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ABSTRACT

Nature-based recreation is a popular way for people to interact with the environment

that also confers numerous economic and health benefits. It is important that the social-

ecological systems (SES) that host nature-based recreation be managed effectively,

both to preserve the benefits of this important human-environment interaction, and

to avoid the potential negative outcomes of recreational commons. The SES that host

nature-based recreation are characterized by complex and dynamic feedbacks that

complicate their management. Managing these systems is made more complex by the

suite of external, multi-scalar, and anthropogenic forces (e.g., climate change, trans-

boundary pollution) that plague them with increasing frequency. This dissertation

investigates the importance of accounting for this full range of system feedbacks when

managing for nature-based recreation.

I begin with a broad discussion of the types of dilemmas faced by managers of

nature-based recreation. I create a systems based typology of management dilemmas

that apply across different recreation modalities and system contexts, and which are

characterized as feedbacks within the broader recreational system. My findings in this

chapter have important implications for understanding and anticipating how different

exogenous and endogenous shocks (including management interventions, themselves)

may work through or change the processes in SES that host nature-based recreation.

In the following two chapters, I narrow my focus to examine case studies of specific

dilemma archetypes and proposed management interventions. First, I perform an

ex ante analysis of a prospective policy response to a regulatory spiral of excess

recreational fishing effort and abridged fishing seasons in the U.S. Gulf of Mexico.

I estimate behavioral models of fishers’ responses to a prospective incentive-based

intervention, and find evidence that such a policy could improve multiple fishery
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outcomes. Second, I perform an ex post program evaluation of an invasive species

bounty program. My results suggest that the program under-performed because it

failed to overcome countervailing incentives.

Together, my case study analyses reveal the value of modeling for designing policy

for these complex SES and show the importance of accounting for the full set of system

feedbacks (including the incentives that drive recreator behaviors and the impacts of

those behaviors) when managing nature-based recreation.
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Chapter 1

INTRODUCTION

Nature-based recreation is an important and popular use of natural capital that

yields myriad benefits. In the United States, an estimated 164.2 million (54%) of

people aged 6 and older engaged in outdoor recreation in 2021 (Outdoor Foundation,

2022). Furthermore, the non-market valuation literature reveals significant demand

for high-quality nature-based recreation opportunities. Shrestha et al. (2007) find that

the average visitor would be willing to pay over $70 for a visit-day of nature-based

recreation in Florida’s Apalachicola River region, while Sinclair et al. (2022) estimate

that people are willing to pay anywhere from €6.33 to €87.16 (mean=€32.82) for

recreation trips to different protected areas in Italy.1

Nature-based recreation generates instrumental benefits for its participants, in-

cluding improved mental and physical health outcomes. Outdoor recreation has been

used to treat PTSD (Wheeler et al., 2020), can help moderate ADHD symptoms in

children (Kuo & Faber Taylor, 2004), and has been associated with improved mental

health outcomes during the COVID-19 pandemic (Jackson et al., 2021). Furthermore,

access to outdoor recreation opportunities is correlated with decreased incidence of

overweight and obesity (Rosenberger et al., 2009), and increased county-level spending

on parks and recreation may lead to reduced mortality (Mueller et al., 2019).

1The average euro-to-dollar exchange rate in 2022 was 0.951, which means willingness-to-pay
ranged from $6.66 to $91.65 per-trip, and averaged $34.51 per-trip.
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Table 1

Types of nature-based recreation considered in this dissertation.

Recreation Category Recreation Mode
Trail Activities Mountain biking

Off-roading
Equestrian
Hiking

Backcountry Activities Backpacking
Camping
Visit a wilderness or primitive area
Foraging
Rock climbing or canyoneering

Viewing & Photographing Viewing or photographing flora or fauna
Hunting Big and small game

Waterfowl
Fishing Freshwater

Saltwater
Ice fishing

Swimming Swimming in lake/river/ocean
Snorkeling
Scuba diving
Visit a beach or waterside

Boating Sailing
Canoeing
Kayaking
Rowing
Motor-boating
Water skiing
Jet skiing
Floating, rafting
Sailboarding/windsurfing
Surfing

Snow activities Downhill skiing
Cross-country skiing
Snow-shoeing
Snowmobiling
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Additionally, nature-based recreation may serve as an important means of social

cohesion, or as an integral part of individual or cultural identities. These “relational

values,” while less tangible or measurable than instrumental values, are no less

important to acknowledge in discussions of managing nature-based recreation (Chan

et al., 2016).

This dissertation borrows its definition of “nature-based recreation” from Cordell

(2008), who describes it as, “outdoor activities in natural settings or otherwise involving

in some direct way elements of nature—terrain, plants, wildlife, water bodies.” The

activities covered in this dissertation are sourced from a US Department of Agriculture

(USDA) Forest Service technical report that adopts this same definition of “nature-

based recreation” (Cordell, 2012). As this dissertation aims to shed light on emergent

challenges of managing nature-based recreation during an era of unprecedented human

impacts at multiple and often interacting scales (i.e., the Anthropocene), I limit my

focus to modes of recreation: 1) that are under the jurisdiction of federal, state, or

local natural resource managers, and 2) whose execution requires meaningful depletion

of the natural capital on which they rely or which generate congestion spillovers (i.e.,

involve some social dilemma). Put simply, the natural capital or the quality of service

flows provided by the natural capital on which a recreational activity depends must

be rival. According to my two inclusion criteria, “nature-based recreation” in this

dissertation includes activities like mountain biking and fishing but does not include

trips to the zoo or family picnics at the park. See Table 1 for a complete list of the

recreation modalities considered in this dissertation.

Nature-based recreation is usually one of myriad competing uses for the natural

capital on which it depends. For example, a single forested acre could provide

opportunities for high-quality recreation (e.g., birding, hunting, or hiking), contain
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lumber for private or commercial harvest, and generate ecosystem or biodiversity

services. Some of these biodiversity services, too, feed back to recreation (e.g., the

quality of a hunting experience and the amount of game encountered directly depend

upon biodiversity services). These often competing uses of natural capital mean that

the resource managers in charge of these systems must juggle competing biological,

economic, and social objectives when designing policy.

Much of nature-based recreation takes place on public land which is managed and

made available for different types of nature-based recreation by federal, state, or local

resource managers.2 Accordingly, nature-based recreation tends to occur on land or in

water that is shared amongst a range of users, including other recreators, commercial

interests, etc. In other words, recreation occurs in a commons, where individuals are

not excluded from accessing recreational resources except perhaps through nominal

fees (i.e., the commons is non-excludable), and the deer bagged by one hunter is not

available for future harvest (i.e., the shared resources are rival). Olson (1965) suggests

that rational, self-interested individuals who cannot be excluded from using a resource

and whose individual actions are not visible to other users have no individual incentive

to contribute to that resource’s provision, and may instead face strong incentives to

free-ride, leading to sub-optimal outcomes for the group at large in what is commonly

referred to as the “commons dilemma.”

One popular suggestion for overcoming the commons dilemma is to privatize the

commons, such that the owner-user might appropriate rents from the conservation of

that resource. However, T. Anderson and Hill (1983) argue that privatization was

over-prescribed, and that the benefits of so doing may not always justify the costs.

2More generally, the public lands and waters that host nature-based recreation can be thought of
as a type of shared public infrastructure (Anderies et al., 2004).
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Another way of overcoming the commons dilemma is to introduce a lesser degree of

excludability than does privatization by turning the shared infrastructure into a toll or

club good.3 Setting limits to who and how many people can access that infrastructure

may limit rivalry for certain types of recreation. For example, reducing congestion

on hiking trails may reduce rivalry for those hiking it. However, rivalry is inherent

in certain extractive types of recreation (e.g., hunting and fishing), so introducing

excludability cannot reduce rivalry for those recreation modalities.

Finally, some commons, rather than requiring outside rules, regulations, and

enforcement to endure, may be governable in the long-term via collective action.

Institutional scholars have found numerous examples of long-enduring, non-privatized

commons systems. These scholars have shown that certain commons, and espe-

cially those that exhibit the design principles illustrated by long-enduring institutions

(Ostrom, 1990), can be governed via collective action rather than privatization or

top-down governance in the long-term.4

In spite of mounting evidence from institutional scholars, Dietz et al. (2003) assert

that commons are becoming increasingly ungovernable via local collective action

institutions. Large-scale impacts like climate change and trans-boundary pollution

are especially prevalent in these systems as we progress through the Anthropocene,

and these large-scale forces interact with and influence smaller-scale, local impacts as

well. Managers of natural capital for nature-based recreation in the Anthropocene

face a range of unique management challenges at multiple, often interacting scales.

3For example, recreational fishing clubs in Europe are a relatively common approach to promoting
conservation by partially overcoming the incentives that drive the race to fish (Arlinghaus, 2006).

4The eight design principles from Ostrom (1990) are: 1) Clearly defined boundaries; 2) congruence
between appropriation and provision rules and local conditions; 3) collective-choice arrangements; 4)
monitoring; 5) graduated sanctions; 6) conflict-resolution mechanisms; 7) minimal recognition of
rights to organize; and 8) nested enterprises, for commons that are part of larger systems.
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For instance, recreational fisheries managers may stock fish or impose harvest limits

on anglers based on the biological signals that they get from the fish stock. Their

management actions may be helped or hindered by macro-scale preferences or norms

that drive recreator behaviors, or by slow shifts in climate or rainfall patterns that

drive population dynamics and create favorable habitat for invasive species. Failing to

manage for the full range of dilemmas impacting a given recreational system may lead

to the use of management measures that are unproductive, counterproductive or not

cost-effective. Therefore, Dietz et al. (2003) stress that rules for governing commons

cannot only manage for local conditions at a single point in time, but must evolve as

climate change, economic markets, and other large-scale forcers in-turn change local

system conditions. In other words, nature-based recreation occurs within complex

adaptive social-ecological systems (SES) characterized by uncertainty and multi-scalar

interactions, and should be managed as such (Blahna, Valenzuela, et al., 2020; Morse,

2020).

This dissertation showcases the importance of accounting for the full range of

system processes when governing complex SES for nature-based recreation. I begin my

investigation with a broad generalization of the social dilemmas facing managers across

system and recreation types. Then, I narrow my focus to investigate two cases that

explore different dilemmas and potential incentive-based management interventions

for addressing them. These cases, while both in the realm of recreational fisheries,

address different policy challenges and interventions. Furthermore, these cases feature

different methodological approaches. In one of the cases, I perform a forward-looking

analysis to show the power of modeling for anticipating behavioral responses to certain

types of policy levers. For the other, I use a backward-looking approach to unpack

behavioral responses to a policy after the fact.
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In Chapter 2, I code cases of management dilemmas in nature-based recreation

using the Complex Infrastructure Systems Framework and perform an archetypal

analysis of those cases. I create the first—to my knowledge—descriptive, systems based

typology of management dilemmas faced by recreation managers in the Anthropocene.

This typology identifies eight separate dilemma archetypes, half of which emerge from

recreation and the other half of which emerge from management interventions. These

archetypes identify dilemmas according to their underlying feedbacks within a broader

SES. By comparing cases within and between archetypes, then, I am able to identify

themes regarding the interplay of system characteristics and dilemma emergence, as

well as which system attributes are best-suited to different intervention approaches.

Chapter 3 features a case study with a dilemma that I define in Chapter 2 as “Leave

no Trace.” Fishers in the U.S. Gulf of Mexico extract red snapper faster than the stock

can recover, which degrades the shared infrastructure (Gulf of Mexico red snapper)

upon which the recreational headboat sector relies. In this chapter, I present a tool

or method for performing ex ante analysis of policy counterfactuals in recreational

settings, and investigate the potential for a particular incentive-based intervention to

address this “Leave no Trace” management dilemma. I find evidence that uncoupling

the price of access and intensive use of recreational resources can improve efficiency,

mitigate externalities, and generate supplemental management revenues.

The dilemma featured in Chapter 4 is one that I term “Can’t Get There from

Here.” The National Park Service (NPS) believes that recreational fishers at the Lees

Ferry trout fishery should be accessing and extracting invasive brown trout from the

fishery (and thus helping to control the population of those fish), but these fishers

rarely catch and even more rarely retain brown trout within this fishery. The NPS

implemented a harvest incentive or bounty on these invasive brown trout in an attempt
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to mobilize recreational fishers to harvest brown trout in this fishery. In this chapter, I

perform an ex post program evaluation of that incentive-based intervention. I find that

the program failed to increase brown trout harvest at Lees Ferry for several reasons.

First, it did not increase total fishing trips to Lees Ferry. Second, it appears to have

reduced the average number of brown trout caught per fishing trip, likely by inducing

a compositional shift within the user-base. Specifically, I find evidence that more

experienced Lees Ferry fishers may have avoided the fishery in response to potential

crowding induced by the incentive program, while any new fishers the program may

have brought in lacked the fishery-specific knowledge needed to effectively catch brown

trout. The final reason for the program’s under-performance is that it did not induce

fishers to retain a larger share of the brown trout that they did catch.

Finally, in my concluding chapter, I synthesize my findings, reflect on their policy

relevance and possible application to additional recreational systems, and suggest

future avenues for research.
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Chapter 2

ESTABLISHING A TYPOLOGY OF DILEMMAS FACED BY RECREATION

MANAGERS

2.1 Introduction

Participation in nature-based recreation in the U.S. has been on the rise for more

than a decade. In 2021, 54% of Americans aged six and up engaged in at least one

outdoor recreation activity, up from 48.6% in 2010 (Outdoor Foundation, 2011, 2022).

This increase in participation, paired with the rise in popularity of more destructive

recreational mediums (e.g., off-highway vehicles) and the declining popularity of certain

traditional forms of recreation (e.g., hunting) means managers of recreational systems

face mounting challenges and uncertainty in meeting their management objectives

(Collins & Brown, 2007; Cordell et al., 2005). Failure to manage for recreation can

have serious consequences. In recent years, inadequately managed recreation has been

linked to declines in imperiled species, the spread of invasive plants, damage to soil

and vegetation, wildlife disturbance, and violations of American Indian cultural sites

(Collins & Brown, 2007; Wilcove et al., 2000).

Nature-based recreation systems and the challenges their managers face are inher-

ently social and ecological and occur at multiple, interacting scales. Consequently, a

recent and growing body of literature seeks to move away from the biological and social

science silos that have traditionally defined the management of outdoor recreation

literature, and to instead understand nature-based recreation as part of a complex and

adaptive social-ecological system (SES) (Blahna, Kline, et al., 2020; Blahna, Valen-
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zuela, et al., 2020; Fischer, 2018; Giles, 2021; McCool & Kline, 2020; Morse, 2020).

In a USDA report on the future of outdoor recreation research, Blahna, Valenzuela,

et al. (2020) call for a new research agenda that focuses on, among other things,

framing outdoor recreation as part of an SES in accordance with what they see as a

paradigm shift from the “Active Resource Use and Management Era” (1960s-1990s)

to the “Emerging Era of People and Land Interactions” (2000s-present). Further-

more, McCool and Kline (2020) argue that future research into outdoor recreation

management must adopt a systems based approach that accounts for the increasing

complexity of managing natural capital for recreation. Morse (2020) responds to this

call by forwarding one potential way of linking and organizing existing models from

multiple disciplines to represent recreation management as an SES.

In this chapter, I contribute to this budding research agenda by creating the

first (to my knowledge) systems based typology of management dilemmas commonly

faced by managers of nature-based recreation. This typology identifies multiple

archetypes of social dilemmas faced by managers of nature-based recreation and

defines those dilemmas according to the feedback structures that underlie them. In

other words, I represent management dilemmas as an integral part of the complex SES

that host nature-based recreation, which allows me to generate knowledge about the

contexts under which certain dilemmas emerge and how management interventions

targeted at those dilemmas may impact system processes and outcomes. I identify four

primary dilemma archetypes that are defined by the nature of recreator-environment

interactions (i.e., the recreation process), plus two categories of secondary dilemma

archetypes that emerge from management interventions targeted at the primary

dilemmas. Furthermore, I investigate how the interplay of different exogenous shocks,

endogenous processes, and system characteristics tend to contribute to the emergence
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of these dilemmas. These broad archetypes and the themes I identify regarding

their emergence should prove useful to recreation managers who want to model their

own systems to better understand the types of anthropogenic shocks they may face,

the dilemmas that may arise, and the likely outcomes (intended or otherwise) of

prospective management interventions.5

I use the Complex Infrastructure Systems Framework (CISF) (Anderies et al.,

2016) as an analytical coding framework in my archetypal analysis. Specifically, I use

the CISF to code case studies of recreation management, then perform a systematic

comparative analysis of those coded cases to build my archetypes. Understanding the

subtleties of how local context (i.e., institutions, norms, attributes of the recreators and

the environment, etc.) drive outcomes within an SES requires studying, documenting,

and comparing many cases. This type of large-N, systems based comparative analysis

has been used to investigate sustainability or management challenges across a range of

system types, including irrigation districts (e.g., Janssen and Anderies, 2013), forests

(e.g., Poteete and Ostrom, 2004; Wollenberg et al., 2007), and marine fisheries (e.g.,

Spijkers et al., 2018). However, this chapter is the first such comparative analysis in

the realm of nature-based recreation.

In the next section, I discuss the merits of the CISF as an analytical framework for

an archetypal analysis of nature-based recreation governance, then operationalize the

framework to this context. Then, in section 2.3, I describe my processes for: compiling

publications about managing nature-based recreation; identifying a subset of those

publications that contain case studies for coding with the CISF; selecting, coding,

and analyzing cases; and identifying management dilemmas. I describe four primary

5Anthropogenic climate change causes environmental shocks (e.g., storms, droughts, etc.) to
occur at higher frequencies and intensities. Therefore, I consider all human and environment shocks
to be fundamentally anthropogenic for the purposes of this chapter.

11



RU
Recreators

NI
Recreation

Site

PI4

1

5 6

Figure 1. The CIS Framework Operationalized for Nature-Based Recreation. Adapted
from Anderies et al. (2016).

and four secondary dilemmas plus themes surrounding their emergence and effective

management in the Results and Discussion sections (sections 2.4 and 2.5.)

2.2 Operationalizing the CIS Framework for Nature-Based Recreation

The CISF builds upon the Robustness of Social Ecological Systems Framework

(SESF) (Anderies et al., 2004; Ostrom, 2009) by introducing a unit-of-analysis mapping

approach that emphasizes system dynamics. The CISF’s focus on dynamics makes

it an ideal analytical framework for identifying commonalities in system processes

and outcomes between seemingly disparate cases of natural resource governance.
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Accordingly, sustainability scholars have recently employed both the CISF and its

predecessor (SESF) as analytical frameworks to underpin archetype analyses in the

realms of sustainable development (Rocha et al., 2020), climate change adaptation in

water governance (Gotgelf et al., 2020), rural renewal (Wang et al., 2019), governance

of village pastures (Neudert et al., 2019), and the emergence of natural resource

governance more generally (Aggarwal & Anderies, 2023). This chapter is the first

time the CISF has been used to investigate governance across multiple modes of

nature-based recreation.

Figure 1 is a visual representation of the CISF operationalized for systems that

host nature-based recreation. Broadly, the CISF maps the feedbacks or processes (the

numbered arrows) underlying the shared governance of the natural environment (i.e.,

natural infrastructure; NI). Fishers, hikers, and other resource users (RU) access the

NI through link 1 to engage in nature-based recreation. The public infrastructure

(PI) that directly or indirectly modifies this RU-NI process includes rules, laws, and

monitoring and enforcement capacity (soft human-made infrastructure, SHMI); built

features like boat ramps, trails, etc. (hard human-made infrastructure, HHMI); norms

that RUs build, reinforce, or undermine and that guide their recreation behaviors

in turn (social infrastructure, SI); and knowledge that RUs have about the system

(human infrastructure, HI). These four elements of PI can directly influence NI through

link 4, RU through link 6, and the nature of the RU-NI feedback through link 5.

Examples of link 4 interventions include: stocking or culling a species, performining

habitat restoration, etc. Recreation access fees, information campaigns, and fines

or other modes of enforcing rules are link 6 interventions. Finally, common link 5

interventions include magazine capacity limits for hunting rifles, bait restrictions in

fisheries, and prohibitions surrounding motorized trail access.
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The CISF traditionally considers a fourth actor—public infrastructure provider

(PIP)—too. In recreation settings, the PIP sets mandates and allocates funding for

resource managers. Both of these roles are fixed within the relevant time scale of

individual management case studies; laws or rules and funding availability do not

often adjust quickly for managers of public land and water. For this reason, I treat

the PIP node as exogenous in this chapter.

The CISF characterizes the links between RU, NI, and PI using verbs to best

capture information flows or how the three elements modify or act upon one another.

In a system that hosts nature-based recreation, the RU typically accesses (i.e., hikes

along, boats through, etc.) or extracts from (i.e., fishes, hunts, forages, etc.) the NI

through link 1. In return, the NI provides utility (U) and/or biomass to the RU.

While not explicitly depicted in Figure 1, any of the three system elements may

be subject to exogenous shocks that—depending on the robustness of the governance

feedbacks within the system—may or may not push the system toward a new steady

state equilibrium. When a system flips in this way, it may cause or reveal a new

management challenge.6

The same management challenge may emerge in two systems but for very different

reasons. System A may experience a decline in biomass due to repeated recreational

extractive effort, while System B sees a similar decline in response to an exogenous

climate shock. While the challenge or symptom looks the same, the underlying

processes and, therefore, potential effective management interventions are likely very

different. The CISF provides a clear and effective template for re-defining challenges

according to their underlying feedback structures (i.e., as “dilemmas”).

6In this chapter, a “management challenge” is a problem within the system as diagnosed by the
system manager. Therefore, challenges are not defined as processes or feedbacks but are instead a
symptom of “failure” according to the manager’s mandates.
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2.3 Methods

2.3.1 Identifying Cases

In May 2022, I used the Scopus Database API Interface to curate a list of pub-

lications that focus on managing sites for nature-based recreation. In a systematic

overview of bibliographic databases, Wilder and Walters (2021) find that the citation

giants Web of Science and Scopus specialize in academic journal articles, and therefore

have poor coverage of books, conference proceedings, and non-academic management

reports. I therefore considered supplementing my Scopus results with Google Scholar

or with technical reports from individual resource management agencies, but ultimately

decided that using only Scopus to identify cases was more appropriate for this initial

archetypal analysis. Google Scholar’s search algorithm for identifying “academic-like”

documents is a black box, so I have no way of identifying biases in its search results.

Sourcing reports directly from management agencies would similarly bias my case

selection for several reasons. First, querying all resource managers globally is infeasible,

which means I would over-sample those with which I am most familiar. Second, certain

agencies may be more or less willing to make their documents available to me, which

would exacerbate those regional biases. Finally, natural resource managers are more

often natural scientists than social scientists, which could bias the types of challenges

and dilemmas I identify.
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I performed title-abstract-keyword searches using a list of queries with the structure

(recreation mode) AND (recreation management).7,8 Table 17 lists all the modes

of recreation I queried and their affiliated search phrases. The complete list of

recreation modalities I queried includes those activities listed in a US Department of

Agriculture Forest Service (USFS) technical report on participation trends in nature-

based recreation (Cordell, 2012) that: 1) are under the jurisdiction of federal, state, or

local resource managers, and 2) whose execution requires meaningful depletion of the

natural capital on which it relies or involves some social dilemma (e.g., congestion).9

Finally, I merged the list of publications from all API calls and removed any

duplicates (N = 4645.) Then, I went through the titles, abstracts, and—as necessary—

body text of each unique document to determine which were relevant (i.e., focuses on

managing nature-based recreation, broadly) and which should be dropped from my

analysis. I used the following rules to identify 527 relevant publications:

1. Publications must focus on managing recreation on public land or waterways.

• Includes: Hiking in public forests, downhill skiing that is not constrained

to lodge or resort-owned land, etc.

7The full search phrase for “recreation management” was “(recreation OR recreate) AND (man-
agement OR manage OR managing OR planning).”

8I also ran a search where I replaced recreation mode in my search query with, “(outdoor OR
(nature AND based) OR nature-based)” to find articles for which mode of recreation is not specified
in its title, abstract, or keywords.

9As an example, activities like cross-country skiing or hiking tend to occur on public land, and
are therefore managed by federal, state, or local resource managers. Furthermore, these activities
are subject to congestion dilemmas. Conversely, organized team sports (e.g., soccer matches) and
hunting at a private club are not managed by federal, state, or local entities, and their private,
organized nature usually precludes social dilemmas.
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• Excludes: Private hunting ranches, viewing opportunities at private resorts,

etc.

2. Exclude valuation studies unless their purpose is to inform a management

decision.

• Includes: Studies that quantify benefits of or behavioral responses to a

management change.

• Excludes: Studies that make no mention of management or whose only

mention of management is to stress its general importance for improving

or maintaining the non-market value of one or more recreation sites.

3. Include publications that develop decision support tools for recreation managers.

4. Exclude studies that primarily assess potential new recreation sites without

explicit consideration of day-to-day management.

5. Exclude recreation modalities that depend primarily on interaction with hard

human-made infrastructure rather than natural infrastructure.

• Includes: Peri-urban forests and other sites where people primarily get

utility from interacting with or observing natural infrastructure.

• Excludes: Built environments like boardwalks or city parks where people

primarily get utility from interacting with hard human made infrastructure

(e.g., playground equipment.)

After identifying relevant publications, I labeled each according to whether or

not it contained a potential case study. As a rule, articles with case studies focus

on one or more management challenges as identified by the system managers or case

authors within a well-defined study site (e.g., a national park, a lake, a trail system).

Experiments, pure simulations, and other approaches that divorce the management
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challenge from system context do not provide insight into the relationship between

system context and management processes and outcomes, and so are not suitable

cases for this chapter. I also exclude meta-reviews or analyses, because the amount of

detail provided on individual cases within those reviews is insufficient to code. Finally,

to limit my focus to recent emergent dilemmas, I consider only cases from documents

published since 2013. Using this process, I identified 143 potential case studies.

For each potential case, I also listed the management challenges (e.g., soil erosion,

recreators getting harmed or killed, etc.) identified by the system’s managers or by the

case authors. Then, I aggregated those symptoms into broader classes of management

challenges. This aggregation process was iterative, and my objective was to create

groupings that were coarse enough to apply across recreation types but narrow enough

to preserve the spirit of the underlying symptoms. I collapsed 27 symptoms into

six management challenges. Table 2 describes these challenges, the symptoms they

represent, the recreation types for which they were identified, and the number of

potential cases I identified that focus on each challenge.

Finally, I selected a sample of cases for coding from the 143 potential case studies

using the following criteria:

1. For each management challenge, choose at least one case per recreation mode to

ensure good coverage.

2. When possible, select cases that address more than one management challenge.

This approach lets me investigate how different dilemmas tend to co-occur, and

how they exacerbate or mediate each other.

3. If two or more cases shared management dilemmas and recreation types, select

the case with the most detail on the RU, NI, and PI.
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Table 2

Set of Management Challenges Identified by System Managers and Case Authors.

Management
challenge

Description & symptoms Recreation modes Case
count

Recreator
harm

Recreators (resource users) are
potentially physically harmed
during recreation. This risk of
harm may stem from zoonotic
disease transmission, wildlife
encounters, accidents, etc.

Trail Activities,
Backpacking &
Camping

6

Conflict A spectrum of situations where
the presence of other humans
degrades the recreational
experience. Includes congestion,
physical altercations, verbal and
non-verbal censure, etc.

Trail Activities,
Backpacking &
Camping, Viewing
& Photographing,
Hunting, Fishing,
Swimming, Boating,
Snow Activities

23

Equitable
access

One or more groups of people
(delineated by race, ethnicity,
gender, age, etc.) have limited or
no access to a recreation site.

Trail Activities,
Backpacking &
Camping, Swimming

5

Extractive
degradation

Recreators (resource users)
degrade natural infrastructure by
extracting resources from the site
in the course of recreating.

Trail Activities,
Backpacking &
Camping, Hunting,
Fishing, Swimming,
Boating

8

Non-
extractive
degradation

Recreators (resource users)
degrade natural infrastructure
through non-extractive site use
(e.g., eroding trails, spreading
invasive species, etc.)

Trail Activities,
Backpacking &
Camping, Hunting,
Fishing, Swimming,
Boating, Snow
Activities

51

Wildlife
disturbance

Recreators (resource users) modify
the behaviors and, therefore,
diminish the fitness of one or
more species through proximity.

Trail Activities,
Backpacking &
Camping, Hunting,
Fishing, Swimming,
Boating, Snow
Activities

60
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Table 3 lists the final 18 cases I selected and their focal recreation types by

management challenge.

2.3.2 Coding and Analyzing Case Studies

I followed a consistent procedure to code each case study. First, I listed the

attributes of the RUs, NI, and PI. Information on RUs and NI from the time of

the case study (as opposed to the present) would be difficult for me to collect and

verify, which is why I coded only cases with sufficient detail regarding those system

elements. However, historical PI (e.g., rules, laws, enforcement agency, etc.) are

more often recorded and archived by reputable sources, so I collected supplemental

information on PI on an as-needed basis.10 My next task was to note any undesirable

outcomes for the RU or NI according to the system’s managers or the case authors.11

Next, I identified the feedback(s) within and between RU, NI, and PI that described

the management dilemma(s) faced by that system. Finally, I recorded potential

management interventions that were suggested by the case authors or implemented

by the system’s managers. I also brainstormed additional interventions using my

knowledge of the case’s context and of other recreation systems.

10It was relatively common, especially in documents written by natural scientists, for the cases to
include minimal details about the PI. When I could find a mission statement or stated objectives on
the managing agency’s official website or in a law, I used those sources to supplement my labeling of
the PI node.

11Undesirable outcomes for RU range from a degraded recreational experience to death, while
undesirable NI outcomes include soil erosion, the spread of invasive species, etc.
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Table 3

Final Cases and their Recreation Modes by Management Challenge.

Management
challenge

Case Recreation mode

Recreator Pereira et al., 2021 Swimming
harm (4) Kubo and Shoji, 2016 Trail Activities, Viewing

& Photographing
*Hughes and Paveglio, 2019 Trail Activities
Gstaettner et al., 2017 Swimming

Conflict (3) Nguyen et al., 2016 Fishing
*Hughes and Paveglio, 2019 Trail Activities
*K. M. Brown, 2016 Trail Activities

Equitable Höglhammer et al., 2019 Trail Activities
access (2) McCreary et al., 2019 Trail Activities, Hunting,

Fishing, Swimming,
Boating, Snow Activities

Extractive *Eagleston and Marion, 2017 Backpacking & Camping
degradation (3) Chang et al., 2017 Hunting

Weijerman et al., 2018 Fishing
Non-extractive *Eagleston and Marion, 2017 Backpacking & Camping
degradation (6) Martínez-Laiz et al., 2019 Boating

*K. M. Brown, 2016 Trail Activities
Bomanowska et al., 2014 Backpacking & Camping
*Hogan et al., 2021 Trail Activities
Carello et al., 2018 Snow Activities

Wildlife Burger and Niles, 2014 Swimming
disturbance (3) Spaul and Heath, 2016 Trail Activities

Shawky et al., 2020 Viewing &
Photographing,
Swimming

Note: Starred cases feature multiple dilemmas.
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2.3.3 Identifying Dilemmas

As I coded the case studies, I realized that many of the challenges facing recreation

managers arose in response to management interventions targeted at some other

challenge. These original challenges were not always explicitly acknowledged by case

authors, but were easy to identify with context clues.12 Therefore, I differentiated

between primary and secondary feedbacks when coding these cases. To see both an

example of my full coding process using the Martínez-Laiz et al. (2019) case and a

table of coding outcomes for all 18 cases, refer to Appendix A.2.

2.4 Results

I identify four primary and four secondary management dilemmas (i.e., feedback

loops). Primary dilemmas arise from the fundamental recreation process (i.e., the

RU-NI interaction) and may emerge exogenously (i.e., in response to an anthropogenic

shock from outside the system) or endogenously. Secondary dilemmas emerge from

a primary dilemma or from a management response to a primary dilemma. Most

cases feature multiple coincident or successive dilemmas, and understanding how

those dilemmas interact could help managers anticipate how their own systems may

transform or how any potential interventions may play out.

12For example, the case from Martínez-Laiz et al. (2019) focuses on the spread of aquatic invasive
species. Marinas play a key role in transmission of these species, and—as HHMI—are clearly a
man-made intervention designed to address some other challenge. As marinas exist to facilitate easy
boat access, the symptom they are installed to treat is one of access.

22



A. Leave no Trace (LNT) B. Hell is Other People (HOP)
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Figure 2. Depictions of the Four Primary Dilemmas. The verbs along the links
indicate the modifying effects that each node has on the other. Red shading indicates
the node in which the undesirable (from the perspective of the manager or case study
author) outcome occurs. The partially shaded RU node in panel A indicates that
RUs may or may not be made worse-off by this type of dilemma at the relevant time
scale for any given case. The dashed line in panel D represents the absence of the
recreational link between a particular group of RUs and some specified body of NI.

2.4.1 Primary Dilemmas

Figure 2 illustrates the four primary dilemma types. The “Leave No Trace” (LNT)

dilemma type of panel A is where RUs—who get utility (U) from accessing the NI for

recreation—pressure or disturb that NI, which fundamentally changes or degrades

it. Panel B shows the dilemma type “Hell is Other People” (HOP), where RUs who

access NI for recreation are concentrated by that NI and subsequently harmed (e.g.,

through a degraded recreational experience, verbal or physical abuse, etc.) through
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Table 4

Overview of the Types of Cases Compared for Each Primary Dilemma Type.

Dilemma Cases Management Challenges Recreation Modes
“Leave no
Trace” (LNT)

8 Extractive degradation,
Non-extractive degradation,
Wildlife disturbance

Hiking, Off-roading,
Camping, Rock climbing,
Hunting, Fishing,
Swimming, Snorkeling,
Scuba diving, Visiting a
beach or waterside

“Hell is Other
People”
(HOP)

4 Recreator harm, Conflict,
Non-extractive degradation

Hiking, Mountain biking,
Equestrian, Off-roading,
Camping, Fishing,
Visiting a beach or
waterside

“Don’t Poke
the Bear”
(DPB)

2 Recreator harm Hiking, Visiting a beach
or waterside

“Can’t Get
There from
Here” (CGT)

4 Equitable access,
Non-extractive degradation

Hiking, Viewing &
photographing, Hunting,
Fishing, Swimming,
Boating, Cross country
skiing, Snowmobiling

proximity to other RUs. “Don’t Poke the Bear” (DPB) in panel C describes a case in

which something inherent in the NI presents a non-trivial probability of harm or death

to RUs who access it for recreation. Finally, panel D depicts “Can’t Get There from

Here” (CGT) in which all or certain groups of RUs have limited or no recreational

access to the NI in question. This final dilemma is the most obviously subjective of

the four, in that it hinges on the manager or case authors’ beliefs about who should

have access to a particular NI.
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2.4.1.1 Leave no Trace

2.4.1.1.1 The Dilemma

The LNT dilemma, where extractive or non-extractive recreational activities

degrade the NI on which they depend, is perhaps the most obvious of the primary

dilemmas and a popular focus of conservation biologists and social scientists alike.13

Its ubiquity may explain why this dilemma features in eight of my final cases. As a

group, those eight cases focus on three management challenges and 10 unique modes

of recreation. In two of these cases, LNT emerges from or is exacerbated by one or

more secondary dilemmas.

I identify two important themes regarding the emergence of this dilemma. First,

LNT is often exacerbated when the preferences of RUs align with NI vulnerabilities. In

extractive recreation contexts, this may mean RUs preferentially harvest fish or game

from a particular trophic level, simultaneously reducing biomass and transforming

the surrounding ecosystem, which compromises a species’ ability to recover, even if

extraction ceases (Chang et al., 2017; Weijerman et al., 2018). The case described

in Chang et al. (2017) illustrates a further complication where hunters get U from

the experience of hunting, not from successfully bagging game. Therefore, their

preferences ensure they do not exit the system or apply less extractive pressure as

biomass dwindles (i.e., as NI is degraded.)14

13For example, scholars have written at length about commons dilemmas in regulated open access
fisheries, where fishers degrade a fish stock through excessive harvesting (Homans & Wilen, 1997;
Wilen, 2006).

14There is also some evidence of this trend in recreational fisheries (Kleiven et al., 2019).
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In non-extractive contexts, the NI attributes that increase RU traffic (i.e., char-

acteristics that make sites easy to access or aesthetically pleasing) may be the same

characteristics that make NI vulnerable to disturbance or degradation. For example,

craggy monadnocks are replete with hand and footholds, making them easier to

climb than smooth cliff faces. However, vascular plants live in rock crevices, meaning

undisturbed craggy routes host more biodiverse ecosystems for climbers to potentially

disturb (Bomanowska et al., 2014). Similarly, Shawky et al. (2020) point out that

lagoons—which are both easier to access than open ocean and aesthetically appealing—

tend to host nursing female dolphins and their calves, which are especially vulnerable

to disturbance from swim-with-dolphin tourists. Finally, Golden Eagles nest on cliff

faces, which are high aesthetic-value sites for wildlife viewing and photography. So

these eagles are most likely to be disturbed during one of the most vulnerable periods

in their reproductive cycles (Spaul & Heath, 2016).

The second theme is that slow exogenous changes to RU preferences or NI resilience

may cause this dilemma to emerge, either by creating a problem where none existed

or by rendering a once-effective management response obsolete. For instance, in

Bomanowska et al. (2014), Hogan et al. (2021), and Shawky et al. (2020), LNT

emerges as increased demand for particular recreation modalities (rock climbing, ATV

riding, marine tourism) in the broader population flood the study systems with enough

additional RUs that their collective impact on NI becomes significant and concerning to

the managers or study authors. Eagleston and Marion (2017) also notes that increased

demand for camping caused Boundary Waters Canoe Area Wilderness campsites and

their surrounding flora to transform. However, the larger problem facing this limited

number of well-defined camp sites is macro-scale changes in camping preferences and

behaviors over the past few decades. Campers today prefer smaller, more numerous,
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and more spaced-out tents than they did several decades ago. As a result, today’s

campers trample new areas of flora further outside the primary campsite ring to build

“satellite camp sites” rather using only USFS-installed camp pads.

2.4.1.1.2 Management Interventions

There is a range of interventions that may address LNT, and each of these potential

interventions act through one of links 4, 5, or 6. In certain circumstances, it may

make sense for managers to modify NI through link 4 to correct past degradation

or increase its resilience to recreational use. Weijerman et al. (2018) explain that

exogenous water pollution from a nearby urban center degrades fish habitat, which

makes it harder for fish stocks to recover from excess recreational fishing effort. So

cleaning up that pollution or installing artificial reefs to supplement the existing

habitat could, depending upon the biological context of a particular NI, help correct

or mitigate this dilemma. Similarly, beach nourishment could help the sea birds and

recreators described by Burger and Niles (2014) stay spatially distanced, while wildlife

overpasses might help the game species from Chang et al. (2017)—whose habitat is

fragmented by roads—escape or recover from hunting pressure.

Recreation managers can also act through link 4 to disincentivize especially destruc-

tive recreational activities. For example, USFS covers satellite camp sites with rocks

and other hard materials to make them uncomfortable, and to encourage campers to

place their tents only on official camp pads (Eagleston & Marion, 2017).

Managers may act through link 5 to moderate the impact of recreation on NI

by changing how RUs access or interact with NI. In extractive settings, this type

of intervention often takes the form of gear restrictions. Hawaii’s Department of

27



Land and Natural Resources has long imposed fishing gear restrictions on recreational

anglers at the reef ecosystem off Puakō, and Weijerman et al. (2018) find evidence

that even more stringent restrictions on gear types could help local fish stocks (NI)

recover to the benefit of multiple RU groups. Similarly, Eagleston and Marion (2017)

suggest that prohibiting axes, hatches, saws, or other gear that can be used to cut

trees for firewood could reduce the impact of campfires on campsite flora. However,

gear restrictions may only be effective when they are enforceable. Chang et al. (2017)

find that while hunters near remote villages in China are aware of and see as legitimate

laws outlawing gun-ownership, they continue to use this effective, generalist weapon

for hunting because enforcement is inconsistent and easy to avoid.

Gear can also increase RU impact in non-extractive settings. After the Polish

Mountaineering Association installed permanent rings and other safety gear (HHMI)

into select climbing routes, the number of RUs who could access those routes increased,

leading to higher traffic and thus greater pressure on the vulnerable flora that grow

along those routes (Bomanowska et al., 2014).

The other link 5 intervention managers can employ is to outlaw and monitor for

the most impactful recreational behaviors in a system. In extractive cases where RUs

are harvesting down the food web, moratoriums on harvest of particular species may

help maintain trophic integrity (e.g., Chang et al., 2017; Weijerman et al., 2018).

Similarly, spatial or temporal closures or activity bans that align with maximum NI

vulnerability can balance demand for recreation with the need to conserve NI. For

instance, Spaul and Heath (2016) suggest implementing “no stopping zones” near

eagle nesting sites while nests are occupied to prevent RUs from lingering near active

nests, which increases their probability of failure. Similarly, outlawing boats near the
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mouth of the lagoon on Samadai Reef could stop motorized RUs from trapping female

dolphins and their calves in the lagoon (Shawky et al., 2020).

Finally, managers can employ information campaigns or monitor and sanction

RUs for problematic and illegal behaviors via link 6. Providing tangible examples of

how certain undesirable RU behaviors impact NI could induce some RUs to behave

differently to moderate their own impact. This type of intervention would likely

work best when the impacted NI is charismatic. Monitoring and enforcement may

be required when the NI is not charismatic or when the negative outcome is less

directly tied to an individual RU’s actions. For instance, the plant that is negatively

impacted by illegal ATV riders on Miscou Island is not charismatic, so RUs may have

little motivation to give up pleasure from their recreational pursuits to protect it

(Hogan et al., 2021). On the other hand, Golden Eagles and Spinner Dolphins are

both charismatic species, but the impact of a single recreator on eagles is much clearer

than on dolphins; one pedestrian lingering too long can cause nest abandonment and

chick death, while one swimmer approaching a mother-calf dolphin pair may cause

them to spend less time resting, which only appreciably impacts their fitness and

survival over repeated encounters (Shawky et al., 2020; Spaul & Heath, 2016).

Monitoring and enforcement may be difficult for managers with funding constraints,

when the NI is diffuse and easy to access, and when informal institutions (SI) arise

to block enforcers. The government of New Brunswick has limited funds to devote

to monitoring for illegal ATV use on Miscou Island, and RUs can ride all over the

large, remote coastline, meaning there are no obvious access points at which to focus

monitoring (Hogan et al., 2021). The forests utilized by hunters in rural China

are similarly large with numerous official and unofficial access points, making them

difficult to monitor for illegal hunting (Chang et al., 2017). Furthermore, informal

29



information-sharing networks (HI) have emerged to help those hunters avoid detection

when enforcers arrive at their villages. In this case, the authors suggest a shift from

national to local governance of hunting may increase legal compliance and reduce

pressure on the NI.

Similar to the hunting case, enforcers have long been required on dolphin viewing

vessels, but social norms (SI) prevent their enforcing rules about speed limits and

aggressive driving designed to trap dolphins in the lagoon (Shawky et al., 2020).

In cases where RUs must utilize PI (e.g., trails, boat launches, etc.) to access NI,

recreation managers could potentially use technology to circumvent enforcement-

blocking norms. For instance, requiring cameras or gps trackers on boats could help an

impartial third party identify reckless or illegal boating behaviors, creating a credible

risk to trapping dolphins in the lagoon.

2.4.1.2 Hell is Other People

2.4.1.2.1 The Dilemma

The four cases I compare to identify and describe this dilemma feature three

management challenges and seven unique modes of recreation between them. For two

of these cases, HOP is the sole dilemma, while in the other two it either precedes or

is amplified by a secondary dilemma. I will discuss in more detail how this primary

dilemma interacts with those secondary dilemmas in section 2.4.2.

This dilemma may emerge quickly in response to some exogenous anthropogenic

shock, or it may emerge and intensify slowly as a positive feedback loop that causes

and is fed by repeated negative interactions between heterogeneous RUs. In the former
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case, managers can try to anticipate potential shocks and preemptively invest in PI

that improves their triage capabilities (e.g., setting up and raising awareness for an

information-sharing web page, buying cameras to monitor RU behaviors, or hiring

additional enforcers, etc.) The types of sudden anthropogenic shocks that could spawn

HOP in recreational systems are expected to increase in frequency as we progress

through the Anthropocene. For example, beachgoers in Pará became hazards to one

another only after COVID-19 increased the number of RUs at the beach while at

the same time creating a new risk—namely, transmission of a dangerous zoonotic

disease—to RU proximity (Pereira et al., 2021). The incidence of zoonoses is expected

to increase dramatically over the next few decades, meaning recreation managers

should anticipate RUs suddenly and increasingly becoming hazards to one another in

the near future (Carlson et al., 2022).

This dilemma emerges slowly and purportedly as a result of RU heterogeneity in

three of my final cases. The types of heterogeneity that drive emergence in these

cases are of RU values, behaviors, and recreation modalities. Hughes and Paveglio

(2019) note that an exogenous increase in ATV participation may partially explain

the increasing ratio of newcomers to legacy RUs at the St. Anthony Sand Dunes.

Newcomers’ riding behaviors are more dangerous to themselves and others, so over

time the slow compositional shift within RU degraded the recreational experience of

legacy participants, many of whom eventually fled the system, further accelerating

the dilemma. Managers should, therefore, collect data on the share of legacy versus

new RUs to better anticipate the potential emergence of HOP.

The cases described by K. M. Brown (2016) and Nguyen et al. (2016) also exhibit

positive feedback loops associated with RU heterogeneity, but these cases are not

a story of compositional change; the heterogeneity driving the feedback is between
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different legacy RU groups. K. M. Brown (2016) shows that RUs of different recreation

modalities may find it hard to empathize and co-exist with the other group, and that

repeated negative interactions may “flip” a system by transforming the use norms (SI)

of one or both groups. Similarly, Nguyen et al. (2016) discuss how RU groups with

different values may have trouble empathizing with one another, and may even resort

to sabotage or physical violence to settle disagreements about use and access rights.

2.4.1.2.2 Management Interventions

There are three broad types of intervention that managers may employ to address

HOP. Managers may: 1) limit the number of RUs for the NI to concentrate, 2)

encourage or force RUs to spatially or temporally spread out, or 3) mediate the

negative impact of RUs being concentrated.

The first intervention may mean anything from disallowing all access (i.e., tem-

porarily or permanently closing a recreation site) to limiting RU access through space

and time. Complete closures, where managers set SHMI to outlaw any and all RUs

through link 6, may be effective if the dilemma is caused by a sudden and (relatively)

short-lived exogenous shock. For example, during the height of the COVID-19 pan-

demic, several municipal tourism departments in Pará, Brazil, closed their beaches to

prevent viral transmission (Pereira et al., 2021). However, when the threat to RUs is

persistent, managers may instead limit the number of RUs accessing, and thus being

concentrated by, the NI. For example, several Pará municipalities disallowed beach

access via public transportation, which means potential RUs without car access and

who live too far from the shore to walk are de facto excluded from these systems

via link 6 (Pereira et al., 2021). Other methods of access limitation could include
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setting and enforcing rules regarding RU capacity (link 6) or imposing or increasing

access or parking fees (link 5) to dissuade excess participation. Blocking RU access

is only feasible for systems with NI that funnels RUs through a limited number of

well-defined and easy-to-monitor access points. Hence, the beaches with parking lot

access from Pereira et al. (2021) are potential candidates for this intervention type,

while the relatively unbounded St. Anthony Sand Dunes from Hughes and Paveglio

(2019) are not.

The second intervention approach of facilitating RU spread may work through

any of links 4, 5, or 6, but the instances for which each link may be an effective

intervention point depends upon the nature of the RU and NI for a particular system.

Managers may install physical partitions in the NI (link 4) to limit the ability of

RUs to congregate, as was done at some beaches during the COVID-19 pandemic

(Pereira et al., 2021). However, this approach depends upon the NI being sufficiently

concentrated or well-defined (as is the case for beaches but not for sand dunes).

Furthermore, these installations must either bind RU behaviors or RUs must be

willing to abide by the suggestions implicit in those installations. For example, beach

managers in Pará installed umbrellas and tables in a spaced-out fashion to discourage

congregating (Pereira et al., 2021). However, these installations were not binding on

RU behavior (i.e., this HHMI was moveable) and RUs were unwilling to contain their

shoreline recreation to the HHMI-defined zones.

Recreation managers may also limit RU concentration by altering how RUs access

NI (i.e., setting rules that act through link 5). For sites with well-defined and spatially-

concentrated access points, managers may allow or encourage the use of vehicles or

other technologies that facilitate spreading out (Pereira et al., 2021). Alternately, if the

threat the RUs pose toward one another correlates with observable RU attributes, then
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managers can spatially and temporally allocate access to these attribute-delineated RU

groups to keep them separated. For example, in both K. M. Brown (2016) and Nguyen

et al. (2016), RUs are harmed (psychologically or physically) by proximity to other

RU groups. Furthermore, the RU groups are differentiated along observable attributes

that managers could potentially use to separate them via rules and regulations.15

However, while segregating RU groups may work in theory, managers may often face

exogenous mandates that prohibit this type of intervention. For instance, the Land

Reform Scotland Act of 2003 makes all paths multi-use, which means managers at

Cairngorms National Park cannot legally zone by recreation mode (K. M. Brown,

2016). Similarly, the fishery managers from Nguyen et al. (2016) have limited ability

to separate First Nation and recreational salmon fishers thanks to a Supreme Court

ruling granting First Nation fishers constitutional rights to salmon above all other user

groups. This fishery case illustrates a further complication, which is that certain NI

attributes may make zoning access by RU group impractical. Salmon are anadromous,

so access rights to salmon and other non-stationary NI must be zoned both spatially

and temporally, which is both more complicated and uncertain than a simple spatial

delineation.16

Finally, recreation managers can use information campaigns to encourage RUs

to spread themselves out spatially or temporally via link 6. This approach will be

effective only if the spatial or temporal zones are easy to monitor and easy for RU to

identify and if RUs are motivated to avoid close contact. So managers at Cairngorms

National Park could install trail cameras and publicize live and historical counts of

15In K. M. Brown (2016), RU groups are delineated by recreation mode (hikers versus mountain
bikers) while in Nguyen et al. (2016) groups are culturally defined (First Nation fishers versus
non-indigenous recreational fishers.)

16Anadromous fish are those that migrate up-river from the sea to spawn.
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hikers and mountain bikers on particular trail segments to help those groups avoid

each other (K. M. Brown, 2016). However, the U.S. Bureau of Land Management

(BLM) may find it difficult to count ATV riders at the St. Anthony Sand Dunes, and

the open nature of the NI would make it difficult for RUs to employ that information

to avoid busy areas (Hughes & Paveglio, 2019).

Mediating potential harm from RU concentration can either mean changing how

RUs are allowed access the NI (link 5) or setting rules and sharing information via

link 6 to change RUs’ perceptions and behaviors more broadly. In instances where the

risk of RU harm stems from reckless behaviors, recreation managers can implement

speed limits, right-of-way laws, and other safety regulations to force responsible access

behavior through link 5. In some cases, managers may be able to enshrine into

law norms which had previously prevented or mitigated HOP. For example, the St.

Anthony Sand Dunes was previously governed by a set of informal, user-cultivated

norms. The influx of newcomers caused this collective action to break down, but the

BLM could draw from this legacy dunes culture to develop use rules that are tailored

to the site. Hughes and Paveglio (2019) suggest that legacy users, many of whom

are locals, be included in governing the St. Anthony Sand Dunes (i.e., RU = PI) to

leverage their site-specific knowledge and expertise.

In some circumstances, managers may be able to correct harmful or reckless

behaviors through an information campaign (link 6) instead of resorting to formal

regulations. Thanks to their multi-use trail mandates, managers at Cairngorms

National Park cannot legislate right-of-way, as that would give either hikers or mountain

bikers a priority use right. However, K. M. Brown (2016) points out that managers

could resolve some of the uncertainty and fear experienced by hikers and mountain

bikers by advertising best practices and otherwise reinforcing a common understanding
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of trail etiquette. Campaigns designed to change RU behaviors do not have to be

limited to information on best practices; managers can also reduce fear and uncertainty

surrounding inter-group encounters, build empathy and encourage cooperation by

emphasizing commonalities in RU groups’ recreational experiences, play up common

enemies, or educate different RU groups on the origin of each others’ rights (K. M.

Brown, 2016; Nguyen et al., 2016). However, both laws and information campaigns

may be ineffective at inducing desired behaviors if there is insufficient enforcement and

if RUs are not convinced a significant risk exists. For example, beachgoers in Pará—

many of whom did not believe COVID-19 was very infectious—ignored regulations

requiring social distancing and the use of personal protective equipment (Pereira et al.,

2021).

2.4.1.3 Don’t Poke the Bear

2.4.1.3.1 The Dilemma

Two of my final cases exhibit DPB, and one of those cases also features a secondary

dilemma that emerged from a management response to DPB. Both Kubo and Shoji

(2016) and Gstaettner et al. (2017) identify situations where RUs get U from the

activity that has the potential to harm or kill them. In the former case, non-local

hikers want to observe brown bears on the Numameguri Hiking Trail in Hokkaido,

Japan. The latter case examines the motivations of non-local beachgoers in Western

Australia to walk on a sandbar against posted advice. In both cases, the vulnerable

non-local RUs are attracted by novel, exciting, and inherently dangerous experiences,
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and would experience significant reductions in enjoyment if the dangerous activity

were prohibited.

2.4.1.3.2 Management Interventions

One obvious solution to DPB is to impose rules (SHMI) or physical barriers

(HHMI) to keep RUs away from “the bear” through link 5. Walking on the sandbar

between Mersey Point and Penguin Island is illegal during inclement weather, and the

managers of Daisetsuzan National Park close segments of the Numameguri Hiking

Trail when a bear is spotted nearby (Gstaettner et al., 2017; Kubo & Shoji, 2016).

However, banning risky behaviors significantly degrades the recreators’ experiences,

especially—as is the case in Western Australia—when the thrill of taking a risk

contributes to the activity’s appeal (Gstaettner et al., 2017). So recreation managers

may consider alternate interventions that either help RUs assess and prepare for their

personal risk level or that minimize the realized risk of the activity without disallowing

it entirely.

When RUs routinely underestimate their own risk of harm, recreation managers

can employ narrative and information campaigns via link 6 as a reality check. For

example, Gstaettner et al. (2017) find that beachgoers, and especially international

visitors, routinely compare themselves to other sandbar walkers who appear more

vulnerable than themselves, which leads most people to underestimate their own risk

of mortality. One visitor saw a child on the sandbar with their parents and assumed

that they—an adult—must be a stronger swimmer than that child, even though they

later admitted they were a poor swimmer. Gstaettner et al. (2017) suggest that using

narratives that counter the ways in which RUs overcome cognitive dissonance (e.g.,
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publicizing the news of a strong swimmer who drowned on the sandbar) might be an

effective way to discourage high-risk individuals from participating in unsafe forms of

recreation.

Information campaigns can also help RUs engage in risky but rewarding recreational

activities in a safer way. In the Western Australia case, for example, the sandbar

is dangerous, in part, due to its unpredictable and dynamic nature (Gstaettner et

al., 2017). Therefore, providing information about when the risk is highest (in the

afternoon during high tide) might help people who plan to walk the sandbar substitute

to a safer time of day. Similarly, Kubo and Shoji (2016) point out that larger hiking

groups are less vulnerable to brown bear attacks. Brown bears tend to congregate

further from trail heads, so Kubo and Shoji (2016) suggest managers either recommend

(link 6) or require (link 5) minimum group sizes for more remote trail segments.

2.4.1.4 Can’t Get There from Here

2.4.1.4.1 The Dilemma

While I identify four case studies related to this dilemma, two of those cases focus

on the dilemmas that emerged after access was established (i.e., after some managing

body decided CGT existed and addressed it.) This goes to show that the moment

someone provides PI to enable or improve access to NI, even non-extractive types of

access, secondary management dilemmas often follow. In this section I engage with

the two cases for which CGT is the focal emergent dilemma. I discuss the other two

cases in the context of their secondary dilemmas in section 2.4.2.
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For both cases in which CGT is the focal dilemma, the management challenge

identified by the authors is “equitable access.” Together, these cases cover a wide

range of recreation modalities, all of which are listed in Table 4. Höglhammer et al.

(2019) investigate the barriers that Chinese and Turkish immigrants face in accessing

the Wienerwald Biosphere Reserve (WWBR) in the Austrian Alps, while McCreary

et al. (2019) discuss the extent to which different sociodemographic groups are able

to adapt to climate change shocks in order to access Lake Superior’s North Shore for

recreation.

These two cases illustrate that RU groups may face language, cultural, or fear

and uncertainty barriers to accessing NI for recreation. Furthermore, these barriers

may correlate with observable RU attributes, making them easier to address but

also a potential source of inequity. Höglhammer et al. (2019) find that Chinese and

Turkish immigrants face different cultural and language barriers to accessing the

WWBR; both groups are unaware that their preferred modes of recreation are not only

allowed but encouraged within the WWBR. This disconnect exists both because the

immigrants’ preferred modes are not much advertised by site managers, and because

WWBR managers and immigrants often use different words or phrases to describe

the same activities. For example, the Chinese immigrants reserve the word “hiking”

for strenuous outings and prefer to “take walks in nature,” which WWBR managers

understand to be a form of hiking. Therefore, many Chinese immigrants are uncertain

about or fearful of accessing the WWBR without a guide or gatekeeper from their own

community. Barriers that correlate with languages or cultures are likely to become

a more common issue in the near future, as the increased severity and frequency of

epidemics and weather events caused by anthropogenic climate change create climate

refugees (Beine & Parsons, 2015).
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Rather than being language or culture-based, the access barriers identified by

McCreary et al. (2019) lie along sociodemographic margins. Specifically, these authors

find that older, lower income, and first time visitors to Lake Superior’s North Shore

are less able to adapt to severe weather events—whose frequency and intensity are

augmented by climate change—and are therefore more likely to exit the system. The

relative inability of older recreators to adapt could be especially impactful given

that high-frequency participants in outdoor recreation are an aging group (Outdoor

Foundation, 2022), and the over-representation of lower income individuals amongst

system leavers is an obvious equity concern.

2.4.1.4.2 Management Interventions

In general, the most effective way to overcome barriers to access may be to include

members of underrepresented groups in decision making (RU=PI). Höglhammer et al.

(2019) suggest recreation managers provide guides or gatekeepers from different migrant

communities to mitigate the fear and uncertainty that RUs from those communities

experience when visiting a new site. Another way to minimize this uncertainty would

be to employ members of underrepresented communities in designing and disseminating

informational materials (link 6) to ensure that the types of activities advertised and

the way those activities are described are accessible and salient across RU groups.

When barriers to access are related to sociodemographic factors like age and income,

it is important to understand what types of adaptations those groups are willing and

able to perform to continue recreating. In the case described by McCreary et al. (2019),

it is possible that lower income RUs were less able to afford technology adaptations or

engage in temporal substitution to avoid severe weather events. Similarly, older RUs
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Figure 3. System Diagrams of the Four Secondary Dilemma Archetypes.

may be unwilling to adopt new technologies or less physically capable of adapting to

extreme conditions. In either case, managers may want to emphasize low-cost and

low-tech risk-mitigation approaches to help these vulnerable groups remain in the

system.
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2.4.2 Secondary Dilemmas

I identify four types of secondary, PI-involved dilemmas that tend to emerge either

from management responses to one of the primary dilemmas or from a transformation

of PI caused by a primary dilemma. The two archetypes in the left column of Figure 3

involve counter-clockwise information flows, while the flows of information or biomass

depicted in the right column are clockwise. The counterclockwise processes involve

the PI acting upon RUs (link 6) or their access behaviors (link 5) after receiving some

information or biomass signal from NI (link 4). In the clockwise processes, the PI acts

upon NI (link 4) or affects how RUs access NI (link 5) in response to an information

signal from the RUs (link 6).

2.4.3 Counter-clockwise Dilemmas

In the cases I compared, these dilemmas usually present as a flow of information

that arises from or in response to LNT. This trend makes sense, because in counter-

clockwise dilemmas the PI responds to information signals from the NI. Two of my

cases feature dilemma A from Figure 3 (McCreary et al., 2019; Nguyen et al., 2016),

while the case described by Kubo and Shoji (2016) focuses on dilemma B. See Table 5

for a description of these four cases. In all three cases, RU heterogeneity contributes

to the secondary dilemma, but the margin along which RU heterogeneity occurs is

only a reasonable management target in two of those cases. Salmon is valued and

extracted differently by Alaskan First Nation and recreational fishers, which means

these two groups differ in their stock impacts, too (Nguyen et al., 2016). Indigenous

status, then, is a relatively easy and important margin along which to differentiate
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Table 5

Descriptions of Cases that Feature Counter-Clockwise Secondary Dilemmas.

Case Emergence Secondary Dilemma Outcome
Kubo and
Shoji, 2016

Managers setting
rules to address
DPB.

Type B. Information feedback.
PI monitors and receives
information on bear locations
through link 4. When managers
sight a bear near a trail
segment, they close that
segment (link 5). This
asymmetrically reduces the U
that local and non-local RUs
get from hiking in the park by
spatially restricting their access.

CGT

McCreary
et al., 2019

Managers
sharing
information to
address DPB.

Type A. Information feedback.
PI monitors weather (link 4)
and publicizes that information
for RUs (link 6). Certain RUs
no longer access NI through
link 1 in response to that
information.

CGT

Nguyen et al.,
2016

Managers setting
rules to address
LNT.

Type A. PI monitors salmon
stock (link 4) and based on
stock health allocates different
quantities of fish to the First
Nation and recreational fishers
according to exogenous laws or
mandates (link 6). Both RU
groups see allocation as unfair,
so they clash.

HOP

SHMI. However, this case suggests that when RU heterogeneity is correlated with

identity, an us-versus-them mentality may well exist and create what Nguyen et al.

(2016) call a “blame game,” which in this case is a Type A counter-clockwise dilemma.

The two RU groups fish from the NI, and the PI gets information about their collective

stock impact by monitoring NI. In response to signals regarding stock health, the

PI imposes different harvesting rules on the recreational and First Nation fishers.
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The RU groups then clash with each other in response to perceived procedural or

distributional unfairness related to their different fishing rules.

Heterogeneity in RU is similarly easy to identify and target with policy in the

case described by Kubo and Shoji (2016). Local and non-local hikers at Daisetsuzan

National Park have different preferences for bear viewing, and are therefore unequally

impacted when managers close trail segments in response to bear sightings (Kubo &

Shoji, 2016).17 So providing different information or rules for locals versus non-locals—

which is a reasonable management target—could improve outcomes for both RU groups.

In contrast, the relevant margin of RU heterogeneity for Lake Superior recreators is

ability to adapt to anticipated weather shocks, which is loosely correlated with multiple

sociodemographic characteristics (i.e., age and income) and is therefore difficult to

target (McCreary et al., 2019). Specifically, when the PI publicizes weather alerts

through link 6, certain RU groups are more likely to not access the NI rather than try

to adapt to the anticipated weather shock. This latter case emphasizes how important

RU heterogeneity can be in determining system outcomes, even when it cannot be

directly targeted by managers. Conditional on knowing that older and lower income

RUs were disproportionately impacted by anticipated weather shocks, the Minnesota

DNR—whose mandates include providing information and technical assistance to

citizens and local governments—could help different RU groups overcome barriers to

adaptation by providing gear or working with repeat RUs to compile informational

resources that facilitate adaptation by different RU groups (e.g., suggesting low-cost

adaptations for RUs with lower household incomes.)

17Through monitoring efforts, the PI receives information from the NI that a bear is near a certain
trail segment. In response to this signal, the PI closes access that trail segment, which is a link 5
intervention. This access restriction reduces the U that RUs can get from accessing NI, and the
amount of U lost is greater for non-local RUs who value bear sightings.
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2.4.4 Clockwise Dilemmas

Clockwise dilemmas start as information flows from RU to PI, so they tend to

emerge from primary dilemmas that lead to RU harm (e.g., CGT and HOP). However,

this general trend surrounding the emergence of clockwise dilemmas does not always

hold. In the case from Hughes and Paveglio (2019), for example, a Type D secondary

dilemma emerges due to an exogenous shock to RU, and in Martínez-Laiz et al. (2019),

the Type C feedback circulates biomass rather than information. For a full description

of how these secondary clockwise dilemmas emerge and their outcomes across five

case studies, see Table 6.

As stated previously, any intervention that overcomes CGT will likely cause another

dilemma, and often one whose outcome is the degradation of NI. The cases from

Carello et al. (2018) and Bomanowska et al. (2014) are examples of this trend. In

both cases, recreation managers modified NI to facilitate recreational access, and

their management actions resulted in degraded NI. However, the way in which these

interventions impacted the NI differs. Recreation managers trim willow grasses in

Cucumber Gulch every autumn and subsequently compact the snow over those clipped

grasses with heavy machinery to create pristine cross-country ski trails. It is this

modification that degrades the NI (i.e., the pressure is through link 4), because

cross-country skiers do not sufficiently pressure the landscape to cause degradation

(Carello et al., 2018). So this case exhibits secondary dilemma type C. Conversely,

after the Polish Mountaineering Association installed permanent accessibility rings

into monadnocks within the Krakow-Czestochowa Upland, the resultant increase in

climbing activity (thorough link 5) hurt the fitness of the vulnerable vascular flora on

those stretches of limestone (Bomanowska et al., 2014). The mechanism for harm
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Table 6

Descriptions of Cases that Feature Clockwise Secondary Dilemmas.

Case Emergence Secondary Dilemma Outcome
Bomanowska
et al., 2014

Installation of
HHMI to
address CGT.

Type D. Information feedback. In
response to increased demand for
rock climbing (link 6), the Polish
Mountaineering Association
installed HHMI to improve safety
and increase access to certain
routes, which facilitated increased
NI access (link 5).

LNT

K. M. Brown,
2016

HOP
transformed
PI.

Type D. Information feedback.
Mountain bikers maintain use
norms (link 6) that drive their
recreational behaviors (link 5).
The norms flipped from
responsible use to reckless use in
response to alienation.

HOP
amplified

Carello et al.,
2018

Modification
to NI to
address CGT

Type B. Information feedback. In
response to demand for winter
sports (link 6), recreation
managers clip and compact willow
grasses annually to prepare
cross-country ski trails (link 4).

Degraded
NI

Hughes and
Paveglio, 2019

Exogenous
shock to RU
composition.

Type D. Information feedback.
ATV riders maintain use norms
(link 6) that drive their
recreational behaviors (link 5).
The norms flipped from
responsible use to reckless use
when a critical mass of newcomers
entered the system.

HOP

Martínez-Laiz
et al., 2019

Installation of
HHMI to
address CGT.

Type C. Biomass feedback.
Marinas (PI) collect invasive
species from the surrounding sea
(link 4). Marinas transmit those
invaders to RUs via their stored
boats (link 6), and those RUs
then deliver the invaders to other
parts of the sea (link 1).

LNT
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in this case is the facilitation of greater RU access, and so it is a type D secondary

dilemma.

The case in Martínez-Laiz et al. (2019) is another example of an intervention

designed to address CGT causing NI degradation. Specifically, this case illustrates

how HHMI designed to facilitate NI access can unintentionally create a channel for

biomass to flow through. Leisure boaters utilize marinas to access different parts of

the sea. However, the HHMI itself collects potential invaders and transmits them to

boat hulls. It is important, then, to consider that HHMI may become habitat for

undesirable species, creating a difficult-to-anticipate dilemma. The remedy, short of

demolishing these marinas, is to break link 6 by ensuring boats aren’t infected before

leaving the marina. This outcome could be accomplished by updating boat cleaning

recommendations, or by fining recreators who arrive at a marina with a critical mass

of invaders in their hull.

Comparing the cases in K. M. Brown (2016) and Hughes and Paveglio (2019)

provides clues to how HOP dilemmas may emerge and accelerate thanks to clockwise

secondary dilemmas. Specifically, these cases illustrate how a feedback loop that is

driven by collective action and mediates or prevents some primary dilemma might

be “hidden” to managers until some force transforms system norms (PI) and thus the

nature of the secondary feedback, rendering it problematic. For many years, legacy

ATV riders in the St. Anthony Sand Dunes built and maintained a set of norms (SI)

or a dunes culture (link 6) of courteous riding behaviors (link 5) that ensured all RUs,

not just ATV riders, stayed safe and enjoyed their recreational experiences. However,

a flood of newcomers eroded the traditional dunes culture (link 6) and transformed it

into a set of more reckless and self-interested riding norms that endanger RUs and
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degrade the experiences of especially vulnerable groups (e.g., families with children)

(Hughes & Paveglio, 2019).

Similarly, a transformation in use norms turned an “invisible” feedback that

minimized the negative impact of mountain bikers on other RUs and on the NI of

Cairngorms National Park into a visible and problematic HOP dilemma (K. M. Brown,

2016). However, whereas the transformation in Hughes and Paveglio (2019) was due

to an exogenous increase in newcomers, the PI transformation in this case was due

to a long history of negative sentiments between the hiking and mountain biking

RU groups. Over time, mountain bikers were made to feel alien or excluded, and

eventually reached what K. M. Brown (2016) call the “disengagement tipping point”

where they divested themselves of their traditional, responsible use norms (link 6) and

committed instead to more myopic riding behaviors (through link 5).

2.5 Discussion

My descriptive, archetypal analysis of management case studies in the realm of

nature-based recreation generates several intellectual contributions and paves the way

for future, more prescriptive work regarding the effective management of nature-based

recreation in the Anthropocene. Broadly speaking, my results highlight how essential

it is to account for the full set of feedbacks when designing policy for coupled human-

environment systems. This finding echoes that of Fenichel et al. (2013), who conclude

that more interdisciplinary models that explicitly incorporate behavioral responses

and biological processes are needed to improve recreational fisheries management.

In this section, I identify processes that operate across very different recreation

types as well as some themes surrounding when those processes break down. I describe
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the roles that RU heterogeneity and dilemma visibility often play in creating and

amplifying management dilemmas in this space, then discuss the full portfolio of

interventions available to recreation managers. In my discussion of management

interventions, I pay particular attention to the interplay between system attributes

and intervention feasibility and efficacy.

2.5.1 Common Processes and Where they Break Down

Regardless of recreation mode, the basic underlying feedback in nature-based

recreation is that RUs access and get U from NI. Similarly, the four primary dilemma

archetypes (i.e., ways in which that basic process may break down) I identify are

not directly determined by the mode(s) of recreation that characterize a particular

system. For example, Table 4 reveals that LNT emerges in systems that host a range

of extractive (i.e., hunting and fishing) and non-extractive (i.e., hiking, camping, etc.)

recreation modalities. Similarly, these dilemmas present as different management

challenges according to factors like RU or NI characteristics, prevailing management

mandates, etc. The manager who seeks to prevent “recreator harm” from the spread

of an infectious disease and the manager whose system is marked by violent RU

“conflict” face the same fundamental dilemma (HOP). There is no reason, then, that

fisheries managers need only study other fisheries nor trail managers other trail systems

when diagnosing and exploring potential interventions for their dilemmas. Rather,

these managers could benefit from studying how others—with their unique mandates

and perspectives—addresses similar fundamental break-downs in the NB-recreation

process.
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In the interest of helping managers diagnose and address these inter-modal dilem-

mas, I identify two key trends surrounding their emergence. First, RU heterogeneity is

a common driver or amplifier of these dilemmas. Second, managers can address only

dilemmas that are visible to them. Dilemma visibility is determined by monitoring

capacity, management mandates (i.e., what defines success and for whom?), the speed

at which the dilemma emerges (i.e., was it gradual enough to avoid detection?), and

whether or not some similarly invisible feedback exists that mediates and obscures

the dilemma but which managers could accidentally undo or that might erode over

time. I discuss these two themes in more detail in the following two sections.

2.5.1.1 RU Heterogeneity

RU heterogeneity can take a variety of forms, some of which are more visible than

others. For example, RU groups may use different modes of recreation, hold different

values, have different levels of site-specific knowledge, come from different cultural or

ethnic backgrounds, speak different languages, or be more or less adaptable in the face

of anthropogenic shocks to the system. Similarly, heterogeneity between RU groups

may play several different roles in creating or amplifying a management dilemma,

sometimes even within the same system. Heterogeneous users may be more prone to

conflict if they find it difficult to empathize with one another (e.g., the recreational

and First Nation fishers from Nguyen et al. (2016)), and RUs with different values and

preferences may differentially contribute to and be impacted by emergent dilemmas

(e.g., legacy versus newcomer ATV riders in Hughes and Paveglio (2019).) On a

related note, management interventions will likely advantage or disadvantage RU

groups differently depending on how well each group’s use ethics or perspectives do or
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do not align with those of the managers. In other words, some RU groups are more

vulnerable than others, either because they are less resilient to certain system shocks

and dilemmas (e.g., older and lower income recreators at Lake Superior) or because

they are relatively under-served by managers (e.g., Chinese and Turkish immigrants

at WWBR.)

Addressing sources of RU heterogeneity that drive or amplify dilemmas can pose

a significant challenge. In some cases, it may not be possible to target management

interventions at the relevant margins of heterogeneity. For example, swimming ability

and knowledge of sandbar dynamics—which loosely correlate with local versus non-

local status—play a significant role in determining an individual’s risk level from

walking on the sandbar to Penguin Island (Gstaettner et al., 2017). In theory,

managers could imperfectly target regulation (e.g., access bans) at non-locals, who

tend to be weaker swimmers and have less familiarity with the sandbar, but in practice

identifying non-locals and enforcing these laws would likely be impractical, not to

mention politically unpalatable. Even in cases where it is reasonable to target policy

along the relevant margin, some other latent source of heterogeneity may hinder

this management effort. For example, the Canadian Department of Fisheries and

Ocean (DFO) enacts and enforces different fishing regulations on indigenous and

non-indigenous (recreational) salmon fishers on the Fraser River in order to uphold

the Canadian Supreme Court’s ruling that indigenous fishers have priority access to

salmon as a constitutional right (Nguyen et al., 2016). While the DFO’s policies

address the difference in cultural values that each group gets from fishing salmon,

they fail to address differences in the groups’ fundamental beliefs about how and by

whom the salmon stock should be used, spurring periodic violent conflicts between

RU groups.
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Apart from amplifying dilemmas, RU heterogeneity also often plays a role in

driving management outcomes. Jungers et al. (2023) find that the degree to which

recreational fishers in the U.S. Gulf of Mexico approve of a theoretical switch in how

red snapper harvest is rationed (i.e., from a combination of season closures and bag

limits to year-round retention and per-fish retention fees) significantly impacts their

behavioral responses to said intervention. However, “approval” is not a targetable

margin of heterogeneity, which means fisheries managers would have to grapple with

the consequences of this latent difference should they ever choose to move forward

with the proposed policy.

Another example of latent heterogeneity complicating management efforts comes

from my case study in Chapter 4. The National Park Service (NPS) offers a bounty for

brown trout in the Lees Ferry fishery to encourage recreational fishers to remove more

of those fish from the river. The fishers with the capacity to catch the most brown

trout per trip, on average, are those on guided fishing trips (likely because they are able

to leverage the guides’ superior local knowledge.) However, some unobservable source

of heterogeneity (likely a catch-and-release value ethic) prevents guided anglers from

participating in the program, which undermines its efficacy. Offering guided fishers a

larger bounty payment in an attempt to overcome this reluctance to participate would

be politically fraught and likely ineffective at overcoming this value-based barrier to

participation. Alternately, NPS could target informational campaigns at guided and

unguided anglers to address their different barriers to participation. For example,

a two-prong information campaign that teaches unguided anglers how to effectively

catch Lees Ferry brown trout while convincing guided anglers that controlling the

brown trout population is more important than preserving their catch-and-release

ethics could potentially make the incentive program more effective.
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RU heterogeneity may also influence the distributional outcomes of management

interventions. For example, Kubo and Shoji (2016) explain that two RU groups at the

Numameguri Hiking Trail have different values for bear sightings, and are therefore

differentially harmed by policies designed to protect hikers by distancing them from

bears.

One additional challenge that RU heterogeneity introduces to the management

space is that even if it is observable, managers may not identify it as important

if it is correlated with an “invisible” dilemma. In the case of the WWBR, had

researchers and park managers failed to notice that Chinese and Turkish immigrants

were underrepresented in the user base, then even though heterogeneity in race,

ethnicity, and immigration status are relatively easy to see, the dilemma with which

they correlate (CGT) would have gone unrecognized and unaddressed (Höglhammer

et al., 2019).

2.5.1.2 Dilemma Visibility

Recreation managers can target interventions only at dilemmas that are visible

to them, so understanding what factors determine visibility could help those man-

agers recognize what types of dilemmas may exist in their systems that they cannot

immediately see. I discuss various contributors to dilemma visibility in the following

sections.
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2.5.1.2.1 Management Mandates and Capacity

One common cause of dilemma blindness is insufficient monitoring capacity, which is

determined by available funding, the managing agency’s mandates, and characteristics

of the system’s RU, NI, and PI. In the United States, recreation funding has not

kept pace with the increasing demand for outdoor recreation, which means recreation

managers have less money to devote to monitoring their systems for emergent dilemmas

(Watkins, 2019). Furthermore, recreation managers must devote their limited funds

toward monitoring for the subset of system elements, processes, and outcomes outlined

in their mandates. In other words, the way that an agency’s management mandates

define success and for whom (i.e., for NI, for all RU, for particular RU groups,

etc.) determines what those managers monitor and the dilemmas that are visible to

them. Managers with multi-use mandates that include promoting both recreation and

conservation may be more likely to monitor for both RU fulfillment and NI integrity

than managers whose sole mandate is to conserve NI. For example, the BLM in the

U.S. and the Ministry of Environment in Japan have multi-use mandates, and the

problems identified in the cases for which those agencies were managers focused on

conserving NI while maintaining mostly uninhibited access to high quality recreation

opportunities (Kubo & Shoji, 2016; Spaul & Heath, 2016). In Spaul and Heath

(2016), the BLM’s mandate to promote tourism is likely responsible for the influx

of newcomers that eroded the legacy dunes culture at the St. Anthony Sand Dunes,

causing HOP to emerge. So mandates may not only create a blind spot surrounding
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an existing dilemma, but they may also prevent managers from anticipating dilemmas

that may emerge from their own policies and interventions.18

In contrast to those two multi-use agencies, the Yunnan Province Forestry Bureau’s

(YPFB) primary objective is to conserve NI within National Nature Reserve protected

areas. Accordingly, YPFB’s management strategy has been to ban hunters from those

regions with little consideration of other incentives hunters face that might lead them

to ignore the hunting bans and even develop information-sharing processes to dodge

enforcement (Chang et al., 2017).

Finally, the nature of the RU, NI, and their fundamental recreation processes make

certain systems relatively more difficult or costly to monitor. The St. Anthony Sand

Dunes and the coastline of Miscou Island are wide expanses with innumerable access

points that facilitate spreading out of RUs (Hogan et al., 2021; Hughes & Paveglio,

2019). These traits make these systems more difficult to monitor than the Brigantine

Natural Area Beach with its limited width and single access point (Burger & Niles,

2014).

2.5.1.2.2 Speed of Emergence

Both fast and slow-emerging dilemmas pose unique challenges for detection. Some

dilemmas are “invisible” because they have not yet impacted the system in question. In

other words, slow exogenous changes increase the probability of certain fast exogenous

shocks to recreation-hosting systems.

18It is worth pointing out that multi-use mandate agencies are sometimes not given funding
proportional to their mandates, which also impacts which dilemmas are visible to them.
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It is difficult to manage for probabilistic shocks, even those that are likely or

that would significantly or permanently impact the system’s endogenous processes

and outcomes. Knowing that zoonotic pandemics and coral bleaching events will

occur more frequently in the future does not necessarily make their impacts on RUs

(beachgoers, fishers, scuba divers, etc.) or the NI with which they recreate easier to

anticipate and manage (see Pereira et al., 2021; Weijerman et al., 2018).

Even though it is difficult to anticipate when pandemics, severe weather events,

droughts, oil spills, floods, and other sudden anthropogenic shocks will occur, it is

important that an SES be resilient to those shocks. Carpenter et al. (2015) show that

tightly managing an SES for consistency of outcomes may undermine its adaptive

capacity, and thus its resilience to sudden exogenous shocks. Anderies et al. (2019)

build upon this finding and show that system managers should invest in a portfolio of

management tools to address uncertain or unanticipated potential contexts or shocks.

Modeling is a powerful and important tool for building that portfolio of man-

agement tools. Forward-looking models allow managers to investigate how potential

shocks or interventions might change their systems’ equilibria according to their

particular characteristics and processes. For example, Jungers et al. (2023) estimate

forward-looking models of recreational fisher behaviors in response to a prospective

policy change, then use those parameterized models to simulate a range of fiscal,

economic, and biological outcomes of that proposed policy. They find evidence that

the establishment of a market for red snapper quota between headboat anglers and

commercial harvesters may result in quota flowing toward the commercial sector, in

contrast to the current narrative that recreational anglers have higher marginal values

for harvest. Such a counterintuitive finding would not have come to light without this

ex ante modeling endeavor.
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Bioeconomic models that explicitly incorporate RU decision-making processes and

NI dynamics are increasingly popular (especially in the realm of recreational fisheries)

and incredibly powerful tools for exploring how the full set of system feedbacks and

outcomes equlibrate in response to exogenous shocks or endogenous management

efforts (e.g., Lee et al., 2017; Massey et al., 2006). Finally, a growing body of

literature reveals the importance of explicitly accounting for RU heterogeneity in these

bioeconomic models (Fenichel & Abbott, 2014; F. D. Johnston et al., 2010).

Dilemmas that emerge slowly, either exogenously or from endogenous processes,

pose a different core management challenge than fast dilemmas. While slow changes

usually do not necessitate immediate management intervention, the gradual nature of

their emergence may make them harder to identify until a critical threshold or tipping

point is reached. A good example of a slow exogenous change is the gradual increase

of newcomers who eroded the dunes culture and caused the emergence of HOP at

the St. Anthony Sand Dunes (Hughes & Paveglio, 2019), while the “disengagement

tipping point” identified by K. M. Brown (2016) where mountain bikers abandoned

their responsible use norms in response to repeated negative encounters with other

RU groups is an example of slow endogenous emergence.19

Consistent monitoring of NI and RU may be necessary to catch slow-emerging

dilemmas. The case study in my fourth chapter came about because consistent

monitoring of fish stocks, RU experience outcomes (i.e., catch rates), and water

temperatures alerted Lees Ferry managers that the fishery is likely in the midst of a

transformation whose outcomes, while uncertain, include a non-insignificant probability

of harm to a native, endangered species (Runge et al., 2018). This case illustrates

19The disengagement tipping point for RUs is analagous to the well-studied issue of sudden
state-shifts in NI, the most well-known example of which is eutrophication in shallow lakes (Carpenter
et al., 1999; Scheffer et al., 2001).
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the value of pairing data collection and system modeling efforts in identifying and

managing slow-emerging dilemmas.

2.5.1.2.3 Mediating Feedbacks

In some cases, a dilemma may be hidden by some equally invisible mediating or

negative feedback loop. Just because these mediating processes are hidden, however,

does not mean they are not vulnerable to shocks or cannot fall victim to a well-

intentioned management intervention. In the examples I found, these mediating

feedbacks are the result of a collective action agreement between members of a

particular RU group that is designed to mitigate their impacts on NI or on other

RU groups to ensure continued high-quality recreational experiences for themselves

and others into the future. Before they reached the “disengagement tipping point,”

mountain bikers in Cairngorms National Park maintained responsible use norms

through link 6 that mediated their riding behaviors (i.e., that pushed them to maintain

trails and yield to pedestrians even when that would ruin the flow of their run) through

link 5 (K. M. Brown, 2016). Similarly, legacy ATV riders at the St. Anthony Sand

Dunes maintained a dunes culture (via link 6) of responsible and safe riding behavior

that prevented HOP from arising for many years (Hughes & Paveglio, 2019). It is

important to understand under what conditions this type of collective action may

arise and the conditions under which it may dissolve both to identify dilemmas that

may be lurking and to avoid creating new dilemmas through management actions.20

20For a more complete discussion of the conditions that give rise to and dissolve collective action
arrangements, see Ostrom (1990) and others.
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2.5.2 A Portfolio of Interventions

I now turn my discussion to identifying circumstances under which different

intervention approaches are more or less effective. Managers of different disciplinary

backgrounds and with different mandates will naturally gravitate toward different

types of interventions. For instance, natural scientists or managers whose primary

mandate is NI conservation may be more attracted to link 4 solutions (e.g., habitat

restoration, culling invasive species, etc.) or link 5 solutions that involve physically

separating RU from vulnerable NI (e.g., fencing off nesting habitat in Burger and

Niles (2014) or imposing ATV-specific trail closures during Golden Eagle mating

season in Spaul and Heath (2016)). Social scientists or managers whose mandates

prominently feature recreation, on the other hand, likely prefer link 5 interventions

designed to mediate incentive-driven behaviors (e.g., gear restrictions to lessen the

impact of hunters or fishers) or “nudges” targeted at changing incentives via link

6.21 By engaging in the following discussion, I hope to emphasize the importance of

considering the full range of potential interventions.

2.5.2.1 Link 4: Modify NI

Modifying NI through link 4 could take many forms, including installing HHMI

to either dissuade high-impact RU behaviors (e.g., putting debris on satellite camp

pads in Eagleston and Marion (2017)) or to reverse or build resilience to NI change

(e.g., nourishing beaches or, as was suggested by Eagleston and Marion (2017),

21“Nudge” refers to the concept from behavioral economics where managers use policy or informa-
tion and outreach to alter peoples’ decision making by tweaking their choice set (Thaler & Sunstein,
2003, 2009).

59



replacing eroded soil at official camp pads); cleaning up pollution or litter; stocking

or transplanting flora and fauna; performing habitat restoration; or culling invasive

species.

My comparative analysis generates two key lessons relevant to link 4 interventions.

First, they are not done in isolation, and instead have the potential to modify system

processes in ways that are both intentional and unintentional. Link 4 interventions

may cause or amplify clockwise secondary dilemmas, as the direction of modification

or information sharing is from PI to NI to RU. Thus, it is imperative that managers

looking to implement link 4 interventions consider how RUs will perceive and respond

to any changes to NI. Interventions designed to redirect RU efforts may be ineffective

if the modifications are not binding on RU behaviors and there is a lack of buy-in. For

instance, beachgoers in Pará were not convinced it was important to socially distance

themselves, and so chose to ignore the spacing and group sizes suggested by table and

umbrella (HHMI) installations (Pereira et al., 2021).

The second lesson is that the link 4 modification itself may cause unintended and

unacceptable levels of change to the NI. This lesson is more obvious in contexts like

building a new dam, modifying waterways, and building roads through key habitat,

but is less obviously applicable in instances of relatively minor interventions. For

instance, the managers who called for or allowed the installation of marinas in the

Mediterranean Sea likely did not anticipate that HHMI would facilitate the spread of

aquatic invasive species (Martínez-Laiz et al., 2019). Similarly, the managers who trim

back willow grasses and compact the snow over them to build ski trails at Cucumber

Gulch every winter likely did not anticipate their minimal modifications would create

habitat and opportunity for invasive species intrusion (Carello et al., 2018).
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2.5.2.2 Link 5: Mediate the RU - NI feedback

Link 5 interventions are usually designed to limit the impact that RUs have on NI

by limiting access or intensive use (i.e., partially enclosing the commons), reducing

individual RUs’ ability to impact NI (e.g., through gear or technology restrictions),

and declaring spatially or temporally-defined closures to protect NI where and when

it is most vulnerable to disturbance.

The partial enclosure of a recreational commons can be achieved either through

putting a price on recreational access to limit quantity demanded, or by directly

capping the number of RUs or the intensity of their NI use. Economists have long

favored price-based interventions, including the implementation of congestion pricing

(G. Brown, 1971; Cesario, 1980), access fees (i.e., parking, license, or gate fees) (Holmes

& Englin, 2005; Richer & Christensen, 1999), or per-unit fees on intensive use (Jungers

et al., 2023). The popularity of price-based interventions among economists stems

from the theoretical efficiency gains that can result by allocating resources to those

with the highest value, thereby solving a problem of how to “ration” use (Holzer &

McConnell, 2014).

Depending on how they are implemented, price-based interventions can run up

against issues of political palatability or concerns about equitable access.22 Modeling

these interventions in the context of specific systems can help managers anticipate

these and other potential implementation challenges that may or may not be covered

by their management mandates.

Quantity-based interventions may be direct (i.e., letting only a limited number

22For a discussion of the efficacy-equity trade-off in pricing environmental goods, see e.g., Baranzini
et al., 2017; Goulder and Parry, 2008; Mansur and Olmstead, 2012.
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of RUs through a gated access point, closing a recreational fishery once a certain

quantity of fish have been harvested, or allocating a limited number of harvest tags for

extractive intensive use) or indirect (e.g., the laws discussed by Pereira et al. (2021)

that disallow beach access via public transit, effectively limiting visitation to the

number of available parking spaces), and come with their own set of challenges. For

instance, limiting recreational access or intensive use on a first-come-first-serve basis

inefficiently allocates recreational experiences, which is to say distributes recreational

access and intensive use to those who can most quickly or easily access the NI rather

than to those who derive the most U from doing so (Holzer & McConnell, 2014).

Tradable harvest tags as explored by Jungers et al. (2023) are one way managers can

overcome this access-U mismatch under certain system contexts. Once again, system-

specific models (such as those estimated by Jungers et al. (2023)) can help managers

identify how particular quantity-based interventions might impact the processes and

outcomes in their own systems.

Rules designed to limit individual RU’s ability to impact NI are ubiquitous in

recreational fishing and hunting contexts. Gear restrictions (e.g., bans on barbed

fish hooks or on firearms with extended magazines) and daily harvest or bag limits

are common tools that managers of public waterways and land employ to limit the

amount of impact a single recreational fisher or hunter can have on NI on a given

outing. Similar technology bans have been discussed in non-extractive recreation

contexts, as well. For example, Mitterwallner et al. (2021) show that mountain bikes

with electrical assitance (eMTBs) increase their riders’ potential impacts on NI by

enabling them to ride further, higher, and for longer. Technology restrictions may be

effective in some systems, but it is important to remember that these policies do not

cap overall RU impact because they do not prevent the technology-constrained RUs
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from taking more recreation trips or new RUs from entering the system (for further

discussion set in a recreational fisheries context, see Cox et al., 2002). Therefore,

technology restrictions may need to be paired with price- or quantity-based access

restrictions to effectively limit pressure on NI.

One additional wrinkle is that the most high-tech recreation mode will not neces-

sarily be the one with the highest NI impact. For example, Spaul and Heath (2016)

found that pedestrians—with their slow, unpredictable movement patterns—are more

likely to disturb nesting eagles than the faster, more predictable movements of ATV

riders.23 So recreation managers considering technology restrictions should carefully

consider whether such policies will be effective under the specific RU and NI contexts

of their system.

Finally, managers may limit RU impact via link 5 by using HHMI and SHMI to

spatially and temporally distance RUs from particularly vulnerable elements of NI. For

instance, the New Jersey Department for Environmental Protection maintains a fence

around key habitat for migrating shorebirds in the Brigantine Natural Area (Burger

& Niles, 2014), while hunting in ecologically-important protected areas is illegal in

China’s Xishuangbanna Dai Autonomous Prefecture (Xishuangbanna) (Chang et

al., 2017). These interventions are only effective if there is sufficient RU buy-in or

enforcement to ensure compliance. For example, hunters in Xishuangbanna do not

comply with the hunting bans, and avoid enforcement through information-sharing

(Chang et al., 2017). So these interventions may be ineffective in systems with limited

monitoring and enforcement capacity unless managers can convince RUs to abide by

those laws. I discuss some potential methods for increasing buy-in via link 6 in the

next section.

23This finding echos that of a dissertation chapter by Spahr (1990).

63



2.5.2.3 Link 6: Appeal to RUs

Link 6 interventions are where the PI seeks to influence recreational processes or

outcomes by acting upon or appealing directly to the RUs. In general, PI can either

use rewards or information to incentivize particular RU behaviors, or they can limit

or ration extensive recreational access.

McCreary et al. (2019) suggests providing information on how to adapt to weather

shocks to prevent older and lower income RUs from leaving the Lake Superior system

at a disproportionately high rate, while, in the case from my fourth chapter, NPS

offers fishers a monetary incentive (i.e., a bounty) to remove invasive brown trout

from the Lees Ferry fishery. However, information or incentives alone may not be

sufficient to induce desired recreational behaviors. In Chapter 4, for example, I find

that an NPS bounty program under performed relative to its stated goals because the

monetary incentive was insufficient to overcome logistical or value-based objections to

retaining fish for the representative Lees Ferry angler. In that chapter, I speculate

that an information campaign designed to make willing participants more effective

at catching brown trout could improve the program’s performance. More generally,

pairing information and incentive campaigns may increase their efficacy at inducing

desired behaviors, especially if they can work together to weaken any countervailing

incentives the RUs may face.

Gstaettner et al. (2017) show that information campaigns can fail because RUs are

skilled at overcoming cognitive dissonance in ways that are hard to anticipate, which

may make information campaigns ineffective or counterproductive. A popular narrative

amongst Mersey Point visitors is that those who drown crossing the sandbar tend to

be poor swimmers—a fact that even weak swimmers use to convince themselves that
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crossing the sandbar carries little risk for them, personally. Similarly, the lifeguards

that the Department of Parks and Wildlife stations along the sandbar to signal risk

instead make RUs feel safer to cross. Thus, Gstaettner et al. (2017) recommends tying

information to counter-narratives (e.g., an example of a strong swimmer drowning) to

bolster the information’s efficacy.

Information or narrative campaigns may also be used to build empathy between

disparate RU groups (K. M. Brown, 2016; Nguyen et al., 2016). Whatever the

information campaign’s goals, surveying RUs or incorporating them in the management

process are two ways of ensuring that any information that is disseminated is salient

to its intended recipients and doesn’t yield unintended consequences. For example,

Höglhammer et al. (2019) suggest consulting RUs from different cultural groups to

ensure all information about recreation in the WWBR is multi-lingual and presented

using phrasing that resonates with each target community, while Hughes and Paveglio

(2019) recommend leveraging the local knowledge and experience of legacy RUs by

incorporating them into the decision-making processes surrounding the St. Anthony

Sand Dunes. Chang et al. (2017) find that the current approach of turning local

informants in Xishuangbanna does not increase compliance with hunting bans, and only

creates cycles of revenge. Instead, the authors suggest that transferring governance

of hunting from national agencies to individual villages may increase buy-in and

compliance.

In addition to providing information and offering incentives, PI may choose to

ration recreational access on the extensive margin. In other words, system managers

may try to limit who or how many RUs are accessing NI for recreation. In extractive

recreational contexts, managers often ration extensive access by requiring the purchase

of hunting and fishing licenses. Similarly, NPS and managers of state and local
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recreation areas commonly charge access fees to ration access. For NI that is in

high-demand and/or that is particularly vulnerable to RU disturbance, managers may

either disallow or set limits on the number of RU that are allowed to access the NI.

The cases I compared in this archetype analysis tended to omit discussions regarding

limiting extensive use. This omission may suggest an implicit assumption that RUs

should not be prevented from accessing NI, whether for reasons of ethics or political

palatability. In any case, access rationing is a popular tool of resource managers

globally, which indicates it is an important family of interventions within the broader

management portfolio.

2.6 Conclusion

This chapter presents an initial exploration of the dilemmas faced by managers of

nature-based recreation. I show that these dilemmas and the interventions designed to

address them do not exist in isolation. Rather, they are embedded in complex SES, and

are therefore part of a dynamic loop of dilemmas followed by interventions, followed

by further emergent dilemmas, and so forth. Both the co-evolving problem space

and management structure of any given system may come to a dynamic equilibrium,

but anticipating what that equilibrium may look like (i.e., what the system processes

and outcomes will be) is tricky. Furthermore, this comparative analysis is purely

descriptive; it cannot make normative prescriptions for particular systems or system

types. For both of these reasons, modeling efforts that account for the full set of

potentially salient system feedbacks and can thus generate normative, system-specific

insights will be an increasingly important management tool as we progress through
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the Anthropocene, and the nature of the endogenous processes and exogenous shocks

that managers face continues to evolve.

The types of system-specific models that I recommend will depend heavily upon

high-quality data collection efforts or well-supported and interrogated assumptions

regarding system characteristics. But more than that, these modeling efforts should

incorporate an empirically-informed understanding of how different intervention ap-

proaches tend to succeed or fail at meeting their stated aims, as well as the types of

secondary dilemmas that they may cause. The archetypes I identify in this chapter

are a good starting point for future modeling efforts, but the sample of cases I use

to construct this preliminary typology is small. Future efforts to compare additional

cases are needed to refine these archetypes and improve their usefulness for system

managers and researchers.
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Chapter 3

À LA CARTE MANAGEMENT OF RECREATIONAL RESOURCES: EVIDENCE

FROM THE U.S. GULF OF MEXICO

3.1 Abstract

Externalities from recreation scale at both the extensive and intensive margins of

resource interaction. Recreators have differentiated demands for these margins, so

unbundling the prices of access and intensive depletion could improve upon traditional

management. I use choice experiment data from US Gulf of Mexico recreational

headboat anglers to estimate structural models of trip and red snapper retention

demand, then simulate aggregate harvest across a range of trip and harvest tag prices.

In my simulations, the red snapper harvest tag market equilibrates at $15 per tag and

generates $760,000 in management revenues per year while more efficiently allocating

harvest.

3.2 Introduction

Outdoor recreation plays an important role in the lives of North Americans and

in the United States economy; an estimated 97% of U.S. citizens aged 16 and older

engage in outdoor recreation at least once in any given year (Interagency National

Survey Consortium, n.d.). In 2019, outdoor recreation accounted for $459.8 billion

(2.1%) of U.S. current-value GDP, and the sector’s growth rates for real output,

compensation, and employment levels were faster than those of the average sector
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(Bureau of Economic Analysis, 2020). Federal and state natural resource managers

face two foundational challenges in facilitating sustainable recreational use: 1) the

management of the impacts on natural capital from recreational use; and 2) the

problem of funding resource management activities when state support is often scarce.

Outdoor recreation frequently degrades the natural capital on which it depends,

whether as an objective of the activity itself (e.g., fishing and hunting) or as a side-

effect of ostensibly non-extractive uses (e.g., erosion from trail degradation or fire

risk from human use). In the absence of effective management, these externalities

may lead to excess resource degradation, with implications for both the quality of the

ongoing recreational experience and the sustainability of ecosystems.

Federal and state resource managers have the unenviable task of containing the

externalities of recreation, which arise at both the extensive margin (i.e., with the

number of individuals accessing the resource) and the intensive margins (i.e., the

per-trip level of resource impact), even as maintenance backlogs pile up and their

future funding becomes ever more uncertain.24 Wildlife agencies and other public land

and waterway managers have historically received revenues from hunting and fishing

license and equipment sales (Lueck, 2000), and in 2017, 35% of funds for conservation

were from state license sales (Voyles & Chase, 2017). In that same year, the second

and third largest sources of conservation funding, the federal Pittman-Robertson and

Dingell-Johnson Acts, contributed only 15% and 9% of total conservation funding,

respectively (Voyles & Chase, 2017). Adult hunting and fishing participation are

projected to decline 11-12% and 2-3% by 2030 (White et al., 2016), which means that

the largest source of conservation funding—license sales—may be at risk.

24Vincent (2019) estimates that, in fiscal year 2018, the Bureau of Land Management, Fish and
Wildlife Service, National Park Service, and Forest Service had a total estimated maintenance backlog
of $19.38 billion.
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Resource managers occasionally address environmental impacts of recreation by

directly regulating the quantity of natural capital consumed (i.e., output-based man-

agement). For instance, game managers may directly control harvest by allocating a

limited number of harvest tags for trophy species. However, it is far more common to

address spillovers indirectly by trying to limit inputs to the impact. Park managers

may place quotas on visitation to fragile backcountry habitats, while managers of sport

fisheries attempt to curb the quantity and impacts of recreational “effort” through a

combination of gear restrictions, retention (bag) limits, and seasonal closures. These

input-based policies, while sometimes effective at containing the impacts of recreation,

do not address the individual incentive to overuse a resource, because they do not

directly encourage recreators to internalize the full marginal cost of their activities.

As a result, recreational decisions—from the decision of how many trips to take to how

many fish to retain vs. release—can be distorted, with the result that recreational

experiences and the recreational consumption of natural capital itself is inefficiently

allocated (Holzer & McConnell, 2014). Furthermore, input controls (at least as com-

monly implemented) are not revenue-raising, so that externality control, while costly,

contributes little or nothing to the coffers of resource management agencies.

For these reasons, economists have often recommended full marginal cost pricing

policies to address externalities. G. Brown (1971) and Cesario (1980), for example,

emphasize the importance of accounting not only for marginal operating costs, but

also peak-time or congestion spillovers when valuing and pricing a recreation site

and its substitutes. Yet, the practice of closely tying the effective price paid by a

recreator to their consumption of scarce (including environmental) resources remains

rare. Empirical research to guide such endeavors is similarly sparse, and has primarily

focused on the potential for access fees, perhaps in combination with an annual license
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or permit, to balance normative revenue and equity objectives (Richer and Christensen,

1999; Williams et al., 1999; Holmes and Englin, 2005; Abbott and Fenichel, 2013).

The literature has not considered the implications of unbundling the price of access

and the price of consumptive use of scarce recreational resources.

I examine the potential for a differentiated, “a la carte” management approach to

better capture users’ heterogeneous marginal values of access and consumption relative

to other second-best regulatory pricing policies using the case of the US Gulf of Mexico

(GOM) recreational headboat fishery.25 In general, recreational resource users derive

utility from both experiential and consumptive trip attributes. Recreational anglers,

in particular, increase their utility by selecting a fishing experience, which is priced

in a market for headboat trips, and by directly consuming an environmental good

(fish) in the course of that experience. This headboat fishery, therefore, is an ideal

context for exploring whether unbundling the prices of experience and consumption

could improve allocative efficiency.

Output-based “a la carte” management in the headboat sector could take a few

different forms. For instance, access to fishing trips might be regulated through a

limited entry permitting system for vessels and market-driven trip pricing (as currently)

coupled with a government-levied fee for fish retention. Alternatively, harvest could

be regulated through the allocation of a limited number of, potentially transferable,

harvest tags to anglers (Abbott, 2015; R. J. Johnston et al., 2007). Per-fish retention

fees and harvest tags are economic duals; retention fees indirectly restrict harvest

by increasing the cost of retaining a fish, while harvest tags directly limit harvest.

Assuming harvest tags are distributed using a market mechanism (e.g., if tags are sold

25Headboats or party boats have permits to take 15 or more fisherman to fish for reef fish in the
exclusive economic zone of the US GOM. These vessels typically charge anglers “by-the-head” to
take an offshore fishing trip.
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by brokers or are allocated and tradable in a frictionless market), then the market

price for a harvest tag should equal the per-fish retention fee that results in the same

number of fish harvested as tags distributed.

In this paper, I use choice experiment data from an online survey of anglers

who took deep sea fishing trips onboard headboats in the US GOM to investigate

anglers’ behavioral responses to and the revenue-generating potential of trip pricing

that decouples resource consumption (harvest) from the trip itself. By using stated

preference data, I am able to assess behavioral responses to a range of pricing policies

that do not currently exist.

Respondents in my choice experiment data were presented with a two-part tariff

of trip prices and per-fish retention fees as an alternative to the status-quo of trip

prices with bag limits. I estimate structural models of extensive (trip-taking) and

intensive (per-trip retention) margin behavioral responses to a change from bag

limits to retention fees for red snapper. I then show how these two models can be

used to perform ex ante behavioral analyses of trips demanded, fish harvested, and

revenues generated for a variety of policy counterfactuals. Because retention fees and

marketable harvest tags are economically equivalent, I interpret my policy simulations

in terms of harvest tags, even though the survey on which my models were based

asked respondents about retention fees. I explain my choice to focus on harvest tags

in section 3.6.2.

In the next section, I provide some context both on recreational fisheries man-

agement, generally, and on the US GOM recreational red snapper headboat sector,

specifically. Then, in section 4.4, I explain how my data were collected, cleaned, and

weighted. In section 4.5, I build my extensive margin model of trip demand and my

intensive margin model of per-trip red snapper retention demand, and then explain
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how I calibrate those margins together for my policy simulations. I analyze and discuss

both models plus the resultant simulations in section 4.6.

The trip taking model shows that anglers are more likely to take trips with lower

trip prices and lower per-fish retention fees, as well as higher expected catch of fish

other than red snapper and higher expected catch of red snapper that they are allowed

to retain. Additional red snapper caught that must be discarded under a bag limit

do not impact trip-taking, which suggests that replacing the bag limit constraint

with retention fees may be welfare improving. I also find that replacing a bag limit

with retention fees does not impact the probability of opting-out of a trip along any

particular demographic margins, and that anglers may even be agnostic between trip

prices and maximum expected fee bill (i.e., trip price plus the retention fee times the

number of red snapper the angler expects to catch on a given trip) when deciding to

take a fishing trip. Furthermore, anglers retain fewer fish at higher retention fees, and

become fee elastic in their within-trip retention demand when they must pay more

than $56 to retain a red snapper.

In section 3.6.2, I calibrate my trip-demand and per-trip retention demand models

together to predict aggregate harvest demanded and revenues generated by harvest

tag sales across a grid of trip prices and per-fish retention fees. Resource managers

can use this simulation tool to back out a demand curve and associated revenues for

harvest tags. I show that, under logbook-derived representative conditions, a market

for harvest tags would equilibrate at $15 per red snapper on GOM headboats in my

sample, generating just over $760,000 in management revenues per year (assuming

fixed catch limits based on historic logbook data) while more efficiently allocating

harvest and addressing the fishing mortality externality that recreational anglers

impose on one another through their fishing behaviors.
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3.3 Research Context

3.3.1 Management of Recreational Fisheries

I explore “a la carte” pricing in the case of marine recreational fisheries. Innovation

in recreational fisheries management has been relatively slow given the scale of these

fisheries’ impacts on fish stocks and on the welfare of recreational anglers. Marine

recreational fisheries, in particular, accounted for 4% of all marine finfish landings

in 2002, and 64% of landings in the Gulf of Mexico (GOM) in that same year were

recreational (Coleman et al., 2004). The majority of recreational fisheries are governed

as regulated open access systems in which total effort is limited only through technical

mechanisms (Homans and Wilen, 1997). As a result, anglers do not have an incentive

to preserve stock today to ensure the fishery is available to other anglers in the future.

Managers of open-access fisheries have long sought to restrict effort by imposing

size or daily bag limits on fish retained or by reducing season lengths. However, these

methods are not effective at limiting total effort. Bag limits may reduce landings in the

short-run by capping per-trip retention for current anglers but neither prevents those

anglers from taking more trips nor blocks new anglers from entering the fishery (Cox

et al., 2002). Furthermore, bag limits may exacerbate harvest spillovers—especially in

fisheries with higher levels of discard mortality—by encouraging anglers to high-grade

their catch (Woodward & Griffin, 2003).26 Similarly, imposing shorter fishing seasons

provides no incentive to reduce effort, and instead concentrates fishing effort into a

reduced number of days (Cox et al., 2002). Fisheries with abridged, intensive fishing

26High-grading is when anglers discard lower value fish so that they may retain more high-value
fish under a harvest constraint.
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seasons suffer welfare losses, both because they are more congested and because they

become inaccessible to some time-constrained anglers who would otherwise participate

in the fishery (Arlinghaus et al., 2019). For instance, Abbott et al. (2018) estimate

that trading season closures for reduced per-angler retention under a rights-based

policy in the US GOM red snapper fishery would increase the average angler’s welfare

by $139 a year. Given that more than 30% of people 16 years and older in the U.S.

participate in recreational fishing, the potential scale of welfare loss due to regulated

open access management is staggering (Interagency National Survey Consortium,

n.d.).

A corollary to these welfare losses is the fact that access to fishing opportunities

and fish harvest under season closures is inefficiently allocated across heterogeneous

anglers (Holzer & McConnell, 2014). Rather than allocating scarce recreational goods

according to their marginal valuation, as for a typical market good, bag limits and

season closures create “rationing rules” that allocate recreational goods in ways that

may bear little relation to how anglers actually value them. For example, seasonal

fishery closures may allow anglers with low willingness to pay (WTP) for a trip to

access fishery resources for the simple reason that they happen to be in the region at

a particular time of year, whereas others with a high WTP but less flexible schedules

are excluded. Similarly, bag limits may allow anglers with low WTP for fish to retain

them even as other, relatively high-skill, anglers may value retaining the same fish

more highly but are not allowed to do so due to the bag limit. These potential gains

from trade are left on the table under regulated open access, suggesting that some

sort of price signal, whether through a tax/fee or market mechanism could improve

welfare.
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McConnell and Sutinen (1979) and L. G. Anderson (1993) extended commercial

fisheries bioeconomic models to the recreational context, demonstrating that the

negative effect of present-day harvest on future fish stocks must be internalized by

anglers in the present so that they will not engage in over-fishing. If resource managers

knew the full, intertemporal social marginal cost of harvest, then they could charge

all resource users one price for harvest that internalizes any spillovers and efficiently

allocates harvest through time and across users. Importantly, if discarded catch suffers

positive mortality, then the price must be differentiated across harvest and discards in

order to ensure efficiency (Abbott & Wilen, 2009; L. G. Anderson, 1993), a policy that

could potentially be implemented via individual transferable quotas or cooperatives

in the case of recreational for-hire fisheries (Abbott & Wilen, 2009). Fenichel and

Abbott (2014) consider the possibility that such an “output based” policy is infeasible

due to prohibitive costs of monitoring discards and landings (or the “inputs” that

determine these outputs.) Abstracting from questions of endogenous discard behavior,

they show how efficiency can be improved relative to the unregulated case by levying

differentiated trip fees along observable correlates of fishing mortality such as distance

traveled, age, income, or fishing tackle and/or mode. Nevertheless, this approach is

second-best due to an imperfect mapping between ex ante predictions of individual

fishery impacts based on observable factors and the realized fishing mortality.27 The

extent of inefficiency declines as the correlation between the observable heterogeneity

used to target fees and realized fishing mortality per trip increases.

Given the shortcomings of status-quo management in recreational fisheries, it is

plausible that even clearly second-best forms of output-based policies could improve

27“Second-best” refers to a social welfare maximizing outcome under binding information or policy
constraints.
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allocative efficiency, better regulate fishing mortality, and support revenue-raising

goals (Abbott, 2015). R. J. Johnston et al. (2007) suggest that harvest tags may be

a feasible way to control harvest by assigning short-term, seasonal harvest rights to

recreational anglers. Similar to tags frequently used in game management, harvest

tags are limited in number and may be allocated through market mechanisms such as

auctions and resale provisions to optimize efficiency or raise revenues. In this case, the

market also provides a clear signal of the implicit regulatory price of harvest – creating

a clear duality between quantity and price-based management. Alternatively, tags can

be allocated through some combination of lotteries and set-asides in order to achieve

distributional objectives (R. J. Johnston et al., 2007). Harvest tags are capable of

achieving first-best efficiency if the number of tags is optimally set, perfectly enforced,

and if all discarded catch survives. However, their efficiency is potentially compromised

by high-grading behavior under positive discard mortality (R. J. Johnston et al., 2007).

In this latter case, it is an empirical question whether harvest tags or alternative

forms of management will be more efficient. The high-grading concern is also present

in commercial fisheries where total catch is imperfectly observed. Regardless, ITQ

fisheries tend to be more efficient than their baseline under regulated open access

management.

3.3.2 The GOM Headboat Fishery

Red snapper is a favorite target of recreational anglers in the US GOM and is

among the top 10 recreationally-landed saltwater species in the United States (Figueira

& Coleman, 2010). The GOM recreational red snapper fishery extends from Texas

through Southwest Florida and is accessed both by private boat anglers and by a
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for-hire sector of over 1300 vessels, most of which are charter boats and 72 of which

are headboats (National Marine Fisheries Service Southeast Regional Office, 2015).

In 1988, GOM red snapper was declared overfished and subject to overfishing

due to combined stock pressure from the commercial and recreational red snapper

fisheries, as well as excess bycatch of red snapper by the commercial shrimp fishery.

In the years that followed, NOAA required shrimp fishermen to install devices on

their trawl nets that reduced bycatch of juvenile red snapper. The commercial and

recreational red snapper fisheries were subject to seasonal and daily harvest caps, as

well as gear and minimum size restrictions, and both the commercial and for-hire

recreational sectors were accessible through a limited number of licenses. In 2007,

the commercial fisheries transitioned to IFQ management with year-round federal

seasons. In response to these rebuilding efforts, the catch per unit effort (CPUE) and

size of red snapper increased. The increased CPUE induced additional fishing trips

(i.e., effort), even as larger fish more quickly exhausted biomass-delimited harvest

caps. These two trends paired with extended state seasons that further depleted the

available total recreational quota meant federal seasons for the recreational sector

needed to be cut ever shorter, even as the stock recovered. In 2014, the season for

recreational red snapper fishing was just nine days long, and the accelerating race

to fish sparked disputes between the commercial and recreational sectors (Abbott,

2015; Gulf of Mexico Fishery Management Council, 2013; South Atlantic Fishery

Management Council, 2017). Even with regulators’ efforts to control recreational

harvest through abridged seasons, the recreational sector exceeded its harvest cap

every year from 2007-2013, except during the 2010 Deepwater Horizon oil spill.
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In 2014 and 2015, a subset of the headboat sector opted into a two year rights-based

management pilot program called the Gulf Headboat Collaborative (GHC).28 As in

a commercial fishing cooperative, participating headboat owners were allocated red

snapper and gag grouper quota to trade amongst themselves according to each vessel’s

2011 landings. In exchange for adhering to their quota allocations, GHC participants

were exempt from federal red snapper seasons, and could offer year-round retention

for their clients. GHC clients still faced daily bag limits of two red snapper during

federal seasons, and most GHC captains imposed a one fish bag limit on their clients

outside of the federal season in order to stay within their quota allotments. The GHC

program increased access to red snapper over a much longer season and number of

anglers while remaining within binding harvest limits. It also reduced regulatory

discards and increased industry profits (Abbott & Willard, 2017).

3.4 Data

Anglers who took deep sea fishing trips aboard GHC vessels in 2014 and 2015 were

asked to fill out an onboard survey at the conclusion of their trip. The GHC vessels

hail from 8 ports in Panhandle and Southwest FL, AL and TX and represent the

diversity of the headboat market well, with some vessels operating out of well-known

tourist destinations (e.g., Clearwater and Destin, FL) and others operating in more

remote areas (e.g., Pt. St. Joe, FL and Dauphin Island, AL). As a condition of their

participation in the pilot program, vessels were required to make the onboard survey

available to all passengers throughout the two-year policy experiment. Therefore, the

28Nineteen of the 72 headboats participated in the GHC in one or both years of the pilot.
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sampling effort was approximately constant across vessels and across seasons within

the year.

In the brief onboard survey, anglers were asked to provide feedback on their trip

experience, some sociodemographic information (including age, income, gender, zip

code, and saltwater fishing experience and avidity), and their email address if they

were willing to participate in a follow-up survey.29 Around 50% (5,330 out of 10,719)

of those who completed the onboard survey provided a valid, unique email address

for follow-up. The primary value of the onboard survey in my analysis is to identify

and control for differences in characteristics between respondents to the online choice

experiments and the the population of anglers taking trips on GHC vessels. An online

follow-up survey was sent to those 5,330 email addresses in two waves in order to

minimize recall bias (December 2, 2015 through December 22, 2015 and February 11,

2016 through March 7, 2016).30,31 The response rate for both waves was 15%, with

a total of 813 respondents, after excluding 10 surveys due to missing information or

unreasonable trip recall responses.

Two versions of the online survey were distributed—one that focused on red snapper

as a target species and one that focused on gag grouper. my data includes only those

537 surveys that focused on red snapper. Of those anglers included in my final dataset,

34% live in the GOM region year-round, 16.57% belong to an angler organization, and

83% are male. The average respondent is 49.45 years of age (sd = 13.56), has 16.87

29Anglers who provided their email were entered into a drawing for a free fishing trip.

30In order to ensure the wording and experimental design of the internet survey were effective,
two focus groups were conducted with local anglers in Pensacola, FL in August 2015. A pretest of
the online survey was conducted in October 2015 and received 39 responses.

31The full survey can be accessed at http://wpcareyschool.qualtrics.com/jfe/form/SV_
7ZMU08RRoqoSkF7.
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years of experience fishing in the US Gulf of Mexico (sd = 15.14), and has an annual

household income of nearly $108,000 (sd = $60.46).32

There were five sections to the online survey. In the first section, respondents

were asked about their vacation and recreational activities over the past year, as

well as their degree of familiarity with the GOM. The second section had anglers

report how many headboat trips they took in the previous year, and asked them to

recall some characteristics of those trips. The remaining three sections were presented

to respondents in randomized order and I use data from one of these sections that

included a choice experiment.33

In the choice experiment, respondents were first introduced to a hypothetical

per-fish retention fee as an alternative to traditional bag limits. In two different

experimental arms, individuals were told either that any retention fees paid would

be retained by the headboat captain or that they would be invested in conservation

or research within the fishery.34 Respondents then rated the fee-based program from

“definitely acceptable” to “definitely unacceptable” (see Figure 4). In my final sample,

34.82% of respondents said retention fees were a somewhat or definitely unacceptable

alternative to bag limits, while 47.67% said those fees were somewhat or definitely

acceptable.35 Following this fee acceptance question, anglers were then presented a

327% of respondents in the final sample failed to provide household income data, while 18% did
not provide data on the number of years of fishing experience in the GOM. Lloyd-Smith et al. (2019)
impute the missing income and experience data with multiple imputation using chained equations
(MICE), and I included this imputed data in my summary statistics.

33The other two sections asked contingent trip behavior and time valuation questions, respectively,
and are utilized in other research (Abbott et al., 2018; Lloyd-Smith et al., 2019, 2020).

34Exactly 50% of respondents in my final data received each of the two treatment arms.

35The remaining 17.51% of respondents said replacing the status quo bag limit with retention fees
was neither acceptable nor unacceptable.
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Figure 4. Fee Acceptability Question, Showing the Version of the Question where
Fees are Used to Fund Research and Habitat Enhancement.

series of four choice scenarios. In one pair of experiments, retention was governed

through bag limits, while the other pair featured retention fees. The order in which

respondents faced each experimental pairing (i.e., the two bag limit or fee scenarios)

was randomized. In each of the four scenarios, respondents were asked to choose

between taking one of two fishing trips (with experimentally-varied trip characteristics

as denoted in Table 7) or the outside option of not going on a headboat trip (see

Figure 5).36 Anglers were presented with either partial day or full day trip prices

throughout their four scenarios. I pool partial and full day trips in my analyses,

36The choice experiment experimental design was based on results of the pilot survey. Responses
from the pilot survey were used to estimate a conditional logit model and these parameters were
used as priors in a D-efficient experimental design for the main survey.
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Table 7

All Variable Levels Included in the Choice Experiment Survey.

Features Levels
Total expected number of red snapper caught per trip

(target) 1, 3, 5, 7

Red snapper bag limit
(retain) 1, 2, 3

Per-fish retention fee for red snapper
(fee) $10, $25, $35, $50

Number of other species caught per trip
(other) 1, 2, 4, 6, 8

Vessel is congested?
(congest) Spacious, Crowded

Price for half day trip
(price)

$50, $ 80, $120,
$150, $200

Price for full day trip
(price)

$80, $120, $130,
$200, $250

based on evidence that angler behavior and preferences are not significantly different

between partial day and full day trips.37

Respondents who indicated they would take one of the two trips on either of the

fee version choice scenarios were then asked how many of the red snapper they would

retain given the expected catch and the per-fish fee on their chosen trip. I use this

contingent behavior data to model the intensive margin of fish retention in response

to fees.

37I estimate a conditional logit, which includes all regressors (X) from Table 8 and interactions
between these variables and an indicator for fullday. I then perform a Wald test in which I fail to
reject the null hypothesis that all fullday interaction terms are equal to zero (χ2 = 9.13, p = 0.3318).
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Figure 5. A Choice Experiment Question from the Online Survey in which Respondents
Faced Retention Fees.

3.5 Methods

I utilize responses to the trip choice experiments and follow-up retention questions

to estimate separate models for both the extensive (i.e., the probability of taking a

fishing trip aboard a GOM headboat) and intensive (i.e., the number of fish retained

conditional on having chosen to take a trip) margins of demand for retained fish.
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I then calibrate those models together in order to simulate total trip and harvest

demand across a range of “a la carte” policies.

In order to model trip demand as a function of trip prices and retention fees, I

estimate a conditional logit model of individual and alternative-specific characteristics

and their interactions on trip choice. Each respondent faced four different choice sets

including two bag limit and two fee scenarios, so I group observations by respondent.

Underlying each choice for this conditional logit is a random utility model in which

individual i chooses to take one of the two trips (j=1,2) presented to them or an opt

out (j=3) option. Let the utility of choosing alternative j for individual i in any given

choice scenario c be

Uicj =


β′Xicj + εicj j = 1, 2

ψ′Zi + εic3 j = 3

(3.1)

where Xicj indexes the characteristics of each fishing alternative, Zi are individual-

specific characteristics, β and ψ are parameters to be estimated, and εicj is a stochastic,

type I extreme value error term.

The trip characteristics in Xicj are the price (i.e., trip price and retention fee)

and quality (e.g., whether or not a trip was congested or the expected catch of

red snapper or other species) attributes included in the choice experiment design.

The covariates in Zi are individual-specific observable demographics (e.g., household

income or Gulf residency) and belief or preference variables from the survey (e.g.,

the belief that retention fees are “acceptable” or “unacceptable”) that may capture

heterogeneity in anglers’ probabilities of opting-out of a trip that demographic data
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Table 8

Alternative & Individual-specific Variables in the Extensive and Intensive Margin

Models.

Variable
Type

Variable Description

X priceE,I Price of the trip
otherE,I Number of other species caught per trip
congestE,I Vessel is “Crowded” (=1) or “Spacious” (=0)
optoutE An ASC for the outside option

Fee targetE,I Expected catch of red snapper on a trip
Version feeE,I Fee per retained fish
Bag Limit
Version

retainE The number of red snapper an angler catches
and may retain

discardE The number of red snapper an angler catches
above the bag limit

Z gom_residentE,I =1 if an angler is a Gulf of Mexico resident
acceptableE,I =1 if the angler said retention fees are

acceptable
unacceptableE,I =1 if the angler said retention fees are

unacceptable
incomeE,I Annual household income (in $10,000s)
gomfishing_yearsI Tens of years of experience an angler has fishing

in the GOM
VfeetoboatI =1 if an angler was told fees would go to the

headboat captains
knew_pilotI =1 if the angler knew about the GHC pilot

program at the time of his trip
org_anglerI =1 if the angler is a member of an angler

organization
Note: Variables superscripted with E or I are included in the extensive or intensive margin
models, respectively.

alone cannot.38 Table 8 describes the variables included in vectors X and Z, including

38Past iterations of the model (not shown) also included indicators for gender, whether a respondent
was told that retention fees would stay within the headboat sector or go toward research and
conservation, and whether the respondent belongs to an angler organization. None of these Zi

covariates were significant in explaining trip choice and were not included in the final models.
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the trip attributes that are specific to the fee or bag limit versions of the choice

experiments.

I pool bag limit and retention fee choice experiment data in the above utility

function, and therefore assume that price and non-catch trip attributes have the same

effect in both scenario types. There is more than one way to represent the catch and

retention attributes under the bag limit scenario; I have chosen to represent them in

terms of retention (retain) and discards (discard) using the expected catch of red

snapper and the bag limit for a given trip choice. If expected catch exceeds the bag

limit, then retain equals the bag limit and discard equals expected catch less the bag

limit. However, if the bag limit is not binding, then retain equals expected catch and

discard equals zero.

To account for the potential of unobserved preference heterogeneity, I also estimate

a panel random parameters logit in which I let parameters for the alternative-varying

covariates differ across individuals (Train, 2009). I assume all random preference

parameters are both uncorrelated and normally distributed, with the exception of price.

I consider model specifications with a fixed price coefficient and a specification allowing

for heterogeneous price responses by assuming βprice is distributed log-normally so

that −βprice (reported) is strictly negative. The random parameter specifications are

estimated using maximum (simulated) likelihood.

I use my extensive margin models to draw population-scale conclusions and to

simulate policy scenarios. I therefore use inverse probability weights in estimation.

These weights account for non-response and sampling design bias and ensure my data

are spatially and temporally representative of the headboat population. Appendix

B.2 provides details on the calculation of these weights.

I use data from the retention fee scenarios in which individuals choose a fishing trip
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to estimate a censored Poisson model of the number of fish anglers retained conditional

on having chosen to take a fishing trip (i.e., intensive margin demand). This Poisson

regression is top-censored by the expected catch of red snapper (target) presented in

the chosen option of the previous choice experiment, because anglers cannot retain

more fish than they catch. Let yijc be the observed, top-censored retention count, and

y∗ijc the uncensored, latent retention count. The top censoring point (i.e., expected

catch of red snapper) is Uijc. If yijc < Uijc, then yijc = y∗ijc. This censored Poisson

can thus be represented as

E(y∗ijc|Xijc, Zi) = exp(β′Xijc + γ′Zi) = exp(ζijc) (3.2)

with a weighted log likelihood of

LL =
N∑
i=1

wi

dijc (−exp(ζijc) + yijc(ζijc)− ln(yijc!)) +

(1− dijc)ln

1−
Uijc−1∑
k=0

f(k|Xijc, Zi)


(3.3)

where dijc = 1 if y∗ijc < Uijc and wi denotes inverse probability sampling weights.

As in the extensive margin model, Xijc and Zi are vectors of alternative-specific

and individual-specific characteristics that drive retention decisions. I include several

additional covariates in Zi that may matter for retention decisions but not for trip-

taking decisions in this extensive margin model. For example, I hypothesize that

anglers with more years of experience fishing in the GOM have a stronger preference

for red snapper retention than other, less experienced anglers (Table 8).
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The probability that an observation is included in the censored Poisson estimation

is the joint probability that individual i was included in the extensive margin estimation

(this is captured by the extensive margin inverse probability weights discussed in

section 4.5) and the predicted probability (from the extensive margin model) that

individual i chose a non-opt-out option in the choice experiment question. I weight the

estimation of the intensive margin model using the product of the extensive margin

weights and the inverse probability that individual i selected j ̸= 3 for each included

scenario (see Appendix B.3).

The trip demand and retention demand models, when combined, provide an

architecture to predict the effects of alternative policies on aggregate angler behavior,

welfare, and impacts to fishery resources. Given my primary interest in this paper

on the interactions between trip-level pricing vs. “a la carte” pricing for individual

removals from the resource stock, I use my extensive and intensive margin models

to predict trip and per-trip retention demand across a grid of policy-relevant trip

prices and tag prices (or, equivalently, retention fees). I use trip-level logbook data

to calibrate these predictions so that they reflect actual trips taken and red snapper

harvested aboard GHC vessels in the two years prior to the pilot program (2012-2013)

under a set of representative conditions and trip attributes. For a complete description

of the simulation and calibration procedure, please refer to Appendix B.5.
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3.6 Results

3.6.1 Modeling Results

Table 9 presents the estimation results for a conditional logit model (column 1)

and two random parameters logit (RPL) model specifications (columns 2 and 3). All

three models are estimated with cluster-robust standard errors which are clustered by
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Table 9

Conditional Logit and Random Parameters Models of Trip Choice.

(1) (2) (3)
C logit RP logit

fixed price
RP logit
ln(price)

price39 µ -0.00698*** -0.01103*** -4.49913***
(0.00108) (0.00199) (0.24597)

σ 1.06657***
(0.13825)

other µ 0.07749*** 0.11278*** 0.14822***
(0.01935) (0.03104) (0.04478)

σ 0.16914*** 0.16368*
(0.04341) (0.0638)

congest µ -0.81713*** -1.33397*** -1.49132***
(0.10879) (0.21852) (0.28366)

σ 1.12175*** 1.14397**
(0.27886) (0.35745)

Opt out µ -1.22352** -2.50251* -2.82661*
(all trips) (0.41718) (0.97388) (1.3825)

σ 2.79362*** 2.81591***
(0.42085) (0.52788)

×gom_resident -0.08123 -0.10628 -0.2129
(0.35884) (0.494) (2.58804)

×income -0.00058 0.00111 0.00065
(0.00226) (0.00167) (0.00361)

Bag ×retain µ 0.37398*** 0.67008*** 0.73978**
Limit (0.08569) (0.15329) (0.25241)
trips σ 0.42388 0.64788

(0.24951) (0.39382)
×discard µ 0.06674* 0.07278 0.10376

(0.03361) (0.05346) (0.0582)
σ 0.22361 0.1598

(0.14238) (0.35309)

39To restrict price effects to be negative, the negative of price is included in model 3. The estimated
mean and standard deviation of the negative price coefficient are in log scale. De-logged, the estimated
µ and σ are 0.01964 and 0.02859, with robust standard errors of 0.0033 and 0.0069, respectively. The
formulas for finding these values are: mean = exp(µ+ σ2/2) and sd =

√
exp(2µ+ σ2)[exp(σ2)− 1].
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Table 9

Continued from previous page

(1) (2) (3)
C logit RP logit

fixed price
RP logit
ln(price)

Fee ×target µ 0.04699* 0.05777 0.09356*
trips (0.0222) (0.0395) (0.04159)

σ 0.19928** 0.17906
(0.07194) (0.11073)

×fee µ -0.02359*** -0.0396*** -0.04446**
(0.00348) (0.00791) (0.01497)

σ 0.01654 0.01356
(0.01663) (0.03694)

×opt out -0.28141 -0.03516 -0.04209
(0.41082) (0.18729) (1.04215)

×gom_resident 0.48189 0.83708 0.9431
(0.35267) (0.6266) (1.12054)

×income -0.00114 -0.00192 -0.00167
(0.00205) (0.0027) (0.00553)

×unacceptable 0.13684 -0.08957
(0.8946) (0.58371)

×acceptable -2.16461* -2.76009***
(0.89996) (0.67615)

Number of individuals 537 537 537
Number of choice occasions 4 4 4
Number of observations 2148 2148 2148
LL -2053.874 -1826.447 -1778.609
Pseudo R2 0.1241 0.2167 0.2365
Cluster robust standard errors in parentheses
* p<0.05, ** p<0.01, *** p<0.001

individual respondent to allow for possible correlation between responses. The non-

price random parameters in both RPL models are drawn from normal distributions,

while βprice is either included as a fixed parameter (column 2) or estimated as the

negative of a log-normal distribution (column 3).40 Many of the estimated standard

40Past iterations of model 2 included an unmixed price coefficient, as well as either ln(price) or
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deviations of the random parameters in models 2 and 3 are large relative to their

estimated means and statistically significant, which suggests that it is important

to allow for unobserved heterogeneity when modeling the trip-taking behavior of

recreational anglers. I use the estimated coefficients of model 3 in my policy simulations

(section 3.6.2).

The estimated coefficients for both trip-cost variables (price, fee) are negative

across the conditional and random parameters logit models. The estimated standard

deviation of price (model 3) is large relative to its mean, which suggests there is

substantial heterogeneity in anglers’ responses to trip price. Conversely, the estimated

standard deviation for fee (models 2 and 3) is small relative to its mean, which

indicates little heterogeneity in fee sensitivity when it comes to trip choice.

In each of the models in Table 9, I investigate whether anglers were more likely to

opt out of fishing trips for which retention is governed through fees rather than bag

limits. The uninteracted base covariate optout has a negative and significant estimated

mean and an estimated standard deviation that is both significant and large relative

to its mean. In other words, holding alternative-varying attributes constant, anglers

tend to opt out less often than they opt in, but this response is heterogeneous between

anglers. The coefficient for optout under “Fee Version” is small and insignificant, which

suggests that anglers were no more or less likely to opt out of a trip conditional only

on their red snapper retention being governed by fees rather than bag limits. Anglers

who found retention fees to be acceptable were less likely than those who were either

ambivalent toward (the omitted base interaction) or opposed to retention fees to opt

out of a trip conditional only on it being a “fee trip.” This finding suggests that there

price2, neither of which were significant. Thus, I am confident that my random parameters logit
models capture the true, linear relationship between price and trip-taking probability.
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were behavioral consequences (at least in terms of stated preferences) of professed

attitudes toward the use of retention fees.41 Understanding the mix of these attitudes

in the angler population is therefore important for understanding the overall scale

of demand under this proposed policy. Nevertheless, this heterogeneity may be of

limited usefulness for policy targeting since fee attitude is not a verifiable attribute

on which policy can be differentiated.

If fee acceptance tends to vary along certain demographic margins (e.g., income)

then I might be concerned about the distributional implications of the differential

impact of retention fees on trip-taking as discussed above. In order to investigate

potential distributional concerns and to identify observable, policy-relevant attributes

with which fee acceptance might be correlated, I estimate an ordered logit model of

fee acceptance on angler characteristics (see Table 19 in Appendix B.6) which reveals

that younger, male anglers with higher annual household incomes are more likely to

be accepting of retention fees. These findings suggest that uncoupled pricing could

promote elitism if, as a result of being less approving of retention fees, lower income

individuals are induced to take relatively fewer fishing trips. Even though income is a

significant determinant of fee acceptance, I found in Table 9 that only fee acceptance

and not income significantly impacted the probability of taking a fee version headboat

trip.

In addition to looking at differential opt-out behavior between bag limit and fee

trips, I also investigate how trip-taking depends upon on marginal changes in fee

magnitude. At first impression, the coefficients in Table 9 suggest that trips hinge

more on changes in the retention fee than on changes in trip price. The average

41Note that all respondents were asked about fee acceptance prior to their exposure to the choice
experiment section of the online survey, so that it can be treated as exogenous to the level of the fee
in the extensive and intensive margin models.
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Figure 6. Mean and Coverage (5th to 95th percentiles) of Average Marginal Effects
on Trip Choice and Opt-out Behavior for the Bag Limit Questions. Calculated using
model 3 (Table 9).

marginal effects presented in the “trip-taking” panels of Figures 6 and 7 are the effects

of a change in each trip attribute on the probability of an angler choosing alternative

one, while the “opt-out” panels indicate how changes in the listed trip attributes

impact the probability of a respondent choosing the outside option over one of the two

listed trip alternatives. Given that my data come from an unlabeled choice experiment

in which the trip alternatives are differentiated by randomized attributes, the average

marginal effects should be the same for trip alternatives one and two.42 A one dollar

increase in the retention fee for trip one reduces the probability of that alternative

being chosen 3.4 times more (0.0051 vs 0.0015) than does a one dollar increase in

alternative one’s trip price (see Figure 7). Furthermore, respondents are willing to pay

42I also calculate these marginal effects for alternative two to confirm that there was no systematic
difference between the two trip alternatives, and confirm that there are trivial numerical differences
between the two sets of marginal effects.
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Figure 7. Mean and coverage (5th to 95th percentiles) of Average Marginal Effects on
Trip Choice and Opt-out Behavior for the Fee Version Questions. Calculated using
model 3 (Table 9).

an average of $3.68 (sd =$1.56) more in trip price to avoid a $1 increase in retention

fee.43 Perhaps anglers are so averse to the idea of retention fees that they will accept

higher trip prices to avoid higher retention fees. Alternatively, the average angler may

anticipate catching and retaining approximately four red snapper on a fee-based trip,

so that a $1 increase in either retention fees or trip price is equivalent in welfare terms.

The latter hypothesis suggests that anglers are agnostic about whether their dollars

are spent on trip prices or retention fees.

To investigate the latter hypothesis, I estimate two additional conditional logit

models of trip-choice using only fee version observations for which anglers did not

choose the outside option. In other words, I model anglers’ decision about which of

43All WTP estimates were calculated via bootstrapping using 1,000 draws of each of the random
parameters. I used model 2 for all WTP estimates, because the estimates produced using model 3
were unrealistically large. This is because the price parameter is distributed log-normally with a
near-zero mean in model 3.
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Table 10

Conditional Logits of Trip Choice (Non Opt-out) Under the Fee Version.

(1) (2)
price -0.00655∗∗∗ -0.00677∗∗∗

(0.00183) (0.00182)

other 0.0420 0.0294
(0.0275) (0.0264)

congest -0.826∗∗∗ -0.741∗∗∗
(0.192) (0.183)

target 0.0333 0.186∗∗∗
(0.0277) (0.0530)

fee -0.0227∗∗∗
(0.00502)

fee × target -0.00541∗∗∗
(0.00126)

N 1486 1486
LL -386.56691 -384.10395
Pseudo R2 0.0896 0.0954
Cluster robust standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

the two trips to take conditional on having decided to take a “fee version” fishing

trip (Table 10). The first model in Table 10 includes retention fee magnitude as a

regressor (fee), while the second model replaces this regressor with the maximum

expected fee bill for a given trip under the assumption of full retention of catch

(fee × target). In the first model, the fee coefficient is 3.47 times that of the price

coefficient, agreeing with the pattern noted in the RPL models in Table 9. In the

second model, a Wald test confirms that the coefficients for fee bill (fee × target)

and trip price are not statistically different (χ2 = 1.11, p = 0.2929). These results

demonstrate that, conditional on having decided to take a trip, anglers appear to
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treat the maximum fee bill and trip price in an equivalent fashion, suggesting that

the seemingly disproportionate effect of fees in the trip choice model is rooted in

expectations of retention.

Not only are respondents more likely to choose trips that cost less in aggregate

(price, fee), but Table 9 reveals that they also gravitate toward trips that promise:

1) a higher expected catch of non-red snapper fish (other); 2) less congestion on the

vessel (congest); 3) higher expected catch of red snapper (target, fee version); and

4) more red snapper retained (retain, bag limit version). The estimated standard

deviations for other and congest are significant and large relative to their means

(models 2 and 3), which indicates a meaningful degree of heterogeneity in how anglers’

trip-taking behaviors respond to changes in non-price and non-catch trip quality

attributes. The average marginal effect of a trip being “crowded” (congest) on its

probability of being chosen is -0.184 and -0.171 for bag limit and fee trips, respectively.

The marginal effect of congestion is relatively large and variable, so I omit congest

from my AME visualizations in Figures 6 and 7 to preserve meaningful scale for the

other variables.44,45 See section B.4 of the appendix for details on how I calculated

AMEs.

While all three models suggest that the number of red snapper an angler expects

to catch and retain is a significant and positive determinant of trip choice for bag

limit trips, any fish that anglers catch and discard (i.e., red snapper caught in excess

of an angler’s bag limit) yield little to no marginal utility. Figures 6 and 7 show that

44The bars around the average marginal effect point estimates represent the range of all average
marginal effect estimates across 1,000 sets of individual-specific draws for each random coefficient.

45The 5th percentiles, means, and 95th percentiles of AMEs for congest in Figures 6 and 7 are
as follows: Trip-taking behavior, bag limit version: (-0.237,-0.184,-0.131); Opt-out behavior, bag
limit version: (0.007,0.042,0.086); Trip-taking Behavior, fee version: (-0.223,-0.171,-0.103); Opt-out
behavior, fee version: (0.015, 0.058, 0.102).
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a one fish increase in retention on a “bag limit trip” increases the mean probability of

an angler taking a particular trip by 0.085. If, however, that same angler expects to

discard that additional fish, then the probability that they will take that same trip

only increases by 0.012. The average marginal effect of catching an additional red

snapper on a “fee trip” is also 0.012. This result is consistent with that of Carter and

Liese (2012), who find that recreational anglers were willing to pay more than eight

times as much to catch and retain red snapper than they were to catch and release red

snapper under a bag limit. The lack of marginal utility from a discarded fish suggests

that providing anglers the ability to effectively purchase a larger ex post bag limit

through retention fees should be welfare improving when applied to red snapper and

other GOM reef fish, particularly for more highly-skilled anglers for whom the bag

limit is especially likely to bind.46 Furthermore, if anglers with higher marginal values

of retention are also more likely to be constrained by the bag limit, then a switch

to retention fees could further improve allocative efficiency by inducing anglers with

higher marginal values to take relatively more trips now that they can enjoy a higher

measure of trip quality.

Table 11 reports the results of top-censored Poisson regression of the number of red

snapper respondents claimed they would retain, where the top-censoring is determined

by the number of fish they catch in the previous choice experiment, conditional on

having chosen to take a fee-based trip. Anglers who found fees to be acceptable are

not only less likely to opt-out of fee-governed trips, but also tend to retain about 49%

more fish on those trips, subject to not being catch-censored, than do those who are

ambivalent or averse to retention fees. Anglers who like the idea of retention fees

46This finding that discarded fish yield no marginal utility likely would not generalize to an inland
freshwater fisheries with a strong catch-and-release ethic.
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Table 11

Top-censored Poisson Model of Number of Fish Retained.

(1)
congest 0.0649

(0.101)
other -0.00900

(0.0189)
target 0.183∗∗∗

(0.0274)
price -0.000108

(0.000728)
gom_resident -0.0355

(0.104)
gomfishing_years (10 years) 0.0869∗

(0.0361)
income 0.000972

(0.000741)
Vfeetoboat 0.0902

(0.101)
unacceptable -0.106

(0.250)
acceptable 0.401∗∗

(0.182)
fee -0.0231∗∗∗

(0.00589)
× unacceptable 0.00308

(0.00766)
× acceptable 0.00125

(0.00704)
_cons 0.348

(0.277)
N 736
LL -643.79706
Cluster robust standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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may have overstated the number of fish they would retain if they believed that such

a response could increase the probability of such a policy being adopted. However,

it is also possible that anglers who approved of retention fees did so because they

have a stronger baseline preference for retention than do other respondents. I cannot,

with my data, determine to what degree strategic behavior may have played a role in

this result, but the acceptability indicators clearly capture some latent difference in

anglers who approved of or were ambivalent or opposed to retention fees.

The fee coefficient in Table 11 is negative and significant, suggesting each $1

increase in fee reduces retention by 2.3%.47 However, neither of the interactions

between fee and fee acceptance are significant, suggesting that, while fee acceptance

can act as a retention shifter, it is not a significant determinant of fee elasticity.

Figure 8 shows that anglers exhibit inelastic retention behavior at low fee levels

($10 per fish) but behave in a more fee-elastic manner when faced with high retention

fees ($50 per fish). Above $56, demand becomes elastic, so that further increases in

the retention fee will induce relatively larger reductions in retention on a given trip.

However, this result does not provide the “switchpoint” fee level for overall demand,

since fee magnitude impacts both extensive and intensive margin behavior. For this I

must combine the two demand functions (see below).

Interestingly, the trip quality attributes that are not related to target species

retention (i.e., congest, other, and price) are all insignificant in the trip retention

demand equation. This suggests that anglers treat the utility maximization decision

from retention under fees in a separable manner from these predetermined trip

attributes. Demographic characteristics such as income or Gulf residency also do not

47A past version of the censored Poisson (not shown) included a fee2 term, which was found to
be insignificant.

109



−0.9

−0.6

−0.3

10 25 35 50
Fee Level

F
ee

 E
la

st
ic

ity

Figure 8. Fee Elasticity at the Four Randomized Fee Levels with 95% Error Bars.

explain fish retention behavior, and other specifications (not shown) revealed that

gender, employment status, and whether or not a fisherman was a member of an

angler organization are similarly insignificant.

The only demographic characteristic that influences per-trip retention demand

is how many years of fishing experience the angler has in the GOM. On average, an

additional 10 years of experience fishing in the Gulf translates to an 8.69% increase in

fish retention. While GOM residents tend to have more years of experience fishing in

the Gulf than non-residents (two-sample t test, p = 0.0000), angling experience, not

residency, is the relevant mechanism of the two for predicting retention behavior.

Target, or the number of red snapper that an angler expects to catch on a trip, is

a trip-attribute that is both a regressor and a censoring point for this regression. I

include target as a regressor because the number of red snapper that anglers expect to

catch may influence the number they decide to retain even if their desired retention

is not censored by catch. In other words, target retention may increase as catch
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goes up, even if catch was not “binding” on the retention decision (i.e., some catch

was previously discarded). This could occur due to heuristic decision making (e.g.,

retaining a fixed proportion of catch) or due to an angler having a distaste for discards

that leads them to increase their retention as their luck in catching fish improves.

Indeed, I find that a one fish increase in target catch increases uncensored retention by

approximately 18% (Table 11). However, I find that the estimates of all coefficients,

save for congest and other, are insensitive to the inclusion or exclusion of target as a

regressor.

3.6.2 Policy Simulations

In my policy simulations, I assume GOM headboats remain a limited access sector

whose trip prices are determined in a market, and I interpret retention fees as the

cost of a harvest tag. For the sake of simplicity, I assume that these tags are uniquely

allocated to harvest in the GHC subset of the headboat sector and not usable outside

of it, thereby ignoring any spillovers between the private, non-GHC headboat, and

for-hire recreational sectors or between recreation and commercial fishing. These tags

must be traded in a competitive market, either through brokers (including, potentially,

headboats themselves) and/or through resale markets.

The way I interpret my policy simulations is just one of multiple ways in which

pricing for fish retention could be implemented. Another possibility that works in the

specific case of for-hire vessels such as headboats is to allocate vessels proportional

rights to a share of the annual total allowable catch in the fishery, as in an ITQ.

This is exactly what happened during the GHC pilot, although allocation technically

occurred to to the GHC as a cooperative, with vessel-level allocation resolved by GHC
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members (Abbott & Willard, 2017). Vessels are then free to allocate their scarce

fish quota to customers in whatever way they like, including implementing retention

pricing. In this case retention pricing would be similar to a leasing arrangement in

commercial ITQ fisheries, where vessel owners “lease” quota to customers according

to their desire to retain fish, in addition to charging for the trip itself. If annual

allocation is freely transferable across vessels, then the resulting market clearing price

(and the price charged to customers) should equal the marginal WTP of customers for

retention of an additional fish. Note, however, that an ITQ or cooperative allocation

to headboats may not be sufficient to guarantee such “a la carte” pricing, as vessels

may elect to utilize other approaches to rationing their allocation – including creation

of differentiated trips with higher bag limits and attendantly higher prices – either out

of concern for alienating customers or due to the transaction costs of implementing

individualized retention pricing on individual trips (Abbott & Willard, 2017).

While most consistent with the GHC policy experiment, this ITQ/cooperative

approach has limited applicability beyond for-hire recreational providers. Allocation

of a finite number of durable share rights to harvest is would likely be problematic

for recreational fishing where participation and catch history are often lacking and,

even if present, the allocation of shares to thousands of claimants may be infeasible

and not worth the administrative costs. Furthermore, unless quota are auctioned

annually or subject to some form of royalty tax, “quota rents” would go to the for-hire

headboat sector. Resource managers may instead wish to receive supplemental “a

la carte” pricing revenues on top of the permit fees already collected from headboat

operators.

An alternative, more generally applicable, approach is to consider the distribution

of a finite number of harvest tags per season which must be surrendered for every
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unit of recreational harvest. These tags may be physical, virtual, or a mix of the

two, and can be allocated in a number of ways, each with different distributional,

efficiency, and revenue-raising implications. For example, tags could be auctioned

off directly to anglers or to brokers such as sporting goods stores who then provide

a ready spot market for anglers – either of which provides a source of revenue for

resource management. In other cases where equity concerns dominate, particularly

when tags are scarce (as for trophy species), tags may be allocated, at least partially,

by lottery. To maximize efficiency within this tag market, R. J. Johnston et al. (2007)

suggest allowing tag resale.

Tags are not without their challenges, including the challenges of enforcement and

the problem of accounting for discard mortality, both of which are common challenges

of fisheries management and not endemic to harvest tags alone (Abbott, 2015; R. J.

Johnston et al., 2007). Nevertheless, their widespread use in game management

and for some freshwater fisheries suggests they could be more widely adopted in

marine contexts. Indeed, bag limits already impose quantitative limits on individual

anglers’ harvest, so the marginal enforcement costs of a tag program may not be much

higher. Finally, unlike recreational ITQs, tags have the potential to work across both

the for-hire sector and for anglers fishing from their own private boats. In spite of

these challenges and for the reasons discussed above, I believe that representing my

simulations in terms of market-based trip prices on the extensive margin and harvest

tags on the intensive margin makes sense in this context.

Figure 9 illustrates how different combinations of trip and tag prices affect both

predicted harvest of (represented by white curves) and tag-based revenues (captured

by the gray contours) generated by GHC clients. Not surprisingly, tag revenues and

total harvest fall as trip prices increase for a given tag price. Nevertheless, predicted
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Figure 9. Harvest Tags Demanded (white lines) and Revenues Generated from Tag
Sales (gray bars) at Different Bundles of Trip Prices and Harvest Tag Prices.

trips are inelastic to trip prices, so that harvest is relatively unresponsive to even large

pricing changes on the extensive margin. Incentives on the intensive margin, therefore,

are especially valuable. The backward-bending revenue contours demonstrate that

there is a range of low tag prices where retention is inelastic, but that eventually a

breakpoint is reached where retention responds disproportionately to further increases,

leading to reduced revenues. This breakpoint tag price declines, albeit slowly, as

trip prices increase. The relatively close vertical spacing of the harvest contours,

particularly at lower tag prices shows the sensitivity of harvests to pricing changes

on the intensive margin. Of course, in practice resource managers have no direct

control of the trip pricing itself as this will depend on market-clearing outcomes in the
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Figure 10. Demand Curve for Red Snapper Harvest Tags and Revenue from Tag Sales
(gray box) when the Price of a Headboat Trip is $83.

headboat sector, which is outside the scope of my model and data. Nevertheless, these

economically grounded simulations can help managers anticipate how pricing shifts

from demand shifts (aside from the fish stock itself) or supply shocks (e.g., hurricane

damage to the headboat fleet) may influence harvest or tag market outcomes. Indeed,

if a finite number of harvest tags (say 50,000) are allocated for a season, then the

harvest contour associated with this quantity represents the locus of trip prices and

tag prices that support equilibrium in the tag market.

Figure 10 is the simulated Marshallian demand curve for red snapper harvest tags

by anglers on GHC vessels when the market price of a headboat trip is $83—the median

price of a headboat trip aboard GHC vessels in 2012-2013—under the distribution

115



of catch rates (and hence abundance) in those years. It reflects overall demand for

red snapper as harvest tag prices (or retention fees) vary, accounting for both trip

decisions and retention decisions by anglers. Demand for harvest tags is inelastic

below prices of $45 per tag, and becomes elastic above that level. In 2012-2013,

anglers aboard the 19 GHC vessels harvested approximately 50,000 red snapper per

year. Therefore, if just over 50,000 harvest tags were allocated to anglers fishing on

GHC vessels and trip price remained at $83, then the market-clearing price for a

harvest tag would be $15, generating $763,321 in tag revenues from this subset of the

recreational headboat sector alone (excluding other recreational anglers), which could

accrue either to fisheries management or brokers depending on the means of allocation.

For context, the commercial red snapper IFQ program collects a 3% ex vessel tax on

revenues in order to recover the incremental management costs of the program, and in

2020, $950,396 of cost recovery taxes were collected (National Marine Fisheries Service

Southeast Regional Office, 2021). The commercial sector has historically received 51%

of the annual red snapper quota, while the for-hire sector, which is partially-comprised

of Gulf of Mexico headboats, receives only 20.73% of the red snapper quota each year

(National Oceanic and Atmospheric Administration, 2021). My policy simulations are

scaled to represent the sub-segment of the headboat for-hire sector that participated

in the GHC. Thus, my estimate of $763,321 in tag sale revenues is not insignificant.

An allocation of 27,000 harvest tags, on the other hand, would maximize tag

revenues ($1.22 million) under 2012-2013 harvest conditions and result in a market

price for a tag of $45. However, this finding assumes that there is no feedback between

tag scarcity and the pricing of headboat trips, which is less likely as tag prices rise.

Figure 10 is also of interest for informing often contentious discussions about

allocation of harvest between sectors (Abbott, 2015). Previous allocation studies
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have used estimates from recreation demand models to estimate the marginal value

of increasing allocation to the recreational sector vs. the commercial sector. One

challenge of these studies is that they are predicated on the existing regulatory

structure and therefore must come up with some story for how “new” fish would be

allocated to anglers (i.e. through increasing bag limits on existing trips, new trips

under existing bag limits, etc.), where this “rationing” approach must be linked to

the manner in which recreational values are recovered. For example, in their study

of red snapper allocation in the GOM, Agar and Carter (2014) find that anglers in

the broader recreational sector would be willing to pay the equivalent of $71 a fish

(or $11.21/lb.) for moving from zero to 2 fish bag limits for red snapper. These

values are then compared to lease prices in the commercial ITQ market to argue

that reallocation of harvest to recreational harvesters is consistent with allocation

according to the equimarginal principle. However, these estimates are predicated

on the existing, inefficient allocation of fish under the regulated open access, season-

length/bag limit regulatory approach, which does not allocate harvest according to

diminishing marginal valuation (Holzer & McConnell, 2014). Therefore, these values

do not answer the question of whether existing allocations to the sectors are efficient

if allocation within the recreational sector were allocated efficiently, as in a tradable

tag market. However, my estimates—by being predicated on price-based allocation

among headboat passengers—do allow for this comparison

I find that a hypothetical harvest tag market among GHC anglers in 2012-2013

would have cleared at a price of approximately $15 a fish. Given a mean weight of 6.3

pounds per fish (Agar & Carter, 2014), this implies a price of $2.38/lb in the headboat

sector. However, the lease price of allocation in the GOM red snapper fisher—a

value of the marginal profitability of an additional pound of allocation to commercial
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fishers—was approaching $3 in approximately the same time period (Gulf of Mexico

Fishery Management Council, 2013). Therefore, the efficiency case for reallocation to

recreational anglers (or at least those in the headboat sector) is hardly as clear-cut

as the previous analysis might suggest. Opening up trade in allocation between

commercial fishers and the headboat sector may not lead to reallocation away from

commercial fishing, particularly if quota is efficiently allocated within the headboat

sector itself. Indeed, the high valuation reported by Agar and Carter for additional

red snapper may exist for the very reason that bag limits and season constraints are

currently misallocating fish to many anglers with low valuations, so that the marginal

value of loosening the allocation constraint is artificially high (Holzer & McConnell,

2014). my model shows how the outcomes of market-based allocation between sectors

can be addressed by explicitly modeling the allocation of recreational harvest via

market mechanisms.

3.7 Conclusion

My policy simulations show that “a la carte” pricing has the potential to address

multiple management goals within the US GOM recreational red snapper fishery,

including: meeting biological objectives, generating efficiency gains, and providing

supplemental revenue for resource managers. The exact form that “a la carte” man-

agement may take will depend on the unique political climate of individual fisheries.

The general approach laid out in this paper can aid policymakers in determining how

successful or unsuccessful a policy counterfactual may be in their respective fishery

based on the representative anglers’ relative responsiveness to trip prices, retention
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prices, and non-price trip attributes on both the extensive and intensive margins of

harvest.

The combination of stated preference data and structural modeling is a powerful

tool for ex ante analysis of unbundled pricing in recreational contexts, especially

because I find that the impact of price and non-price trip attributes on trip-taking and

retention behavior is subject to unobserved heterogeneity. Specifically, anglers’ views

about the acceptability of pricing the resource influence opt-out behavior and per-trip

red snapper retention on fee version trips. This behavior-shifting heterogeneity is

unobserved so it cannot be targeted with policy. It is therefore important to utilize

structural modeling that accounts for unobserved heterogeneity in order to understand

how a body of anglers might adapt their trip-taking or retention behavior in aggregate

in response to any policy instruments under consideration.

The modeling approach in this paper could be used to investigate policy contexts

beyond the intra-sectoral allocation of harvest tags to brokers and headboat anglers.

In this paper, my policy modeling is restricted to include retention demand only

from the recreational headboat sector; I do not model a unified tag market for the

private and for-hire recreational sectors, because I do not have information on private

angling demand, and therefore do not know how this unified market would equilibrate.

However, it seems likely that establishing a single harvest tag market across recreational

sectors would enable inter-sector allocation to resolve itself through the tag market.

Furthermore, by accounting for the impacts of pricing the resource on both the

trip-taking and retention margins, I find evidence that allocating tradable short-term

rights that are transferable between recreational anglers (or at least passengers of

headboat vessels) and commercial harvesters may result in quota flowing toward the
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commercial sector, in contrast to the current narrative that recreational anglers have

higher marginal values for harvest.

My findings are not directly applicable for intensive resource use that is not

extractive (e.g., trail degradation from hiking, mountain biking, or ATV use) because

the information and enforcement costs associated with pricing non-extractive use are

likely prohibitively high. However, unbundled pricing could yield similar benefits to

resource managers whose resources are subject to extractive uses on the intensive

margin, and the data collection, and modeling approaches illustrated in this paper

could provide insight on how differentiated pricing mechanisms may actually play out

in their specific contexts. For instance, harvest tags are already common in hunting,

and especially for trophy species. This type of model may aid game managers in

allocating the correct number of tags to meet their objectives, as well as to anticipate

how the market clearing price for tags may change in response to changes in demand

(suppose the population of a substitute species surges, leading to decreased demand

for the target species) or in supply (say, through climate shocks or fire.)

120



REFERENCES

Abbott, J. K. (2015). Fighting over a red herring: The role of economics in recreational-
commercial allocation disputes. Marine Resource Economics, 30 (1), 1–20.

Abbott, J. K., & Fenichel, E. P. (2013). Anticipating adaptation: A mechanistic
approach for linking policy and stock status to recreational angler behavior.
Canadian Journal of Fisheries and Aquatic Sciences, 70 (8), 1190–1208. https:
//doi.org/10.1139/cjfas-2012-0517

Abbott, J. K., Lloyd-Smith, P., Willard, D., & Adamowicz, W. (2018). Status-quo
management of marine recreational fisheries undermines angler welfare. Pro-
ceedings of the National Academy of Sciences, 115 (36), 8948–8953. https :
//doi.org/10.1073/pnas.1809549115

Abbott, J. K., & Wilen, J. E. (2009). Rent dissipation and efficient rationalization in for-
hire recreational fishing. Journal of Environmental Economics and Management,
58 (3), 300–314. https://doi.org/10.1016/j.jeem.2009.03.002

Abbott, J. K., & Willard, D. (2017). Rights-based management for recreational for-
hire fisheries: Evidence from a policy trial. Fisheries Research, 196, 106–116.
https://doi.org/10.1016/j.fishres.2017.08.014

Agar, J. J., & Carter, D. W. (2014). Is the 2012 allocation of red snapper in the
Gulf of Mexico economically efficient? (NOAA Technical Memorandum NMFS-
SEFSC-659).

Anderson, L. G. (1993). Toward a complete economic theory of the utilization and
management of recreational fisheries. Journal of Environmental Economics and
Management, 24 (3), 272–295. https://doi.org/10.1006/jeem.1993.1018

Arlinghaus, R., Abbott, J. K., Fenichel, E. P., Carpenter, S. R., Hunt, L. M., Alós, J.,
Klefoth, T., Cooke, S. J., Hilborn, R., Jensen, O. P., Wilberg, M. J., Post, J. R.,
& Manfredo, M. J. (2019). Opinion: Governing the recreational dimension of
global fisheries. Proceedings of the National Academy of Sciences, 116 (12),
5209–5213. https://doi.org/10.1073/pnas.1902796116

Brown, G. (1971). Pricing seasonal recreation services. Economic Inquiry, 9 (2), 218.

Bureau of Economic Analysis. (2020). Outdoor recreation satellite account, U.S. and
states, 2019. https://www.bea.gov/sites/default/files/2020-11/orsa1120_1.pdf

121

https://doi.org/10.1139/cjfas-2012-0517
https://doi.org/10.1139/cjfas-2012-0517
https://doi.org/10.1073/pnas.1809549115
https://doi.org/10.1073/pnas.1809549115
https://doi.org/10.1016/j.jeem.2009.03.002
https://doi.org/10.1016/j.fishres.2017.08.014
https://doi.org/10.1006/jeem.1993.1018
https://doi.org/10.1073/pnas.1902796116
https://www.bea.gov/sites/default/files/2020-11/orsa1120_1.pdf


Carter, D. W., & Liese, C. (2012). The economic value of catching and keeping or
releasing saltwater sport fish in the Southeast USA. North American Journal
of Fisheries Management, 32 (4), 613–625. https://doi.org/10.1080/02755947.
2012.675943

Cesario, F. J. (1980). Congestion and the valuation of recreation benefits. Land
Economics, 56 (3), 329–338. https://doi.org/10.2307/3146035

Coleman, F. C., Figueira, W. F., Ueland, J. S., & Crowder, L. B. (2004). The impact
of United States recreational fisheries on marine fish populations. Science,
305 (5692), 1958–1960. https://doi.org/10.1126/science.1100397

Cox, S. P., Beard, T. D., & Walters, C. (2002). Harvest control in open-access sport
fisheries: Hot rod or asleep at the reel? Bulletin of Marine Science, 70 (2),
749–761.

Fenichel, E. P., & Abbott, J. K. (2014). Heterogeneity and the fragility of the first
best: Putting the "micro" in bioeconomic models of recreational resources.
Resource and Energy Economics, 36 (2), 351–369. https://doi.org/10.1016/j.
reseneeco.2014.01.002

Figueira, W. F., & Coleman, F. C. (2010). Comparing landings of United States
recreational fishery sectors. Bulletin of Marine Science, 86 (3), 499–514.

Gulf of Mexico Fishery Management Council. (2013). Red snapper individual fishing
quota program 5-year review. Gulf of Mexico Fishery Management Council
Tampa FL.

Holmes, T. P., & Englin, J. E. (2005, February). User fees and the demand for OHV
recreation (FS-1133). Salt Lake City, Utah.

Holzer, J., & McConnell, K. (2014). Harvest allocation without property rights. Journal
of the Association of Environmental and Resource Economists, 1 (1), 209–232.
https://doi.org/10.1086/676451

Homans, F. R., & Wilen, J. E. (1997). A model of regulated open access resource use.
Journal of Environmental Economics and Management, 32 (1), 1–21. https:
//doi.org/10.1006/jeem.1996.0947

Interagency National Survey Consortium. (n.d.). National survey on recreation and
the environment (NSRE): 2000–2002. https://www.srs.fs.usda.gov/trends/
Nsre/nsre2.%20html

122

https://doi.org/10.1080/02755947.2012.675943
https://doi.org/10.1080/02755947.2012.675943
https://doi.org/10.2307/3146035
https://doi.org/10.1126/science.1100397
https://doi.org/10.1016/j.reseneeco.2014.01.002
https://doi.org/10.1016/j.reseneeco.2014.01.002
https://doi.org/10.1086/676451
https://doi.org/10.1006/jeem.1996.0947
https://doi.org/10.1006/jeem.1996.0947
https://www.srs.fs.usda.gov/trends/Nsre/nsre2.%20html
https://www.srs.fs.usda.gov/trends/Nsre/nsre2.%20html


Johnston, R. J., Holland, D. S., Maharaj, V., & Campson, T. W. (2007). Fish harvest
tags: An alternative management approach for recreational fisheries in the US
Gulf of Mexico. Marine Policy, 31 (4), 505–516. https://doi.org/10.1016/j.
marpol.2006.12.004

Lloyd-Smith, P., Abbott, J. K., Adamowicz, W., & Willard, D. (2019). Decoupling the
value of leisure time from labor market returns in travel cost models. Journal
of the Association of Environmental and Resource Economists, 6 (2), 215–242.
https://doi.org/10.1086/701760

Lloyd-Smith, P., Abbott, J. K., Adamowicz, W., & Willard, D. (2020). Intertempo-
ral substitution in travel cost models with seasonal time constraints. Land
Economics, 96 (3), 399–417. https://doi.org/10.3368/le.96.3.399

Lueck, D. (2000). An economic guide to state wildlife management. Political Economy
Research Center.

McConnell, K., & Sutinen, J. G. (1979). Bioeconomic models of marine recreational
fishing. Journal of Environmental Economics and Management, 6 (2), 127–139.
https://doi.org/10.1016/0095-0696(79)90025-1

National Marine Fisheries Service Southeast Regional Office. (2015, March). Head-
boat collaborative pilot program 2014 annual report. National Oceanic and
Atmospheric Administration. St. Petersburg, FL.

National Marine Fisheries Service Southeast Regional Office. (2021, August 12). Gulf
of Mexico red snapper individual fishing quota report (2020 update). National
Oceanic and Atmospheric Administration. St. Petersburg, FL. https://noaa-
sero.s3.amazonaws.com/drop-files/cs/2020_RS_AnnualReport_Final.pdf

National Oceanic and Atmospheric Administration. (2021). History of management
of Gulf of Mexico red snapper. https://www.fisheries .noaa.gov/history-
management-gulf-mexico-red-snapper

Richer, J. R., & Christensen, N. A. (1999). Appropriate fees for wilderness day use:
Pricing decisions for recreation on public land. Journal of Leisure Research,
31 (3), 269–280. https://doi.org/10.1080/00222216.1999.11949867

South Atlantic Fishery Management Council. (2017, November 20). Amendment 43
to the fishery management plan for the snapper grouper fishery of the South
Atlantic region (Environmental Assessment). https://repository.library.noaa.
gov/view/noaa/20230/noaa_20230_DS1.pdf

123

https://doi.org/10.1016/j.marpol.2006.12.004
https://doi.org/10.1016/j.marpol.2006.12.004
https://doi.org/10.1086/701760
https://doi.org/10.3368/le.96.3.399
https://doi.org/10.1016/0095-0696(79)90025-1
https://noaa-sero.s3.amazonaws.com/drop-files/cs/2020_RS_AnnualReport_Final.pdf
https://noaa-sero.s3.amazonaws.com/drop-files/cs/2020_RS_AnnualReport_Final.pdf
https://www.fisheries.noaa.gov/history-management-gulf-mexico-red-snapper
https://www.fisheries.noaa.gov/history-management-gulf-mexico-red-snapper
https://doi.org/10.1080/00222216.1999.11949867
https://repository.library.noaa.gov/view/noaa/20230/noaa_20230_DS1.pdf
https://repository.library.noaa.gov/view/noaa/20230/noaa_20230_DS1.pdf


Train, K. E. (2009). Discrete choice methods with simulation. Cambridge University
Press.

Vincent, C. H. (2019). Deferred maintenance of federal land management agencies:
FY2009–FY2018 estimates and issues. Washington, DC: Congressional Research
Service.

Voyles, L., & Chase, L. (2017). The state conservation machine. The Association of Fish
& Wildlife Agencies, the Arizona Game, and Fish Department. Washington,
DC.

White, E., Bowker, J. M., Askew, A. E., Langner, L. L., Arnold, J. R., & English, D. B.
(2016). Federal outdoor recreation trends: Effects on economic opportunities
(Gen. Tech. Rep. PNW-GTR-945). U.S. Department of Agriculture, Pacific
Northwest Research Station. Olympia, WA. https://permanent.fdlp.gov/
gpo76189/Federaloutdoor.pdf

Williams, D. R., Vogt, C. A., & Vittersø, J. (1999). Structural equation modeling
of users’ response to wilderness recreation fees. Journal of Leisure Research,
31 (3), 245–268. https://doi.org/10.1080/00222216.1999.11949866

Woodward, R. T., & Griffin, W. L. (2003). Size and bag limits in recreational fisheries:
Theoretical and empirical analysis. Marine Resource Economics, 18 (3), 239–
262. https://doi.org/10.1086/mre.18.3.42629398

124

https://permanent.fdlp.gov/gpo76189/Federaloutdoor.pdf
https://permanent.fdlp.gov/gpo76189/Federaloutdoor.pdf
https://doi.org/10.1080/00222216.1999.11949866
https://doi.org/10.1086/mre.18.3.42629398


Chapter 4

MONEY CAN’T BUY ME FISH: LESSONS FROM AN INCENTIVIZED

HARVEST PROGRAM

4.1 Introduction

Federal and state or regional wildlife management agencies must balance multiple,

often competing objectives, including: protecting endangered species, identifying and

controlling for invasive species, and more. The systems these agencies manage are

increasingly characterized by significant recreational use. In the United States alone,

more than 97% of people aged 16 years and older recreate out-of-doors in any given

year (Interagency National Survey Consortium, n.d.). The prevalence of outdoor

recreators in these human-environment systems makes managing species populations

both more important and more complex; healthy, biodiverse ecosystems improve

the quality of recreational opportunities, but the spillovers of recreation may hinder

management efforts. As the type and scale of anthropogenic impacts on resource

systems continue to evolve, resource managers will need to adapt their portfolio of tools

to address increased species migrations and other external shocks to their systems.

Broadly speaking, resource managers have two tools at their disposal—quantity

instruments and price instruments. For example, a manager seeking to protect or

maintain a population of recreationally-desirable fish or game might limit individual

take through bag limits (a quantity instrument) or require fishers and hunters to buy

a harvest tag (a pricing instrument) for each fish harvested. Conversely, managers
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whose objective is population control may cull a pre-determined quantity of an invasive

species or offer a bounty to incentivize its recreational harvest.

In this paper, I investigate the potential for the price instrument “harvest incentives”

to meet multiple management objectives using the case of an incentivized harvest

program for invasive brown trout in the Lees Ferry recreational fishery. Harvest

incentives are an increasingly popular tool of resource managers for controlling popu-

lations of invasive species. These programs augment recreational hunters’ and anglers’

pre-existing incentives to hunt and fish by providing a cash reward for harvesting

a member of a target species. Bounties on invasive species belong to a broader

family of price-based tools designed to subsidize “green” behaviors, such as water

efficiency (Scheierling et al., 2006), energy efficiency (Allcott et al., 2015; Nauleau

et al., 2015), purchasing electric vehicles (Li et al., 2018; Sheldon & Dua, 2019), etc.

As such, bounties suffer from a similar policy challenge: uncertainty in the quantity

of environmentally-beneficial behavior induced by the program (Weitzman, 1974).

When managers implement a price-based incentive program, they rarely have

sufficient knowledge of the private benefits and costs of the population they are

seeking to incentivize to reliably predict the impact of the subsidy (e.g., the number of

additional fish harvested). Therefore, while price-based incentives may do a good job

of incentivizing pro-environmental behavior by those who can do so at lowest cost, they

nonetheless may fall short of or overshoot the level desired by managers (Weitzman,

1974). Furthermore, when a subsidy is offered for a particular observable outcome

(e.g., harvesting a fish, or installing a low-flow toilet), it is possible that the cost-

effectiveness of a program can be undermined by issuing subsidy payments to people

who would have engaged in the pro-environment behavior without the additional

motivation of the subsidy. In order to be effective as a control measure, environmental
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subsidy programs must induce additional environmentally-beneficial behavior rather

than paying participants for behaviors in which they would already have engaged.

Accordingly, researchers evaluating the efficacy of such subsidy programs have long

recognized the importance of measuring program success against a valid counterfactual

(e.g., Bennear et al., 2013; Brelsford and Abbott, 2021). In the case of harvest incentive

programs, this means that a successful program must induce recreational fishers or

hunters to harvest significantly more individuals of the target population than they

would have absent the program. Harvest incentives have the potential to be cost

effective relative to alternative management tools if they succeed at stimulating this

additional harvest at relatively low cost.

We find evidence that the Lees Ferry pilot program, whose goal was to induce

the removal of an additional 2,500 brown trout per year, failed to achieve its stated

objectives. In the program’s first year, the National Park Service (NPS) paid $41,529

in rewards for the 663 brown trout that were turned in for payment, of which only

13% (88) were additional. Therefore, the average reward payment per additional

brown trout was $472, which is 146% greater than the anticipated $192 per-fish

cost of electrofishing. The program failed to increase fishing trips taken to this

remote, expensive-to-access fishery. Furthermore, it appears the program caused a

compositional shift in the Lees Ferry angler base toward anglers who are more willing

to retain a brown trout than the fishery’s catch-and-release loving historical base, but

who are also relatively less effective at catching Lees Ferry trout.

Incentivized harvest programs may be structured in a variety of ways. Some

programs offer a simple monetary reward for each member of the target population

harvested while others utilize more complex bundles of incentives. For example,

Colorado Parks and Wildlife and the Colorado Conservation board pay anglers a flat

127



reward of $20 per fish to retain Northern pike caught in the Green Mountain Reservoir

(Porras, 2016)), while the Pacific States Marine Fisheries Commission’s Northern

Pikeminnow Sport Reward Fishery program employs a more complex increasing tier

price structure with a lottery-type bonus. In 2022, participants of the sport reward

fishery received $6 per-fish for their first 25 fish submitted, $8 each for fish 26 through

200, and $10 for each subsequent fish with a chance to catch “golden ticket” tagged fish

worth $500 each. Harvest incentive programs commonly include education campaigns

(e.g., the Coastwide Nutria Control Program in Louisiana pairs an education and

outreach program that focuses on the environmental benefits of nutria control with a

per-tail bounty), and some—like the annual 10-day Florida Python Challenge—are

supplemented by or executed as a derby or tournament event.

Harvest incentives are primarily implemented to increase the probability of the

target species being pursued, and therefore controlled, by increasing the number of

individuals participating in environmental management (Hassall & Associates P/L,

1998). However, there are additional purported benefits or management outcomes

associated with these programs that make them appealing to fish and wildlife managers.

Employing a diffuse, knowledgeable group of local hunters or anglers to remove a

species with which they are familiar has the potential to provide meaningful and

cost-effective supplementary effort for management agencies with limited resources,

personnel, and time (Pasko & Goldberg, 2014). Furthermore, these programs have

the potential to: increase public awareness of a particular invasive species problem;

subsidize pest control efforts in highly-impacted areas; or be more politically-palatable

than large-scale, contracted killing of members of the target population (Hassall &

Associates P/L, 1998; Runge et al., 2018; U.S. Department of the Interior. Invasive

Species Advisory Committee, 2014). Finally, these programs have the potential to
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encourage potential harvesters to hone their efficacy by researching how to target the

invasive species, developing new technologies, or learning by doing.

While incentivized harvest programs are a promising tool for meeting several

management objectives, they are not always effective at controlling their target

populations. Examples of successful programs include the Northern Pikeminnow Sport

Reward fishery program, which helped decrease predation on juvenile salmonids from

1990-2013 by 35% (Storch et al., 2014), and Louisiana’s Nutria Control Program,

which successfully increased nutria harvest and would likely have met its stated harvest

goals with only a modest, $1 per-tail increase to the bounty (Dedah et al., 2010).

Florida’s Python Challenge and Utah’s coyote bounty programs, on the other hand,

have been less successful. Python challenge participants, when faced with the difficulty

of actually locating pythons, grew less convinced that pythons were a significant

management concern (Harvey et al., 2016), while potential coyote bounty hunters

were largely unmotivated by monetary incentives, and the resilient coyote population

quickly replaced any individuals that were actually removed (Bartel & Brunson, 2003).

It is possible that under-performing incentivized harvest programs could be re-

designed to increase their efficacy. However, aside from a handful of studies evaluating

individual programs’ performances, there have been few efforts to synthesize lessons

from existing programs in order to develop program design guidelines. Furthermore,

few, if any, empirical studies of harvest incentive effectiveness explicitly incorporate

a “no-program” counterfactual in their analysis, which means they are unable to

determine how much reported program harvest is actually additional. My evaluation

of the Lees Ferry program is unique because rather than assume 100% additionality I

employ a counterfactual analysis to estimate true program-induced landings.
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The dearth of empirical studies involving counterfactual analysis on harvest incen-

tive programs is likely driven by a lack of sufficient data. Investigating the impact

of program design elements on additional harvest requires, at minimum, data on

recreational harvest before and after program implementation. Ideally, this type of

analysis would incorporate data from an untreated counterfactual system whose recre-

ational harvest mirrors the target system’s in trends (thought not necessarily levels)

in order to compare post-program harvest to what harvest would have been absent

the program. The Arizona Game and Fish Department (AZGFD) has been running

its Lees Ferry creel survey, which involves intercepting and surveying anglers on their

fishing behaviors year-round and according to a consistent set of well-documented

sampling protocols, for over a decade. I capitalize on the level of detail captured by

the Lees Ferry creel to perform a novel decomposition analysis that is able to say

more about how program design translates to success (i.e., additional harvest) than a

traditional program evaluation approach. I separately estimate the effect of the brown

trout harvest incentive on three behavioral margins which multiplicatively comprise

harvest—the number of fishing trips that recreational anglers take to Lees Ferry, the

number of brown trout that those anglers catch per trip, and the share of these fish

that anglers choose to retain. A harvest incentive may be effective or ineffective at

activating different margins, which could help or hinder program performance. These

margins are also subject to different, program-independent forces that could bias my

estimate of additional brown trout harvest; a decomposition approach allows me to

generate more rigorous, margin-specific counterfactuals than I could for a model that

estimates aggregate harvest.

Failure to account for the full range of population dynamics within a fishery

may result in non-target species (in this case, rainbow trout) experiencing negative
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spillover effects from harvest incentive programs (Pasko & Goldberg, 2014; Paul et al.,

2003; U.S. Department of the Interior. Invasive Species Advisory Committee, 2014).

Therefore, I also investigate whether the program had an unintended, indirect effect

on rainbow trout landings.

In the next section, I give background information on the Lees Ferry Brown Trout

Incentivized Harvest Program. Then, in section 4.3, I present a conceptual model of a

Lees Ferry recreational angler to illustrate how (i.e., on which margins) the harvest

incentive may induce additional brown trout removals relative to an untreated baseline.

In section 4.4, I describe the several sources of behavioral, biological, hydrological,

and climatological data that I knit together to perform this program evaluation. The

fifth section describes the methods that I use to estimate additional, program-induced

brown trout harvest in the face of an unprecedented global pandemic. Finally, in

sections 4.6 and 4.7 I present and discuss the results of my program evaluation.

4.2 Lees Ferry Brown Trout Incentivized Harvest Program

Lees Ferry in Marble Canyon, AZ, is an extremely remote, destination trout fishery.

Because this fishery is in the tailwaters of Glen Canyon Dam, its water temperature

is determined by reservoir levels above the dam in Lake Powell. When Glen Canyon

Dam was constructed, the cold water released from the dam was ideal for rainbow

trout, which the Arizona Game and Fish Department (AZGFD) and National Park

Service (NPS) stocked accordingly (Runge et al., 2018). Since then, this stretch of

the Colorado River has been managed as a trophy rainbow trout fishery. However,

brown trout—which were stocked downstream in Grand Canyon National Park in the

131



1920s and 1930s and have since moved up-river—have been present in the fishery as a

migrant stock for years.

As water levels in Lake Powell declined in response to the 2020-2022 North

American Drought, water temperatures flowing into Lees Ferry from Glen Canyon

Dam reached all-time highs. Brown trout, which are more resilient to warmer water

temperatures and higher levels of turbidity than rainbow trout, may be better-suited

to survival and reproduction in Lees Ferry than rainbow trout going forward. In 2014,

brown trout established a breeding stock in Lees Ferry, and from 2014-2018, Runge

et al. (2018) estimate that the Lees Ferry adult brown trout population had surged to

an estimated 5,800 adults, and has a 64% chance of increasing 3-10 fold by 2038.

Brown trout are extremely piscivorous, so the increasing reproductive success and

a growing size-structure of Lees Ferry brown trout incited concerns amidst fishery

managers that the highly adaptive predators may not only endanger Lees Ferry

rainbow trout, but that they may also migrate downstream to the confluence of

the Little Colorado River—home to a native population of humpback chub (Runge

et al., 2018). The stretch of the Colorado River that houses both Lees Ferry and the

Little Colorado River Confluence is under the jurisdiction of NPS, who—as a federal

agency—is obligated to protect humpback chub and other Endangered Species Act

(ESA)-listed species.48

Brown trout have traditionally been managed in this stretch of the Colorado River

with ad hoc electro-fishing. However, this form of mechanical removal is expensive

and unpopular with local anglers and stakeholders. Runge et al. (2018) estimate that

48The humpback chub at the Little Colorado River confluence was, until recently, listed as an
endangered species. Thanks to the Upper Colorado River Endangered Fish Recovery Program,
humpback chub was reclassified as threatened in November 2021 (Endangered and threatened wildlife
and plants; Reclassification of the humpback chub from endangered to threatened with a section 4(d)
rule, 2021).
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Figure 11. Study Area (“Study area”, 2018).

the electrofishing effort required to control Lees Ferry brown trout would cost around

$480,000 per-year, which—over a 20-year planning horizon at a 3.375% discount rate—

results in a net present cost of $6.9 million. The dual appeal of a bounty program at

Lees Ferry is its potential to be better-received than top-down control by the local

angling community and tribes at a lower cost to GCDAMP than electro-fishing. If, at

the end of its three-year pilot period, the program has failed to sufficiently increase
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brown trout harvest within Lees Ferry, fishery managers will resume electro-fishing on

an as-needed basis to control the Lees Ferry brown trout population.

The brown trout incentivized harvest program at Lees Ferry (“the program”),

initially paid anglers $25/fish to retain any brown trout caught within the Lees Ferry

fishery that was at least 6 inches long. On March 1, 2021, the program reward rose to

$33/fish, and as of September 1, 2021, includes a $50 bonus for every third fish turned

in within the month and an additional $300 reward for any brown trout containing a

scientific pit or sonic tag. This additional pit tag reward was inspired by the Northern

Pikeminnow Sport Reward Fishery’s “Golden Ticket” fish and was implemented to

meet two objectives. First, NPS hopes that the prospect of a large payout might

entice anglers to invest more effort into catching brown trout. Tag bonuses are akin to

a lottery, because there is a small probability of catching a tagged fish and receiving a

large payout. Kahneman and Tversky (1979) show that individuals may overweight

these low probability, high payout outcomes, which could make tag bonuses a relatively

cost-effective lever for increasing program participation. The second reason for these

tag bonuses is that citizen science tag collection supplements ongoing monitoring

efforts and could potentially improve abundance estimates.

4.3 Conceptual Model of Harvest Incentive Effectiveness

Potential Lees Ferry anglers face a certain number of choice occasions per-year in

which they can decide either to take a Lees Ferry fishing trip or to do something else.

Conditional on choosing to take the trip, anglers can choose how long to fish, where to

fish, and what gear to use—all of which impact the number of rainbow or brown trout

that they catch on that trip. Finally, the angler chooses the percent of rainbow and
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Harvest Incentive

catch per
trip×trips × retention

rate = Landings

Figure 12. The Margins Along Which a Harvest Incentive May Increase Brown Trout
Landings.

brown trout caught to retain rather than throwing back. The product of these three

decision margins—trips-taken, catch per trip, and retention rate—is the total number

of rainbow or brown trout that an angler lands or harvests in a year (see Figure

12). Rather than estimating total additional landings from the program, I separately

estimate additional trips taken, fish caught per trip, and share of caught fish that were

retained as a result of the program. My disaggregated approach is an improvement

upon traditional program evaluations, because recreational hunters and fishers may

respond more, less, or not at all on one margin or another depending upon the unique

social-ecological context of a particular incentivized harvest program. For instance,

a bounty for a species that is expensive to access may fail to increase trip-taking,

but may induce additional catch and retention of the target species amongst those

non-additional trips. Because landings are the product of these three margins, it is

important to understand when and why a harvest incentive may succeed or fail at

activating each margin when designing an incentivized harvest program.

The Lees Ferry program may have caused additional brown trout landings in

the following ways. First, the prospect of being paid to retain a brown trout may

increase the number of fishing trips that anglers take to Lees Ferry, both extensively
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by bringing new anglers into the fishery, and intensively by increasing the number of

trips taken by existing anglers. Lees Ferry is extremely remote—the only place in over

1,000 kilometers where it is possible to drive up to the Colorado River—and expensive

to access for all but a few local anglers. Individuals can access the fishery either at

the Paria Beach walk-in point or via boat. In 2019, the share of boat trips that were

guided vs on private, unguided vessels was about 50%. The costs of hiring a guide

service or towing a private boat to a fishery as remote as Lees Ferry are necessarily

high. In their review of harvest incentives, Pasko and Goldberg (2014) conclude

that programs at remote, expensive-to-access sites like Lees Ferry are less likely to

be successful. Therefore, the Lees Ferry harvest incentive is most likely to draw in

additional trips from local walk-in and unguided boat anglers whose relatively lower

travel costs might be partially compensated by the promise of an incentive payment.

Second, a harvest incentive may increase the average number of brown trout caught

per trip by encouraging anglers to spend more hours on the water or to choose fishing

locations, methods, or gear better suited to targeting brown trout. The handful of

syntheses on harvest incentive design suggest that these programs perform best in

systems where the target species is not wide-spread and is easy to find and identify

(Hassall & Associates P/L, 1998; Pasko & Goldberg, 2014; U.S. Department of the

Interior. Invasive Species Advisory Committee, 2014). Lees Ferry brown trout are a

localized stock, but some Lees Ferry anglers may have trouble locating and catching

brown trout. Walk-in anglers cannot access brown trout as easily as boating anglers

(only 0.83% of walk-in anglers caught at least one brown trout in 2019 versus 8.91% of

boat anglers), and so have limited capacity to have their catch rates impacted by the

incentive program. Catch-per-trip may also increase if the harvest incentive induces

a compositional shift within the fishery, by drawing a new cohort of highly skilled
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anglers into the fishery or by incentivizing the existing angler-base to learn by doing.

I also know that anglers using spin gear have historically been more likely to catch

brown trout than anglers using fly gear. In 2019, 11.27% of anglers using only spin

gear caught at least one brown trout, while only 4.33% of anglers using only fly gear

caught any brown trout. Assuming that Lees Ferry anglers on boat trips know where

and how to catch brown trout and that they are incentivized to do so by the program,

I would expect to see those anglers fishing longer hours per-day and using spin gear

relatively more often than fly gear in response to the program.

Finally, a harvest incentive may convince anglers to retain more of the brown trout

that they catch in what has historically been a catch-and-release fishery.49 Hassall &

Associates P/L (1998) point out that the target of a harvest incentive must be seen

as a pest species by a critical mass of potential harvesters in order to be effective.

However, in a meeting I attended with program administrators and local angler guides,

the guides insisted that their clients enjoy catching and releasing brown trout, do not

see it as a pest species, and do not want its population controlled. This program could

increase retention rates, then, either by drawing in relatively more trips by unguided

boat anglers, who are predisposed to retain more fish (unguided and guided anglers

retained 31% and 0% of caught brown trout in 2019, respectively), or by convincing

the angler guides and their clients that Lees Ferry brown trout are a pest. However,

given that the humpback chub that this program is designed to protect are over 100

river kilometers downstream from Lees Ferry, the message that Lees Ferry brown trout

need containing will likely be a hard-sell. In fact, from November 2020 - June 2021,

only six of 518 program participants were on guided trips, which suggests that guided

anglers have been largely untreated by the program.

49In 2019, only 18% of caught brown trout and 1.5% of caught rainbow trout were retained.
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Retention behavior is also closely aligned with gear use, with fly anglers retaining

0% and spin anglers 30% of caught brown trout in 2019. Therefore, if the program

encourages a compositional shift away from fly fishing and toward spin fishing, both

catch and retention rates for brown trout may increase. The program could still fail

to increase average retention rates if, upon arriving at the fishery, anglers find it too

difficult to participate in the program. However, the process of turning in a brown

trout for payment is low friction, and not likely to stifle retention rates. To receive

payment for any retained brown trout, anglers must bag the head and entrails of those

fish and provide their mailing address on a data card.50 The bagged fish and data

card must then be dropped into a clearly-marked, tamper-proof freezer outside of the

Navajo Bridge Interpretive Center, which every angler must drive past in order to

exit the recreation area. Bags, data cards, and writing utensils are available at several

cleaning stations near the boat launch, at the downstream walk-in point, and adjacent

to the program freezer.

4.4 Data

4.4.1 Lees Ferry Fishing Data

We use daily, angler-level data on fishing behavior and outcomes from the Arizona

Game and Fish Department (AZGFD) Lees Ferry creel survey (January 2016 - May

2022) to estimate the impact of the program on brown trout landings, as well as

the three behavioral margins (trips, catch-per-trip, and retention rate) that comprise

50Anglers are asked to provide other sociodemographic information and data on where they caught
the brown trout they are turning in and how long those fish were on these data cards. However, they
do not need to provide this additional information to receive payment.
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landings (Rogowski & Boyer, 2022). The AZGFD creel survey is an angler intercept

survey that is administered according to well-documented, site-specific protocols at

select U.S. recreational fisheries. At Lees Ferry, a single creel technician interviews

anglers at the boat launch and the walk-in point from noon until 6:00 pm on two

weekdays and four weekend days each month.51 For the first 16 months of the

incentivized harvest program (November 2020 - April 2022), USGS provided an

additional eight weekday and two weekend days of supplemental creeling effort each

month.

On any given creel day, the creel technician collects data on the number of people

fishing, as well as angler-specific data on the number of rainbow and brown trout

caught, and whether those fish were released or retained. I use these data to investigate

any potential program-induced changes in trip counts, catch rates (number of rainbow

or brown trout caught by an angler on a given day), and retention rates (percent of

caught rainbow or brown trout that each angler retained.) The technician also records

each angler’s gender, age, and home zip codes, the number of fishing trips they have

taken to Lees Ferry that year, how many hours they spent fishing that day, the type(s)

of fishing gear they used (fly, spin, or both), and which species (rainbow trout, brown

trout, or both) they were targeting. I use the information on hours fished and gear

use to help explain how and why catch rates changed after the program treatment.

In order to get an accurate measure of how trip-taking did or did not change

in response to the program, I cannot simply use daily interview counts as a proxy

for trips. Lees Ferry is only ever staffed by a single creel technician on any given

creel day, and that person must split their surveying efforts between the boat launch

51Creel technicians may leave before 6:00 pm if the weather is bad enough to deter anglers, or if
the sun has set and they see no other anglers to interview.
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and the walk-in site 1.2 miles away by car. Therefore, the creel technician may miss

anglers coming off the water at the boat launch while conducting interviews at the

walk-in, and vice versa. If the program was successful at increasing daily trips, then

the technician may miss relatively more anglers while splitting their time between the

two sites post-treatment, which would cause me to underestimate a positive program

effect on trips. Instead of interview counts, then, I use supplemental count data that

the technician records for each creel day to estimate total daily trips.

At the boat launch, the creel technician counts the number of anglers interviewed,

plus anglers missed (anglers who the technician sees leaving the fishery but does

not manage to intercept) and anglers refused (anglers who the technician can access

but who refuse to be interviewed.)52 The sum of anglers interviewed, missed, and

refused is the number of anglers observed at the boat launch. The technician also

records the total number of fishing boats that those observed anglers were in (boats

observed). Finally, the technician keeps a daily tally of fishing trailers in the parking lot

(fishing trailers). I first estimate mean anglers-per-boat from 2018 through mid-2022

as anglers observed divided by boats observed.53 Fishing trailers reveals how many

total boats—observed and unobserved—were out fishing on any given creel day. So, I

estimate daily visitation as fishing trailers times mean anglers-per-boat.

The creel technician also counts anglers at the walk-in, but I do not use data

from the walk-in in this study. This is because brown trout do not usually move

far enough downstream for the walk-in anglers to access. Therefore, they are not

potential contributors to program success.

52Anglers are most often “missed” when multiple boats come off the water at one time, leaving
the single creel technician with insufficient time to reach everyone before they depart.

53From the beginning of 2018 through early May of 2022, there were an average of 2.32 observed
anglers for every boat that came in.

140



Every angler who turns in a brown trout for payment fills out a data card on

which they provide contact and basic demographic information, reveal whether or not

they were on a guided fishing trip, and list where each brown trout turned in was

caught and how long the fish were. Because these cards are dated, I not only have

all of the angler-provided information, but also know how much money the angler

was paid per-fish. Additionally, NPS tells me whether or not a PIT tag reward was

ultimately issued for any of the fish that were turned in for payment. Furthermore,

any additional rewards from the bonanza were publicized.

4.4.2 Lees Ferry Fishery Conditions

Demand for fishing trips may fall when the fishery is relatively more costly (in

terms of time or money) to access, or if the fishing experience is made unpleasant

either by extreme environmental conditions or by anglers failing to encounter, and

therefore catch, many fish. I use data on national average cost of all fuel types

and grades ($/gallon) to control for access cost in my trip-margin analysis (U.S.

Energy Information Administration, 2022), and include a vector of calendar controls

to absorb program-independent temporal variation in behavior across all three margins

of analysis. To account for changes in fishing experience, I use several hydrological

and meteorological variables as controls across my analyses.

4.4.2.1 Calendar Controls

We include dummy variables for year, season, day-of-week, holiday, and weekend

in my analyses. These calendar date controls soak up changes in landings due to
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changes in trip-taking or in seasonal changes to population biology. For example,

Lees Ferry brown trout become more vulnerable to capture as they move up on the

spawning beds from November - January each year. Plummeting air temperatures

make fishing at Lees Ferry less popular during those same months and into early

spring, meaning that failure to account for seasonal and/or monthly variability might

introduce bias into the model. Similarly, day-of-week, weekend, and holiday dummies

control for the likely possibility that more anglers go fishing when they have built-in

breaks from work. While increased trips may increase landings through that selection

effect, it may also cause sufficient congestion on the river to lower average catch rates.

4.4.2.2 Hydrological Data

The Lees Ferry fishery is in the tailwaters of the Glen Canyon Dam, and can

thus experience dramatic swings in water flow rate, depth, and temperature. For

instance, the Bureau of Reclamation periodically runs high flow experimental releases

(HFE) from Glen Canyon Dam to redistribute sediment below the dam. HFEs can

impact brown trout immigration and spawning rates in Lees Ferry (Runge et al., 2018),

thus impacting the rate at which anglers encounter brown trout. Furthermore, very

high or low flows can make fishing less pleasurable, or even unsafe; boating anglers

who are inexperienced or less familiar with the river topography of Lees Ferry may

be overwhelmed by a strong current, or caught off-guard by large rocks and other

hazards that appear when the water is low. Similarly, water temperature may impact

the fishing experience by impacting the metabolism, feeding behavior, or population

biology at the fishery. Brown trout are more resilient to higher water temperatures

than are rainbow trout (Runge et al., 2018), so changes in water temperature will
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impact the population balance within the fishery, which will in turn impact encounter

rates and landings-per-trip for both species. I source daily average discharge (cfs) and

water temperature data at Lees Ferry from a USGS meter (United States Geological

Survey, 2021).

4.4.2.3 Weather Data

Both rain and extreme daily temperatures could diminish the fishing experience,

and heavy precipitation may obscure the water surface, making it hard to target fish.

Therefore, I source mean daily air temperature and precipitation data for Lees Ferry

from Oregon State University’s PRISM Climate Database (PRISM Climate Group,

Oregon State University, 2021).

4.4.3 COVID-19 Induced Behavioral Changes

Recent reports suggest that recreation participation and value declined in response

to the pandemic, but that the impact was heterogeneous across user-types and activities

(Landry et al., 2021; Rice et al., 2020). Thus, COVID-19 may have impacted brown

trout landings at Lees Ferry by increasing or reducing the number of fishing trips that

anglers took to that fishery. Furthermore, if a pandemic-derived desire for remote

outdoor recreation drove enough new participants into the fishery, then average per-trip

catch rates may have declined due to these new entrants’ relative lack of site-specific

knowledge. It is essential, then, to control for any impacts that COVID-19 may have

had on fishery participation and catch rates and, therefore, landings. However, because

the pilot program began well into the COVID-19 lockdown, a dummy variable for the
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period of the pandemic would soak up any program-induced variability in landings

that I want to measure. Furthermore, a pandemic dummy would be inappropriate

in that COVID-19 varied in severity and likely would have had a complex effect on

fishing behavior that is not reducible to a simple discrete shift. In order to account for

a potential “coronavirus effect,” I include several time-varying controls in my analyses

which are designed to account for pandemic-induced non-stationarity across multiple

scales.

4.4.3.1 COVID-19 Metrics

The Blavatnik School of Government and Oxford University released country-level

indices regarding stringency of government response to COVID-19 at the beginning

of 2020 (Hale et al., 2021). The index is calculated using eight ordinal containment

and closure codes plus one ordinal public information campaign code. This daily

time series is still being updated, and is released alongside daily updated counts of

total confirmed COVID-19 cases and deaths to-date. I use the stringency index, case

counts, and death counts for the US to capture the dynamics of COVID-19 severity

and policy response on a national level over the course of the incentivized harvest

program. All three variables begin with values of zero and have at least 8 months

of daily, non-zero data prior to the onset of the pilot program. I transform each of

these variables to within-week changes in order to better capture the inertia of the

pandemic in my analyses.

144



4.4.3.2 Monthly recreation participation

It is likely that there were region-specific changes to recreation participation, in

general, in response to COVID-19. As the pandemic oscillated in severity and people

become more or less responsive to changes in infection and death rates, they likely

took relatively more or fewer recreation trips to parks in their home region. Therefore,

I use monthly recreation visit counts data from every National Park Service site in

the Intermountain region to capture region-specific COVID-19 impacts on recreation

trips in my analyses (“National Park Service Visitor Use Statistics”, n.d.). The 2022

data are preliminary, and the final published visitation counts may vary slightly from

those used in this paper.

4.4.3.3 Google Trends data

Because the impact of COVID-19 on recreation participation was heterogeneous

across activities, I use monthly search frequency data for several fishing-related search

terms to account for any activity-specific pandemic effects that may have impacted

Lees Ferry visitation. I download lagged (by one and two months) and unlagged data

from Google Trends for four search terms of varying granularity that are relevant

to the Lees Ferry fishery (Google Trends, n.d.). These search terms are: “outdoor

recreation,” “fishing license,” “fly fishing,” and “trout fishing.”
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4.5 Methods

We estimate five separate models in order to investigate the direct impact of the

program on brown trout landings, as well as any indirect effects of the program on

rainbow trout landings. My models estimate the program’s impact on trip-taking,

catch-per-trip, and retention rates amongst unguided boat anglers. Because they did

not participate in the program, I treat guided boat anglers as an untreated control

throughout my analyses. The following description of methods are written in terms

of brown trout, but the procedure I used to estimate the impact on rainbow trout is

identical. Note that the program’s kick-off date in November 2020 occurred during a

time of peak COVID-19 restrictions. As a result, NPS was unable to host a kick-off

event or do much in the way of advertising for the program at its beginning. It wasn’t

until the base bounty raised from $25 to $33 per fish in March 2021 that advertising

for the program began in earnest, especially since NPS began to advertise their first

harvest incentive bonanza event, which ran throughout the month of April 2021,

around that same time. Therefore, I treat the program start-date as March 1, 2021,

throughout my analyses, and drop all data from the true start date of November 11,

2020, through the end of February 2021 in all of my analyses to avoid biasing my

results.54

4.5.1 Margin 1: Trips

As guided anglers largely did not participate in the incentivized harvest program,

I assume that total additional trips equals the number of trips to Lees Ferry taken by

54Estimation results including data from November 2020 - February 2021 are in the Appendix.
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unguided boat anglers above what they would have taken absent the program; guided

anglers are not included in my trip margin evaluation.

The Lees Ferry creel samples a subset of anglers who come back to the boat ramp

between noon and 6 pm; technicians are not able to interview every angler on a given

day. Furthermore, the fraction of anglers sampled varies by day and by creel technician.

There are two reasons to believe that the average within-day sampling fraction differs

significantly pre- and post- program implementation. First, prior to the program, the

creel was mostly administered by a single, AZGFD-contracted technician, but USGS

employees began supplementing the creel when the program began. The AZGFD and

USGS creel technicians have different levels of experience and—likely—motivation.55

Second, if the program brought in additional visitors, then it is more likely that any

one creel technician might be unable to interview a larger proportion of the total

anglers. For these reasons, number of anglers interviewed is an imperfect proxy for

total visitation. Therefore, I calculate daily trips according to the procedure described

in section 4.4.1.

In order to accurately estimate additional brown trout harvest, I would ideally

perform a difference-in-differences (DID) linear regression to compare changes in trips

per day during the pilot program between Lees Ferry and one or more counterfactual

fisheries that would have been similarly impacted by COVID-19 and other time-

varying factors, but that did not receive a separate policy treatment during the study

period. However, data collection at Lees Ferry is unique in its quality, frequency,

and consistency, and there are no other fisheries in the U.S. Intermountain Region

with suitable data to serve as a counterfactual in a DID or synthetic DID approach.

55The USGS technicians were providing additional creel days to bolster a program-related research
agenda. During winter months, the AZGFD tecnician is not a researcher, but an avid angler. During
the rest of the year, AZGFD staff serve as creel technicians.
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Instead, I use a machine learning (ML) algorithm to construct a counterfactual from

historical Lees Ferry data and a set of time-varying controls, then use daily fishing trip

predictions from that counterfactual to perform a routine DID estimation. Prest et al.

(2023) tested the ability of three common ML algorithms to replicate the treatment

effect identified using a traditional DID estimation approach, and found all three

algorithms up to the task even when trained using only data from the treated group.

Thus, an ML-constructed counterfactual trained only on historical Lees Ferry data

or on that historical data plus additional time-varying controls should allow me to

isolate the IH program’s true treatment effect.

4.5.1.1 Constructing a Counterfactual

We use a Least Absolute Shrinkage and Selection Operation (LASSO) algorithm

to generate counterfactual daily trips predictions, which is one of the three algorithms

that Prest et al. (2023) showed capable of isolating the true treatment effect when

used to generate a DID counterfactual.56 LASSO is a linear regression approach which

estimates regression coefficients such that the residual sum of squares (RSS) plus the

LASSO tuning parameter λ times the ℓ1 norm of the standardized coefficient vector is

minimized (James et al., 2021). In other words, the LASSO coefficients, β̂L
λ minimize

N∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

|βj|. (4.1)

56We also tried using ML to construct counterfactual prediction models for catch per-trip and
retention rate. However, without catch and harvest data from a comparable recreational fishery, the
resulting models were too sparse to generate reasonable counterfactual predictions of those outcome
variables; they performed only as well or slightly better than using the historical means of catch and
retention rates. Since catch-per-trip and retention rate are less likely to be affected by COVID-19
than trips, however, it is less important that those margins be estimated using ML counterfactuals.
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When λ = 0, β̂L
λ = β̂ols. As λ gets larger, the model gets more regularized, with

certain coefficients getting pushed near or even to zero, effectively dropping them

from estimation. Regularizing the model is important to avoid issues of overfit, which

can hurt out-of-sample predictive power in the same way that under-specification

would. The process of selecting λ to optimize for out-of-sample predictive power is

called cross validation (CV.) Specifically, I use K -fold CV in which I feed-in training

(pre-treatment) data, and the observations from that data are assigned to one of

K = 10 test folds. As LASSO only considers linear functions of the provided variables,

I include all Lees Ferry training data (i.e., historical daily trip counts and the controls

described in Sections 4.4.2 and 4.4.3), plus the full set of squared terms and interactions

for those data in the initial model for CV. For each potential value of λ, the test

folds are iteratively withheld from the training data then compared to the predictions

generated by the trained LASSO model to assess out-of-sample predictive power. I test

100 λ values using the glmnet package in R, and select the tuning parameter whose

K folds result in the smallest root mean square error (RMSE), and thus exhibits the

best out-of-sample predictive power. I then use this minimum RMSE model to predict

trips per-creel-day over the entire pre- and post-treatment study period. These ŷ

values are the counterfactual, untreated observations that I use in the DID estimation.

Figure 13 displays average number of daily predicted and observed trips by month

before and after the program’s March 2021 kickoff.57 This pretrends graphic suggests

that the ML counterfactual does a good job of accurately predicting daily trips before

the incentive treatment, which builds confidence that a DID estimation using this

counterfactual should accurately estimate additional trips. The one exception to this

57November 2020 - February 2021 are omitted from the figure as these months were after the
program’s official start date, and were therefore potentially treated.
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Figure 13. Mean Observed Lees Ferry Daily Trip Counts (Actual) and Daily Trip
Counts Predicted by the ML Counterfactual (Predicted) by Month from March 2020
through December 2021. The vertical break in the graph occurs between the last
untreated month and the March 2021 kickoff.

finding is October 2020, where the LASSO model appears to have under-predicted

trip-taking. I ran a robustness check in which I dropped all October 2020 data and

re-ran the CV procedure to ensure that the inclusion or exclusion of that month did

not significantly change my DID regression results. My estimation results were robust

to the removal of October 2020, which bolsters my confidence that the ML model does

a sufficiently good job of predicting counterfactual trip-taking. Furthermore, even if

an under-prediction in the final pre-treatment month had biased my results, it would

suggest that the program underperformed even more than my estimates suggest.
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4.5.1.2 The DID Model

The DID estimator, which was first employed by Card and Krueger (1994), is an

increasingly popular policy evaluation tool. In this case, I are interested in estimating

the program’s impact on trips per creel day to Lees Ferry. In order to estimate

this effect, the DID estimator makes use of pre- and post-treatment data from the

study site and a comparable counterfactual site to calculate the mean effect of the

policy intervention on the treated site (i.e., the average treatment effect on the treated

(ATT)).

There are several key assumptions underpinning the validity of DID estimation.

First, the control must not be indirectly treated, which would bias the estimated ATT

(Cunningham, 2021). This stable unit treatment value assumption (SUTVA) is not

violated, since the control is predicted using a linear regression model built entirely

with pre-treatment data. The second assumption implicit in DID estimation is the

parallel trends assumption, which requires that any time-variant factors other than

the treatment variable impact the treatment and control groups equally in the absence

of treatment (Angrist & Pischke, 2009). The purpose of CV in the ML procedure is to

maximize out-of-sample predictive ability, or to select the regression model that should

do the best job, on average, of predicting trip-taking in the absence of treatment.

While I cannot test this assumption directly, I can perform a pre-trend analysis with

the reasoning that if trip-taking varied proportionally in the treatment and control

groups pre-treatment, then they likely would have continued to do so into the future

absent treatment.

We estimated ML counterfactuals for trips and log(trips) and found that the latter

model performed better than the former in pre-trend analysis. This is likely because
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the linear trips prediction model was sparse, containing only a single interaction

variable. The log model, on the other hand, utilizes 21 independent variables to

predict log(trips), and better captured variability in trip-taking as a result.58 Figure

14 is an event study plot of average daily log(trips) by month in the pre- and post-

treatment periods. Any controls are implicit in the ML counterfactual; this event

study looks only at how log(daily trips) differs between the treated data (observed

trips to Lees Ferry) and the untreated counterfactual (the ML predictions for log(trips)

per day.) This graphic suggests that the parallel trends assumption holds, as it fails

to find significant differences in predicted and actual log(trips) before the program

kick-off. As discussed above, the last pre-treatment month is October 2020, while the

first treated month is March 2021.

log(yit) = β0+β1Postt+β2Tmti+β3Postt×Tmti+β4Postt×Tmti×Xt+ εi (4.2)

In Equation 4.2, yit is trips per creel day at fishery i on day t. In this case, i denotes

either observed daily trips to Lees Ferry y or the ŷ counterfactual from the LASSO

prediction model. I normalize trips by creel day to control for potential changes in

creeling effort at Lees Ferry. Postt is a dummy variable that equals 1 if an observation

occurs on a post-treatment day (i.e., after the onset of the pilot program) and 0

otherwise. Similarly, Tmti equals 1 if an observation is from the treatment fishery

(observed Lees Ferry trips) and 0 otherwise (ML-predicted Lees Ferry observations.)

The parameter of interest here is β3, which is the average treatment effect on the

treated (ATT). If β3 is greater than zero and statistically significant, then that suggests

58There are no zero trip days in my data, so I did not need to perform any additional transformations
before logging trips.
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Figure 14. A Monthly Event Study Graph of the Log of Daily Trips Pre-treatment
and Post-treatment. The dashed vertical line indicates the last pre-treatment month,
October 2020.

the program caused daily trip-taking to increase. Conversely, if β3 is near zero and

not statistically significant, then the program had no effect on daily trips.

We not only want to know how the existence of the pilot program impacted

visitation rates, but also how changes in the program’s design (through the introduction

of new payment levers) may have changed trip-taking behavior relative to the baseline

program values. In equation 4.2, Xt is a vector of three payment levers whose effects

I are interested in measuring. These levers are: 1) bonanza, or a dummy variable that

equals one if there was an active program bonanza on day t; 2) 3 fish bonus, which

is a dummy variable that equals one if anglers could receive a $50 bonus for every
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third brown trout submitted to the program on day t; and 3) pit bonus, which is an

indicator for whether or not the $300 pit tag bonus was active on day t.

4.5.2 Margin 2: Catch-Per-Trip

We use trip-level creel data on brown trout caught, whether a trip was guided,

and time-varying controls to perform a DID evaluation of whether and how the pilot

program impacted catch-per-trip of brown trout. Rather than constructing a ML

counterfactual for the catch margin, I leverage the fact that guided anglers were

untreated and faced the same fishing conditions as unguided anglers to justify using

Lees Ferry guided anglers as the untreated counterfactual for this margin.

Guided anglers as a control group for catch in the absence of the program satisfies

the SUTVA assumption, because I know that fewer than 1% of program participants

were on guided trips, which suggests that a strong catch-and-release ethic insulated

guided anglers from being treated by this program. Furthermore, individuals who

pay several hundred dollars for a guided trip on top of their airfare and lodging costs

are fundamentally different from anglers who drive their own boats to the Lees Ferry

fishery—they may be less likely to be tempted by a nominal retention reward than

unguided anglers.

At first glance, guided anglers as a control group do not satisfy the parallel trends

assumption. Since 2020, guided anglers have caught relatively more brown trout

than unguided anglers in winter months when brown trout are on their spawning

beds, and therefore more vulnerable to capture (see Figure 15). It appears that

the guides’ knowledge of the fishery’s population dynamics advantages their clients

especially during spawning season, which results in a clear violation of the parallel
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Figure 15. Distribution of Difference in Brown Trout Catch per Trip by Month
Between Guided and Unguided Anglers. Solid line represents mean catch-per-trip
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program onset.

trends assumption. Once I account for this differential seasonality in catch rates

across the guided and unguided groups by including separate seasonality controls

for guided anglers, the parallel trends assumption is satisfied. Figure 16 is an event

study of average catch-per-trip, binned monthly. I see that there are no significant

treatment effects pre-treatment, which suggests that this design satisfies the parallel

trends assumption.

We estimate a Poisson DID model of brown trout caught-per-trip, where β3 is the

ATT, Xt is the same vector of price levers as in the trips model, and Dit is a vector of
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Monthly binned event study plot: catch per trip
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Figure 16. A Monthly Event Study Graph of Catch per Trip Pre-treatment and Post-
treatment. The dashed vertical line indicates the last pre-treatment month, October
2020. Missing pre-treatment months were also insignificant, but had sufficiently large
confidence intervals to make all other months impossible to see, and so were removed
from the graphic for clarity.

time-varying controls meant to absorb seasonal, treatment-independent differences in

catch rates between guided and unguided anglers.

E[yit|Z] = exp(β0 + β1Postt + β2Tmti + β3Postt × Tmti+

β4Postt × Tmti ×Xt + β5Dit)

(4.3)

While brown trout catch rates in Lees Ferry exhibit over-dispersion (mean = 0.1312,

var = 0.3861 in 2019), I do not explicitly account for this in my estimation approach.
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The Poisson estimator is a member of the linear exponential family, which means

quasi-maximum likelihood estimates (QMLE) of the conditional mean will still be

consistent, even if the underlying distribution of the data is not correct (Cameron &

Trivedi, 2010b). I do, however, estimate robust standard errors to account for this

distributional mismatch (Cameron & Trivedi, 2010a). Furthermore, the Poisson has the

advantage relative to other QMLE estimators of providing a clear, easily interpretable

semi-log interpretation without distorting the many zero catch observations in my

data (Wooldridge, 1999).

4.5.3 Margin 3: Retention Rate

Unlike the other two margins of brown trout harvest, I do not take a DID approach

to estimating additionality for retention rate for two reasons. First, while untreated by

the program, guided anglers are not a suitable counterfactual to unguided anglers for

this margin of analysis because guided anglers retain virtually zero brown trout per-

trip before and after the program launched. Second, I assert that anglers’ retention

rates are unlikely to be impacted by COVID-19, hydrology, and other sources of

non-stationarity within the fishery, making a counterfactual regression approach

unnecessary. I instead estimate a simple before-after regression of program-induced

increases in retention rate for treated (i.e., unguided) Lees Ferry anglers.

We estimate a fractional logit (first used in Papke and Wooldridge (1996)) of the

proportion of brown trout retained for trips on which at least one brown trout was

caught against a post-treatment dummy (Postt), a vector of payment levers (Xt), and

a vector of time-varying controls (Dt) (see Equation 4.4).
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E[retention rate|Z] = exp(β1Postt + β2Xt + β3Dt)

1 + exp(β1Postt + β2Xt + β3Dt)
(4.4)

Like the Poisson, the fractional logit is a QMLE estimator, so I estimate het-

eroskedasticity robust standard errors to ensure consistent estimates.

4.6 Results

By and large, my regression results suggest that the program failed to induce

many additional brown trout landings because while one aspect of the bounty policy

in particular likely convinced anglers to retain relatively more of the brown trout

that they did catch, it neither brought additional trips into the fishery (and in fact

may have decreased daily trip-taking) nor increased the number of brown trout that

the average Lees Ferry angler caught. Similarly, the program caused, if anything, a

reduction in the number of rainbow trout landed. Therefore, even though the program

failed to meet its brown trout removal objective, it also did not increase harvest

pressure on the fishery’s non-target species.

4.6.1 Trips

Table 12 presents the estimation results of two DID models. The first model

is a basic DID regression of the ATT, while model two also includes interactions

between this DID estimator (Post× Tmt) and indicators for certain pricing design

levers. Model 1 rejects the hypothesis that the harvest incentive had no effect on

daily trip-taking to Lees Ferry, and even suggests that daily trips counts may have
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Table 12

DID Regression of log(trips) per day on the March 2021 Kickoff and Subsequent

Treatment Levers.

Dependent variable:

log(trips) per day
(1) (2)

Post 0.127 0.097
(0.080) (0.082)

Tmt 0.000 0.000
(0.074) (0.075)

Post×Tmt −0.276∗∗ −0.043
(0.114) (0.147)

Post×Tmt×bonanza 0.290
(0.162)

Post×Tmt×3 fish bonus −0.267
(0.205)

Post×Tmt×pit tag bonus −0.209
(0.176)

Constant 2.085∗∗∗ 2.085∗∗∗
(0.052) (0.053)

Observations 626 626
R2 0.016 0.030
Adjusted R2 0.011 0.021
Residual Std. Error 0.701 (df = 622) 0.718 (df = 619)
F Statistic 3.386∗∗ (df = 3; 622) 3.186∗∗∗ (df = 6; 619)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors are heteroskedasticity robust.

fallen post-treatment. This finding is not all that surprising, given how remote and

expensive Lees Ferry is to access. In the first year of the program, the average boating

angler caught only 0.16 brown trout per trip. Therefore, the expected payout for

taking a fishing trip to Lees Ferry would have been much lower than the cost of taking
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the trip for most anglers, and especially for those unguided anglers who had to pay

for gasoline to tow their boat to the fishery. Not only may the bounty have been too

low to draw in additional fishers, but existing Lees Ferry anglers may have expected

the nuisance of program-induced crowding, and therefore taken relatively fewer trips,

which would explain the negative effect on trip-taking.
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Figure 17. Monthly Distributions of Daily Lees Ferry Fishing Trips by Unguided
(Potentially Treated) Anglers. The red vertical line marks the March 2021 treatment
date.

The second model in Table 12 fails to reject that the program kick-off and any of

the pricing levers to follow had no effect on trip-taking. In other words, while model 1

suggests that the program reduced trip-taking, model 2 reveals that no single design

element alone is responsible for this trend. A glance at the raw distribution of trips per

day by unguided anglers pre- and post-treatment (see Figure 17) supports the findings

of both models; there were similar surges in trip demand in the spring seasons pre-

and post-treatment, and the distribution of daily trips is either unchanged or slightly

reduced in autumn 2021 relative to the year before. Therefore, it is reasonable to

conclude that the ML-derived counterfactual did a sufficiently good job at predicting

what trip demand would have been in lieu of the bounty treatment to accurately

identify a lack of treatment effect.
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Figure 18. Monthly Distributions of Brown Trout Catch per Trip by Unguided
(Potentially Treated) Anglers. The red vertical line marks the March 2021 treatment
date.

4.6.2 Brown Trout Catch-Per-Trip

Catch per trip for brown trout does appear to have been impacted by the harvest

incentive program and its payment levers, but the overall effect on brown trout landings

162



is ambiguous. In Figure 18, it is clear that while untreated guided anglers experienced

the same seasonal trend to their brown trout catch rates pre- and post- treatment

(i.e., they still only tend to catch brown trout around the winter spawning time), the

potentially treated unguided anglers saw a slight post-treatment change to per-trip

catch rates that may or may not be attributable to the program. Specifically, the

mean and 95th percentile of trips (in terms of number of brown trout caught) in early

autumn (when the pit tag bonus kicked in) and winter (when the second bonanza

event ran) may have increased relative to the prior, pre-treatment year. Because I

control for guide-specific seasonality in my catch models, the guided anglers should

serve as an ideal untreated control group to correctly identify whether or not the

mean catch rate of unguided anglers was actually treated by the program.

Table 13 presents two DID Poisson models of brown trout catch per trip on the

program’s March 2021 kick-off (Post : Tmt), as well as on the program’s various

payment levers. Both models include a vector of seasonal (season, season : Tmt,

year), weather (mean daily air temperature, daily precipitation), hydrological

(mean daily water temperature, mean daily discharge rate), and COVID-19 (weekly

changes in government response stringency, cases, deaths) controls in order to con-

trol for time-varying factors that might differentially impact guided and unguided

anglers’ catch rates. Model one includes a simple, linear specification of these controls,

while model two includes polynomial specifications of all but the seasonal controls up

to degree five such that AIC is minimized.

Models one and two in Table 13 both fail to reject that the three fish and pit tag

bonuses had no effect on per-trip brown trout catch. These models also reject that

the program had no effect on brown trout catch, and suggest that the overall program

effect on this margin was negative. However, these models disagree on which price
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Table 13

DID Poisson Regression Results of Brown Trout Catch per Trip on the March 2021

Harvest Incentive Kickoff and Subsequent Payment Levers.

Dependent variable:

Brown trout catch per trip
linear controls polynomial controls

(1) (2)

Post −0.316 2.704∗∗∗
(0.358) (0.579)

Tmt 0.846∗∗∗ 0.711∗∗∗
(0.206) (0.203)

Post×Tmt −0.565∗∗ −0.154
(0.203) (0.236)

Post×Tmt×bonanza −0.849∗∗∗ −1.088∗∗∗
(0.216) (0.241)

Post×Tmt×3 fish bonus −0.122 0.435
(0.220) (0.293)

Post×Tmt×pit tag bonus 0.973 0.264
(0.222) (0.258)

Constant −4.488∗∗∗ −3.135∗∗∗
(0.600) (0.717)

Observations 6,360 6,360
Log Likelihood −2,946.522 −2,809.435
Akaike Inf. Crit. 5,939.044 5,704.871

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors are heteroskedasticity robust.

lever is responsible for this effect. Model one suggests that the program’s March 2021

kick-off decreased brown trout catch per trip by 43%, whereas model two fails to reject

that the program’s implementation had no effect on brown trout catch rates. Between
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Table 14

Fractional Logit Regression Results of Brown Trout Retention Rate on the March 2021

Program Kickoff and Subsequent Payment Levers.

Dependent variable:

Brown trout retention rate
linear controls polynomial controls

(1) (2)

Post 0.256 −0.171
(0.443) (0.454)

bonanza −0.785 −0.315
(0.627) (0.664)

3 fish bonus 2.323∗∗∗ 2.601∗∗∗
(0.721) (0.758)

pit tag bonus −1.941∗∗∗ −2.102∗∗∗
(0.726) (0.760)

Constant 1.459 4.176
(2.136) (2.941)

R2 0.156 0.208
Adjusted R2 0.115 0.151
Observations 301 301

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors are heteroskedasticity robust.

these two models, unguided boat anglers saw their daily brown trout catch decrease

between 66% and 76% during bonanza events relative to the pre-treatment period.
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Caught Brown Trout by Month. The break in the graph indicates the program kickoff
with potentially treated months (November 2020-February 2021) removed.

4.6.3 Brown Trout Retention Rates

Table 14 presents the results of two fractional logits of brown trout retention rate

on program treatments. Model one contains a vector of linearly-specified controls

for whether or not it is a weekend, season, weather, and hydrology. Model two

contains those same controls with polynomial specifications up to the third degree

for continuous variables such that adjusted R2 is maximized. While I fail to reject

that the program kick-off and bonanza events had no effect on the percent of caught

brown trout that unguided boat anglers retained, it appears that the adoption of the

$50 bonus for every third fish in August 2021 increased brown trout retention rates,

while the inclusion of a $300 pit tag bonus a month later apparently lowered them.

Figure 20 displays the average marginal effects (AMEs) of the treatment levers

on brown trout retention rates as calculated from models one and two in Table 14.
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Figure 20. Average Marginal Effects (AME) of Program Treatments on Brown Trout
Retention Rates. As estimated in the models in Table 14. The AMEs which are
significant at p≤0.05 have their estimated means listed.

The estimated means of these AMEs are numerically very similar between the two

models; the implementation of the three fish bonus increased brown trout retention

rates by between 0.45 and 0.48, while the pit tag bonus decreased retention rates by

between 0.38 and 0.39. The former result suggests that the intensification incentive

of the three fish bonus was likely very effective in incentivizing increased retention;

anglers were more likely to retain any brown trout they caught in hopes that they

would catch enough fish to collect the $50 bonus.

Pricing levers which reward intensive effort (i.e., those designed to encourage

relatively more retention conditional on having taking a trip and caught a member

of the target population) may be especially effective in systems like Lees Ferry that

boast strong catch-and-release cultures. Unlike trips and catch-per-trip, retention

rates have an upper bound—you can only retain as many fish as you catch. Therefore,

treatment levers like this three-fish bonus cannot induce additional harvest on the
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retention margin in systems where it is common to retain most or all of your catch.

Figure 19 reveals that most Lees Ferry anglers retained none of their brown trout

catch pre-treatment, which means there was sufficiently low retention pre-treatment

to make retention rates an effective leverage point for the program. In fact, more

anglers retained every brown trout caught post-treatment than before, and that

effect is especially visible from August 2021—the month the $50 three fish bonus was

introduced—onward.

The apparent negative effect of the PIT tag bonus on retention rates is harder

to explain. I do not know how individual anglers judged their own probability of

catching a tagged fish. Many anglers may have believed catching a tagged fish to be

very unlikely, and thus had low expected payouts for retaining brown trout. NPS has

published the number of fish with and without PIT tags turned in each month on

their website since November 2020. Anglers could have used these values to form an

expectation (for example, in September 2021, the month that the $300 PIT tag bonus

launched, seven out of 50 or 14% of brown trout turned in for payment contained

PIT tags, resulting in an expected PIT tag bonus of $42 per fish). In reality, very few

anglers were likely aware of this data, and even fewer would have done this calculation

prior to their fishing trip.

A non-insignificant group of unguided anglers opposed this program on principal;

they believe it is wrong to keep a fish for money, and may have been offended at the

idea of such a large (albeit unlikely) payout. So, an alternate explanation for this

negative effect is that anglers may have thrown more brown trout back in protest to

the PIT tag bonus assuming they knew which fish were tagged. In theory, the pit

tag bonus should work like a lottery in that anglers don’t know whether the brown

trout they catch are tagged, and therefore worth an additional $300. However, in
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Table 15

DID Poisson Regression Results of Rainbow Trout Catch per Trip on the March 2021

Program Kickoff and Subsequent Payment Levers.

Dependent variable:

Rainbow trout catch per trip
linear controls polynomial controls

(1) (2)

Post −0.316∗∗∗ −0.771∗∗∗
(0.077) (0.130)

Tmt −0.575∗∗∗ −0.599∗∗∗
(0.026) (0.026)

Post×Tmt −0.211∗∗∗ −0.184∗∗∗
(0.032) (0.034)

Post×Tmt×bonanza 0.032 0.090
(0.055) (0.061)

Post×Tmt×3 fish bonus 0.194∗∗∗ 0.126∗∗
(0.051) (0.059)

Post×Tmt×pit tag bonus −0.295∗∗∗ −0.269∗∗∗
(0.055) (0.059)

Constant 2.105∗∗∗ 2.309∗∗∗
(0.090) (0.113)

Observations 6,360 6,360
Log Likelihood −24,745.820 −24,377.000
Akaike Inf. Crit. 49,537.640 48,847.990

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors are heteroskedasticity robust.

practice, it is likely that some anglers knew or figured out that tagged fish have their

adipose fin clipped. If these anglers were which could have induced them to throw

brown trout with intact fins back at a relatively higher rate.
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4.6.4 Rainbow Trout Catch-Per-Trip

While the program failed to induce additional brown trout landings, it also did not

have a negative impact on the fishery’s rainbow trout stock, as catch and retention

rates of rainbow trout were largely unaffected. On the whole, the incentivized harvest

program decreased average catch per trip for rainbow trout. Table 15 indicates that

rainbow trout catch fell by between 17% and 19% when the program kicked-off, and

that the introduction of the pit tag bonus in September 2021 augmented the program’s

base negative effect. The implementation of the three fish bonus for brown trout in

August 2021 does appear to have slightly increased rainbow trout catch rates (by

between 13% and 21%).

4.6.5 Rainbow Trout Retention Rates

The brown trout harvest incentive also appears to have had a net-negative impact

on rainbow trout retention rates amongst unguided boat anglers. Table 16 presents

the regression results for two fractional logits of rainbow trout retention rate on

treatment levers, while Figure 21 illustrates the average marginal effects of those

levers on retention rates as calculated by the two regression models. On average,

the program kick-off reduced rainbow trout retention rates by 0.09, while program

bonanzas temporarily reversed that negative effect by 0.05. These results may suggest

that the representative Lees Ferry angler (and thus, the dominant retention ethic or

behavior) was different during bonanza events than at other times.
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Table 16

Fractional Logit Regression Results of Rainbow Trout Retention Rate on the March

2021 Program Kickoff and Subsequent Payment Levers.

Dependent variable:

Rainbow trout retention rate
linear controls polynomial controls

(1) (2)

Post −1.340∗∗∗ −1.325∗∗∗
(0.316) (0.318)

bonanza 0.803∗∗ 0.820∗∗
(0.351) (0.363)

3 fish bonus 0.655 0.599
(0.470) (0.480)

pit tag bonus 0.737∗ 0.747∗
(0.403) (0.411)

Constant 0.224 −0.974
(1.165) (0.876)

R2 0.025 0.027
Adjusted R2 0.019 0.024
Observations 2,261 2,261

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors are heteroskedasticity robust.

4.7 Discussion

We use my trips, brown trout catch-per-trip, and brown trout retention rate models

to simulate daily estimates for trips taken, average brown trout catch per trip, and

average retention rates under both no treatment and treatment scenarios for the first
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Figure 21. Average Marginal Effects (AME) of Program Treatments on Rainbow
Trout Retention Rates. As estimated in the models in Table 16. AMEs which are
significant at p≤0.05 have their estimated means listed.

year of the program (March 1, 2021 - February 28, 2022).59 My models predict that

284 brown trout were harvested that first year with the treatment levers occurring

as they did historically, and that only 196 brown trout would have been harvested

that year had the program not been implemented. According to my predictions, the

program only induced additional landings of around 88 brown trout over its first year,

which is 3.5% of the 2,500 fish goal. The NPS paid $41,529 in rewards over that same

time period, meaning that the average bounty paid per additional fish was $472.

For species that are not usually the target of recreational harvest (e.g., Burmese

Python in Florida) I might expect the predicted harvest under the no-treatment

scenario to be near zero, which would mean most of the observed harvest is additional.

That assumption of 100% additionality is less appropriate for species which are

recreationally desirable. Given that so few of the brown trout harvested over the

59See the Appendix for a discussion of this calculation.
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program’s first year were additional, Lees Ferry brown trout appear to fall further on

the “recreationally desirable” end of the spectrum, which makes this counterfactual

estimation approach crucial for understanding the program’s impact.

It is important to note that the prediction of 284 brown trout harvested is well

below the number of brown trout that were actually turned in for payment during

that first year (663). This underestimate is because the Lees Ferry creel, from which I

sourced all dependent variables in this study, is a sample of all Lees Ferry anglers, not

just those who participate in the harvest incentive program. Therefore, my models

provide conditional mean estimations of the representative Lees Ferry angler. Over the

program’s first year, participation shifted from a larger group of anglers retaining one

or two brown trout per month to a handful of increasingly proficient anglers. In other

words, by the end of year one, program participants were no longer representative

of the broader Lees Ferry angler base. This trend of participation converging to a

few “career” harvesters is not unique to Lees Ferry; in 2020, 5% of the over 100,000

fish turned in to the Northern Pikeminnow Sport Reward Fishery were caught by a

single angler (Pacific States Marine Fisheries Commission, n.d.; Winther et al., 2020).

Future research could investigate how program design may drive this consolidation

effect, and what that means for program efficacy and cost-effectiveness.

At Lees Ferry, a single angler caught 63 (nearly 10%) of the 663 brown trout

turned in during the first program year between January and February 2022. This

angler continued participating past my simulation period, and in May 2022 earned

nearly $10,000 in reward payments. What is more, I know that this high-performer

accesses the fishery via a hiking trail that is difficult to locate and traverse. Because

they do not access the fishery at the boat launch, this angler is almost certainly not
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in the creel data.60 This top angler also did not begin participating in the program

until late December 2021, but has participated every month since, which suggests

their harvest may be 100% additional (i.e., they would not have harvested brown

trout had the program not induced them to begin fishing at Lees Ferry, to begin

targeting brown trout, or to begin retaining brown trout.) In the first six months of

2022, this angler averaged 42.6 brown trout harvested each month. Assuming fishery

conditions for year two of the program are similar to what they were in year one and

that the top-angler continues harvesting an average of 42.6 brown trout per month

(511 per year), I would expect a roughly 280% increase in program-induced brown

trout harvests from year one to year two, which emphasizes just how much value one

or two highly-effective anglers can bring to a harvest incentive program.61

Because the Lees Ferry program appears to have had a negative effect on trip-

taking by representative unguided Lees Ferry anglers, any potential additional brown

trout landings or incidental rainbow trout landings for that group would have to come

from the catch per trip and retention rate margins. The fall in catch rates during the

bonanza could be the result of event-activated anglers crowding known brown trout

hot spots, startling the fish and preventing some anglers from having sufficient room

to cast. Alternately, the bonanzas may have attracted relatively newer Lees Ferry

anglers who were less knowledgeable about where or how to catch brown trout while

deterring more seasoned Lees Ferry anglers, resulting in lower average catch rates.

60We can be fairly certain that there are no other anglers accessing the fishery in this unconventional
way who are also significant contributors to program success; if such anglers existed, they would
have shown up in the program data cards so I would be aware of them.

61We assume another 284 additional brown trout harvested by average Lees Ferry anglers plus
the 511 by the most effective angler for a total of 795. 795 is 2.8 times larger than 284.
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Model 2 in Table 12 suggests that bonanza events failed to increase daily trips, so the

latter hypothesis seems more likely.

Bonanza, derby, or tournament events are a popular method for incentivizing

recreational harvest of invasives. Lionfish have been the target of several spearfishing

derbies in the past, and Florida augments its ongoing python removal efforts with an

annual, 10-day derby. Derbies like those listed have the potential for drumming up

interest and bringing in additional effort on the trips and retention rate margins, but—

as suggested by my results—may further depress catch rates if their short duration

draws in ineffective harvesters who do not return post-event to learn by doing. The

Florida Python Challenge faces a similar hurdle, as many challenge participants

underestimate how difficult it is to catch or even find pythons, leading them to have

low catch rates and to doubt the necessity of removing pythons in the first place

(Harvey et al., 2016).

In order to fully capitalize on bonanzas’ potential to activate many and new

harvesters with strong tastes for retention, event organizers should provide information

on where and how to capture the target species in advance of the event. Not only would

such an education campaign make these new harvesters more effective, but successful

event participants may be more likely to participate in the broader incentivized harvest

program going forward.

4.8 Conclusion

From March 1, 2021 through February 28, 2022, fewer than 100 of the 674 brown

trout turned in for payment would not have been harvested without the incentivized

harvest program’s introduction, meaning that over 500 of the fish for which NPS payed
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rewards were non-additional. This mismatch suggests two things: 1) the program

failed to activate additional harvesting effort across all three margins, and 2) many

anglers were being overpaid (relative to their minimum willingness-to-accept to supply

a brown trout) for fish that they would have harvested anyways.

While the Lees Ferry Incentivized Harvest Program failed to induce additional

fishing trips from the average, representative angler, likely due to how remote and

costly it is to access the fishery, certain payment levers may well have induced a

compositional shift amongst Lees Ferry anglers. Namely, the program seems to have

had an unambiguously negative impact on catch per trip for both rainbow and brown

trout, which hints that the program may have drawn in new anglers who lacked

fishery-specific knowledge on where and how best to target brown trout and were not

especially effective at catching rainbow trout. As I found evidence of trip volume

falling after the program was implemented, it is likely that the presence of these new

anglers (or expectations about crowding) dissuaded some veteran, unguided Lees Ferry

anglers from visiting the fishery.

In general, my results point to a possible trade-off between skill or knowledge

and angling ethic that may have stymied participation in the Lees Ferry program.

Specifically, it appears the program failed to activate existing anglers with the fishery-

specific knowledge and experience needed to efficiently target and catch brown trout,

while failing to provide sufficient information for newcomers to be effective harvesters.62

What is more, the lack of additional trips induced by this program suggests that

those new anglers may have crowded out the existing, more experienced anglers. In

short, harvest incentives that only activate a relatively ineffective group of hunters

62NPS launched an instructional video on where and how to catch Lees Ferry brown trout in
December 2021, but only 4% of anglers surveyed since have seen the video.
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or fishers and fail to provide education or training to those participants are likely

to fail. What is more, it may be more cost-effective to invest in a comprehensive

education and outreach campaign to not only improve anglers’ efficacy at catching

the target species, but that also works to lower the willingness-to-accept of otherwise

non-activated but high-skill anglers (in Lees Ferry, this is primarily guided anglers)

by targeting their intrinsic motivations for either not targeting or releasing members

of the target population. The emergence of highly effective “career” bounty hunters in

late 2021 suggests that anglers who are motivated by the program and equipped with

the knowledge and gear required to catch brown trout can be extremely effective. It

is even likely that these anglers could have been activated at lower cost were it more

widely known how and where to catch Lees Ferry brown trout, further increasing the

potential value of a well-advertised education and outreach campaign.

More work needs to be done in unpacking the relationship between intrinsic

motivations (e.g., conservation ethics) and willingness to participate in incentivized

harvest programs. Furthermore, it is important to understand where recreational

harvesters get their hunting and fishing information in to ensure any education and

outreach campaigns are salient. While 78% of anglers surveyed since March 2021 were

aware of the Lees Ferry program when planning their trip, it is possible that greater

awareness of the program could improve performance either by drawing in potential

participants who are unaware of the program or by encouraging anglers planning a

trip to come equipped with the right gear for catching and retaining brown trout and

with the knowledge of when, where, and how to use it.
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Chapter 5

CONCLUSION

This dissertation highlights the importance of accounting for the full range of

feedbacks when managing shared natural infrastructure for nature-based recreation

in the Anthropocene. I begin with a broad investigation of the types of social

dilemmas (i.e., management challenges defined according to the characteristics of the

infrastructures and processes underlying them) that commonly emerge in nature-based

recreation systems, as well as a discussion of the portfolio of management interventions

available to address those dilemmas. Then I narrow my focus to two case studies that

feature different management dilemmas and proposed interventions. In both cases, the

proposed interventions are incentive-based, and therefore engineered to address the

underlying processes driving their respective dilemmas. I perform evaluations—one ex

ante and one ex post—of both interventions. These program evaluations illustrate

the value of data-driven modeling to inform management of recreational systems, and

generate useful lessons about the interplay of system context and intervention efficacy

for a range of management outcomes.

In Chapter 2, I created a typology of management dilemmas that are charac-

terized as feedbacks or processes within a complex SES. I identified four dilemmas

that commonly emerge from recreators accessing (or being unable to access) shared

natural infrastructure for nature-based recreation. Then I discussed four additional

dilemmas that typically emerge either from those original dilemmas or from man-

agement responses to them. These secondary dilemmas are characterized according

to the direction in which biomass or—more commonly—information flows between
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recreators, the environment, and public infrastructure (e.g., rules, norms, monitoring

and enforcement capacity, etc.) within a given recreational system.

By comparing numerous case studies, I revealed two key themes in the emergence

of these dilemmas: 1) many management dilemmas are correlated with, caused, or

amplified by one or multiple margins of recreator heterogeneity; and 2) how visible a

dilemma is to system managers determines when and how it gets addressed. Dilemma

visibility is jointly determined by monitoring capacity, management mandates, and

speed of emergence.

After my broad archetypal analysis of management dilemmas in nature-based

recreation, I narrowed my focus in Chapter 3 to perform an ex ante evaluation of a

prospective management intervention for a “Leave no Trace” dilemma. I found evidence

that unbundling the prices of recreational access and use—which, in theory, should

more directly target the underlying incentives and processes driving this dilemma—

does, in fact, improve management outcomes. This chapter also showcases the value

of forward-looking models for designing management interventions in nature-based

recreation contexts.

Chapter 4 is an ex post evaluation of an incentive-based management intervention

aimed at overcoming a “Can’t Get There from Here” dilemma in the context of invasive

species control. My results suggest that offering incentives for a desired type or amount

of recreation may face a range of hurdles, both intuitive and not, that limit their

efficacy and cost effectiveness. In particular, I show that incentive programs may be

ineffective at inducing the desired behaviors and outcomes if they fail to motivate the

most potentially effective resource users (in this case, those fishers with the greatest

amount of human infrastructure or knowledge regarding the fishery).
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My other contribution from chapter 4 is illustrating the importance of consistent

data collection efforts in the uncertain era of the Anthropocene. The COVID-19

pandemic and a multi-year drought both impacted the Lees Ferry fishery during the

incentivized harvest pilot program. Consistent data collection efforts by the Arizona

Department of Fish and Game, the United States Geological Survey, and many other

agencies made it possible for me to disentangle the effect of the pilot program from

that of the pandemic, the drought, and other unpredictable and coincident shocks.

This study, which relied on the uniquely good data available for the Lees Ferry fishery,

would not have been possible in most other recreation systems. The ability to combine

high-quality data sources on different system elements (i.e., the resource users, the

natural infrastructure, etc.) to account for their interconnected nature will likely be

increasingly important in the face of mounting uncertainty and shocks as we progress

through the Anthropocene.

The more complex a system, the more uncertainty its managers face. Coupled

human-environment systems that host nature-based recreation are characterized by

intricate and context-specific processes. Managers with a fuller understanding of the

feedbacks that comprise their systems are better equipped to address any dilemmas

that may emerge. However, managers of nature-based recreation often face significant

resource and objective constraints, both of which contribute to uncertainty.

This dissertation provides an empirically-informed discussion of why it is important

that nature-based recreation be managed effectively, and what barriers managers

may commonly face. Data-driven modeling will be an important tool for anticipating

management dilemmas and for designing effective management interventions for those

dilemmas. When it comes to managing these systems, context matters, and often

in ways that are difficult to anticipate. More work is needed, therefore, to unpack
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the nuanced and dynamic interplay of system attributes, management efforts, and

outcomes.
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A.1 Recreation Modes and Scopus Search Queries
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Table 17

Recreation Modes Included in Scopus Searches and their Affiliated Search Phrases.

Recreation
Category

Recreation
Mode

Search Query

Trail Activities Mountain
Biking

mountain AND biking

Off-roading OHV OR ORV OR off-road OR offroad OR
( off AND road ) OR off-highway OR ( off
AND highway ) OR ATV OR all-terrain OR
( all AND terrain ) OR motorcycle

Equestrian horseback OR horse OR equestrian
Hiking hiking

Backcountry
Activities

Backpacking backpacking

Camping camping
Foraging foraging
Visiting a
wilderness or
primitive area

wilderness OR primitive AND area

Rock climbing,
Canyoneering

rock climbing OR (rock AND climbing) OR
canyoneering

Viewing &
Photographing

Viewing or
photographing
flora or fauna

(bird OR wildlife OR nature) AND
(watching OR viewing OR photographing
OR photography)

Hunting Game,
waterfowl

hunting

Fishing Freshwater,
saltwater

fishing OR angling OR sport fishing OR
(sport AND fishing) OR sport-fishing

Swimming Lake, river,
ocean

swimming

Snorkeling snorkel
Scuba Diving scuba
Visiting a
beach or
waterside

beach OR waterside OR water-side OR
riparian
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Table 17

Continued from previous page

Recreation
Type

Recreation
Mode

Search Query

Boating Boating boating
Sailing sailing
Canoeing,
kayaking

canoe OR kayak

Rowing rowing
Water/Jet
skiing

ski

Floating/rafting floating OR rafting
Sailboarding/
windsurfing

sailboard OR (sail AND board) OR
windsurf OR (wind AND surf)

Surfing surf
Snow activities Skiing

(downhill,
cross-country)

ski

Snow-shoeing snowshoe OR (snow AND shoe) OR
snow-shoe

Snowmobiling snowmobile OR (snow AND mobile) OR
snow-mobile
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A.2 Case Coding Example

Leisure 
boaters

Mediterranean 
Sea

Marinas

4

1

6

Figure 22. Example of My Case Coding Procedure. Employs the case from Martínez-
Laiz et al. (2019).

A.2.1 Labeling the Nodes

RU

Leisure boaters who mostly take short trips a few times a year.

NI

• Local/marina-specific ecosystems within the Mediterranean Sea
• Aquatic invasive species (“potential invaders”)
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PI

• Marinas on the northern rim of the Mediterranean Sea (HHMI)
• Recommendations re. boat cleaning (SHMI)
• Norms re. following boat cleaning recommendations (SI)
• Predominant belief that individual RUs have a low probability of transporting

invasives (HI)

A.2.2 Describing the Dilemmas

Primary Dilemma: RU ↛ NI
Can’t Get There from Here: Leisure boaters should have better/more access to the
Mediterranean Sea. This is implicit in the construction of marinas.

Management Intervention: Build marinas (HHMI)

Secondary Dilemma: RU → PI → NI → RU
Clockwise flow of biomass: Boaters utilize marinas (link 6) to access the sea. The
marinas distribute boaters and—incidentally—invasive species (link 4) around the
sea. Accessing the sea provides U (link 1) for boaters, which keeps them utilizing the
marinas to access the sea. Outcome = spread of invasive species.
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A.3 Coding Spreadsheet

Table 18

Spreadsheet of Coding Outcomes.

Case Exog-
enous
Shocks

1st
Process

1st Out-
come

Mgmt
Interven-
tion

2nd
Process

2nd
Out-
come

Pereira
et al., 2021

RU:
Sudden
in-
creased
demand
for beach
visits, in-
fectious
disease

HOP RU risk
of harm/
mortal-
ity

Kubo and
Shoji, 2016

DPTB RU risk
of harm/
mortal-
ity

Close trail
segments
when
bears are
sighted

Counter-
clockwise:
NI → PI
→ 1

CGT,
de-
graded
RU ex-
perience

Burger and
Niles, 2014

NI: Sea
level rise
shrinks
beaches

LNT Disturbed
NI

Weijerman
et al., 2018

NI:
Climate
change
damages
fish
stocks,
degrades
fish
habitat

LNT Degraded
RU expe-
rience,
degraded
NI
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Table 18

Continued from previous page
Case Exog-

enous
Shocks

1st
Process

1st Out-
come

Mgmt
Interven-
tion

2nd
Process

2nd
Out-
come

Eagleston
and Marion,
2017

RU:
Evolving
camping
prefer-
ences

LNT Trans-
formed
NI,
degraded
RU expe-
rience

Chang
et al., 2017

LNT Degraded
NI

Bomanowska
et al., 2014

RU: In-
creasing
interest
in
climbing

CGT Insuffi-
cient
access
(supply)
of recre-
ation
opportu-
nities

Install
HHMI to
enhance
access.

Clockwise:
RU →
PI → 1

LNT,
de-
graded
NI

Hogan
et al., 2021

RU:
Broader
increase
in ATV
use

LNT Degraded
NI

Spaul and
Heath, 2016

LNT Disturbed
NI

Shawky
et al., 2020

RU:
Regional
tourism
increase

LNT Disturbed
NI
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Table 18

Continued from previous page
Case Exog-

enous
Shocks

1st
Process

1st Out-
come

Mgmt
Interven-
tion

2nd
Process

2nd
Out-
come

Nguyen
et al., 2016

LNT Degraded
NI

Allocate
catch
shares to
First
Nation
and recre-
ational
fishers sep-
arately.

Counter-
clockwise:
NI → PI
→ RU

HOP,
RU risk
of harm/
mortal-
ity,
conflict
between
user
groups

Gstaettner
et al., 2017

DPTB RU risk
of harm/
mortal-
ity

K. M.
Brown,
2016

HOP Degraded
RU expe-
rience,
PI trans-
formed

Clockwise:
RU →
PI → 1

HOP
ampli-
fied,
de-
graded
RU ex-
perience

Hughes and
Paveglio,
2019

RU:
Increase
in
newcom-
ers/tourists

HOP RU risk
of harm,
Conflict
between
user
groups,
conges-
tion
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Table 18

Continued from previous page
Case Exog-

enous
Shocks

1st
Process

1st Out-
come

Mgmt
Interven-
tion

2nd
Process

2nd
Out-
come

McCreary
et al., 2019

NI:
Climate
change
creates
more
frequent
and
intense
weather
events

DPTB RU risk
of harm

Provides
weather
forecasts
to help
with RU
planning.

Counter-
clockwise:
NI → PI
→ RU

CGT,
lost RU
opportu-
nity
(equity)

Höglhammer
et al., 2019

CGT Lost RU
opportu-
nity
(equity)

Martínez-
Laiz et al.,
2019

CGT Lost RU
opportu-
nity

Build
marinas

Clockwise:
RU →
PI → NI

LNT,
spread
of IAS

Carello
et al., 2018

CGT Lost RU
opportu-
nity

Clip grass
and
compact
snow.

Clockwise:
RU →
PI → NI

Degraded
NI,
spread
of IAS
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B.1 Permission to Reproduce

This chapter was previously published with co-authors (Jungers et al., 2023). I
confirm that all co-authors have granted their permission for this previously published
work to be included as a chapter of this dissertation.

B.2 Preparing Extensive Margin Estimation Weights

I use the inverse probability sample weights developed by Abbott et al. (2018)
in my extensive margin model estimation, as well as in scaling the extensive margin
policy simulations up to the full headboat sector. These weights are products of three
inverse probability weights to collectively account for selection along dimensions of
survey version, survey non-response, and spatiotemporal variables – thereby producing
estimates that are as representative of the population of Gulf of Mexico headboat
anglers as possible.

The first component of these estimation weights is the inverse probability that a
respondent received the survey version that they did. Anglers in Texas, Alabama,
and Northwest Florida encounter more red snapper than gag grouper, so respondents
who filled out onboard surveys in those regions received the red snapper version of
the follow-up survey with 80% probability and the gag grouper version with 20%
probability. Anglers in Southwest Florida encounter relatively more gag grouper, and
so received the gag grouper version with 80% probability and the red snapper version
with 20% probability. I use only the red snapper surveys, so this first part of the
extensive margin weights is 0.80−1 for Texas, Alabama, and NW Florida anglers, and
0.20−1 for SW Florida anglers.

The second component of the estimation weights control for non-response bias,
where non-response is defined as either failing to complete the Internet survey or
failing to provide a valid email address on the initial onboard survey. I estimate
a logistic regression of survey completion (i.e., whether an individual provided a
valid email address on their onboard survey and completed the follow-up survey)
on gender, age, income, years of experience an angler has fishing in the GOM, how
often an individual goes fishing, and a dummy for home state (Alabama, Florida,
Texas, Louisiana/Mississippi, other) to predict the probability that each respondent
would have completed the survey. The inverse of these “propensity scores” control for
non-response bias based on selection-on-observables assumptions.

The third and final component of the estimation weights are spatial-temporal
post-stratification survey weights that ensure the spatial and temporal distribution
of the respondents to the onboard survey (after adjusting for survey non-response
and survey version) reflects the headboat angler population. Abbott et al. (2018)
used logbook data from all Gulf Headboat vessels to account for the percentage
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of total anglers who took trips during each of the four seasons (January through
May, June, July through August, September through December) and four regions
(Texas, Alabama, NW Florida, SW Florida) included in the sample. I then use these
percentages to compute spatial-temporal post-stratification survey weights – effectively
up-weighting responses in space-time cells that are underrepresented in on my sample
while down-weighting responses in cells that are overrepresented.

The final weights for the trip choice model are the product of these three compo-
nents, normalized in the sample.

B.3 Preparing Intensive Margin Estimation Weights

The intensive margin model estimates per-trip demand for red snapper retention
for those respondents who chose one of the two trip alternatives in at least one of the
fee version choice experiments. Thus, the probability of appearing in the intensive
margin estimation sample is the product of the probability of being included in the
extensive margin sample (captured by the inverse of the extensive margin estimation
weights described above) and the probability of having chosen to take a trip on the
fee version choice experiments.

I use the final mixed logit model (Table 9, column 3) to generate estimated
probabilities that each individual i would have chosen to take a trip on the fee version
choice scenarios. The probability that individual i chooses to take one or the other
of the fee version trips is the complement of the probability that they choose the
outside (no-trip) option, Pr(Opt-out). my final intensive margin estimation weights
are, therefore, the product of the extensive margin estimation weights (above) and
[1−Pr(Opt-out)]−1. I also estimated the censored Poisson using the extensive margin
weights, but it had no notable effect. The estimation results from this alternative
weighting are available upon request.

B.4 Estimating Average Marginal Effects and Elasticities

I use the prediction functions from the Apollo package in R to estimate both
the average marginal effects (AME) and elasticities for the extensive margin model
(Hess & Palma, 2019a, 2019b). The procedures for estimating AMEs and elasticities
from a random parameters logit are nearly identical, but I indicate two places where
these procedures differ. I use Monte Carlo simulation to consistently estimate these
marginal effects and elasticities of the random parameters in my model.

Let X represent a variable whose AME and elasticity I are estimating. For each
choice occasion faced by individual i, I first drew 1,000 βi values and then calculated
the corresponding baseline choice probabilities using the original, unaltered data for
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all variables aside from X. For X, I use the original unaltered data for continuous
variables, and set X = 0 across all trip alternatives for discrete variables.

I then perturb X in trip alternative one for each choice occasion n and re-estimate
the choice probabilities across the same individual and choice-occasion specific 1,000
betai draws as used for the baseline choice probabilities. When estimating the AME
of a continuous variable, I perturb variable X by adding ∆c for continuous variables
or ∆d = 1 for discrete variables to each Xn. ∆c is defined as .001 of the standard
deviation of a continuous variable. 63,64

I estimate both own marginal effects and elasticities of alternative-specific attributes
(e.g., price, congestion) and cross effects on the probability of opting-out (i.e., of
choosing the outside option). For demographic variables that only enter the regression
through interactions with “optout”, I estimate own marginal effects and elasticities
with the choice to not take a trip, as well as cross effects with alternative 1.

In order to estimate the average marginal effects of each observation for each of
the 1000 draws for a given alternative, I perform the following calculation for each of
the 1000 draws j

AMEj =
2148∑
n=1

Prnewnj − Prbaselinenj

∆
(B.1)

where 2148 is the total number of choice occasions in the sample, n is the choice oc-
casion, j is the draw, and ∆ is the amount by which the variable was perturbed.65 This
transformation leaves me with a matrix of AMEs or elasticities by alternative for each
of the 1,000 sets of draws. When discussing average marginal effects and elasticities, I
describe the distribution of effects across all draws of unobserved heterogeneity.

B.5 Trip-Taking and Aggregate Retention: Policy Simulations

I investigate trip-taking and retention behavior across a grid of trip prices and
per-fish retention fees. The trip prices over which I run simulations range from $0 to
$250 in $5 increments, while the fees range from $0 to $150 in $5 increments. In order
to maintain consistency across estimates, I fix trip-attributes to common values for
both trip alternatives across all observations. Congestion is always set to “spacious”

63I perturb only the Xn of alternative 1, not that of alternative 2. As a robustness check, I also
tried perturbing only alternative 2 attributes, and found only trivial differences in my results, as
expected in an unlabelled choice experiment.

64When estimating elasticities for a continuous variable, ∆c = 0.01Xold.

65When estimating elasticities, ∆ is replaced with 0.01× Prbaselinenj .
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and the expected catch of fish other than red snapper to eight (the median number of
fish other than red snapper actually caught by headboat passengers from 2012-2013).

B.5.1 Extensive Margin: Trip-Taking

B.5.1.1 Simulating the Extensive Margin

I use Apollo’s prediction tools to generate a matrix of predicted trip probabilities
for each price-fee combination. my extensive margin predictions are drawn from a
random parameters logit, so I draw 1,000 predicted probabilities per observation (i.e.
choice occasions) and price-fee combination. Some adjustments to the simulation are
needed to accommodate for the fact that each simulation concerns a single set of trip
attributes vs. the opt-out option, whereas the underlying choice experiments utilize
two trip alternatives plus the opt-out. To maintain congruity with my estimation
model, I simulate by setting the attributes for alternatives one and two to be always
identical. However, this will overstate the probability of the trip alternative and
understate the probability of the opt-out without an algebraic adjustment. The
necessary adjustment directly follows from the Independence of Irrelevant Alternatives
(IIA) assumption, which holds for a given draw of the random preference parameters.

To implement the correction, I extract a matrix of predicted probabilities of
opting-out (P3) for each draw of the random coefficients and price-fee combination,
and calculate the true probability of opting-out (Po) using equation B.2 below.

Po =
2P3

1 + P3

(B.2)

The probability of the trip option is then 1−Po. I then store the mean probability
of taking the trip over 1,000 random coefficient draws for each individual and price-
fee combination in an (N×F×P)×1 “prediction vector,” where N is the number of
observations, and F and P are the number of fees and prices simulated over.

B.5.1.2 Scaling the Extensive Margin

I use logbook data from GHC vessels in the two years prior to the GHC experiment
(2012 and 2013) to create a representative “status-quo” scenario with which to scale
each respondent’s predicted probability of taking a trip up to total predicted trips
aboard Gulf headboat vessels. Of all 2012-2013 headboat trips taken aboard these
vessels, I used data from only those 1,850 that occurred within the federal red snapper
season (i.e., when red snapper could be retained) and for which I had data on trip
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price for fishing passengers. I omitted trips for which payment type was “per group”
or “no charge,” leaving 1,756 trips for which payment type was either “per person”
or unspecified. After dropping multi-day and specialty trips (identified through a
combination of high trip prices and captain comments), I were left with 1,716 partial
or full-day trips.

The trip price for a fishing passenger on those 2012-2013 trips ranged from $40-
$145, with a mean price of $83 per head. The mean number of fish other than red
snapper caught per angler day is 13, while the median is 8. The long right tail on this
distribution has a clear and significant impact on the mean, so I assume 8 fish other
than red snapper caught per angler day is more representative of a typical headboat
trip. Average red snapper catch per angler trip is distributed normally with a mean
of 2.14 fish per angler day. In 2012-2013, the daily bag limit was two red snapper
per angler, which implies an average discard of 0.14 red snapper per angler day. The
average number of trips (i.e., total angler counts) taken per year between those two
years was 39,265.66

I plug these status-quo trip attributes into each trip alternative from the bag limit
choice experiment scenarios and use the mixed logit model in which price is a random
parameter (Table 9, column 3) to estimate predicted probabilities of trip-taking under
representative 2012-2013 conditions. I then calculate scale such that the weighted
mean (weighted with the extensive margin weights from appendix section B.2) of
those predicted probabilities times scale equals the actual average annual trips taken
during the 2012-2013 red snapper seasons (39,265). I multiply scale by the (weighted)
mean predicted trip probabilities for each fee version simulation to visualize aggregate
trip demand for the GHC vessels.

B.5.2 Intensive Margin: Retention Per Angler Day

I estimate the top-censored Poisson model of retention using the post-estimation
command margins from the rcpoisson package in Stata (rcpoisson). So that my
retention predictions can be consistently multiplied by my extensive margin trip
predictions to generate aggregate harvest and revenue predictions, I integrate them
over a representative distribution of catch rates from 2012 and 2013 GHC vessel
logbook data. For each trip taken, I know the total number of red snapper caught,
the number of anglers on board, and trip length. I assign each passenger a catch rate
equal to the average number of red snapper caught on their trip, using only trips
on which at least one red snapper was caught. For instance, if 12 red snapper were
caught on a single trip for which there were six anglers, the data frame from which I

66I scale to “trips” rather than to angler-days because the units match my extensive margin model,
which pools full- and part-day trips and is thus agnostic about trip-length.
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sample catch rates represents this trip as six observations for which two red snapper
were caught. I then take N×j (where N=736 equals the the number of observations in
my intensive margin estimation and j=100 is the number of draws per observation)
draws of catch rate from the full angler population and save those draws in a catch
rate matrix.

By integrating over draws of average catch per trip, I assume that catch in excess
of the bag limit for high-catch anglers is given to anglers with catch rates below the
bag limit, as opposed to discarded. In other words, I implicitly assume that bag limits
are enforced at the vessel level, rather than at the individual level. This is consistent
with my interviews with headboat captains. I also considered a model of individual
accountability under bag limits by fitting an intercept-only negative binomial model to
trip-level catch data with number of anglers per-trip included as an exposure variable.
I then applied bag limits to angler-specific draws from the catch distribution. However,
the unrealistic level of regulatory discards (relative to the headboat survey data)
combined with my prior interviews led me to reject this individual bag limit model.

I generate retention predictions over a price-fee grid as in my extensive margin
simulations, integrating over 100 draws of catch per observation for each unique
combination of price-fee. I then average over these averages for each observation,
weighted by the intensive margin weights from appendix section B.3, to provide an
expected retention prediction for each pricing bundle. Population-level harvest is the
product of predicted trips (scaled to the population as described above) and predicted
retention-per-trip at any given price-fee bundle. Expected revenues are calculated for
each price-fee combination as the number of predicted trips times the trip price (trip
revenues) plus total harvest times the retention fee (fee revenues).

B.6 Ordered Logit of Fee Acceptance on ISCs

This ordered logit model in Table 19 reveals that Gulf residency, whether the
collected fees go to the headboat operators or are invested in conservation research
(Vfeetoboat), if respondents were aware of the GHC pilot program while on their trip
(knew_pilot), and several indicators of angler avidity (e.g., if a respondent is a member
of an angler organization) are not significant determinants of fee acceptance.67 Instead,
only the sociodemographic variables income, age, and gender are significant, with
younger, male, and higher income individuals being more likely to support retention
fees. my findings hold when the left-hand side variable is replaced with with a binary
indicator for “acceptable” (= 1) or for “ambivalent or unacceptable” (= 0).

67Of the respondents included in my analysis, 57.17% were aware of the GHC pilot program when
they took their recalled fishing trip.
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Table 19

Ordered Logit of Fee Acceptance.

Dependent variable:
Fee acceptance

(1)
knew_pilot -0.448

(0.254)
gomfishing_years -0.127

(0.105)
org_angler -0.654

(0.446)
gom_resident 0.155

(0.300)
age -0.0166∗

(0.00825)
male 0.708∗

(0.311)
income 0.00465∗

(0.00230)
Vfeetoboat -0.158

(0.253)
cut1 -2.058∗∗∗

(0.475)
cut2 -1.163∗

(0.478)
cut3 -0.185

(0.491)
cut4 1.862∗∗∗

(0.535)
N 6360
LL -6067.762
Pseudo R2 0.0338
Cluster robust standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

org_angler is a binary variable that indicates membership in an angler organization.
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CHAPTER 4 APPENDICES
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C.1 Permission to Reproduce

This chapter is a publishable paper produced with co-authors. I confirm that I am
first author on this paper and that all co-authors have granted their permission for
this work to be included as a chapter of this dissertation.

221



C.2 Variables in the ML Predictive Model

Table 20

Full List of Variables and Interactions Included in the ML LASSO Model Used to

Predict the log(trips) Counterfactual.

Variables Coefficient
precip_in:month_2 -1.1340
CAVO:dow_Tuesday -0.0000
CHAM:dow_Saturday 0.0000
COLM:PETR 0.0000
CORO:TUMA -0.0000
GUMO:NABR 0.0000
HUTR:month_12 -0.0001
LYJO:dow_Saturday 0.0000
MAPR:month_8 -0.0000
MAPR:dow_Wednesday -0.0001
NABR:PAAL 0.0000
PAIS:longweekend_1 0.0000
PAAL:wkend_Weekend 0.0000
PETR:v2_trout.fishing 0.0000
PETR:dow_Monday -0.0000
WABA:wkend_Weekend 0.0000
WABA:dow_Saturday 0.0001
v0_trout.fishing:dow_Saturday 0.0186
month_2:dow_Saturday -0.5177
month_4:dow_Saturday 0.3446
month_5:dow_Monday -0.1976
discharge_cfs_mean:discharge_cfs_mean -0.0000
TUMA:TUMA -0.0000
Note: Sequences of four capital letters represent monthly recreation visit
counts for different National Park Service sites in the Intermountain region.
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C.3 Full Model Specifications

Table 21

Full Specification and Outputs of DID Poisson Regression of Brown Trout Catch Per

Day.

Dependent variable:
Brown trout catch per trip

linear controls polynomial controls
(1) (2)

Post −0.316 2.704∗∗∗
(0.358) (0.579)

Tmt 0.846∗∗∗ 0.711∗∗∗
(0.206) (0.203)

Post:Tmt −0.565∗∗ −0.154
(0.203) (0.236)

Post:Tmt:bonanza −0.849∗∗∗ −1.088∗∗∗
(0.216) (0.241)

Post:Tmt:X3.fish.bonus −0.122 0.435
(0.220) (0.293)

Post:Tmt:pit.tag 0.973 0.264
(0.222) (0.258)

spring −0.562∗ −0.726∗∗
(0.289) (0.339)

summer −0.441∗ −0.752∗∗∗
(0.265) (0.290)

winter 2.063∗∗∗ 0.740∗∗
(0.263) (0.352)

Tmt:spring 1.141∗∗∗ 1.066∗∗∗
(0.268) (0.272)

Tmt:summer 0.880∗∗∗ 0.752∗∗∗
(0.253) (0.256)

Tmt:winter −1.703∗∗∗ −1.489∗∗∗
(0.246) (0.254)

year_2019 (base 2022) 0.614∗∗∗ 0.830∗∗∗
(0.136) (0.147)
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Table 21
Continued from previous page

(1) (2)
linear controls polynomial controls

year_2020 0.318∗ 1.404∗∗∗
(0.165) (0.263)

year_2021 0.931∗∗∗ −1.572∗∗∗
(0.257) (0.494)

meantemp 0.004 −0.006
(0.005) (0.006)

poly(meantemp, 2)2 0.393
(4.632)

precip_in −1.331∗∗∗ −13.918∗∗∗
(0.895) (3.307)

poly(precip_in, 2)2 −56.903∗∗∗
(10.971)

watertemp_celsius_mean −0.016∗∗∗ −0.042
(0.036) (0.047)

poly(watertemp_celsius_mean, 5)2 −10.257∗∗
(5.059)

poly(watertemp_celsius_mean, 5)3 17.765∗∗∗
(4.247)

poly(watertemp_celsius_mean, 5)4 2.162
(4.240)

poly(watertemp_celsius_mean, 5)5 −9.153∗∗∗
(3.296)

discharge_cfs_mean 0.0001 0.0001∗∗
(0.00003) (0.00003)

poly(discharge_cfs_mean, 5)2 9.697∗∗∗
(2.886)

poly(discharge_cfs_mean, 5)3 1.358
(2.648)

poly(discharge_cfs_mean, 5)4 0.641
(2.792)

poly(discharge_cfs_mean, 5)5 −9.971∗∗∗
(2.731)

stringency_change_US −0.059∗∗∗ −0.335∗∗∗
(0.017) (0.057)

poly(stringency_change_US, 5)2 −58.430∗∗∗
(11.536)
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Table 21
Continued from previous page

(1) (2)
linear controls polynomial controls

poly(stringency_change_US, 5)3 −129.744∗∗∗
(23.551)

poly(stringency_change_US, 5)4 −217.522∗∗∗
(39.116)

poly(stringency_change_US, 5)5 −178.110∗∗∗
(32.603)

cases_change_US 0.00000 0.00000∗∗∗
(0.00000) (0.00000)

poly(cases_change_US, 4)2 −17.999∗∗
(7.315)

poly(cases_change_US, 4)3 −11.808∗∗
(5.121)

poly(cases_change_US, 4)4 30.367∗∗∗
(4.199)

deaths_change_US 0.00003 −0.0001∗∗∗
(0.00002) (0.00003)

poly(deaths_change_US, 4)2 −1.217
(8.031)

poly(deaths_change_US, 4)3 −28.963∗∗∗
(5.293)

poly(deaths_change_US, 4)4 −8.202∗
(4.668)

Constant −4.488∗∗∗ −3.135∗∗∗
(0.600) (0.717)

Observations 6,360 6,360
Log Likelihood −2,946.522 −2,809.435
Akaike Inf. Crit. 5,939.044 5,704.871
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Standard errors are heteroskedastic robust.
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Table 22

Full Specification and Outputs of Fractional Logit Regression of Brown Trout Retention

Rate.

Dependent variable:
Brown trout retention rate

linear controls polynomial controls
(1) (2)

Post 0.256 −0.171
(0.443) (0.454)

bonanza −0.785 −0.315
(0.627) (0.664)

3 fish bonus 2.323∗∗∗ 2.601∗∗∗
(0.721) (0.758)

pit tag bonus −1.941∗∗∗ −2.102∗∗∗
(0.726) (0.760)

Weekend 0.042 0.125
(0.325) (0.337)

spring 0.234 0.491
(0.582) (0.626)

summer −0.549 −0.442
(0.535) (0.555)

winter 0.478 1.513
(0.859) (0.932)

meantemp 0.007 0.034∗
(0.018) (0.019)

precip_in 6.652∗ 3.469
(3.887) (2.227)

poly(precip_in, 3)2 0.179
(2.274)

poly(precip_in, 3)3 −2.032
(2.326)

watertemp_celsius_mean −0.002 −0.044
(0.112) (0.116)

discharge_cfs_mean −0.0003∗∗ −19.469∗∗∗
(0.0001) (7.131)

poly(discharge_cfs_mean, 3)2 −4.095
(7.236)

226



Table 22
Continued from previous page

(1) (2)
linear controls polynomial controls

poly(discharge_cfs_mean, 3)3 −20.462∗∗∗
(7.585)

Constant 1.459 −2.859
(2.136) (1.976)

R2 0.156 0.208
Adjusted R2 0.118 0.16
Observations 301 301

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors are heteroskedastic robust.
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Table 23

Full Specification and Outputs of DID Poisson Regression of Rainbow Trout Catch per

Day.

Dependent variable:
Rainbow trout catch per trip

linear controls polynomial controls
(1) (2)

Post −0.316∗∗∗ −0.771∗∗∗
(0.077) (0.130)

Tmt −0.575∗∗∗ −0.599∗∗∗
(0.026) (0.026)

Post:Tmt −0.211∗∗∗ −0.184∗∗∗
(0.032) (0.034)

Post:Tmt:bonanza 0.032 0.090
(0.055) (0.061)

Post:Tmt:X3.fish.bonus 0.194 0.126∗∗
(0.051) (0.059)

Post:Tmt:pit.tag −0.295 −0.269∗∗∗
(0.055) (0.059)

spring 0.101∗∗∗ 0.120∗∗∗
(0.033) (0.043)

summer 0.067∗∗ 0.117∗∗∗
(0.029) (0.036)

winter −0.259∗∗∗ −0.146∗∗
(0.046) (0.058)

Tmt:spring −0.421∗∗∗ −0.398∗∗∗
(0.037) (0.038)

Tmt:summer 0.045 0.062∗
(0.034) (0.034)

Tmt:winter 0.317∗∗∗ 0.339∗∗∗
(0.051) (0.052)

year_2019 (base 2022) 0.026 −0.002
(0.019) (0.021)

year_2020 −0.347∗∗∗ −0.467∗∗∗
(0.027) (0.060)

year_2021 0.035 0.307∗∗∗
(0.069) (0.105)
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Table 23
Continued from previous page

(1) (2)
linear controls polynomial controls

meantemp 0.004 0.003∗∗∗
(0.001) (0.001)

poly(meantemp, 5)2 −2.329∗∗∗
(0.848)

poly(meantemp, 5)3 4.266∗∗∗
(0.585)

poly(meantemp, 5)4 −3.733∗∗∗
(0.584)

poly(meantemp, 5)5 2.323∗∗∗
(0.619)

precip_in 0.126∗∗∗ −0.239∗∗
(0.103) (0.110)

poly(precip_in, 2)1

poly(precip_in, 2)2 6.584∗∗∗
(0.414)

watertemp_celsius_mean −0.009∗∗∗ −0.006
(0.006) (0.007)

poly(watertemp_celsius_mean, 4)2 0.541
(0.892)

poly(watertemp_celsius_mean, 4)3 0.431
(0.716)

poly(watertemp_celsius_mean, 4)4 2.179∗∗∗
(0.664)

discharge_cfs_mean −0.00002 −0.00002∗∗∗
(0.00000) (0.00001)

poly(discharge_cfs_mean, 5)2 0.708
(0.507)

poly(discharge_cfs_mean, 5)3 −0.385
(0.483)

poly(discharge_cfs_mean, 5)4 −0.697
(0.438)

poly(discharge_cfs_mean, 5)5 −3.531∗∗∗
(0.439)

stringency_change_US 0.014∗∗∗ 0.017∗∗∗
(0.002) (0.003)
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Table 23
Continued from previous page

(1) (2)
linear controls polynomial controls

poly(stringency_change_US, 5)2 −5.383∗∗∗
(0.671)

poly(stringency_change_US, 5)3 −5.106∗∗∗
(1.046)

poly(stringency_change_US, 5)4 −3.581∗∗∗
(1.246)

poly(stringency_change_US, 5)5 −3.316∗∗∗
(1.163)

cases_change_US −0.00000 −0.00000∗∗∗
(0.00000) (0.00000)

poly(cases_change_US, 5)2 −1.686
(1.393)

poly(cases_change_US, 5)3 9.820∗∗∗
(1.210)

poly(cases_change_US, 5)4 −5.347∗∗∗
(0.965)

poly(cases_change_US, 5)5 −2.707∗∗∗
(0.882)

deaths_change_US 0.00002 0.00001
(0.00000) (0.00001)

poly(deaths_change_US, 5)2 4.145∗∗
(1.811)

poly(deaths_change_US, 5)3 3.585∗∗∗
(1.258)

poly(deaths_change_US, 5)4 2.931∗∗∗
(0.928)

poly(deaths_change_US, 5)5 2.984∗∗∗
(0.921)

Constant 2.105∗∗∗ 2.309∗∗∗
(0.090) (0.113)

Observations 6,360 6,360
Log Likelihood −24,745.820 −24,377.000
Akaike Inf. Crit. 49,537.640 48,847.990

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors are heteroskedastic robust.
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Table 24

Full Specification and Outputs of Fractional Logit Regression of Rainbow Trout Reten-

tion Rate.

Dependent variable:
Rainbow trout retention rate

linear controls polynomial controls
(1) (2)

Post −1.340∗∗∗ −1.325∗∗∗
(0.316) (0.318)

bonanza 0.803∗∗ 0.820∗∗
(0.351) (0.363)

3 fish bonus 0.655 0.599
(0.470) (0.480)

pit tag bonus 0.737∗ 0.747∗
(0.403) (0.411)

Weekend −0.185 −0.169
(0.191) (0.195)

spring −0.254 −0.299
(0.346) (0.356)

summer 0.088 0.276
(0.331) (0.372)

winter −0.354 −0.201
(0.441) (0.460)

meantemp −3.568
(7.311)

poly(meantemp, 3)2 −6.985
(5.452)

poly(meantemp, 3)3 2.649
(4.044)

precip_in −4.527
(4.495)

poly(precip_in, 2)2 5.679
(5.136)

watertemp_celsius_mean −0.115∗ −0.120∗
(0.066) (0.066)

discharge_cfs_mean −6.183
(5.438)
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Table 24
Continued from previous page

(1) (2)
linear controls polynomial controls

poly(discharge_cfs_mean, 2)2 0.421
(4.135)

Constant 0.224 −0.974
(1.165) (0.876)

R2 0.025 0.027
Adjusted R2 0.019 0.019
Observations 2,261 2,261

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors are heteroskedastic robust.

C.4 Procedure to Calculate Brown Trout Landings

I use a panel of controls and models of daily trip demand (model 1 of Table 12),
catch-per-trip (model 1 of Table 13), and retention rate (model 1 of Table 14) to
predict daily values for each of those three margins over the first year of the program
(March 1, 2021 - February 28, 2022) under treatment and no treatment scenarios.68

For the treatment scenario, the program design levers turn on for any given day t as
they actually did over the course of that first program year. In contrast, the design
levers stay switched off across all of the no treatment predictions. I calculate daily
brown trout landings as

landingstj = tripstj × catch per triptj × retention ratetj (C.1)

where j = 0 for predictions under the no treatment scenario, and j = 1 for predictions
under the treatment scenario. For any given day, additional landings are

additional landingst = landingst1 − landingst0 (C.2)

68This controls panel was missing data for mean water temperature on July 22, 2021. The mean
water temperature on both the day prior and day following was 12.7 degrees C, so I use that same
value for my catch and retention predictions.
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Finally, I sum additional daily landings over all 365 days to get additional annual
landings.

additional annual landings =
365∑
t=1

additional landingst (C.3)

I use only the linear models for catch and retention when running these predictions.
The polynomial models, while allowing for more flexible incorporation of controls,
result in spurious catch estimates that carry through the estimation procedure to
landings.

Model 1 in Table 12 has log(trips) as its dependent variable, so I must transform
the daily log(trips) estimates from that model into daily trips estimates before I can
perform the above calculations. To do so, I use a smearing estimate procedure from
Duan (1983) as described by Wooldridge (2016).

If I assume that the trip DID model’s residuals u are independent of the explanatory
variables, then

t̂ripstj = α̂0exp( ̂log(trips)tj) (C.4)

is a consistent estimate of daily trips, where α̂0 is the conditional mean of the
model’s residuals, or

α̂0 = n−1

n∑
i=1

exp(ûi) (C.5)
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