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ABSTRACT

This thesis presents robust and novel solutions using knowledge distillation with ge-

ometric approaches and multimodal data that can address the current challenges in

deep learning, providing a comprehensive understanding of the learning process in-

volved in knowledge distillation. Deep learning has attained significant success in var-

ious applications, such as health and wellness promotion, smart homes, and intelligent

surveillance. In general, stacking more layers or increasing the number of trainable

parameters causes deep networks to exhibit improved performance. However, this

causes the model to become large, resulting in an additional need for computing and

power resources for training, storage, and deployment. These are the core challenges

in incorporating such models into small devices with limited power and computational

resources. In this thesis, robust solutions aimed at addressing the aforementioned

challenges are presented. These proposed methodologies and algorithmic contribu-

tions enhance the performance and efficiency of deep learning models. The thesis

encompasses a comprehensive exploration of knowledge distillation, an approach that

holds promise for creating compact models from high-capacity ones, while preserving

their performance. This exploration covers diverse datasets, including both time se-

ries and image data, shedding light on the pivotal role of augmentation methods in

knowledge distillation. The effects of these methods are rigorously examined through

empirical experiments. Furthermore, the study within this thesis delves into the ef-

ficient utilization of features derived from two different teacher models, each trained

on dissimilar data representations, including time-series and image data. Through

these investigations, I present novel approaches to knowledge distillation, leveraging

geometric techniques for the analysis of multimodal data. These solutions not only

address real-world challenges but also offer valuable insights and recommendations

for modeling in new applications.
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Chapter 1

INTRODUCTION

Deep learning has achieved great success and widely utilized in many different ap-

plications, including computer vision (He et al. (2016); Huang et al. (2017)), speech

recognition (Abdel-Hamid et al. (2014); Xiong et al. (2018)), and wearable sensor

analysis (Wan et al. (2020); Fawaz et al. (2019)). Various architectures that go be-

yond convolutional methods have also been developed. However, to obtain better

performance, a greater number of layers and parameters are utilized as a solution,

resulting in increasing the complexity of networks and requiring large computational

time and resources. Further, the demand for using deep models on small devices, such

as mobile and IoT devices, has increased. This thesis studies and proposes robust

methodologies to address these concerns with multimodal data using time-series and

image data. Also, effective strategies to improve the performance of deep learning

models in generating a small model are proposed.

1.1 Knowledge Distillation

To utilize lightweight forms of models, many studies have developed techniques for

generating small models, such as network pruning (Molchanov et al. (2017); Han et al.

(2016)), quantization (Han et al. (2016); Wu et al. (2016)), low-rank factorization (Tai

et al. (2016)), and knowledge distillation (KD) (Hinton et al. (2015)) to compress deep

learning models. Some of these methods aid in creating smaller deep learning models

and reducing inference time on the edge device. However, post-training or fine-tuning

techniques are generally applied to recover the lost classification performance, which
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is cumbersome and can slow down development. (Han et al. (2016); Wu et al. (2016)).

Whereas, KD does not require any additional processing, which saves time and costs

on development and computational resources.

KD generates a small model by using the learned weights from a larger and more

complex model. There are many variants of KD using the augmentation method, in-

termediate representations, and multiple trained models for better knowledge transfer.

In order to maximize the performance of knowledge distillation, understanding the

behavior of KD with different strategies, exploring the effects of the augmentation

method in KD, and using an advanced method to extract better quality features

are required. In Chapter 2, model performance in KD with time-series data is ex-

plored. In the chapter, strategies for using augmentation methods in KD and the

optimal network choice are investigated. The efficacy of early-stopped teachers in

KD on time-series data is also addressed, and the effects of several augmentation

methods with different capacities of teachers are explained. The exploration helps

provide a comprehensive understanding of the behavior of augmentation in KD and

the relationships between properties for training and testing sets.

1.2 Geometric Approaches in Knowledge Distillation

Geometric approaches are to consider non-linearity and non-Euclidean processes.

These aid in finding the optimal solution and solving distorted distance problems

that cannot be solved by the conventional methods using linear distance or unimodal

data. This can be applied to feature space for KD procedures, and then two combined

methods can create great synergies to improve the performance significantly.

In this thesis, geometric approaches are utilized to improve distillation perfor-

mance. In Chapter 3, a geometric method is utilized to obtain a better representation

of intermediate features to improve the performance of distillation using image data.
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In the chapter, features are first projected onto a hypersphere to compute the angu-

lar distribution. Based on angular features, the gap between positive and negative

features is enlarged by inserting an angular margin, which aids in obtaining better

quality features to improve the performance of knowledge transfer. In Chapter 4, a

geometric approach is applied to obtain knowledge of the relationship between simi-

larity features for distillation using multimodal data, including time-series and image

data. To improve performance, topological data analysis (TDA) is adopted to gen-

erate persistence images from time-series data, representing topological features that

have robustness under time-series perturbations. To accommodate different modali-

ties (persistence image and raw time-series data), a new knowledge form is designed,

leveraging feature relationships from orthogonal properties. The knowledge, reflecting

feature relationships, is more expressive and disentangled than the original one, which

helps distill the better student. The proposed method shows significant improvements

over other baselines.

1.3 Multimodal Data Analysis with Multiple Teachers in Knowledge Distillation

To improve the performance of a model, multiple models with multimodal data

have been utilized (Som et al. (2020)). Specifically, topological features from per-

sistence images have been adopted in machine learning to complement time-series

features and improve performance. However, these methods increase model complex-

ity and computational resources. Even though KD using multiple teachers has been

studied (Gou et al. (2021); Liu et al. (2020); Zhang et al. (2022)), there are still lim-

itations because of the knowledge gap between teachers and students. Furthermore,

most cases focus on unimodal data analysis.

In this thesis, to maximize the advantage and performance of KD, multiple teach-

ers with multimodal data (time-series and image data) are incorporated to train a
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single student using time-series data as an input alone. In Chapter 4, utilizing topo-

logical knowledge by a geometric method in KD is introduced. To use two teachers

trained with different data, applying an annealing strategy in KD is proposed to

consider different contributions and reduce the knowledge gap between them. To

transfer knowledge effectively, instead of transferring features directly, orthogonality

properties are utilized to extract feature relationships and learn a student model.

In Chapter 5, diverse feature maps and a constrained adaptive weighting mecha-

nism are proposed. In general, richer knowledge can be leveraged to improve the

performance of a student in KD (Gou et al. (2021)). However, combining different

statistical characteristics of features from different teachers and training a model in a

unified framework are challenges. To extract useful features in distillation, batch and

channel similarities within a mini-batch are utilized, which help to match different

dimensional sizes of features. Further, to integrate features from different teachers

effectively, a constrained weighting mechanism is developed to control the effects of

teachers adaptively, which is computed based on the entropy values of their output

logits. Through feature visualization, the differences in activation maps of teachers

are shown, which implies a knowledge gap between them. In Chapter 6, uncertain

feature rectification for KD is addressed. Previous studies introduced the idea of

leveraging multiple teachers in KD (You et al. (2017); Kwon et al. (2020)); however,

most of them focused on feature matching and did not consider inherent or differ-

ent features from teachers. Even though teachers learn with different types of data,

their target is to implement the same task. That is, when multiple teachers are in-

corporated into the KD learning process with a framework, they generate common

and uncommon features simultaneously. Also, teachers are not always guaranteed to

produce high-quality knowledge, improving the KD process. To improve the learning

process of KD using different teachers, an uncertainty-aware feature rectification for
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KD is devised. Firstly, features from teachers are separated into common or different

features. And, based on the entropy loss values of teachers, features of teachers are

rectified to transfer high-quality knowledge to a student. When teachers have differ-

ent architectural networks, this framework shows significantly improved performance

compared to baselines.

Through all chapters in this thesis, the effectiveness of the proposed methods is

investigated in various aspects, such as feature map visualization, measuring expected

calibration errors to evaluate the generalizability and reliability of models, and com-

bining with existing algorithms to verify compatibility. Based on these analyses, I

give recommendations for modeling in new applications on various datasets.

Finally, in Chapter 7, I conclude this thesis and highlight the future directions.
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Chapter 2

ROLE OF DATA AUGMENTATION STRATEGIES IN KNOWLEDGE

DISTILLATION FOR WEARABLE SENSOR DATA

2.1 Introduction

Deep Learning has achieved state-of-the-art performance in various fields, includ-

ing computer vision (He et al. (2016); Huang et al. (2017); Dalal and Triggs (2005);

Lowe (2004)), speech recognition (Abdel-Hamid et al. (2014); Xiong et al. (2018)), and

wearable sensors analysis (Wan et al. (2020); Fawaz et al. (2019)). In general, stacking

more layers or increasing the number of learnable parameters causes deep networks

to exhibit improved performance (Huang et al. (2017); Dalal and Triggs (2005); Lowe

(2004); Fawaz et al. (2019); Khan et al. (2020); Gil-Mart́ın et al. (2020)). However,

this causes the model to become large resulting in additional need for compute and

power resources, for training, storage, and deployment. These challenges can hinder

the ability to incorporate such models into edge devices. Many studies have explored

techniques such as network pruning (Molchanov et al. (2017); Han et al. (2016)),

quantization (Han et al. (2016); Wu et al. (2016)), low-rank factorization (Tai et al.

(2016)), and Knowledge Distillation (KD) (Hinton et al. (2015)) to compress deep

learning models. At the cost of lower classification accuracy, some of these methods

help to make the deep learning model smaller and increase the speed of inference on

the edge devices. Post-training or fine-tuning strategies can be applied to recover the

lost classification performance (Han et al. (2016); Wu et al. (2016)). On the contrary,

KD does not require fine-tuning nor is subjected to any post-training processes.
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KD is a simple and popular technique that is used to develop smaller and efficient

models by distilling the learnt knowledge/weights from a larger and more complex

model. The smaller and larger models are referred to as student and teacher models,

respectively. KD allows the student model to retain the classification performance

of the larger teacher model. Recently, different variants of KD have been proposed

(Yim et al. (2017); Heo et al. (2019)). These variations rely on different choices of

network architectures, teacher models, and various features used to train the student

model. Alongside, teacher models trained by early stopping for KD (ESKD) have

been explored, which have helped improving the efficacy of KD (Cho and Hariharan

(2019)). However, to the best of my knowledge, there is no previous study that

explores the effects, challenges, and benefits of KD for human activity recognition

using wearable sensor data.

In this chapter, I firstly study KD for human activity recognition from time-

series data collected from wearable sensors. Secondly, I also evaluate the role of data

augmentation techniques in KD. This is evaluated by using several time domain data

augmentation strategies for training as well as for testing phase. The key highlights

and findings from this study are summarized below:

• I compare and contrast several KD approaches for time-series data and conclude

that EKSD performs better as compared to other techniques.

• I perform KD on time-series data with different sizes of teacher and student

networks. I corroborate results from previous studies that suggest that the

performance of a higher capacity teacher model is not necessarily better.

• I study the effects of data augmentation methods on both teacher and student

models. I do this to identify which combination of augmentation methods give

the most benefit in terms of classification performance.
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• This study is evaluated on human activity recognition task and is conducted

on a small scale publicly available dataset as well as a large scale dataset. This

ensures the observations are reliable irrespective of the dataset sizes.

The rest of the chapter is organized as follows. In section 2.2, I provide a brief

overview of KD techniques as well as data augmentation strategies. In section 2.3, I

present which augmentation methods are used and its effects on time-series data. In

section 2.4, I describe the experimental results and analysis. In section 2.5, I discuss

the findings and conclusions.

2.2 Background

Knowledge Distillation

The goal of KD is to supervise a small student network by a large teacher network,

such that the student network achieves comparable or improved performance over

teacher model. This idea was firstly explored by Buciluǎ et al. (Buciluǎ et al. (2006))

followed by several developments like Hinton et al. (Hinton et al. (2015)). The

main idea of KD is to use the soft labels which are outputs, soft probabilities, of a

trained teacher network and contain more information than just a class label, which

is illustrated in Figure 2.1. For instance, if two classes have high probabilities for

a data, the data has to lie close to a decision boundary between these two classes.

Therefore, mimicking these probabilities helps student models to get knowledge of

teachers that have been trained with labeled data (hard labels) alone.

During training, the loss function L for a student network is defined as:

L = (1− λ)LC + λLK (2.1)

where LC is the standard cross entropy loss, LK is KD loss, and λ is hyper-parameter;

0 < λ < 1.
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In supervised learning, the error between the output of the softmax layer of a

student network and ground-truth label is penalized by the cross-entropy loss:

LC = H(softmax(as), yg) (2.2)

where H(·) denotes a cross entropy loss function, as is logits of a student (inputs to

the final softmax), and yg is a ground truth label. In the process of KD, instead

of using peaky probability distributions which may produce less accurate results,

Hinton et al. (Hinton et al. (2015)) proposed to use probabilities with temperature

scaling, i.e., output of a teacher network given by ft = softmax(at/τ) and a student

fs = softmax(as/τ) are softened by hyperparameter τ , where τ > 1. The teacher

and student try to match these probabilities by a KL-divergence loss:

LK = τ 2KL(ft, fs) (2.3)

where KL(·) is the KL-divergence loss function.

There has been lots of approaches to improve the performance of distillation.

Previous methods focus on adding more losses on intermediate layers of a student

network to be closer to a teacher (Zagoruyko and Kmodakis (2017); Tung and Mori

(2019)). Averaging consecutive student models tends to produce better performance

of students (Tarvainen and Valpola (2017)). By implementing KD repetitively, the

performance of KD is improved, which is called sequential knowledge distillation

(Zhang et al. (2018b)).

Recently, learning procedures for improved efficacy of KD has been presented.

Goldblum et al. (Goldblum et al. (2020)) suggested adversarially robust distilla-

tion (ARD) loss function by minimizing dependencies between output features of a

teacher. The method used perturbed data as adversarial data to train the student

network. Interestingly, ARD students even show higher accuracy than their teacher.
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I adopt augmentation methods to create data which is similar to adversarial data of

ARD. Based on ARD, the effect of using adversarial data for KD can be verified,

however, which data augmentation is useful for training KD is not well explored. Un-

like ARD, to figure out the role of augmentation methods for KD and which method

improves the performance of KD, I use augmentation methods generating different

kinds of transformed data for teachers and students. In detail, by adopting augmen-

tation methods, I can generate various combinations of teachers and students which

are trained with the same or different augmentation method. It provides to under-

stand which transformation and combinations can improve the performance of KD.

I explain the augmentation method for KD in section 2.3 with details. Additionally,

KD tends to show an efficacy with transferring information from early stopped model

of a teacher, where training strategy is called ESKD (Cho and Hariharan (2019)).

Early stopped teachers produce better students than the standard knowledge distil-

lation (Full KD) using fully-trained teachers. Cho et al. (Cho and Hariharan (2019))

presented the efficacy of ESKD with image datasets. I implement ESKD on time-

series data and investigate its efficacy on training with data transformed by various

augmentation methods. I explain more details in section 2.3 and discuss the efficiency

of ESKD in later sections.

In general, many studies focus on the structure of networks and adding loss func-

tions to existing framework of KD (Furlanello et al. (2018); Yang et al. (2019)).

However, the performance of most approaches depends on the capacity of student

models. Also, availability of sufficient training data for teacher and student models

can affect to the final result. In this regard, the factors that have an affect on the

distillation process need to be systematically explored, especially on time-series data

from wearable sensors.
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Data Augmentation

Data augmentation methods have been used to boost the generalizability of models

and avoid over-fitting. They have been used in many applications such as time-series

forecasting (Han et al. (2019)), anomaly detection (Chalapathy and Chawla (2019)),

classification (Fawaz et al. (2019); Le Guennec et al. (2016)), and so on. There

are many data augmentation approaches for time-series data, which can be broadly

grouped under two categories (Wen et al. (2020)). The first category consists of

transformations in time, frequency, and time-frequency domains (Wen et al. (2020);

Park et al. (2019a)). The second group consists of more advanced methods like

decomposition (Kegel et al. (2018)), model-based (Cao et al. (2014)), and learning-

based methods (Esteban et al. (2017); Wen et al. (2020)).

Time-domain augmentation methods are straightforward and popular. These ap-

proaches directly manipulate the original input time-series data. For example, the

original data is transformed directly by injecting Gaussian noise or other perturba-

tions such as step-like trend and spikes. Window cropping or sloping also has been

used in time domain transformation, which is similar to computer vision method of

cropping samples (Cui et al. (2015)). Other transformations include window warping

that compresses or extends a randomly chosen time range and flipping the signal

in time-domain. Additionally, one can use blurring and perturbations in the data

points, especially for anomaly detection applications (Gao et al. (2020)). A few ap-

proaches have focused on data augmentation in the frequency domain. Gao et al.

(Gao et al. (2020)) proposed perturbations for data augmentation in frequency do-

main, which improves the performance of anomaly detection by convolutional neural

networks. The performance of classification was found to be improved by ampli-

tude adjusted Fourier transform and iterated amplitude adjusted Fourier transform
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which are transformation methods in frequency domain (Eileen et al. (2019)). Time-

frequency augmentation methods have also been recenlty investigated. SpecAugment

is a Fourier-transform based method that transforms in Mel-Frequency for speech

time-series data (Park et al. (2019a)). The method was found to improve the per-

formance of speech recognition. In (Steven Eyobu and Han (2018)), a short Fourier

transform is proposed to generate a spectrogram for classification by LSTM neural

network.

Decomposition-based, model-based, and learning-based methods are used as ad-

vanced data augmentation methods. For decomposition, time-series data are disinte-

grated to create new data (Kegel et al. (2018)). Kegel et al. firstly decomposes the

time-series based on trend, seasonality, and residual. Then, finally new time-series

data are generated with a deterministic and a stochastic component. Bootstrapping

methods on the decomposed residuals for generating augmented data was found to

help the performance of a forecasting model (Bergmeir et al. (2016)). Model-based

approaches are related to modeling the dynamics, using statistical model (Cao et al.

(2014)), mixture models (Kang et al. (2020)), and so on. In (Cao et al. (2014)),

model-based method were used to address class imbalance for time-series classifica-

tion. Learning-based methods are implemented with learning frameworks such as

generative adversarial nets (GAN) (Esteban et al. (2017)) and reinforcement learn-

ing (Cubuk et al. (2019)). These methods generate augmented data by pre-trained

models and aim to create realistic synthetic data (Esteban et al. (2017); Cubuk et al.

(2019)).

Finally, augmentation methods can be combined together and applied simultane-

ously to the data. Combining augmentation methods in time-domain helps to improve

performance in classification (Um et al. (2017)). However, combining various aug-
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Figure 2.1: An Overview of Knowledge Distillation Framework (Left) and Proposed

Knowledge Distillation with Data Augmentation Method (Right). A Capacity Net-

work Known as Teacher Is Used to Guide the Learning of a Smaller Network Known

as Student.

mentation methods may results in a large amount of augmented data, increasing

training-time, and may not always improve the performance (Wen et al. (2020)).

2.3 Strategies for Knowledge Distillation with Data Augmentation

I would like to investigate strategies for training KD with time-series data and

identify augmentation methods for teachers and students that can provide better per-

formance. The strategies include two scenarios on KD. Firstly, I apply augmentation

methods only when a student model is trained based on KD with a teacher model

trained by the original data. Secondly, augmentation methods are applied not only to

students, but also to teacher. When a teacher model is trained from scratch, an aug-

mentation method is used, where the model is to be used as a pre-trained model for

distillation. And, when a student is trained on KD, the same/different augmentation

methods are used. The set of augmentation approaches on KD are illustrated in Fig-

ure 2.1, and described in further detail later in this section. Also, I explore the effects

of ESKD on time-series data – ESKD uses a teacher which is obtained in the early

training process. ESKD generates better students rather than using the fully-trained

teachers from Full KD (Cho and Hariharan (2019)). The strategy is derived from
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the fact that the accuracy is improved initially. However, the accuracy towards the

end of training begins to decrease, which is lower than the earlier accuracy. I adopt

early stopped teachers with augmentation methods for the experiments presented in

section 2.4.

Figure 2.2: Illustration of Different Augmentation Methods Used in the Knowledge

Distillation Framework. The Original Data Is Shown in Blue and the Corresponding

Transformed Data with Data Augmentation Method Is Shown in Red.

In order to see effects of augmentation on distillation, I adopt time-domain aug-

mentation methods which are removal, adding noise with Gaussian noise, and shifting.

The original pattern, length of the window, and periodical points can be preserved

by this transformation. I use transformation methods in time domain so that I can

analyze the results from each method, and combinations, more easily. These methods

also have been used popularly for training deep learning networks (Wen et al. (2020)).

I apply combinations of augmentation methods, combined with removal and shifting,

and with all methods to a data to see the relationships between each property of
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datasets for teachers and students of KD. An example of different transformation

used for data augmentation is shown in Figure 2.2. I describe each of the transforms

below:

• Removal: is used to erase amplitude values of sequential samples. The values of

chosen samples to be erased are transformed to the amplitude of the first point.

For example, I assume that n samples are chosen as (Xt+1, Xt+2, · · · , Xt+n) and

their amplitudes are (At+1, At+2, · · · , At+n) to be erased. At+1 is the amplitude

of the first sample Xt+1 and is assigned to (At+1, At+2, · · · , At+n). That is,

values (At+1, At+2, · · · , At+n) are mapped to (At+1, At+1, · · · , At+1). The first

point and the number of samples to be erased are chosen randomly. The result

of removal is shown in Figure 2.2 with a green dashed circle.

• Noise Injection: To inject noise, I apply Gaussian noise with mean 0 and a

random standard deviation. The result of adding noise is shown in Figure 2.2

with yellow dashed circles.

• Shifting: For shifting data, to keep the characteristics such as values of

peak points and periodic patterns in the signal, I adopt index shifting and

rolling methods to the data for generating new patterns, which means the

100% shifted signal from the original signal by this augmentation corresponds

to the original one. For example, assuming the total number of samples are

50 and 10 time-steps (20% of the total number of samples) are chosen to be

shifted. The values for amplitude of samples (X1, X2, · · · , X11, · · ·X50) are

(A1, A2, · · · , A11, · · · , A49, A50). By shifting 10 time-steps, (A41, A42, · · · , A1, · · ·

, A39, A40) are newly assigned to the samples of (X1, X2, · · · , X11, · · · , X49, X50).

The number of time-steps to be shifted is chosen randomly. Shifting is shown

in Figure 2.2 with green dashed arrows.
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• Mix1: Applies removal as well as shifting to the same data.

• Mix2: Applies removal, Gaussian noise injection, and shifting simultaneously

to the data.

2.4 Experiments and Analysis

In this section, I describe datasets, settings, ablations, and results of the experi-

ments.

2.4.1 Dataset Description

I perform experiments on two datasets: GENEActiv (Wang et al. (2016)) and

PAMAP2 (Reiss and Stricker (2012)), both of which are wearable sensors based ac-

tivity datasets. I evaluate multiple teachers and students of various capacities for KD

with data augmentation methods.

GENEActiv

GENEActiv dataset (Wang et al. (2016)) consists of 29 activities over 150 subjects.

The dataset was collected with a GENEActiv sensor which is a light-weight, water-

proof, and wrist-worn tri-axial accelerometer. The sampling frequency of the sensors

is 100Hz. In this experiments, I used 14 activities which can be categorized as daily

activities such as walking, sitting, standing, driving, and so on. Each class has over

approximately 900 data samples and the distribution and details for activities are

illustrated in Figure 2.3. I split the dataset for training and testing with no overlap

in subjects. The number of subjects for training and testing are over 130 and 43, re-

spectively. A window size for a sliding window is 500 time-steps or 5 seconds and the

process for temporal windows is full-non-overlapping sliding windows. The number

of windows for training is approximately 16000 and testing is 6000.
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Figure 2.3: Distribution of GENEActiv Data Across Different Activities. Each Sam-

ple Has 500 Time-steps.

PAMAP2

PAMAP2 dataset (Reiss and Stricker (2012)) consists of 18 physical activities for

9 subjects. The 18 activities are categorized as 12 daily activities and 6 optional

activities. The dataset was obtained by measurements of heart rate, temperature,

accelerometers, gyroscopes, and magnetometers. The sensors were placed on hands,

chest, and ankles of the subject. The total number of dimensions in the time-series

is 54 and the sampling frequency is 100Hz. To compare with previous methods, in

experiments on this dataset, I used leave-one-subject-out combination for validation

comparing the ith subject with the ith fold. The input data is in the form of time-

series from 40 channels of 4 IMUs and 12 daily activities. To compare with previous

methods, the recordings of 4 IMUs are downsampled to 33.3Hz. The 12 action classes

are: lying, sitting, standing, walking, running, cycling, nordic walking, ascending

17



stairs, descending stairs, vacuum cleaning, ironing, and rope jumping. Each class

and subject are described in Table 2.1. There is missing data for some subjects and

the distribution of the dataset is imbalanced. A window size for a sliding window is

100 time-steps or 3 seconds and step size is 22 time-steps or 660 ms for segmenting the

sequences, which allows semi-non-overlapping sliding windows with 78% overlapping

(Reiss and Stricker (2012)).

Table 2.1: Details of PAMAP2 Dataset. The Dataset Consists of 12 Activities

Recorded for 9 Subjects.

Sbj.101 Sbj.102 Sbj.103 Sbj.104 Sbj.105 Sbj.106 Sbj.107 Sbj.108 Sbj.109 Sum Nr. of subjects

Lying 407 350 329 344 354 349 383 361 0 2877 8

Sitting 352 335 432 381 402 345 181 342 0 2770 8

Standing 325 383 307 370 330 365 385 377 0 2842 8

Walking 333 488 435 479 481 385 506 474 0 3481 8

Running 318 135 0 0 369 341 52 246 0 1461 6

Cycling 352 376 0 339 368 306 339 382 0 2462 7

Nordic walking 302 446 0 412 394 400 430 433 0 2817 7

Ascending stairs 233 253 147 243 207 192 258 168 0 1701 8

Descending stairs 217 221 218 206 185 162 167 137 0 1513 8

Vacuum cleaning 343 309 304 299 366 315 322 364 0 2622 8

Ironing 353 866 420 374 496 568 442 496 0 3995 8

Rope jumping 191 196 0 0 113 0 0 129 92 721 6

2.4.2 Analysis of Distillation

For experiments on GENEActiv, I run 200 epochs for each model using SGD

with momentum 0.9 and the initial learning rate lr = 0.1. The lr drops by 0.5

after 10 epochs and drops down by 0.1 every [ t
3
] where t is the total number of

epochs. For experiments on PAMAP2, I run 180 epochs for each model using SGD

with momentum 0.9 and the initial learning rate lr = 0.05. The lr drops down by
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0.2 after 10 epochs and drops down 0.1 every [ t
3
] where t is the total number of

epochs. The results are averaged over 3 runs for both the datasets. To improve the

performance, feature engineering (Zheng and Casari (2018); Bengio et al. (2013)),

feature selection, and reducing confusion by combining classes (Dutta et al. (2016))

can be applied additionally. However, to focus on the effects of KD which is based

on feature-learning (Bengio et al. (2013)), feature engineering/selection methods to

boost performance are not applied and all classes as specified in section 2.4.1 are used

in the following experiments.

Training from scratch to find a Teacher

Table 2.2: Accuracy for Various Models Trained from Scratch on GENEActiv

Model # Parameters Accuracy (%) Model # Parameters Accuracy (%) Model # Parameters Accuracy (%)

ResNet18(8) 62,182 63.75±0.42 WRN16-1 61,374 67.66±0.37 WRN28-1 126,782 68.63±0.48

ResNet18(16) 244,158 65.84±0.69 WRN16-2 240,318 67.84±0.36 - - -

ResNet18(24) 545,942 66.47±0.21 WRN16-3 536,254 68.89±0.56 WRN28-2 500,158 69.15±0.24

ResNet18(32) 967,534 66.33±0.12 WRN16-4 949,438 69.00±0.22 WRN28-3 1,119,550 69.23±0.27

ResNet18(48) 2,170,142 68.13±0.22 WRN16-6 2,127,550 70.04±0.05 WRN28-4 1,985,214 69.29±0.51

ResNet18(64) 3,851,982 68.17±0.21 WRN16-8 3,774,654 69.02±0.15 WRN28-6 4,455,358 70.99±0.44

To find a teacher for KD, I conducted experiments with training from scratch based

on two different network architectures: ResNet (He et al. (2016)) and WideResNet

(Zagoruyko and Komodakis (2016)). These networks have been popularly used in

various state-of-the-art studies for KD (Yim et al. (2017); Heo et al. (2019); Goldblum

et al. (2020); Cho and Hariharan (2019)). I modified and compared the structure

having the similar number of trainable parameters. As described in Table 2.2, for

training from scratch, WideResNet (WRN) tends to show better performance than
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Figure 2.4: Effect of Hyperparmeters τ and λ on the Performance of Full KD and

ESKD Approaches. The Results Are Reported on GENEActiv Dataset with WRN16-

3 and WRN16-1 Networks for Teacher and Student Models Respectively.

ResNet18(k) where k is the dimension of output from the first layer. The increase in

accuracy with the dimension of each block is similar to the basic ResNet.

Setting hyperparameters for KD

For setting hyperparameters in KD, I conducted several experiments with different

temperature τ as well as lambda λ. I investigated distillation with different hyperpa-

rameters as well. I set WRN16-3 as a teacher network (Cho and Hariharan (2019))
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and WRN16-1 as a student network, which is shown in Figure 2.4. For temperature

τ , in general, τ ∈ {3, 4, 5} are used (Cho and Hariharan (2019)). High temperature

mitigated the peakiness of teachers and helped to make the signal to be softened. In

this experiments, according to the results from different τ , high temperature did not

effectively help to increase the accuracy. When I used τ = 4, the results were better

than other choices for both datasets with Full KD and ESKD (Cho and Hariharan

(2019)). For λ = 0.7 and 0.99, I obtained the best results with Full KD and ESKD

for GENEActiv and PAMAP2, respectively.

Analyzing Distillation with different size of Models
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Figure 2.5: Results of Distillation from Different Teacher Models of WRN16-k and

WRN28-k on GENEActiv Dataset. The Higher Capacity of Teachers Does Not Al-

ways Increase the Accuracy of Students.

To analyze distillation with different size of models, WRN16-k and WRN28-k

were used as teacher networks having different capacity and structures in depth and

width k. WRN16-1 and WRN28-1 were used as student networks, respectively. As
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mentioned in the previous section, in general, a higher capacity network trained from

scratch shows better accuracy for WRN16 and WRN28. However, as shown in Figure

2.5, in most of the cases, the results from WRN16-k shows better than the results of

WRN28-k which has larger width. And the accuracy with teachers of WRN16-3 is

higher than the one with teachers having larger width. Therefore, a teacher of higher

capacity is not always guaranteed to generate a student whose accuracy is better.

Knowledge Distillation based on Fully Iterated and Early Stopped Models

Table 2.3: Accuracy for Various Models on GENEActiv Dataset

Student Teacher Teacher Acc. (%) Student Acc. (%)

WRN16-1

(ESKD)

WRN16-2 69.06 69.34±0.36

WRN16-3 69.99 69.49±0.22

WRN16-4 69.80 69.37±0.31

WRN16-6 70.24 67.93±0.13

WRN16-8 70.19 68.62±0.33

WRN16-1

(Full KD)

WRN16-3 69.68 68.62±0.22

WRN16-8 69.28 68.68±0.17

I performed additional experiments with WRN16-k which gives the best results.

Table 2.3 and Table 2.4 give detailed results for GENEActiv and PAMAP2, respec-

tively. Compared to training from scratch, although the student capacity from KD is

much lower, the accuracy is higher. For instance, for the result of GENEActiv with

WRN16-8 by training from scratch, the accuracy is 69.02% and the number of train-

able parameters is 3 million in Table 2.3. The number of parameters for WRN16-1

as a student for KD is 61 thousand which is approximately 1.6% of 3 million. How-
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Table 2.4: Accuracy for Various Models on PAMAP2 Dataset

Student Teacher Teacher Acc. (%) Student Acc. (%)

WRN16-1

(ESKD)

WRN16-2 84.86 86.18±2.44

WRN16-3 85.67 86.38±2.25

WRN16-4 85.23 85.95±2.27

WRN16-6 85.51 86.37±2.35

WRN16-8 85.17 85.11±2.46

WRN16-1

(Full KD)

WRN16-3 81.52 84.31±2.24

WRN16-8 81.69 83.70±2.52

ever, the accuracy of a student with WRN16-2 teacher from ESKD is 69.34% which

is higher than the result of training from scratch with WRN16-8. It shows a model

can be compressed with conserved or improved accuracy by KD. Also, I tested with 7

classes on GENEActiv dataset which were used by the method in (Choi et al. (2018)).

This work used over 50 subjects for testing set. Students of KD were WRN16-1 and

trained with τ = 4 and λ = 0.7. As shown in Table 2.5 where brackets denote the

structure of teachers and their accuracy, ESKD from WRN16-3 teacher shows the best

accuracy for 7 classes, which is higher than results of models trained from scratch,

Full KD, and previous methods (Cortes and Vapnik (1995); Choi et al. (2018)). In

most of the cases, students are even better than their teacher. In various sets of GE-

NEActiv having different number of classes and window length, ESKD shows better

performance than Full KD. In Table 2.4, the best accuracy on PAMAP2 is 86.38%

from ESKD with teacher of WRN16-3, which is higher than results from Full KD.

The result is even better than previous methods (Jordao et al. (2018)), which are

described in Table 2.6 where brackets denote the structure of teachers and their ac-
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curacy. Therefore, KD allows model compression and improves the accuracy across

datasets. And ESKD tends to show better performance compared to Full KD. Also,

the higher capacity models as teachers does not always generate better performing

student models.

Table 2.5: Accuracy (%) for Related Methods on GENEActiv Dataset with 7 Classes

Method
Window length

1000 500

WRN16-1 89.29±0.32 86.83±0.15

WRN16-3 89.53±0.15 87.95±0.25

WRN16-8 89.31±0.21 87.29±0.17

ESKD (WRN16-3)
89.88±0.07 88.16±0.15

(89.74) (88.30)

ESKD (WRN16-8)
89.58±0.13 87.47±0.11

(89.68) (87.75)

Full KD (WRN16-3)
89.84±0.21 87.05±0.19

(88.95) (86.02)

Full KD (WRN16-8)
89.36±0.06 86.38±0.06

(88.74) (85.08)

SVM (Cortes and Vapnik (1995)) 86.29 85.86

Choi et al. (Choi et al. (2018)) 89.43 87.86

2.4.3 Effect of Augmentation on Student Model Training

To understand distillation effects based on the various capacity of teachers and

augmentation methods, WRN16-1, WRN16-3, and WRN16-8 are selected as “Small”,
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Table 2.6: Accuracy for Related Methods on PAMAP2 Dataset

Method Accuracy (%)

WRN16-1 82.81±2.51

WRN16-3 84.18±2.28

WRN16-8 83.39±2.26

ESKD (WRN16-3)
86.38±2.25

(85.67)

ESKD (WRN16-8)
85.11±2.46

(85.17)

Full KD (WRN16-3)
84.31±2.24

(81.52)

Full KD (WRN16-8)
83.70±2.52

(81.69)

Chen and Xue (2015) 83.06

Ha et al. (2015) 73.79

Ha and Choi (2016) 74.21

Kwapisz et al. (2011) 71.27

Catal et al. (2015) 85.25

Kim et al. (2012) 81.57

“Medium”, and “Large” models, respectively. ESKD is used for this experiment which

tends to show better performance than the Full KD and requires three-fourths of the

total number of epochs for training (Cho and Hariharan (2019)).

In order to find augmentation methods impacting KD on students for training, I

first trained a teacher from scratch with the original datasets. Secondly, I trained stu-
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dents from the pre-trained teacher with augmentation methods which have different

properties including removal, adding noise, shifting, Mix1, and Mix2. For experi-

ments on GENEActiv, for removal, the number of samples to be removed is less than

50% of the total number of samples. The first point and the exact number of samples

to be erased are chosen randomly. To add noise, the value for standard deviation of

Gaussian noise is chosen uniformly at random between 0 and 0.2. For shifting, the

number of time-steps to be shifted is less than 50% of the total number of samples.

For Mix1 and Mix2, the same parameters are applied. For experiments on PAMAP2,

the number of samples for removal is less than 10% of the total number of samples and

standard deviation of Gaussian noise for adding noise is less than 0.1. The parameter

for shifting is less than 50% of the total number of samples. The same parameters of

each method are applied for Mix1 and Mix2. The length of the window for PAMAP2

is only 100 which is 3 seconds and downsampled from 100Hz data. Compared to

GENEActiv whose window size is 500 time-steps or 5 seconds, for PAMAP2, a small

transformation can affect the result very prominently. Therefore, lower values are

applied to PAMAP2. The parameters for these augmentation methods and the sen-

sor data for PAMAP2 to be transformed are randomly chosen. These conditions for

applying augmentation methods are used in the following experiments as well.

Analyzing augmentation methods on training from scratch and KD

The accuracy of training scratch with different augmentation methods on WRN16-1

is presented in Table 2.7. Most of the accuracies from augmentation methods, except

adding noise which can alter peaky points and change gradients, are higher than the

accuracy obtained by learning with the original data. Compared to other methods,

adding noise may influence classification between similar activities such as walking,

which is included in both datasets as detailed sub-categories.
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Table 2.7: Accuracy (%) of Training from Scratch on WRN16-1 with Different Aug-

mentation Methods

Method
Dataset

GENEActiv PAMAP2

Original 68.60±0.23 82.81±2.51

Removal 69.20±0.32 83.34±2.41

Noise 67.60±0.36 82.80±2.66

Shift 68.69±0.22 83.91±2.18

Mix1(R+S) 69.31±0.96 83.59±2.37

Mix2(R+N+S) 67.89±0.11 83.64±2.76

The validation accuracy of scratch and Full KD learning on GENEActiv dataset

is presented in Figure 2.6. Training from scratch with the original data shows higher

accuracy than KD with original data in very early stages before 25 epochs. However,

KD shows better accuracy than the models trained from scratch after 40 epochs. KD

with augmentation tends to perform better in accuracy than models trained from

scratch and KD learning with the original data alone. That is, data augmentation

can help to boost the generalization ability of student models for KD. Mix1 shows

the highest accuracy among the results. The highest accuracies are seen in early

stages, which are less than 120 epochs for all methods, where 120 epochs is less than

three-fourths of the total number of epochs. On closer inspection, I find that the

best accuracies are actually seen in less than 20 epochs for training from scratch and

Full KD, less than 60 epochs for shifting, Mix1, and Mix2, and less than 120 epochs

for adding noise, respectively. This implies that not only early stopped teachers but

also early stopped students are able to perform better than fully iterated models.
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Figure 2.6: The Validation Accuracy for Training from Scratch and Full KD. WRN16-

1 Is Used for Training from Scratch. For Full KD, WRN16-3 Is a Teacher Network and

WRN16-1 Is a Student Network. R, N, S, M1, and M2 in the Legend Are Removal,

Adding Noise, Shifting, Mix1, and Mix2, Respectively.

In training based on KD with augmentation methods, the accuracy goes up in early

stages, however, the accuracy suffers towards to the end of training. These trends on

KD are similar to the previous ESKD study (Cho and Hariharan (2019)). For the

following experiments, I restrict the analyses to ESKD.

Analyzing Augmentation Methods on Distillation

The accuracy of each augmentation method with KD is summarized in Table 2.8

and 2.9 for GENEActiv and Table 2.10 and 2.11 for PAMAP2. The results were

obtained from small-sized students of ESKD. The gray colored cells of these tables

are the best accuracy for the augmentation method among the different capacity

teachers of KD. When a higher λ is used, distillation from teachers is improved, and

the best results are obtained when the teacher capacity is smaller. Also, the best

performance of students, when learning with augmentation methods and the original
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Table 2.8: Accuracy (%) of KD from Variants of Teacher Capacity and Augmentation

Methods on GENEActiv (λ = 0.7)

Method

Teacher

Small Medium Large

68.87 69.99 70.19

Original 69.71±0.31 69.61±0.17 68.62±0.33

Removal 69.80±0.34 70.23±0.41 70.28±0.68

Noise 69.26±0.08 69.12±0.19 69.38±0.39

Shift 70.63±0.19 70.43±0.89 70.00±0.20

Mix1(R+S) 70.56±0.57 71.35±0.20 70.22±0.10

Mix2(R+N+S) 69.27±0.31 69.51±0.28 69.62±0.21

Table 2.9: Accuracy (%) of KD from Variants of Teacher Capacity and Augmentation

Methods on GENEActiv (λ = 0.99)

Method

Teacher

Small Medium Large

68.87 69.99 70.19

Original 69.44±0.19 67.80±0.36 68.67±0.20

Removal 69.48±0.22 69.75±0.40 70.01±0.27

Noise 69.99±0.14 70.20±0.06 70.12±0.14

Shift 70.96±0.10 70.42±0.06 70.16±0.24

Mix1(R+S) 70.40±0.27 70.07±0.38 69.36±0.16

Mix2(R+N+S) 70.56±0.23 69.88±0.16 69.71±0.30
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Table 2.10: Accuracy (%) of KD from Variants of Teacher Capacity and Augmenta-

tion Methods on PAMAP2 (λ = 0.7)

Method

Teacher

Small Medium Large

85.42 85.67 85.17

Original 84.75±2.64 84.47±2.32 84.90±2.38

Removal 85.16±2.46 85.51±2.27 85.02±2.47

Noise 84.96±2.59 85.52±2.26 84.85±2.43

Shift 85.21±2.21 85.45±2.19 85.66±2.26

Mix1(R+S) 85.54±2.51 85.60±2.19 84.71±2.53

Mix2(R+N+S) 85.17±2.39 85.27±2.33 83.76±2.77

Table 2.11: Accuracy (%) of KD from Variants of Teacher Capacity and Augmenta-

tion Methods on PAMAP2 (λ = 0.99)

Method

Teacher

Small Medium Large

85.42 85.67 85.17

Original 86.37±2.35 86.38±2.25 85.11±2.46

Removal 84.66±2.67 85.70±2.40 84.81±2.52

Noise 84.77±2.65 85.21±2.41 85.05±2.40

Shift 86.08±2.42 86.65±2.13 85.53±2.28

Mix1(R+S) 84.93±2.71 85.88±2.28 84.73±2.54

Mix2(R+N+S) 82.94±2.76 83.94±2.70 83.28±2.50
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data, is achieved with similar teacher capacities. For example, for GENEActiv with λ

= 0.7, the best results are generated from various capacity of teachers. But, with λ =

0.99, the best results tend to be seen with smaller capacity of teachers. Even though

the evaluation protocol for PAMAP2 is leave-one-subject-out with an imbalanced

distribution of data, with λ = 0.7, the best results are obtained from larger capacity

of teachers as well. Furthermore, results from both datasets verify that larger and

more accurate teachers do not always result in better students. Also, the best result

from shifting is seen at the same capacity of the teacher with the original data. It

might be because shifting includes the same time-series ‘shapes’ as the original data.

The method for shifting is simple but is an effectively helpful method for training KD.

For all teachers on PAMAP2 with λ = 0.99, the accuracies from training by shifting

are even higher than other combinations. Compared to previous methods (Jordao

et al. (2018)) with PAMAP2, the result by shifting outperforms others. Furthermore,

although the student network of KD has the same number of parameters of the

network trained from scratch (WRN16-1), the accuracy is much higher than the

latter one; the result of Mix1 from GENEActiv and shifting from PAMAP2 by the

medium teacher is approximately 2.7% points and 3.8% points better than the result

from original data by training from scratch, respectively. These accuracies are even

better than the results of their teachers. It also verifies that KD with an augmentation

method including shifting has benefits to obtain improved results.

To investigate the difference in performance with a model trained from scratch

and KD with augmentation methods, statistical analysis was conducted by calculating

p-value from a t-test with a confidence level of 95%. Table 2.12 and 2.13 show aver-

aged accuracy, standard deviation, and calculated p-value for WRN16-1 trained from

scratch with original training set and various student models of WRN16-1 trained

with KD and augmentation. That is, student models in KD have the same structure

31



Table 2.12: p-value and (Accuracy (%), Standard Deviation) for Training from

Scratch and KD on GENEActiv Dataset

Scratch
KD

p-value
(Teacher: Medium)

Original

(68.60±0.23)

Original (ESKD)
0.030

(69.61±0.17)

Original (Full)
0.045

(68.62±0.22)

Removal
0.006

(70.23±0.41)

Noise
0.012

(69.12±0.19)

Shift
0.025

(70.43±0.89)

Mix1(R+S)
0.073

(71.35±0.20)

Mix2(R+N+S)
0.055

(69.51±0.28)

of the model trained from scratch and teachers for KD are WRN16-3 (τ = 4, λ = 0.7).

For GENEActiv, in five out of the seven cases, the calculated p-values are less than

0.05. Thus, the results in the table show statistically-significant difference between

training from scratch and KD. For PAMAP2, in all cases, p-values are less than 0.05.

This also represents statistically-significant difference between training from scratch

and KD. Therefore, I can conclude that KD training with augmentation methods,
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Table 2.13: p-value and (Accuracy (%), Standard Deviation) for Training from

Scratch and KD on PAMAP2 Dataset

Scratch
KD

p-value
(Teacher: Medium)

Original

(82.81±2.51)

Original (ESKD)
0.0298

(84.47±2.32)

Original (Full)
0.0007

(84.31±2.24)

Removal
0.0008

(85.51±2.27)

Noise
0.0002

(85.52±2.26)

Shift
0.0034

(85.45±2.19)

Mix1(R+S)
0.0024

(85.60±2.19)

Mix2(R+N+S)
0.0013

(85.27±2.33)

which shows better results in classification accuracy, performs significantly different

from training from scratch, at a confidence level of 95%.

Finally, the expected calibration error (ECE) (Guo et al. (2017)) is calculated to

measure the confidence of performance for models trained from scratch and KD (τ =

4, λ = 0.7) with augmentation methods. As shown in Table 2.14 and 2.15, in all cases,

ECE values for KD are lower than when models are trained from scratch, indicating
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Table 2.14: ECE (%) of Training from Scratch and KD on GENEActiv Dataset

Scratch ECE
KD

ECE
(Teacher: Medium)

Original 3.22 Original (ESKD) 2.96

Removal 3.56 Removal 2.90

Noise 3.45 Noise 2.85

Shift 3.24 Shift 2.78

Mix1(R+S) 3.72 Mix1(R+S) 2.79

Mix2(R+N+S) 3.67 Mix2(R+N+S) 2.86

Table 2.15: ECE (%) of Training from Scratch and KD on PAMAP2 dataset

Scratch ECE
KD

ECE
(Teacher: Medium)

Original 2.28 Original (ESKD) 2.16

Removal 3.64 Removal 3.09

Noise 5.83 Noise 3.01

Shift 2.87 Shift 2.22

Mix1(R+S) 4.39 Mix1(R+S) 2.96

Mix2(R+N+S) 5.55 Mix2(R+N+S) 4.17

that models trained with KD have higher reliability. Also, results of KD including

shifting are lower than results from other augmentation methods. This additionally

verifies that KD improves the performance and shifting helps to get improved models.
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Analyzing training for KD with augmentation methods

The loss values of each method, for the medium-sized teacher, are shown in Table 2.16

and 2.17. The loss values were obtained from the final epoch while training student

models based on Full KD. As shown in these tables, for both cross entropy and

KD loss values, training with shifting-based data augmentation results in lower loss,

compared to other augmentation strategies and the original model. The loss value

for noise augmentation is higher than the values of shifting. On the other hand, the

KD loss value for Mix1 is higher than the values for removal and shifting. However,

the training loss is for these two methods and its value of testing is lower. Compared

to other methods, Mix2 shows higher loss for training, which may be because this

method generates more complicated patterns. However, the testing KD loss value of

Mix2 is lower than the value of original and adding noise. These findings imply that

the data of original and shifting have very similar patterns. And data based on Mix1

and Mix2 are not simply trainable data for distillation, however, these methods have

an effect of preventing a student from over-fitting or degradation for classification.

The contrast of results from GENEActiv between each method is more prominent

than the one from PAMAP2. This is due to the fact that smaller parameters for

augmentation are applied to PAMAP2. Also, the dataset is more challenging to train

on, due to imbalanced data and different channels in sensor data.

2.4.4 Analysis of Teacher and Student Models with a Variant Properties of

Training Set

To discuss properties of training set for teacher and student models, I use the same

parameter (τ = 4, λ = 0.7) in this experiment on two datasets. In this section, I try

to train a medium teacher and a small student by training set having the same or
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Table 2.16: The Loss Value (10−2) for KD (Teacher: Medium) from Various Methods

on GENEActiv

Method

(λ=0.7)

CE

Train

KD

Train

KD

Test

Original 3.774 0.617 1.478

Removal 3.340 0.406 1.246

Noise 11.687 1.172 1.358

Shift 2.416 0.437 1.119

Mix1(R+S) 5.475 0.475 1.108

Mix2(R+N+S) 17.420 1.337 1.338

Table 2.17: The Loss Value (10−2) for KD (Teacher: Medium) from Various Methods

on PAMAP2 (Subject 101)

Method

(λ=0.7)

CE

Train

KD

Train

KD

Test

Original 0.832 0.156 1.783

Removal 1.237 0.146 1.038

Noise 1.066 0.138 1.284

Shift 0.468 0.129 1.962

Mix1(R+S) 1.267 0.150 0.895

Mix2(R+N+S) 1.853 0.177 1.065

different properties to take into account relationships between teachers and students.

Testing set is not transformed or modified. The medium teacher is chosen because
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the teacher showed good performance in the prior experiments discussed in previous

sections. Further, distillation from a medium model to a small model is an preferable

approach (Cho and Hariharan (2019)). Also, I analyze which augmentation method

is effective to achieve higher accuracy. I use adding noise, shifting, and Mix1 methods

which transform data differently.

Table 2.18: Accuracy (%) of Training from Scratch on WRN16-3 with Different Aug-

mentation Methods

Dataset Original Noise Shift Mix1(R+S)

GENEActiv 69.53±0.40 68.59±0.05 72.08±0.20 71.64±0.26

GENEActiv
69.99 68.68 72.48 72.17

(Top-1)

PAMAP2 84.65±2.28 83.08±2.51 82.54±2.42 82.39±2.62

PAMAP2
85.67 85.31 84.38 84.09

(Top-1)

To obtain a medium teacher model, the model is trained from scratch with aug-

mentation methods. These results are shown in Table 2.18. For GENEActiv, shifting

based data augmentation gives the best performance. However, for PAMAP2, orig-

inal data achieves the best performance. Mix1 shows slightly lower accuracy than

shifting. In these experiments, the student model is trained using the teacher model

that achieves best performance over several trials.

I also evaluated different combinations of data augmentation strategies for teacher-

student network pairs. A pair is obtained by using one or no data augmentation

strategy to train the teacher network by training from scratch, and the student net-

work is trained by ESKD under different, same, or no augmentation strategy. The
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Figure 2.7: The Results for Students Trained by Different Combinations of Training

Sets for Teachers and Students. The Teacher and Student Both Are Learned by

Augmentation Methods. WRN16-3 (Medium) and WRN16-1 (Small) Are Teacher

and Student Networks, Respectively.

results are shown in Figure 2.7. I found that KD with the same data augmentation

strategy for training teachers and students may not be the right choice to get the best

performance. When a teacher is trained by shifting and a student is trained by Mix1

which showed good performance as a student in the previous sections, the results are

better than other combinations for both datasets. Also, when a student is learned by
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Mix1 including shifting transform, in general, the performance are also good for all

teachers. It implies that the method chosen for training a student is more important

than choosing a teacher; KD with a medium teacher trained by the original data and

a student trained with shift or Mix1 outperforms other combinations. Using the same

strategy for training data for teachers and students does not always present the best

performance. When the training set for students is more complicated than the set

for teachers, the performance in accuracy tends to be better. That is, applying a

transformation method to students can help to increase the accuracy. It also verifies

that better teachers do not always lead to increased accuracy of students. Even if

the accuracies from these combinations of a teacher and student are lower than mod-

els trained from scratch by WRN16-3, the number of parameters for the student is

only about 11% of the one for WRN16-3. Therefore, the results still are good when

considering both performance and computation.

2.4.5 Analysis of Student Models with Different Data Augmentation Strategies for

Training and Testing Set

In this section, I study the effect of students on KD from various augmentation

methods for training and testing, while a teacher is trained with the original dataset.

I use the same parameter (τ = 4, λ = 0.7) and ESKD for this experiment on two

datasets. A teacher is selected with a medium model trained by the original data. I

use adding noise, shifting and Mix1 methods which transform data differently.

After training the teacher network on original data, a student network is trained

with different data augmentation strategies and is evaluated on test data transformed

with different data augmentation strategies. The results are illustrated in Figure

2.8. For GENEActiv, most often, training student networks with Mix1 show better

performance on different testing sets. However, if the testing set is affected by adding
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Figure 2.8: Effect on Classification Performance of Student Network with Different

Augmentation Methods for Training and Testing Sets. WRN16-3 (Medium) and

WRN16-1 (Small) Are Teacher and Student Networks, Respectively.
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noise, training students with adding noise and Mix2 shows much better performance

than training with shifting and Mix1. From the results on PAMAP2, in most of

the cases, training students with Mix1 shows better performance to many different

testing set. However, when the testing set is augmented by adding noise, training with

original data shows the best performance. This is likely attributable to the window

size, which has about a hundred samples, and the dataset includes the information of

4 kinds of IMUs. Therefore, injecting noise, which can affect peaky points and change

gradients, creates difficulties for classification. Also, these issue can affect the both

training and testing data. Thus, if the target data includes noise, training set and

augmentation methods have to be considered along with the length of the window

and intricate signal shapes within the windows.

2.4.6 Analysis of Testing Time

Here, I compare the evaluation time for various models on the GENEActiv dataset.

I conducted the test on a desktop with a 3.50 GHz CPU (Intel® Xeon(R) CPU

E5-1650 v3), 48 GB memory, and NVIDIA TITAN Xp (3840 NVIDIA® CUDA®

cores and 12 GB memory) graphic card. I used a batch size of 1 and approximately

6000 data samples for testing. Four different models were trained from scratch with

WRN16-k (k=1, 3, 6, and 8). To test with ESKD and Mix1, WRN16-3 was used as

a teacher and WRN16-1 was used for student network. As expected, larger models

take more time for testing, as shown in Table 2.19. WRN16-1 as a student trained by

ESKD with Mix1 augmentation achieves the best accuracy, 71.35%, where the model

takes the least amount of time on both GPU and CPU. The results on CPU reiterate

the reason why model compression is required for many applications, especially on

edge devices, wearables, and mobile devices, which have limited computational and
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power resources and are generally implemented in real time with only CPU. The gap

in performance would be higher if an edge device had lower computational resources.

Table 2.19: Processing Time of Various Models for GENEActiv Dataset

Model

(WRN16-k)

Acc.

(%)

Total Avg. Total Avg.

GPU GPU CPU CPU

(sec) (ms) (sec) (ms)

k=1 67.66

15.226 2.6644 16.655 2.8920k=1 (ESKD) 69.61

k=1 (ESKD+Mix1) 71.35

k=3 68.89 16.426 2.8524 21.333 3.7044

k=6 70.04 16.663 2.8934 33.409 5.8012

k=8 69.02 16.885 2.9320 46.030 7.9928

2.5 Conclusion

In this chapter, I studied many relevant aspects of knowledge distillation (KD) for

wearable sensor data as applied to human activity analysis. I conducted experiments

with different sizes of teacher networks to evaluate their effect on KD performance.

I show that a high capacity teacher network does not necessarily ensure better per-

formance of a student network. I further showed that training with augmentation

methods and early stopping for KD (ESKD) is effective when dealing with time-

series data. I also establish that the choice of augmentation strategies has more of an

impact on the student network training as opposed to the teacher network. In most

cases, KD training with the Mix1 (Removal+Shifting) data augmentation strategy for

students showed robust performance. Further, I also conclude that a single augmen-
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tation strategy is not conclusively better all the time. Therefore, I recommend using

a combination of augmentation methods for training KD in general. In summary,

these findings provide a comprehensive understanding of KD and data augmentation

strategies for time-series data from wearable devices of human activity. These conclu-

sions can be used as a general set of recommendations to establish a strong baseline

performance on new datasets and new applications.
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Chapter 3

LEVERAGING ANGULAR DISTRIBUTIONS FOR IMPROVED KNOWLEDGE

DISTILLATION

3.1 Introduction

In the past decade, convolutional neural networks (CNN) have been widely de-

ployed into many commercial applications. Various architectures that go beyond

convolutional methods have also been developed. However, a core challenge in all

of them is that they are accompanied by high computational complexity, and large

storage requirements (Gou et al. (2021); Cho and Hariharan (2019)). For this reason,

application of deep networks is still limited to environments that have massive com-

putational support. In emerging applications, there is growing demand for applying

deep nets on edge, mobile, and IoT devices (Li et al. (2018); Plastiras et al. (2018);

Jang et al. (2020); Wu et al. (2016)). To move beyond these limitations, many studies

have developed a lightweight form of neural models which assure performance while

‘lightening’ the network scale (Cho and Hariharan (2019); Li et al. (2018); Plastiras

et al. (2018); Jang et al. (2020); Wu et al. (2016); Han et al. (2016); Hinton et al.

(2015)).

Knowledge distillation (KD) is one of the promising solutions that can reduce

the network size and develop an efficient network model (Gou et al. (2021); Cho and

Hariharan (2019); Yim et al. (2017)) for various fields including wearable sensor data

(Jeon et al. (2022b)), sound (Tripathi and Paul (2022); Li et al. (2021b)), and image

classification (Wen et al. (2021b); Chen et al. (2021)). The concept of knowledge

distillation is that the network consists of two networks, a larger one called teacher
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and a smaller one called student (Hinton et al. (2015)). During training the student,

the teacher transfers its knowledge to the student, using the logits from the final layer.

So, the student can retain the teacher model’s classification performance.

Recent insights have shown that features learnt in deep-networks often exhibit an

angular distribution, usually leveraged via a hyperspherical embedding (Choi et al.

(2020); Liu et al. (2016, 2017)). Such embeddings lead to improved discriminative

power, and feature separability. In terms of loss-functions, these can be implemented

by using angular features that correspond to the geodesic distance on the hypersphere

and incorporating a preset constant margin. In this work, I show that leveraging such

spherical embeddings also improves knowledge distillation. Firstly, to get more ac-

tivated features, spatial attention maps are computed and decoupled into two parts:

positive and negative maps. Secondly, I construct a new form of knowledge by pro-

jecting the features onto the hypersphere to reflect the angular distance between

them. Then, I introduce an angular margin to the positive feature to get a more

attentive feature representation. Finally, during the distillation, the student tries to

mimic the more separated decision regions of the teacher to improve the classifica-

tion performance. Therefore, the proposed method effectively regularizes the feature

representation of the student network to learn informative knowledge of the teacher

network.

The contributions of this chapter are:

• I propose an angular margin based distillation loss (named as AMD) which per-

forms knowledge distillation by transferring the angular distribution of attentive

features from the teacher network to the student network.

• I experimentally show that the proposed method results in significant improve-

ments with different combinations of networks and outperforms other attention-
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based methods across four datasets of different complexities, corroborating that

the performance of a higher capacity teacher model is not necessarily better.

• I rigorously validate the advantages of the proposed distillation method with

various aspects using visualization of activation maps, classification accuracy,

and reliability diagrams.

The rest of the chapter is organized as follows. In section 3.2 and 3.3, I describe

related work and background, respectively. In section 3.4, I provide an overview of

the proposed method. In section 3.5, I describe the experimental results and analysis.

In section 3.6, I discuss the findings and conclusions.

3.2 Related Work

Knowledge Distillation. Knowledge distillation, a transfer learning method,

trains a smaller model by shifting knowledge from a larger model. KD is firstly intro-

duced by Buciluǎ et al. (Buciluǎ et al. (2006)) and is further explored by Hinton et

al. (Hinton et al. (2015)). The main concept of KD is using soft labels by a trained

teacher network. That is, mimicking soft probabilities helps students get knowledge

of teachers, which improves beyond using hard labels (training labels) alone. Cho et

al. (Cho and Hariharan (2019)) explore which combination of student-teacher is good

to obtain the better performance. They show that using a teacher trained by early

stopping the training improves the efficacy of KD. KD can be categorized into two

approaches that use the outputs of the teacher (Gou et al. (2021)). One is response-

based KD, which uses the posterior probabilities with softmax loss. The other is

feature-based KD using the intermediate features with normalization. Feature-based

methods can be performed with the response-based method to complement tradi-

tional KD (Gou et al. (2021)). Recently, feature-based distillation methods for KD
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have been studied to learn richer information from the teacher for better-mimicking

and performance improvement (Gou et al. (2021); Wen et al. (2021b); Wang and

Yoon (2021)). Romero et al. (Romero et al. (2015)) firstly introduced the use of

intermediate representations in FitNets using feature-based distillation. This method

enables the student to mimic the teacher’s feature maps in intermediate layers.

Attention Transfer. To capture the better knowledge of a teacher network,

attention transfer (Gou et al. (2021); Zagoruyko and Kmodakis (2017); Wang et al.

(2020c); Ji et al. (2021)) has been utilized, which is one of the popular methods for

feature-based distillation. Zagoruyko et al. (Zagoruyko and Kmodakis (2017)) sug-

gest activation-based attention transfer (AT), which uses a sum of squared attention

mapping function computing statistics across the channel dimension. Although the

depth of teacher and student is different, knowledge can be transferred by the atten-

tion mapping function, which matches the depth size as one. The activation-based

spatial attention maps are used as the source of knowledge for distillation with in-

termediate layers, where the maps are created as: fdsum(A) =
∑c

j=1 |Aj|d, where f is

a computed attention map, A is an output of a layer, c is the number of channels

for the output, j is the number for the channel, and d > 1. A higher value of d cor-

responds to a heavier weight on the most discriminative parts defined by activation

level. AT (feature-based distillation method) shows better effectiveness when used

with traditional KD (response-based KD) (Zagoruyko and Kmodakis (2017)). The

method encourages the student to generate similar normalized maps as the teacher.

However, these studies have only focused on mimicking the teacher’s activation from a

layer (Wang and Yoon (2021)), not considering the teacher’s dual ability to accurately

distinguish between positive (relevant to the target object) and negative (irrelevant).

Teacher not only can generate and transfer its knowledge as an activation map di-

rectly, but also can transfer separability to distinguish between positive and negative
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features. I refer to this as a dual ability, which I consider for improved distillation.

The emphasized positive feature regions that encapsulate regions of the target object

are crucial to predicting the correct class. In general, a higher-capacity model shows

better performance, producing those regions with more attention and precision com-

pared to the smaller network. This suggests that the transfer of distinct regions of

the positive and negative pairs from teacher to student could significantly improve

performance. This motivates us to focus on utilizing positive and negative pairs for

extracting more attentive features, implying better separability, for distillation.

Spherical Feature Embeddings. The majority of existing methods (Sun et al.

(2014); Wen et al. (2016)) rely on Euclidean distance for feature distinction. These

approaches could not solve the problem that classification under open-set protocol

shows a meaningful result only when successfully narrowing maximal intra-class dis-

tance. To solve this problem, an angular-softmax (A-softmax) function is proposed to

distinguish the features by increasing the angular margins between features (Liu et al.

(2017)). According to its geometric interpretation, using A-softmax function equiva-

lents to the projection of features onto the hypersphere manifold, which intrinsically

matches the preliminary condition that features also lie on a manifold. Applying the

angular margin penalty corresponds to the geodesic distance margin penalty in the

hypersphere (Liu et al. (2017)). A-softmax function encourages learned features to

be discriminative on hypersphere manifold. For this reason, the A-softmax function

shows superior performance to the original softmax function when tested on several

classification problems (Liu et al. (2017)). On the other hand, Choi et al. (Choi

et al. (2020)) introduced angular margin based contrastive loss (AMC-loss) as an

auxiliary loss, employing the discriminative angular distance metric that corresponds

to geodesic distance on a hypersphere manifold. AMC-loss increases inter-class sep-

arability and intra-class compactness, improving performance in classification. The
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method can be combined with other deep techniques, because it easily encodes the

angular distributions obtained from many types of deep feature learners (Choi et al.

(2020)).

The previous methods work with logits only or work with an auxiliary loss, such as

a contrastive loss. I focus on features modeled as coming from angular distributions,

and focus on their separability. The observations give us an insight that the high

quality features for knowledge distillation can be obtained by projecting the feature

pairs onto a hypersphere. For better distillation, I construct a derive new type of

implicit knowledge with positive and negative pairs from intermediate layers. The

details are explained in section 3.4.

3.3 Background

3.3.1 Traditional Knowledge Distillation

In standard knowledge distillation (Hinton et al. (2015)), the loss for training a

student is:

L = (1− λ)LC + λLK, (3.1)

where, LC denotes the standard cross entropy loss, LK is KD loss, and λ is a hyperpa-

rameter; 0 < λ < 1. The error between the output of the softmax layer of a student

network and the ground-truth label is penalized by the cross-entropy loss:

LC = H(softmax(aS), y), (3.2)

where H(·) is a cross entropy loss function, aS is the logits of a student (inputs to the

final softmax), and y is a ground truth label. The outputs of student and teacher are

matched by KL-divergence loss:

LK = τ 2KL(zT , zS), (3.3)
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where, zT = softmax(aT/τ) is a softened output of a teacher network, zS = softmax(aS/τ)

is a softened output of a student, and τ is a hyperparameter; τ > 1. Feature distil-

lation methods using intermediate layers can be used with the standard knowledge

distillation that uses output logits. When they are used together, in general, it is

beneficial to guide the student network towards inducing more similar patterns of

teachers and getting a better classification performance. Thus, I also utilize the stan-

dard knowledge distillation with the proposed method.

3.3.2 Attention Map

Denote an output as A ∈ Rc×h×w, where c is the number of output channels, h

is the height for the size of output, and w is width for the size of the output. The

attention map for the teacher is given as follows:

f lT =
c∑
j=1

|AlT,j|2. (3.4)

Here, AT is an output of a layer from a teacher model, l is a specific layer, c is the

number of channels, j is the number for the output channel, and T denotes a teacher

network. The attention map for the student is f l
′
S =

∑c′

j′=1 |Al
′

S,j′ |2, where Al
′
S is an

output of a layer from a student, l′ is the corresponding layer of l, c′ is the number

of channels for the output, j′ is the number for the output channel, and S denotes a

student network. If the student and teacher use the same depth for transfer, l′ can

be the layer at the same depth as l; if not, l′ can be the end of the same block for the

teacher. From the attention map, I obtain positive and negative maps and I project

features onto hypersphere to calculate angular distance for distillation. The details

are explained in section 3.4.
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3.3.3 Spherical Feature with Angular Margin

In order to promote the learned features to have an angular distribution, (Liu

et al. (2017); Wang et al. (2018a)) proposed to introduce the angular distance between

features W and weights x. For example, W Tx = ‖W‖ ‖x‖ cos(θ), where bias is set

as 0 for simplicity, and θ is the angle between W and x. Then, the normalization

of feature and weight makes the outputs only depend on the angle between weights

and features and further, ‖x‖ is replaced to a constant s such that the features are

distributed on a hypersphere with a radius of s. To enhance the discrimination power,

angular margin m is applied to the angle of the target. Finally, output logits are used

to formulate probability with angular margin m as below (Liu et al. (2017); Wang

et al. (2018a)):

Gi = log

(
es·(cos(m·θyi ))

es·(cos(m·θyi )) +
∑J

j=1,j 6=yi e
s·(cos(θj))

)
, (3.5)

where, yi is a label and θyi is a target angle for class i, θj is an angle obtained from

j-th element of output logits, s is a constant, and J is the class number. Liu et

al. (Liu et al. (2017)) and Wang et al. (Wang et al. (2018a)) utilized output logits

to obtain more discriminative features for classification on a hypersphere manifold,

which performs better than using original softmax function. I use Equation (3.5) to

create the new type of feature-knowledge in the intermediate layers instead of output

logits in the final classifier, thereby more attentive feature maps are transferred to

the student model.

3.4 Proposed Method

The proposed method utilizes features from intermediate layers of deep networks

for extracting angular-margin based knowledge as illustrated in Figure 3.1. The

resultant angular margin loss is computed at various depths of the student and teacher
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Figure 3.1: The Existing Attention Map-based Method (AT (Zagoruyko and

Kmodakis (2017))) Suggested the Direct Use of the Feature Map in the Interme-

diate Layer as Shown in the Green Box. Instead, I First Decouple the Feature Map

into the Positive (qp) and Negative (qn) Features and Map Them on the Hypersphere

with Angular Margin, m. Then, I Convert Them into the Probability Forms and

Compute Loss Based on AM Loss Function. The Details Are Explained in Section

3.4.2.

as illustrated in Figure 3.2. To obtain the angular distance between positive and

negative features, I first generate attention maps from the outputs of intermediate

layers. I then decouple the maps into positive and negative features. The features are

projected onto a hypersphere to extract angularly distributed features. For effective

distillation, more attentive features are obtained by introducing angular margin to the

positive feature and the probability forms for distillation are computed. Finally, the

knowledge of the teacher having better discrimination of positive and negative features

is transferred to the student. The details for obtaining the positive and negative maps

and the angular margin based knowledge are explained in the following section.
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Figure 3.2: Schematics of Teacher-student Knowledge Transfer with the Proposed

Method.

3.4.1 Generating Attention Maps

To transfer activated features from teacher to student, the output of intermediate

layers are used. To match the dimension size between teacher and student models, I

create the normalized attention maps (Zagoruyko and Kmodakis (2017)), which has

benefits in generating maps discriminatively between positive and negative features.

This reduces the need for any additional training procedure for matching the chan-

nel dimension sizes between teacher and student. I use the power value d = 2 for

generating the attention maps, which shows the best results as reported in previous

methods (Zagoruyko and Kmodakis (2017)).

3.4.2 Angular Margin Computation

Although the activation map-based distillation provides additional context infor-

mation for student model learning, there is still room to craft an attentive activation

map that can distill a superior student model in KD. To further refine the original

attention map, I propose an angular margin-based distillation (AMD) that encodes
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new knowledge using the angular distance between positive (relevant to the target

object) and negative features (irrelevant) on the hypersphere.

I denote the normalized positive map as Qp = f/ ‖f‖ where f is the output

map extracted from the intermediate layer in networks. Further, I can obtain the

normalized negative map by Qn = 1−Qp.

Then, to make the positive map more attentive, I insert an angular margin m into

the positive features. In this way, a new feature-knowledge encoding attentive feature

can be defined as follows:

Gl(Qp, Qn) = log

(
es·(cos(m·θpl ))

es·(cos(m·θpl )) + es·(cos(θnl
))

)
, (3.6)

where, θpl = cos−1(Qp) and θnl
= cos−1(Qn) for lth layer in the networks, and m is

a scalar angular margin. Gl ∈ R1×h×w reflects the angular distance between positive

and negative features in lth layer. For transferring knowledge, I aim to make the

student’s Gl(QSp, QSn) approximate the teacher’s Gl(QTp, QTn) by minimizing the

angular distance between feature maps.

3.4.3 Angular Margin Based Distillation Loss

With redesigned knowledge as above, I finally define the angular margin based

distillation loss that accounts for the knowledge gap between the teacher and student

activations as:

LAM(QTp, QTn, QSp, QSn) =
1

3|L|
∑

(l,l′)∈L∥∥∥Ĝl(QTp, QTn)− Ĝl′(QSp, QSn)
∥∥∥2
F

A

+

∥∥∥Q̂l
Tp − Q̂l′

Sp

∥∥∥2
F

P

+
∥∥∥Q̂l

Tn − Q̂l′

Sn

∥∥∥2
F

N

 .

(3.7)
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Here, Ĝ denotes a function for normalization for output of function G, Q̂ is a normal-

ized map. L collects the layer pairs (l and l′), and ‖·‖F is the Frobenius norm (Tung

and Mori (2019)). I will verify the performance of each component (A, P, and N) in

section 3.5.3.

The final loss (LAMD) of the proposed method combines all the distillation losses,

including the conventional logit distillation (Equation (3.3)). Thus, the overall learn-

ing objective can be written as:

LAMD = λ1LC + λ2LK + γLA, (3.8)

where, LC is a cross-entropy loss, LK is a knowledge distillation loss, LA denotes

the angular margin based loss from LAM , and λ1, λ2, and γ are hyperparameters to

control the balance between different losses.

Global and Local Feature Distillation. So far, I only consider the global

feature (i.e., preserving its dimension and size). However, I point out that the global

feature sometimes does not transfer more informative knowledge and rich spatial

information across contexts of an input. Therefore, I also suggest utilizing local

features during distillation. Specifically, the global feature is the original feature

without a map division. Local features are determined by the division of the global

feature. I split the global feature map from each layer by 2 for the width and height

sizes of the maps to create four (2 × 2) local feature maps. That is, one local map

has h/2×w/2 size, where h and w are the height and width sizes of the global map.

Similar to before, local features encoding the attentive angle can be extracted for

both teacher and student. Then, the losses considering global and local features for

the proposed method are:

LAglobal
= LAM(QT , QS),

LAlocal
=

1

K

K∑
k=1

LAM(Qk
T , Q

k
S),

(3.9)
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where QT and QS are global features of the teacher and student for distillation, and

Qk
T and Qk

S are local features of the teacher and student, respectively, for k-th element

of K, where K is the total number of local maps from a map; K = 4. When LAglobal

and LAlocal
are used together, I applied weights of 0.2 for local and 0.8 for global

features to make a balance for learning.

3.5 Experiments

In this section, I present experimental validation of the proposed method. I eval-

uate the proposed method, AMD, with various combinations of teacher and student,

which have different architectural styles. I run experiments on four public datasets

that have different complexities. I examine the sensitivity with several different hy-

perparameters (γ and m) for the proposed distillation and discuss which setting is

the best. To demonstrate the detailed contribution, I report the results with var-

ious aspects, using classification accuracy as well as activation maps extracted by

Grad-CAM (Selvaraju et al. (2017)). Finally, I investigate performance enhancement

by combining previous methods including filtered feature based distillation. Each

experiment and its corresponding section are described in Table 3.1.

3.5.1 Datasets

CIFAR-10. CIFAR-10 dataset (Krizhevsky and Hinton (2009)) includes 10

classes with 5000 training images per class and 1000 testing images per class. Each

image is an RGB image of size 32×32. I use the 50000 images as the training set and

10000 as the testing set. The experiments on CIFAR-10 helps validate the efficacy of

the models with less time consumption.

CINIC-10. I extend the experiments on CINIC-10 (Darlow et al. (2018)). CINIC-

10 comprises of augmented extension in the style of CIFAR-10, but the dataset con-
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Table 3.1: Description of Experiments and Their Corresponding Sections.

Description Section

1. Does AMD work to distill a better student?

3.5.3• Comparison with various attention based distillation methods.

• Investigating the effect of each component of the proposed method.

2. What is the effect of learning with AMD from various teachers?

3.5.4
• Exploring with different capacity of teachers.

3. What is the effect of different hyperparameters?

3.5.5
• Ablation study with γ and m.

4. What are the visualized results for the area of interest?

3.5.6• Visualized results of activation maps from intermediate layers with or without

local feature distillation.

5. Is AMD able to perform with existing methods?

3.5.7
• Evaluation with various methods such as fine-grained feature distillation, aug-

mentation, and other distillation methods.

• Generalizability analysis with ECE and reliability diagrams.

tains 270,000 images whose scale is closer to that of ImageNet. The images are

equally split into each ‘train’, ‘test’, and ‘validate’ sets. The size of the images is

32×32. There are ten classes with 9000 images per class.
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Table 3.2: Architecture of WRN Used in Experiments. Downsampling Is Performed

in the First Layers of Conv3 and Conv4. 16 and 28 Mean Depth and k Is Width

(Channel Multiplication) of the Network.

Group

Name

Output

Size
WRN16-k WRN28-k

conv1 32×32 3×3, 16 3×3, 16

conv2 32×32

3×3, 16k

3×3, 16k

×2

3×3, 16k

3×3, 16k

×4

conv3 16×16

3×3, 32k

3×3, 32k

×2

3×3, 32k

3×3, 32k

×4

conv4 8×8

3×3, 64k

3×3, 64k

×2

3×3, 64k

3×3, 64k

×4

1×1 average pool, 10-d fc, softmax

Tiny-ImageNet / ImageNet. To extend the experiments on a larger scale

dataset having more complexity, I use Tiny-ImageNet (Le and Yang (2015)). The

size of the images for Tiny-ImageNet is 64×64. I pad them to 68×68, then they are

randomly cropped to 64×64, and horizontally flipped, for augmentation to account

for the complexity of the dataset. The training and testing sets are of size 100k and

10k respectively. The dataset includes 200 classes. For ImageNet (Deng et al. (2009)),

The dataset has 1k categories with 1.2M training images. The images are randomly

cropped and then resized to 224×224 and horizontally flipped.
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Figure 3.3: Accuracy (%) of Students (WRN16-1) Trained with a Teacher (WRN16-3)

on CIFAR-10 for Various λ2. λ1 Is Obtained by 1 - λ2.

3.5.2 Settings for Experiments

For experiments on CIFAR-10, CINIC-10, and Tiny-ImageNet, I set the batch

size as 128, the total epochs as 200 using SGD with momentum 0.9, a weight decay

of 1× 10−4, and the initial learning rate lr as 0.1 which is decayed by a factor of 0.2

at epochs 40, 80, 120, and 160. For ImageNet, I use SGD with momentum of 0.9 and

the batch size is set as 256. I run a total epoch of 100. The initial learning rate lr is

0.1 decayed by 0.1 in 30, 60, and 90 epochs.

In experiments, I use the proposed method with WideResNet (WRN) (Zagoruyko

and Komodakis (2016)) for teacher and student models to evaluate the classification

accuracy, which is popularly used for KD (Cho and Hariharan (2019); Yim et al.

(2017); Zagoruyko and Kmodakis (2017); Tung and Mori (2019)). Their network

architectures are described in Table 3.2.

To determine optimal parameters λ1 and λ2 for KD, I tested with different values

for λ1 and λ2 for training based on KD on CIFAR-10 dataset. As shown in Figure 3.3,

when λ1 is 0.1 and λ2 is 0.9 (τ = 4) with KD, the accuracy of a student (WRN16-1)
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trained with WRN16-3 as a teacher is the best. If λ1 is small and λ2 is large, the

distillation effect of KD is increased. Since the accuracy depends on λ1 and λ2, I

referred to previous studies (Cho and Hariharan (2019); Ji et al. (2021); Tung and

Mori (2019)) to choose the popular parameters for experiments. The parameters of

(λ1 = 0.1, λ2 = 0.9, τ = 4), (λ1 = 0.4, λ2 = 0.6, τ = 16), (λ1 = 0.7, λ2 = 0.3, τ

= 16), and (λ1 = 1.0, λ2 = 1.0, τ = 4) are used for KD on CIFAR-10, CINIC-10,

Tiny-ImageNet, and ImageNet, respectively.

I perform baseline comparisons with traditional KD (Hinton et al. (2015)), at-

tention transfer (AT) (Zagoruyko and Kmodakis (2017)), relational knowledge dis-

tillation (RKD) (Park et al. (2019b)), variational information distillation (VID) (Ahn

et al. (2019)), similarity-preserving knowledge distillation (SP) (Tung and Mori (2019)),

correlation congruence for knowledge distillation (CC) (Peng et al. (2019)), con-

trastive representation distillation (CRD) (Tian et al. (2019)), attentive feature dis-

tillation and selection (AFDS) (Wang et al. (2020c)), and attention-based feature

distillation (AFD) (Ji et al. (2021)) that is a new feature linking method consider-

ing similarities between the teacher and student features, including state-of-the-art

approaches. Note that, for fair comparison, the distillation methods are performed

with traditional KD to see if they enhance standard KD, keeping the same setting as

the proposed method. The hyperparameters of the methods follow their respective

papers. For the proposed method, the constant parameter s and margin parameter

m are 64 and 1.35, respectively. The loss weight γ of the proposed method is 5000.

I determine the hyperparameters empirically, considering the distillation effects by

the capacity of models. A more detailed description of parameters appears in section

3.5.5. All experiments were repeated five times, and the averaged best accuracy and

the standard deviation of performance are reported.
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No augmentation method is applied for CIFAR-10 and CINIC-10. For the pro-

posed method, additional techniques, such as using the other hidden layers for gen-

erating better distillation effects from teachers or reshaping the dimension size of the

feature maps, are not applied. All of the experiments are run on a 3.50 GHz CPU

(Intel® Xeon(R) CPU E5-1650 v3), 48 GB memory, and NVIDIA TITAN Xp (3840

NVIDIA® CUDA® cores and 12 GB memory) graphic card (NVIDIA (2016)).

To obtain the best performance, I adopt early-stopped KD (ESKD) (Cho and

Hariharan (2019)) for training teacher and student models, leveraging its effects across

the board in improving the efficacy of knowledge distillation. As shown in Figure 3.4,

the early stopped model of a teacher tends to train student models better than Full

KD that uses a fully trained teacher.

3.5.3 Attention-based Distillation

In this section, I explore the performance of attention based distillation approaches

with different types of combinations for teacher and student. I set four types of com-

binations for teacher and student that consist of the same or different structure of net-

works. The four types of combinations are described in Table 3.3. Since the proposed

method is relevant to using attention maps, I implemented various baselines that are

state-of-the-art attention based distillation methods, including AT (Zagoruyko and

Kmodakis (2017)), AFDS (Wang et al. (2020c)), and AFD (Ji et al. (2021)). As

described in section 3.2, AT (Zagoruyko and Kmodakis (2017)) uses activation-based

spatial attention maps for transferring from teacher to student. AFDS (Wang et al.

(2020c)) includes attentive feature distillation and accelerates the transfer-learned

model by feature selection. Additional layers are used to calculate a transfer impor-

tance predictor used to measure the importance of the source activation maps and

enforce a different penalty for training a student. AFD (Ji et al. (2021)) extracts
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Figure 3.4: Accuracy (%) for Full KD and ESKD. (a) and (b) Are on CIFAR-10, and

(c) and (d) Are on CINIC-10, Respectively. T and S Denotes Teacher and Student

Models, Respectively.

channel and spatial attention maps and identifies similar features between teacher

and student, which are used to control the distillation intensities for all possible pairs

and compensate for the limitation of learning to transfer (L2T) (Jang et al. (2019))

using manually selected links. I implemented AFDS (Wang et al. (2020c)) when the

dimension size of features for intermediate layers from the student is the same as the

one from the teacher to concentrate on the distillation effects. I use four datasets

that have varying degrees of difficulty in a classification problem. These baselines are

used in the following experiments as well.

Table 3.4 presents the accuracy of various knowledge distillation methods for all se-

tups in Table 3.3 on CIFAR-10 dataset. The proposed method, AMD (global+local),
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Table 3.3: Details of Teacher and Student Network Architectures. ResNet (He et al.

(2016)) and WideResNet (Zagoruyko and Komodakis (2016)) Are Denoted by ResNet

(Depth) and WRN (Depth)-(Channel Multiplication), Respectively.

DB Setup Compression type Teacher Student
FLOPs FLOPs # of params # of params Compression

(teacher) (student) (teacher) (student) ratio

C
IF
A
R
-1
0

(a) Channel WRN16-3 WRN16-1 224.63M 27.24M 1.50M 0.18M 11.30%

(b) Depth WRN28-1 WRN16-1 56.07M 27.24M 0.37M 0.18M 47.38%

(c) Depth+Channel WRN16-3 WRN28-1 224.63M 56.07M 1.50M 0.37M 23.85%

(d) Different architecture ResNet44 WRN16-1 99.34M 27.24M 0.66M 0.18M 26.47%

C
IN

IC
-1
0

(a) Channel WRN16-3

WRN16-1

224.63M

27.24M

1.50M

0.18M

11.30%

(b) Depth WRN28-1 56.07M 0.37M 47.38%

(ca) Depth+Channel WRN28-3 480.98M 3.29M 5.31%

(d) Different architecture ResNet44 99.34M 0.66M 26.47%
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(a) Channel WRN16-3

WRN16-1

898.55M

108.98M

1.59M

0.19M

11.82%

(bb) Depth WRN40-1 339.60M 0.58M 32.52%

(cb) Depth+Channel WRN40-2 1,323.10M 2.27M 8.26%

(d) Different architecture ResNet44 397.36M 0.67M 27.82%

has the best performing results in all cases. Table 3.5 describes the CINIC-10 results.

In most cases, AMD (global+local) achieves the best results. For experiments on

Tiny-ImageNet, as illustrated in Table 3.6, AMD outperforms previous methods, and

AMD (global) shows better results in (a) and (bb) setups. For (cb) and (d) setups,

AMD (global+local) provides better results. For experiments on ImageNet, standard

KD is not applied to baselines and Full KD is utilized. Teacher and student net-

works are ResNet34 and ResNet18, respectively. The results of baselines are referred

from prior works (Ji et al. (2021); Tian et al. (2019)). As described in Table 3.7,

AMD (global) outperforms other distillation methods, increasing the top-1 and top-5

accuracy by 1.83% and 1.43% over the results of learning from scratch, respectively.
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Table 3.4: Accuracy (%) on CIFAR-10 with Various Knowledge Distillation Methods.

The Methods Denoted by “*” Are Attention Based Distillation. “g” and “l” Denote

Using Global and Local Feature Distillation, Respectively.

Setup

Method

Teacher Student KD AT∗ SP RKD VID AFDS∗ AFD∗
AMD

(g) (g+l)

(a)
87.76 84.11 85.29 85.79 85.69 85.45 85.40

–
86.23 86.28 86.36

±0.12 ±0.12 ±0.15 ±0.14 ±0.11 ±0.09 ±0.14 ±0.13 ±0.06 ±0.10

(b)
85.59 84.11 85.48 85.79 85.77 85.47 84.92 85.53 85.84 86.04 86.10

±0.13 ±0.12 ±0.12 ±0.12 ±0.07 ±0.12 ±0.13 ±0.13 ±0.11 ±0.12 ±0.10

(c)
87.76 85.59 86.57 86.77 86.56 86.38 86.64

–
87.24 87.13 87.35

±0.12 ±0.12 ±0.16 ±0.11 ±0.09 ±0.22 ±0.24 ±0.03 ±0.14 ±0.10

(d)
86.41 84.11 85.44 85.95 85.41 85.50 85.17 85.14 85.78 86.22 86.34

±0.20 ±0.21 ±0.06 ±0.05 ±0.12 ±0.06 ±0.11 ±0.13 ±0.09 ±0.07 ±0.05

Compared to KD, AT obtains better performance in most cases across datasets.

That is, the attention map helps the teacher to transfer its knowledge. Even though

there is a case that AT shows lower performance than KD in Table 3.6, AMD outper-

forms KD in all cases. It verifies that applying the discriminative angular distance

metric for knowledge distillation maximizes the attention map’s efficacy of transfer-

ring the knowledge and performs to complement the traditional KD for various com-

binations of teacher and student. The accuracies of SP with setup (a) and (d), and

AFD with setup (d), are even lower than the accuracy of learning from scratch, while

AMD performs better than other methods as shown in Table 3.6. When the classifi-

cation problem is harder, AMD (global) can perform better than AMD (global+local)
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Table 3.5: Accuracy (%) on CINIC-10 with Various Knowledge Distillation Methods.

The Methods Denoted by “*” Are Attention Based Distillation. AMD Outperforms

RKD (Park et al. (2019b)). “g” and “l” Denote Using Global and Local Feature

Distillation, Respectively.

Setup

Method

Teacher Student KD AT∗ SP VID AFDS∗ AFD∗
AMD

(g) (g+l)

(a)
75.40

72.05
±0.12

74.31 74.63 74.43 74.35
–

74.13 75.04 75.18

±0.12 ±0.10 ±0.13 ±0.14 ±0.05 ±0.12 ±0.11 ±0.09

(b)
75.59 74.66 74.73 74.94 73.85 74.54 74.36 75.14 75.21

±0.15 ±0.08 ±0.02 ±0.11 ±0.08 ±0.08 ±0.04 ±0.06 ±0.04

(ca)
76.97 74.26 74.19 75.05 74.06

–
74.20 74.72 75.17

±0.05 ±0.06 ±0.11 ±0.10 ±0.15 ±0.12 ±0.07 ±0.07

(d)
74.30 74.47 74.67 74.46 74.43 74.64 73.31 74.93 75.10

±0.15 ±0.09 ±0.05 ±0.17 ±0.10 ±0.12 ±0.13 ±0.07 ±0.10

in some cases. When the teacher and student have different channels or architectural

styles, AMD (global+local) can generate a better student than AMD (global).

Components of AMD Loss Function. As described in Equation 3.7, angular

margin distillation loss function (LAM(QTp, QTn, QSp, QSn)) includes three compo-

nents (A, P, N). To verify the performance of each component in AMD loss, I experi-

ment with each component separately. As shown in Figure 3.5, among all components,

(A) provides the strongest contribution. Each component in AMD contributes to im-

provements in performance, which transfers different knowledge. Adding one compo-

nent to the other one provides richer information, which leads to better performance.

The combination of all the components (AMD) show a much higher performance.
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Table 3.6: Accuracy (%) on Tiny-ImageNet with Various Knowledge Distillation

Methods. The Methods Denoted by “*” Are Attention Based Distillation. AMD

Outperforms VID (Ahn et al. (2019)) and RKD (Park et al. (2019b)). “g” and “l”

Denote Using Global and Local Feature Distillation, Respectively.

Setup

Method

Teacher Student KD AT∗ SP AFDS∗ AFD∗
AMD

(g) (g+l)

(a)
58.16

49.45
±0.20

49.99 49.72 49.27
–

50.00 50.32 49.92

±0.30 ±0.15 ±0.15 ±0.19 ±0.23 ±0.07 ±0.04

(bb)
54.74 49.56 49.79 49.89 49.46 50.04 50.15 49.97

±0.24 ±0.17 ±0.22 ±0.20 ±0.28 ±0.27 ±0.10 ±0.18

(cb)
59.92 49.67 49.62 49.59

–
49.78 49.88 50.07

±0.15 ±0.13 ±0.16 ±0.25 ±0.24 ±0.20 ±0.10

(d)
54.66 49.52 49.45 49.13 49.55 49.44 49.92 50.08

±0.14 ±0.16 ±0.28 ±0.20 ±0.13 ±0.27 ±0.09 ±0.16

Table 3.7: Top-1 and Top-5 Accuracy (%) on ImageNet with Various Knowledge

Distillation Methods. The Methods Denoted by “*” Are Attention Based Distillation.

“g” and “l” Denote Using Global and Local Feature Distillation, Respectively.

Teacher Student KD AT∗ RKD SP CC AFD∗ CRD(+KD)
AMD

(g) (g+l)

Top-1 73.31 69.75 70.66 70.70 70.59 70.79 69.96 71.38 71.17(71.38) 71.58 71.47

Top-5 91.42 89.07 89.88 90.00 89.68 89.80 89.17 – 90.13(90.49) 90.50 90.49

This result indicates that all components (AMD) are critical to distilling the best

student model.
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Figure 3.5: Accuracy (%) of Students (WRN16-1) Trained with Teachers (WRN16-3

and WRN28-1) on CIFAR-10 for Various Loss Functions.

Figure 3.6: LA Vs. Accuracy (%) for (from Left to Right) WRN16-1 Students (S)

Trained with WRN16-3, WRN28-1, and ResNet44 Teachers (T), on CIFAR-10.

Figure 3.7: t-SNE Plots of Output for Teacher Model (ResNet44) and Students

(WRN16-1) Trained with KD and AMD on CIFAR-10.
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In Figure 3.6, I show LA vs. accuracy, when using KD, SP, and AMD (global),

for WRN16-1 students trained with WRN16-3, WRN28-1, and ResNet44 teachers,

on CIFAR-10 testing set. As shown in Figure 3.6, when the loss value is smaller, the

accuracy is higher. Thus, these plots verify that LA and performance are correlated.

t-SNE Visualization and Cluster Metrics. To measure the clustering per-

formance, I plot t-SNE (van der Maaten and Hinton (2008)) and calculate V-Score

(Rosenberg and Hirschberg (2007)) of outputs from penultimate layers of KD and the

proposed method on CIFAR-10, where V-Score is clustering metrics implying a higher

value is better clustering. As shown in Figure 3.7, compared to KD, AMD helps get

tighter clusters and better separation between classes as seen in higher V-Score.

3.5.4 Effect of Teacher Capacity

To understand the effect of the capacity of the teacher, I implemented various

combinations of teacher and student, where the teacher has a different capacity. I

use well-known benchmarks for image classification which are WRN (Zagoruyko and

Komodakis (2016)), ResNet (He et al. (2016)), and MobileNetV2 (M.NetV2) (Sandler

et al. (2018)). I applied the same settings as in the experiments of the previous section.

The results in classification accuracy for the student models are described in Ta-

ble 3.8 across three datasets, trained with attention based and non-attention based

methods (Hinton et al. (2015); Zagoruyko and Kmodakis (2017); Tung and Mori

(2019)). The number of trainable parameters are noted in in brackets. For all cases,

the proposed method, AMD, shows the highest accuracy. When the complexity of

the dataset is higher and the depth of teacher is largely different from the one of the

student, AMD (global) tends to generate a better student than AMD (global+local).

When a larger capacity of students is used, the accuracy observed is higher. This

is seen in the results from WRN16-1 and ResNet20 students with WRN16-3 and
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Table 3.8: Accuracy (%) with Various Knowledge Distillation Methods for Different

Combinations of Teachers and Students. “Teacher” and “Student” Denote Results of

the Model Used to Train the Distillation Methods and Trained from Scratch, Respec-

tively. “g” and “l” Denote Using Global and Local Feature Distillation, Respectively.

Method CIFAR-10 CINIC-10 Tiny-ImageNet

Teacher

WRN WRN WRN WRN WRN WRN WRN WRN WRN WRN WRN WRN M.Net WRN WRN WRN

28-1 40-1 16-3 16-8 16-3 16-8 28-1 40-1 28-3 40-2 16-3 28-3 V2 40-1 40-2 16-3

(0.4M, (0.6M, (1.5M, (11.0M, (1.5M, (11.0M, (0.4M, (0.6M, (3.3M, (2.2M, (1.5M, (3.3M, (0.6M, (0.6M, (2.3M, (1.6M,

85.84) 86.39) 88.15) 89.50) 75.65) 77.97) 73.91) 74.49) 77.14) 76.66) 75.65) 77.14) 80.98) 55.28) 60.18) 58.78)

Student

WRN16-1 WRN28-1 WRN16-1 ResNet20 WRN16-1 ResNet20

(0.2M, (0.4M, (0.2M, (0.3M, (0.2M, (0.3M,

84.11±0.21) 85.59±0.13) 72.05±0.12) 72.74±0.09) 49.45±0.20) 51.75±0.19

KD
85.48 85.42 86.57 86.68 74.31 74.17 74.66 74.45 74.26 74.29 75.12 74.97 76.69 49.56 49.67 51.72

±0.12 ±0.11 ±0.16 ±0.08 ±0.10 ±0.16 ±0.08 ±0.03 ±0.06 ±0.09 ±0.11 ±0.07 ±0.06 ±0.17 ±0.13 ±0.13

AT
85.79 85.79 86.77 87.00 74.63 74.23 74.73 74.55 74.19 74.48 75.33 75.18 77.34 49.79 49.62 51.65

±0.12 ±0.11 ±0.11 ±0.05 ±0.13 ±0.14 ±0.02 ±0.06 ±0.11 ±0.08 ±0.11 ±0.09 ±0.10 ±0.22 ±0.16 ±0.05

SP
85.77 85.90 86.56 86.94 74.43 74.34 74.94 74.86 75.04 74.81 75.29 75.50 73.71 49.89 49.59 51.87

±0.07 ±0.11 ±0.09 ±0.08 ±0.11 ±0.13 ±0.11 ±0.07 ±0.10 ±0.09 ±0.10 ±0.09 ±0.10 ±0.20 ±0.25 ±0.09

AMD 86.04 86.03 87.13 87.22 75.04 74.93 75.14 75.12 74.72 74.95 75.66 75.61 78.45 50.15 49.88 51.89

(g) ±0.12 ±0.09 ±0.14 ±0.17 ±0.11 ±0.09 ±0.06 ±0.07 ±0.07 ±0.20 ±0.08 ±0.06 ±0.03 ±0.11 ±0.20 ±0.25

AMD 86.10 86.15 87.35 87.31 75.18 75.20 75.21 75.10 75.22 75.04 75.75 75.76 78.62 49.97 50.07 52.12

(g+l) ±0.10 ±0.06 ±0.10 ±0.15 ±0.09 ±0.05 ±0.04 ±0.04 ±0.07 ±0.06 ±0.08 ±0.11 ±0.04 ±0.18 ±0.10 ±0.15

WRN28-3 teachers on CINIC-10 dataset. For the combinations, ResNet20 students

having a larger capacity than WRN16-1 generate better results. Furthermore, on

CIFAR-10, when a WRN16-3 teacher is used, a WRN28-1 student achieves 87.35%

for AMD (global+local), whereas a WRN16-1 student achieves 86.36% for AMD

(global+local). On Tiny-ImageNet, when AMD (global+local) is used, the accuracy

of a ResNet20 student is 52.12%, which is higher than the accuracy of a WRN16-1

student, which is 49.92%.
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Compared to KD, in most cases, AT achieves better performance. However, when

the classification problem is difficult, such as when using Tiny-ImageNet, and when

WRN40-2 teacher and WRN16-1 student are used, both AT and SP show worse

performance than KD. When the WRN16-3 teacher and ResNet20 student are used,

KD and AT perform worse than the model trained from scratch. The result of AT is

even lower than that of KD. So, there are cases where AT and SP cannot complement

the performance of the traditional KD. On the other hand, for the proposed method,

the results are better than the baselines in all the cases. Interestingly, on CIFAR-10

and CINIC-10, the result of a WRN16-1 student trained by AMD with a WRN28-1

teacher is even better than the result of the teacher. Therefore, I conclude that the

proposed method maximizes the attention map’s efficacy of transferring the knowledge

and complements traditional KD.

Also, when applying the larger teacher model and the smaller student model, the

performance degradation of AMD can occur. For example, on CINIC-10, WRN16-

1 student trained with WRN40-1 (0.6M) teacher outperforms the one trained with

WRN40-2 (2.3M) teacher. Both AMD and other methods produce some cases with

lower performance when a better (usually larger) teacher is used. This is consistent

with prior findings (Cho and Hariharan (2019); Wang and Yoon (2021); Stanton et al.

(2021)) that a better teacher does not always guarantee a better student.

Heterogeneous Teacher-student. In Table 3.8, I present the results of the

teacher-student combinations from similar architecture styles. Tian et al. (Tian et al.

(2019)) found that feature distillation methods such as SP sometimes struggled to

find the optimal solution in different architecture styles. In this regard, I implemented

heterogeneous teacher-student combination, where the teacher and student have very

different structure of networks. I use vgg (Simonyan and Zisserman (2014)) network

to compose heterogeneous combinations.
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As describe in Table 3.9, I observe similar findings, showing degraded performance

in using SP when vgg13 teacher and ResNet20 student are used, while AMD consis-

tently outperforms all baselines I explored. Also, in most cases, WRN16-8 teacher

distills a better student (vgg8) than WRN28-1 teacher. However, KD and SP shows

better performance with WRN28-1 teacher, which corroborates a better teacher does

not always distill a better student.

Table 3.9: Accuracy (%) with Various Knowledge Distillation Methods for Different

Structure of Teachers and Students on CIFAR-10. “Teacher” and “Student” De-

note Results of the Model Used to Train the Distillation Methods and Trained from

Scratch, Respectively. “g” and “l” Denote Using Global and Local Feature Distilla-

tion, Respectively.

Teacher
WRN28-1 WRN16-8 vgg13 M.NetV2

(0.4M, 85.84) (11.0M, 89.50) (9.4M, 88.56) (0.6M, 89.61)

Student
vgg8 ResNet20 ResNet26

(3.9M, 85.41±0.06) (0.3M, 85.20±0.17) (0.4M, 85.65±0.20)

KD 86.93±0.11 86.74±0.13 85.39±0.07 87.74±0.08

AT 87.16±0.09 87.29±0.10 85.63±0.20 88.61±0.04

SP 87.29±0.02 86.82±0.07 85.00±0.07 85.78±0.10

AMD (g) 87.43±0.04 87.61±0.11 86.18±0.14 88.70±0.03

AMD (g+l) 87.56±0.03 87.63±0.07 86.41±0.04 88.42±0.08

3.5.5 Ablations and Sensitivity Analysis

In this section, I investigate sensitivity for hyperparameters (γ and m) used for

the angular margin based attention distillation.
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Effect of Angular Distillation Hyperparameter γ

The results of a student model (WRN16-1) for AMD (global) trained with teachers

(WRN16-3 and WRN28-1) by using various γ on CIFAR-10 (the first row) and CINIC-

10 (the second row) are depicted in Figure 3.8 (m = 1.35). When γ is 5000, all

results show the best accuracy. For CIFAR-10, when WRN16-3 is used as a teacher,

the accuracy of γ = 3000 is higher than that of γ = 7000. However, for WRN28-1

as a teacher, the accuracy of γ = 7000 is higher than that of γ = 3000. When γ

is 1000, the accuracy is lower than KD, implying that it does not complement KD

and adversely affects the performance. On the other hand, for CINIC-10, when the

WRN16-3 teacher is used, the result of γ = 7000 is better than that of γ = 3000.

But, for the WRN28-1 teacher, γ = 3000 is higher than that of γ = 7000. Therefore,

γ values between 3000 and 7000 achieve good performance, while too small or large

γ values do not help much with improvement. Therefore, setting the proper γ value

is important for performance. I recommend using γ as 5000, which produces the best

results across datasets and combinations of teacher and student.

Effect of Angular Margin m

The results of a student model (WRN16-1) for AMD (global) trained with teachers

(WRN16-3 and WRN28-1) by various angular margin m on CIFAR-10 (the first row)

and CINIC-10 (the second row) are illustrated in Figure 3.9 (γ = 5000). As described

in section 3.4.2, using the large value of m corresponds to producing more distinct

positive features in the attention map and making a large gap between positive and

negative features for distillation. When m is 1.35 for the WRN16-3 teacher, the

WRN16-1 student shows the best performance of 86.28% on CIFAR-10. When m =

1.5 for CINIC-10, the student’s accuracy is 75.13%, which is higher than when m =
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Figure 3.8: Accuracy (%) of Students (WRN16-1) for AMD (global) with Various γ,

Trained with Teachers (WRN16-3 and WRN28-1) on CIFAR-10 and CINIC-10. “T”

and “S” Denote Teacher and Student, Respectively.

1.35. When the teacher is WRN28-1, the student produces the best accuracy with m

= 1.35 on both datasets. The student model with m = 1.35 performs better than the

one with m = 1.1 and 2.0. When the complexity of the dataset is higher, using m

(1.5) which is larger than 1.35 can produce a good performance. When m = 1.0 (no

additional margin applied to the positive feature) for CIFAR-10 and CINIC-10 with

setup (b), the results are 85.81% and 74.83%, which are better than those of 85.31%

and 74.75% from m = 2.0, respectively. This result indicates that it is important to

set an appropriate m value for the proposed method. I believe that angular margin

plays a key role in determining the gap between positive and negative features. As

angular margin increases, the positive features are further emphasized, and in this

case of over-emphasis by a much larger m, the performance is worse than that of the
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Figure 3.9: Accuracy (%) of Students (WRN16-1) for AMD (global) with Various

Angular Margin m, Trained with Teachers (WRN16-3 and WRN28-1) on CIFAR-10

and CINIC-10. “T” and “S” Denote Teacher and Student, Respectively.

smaller m. I recommend using a margin m of around 1.35 (m > 1.0), which generates

the best results in most cases.

3.5.6 Analysis with Activation Maps

To analyze results with intermediate layers, I adopt Grad-CAM (Selvaraju et al.

(2017)) which uses class-specific gradient information to visualize the coarse local-

ization map of the important regions in the image. In this section, I present the

activation maps from intermediate layers and the high level of the layer with various

methods. The red region is more crucial for the model prediction than the blue one.
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Figure 3.10: Activation Maps for Different Levels of Students (WRN16-1) Trained

with a Teacher (WRN16-3) on CIFAR-10.

Figure 3.11: Activation Maps of High-level from Students (WRN16-1) Trained with

a Teacher (WRN16-3) for Different Input Images on CIFAR-10.

Activation Maps for the Different Levels of Layers

The activation maps from intermediate layers with various methods are shown in

Figure 3.10. The proposed method, AMD, shows intuitively similar activated regions
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to the traditional KD (Hinton et al. (2015)) in the low-level. However, at mid-level

and high-level, the proposed method represents the higher activations around the

region of a target object, which is different from the previous methods (Hinton et al.

(2015); Zagoruyko and Kmodakis (2017)). Thus, the proposed method can classify

positive and negative areas more discriminatively, compared to the previous methods

(Hinton et al. (2015); Zagoruyko and Kmodakis (2017)). The high-level activation

maps with various input images are described in Figure 3.11. The activation from

proposed method is seen to be more centered on the target. The result shows that

the proposed method performs better in focusing on the foreground object distinctly

with high weight, while being less distracted by the background compared to other

methods (Hinton et al. (2015); Zagoruyko and Kmodakis (2017)). With higher weight

over regions of interest, the student from the proposed method has a stronger discrim-

ination ability. Therefore, the proposed method guides student models to increase

class separability.

Activation Maps for Global and Local Distillation of AMD

To investigate the impact of using global and local features for AMD, I illustrate

relevant results in Figure 3.12. When both global and local features are used for

distillation, the activated area is located and shaped more similar to the teacher,

than using the global feature only. Also, AMD (global+local) focuses more on the

foreground object with higher weights than AMD (global). AMD (global+local)

guides the student to focus more on the target regions and finds discriminative regions.

Thus, using global and local features is better than using global features alone for the

proposed method.
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Figure 3.12: Activation Maps of High-level from Students (WRN16-1) for AMD

Trained with a Teacher (WRN16-3) for Different Input Images on CIFAR-10.

3.5.7 Combinations with Existing Methods

Even if a model shows good performance in classification, it may have miscalibra-

tion problems (Guo et al. (2017)) and may not always obtain improved results from

combining with other robust methods. In this section, to evaluate the generalizability

of models trained by each method and to explore if the method can complement other

methods, I implement experiments with various existing methods. I use the method

in various ways to demonstrate how easily it can be combined with any previous learn-

ing tasks. I trained students with fine-grained features (Wang et al. (2019, 2020a)),

augmentation methods, and one of the baselines such as SP (Tung and Mori (2019))

that is not based on the attention feature based KD. WRN16-1 students were trained

with WRN16-3 and WRN28-1 teachers. I examine whether the proposed method can

be combined with other techniques and compare the results to baselines.
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Fine-grained Feature-based Distillation

Figure 3.13: Accuracy (%) from Students (WRN16-1) for AMD Trained with a

Teacher (WRN16-3) With/Without Masked Features. “g”, “l”, and “m” Denote

Global, Local, and Masked Feature, Respectively.

If the features of teacher and student are compatible, it results in a student achiev-

ing ‘minor gains’ (Wang et al. (2019)). To perform better distillation and to overcome

the problem of learning minor gains, a technique for generating a fine-grained feature

has been used (Wang et al. (2019, 2020a)). For distillation with AMD and creat-

ing the fine-grained (masked) feature, a binary mask is adopted when the negative

feature is created. For example, if the probability of the point for the negative map

is higher than 0.5, the point is multiplied by 1, otherwise by 0. Then, compared to

non-masking, it boosts the difference between teacher and student, where the differ-

ence can be more focused on loss function for training. The results for AMD with

or without using masked feature-based distillation are presented in Figure 3.13. The

parameter γ for training a student based on AMD without masked features is 5000

for all setups across datasets. When masked features are used for AMD, to generate

the best results, γ of 3000 is applied to setup (b) on CIFAR-10, setup (ca) on CINIC-

10, and all setups on Tiny-ImageNet. For CIFAR-10, AMD (global+local) without

masked features has the best performing result in most cases. AMD (global+local)

with masked features shows the best with setup (d). For CINIC-10, the results of
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AMD with masked features for setup (d) show the best. For Tiny-ImageNet, in most

cases, AMD with masked features performs the best. Therefore, when the complex-

ity of a dataset is high, fine-grained features can help more effectively improve the

performance, and the smaller parameter of γ, 3000, generates better accuracy. Also,

AMD (global+local) with masked features produces better performance than AMD

(global) with the one. For setup (d) – different architectures for teacher and student –

with/without masked features, AMD (global+local) outperforms AMD (global). This

could be due to the fact that the teacher’s features differ from the student’s because

the two networks have different architectures, resulting in different distributions. So,

masked features with both global and local distillation influence more on setup (d)

than other setups. The difference between AMD (global) and AMD (global+local)

with masked features is also discriminatively shown with the harder problem in clas-

sification. If the student’s and teacher’s architectural styles are similar, the student

is more likely to achieve plausible results (Wang and Yoon (2021)).

Applying Augmentation Methods

In this section, I investigate of the compatibility with different types of augmentation

methods.

Mixup. Mixup (Zhang et al. (2018a)) is one of the most commonly used aug-

mentation methods. I demonstrate here that AMD complements Mixup. Mixup’s

parameter is set to αMixup = 0.2. A teacher is trained with the original training set

and learns from scratch. A student is trained with Mixup and the teacher model is

implemented as a pre-trained model.

As described in Figure 3.14, with Mixup, most of the methods generate better

results. However, KD shows slight degradation when a WRN16-3 teacher is used. This

degradation might be related to the artificially blended labels by Mixup. Conventional
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Figure 3.14: Accuracy (%) of Students (WRN16-1) for Knowledge Distillation Meth-

ods, Trained with Mixup and a Teacher (WRN16-3) on CIFAR-10. “T” and “S”

Denote Teacher and Student, Respectively. “g” and “l” Denote Using Global and

Local Feature Distillation, Respectively. “Student” Is a Result of WRN16-1 Trained

from Scratch.

KD achieves the success by transferring concise logit knowledge. However, with Mixup

in KD, the knowledge from a teacher is affected by the mixed labels and is not concise

logits, which can hurt distillation quality (Das et al. (2020)). So, the knowledge for

separating different classes can be better encoded by traditional KD (without Mixup)

(Das et al. (2020)). Even though the KD performs degradation with Mixup, all

other baselines and proposed methods transferring features with intermediate layers

show improvement. Thus, the feature based distillation methods help to reduce the

negative effects from noisy logits. When a WRN28-1 teacher is used, the performance

of the student from AFD is degraded. AFD utilizes similarity of features for all

possible pairs of the teacher and student. For this combination, Mixup produces noisy

features, which can affect to mismatch the pair for distillation to perform degradation.

Compared to the baselines, AMD obtains more gains from Mixup. To study the

generalizability and regularization effects of Mixup, I measured expected calibration

error (ECE) (Guo et al. (2017); Naeini et al. (2015)) and negative log likelihood
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Table 3.10: ECE (%) and NLL (%) for Various Knowledge Distillation Methods with

Mixup on CIFAR-10. “g” and “l” Denote Using Global and Local Feature Distillation,

Respectively. The Results (ECE, NLL) for WRN16-3 and WRN28-1 Teachers Are

(1.469%, 44.42%) and (2.108%, 64.38%), Respectively.

Setup Method
w/o Mixup w/ Mixup

ECE NLL ECE NLL

Student 2.273 70.49 7.374 (+5.101) 90.58 (+20.09)

(a)

KD (Hinton et al. (2015)) 2.065 63.34 1.818 (-0.247) 55.62 (-7.71)

AT (Zagoruyko and Kmodakis (2017)) 1.978 60.48 1.652 (-0.326) 50.84 (-9.64)

AFD (Ji et al. (2021)) 1.890 56.71 1.651 (-0.240) 50.22 (-6.49)

AMD (g) 1.933 59.67 1.645 (-0.288) 50.33 (-9.34)

AMD (g+l) 1.895 57.60 1.592 (-0.304) 49.68 (-7.92)

(b)

KD (Hinton et al. (2015)) 2.201 68.75 1.953 (-0.249) 58.81 (-9.93)

AT (Zagoruyko and Kmodakis (2017)) 2.156 67.14 1.895 (-0.261) 56.51 (-10.62)

AFDS (Wang et al. (2020c)) 2.197 68.53 1.978 (-0.219) 58.86 (-9.68)

AFD (Ji et al. (2021)) 2.143 66.05 1.900 (-0.243) 57.68 (-8.37)

AMD (g) 2.117 66.47 1.869 (-0.248) 56.05 (-10.42)

AMD (g+l) 2.123 67.51 1.853 (-0.270) 55.15 (-12.36)

(NLL) (Guo et al. (2017)) for each method. ECE is a metric to measure calibration,

representing the reliability of the model (Guo et al. (2017)). A probabilistic model’s

quality can be measured by using NLL (Guo et al. (2017)). The results of training

from scratch with Mixup show a higher ECE and NLL than the results of training

without Mixup, as seen in Table 3.10. However, the methods, including knowledge

distillation, generate lower ECE and NLL. This implies that knowledge distillation

from teacher to student influences the generation of a better model not only for

accuracy but also for reliability. In both (a) and (b), with Mixup, AMD (global+local)
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Figure 3.15: Reliability Diagrams of Students (WRN16-1) for Knowledge Distillation

Methods, Trained with Mixup and a Teacher (WRN16-3) on CIFAR-10. For the

Results of Each Method, the Left Is the Result Without Mixup, and the Right Is

with Mixup.

shows robust calibration performance. Therefore, I confirm that an augmentation

method such as Mixup gets the benefits from AMD in generating better calibrated

performance. As can be seen in Figure 3.15, WRN16-1 trained from scratch with

Mixup produces underconfident predictions (Zhang et al. (2018a)), compared to KD

(Hinton et al. (2015)) with Mixup. AMD (global+local) with Mixup achieves the best

calibration performance. These results support the advantage of AMD, that it can

be easily combined with common augmentation methods to improve the performance

in classification with good calibration.

CutMix. CutMix (Yun et al. (2019)) one of the most popular augmentation

methods, which is more advanced method to Mixup. I evaluate AMD with CutMix.

I referred to the previous study to set the parameters for CutMix (Yun et al. (2019)).

As illustrated in Figure 3.16, all methods are improved by CutMix. Compared to other
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Figure 3.16: Accuracy (%) of Students (WRN16-1) for Knowledge Distillation Meth-

ods, Trained with Cutmix and a Teacher (WRN28-1) on CIFAR-10. “g” and “l”

Denote Using Global and Local Feature Distillation, Respectively. “Student” Is a

Result of WRN16-1 Trained from Scratch.

baselines, AFD gains less improvement. Both AMD (global) and AMD (global+local)

perform better with CutMix and these results also show that the proposed method

can be easily combined with the advanced augmentation methods.

MoEx. To test with a latent space augmentation method, MoEx (Li et al.

(2021a)) is adopted to train with AMD, which is one of the state-of-the-art tech-

nique for augmentation. I applied the same parameter by referring to the prior study

(Li et al. (2021a)). I apply MoEx to a layer before stage 3 in the student network

(WRN16-1), which achieves the best with KD.

As shown in Figure 3.17, most of KD based methods with MoEx perform better

than the one without MoEx. AFD shows degradation. Since AFD transfers the

knowledge considering all pair of features from teacher and student, MoEx in AFD

hinders the pair matching and transferring the high quality knowledge. Both AMD
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Figure 3.17: Accuracy (%) of Students (WRN16-1) for Knowledge Distillation Meth-

ods, Trained with MoEx and a Teacher (WRN28-1) on CIFAR-10. “g” and “l” Denote

Using Global and Local Feature Distillation, Respectively. “Student” Is a Result of

WRN16-1 Trained from Scratch.

(global) and AMD (global+local) outperform baselines. This results verify that latent

space augmentation based methods can be combined with the proposed method.

Therefore, the proposed method can implement with various augmentation methods

to improve the performance.

Additionally, I explore the work of MoEx at different layers. As described in

Figure 3.18, when MoEx is applied the layer before stage 3 of the student model,

AMD shows the best performance. KD also shows its best when MoEx is applied

to a layer before stage 3. This aspect is different from the result of learning from

scratch, which shows the best when MoEx is applied to a layer before stage 1 (Li

et al. (2021a)). Thus, when latent space augmentation is combined with KD based

method including baselines and the proposed method, a layer to apply augmentation
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Figure 3.18: Accuracy (%) of Students (WRN16-1) for Knowledge Distillation Meth-

ods, Trained with MoEx and a Teacher (WRN28-1) on CIFAR-10. I Denote the

Layer Index to Apply MoEx as (1=before Stage 1, 2=before Stage 2, 3=before Stage

3, 4=after Stage 3). “g” and “l” Denote Using Global and Local Feature Distillation,

Respectively.

method has to be chosen considerably. And, these results imply that a layer before

stage 3 plays a key role for knowledge distillation.

Combination with Other Distillation Methods

To demonstrate how AMD can perform with the other distillation methods, I adopt

SP (Tung and Mori (2019)) which is not an attention based distillation method. A

teacher is trained with the original training set and learns from scratch. SP (Tung

and Mori (2019)) is applied while a student is being trained. I compare with baselines,

depicted in Figure 3.19. In all cases, with SP, the accuracy is increased. Compared

to the other attention based methods, AMD gets more gains by SP. Therefore, AMD

can be enhanced and can perform well with the other distillation methods such as SP.
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Figure 3.19: Accuracy (%) of Students (WRN16-1) for Knowledge Distillation Meth-

ods, Trained with SP and a Teacher (WRN16-3) on CIFAR-10. “T” and “S” Denote

Teacher and Student, Respectively. “g” and “l” Denote Using Global and Local

Feature Distillation, Respectively. “Student” Is a Result of WRN16-1 Trained from

Scratch.

Figure 3.20: Reliability Diagrams of Students (WRN16-1) for Knowledge Distillation

Methods, Trained with SP and a Teacher (WRN16-3) on CIFAR-10. For the Results

of Each Method, the Left Is the Result Without SP, and the Right Is with SP.

I additionally analyzed the reliability described in Table 3.11. AMD (global+local)

with SP shows the lowest ECE and NLL values. It verifies that AMD with SP can
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Table 3.11: ECE (%) and NLL (%) for Various Knowledge Distillation Methods with

SP on CIFAR-10. “g” and “l” Denote Using Global and Local Feature Distillation,

Respectively. The Results (ECE, NLL) for WRN16-3 and WRN28-1 Teachers Are

(1.469%, 44.42%) and (2.108%, 64.38%), Respectively.

Setup Method
w/o SP w/ SP

ECE NLL ECE NLL

(a)

AT (Zagoruyko and Kmodakis (2017)) 1.978 60.48 1.861 (-0.118) 56.22 (-4.26)

AFD (Ji et al. (2021)) 1.890 56.71 1.881 (-0.010) 56.73 (-0.02)

AMD (g) 1.933 59.67 1.808 (-0.125) 54.74 (-4.93)

AMD (g+l) 1.895 57.60 1.803 (-0.092) 53.80 (-3.80)

(b)

AT (Zagoruyko and Kmodakis (2017)) 2.156 67.14 2.095 (-0.060) 65.38 (-1.75)

AFDS (Wang et al. (2020c)) 2.197 68.53 2.128 (-0.069) 66.61 (-1.92)

AFD (Ji et al. (2021)) 2.143 66.05 2.118 (-0.024) 65.39 (-0.66)

AMD (g) 2.117 66.47 2.058 (-0.059) 63.37 (-3.10)

AMD (g+l) 2.123 67.51 2.043 (-0.080) 63.23 (-4.28)

generate a model having higher reliability with better accuracy. Thus, the proposed

method can be used with an additional distillation method. Also, the proposed

method with SP can perform with different combinations of teacher and student

with well-calibrated results. As illustrated in Figure 3.20, with SP (Tung and Mori

(2019)), AT (Zagoruyko and Kmodakis (2017)) and AFD (Ji et al. (2021)) produce

more overconfident predictions, compared to AMD (global+local) with SP (Tung

and Mori (2019)) that gives the best calibration performance. Conclusively, these

empirical findings reveal that AMD can perform with other distillation methods such

as SP (Tung and Mori (2019)) to generate more informative features for distillation

from teacher to student.
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3.6 Conclusion

In this chapter, I proposed a new type of distillation loss function, AMD loss, which

uses the angular distribution of features. I validated the effectiveness of distillation

with this loss, under the setting of multiple teacher-student architecture combinations

of KD in image classification. Furthermore, I have confirmed that the proposed

method can be combined with previous methods such as fine-grained feature, various

augmentation methods, and other types of distillation methods.

In future work, I aim to extend the proposed method to explore the distillation

effects with different hypersphere feature embedding methods (Wang et al. (2018b);

Deng et al. (2019)). Also, I plan to extend AMD to different approaches in image

classification, such as vision transformer (Dosovitskiy et al. (2020)) and MLP-mixer

(Tolstikhin et al. (2021)) that are not based on convolutional neural network. In

addition, the proposed approach could provide insights for further advancement in

other applications such as object detection and semantic segmentation.
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Chapter 4

TOPOLOGICAL PERSISTENCE GUIDED KNOWLEDGE DISTILLATION FOR

WEARABLE SENSOR DATA

4.1 Introduction

Wearable sensor data, used with deep learning methods, has achieved great suc-

cesses in various fields such as smart homes, health-care services, and intelligent

surveillance (Nweke et al. (2018)). However, analysis of wearable sensor data suffers

from particular challenges because of inter- and intra-person variability and noisy

signal problems (Seversky et al. (2016); Edelsbrunner and Harer (2022)). To miti-

gate these problems, utilizing invariant features obtained by topological data analysis

(TDA) has been proposed as a solution and has proven beneficial (Seversky et al.

(2016)). TDA in fusion with machine learning methods has achieved significant re-

sults in stock market analysis (Gholizadeh and Zadrozny (2018); Yen and Cheong

(2021)), time-series forecasting (Zeng et al. (2021)), disease classification (Pachauri

et al. (2011); Nawar et al. (2020)), and texture classification (Edelsbrunner and Harer

(2022)).

TDA has been used to characterize the shape of complex data with the persistence

of connected components and high-dimensional holes which are decoded by the per-

sistent homology (PH) algorithm (Edelsbrunner and Harer (2022)). The persistence

information can be represented by features such as persistence image (PI) (Adams

et al. (2017)). However, I found two key challenges in utilizing topological features:

(1) because of the large computational memory and time consumption to extract

persistence features from large-scale data (Som et al. (2020)), it is challenging to
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implement on small devices with limited computational power. Utilizing two modal-

ities also requires an increase in the computational power to store and interpret the

data. (2) because of a significant modality gap between the one-dimensional signal

and two-dimensional TDA feature representation, it is difficult to integrate them in

a unified framework. These differences in feature representations make conventional

models difficult to use for fusing these different representations.

Based on these observations, in this chapter, I propose a new framework in knowl-

edge distillation, which enables the student to acquire benefits from both teachers

trained with different modality – time series and persistence image. Knowledge dis-

tillation (KD) has been utilized to generate a smaller model (student) from the learned

knowledge of a larger model (teacher) (Hinton et al. (2015)). It has been demonstrated

to have outstanding performance in the analysis of wearable sensor data (Jeon et al.

(2022b); Som et al. (2020); Gou et al. (2021)). Also, using multi-teachers in KD

has been studied to provide richer information, which is generally implemented with

uni-modal data (Reich et al. (2020); Liu et al. (2020); Gou et al. (2021)). Given

this insight and to resolve the mentioned issues, I develop a framework preforming

with multi-modal data in KD using different teachers to distill a small model, named

Topological Persistence Guided Knowledge Distillation (TPKD). An overview of the

TPKD is presented in Figure 4.1. As shown in the figure, firstly, I extract PIs from

persistence diagrams with TDA. I then train two models with time series data and

PIs, respectively. Secondly, I use the two pre-trained models as teachers separately

in KD. The features from intermediate layers are transformed to a correlation map,

reflecting the similarities of samples for a mini-batch in the activations of the network,

and the maps from teachers are merged for integrating the features for distillation.

However, since features are from different modalities, it is hard to guarantee that the

simply fused activation map from teachers is properly correlated with the one from
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Figure 4.1: An Overview of Topological Persistence Guided Knowledge Distillation

(TPKD). Two Teachers, Learned with Different Representations of the Same Raw

Time Series Data, Are Utilized to Train a Compact Student Model.

the student, which is a hindrance for training the student (Gou et al. (2021)). To

better accommodate information from different modalities, I construct a new form of

knowledge utilizing orthogonal features (OF), representing prominent relationships

between features by deformation of activation maps, which provides disentangled

representation to incorporate different desirable properties involved in multimodality

(Wang et al. (2020b)). Based on the better expressive knowledge implying feature

relationships by OF, the student can easily learn from the teachers. In the third step,

to reduce the knowledge gap and consider the properties inherent in the model using

time series as an input, I apply an annealing strategy in KD. The annealing strategy

guides the student model to initialize its weights from a model learned from scratch,

instead of random initialization. Finally, a robust and small model is distilled by the

proposed method, which uses the raw time-series data only as its input.

The contributions of this chapter are as follows:

• I propose a new framework based on knowledge distillation that transfers topo-

logical features to the student using time-series data only as an input.
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• I develop a technique for leveraging orthogonal features from intermediate layers

and an annealing strategy in KD with multiple teachers, which reduces the

statistical gap in features between teachers and student for better knowledge

transfer.

• I show strong empirical results demonstrating the strength of our approach

with various teacher-student combinations on wearable sensor data for human

activity recognition.

The rest of this chapter is organized as follows. In section 4.2, I provide a brief

overview of generating PIs, KD techniques, and an annealing strategy. In section

4.3, I introduce the proposed method, a new framework in KD. In section 4.4, I

describe our experimental results and analysis. In section 4.5, I discuss our findings

and conclusions.

4.2 Background

4.2.1 Topological Feature Extraction

TDA has been utilized in various fields (Adams et al. (2017); Wang et al. (2021);

Gholizadeh and Zadrozny (2018)). It has achieved great successes with providing

novel insight on the shape of complex data, particularly in machine learning for dif-

ferent applications (Gholizadeh and Zadrozny (2018); Zeng et al. (2021); Som et al.

(2020)). As a key algorithm of TDA, persistent homology tracks the variations in n-

dimensional holes present in data, characterized by points, edges, and triangles by a

dynamic thresholding process, which is called a filtration (Edelsbrunner et al. (2002)).

The persistence of these topological cavities during a filtration is described in persis-

tence feature, such as persistence diagram (PD) which encodes the birth and death

times as x and y coordinates of planar scatter points (Adams et al. (2017); Edels-
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brunner and Harer (2022)). Utilizing PDs directly in machine learning is challenging

because of their heterogeneous nature, implying that the number and locations of the

scatter points are not fixed and can be different at the presence of slight perturbations

on the underlying data. Organizing the scatter points based on their persistence (life

time) provides a way to vectorize the PDs.

Persistence image (PI) is a vector representation of PD, which represents the life-

time of homological structures in data. Firstly, to construct the PI, PD is projected

into a persistence surface (PS) ρ : R → R2, defined by a weighted sum of Gaussian

functions centered at the scatter points in the PD. The PS is discretized and results

in a grid. By integrating the PS over the grid, PI is obtained and represented as a

matrix of pixel values. The higher values of a PI imply high-persistence points of the

corresponding PD. The example of a PD and its PI are depicted in Figure 4.2. Even

if TDA can provide complementary information to improve the performance, since

extracting PIs by TDA requires large memory and time consumption (Som et al.

(2020)), it is difficult to implement the method on small devices with limited compu-

tational resources. To solve this issue, I propose a method in knowledge distillation.

I utilize features of topological knowledge and time series data to distill a smaller

model that generates good performance as a larger model.

Figure 4.2: PD and Its Corresponding PI. In PD, Higher Life-time Appears Brighter.
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4.2.2 Knowledge Distillation

Knowledge distillation is one of promising techniques to train a small model in

supervision of a large model. KD was firstly explored by Buciluǎ et al. (Buciluǎ et al.

(2006)) and more developed by Hinton et al. (Hinton et al. (2015)). Soft labels having

richer information than hard labels (labeled data), outputs of a teacher network, are

used in KD. Soft label enables a student network to easily mimic the softened class

scores of the teacher trained with hard labels alone. For traditional KD, a student is

trained with the loss function as follows:

L = (1− λ)LCE + λLKD, (4.1)

where LCE is the standard cross entropy loss, LKD is KD loss, and λ is a hyperpa-

rameter; 0 < λ < 1. The error between the output of the softmax layer for a student

network and the ground-truth label is penalized by the cross entropy loss:

LCE = Q(σ(lS), y), (4.2)

where Q(·) is a cross entropy loss function, σ(·) is a softmax function, lS is the logits

of a student, and y is a ground truth label. The outputs of student and teacher are

matched by KL-divergence loss:

LKD = τ 2KL(pT , pS), (4.3)

where, pT = σ(lT/τ) is a softened output of a teacher network, pS = σ(lS/τ) is

a softened output of a student, and τ is a hyperparameter; τ > 1. The standard

KD is to use a fully trained teacher and student networks. Recent studies show the

effectiveness of early stopping for KD (ESKD), which utilizes early stopped model of

a teacher to produce a better student than the standard knowledge distillation (Full

KD) (Cho and Hariharan (2019)). For the best performance, ESKD is adopted to

this chapter, improving the efficacy of KD (Cho and Hariharan (2019)).
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To transfer better knowledge from a teacher network, feature-based distillation

using intermediate layers has been proposed (Gou et al. (2021); Zagoruyko and

Kmodakis (2017); Tung and Mori (2019)). Zagoruyko et al. (Zagoruyko and Kmodakis

(2017)) suggest attention transfer (AT), which uses intermediate layers to extract a

map by a sum of squared attention mapping function. Tung et al. (Tung and Mori

(2019)) utilizes similarity between a mini-batch of samples from a teacher, which

must be matched to those from a student. The activation maps of the teacher and

student have the same dimension size, which is determined by size of the mini-batch.

In details, the activation map G′ ∈ Rb×b is produced as follows:

G′ = A · A>;A ∈ Rb×chw, (4.4)

where A is reshaped features from an intermediate layer of a model, b is the size of

a mini-batch, c is the number of output channels, and h and w are the height and

width of the output, respectively. These methods are popularly used to improve the

performance, however, they generally deal with uni-modal problems with a single

teacher. On the other hand, using of multiple teachers to transfer more information

has been investigated (Gou et al. (2021); Liu et al. (2020); Zhang et al. (2022)).

Multiple teachers can provide more useful knowledge to generate a better student.

Because different teachers can provide diverse knowledge, more richer information can

be transferred to a student. Knowledge from teachers can be utilized individually or

integrated to train a student. However, a data sample or label utilized for training

a teacher cannot always be used to train/test a student (Gou et al. (2021)). Also,

leveraging different modalities in KD increases the knowledge gap between a teacher

and student, which is a factor in performance degradation (Gou et al. (2021)). To

resolve the problem and capture the superior knowledge, I develop a framework in

KD to use topological features and two teachers for providing richer information and
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training a student model that does not use PIs from TDA as an input. The details

of the proposed method is explained in section 4.3.

4.2.3 Simulated Annealing

Simulated annealing was first introduced by Kirkpatrick et al. (Kirkpatrick et al.

(1983)) and has been used to solve optimization problems in various applications

(Yang (2020)). Recently, it was applied to solve KD related problems. Born-again

multitask network (BAM) (Clark et al. (2019)) uses a few single-task teachers to

generate a multi-task student. A dynamic weighted loss for the outputs of a teacher

and ground truth are used to train a student. In the early epochs of training, the

student model is mostly trained by the teacher, but later, it is mostly trained by hard

labels. Annealing KD (Jafari et al. (2021)) presented two stages to reduce the capacity

gap between the outputs of a teacher and student. In the first stage, a temperature

of KD decreases as the epoch grows while the logits of a teacher and student are

matched in a regression task. In the second stage, the student is fine-tuned with hard

labels by cross entropy loss. Different from existing annealing methods (Clark et al.

(2019); Jafari et al. (2021)), I propose a strategy of using two teachers with KD to

facilitate fast saturation and reduce the knowledge gap. For the proposed method,

two teachers are trained with different types of data – time series and persistence

image data – and their student is trained with the raw time series data only. So,

the statistical features of two teachers are different, and their distillation effects on

a student are not the same. To consider the different properties of teachers and the

student in distillation, I apply an annealing strategy in KD, which reduces the search

space for fast saturation and helps to mitigate a knowledge gap issue by leveraging

the weights of a model trained from scratch. Our method is described in the next

section.
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4.3 Proposed Method

For the proposed method, two teachers learned with different data are used to

train a student. Firstly, to leverage topological features, I extract PIs from PDs of

time series data using TDA. Two teacher models are trained with time series data and

extracted PIs, respectively. Secondly, orthogonal features from fused correlation maps

of teachers are used for distillation, considering differently activated features from

teachers. In the third step, I apply an annealing strategy for knowledge distillation

to optimize the weight of the student model, taking into account the time series

properties inherent in the model. Finally, a student model preserving topological

features is distilled. The details of the proposed method are explained in the following

section.

4.3.1 Extracting Persistence Image

Topological features provide complementary information to improve the perfor-

mance in machine learning (Gholizadeh and Zadrozny (2018); Zeng et al. (2021); Som

et al. (2020)). To leverage topological features, I first extract PIs to train a model. I

use Scikit-TDA python library (Saul and Tralie (2019)) and the Ripser package for

producing PDs, referring to a previous study (Som et al. (2020)). PDs of level-set

filtration for time series signals are calculated by the library. Scalar field topology

presents a summary for different peaks in the signal. The PD for each channel of a

sample is computed. And then, PIs are extracted from PDs based on the birth-time

vs. lifetime information. I set the matrix size of the PIs as b× b. The dimension size

of one PI is b × b × c, where c is the number of channels for a sample. Secondly, I

train a model on the extracted PIs in supervised learning. The model is used as the

pre-trained model as a teacher, transferring topological features to a student model.
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4.3.2 KD with Multiple Teachers

In test-time, generating PIs requires a large computational burden. To this end,

I adopt KD to distill a student model using only time series data as an input and

learning topological features from a teacher.

Distillation with Logits of Different Teachers

For the proposed method, since the knowledge from two teachers is transferred sep-

arately, additional processing for concatenation and hidden layers is not necessarily

required. To utilize features from two teachers, KD loss can be written as:

LKDm = τ 2 (αKL(pT1 , pS) + (1− α)KL(pT2 , pS)) , (4.5)

where α is a hyperparameter to balance the losses from different teachers, and pT1 and

pT2 are softened outputs of teachers trained with time series data and PIs, respectively.

Similarity of Different Teachers

For better distillation, I use features from intermediate layers of teachers. However,

the architectures of the teachers and student are different, and their data used for

training are also different modalities. Using methods similar those proposed in Tung

et al. (Tung and Mori (2019)), I extract activation similarity matrices G′ ∈ Rb×b

to use activated features with the same dimension size from the two teachers and

student, as explained in Equation (4.4). The pattern of the activation map is highly

related to the same or a different class. In details, two inputs in the same category

generate the similar activation maps from a teacher, which is a beneficial to guide a

student to acquire the knowledge of the teacher.

However, because of the information gap from different modalities, difficulties still

exist to transferring the each different knowledge (Gou et al. (2021)). As shown in
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Figure 4.3: Examples of Activation Similarity Maps G′ Produced by a Layer for the

Indicated Stage of the Network for a Batch on GENEActiv. High Similarities for

Samples of the Batch Are Represented with High Values. The Blockwise Pattern

Is More Distinctive for WRN16-3 Networks, Implying the Higher Capacity of This

Network Can Well Capture the Semantics of the Dataset.

Figure 4.3, two models trained with different data generate dissimilar activations.

These differences from multimodality make difficulties in interpreting and fusing the

content, which may mislead the student (Kwon et al. (2020); Gou et al. (2021)). To
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solve this issue, I create a map from two teachers by merging the activation maps

with the weight value of α parameter as follows:

G
(l)
T = αG

′(lT1 )
T1

+ (1− α)G
′(lT2 )
T2

, (4.6)

where G
(l)
T ∈ Rb×b is the generated map from the activation maps of a layer pair (lT1

and lT2) of two teachers G′T1 and G′T2 . By merging the maps, the similarities between

two teachers are more highlighted.

Extracting and Transferring Orthogonal Features

Figure 4.4: Framework of Extracting Orthogonal Features. A and B Denote Mini-

batch Features at a Layer of Teacher1 and Teacher2, Respectively. C Denotes Mini-

batch Features at a Layer of Student.

If features from multiple teachers are ideally correlated, the errors of one teacher

would not essentially affect the other one (Park et al. (2020)). Since features from
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different teachers are merged and the data used for training a student is different

from that of the teachers, it is difficult to guarantee that the teachers and student

are perfectly correlated, so the merged map from teachers may not always be good

for distillation. In previous studies (Wang et al. (2020b)), orthogonality properties

improve better feature explanation and lead to provide various desirable features,

which enables a model to easily learn more diverse and expressive features. Given

the insight, to capture the better explanative information accounting for modality

gap, I design new knowledge reflecting orthogonal properties by transforming the

merged map into several patches to produce more attentive feature relationship. The

overview of extracting orthogonal features is described in Figure 4.4. An input-patch-

matrix Ĝ ∈ Rbd×k can be constructed by unrolling the G/‖G‖2, the normalized G,

into k columns of the matrix, where k is the number of partitions and d is the size of

each partition for b. By using the computed patch-matrix, new knowledge encoding

feature relationships based on orthogonal properties is defined as follows:

G̃[i,:] = Ĝ>[i,:]Ĝ[i,:] − I, (4.7)

where G̃[i,:] ∈ Rk×k represents k× k knowledge patches for ith element of b, involving

orthogonality properties, and I ∈ k×k is identity matrices. From the merged map GT

and a map for the student GS, G̃T and G̃S can be generated, respectively. Finally, the

knowledge reflecting feature relationships from teachers are transferred to the student

by minimizing the difference between two maps of each corresponding layer:

LOth =
1

|L|
∑

(l,lS)∈L

∥∥∥G̃(l)
T − G̃

(lS)
S

∥∥∥2
F
, (4.8)

where L collects the layer pairs (l and lS), and ‖·‖F is the Frobenius norm (Tung and

Mori (2019)). In this way, the student is encouraged to get the similar features to the

merged teacher. Therefore, the student can preserve topological as well as time series
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features, which uses the raw time series data only as an input. The overall learning

objective of the proposed method can be written as:

LTP = (1− λ)LCE + λLKDm + βLOth, (4.9)

where β is a hyperparameter to control the effect of loss LOth.

4.3.3 Annealing Strategy for Multiple Teachers

Because teachers and student are trained with different data, models generate dif-

ferent statistical properties of features. Their architectures are even different, which

produces more statistical gaps between features from models and difficulties in train-

ing a student (Gou et al. (2021); Jafari et al. (2021)). To reduce the effects of the

knowledge gap, I apply an annealing strategy in KD for the proposed method. Before

training a student, I train a small model from scratch with time series data, where the

model has the same architecture as the student. When weight values are initialized

to train the student, the values are determined by the pre-trained model, instead of

randomly chosen values. In this way, the knowledge gap between teachers and student

is mitigated and the search space for optimization is reduced. Also, this initialization

enforces the student to get features that can perform well with time series data while

teachers provide their own features.

4.4 Experiments

In this section, I describe datasets used for evaluation and experimental settings. I

evaluate the proposed method with various teacher-student combinations on wearable

sensor data. I investigate the sensitivity of the proposed distillation with various

hyperparameters (α, β, and k). And, I explore the effectiveness of TPKD with
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visualization of feature maps, feature similarity analysis, and generalizability analysis.

Also, I measure computational time with different methods.

4.4.1 Data Description and Experimental Settings

Data Description

I evaluate the proposed method with wearable sensor data on GENEActiv and PAMAP2

datasets.

GENEActiv. GENEActiv (Wang et al. (2016)) is wearable sensor based activity

dataset, collected with GENEActiv sensor which is a light-weight, waterproof, and

wrist-worn tri-axial accelerometer with sampling frequency of 100 Hz. In this exper-

iment, referring to the previous study (Jeon et al. (2022b)), I use 14 daily activities

such as walking, sitting, and standing. Each class has over 900 data samples. The

number of subjects for training and testing are over 130 and 43, respectively. I use

full-non-overlapping window size of 500 time-steps (5 seconds) data. The number of

samples for training and testing are approximately 16k and 6k, respectively.

PAMAP2. PAMAP2 dataset (Reiss and Stricker (2012)) consists of 18 physical

activities (12 daily and 6 optional activities) for 9 subjects, obtained by measure-

ments of heart rate, temperature, accelerometers, gyroscopes, and magnetometers

with 100Hz of sampling frequency. The sensors were placed on hands, chest, and

ankles of the subject. In experiments on this dataset, I use 12 daily activities with

40 channels recorded from the heart rate and 4 IMUs, where activities are lying, sit-

ting, standing, walking, etc. To compare with previous methods, the recordings are

downsampled to 33.3Hz. I evaluate methods with leave-one-subject-out combination.

There is missing data for some subjects and the dataset has non-uniform distribution.

I use 100 time-steps (3 seconds) of a sliding window for a sample and 22 time-steps or
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660 ms of step size for segmenting the sequences, which allows semi-non-overlapping

sliding windows with 78% overlapping (Reiss and Stricker (2012)).

Experimental Settings

In extracting PIs, for GENEActiv, the parameter for the Gaussian function in PD is

0.25 and the values for birth-time range of PI are set as [-10, 10], as do the previous

study (Som et al. (2020)). For PAMAP2, Gaussian parameter and the birth-time

range are 0.015 and [-1, 1], respectively. Each calculated PI is normalized by its

maximum value. To train network models, I set the total epochs as 200 using SGD

with momentum of 0.9, the batch size as 64, and a weight decay as 1×10−4. To train

a model with time series data on both datasets, the initial learning rate lr is 0.05

which decreases by 0.2 at 10 epochs and drops down by 0.1 every [ t
3
] where t is the

total number of epochs. For training a model with image data on GENEActiv, the

initial learning rate lr is set to 0.1 and decreases by 0.5 at 10 epochs and drops down

by 0.2 at 40, 80, 120, and 160 epochs. For PAMAP2 with image data, the initial

learning rate lr is set as 0.1 that drops down by 0.2 at 40, 80, 120, and 160 epochs.

For constructing teacher and student models, I use WideResNet (WRN) (Zagoruyko

and Komodakis (2016)) to evaluate the performance of the proposed method, which

is popularly used to validate in KD (Cho and Hariharan (2019); Jeon et al. (2022b)).

The model for training with time series data consists of 1D convolutional layers,

on the other hand, the one with image data consists of 2D convolutional layers. I

determine τ and λ for GENEActiv as 4 and 0.7, and for PAMAP2 as 4 and 0.99,

respectively, as the previous works do (Jeon et al. (2022b)). To obtain the best

results, I set optimal α as 0.7 for GENEActiv and 0.3 for PAMAP2, respectively.

I run 3 times and report with the best averaged accuracy and standard deviation

for the following experiments. I perform baseline comparisons with traditional KD
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(Hinton et al. (2015)), attention transfer (AT) (Zagoruyko and Kmodakis (2017)), and

similarity-preserving knowledge distillation (SP) (Tung and Mori (2019)), which are

populary used for distillation. αAT and γSP are set as 1500 and 1000 for GENEActiv,

and 3500 and 700 for PAMAP2, respectively. Also, I compare with multi-teacher

based approaches such as AVER (You et al. (2017)), EBKD (Kwon et al. (2020)),

and CA-MKD (Zhang et al. (2022)). Since I use different dimensional input data and

structured teachers, only the outputs from the last layer (logits) are used for baselines

in distillation.

4.4.2 Various Capacity of Teachers

In this section, I explore the proposed method with various capacity of teachers

which are trained with time series data and PIs, respectively.

The experimental results on GENEActiv with various teachers are described in

Table 4.1. Note, “Time series” and “PImage” denote results of the model trained

by KD with Teacher1 trained with time series data and Teacher2 trained with PIs,

respectively. “TS”, “Base”, and “Ann.” denote using a teacher trained with time

series data, a model trained by two teachers in KD using logits balanced with α,

and applying annealing strategy, respectively. “Orth.” denotes using orthogonal

features in distillation. When TPKD is implemented without orthogonal features,

the merged map of teachers and the one of student are matched directly by mean

squared error in distillation. The numbers in brackets imply trainable parameters of

the model and accuracy, respectively. From the left to right combinations of teachers

in the table, (β, k) of TPKD are defined as (900, 4), (700, 2), (700, 4), and (900,

4), respectively. TPKD (TS+PImage with Ann.+orthogonal feature distillation),

as shown in the table, achieves the best performing results in all cases. Base models

trained with the annealing strategy (Ann.) outperform the results of baselines and the
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Table 4.1: Accuracy (%) with Various Knowledge Distillation Methods for Different

Capacity of Teachers on GENEActiv.

Teacher1 WRN16-1 WRN16-3 WRN28-1 WRN28-3

(1D CNNs) (0.06M, 67.66) (0.5M, 68.89) (0.1M, 68.63) (1.1M, 69.23)

Teacher2 WRN16-1 WRN16-3 WRN28-1 WRN28-3

(2D CNNs) (0.2M, 58.64) (1.6M, 59.80) (0.4M, 59.45) (3.3M, 59.69)

Student WRN16-1

(1D CNNs) (0.06M, 67.66±0.45)

P
I KD

67.83 68.76 68.51 68.46

±0.17 ±0.73 ±0.01 ±0.28

T
im

e
se
ri
es

KD
69.71 69.50 68.32 68.58

±0.38 ±0.10 ±0.63 ±0.66

AT
68.21 69.79 68.09 67.73

±0.64 ±0.36 ±0.24 ±0.27

SP
67.20 67.85 68.71 67.39

±0.36 ±0.24 ±0.46 ±0.49

T
S
+
P
Im

a
g
e

AVER
68.99 68.74 68.77 69.02

±0.76 ±0.35 ±0.70 ±0.50

EBKD
68.43 69.24 68.45 67.50

±0.25 ±0.25 ±0.73 ±0.40

CA-MKD
69.33 69.80 69.61 68.81

±0.61 ±0.16 ±0.57 ±0.79

Base
69.09 69.24 69.55 69.42

±0.37 ±0.62 ±0.41 ±0.58

Ann.
70.15 70.71 70.44 69.97

±0.03 ±0.12 ±0.10 ±0.06

TPKD 70.71 70.93 70.71 70.12

(w/o Orth.) ±0.20 ±0.26 ±0.14 ±0.21

TPKD 71.05 71.10 70.97 70.50

(w/ Orth.) ±0.13 ±0.11 ±0.12 ±0.15
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Table 4.2: Accuracy (%) for Related Methods on GENEActiv with 7 Classes.

Method
Window length

1000 500

T
im

e
se
ri
es

SVM (Cortes and Vapnik (1995)) 86.29 85.86

Choi et al. (Choi et al. (2018)) 89.43 87.86

WRN16-1 89.29±0.32 86.83±0.15

WRN16-3 89.53±0.15 87.95±0.25

WRN16-8 89.31±0.21 87.29±0.17

ESKD (WRN16-3) 89.88±0.07 88.16±0.15

ESKD (WRN16-8) 89.58±0.13 87.47±0.11

Full KD (WRN16-3) 89.84±0.21 87.05±0.19

Full KD (WRN16-8) 89.36±0.06 86.38±0.06

AT (WRN16-1) 90.10±0.49 87.25±0.22

AT (WRN16-3) 90.32±0.09 87.60±0.22

SP (WRN16-1) 87.08±0.56 87.65±0.11

SP (WRN16-3) 88.47±0.19 87.69±0.18

T
S
+
P
Im

a
g
e

AVER (WRN16-1) 90.01±0.46 87.53±0.16

AVER (WRN16-3) 90.06±0.33 87.05±0.37

EBKD (WRN16-1) 90.35±0.12 87.51±0.41

EBKD (WRN16-3) 89.82±0.14 87.66±0.28

CA-MKD (WRN16-1) 90.01±0.28 87.14±0.25

CA-MKD (WRN16-3) 90.13±0.34 88.04±0.26

Ann. (WRN16-1) 90.44±0.16 88.18±0.12

Ann. (WRN16-3) 90.71±0.15 88.26±0.24

TPKD (w/ Orth.) (WRN16-1) 90.93±0.11 88.83±0.22

TPKD (w/ Orth.) (WRN16-3) 90.83±0.09 88.60±0.25

basic model (Base), indicating that the strategy aids in performance improvement.

Also, larger model does not guarantee to generate a better student, corroborating

previous observations (Cho and Hariharan (2019)). To compare with different sample
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Table 4.3: Accuracy (%) with Various Knowledge Distillation Methods for Different

Capacity of Teachers on PAMAP2.

Teacher1 WRN16-1 WRN16-3 WRN28-1 WRN28-3

(1D CNNs) (0.06M, 85.27) (0.5M, 85.80) (0.1M, 84.81) (1.1M, 84.46)

Teacher2 WRN16-1 WRN16-3 WRN28-1 WRN28-3

(2D CNNs) (0.2M, 86.93) (1.6M, 87.23) (0.4M, 87.45) (3.3M, 87.88)

Student WRN16-1

(1D CNNs) (0.06M, 82.99±2.50)

P
I KD

85.04 86.68 85.08 85.39

±2.58 ±2.19 ±2.44 ±2.35

T
S KD

85.96 86.50 84.92 86.26

±2.19 ±2.21 ±2.45 ±2.40

T
S
+
P
Im

a
g
e

Base
85.91 86.18 85.54 86.04

±2.32 ±2.37 ±2.26 ±2.24

Ann.
86.09 87.12 85.89 86.33

±2.33 ±2.26 ±2.26 ±2.30

TPKD 87.26 88.00 86.47 86.92

(w/o Orth.) ±2.09 ±2.21 ±2.26 ±2.27

TPKD 87.67 88.45 86.86 87.40

(w/ Orth.) ±2.01 ±2.10 ±2.07 ±2.13

window lengths and more previous studies, I evaluate the methods with 7 classes

of GENEActiv dataset, as do the previous study (Jeon et al. (2022b); Choi et al.

(2018)). WRN16-1 (1D CNNs) student is used. The brackets denote the teacher

models. (β, k) of TPKD are set as (1100, 4) for WRN16-1 teachers with both window

lengths and WRN16-3 teachers with window length of 500, and (500, 8) for WRN16-

3 teachers with window length of 1000, respectively. As summarized in Table 4.2,

results of TPKD (w/ Orth.) with WRN16-1 teachers show the best in both cases.
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Table 4.4: Accuracy (%) for Related Methods on PAMAP2.

Method Accuracy (%)

T
im

e
se
ri
es

Chen and Xue (2015) 83.06

Ha et al. (2015) 73.79

Ha and Choi (2016) 74.21

Kwapisz et al. (2011) 71.27

Catal et al. (2015) 85.25

Kim et al. (2012) 81.57

WRN16-1 82.81±2.51

WRN16-3 84.18±2.28

WRN16-8 83.39±2.26

ESKD (WRN16-3) 86.38±2.25

ESKD (WRN16-8) 85.11±2.46

Full KD (WRN16-3) 84.31±2.24

Full KD (WRN16-8) 83.70±2.52

AT (WRN16-1) 83.79±2.40

AT (WRN16-3) 84.44±2.22

SP (WRN16-1) 84.31±2.38

SP (WRN16-3) 84.89±2.10

T
S
+
P
Im

a
g
e

AVER (WRN16-1) 85.82±2.16

AVER (WRN16-3) 86.00±2.45

EBKD (WRN16-1) 85.58±2.31

EBKD (WRN16-3) 85.62±2.37

CA-MKD (WRN16-1) 84.06±2.50

CA-MKD (WRN16-3) 85.02±2.64

Ann. (WRN16-1) 86.09±2.33

Ann. (WRN16-3) 87.12±2.26

TPKD (w/ Orth.) (WRN16-1) 87.67±2.01

TPKD (w/ Orth.) (WRN16-3) 88.45±2.10
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When an annealing strategy is applied, smaller teachers distill better students. Since

one of teachers (WRN16-1) has the same structure of the student (WRN16-1), the

knowledge gap is not much different than the larger teachers (WRN16-3). The results

with various capacity of teachers on PAMAP2 are described in Table 4.3. β and k

of TPKD are defined as 200 and 4, respectively. TPKD (w/ Orth.) shows the best

in all cases. As described in Table 4.4, TPKD outperforms the previous methods.

Therefore, TPKD allows model compression and improves accuracy across datasets.

4.4.3 Various Combinations of Teachers

To understand the effect from different teacher architectures, various combinations

of two teachers are used, considering different channel and depth of WRN. Results

on GENEActiv and PAMAP2 are described in Table 4.5 and 4.6, respectively. (β, k)

on GENEActiv for each combination is indicated in Table 4.5. (β, k) on PAMAP2 is

set as (200, 4). β for TPKD without using orthogonal features is set as 700 and 200

on GENEActiv and PAMAP2, respectively.

As shown in Table 4.5, in most cases, TPKD (w/ Orth.) shows the best perfor-

mance. When the capacity of Teacher1 is high, the result gap between baselines and

TPKD tends to be small, where TPKD still performs better. When both teachers are

small (e.g. WRN28-1 Teacher1 and WRN16-1 Teacher2), the student by TPKD per-

forms better than the one from the other combinations of teachers. Also, when width

of teachers is the same as the student, the proposed method shows better performance

than other combinations of teachers.

As described in Table 4.6, TPKD shows better performance than Ann. (applying

annealing strategy only) in all cases. This result also shows when the capacity of

Teacher1 is high, the result gap between baselines and TPKD tends to be small. This

is because a large teacher creates more knowledge gap which makes challenges in
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Table 4.5: Accuracy (%) with Various Knowledge Distillation Methods for Different

Structure of Teachers on GENEActiv.

Method
Architecture Difference

Depth Width Depth+Width

WRN WRN WRN WRN WRN WRN WRN WRN WRN WRN WRN WRN

Teacher1 16-1 16-1 28-1 40-1 16-1 16-3 28-1 28-3 28-1 28-3 40-1 16-1

(1D CNNs) (0.06M, (0.06M, (0.1M, (0.2M, (0.06M, (0.5M, (0.1M, (1.1M, (0.1M, (1.1M, (0.2M, (0.06M,

67.66) 67.66) 68.63) 69.05) 67.66) 68.89) 68.63) 69.23) 68.63) 69.23) 69.05) 67.66)

WRN WRN WRN WRN WRN WRN WRN WRN WRN WRN WRN WRN

Teacher2 28-1 40-1 16-1 16-1 16-3 16-1 28-3 28-1 16-3 40-1 28-3 28-3

(2D CNNs) (0.1M, (0.6M, (0.2M, (0.2M, (1.6M, (0.2M, (3.3M, (0.4M, (1.6M, (0.6M, (3.3M, (3.3M,

59.45) 59.67) 58.64) 58.64) 59.80) 58.64) 59.69) 59.45) 59.80) 59.67) 59.69) 59.69)

Student WRN16-1

(1D CNNs) (0.06M, 67.66±0.45)

Base
68.71 68.41 67.89 68.33 68.77 68.92 68.26 69.09 68.04 68.29 68.90 68.15

±0.36 ±0.27 ±0.27 ±0.17 ±0.43 ±0.79 ±0.13 ±0.59 ±0.24 ±0.27 ±0.50 ±0.23

Ann.
69.95 69.86 70.34 70.56 69.68 71.06 70.28 69.95 70.28 69.87 70.49 69.65

±0.05 ±0.07 ±0.14 ±0.04 ±0.14 ±0.02 ±0.08 ±0.07 ±0.13 ±0.23 ±0.05 ±0.04

TPKD

(w/o Orth.)

70.39 70.47 71.01 71.36 69.82 71.11 70.53 70.31 70.55 70.57 70.55 70.68

±0.12 ±0.40 ±0.04 ±0.06 ±0.23 ±0.18 ±0.26 ±0.15 ±0.28 ±0.18 ±0.22 ±0.10

TPKD

(w/ Orth.)

(β, k)

70.67 70.76 71.74 71.40 70.03 71.25 71.08 70.35 70.42 70.65 71.04 71.00

±0.33 ±0.22 ±0.07 ±0.05 ±0.14 ±0.18 ±0.21 ±0.09 ±0.21 ±0.24 ±0.29 ±0.33

(900, 4) (900, 4) (700, 4) (900, 4) (700, 4) (700, 2) (900, 4) (700, 4) (1100, 4) (900, 4) (700, 4) (900, 4)

distillation. There is some cases that baselines produce less improvement with large

Teacher1, compared to using small one. Even if the performance is affected from the

knowledge gap, TPKD alleviates the negative effects in distillation, which outperforms

the all baselines, and even generates a better student than its teachers. Also, the

results corroborate that large teachers does not always distill a better student (Cho

and Hariharan (2019)).
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Table 4.6: Accuracy (%) with Various Knowledge Distillation Methods for Different

Structure of Teachers on PAMAP2.

Method
Architecture Difference

Depth Width Depth+Width

WRN WRN WRN WRN WRN WRN

Teacher1 28-1 16-1 28-3 16-3 16-1 28-3

(1D CNNs) (0.1M, (0.06M, (1.1M, (0.5M, (0.06M, (1.1M,

84.81) 85.27) 84.46) 85.80) 85.27) 84.46)

WRN WRN WRN WRN WRN WRN

Teacher2 16-1 28-1 28-1 28-1 28-3 16-1

(2D CNNs) (0.2M, (0.4M, (0.4M, (0.4M, (3.3M, (0.2M,

86.93) 87.45) 87.45) 87.45) 87.88) 86.93)

Student WRN16-1

(1D CNNs) (0.06M, 82.99±2.50)

Ann.
85.97 85.33 85.59 85.82 85.94 85.86

±2.33 ±2.22 ±2.28 ±2.26 ±2.31 ±2.42

TPKD 86.10 87.26 87.94 87.82 87.02 86.97

(w/ Orth.) ±2.30 ±1.96 ±2.08 ±2.07 ±1.98 ±2.26

4.4.4 Ablations and Sensitivity Analysis

In this section, I investigate the effects of hyperparameters (α, β, and k) on

TPKD (with orthogonal features). And, feature maps from intermediate layers of

trained students are visualized to better understand the performance of TPKD. Also,

I analyze feature similarities and generalizability of models. Additionally, to figure

out the robustness of TPKD, I explore the proposed method under noisy testing data.
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Effect of Distillation Hyperparameters on TPKD

Figure 4.5: Sensitivity to α and β of the Proposed Method for WRN16-1 Students

on GENEActiv.

The results of students (WRN16-1), trained with two different teachers by using

various α and β (k = 4), are illustrated in Figure 4.5. For (a) and (b), β is set as

the previous section. KD is the result of a student trained with time series data.

Most results from TPKD outperform baselines. The results show their best when

α is 0.7. On the other hand, for PAMAP2, their best are shown with α = 0.3.

Since GENEActiv has a larger window size and much lower number of channels than

PAMAP2, utilizing features from time series data may help improvements more than

PIs. On the other hand, because PAMAP2 has a much smaller window size but more

channels, using projected image data from PIs may provide more useful information

than raw time series data. The results with various β are shown in (c) and (d) of

Figure 4.5. α is set as 0.7. All results from TPKD outperform baselines. The best
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Figure 4.6: Sensitivity to k of the Proposed Method for WRN16-1 Students on GE-

NEAtiv.

results are presented with β = 900 for (c) and β = 700 for (b). The majority of the

best results in the previous section had beta values of 700 or higher. For PAMAP2,

with the same structured teachers, smaller number of β (200) shows the best. When

the window size is large and the number of channels is small, orthogonal features

can have more influence on classification with β ≥ 700. The results of WRN16-1

students with various k are illustrated in Figure 4.6. α is 0.3 and β is set as the same

for each combination in section 4.4.2. Most k cases outperform baselines and best

result is yielded with k = 4. When teacher models have different width of networks

to their student, k = 2 shows lower accuracy than baselines, whereas k ≥ 4 shows

higher one. And, as described in section 4.4.2 and 4.4.3, most cases on GENEActiv

and PAMAP2 perform best when k = 4. Based on these results, setting appropriate

hyperparameters has to be considered to generate the best performance.
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Visualization of Feature Maps

To see more details of activations, I visualize the maps of the teachers (WRN16-3) and

student (WRN16-1), representing similarity with high values for inputs. “Teacher1”

and “Teacher2” denote teachers trained with time series data and PIs, respectively.

KD is the result of a student trained with time series data. Student is the result of a

model trained from scratch. As illustrated in Figure 4.7, in all cases. the produced

maps in stage 3 have more distinctive patterns than the ones from stage 1 and 2.

The maps of two teachers are very different, and the merged one and student are

dissimilar, indicating the knowledge gap between them. Some columns of the map

from models trained with time series data are highlighted. The blockwise patterns

are more shown from models trained with PIs. Intuitively, the pattern of the map

from Teacher1 is more monotonous than the one from Teacher2. And, the diagonal

points of the map trained with time series only are more highlighted prominently.

The merged map contains characteristics of both Teacher1 and Teacher2. A student

trained with TPKD generates maps closer to those of the merged maps from teachers.

Also, the maps from TPKD represent blockwise highlighted features, which verifies

that the student preserves topological features by the proposed method.

More results from different combinations of teachers with a layer for stage 3 of the

network are illustrated in Figure 4.8. Compared to baselines, maps of students by

TPKD are more similar to the merged ones which contain both topological and time

series features. Therefore, TPKD encourages a student to well obtain both features

of topological and time series data while reducing the knowledge gap.
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Figure 4.7: Activation Similarity Maps Produced by a Layer for the Indicated Stage

of the Network for a Batch on GENEActiv. High Similarities for Samples of the

Batch Are Represented with High Values.

Figure 4.8: Activation Similarity Maps Produced by a Layer for the Stage 3 of the

Network for a Batch on GENEActiv. From (a) to (c), (Teacher1, Teacher2) Are

(WRN28-1, WRN16-1), (WRN16-1, WRN16-3), and (WRN40-1, WRN28-3), Re-

spectively. High Similarities for Samples of the Batch Are Represented with High

Values.
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Analysis of Orthogonality in Distillation

To analyze the effects of leveraging orthogonal features, I measure feature similarity

quantitatively with Pearson correlation coefficient on activation maps of models from

various knowledge distillation methods. Also, I analyze the generalizability of student

models for the different methods.

Feature Similarity. I calculate Pearson correlation coefficient on activation

similarity maps from intermediate layers. Four patches Ĝ ∈ Rbd×k = [Ĝ1, Ĝ2, · · · ,

Ĝk] (k = 4) from students trained with WRN28-3 teachers are used to generate

feature similarity plots. All pair combinations of the patches [(Ĝ1, Ĝ2), (Ĝ1, Ĝ3),

· · · , (Ĝk−1, Ĝk)] are considered for the coefficient. As depicted in Figure 4.9 (a),

the similarities between the two teachers are very different. The model trained from

scratch with time series alone shows high values in 0 of the correlation coefficient.

This implies that most of the patches from the models are decorrelated. On the

other hand, the patches of Teacher2 are more correlated and much different from

Student and Teacher1. The result from the merged patches (Merged T.) for teachers

shows intermediate results between two teachers, but closer to Teacher2. These show

there is a statistical gap between the teachers and student. In the figure (b), TPKD

(with orthogonal features) shows a more similar result to Merged T. than the one

without orthogonal features which is a direct map matching method. By orthogonal

features in distillation, the student can learn more attentive features and perform

more teacher-like tasks. Also, the student trained by TPKD is implemented with

time series data only as an input, but it produces similar features to Merged T.

Thus, TPKD distills a student preserving topological features while reducing the

knowledge difference between teachers and a student. As described in (c) of the

figure, the patches from 3rd stage of the network are more correlated with each other
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than the other stages. And, the features from each stage have different statistical

characteristics. So, transferring features with different stages can help to improve

performance.

Figure 4.9: Feature Similarities for Various Knowledge Distillation Methods on GE-

NEActiv. Teachers Are WRN28-3 and Students Are WRN16-1 (1D CNNs). Merged

T. Denote the Merged Features from Teachers. (a) and (b) Are Results from 3rd

Stage of the Networks. † Denotes Without Orthogonal Features.

Model Reliability. To study the generalizability and regularization effects, I

measured expected calibration error (ECE) (Guo et al. (2017)) and negative log like-

lihood (NLL) (Guo et al. (2017)). ECE is to measure calibration, representing the

reliability of the model. The probabilistic quality of a model can be measured by

NLL. I used students trained by teachers of WRN16-3 and WRN28-1. In Table 4.7,

ECE and NLL with various methods on GENEActiv are described. The results of

Base outperform KD and Student (learning from scratch). This implies that leverag-

ing topological features improves performance in reliability. TPKD (with orthogonal

features) generates the lowest ECE and NLL in both cases. The results on PAMAP2

are shown in Table 4.8. In both cases, Base performs better than KD and the model

learned from scratch. TPKD outperforms all baselines, and using orthogonal features

shows the best results. This implies that utilizing orthogonal features in distillation

aids in generating a better model, not only for accuracy but also for reliability.
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Table 4.7: ECE (%) and NLL for Various Knowledge Distillation Methods on GENE-

Activ. Teachers are WRN16-3 and WRN28-1. Students are WRN16-1 (1D CNNs).

Method
WRN16-3 WRN28-1

ECE NLL ECE NLL

Student 3.548 2.067 3.548 2.067

KD 3.200 1.520 3.064 1.512

Base 2.998 1.142 3.009 1.271

TPKD (w/o Orth.) 2.728 1.128 2.634 1.114

TPKD (w/ Orth.) 2.637 1.103 2.616 1.068

Table 4.8: ECE (%) and NLL for Various Knowledge Distillation Methods on

PAMAP2. Teachers are WRN16-3 and WRN28-1. Students are WRN16-1 (1D

CNNs).

Method
WRN16-3 WRN28-1

ECE NLL ECE NLL

Student 2.299 1.287 2.299 1.287

KD 2.183 1.061 2.323 1.329

Base 2.039 0.815 2.130 0.955

TPKD (w/o Orth.) 1.897 0.754 2.075 0.896

TPKD (w/ Orth.) 1.692 0.708 1.818 0.856

Analysis of Invariance from Noises

To explore the model ability of invariances from noises, I evaluate the models on a

noisy testing set, including continuous missing and Gaussian noises, where the noises

reflect the errors commonly encountered in time series (Jeon et al. (2022b); Wen et al.
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(2021a); Wang and Wang (2019)). To consider the unknown noises in nature, I set

randomly chosen parameters; (κR, σG) denotes (the percent of the window size to be

removed, the standard deviation for Gaussian noise). The exact value for the noise is

chosen randomly, which is less than the defined parameter. Both noises are applied

together and I define variations of noises as three levels; Level 1 (0.15, 0.06), Level

2 (0.22, 0.09), and Level 3 (0.30, 0.12). Note, the classification models were trained

with the original training set.

Figure 4.10: Accuracy (%) with Various Knowledge Distillation Methods for Various

Noise Severity Levels on GENEActiv. Students Are WRN16-1 (1D CNNs).

As shown in Figure 4.10, TPKD (with orthogonal features) outperforms others in

all cases. The results for WRN28-1 teachers show that KD and Base perform better

than learning from scratch. The accuracy of Base is higher than KD, which implies

that topological features complement the performance. However, when teachers are

WRN28-3, there is a case that results of both KD and Base are lower than the model

trained from scratch. Even if both models show better performance when testing set

is not corrupted, they are impatient with noises. Because the capacity of the teacher

is much higher than the one of the student, the knowledge difference is larger and it is

more difficult to get benefits from distillation. In this case, only TPKD outperforms
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learning from scratch in all cases. Thus, TPKD helps reducing the knowledge gap to

distill a better student.

4.4.5 Computational Time

Table 4.9: Processing Time of Various Models on GENEActiv.

Model

Learning
KD

TPKD

from scratch (w/ Orth.)

TS (1D) PImage (2D) TS PImage TS+PImage

WRN28-3 WRN16-3 WRN16-1 (1D CNNs)

Accuracy (%) 69.23 59.8 69.71 68.76 71.74

GPU (sec) 29.94
356.92 (PIs on CPU)

15.23
+13.63 (model)

CPU (sec) 1977.89
356.92 (PIs on CPU)

16.66
+11191.45 (model)

I compare the computational time of various methods for testing set on GE-

NEActiv. I implemented the evaluation on a desktop with a 3.50 GHz CPU (In-

tel® Xeon(R) CPU E5-1650 v3), 48 GB memory, and NVIDIA TITAN Xp (3840

NVIDIA® CUDA® cores and 12 GB memory) graphic card (NVIDIA (2016)). I

tested approximately 6k samples with a batch size of 1. In Table 4.9, the considered

accuracies are the best ones from Table 4.1 and 4.5. Since the time is required to

generate PIs on the CPU, a model learned from scratch with PIs takes the largest

amount of time in the table. A WRN16-1 (1D CNNs) student from TPKD takes the

lowest time with the best accuracy. The result on the CPU strongly presents that

a model compression method such as KD is required to run on small devices having

limited power and computational resources.
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4.5 Conclusion

In this chapter, I propose a framework in knowledge distillation utilizing topolog-

ical representations on wearable sensor data, reducing the statistical gap between the

teacher and student by orthogonal features and an annealing strategy. I evaluated

the effectiveness of the proposed method, TPKD, under a variety of combinations of

KD in classification. TPKD showed more accurate and efficient performance than

baselines, which is significant in various applications running on edge devices. In fu-

ture work, I aim to extend the proposed method by leveraging more various teachers

trained with different representations (e.g. Gramian Angular Field based images) of

time series data. Also, I would like to explore the effects of augmentation methods

on the representations for using multiple teachers in knowledge distillation.

122



Chapter 5

CONSTRAINED ADAPTIVE DISTILLATION BASED ON TOPOLOGICAL

PERSISTENCE FOR WEARABLE SENSOR DATA

5.1 Introduction

Converting wearable sensor data to impactful health applications continues to be

challenging. The sources of variability in the raw sensor data include a) sensor-level

noise characteristics, b) drifts in sampling rates, c) gaps in recorded sensor data, d)

intrinsic variability in physiological signals, e) and variability due to sensor place-

ment and particular human movements. These issues make training robust machine

learning models with small datasets that much harder, calling for new approaches to

describe and account for such variabilities. In this context, topological data analy-

sis (TDA) has been used for representing time-series data with robustness to many

types of signal perturbation (Adams et al. (2017); Turkeš et al. (2021)). These meth-

ods have achieved great success in various fields such as human activity recognition

(Rieck et al. (2020); Som et al. (2020)), disease classification (Rieck et al. (2020);

Nawar et al. (2020)), and shape and texture classification (Guo et al. (2018)). Par-

ticularly, persistence images (PIs) have been widely used to representations that are

stable to signal perturbations. However, extracting PIs by TDA requires large com-

putational and time resources, which are particularly difficult for small devices with

limited computational power and real time systems on CPU (Hensel et al. (2021)).

Beyond just the computational load of TDA, it has also been found that the

TDA features have many different data structures like barcodes, persistence dia-

grams, which can be featurized in many ways, but their integration with contempo-
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rary machine-learning techniques has required independently computing the features

and fusing with deep-features later (Adams et al. (2017); Edelsbrunner and Harer

(2022)). Also, TDA features are computationally difficult to integrate with time-

series features to create a unified model because of their heterogeneous dimension

sizes and statistical characteristics (Som et al. (2020)). However, a careful use of

knowledge distillation can address both of these issues by creating an integrated stu-

dent model that blends the benefits of both TDA features and deep-features without

requiring separate computation at test-time.

In this chapter, I address these issues by employing knowledge distillation (KD)

which is a promising solution to produce a compact model (student) from a larger

model (teacher). KD has been demonstrated to be effective in activity recognition

and wearable sensor data analysis (Chen et al. (2018); Zhang et al. (2021); Qi et al.

(2023); Cheng et al. (2023); Jeon et al. (2022b); Gou et al. (2021)). Also, KD has

been broadly used to design a real-time system (Thai et al. (2022); Baghersalimi

et al. (2022); Angarano et al. (2023); Remigereau et al. (2022)). Incorporating mul-

tiple teachers in KD has been shown to improve performance by leveraging various

features (Gou et al. (2021); Liu et al. (2020); Zhang et al. (2022)), which are gener-

ally implemented in a unimodal manner. I utilize multiple teacher networks trained

with the raw time-series and persistence images generated by TDA, respectively. Im-

portantly, a single student is implemented with only time-series data as an input.

However, I found two significant challenges in utilizing different teachers in KD: (1)

The large discrepancy between the one-dimensional time-series and two-dimensional

TDA feature representations makes it difficult to effectively fuse multimodal features

and run models on a unified framework. (2) Due to the different architectural designs

of teachers and student (e.g., 1D CNNs vs. 2D CNNs), it is challenging to extract

similar structural features that allow the student to benefit from distillation.
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Figure 5.1: The Overview of Constrained Adaptive Distillation Based on Topological

Persistence (CADTP). A Compact Student Model Is Trained by Using Two Teachers,

Which Are Learned with Different Representations of the Same Raw Time-series

Data. BCF Denotes Batch and Channel Similarity Features.

To address these problems, I propose a new framework, named Constrained Adap-

tive Distillation Based on Topological Persistence (CADTP), which uses multimodal

inputs in KD using two different teachers and a single student. An overview of the

proposed method is presented in Figure 5.1. Firstly, to obtain topological features,

PIs are extracted from persistence diagrams. I train two models with time-series data

and PIs, respectively. In the second step, the pre-trained models serve as teacher mod-

els in KD to distill a single student. Logits from two teachers are used independently

for distillation. To address the knowledge discrepancy between two teachers, an en-

tropy based adaptive weighting mechanism is employed to measure the confidence of

knowledge and give more weight to the teacher with lower entropy values for each

sample. To preserve desirable effects from both teachers, I propose a novel adaptive

weighting mechanism with constraints to balance the contribution of teachers. The

weights are initialized but gradually increase or decrease as the epoch number grows.

This enables a student to learn to be more confident and keep beneficial knowledge

from different teachers by placing more weight on the confident knowledge between
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the two. In the third step, to integrate different structural information from different

models and to provide strong supervision, I utilize the batch and channel correlation

maps of intermediate representations within a mini-batch, which aids in matching dif-

ferent dimensional sizes of knowledge. Batch and channel similarity features capture

distinct activations, providing complementary information to each other.

The contributions of this chapter are as follows:

• I propose a new framework with knowledge distillation, which transfers time-

series and topological features to a student using time-series data only as an

input.

• I propose a technique for adaptive distillation that balances the influence of

different teachers based on entropy to effectively transfer knowledge despite the

statistical difference in their features.

• I utilize batch and channel similarities from intermediate layers and an annealing

strategy to integrate diverse knowledge from multiple teachers, allowing a single

student to effectively learn desirable features.

• I rigorously evaluate the effectiveness of the proposed method in various as-

pects using different teacher-student combinations and feature visualization on

wearable sensor data for human activity recognition.

The rest of the chapter is organized as follows. In section 5.2, I provide a brief

overview of creating PIs, KD techniques, and an annealing strategy. In section 5.3, I

introduce the proposed new framework for KD. In section 5.4, I describe our experi-

mental results and analysis. In section 5.5, I discuss our findings and conclusions.
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5.2 Background

5.2.1 Topological Feature Extraction

The integration of TDA with machine learning has shown robust performance in

many applications (Gholizadeh and Zadrozny (2018); Zeng et al. (2021); Edelsbrunner

and Harer (2022)). TDA aims to capture the intricate shape of complex data – per-

sistent homology is one of the popular algorithms which is able to capture variations

in topologically meaningful structures over multiple scales of the data, formed by the

interlinking of points, edges, and triangles, and in general simplicial complexes, by

a dynamic thresholding process called filtration (Edelsbrunner et al. (2002)). From

this filtration, the birth and death of these topological cavities can be described as a

point (x, y) in the persistence diagram (PD), where x and y are coordinates of planar

scatter points (Adams et al. (2017); Edelsbrunner and Harer (2022)). Applying PDs

directly to complex machine learning tasks is challenging because they have intrinsi-

cally heterogeneous statistical characteristics. PDs are multi-sets on R2 implying the

number and locations of the scatter points that can be different in the presence of

perturbations on the underlying data, which require more expressive representations.

Ordering the scatter points based on their persistence (lifetime) is a common way to

vectorize PDs, which makes it suitable for machine learning tasks.

Persistence image (PI) is a different type of vector representation of a PD. To

construct the PI, PD is first projected onto a persistence surface (PS) ρ : R → R2,

which is defined by a normalized symmetric Gaussian function as well as a weighting

function (Adams et al. (2017); Hensel et al. (2021)). The PS is discretized over a

standard grid. PI is generated by incorporating the PS over the grid and is repre-

sented as a matrix of pixel values. Higher values of a PI indicate high-persistence

points in the PD. Figure 5.2 depicts an example of a PD and its PI. However, due
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Figure 5.2: PD and Its Corresponding PI. In PD, Based on Weighting Function,

Points with Higher Life-time Appears Brighter.

to the high computational complexity required to extract PIs by TDA (Som et al.

(2020)), this method is difficult to use on small devices with limited power and com-

putational resources. To solve this issue, in this chapter, I propose a framework based

on knowledge distillation that trains a smaller single student model with topological

knowledge to generate good performance as a larger model.

5.2.2 Application of TDA for Activity Recognition

There are lots of works utilizing topological knowledge in applications for ac-

tivity recognition (Pachauri et al. (2011); Nawar et al. (2020); Som et al. (2020)).

These methods use vectorized topological features from PI as inputs to machine learn-

ing methods, generally resulting in robustness to signal perturbation. Nawar et al.

(Nawar et al. (2020)) encoded values in PI with forces and moments of data and uti-

lized SVM for classification, which showed better performance than using time-series

data. However, the method requires various pre-processing steps for training as well

as testing to extract topological features by TDA and transform knowledge into man-

ually defined terms. PI-Net (Som et al. (2020)) is to generate PI through CNNs to

utilize topological features efficiently instead of using conventional protocols running
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on the CPU. To adopt topological features and improve performance, the method

combines both time-series and topological features simultaneously to train and test

a model. However, running separate models and concatenating features increase the

complexity of the model and time consumption. Based on these insights, in this

chapter, I propose a framework to generate a single small model using time-series

data only, which does not require pre-processing to generate PI, nor needing to run

different models separately at test-time.

5.2.3 Knowledge Distillation

Knowledge distillation is the process of training a smaller model from the knowl-

edge of a larger model. KD was first introduced by Buciluǎ et al. (Buciluǎ et al.

(2006)) and further developed by Hinton et al. (Hinton et al. (2015)). During the

KD process, soft labels from the outputs of a teacher network are utilized, which

have more useful information than just a hard label and enable the student network

to easily encode the knowledge of the teacher (Hinton et al. (2015)). For traditional

KD, the loss function for training a student is:

L = (1− λ)LCE + λLKD, (5.1)

where LCE is the cross entropy loss, LKD is KD loss, and λ is a hyperparameter;

0 < λ < 1. By the cross entropy loss, the difference between the output of the

softmax layer for a student network and the ground-truth label is penalized:

LCE = Q(σ(tS), y), (5.2)

where Q(·) is a cross entropy loss function, σ(·) is a softmax function, tS is the logits

of a student, and y is a ground truth label. The outputs of student and teacher are

matched by KL-divergence loss:

LKD = τ 2KL(pT , pS), (5.3)
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where, pT = σ(tT/τ) is a softened output of a teacher network, pS = σ(tS/τ) is a

softened output of a student, and τ is a hyperparameter; τ > 1. Vanilla KD utilizes

a fully trained teacher. Cho et al. (Cho and Hariharan (2019)) investigated the

effects of early stopping for KD (ESKD) to distill a better student. To obtain the

best performance, I use ESKD that improves the efficacy of KD (Cho and Hariharan

(2019)).

As an extension of response based knowledge using logits, feature based knowledge

distillation has been used to improve performance (Romero et al. (2015); Gou et al.

(2021); Zagoruyko and Kmodakis (2017); Tung and Mori (2019)). Firstly, the inter-

mediate representations were introduced in Fitnets (Romero et al. (2015)). The key

idea behind feature matching in KD is to directly match the features of the teacher

and student. Many different variants have been proposed to achieve this indirectly,

such as the approach of Tung et al. (Tung and Mori (2019)), which utilizes similar-

ity between a mini-batch of samples to transfer knowledge. The dimensions of the

teacher and student are the same, which is defined by the size of the mini-batch. To

calculate the batch similarity, the activation map A ∈ Rb×b is produced as follows:

A = Fb · F>b ;Fb ∈ Rb×chw, (5.4)

where Fb is reshaped features from an intermediate layer of a model, b is the size of

a mini-batch, c is the number of output channels, and h and w are the height and

width of the output, respectively. These methods using intermediate representations

have been popularly used in KD, however, they generally focus on utilizing a single

teacher in a unimodal manner.

To transfer more useful information, using multiple teachers has been proposed

(Gou et al. (2021); Liu et al. (2020); Zhang et al. (2022)). Since different teachers can

produce diverse knowledge, richer knowledge can be leveraged to improve the perfor-
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mance of a student (Gou et al. (2021)). Despite initial attempts (You et al. (2017);

Kwon et al. (2020)), the problem remains difficult to solve. Combining knowledge

from various teachers in KD poses a challenge as it can result in loss of characteristics

of each and having them affect each other as noise components. Also, a data sam-

ple or label for training a teacher cannot always be used to train or test a student.

Furthermore, different modalities in KD increase the knowledge difference between a

teacher and student, which results in performance degradation (Gou et al. (2021)).

To resolve these problems, I develop a framework in KD using constrained adap-

tive weighting mechanism, based on entropy, to control the effects of two teachers

trained with time-series and topological features. This allows for the transfer of

richer information effectively to a single student, which uses the raw time-series data

only as an input. The details of the proposed method is described in section 5.3.

5.2.4 Simulated Annealing in KD

Kirkpatrick et al. (Kirkpatrick et al. (1983)) introduced simulated annealing,

which has been applied to various fields with machine learning for solving optimization

problems (Yang (2020)). Jafari et al. (Jafari et al. (2021)) introduced an annealing

KD to use two stages to address the capacity gap problem between the outputs

of teacher and student networks. In the first stage, while the difference in logits

between teacher and student is reduced in a regression task, a temperature parameter

decreases as the epoch number increases. In the second stage, the student is fine-

tuned with the hard labels by cross entropy loss. Dong et al. (Dong et al. (2022))

also used two stages in KD. A student learns from a teacher when the teacher model

outperforms, otherwise, the student is trained by hard labels. To avoid the teacher’s

limited accuracy issue, a dynamic annealing weight is used, which increases linearly

as finetuning epochs increase. An annealing strategy of the proposed method has
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different aspect, compared to prior studies (Clark et al. (2019); Jafari et al. (2021);

Dong et al. (2022)). For the proposed method, multiple teachers are trained with

different modalities – time-series and persistence image data – but only one type

of data is used to train and test a single student. Since the features from teachers

and their contributions are different, I apply an annealing strategy that reduces the

search space and forces the student to learn enjoyable features for better performance

by using the weights of a model trained from scratch. In detail, the strategy is to

initialize the student model with weight values from a model learned from scratch,

instead of randomly chosen values. This allows the student to preserve desirable

features for improved performance – the final model operates only on raw time-series

data as input. In this way, the knowledge gap between the teachers and student is

also mitigated.

5.3 Proposed Approach

The proposed method utilizes two teachers trained with different data to train a

student. Firstly, PIs are extracted from time-series data through TDA to incorporate

topological features. The two teachers are trained with the raw time-series data

and the extracted PIs, respectively. Secondly, logits of teacher and student networks

are used to calculate entropy for balancing the effects of two teachers, considering

statistical differences in multimodalities. In the third, correlation maps for batch

and channel similarities within a mini-batch are utilized for distillation to provide

plentiful information, which allows for the use of differently designed teachers and

student. Additionally, an annealing strategy for knowledge distillation is applied to

optimize the weight of the student model. Finally, a robust single student is distilled.

The details of the proposed method are explained in the following section.
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5.3.1 Persistence Image Extraction

To compute PIs, firstly, I utilize Scikit-TDA python library (Saul and Tralie

(2019)) and the Ripser package for generating PDs, as described in Som et. al.

(Som et al. (2020)). Level-set filtration PDs for time-series data are computed, which

creates a summary representation of different peaks in the signal. PIs are generated

in the form of a grid representing birth-time vs. lifetime information. The dimension

size of one PI is m ×m × c, where m and c are a constant value and the number of

channels for a sample. Secondly, I train a model with the extracted PIs with super-

vised learning, where the model is used as a teacher model, transferring topological

features to a student model.

5.3.2 KD with Multiple Teachers

To generate PIs, TDA requires a large amount of computational resources, which

is one of the critical burdens at test-time. To this end, I adopt KD to distill a

small model using time-series data alone as an input, to acquire beneficial topological

features from a teacher.

Distillation with Logits of Different Teachers

Since the proposed method uses two teachers transferring knowledge of logits sepa-

rately, no additional function such as concatenation or hidden layers is necessarily

needed. KD loss to utilize logit features of two teachers is:

LKDm = τ 2 (αKL(pT1 , pS) + (1− α)KL(pT2 , pS)) , (5.5)

where α is a hyperparameter to control the losses from different teachers, and pT1 and

pT2 are softened outputs of teachers learned with time-series data and PIs, respec-

tively.
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Entropy-based Constrained Adaptive Distillation

The proposed method uses two teachers trained with different data and designs, which

generate statistically heterogeneous features that may interfere with each other. To

transfer effective knowledge from multiple teachers, I use the entropy of teachers,

which can be utilized as an uncertainty indicator (Kwon et al. (2020)). However,

since teachers are implemented with multimodalities, two models generate statistically

dissimilar features and the entropy values between them are significantly different.

This can produce a large discrepancy between the two entropy values, resulting in

biased balancing and poor adjustment of losses from the two teachers. To this end,

I propose constrained adaptive distillation based on entropy. If the entropy value

of labels is smaller, the effect of the KD loss is more important (Long et al. (2018);

Kwon et al. (2020)). Based on this factor, the weight of a teacher is made larger if the

model produces smaller entropy. To make a function to adjust the weights gradually,

I adopt a part of sigmoid curve whose input is over 0. The weight value α for teacher

losses begins at 0.5 and is adjusted dynamically as the epoch number increases. α

is defined within the specified range. Since different teachers perform differently at

each input data, I set α at each sample. The weight α is determined according to the

following rule:

αi =


0.5 +

(
1/(1 + e−epoch/β)− 0.5

)
/κ if H(tiT1) < H(tiT2)

0.5−
(
1/(1 + e−epoch/β)− 0.5

)
/κ otherwise

, (5.6)

where, H(tiT1) andH(tiT2) denote the entropy of tiT1 and tiT2 for a sample i, respectively.

β and κ are constant values to manage the saturation point by the epoch number.

KD loss with constrained adaptive weights based on entropy of two teachers can be

written as:

LKDent = 1
n

∑n
i=1 τ

2
(
αiKL(piT1 , p

i
S) + (1− αi)KL(piT2 , p

i
S)
)
, (5.7)
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where n is the number of samples. Therefore, more knowledge is transferred to the

student from teachers that have lower entropy values.

Extracting Features of Different Teachers

To provide more comprehensive knowledge from the teachers, I use intermediate fea-

tures also in distillation. However, since two teachers are trained with different modal-

ities, and teachers and the student have different architectures, it is difficult to trans-

fer the information directly. To accommodate heterogeneous features from networks

with different structures, I use the similar method proposed in Tung et al. (Tung

and Mori (2019)), which can easily make features match the dimensions of activation

maps from different models, as explained in equation (5.4). The batch similarity ma-

trices A ∈ Rb×b have the same size for teachers and the student. The pattern of the

activation map is determined according to the same or different classes. Specifically,

if two samples are in the same category, a model generates similar activation maps,

which enables a student to acquire beneficial knowledge from a teacher.

Although the batch similarity provides considerable information, more diverse

contexts can still be transferred to distill a superior student model in KD. To leverage

different contexts, I extract channel similarity that highlights the channel relationship

within a mini-batch, which can be simply obtained by reshaping the features of the

intermediate layer. To calculate the channel similarity, the activation map G ∈ Rc×c

is produced as follows:

G = Fc · F>c ;Fc ∈ Rc×bhw, (5.8)

where Fc is reshaped features from an intermediate layer of a model. G can have

different sizes for different layers.

Figure 5.3 shows the batch and channel similarity maps from two teachers. The

similarity maps highlight differently and show dissimilar patterns. Thus, these maps
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Figure 5.3: Examples of Activation Similarity Maps A and G Produced by a Layer for

the Indicated Stage of the Network for a Batch on GENEActiv. High Similarities for

Samples Within the Batch Are Shown with High Values. The Blockwise Pattern Is

More Prominent for Batch Similarity Maps Using Persistence Image. The Maps with

Different Modalities and Similarities Represent Dissimilar Patterns, Which Implies

That These Maps Can Capture Diverse Semantics of the Dataset.
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can transfer complementary information to each other. Also, two teachers generate

very different patterns for both activation maps. This is due to the fact that the two

models are trained with different modalities and produce dissimilar features, which

can provide misinformation to the student (Kwon et al. (2020); Gou et al. (2021)).

By using fused knowledge, the effects of noise from the teachers can be reduced and

the student can better interpret context. To integrate the information, I utilize the

calculated weight α. These maps are generated within a mini-batch, and the average

of their α is used. The merged map of batch similarity from teachers with the averaged

weight value αavg is as follows:

A
(l)
T = αavgA

(lT1 )
T1

+ (1− αavg)A(lT2 )
T2

, (5.9)

where A
(l)
T ∈ Rb×b is the generated map from the activation maps of a layer pair (lT1

and lT2) of two teachers AT1 and AT2 . The merged map of channel similarity from

teachers is as follows:

G
(l)
T = αavgG

(lT1 )
T1

+ (1− αavg)G(lT2 )
T2

, (5.10)

where G
(l)
T ∈ Rc(l)×c(l) is the generated map from the activation maps of a layer pair

(lT1 and lT2) of two teachers GT1 and GT2 . If GT1 and GT2 have different size, larger one

is resized to match the smaller one. By merging the maps, the similarities between

two teachers are more highlighted.

Transferring Features from Multiple Teachers

ÃT and G̃T are obtained by normalization as: AT/‖AT‖2 and GT/‖GT‖2, respectively.

ÃS and G̃S are normalized maps from the student AS and GS, respectively. If GT and

GS have different size, the larger one is resized to meet the size of the smaller one.

The overview of transferring knowledge with similarity maps is described in Figure
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Figure 5.4: Framework of Extracting and Transferring Similarity Features from Dif-

ferent Teachers. A′ and B′ Denote Mini-batch Features at a Layer of Teacher1 and

Teacher2, Respectively. C′ Denotes Mini-batch Features at a Layer of Student.

5.4. By minimizing the difference between the teachers and student, the information

from similarity maps are transferred as follows:

Lsim =
1

|L|
∑

(l,lS)∈L

(
γb
b2

∥∥∥Ã(l)
T − Ã

(lS)
S

∥∥∥2
F

+
γc
c2(l)

∥∥∥G̃(l)
T − G̃

(lS)
S

∥∥∥2
F

)
, (5.11)
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where L collects the layer pairs (l and lS), γb and γc are hyperparameters to bal-

ance the effects of batch and channel similarities, c(l) is the size of G
(l)
T , and ‖·‖F

is the Frobenius norm (Tung and Mori (2019)). In this way, the student can get

the beneficial diverse knowledge from multiple teachers with the raw time-series and

topological representations. The overall learning objective of the proposed method

can be written as:

LCADTP = (1− λ)LCE + λLKDent + ηLsim, (5.12)

where η is a hyperparameter to control the effect of loss Lsim.

5.3.3 Annealing Strategy for KD

Since teachers and student have different architectures and are trained with differ-

ent data, they generate dissimilar features, which produce statistical gaps and cause

degradation in KD (Gou et al. (2021); Jafari et al. (2021)). To mitigate the effects

of the knowledge gap, I use an annealing strategy in KD for the proposed frame-

work. Firstly, a small model that has the same architecture of a student is learned

from scratch. Secondly, when the weight values of a student model are initialized

for the training process in KD, the values are determined by the pre-trained model,

instead of randomly chosen values. Then, the knowledge difference between teachers

and student is reduced, and the search space for optimization is decreased. Also,

the strategy enables the student to preserve more desirable features for implementing

with time-series data while teachers transfer their own features.

5.4 Experiments

In this section, I describe datasets used for evaluation and experimental settings.

I demonstrate the proposed method with various teacher-student combinations on
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wearable sensor data. I analyze the proposed method under different noise levels

and various hyperparameters. Further, I investigate the effectiveness of CADTP with

visualization of feature maps and generalizability analysis. Finally, I compare and

contrast the computational time with different methods.

5.4.1 Data Description and Experimental Settings

Data Description

I evaluate the proposed method with wearable sensor data on GENEActiv and PAMAP2

datasets.

GENEActiv. GENEActiv (Wang et al. (2016)) is an experimental device calibra-

tion dataset collected with GENEActiv sensor which is a light-weight, waterproof, and

wrist-worn tri-axial accelerometer with sampling frequency of 100 Hz. The dataset

was comprised of over 150 generally healthy adults roughly balanced by sex, age (18-

64 years of age), and body mass index. All participants provided consent prior to

participation. I use 14 daily activities used as in (Jeon et al. (2022b)). Each activity

class has over 900 samples. I use full non-overlapping window size of 500 time-steps

(5 seconds). The number of subjects for training and testing are 131 and 43, respec-

tively. The number of samples for training and testing are approximately 16k and

6k, respectively.

PAMAP2. PAMAP2 (Reiss and Stricker (2012)) is a publicly accessible dataset

collected by measurements of heart rate, temperature, accelerometers, gyroscopes,

and magnetometers with 100Hz of sampling frequency for 9 subjects (24-32 years of

age). The sensors were placed on hands, chest, and ankles of the subject. I use 12

daily activities with 40 channels, which were recorded from the heart rate and 4 IMUs,

where activities are lying, sitting, standing, walking, etc. To compare with previous
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methods, the recordings are downsampled to 33.3Hz. The evaluation protocol on this

dataset follows leave-one-subject-out. Data dropping and connection loss occurred

because data was collected using wireless sensors, so missing data is included. The

dataset has non-uniform distribution. I utilize 100 time-steps (3 seconds) of a sliding

window for a sample with 22 time-steps (660 ms) of step size for segmenting the

sequences, which allows semi-non-overlapping sliding windows with 78% overlapping

(Reiss and Stricker (2012)).

Experimental Settings

To extract PIs, for GENEActiv, the Gaussian function parameter in PD is 0.25 and

the birth-time range for PI is determined between -10 to 10, which are the same

as in the previous study (Som et al. (2020)). For PAMAP2, the Gaussian function

parameter and birth-time range are set as 0.015 and [-1, 1], respectively. Each PI is

normalized by its maximum intensity value. m is set to 64 for both datasets. To train

network models in experiments, I set the total number of epochs as 200, using SGD

with momentum of 0.9, 64 as the batch size, and a weight decay as 1× 10−4. I have

different strategies for training models with time-series and image representations.

The model trained with time-series data is incorporated with 1D convolutional layers,

on the other hand, the one trained with image data is designed with 2D convolutional

layers. To train a model with time-series data, the initial learning rate is 0.05 which

decreases by 0.2 at 10 epochs and drops down by 0.1 every [ t
3
] where t is the total

number of epochs. For image data, a model is trained with 0.1 of the initial learning

rate, which decreases by 0.5 at 10 epochs and drops down by 0.2 at 40, 80, 120, and

160 epochs. To evaluate the performance of the proposed method, I use WideResNet

(WRN) (Zagoruyko and Komodakis (2016)) to construct different combinations of

teachers and student, which is popularly used in validation of KD (Cho and Hariharan
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(2019); Jeon et al. (2022b)). Also, WRN has been used to design real-time system

(Lee et al. (2017); Song et al. (2021); Kania and Markowska-Kaczmar (2018)). As the

previous works do (Jeon et al. (2022b)), τ and λ are set as 4 and 0.7 for GENEActiv,

and as 4 and 0.99 for PAMAP2, respectively. I run 3 times and the best averaged

accuracy and standard deviation are reported for the following experiments. I perform

baseline comparisons with traditional KD (Hinton et al. (2015)), attention transfer

(AT) (Zagoruyko and Kmodakis (2017)), similarity-preserving knowledge distillation

(SP) Tung and Mori (2019), and simple knowledge distillation (SimKD) (Chen et al.

(2022)), which are popularly used for distillation. αAT and γSP are set as 1500 and

1000 for GENEActiv, and 3500 and 700 for PAMAP2, respectively. Also, I compare

with DIST (Huang et al. (2022)), which considers intra- and inter-class relationship

for knowledge transfer. Additionally, I compare with multi-teacher based approaches

such as AVER (You et al. (2017)), EBKD (Kwon et al. (2020)), CA-MKD (Zhang

et al. (2022)), Base (Jeon et al. (2022a)), and AdTemp (Jeon et al. (2022a)). Since I

use different dimensional input data and structured teachers, only the outputs from

the last layer (logits) are used for baselines in distillation. α for baselines is set as

0.5. For Base, α is 0.7 and 0.3 for GENEActiv and PAMAP2, respectively.

5.4.2 Various Capacity of Teachers

In this section, I evaluate the proposed method with various capacities of teachers

that are trained with time-series data and PIs, respectively. WRN16-1 (1D CNNs) is

used as a student model. γb is 1. Details of models for teachers and a student, used

for experiments, are summarized in Table 5.1, representing model complexity and the

number of trainable parameters.

The results with various teachers on GENEActiv are described in Table 5.2. Note,

“time-series” and “PImage” denote results of KD methods with Teacher1 trained with
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Table 5.1: Details of Teacher and Student Network Architectures. Compression Ratio

Is Calculated with Two Teachers.

DB
Teacher1 (1D CNNs) &

Student
FLOPs # of params Compression

Teacher2 (2D CNNs) (Teacher1) (Teacher2) (Student) (Teacher1) (Teacher2) (Student) ratio

G
E
N
E
A
ct
iv

WRN16-1

WRN16-1

11.03M 108.97M

11.03M

0.06M 0.18M

0.06M

25.93%

WRN16-3 93.95M 898.52M 0.54M 1.55M 2.94%

WRN28-1 22.22M 224.28M 0.13M 0.37M 12.36%

WRN28-3 192.01M 1923.93M 1.12M 3.29M 1.39%

P
A
M
A
P
2

WRN16-1

WRN16-1

2.39M 131.02M

2.39M

0.06M 0.18M

0.06M

25.88%

WRN16-3 19.00M 921.03M 0.54M 1.56M 3.01%

WRN28-1 4.64M 246.56M 0.13M 0.37M 12.52%

WRN28-3 38.64M 1947.13M 1.12M 3.30M 1.43%

time-series data and Teacher2 trained with PIs, respectively. “TS”, “Ann.”, “Ent.”

denote using a teacher trained with time-series data, applying an annealing strategy,

and using entropy based constrained adaptive distillation, respectively. “Ba.” and

“Ch.” denote using batch and channel similarity features in distillation. The numbers

in brackets for Teacher1, Teacher2, and Student are their accuracy. η is 700. β and κ

are 1.5 and 2.5, respectively. The γc values of the teachers in the table are 0.2, 0.01,

0.01, and 0.2, from left to right. As shown in the table, CADTP (with entropy based

constrained adaptive distillation) shows the best results in all cases. Ann. performs

better than AVER, indicating that the annealing strategy is useful to improve the

performance. In most of the cases, CADTP (w/o Ent.) also performs better than

other baselines (Ann., Ann.+Ba., and Ann.+Ch.). That is, as more information

is provided, the more improvement is seen. Next, using larger teachers does not

guarantee a better student, which corroborates the previous observations (Cho and

Hariharan (2019)).
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Table 5.2: Accuracy (%) with Various Knowledge Distillation Methods for Different

Capacity of Teachers on GENEActiv.

Teacher1 WRN16-1 WRN16-3 WRN28-1 WRN28-3

(1D CNNs) (67.66) (68.89) (68.63) (69.23)

Teacher2 WRN16-1 WRN16-3 WRN28-1 WRN28-3

(2D CNNs) (58.64) (59.80) (59.45) (59.69)

Student WRN16-1

(1D CNNs) (67.66±0.45)

P
I KD 67.83±0.17 68.76±0.73 68.51±0.01 68.46±0.28

T
im

e-
se
ri
es

KD 69.71±0.38 69.50±0.10 68.32±0.63 68.58±0.66

AT 68.21±0.64 69.79±0.36 68.09±0.24 67.73±0.27

SP 67.20±0.36 67.85±0.24 68.71±0.46 67.39±0.49

SimKD 69.39±0.18 69.89±0.11 68.92±0.40 68.80±0.38

DIST 68.20±0.28 69.71±0.15 69.23±0.19 68.18±0.60

T
S
+
P
Im

a
g
e

AVER 68.99±0.76 68.74±0.35 68.77±0.70 69.02±0.50

EBKD 68.43±0.25 69.24±0.25 68.45±0.73 67.50±0.40

CA-MKD 69.33±0.61 69.80±0.16 69.61±0.57 68.81±0.79

Base 69.09±0.37 69.24±0.62 69.55±0.41 69.42±0.58

AdTemp 69.80±0.68 70.10±0.39 70.01±0.83 69.55±0.51

Ann. 70.04±0.22 70.27±0.06 70.15±0.24 69.83±0.24

Ann.+Ba. 70.43±0.15 70.48±0.37 70.40±0.16 69.98±0.31

Ann.+Ch. 69.16±0.24 69.99±0.28 68.79±0.29 68.51±0.57

CADTP (w/o Ent.) 70.90±0.59 70.39±0.20 70.53±0.26 71.18±0.59

CADTP (w/ Ent.) 71.91±0.39 71.68±0.25 71.40±0.27 71.74±0.23

To investigate with different size of window lengths and more previous methods, I

test the methods with 7 classes of GENEActiv dataset, as do the previous study (Jeon

et al. (2022b); Choi et al. (2018)). β and κ are 1.0 and 1.5, respectively. η parameters

are 900 for window size of 500 and 100 for window size of 1000, respectively. γc are
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Table 5.3: Accuracy (%) for Related Methods on GENEActiv with 7 Classes.

Method
Window length

1000 500

T
im

e-
se
ri
es

SVM (Cortes and Vapnik (1995)) 86.29 85.86

Choi et al. (Choi et al. (2018)) 89.43 87.86

WRN16-1 89.29±0.32 86.83±0.15

WRN16-3 89.53±0.15 87.95±0.25

WRN16-8 89.31±0.21 87.29±0.17

ESKD (WRN16-3) 89.88±0.07 88.16±0.15

ESKD (WRN16-8) 89.58±0.13 87.47±0.11

Full KD (WRN16-3) 89.84±0.21 87.05±0.19

Full KD (WRN16-8) 89.36±0.06 86.38±0.06

AT (WRN16-1) 90.10±0.49 87.25±0.22

AT (WRN16-3) 90.32±0.09 87.60±0.22

SP (WRN16-1) 87.08±0.56 87.65±0.11

SP (WRN16-3) 88.47±0.19 87.69±0.18

SimKD (WRN16-1) 90.25±0.22 87.24±0.09

SimKD (WRN16-3) 90.47±0.32 88.16±0.37

DIST (WRN16-1) 90.18±0.31 87.62±0.02

DIST (WRN16-3) 90.20±0.39 87.05±0.31

T
S
+
P
Im

a
g
e

AVER (WRN16-1) 90.01±0.46 87.53±0.16

AVER (WRN16-3) 90.06±0.33 87.05±0.37

EBKD (WRN16-1) 90.35±0.12 87.51±0.41

EBKD (WRN16-3) 89.82±0.14 87.66±0.28

CA-MKD (WRN16-1) 90.01±0.28 87.14±0.25

CA-MKD (WRN16-3) 90.13±0.34 88.04±0.26

Ann. (WRN16-1) 90.64±0.15 87.68±0.15

Ann. (WRN16-3) 90.78±0.08 88.02±0.21

CADTP (w/ Ent.) (WRN16-1) 90.85±0.31 88.89±0.29

CADTP (w/ Ent.) (WRN16-3) 91.48±0.27 88.45±0.11
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Table 5.4: Accuracy (%) with Various Knowledge Distillation Methods for Different

Capacity of Teachers on PAMAP2.

Teacher1 WRN16-1 WRN16-3 WRN28-1 WRN28-3

(1D CNNs) (85.27) (85.80) (84.81) (84.46)

Teacher2 WRN16-1 WRN16-3 WRN28-1 WRN28-3

(2D CNNs) (86.93) (87.23) (87.45) (87.88)

Student WRN16-1

(1D CNNs) (82.99±2.50)

P
I KD 85.04±2.58 86.68±2.19 85.08±2.44 85.39±2.35

T
S KD 85.96±2.19 86.50±2.21 84.92±2.45 86.26±2.40

T
S
+
P
Im

a
g
e

AVER 85.82±2.16 86.00±2.45 85.17±2.38 86.64±2.24

Ann. 86.05±2.23 86.74±2.25 85.89±2.25 86.72±2.26

Ann.+Ba. 86.53±2.19 86.94±2.32 85.81±2.34 86.84±2.38

Ann.+Ch. 86.81±2.04 87.25±2.18 86.13±2.16 86.99±2.17

CADTP (w/o Ent.) 86.68±2.21 87.63±2.30 87.39±2.07 87.22±2.33

CADTP (w/ Ent.) 87.11±2.04 88.14±2.07 87.47±2.06 87.55±2.27

0.2, 0.003, 0.2, and 0.02 for teachers of WRN16-1 for 500 window length, WRN16-3

for 500 window length, WRN16-1 for 1000 window length, and WRN16-3 for 1000

window length, respectively. In Table 5.3, CADTP achieves the best performing

results, indicating that the proposed method aids in performance improvement. The

results on PAMAP2 are described in Table 5.4. β and κ are 0.3 and 2.5, respectively.

η is 200. The γc values of the teachers in the table are 0.02, 0.02, 0.2, and 0.2,

from left to right. In all cases, CADTP (with Ent.) produces the best results. For

this dataset, in most of the cases, CADTP (w/o Ent.) performs better than other

baselines (Ann., Ann.+Ba., and Ann.+Ch.). Further, as shown in Table 5.5, CADTP
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Table 5.5: Accuracy (%) for Related Methods on PAMAP2.

Method Accuracy (%)

T
im

e-
se
ri
es

Chen and Xue (2015) 83.06

Ha et al. (2015) 73.79

Ha and Choi (2016) 74.21

Kwapisz et al. (2011) 71.27

Catal et al. (2015) 85.25

Kim et al. (2012) 81.57

WRN16-1 82.81±2.51

WRN16-3 84.18±2.28

WRN16-8 83.39±2.26

ESKD (WRN16-3) 86.38±2.25

ESKD (WRN16-8) 85.11±2.46

Full KD (WRN16-3) 84.31±2.24

Full KD (WRN16-8) 83.70±2.52

AT (WRN16-1) 83.79±2.40

AT (WRN16-3) 84.44±2.22

SP (WRN16-1) 84.31±2.38

SP (WRN16-3) 84.89±2.10

T
S
+
P
Im

a
g
e

AVER (WRN16-1) 85.82±2.16

AVER (WRN16-3) 86.00±2.45

EBKD (WRN16-1) 85.58±2.31

EBKD (WRN16-3) 85.62±2.37

CA-MKD (WRN16-1) 84.06±2.50

CA-MKD (WRN16-3) 85.02±2.64

Base (WRN16-1) 85.91±2.32

Base (WRN16-3) 86.18±2.37

Ann. (WRN16-1) 86.05±2.23

Ann. (WRN16-3) 86.74±2.25

CADTP (w/ Ent.) (WRN16-1) 87.11±2.04

CADTP (w/ Ent.) (WRN16-3) 88.14±2.07
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outperforms the baselines. As a result, the proposed method improves performance

while also allowing for effective model compression.

Table 5.6: Accuracy (%) with Various Knowledge Distillation Methods for Different

Structure of Teachers on GENEActiv.

Method
Architecture Difference

Depth Width Depth+Width

WRN WRN WRN WRN WRN WRN WRN WRN WRN WRN WRN WRN

Teacher1 16-1 16-1 28-1 40-1 16-1 16-3 28-1 28-3 28-1 28-3 40-1 16-1

(1D CNNs) (0.06M, (0.06M, (0.1M, (0.2M, (0.06M, (0.5M, (0.1M, (1.1M, (0.1M, (1.1M, (0.2M, (0.06M,

67.66) 67.66) 68.63) 69.05) 67.66) 68.89) 68.63) 69.23) 68.63) 69.23) 69.05) 67.66)

WRN WRN WRN WRN WRN WRN WRN WRN WRN WRN WRN WRN

Teacher2 28-1 40-1 16-1 16-1 16-3 16-1 28-3 28-1 16-3 40-1 28-3 28-3

(2D CNNs) (0.4M, (0.6M, (0.2M, (0.2M, (1.6M, (0.2M, (3.3M, (0.4M, (1.6M, (0.6M, (3.3M, (3.3M,

59.45) 59.67) 58.64) 58.64) 59.80) 58.64) 59.69) 59.45) 59.80) 59.67) 59.69) 59.69)

Student WRN16-1

(1D CNNs) (0.06M, 67.66±0.45)

AVER
68.71 68.38 68.66 68.76 68.92 67.98 67.89 68.91 68.29 69.10 69.10 68.07

±0.42 ±0.53 ±0.26 ±0.38 ±0.09 ±0.29 ±0.23 ±0.24 ±0.16 ±0.57 ±0.43 ±0.27

Ann.
69.78 69.84 70.27 70.23 69.55 70.47 70.02 69.71 70.22 70.06 70.04 69.65

±0.06 ±0.10 ±0.08 ±0.14 ±0.06 ±0.07 ±0.10 ±0.07 ±0.09 ±0.20 ±0.32 ±0.07

Ann.+Ba.
70.48 71.23 70.28 71.07 69.47 70.98 70.27 70.49 70.00 71.30 71.20 70.82

±0.18 ±0.32 ±0.25 ±0.33 ±0.27 ±0.11 ±0.45 ±0.64 ±0.19 ±0.07 ±0.37 ±0.21

CADTP

(w/ Ent.)

(η)

72.17 71.85 70.84 70.47 72.04 72.23 70.87 71.75 70.76 71.93 70.87 71.56

±0.06 ±0.25 ±0.13 ±0.27 ±0.26 ±0.54 ±0.29 ±0.07 ±0.26 ±0.13 ±0.31 ±0.15

(900) (700) (700) (700) (700) (500) (700) (500) (700) (700) (700) (700)
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Table 5.7: Accuracy (%) with Various Knowledge Distillation Methods for Different

Structure of Teachers on PAMAP2.

Method
Architecture Difference

Depth Width Depth+Width

WRN WRN WRN WRN WRN WRN

Teacher1 28-1 16-1 28-3 16-3 16-1 28-3

(1D CNNs) (0.1M, (0.06M, (1.1M, (0.5M, (0.06M, (1.1M,

84.81) 85.27) 84.46) 85.80) 85.27) 84.46)

WRN WRN WRN WRN WRN WRN

Teacher2 16-1 28-1 28-1 28-1 28-3 16-1

(2D CNNs) (0.2M, (0.4M, (0.4M, (0.4M, (3.3M, (0.2M,

86.93) 87.45) 87.45) 87.45) 87.88) 86.93)

Student WRN16-1

(1D CNNs) (0.06M, 82.99±2.50)

Ann.
85.44 85.84 85.89 85.98 85.86 85.91

±2.47 ±2.29 ±2.32 ±2.29 ±2.31 ±2.42

CADTP 85.89 87.03 87.11 87.31 87.57 86.98

(w/ Ent.) ±2.46 ±2.03 ±2.40 ±2.10 ±1.97 ±2.41

5.4.3 Various Combinations of Teachers

To explore the effects of different architectures for teachers, various different depth

and width of WRNs are used, as described in Table 5.6 and 5.7. For GENEActiv, γc

of (Teacher1, Teacher2) is 0.07 for (WRN16-3, WRN16-1) and (WRN28-3, WRN40-

1), otherwise, the value is 0.2. As depicted in Table 5.6, CADTP produces the

best student in almost all cases. When depth of Teacher1 is larger than Teacher2,

Ann.+Ba. can generate a better student. For PAMAP2, η is 200 and γc of (Teacher1,

149



Teacher2) is 0.02 for (WRN28-1, WRN16-1), (WRN16-1, WRN28-1), and (WRN28-

1, WRN16-3), otherwise, the value is 0.2. As shown in Table 5.7, CADTP shows

the better results than Ann. in all cases. Both tables also show that in most cases

CADTP performs better when Teacher1 has a smaller or the same depth of model

than Teacher2 (e.g. WRN16-1 Teacher1 and WRN16-3 Teacher2). In some cases,

Ann.+Ba. does not show much improvement, compared to the other baselines, while

CADTP still shows good performance. In distillation with multiple teachers, even

though the performance can be affected by the knowledge difference, CADTP allevi-

ates the negative effect, and even produces a better student than its teachers. These

findings also support the notion that having larger teachers is not always a good way

to improve student performance (Cho and Hariharan (2019)).

5.4.4 Ablations and Sensitivity Analysis

In this section, I explore the sensitivity of the proposed method. I evaluate

CADTP under different settings of corruptions to figure out its ability to withstand

noise. To better understand the performance, I investigate the effects of hyperparam-

eters and visualize feature maps. Also, I analyze the generalizability of models.

Analysis of Invariance from Noise

To investigate the ability of models to be robust to different types of noise, I conducted

experiments with noisy testing data by injecting continuous missing and Gaussian

noise (Jeon et al. (2022b); Wen et al. (2021a); Wang and Wang (2019)). To account

for unknown noise models, noise parameters are determined at random; (κR, σG)

denotes (the percentage of the window size to be removed, the standard deviation for

Gaussian noise). The exact parameters are chosen randomly and are less than the

defined values. Both noises are applied simultaneously, and the variations are set as
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three levels: Level 1 (0.15, 0.06), Level 2 (0.22, 0.09), and Level 3 (0.30, 0.12). Note,

the classifiers were trained with the original training set.

Figure 5.5: Accuracy (%) with Various Knowledge Distillation Methods for Differ-

ent Noise Severity Levels on GENEActiv. Brackets Denote (Teacher1, Teacher2).

Students Are WRN16-1 (1D CNNs).

As illustrated in Figure 5.5, CADTP (with Ent.) shows better performance than

baselines in all cases. In most of the cases, student models by AVER perform better

than the one from KD trained with time-series data alone, which implies that topo-

logical features complement features from the raw time-series data and help improve

the robustness to noise. When Teacher1 and Teacher2 have different depth or width,

the gap between CADTP and AVER is large. When the capacity or structure be-

tween teachers is different, knowledge transfer is more difficult. Thus, CADTP helps

a student get beneficial features and improves noise robustness.

Effect of Distillation Hyperparameters on CADTP

γc and η are major components of the proposed method to balance the losses for

batch and channel similarity maps in distillation. To investigate the sensitivity for

these hyperparameters, I conduct experiments with various parameters.

A student (WRN16-1) is trained with two teachers by using different γc and η,

as illustrated in Figure 5.6. For (a) and (b), the other hyperparameters are set as in
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Figure 5.6: Sensitivity to γc and η of the Proposed Method for WRN16-1 Students

on GENEActiv.

the previous section. All results of CADTP (with entropy based constrained adaptive

distillation) outperform baselines. Their best is shown near γc = 0.01. For PAMAP2,

their best also are shown the similar. The results with various η are presented in (c)

and (d) with γc = 0.02. The best results are shown when η = 700. For PAMAP2,

smaller number of η (200) shows the best. When the window size is small and the

number of channels is large, small η (≤ 500) can be more effective. As shown in these

results, to obtain the best result, setting the proper hyperparameters of γc and η is

important.

Analysis of Constrained Adaptive Distillation

To consider the different feature properties of multiple teachers, the proposed method

uses constrained adaptive weights based on entropy. To investigate the effects of
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the constrained adaptive distillation, I compare the results between those with and

without constraints.

Figure 5.7 shows the averaged probability by logits from models for testing samples

of class 0 (Walking (treadmill at 1mph, 0% grade)) on GENEActiv, which are trained

with time-series and persistence images. Since two models create completely different

distributions, the difference in the ratio of entropy values between the two models is

very large.

Figure 5.7: Probability Distributions for Models Trained with Different Modalities.

Testing Samples of Class 0 Are Used to Measure the Probability.

Figure 5.8: Accuracy (%) of the Proposed Method with or Without Constraints on

GENEActiv. Students Are WRN16-1 (1D CNNs). “Const.” Denotes Constraints.
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Evaluation results for training with or without constraints based on entropy are

illustrated in Figure 5.8. γc is 0.2 for WRN16-1 and WRN28-1 teachers and 0.02 for

WRN16-3 and WRN28-3 teachers, respectively. As shown in these results, models

trained with constraints perform better than the ones without constraints in all cases.

This implies that features contain significant meaningful properties for performance

improvements not only when entropy is low but also when it is high. Thus, the con-

straints empower the student to learn adequate knowledge from different modalities.

Visualization of Feature Maps

Figure 5.9: Activation Batch Similarity Maps Produced by a Layer for the Indicated

Stage of the Network for a Batch on GENEActiv. High Similarities for Samples of

the Batch Are Represented with High Values.

To figure out more details of activations for batch and channel similarities, both

maps from teachers (WRN16-3) and a student (WRN16-1) are visualized in Figure

5.9 and 5.10, highlighting similarity with high values for input samples. A student by

CADTP is trained with entropy based constrained adaptive distillation. A student

of KD is trained with time-series data. Student is the result of a model trained from
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Figure 5.10: Activation Channel Similarity Maps Produced by a Layer for the Indi-

cated Stage of the Network for a Batch on GENEActiv. High Similarities for Samples

of the Batch Are Represented with High Values.

scratch. The merged map is generated with constrained α by entropy of two teach-

ers. The maps of two teachers are dissimilar, and the merged map is also different

from the student, implying the knowledge gap between them. For batch similar-

ity, intuitively, the blockwise patterns are more prominent for the model (Teacher2)

trained with PIs, compared to the one (Teacher1) with time-series data. For chan-

nel similarity, the maps from models trained with time-series data and persistence

images show contrast in some rows and columns differently. Furthermore, batch and

channel maps show large differences, implying that they can convey various types

of information. Thus, these can contain a variety of knowledge for the dataset, and

it is very important to transfer this knowledge well to students. The merged maps

have characteristics of both Teacher1 and Teacher2. A student model trained with

CADTP generates maps that show more contrastive patterns compared to baselines,

representing blockwise patterns for batch similarity and row or column wise patterns
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for channel similarity. This suggests that the proposed method helps a student learn

diverse desirable features from different modalities.

Analysis of Model Reliability

To explore the generalizability and regularization effects, I calculated the expected

calibration error (ECE) (Guo et al. (2017)) and negative log likelihood (NLL) (Guo

et al. (2017)). ECE is to measure calibration error, which represents the reliabil-

ity of the model. The probabilistic quality of a model can be computed by NLL. I

used students trained by teachers of WRN16-3 and WRN28-1. ECE and NLL with

various methods on GENEActiv and PAMAP2 are shown in Table 5.8 and 5.9, re-

spectively. In both cases, the results of AVER outperform KD and a model learned

from scratch (Student). This implies that using topological features improves gen-

eralizability. CADTP (with Ent.) generates the lowest ECE and NLL in almost all

cases. Thus, utilizing topological features in distillation improves the performance,

not only for accuracy but also for reliability. Finally, the proposed method aids in

generating a better student model.

Table 5.8: ECE (%) and NLL for Various Knowledge Distillation Methods on GENE-

Activ. Teachers Are WRN16-3 and WRN28-1. Students Are WRN16-1 (1D CNNs).

Method
WRN16-3 WRN28-1

ECE NLL ECE NLL

Student 3.548 2.067 3.548 2.067

KD 3.200 1.520 3.064 1.512

AVER 2.940 1.220 2.845 1.148

CADTP (w/o Ent.) 2.665 1.080 2.661 1.067

CADTP (w/ Ent.) 2.625 0.991 2.744 1.016
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Table 5.9: ECE (%) and NLL for Various Knowledge Distillation Methods on

PAMAP2. Teachers Are WRN16-3 and WRN28-1. Students Are WRN16-1 (1D

CNNs).

Method
WRN16-3 WRN28-1

ECE NLL ECE NLL

Student 2.299 1.287 2.299 1.287

KD 2.183 1.061 2.323 1.329

AVER 2.174 0.910 2.263 1.122

CADTP (w/o Ent.) 2.014 0.932 1.951 0.954

CADTP (w/ Ent.) 1.630 0.793 1.729 0.779

5.4.5 Computational Time

I measured the computational time of various methods for testing set on GENE-

Activ. The models were run on a desktop with a 3.50 GHz CPU (Intel® Xeon(R)

CPU E5-1650 v3), 48 GB memory, and an NVIDIA TITAN Xp graphic card (3840

NVIDIA® CUDA® cores and 12 GB memory) (NVIDIA (2016)). I evaluated ap-

proximately 6k samples with a batch size of 1. In Table 5.10, the considered accuracy

is the best one from Table 5.2 and 5.6. Since generating PIs by TDA is implemented

on the CPU, a model trained from scratch with PIs takes the largest amount of time

in the table. A WRN16-1 (1D CNNs) student from CADTP takes the lowest time

with the best accuracy. The model takes 2.89 ms in averaged time on CPU. If a

smaller network is used as a student or a smaller sample window of data is used, it

takes much less time. The CPU result further highlight why a model compression
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method such as KD is needed for running on small devices with limited power and

computational resources.

Table 5.10: Processing Time of Various Models on GENEActiv.

Model

Learning
KD

CADTP

from scratch (w/ Ent.)

TS (1D) PImage (2D) TS PImage TS+PImage

WRN28-3 WRN16-3 WRN16-1 (1D CNNs)

Accuracy (%) 69.23 59.8 69.71 68.76 72.23

GPU (sec) 29.94
356.92 (PIs on CPU)

15.23
+13.63 (model)

CPU (sec) 1977.89
356.92 (PIs on CPU)

16.66
+11191.45 (model)

5.5 Conclusion

In this chapter, I proposed a new framework for constrained adaptive knowledge

distillation using topological representations on wearable sensor data, utilizing various

similarity features and an annealing strategy. I demonstrated the proposed method,

CADTP, with various combinations of teachers and the student in classification. I

also analyzed the effectiveness of CADTP with experiments on invariance from noise

and feature map visualization. The proposed method showed robust performance in

classification and efficiency, which is better than baselines and important in various

applications needing implementations on small devices. In future work, the proposed

method can include more diverse teachers, which are learned with different represen-

tations, such as Gramian Angular Fields (GAF) and Markov Transition Fields (MTF)

based images encoded by time-series data. Also, I would like to investigate the effects
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of augmentation methods on the image representations to leverage multiple teachers

in KD.
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Chapter 6

UNCERTAIN FEATIRE RECTIFICATION FOR TOPOLOGICAL

KNOWLEDGE DISTILLATION ON WEARABLE SENSOR DATA

6.1 Introduction

Wearable sensor data integrated with machine learning techniques has led to in-

creasing applications in many different application involving human activity mod-

eling and tracking (Nweke et al. (2018)). However, developing robust sensor time-

series models is still considered challenging because of sensor-level noise (Wang et al.

(2021)), varying sampling rates (Adams et al. (2017)), and inter- and intra-person

variability (Cho et al. (2021)). To overcome these issues, topological data analysis

(TDA) has shown promise and has shown to aid in improving performance for time-

series classification (Seversky et al. (2016)). Specifically, persistence images (PIs)

generated by TDA are stable to signal perturbations (Adams et al. (2017); Edels-

brunner and Harer (2022)), which are 2D image representations obtained from the

raw time series data. However, the process of TDA to extract PIs requires a large

amount of time and computational resources, which makes it difficult to run on small

devices with limited computational power. Furthermore, features from TDA and the

raw time series data are difficult to integrate and generate a unified model with ma-

chine learning because they have heterogeneous characteristics, including dimension

sizes of features and statistical characteristics.

To mitigate these problems, I adopt knowledge distillation (KD), to generate

a small model (student) from a large model (teacher). KD is effective in wearable

sensor data analysis (Chen et al. (2018); Cheng et al. (2023); Jeon et al. (2022b); Gou
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et al. (2021)) and can provide multimodal data analysis solutions leveraging multiple

teachers or students (Gou et al. (2021); Zhang et al. (2022)). I use multiple teachers

trained with both time-series and PIs to distill a single student. The single student

is run with only time-series data as an input. That is, the PI and TDA processes are

not incorporated into test time. However, there are significant difficulties in utilizing

different teachers in KD: (1) The teachers have common and different characteristics

simultaneously, so integrating features from multiple teachers and implementing them

in a unified framework are challenging. (2) The teachers are not always perfect and

can transfer improper knowledge to the student, which degrades performance.

Figure 6.1: An Overview of the Proposed Method.

In this chapter, I build upon a framework that utilizes multimodal inputs in KD

learning process, including two different teachers and a single student, recently ex-

plored in the context of distilling topological features with raw time-series data (Jeon

et al. (2022b)). Firstly, PIs are obtained from persistence diagrams produced by

161



TDA. I train two models with time-series data and PIs, respectively. Secondly, the

trained models are utilized as teachers in KD to train a student. To transfer knowl-

edge, logits from teachers are utilized. Even though two teachers are trained with

different inputs, their tasks are the same as classification. In this light, their outputs

have common or different characteristics. In addition, both teachers are not always

perfect and may transfer noisy information. To consider the knowledge discrepancy

and uncertainty of two teachers, I develop a new mechanism with uncertainty-aware

feature rectification for distillation. An overview of the proposed method is depicted

in Figure 6.1.

In more detail, common and different characteristics from two teachers are sep-

arated and weighted differently. When one teacher has lower confidence than the

other, the teacher’s output is rectified by placing more weight on common features

and less on the teacher’s inherent features. This provides strong supervision and

encourages a student to gain more confident knowledge. In the third step, to pro-

vide more knowledge in learning process, correlation maps from intermediate features

within a mini-batch are used, which have the benefit of matching different structural

knowledge. Finally, I find that the proposed method distills a single student model

that outperforms several baselines using single or multiple teachers in KD. I demon-

strate the effectiveness of the proposed method with empirical analysis and different

sizes of datasets.

6.2 Background

6.2.1 Topological Feature Extraction

Persistent homology is a key representation used in TDA, which tracks the vari-

ations of n-dimensional holes characterized by a dynamic thresholding process, a
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filtration (Edelsbrunner et al. (2002)). During the filtration process, the persistence

of holes implies a persistence feature, which is projected onto the persistence diagram

(PD) encoding the birth and death times as x and y coordinates of planar scatter

points (Adams et al. (2017); Edelsbrunner and Harer (2022)). Since the location and

number of points in the PD are not fixed, PDs are vectorized in many different ways

(Ali et al. (2023)), including commonly as persistence images (PI) (Edelsbrunner and

Harer (2022)). A given PD is converted to a persistence surface (PS) computed by

a weighted sum of Gaussian functions centered at the scatter points in the PD. The

PS is discretized which as depicted in Figure 6.2. Topological features can comple-

ment time-series features to improve performance (Som et al. (2020)). However, TDA

requires large computational power and time consumption, making it challenging to

apply the method to small devices with limited computational resources. I propose

a framework based on knowledge distillation to distill a small model to obtain better

performance.

Figure 6.2: Example of Time-series and Its Corresponding PD and PI.

6.2.2 Knowledge Distillation

Traditional KD aims to train a simple network by using a larger or more complex

network. To transfer knowledge, both hard and soft labels are utilized. In KD, a
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student is trained with the loss function as follows:

L = (1− λ)LCE + λLKD, (6.1)

where LCE is the standard cross entropy loss, LKD is KD loss, and λ is a hyper-

parameter; 0 < λ < 1. The cross entropy loss to train a student is:

LCE = H(Q(lS), t), (6.2)

where Q(·) is a softmax function, H(·) is a cross entropy loss function, lS is the logits

of a student, and t is a ground truth label. The difference of softened outputs between

student and teacher are minimized by KL-divergence loss:

LKD = τ 2KL(hT , hS), (6.3)

where, hT = Q(lT/τ) is a softened output of a teacher network, hS = Q(lS/τ) is a

softened output of a student, and τ is a hyper-parameter; τ > 1. To get the best

performance, in this chapter, early stopped model of a teacher (ESKD) is utilized,

improving the efficacy of KD (Cho and Hariharan (2019); Jeon et al. (2022b)).

For better mimicking the teacher, representations from intermediate layers can be

leveraged in knowledge transfer. There are many different variants of using layer-to-

layer and sample-to-sample relationships for KD. Attention maps are computed for

knowledge transfer by a sum of squared attention mapping function (AT) (Zagoruyko

and Kmodakis (2017)). Tung et al. (Tung and Mori (2019)) suggested calculating

and comparing the similarity matrix within a mini-batch of a teacher and student to

mitigate the difference. The similarity map M ∈ Rb×b is generated as follows:

M = F · F>;F ∈ Rb×chw, (6.4)

where F is reshaped features from an intermediate layer of a model, b is the size of

a mini-batch, c is the number of output channels, and h and w are the height and
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width of the output, respectively. These methods are widely explored; however, most

of them are unimodal solutions that use a single teacher.

Recently, multiple teachers have been employed, and feature integration meth-

ods have been addressed for knowledge transfer (Gou et al. (2021); You et al. (2017);

Zhang et al. (2022)). However, these methods generally deal with unimodal problems.

Also, common and different characteristics between teachers are not considered, which

have different effects on the training process. Even though less weight is applied to

less confident features, noisy features can be transferred, which degrades the per-

formance. Our proposed method measures uncertainty for two teachers and rectifies

less confident features to preserve significant inter-class relationships and obtain more

effective knowledge for stronger supervision.

6.3 Methodology

6.3.1 Persistence Image Extraction

To utilize topological features in KD, I extract PIs to train a model. By referring

to a previous study (Som et al. (2020)), Scikit-TDA python library (Saul and Tralie

(2019)) and the Ripser package are used to compute PDs. Each channel of a sample

is projected to the PD generating PI by its the birth-time vs. lifetime information. I

set the grid size of a PI as 64× 64 so that the dimension size of a PI for a sample is

64× 64× c. I then train a model with the extracted PIs, and the model is used as a

teacher in KD for transferring topological features to a student model.

6.3.2 Logit Transfer for Multiple Teachers

For the proposed method, logit knowledge from two teachers is transferred sepa-

rately so that no additional layers or concatenation procedures are needed. The logit
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knowledge transfer loss can be written as:

LKDl = τ 2 (αKL(hT1 , hS) + (1− α)KL(hT2 , hS)) , (6.5)

where α is a constant value to balance the effects from two teachers, and hT1 and hT2

are softened outputs of teachers learned by time-series data and PIs, respectively.

6.3.3 Uncertainty-aware Feature Rectification

Feature Separation: Multiple teachers trained with different inputs and structures

generate different statistical characteristics. However, since two models are trained to

deal with the same task for classification, they also have common characteristics. To

reduce noisy features and boost the effectiveness of KD, as shown in Figure 6.3, I sep-

arate features into three different categories: Teacher1’s inherent (qT1), common (qf ),

and Teacher2’s inherent (qT2) features. Inherent features of Teacher1 and Teacher2

(qT1 and qT2) are obtained by max(hT1 − hT2 , 0) and max(hT2 − hT1 , 0), respectively.

The common feature qf is calculated by hT1 − qT1 . I apply weights to three features

differently to transfer knowledge effectively.

Feature Rectification: Two teachers are not always guaranteed to provide high-

quality and proper knowledge for better performance. To generate stronger knowl-

edge, I utilize confidence scores measured by cross-entropy loss with teachers. Fea-

tures of teachers are rectified as follows:

Tij =


T1j if H(Q(lT

1j
), tj) > H(Q(lT

2j
), tj)

T2j otherwise

;

hT
ij

= β1q
ij

f + β2qT
ij
,

(6.6)

where i indicates a teacher among Teacher1 and 2, j is a number for a sample, and β1

and β2 are the hyper-parameters. When both β1 and β2 are 1.0, this corresponds to

without using feature rectification. When β2 is lower than β1, the effect of a teacher’s
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inherent feature is less than the common feature. After rectification, updated hT1

and hT2 are utilized in equation 6.5 to calculate LKDl. In this way, teachers transfer

less noisy and higher quality knowledge, and the student is learned with stronger

supervision.

Figure 6.3: Illustration of a Mechanism of Uncertainty-aware Feature Rectification

When Cross-entropy Loss from Teacher1 Is Higher than the One from Teacher2.

6.3.4 Knowledge Distillation with Multiple Teachers

For further improvement, I utilize a similarity map to integrate different sizes

of features obtained from two teachers with different structures (1D CNNs and 2D

CNNs). The size of similarity maps extracted from two teachers within a mini-batch

is the same regardless of model structures. I use weighted summation to integrate sim-

ilarity maps of teachers and transfer the knowledge to a student, which is computed

by:

M
(l)
T = αM

(lT1 )
T1

+ (1− α)M
(lT2 )
T2

; M̃
(l)
T = M

(l)
T /
∥∥∥M (l)

T

∥∥∥
2

(6.7)

where M
(l)
T ∈ Rb×b is the merged map from the outputs of a layer pair (lT1 and lT2)

of two teachers MT1 and MT2 . Student tries to mimic teachers by the following loss

function:

Lm =
1

b2|L|
∑

(l,lS)∈L

(∥∥∥M̃ (l)
T − M̃

(lS)
S

∥∥∥2
F

)
, (6.8)
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where L accumulates the layer pairs (l and lS), M̃
(lS)
S is normalized map for a student,

and ‖·‖F is the Frobenius norm (Tung and Mori (2019)). To consider a student using

only time-series data that is different from teachers, I leverage an annealing strategy

that is addressed in a prior study Jeon et al. (2022a), which uses weights of a model

trained from scratch when a student model is initialized for training. Then, the gap

between teachers and a student is reduced, and the student can preserve its inherent

characteristics that aid in improving performance.

The final loss function can be written as follows:

Ltotal = (1− λ)LCE + λLKDl + κLm, (6.9)

where κ is a hyper-parameter.

6.4 Experiments

Dataset Description: I evaluate the proposed method with two different datasets.

GENEActiv (Jeon et al. (2022b)) is collected with a light-weight, waterproof, and

wrist-worn tri-axial accelerometer. The dataset is comprised of 14 daily activities,

as in (Jeon et al. (2022b)) with full non-overlapping window size of 500 time-steps.

PAMAP2 (Reiss and Stricker (2012)) was recorded from the heart rate and 4 IMUs

for 9 subjects with 12 daily activities, consisting of 40 channels. The window size of

a sample is 100 time-steps (3 seconds). The evaluation protocol for this dataset is

leave-one-subject-out.

Implementation Details: To generate PIs, parameters in PD are set to 0.25 and

0.015, and the birth-time range for PI is [-10, 10] and [-1, 1] for GENEActiv and

PAMAP2, respectively, referring to the previous study (Som et al. (2020)). To train

models, I set the total number of epochs as 200 with 64 as the batch size, using SGD

with momentum of 0.9 and 1 × 10−4 for a weight decay. A model (1D CNNs) for
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Table 6.1: Accuracy (%) with Various Knowledge Distillation Methods for Different

Capacity of Teachers on GENEActiv.

Teacher1 WRN16-1 WRN16-3 WRN28-1 WRN28-3

(1D CNNs) (0.06M, 67.66) (0.5M, 68.89) (0.1M, 68.63) (1.1M, 69.23)

Teacher2 WRN16-1 WRN16-3 WRN28-1 WRN28-3

(2D CNNs) (0.2M, 58.64) (1.6M, 59.80) (0.4M, 59.45) (3.3M, 59.69)

Student WRN16-1

(1D CNNs) (0.06M, 67.66±0.45)

P
I KD 67.83±0.17 68.76±0.73 68.51±0.01 68.46±0.28

T
im

e-
se
ri
es

KD 69.71±0.38 69.50±0.10 68.32±0.63 68.58±0.66

AT 68.21±0.64 69.79±0.36 68.09±0.24 67.73±0.27

SP 67.20±0.36 67.85±0.24 68.71±0.46 67.39±0.49

SimKD 69.39±0.18 69.89±0.11 68.92±0.40 68.80±0.38

DIST 68.20±0.28 69.71±0.15 69.23±0.19 68.18±0.60

T
S
+
P
Im

a
g
e

AVER 68.99±0.76 68.74±0.35 68.77±0.70 69.02±0.50

EBKD 68.43±0.25 69.24±0.25 68.45±0.73 67.50±0.40

CA-MKD 69.33±0.61 69.80±0.16 69.61±0.57 68.81±0.79

Base 69.09±0.37 69.24±0.62 69.55±0.41 69.42±0.58

Ann 70.15±0.03 70.71±0.12 70.44±0.10 69.97±0.06

Ours 71.32 ±0.14 71.18±0.18 71.42±0.17 70.90±0.28

time-series data is trained with an initial learning rate of 0.05 that decreases by 0.2

at 10 epochs and by 0.1 every [y
3
] epoch where y is 200. A model (2D CNNs) for

image data is trained with an initial learning rate of 0.1 that decreases by 0.5 at 10

epochs and by 0.2 every 40 epochs. For experiments, I utilize WideResNet (WRN)

(Zagoruyko and Komodakis (2016)) which is popularly used for KD evaluation (Cho

and Hariharan (2019); Jeon et al. (2022b)) and can construct different widths and

depths of networks. I set τ and λ as 4 and 0.7 for GENEActiv, and as 4 and 0.99 for
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Table 6.2: Accuracy (%) for Related Methods on GENEActiv with 7 Classes.

Method
Window length

1000 500

T
im

e-
se
ri
es

WRN16-1 89.29±0.32 86.83±0.15

WRN16-3 89.53±0.15 87.95±0.25

WRN16-8 89.31±0.21 87.29±0.17

ESKD 89.88±0.07 88.16±0.15

Full KD 89.84±0.21 87.05±0.19

AT 90.32±0.09 87.60±0.22

SP 88.47±0.19 87.69±0.18

SimKD 90.47±0.32 88.16±0.37

DIST 90.20±0.39 87.05±0.31

T
S
+
P
Im

a
g
e

AVER 90.06±0.33 87.05±0.37

EBKD 89.82±0.14 87.66±0.28

CA-MKD 90.13±0.34 88.04±0.26

Ann 90.71±0.15 88.26±0.24

Ours 91.26±0.15 88.94±0.11

PAMAP2, respectively, referring to the previous study (Jeon et al. (2022b)). α is 0.7

and 0.3 for GENEActiv and PAMAP2, respectively. β1 and β2 are set to 1.0 and 0.75,

respectively. I run 3 times and the best averaged accuracy and standard deviation

are reported. For baselines, traditional KD (Hinton et al. (2015)), AT (Zagoruyko

and Kmodakis (2017)), SP (Tung and Mori (2019)), SimKD (Chen et al. (2022)),

and DIST (Huang et al. (2022)) are used to compare with using a single teacher

for KD. Also, I evaluate with methods using multi-teacher such as AVER (You et al.

(2017)), EBKD (Kwon et al. (2020)), CA-MKD (Zhang et al. (2022)), Base (Jeon et al.

(2022a)), and Ann (Jeon et al. (2022a)). Two teachers have different structures, so
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only logits are utilized in KD for baselines. κ for GENEActiv is 700. For PAMAP2,

500 is for ours and 200 is for baselines to obtain the best result.

Table 6.3: Accuracy (%) for Related Methods on PAMAP2.

Method Accuracy (%)

T
im

e-
se
ri
es

WRN16-1 82.81±2.51

WRN16-3 84.18±2.28

WRN16-8 83.39±2.26

ESKD 86.38±2.25

Full KD 84.31±2.24

AT 84.44±2.22

SP 84.89±2.10

T
S
+
P
Im

a
g
e

AVER 86.00±2.45

EBKD 85.62±2.37

CA-MKD 85.02±2.64

Base 86.18±2.37

Ann 87.12±2.26

Ours 87.21±2.42

6.4.1 Results on Various Capacity of Teachers

I investigate the effectiveness of the proposed method on the capacity of teachers.

Note, brackets denote the number of trainable parameters and accuracy for the model.

As shown in Table 6.1, the proposed method outperforms all baselines, including a

single teacher and multiple teacher-based KD. To evaluate the method on different

window lengths and the number of classes, the method is implemented on 7 classes

of GENEActiv dataset and PAMAP2 dataset, using WRN16-3 teachers. Note, TS

denotes time-series. Students are WRN16-1. As described in Table 6.2 and 6.3,
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ours show the best accuracy in all cases. Thus, the proposed method aids in model

compression as well as improving classification accuracy.

6.4.2 Results on Different Combinations of Teachers

To explore the performance using teachers with different architectures, I set up

several different combinations of teachers, considering the width and depth of net-

works. As described in Table 6.4 and 6.5, the proposed method outperforms baselines

in all cases. In some cases, a student distilled by ours even outperforms its teachers.

This implies that ours can guide a student effectively even when teachers have many

differences and more knowledge gaps, which generate negative effects.

Table 6.4: Accuracy (%) with Various Knowledge Distillation Methods for Different

Structure of Teachers on GENEActiv.

Method
Difference of Architecture

Depth Width Depth+Width

Teacher1 WRN16-1 WRN28-1 WRN16-1 WRN16-3 WRN28-1 WRN40-1 WRN16-1

(1D CNNs) (0.06M, 67.66) (0.1M, 68.63) (0.06M, 67.66) (0.5M, 68.89) (0.1M, 68.63) (0.2M, 69.05) (0.06M, 67.66)

Teacher2 WRN28-1 WRN16-1 WRN16-3 WRN16-1 WRN16-3 WRN28-3 WRN28-3

(2D CNNs) (0.4M, 59.45) (0.2M, 58.64) (1.6M, 59.80) (0.2M, 58.64) (1.6M, 59.80) (3.3M, 59.69) (3.3M, 59.69)

Student WRN16-1

(1D CNNs) (0.06M, 67.66±0.45)

AVER 68.71±0.42 68.66±0.26 68.92±0.09 67.98±0.29 68.29±0.16 69.10±0.43 68.07±0.27

Ann 69.95±0.05 70.34±0.14 69.68±0.14 71.06±0.02 70.28±0.13 70.49±0.05 69.65±0.04

Ours 70.66±0.33 71.52±0.04 70.28±0.45 71.42±0.20 70.83±0.83 71.35±0.07 71.18±0.20
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Table 6.5: Accuracy (%) with Various Knowledge Distillation Methods for Different

Structure of Teachers on PAMAP2.

Method
Difference of Architecture

Depth Width Depth+Width

Teacher1 WRN28-1 WRN28-3 WRN16-3 WRN16-1 WRN28-3

(1D CNNs) (0.1M, 84.81) (1.1M, 84.46) (0.5M, 85.80) (0.06M, 85.27) (1.1M, 84.46)

Teacher2 WRN16-1 WRN28-1 WRN28-1 WRN28-3 WRN16-1

(2D CNNs) (0.2M, 86.93) (0.4M, 87.45) (0.4M, 87.45) (3.3M, 87.88) (0.2M, 86.93)

Student WRN16-1

(1D CNNs) (0.06M, 82.99±2.50)

Ann 85.97±2.33 85.59±2.28 85.82±2.26 85.94±2.31 85.86±2.42

Ours 87.38±2.10 88.30±2.14 88.14±2.23 87.71±1.97 86.80±2.36

6.4.3 Ablation Study

Utilizing Similarity Features: I explore improvements in utilizing similarity maps

from intermediate features for ours and a baseline implementing without feature rec-

tification. As illustrated in Figure 6.4, utilizing similarity shows better performance

for both methods. Also, ours with similarity features outperforms Ann (Jeon et al.

(2022a)). This implies that intermediate features provide more information for teach-

ers. Also, the uncertain feature rectification module can be combined with similarity

maps in distillation to improve performance.

Feature Rectification Hyper-parameters: I evaluate the proposed method on

different feature rectification hyper-parameters. I set β1 to 1.0 and β2 to different

values to explore the sensitivity for the parameter. As described in Figure 6.5, all re-
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Figure 6.4: Accuracy (%) of Students Trained with or Without Using Similarity Map

(M). Students Are WRN16-1.

sults of our method outperform baselines implementing without feature rectification,

and the best is shown with 0.75 of β2.

Figure 6.5: Accuracy (%) with Various Feature Rectification Parameters (β2) on

GENEActiv. Students Are WRN16-1.

6.5 Conclusion

In this chapter, I propose a novel approach based on uncertainty-aware feature

rectification, for knowledge distillation with topological features. I showed the ro-

bustness of the proposed method through empirical evaluation using various capaci-
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ties and combinations of teachers and students. Compared to baselines, our method

shows improved performance.
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Chapter 7

DISCUSSION AND FUTURE WORK

In this thesis, I discussed solutions in knowledge distillation with geometric ap-

proaches for multimodal data analysis to enable a small model to improve the ef-

ficiency and performance of classification.

In Chapter 2, I explored the role of augmentation strategies in KD with time-series

data across different sizes and window lengths of datasets. Augmentation methods,

which are relevant time-series data such as removal and Gaussian filtering, were ap-

plied to teachers and students with various combinations. I evaluated performance by

using different capacities of teacher networks. I showed that a high-capacity teacher

network does not necessarily ensure better performance in a student network. I fur-

ther showed that training with augmentation methods and early stopping for KD

(ESKD) are effective when dealing with time-series data. In most cases, when the

augmentation method was applied to train a student and a teacher trained with

original data was used, performance showed the best. Also, using a combination of

augmentation methods in the KD training process showed better performance than

utilizing a single augmentation strategy. Thus, I conclude that using a combination

of augmentation methods for training KD can perform better in general.

In Chapter 3, I showed how a geometric approach can help to extract attentive

knowledge for improving the performance of knowledge transfer. Leveraging an an-

gular distribution for KD was proposed, which projects features onto the hypersphere

and inserts an angular margin to enlarge the gap between positive and negative fea-

tures. This aids in extracting better representations of features and training a student

with more distinguished and disentangled features from a teacher. The proposed
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method was evaluated with four public image datasets using various combinations

of networks in classification as well as various aspects such as feature visualization,

t-SNE metric, and generalizability. In overall cases, the proposed method outper-

formed baselines. Also, the method was evaluated for compatibility by combining

existing methods. With augmentation methods as well as other distillation methods,

performance with the proposed method was improved. This proved that the method

can perform with various existing methods and generate synergetic effects, providing

more informative features to improve performance.

In Chapter 4, utilizing topological features by a geometric method in KD using

multiple teachers was proposed. With KD, two teachers were trained with multimodal

data, including time-series and image representations. Image data, called persistence

images, was generated by TDA, which has topological features that can significantly

complement time-series features and have robustness in noises. To accommodate dif-

ferent teachers in one framework, an annealing strategy was introduced to reduce the

knowledge gaps between networks and preserve the inherent beneficial characteristics

of a student network implemented with time-series data only. To provide plentiful in-

formation to the student, relationships of similarities from intermediate features were

leveraged, where the relationships representing more expressive features were com-

puted by orthogonality properties within similarities. In this framework, a robust

student was distilled, which uses time series data only as the input without requiring

access to image representation from persistence features. The proposed method was

evaluated with datasets having different numbers of classes and window lengths and

showed better results than baselines. Further, the method outperformed baselines

in model reliability and the ability of invariances from noises, which implies better

model generalizability.
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In Chapter 5, a constrained adaptive weighting mechanism was introduced to im-

prove performance in the KD learning process using multimodal data. Two teachers

were trained with different data, including time-series and persistence image data,

which were addressed in Chapter 4. To provide more plentiful and informative fea-

tures, both batch and channel similarities within a mini-batch were leveraged for

knowledge transfer. To control the effects of different teachers, a constrained weight-

ing mechanism based on entropy values was developed. Through feature map visu-

alization, knowledge differences between models were explained. Even though there

was a knowledge gap between models, this framework distilled a robust student model

that is implemented with time-series data alone. I demonstrated this framework with

an evaluation of hyper-parameters, invariance from noise, and model reliability. The

proposed method produced more effective results than baselines.

In Chapter 6, uncertainty-based feature rectification for KD on multimodal data

was proposed. Multiple teachers have been utilized simultaneously to improve the KD

learning process; however, teachers do not always generate high-quality knowledge.

Also, two teachers were trained with different types of data, but their target task was

the same. So, common and different characteristics were included in the outputs of

two teachers. Based on these insights, the outputs of teachers are rectified to provide

strong knowledge to a student. Firstly, common and different features of teachers

were separated, and different weights were applied for rectification by the uncertainty

score measured from cross-entropy. In this way, strong supervision can be provided to

distill a robust student. The proposed framework was evaluated with several recent

works and showed robust effectiveness in KD.

In conclusion, the works in this thesis have been addressed to understand knowl-

edge distillation with geometric approaches for multimodal data analysis. I demon-

strated the effectiveness of the proposed works in various aspects, such as feature map
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visualization and combining them with existing methods. The solutions are evalu-

ated empirically and outperform many standard baselines on various configurations

of models and different types of data.

The proposed methods in this thesis have great potential to be expanded into

various research that I discuss for future research below.

Uncertainty-aware feature rectification for knowledge transfer using re-

lationships of inter- and intra-class. As an extended study in Chapter 6, more

richer and stronger information can be provided to a student for improving KD perfor-

mance. Based on rectified features with inter-class addressed in Chapter 6, relation-

ship of intra-class can be transferred jointly, which is computed by the cosine similar-

ity of transposed matrices implying inter-class distribution. Also, feature similarity

maps are rectified by common and different features with a mean score of uncertainty

within a mini-batch. Then, stronger knowledge can be generated, considering the

comprehensive KD learning process, including both inter- and intra-class relation-

ships and intermediate features. Furthermore, a geometric approach can encourage

a student to mimic teachers by using graph relationships with direct pair match-

ing or geodesic-based matching. With additional features representing relationships

of features, diverse and better interpretable representations, such as orthogonality

properties, can be utilized, which aid in improving distillation performance. Thus,

the student can obtain more enhanced ability to mimic teachers than using linear

metrics, which match feature maps directly.

Analysis of leveraging image representation with multiple teachers in

KD on time-series data. To improve the performance of models on time-series

data, image representations encoded by time-series data have been utilized simul-

taneously while complementing time-series features (Som et al. (2020); Jeon et al.

(2022a); Zhang et al. (2023)). In KD, using persistence images generated by TDA
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was introduced by previous studies (Jeon et al. (2022a)) and showed improved per-

formance using multiple teachers. Gramian Angular Fields (GAF) have also been

widely utilized in KD for action recognition (Ni et al. (2022); Liu et al. (2021)). How-

ever, it still remains to be seen which image representation provides a better quality

of knowledge for the KD learning process. Based on this motivation, I would like

to investigate which image representations can make significant contributions to im-

proving performance in the KD process. I would like to utilize more knowledge with

different representations to provide richer information to improve performance in dis-

tillation. Also, the effects of augmentation methods on the image representations to

leverage multiple teachers in KD can be explored.
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Buciluǎ, C., R. Caruana and A. Niculescu-Mizil, “Model compression”, in “Proceed-
ings of the ACM International Conference on Knowledge Discovery and Data Min-
ing (KDD)”, pp. 535–541 (2006).

Cao, H., V. Y. Tan and J. Z. Pang, “A parsimonious mixture of gaussian trees model
for oversampling in imbalanced and multimodal time-series classification”, IEEE
Transactions on Neural Networks and Learning Systems 25, 12, 2226–2239 (2014).

Catal, C., S. Tufekci, E. Pirmit and G. Kocabag, “On the use of ensemble of classifiers
for accelerometer-based activity recognition”, Applied Soft Computing 37, 1018–
1022 (2015).

Chalapathy, R. and S. Chawla, “Deep learning for anomaly detection: A survey”,
arXiv preprint arXiv:1901.03407 (2019).

181



Chen, D., J.-P. Mei, H. Zhang, C. Wang, Y. Feng and C. Chen, “Knowledge distilla-
tion with the reused teacher classifier”, in “Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition”, pp. 11933–11942 (2022).

Chen, Q., Q. Liu and E. Lin, “A knowledge-guide hierarchical learning method for
long-tailed image classification”, Neurocomputing 459, 408–418 (2021).

Chen, Y. and Y. Xue, “A deep learning approach to human activity recognition based
on single accelerometer”, in “Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics”, pp. 1488–1492 (2015).

Chen, Z., L. Zhang, Z. Cao and J. Guo, “Distilling the knowledge from handcrafted
features for human activity recognition”, IEEE Transactions on Industrial Infor-
matics 14, 10, 4334–4342 (2018).

Cheng, L., S. Luo, X. Yu, H. Ghayvat, H. Zhang and Y. Zhang, “Eeg-clnet: collabo-
rative learning for simultaneous measurement of sleep stages and osa events based
on single eeg signal”, IEEE Transactions on Instrumentation and Measurement
(2023).

Cho, J. H. and B. Hariharan, “On the efficacy of knowledge distillation”, in “Proceed-
ings of the IEEE/CVF International Conference on Computer Vision (ICCV)”, pp.
4794–4802 (2019).

Cho, S., I. Ensari, C. Weng, M. G. Kahn and K. Natarajan, “Factors affecting the
quality of person-generated wearable device data and associated challenges: Rapid
systematic review”, JMIR Mhealth Uhealth 9, 3, e20738, URL https://mhealth.
jmir.org/2021/3/e20738 (2021).

Choi, H., A. Som and P. Turaga, “AMC-loss: Angular margin contrastive loss for
improved explainability in image classification”, in “Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops”, pp. 838–839
(2020).

Choi, H., Q. Wang, M. Toledo, P. Turaga, M. Buman and A. Srivastava, “Temporal
alignment improves feature quality: an experiment on activity recognition with
accelerometer data”, in “Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops”, pp. 349–357 (2018).

Clark, K., M.-T. Luong, U. Khandelwal, C. D. Manning and Q. Le, “Bam! born-again
multi-task networks for natural language understanding”, in “Proceedings of the
Annual Meeting of the Association for Computational Linguistics”, pp. 5931–5937
(2019).

Cortes, C. and V. Vapnik, “Support-vector networks”, Machine learning 20, 3, 273–
297 (1995).

Cubuk, E. D., B. Zoph, D. Mane, V. Vasudevan and Q. V. Le, “Autoaugment: Learn-
ing augmentation strategies from data”, in “Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition”, pp. 113–123 (2019).

182

https://mhealth.jmir.org/2021/3/e20738
https://mhealth.jmir.org/2021/3/e20738


Cui, X., V. Goel and B. Kingsbury, “Data augmentation for deep neural network
acoustic modeling”, IEEE/ACM Transactions on Audio, Speech, and Language
Processing 23, 9, 1469–1477 (2015).

Dalal, N. and B. Triggs, “Histograms of oriented gradients for human detection”, in
“Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion”, pp. 886–893 (2005).

Darlow, L. N., E. J. Crowley, A. Antoniou and A. J. Storkey, “Cinic-10 is not imagenet
or cifar-10”, arXiv preprint arXiv:1810.03505 (2018).

Das, D., H. Massa, A. Kulkarni and T. Rekatsinas, “An empirical analysis of
the impact of data augmentation on knowledge distillation”, arXiv preprint
arXiv:2006.03810 (2020).

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database”, in “IEEE Conference on Computer Vision and
Pattern Recognition (CVPR)”, pp. 248–255 (Ieee, 2009).

Deng, J., J. Guo, N. Xue and S. Zafeiriou, “Arcface: Additive angular margin loss for
deep face recognition”, in “Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR)”, pp. 4690–4699 (2019).

Dong, Z., K. Hou, Z. Liu, X. Yu, H. Jia and C. Zhang, “A sample-efficient opf learning
method based on annealing knowledge distillation”, IEEE Access 10, 99724–99733
(2022).

Dosovitskiy, A., L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth
16x16 words: Transformers for image recognition at scale”, arXiv preprint
arXiv:2010.11929 (2020).

Dutta, A., O. Ma, M. P. Buman and D. W. Bliss, “Learning approach for classification
of geneactiv accelerometer data for unique activity identification”, in “2016 IEEE
13th International Conference on Wearable and Implantable Body Sensor Networks
(BSN)”, pp. 359–364 (IEEE, 2016).

Edelsbrunner, H. and J. L. Harer, Computational topology: an introduction (American
Mathematical Society, 2022).

Edelsbrunner, H., D. Letscher and A. Zomorodian, “Topological persistence and sim-
plification”, Discrete Computational Geometry pp. 511 – 533 (2002).

Eileen, K. T. L., Y. Kuah, K.-H. Leo, S. Sanei, E. Chew and L. Zhao, “Surrogate
rehabilitative time series data for image-based deep learning”, in “Proceedings of
the European Signal Processing Conference”, pp. 1–5 (2019).
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