar poles. Those are thus regions

of interest for the prospecting missions, and, for this reason, current missions to the

Moon require solar power for energy. A rover caught in a shadowed region can have

a detrimental effect on a mission, which include the inability to recharge and having

to endure large deviations in temperatures. Data has shown that temperatures in

shadowed regions are as low as −250◦C. Under these circumstances, the shadow map

layer consists of marking areas that are consistently covered in shadow. However,
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as explained earlier these shadows change throughout time. A path obtained taking

into account the lunar shadow layout at a certain period of time could be dangerous

several hours later.

Using Blender, a simulated Moon cycle can provide the needed shadow information

for a potential site as demonstrated and expanded upon in Figure 7.4. The figure

provides a great visualization of the variability in surface illumination over time. The

map is then used as a basis for generating a cost attributed to shadow coverage. Areas

that are more frequently covered in shadow are given a higher costs, while areas with

little shadow coverage are given lower costs. This translates to a shadow map that

can assist a rover in navigating away from areas that are deemed high-risk due to the

prevalence of shadows.

Figure 7.4: Shadow shapes on Moon surface greatly change with respect to moon-
sun angle along the moon cycle (28 days). The images show the evolution every 44
hours. Brighter areas are those with exposure to the sun, while the darker areas are
occluded by terrain into darkness.

Communications Map During a Lunar mission, direct communication with Earth

is required to oversee and control rover operations. However, given certain rover hard-

ware and autonomy limitations, including issues with geographical location, main-
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taining direct communication is not consistently achievable. Improving the com-

munication hardware available to a rover is a simple solution, yet this is economi-

cally infeasible for many small space companies or research initiatives. Therefore,

we explore indirect communication methods using multiple agents as a possible so-

lution; for example, a stationary lander acting as an intermediary between a rover

and Earth. Pal and Tiwari (2013) analyzed this type of multi-agent scenario with as-

sumed perfect communication between the lander and rover. This, however, does not

accurately represent the communication connection strength between a lander and

rover on a real Lunar mission. Multiple factors such as the Moon surface topology,

distance-dependent constraints, and antenna intrinsic features (Bapna et al., 1996)

significantly complicate communication in this configuration. Additionally, certain

operations require the rover to explore areas where communication is completely hin-

dered (such as a crater), and necessitates the assistance of a relay rover to maintain

connection.

Figure 7.5: Three communications models generated in Blender (ray tracing) show-
ing scientific rover (left), relay rover (middle), and lander (right) communication
regions. The scale of worst to best communication coverage and strength.

A communication map is thus derived from modeling these constraints and sim-

ulating them in a Blender environment. Figure 7.5 shows a Blender generated com-

munication map. The figure shows three images with a representation of the strength

and coverage of rover transmission based on its location. The values scale from black

(worst) to white (best) for each pixel in the image. The fusion of thse single commu-
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nication models produces the complete communication region. Communication cost

maps generated from this image contain values analogous to the image’s grayscale

values. Figure 7.6 is obtained as a result of this process.

Figure 7.6: Total communication coverage. The grayscale of worst to best commu-
nication coverage and strength.

7.2.3 Waypoint Generation and Guidance

It is necessary to locate and select those scientifically interesting targets which

could be great sources of information to the missions. Traversal between these targets

–points-of-interest– is performed by a navigation system. This navigation system

provides the mechanisms to move the rover on the Moon surface between two or

more points. The current process includes a team on Earth selecting the region of

interest that the rover should visit. This process is supported by several sources of

information such as local images, information from the Lunar Reconnaissance Orbiter,

and rover sensors.

Points-of-Interest Selection Since our work was modeled on prospection tasks,

and more specifically the Resource Prospector mission, points-of-interest (POI) for
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a Lunar operation consisted of locating the presence of water and predicting the

thermal stability of ice with respect to the depth of the Lunar surface. According to

Colaprete (2018), these Resource Target Regions (RTRs) are defined as four regions:

dry regions where temperatures are too warm for ice to be stable, deep regions where

a stable layer of ice is expected between 50-100 cm from the surface, shallow regions

where a stable layer of ice is expected 50 cm from the surface, and surface regions

where surface ice is expected, which is typically in a PSR location.

Opportunistic Path Planning Current approaches for solving these challenges

are based on two main methods (Carsten et al., 2007): blind drive, where the Earth

operator defines the robot path and the rover follows that route with no identification

of hazardous conditions or new points of interest; and autonomous navigation, where

the rover identifies local threats such as non-traversable rocks or shadowed regions

surrounding them on its path to the target location. In the case of Lunar prospecting,

opportunistic path planning for multiple agents consists of selecting points-of-interest

that will yield the greatest amount of scientific return while maintaining constant

communication between the agents. Attempting to solve this requires an extensive

state-action space due to discretizing states into number of agents, number of points-

of-interest, and path proposals.

One can reduce this space by splitting the problem into two parts. The first selects

and manages the relation of the multiple agents and the points-of-interest by using a

brute-force traveling salesman solver as specified by Gutin and Punnen (2006). An A∗

algorithm is then used to establish an approximated best traversable route between 2

or n points-of-interest. The second part takes the approximated paths for each agent

and uses a version of the Distributed Path Consensus (DPC) algorithm (Bhattacharya

et al., 2010a) to augment the traversal paths for maintained communication between
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the agents.

Multi-Agent Strategy

As briefly mentioned in the Communication Map section, a multi-agent system can

significantly expand the capabilities of a Lunar prospecting and exploration mission,

yet this paradigm comes with challenges (Colby et al., 2016). Agents in this set-

ting lack full autonomy and are remotely controlled by human operators on Earth.

Increasing the number of agents without any additional autonomy concurrently in-

creases human operator burden. The work presented here provides a new multi-agent

automation strategy to increase the viability of future multi-agent missions.

For a prospecting mission, we examined cooperative strategies that provided ex-

tended, reliable communication on the Lunar surface because agents may enter RTRs

that limit communication. The two possible agent configurations are described in

the following subsections. The configurations proposed in this research are based on

three different agents with different physical characteristics and roles:

• Lander spacecraft: This agent serves multiple roles during a Lunar mission.

At the beginning of the mission, the Lander acts as the payload module con-

taining the rovers for arrival on the Lunar surface. The lander is strategically

placed on higher elevation to allow consistent, unfettered communication with

Earth as its second role.

• Scientific rover: A robotic rover capable of every possible mission defined

scientific experiment. It communicates directly with Earth, or by intermediaries

such as a Relay rover or a Lander spacecraft.

• Relay rover: Unlike the Scientific rover, this rover is primarily tasked with

assisting other rovers maintain communication with Earth. These rovers are
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less capable of doing thorough scientific experiments, but may be equipped

with some basic experiment support. Some descriptions have the relay rover

solely act as a communication relay and have no scientific capabilities.

Single-class Configuration A lander spacecraft on the Lunar surface deploys two

Scientific rovers of the same type. Both rovers have the same capabilities, but are

more conservative in their task allocation so as to maintain communication to the

lander. If a rover must enter an area with little possibility of communication with

the lander (such as a crater or a low elevation PSR), the other scientific rover may

act as a relay to maintain communication.

Multi-class Configuration A lander spacecraft on the Lunar surface deploys two

rovers: a scientific and a relay rover. The lander acts as a relay to communication back

to Earth. The scientific rover undergoes the necessary scientific tasks for the mission

while the relay rover maintains a communication connection between the scientific

rover and the lander. Additionally, the relay rover may provide limited secondary

scientific task capabilities.

MARMOT

The Multi-Agent Resource Mission Operations Tool (MARMOT) was developed to

help create better automation solutions to multi-agent problems. Specifically, MAR-

MOT gives users the ability to define an optimized set of trajectories to enhance

mission performance for exploration and/or prospecting tasks.

Pipeline From a macro-abstract view, MARMOT acts as a simple tool capable of

easy integration in existing backend systems. Building a mission pipeline utilizing

MARMOT begins with by providing databases (maps and points-of-interests related
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to the mission), mission constraints, and operator preferences as detailed in Figure

7.7. The latter two are user-defined and contain required mission information to

further tune and modify the generated cost map. For example, mission constraints

such as the mission-operation time window (date and length), which will be used to

generate the relevant time-dependent version of the shadow maps.

Figure 7.7: Layout of data pipeline and algorithm structure.

Once the data of each map is layered and fused to create the overall terrain cost

map, MARMOT selects POIs to integrate into this map. Finally, MARMOT uses the

master cost map to generate the multi-agent trajectories by deploying built-in path

planning algorithms.

Software Package Description MARMOT is a software deployment that aims to

help human operators. It consists of three stand-alone support packages, Graphery,

Mapstery, and Utils. The first two packages were built separately from MARMOT to

act as dependencies and for utilization in other projects. Graphery performs general

graph-theoretic network graphing, while Mapstery generates cost maps. The Utils

component of MARMOT is not a separate package, but it comprises a set of generic

tools for manipulating general data that companies and researchers may find useful.

Our aim in creating these packages tools was broad generalizability and extensi-

bility with other open-source projects, such as QGIS (Team, 2002), who would like to
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employ similar approaches for multi-agent missions. Additionally, MARMOT is built

from many open source libraries such as gdal from OSGeo (Warmerdam, 2008), Net-

workX (Hagberg et al., 2008), OpenCV (Bradski and Kaehler, 2000), and NumPy

(Walt et al., 2011). Figure 7.8 provides a basic overview of MARMOT’s software

structure.

Figure 7.8: MARMOT presents three main components Mapstery: Map fusion and
cost map generation, Graphery: Graph generation and path planning, Utils: general
purpose tools for data formalization and manipulation

Figure 7.9: Using a Digital Elevation Model (DEM), viewed in Blender on the left,
multiple cost maps can be generated.
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Mapstery Figure 7.9 presents an illustration of how a DEM is used to make the

slope, shadow, and communication maps. Before the layered cost map is generated,

mission objectives or preferences may require certain maps to take preference over

other maps. The user weighing the information provided by each map can result

in different path planning strategies. For instance, if shadowed regions are to be

avoided at all cost, a higher weight is associated with the shadow map relative to the

communication and slope maps. The layered and modified cost map is thus visualized

as a linear combination of individual maps,

CostMap = α ·Mshadows + β ·Mslope + γ ·Mcomm (7.1)

where α, β, and γ are the user-defined weights, and Mshadows, Mslope, and Mcomm are

the respective map associated to each weight.

Graphery Creation of grid-graphs are done primarily through the Graphery Python

package. Given a requisite map size, Graphery will generate the appropriate size blank

grid-graph for use with the layered cost map provided by Mapstery. The graph allows

users to modify or create certain attributes (or costs) on-the-fly.

Other Utilities Additionally, utility functions were created to ease MARMOT’s

use in existing codebases. Waypoints, tasks, and other mission primitives are loaded

using JSON format files. Visualization tools were developed for users who wish to

visualize the changes in non-web frontend formats using matplotlib Hunter (2007).

7.2.4 Coordination and Trajectory Proposals

Point-of-Interest Selection For a given Lunar mission, numerous points-of-interest

exist for exploration; however, very limited operation time by rovers make assessing

each of these points intractable. With MARMOT, we develop a means of generating
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a visit order of waypoints for a subsets of POIs that are explorable given mission con-

straints. The geographical coordinates of a POIs are input into a list of coordinate-

lists, where POIs of equal visit importance reside together. Each coordinate-list

constitutes a strata of importance for the mission. The algorithm then selects one

coordinate from each coordinate-list to generate a rover’s path, up to N user-defined

points.

Additionally, the algorithm optimizes the selection based on a distance function.

The more POIs the rover can assess in a shorter distance, the better the path is

considered. Numerous permutations of the paths are provided to enable the user to

make the final selection. Additionally, variations of this algorithm were provided to

allow start or end points, or use of different distance functions i.e. Euclidean distance

or A∗ search using the fused cost-maps mentioned earlier.

Multi-agent Optimal Path Planning and Synchronization MARMOT uti-

lizes standard graph search algorithms such as A∗ search to effectively generate path

trajectories over the terrain for each agent. However, the system’s capabilities were

extended to use more modern search algorithms to effectively produce optimal trajec-

tories while still respecting mission constraints. Distributed Path Consensus (DPC)

(Bhattacharya et al., 2010a) and its supplementary work, Distributed Path Consen-

sus with Tasks (DPCT) (Bhattacharya et al., 2010b), are modified forms of A∗ search

that provide the ability to optimize each agent’s search path by iteratively applying

soft constraints on their individual paths while satisfying a user-defined multi-agent

constraint.

In particular, this user-defined constraint is a cost function added to the A∗ algo-

rithm’s heuristic function. The cost function produces a corrective penalty or reward

to each iteration of this modified A∗ search. Moreover, an incremental weight is ap-
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plied to the cost function to improve its efficacy after each subsequent path search.

In the Lunar prospecting scenario, maintaining communication between rovers is cru-

cial to a successful mission. One can define an acceptable distance that rovers must

maintain during traversal, and each iteration of the algorithm will result in a path

which maintains the distance constraint. Figure 7.10 shows the first and last iteration

for two agents using the DPC algorithm.

Figure 7.10: DPCT Applied to Static and Dynamic Agents. Applying soft penalty
constraints allow path generation/modification that maintain constant communica-
tion between a science and relay rover as they proceed to different tasks.

Simulation Study

To illustrate the capabilities of MARMOT, an initial mission scenario was simulated

using a three-agent configuration consisting of a lander, a relay rover, and a scientific

rover. Operators at mission control direct the science rover to initiate a prospecting

task within a PSR. Moreover, this region happens to be a within a crater, making

communication to the lander impossible. The relay rover will thus act as the inter-

mediary to establish proper communication link between the lander and the scientific
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rover.

Figure 7.11 presents the above example with trajectories generated by MARMOT.

In this case, the overall terrain cost map favored avoiding the shadow regions by

placing a higher weight on the individual shadow map before MARMOT fused them

with the other maps. The path planning generated by MARMOT is an A∗ heuristic

search algorithm that avoids shadows while maintaining communication.

Figure 7.11: Case 1: Relay rover extends lander communication along the crater
border while science rover explores a point-of-interest in a crater without communi-
cations to the lander. A fused cost map is used for trajectory calculation.

Figure 7.12 presents a slightly modified version of the mission scenario, but less

weight is applied to the shadow map. Additionally, the path planning generated by

MARMOT is an opportunistic solution. This algorithm adds intermediary points-of-

interest for a relay and scientific rover to target as they progress towards their end

goal. Once those points-of-interest are chosen, the A∗ search algorithm is used to

calculate the best path between the waypoints.
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Figure 7.12: Case 2: The rover’s goals are the same as in Case 1. A set of traversable
points-of-interest are suggested for extending the prospecting mission.

7.2.5 Benefits of a Mean-Field Approach To Lunar Prospecting

One of the drawbacks to the MARMOT is its inability to allow greater relinquish-

ment greater control from a human operator. Communication must be maintained in

each of the cases that we explored since the human operator would interact with the

regolith to perform ice detection analysis. An interesting avenue of research would

be for a system that would allow the human operator to chose certain points on the

cost map generated by MARMOT to create a strongly-connected graph, select the

number of rovers desired at each site, quickly train a leaderless control policy from

a mean-field model, and send the new policies to the rovers. The rovers will then

explore the sites-of-interest at the behest of the human operator but will stochasti-

cally switch to exploring other sites the human operator selected depending on the

reaction rate k defined in Section 6.3.2 and a large time step. Eventually, they will

converge to the desired rover distribution at each site desired by the human operator.

The individual rovers will still utilize the cost map and the path planning between
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sites MARMOT calculates, but now more autonomy is given to agents on when to

move from one site to another. This way human operators will only need to observe

what the individual agents do from time to time but not require them to constantly

control the rover, leading to eventual burnout.

7.3 Towards Decentralized Human-Swarm Interaction by Means of Sequential

Hand Gesture Recognition

This section contains results from Zahi M Kakish et al. (2020).

7.3.1 Overview

In this section, we present an initial design and validation of an approach to

human-swarm interaction based on robot recognition of sequential hand gestures.

While not a completely decentralized control approach, it demonstrates the ability

to leverage recent improvements in the object classification abilities of Convolutional

Neural Networks that run on small, low-cost, low-powered computational devices that

are typically used on swarm robotic platforms.

7.3.2 Methodology

Our system is composed of two primary components: (1) a deep neural network for

classifying various hand gestures, and (2) a simplified multi-robot formation control

strategy for a small swarm size. This section will provide a proof-of-concept validation

in both simulation and experiment of the utility of sequential hand gestures as a means

of controlling a robotic swarm. We do not formulate the approach as a generalized

control methodology for a wide range of swarm sizes, which we leave to future work.
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Deep Neural Network

Since low-powered, small computationally powerful devices, such as the Raspberry

Pi and other ARM devices, are common among swarm robotic hardware architec-

ture, most conventional and state-of-the-art neural network models are unusable or

difficult to implement on these platforms. To circumvent this issue, a special neural

network named SqueezeNet was deployed for hand gesture recognition Iandola et al.

(2016). The SqueezeNet model is capable of performing as well, or even surpassing,

classification rates of many the most popular model types with only a fraction of

the parameters, thus reducing the model size to roughly ∼ 5 MB. This substantial

reduction in model size makes this model ideal for use in hardware typically found in

swarm robotics applications.

Dataset and Preprocessing

A training set consisting of six different gestures and 2, 956 images was utilized for

training the SqueezeNet model Heintz (2018). The images are silhouettes of the

gestures in black and white. A gesture set, G, containing all possible gestures for

classification and available in the training data is defined as:

G = { C, Fist, L, Ok, Peace, Palm } (7.2)

Figure 7.13 contains examples of the gestures found in the dataset. The dataset

was expanded to ensure more robust classification of gestures during real-time opera-

tion. The data augmentation began with inverting the images horizontally to resemble

the gesture but with the opposite hand. The original image and the inverted image

are used to generate three new images, respectively. One rotated by 90◦ clockwise,

another 90◦ counter-clockwise, and an image flipped upside-down. Therefore, seven

120



Figure 7.13: Silhouettes of gestures available through the dataset in Heintz (2018).
In addition to these gestures, a blank image was used to classify the gesture None.
A) a C shape B) a Fist C) an L shape D) the Okay sign E) a Palm F) the Peace
sign.

new images are generated for each image in the original dataset.

To ensure that the model is capable of real-time performance, a seventh gesture

was added to the dataset: ‘None’. Since the user’s hand is not consistently in the

frame, the image is classified as ‘None’ and awaits a gesture to come into the frame. A

dataset containing blank images is generated during preprocessing consisting of black

images and black images containing Gaussian noise to add to SqueezeNet model’s

classification capabilities.

Further preprocessing was performed before training to ensure optimal results.

Images in the dataset were cropped from their original size of 640× 576 to 570× 570.

The images were then scaled to 240 × 240. This final image size is big enough to

ensure adequate real-time classification of gestures without increasing computational

cost.
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Training

The SqueezeNet model was programmed and trained using the TensorFlow API ver-

sion 1.14 Abadi et al. (2015) running on a development box containing four Nvidia

RTX 2080 graphics cards. The model was trained for 10 epochs with a Stochastic

Gradient Descent optimizer, which had a learning rate α = 0.001, a coefficient of mo-

mentum η = 0.9, and a learning rate decay λ = 0.0002. The batch size was set to two

images to prevent memory issues due to the images’ size. The dataset was split into

a training and validation set consisting of 90% and 10% of the images, respectively.

Gesture-Driven Controller

We first consider a waypoint system in which a finite number of robots, N , plot a

straight motion to a desired goal position (xd, yd)N from an initial starting position

(xi, yi)N . To help validate the applicability of sequential gesture control, we will only

focus on one direction, x, and keep the y values arbitrary. For example, if the initial

position of a robot is (0, 0) and the desired position is set to be (10, 0), the desired

position is considered achieved if only the robot’s x-coordinate matches the desired

value. A set of waypoints, W , for each robot n is thus generated from augmenting xi

by xoffset, which is calculated from a user-defined number of waypoints, M .

xoffset =
|xi − xd|
M

(7.3)

Wn = {(xi + k × xoffset, y) : k = 0, . . . ,M} (7.4)

Each robot, n, moves from one waypoint to another in the set W until it reaches the

final desired position (xd, yd)n.

With the waypoints generated, we define C : yn × β → R to be the cohesion of

the swarm, that is, a metric measuring the inter-robot distance of a swarm, where yn

is the robot n’s y position and β is the cohesion factor. β is a binary variable that

122



represents an increase in cohesion if β = 0 or a decrease in cohesion if β = 1. To

increase the cohesion of a swarm is to reduce the distance between each robot, and

to decrease the cohesion is to increase the distance between each robot. Additionally,

we consider a small swarm size of three agents in a line separated by an offset in

the y direction. The cohesion of this small swarm is best represented by a constant

addition or subtraction of a small, static offset yoffset. An individual robot, n, applies

a cohesion change by the following piecewise formula:

C(yn, β) =



yn − yoffset if yn > 0 and β = 0

yn + yoffset if yn > 0 and β = 1

yn + yoffset if yn < 0 and β = 0

yn − yoffset if yn < 0 and β = 1

(7.5)

Next, we consider a differential drive capable of driving from one waypoint to the

next based on the unicycle model Carona et al. (2008) as defined by the following

state-space formulation, where x and y are the robot’s position and φ is its angle.

ẋ =


ẋ

ẏ

φ̇

 =


vo cosφ

vo sinφ

ω

 (7.6)

Here, vo and ω is the robot’s linear and angular velocity, respectively. Since we choose

to apply a constant linear velocity, the dynamics of the robot using the unicycle

model are represented primarily by ω. To control the robot’s motion from one point

to another reference point, the difference between a desired angle, φd, and the robot’s

current angle, φ, is calculated and used as the error

e = φd − φ. (7.7)
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To prevent singularities from arising and restrict the error between 0 and 2π, we

update the calculated error using atan2 :

enew = atan2 (sin(e), cos(e)). (7.8)

Finally, our control input into the robot is applied with a proportional gain Kp:

ω = Kpėnew (7.9)

This forms the basis for the control of the swarm using sequential hand gestures.

7.3.3 Simulations

A series of 3D simulations were designed to test the viability of sequential gesture-

based control of a swarm. To formalize the experimental simulations, the following

assumptions were made. First, the simulations are limited to three robots. Though

this is a small number of robots, we believe that the scenario provides a viable minimal

benchmark for how our algorithm will actually work. Second, odometry is provided

by the simulation environment and not by internal (i.e. encoders) or external (i.e.

GPS, cameras, etc.) sensors. Finally, a black background is used when reading images

from the gestures to streamline classifications.

Structure

The simulation was developed using ros2, the next generation of the Robot Operating

System (ROS). Compared to the original ROS, ros2 provides an enhanced middleware

programming environment, the removal of a ROS Master to make multi-robot decen-

tralized approaches easier, and expanded platform and architecture support. Gazebo,

a 3D robot simulation environment, is used to render the experiment. Gazebo is a

project developed in tandem with ROS/ros2, and comes with many ROS drivers to
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simplify development of robots by providing a simulation environment that functions

similarly to a physical one. The experiment is run using the Turtlebot3 Burger robot

by ROBOTIS (2019) who provide 3D Gazebo models for use in simulation.

Each robot runs two separate nodes: one that contains drivers to connect to

Gazebo to simulate differential drive control, sensor readings, etc., and another that

is the primary motion controller as defined in Section 7.3.2. The robots do not

intercommunicate and only subscribe to messages from one external node that tells

them what gestures were classified. This external node reads information from a

generic webcam running the SqueezeNet model. Additionally, images captured by

the webcam are modified to reflect those used for training, which were silhouette

images of the different hand gestures.

The captured camera images are cropped from the 640×480 resolution to 480×480

resolution and then scaled to 240 × 240, which is the input size for our SqueezeNet

model. The images are then converted to greyscale and a slight Gaussian blur is

applied to prevent fine details in the image from causing artifacts when converted to

a binary image. Finally, the image is converted using a binary filter and inputted

into the SqueezeNet model. The predicted gesture is then published to all the robots.

This message is not unique to each robot.

Gestures

For this experiment, the number of gestures used have been reduced to the following

five:

Gpossible = {Palm, Peace, Fist, C, L} (7.10)

These gestures are mapped to the subsequent actions the swarm may undergo:

• Palm: Stop movement of the swarm
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• Peace: Resume movement of the swarm

• Fist: Read cohesion action

• C Sign: Increase

• L Sign: Decrease

Additionally, there is a sixth classified gesture is None, which, as stated in Section

7.3.2, means that there is no gesture recognized and no swarm action applicable.

Palm (Stop) and Peace (Resume) are the only two gestures capable of controlling the

swarm alone. The rest require the user to give a sequence of gestures for the swarm

to read. One a gesture pertaining to the swarm behavior (cohesion) the user wishes

to modify and the next is a gesture mapped to a modification variable (increase or

decrease).

In the simulation, we will rely on two sequences used to modify the cohesion of

the swarm to help negotiate an obstacle. The first is increasing the cohesion of the

swarm, β = 0, which means that the swarm will group closer to one another. This is

done by giving the following commands in this order:

Palm→ Fist→ C→ Peace (7.11)

This sequence is explained as “stop the swarm, read my cohesion command, in-

crease cohesion by one step size, and resume moving.” The second would be to de-

crease the cohesion of the swarm, β = 1, resulting in a increase in distance between

the robots. This is done using the same hand gestures but with the decrease cohesion

command.

Palm→ Fist→ L→ Peace (7.12)

Just like the increase cohesion sequence, this sequence is similarly explained as

“stop the swarm, read my cohesion command, decrease cohesion by one step size,
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and resume moving.” As described earlier, the cohesion of the swarm is set as steps.

Specifically, each call to increase or decrease the swarm cohesion decreases or increases

the distance between the robots by a calculated yoffset, respectively. If an obstacle

requires the user to change the swarms cohesion by multiple steps of yoffset, the user

does not need to repeat the whole sequence twice but can concatenate the swarm

command multiple times. For example, if the swarm cohesion is needed to increase

by two steps, a user would provide the following command:

Palm→ Fist→ C→ Fist→ C→ Peace (7.13)

Simulated Environment The three robots are placed in a line within three sim-

ulated testbeds, shown in Figure 7.14. The first contains a series of two types of

openings: one small-sized opening in the middle and two intermediate-sized openings

located on both ends of the testbed. The second testbed has only one small-sized

opening. Each testbed provides a different validation for the capability of our se-

quential gesture control scheme. The first demonstrates how individual commands

can be given at the onset of an obstacle, and the other shows how for more difficult

obstacles a user is capable of stringing together multiple gesture actions into one com-

mand. The first two testbeds are 8m× 4m in size. Each robot is placed 1m from the

end of the testbed and spread to have an inter-robot distance of 1.5m between one

another. To complete each task, the robots will have to move forward and reach the

other end of the testbed. The swarm of robots will need to negotiate the obstacles

before them by relying on a user’s sequential gesture input.

The third testbed is a recreation of a real testbed used in the physical experiment

section of the paper. Compared to the large surface area of the other testbeds, this

testbed is significantly smaller at 2.5m × 2.5m. Additionally, the initial inter-robot

distance is reduced to 0.6m and the robots are placed 0.5m from the end. The testbed
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contains a 1m sized opening a meter from the robots starting position. Like the other

testbeds, the robots will have to negotiate this obstacle using a single sequence of

gestures to increase cohesion. After going through the obstacle, a different sequence

is used to decrease the cohesion. This testbed’s results act as validation for the

success of this experiment using real robots. Figure 7.15 provides a brief overview of

the robots increasing and then decreasing their cohesion to negotiate a small opening.

Physical Experiments

To validate the use of sequential hand gesture control of a swarm in a physical setting,

an analogous physical testbed to the third simulated testbed was built as shown in

Figure 7.16. The experiment was set up in the same manner as the simulated one.

The individual robot controller and gesture recognition code was written with the

intention of interchangeability between the simulated and physical experiments. The

only difference were parameter files which provided environmental constraints and

individual robot attributes depending on the environment in which the test is being

run.

However, certain aspects of the simulation were not available for use in our physical

experiments. Odometry within simulation is accurately calculated by the Gazebo

environment, but getting this same information in a physical experiment required

use of an overhead camera and ArUco fiducial markers (Romero Ramirez et al., 2018;

Garrido-Jurado et al., 2015) to calculate each individual robot’s pose. A ros2 node was

developed to track individual robot position from the overhead camera and calculate

poses from a 0.127m × 0.127m marker placed atop each robot that was detected.

This odometry information is then published to the robots for use in their controller

node’s.

During simulation, all the ros2 individual robot nodes and gesture node were run
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on the same computer. The physical experiment distributes the computation over

a wireless network. Each robot runs its respective controller on its hardware, but

does not communicate with other robots. The only communication that the robots

receive is from two external sources: the node calculating individual robot odometry

from a central overhead camera and the node reading and classifying the sequential

gestures from the user. Each of these nodes are also run on separate computers

due to convenience rather than the inability of running both on the same one. This

decentralization comes with a cost, however, in the form an approximately 0.5s delay.

Even though the individual robots were capable of running the gesture detection

node, we chose to keep the node running on a separate computer to keep the test

runs between the simulation and physical experiments similar.

The physical experimental procedure is nearly identical to the simulation except

for the software structure changes presented in this section. There are a few small

changes in comparison to the simulation; however, we do not believe it reduces the

validity of our physical experiment. One additional change to this experiment was

the linear velocity of each robot was reduced due to the half-second network lag in

the system.

Discussion

We have successfully demonstrated our hypothesis by showcasing a simplified cohe-

sion control model for both simulated and physical testbeds. Each simulated test

completed successfully and the controller responded correctly to the properly clas-

sified sequential gesture commands given from the SqueezeNet model in real-time.

As mentioned in Section 7.3.3, the run corresponding to Testbed 2 demonstrated

the ability for the systems to read multiple instances of the same increase cohesion

gesture sequence in one input. Results from that run show that the provided input
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sequence was easily registered and enacted by the robots. Additionally, the physical

experiment was able to finish successfully even with the network delay present in the

system. We believe that re-creations of bigger testbeds, such as Testbed 1 and 2 in our

simulations, would yield successful runs. Although the system is semi-decentralized

due to odometry calculations and having the gesture recognition node running sep-

arate from the robots, these results of these tests show the feasibility of a human

operator interacting with a decentralized robot swarm by showing a robot a sequence

of hand gestures.

Although all the experiments were successful, we did run into a minor classification

issue during test runs. The SqueezeNet CNN would sporadically misclassify the hand

gesture upon the subject’s hand leaving the camera’s viewing area or when switching

between hand gestures. We believe that this issue is likely due to gestures created

during the hand’s motion unable to be classified. To help reduce this error, publishing

of the predicted gesture was limited to once every half second instead of once every

tenth of a second, which is the refresh rate of the ros2 node that classified the gestures.

7.3.4 Benefits of a Mean-Field Approach To Decentralized Human-Swarm

Interaction

This section provided preliminary work into a system that uses a sequence of

hand gestures to control swarm behavior through a combination of a small-sized

CNN model capable of recognizing silhouette images of hand gestures in real-time

and a decentralized robot development environment. However, scale may still prove

this solution intractable for a human-in-the-loop situation where an operator needs to

delegate differentiating tasks to a single robot or a group of robots. Current methods

such as the work done by Nagi et al. (2014) required the human to point to a specific

robot in order to issue commands. Instead, a group of robots already equipped with
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a finite set of tasks can be issued them through gestures followed by the desired

number of agents for each task. That agent will then distribute the information to

the remainder of the robots after calculating the policy. The simplicity of training

our leaderless control policy on a consumer grade desktop shows that potential of

effectively training a more optimal policy on device.
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Figure 7.14: The three testbeds created for simulation. A) An 8m × 4m testbed
containing multiple openings for the swarm to traverse through. B) An 8m × 4m
testbed containing only one small opening for the agents to negotiate. Compared to
the previous testbed, this requires the user to string together multiple sequences of
the same gesture to complete. C) A small 2.5m × 2.5m testbed with one small 1m
wide opening. This last testbed is recreated for physical validation in Section 7.3.3
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Figure 7.15: An overview of the physical experiment with gesture sequences required
for the swarm to get through the small opening in the middle of the arena. A) The
robot swarm begins on one end of the testbed. The Peace gesture is used as a
standalone command to start the experiment. B) Once the robots get closer to the
obstacle, the following sequence (Palm → Fist → C → Peace) is given to increase
the cohesion of the swarm and resume motion. C) After the robots have cleared the
opening, another gesture sequence (Palm → Fist → L → Peace) is used to return
the swarm back to their initial cohesion size. D) Finally, the robots reach the final
waypoint and the experiment completes.
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Figure 7.16: The physical testbed.
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Chapter 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

In this dissertation, we explored the design and use of leader-based and leaderless

deep RL control policies trained using mean-field models to efficiently and robustly

redistribute a swarm of robots among a set of states. We provided empirical evi-

dence to support the use of a macroscopic, model-based approach for training the

control policies by experimentally showing the existence of a “mean-field” effect, a

phenomenon whereby the populations of agents that redistribute stochastically over

a graph evolve in a more deterministic manner as the agent population tends towards

infinity, through training a tabular Temporal Difference control policy on different

populations of agents that follow a discrete-time Markov chain. Using these results,

we develop a method of training a fully and locally observable deep RL leader control

policy on a modification of the Kolmogorov forward equation that models the effect

of a leader stochastically repelling agents on a macroscopic level. In Chapter 5, we

considered the scalability of our deep RL approach in terms of graph size through

a change in the state and action sets pertaining to the control policy. Finally, we

investigated a leaderless control policy in which the agents’ states evolve according

to a discrete-time Markov chain, and their populations in each state evolve according

to a linear ODE mean-field model. In this approach, the learned parameters are the

agents’ transition rates between vertices of a bidirected graph, which are parameters

of the linear ODE.
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8.2 Future Research

The limitations arising from our original action set restrict our ability to train

larger graph sizes and places an upper bound on the applicability of an actor-critic

approach. However, modifying the problem with the new action set lessened the

scalability issue. This is not a complete solution since the new action set requires

the leader to transition throughout the grid-graph as a fully-connected graph instead

of a strongly-connected graph like the follower agents. One interesting avenue to

explore is the applicability of our approach to graph shapes that are not grid-graphs.

By using different graph shapes, we can decompose a larger grid-graphs into smaller

graphs for training control policies. Advances in Graph Neural Networks (GNNs)

(Kipf and Welling, 2017; Zhou et al., 2019; Chen et al., 2020) can yield interesting

ways of framing our control problem to irregularly shaped graph sizes to more easily

break down larger graphs into smaller optimization problems for use with our deep

RL mean-field model approach.

Another avenue is to continue using the new fully connected leader-control policy

defined in Chapter 5 while combining it with a path planner like the one in MARMOT

shown in Section 7.2. This will assist in finding the shortest possible path between the

leader’s current state and the next through the use of two separate control policies.

This may lead to more optimal and efficient solutions for complex population densities

and larger grid-graph sizes while maintaining a strongly-connected leader motion

constraint.

Our approach in Section 6.3.1 to designing controllers for swarms described by

a linear ODE model can be extended to swarms that are described by multi-affine

mean-field models, which represent the population dynamics of chemical reaction

networks (CRNs), or systems that behave like them (Matthey et al., 2009; Berman
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and Kumar, 2009), that include bimolecular reactions. The linear ODE mean-field

model represents the population dynamics of a CRN with only unimolecular reactions,

such as

X0
k3−−→ X1 X0

k2−−→ X2, (8.1)

which corresponds to robot transitions between vertices connected by the two edges

{(0, 1), (0, 2)} ∈ E for the graphs defined in previous chapters. A multi-affine model

enables us to describe the dynamics of swarms that behave according to CRNs with

bimolecular reactions, where robots interact with each other or with objects in the

environment to become another “species,” or enter another state. In Matthey et al.

(2009), stochastic robot control policies for a component assembly task were designed

using a multi-affine mean-field model. For example, the forward reaction in the

following bimolecular reaction,

X0 + X1
k0←−→
k1

X2 (8.2)

represents a robot X0 interacting with a component of type X1. When the robot is

near the component, the reaction rate constant k0 determines whether the robot will

pick up the component and transition to a new state, X2. The backward reaction

models a disassembly action in which the robot drops the component with a proba-

bility rate determined by the rate constant k1, thereby reverting back to its original

state. Using a deep RL mean-field model approach, it is possible to design optimal

reaction rate constants that drive the swarm to specified macroscopic outcomes, using

the multi-affine model to generate predictions of the collective effect of the agent-level

interactions.
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